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PREFACE 

Artificial Intelligence (AI) is a field with over a quarter of a century of history. However, it 
wasn't until the dawn of the decade of the 80's that AI really burst forth—finding economic and 
popular acclaim. Intelligent computer programs are now emerging from the laboratory into prac- 

tical applications. 
This report endeavors to indicate what AI is, the foundations on which it rests, the techniques 

utilized, the applications, the participants and finally its state-of-the-art and future trends. 

Due to the scope of AI, this volume is issued in three parts: 

Part A: The Core Ingredients 
I. Artificial Intelligence—What It Is 

II. The Rise, Fall and Rebirth of AI 
III. Basic Elements of AI 
IV. Applications 
V. The Principal Participants 

VI. State-of-the-Art 
VII. Towards the Future 

Part B: Fundamental Application Areas 
I. Expert Systems 

II. Computer Vision 
III. Natural Language Processing 
IV. Speech Recognition and Speech Understanding 

V. Speech Synthesis 
VI. Problem-Solving and Planning 

Part C: Basic AI Topics 
I. Artificial Intelligence and Automation 

II. Search-Oriented Automated Problem Solving and Planning 
III. Knowledge Representation 
IV. Computational Logic 

To facilitate the use of this report by those readers who need to find information on a specific 
topic area, each chapter has been made reasonably self-contained. Thus, a certain amount of repeti- 
tion of information between chapters exists, but should pose little problem for those who desire to 
read the entire report. This volume is part of the NBS/NASA series of overviews on AI and 

Robotics. 
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I. ARTIFICIAL INTELLIGENCE—WHAT IT IS 

Definition 
Artificial Intelligence* (AI) is an emerging technology that has recently attracted considerable 

publicity. Many applications are now under development. One simple view of AI is that it is con- 
cerned with devising computer programs to make computers smarter. Thus, research in AI is 
focused on developing computational approaches to intelligent behavior. This research has two 
goals: 1) making machines more useful and 2) understanding intelligence. This report is primarily 
concerned with the first goal. 

The computer programs with which AI is concerned are primarily symbolic processes involving 
complexity, uncertainty, and ambiguity. These processes are usually those for which algorithmic 
solutions do not exist and search is required. Thus, AI deals with the types of problem solving and 
decision making that humans continually face in dealing with the world. 

This form of problem solving differs markedly from scientific and engineering calculations that 
are primarily numeric in nature and for which solutions are known that produce satisfactory 
answers. In contrast, AI programs deal with words and concepts and often do not guarantee a cor- 
rect solution—some wrong answers being tolerable as in human problem solving. 

Table 1-1 provides a comparison between AI and conventional computer programs. A key 
characteristic of AI programs is "heuristic search." Baraiko (1982, p. 448) quotes Minsky as saying 
"If you can't tell a computer how best to do something, program it to try many approaches." 
However, in complex problems the number of possible solution paths can be enormous. Thus, AI 
problem solving is usually guided by empirical rules—rules of thumb—referred to as 
"heuristics"—which help constrain the search. 

TABLE 1-1. Comparison of AI with Conventional Programming. 

Artificial Intelligence 

Primarily symbolic processes 

Heuristic search (solution steps implicit) 

Control structure usually separate from 
domain knowledge 

Usually easy to modify, update and enlarge 

Some incorrect answers often tolerable 

Satisfactory answers usually acceptable 

Conventional Computer Programming 

• Often primarily numeric 

• Algorithmic (solution steps explicit) 

• Information and control integrated 
together 

• Difficult to modify 

• Correct answers required 

• Best possible solution usually sought 

»Also sometimes referred to as machine intelligence or heuristic programming. The relationship of AI to automation is 
discussed in Chapter I of Part C of this report. 
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Another aspect of AI programs is the extensive use of "domain knowledge." Intelligence is 
heavily dependent on knowledge. This knowledge must be available for use when needed during the 
search. It is common in AI programs to separate this knowledge from the mechanism that controls 
the search. In this way, changes in knowledge only require changes in the knowledge base. In con- 
trast, domain knowledge and control in conventional computer programs are integrated together. 
As a result, conventional computer programs are difficult to modify, as the implications of the 
changes made in one part of the program must be carefully examined for the impacts and the 
changes required in other parts of the program. 

The Basic Elements of AI 
Nilsson (1982, see also Brown, 1981), a pioneer in AI and currently head of the SRI AI Center, 

likes to characterize the components of AI in terms of what he calls the onion model (see Figure 1). 
The inner ring depicts the basic elements from which the applications shown in the next ring are 
composed. We will first consider the quadrant designated as heuristic search. 

Heuristic Search 

Much of the early work in AI was focused on deriving programs that would search for solutions 
to problems. Note that every time one makes a decision, the situation is changed opening up new 
opportunities for further decisions. Therefore there are always branch points. Thus, one of the 
usual ways of representing problem solving in AI is in terms of a tree (see, e.g., Figure 1, Chapter 
III), starting at the top with an initial condition and branching every time a decision is made. As one 
continues down the tree many different decision possibilities open up, so that the number of 
branches at the bottom can get to be enormous for problems requiring many solution steps. 
Therefore, some way is needed to efficiently search the trees. 

Initially, there were "blind" methods for searching trees. These were orderly search approaches 
that assured that the same solution path would not be tried more than once. However for problems 
more complex than games and puzzles, these approaches were inadequate. Therefore, rules of 
thumb (empirical rules), referred to as "heuristics," were needed to aid in choosing the most likely 
branches, so as to narrow the search. As an example, a simple heuristic to help choose which roads 
to follow when driving in the evening on back roads from Washington, DC to San Francisco is: 
"head for the setting sun." This may not produce the most optimum path, but can serve to help ad- 
vance one toward one's goal. Heuristic rules like this can help guide search—reducing search enor- 
mously. 

Knowledge Representation 

Early on, AI researchers discovered that intelligent behavior is not so much due to the methods of 
reasoning, as it is dependent on the knowledge one has to reason with. (As humans go through life 
they build up tremendous reservoirs of knowledge.) Thus, when substantial knowledge has to be 
brought to bear on a problem, methods are needed to efficiently model this knowledge so that it is 
readily accessible. The result of this emphasis on knowledge is that knowledge representation is one 
of the most active areas of research in AI today. The needed knowledge is not easy to represent, nor 
is the best representation obvious for a given task. 



Common Sense Reasoning and Logic 
AI researchers found that common sense (virtually taken for granted in humans) is the most dif- 

ficult thing to model in a computer. It was finally concluded that common sense is low level reason- 
ing, based on a wealth of experience. In acquiring common sense we learn to expect that when we 
drop something it falls, and in general what things to anticipate in everyday events. How to repre- 
sent common sense in a computer is a key AI issue that is unlikely to be soon solved. 

Another area that is very important in AI is logic. How do we deduce something from a set of 
facts? How can we prove that a conclusion follows from a given set of premises? Computational 
logic was one of the early golden hopes in AI to provide a universal problem solving method. 
However, solution convergence proved to be difficult with complex problems, resulting in a 
diminishing of interest in logic. Logic is now enjoying a revival based on new formulations and the 

use of heuristics to guide solutions. 

AI Languages and Tools 
In computer science, specific high level languages have been developed for different application 

domains. This has also been true for AI. Currently, LISP and PROLOG are the principal AI pro- 
gramming languages. To date, LISP (List Processing Language, developed in the late 50's by John 
McCarthy then at M.I.T.) has been the prime language in the U.S. for AI. Utilizing LISP, software 
tools have been devised for expressing knowledge, formulating expert systems, and basic program- 

ming aids. 

Principal AI Application Areas 
Based on these basic elements, Nilsson identified four principal AI application areas (shown in 

the outer ring of Figure 1-1.) 

Natural Language Processing (NLP) 
NLP is concerned with natural language front ends to computer programs, computer-based 

speech understanding, text understanding and generation, and related applications. A detailed 

overview of NLP is given in Gevarter (1983). 

Computer Vision 
Computer Vision is concerned with enabling a computer to see—to identify or understand what it 

sees, to locate what it is looking for, etc. A detailed overview of Computer Vision is given in 

Gevarter (1982B). 

Expert Systems 
Expert Systems is perhaps the "hottest" topic in AI today. How do we make a computer act as if 

it was an expert in some domain? For example, how do we get a computer to perform medical 
diagnosis or VLSI design? A detailed overview of Expert Systems is given in Gevarter (1982A). 

Problem Solving and Planning 
There are many problems for which there are no experts, but nevertheless computer programs for 

their solutions are needed. In addition there are some basic planning systems that are more con- 
cerned with solution techniques than with knowledge. A comprehensive overview of problem solv- 
ing and planning is given in Chapter VI of Part B and Chapter II of Part C of this report. 
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Figure 1-1. Elements of AI. 

Is AI Difficult? 
The popular view that the study of AI is difficult has been partly due to the awe associated with 

the notion of intelligence*. It has also been due to the nomenclature used in AI and to the large size 
of some of the AI computer programs. However, the basic ideas of AI are readily understandable, 
even though in complex applications, the "bookkeeping" associated with such programs can be 
arduous. 

Before we go into details on these basic ideas, it is illuminating to review the history of AI, which 
we will do in Chapter II. Then in Chapter III, the basic elements of AI will be discussed in some 

"Indeed researchers can not even agree on a definition of intelligence itself. One paradoxical definition is "Intelligence is 
what an intelligence test measures." 



detail (and elaborated upon further in Part C of this report). Chapters IV and V present the princi- 
ple players in the AI drama and an indication of the unfolding applications area. (A more complete 
overview of AI applications is given in Part B of this report.) The current state of the art in AI and 
its future directions will be covered in Chapters VI and VII. 

A list of sources for further information and a glossary of AI terms are provided at the end of 

this report. 

CHAPTER I REFERENCES 

• Boraiko, A.A., "The Chip," National Geographic, Oct. 1982, pp. 421-456. 
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• Gevarter, W.B., An Overview of Computer-Based Natural Language Processing, NASA TM 

85635 (also NBS 83-2687), NASA, Wash., D.C., April 1983. 
• Gevarter, W.B., An Overview of Computer Vision, NBSIR-2582, National Bureau of Stan- 

dards, Wash., D.C., September 1982. 
• Gevarter, W.B., An Overview of Expert Systems, NBSIR-2505, National Bureau of Stan- 

dards, Wash., D.C., May 1982 (Revised October 1982). 
• Nilsson, N.J., "Artificial Intelligence: Engineering, Science or Slogan," AI Magazine, Vol. 3, 

No. 1, Winter 1981/1982, pp. 2-9. 

II. THE RISE, FALL AND REBIRTH OF AI* 

The First 15 Years 
In 1956, ten scientists convened a conference at Dartmouth College from which emerged the 

present field of AI. The predictions made by those scientists were that in 25 years, we would all be 
involved in recreational activities, while computers would be doing all the work. In 1981, at the In- 
ternational Joint Conference on AI in Vancouver, Canada, a panel of five of these same scientists 
recalled that conference and their over-optimistic forecasts. 

In 1956, it was assumed that intelligent behavior was primarily based on smart reasoning tech- 
niques and that bright people could readily devise ad hoc techniques to produce intelligent com- 

puter programs. 
Figure II-l lists some of the key AI activities during the first 15 years. The major initial activity 

involved attempts at machine translation. It was thought that natural language translation could be 
readily accomplished using a bilingual dictionary and some knowledge of grammar. However, this 
approach failed miserably because of factors such as multiple word senses, idioms and syntactic 

*An interesting history of the early years of AI is given by McCorduck (1979). 
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Activities 

• Attempts at Machine Translation 

• ELIZA—Key Word and Template Matching 

• Symbolic Integration 

• Game Playing—Checkers, Chess 

• Pattern Recognition 

• Computational Logic 

• General Problem Solver 

Lessons Learned 

• AI Much More Difficult Than Expected 

• Heuristic Search Required To Limit Combinatorial Explosion 

• Lack of Contextual Knowledge Severely Limits Capability 

• Expectation Is a Human Characteristic of Intelligence 

• Difficult To Handle a Broad Domain (e.g., Common Sense) 

Figure II-l. A Condensed History of AI—1956-1970. 

ambiguities. A popular story is that the saying "The spirit is willing but the flesh is weak," when 
translated into Russian and back again into English, came out "The wine is good but the meat is 
spoiled." Schwartz (1980, p. 27) reports that "Twenty million dollars of mechanical translation 
brought results so disappointing, that... by 1967 opinion had soured so dramatically that the Na- 
tional Academy of Sciences all but created a tombstone over the research." In fact it has only been 
recently that substantial work in mechanical language translation has reappeared. 

Weizenbaum (1966) at MIT designed a natural language understanding program that simulated a 
non-directive psychotherapist. The program (ELIZA) bluffed its way through the interaction by 
picking up on key words and providing stock answers. When it did not find a recognizable key 
word, it would select a reply such as "Please continue." Though Weizenbaum wrote the program 
in part to show how ridiculous it was to expect true natural language understanding by a machine, 
the program nevertheless became popular and some of its basic techniques are used in commercial 
Natural Language Interfaces today. 



In 1961, Slagle at M.I.T. devised a heuristic computer program to do symbolic integration. This 
proved to be the forerunner of a successful series of symbolic mathematical programs culminating 
in MACSYMA, in use at M.I.T. today and available over the "ARPA Net" to other AI 

researchers. 
Game playing was also one of the early areas of AI research, with Samuel's (1963) work at IBM 

on machine learning in checkers proving to be one of the early successes. 

Solving puzzles was another area of early success in AI, leading to the development of problem 
solving techniques based on 1) search and 2) reducing difficult problems into easier subproblems. 

Early work in vision involved image processing and pattern recognition (which was concerned 
with classifying two-dimensional patterns). Pattern recognition split off from AI and became a field 
in itself, but now the two disciplines have become much more unified. 

The pioneering work in computer vision was Robert's (1965) program designed to understand 
polyhedral block scenes. This program found the edges of the blocks using the spatial derivatives of 
image intensity, and from the resulting edge elements produced a line drawing. It then utilized sim- 
ple features, such as the numbers of vertices, to relate the objects in the line drawing to stored 3D 
models of blocks. The resulting candidate model was then scaled, rotated, and projected onto the 
line drawing to see if the resultant match was adequate for recognition. 

Another important area was computational logic. Resolution, an automatic method for deter- 
mining if the hypothesized conclusion indeed followed from a given set of premises, was one of the 
early golden hopes of AI for universal problem solving by computer. Using resolution, Green 
(1969) devised a general-purpose, question-answering system, QA3, that solved simple problems in 
a number of domains such as robot movements, puzzles, and chemistry. Unfortunately, resolution, 
though it guarantees a solution, devises so many intermediate steps that turn out not to be needed 
for the final solution, that for large problems its use results in a combinatorial explosion of search 

possibilities. 
Another approach, originally thought to have broad applicability, was the General Problem 

Solver (GPS) devised by Newell et al. (1960). The generality resulted from GPS being the first prob- 
lem solver to separate its problem-solving methods from knowledge of the specific task currently 
being considered. The GPS approach was referred to as "means-ends analysis." The idea was that 
the differences between the current problem state and the goal state could be measured and 
classified into types. Then, appropriate operators could be chosen to reduce these differences, 
resulting in new problem states closer to the goal states. This procedure would then be iteratively 
repeated until the goal was reached. The series of operators used would then form the solution plan. 
Unfortunately, classifying differences and finding appropriate operators turned out to be more dif- 
ficult than expected for non-trivial problems. In addition, computer running times and memory re- 
quirements rapidly become excessive for the more difficult problems. 

AI proved much more difficult than originally expected. By 1970, AI had had only limited suc- 
cess. Natural Language Translation had already collapsed. "Toy" problems or well constructed 
problems such as games proved tractable, but real complex problems proved to be beyond the 
techniques thus far devised, or resulted in combinatorially explosive search that exceeded the then 
current computer capabilities. Similarly, real world computer vision efforts tended to be over- 

whelmed by the noise and complexities in real scenes. 



In 1971, Sir Lighthill of Cambridge University was called upon by the British Government to 
review the AI field. The Lighthill Report (1972) found that "In no part of the field have the 
discoveries made so far produced the major impact that was promised." Further, he found that 
respected AI scientists were then predicting that "... possibilities in the 1980's include an all- 
purpose intelligence on a human-scale knowledge base; that awe-inspiring possibilities suggest 
themselves based on machine intelligence exceeding human intelligence by the year 2000"—the 
same sort of forecasts as were made 15 years earlier. Lighthill saw no need for a separate AI field 
and found no organized body of techniques that represented such a field. He felt that the work in 
automation and computer science would naturally come together to bridge whatever gap existed. 
The Lighthill report eventually brought work in AI in England to a virtual halt and cast a pall over 
AI work in the U.S. 

However, the AI efforts of the 1950's and 1960's were not without merit. A great deal was 
learned about what really had to be done to make AI successful. 

It was found that expectation is a human characteristic of intelligence. That perception, both 
visual and in language, is based upon knowledge, models and expectations of the perceiver. Thus 

communication via language was found to be based upon shared knowledge between the par- 
ticipants and that only cues are needed to actualize the models (in the receiver's head) from which to 
construct the complete message. 

Thus in attempting communication or problem solving, lack of contextual knowledge was found 
to severely limit capability. Reasoning techniques alone proved inadequate. Knowledge is central to 
intelligence. Lacking this knowledge, it is difficult to handle a broad domain. An example is "com- 
mon sense," found to be elementary reasoning based upon massive amounts of experiential 
knowledge. 

It was also found that heuristics are necessary to guide search to overcome the combinatorial ex- 
plosion of possible solutions that pervade complex problems—for each time one makes a decision, 
one opens up new possibilities. 

The Decade of the 70's 
As indicated in Figure II-2, in the 1970's AI researchers began to capitalize on the lessons learned. 

New knowledge representation techniques appeared. Search techniques began to mature. Interac- 
tions with other fields such as medicine, electronics and chemistry took place. Feasible approaches 
were demonstrated for language processing, speech understanding, computer vision, and computer 
programs that could perform like experts. 

SHRDLU was a natural language program at M.I.T. devised by Terry Winograd (1972) to inter- 
face with an artificial "blocks world." It was the first program to successfully deal in an integrated 
way with natural language by combining syntactic and semantic analysis with a body of world 
knowledge. 

From 1971-1976, ARPA sponsored a five-year speech understanding program. HEARSAY II at 
Carnegie Mellon University was a winner, being able to understand sentences, with 90% accuracy, 
from continuous speech based on a 1000-word vocabulary. (The "blackboard" system architec- 
ture, devised for HEARSAY II to deal with multiple knowledge sources, has since found use in 
other AI applications.) A compiled network architecture system called HARPY, which handled the 



Activities 

• Feasible Approaches Demo'd for: 
Language Processing 
Computer Vision 
Expert Systems 
Speech Understanding 

• New Knowledge Representation Techniques Appear 

• Search Techniques Begin To Mature 

• Interaction with Other Fields Takes Place 

Lessons Learned 

• Knowledge Central to Intelligence 

• Future Complex Systems Proved Feasible 

Figure 11-2. The Decade of the 70's. 

same vocabulary as HEARSAY II, was able to achieve a 95% accuracy. (A more detailed review is 

given in Part B of this report.) 
At SRI, Gleason and Agin (1979) developed the SRI Vision Module as a prototype system for use 

in industrial vision systems. This system, which used special lighting to produce a binary image 
(silhouette) of an industrial workpiece, was able to extract edges by a simple continuous scan pro- 
cess, and was to prove the basis for several sophisticated commercial vision systems. 

In the 70's, following an earlier successful effort called DENDRAL, a variety of prototype com- 
puter programs—called Expert Systems—designed to capture and utilize the expertise of a human 
expert in a narrow domain (such as medical diagnosis, crystallography, electrical circuitry, pros- 
pecting, etc.) made their appearance. MYCIN, a medical diagnosis and treatment consultant, de- 
vised by Shortliffe (1976) at Stanford University has been one of the most publicized. 

Thus, the 70's found the AI research community developing the basic tools and techniques 
needed, and demonstrating their applicability in prototype systems. Future complex systems were 
proved feasible. The emphasis on knowledge, as essential to intelligence, led to the subfield of 
"Knowledge Engineering" associated with the building of expert systems. 

1980 to the Present 
The decade of the 70's set the framework from which the successes of the 80's emerged. In the 

80's, expert systems proliferated. Dozens of prototype expert systems were devised in such areas as 
medical diagnosis, chemical and biological synthesis, mineral and oil exploration, circuit analysis, 
tactical targeting, and equipment fault diagnosis. 



But the big news of the 80's (see Figure II-3) is that AI has gone commercial. AI companies 
(founded mostly by AI researchers) have formed to exploit applications. Computer, electronic, oil, 
and large diversified companies have set up AI groups. The military has also joined the fray, setting 
up their own AI groups and seeking early applications. The U.S. Defense Science Board views AI as 
one of the technologies that has the potential for an order of magnitude improvement in mission 
effectiveness. 

Activities 

• Expert Systems Proliferate 

• AI Goes Commercial 

• Expert Systems: RI, DIP-METER ADVISOR, MOLGEN 

• Natural Language Front Ends—INTELLECT 

• Speech Output—Speak and Spell 

• Vision Systems 

• AI Groups and Companies Form To Exploit Applications 

• LISP Machines Become Available 

• AI Technology Becoming Codified 

• AI Handbook 

• Individual Technology Texts: Natural Language, Vision, etc. 

• NBS/NASA Overviews 

Conclusions 

• AI Tools and Systems Become Available 

• Logic Systems (Heuristically Guided) Reemerge—PROLOG 

• AI Techniques Sufficiently Perfected for Early Applications 

Figure IIS. 1980-Present. 

10 



In the expert systems area, DEC reports that RI—a system designed to configure VAX computer 
systems—is already saving them some 20 million dollars a year. MOLGEN—a system for planning 
molecular genetic experiments—is in regular commercial use. Shlumberger—a multi-billion dollar 
oil industry advisory company—seeing AI as a key to the company's growth in the 80's, has estab- 
lished four separate AI groups. The Palo Alto group has already created the expert system DIP- 
METER ADVISOR, to evaluate oil-drilling core samples. 

In natural language front ends, some half dozen systems are now commercially available, with 
INTELLECT from Artificial Intelligence Corporation already boasting well over a hundred installa- 

tions. 
Highlighted by Texas Instruments' Speak and Spell, many commercial speech output systems 

have appeared. Limited speech recognition systems are also on the market, some using signal pro- 
cessing rather than AI techniques. 

Hundreds of companies are now involved in computer vision systems, with dozens of commercial 
products already on the market for simplified vision applications. 

Personal computers that are specially designed to run LISP—the List Processing Language 
favored by the U.S. AI community—are now commercially available from several companies. 

The other indication that AI has now emerged as a viable discipline is that the existing AI 
technology is now becoming codified and therefore made broadly available to everyone, not just 
the core group of several hundred researchers of the 70's. 

ARPA sponsored a three volume AI Handbook which was published in 1981 and 1982. In- 
dividual technology texts—in Vision, Natural Language, Expert Systems and LISP—are beginning 
to appear in numbers. 

NASA has sponsored this NBS set of overviews in Artificial Intelligence and Robotics. The other 
volumes of this series are: 

An Overview of Artificial Intelligence and Robotics 
Vol II—Robotics, NBSIR 82-2479, March 1982 
Vol III—Expert Systems, NBSIR 82-2505, May 1982 (Revised Oct 1982) 
Vol IV—Computer Vision, NBSIR-82-2582, Sept 1982 
Vol V—Computer-based Natural Language Processing, NBSIR 83-2687, Apr 1983. NASA 

TM 85635, Apr 1983. 
Computer software tools for structuring knowledge and constructing expert systems are also 

becoming available. 
In 1982, the Japanese officially began a 10 year, one-half billion dollar, research project to create 

a Fifth Generation Computer. The main features of this computer are that it is to have 1) intelligent 
interfaces (speech, text, graphics, etc.) 2) knowledge base management and 3) automatic problem 
solving and inference capabilities. All these capabilities are predicated on the use of AI techniques. 
The machine itself is visualized as a non-Von Neumann computer featuring parallel processing and 
having the capability of one billion logical inferences per second. 

The Japanese are now considering the European AI language—PROLOG (Programming in 
Logic)—as the basis for their machine. Using PROLOG, logic problem-solving systems (heuris- 
tically guided) are reemerging (from the earlier failure of pure resolution) to handle complex prob- 

lems. 
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With the advent of the Japanese Fifth Generation Computer Project, European nations, such as 
France and Britain, as well as the U.S., are putting renewed effort into their AI activities (Warren, 
1982). 

In summary then, we can conclude that AI tools and systems are now becoming available, and AI 
techniques are now sufficiently perfected for early applications. Further, the importance of AI is 
being recognized internationally and substantial sums of money in the U.S. and abroad are now 
beginning to be committed to developing AI applications. 
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III. BASIC ELEMENTS OF AI 

Heuristic Search 
AI problem solving can often be viewed as a search among alternative choices. It is thus possible 

to represent the resulting search space as a hierarchical structure called a tree, an example of which 
is shown in Figure III-l. (Figure III-l is a search tree for the elementary problem of finding the 
simplest route, from city A to the destination city D, from among the network of roads illustrated 
by the state graph of Figure III-2.) The solution paths run from the initial state (root node) along 
the branches of the tree and terminate on the leaves (terminal nodes) labeled "goal state." 

For a large complex problem, it is obviously too cumbersome to explicitly draw such trees of all 
the possibilities and directly examine them for the best solution. Thus, the tree is usually implicit; 

the computer generating branches and nodes as it searches for a solution. 
In searching for a solution we may reason forward as in Figure III-l, or backward from the goal 

(searching an equivalent tree where the root node is the goal). 
For fairly simple problems, a straightforward, but time-consuming, approach is blind search, 

where we select some ordering scheme for the search and apply it until the answer is found. There 

INITIAL STATE 

LEVEL 0 (ROOT) 

LEVEL 1 

LEVEL 2 

GOAL 
STATE 

LEVEL 3 

GOAL 
STATE 

DEAD       GOAL 
END       STATE 

LEVEL 4 0 
GOAL 
STATE 

Figure III-l. Tree Representation of Paths Through the State Graph of Figure III-2. 
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Figure III-2. State Graph for a Simple Problem. 

are two common blind search procedures, breadth-first search and depth-first search. In breadth- 
first search, the nodes of the search tree are generated and examined level by level starting with the 
root node. In a depth-first search, a new node (at the next level) is generated from the one currently 
being examined, the search continuing in this way deeper and deeper until forced to backtrack. 

Blind search does not make any use of knowledge about the problem to guide the search. In com- 
plex problems, such searches often fail, being overwhelmed by the combinatorial explosion of 
possible paths. If on the average there are n possible operators that can be applied to a node, and 
the search space is searched to a depth of d, then the size of the search space tends to grow in rela- 
tion to nd. Heuristic methods have been designed to limit the search space by using information 
about the nature and structure of the problem domain. Heuristics are rules of thumb, techniques or 
knowledge that can be used to help guide search. Heuristic search is one of the key contributions of 
AI to efficient problem solving. It often operates by generating and testing intermediate states along 
a potential solution path. 

One straightforward method for choosing paths by this approach is to apply an evaluation func- 
tion to each node generated and then pursue those paths that have the least total expected cost. 
Typically, the evaluation function calculates the cost from the root to the particular node that we 
are examining and, using heuristics, estimates the cost from that node to the goal. Adding the two 
produces the total estimated cost along the path, and therefore serves as a guide as to whether to 
proceed along that path or to continue along another, more promising, path among those thus far 

examined. However, this may not be an efficient approach to minimize the search effort in complex 
problems. 

Search techniques are now relatively mature and are codified in the AI Handbook (Barr and 
Feigenbaum, 1981) and various AI texts. More detailed information on search techniques are given 
in Chapter II of Part C of this report. 
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Knowledge Representation* 
The purpose of knowledge representation (KR) is to organize required information into a form 

such that the AI program can readily access it for making decisions, planning, recognizing objects 
and situations, analyzing scenes, drawing conclusions, and other cognitive functions. Thus 
knowledge representation is especially central to expert systems, computational vision, and natural 
language understanding. 

Representation schemes are classically classified into declarative and procedural ones. 
Declarative refers to representation of facts and assertions, while procedural refers to actions, or 
what to do. A further subdivision for declarative ("object oriented") schemes includes relational 
(semantic network) schemes and logical schemes. 

The principal KR schemes are briefly discussed in the following paragraphs. 

Logical Representation Schemes 
The principal method for representing a knowledge base logically is to employ First Order 

Predicate Logic. In this approach, a knowledge base (KB) can be viewed as a collection of logical 
formulas which provide a partial description of the world. Modifications to the KB result from 
additions or deletions of logical formulas. 

An example of a logical representation is: 

IN (SHUTTLE ORBIT) = The shuttle is in orbit 

Logical representations are easy to understand and have available sets of inference rules needed to 
operate upon them. A drawback of logical representation is its tendency to consume large amounts 
of memory. 

Semantic Networks 
A semantic network is an approach to describing the properties and relations of objects, events, 

concepts, situations or actions by a directed graph consisting of nodes and labelled edges (arcs con- 
necting nodes). A simple example is given in Figure III-3. Because of their naturalness, semantic 
networks are very popular in AI. 

Procedural Representations and Production Systems 
In procedural representations, knowledge about the world is contained in procedures—small pro- 

grams that know how to do specific things (how to proceed in well specified situations). Classifica- 
tion of procedural representation approaches are based on the choice of activation mechanisms for 
the procedures, and the forms used for the control structures. 

The two common approaches consist of procedures representing major chunks of knowledge — 
subroutines—and more modular procedures, such as the currently popular "production rules." 
The common activation mechanism for procedures is matching the system state to the precondi- 
tions needed for the procedure to be invoked. 

*A more detailed presentation of knowledge representation is given in Chapter III of Part C. 
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Figure III-3. Simple Example of a Semantic Network. 

Production rules (PR) are characterized by a format of the type: 
Pattern, Action 
If, Then 
Antecedent, Consequent 
Situation, Procedure 

e.g., If the shuttle power supply fails, 
and a working power supply is available, 
and the situation causing the problem no longer exists, 

Then switch to the backup. 

Because of their modular representation of knowledge and their easy expansion and modifiabili- 
ty, PR's are now probably the most popular AI knowledge representation, being chosen for most 
expert systems. 

Analogical or Direct Representations 

In many instances it is appropriate to use natural representations such as an array of brightness 
values for an image, or a further reduced "sketch map" of the scene delineations in a computer vi- 
sion system. These natural representations are useful in computational vision, spatial planning, 
geometric reasoning and navigation. 
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This form of representation has the advantages of being easy to understand, simple to update, 
and often allows important properties to be directly observed, so that they don't have to be 

inferred. 

Property Lists 
One approach to describe the state of the world is to associate with each object a property list, 

that is a list of all those properties of the object pertinent to the state description. The state, and 
therefore the object properties, can be updated when a situation is changed. 

Frames and Scripts 
A large proportion of our day-to-day activities are concerned with stereotyped situations such as 

going to work, eating, shopping, etc. Minsky (1975) conceived of "frames," which are complex 
data structures for representing stereotyped objects, events or situations. A frame has slots for ob- 
jects and relations that would be appropriate to the situation. Attached to each frame is informa- 

tion such as: 
—how to use the frame 
—what to do if something unexpected happens 
—default values for slots. 
Frames can also include procedural as well as declarative information. Frames facilitate 

expectation-driven processing—reasoning based on seeking confirmation of expectations by filling 
in the slots. Frames organize knowledge in a way that directs attention and facilitates recall and 

inference. 
An example of a frame is: 

Airplane Frame: 
Type: 

range: (fighter, transport, trainer, bomber, light plane, observation) 

Manufacturer: 
range: (McDonnell-Douglas, Boeing . . .) 

Empty Weight: 
range: (500 lbs to 250,000 lbs) 

Gross Weight: 
range: (500 lbs to 500,000 lbs) 
if needed: (1.6 x empty weight) 

Max Cruising Range: 
if needed: (look up in table cruising range appropriate to type and gross weight) 

Number of Cockpit Crew: 
range: (1 to 3) 
default: 2 

Scripts are frame-like structures designed for representing stereotyped sequences of events such 
as eating at a restaurant or a newspaper report of an apartment fire. 

17 



Semantic Primitives: 

For any knowledge representation scheme, it is necessary to define an associated vocabulary. For 
semantic nets, there has been a real attempt to reduce the relations to a minimum number of terms 
(semantic primitives) that are non-overlapping. A similar effort has emerged for natural language 
understanding, for which several attempts have been made to describe all of the world's aspects in 
terms of primitives that are unique, unambiguous representations into which natural language 
statements can be converted for later translation into another language or for other cognitive 
actions. 

Schänk (see, e.g., Schänk and Riesbeck, 1981) has developed a "conceptual dependency" theory 
for natural language, in an attempt to provide a representation of all actions in terms of a small 
number of primitives. The system relies on 11 primitive physical, instrumental and mental ACT's 
(propel, grasp, speak, attend, etc.), plus several other categories, or concept types. There are two 
basic kinds of combinations or conceptualizations. One involves an actor doing a primitive ACT; 

the other involves an object and a description of its state. Attached to each primitive act is a set of 
inferences that could be associated with it. 

An example of a representation in conceptual dependency is: 

"Armstrong flew to the moon." 
Actor: Armstrong 
Action: flew 
Direction to:        the moon 
From: unknown 



Computational Logic* 
Logic is a formal method of reasoning. Graham (1979, p. 163) observes that: 

Computational logic—doing logical reasoning with a computer—is based on what is traditionally known as 
symbolic logic, or mathematical logic. This, in turn, is divided into two (principal) parts, the simpler "proposi- 
tional logic" and the more complex "predicate logic". 

Propositional Logic 
In logic, a "proposition" is simply a statement that can be true or false. Rules used to deduce the 

truth (T) or falsehood (F) of new propositions from known propositions are referred to as "argu- 

ment forms." 
To make more interesting statements we can join propositions together with the following 

connectives: 

Connective 

And 

Or 

Symbol 

A or Pi 

V orU 

Meaning 

both 

either or both 

Not 

Implies 

"lor 

D or 

the opposite 

If the preceding term is true, 
then the term following will 
also be true 

Equivalent has the same truth value 

The simplest argument form is the "conjunction," which utilizes the connective AND. It states 
that if proposition p is true and proposition q is true, then the conjunction "p AND q" are true. In 

symbolic form we have 

P (premise) 
(premise) 

PAQ (conclusion). 

That is, the conclusion is true if the premises are true. 
Deduction involves deriving answers to problems based on a given set of premises.  In 

mathematical logic, deductive procedures are sometimes referred to as "formal inference." 

*A more complete discussion of computational logic is presented in Chapter IV of Part C. 
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A simple form of deduction is the "syllogism." For example: 

All Greeks are mortal. 
Socrates is a Greek. 
Therefore, Socrates is mortal. 

This type of reasoning can be represented as a mathematical form of argument called "Modus 
Ponens" (MP): 

p (premise) 
p implies q   (premise) 

(conclusion) 

or in logical notation as: 

(P  A (p-*-q))-^q 

Predicate Logic: 

Propositional logic is limited in that it deals only with the T or F of complete statements. 
Predicate logic remedies this situation by allowing you to deal with assertions about items in 
statements, and allows the use of variables and functions of variables. 

Propositions make assertions about items (individuals). A "Predicate" is the part of the proposi- 
tion that makes an assertion about the individuals, and is written as: 

arguments of the predicate 
Predicate (individual, individual, . . .) 

For example, 

"The box is on the table," (proposition) is denoted as: 
ON (BOX, TABLE) 

The predicate, together with its arguments, is a proposition. Any of the operations of propositional 
logic may be applied to it. 

By including variables for individuals, Predicate Logic enables us to make statements that would 
be impossible in Propositional Logic. This can be further extended by the use of functions of 
variables. Finally, by use of the universal and existential quantifiers V (for all) and 3 (there exists), 
we arrive at First Order Predicate Logic (FOPL). FOPL permits rather general statements to be 
made, e.g. 

For all Earth satellites, there exists a point y on the satellite that is closest to Earth: 

V(x)  SATELLITE(x)-^3(y) (CLOSEST(y, Earth) A ON(y, x)) 

Various inference rules exist for the manipulation of quantifiers, the substitution of connectives, 
and other syntactic operations that assist in performing logical reasoning. 
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Logical Inference* 

Resolution Method 
Logical inference—reaching conclusions using logic—is normally done by "theorem proving." 

The most popular method for automatic theorem proving is the resolution procedure developed by 
Robinson (1965). This procedure is a general automatic method for determining if a hypothesized- 
conclusion (theorem) follows from a given a set of premises (axioms). First, using standard iden- 
tities, the original premises and the conclusion to be proved are put into clause form. The conclu- 
sion to be proved is then negated- New clauses are then automatically derived using resolution and 
other procedures. If a contradiction is reached, then the theorem is proved. 

Basically, resolution is the cancellation between clauses of a proposition in one clause with the 
negation of the same proposition in another clause. 

Unfortunately, resolution has been unable to handle complex problems, as the search space 
generated by the resolution method grows exponentially with the number of formulas used to 
describe a problem. Thus for complex problems, resolution derives so many clauses not relevant to 
reaching the final contradiction, that it tends to use up the available time or memory before 
reaching a conclusion. Several domain-independent heuristics have been tried to constrain the 
search, but have proved to be too weak. 

Factors Which Affect the Efficiency of Deductive Reasoning 
Cohen and Feigenbaum (1982, pp. 80-81) state that "One kind of guidance that is often critical to 

efficient system performance is information about whether to use facts in a forward-chaining or 
backward-chaining manner . . . Early theorem-proving systems used every fact both ways leading 
to highly redundant searches ..." 

Another factor that can greatly affect the efficiency of the deductive reasoning is the way in 
which a body of knowledge is formalized. "That is, logically equivalent formalizations can have 
radically different behavior when used with standard deduction techniques." 

Non-Resolution Theorem Proving 
Cohen and Feigenbaum (1982, p. 94) observe that "In non-resolution or natural deduction 

theorem-proving systems, a proof is derived in a goal-directed manner that is natural for humans 
using the theorem prover. Natural-deduction systems represent proofs in a way that maintains a 
distinction between goals and antecedents, and they use inference rules that mimic the reasoning of 
human theorem-proving." They also tend to use domain-specific heuristics that help guide the 
search, and many proof rules to reduce goals to subgoals. The result is much more complex than the 
simpler, but less effective, resolution procedure. 

Though requiring help from the programmer, the non-resolution Boyer and Moore (1979) 
Theorem Prover is one of the most powerful theorem provers available. 

Special higher order languages (such as PROLOG, that helps structure the deduction problem 
and provides various built-in aids), coupled with domain-specific formulation and heuristic 
guidance rules, appears to be the direction that computational logic is proceeding in an attempt to 
handle complex real world problems. 

*A more detailed discussion is given in Chapter IV of Part C. 
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Common Sense Reasoning 
Common sense reasoning is low level reasoning based on a vast amount of experiential 

knowledge. An example is reasoning about falling objects, based upon experience rather than upon 
Newton's Laws. The same sort of reasoning tells us what is the appropriate thing to do in everyday 
social situations. While it is a simple matter for humans, it is very difficult to achieve in present AI 
systems with current techniques. 

Nilsson (1980, p. 154) states: 

. . . many common sense reasoning tasks that one would not ordinarily formalize can, in fact, be handled by 
predicate calculus theorem-proving systems. The general strategy is to represent specialized knowledge about the 
domain as predicate calculus expressions and to represent the problem or query as a theorem to be proved. 

Nilsson (1980, p. 423) also observes that, "Much common sense reasoning (and even technical 
reasoning) is inexact in the sense that the conclusions and the facts and rules on which it is based are 
only approximately true. Yet people are able to use uncertain facts and rules to arrive at useful con- 
clusions about everyday subjects such as medicine. A basic characteristic of such approximate 
reasoning seems to be that a conclusion carries more conviction if it is independently supported by 
two or more separate arguments." Several of the AI expert systems, such as Mycin and Prospector, 
make use of this approach. 

AI approaches to approximate and plausible reasoning such as fuzzy set theory and default 
reasoning, and non-monotonic logic are given in Nilsson (1980) and Cohen and Feigenbaum (1982). 
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Non-Deductive Problem Solving Approaches* 

Elements of a Problem Solver 
All problems have certain common aspects: an initial situation, a goal (desired situation) and cer- 

tain operators (procedures or generalized actions) that can be used for changing situations. In 
solving the problem, a control strategy is used to apply the operators to the situations to try to 
achieve the goal. This is illustrated in Figure III-4 where we observe a control strategy operating on 
the procedures to generate a sequence of actions (called a plan) to transform the initial conditions in 
the situation into the goal conditions. Normally, there are also constraints (specifying the condi- 
tions necessary for a specific procedure to be applied) which must be satisfied in generating a solu- 
tion. In the process of trying to generate a plan, it is necessary for the problem solver to keep track 
of the actions tried and the effects of these actions on the system state. Figure III-5 is a restatement 
of Figure III-4 in which we can view the operators as impacting the data base to change the current 

situation (system state). 

Problem Reduction 
One simple form of problem solving is "divide and conquer," usually referred to as "problem 

reduction". Very often several subproblems (conjuncts) must be satisfied simultaneously in order 

to achieve a goal. 

SEQUENCE OF ACTIONS = PLAN 

Figure III-4. Problem Solving. 

*A more complete presentation is given in Chapter II of Part C. 
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Figure III-5. Automatic Problem Solving Relationships 

Problem reduction often fails without specific problem knowledge, as there is otherwise no good 
reason to attack one interacting conjunct before another. Lack of such knowledge may lead to an 
extensive search for a sequence of actions that tries to achieve subgoals in an unachievable order. 

Difference Reduction ("Means-Ends" Analysis) 

Difference reduction was introduced by the General Problem Solver (GPS) Program developed 
by Newell, Shaw and Simon, beginning in 1957. This was the first program to separate its general 
problem-solving method from knowledge specific to the current problem. 

The means-ends analysis first determines the difference between the initial and goal states and 
selects the particular operator that would most reduce the difference. If this operator is applicable 
in the initial state, it is applied and a new intermediate state is created. The difference between this 
new intermediate state and the goal state is then calculated and the best operator to reduce this dif- 
ference is selected. The process proceeds until a sequence of operators is determined that transforms 
the initial state into the goal state. 

The difference reduction approach assumes that the differences between a current state and a 
desired state can be defined and the operators can be classified according to the kinds of differences 
they can reduce. If the initial and goal states differ by a small number of features, and operators are 
available for individually manipulating each feature, then difference reduction works. However, 
there is no inherent way in this approach to generate the ideas necessary to plan complex solutions 
to difficult problems. 

24 



More Efficient Tactics for Problem Solving 
For more efficient problem solving it is necessary to devise techniques to guide the search by 

making better use of initial knowledge about the problem or of the information that can be 
discovered or learned about the problem as the problem solver proceeds through the search. 

Sacerdoti (1979) indicates that information relevant to planning that can be learned during the 

exploration process includes: 
• order relationships among actions 
• hierarchical links between actions at various levels of abstraction 
• the purpose of the actions in the plan 
• the dependence among objects (or states) being manipulated 

There are two opposing ways to improve the efficiency (solution time) of a problem solver: 
• use a cheap evaluation function and explore lots of paths that might not work out, but in the 

process acquire information about the interrelationships of the actions and the states as an aid 

in efficiently guiding a subsequent search. 
• use a relatively expensive evaluation function and try hard to avoid generating states not on 

the eventual solution path. 
The following methods are attempts to achieve more efficient problem solving through employ- 

ing various ratios of exploration and evaluation. 

a. Hierarchical Planning and Repair 
As in planning by humans, one can start by devising a general plan and refine it several times into 

a detailed plan. The general plan can be used as a skeleton for the more detailed plan. Using this ap- 
proach, generating rather complex plans can be reduced to a hierarchy of much shorter, simpler 
subproblems. As the detailed plans are generated, the results should be checked to see that the in- 
tended general plan is being realized. If not, various methods for patching up the failed plan can be 

applied. 
Another approach is to observe that some aspects of a problem are significantly more important 

than others. By utilizing this hierarchical ranking, a problem solver can concentrate most of its ef- 

forts on the critical decisions or more important subgoals first. 

b. Problem Solving by Creating and then Debugging Almost-Right Plans 
This approach deliberately oversimplifies the problem so it can be more readily solved and then 

corrects the solution using special debugging techniques (associated with errors due to the 
simplification). An everyday example is the general tactic by which people use road maps: find a 
simple way to get to the vicinity of your destination and then refine the plan from there. 

c. Special Purpose Subplanners 
This approach uses built-in subroutines to plan frequently occurring portions of a problem, such 

as certain moves or subgoals in robotics. 
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d. Constraint Satisfaction 
This technique provides special purpose subplanners to help insure that the action sequences that 

are generated will satisfy constraints. 

e. Relevant Backtracking (Dependency-Directed or Non-Chronological Backtracking) 
The focus here is on sophisticated post-mortem analysis gained from several attempts that failed. 

The problem solver then uses this information to backtrack, not to the most recent choice point, 
but to the most relevant choice point. 

/. Disproving 
In this approach, attempts are made to prove the impossibility of the goal, both to avoid further 

pursuing an intractable problem, and to employ the resultant information generated to help suggest 
an action sequence to achieve the goal for a feasible problem. 

g. Pseudo-Reduction 

For the difficult case where multiple goals (conjuncts) must be satisfied simultaneously, one ap- 
proach is to find a plan to achieve each conjunct independently. The resultant solutions to these 
simpler problems are then integrated using knowledge of how plan segments can be intertwined 
without destroying their important effects. By avoiding premature commitments to particular 
orderings of subgoals, this tactic eliminates much of the backtracking typical of problem solving 
systems. 

h. Goal-Regression 
This tactic regresses the current goal to an earlier position in the list of goals to be satisfied. This 

approach can be useful in cases where conjunctive subgoals must be satisfied, but where the action 
that satisfies one goal tends to interfere with the satisfaction of the others. 

Table III-l (derived from Sacerdoti, 1979, p. 15) indicates where the emphasis lies in the various 
problem-solving techniques discussed—either in the computational effort employed in evaluating 
the information gained thus far from the searched region, or in the effort expended in choosing the 
next move based only on local information. 

Production Systems 

Production rules (PR's), such as: 
If the Shuttle Power Supply fails 

and a backup is available, 
and the cause of failure no longer exists, 

Then switch to the backup, 
have proved such a convenient modular way to represent knowledge, that they now form the basis 
of most Expert Systems. 

The basic automatic problem solving relationships of Figure III-5 can be recast as a production 
system as shown in Figure III-6. A production system consists of a knowledge base of production 
rules (consisting of domain facts and heuristics), a global data base (GDB) which represents the 
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TABLE III-l. Primary Emphasis of Problem Solving Tactics. 

Relationship 
Learn and 
Evaluate 

Choose New Move 
Based on Local 
Information 

Sequencing Order • Pseudo Reduction 
(Plan Generation Portion) 

• Relevant Backtracking 

• Disproving 

Hierarchy • Plan and Repair • Special Purpose 
Subplanner 

Purpose of Actions • Creating Almost- 
Right Plans 

• Pseudo Reduction 
(Plan Repair Portion) 

• Goal Regression 

Dependency Among 
Obiects 

• Relevant Backtracking • Constraint 
Satisfaction 

1' 
  

KNOWLEDGE 
BASE 

(RULE SET) 

CONTROL 
STRUCTURE 

(RULE INTERPRETER) 

GLOBAL 
DATA 
BASE 

(SYSTEM STATUS) 

Figure 111-6. A Production System. 

27 



system status, and a rule interpreter (control structure) for choosing the rules to execute. In a simple 
production rule system, the rules are tried in order and executed if they match a pattern in the GDB. 

However, in more complex systems, such as used in Expert Systems, a very complex control 
structure may be used to decide which group of PR's to examine, and which to execute from the 
PR's in the group that match patterns in the GDB. In general, these control structures work in a 
repetitive cycle of the form: 

1. Find the "conflict set" (the set of competing rules which match some data in the GDB). 
2. Choose a rule from among the conflict set. 
3. Execute the rule, modifying the GDB. 

Production rule systems can be implemented for any of the problem-solving approaches dis- 
cussed earlier. Thus, we may use a "top-down" approach, employing the rules to chain backwards 
from the goal to search for a complete supportive or causal set of rules and data ("goal-driven," or 
"model-driven" control structure). Or, we can use a "bottom-up" approach employing forward- 

ing-chaining of rules to search for the goal ("event-driven" or "data-driven" control structure). 

In complex systems (employing many rules) the control structure may contain meta-rules which 

select the relevant rules from the entire set of rules, and also focuses attention on the relevant part 
of the data base. This reduces the search space to be considered. The control structure then employs 
further heuristics to select the most appropriate rule from the conflicting rules which match the 
preconditions in the global data base. Johnson (1980, p. 7) describes this approach as follows: 

. . . event-driven logic operates in the forward direction, comparing the left-hand sides of the rules in the rule-set 
with the data in the data base. The "best" of the matching rules found is selected and fired, causing the 
righthand side of that rule to make some modification in the global data base. This process is repeated until a 
goal rule matches the data and terminates the process ... a goal rule is one which tests whether the problem is 
done. 

In a "pure" production rule interpreter, the generalized repeating process takes the form shown in Figure 
III-7. That idealization may be considered as a four-cycle logical process with activation, matching, conflict- 
resolution, and execution subcycles. For generality, the subcycle machinery in Figure III-7 is shown to be con- 
trolled by additional sets of higher-order rules about rules, which are called meta-rules. In practice, one often 
finds part or all of the meta-rule machinery of Figure III-7 replaced by simpler mechanisms. In practical pro- 
grams many variations of this basic scheme exist because of efficiency considerations, the characteristics of the 
particular applications, and programmer preferences. 

A simple example of an event-driven production system can be visualized for a Shuttle Flight in 
which the power supply status is observed to be out of limits in the Global Data Base. The strategy 
meta-rules indicated in Figure III-7 then select, from the tens of thousands of rules in the 
Knowledge Base having to do with Shuttle Flight Operations, those rules having to do with power 
and the use of power. Similarly, the focusing meta-rules select from the GDB the relevant part hav- 
ing to do with the status of the power supply, and the Shuttle's and the experiments' use of power. 
The relevant rules are then compared with the relevant part of the GDB to determine which rules 
are appropriate for the current system status. The scheduling metarules (using priorities) then select 
the most appropriate rule (such as switching in the backup, or turning off the less important ex- 
periments). Executing the selected rule changes the system status, and the cycle repeats. 
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Figure III-7. Idealized Event-Driven Control Scheme. 
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AI Languages, Tools and Computers 

Programming Needs of AI 
AI research has been an experimental science trying to develop computer programs that exhibit 

intelligent behavior. This has proved to be a difficult endeavor requiring the best programming 
tools. AI programs tend to develop iteratively and incrementally. As the programs are thus evolu- 
tionary, creating AI programs requires an interactive environment with built-in aids such as 
dynamic allocation of computer memory as the program evolves, rather than advance memory 
allocation as in most other programming domains. More importantly, the unpredictable in- 
termediate forms of the data (as the program evolves) also influence the form of the programming 
languages and the management of memory. 

Another unusual aspect of AI programming is that AI researchers found that expressing func- 
tions recursively (defined in terms of themselves) was a great simplification in writing programs. 
Thus, AI programming languages tend to support recursive processing. Finally, AI programs are 
primarily concerned with symbol manipulation, rather than numeric computation. All AI 
languages thus support this feature. 

Barr and Feigenbaum (1982, p. 32) observe that, "AI programs are among the largest and most 
complex computer programs ever developed and present formidable design and implementation 
problems ... AI researchers in their capacity as language designers and programmers have 
pioneered an interactive mode of programming in environments with extensive support: editors, 
trace and debugging packages, and other aids for the construction of large complex systems. 

Two basic general AI languages—LISP and PROLOG—have evolved in answer to these pro- 
gramming requirements. LISP has been the primary AI programming language. PROLOG, a logic- 
based language, has appeared more recently and has gained favor in Europe and Japan. 

Various derivatives and dialects of LISP exist. Special high level programming languages, for 
such purposes as assisting in knowledge representation and constructing expert systems, have been 
built on top of LISP. 

In recent years, nearly all AI programs were developed on the DEC PDP-10 and PDP-11 com- 
puters. AI programming is now transitioning to the DEC VAX computers and the new personal AI 
machines. 

List Representations 
List processing was originally introduced in their IPL programming language by Newell, Shaw 

and Simon (1957) to deal with symbol manipulation. Lists form associations of symbols which 
allow computer programs to build data structures of unpredictable shape and size. To handle such 
unpredictably shaped data structures IPL used primitive data elements (called cells). 

The same idea is used in LISP in the form of CONS cells. Each CONS cell is an address (a com- 
puter word) that contains a pair of pointers to other locations in computer memory.* The left por- 
tion of the cell points to the first element (the "CAR") of the list. The right portion points to 

*One can thus view the basic data object in LISP to be pointers, with lists as one interpretation placed upon the resultant 
pair structure. 
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another CONS cell representing the remainder (the "CDR") of the list. Thus, as indicated in Figure 
III-8, representing a sequence of words or symbols in memory can be visualized as a binary tree 
structure using these memory cells. 

The problem of unpredictable size of data structures was solved by having a free list of memory 
cells that could be dynamically allocated as required. 

SYMBOLIC EXPRESSION: (A B C) 

ADDRESS OF 
FIRST ELEMENT' 

OF LIST 

FIRST CONS CELL 

T~\ 
ADDRESS OF 

NEXT CONS CELL 

/ 

TA 
7 

/ 

SYMBOLIC EXPRESSION: ((A B) C) 

u\ 
• • •        / 

/ \ N^ 
• c 

7 
B 

Figure III-8. Representation of List Structures in Memory. 
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A list is a sequence of zero or more elements enclosed in parentheses, where each element is either 
an atom (an indivisible element) or a list. Lists can be used to represent virtually any type of data. 
Lists are therefore useful for representations in such AI areas as language understanding, computer 

vision, and problem solving and planning. 

Tree structures (used to represent search spaces) are ubiquitous in AI. A list representation for a 
tree structure is shown in Figure III-9. It will be observed that the resultant representation is a list 
(as indicated by parentheses) consisting of elements, some of which are also lists. These nested 
structures are common in list representations. 

Predicate logic expressions such as 
IN(x,A) OR IN(x,B) 
meaning x is in A or in B 

can be conveniently expressed, using prefix notation, in list form as 

(OR (IN x A) (IN x B)) 

(A(BEFG)ICHI)D) 

WHERE (B E F G), (C H I) AND D ARE THE SUBTREES 
OF THE ROOT NODE A. 

Figure III-9. List Representation of a Search Tree. 
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LISP 

a. Background 
Around 1960, John McCarthy at M.I.T. developed LISP as a practical list processing language 

with recursive-function capability for describing processes and problems. Since then, LISP has been 
the primary AI programming language—the one most used in AI research. 

b. Basic Elements of LISP 
All LISP programs and data are in the form of symbolic expressions (S-expressions) which are 

stored as list structures. LISP deals with two kinds of objects: atoms and lists. Atoms are symbols 
(constants or variables) used as identifiers to name objects which may be numeric (numbers) or 
non-numeric (people, things, robots, ideas, etc.). A list is a sequence of zero or more elements 
enclosed in parentheses, where each element is either an atom or a list. 

Graham (1979, p. 226) observes, "A LISP system is a function-evaluating machine. The user 
types in a function and its arguments. LISP types back the result of applying the function and its 
arguments." For example for addition: 

User input: (PLUS 6 2) 
LISP response: 8 

To manipulate lists, LISP has three basic functions (related to the memory cell structure storage 
for lists): 

CONS, to join a new first member to a list. 
CAR, to retrieve the first member of a list. 
CDR, (pronounced coud-er) to retrieve the list consisting of all but the first member of a list. 

Thus: 
User: (CONS 'Z '(C D E)) 
LISP (Z C D E) 

where the quote symbol, ', is used to indicate that the expression following is not to be evaluated. 
Normally, LISP evaluates all expressions (starting with the innermost parentheses) before carrying 
out other operations. 

User: (CAR '(John Mary X Y)) 
LISP: John 
User: (CDR '(John Mary X Y)) 
LISP: (Mary X Y) 

c. Variables 
In LISP, the SET function assigns a value to a variable. Thus: 

User: (SET 'Z George) 
LISP: George 
User: Z 
LISP: George 

Atoms are used for variables in LISP. When quoted, an atom stands for itself, otherwise LISP 
automatically substitutes its value during processing. 
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d. Defining New Functions 
Programming in LISP involves defining new functions. Thus, we could define SECOND (the 

second atom of a list) by: 
User: (DEFUN    SECOND    (Y)    (CAR(CDR Y))) 

where Y is a dummy variable. 
LISP: SECOND 
User: (SECOND '(JOHN FRANK MARY JANE)) 

LISP: FRANK 

e. Predicates 
A predicate is a function which returns either NIL (false) or T (true). As a programming con- 

venience, any none-NIL value is also considered to be true. (NIL is actually the name of the empty 

list.) 
Thus, the predicate GREATERP returns T if the items in the series are in descending order. 

User: (GREATERP 6 5 2) 

LISP:T 

/. Conditional Branching 
It is often necessary in AI to use conditional branching. For example, if so and so is true, then do 

X, if not, if thus and so is true, then do Y, if not do Z. 

The COND function in LISP has this role. Its form is: 
(COND (condition 1 expression 1) 

(condition 2 expression 2) 

(condition m expression m)) 
where each condition is an expression that will evaluate to NIL or something else. The COND func- 
tion evaluates the conditions in order until one of them evaluates to other than NIL. It then returns 
the value of the corresponding expression. 

g. Recursive Functions 
It is often much easier to define a function recursively—in terms of itself—than to define it as an 

explicit series of steps. This recursive feature is an important characteristic of LISP. A simple il- 
lustration is the factorial example (Barr and Feigenbaum, 1982, P. 6): 

N! = J 1 if N=l 
N x (N-l)!      if N > 1 
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This factorical function (FACTORIAL) can be written as: 
(DEFUN FACTORIAL (N) 

(COND (EQUAL N 1) 1) 
(T (TIMES N (FACTORIAL (DIFFERENCE N 1))))) 

h. Review of Program Features of LISP 
It should be noted that LISP programs and data are both in the same form - lists. Thus, AI pro- 

grams can manipulate other AI programs. This allows programs to create or modify other pro- 
grams, an important feature in intelligent applications. It also allows programming aids for debug- 
ging and editing to be written in LISP, providing great interactive flexibility for the LISP program- 
mer, who can thus tailor things to suit his needs. 

Other notable aspects of LISP are (Barr and Feigenbaum, 1982, p. 17) 
—LISP is an interactive interpreted language and therefore relatively slow. (However, it can be 

compiled, often resulting in an order of magnitude improvement.) 
—Memory allocation is automatic. 
—LISP expressions are very simple and regular. All expressions are made up of atoms and com- 

positions of atoms. 
—Control is normally applicative—the flow of control being guided by the application of func- 

tions to arguments, in contrast to the sequential control structure of most programming 
languages. 

—Dynamic Scoping of Variables—usually a non-local variable will have its value locally assigned 
by the function evaluating it, unless it was assigned a value by the function calling the 
evaluating function. 

—For real-time operation, LISP requires a sophisticated garbage collection system to recycle 
memory cells no longer being used. 

—LISP is a huge package and until the advent of the special personal LISP machines, the full 
capabilities of LISP could only be implemented on large computers. 

—The use of nested parentheses in LISP can be confusing, but the confusion can be reduced 

somewhat by indenting expressions according to their level of nesting. 

i. LISP Today 
There are two major LISP dialects today: 

MACLISP developed at M.I.T. 
INTERLISP developed at BBN and XEROX-PARC. 

Both offer very similar programming environments with editing and debugging facilities. Both 
offer many LISP functions and optional features. The emphasis in INTERLISP has been to pro- 
vide the best possible programming environments, even at the expense of speed and memory space. 
MACLISP has had more emphasis on efficiency, conservation of address space and flexibility for 
building tools and embedding languages. 

INTERLISP has been the much better-supported version, with complete documentation and 
many users. It runs on DEC and XEROX operating systems. 
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Out of the need to standardize the various MACLISP dialects has evolved "Common LISP" and 
"LISP Machine LISP" for personal AI computers. This new dialect—Common LISP—appears 
destined to be used on most of the new personal AI machines and operating systems. Common 
LISP is intended to be efficient and portable, with stability a major goal. 

Because of the rapid development of LISP features by the user community, other more local 
LISP versions (such as FRANZLISP at U. of CA, Berkeley) exist at several university AI labs. 

A good text on LISP programming is LISP by Winston and Horn (1981). 

PROLOG (PROgramming in LOGic) 

a. History 
PROLOG is a logic-oriented language developed in 1973 at the University of Marseille AI 

Laboratory by A. Colmerauer and P. Roussel. Additional work on PROLOG has been done at the 
University of Edinburgh in Great Britain. Development of PROLOG in France has continued to 
the present, achieving a documented system that can be run on nearly all computers (Colmerauer et 

al., 1981). 

b. Nature of PROLOG 
PROLOG is a theorem-proving system. Thus, programs in PROLOG consist of "axioms" in 

First-Order Predicate Logic together with a goal (a theorem to be proved). The axioms are 
restricted to implications, the left- and right-hand sides of which are written in "Horn-clause" 
form. 

A Horn clause consists of a set of statements joined by logical AND's. Thus, the form of a 
typical PROLOG axiom is: 

An B n c nx ^Y n z 

That is, A AND B AND C AND X together IMPLY Y AND Z. 

when read declaratively. It can also be read procedurally as: 

To prove Y AND Z, try to prove A AND B AND C AND X. 

Looked at this way, a PROLOG program consists of a group of procedures, where the left side of a 
procedure is a pattern to be instantiated* to achieve the goals on the right side of the procedure. 

PROCEDURE:      PATTERN +■ GOALS 

(Note the similarities of these modular rules to the IF, THEN production rules used in constructing 
Expert Systems. It is this modularity which promotes clear, accurate, rapid programming—that is 
one of the reasons for PROLOG'S popularity.) 

*An instance is found that satisfies it. 
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EXAMPLE: Find the geopolitical entities in Europe: 
DATA: written as a relational data base in Horn clause form: 

PARTOF (London, England) 
n PARTOF (England, Europe) 
O  PARTOF (Boston, U.S.) 
O PARTOF (Tokyo, Japan) 

PROCEDURES: 
(1) PARTOF(X,Y) «~IN(X,Y) 

That is, to prove X is in Y, try to prove X is part of Y. 
(2) PARTOF(X,Y) D IN(Y,Z)  ^IN(X,Z) 
That is, to prove X is in Z, try to prove X is part of Y and Y is in Z. 

GOAL (Theorem to be Proved): 
IN(X, Europe) 

That is, What X's are in Europe? 

By matching the goal to the right-hand side of the first procedure we instantiate the procedure by 
letting 

Europe = Y 
Then matching the data to this procedure we find 

X = England 
Matching the goal to the right-hand side of the second procedure, we instantiate it by letting 

Europe = Z 
Now, matching the data to the two procedures, we instantiate them by letting 

Y = England 
X = London 

Thus we have two instances: 
X = England 
X = London 

that satisfy the goal. 

As indicated by the example, PROLOG solves a problem by pattern-matching, which can be 
viewed as unification (the carrying out of instantiations) in the sense of First Order Predicate Logic. 
(PROLOG incorporates a very powerful pattern-matching mechanism.) If the pattern-matching 
fails as PROLOG searches through its procedures, then it automatically backtracks to its previous 
choice point, resulting in a depth-first type of search. 

The solution process starts with the system searching for the first clause whose right side matches 
(unifies with) the goal. Thus, the search process can be guided by the programmer by choosing the 
order for the procedures, the data, and the goals in the clauses. 

PROLOG can be considered as an extension of pure LISP coupled with a relational data base 
query language (as exemplified by the Horn clause form for expressing the basic data) which utilizes 
virtual relations (implicit relations defined by rules). Like LISP, PROLOG is interactive and uses 
dynamic allocation of memory. 
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c. PROLOG Today 
PROLOG is a much smaller program than LISP and has now been implemented on a variety of 

computers (including microcomputers). A documented highly portable version of PROLOG has 
been written in France (Colmerauer, et al, 1981.) The execution of PROLOG is surprisingly effi- 
cient and in its compiled version it is claimed to be faster than compiled LISP. PROLOG has 
proved very popular in Europe and is now targeted as the language for Japan's Fifth Generation 
Computer project. PROLOG'S design (and its powerful pattern matcher) is well suited to parallel 
search and therefore an excellent candidate for such powerful future computers incorporating 
parallel processing. Substantial interest in PROLOG is now arising in the U.S., with some of PRO- 
LOG'S features being implemented in LISP. 

PROLOG'S principal drawback appears to be its depth-first search approach which could be a 
concern in certain complex problems that tend toward combinatorial explosions in the size of the 
search space. 

PROLOG was originally developed for natural language understanding applications, but has 
since found use in virtually all AI application areas. 

Other AI Languages 
A number of AI languages have been developed as extensions of, improvements upon (e.g., 

special features for knowledge organization and search), or alternatives to, LISP. These include 
(see Barr and Feigenbaum, 1982): 

• System Programming Languages (LISP-level) 
—SAIL (Stanford AI Language) (1969) 
—QA4 and QLISP (at SRI 1968, 1972) 
—POP-2 (at U. of Edinburgh 1967) 

• Deduction/Theorem-Proving Languages 
—PLANNER and MICROPLANNER (M.I.T., 1971) 
—CONNIVER (M.I.T., 1972) 
—POPLER (U. of Edinburgh, 1972) 
—PROLOG (U. of Marseille, 1973) 
—AMORD (M.I.T., 1977) 

LISP and POP-2 are designed to simplify the building of new languages within or on top of 
them—QLISP being embedded in INTERLISP, POPLER embedded in POP-2. POP-2 remains 
popular in England, but has not caught on elsewhere. 

Most of the above AI languages are no longer supported and have fallen into disuse. However, 
they were experiments that helped pave the way for the modern AI languages now in use, such as 
the LISP dialects, PROLOG, and POP-2. For instance, PROLOG'S style of programming is 
similar to that demonstrated in QA3 and PLANNER. 

Other special languages have been built for Knowledge Representation, Knowledge Base 
Management, writing rule-based systems (such as Expert Systems), and for special application 
areas. These languages are treated in the appropriate sections of this report. 
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AI Computational Facilities 

a. Requirements 
Good AI people are still scarce, expensive and dedicated. It therefore behooves an organization 

supporting an AI group to provide the best facilities available (commensurate with cost) so as to 
maximize the productivity of their AI people. 

Fahlman and Steele (1982) state that desirable features of an AI Programming Environment are: 
• Powerful, well-maintained, standardized AI languages. 
• Extensive libraries of code and domain knowledge (A facility should support the exchange of 

code with other AI research facilities). 
• Excellent graphic displays: high resolution, color, multiple windows, quick update, and soft- 

ware to use all of these easily. 
• Good input devices. 
• Flexible, standardized inter-process communication. 
• Graceful, uniform user-interface software. 
• A good editor that can deal with a program based on the individual program structure. 

They suggest that: 
• Sticking with the hardware and systems that major AI centers are using is important, so that 

the time can be spent getting work accomplished, not reinventing the wheel. 
• $50K-$100K per researcher for computing facilities is appropriate. 
• Your AI product can be developed in the best available environment. Once developed, it can 

be ported to other languages and machines, as appropriate. 
• Isolated machines are nearly useless. Good network interfaces, internal and external are 

critical.* 
• AI people spend roughly 80% of their time editing, reading and communicating. Thus, 

facilities for this must be excellent. 

b. AI Machines 
The computers used for AI research for the past several years have been primarily the DEC 

system-10 and DEC system-20 family of time-shared machines. These are now being superseded by 
the more economical DEC VAX time-shared computers and the newer personal AI machines. 
However, Brown (1981) sees this as a mixed blessing, as the newer machines are still deficient in 
software, as compared to the older DEC 10's and 20's with their rich software libraries. 

The newer machines tend to have 32-bit words, sorely needed for address space, as most AI pro- 
grams are huge. 

Fahlman and Steele (1982) see the DEC VAX, with a UNIX operating system, as the best time- 
sharing machine today for AI purposes. Several LISP dialects are available. The VAX is the current 
choice of many universities. 

M.I.T. designed a personal machine specially microcoded for LISP. This M.I.T. LISP Machine 
has been licensed to LMI and Symbolics. Table III-2 lists some of the current Personal AI 

*Brown (1981) sees an ARPANET link as essential for a NASA AI lab. "The ARPANET links most U.S. AI research 
centers and provides an electronic bulletin board, electronic mail, file transfer, and access to remote data bases, software 
tools and computing power." 
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TABLE III-2. Some Personal AI Computers Now Available. 

Machine/Company 

3600 
Symbolics, Inc. 
Cambridge, MA 

Lambda 
LISP Machines, Inc. 
Los Angeles, CA 

PERQla 
3 Rivers Computer Corp. 
Pittsburgh, PA 

XEROX 1100 Series 
XEROX Electro-Optical 
Systems 
Pasadena, CA 

♦Mainframe computer support desirable. 

Approx. 
Price 

$75K 

$73K 

$30K 

$25K*/up 

Characteristics 

A new complete redesign of MIT LISP 
Machine. Very fast and flexible. 
Extensive software. 

A recent redesign of MIT LISP Machine. 
Software from MIT. 

SPICE Software from CMU, including 
Common LISP. Much less powerful 
than LISP machines. 

A mature INTERLISP system available in 
several versions having different 
memory capacities. 

Machines. Several other personal machines of lesser capacity are also being offered for AI applica- 

tions. 
These new AI personal machines represent unusually powerful interactive exploratory program- 

ming environments in which system design and program develop together (Sheil, 1983). This is in 
sharp contrast to the more traditional structured programming approach in which software pro- 
gram specifications are first written, with the software development following in rigid adherence to 

the specifications. 
To further enhance the exploratory programming approach, the user-friendly object-oriented 

programming languages have been devised. An object (such as an airplane, or a window on a com- 
puter screen) can be encoded as a package of information with attached descriptions of procedures 
for manipulation of that information. Objects communicate by sending and receiving messages that 
activate their procedures. A class is a description of one or more similar objects. An object is an in- 
stance of a class and inherits the characteristics of its class. The programmer developing a new 
system creates the classes that describe the objects that make up the system and implements the 
system by describing messages to be sent. Use of object-oriented programming reduces the com- 
plexity of large systems. The notion of class provides a uniform framework for defining system ob- 
jects and encourages a modular, hierarchical (top-down) program structure (Robinson, 1981). 
"Smalltalk" is an object-oriented language available on the Xerox machines. "Flavors" is available 
on the M.I.T.-based LISP machines. LOOPS being developed at Xerox PARC is a further exten- 
sion of the Smalltalk system. ROSS at RAND Corp. is an object-oriented programming language 
for use in symbolic simulation of activities such as air combat. 
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The new AI personal machines tend to come with interactive facilities for program development, 
editing, debugging, etc. For key portions of AI programs, microcode allows key inner loops to be 
run very fast. This is especially important in graphics and vision programs. The efficiency of com- 
puters microcoded for AI applications and suppporting large memories make these personal com- 
puters especially attractive. 

ZETALISP derived from MACLISP is an integrated software environment for program devel- 
opment and program execution as the Symbolics 3600. ZETALISP has available nearly 10,000 
compiled functions making it an exceptionally powerful and functional form of the LISP program- 
ming language. Similar capabilities are available on the LMI Lambda machines. 

Interlisp-D, used on the Xerox 1100 machines, provides a comprehensive programming environ- 
ment particularly suited for the development and delivery of expert and other knowledge-based 
systems. 

c. Future 
It is expected that the price of good AI personal computers that run LISP will rapidly drop below 

$50K as competition heats up and demand escalates. It is thus anticipated that one personal AI 
machine per AI person will be the standard of the future. 

Parallel architectures are now being considered for future AI machines. This is especially attrac- 
tive for PROLOG because its structure facilitates parallel search. Japan intends to build sequential 
PROLOG personal computers by 1985, featuring 10K logical inferences per second. In the 1990 
time frame, Japan's Fifth Generation Computer project is projected to yield an enormously power- 
ful AI parallel processing machine running PROLOG at one billion logical inferences per second 
(about 10,000 times more powerful than the DEC-KL-10 on which the AI community grew up). 

Summary and Forecast 
It now appears that LISP dialects designed specifically for personal computers will become com- 

monplace. It is also expected that software portability will improve substantially. PROLOG and its 
derivatives, now prevalent throughout Europe, will become incorporated with LISP in the U.S. 

Powerful Personal AI Computers under $50K will rapidly appear and become the AI standard 
for the next several years. In the longer term, powerful parallel computers, such as the Japanese 
Fifth Generation Computers, will probably become the standard as the number of AI practitioners 
expands and more difficult problems are addressed. 

The rapidly increasing capability and ease of development of VLSI chips, promises to move AI 
computing power for developed applications out of the laboratory and into the field and products 
as needed. 

An emerging trend is the increased use of object-oriented programming to ease the creation of 
large exploratory programs. The use of objects is also a good way to program dynamic symbolic 
simulations, which will become more important as the quest for utilizing deeper knowledge ac- 
celerates and the demand for increased reliability of knowledged-based systems is pursued. Object- 
oriented programming also holds promise for distributed processing, as each object could be im- 
plemented on a separate processor in a linked network of processors. 

Finally, it is anticipated that the AI exploratory software development approach will slowly in- 
fuse conventional software practices. 
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IV. APPLICATIONS 

The potential range of AI applications is so vast that it covers virtually the entire breadth of 
human intelligent activity. Detailed listings of focused applications are given in Part B of this 
volume, in each of the sections on applications: expert systems, computer vision, natural language 
processing, and problem solving and planning. This section just summarizes some of the key ap- 
plications. Generic applications are listed in Table IV-1. Examples of specific applications of AI are 
listed in Table IV-2. Potential functional applications for NASA are indicated in Table IV-3. The 
opportunities this opens up for NASA are listed in Table IV-4. Similar opportunities are available 
in many other public and private domains. 

TABLE IV-1. Generic Applications of AI. 

Knowledge Management 
Intelligent data base access 
Knowledge acquisition 
Text understanding 
Text generation 
Machine translation 
Explanation 
Logical operations on data bases 

Human Interaction 
Speech understanding 
Speech generation 

Learning and Teaching 
Intelligent computer-aided instruction 
Learning from experience 
Concept generation 

Fault Diagnosis and Repair 
Humans 
Machines 
Systems 

Computation 
Symbolic mathematics 
"Fuzzy" operations 
Automatic programming 

Communication 
Public access to large data bases via telephone and speech understanding 
Natural language interfaces to computer programs 

Operation of Machines and Complex Systems 

Autonomous Intelligent Systems 

Management 
• Planning 
• Scheduling 
• Monitoring 
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TABLE IV-1. (cont'd) 

Sensor Interpretation and Integration 
• Developing meaning from sensor data 
• Sensor fusion (integrating multiple sensor inputs to develop high level interpretations) 

Design 
• Systems 
• Equipment 
• Intelligent Design Aids 
• Inventing 

Visual Perception and Guidance 
• Inspection 
• Identification 
• Verification 
• Guidance 
• Screening 
• Monitoring 

Intelligent Assistants 
• Medical Diagnosis, Maintenance Aids and Other Interactive Expert Systems 
• Expert System Building Tools 

TABLE IV-2. Examples of Domain-Specific Applications of AI. 

Medical 
• Diagnosis and Treatment 
• Patient Monitoring 
• Prosthetics 

—Artificial Sight and Hearing 
—Reading Machines for the Blind 

• Medical Knowledge Automation 

Science and Engineering 
• Discovering 

—physical and mathematical laws 
—determination of regularities and aspects of interest 

• Chemical and Biological Synthesis Planning 
• Test Management 
• Data Interpretation 
• Intelligent Design Aids 

Industrial 
• Factory Management 
• Production Planning and Scheduling 
• Intelligent Robots 
• Process Planning 
• Intelligent Machines 
• Computer-Aided Inspection 
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TABLE IV-2. (cont'd) 

Military 
• Expert Advisors 
• Sensor Synthesis and Interpretation 
• Battle and Threat Assessment 
• Automatic Photo Interpretation 
• Tactical Planning 
• Military Surveillance 
• Weapon-Target Assignment 
• Autonomous Vehicles 
• Intelligent Robots 
• Diagnosis and Maintenance Aids 
• Target Location and Tracking 
• Map Development Aids 
• Intelligent Interactions with Knowledge Bases 

International 
• Aids to Understanding and Interpretation 

—goals, aspirations and motives of different countries and cultures 
—cultural models for interpreting how others perceive 

• Natural Language Translation 

Services 
• Intelligent Knowledge Base Access 

—airline reservations 
• Air Traffic Control 
• Ground Traffic Control 

Financial 
• Tax Preparation 
• Financial Expert Systems 
• Intelligent Consultants 

Executive Assistance 
• Read Mail and Spot Items of Importance 
• Planning Aids 

Natural Resources 
• Prospecting Aids 
• Resource Operations 

—Drilling Procedures 
—Resource Recovery Guidance 

• Resource Management Using Remote Sensing Data 

Space 
• Ground Operations Aids 
• Planning and Scheduling Aids 
• Diagnostic and Reconfiguration Aids 
• Remote Operations of Spacecraft and Space Vehicles 
• Test Monitors 
• Real-time Replanning as Required by Failures, Changed Conditions or New Opportunities 
• Automatic Subsystem Operations 
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TABLE IV-3. Potential Functional Applications of AI in NASA. 

Planning and Scheduling 

Test and Checkout 

Symbolic Computation 

Information Extraction 

Operations Management 
—Monitoring 
—Control 
—Sequencing 

System Autonomy 
—Subsystem Management 
—Fault Diagnosis 

Intelligent Assistants 

TABLE IV-4. AI and NASA. 

AI Opens up an Opportunity for NASA to 

• Dramatically 
—Reduce Costs 
—Increase Productivity 
—Improve Quality 
—Raise Reliability 
—Utilize Facilities and People More Effectively 

• Provide New Mission Capabilities 

• Enable New Missions 

• Improve Aerospace Science and Technology 

By using AI techniques to increase human productivity and to help automate many activities previously requiring 
human intelligence. 
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V. THE PRINCIPAL PARTICIPANTS 

Originally, AI was principally a research activity—the principal centers being Stanford U., 
M.I.T., Carnegie Mellon U. (CMU), SRI, and the U. of Edinburgh in Scotland. Research successes 
during the 1970's encouraged other universities to also become involved. 

In the 1980's, it became apparent that AI had a large commercial and military potential. Thus, 
existing large computer, electronic, and multinational corporations, as well as some aerospace 
firms, started forming AI groups. Schlumberger, a multi-billion dollar oil exploration advisory 
firm, was the first to pursue AI in a big way. They now have AI groups in France, Connecticut, 
Texas and California. 

In 1980, the Navy committed itself to building an AI Laboratory at Boiling AFB, Washington, 
DC to help transfer AI to Navy Applications from research at the universities. The lab now has 
some 20 people including Navy personnel and visiting scientists. By 1982, the Army and the Air 
Force also decided to form AI organizations and are now in the process of doing so. 

In response to a perceived market in natural language processing, computer vision and expert 
systems, new small AI companies began to form, headed by former (and present) university re- 
searchers. Several dozen such companies now exist. 

The computer science departments at major universities have also recently become involved, so 
that AI courses and beginning AI research now is evident at many universities. 

Abroad, France and Great Britain have now joined Japan in evidencing major concern. The 
largest major commitment to AI has been by Japan, which has initiated a 10 year, one half billion 
dollar program to develop a "Fifth Generation Computer." This computer is to incorporate a 
parallel processing architecture, natural language interfacing, knowledge base management, 
automatic problem solving, and image understanding as the basis for a truly fast, intelligent com- 
puter. In the U.S., a new cooperative organization—Microelectronics Computer Technology Cor- 
poration (MCC)—made up of U.S. computer and electronics manufacturers, has recently been 
formed to be a sort of American version of the Japanese Fifth Generation Computer research proj- 
ect. 

Thus, the AI research sponsored by DARPA, NIH, NSF, ONR and AFOSR for the past two 
decades has now spawned such a burgeoning AI community that it is no longer an easy task to list 
all those involved. (A list of participants in each of the application areas is given in the associated 
volumes in this series). However, Table V-l provides an indication of the current principal players. 
These are given by application area, as even most research efforts initially have a specific applica- 
tion domain as a focus, with the results of the research usually being later generalized to cover a 
broader area. 
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TABLE V-l.  The Principal Participants in AL 

1. Universities 

Expert Systems 

Stanford 
MIT 
CMU 
Rutgers 

Computer Vision 

CMU 
U. of MD 
MIT 
Stanford U. 
U. of Rochester 
U. of MA 

Natural Language Processing 

Yale 
U. of CA (Berkeley) 
U. of IL 
Brown 
Stanford 
Rochester 

2. Non-Profit 

Expert Systems 

SRI 
RAND 
JPL 
MITRE 

Computer Vision Natural Language Processing 

JPL SRI 
SRI 
ERIM 

3. U.S. Government 

Expert Systems 

NRL AI Lab, 
Washington, DC 

NOSC, San Diego 

4. Diversified Industrial Corporations 

Expert Systems 

Schlumberger 
Hewlett Packard 
Bell Labs 
Hughes 
IBM 
DEC 
GM 
Martin Marietta 
Texas Instruments 
TRW 
Xerox PARC 
AMOCO 
United Technologies Corp. 
ATARI 
Grumman Aerospace Corp. 
Lockheed Palo Alto 
Westinghouse Electric Corp. 

Computer Vision 

NBS, Wash., D.C. 

Computer Vision 

G.E. 
Hughes 
GM 
Westinghouse 

Natural Language Processing 

NRL AI Lab 

Natural Language Processing 

BBN 
IBM 
TRW 
Burroughs 
SDC 
Hewlett Packard 
Martin Marietta 
Texas Instruments 
Bell Labs 
Sperry Univac 
Lockheed Electronics Corp. 

48 



TABLE V-l. (cont'd) 

Computer Vision 

Automatix, Inc., 
Burlington, MA 

Machine Intelligence Corp. 
Sunnyvale, CA 

Octek, Burlington, MA 

5. New AI Companies 

Expert Systems 

AIDS, Mt. View, CA 
Applied Expert Systems, 

Cambridge, MA 
Brattel Research Corp., 

Boston, MA 
Daisy, Sunnyvale, CA 
Intelligent Software, 

Van Nuys, CA 
Jacor, Alexandria, VA 
Kestrel Institute, 

Palo Alto, CA 
Smart Systems Technology 

Alexandria, VA 
Systems Control, Inc., 

Palo Alto, CA 
Teknowledge, Inc., 

Palo Alto, CA 
IntelliGenetics, Inc., 

Palo Alto, CA 

6. AI Computer Manufacturers 

LISP Machines, Inc., Cambridge, MA, Culver City, CA 
Symbolics, Cambridge, MA 
Three Rivers Corp., Pittsburgh, PA 
DEC, Hudson, MA 
Xerox PARC, Palo Alto, CA 
Daisy, Sunnyvale, CA 
BBN, Cambridge, MA 
MMC, Austin, TX (U.S. Fifth Generation Computer Research Consortium) 

7. Major Foreign Participants 

Japan 
Electromechanical-Technology Lab, Tsukiba 
Fujitsu-Fanuc, Ltd., Kawasaki 
Hitachi, Ltd., Tokyo 
MitsubishiElec. Corp., Tokyo 
Nippon Electric Co., Ltd., Tokyo 
Nippon Tele and Tele Corp., Tokyo 

Great Britain 
Imperial College, London 
University of Edinburg, Scotland 
University of Sussex, Sussex 
Intelligent Terminals, Ltd. 

France 
University of Marseilles, Marseilles 

Italy 
University of Milan 

Natural Language Processing 

AIC, Waltham, MA 
Cognitive Systems Inc., 

New Haven, CT 
Symantec, Sunnyvale, CA 
Computer Thought, 

Richardson, TX 
Machine Intelligence Corp. 

Sunnyvale, CA 
Weidner Communications 

Corp., Provo, UT 

Fifth Gen. Computer 
Fifth Gen. Computer 
Fifth Gen. Computer 
Fifth Gen. Computer 
Fifth Gen. Computer 
Fifth Gen. Computer 
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VI. STATE-OF-THE-ART 

General 
The state-of-the-art of AI is moving rapidly as new companies enter the field, new applications 

are devised and existing techniques are formalized. The cutting edge of AI today is Expert Systems, 
with some one hundred demonstration systems having been built. With the advent of personal 
LISP machines and the general reduction in computing costs, development of commercial AI 
systems are now underway. A number of Natural Language Interfaces and Computer Vision 

Systems are already on the market. 
Japan has focused on AI capabilities as the basis for its "Fifth Generation Computer" (Warren, 

1982), and has already initiated research toward this one-half billion dollar, ten-year goal. 
Britain's Industry Department has formed a study group to coordinate British AI efforts. The 

European Space Agency (ESA) has published a substantial survey of AI (Berger et al., 1981) from a 
point of view of space applications. In the U.S., DARPA has been spending in the order of $20 mil- 
lion annually on AI research and appears to be expanding its efforts. The U.S. Navy, Army and Air 
Force are all initiating substantial AI efforts. The Navy has established a major NRL AI applied 
research center at Boiling AFB. The Air Force is focusing their inhouse AI research efforts at Rome 

Air Development Center and Wright Patterson AFB. 

Basic Core Topics 
AI basic theory and techniques are now being codified. The AI Handbook (1981, 1982) (funded 

by DARPA) has been a major contribution in pulling together the basic theory and making it 

available at the graduate level for students and practitioners of AI. 
Search theory is now relatively mature and well documented. A number of knowledge represen- 

tation techniques have been devised and are now supported by representation languages. Basic pro- 
gramming languages have continued to evolve, with INTERLISP being the best supported, but 

Common LISP is beginning to emerge from MIT's MACLISP as the language of AI personal 
computers. PROLOG, a logic-based programming language, popular in Europe, appears to be the 
language of choice for Japan's Fifth Generation Computer, and is beginning to awaken interest in 
the U.S. PROLOGholds promise of reinvigorating First Order Predicate Logic as a major factor in 

AI for knowledge representation and problem-solving. 
A large number of problem solving techniques developed during the last two decades are now 

forming the basis for the inference engines in Expert Systems. 
Though much work remains to be done, the core topics of AI are now in a sufficient state of 

readiness for use in initial AI applications. 

Expert Systems 
Many prototype expert systems (ES) have now been built, so that ES's are no longer a rarity. 

However, only a few, such as MOLGEN, Rl, ONCOCIN, DENDRAL, DIP-METER ADVISOR, 
and PUFF, are in actual commercial use on a regular basis. Expert systems are still restricted to a 
narrow domain of expertise and require laborious construction via interaction with human experts. 
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Further, these systems tend to have the characteristics of: 
—Providing satisfactory, rather than optimum solutions 
—Providing satisfactory answers only a percentage of the time 
—Some of the time being unable to provide an answer 

This is in contrast to normal engineering solutions that are algorithmic in nature and virtually 
always provide a satisfactory answer when supplied with appropriate inputs. This "sometimes the 
answer is wrong" characteristic of ES is also characteristic of human decision-making. Thus, at the 
moment, expert systems tend to be used as human assistants (with humans making the final deci- 
sions) rather than as "stand-alone" autonomous systems. 

Natural Language 
Natural language interfaces (NLI's) were the first commercial AI product. ROBOT, (now IN- 

TELLECT, by the Artificial Intelligence Corp., Waltham, MA), in 1980 was the first in the market 
and now exists in over 200 installations. Some half dozen other commercial NLI systems are now 
available. All these systems are restricted to limited sets of natural language and exhibit occasional 
failures in understanding or processing a user's input. However, with a little training of the users, 
NLI's have proved very useful. 

Several commercial Machine Translation Systems are also now available. These are not used as 
completely automatic systems, as in many cases their translation is very rough or even incorrect. 
However, as an aid to a human translator, they can improve productivity by a factor of 2 to 10, 
depending on the system and the material being translated. 

Text Understanding and Text Generation are still in the research stage. 

Computer Vision 
Computer Vision has entered the commercial market, with some dozen companies offering 

sophisticated commercial vision systems. These systems are operating successfully in specialized en- 
vironments on low level problems of verification, inspection, recognition, and determination of ob- 
ject location and/or orientation. Current commercial vision systems deal primarily with two dimen- 
sional images—they can't handle three-dimensional analysis needed to recognize objects from ar- 
bitrary viewpoints. 

Though quite a number of high level research vision systems have been explored, no general vi- 
sion system is available today or is imminent. Major current efforts in this area are ACRONYM at 
Stanford U., VISIONS at the U. of Mass, and the robotic vision effort at NBS. 

Conclusions 
Figure VI-1 is a list of overall conclusions on the current state of AI. Summarizing, it appears 

that technology is now ready for early applications. However, the fact that current AI systems are 
prone to error, suggests that current AI applications should be focused on intelligent aids for 
humans, rather than on truly autonomous systems. 
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Basic principles and techniques devised and demonstrated 

Initial languages, programs and tools developed 

Software portability a problem 

A few initial applications already in use 

Technology is now ready for early applications 

Current technology more appropriate for intelligent assistants than for autonomous systems 

Customizing, adapting and usually writing own programs necessary 

Because of huge potential benefits, utilization will be explosive as technology is further ra- 

tionalized 

Figure VI-1. Conclusions on the Current State-of-the-Art in AI. 
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VII. TOWARDS THE FUTURE 

General 
Today's initial AI systems can primarily be regarded as intelligent assistants. These are taking the 

form of expert systems, natural language interfaces, computer vision systems and intelligent 
computer-aided instruction systems. They—like humans—are all prone to failures, but unlike 
humans, they are not capable of drawing on deep knowledge when needed to achieve graceful 
degradation, so that their failures are more abrupt. Thus, researchers are currently engaged in 
developing a new set of advanced systems, based on deep knowledge—which includes such aspects 
as causal models and scientific knowledge. 

Expert Systems 
Utilizing emerging expert-system building tools, AI developers are expected to eventually put ex- 

pert medical, financial and legal advice at the fingertips of anyone with access to a personal com- 
puter (though this will probably have to await the arrival of a new generation using 32 bit 
microprocessors). Expert systems will also put expertise in the hands of less-trained, lower-salaried 
workers. 

Natural Language 
Speech recognition appears to be emerging as a key man-machine interface. Researchers have 

found that the psychological problems inherent in talking to a machine are a barrier to the accep- 
tance of speech interfaces. Overcoming the psychological problems may be even more important 
than reducing cost. To achieve practical continuous speech recognition, systems will have to expand 
today's vocabularies by an order of magnitude, increase speed by two orders of magnitude, and get 
costs below $1,000. Such systems are estimated to still be five years away. 

Natural language interfaces appear to be the way to vastly increase the number of people who can 
interact with computers. Systems with near natural-language capabilities are available now, though 
it will be years before the systems can handle truly unrestricted dialogue. It is estimated that public 
access to large data bases via computer using restricted speech understanding may begin to appear 
within three years. This can be expected to open up a whole new industry of automated reservation, 
shopping and information services accessed by telephone. 

Another emerging aspect of natural language processing are systems that understand text by 
utilizing world knowledge. Such systems could read and summarize news stories (as is now being 
done in research) but more likely would be applied to such tasks as reading mail and informing the 
recipient of important items, or in general, processing large amounts of information for humans 
trying to escape from overload. 

Computer Vision 
Computer vision will increasingly be used in industry for inspection, identification, verification, 

part location, and other purposes. Vision provides the most general purpose sensory input for in- 
telligent robots. It is likely that roughly 25% of all robots will utilize vision by the end of the 
decade. Vision is also expected to play a large part in military automation, remote sensing, and as 
aids to the handicapped. 
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Intelligent Robots 
The development of AI is making intelligent robots feasible. As intelligence is added to robots, 

they will not only be able to perform more flexibly in manufacturing, but will begin to be evident in 
tasks outside the industrial environment. Thus, robots in firefighting, underseas exploration, min- 
ing, and construction will appear. However, the big push may be in military applications with its ac- 
tively hostile environments. In the 1990s, robots with intelligence and sensory capabilities will ap- 
pear in the service industries — in everything from food service to household robots. It is also an- 
ticipated that in the 1990s, intelligent robots will enter the space arena, for such tasks as the con- 
struction and assembly of large space structures, space manufacture, extra-terrestrial mining and 
exploration, and operation and maintenance of space installations. 

Industrial Applications 
In addition to more intelligent robots, AI will influence virtually every aspect of the future in- 

dustrial plant. Integrated plants that make use of automated planning, scheduling, process control, 
warehousing, and the operation of automated robot carts, robots, and manufacturing machines, 
will appear in a few years and will become widespread within the next 10 years. 

Computers for Future Automation 
Computers and special purpose chips designed to incorporate parallel processing are being 

developed at several universities and computer organizations. MIT has been developing a parallel 
machine using VLSI techniques to break problems into subproblems and distribute them among its 
processors. Another chip will utilize parallel processing to rapidly search through the branches of a 
semantic network. 

The most prominent future system is Japan's Fifth Generation Computer that could store and 
retrieve some 20,000 rules, incorporate a knowledge base of 100 million data items and help make 
Japan an AI leader before the end of this century. To help maintain U.S. competitiveness, a dozen 
of the largest U.S. electronics and computer companies have recently set up the Microelectronics 
and Computer Technology Corp. (MCC). This well-funded cooperative research venture is de- 
signed to develop a broad base of fundamental technologies. Among them is a 10-year program to 
develop advanced computer architectures and artificial intelligence. 

Computer Aided Instruction (CAI) 
CAI systems may produce one of the most dramatic changes of all. Education consumes some 

10% of the U.S. gross national product today. Systems that will enable students to ask questions 
and receive insightful answers may begin to overcome the barriers of instruction by machines. Com- 
puter systems that model the student based on his or her response can gear instruction to the stu- 
dent's level of ability and interest, something not easily done in a conventional classroom. 

To truly learn is to digest and make the material one's own by updating one's internal models and 
using them in new applications. Real time interaction with a computer providing immediate feed- 
back and individual guidance is particularly appropriate to this goal. 

Thus, as computer hardware costs continue to tumble, the nature of the entire present educa- 
tional system may be radically changed. For adults and members of the armed forces, CAI will 
probably rapidly become the standard form of instruction. 
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Learning by Computers 
The real breakthrough may come when machine learning is achieved. Already several learning 

systems, currently in the research stage, have been able to produce very interesting results. Someday 
machines will able to learn throughout their lifetime, building up the knowledge base needed for ad- 
vanced reasoning. This will open up spectacular new applications in offices, factories and homes. 

Machines may update their knowledge by reading natural language material, as well as learning 
by experience from the problems the computers are called upon to solve. Computers also may be 
able to form conclusions from examination of multiple data bases, thereby building new knowledge 
from existing knowledge. 

The Social Impacts 
The U.S. Defense Science Board has ranked AI as one of the top 10 military technologies of the 

80's. Not only will human-level expertise and decision making capabilities show up in machines, but 
the task of achieving these results will help us understand how our minds work as well. 

Combining expert systems and computer graphics will enable people to "see" the results of the 
computer actions. This will not only clarify and simplify the interaction, but will greatly speed 
human learning and decision making. The result may be to compress months of research and 
engineering experience gained the old way into insights gathered from just a few hours interaction 
with intelligent computer programs. 

AI's effects on society may be slow at first, but by the end of the century the results should be 
revolutionary. The shift in employment away from manufacturing may be as dramatic as the shift 
away from agriculture. There will also be a revolution in white collar work—service, research, 
leisure. How to restructure society to take advantage of a potential abundance of goods and serv- 
ices, or to adapt to new work opportunities and leisure activities, may be the question of the cen- 
tury. This may give society another chance to pursue the social and mental goals so often deferred. 
It also may at last free us from the monetary and technical bonds to Earth. Perhaps, we can at last 
"reach for the stars." 
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GLOSSARY 

A 
Activation Mechanism: The situation required to invoke a procedure—usually a match of the 

system state to the preconditions required to exercise a production rule. 
AI Handbook: The Handbook of Artificial Intelligence, E. A. Feigenbaum, A. Barr and P. R. 

Cohen (Eds.). Published by W. Kaufmann, Los Altos, CA in 1981 and 1982. This important 
project was supported by DARPA and NIH. 

Algorithm: A procedure for solving a problem in a finite number of steps. 
AND/OR Graph: A generalized representation for problem reduction situations and two person 

games. A tree-like structure with two types of nodes. Those for which several successors of a 
node have to be accomplished (or considered) are AND nodes. Those for which only one of 
several of the node successors are necessary are OR nodes. (In about half the literature the 
labeling of AND and OR nodes is reversed from this definition.) 

Antecedent: The lefthand side of a production rule. The pattern needed to make the rule 
applicable. 

Argument Form: A reasoning procedure in logic. 
ARPANET: A network of computers and computational resources used by the U.S. AI community 

and sponsored by DARPA (Defense Advanced Research Projects Agency). 
Artificial Intelligence (AI): A discipline devoted to developing and applying computational 

approaches to intelligent behavior. Also referred to as machine intelligence or heuristic pro- 
gramming. 

Artificial Intelligence (AI) Approach: An approach that has its emphasis on symbolic 
processes for representing and manipulating knowledge in a problem solving mode. 

Atom: An individual. A proposition in logic that cannot be broken down into other propositions. 
An indivisible element. 

Autonomous: A system capable of independent action. 

B 
Backtracking: Returning (usually due to depth-first search failure) to an earlier point in a search 

space. Also a name given to depth-first backward reasoning. 
Backward Chaining: A form of reasoning starting with a goal and recursively chaining backwards 

to its antecedent goals or states by applying applicable operators until an appropriate earlier 
state is reached or the system backtracks. This is a form of depth-first search. When the ap- 
plication of operators changes a single goal or state into multiple goals or states, the approach 
is referred to as problem reduction. 

Blackboard Approach: A problem-solving approach whereby the various system elements 
communicate with each other via a common working data storage called the blackboard. 

Blind Search: An ordered approach that does not rely on knowledge for searching for a solution. 
Blocks World: A small artificial world, consisting of blocks and pyramids, used to develop ideas in 

computer vision, robotics, and natural language interfaces. 
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Bottom-Up Control Structure: A problem-solving approach that employs forward reasoning from 
current or initial conditions. Also referred to as an event-driven or data-driven control struc- 

ture. 
Breadth-First Search: An approach in which, starting with the root node, the nodes in the search 

tree are generated and examined level by level (before proceeding deeper). This approach is 

guaranteed to find an optimal solution if it exists. 

C 
Clause: A syntactic construction containing a subject and a predicate and forming part of a 

statement in logic or part of a sentence in a grammar. 
Cognition: An intellectual process by which knowledge is gained about perceptions or ideas. 
Combinatorial Explosion: The rapid growth of possibilities as the search space expands. If each 

branch point (decision point) has an average of n branches, the search space tends to expand as 

nd, as the depth of search, d, increases. 
Common Sense: The ability to act appropriately in everyday situations based on one's lifetime 

accumulation of experiential knowledge. 
Common Sense Reasoning: Low level reasoning based on a wealth of experience. 
Compile: The act of translating a computer program written in a high level language (such as LISP) 

into the machine language which controls the basic operations of the computer. 
Computational Logic: A science designed to make use of computers in logic calculus. 
Computer Architecture: The manner in which various computational elements are interconnected 

to achieve a computational function. 
Computer Graphics: Visual representations generated by a computer (usually observed on a 

monitoring screen). 
Computer Network: An interconnected set of communicating computers. 
Computer Vision (Computational or Machine Vision): Perception by a computer, based on visual 

sensory input, in which a symbolic description is developed of a scene depicted in an image. It 
is often a knowledge-based, expectation-guided process that uses models to interpret sensory 
data. Used somewhat synonymously with image understanding and scene analysis. 

Conceptual Dependency: An approach to natural language understanding in which sentences are 
translated into basic concepts expressed as a small set of semantic primatives. 

Conflict Resolution: Selecting a procedure from a conflict set of applicable competing procedures 

or rules. 
Conflict Set: The set of rules which matches some data or pattern in the global data base. 
Conjunct: One of several subproblems. Each of the component formulas in a logical conjunction. 
Conjunction: A problem composed of several subproblems. A logical formula built by connecting 

other formulas by logical ANDs. 
Connectives: Operators (e.g., AND, OR) connecting statements in logic so that the truth-value of 

the composite is determined by the truth-value of the components. 
Consequent: The right side of a production rule. The result of applying a procedure. 
Constraint Propagation: A method for limiting search by requiring that certain constraints be 

satisified. It can also be viewed as a mechanism for moving information between subproblems. 
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Context: The set of circumstances or facts that define a particular situation, event, etc. The portion 
of the situation that remains the same when an operator is applied in a problem-solving situa- 

tion. 
Control Structure: Reasoning strategy. The strategy for manipulating the domain knowledge to 

arrive at a problem solution. 

D 
Data Base: An organized collection of data about some subject. 
Data Base Management System: A computer system for the storage and retrieval of information 

about some domain. 
Data-Driven: A forward reasoning, bottom-up problem solving approach. 
Data Structure: The form in which data is stored in a computer. 
Debugging: Correcting errors in a plan. 
DEC: Digital Equipment Company. 
Declarative Knowledge Representation: Representation of facts and assertions. 
Deduction: A process of reasoning in which the conclusion follows from the premises given. 
Default Value: A value to be used when the actual value is unknown. 
Depth-First Search: A search that proceeds from the root node to one of the successor nodes and 

then to one of that node's successor nodes, etc., until a solution is reached or the search is 

forced to backtrack. 
Difference Reduction: "Means-Ends" analysis. An approach to problem solving that tries to solve 

a problem by iteratively applying operators that will reduce the difference between the current 

state and the goal state. 
Directed Graph: A knowledge representation structure consisting of nodes (representing, e.g., ob- 

jects) and directed connecting arcs (labeled edges, representing, e.g., relations). 
Disproving: An attempt to prove the impossibility of a hypothesized conclusion (theorem) or goal. 
Domain: The problem area of interest, e.g., bacterial infections, prospecting, VLSI design. 

E 
Editor: A software tool to aid in modifying a software program. 
Embed: To write a computer language on top of (embedded in) another computer language (such as 

LISP). 
Emulate: To perform like another system. 
Equivalent: Has the same truth value (in logic). 
Evaluation Function: A function (usually heuristic) used to evaluate the merit of the various paths 

emanating from a node in a search tree. 
Event-Driven: A forward-chaining problem-solving approach based on the current problem status. 
Expectation-Driven: Processing approaches that proceed by trying to confirm models, situations, 

states or concepts anticipated by the system. 
Expert System: A computer program that uses knowledge and reasoning techniques to solve 

problems normally requiring the abilities of human experts. 
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F 
Fault Diagnosis: Determining the trouble source in an electro-mechanical system. 
Fifth Generation Computer: A non-Von Neumann, intelligent, parallel-processing form of com- 

puter now being pursued by Japan. 
First Order Predicate Logic: A popular form of logic used by the AI community for representing 

knowledge and performing logical inference. First Order Predicate Logic permits assertions to 
be made about variables in a proposition. 

Forward Chaining: Event-driven or data-driven reasoning. 
Frame: A data structure for representing stereotyped objects or situations. A frame has slots to be 

filled for objects and relations appropriate to the situation. 
FRANZLISP: The dialect of LISP developed at the U. of CA, Berkeley. 
Functional Application: The generic task or function performed in an application. 
Fuzzy Set: A generalization of set theory that allows for various degrees of set membership, rather 

than all or none. 

G 
Garbage Collection: A technique for recycling computer memory cells no longer in use. 
General Problem Solver (GPS): The first problem solver (1957) to separate its problem-solving 

methods from knowledge of the specific task being considered. The GPS problem-solving ap- 
proach employed was "means-ends analysis." 

Generate and Test: A common form of state space search based on reasoning by elimination. The 
system generates possible solutions and the tester prunes those solutions that fail to meet ap- 
propriate criteria. 

Global Data Base: Complete data base describing the specific problem, its status and that of the 
solution process. 

Goal Driven: A problem-solving approach that works backward from the goal. 
Goal Regression: A technique for constructing a plan by solving one conjunctive subgoal at a time, 

checking to see that each solution does not interfere with the other subgoals that have already 
been achieved. If interferences occur, the offending subgoal is moved to an earlier non- 
interfering point in the sequence of subgoal accomplishments. 

Graph: A set of nodes connected by arcs. 

H 
Heuristics: Rules of thumb or empirical knowledge used to help guide a problem solution. 
Heuristic Search Techniques: Graph searching methods that use heuristic knowledge about the 

domain to help focus the search. They operate by generating and testing intermediate states 
along potential solution paths. 

Hierarchical Planning: A planning approach in which first a high level plan is formulated consider- 
ing only the important (or major) aspects. Then the major steps of the plan are refined into 
more detailed subplans. 

Hierarchy: A system of things ranked one above the other. 
Higher Order Language (HOL): A computer language (such as FORTRAN or LISP) requiring 

fewer statements than machine language and usually substantially easier to use and read. 
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Horn Clause: A set of statements joined by logical AND's. Used in PROLOG. 

I 
Identity: Two propositions (in logic) that have the same truth value. 
Image Understanding (IU): Visual perception by a computer employing geometric modeling and 

the AI techniques of knowledge representation and cognitive processing to develop scene inter- 
pretations from image data. IU has dealt extensively with 3D objects. 

Implies: A connective in logic that indicates that if the first statement is true, the statement 
following is also true. 

Individual: A non-variable element (or atom) in logic that cannot be broken down further. 
Infer: To derive by reasoning. To conclude or judge from premises or evidence. 
Inference: The process of reaching a conclusion based on an initial set of propositons, the truths of 

which are known or assumed. 
Inference Engine: Another name given to the control structure of an AI problem solver in which the 

control is separate from the knowledge. 
Instantiation: Replacing a variable by an instance (an individual) that satisfies the system (or 

satisfies the statement in which the variable appears). 
Intelligence: The degree to which an individual can successfully respond to new situations or 

problems. It is based on the individual's knowledge level and the ability to appropriately 
manipulate and reformulate that knowledge (and incoming data) as required by the situation 
or problem. 

Intelligent Assistant: An AI computer program (usually an expert system) that aids a person in 
the performance of a task. 

Interactive Environment: A computational system in which the user interacts (dialogues) with the 
system (in real time) during the process of developing or running a computer program. 

Interface: The system by which the user interacts with the computer. In general, the junction 
between two components. 

INTERLISP: A dialect of LISP (used at Stanford U.) developed at BBN and XEROX-PARC. 
Invoke: To place into action (usually by satisfying a precondition). 

K 
Knowledge Base: AI databases that are not merely files of uniform content, but are collections of 

facts, inferences and procedures, corresponding to the types of information needed for prob- 
lem solution. 

Knowledge Base Management: Management of a knowledge base in terms of storing, accessing and 
reasoning with the knowledge. 

Knowledge Engineering: The AI approach focusing on the use of knowledge (e.g., as in expert 
systems) to solve problems. 

Knowledge Representation (KR): The form of the data-structure used to organize the knowledge 
required for a problem. 

Knowledge Source: An expert system component that deals with a specific area or activity. 
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L 
Leaf: A terminal node in a tree representaton. 
Least Commitment: A technique for coordinating decision making with the availability of 

information, so that problem-solving decisions are not made arbitrarily or prematurely, but 

are postponed until there is enough information. 
List: A sequence of zero or more elements enclosed in a pair of parentheses, where each element 

is either an atom (an indivisible element) or a list. 
List Processing Language (LISP): The basic AI programming language. 
Logical Operation: Execution of a single computer instruction. 
Logical Representation: Knowledge representation by a collection of logical formulas (usually in 

First Order Predicate Logic) that provide a partial description of the world. 

M 

MACLISP: A dialect of LISP developed at M.I.T. 
Means-Ends Analysis: A problem-solving approach (used by GPS) in which problem-solving 

operators are chosen in an iterative fashion to reduce the difference between the current 

problem-solving state and the goal state. 
Meta-Rule: A higher level rule used to reason about lower level rules. 
Microcode: A computer program at the basic machine level. 
Model Driven: A top-down approach to problem-solving in which the inferences to be verified are 

based on the domain model used by the problem-solver. 
Modus Ponens: A mathematical form of argument in deductive logic. It has the form: 

If A is true, then B is true. 
A is true 
Therefore B is true. 

N 
Natural Deduction: Informal reasoning. 
Natural Language Interface (NLI): A system for communicating with a computer by using a 

natural language. 
Natural Language Processing (NLP): Processing of natural language (e.g., English) by a computer 

to facilitate communication with the computer, or for other purposes such as language transla- 

tion. 
Natural Language Understanding (NLU): Response by a computer based on the meaning of a 

natural language input. 
Negate: To change a proposition into its opposite. 
Node: A point (representing such aspects as the system state or an object) in a graph connected to 

other points in the graph by arcs (usually representing relations). 
Non-Monotonic Logic: A logic in which results are subject to revision as more information is 

gathered. 
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o 
Object-Oriented Programming: A programming approach focused on objects which communicate 

by message passing. An object is considered to be a package of information and descriptions 
of procedures that can manipulate that information. 

Operators: Procedures or generalized actions that can be used for changing situatons. 

P 
Parallel Processing: Simultaneous processing, as opposed to the sequential processing in a 

conventional (Von Neumann) type of computer architecture. 
Path: A particular track through a state graph. 
Pattern Directed Invocation: The activation of procedures by matching their antecedent parts to 

patterns present in the global data base (the system status). 
Pattern Matching: Matching patterns in a statement or image against patterns in a global data base, 

templates or models. 
Pattern Recognition: The process of classifying data into predetermined categories. 
Perception: An active process in which hypotheses are formed about the nature of the environment, 

or sensory information is sought to confirm or refute hypotheses. 
Personal AI Computer: New, small, interactive, stand-alone computers for use by an AI researcher 

in developing AI programs. Usually specifically designed to run an AI language such as LISP. 
Plan: A sequence of actions to transform an initial situation into a situation satisfying the goal 

conditions. 
Portability: The ease with which a computer program developed in one programming environment 

can be transferred to another. 
Predicate: That part of a proposition that makes an assertion (e.g., states a relation or attribute) 

about individuals. 
Predicate Logic: A modification of Propositional Logic to allow the use of variables and functions 

of variables. 
Prefix Notation: A list representation (used in LISP programming) in which the connective, 

function or predicate is given before the arguments. 
Premise: A first proposition on which subsequent reasoning rests. 
Problem Reduction: A problem-solving approach in which operators are used to change a single 

problem into several subproblems (which are usually easier to solve). 
Problem-Solving: A procedure using a control strategy to apply operators to a situation to try to 

achieve a goal. 
Problem State: The condition of the problem at a particular instant. 
Procedural Knowledge Representation: A representation of knowledge about the world by a 

set of procedures - small programs that know how do specific things (how to proceed in well- 
specified situations). 

Production Rule: A modular knowledge structure representing a single chunk of knowledge, 
usually in If-Then or Antecedent-Consequent form. Popular in Expert Systems. 

Programming Environment: The total programming set-up that includes the interface, the 
languages, the editors and other programming tools. 
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Programming in Logic (PROLOG): A logic-oriented AI language developed in France and popular 

in Europe and Japan. 
Property List: A knowledge representation technique by which the state of the world is described by 

objects in the world via lists of their pertinent properties. 
Proposition: A statement (in logic) that can be true or false. 
Proposition^ Logic: An elementary logic that uses argument forms to deduce the truth or false- 

hood of a new proposition from known propositions. 
Prototype: An initial model or system that is used as a base for constructing future models or 

systems. 
Pseudo-Reduction: An approach to solving the difficult problem case where multiple goals must be 

satisified simultaneously. Plans are found to achieve each goal independently and then in- 
tegrated using knowledge of how plan segments can be intertwined without destroying their 

important effects. 

R 

Recursive Operations: Operations defined in terms of themselves. 
Relaxation Approach: An iterative problem-solving approach in which initial conditions are 

propagated utilizing constraints until all goal conditions are adequately satisfied. 
Relevant Backtracking (Dependency-Directed or Non-Chronological Backtracking): Backtracking 

(during a search) not to the most recent choice point, but to the most relevant choice point. 
Resolution: A general, automatic, syntactic method for determining if a hypothesized con- 

clusion (theorem) follows from a given set of premises (axioms). 
Root Node: The initial (apex) node in a tree representation. 
Rule-Interpreter: The control structure for a production rule system. 

S 
Satis/icing: Developing a satisfactory, but not necessarily optimum, solution. 
Scheduling: Developing a time sequence of things to be done. 
Scripts: Frame-like structures for representing sequences of events. 
Search Space: The implicit graph representing all the possible states of the system which may have 

to be searched to find a solution. In many cases the search space is infinite. The term search 
space is also used for non-state-space representations. 

Semantic: Of or relating to meaning. 
Semantic Network: A knowledge representation for describing the properties and relations of 

objects, events, concepts, situations or actions, by a directed graph consisting of nodes and 

labeled edges (arcs connecting nodes). 
Semantic Primitives: Basic conceptual units in which concepts, ideas or events can be represented. 
S-Expression:   A   symbolic   expression.   In   LISP,   a  sequence  of  zero   or  more  atoms   or 

S-expressions enclosed in parentheses. 
Slot: An element in a frame representation to be filled with designated information about the 

particular situation. 
Software: A computer program. 
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Solution Path: A successful path through a search space. 
Speech Recognition: Recognition by a computer (primarily by pattern-matching) of spoken words 

or sentences. 
Speech Synthesis: Developing spoken speech from text or other representations. 

Speech Understanding: Speech perception by a computer. 
SRI Vision Module: An important object recognition, inspection, orientation and location research 

vision system developed at SRI. This system converted the scene into a binary image and ex- 
tracted the calculated needed vision parameters in real time, as it sequentially scanned the im- 

age line by line. 
State Graph: A graph in which the nodes represent the system state and the connecting arcs 

represent the operators which can be used to transform the state from which the arcs emanate 

to the state at which they arrive. 
Stereotyped Situation: A generic, recurrent situation such as "eating at a restaurant" or "driving 

to work." 
Subgoals: Goals that must be achieved to achieve the original goal. 
Subplan: A plan to solve a portion of the problem. 
Subproblems: The set of secondary problems that must be solved to solve the original problem. 
Syllogism: A deductive argument in logic whose conclusion is supported by two premises. 
Symbolic: Relating to the substitution of abstract representations (symbols) for concrete objects. 

Syntax: The order or arrangement (e.g., the grammar of a language). 

T 
Terminal Node (Leaf Node): The final node emanating from a branch in a tree or graph 

representation. 
Theorem: A proposition, or statement, to be proved based on a given set of premises. 
Theorem Proving: A problem-solving approach in which a hypothesized conclusion (theorem) is 

validated using deductive logic. 
Time-Sharing: A computer environment in which multiple users can use the computer virtually 

simultaneously via a program that time-allocates the use of computer resources among the 

users in a near-optimum manner. 
Top-Down Approach: An approach to problem-solving that is goal-directed or expectation-guided 

based on models or other knowledge. Sometimes referred to as "Hypothesize and Test." 
Top-Down Logic: A problem-solving approach used in production systems, where production rules 

are employed to find a solution path by chaining backwards from the goal. 
Tree Structure: A graph in which one node, the root, has no predecessor node, and all other nodes 

have exactly one predecessor. For a state space representation, the tree starts with a root node 
(representing the initial problem situation). Each of the new states that can be produced from 
this initial state by application of a single operator is represented by a successor node of the 
root node. Each successor node branches in a similar way until no further states can be 
generated or a solution is reached. Operators are represented by the directed arcs from the 

nodes to their successor nodes. 
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Truth-Maintenance: A method of keeping track of beliefs (and their justifications) developed dur- 
ing problem-solving, so that if contradictions occur, the incorrect beliefs or lines of reasoning, 
and all conclusions resulting from them, can be retracted. 

Truth Value: One of the two possible values—True or False—associated with a proposition in logic. 

U 
Unification: The name for the procedure for carrying out instantiations. In unification, the 

attempt is to find substitutions for variables that will make two atoms identical. 

V 
Variable: A quantity or function that may assume any given value or set of values. 
Von-Neuman Architecture: The current standard computer architecture that uses sequential 

processing. 

W 
World Knowledge: Knowledge about the world (or domain of interest). 
World Model: A representation of the current situation. 
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