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Summary 

Recent reviews in Department of Defense (DoD) strategic interests place additional em- 
phasis on near-shore, or littoral, operations. This has created a significant Army interest 
in coastal wave predictions for sustainment of operations and has significantly increased the 
Navy's needs for improved coastal wave predictions. Both services use a European-developed 
code called the WAve Model, or WAM, for oceanic wave prediction. Although initially de- 
veloped for deep ocean, global forecasts, research indicates that extension of WAM to handle 
near-shore forecasts may be very successful, if adequate computational power is available. 

This report documents results of work currently underway as part of the DoD's scalable 
software initiative to improve the performance of WAM by a factor of two to four times 
current operational performance. Techniques to achieve this level of performance on the 
emerging breed of scalable, commodity-processor based parallel computing systems in a way 
which is both efficient and portable are detailed and placed in the context of an overall design 
philosophy. Development in two phases is discussed. Phase I focuses on the parallelization 
of the simulation job stream so that each of the successively finer grid nests used in a 
forecast can be computed simultaneously. Phase II development extends this parallelism 
by performing computations for each grid on multiple processors. Preliminary results are 
presented which demonstrate excellent performance improvements in initial evaluations, and 
specific recommendations for further enhancements are provided. 

Vlll 



Chapter 1 

Introduction 

1.1    The WAve Model (WAM) 

Recent reviews in Department of Defense (DoD) strategic interests place additional emphasis 
on coastal, or littoral, operations. This shift has created a significant Army interest in 
coastal wave predictions for sustainment of operations, and has significantly increased the 
Navy's needs for improved coastal wave predictions. Both services use a European generated 
computer code called the WAve Model, or WAM [6] [9], for oceanic wave prediction. This code 
was initially developed for deep ocean, global forecasts. Active R&D efforts are underway 
within the Navy and Army to extend and improve this class of model for littoral operations 
and planning. Initial investigations suggest this may be effective, if adequate computational 

power is available [11]. 
Wind-wave models such as WAM involve physical processes which operate over a large 

range of time and space scales. Wave characteristics at a specific time and place are often the 
result of winds and waves originally generated days ago and thousands of kilometers away. 
Yet wave propagation remains dependent upon local effects due to the shape of the ocean 
bottom and, close to the shore, can require local grid resolutions as fine as 100m. WAM 
must therefore compute solutions over spatial resolutions ranging from 100m to (typically) 
60 km, and involve integration of the field equations over times ranging from hours to weeks. 
Wave height prediction on these widely varying temporal and spatial scales is accomplished 
by performing simulations in several stages. Each stage uses a grid which is finer than the 
previous grid and covers an area successively closer to the area in which the final prediction 
is desired. For example, Figure 1.1 shows a three level grid nest for the prediction of wave 
heights near the shore in an area of the East China Sea. The coarsest grid level encompasses 
the entire Pacific Ocean, while the next two successively finer grids focus in on regions closer 
to the shore. These simulations are said to be "nested" because each coarse grid completely 
contains all finer grids for which it produces boundary conditions. Nesting the simulations 
in this way enables waves generated in an area remote from the area in which a prediction 
is desired to influence conditions near the shore; it also minimizes computational time by 
calculating the most accurate solutions only near the regions of operational interest. A 
simulation may contain more (or less) grid levels than shown in Figure 1.1 depending upon 

the requirements of a particular forecast. 
Although developed for deep ocean, global forecasts, recent investigations indicate that 
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Figure 1.1: Three level grid nest for coastal wave height forecast in the East China Sea. 



this model can be extended into much shallower water for coastal simulations [11]. These 
studies also indicate that adequate treatment of the coastal wave prediction problem will 
require significant increases in computational power. First, simulation of wave activity in 
coastal regions will require local grid meshes an order of magnitude finer than presently used 
in order to define depth gradients, shoreline configuration, and current fields. Moreover, 
increased spatial resolution may be needed to resolve near-shore wave dynamics in a coupled 
modeling system, further increasing the computational burden. Finally, a significant increase 
in model accuracy, desired for increased confidence in operational forecasts, will require an 
improved representation of the collision integral estimated to consume about 45% of the 
computational demands in the application. 

However, simply adding additional code to satisfy the increased computational require- 
ments may not yield an application model which is useful in operational logistics forecasts. 
These advancements must produce forecasts within operational time constraints. Forecasts 
provided by WAM are of vital importance to fleet operations, and must be delivered in a 
timely fashion. WAM is used by Fleet Numerical Meteorological and Oceanographic Center 
(FNMOC) and the Naval Oceanographic Office (NAVOCEANO) to perform continuous fore- 
casts of wave heights in areas of military significance (i.e., areas of responsibility, or AORs). 
Timely transmittal of results to the field is of the highest priority for these simulations, 
and several tradeoffs have been made to reduce the wall clock time. For example, some of 
the most critical physical processes in the model have been implemented parametrically be- 
cause of the high computational cost of more accurate representations. A reduction in wall 
clock time will enable use of higher-order representation of these features, increasing the 
accuracy of computed results and enhancing the dependability of operational predictions. 
Furthermore, more and more regions of the world become candidates for near-shore wave 
predictions as the political climate continues to evolve, while computational resources have 
remained fairly fixed. Reduction of the wall clock time required for forecasts in the various 
AORs will allow additional regions to be simulated during a single forecast cycle. For ex- 
ample, a global model with six regional simulations and two ultra-high resolution forecast 
scenarios run twice daily by NAVOCEANO requires approximately 3.5 hours of computation 
per watch cycle. A reduction of only 20% in the run time will enable another region to be 
simulated in the same amount of time. 

A significant factor in this project is, therefore, the reduction of wall clock time for 
each of the simulations while retaining a suitable level of forecast accuracy. Standard rules 
of thumb reveal that a 48 hour simulation, from global to the near-shore grid, must be 
completed in no more than 100 minutes (wall clock time) with an accuracy of ±0.5m at 
coarse resolutions and ±0.25m desired in the littoral zone. During each stage of WAM 
development the source code was optimized for single vector processor environments such as 
the CRAY C90. Researchers at WES have made further improvements by reducing the wall 
clock time as much as 20% (mostly through environment-specific modifications such as the 
use of high-speed I/O routines). The result is an application which makes effective use of the 
vector environment for which it has been tailored, but further refinements are not likely to 
deliver the level of performance needed to support the desired technology enhancements. The 
current work, following trends in the High Performance Computing (HPC) industry, focuses 
upon migrating WAM from a single processor vector environment to a scalable computing 

environment. 



1.2 Common High Performance Computing Software Support Ini- 
tiative (CHSSI) 

The migration of WAM to a scalable computing environment is partially funded by the 
Common High Performance Computing Software Support Initiative (CHSSI), a component of 
the DoD HPC Modernization Program (HPCMP). Recognition by the DoD of long-emerging 
trends in the HPC industry toward use of mass-market, off-the-shelf components in high per- 
formance computations led to the creation of four Major Shared Resource Centers (MSRCs), 
operated by the three services (two MSRCs in the Army, one each in the Air Force and Navy). 
A significant portion of the computational resources available in each of these four centers is 
composed of scalable, RISC-processor based machines like the Silicon Graphics, Inc., Power 
Challenge Array (PCA), the CRAY T3E, and the IBM SP [8]. These machines represent a 
transition the primary production supercomputing platform in the DoD, the vector archi- 
tectures typified by the CRAY Y-MP and C90. The DoD recognized that, with this shift 
in computational resources, a significant amount of software re-engineering, or "modern- 
ization", would be required to take advantage of the new architectures and ensure mission 
success. The CHSSI program will produce a set of principal DoD applications programs that 
run efficiently on scalable HPC systems. As summarized in HPCMP documentation [4]: 

"The software initiative has been instituted by the HPC Modernization Office to help 
support the overall program vision of developing scalable software applications for DoD, 
building user expertise in the DöD laboratories and centers, and applying HPC computation 
and communications to maintain technological superiority of war fighting systems. The 
goals for CHSSI are: (1) to develop critical DoD software applications that can execute in a 
scalable computing environment (from the "desktop" to the largest HPC architectures); (2) 
to foster reuse of software tools and application software components as well as appropriate 
use of communication standards, interface standards, and graphics visualization standards 
across DoD; (3) to support local HPC requirements at selected sites where there is potential 
for advancing DoD applications; (4) to promote the development of new software tools and 
application area specific software; and (5) to leverage HPC expertise and assets located in 
industry, academia and other federal laboratories in addition to DoD facilities." 

1.3 Goals 

The modernization of WAM for scalable computation will yield a faster application for 
modeling directional wave spectra in coarse (global) through ultra-fine scale (littoral zone) 
modeling of the near-shore zone. Current projections of the improvement needed to ac- 
complish very fine scale near-shore modeling for operational forecasts involve a speedup of 
two to four times present computational rates. Operational forecasts made using WAM to 
date have been performed in a primarily single-processor vector environment. Although this 
environment has been utilized efficiently, very little potential for further improvements on 
this architecture is expected and competition for these resources throughout the DoD con- 
tinues to rise. As the large scalable computational resources of the four DoD MSRCs have 
become available, modifying WAM to utilize these new scalable platforms has become an 
attractive option in terms of both resource availability and the potential for increased per- 



formance through parallelism. Because of the rapidly changing nature of the computational 
resources deployed throughout the DoD, it is necessary that whatever modifications are 
made to support parallelism be portable to a variety of current and foreseeable HPC archi- 
tectures, including the new generations of shared memory, distributed memory, and hybrid 
architectures. Also, it is desirable that enhancements to reduce execution time for an entire 
simulation (i.e., a collection of grid nests, not just a single level) optimize the time to solution 
in the highest resolution domains in order to ensure swift response to logistics-over-the-shore 
operational planning forecast requests. 



Chapter 2 

Approach 

Before detailing the methods used in the current work to parallelize WAM, it is important 
to understand how the code is currently used, and what some of its vital computational 
characteristics are. WAM is presently used in both forecast and hindcast prediction. The 
test problem used during development of this project is a simulation of hurricane Luis in the 
Atlantic which predicts wave heights for a region along the coast of the Del Marva Peninsula. 
We will use this problem as the motivating example for understanding both the original code 
and the changes detailed in this chapter. The domain of each simulation is shown in Figure 
2.1. 

2.1    WAM: Baseline Software Configuration and Performance 

The hurricane Luis simulation involves three levels of grid nesting: one for the North Atlantic 
Ocean (referred to as the basin grid), one for the entire Atlantic coastline (the region grid), 
and a final nest to resolve wave heights in a near-shore subregion of the Del Marva. Peninsula 
(the subregion grid). There are several steps which must be taken at each level of the 
simulation. First, two preprocessing programs are run for each level of the grid. These 
programs create the grid, specify the physical domain in which the simulation takes place, 
and initialize parameters specifying the characteristics of the solution at that level (location 
of wind field files, whether a given level is a shallow or deep water run, etc.). After this 
preprocessing step is complete, a solution is generated for the coarsest grid - in this example, 
the North Atlantic basin. After this solution is complete, an interpolation program is used 
which creates boundary conditions from the basin grid output needed at each time step of 
the solution for the next finest grid, the region. This process is repeated at each of the 
successively finer resolutions until the final solution (wave heights, in the grid nearest the 
shore) is obtained. Table 2.1 illustrates this process for hurricane Luis, our representative 
example. 

As mentioned above, the existing application is targeted for execution in a single-processor 
vector environment. Specifically, WAM has historically been run on CRAY Y-MP and CRAY 
C90 vector machines. Analysis on the C90 indicates that four routines account for about 
82% of the application's total execution time. Table 2.2 shows accumulated times and 
performance in Mflops for each of these four routines. The numbers in the table indicate 
that WAM is a very efficient code, achieving a sustained 60% of peak processing rate in the 
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Figure 2.1:   Three level grid nest for wave height forecast for the Del Marva Peninsula during 

hurricane Luis. 

Basin 
Region 
Subregion 

Preprocess 
WAM    Interpolate 

WAM    Interpolate 
WAM    Interpolate 

Time 

Table 2.1: Schematic of hurricane Luis serial execution. 



Routine % of Wall Time Mflopsj 
SNONLIN 45 600 
SINPUT 23 300 
IMPLSCH 9 350 
PROPAGS 5 520 

I Peak performance per CRAY C90 processor is 958 Mfiops. 

Table 2.2: Performance of the four most active WAM routines (CRAY C90). 

Grid Level Wall Time (s) 
Basin 830 
Region 2267 
Subregion 2200 

Total 5297 

Table 2.3: Wall clock time for the hurricane LUIS simulation (CRAY C90). 

most time consuming routine. The application performs a significant amount of file I/O, 
which is aided on the C90 by use of the Solid State Device (SSD). 

Table 2.3 shows the wall clock times (averaged over three runs) for each grid level of a 
24-hour simulation running on the C90. These times do not include the the preprocessing 
time and the time to interpolate the solutions between grid levels. These times are several 
orders of magnitude smaller than the WAM times, and are thus negligible. The wall clock 
time to complete an entire 24-hour simulation from basin to subregion is approximately 5300 
seconds. The same simulation run without use of the Solid State Device (SSD) consumes 
approximately 15, 000 seconds, a threefold increase in execution time. Note that these sim- 
ulations are out-of-core solutions and are thus I/O intensive (WAM's out-of-core method 
will be discussed in more detail later). Also, these simulations were run interactively on the 
C90 in full production mode (over 99.8% sustained utilization). Although we were given 
special priority to ensure that the job rarely swapped out, competition for I/O resources was 
intense, and no doubt contributed dramatically to the huge increase in execution time for 
the non-SSD run. 

An important observation to make from Table 2.3 is that the computation is inherently 
unbalanced. The basin simulation is solely a deep water calculation on a coarse grid, and 
takes less than half as much time as each of the remaining grid nests. This leads to a situation 
in which, if these three jobs are performed in parallel with no overhead, the best speedup 
attainable on three processors, f1-, is approximately 2.5. This will become an important factor 
guiding the decomposition of each problem domain in the second phase of development. 



Basin 
Region 
Subregion 

Preprocess 
WAM (Interpolate) 
WAM (Interpolate) 

WAM (Interpolate) 

Time 

Table 2.4: Schematic of hurricane Luis parallel execution. 

2.2    Modernization Implementation Plan 

The opportunities for parallelism in this code occur at two levels. First, parallelism can 
be introduced by overlapping the computation of each grid level, as shown schematically 
in Table 2.4. The output of each grid level is a set of boundary conditions, one set for 
each time step in the simulation, which is used for the computation of the solution at the 
next level. In this case an opportunity for coarse-grained parallelism can be identified in 
creating a type of ocean computation pipeline. The boundary conditions at the basin scale 
for the first time step are created and sent to the region so that it may begin its computation 
immediately, rather than waiting for the entire basin computation to complete for all time 
steps. The basin then computes a solution for the next time step while the region computes a 
solution for its first time step. Once the region has generated the solution needed by the next 
level, boundary conditions are sent to the subregion which then begins its first computation. 
This process is then repeated until the computation at all levels is complete. This type of 
parallelism is referred to as pipeline parallelism [10]. In this case the performance benefits 
are derived at the task level, and it is clear that the communication patterns of this type of 
parallel implementation will be characterized by relatively infrequent (once per time step) 
messages sent (in one direction) between grid levels. 

The second opportunity for parallelism lies in dividing the work of each single grid over 
many processors in a more fine-grained approach1 Depending upon the nature of the com- 
putations being performed, this type of parallelism can be challenging to implement. WAM 
is, however, particularly well-suited to this type of optimization. The solution method is ex- 
plicit, so that none of the difficulties inherent in the solution of implicit systems on parallel 
machines are encountered. Furthermore, because WAM was originally written for small stor- 
age computer systems, there is a built-in out-of-core solution method which splits the entire 
computation domain into K blocks of adjacent latitudes, each having L elements. Because 
the solution method is explicit, the solution for a given block at time step t is dependent 
only upon the solution at time 2-1, plus any local source terms (all source terms in WAM 
are local). The solution of block A' is completely independent of the solution at other blocks, 
with the exception of one overlapping latitude on the north and south faces of each block. A 
solution containing A" blocks can thus be effectively solved on A' processors. This approach 
will involve larger amounts of data being communicated than the first, pipeline, approach, 
but each of the rounds of communication will still occur with relative infrequency at only 
once per time step.  Also, the characteristics of the communications are good in that they 

'However, note that this is not "fine-grained" parallelism in the traditional, loop-level, sense. 



only involve messages between pairs of processors to exchange adjacent latitude information 
or gather boundary conditions to send to the next level. 

Given these two excellent opportunities for performance enhancement, our approach is 
centered on two primary phases of development. Phase I concentrates on the implementation 
of the pipeline parallelism between grid levels, while Phase II seeks to parallelize the solution 
computations at each level. 

2.3 Software Considerations 

The two key guidelines which have influenced both the design and implementation of the 
current modifications to WAM are portability and maintainability. We stated above that 
one of the goals for a modified WAM is portability to a variety of existing and future HPC 
machines. This has been achieved, as much as possible, using the Message Passing Interface 
(MPI) [3] to facilitate the exchange of data between processors used in a simulation. MPI 
has the advantage of presenting a common, standards-defined, interface to message passing 
semantics on all machines which support an MPI implementation (almost every current HPC 
architecture). In many cases machine vendors have implemented the functions of MPI tuned 
to their architectures. Thus, a call to MPI_Send() on a distributed memory machine may 
be implemented using the native message passing library on an IBM SP and using shared 
memory constructs on an SGI Origin 2000. MPI removes from the programmer the burden of 
having to create and maintain different versions of an application for different architectures 
and from having to acquire specialized knowledge about the nuances of data transfer on 
different machines. 

The notion of preserving portability has further implications for code modifications. 
WAM was initially highly optimized for vector architectures, and performed at 60-70% of 
peak on a single processor of a CRAY C90. The modified WAM is to be supported on a 
variety of scalable, typically RISC-based, modern HPC architectures. Performance optimiza- 
tions on RISC-based systems can be extremely complicated, and are sensitive to parameters 
which vary not only from chip to chip, but between configurations of machines with the same 
chip (such as cache and main memory sizes). For this reason no RISC-specific algorithmic 
modifications have been planned during initial development. This decision was also influ- 
enced by our recognition that this code is in use by a variety of organizations around the 
world, each of which would be required to maintain the code over its years of use. WAM 
is implemented entirely in Fortran 77, and the original authors were clearly very concerned 
with the maintainability of this code as it is extremely well-documented and very modular. 
We therefore have striven to not disturb the existing code wherever possible, and where 
changes have been made to concentrate on simplicity. The end result will hopefully be a 
code which is as easily maintained as the original. 

2.4 Previous Efforts 

We are aware of one other effort to parallelize WAM. This effort, undertaken by the European 
Centre for Medium Range Weather Forecasts (ECMWF), has concentrated on a distributed 
memory implementation for the Fujitsu [1]. This implementation uses a specialized message 

10 



c Del Marva 
Peninsula 

c 
I 

Subregion 

Georgia D 

Figure 2.2: Simultaneous forecast of multiple regions in the Atlantic. 

passing library created at ECMWF and has undertaken only the parallel computation of 
a single grid level; successively finer solutions have to be run in turn, one after the other. 
Furthermore, it appears that the ECMWF has not chosen to exploit the block element 
structure of the code in decomposing the solution domain, choosing instead to decompose 
the domain into groups of computation points using a separately developed algorithm. 

The advantage of our approach to parallelizing both the entire job stream and individual 
grid solutions is that it is possible to run forecasts for multiple grid nests in different geo- 
graphic regions simultaneously. For instance, in our hurricane Luis simulation a subsection 
of the Atlantic Ocean results are extracted and sent as boundary conditions to the computa- 
tions off the Del Marva Peninsula. It is a simple matter to extract boundary conditions for 
other areas of the Atlantic region, say the coast of Florida, and transmit that data to another 
set of processors performing forecasts in this area, as shown in Figure 2.2. Likewise, more 
than one subregion of the Florida coastline could be computed from boundary conditions 
created by a single region simulation. In this way a set of geographic regions which share 
common areas can be computed simultaneously, greatly improving the turnaround time for 
the entire collection of forecasts, not just individual jobs. Furthermore, our choice of a gen- 
eral message passing library imparts a degree of portability not immediately available to the 
ECMWF effort. 

11 



Chapter 3 

Phase I: Parallelization of the Job 
Stream 

3.1    Pipeline Parallelism 

Phase I of this project focused on the development of a fully parallel job stream which 
couples the grid nesting from low resolution areas into fine-scale resolutions. The original 
application computes solutions for successively finer grid levels one at a time using the 
interpolated solution of a coarse grid to generate boundary conditions for the next finer 
grid (see Table 2.1). In Phase I, solutions on each of the grid nests (three in the hurricane 
Luis simulation) are computed "simultaneously," as shown in Figure 3.1 and the boundary 
conditions for each time step are sent between processors as they are computed via messages 
using MPI. (In fact, the solutions are not precisely simultaneous, as each grid level needs 
boundary conditions which are generated by the previous (coarser) grid. Instead, each grid 
level is offset one time step from the previous levels, in much the same way a modern 
microprocessor pipelines instructions for faster execution.) The result is a coarse grained, 
pipeline parallel code. Although each level receives boundary conditions at every time step 
of the previous level, the computation to communication ratio remains favorable. This is 
because both the temporal and spatial resolution of the preceding levels are coarser than 
the finer levels, which means that after the subregion receives boundary conditions for the 
first two time steps of the region it computes solutions at several intervening time steps, 
interpolating between the supplied sets of boundary conditions as needed. The boundary 
conditions are sent asynchronously from "parent," the coarser grid, to "child," the finer grid, 
which improves the communication profile of the application. The relative infrequency of 
messages between levels make a pipeline implementation of the WAM code effective on a 
range of parallel architectures, including workstation clusters. 

There is a significant load balancing issue which arises in Phase I due to the difference 
in solution times of the original application. Table 2.3 shows that the basin scale solution 
requires less than half the time of the remaining regions to complete. If each task is dedicated 
to a single processor, boundary conditions will be sent from the basin to the region twice 
as fast as they can be received, potentially hobbling the message passing system buffers 
as pending boundary conditions pile up. Furthermore, basin computations are so much 
faster than the region computations, at each time step the boundary conditions will have 

12 
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1. Original WAM 2. Phase I WAM 

Figure 3.1: Comparison of original and Phase I execution; messages between processors in (2) 
shown by arrows. 

to be stored in temporary buffers before posting a send to avoid overwriting data before 
the communication system has transferred it to the receiving processor. If the basin and 
the region computations get significantly out of step, this could dramatically increase the 
memory required to run the application. These issues were addressed by requiring that a 
processor wait until the previous asynchronous send is initiated before sending the boundary 
conditions for the next time step. For the basin this results in about 50% idle processor 
time, as shown in Figure 3.2, a snapshot from SGPs MPIView tool for runtime analysis. 
There is almost no idle time for the region and subregion solutions as the computation rates 
for these areas are similar. The 50% idle rate leads to a significant processor inefficiency, 
but was not addressed at this phase of the project because the result of Phase II will be an 
application with multiple processors assigned to single grid levels. It will then be possible to 
assign fewer processors to the solution of the basin boundary conditions and create a more 
balanced computation (alternatively, in the event that the basin computation required more 
time than the region or subregion computations, more processors could be devoted to the 
basin in order to balance the computation). 

An additional modification was needed to complete the Phase I implementation. The orig- 
inal execution model called for a post-processing operation to be performed on the output of 
each coarse solution, temporally interpolating the boundary conditions for use by the finer 
grid. The use of a separate program to perform this step is not viable in a multi-processor 
environment as it interrupts the data flow. To avoid this problem the temporal interpola- 
tion program was incorporated into the main application as a subroutine, streamlining the 
execution process and facilitating multi-processor execution. 

3.2    Complications 

There were several small obstacles which arose in the conversion of WAM to a multi-process 
model. Initially WAM took input from standard input (the keyboard), and provided output 
on standard output (to the screen) as well as to files. Some of these files were named and 
explicitly opened, while others were implicitly opened. Because all of the grid levels start at 
the same time in the parallel version, the input data for each grid level problem was moved 
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Figure 3.2: Graph of runtime tasks for WAM on 3 processors. 

to separate files which were read by each processor at the beginning of execution. Output 
file units which shared the same integer identifier across grid levels were simply incremented 
by an amount dependent upon the processor number. This shifted the file identifiers such 
that none of the processors tried to do I/O on the same units. Although this is adequate for 
a temporary patch, this solution has several long term problems. First, it doesn't scale well, 
in that there is a practical limit on the file identifier numbers. Secondly, not all processors 
on parallel machines have full I/O capability. These issues are resolved in Phase II with a 
more robust I/O solution. 

All of the initial Phase I development was done on the CRAY C90 using MPI. After the 
parallel version ran and provided correct answers, development was moved to an architecture 
more representative of the project's target execution platform, an SGI Power Challenge Array 
(PCA). For the most part the transition was straightforward, but there was one problem 
related to the internal time-keeping mechanism. WAM computes a variety of date and time 
step variables and stores them as integers. For example, dates are stored in integers which 
contain the year, month, day, hour, and minute; 9508290100 represents a solution time of one 
o'clock on the morning of August 29, 1995. This poses no problem on the C90, which uses a 
64-bit integer representation. The PCA, however, uses a 32-bit integer by default, which is 
inadequate to represent the date. Moreover, simply promoting all integers to 64-bit caused 
the program to produce incorrect answers. The difficulty was finally resolved by changing 
all date quantities to IMTEGER*8. 

Finally, in combining the three different simulations into one executable most of the 
arrays in the application had to be re-dimensioned and new variables introduced. The 
original application was run with a setup script which automatically changed the dimensions 
of solution arrays to match the size of the problem being solved for that grid nest and re- 
compiled. For example, the variables NBLO and NIBLO contain the number of blocks and 
the number of points per block, respectively. Both of these quantities vary from level to level. 
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Each of these variables was replaced in the parallel application with two new variables. The 
first, MAX_NBLO and MAXJ\TIBLO store the maximum values over all grid levels, and are 
used for dimensioning arrays. LOCLNBLO and LOC_NIBLO store the values to be used by 
each grid nest. This substitution was repeated for all of the problem variables which are 
used to define arrays. Note that this does result in some wasted memory on at least two 
of the grid levels (whichever two do not require the maximum dimension), but this cannot 
be avoided without transitioning to a language which supports dynamic memory allocation 

(i.e., FORTRAN 90). 

3.3    Results 

As mentioned earlier, the initial development was done on the CRAY C90 to avoid dealing 
with complications from the architectural differences between the PCA and the CRAY. To 
give an idea of the performance differences, a test run was done on the CRAY before shifting 
to the PCA. The test run was done as an in-core solution (meaning the number of blocks at 
each grid level was 1) using the SSD and three processors, one for each grid level. This run 
was approximately 3 times faster, at 1645 seconds, than the out-of-core single processor job 
using the SSD. Earlier we asserted the maximum speedup on three processors is limited to 
2.5 due to differences in the execution times of the three grid resolutions. We speculate that 
the additional speedup in this case is due to the sharp reduction in I/O which results from 
not storing intermediate data for blocks of the out-of-core solution to the SSD. 

After porting to the PCA, test runs were made and results validated on the new archi- 
tecture. The PCA used is comprised of two chassis, each having sixteen 90 MHz R8000 
processors with a 4 MByte secondary cache, 16 KByte instruction and data caches, and 
8192 MBytes of main memory. The execution time on three processors using SGI's MPI 
2.0 is 15,900 seconds, or 3.18 times the single stream C90 run. Individual processors on 
the PCA are approximately 3 times slower (peak) than those of the C90, and this version 
did not take advantage of any of the asynchronous I/O capabilities of SGI's IRIX operating 
system (as was the case for the C90). Given these differences, the Phase I implementation 
was considered generally successful, although it was very clear that additional enhancements 
would be necessary to meet the development goals in Section 1.3. 
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Chapter 4 

Phase II: Domain Decomposition 

Implementation of Phase II modifications was slightly more tedious than in Phase I. Whereas 
the approach in Phase I is the concurrent solution of each grid level in a multi-level simulation, 
the approach in Phase II is to accelerate the solution of each grid level by dividing the work 
among multiple processors. As we will see, the software infrastructure to exploit this type 
of parallelism was already present in the application as part of the out-of-core solution 
capability. All that is required is to facilitate the passage of data from the latitudes which 
are shared by neighboring blocks via messages rather than the file mechanism used in the 
original code. 

The type of parallelism being exploited in Phase II is applicable to cluster-type configura- 
tions, but will most likely perform best on systems with moderately-well-coupled processors. 
The characteristics of Phase I and Phase II together indicate a range of architectures on 
which the final parallel system will be effective. The best match of communication patterns 
to architecture is SMP cluster machines typified by the Silicon Graphics, Inc. (SGI) Power 
Challenge Array (PCA). However, the system can naturally benefit from a uniformly high 
bandwidth between processors as found on a range of machines including the IBM SP, the 
CRAY T3E, and the SGI Origin. 

4.1    Domain Decomposition 

Phase II development focuses on decomposing each grid level and solving it on more tightly 
coupled parallel processors. Depending upon the nature of the computations being per- 
formed, this type of parallelism can be extremely difficult to implement (see, for example, 
[5]). However, WAM is particularly well-suited to this type of optimization. The solution 
technique in the application is explicit, so that none of the difficulties inherent in the solu- 
tion of implicit matrix systems on parallel machines are encountered. Furthermore, WAM 
was originally designed with the flexibility to solve large ocean problems on older, smaller 
memory vector machines such as the CRAY X-MP and thus supports out-of-core solutions. 
Out-of-core solutions are produced by dividing the solution domain into blocks of roughly 
equivalent numbers of neighboring sea points along groups of lines of latitude, shown in 
Figure 4.1. WAM then computes solutions for a block at a time, rotating through all blocks 
until an entire time step has been solved. The solution of each block is written to a file before 
moving to the next block so that the necessary information will be available to generate the 
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Figure 4.1: Block structure of the Atlantic basin grid with four blocks. 

solution for that block at the next time step. In order to facilitate advection of wave energy 
between neighboring blocks of the domain, special arrays are set up to store data from the 
last line of latitude of the previous block and the first latitude of the next block for use in 
the solution of the current block (see Figure 4.1). This decomposition, referred to in WAM 
documentation as the "block element structure," can be directly exploited in computing a 
single solution on multiple processors. For each grid level, the solution domain is blocked 
as if an out-of-core solution is to be performed, with the number of blocks equal to the 
number of processors desired for the solution. Each block is then assigned to a processor, 
and the computations for all blocks are performed in parallel. The new computation model 
is shown in Figure 4.2. Communications between processors are denoted by arrows, which 
also indicate the direction of data flow as show in Figure 4.3 for the Atlantic Ocean. Note 
that it is possible to relax the requirement that the number of processors equal the number 
of blocks in the solution at the expense of more complex control logic. This has not been 
done in the current implementation because blocking is performed in the preprocessing step 
which must be run before every simulation, and it is likely that the user will know in ad- 
vance the number of processors available for the simulation. Nevertheless, relaxation of this 
requirement may prove to be desirable in an operational forecast environment, and future 
efforts should consider development in this direction. 

The domain decomposition approach to parallelism involves communication of more data 
than the pipeline approach, but each round of communication still occurs with relative 
infrequency at only once per time step. The characteristics of the communications are 
also good in that thej' involve messages between pairs of processors to exchange adjacent 
latitude information or to assemble boundary conditions for transmission to a finer grid level 
(some global communication does take place during job initialization as the master processor 
distributes various parameters to the workers, but these are one-time only communications). 

The primary task of Phase II was to shift from using intermediate files and temporary 
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Figure 4.2: Comparison of Phase I and Phase II execution; messages between processors shown by 
arrows. 

Figure 4.3: Block structure of the Atlantic basin grid with four blocks distributed to four processors. 
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arrays for the storage of overlapping latitudes (used in the north-south energy advection 
computation) to exchanging these data via messages. This was generally straightforward, 
although care had to be taken to ensure that the information was passed at the correct times 
to prevent introducing a phase shift into the solution. Each grid solution is parallelized using 
a master-worker model, where each of the processors dedicated to the solution of a single grid 
are coordinated by a master processor (which also does work on the solution). This master 
processor is responsible for distributing initialization information from the input files and 
new wind fields at each time step, and collects the boundary conditions from each processor 
for transmission to the master processor of the next finer grid level. 

4.2    Complications 

There were a range of minor issues which arose in the conversion of WAM to use a finer- 
grained parallel solution model. Whereas a Phase I simulation could potentially use only a 
limited number of processors, the Phase II implementation can use many more processors in 
solving each grid level. This promises to create I/O problems on several fronts. First, the 
final implementation of WAM must be portable, and there are a range of parallel machines 
which do not support I/O to the disk subsystem by all processors. Furthermore, the Phase I 
approach of simply shifting the integer file identification units to prevent duplication of file 
identifiers is not general, and will become problematic for large numbers of processors. These 
issues were addressed by replacing all implicit file open operations with explicit operations 
which open the same file units for each processor, but now each file is contained in a unique 
directory for every processor. Thus, temporary variables written out to unit 20 on processor 1 
are written to l/fort.20, 2/fort.20 for processor 2, and so on. Where possible the application 
has been further modified to eliminate file output altogether. Much of the file I/O performed 
by this application has to do with the out-of-core solution method, which has been replaced in 
favor of solving all blocks simultaneously. Finally, where possible input of problem data such 
as start up values and wind fields is handled by that particular region's master processor. 

Another issue which had to be addressed was communication of boundary conditions 
between groups of processors dedicated to different geographic regions. Given the relative 
infrequency of communications it was decided that all such communications would take 
place only between the master processors of each region. After computation of the boundary 
conditions for a given time step is completed by all processors in a grid level, the master 
processor for that level assembles the partial sets of boundary conditions from the responsible 
processors and sends them en masse to the master processor of the next finer grid level. 
This solution is simpler to implement than alternatives (such as having each processor send 
partial boundary conditions to other regions individually and assembled at the receiving 
end), but forcing all communications between regions through a single processor may create 
a significant bottleneck in large simulations of the form of Figure 2.2. Further testing is 
needed to investigate this phenomenon. 
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4.3    Pilot Implementation Results 

It should be noted that the current Phase II implementation is essentially a pilot implemen- 
tation. While WAM is now fully parallelized and results of the new code are correct for the 
test case, a significant amount of development remains. The majority of these tasks can be 
classified as generalizing WAM beyond the specific three nest test case used in development. 
A detailed look at the tasks remaining in the full implementation of Phase II is provided 
in the next section. First, it will be useful to examine performance results for this stage of 
Phase II. 

In the interim between Phase I and Phase II development the primary application plat- 
form, the SGI PCA, became an extremely busy machine and competition for resources 
dramatically slowed the development process. Phase II development efforts therefore shifted 
to the newer (and less used) SGI Origin 2000 system at the CEWES MSRC. This system 
is comprised of two chassis each having sixteen 195 MHz R1000 processors with a 4 MByte 
secondary cache, 16 KByte instruction and data caches, and 8192 MBytes of main memory. 
The performance of this machine on WAM is significantly lower than that of the R8000, by 
a factor of almost two. The three processor PCA solution which took on 4.5 hours takes 
approximately 9 hours on three processors of the Origin. It should be noted that because 
this machine was to be used solely as a development platform no effort was put into choosing 
the optimal set of compiler directives; we simply used the same directives as on the PCA. 
Previous experience with this code has shown that as much as a five-fold performance im- 
provement (observed on the PCA) can be gained with the right compiler directives, so the 
potential for additional improvement on this architecture exists. Despite this caveat, it is 
nonetheless instructive to consider some performance figures from test runs on the Origin. 

As SGI's implementation of MPI was not available during development for the Origin, all 
message passing is done using the 64-bit version of the generic version of MPI, MPICH [2], 
compiled with the shared memory device driver (the Origin is a distributed shared memory 
machine). The solution domain was blocked for various numbers of processors using the 
preprocessing programs as shown in Table 4.1 (recall that the number of processors used 
in a given grid level is equal to the number of blocks). The table provides the wall clock 
time in seconds for a series of runs of the same 24-hour simulation of hurricane Luis on the 
Origin. The table also gives an indication of the speedup for the job as a whole by dividing 
the quotient of the six-processor execution time, TQ, and the n-processor execution time, Tn, 
by the ratio of the number of processors to six, 

Ik 
Pr  =  -%• (4-1) 

n/b 

Pr is thus a "pseudo-efficiency" measure, giving an indication of how well the solution time 
scales with the number of processors. 

Table 4.1 illustrates that the effectiveness of dedicating additional processors to the so- 
lution of a given grid nest varies according to where those processors are added. As an 
example, consider the thirteen-processor case in which the number of processors dedicated 
to the region and subregion (roughly) doubles from the six-processor case. Recall from Ta- 
ble 2.3 that the basin takes approximately half as long as the remaining grids to solve, so 
the performance of the six-processor case in Table 4.1 is limited by the speed of the region 
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Number of blocks 

Nprocs Time (s) Prl Basin Region Subregion 

6 14340 1.00 2 2 2 

8 10380 1.03 2 3 3 

13 5400 1.23 4 5 4 

15 4785 1.22 3 6 6 

21 2760 1.50 4 9 8 

25 2700 1.38 8 9 8 

See Equation 4.1. 

Table 4.1: WAM performance on an R10K Origin system (wall clock times) 

Number of blocks 

Nprocs Time (s) Basin Region Subregion 

8 6540 2 2 2 

15 3780 3 6 6 

Table 4.2: WAM performance on an R8K PCA system (wall clock times). 

and subregion. Doubling the number of processors devoted to these grids therefore halves 
(approximately) the time to solution. This solution is now fairly well balanced, and no 
significant advantage is gained by adding more processors to the basin. This is illustrated 
by the last line in Table 4.1. The extra four processors in the basin solution (over those 
employed in the 21-processor case) are not effectively utilized in terms of the performance 
of the overall simulation, a fact illustrated by the decrease in Pr for this case as the time to 
solution remains constant. 

Application test runs were also performed on the PCA for the Phase II version of the 
code for comparison to Origin results. These results, provided in Table 4.2, were obtained 
using a beta release of SGI's MPI 3.0 on one chassis of the array. Figure 4.4 illustrates these 
wall clock times for both the Origin and PCA systems. 

Finally, note that the 21-processor case reports a solution time of 2760 seconds, roughly 
half the single processor C90 time for the same simulation using the SSD. We have achieved 
both our performance goal of a 2 x performance improvement over the original code and have 
a 48-hour solution time of 90 minutes (less than the goal of 100 minutes). It is important 
to recall, furthermore, that these results have been achieved with no architecture-dependent 
optimizations {e.g., caches, etc.). Moreover, several enhancements, detailed below, remain 
to be implemented. Overall these initial results are encouraging and indicate that WAM will 
run very effectively in production computations on RISC-based multi-processor systems. 
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Figure 4.4: Wall clock time on SGI Origin and PCA systems. 

4.4    Completion of Phase II 

The pilot implementation of Phase II was concluded due to time constraints to accommodate 
a shift in personnel. Many modifications are either not implemented or not complete. Some 
of these, like generalization of task control, are necessary for WAM to function conveniently 
in a production forecast environment while others, like memory and I/O optimizations, will 
have a direct impact on the performance of the application. 

4.4.1    I/O 

As discussed, the solution of individual grids is parallelized in WAM using a master-worker 
model in which all communication between grid levels is performed by the region master 
processors. Also discussed above was the notion that, because not all parallel machines 
support symmetric access to the I/O subsystem by all processors, the master processors 
should be responsible for all I/O in the application. This idea has been only partially 
implemented. For example, while the master processors do currently take responsibility for 
reading the various restart files at the beginning of a simulation period and for distributing 
the wind fields at each time step, each processor still reads its own copy of the input file (input 
which used to come from standard input). The master processors do currently assemble data 
for writing to a single output file (unit 22), while several other files, particularly the restart 
files for the next simulation period, are still written in pieces by each processor. A complete 
Phase II application will concentrate I/O access to ensure that all file operations are carried 
out through the designated master processors for each region. This is not expected to add 
significantly to application run time as most modifications will only introduce communication 
steps at the beginning, during setup and initialization, or at the end, when data must be 
assembled from each processor to produce the various output and restart files needed for the 
next simulation period. Specifically, the "MAP," "SWE," "SPE," and "SWS" files created 
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on units 20, 21, 25, and 26, and the restart files written to unit 15, must be handled correctly 
[7]. Also, the routine OUTINTO must be modified to produce a single complete output file. 

Remnants of scratch files used by the out-of-core solution method still exist and can be 
removed, eliminating more unnecessary I/O. Where I/O must be performed in the code every 
effort should be made to take advantage of asynchronous libraries on the target platforms. 
Unfortunately asynchronous I/O routines typically vary from machine to machine, and so 
special efforts will have to be made (probably in the form of conditionally compiled code 
vis a vis the #if def mechanism) to ensure that the completed application remains portable. 
WAM currently supports some asynchronous I/O for the CRAY C90. 

4.4.2 Memory 

There are many two- and three-dimensional floating point arrays in the application which are 
still dimensioned as IXLG(MAXJFIBLO,MAX_NBLO) on each processor. In this case the array 
IXLG is declared to be a two-dimensional array with number of points per block rows and 
number of blocks columns. This construct is a remnant of the out-of-core solution method, 
and is no longer necessary as each processor contains only one block. These arrays can now be 
dimensioned as, for example, IXLG(MAX_NIBL0). This change will result in significant memory 
savings and potentially enhance the cache behavior of the application. The modifications, 
though numerous and tedious to make, are not difficult and can be automated. 

4.4.3 Task Control 

The routine PARWAMCHIEFO controls the assignment of regions and blocks within a region 
to groups of processors, as well as the appointment of region masters and creation of the 
various communicators and MPI variables which will be used during a simulation. In the 
present implementation it is necessary to set the majority of these variables explicitly. The 
code thus requires modification and recompiling every time the number of blocks or pro- 
cessors changes. (Note that some modifications for new simulations will always need to be 
made to WAM manually if the problem sizes or blocking changes; all of these variables are 
found in jwparall.h. This process, though somewhat cumbersome, is part of the original 
WAM methodology and an accepted step in the execution process.) Generalization of the 
controlling routine to set up these task allocation and control variables automatically will be 
straightforward. This is essentially a cosmetic step, but one which is necessary if the code is 
to be used conveniently in a production forecast environment. 

4.4.4 Optimization of Communications 

In the transition from Phase I to Phase II several new communications, both collective 
and point-to-point, were added to the application. Where possible, these communications 
were overlapped with computations if such optimizations could be made without significant 
development time. Now that the pilot implementation is complete these communications 
need to be re-examined to determine whether more of them can be made asynchronous, and 
to what advantage. This step must be undertaken with care, however, as it is possible to 
introduce temporal phase shifts in the solution. 

23 



4.4.5    Verify and Validate 

Finally, before Phase II can be confidently recommended as complete, a preliminary verifica- 
tion and validation of model results against the original version of WAM must be conducted. 
During development the code was tested in hindcast mode, comparing results for the first 
24-hour period of the hurricane Luis simulation with results from the original application. 
The entire ten-day Luis simulation needs to be conducted in its entirety to ensure that the 
application passes information between simulation periods properly and to verify that the 
numerical characteristics of the solution are not changed under severe weather conditions. 
Following this, a suitable number of different simulations should be done and compared with 
results from the accepted version of WAM. 
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Chapter 5 

Time and Resources 

As discussed in the introduction, the modernization of WAM for scalable computing environ- 
ments is funded by the HPCMP's CHSSI program. One of the stated goals of CHSSI is the 
development of user expertise within the various research agencies of the DoD in porting and 
developing codes for commodity processor-based scalable computing environment. An im- 
portant part of that expertise is the ability to accurately estimate the level of computational 
and human resources required to achieve a desired level of performance in a scalable com- 
puting environment. For that reason it is instructive to spend time discussing the resources 
required in the development of WAM to its current state (naturally the Phase II numbers 
will have to be revised to reflect the resources required to carry that phase to completion). 

5.1    Computational Resources 

Table 5.1 summarizes the processor time consumed on all three machines utilized during 
development to date. The total estimated HPC computation time used during development 
to date on all platforms is 38,315 minutes (or roughly 27 days of dedicated computation). 

Phase I development involved two computational platforms: the CRAY C90 and the SGI 
Power Challenge Arrav, both at the CEWES MSRC. The C90 was used for the initial im- 
plementation of Phase I, rather than moving directly to the PCA, to avoid the additional 
complications which are typically encountered in migrating between such disparate architec- 
tures (word size, file formats, etc.). The development team was given interactive privileges 
on the C90 which enabled this machine to be effectively used for multi-processing (this 

Resource CPU Time (min) 

CRAY C90 9644 
SGIPCA 13297 
SGI Origin 15374 

Total 38315 

Table 5.1: CPU minutes consumed during development. 
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development pre-dated the shift in C90 allocation policies which created a more favorable 
environment for parallel processing by all users). A Cray version of MPI was not available 
on this machine at the time of development; the generic version of MPI, MPICH, was used 
instead and compiled with the p4 communication device driver. During the initial part of 
Phase I, 9644 CPU minutes were consumed; this usage was spread over four months, with 
the heaviest processor use concentrated in a single month (7320 minutes in July of 1996). 
Note that this time is the sum of the processor time accumulated on, for the most part, each 
of three CPUs (so that, for example, a three processor job which takes ten minutes consumes 
a total of thirty processor minutes). 

Following the completion of the initial stage of Phase I, development efforts were moved to 
the SGI PCA. This architecture is representative of the scalable parallel processing platform 
for which the new version of WAM is targeted. A total of 13,297 minutes on three CPUs 
was accumulated during the completion of Phase I modifications on this machine. Much of 
these resources were consumed in tracing and repairing incorrect code behavior caused by 
the integer size differences (discussed in Section 3.2), with the remainder used during various 
simulations to test the accuracy of results from the modified code. 

The migration of development efforts to the PCA occurred immediately following the 
installation of this machine at the CEWES MSRC, during a period when the machine was 
available to pioneer users. Shortly after the PCA was released for general use its resources 
•were totally consumed (the job load on each sixteen-processor chassis currently averages more 
than 25 jobs), with a resulting severe degradation of the development environment. Fortu- 
itously, Phase II development was started about the same time that a new 32-processor SGI 
Origin 2000 system was installed at the CEWES MSRC and made available for pioneer use. 
Phase II development was moved to the Origin system to take advantage of the extremely 
high processor availability. The development advantage derived from the infrequent use of 
the Origin by other users during the pioneer period more than outweighed the performance 
disadvantage incurred in moving from the PCA to this system (recall that observed WAM 
run times on the Origin, without making any "Origin-specific" optimizations, are roughly 
twice those for the PCA on the same number of processors). The bulk of current Phase II 
modifications were made in approximately five weeks, during which time 15, 374 minutes, or 
roughly 11 days, of CPU time (three to 25 processors) was used. 

5.2    Human Resources 

The bulk of WAM development has been concentrated in two periods of effort, one for each 
of Phase I and Phase II (pilot implementation). Implementation of Phase I took place over 
a sixteen week period, during which approximately twelve weeks were devoted exclusively 
to this project. Some of the sixteen week period was devoted to exploring the application 
and gaining an understanding of its computational and algorithmic characteristics as well 
as planning the course of development. WAM is composed of 55 routines (roughly 11,000 
lines of declarations and code), of which seven were substantially modified in Phase I. We 
will not quote statistics such as "lines of code changed," because this type of metric gives 
little indication of the level of effort expended to make those changes, and can make a 
software project appear unduly complicated. In fact, a lines changed measure for this project 
would indicate a startling number of changes, but most of these arise from "bookkeeping" 
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alterations like removing repeated common blocks in individual routines to include files. 
Roughly six weeks have been devoted to the pilot implementation of Phase II, of which 

four were spent in active code development (with the balance spent in planning). In Phase 
II five routines were modified substantially from the Phase I implementation, including two 
routines which were not changed in Phase I. 



Chapter 6 

Beyond Phase II 

Once Phase II development has been completed, the application will enter its third major 
period of development. The CHSSI program specifies that each project must conclude with 
a production version of the application available for users. Phase III development must 
therefore include interaction with members of the Climate/Weather Oceans (CWO) mod- 
eling community with an operational or R&D interest in WAM to determine their specific 
needs and how the initially released parallel version of WAM might be enhanced to better 
serve those needs. This step is essentially a "productization" of the application, and might 
involve an alpha release to selected users for initial design and performance feedback. Fol- 
lowing reception of this input and subsequent modifications, a beta release of the code to 
interested parties in the CWO community might be conducted to fully test the parallel code 
in operational and research environments on a variety of architectures. At some point in 
this process, either pre-alpha or pre-beta release, the entire code must undergo a rigorous 
verification and validation to both demonstrate the effectiveness of the parallel solution ap- 
proach and to build confidence in the modified application. Phase III might also conceivably 
involve publication of results in both the high performance computing and ocean modeling 
literature as well as at community (such as the Supercomputing series of conferences) and 
DoD events. 
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