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CHAPTER 2 

Matrix Methods for 
Population Analysis 

Hal Caswell 

Matrix models for structured populations were introduced by P. H. 
Leslie in the 1940:s (Leslie 1945, 1948). Although they are in some 
ways the simplest of the mathematical approaches to structured 
population modeling (see Chapter 1), their analysis requires com- 
putational power. For this reason, and because ecologists of the day 
viewed matrix algebra as an esoteric branch of advanced mathe- 
matics, they were largely neglected until the late 1960's, when they 
were rediscovered by ecologists (Lefkovitch 1965) and human de- 
mographers (Goodman 1967; Keyfitz 1967). In the 1970's, matrix 
models were adopted by plant ecologists, who discovered that they 
could easily handle the complexity of plant life cycles in which size 
or developmental stage was more important than chronological age 
in determining the fate of individuals (Sarukhan & Gadgil 1974; 
Hartshorn 1975; Werner k. Caswell 1977). 

This chapter introduces the construction and analysis of matrix 
population models. I will not try to be comprehensive; I have done 
that elsewhere in book form (Caswell 1989a) and twice in simplified 
form with a focus on particular taxa (Caswell 1986; McDonald 
& Caswell 1993). Instead, I try to convey the basics of matrix 
population models clearly and briefly. Wherever possible, I use 
different derivations than before (Caswell 1989a), so you may find 
some new ways to understand the source of some familiar results. 
I rarely cite my book (Caswell 1989a) (in spite of having done 
so three times in this paragraph); almost every topic presented 
here could be followed by the instruction, "see the book for more 
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information." My focus here is on methods; I am sparing in my 
use of examples, because they can be found in many of the other 
chapters in this volume. 

A note about notation. I use boldface symbols to denote vectors 
(lower case, as in n) and matrices (uppercase, as in A). Entries 
of vectors and matrices are lowercase letters with subscripts, so 
the ith entry of n is n*, and the element in the ith row and jth. 
column of A is aij. Sometimes I use parenthetical superscripts to 
label matrices or vectors. Thus, Am or A^m^ might both be used 
to denote the mth in a series of matrices; the ijth. element of this 
matrix is written a\j. The transpose of the matrix A is AT. If 
x = a + bi is a complex number, the complex conjugate is denoted 
by x = a — bi. The complex-conjugate transpose of A is A*. The 
scalar product of two vectors is (x, y) = y*x. 

1 Formulating Matrix Models 

A matrix population model operates in discrete time, projecting a 
population from t to t + 1. The first step in formulating a matrix 
model is to define the time scale for the projection; this is called the 
projection interval. Models for the same population with different 
projection intervals may look quite different. 

The second step is to choose a set of state variables for individ- 
uals (i-state variables); these provide the information necessary to 
determine the response of an individual to the environment, over a 
projection interval. Examples of i-state variables include age, size, 
developmental stage, and geographical location. 

A matrix model uses discrete stages, so the third step is to define 
a set of discrete categories for each i-state variable. Some i-states 
are naturally discrete (e.g., instars), while others are naturally con- 
tinuous and must be made discrete (e.g., size). Dividing continuous 
variables into discrete categories involves trade-offs. A model treats 
all individuals within a category as identical, so creating only a few 
large categories reduces the accuracy of the i-state dynamics. Cre- 
ating many small categories, alternatively, leads to a large model 
and may make it hard to estimate parameter values because sample 
sizes in each category are small. 

The stages describe the life cycle, or as much of it as we believe 
to be demographically important. The next step is to translate 
them into a model. The life-cycle graph is a useful tool for this 
translation. 
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The Life-Cycle Graph 

A life-cycle graph describes the transitions an individual can make, 
during a projection interval, among the i-state categories that de- 
fine its life cycle. To construct the graph, first draw a numbered 
point (a "node" in graph-theory terminology) for each z-state cat- 
egory. If, for example, size is the «"-state variable, then the life-cycle 
graph contains a node for each size class. If age and size are both 
i-state variables, then the life-cycle graph contains a node for each 
age-size category. Draw arrows, "directed arcs," between nodes to 
indicate where it is possible for an individual in one stage to con- 
tribute individuals to another stage over a single projection inter- 
val. The head of the arrow shows the direction in which individuals 
move. If individuals can contribute in both directions between two 
stages, draw two arrows, rather than an arrow with a head on both 
ends. Contributions from one stage to another can result from the 
movement of individuals from one stage to another (e.g., by growth 
or aging) or from production of new individuals (e.g., by birth). 

With each arrow is associated a coefficient; the coefficient on 
the arrow from stage j to stage i is denoted a^ (the ordering of 
the subscripts is important; it corresponds to the arrangement of 
coefficients in the resulting matrix model). The coefficient a^ gives 
the number of stage i individuals at t +1 per stage j individual at 
time t. 

So far, we have made no decisions about the nature of these 
coefficients; I return to this below. 

Figure la shows a life-cycle graph for an age-classified model 
with the age interval equal to the projection interval. Individuals 
in one age class can contribute to another only by surviving to the 
next older age class or by reproduction to the first age class. Figure 
16 shows the graph for a size-classified model in which individuals 
may grow to the next size class, remain in their own size class, and 
possibly reproduce new individuals in the first size class. Suppose 
some individuals in the first size class grow so rapidly that after 
one projection interval they are in the third size class. This would 
require the modification shown in Figure c, 1 where an arrow has 
been drawn from stage 1 to stage 3. 

The interpretation of the coefficients depends on the identity of 
the stages and the processes involved in the transitions. In Fig- 
ure la, the Pi are age-specific survival probabilities and the Fi are 
age-specific fertilities. In Figures lb and lc, the Gi are probabili- 
ties of surviving and growing, the Pi are probabilities of surviving 
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FIGURE 1. TTiree life-cycle graphs, (a) .An age-classifed model with three 
age classes; the Pi are age-specific survival probabilities, and the Fi are 
age-specific fertilities, (b) A size-classified model with three size classes; 
the d are size-specific probabilities of survival and growth, the Pi are 
size-specific probabilities of surviving and remaining in the same size 
class, and the Fi are size-specific fertilities, (c) The same life-cycle graph 
as in (b), but with an additional transition (Hi) from size class 1 to size 
class 3. 

and not growing, and the F; are size-specific fertilities. In Figure 
lc, the coefficient Hi is the probability of surviving and growing 
enough to move from size class 1 to size class 3. Demographers 
use the term vital rates to refer collectively to the rates of sur- 
vival, growth, reproduction, and any other important demographic 
processes. 

A Set of Difference Equations 

The life-cycle graph corresponds directly to a model written as a set 
of difference equations. For the size-classified graph in Figure 16, 
remembering the definitions of the coefficients, the set of equations 
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describing the population is 

m(i +1) = Pini(t) + F2n2(t) + F3n3(t), 

n2(t + l) = Gln1(t) + P2n2{t), (1) 

n3{t + l) = G2n2{t) + P3n3(t). 

It is worth looking at these equations for a moment. The first states 
that the number of individuals in stage 1 at t + 1 is the sum of 
those remaining in stage 1 from time t and those contributed by 
reproduction from stages 2 and 3. The second equation states that 
the number in stage 2 at t + 1 is the sum of those growing into 
stage 2 from stage 1 and those remaining in stage 2 from time t. 
The third equation says the same thing for stage 3. 

The equations corresponding to Figure lc are 

m(t + 1) = Pmi(i) + F2n2{t) + F3n3(t), 

n2 (t + 1) = Gini (*) + P2n2 (t), (2) 

n3(t + 1) = Him(t) + G2n2(t) + P3n3(t). 

It would be possible to write down these equations directly, with- 
out using the life-cycle graph, if we were clear about the nature of 
the possible transitions, which in turn depends on the definition of 
the stages. But using the life-cycle graph makes it easier, and helps 
to guard against mistakes in defining the stages and transitions. 

The Matrix Model 

The system of difference equations derived from the life-cycle graph 
can be written more simply in matrix form: 

n(* + 1) = An(t), (1) 

where 

n(t) 

ni(t) 
n2(t) 

nk{t) 

(2) 

is a stage-distribution vector and A is a population-projection ma- 
trix. The elements of this matrix can be obtained from the system 
of difference equations or directly from the life-cycle graph: the 
ijth entry of A is the coefficient on the arrow from stage j to 
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stage i. The reason for the order of the subscripts is to guarantee 
this correspondence. 

Applying this rule to the life-cycle graphs in Figure 1 yields 

A<«)    = 

A'b»    = 

A&    = 

"0     F2   F3~ 
Pi     0     0 
0     P2     0 

(3) 

Pi    F2    F3 
Gx    P2     0 
0     G2   P3 _ 

(4) 

Pi 
Gx 

Hi 

F2   F3 
P2     0 
(?2     P3 

(5) 

The age-classified model produces a special matrix, with positive 
entries only on the first row (fertilities) and the subdiagonal (sur- 
vival probabilities). Such a matrix is often called a Leslie matrix, 
in recognition of the early papers of Leslie (1945, 1948). 

I have said nothing about how the numerical values of the coeffi- 
cients dij are obtained. This obviously important question deserves 
its own chapter (see Chapter 19, by Wood, for one approach), but 
here I assume that the matrix is at hand and focus on how to 
analyze it. 

Types of Matrix Models 

The coefficient a,j is the contribution of each individual in stage 
j to the number of individuals in stage i during one projection 
interval. What happens in the next projection interval? Depending 
on the answer to this question, matrix models fall into three classs, 
each with its own analytical approach. 

Linear, constant-coefficient models.    If the coefficients Oy are con- 
stants, the resulting model is linear and time-invariant: 

n(t + 1) = An(i). (6) 

This is the simplest case; it can be analyzed in great detail, and 
it is widely used. But in reality the vital rates are not constants, 
so the biological interpretation of these results requires great care. 
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Nonlinear models. If the ay are not constant but depend on the 
current state of the population, the resulting model is nonlinear: 

n(i + 1) = Ann(t), (7) 

where An is the transition matrix evaluated at n. The nonlin- 
earity may result from density dependence (e.g., competition for 
resources), frequency dependence (e.g., competition for mates), 
or both. 

Time-varying models. The coefficients may also change with time, 
independently of n(f). resulting in the model 

n(*+l)=Atn(i). (8) 

IVtcnninistic. periodic variation is often used to model seasonal- 
itv or other kinds of environmental periodicity. Alternatively, the 
coefficients may vary stochastically, reflecting some random envi- 
ronmental process (see Chapter 3, by Tuljapurkar). Time-varying 
models may be either linear or nonlinear. 

Objectives of Analysis 

The analysis of each of these types of model, although requiring 
different mathematical tools, addresses a set of similar questions. 
Imagine that you are in possession of a matrix population model. 
What you should do with it depends on the question you want to 
answer. 
1. Transient analyses describe the short-term dynamics resulting 

from specific initial conditions. 
2. Asymptotic analyses describe the long-term dynamics of the 

population. 

(a) Population growth rate: what is the asymptotic rate of pop- 
ulation growth or decline? 

(b) Population structure: what are the relative abundances of the 
different stages in the life cycle? 

(c) Ergodicity: are the dynamics, including the growth rate and 
the population structure, asymptotically independent of ini- 
tial conditions? 

(d) Attractors (mainly in density-dependent models): what are 
the qualitative properties of the asymptotic dynamics (fixed 
point, cycle, quasiperiodicity, chaos, etc.)? 
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3. Perturbation analyses examine the effects of changes in param- 
eter values or initial conditions on the results of the models. 
Three questions are of particular importance: 

(a) Sensitivity and elasticity analysis of population growth rate: 
how does the growth rate respond to changes in vital rates? 

(b) Stability analysis of equilibria: if initial conditions are per- 
turbed slightly away from an equilibrium point, does the 
solution return to or depart from the neighborhood of the 
equilibrium? 

(c) Bifurcation analysis: what happens to the asymptotic be- 
havior of a nonlinear model as a parameter in the model is 
changed? 

The methods used to address these questions depend on the nature 
and sometimes on the details of the model, but any population- 
modeling project that does not address short-term dynamics, long- 
term dynamics, and the effects of perturbations on those dynamics 
has left something out. 

2 Analysis: The Linear Case 

We begin with the linear time-invariant model (6), in which A is 
a constant matrix. There are two justifications for spending time 
on this model, in spite of the fact that the vital rates of any real 
population are certainly not constant. The first is theoretical: un- 
derstanding population dynamics in the simplest case is a funda- 
mental step in understanding more-complicated cases. The second 
is practical: when interpreted as a projection rather than a predic- 
tion (Keyfitz 1968; Caswell 1989a), the results of a linear model 
provide a valuable characterization of the current environment by 
calculating the purely hypothetical consequences of maintaining 
that environment forever. Linear matrix population models are 
frequently used in this way, as a form of demographic analysis 
of vital-rate data, rather than as a prediction of future population 
dynamics. 

Exponential Solutions and the Characteristic Equation 

One approach to equation (6) is to conjecture that, like other linear 
equations, it has an exponential solution(s), 

n(t) = A'w (9) 
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for some fixed vector w. Substituting this into (6) gives 

At+1w = A*Aw. 

A scalar A and a vector w that satisfy this relation are called an 
eigenvalue and eigenvector of A, respectively. They must satisfy 

(A-AI)w = 0, 

which has a nonzero solution for w only if the determinant of the 
matrix A-AI equals zero. This is called the characteristic equation: 

det(A-AI)=0. (10) 

The Spectral Decomposition of A 

An alternative approach is to begin by solving equation (6), start- 
ing from a specified initial population n(t0)- By repeatedly apply- 
ing (6), we see that n(i0 +1) = An(t0), n(i0 + 2) = A2n(t0), and 
in general 

n(i0 + i) = Atn(^o)- (11) 

Thus, to understand population dynamics over time we need only 
understand the behavior of A*. 

One approach to the problem is via the spectral decomposition of 
A, which makes it possible to evaluate any function of A, including 
A*. First, note a few facts about the eigenvalues and eigenvectors 
of a matrix. The vectors w and v are right and left eigenvectors of 
A if there is a (possibly complex) scalar A such that 

Aw    =    Aw, (12) 

v*A    =    Av*, (13) 

where the asterisk denotes the complex-conjugate transpose. A left 
eigenvector v of A, corresponding to A, is a right eigenvector of A* 
corresponding to A; that is, 

A*v = Äv. (14) 

The eigenvalues are found as the solutions of the characteristic 
equation (10). 

If A is a k x k matrix, the characteristic equation is a polynomial 
of degree fc and has k solutions Aj, i = 1,2,..., k. The correspond- 
ing eigenvectors are Wj and v;, i = 1,2,..., k. I assume that these 
eigenvalues are all distinct, as seems to be true in practice for 
population-projection matrices. This assumption guarantees that 
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the right eigenvectors and left eigenvectors, respectively, are lin- 
early independent sets. 

Let (w, v) = v*w denote the scalar product of w and v. The left 
and right eigenvectors can always be scaled so that (v*, Wj) = 1. In 
addition, the left and right eigenvectors corresponding to different 
eigenvalues are orthogonal, so that (v,, Wj) = 0 if i ^ j. 

Any matrix A with distinct eigenvalues can be written in the 
form 

A = A1Z1 + --- + AfeZfc, 

where the matrices Zj, known as the constituent matrices of A, are 
given by 

Zz = wiV* . (15) 

That is, Zj is a matrix whose columns are all proportional to Wj 
and whose rows are all proportional to v*. 

The constituent matrices have two important properties. First, 

Z2    =   WivJwjV* 

=    w^w^v^v* (16) 

=    Zt. 

(Such matrices are called idempotent.) Second, multiplying two 
different constituent matrices yields a zero matrix: 

ZiZj    =   Wjv'wjV* 

=   w^w^v^v* (17) 

=    0. 

These properties are useful because, together, they imply that 

A2 = (X>Zi) \T\iZ-\ = £A?Z«. (18) 

Multiplying repeatedly by A, it is not hard to see that 

A* = ^A%. (19) 

This result, together with equation (13), yields our desired expres- 
sion for the dynamics of a population described by (8): 

n(t0 + t)=J2%Zin(to)- (20) 
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The only parts of the right-hand side of (20) that vary with time 
are the factors \\. The behavior of A^ depends on the sign of A, and 
on whether A; is real or complex. If A; is real and positive, \\ grows 
or decays exponentially, depending on whether A* is greater or less 
than one. If A; is real and negative, \\ oscillates between positive 
and negative values, growing or decaying in magnitude depending 
on whether |Aj| is greater or less than one. If Xi is complex, A* 
oscillates in a sinusoidal pattern, growing or decaying in magnitude 
depending on whether |Aj| is greater or less than one. 

Since the dynamic properties of the population are determined 
by the eigenvalues of A, it behooves us to see what we can say, a 
priori and in general, about these eigenvalues. 

Eigenvalues, Eigenvectors, and the Perron-Frobenius Theorem 

We can safely assume that the elements of A are nonnegative. Neg- 
ative elements in A imply the possibility of negative individuals, 
which I prefer not to deal with. Perhaps surprisingly, this sim- 
ple assumption tells us almost everything we want to know about 
the eigenvalues and eigenvectors of A, thanks to a mathematical 
result known as the Perron-Frobenius theorem. In order to state 
the theorem, we need two more properties of A: irreducibility and 
primitivity. 

A matrix A is irreducible if and only if its life-cycle graph is 
connected, that is, if there is a path, following the direction of 
the arrows, from every stage to every other stage. A matrix A is 
primitive if and only if there is some integer k such that every 
element of Ak is strictly greater than zero. A more biologically 
revealing criterion is based on the life-cycle graph. Define a loop as 
a sequence of arrows, traversed in the direction of the arrows, that 
begins and ends at the same node, without passing through any 
node twice. The matrix A is primitive if and only if the greatest 
common divisor of the lengths of the loops in the life-cycle graph 
is one. Any primitive matrix is also irreducible. Most population- 
projection matrices encountered in practice are both irreducible 
and primitive. 

What about matrices that are reducible or imprimitive (i.e., not 
primitive)? A reducible matrix has some stages that make no con- 
tribution to some other stages; the life-cycle graph breaks into 
two (or more) pieces with only one-way communication. The most 
common example is a life cycle with post-reproductive stages; from 
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(f>) 

C^-0—© 
FIGURE 2. (a) A life-cycle graph corresponding to a reducible matrix. 
Stage 4 represents post-reproductive females; there is no pathway from 
this stage to any of the earlier stages, (b) A life-cycle graph correspond- 
ing to an imprimitive matrix. This is a semelparous age-classified model; 
individuals that survive to age class 3 reproduce and die. 

such a stage there is no pathway back to the part of the life cycle 
that does reproduce. Figure 2a shows an example; a graph of this 
form appears in a stage-classified model for killer whales (Brault & 
Caswell 1993). An imprimitive life cycle has some underlying pe- 
riodicity, so that the loops in the life-cycle graph are all multiples 
of some common loop length. Imprimitive matrices are sometimes 
called "cyclic" to reflect this fact. The most common example is a 
semelparous age-classified life cycle with a fixed age at reproduc- 
tion (Fig. 26). Only a single loop appears in such a life-cycle graph, 
with a length determined by the age at reproduction. Some kinds 
of seasonal models for annual organisms also produce imprimitive 
matrices, reflecting the periodicity imposed by the annual cycle of 
the seasons. The graphs in Figure 2 contain no coefficients because 
reducibility and primitivity depend on the form of the graph but 
not on the values of the coefficients. 

The Perron-Frobenius theorem states that a nonnegative, irre- 
ducible, primitive matrix has three properties: 

1. a simple (i.e., non-repeated) eigenvalue Aj. that is real, positive, 
and strictly greater in magnitude than any of its other eigenval- 
ues, 

2. a right eigenvector wi corresponding to Ai, which is strictly 
positive (or can be made so by multiplying by a scalar) and is 
the only nonnegative right eigenvector, and 

3. a left eigenvector \r1 corresponding to Ai, which is also strictly 
positive and is the only nonnegative left eigenvector. 
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The Perron-Frobenius theorem also describes the eigenvalues and 
eigenvectors of imprimitive and reducible matrices (see Caswell 
1989a and, of course, many matrix texts, e.g., Seneta 1981; Horn 
& Johnson 1985). 

Demographic Ergodicity 

The eigenvalue Ai (the dominant eigenvalue) plays a central role in 
the asymptotic analysis of linear matrix models. In equation (20), 
the growth of n(t0 + *) is given by a sum of terms involving the 
eigenvalues of A raised to higher and higher powers. Intuitively, as 
t gets large, A*: increases more quickly, or decreases more slowly, 
than Af for i ^ 1. Asymptotically, we expect the growth of the 
population to be determined by Ai, whereas all the eigenvalues 
contribute to short-term transient behavior. More precisely, 

limn(to+t)    =     ^WVj'z^to) 

=   Zm(to) (21) 
=   wivjn(to) • 

This gives the following results on asymptotic dynamics, condi- 
tional on the primitivity of A. 

1. The population eventually grows geometrically at a rate given 
by Ai (the population growth rate or rate of increase). 

2. Population structure eventually becomes proportional to wx 

(the stable stage distribution). 

3. The constant of proportionality relating population structure 
and w is a weighted sum of the initial numbers in each stage 
(vjn(io))- The weights are the elements in vn the vector vx 

thus gives the relative contributions of the stages to eventual 
population size {not population growth rate) and is called the 
reproductive-value vector. 

The population eventually converges to the stable stage distribu- 
tion, growing at a rate given by the dominant eigenvalue, regardless 
of the initial conditions (except, of course, the special case of a zero 
initial population). The property of forgetting the past and grow- 
ing at a rate determined by the vital rates rather than by initial 
conditions is called ergodicity. 

Because Ax, wj, and v: are properties of the vital rates rather 
than initial conditions, they are widely used as demographic statis- 
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tics. They can provide valuable insight into the vital rates and the 
environmental conditions that determine them, but they cannot 
predict actual population dynamics; everyone "knows" that popu- 
lations cannot grow geometrically forever. These statistics must be 
interpreted as projections of what would happen if the vital rates 
were to remain constant, rather than as predictions of what will 
happen. They characterize the present environment, not the future 
of the population. 

Similar ergodic results hold for stochastic models (see Chapter 
3) and density-dependent models. In each case, the asymptotic 
properties provide demographic statistics that are determined by 
the vital rates rather than by the historical accidents of initial 
conditions. They can be used just as Ai, wl5 and Vi are used in 
the linear case. 

3 Perturbation Analysis 

Only rarely are we interested in one precisely specified model. We 
can usually imagine that the model might change in some way, 
and would like to know how such changes would affect the re- 
sults of the analysis. Perturbation analyses address this problem. 
In density-independent models, perturbation analyses focus on the 
eigenvalues and eigenvectors, whereas in density-dependent mod- 
els perturbation analyses focus on the stability and bifurcation of 
equilibria. 

A perturbation analysis of the eigenvalues of a population-pro- 
jection matrix can answer several questions. 

1. What are the effects of potential changes in the vital rates, 
as might result from strategies designed to protect endangered 
species (by increasing A) or control pest species (by reducing 
A)? 

2. Where should efforts to improve the estimates of the vital rates 
be focused in order to improve the accuracy of the estimate of 
A? All else being equal, the biggest payoff comes from improving 
the estimates of the vital rates to which A is most sensitive, since 
errors in those estimates have the biggest effect. 

3. Genetic variation produces individuals whose vital rates are per- 
turbed from the overall population values; from these, natu- 
ral selection chooses those perturbations whose carriers increase 
most rapidly. Which vital rates are under the greatest selective 
pressure? 
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4. Suppose that some environmental differences (either natural or 
the result of experimental manipulation) have produced differ- 
ences in the vital rates, and hence in A, among two or more 
populations. How much do each of the vital-rate differences con- 
tribute to these observed differences in A? 
Fortunately, it is easy to calculate the sensitivity of A to a change 

in any of the vital rates, once we know the eigenvectors. The next 
subsection presents these calculations. Formulas also exist for the 
sensitivities of the eigenvectors w and v, for the sensitivities of A 
for periodic time-varying models (Caswell & Trevisan 1994), and 
for the sensitivities of the sensitivities themselves (Caswell 19966). 

Sensitivity and Elasticity of Eigenvalues 

The sensitivity of population growth rate to changes in the vital 
rates can be calculated as the derivative of A to changes in the 
matrix elements ay. Suppose that A, w, and v satisfy 

Aw    =    Aw, (22) 

v*A   =   Av*, (23) 

(w,v>    =    v*w=l. (24) 

Now consider a perturbed matrix A + dA, where dA is a matrix of 
small perturbations day. The eigenvalues and eigenvectors of the 
new matrix satisfy 

(A + dA)(w + dw) = (A + dA)(w + dw). (25) 

Expanding the products and eliminating second-order terms yields 

Aw + A(dw) + (dA)w = Aw + A(dw) + (dA)w,        (26) 

which simplifies to 

A(dw) + (dA)w = A(dw) + (dA)w. (27) 

Multiplying both sides by v* yields 

v* A(dw) + v* (dA)w = Av* (dw) + (dA)v*w. (28) 

The first term on the left-hand side is the same as the first term 
on the right-hand side (because of eq. 23), and the last term on 
the right-hand side simplifies to dA (because of eq. 24), leaving 

v*dAw = dA. (29) 

If dA contains only a single nonzero element daij, a change in 
only the ijth element of A, we obtain the fundamental sensitivity 
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equation: 

dX      _ 
ViWj. (30) 

ddij 

(The bar over Vi has been ignored in most presentations of this 
formula, including mine. It is irrelevant to the case of the dominant 
eigenvalue of a population-projection matrix, which always has real 
eigenvectors, but it must be included for calculations involving 
other eigenvalues.) 

Equation (30) says that the sensitivity of A to changes in a,ij is 
proportional to the product of the reproductive value of stage i 
and the representation of stage j in the stable stage distribution. 

The sensitivity of A to changes in other parameters can be cal- 
culated using the chain rule: for some parameter x, 

|A=E|A_^ 
ox     *ri dan ox 

The sensitivity of A gives the effect of a small additive change in 
one of the vital rates. The effect of a small proportional change in 
a vital rate is given by the elasticity of A: 

Oi7-  dX 

In addition to giving the proportional change in A resulting from 
a proportional change in the a^-, the elasticities also measure the 
contribution of the aij to overall population growth rate. To be 
precise, J2ij eij = 1 (f°r a simple proof, see Mesterton-Gibbons 
1993), and e^ can be interpreted as the proportion of A contributed 
by a^. 

Elasticities to other parameters can also be calculated: 

xdX 
e{x)    =    T A dx 

■ZJ 

~    X 2-f dazj dx • {66) 

The elasticities of A with respect to other parameters do not in 
general sum to one, and they cannot be interpreted as contributions 
to population growth rate. 
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Sensitivity or Elasticity? 

Some authors seem to believe that sensitivities and elasticities are 
alternatives, that one is superior to the other, or that one or the 
other is biased in some way. This is not so; they provide accurate 
answers to different questions. The difference between them is com- 
parable to the difference between plotting the same set of numbers 
on arithmetic (sensitivity) or logarithmic (elasticity) axes. Neither 
kind of graph is wrong, but one or the other may be better at re- 
vealing interesting patterns in the numbers. For more discussion, 
see Chapter 7, by Horvitz et al. 

Life-Table-Response Experiments and Comparative Demography 

Life-table-response experiments (LTRE's) are manipulative exper- 
iments or comparative observations in which the dependent vari- 
able is a complete set of vital rates (loosely speaking, a life ta- 
ble; Caswell 1989&). The different environmental conditions (the 
"treatments") cause changes in the vital rates, which in turn af- 
fect population dynamics. LTRE's are often summarized by us- 
ing the rate of increase, A, as a demographic statistic to integrate 
the treatment effects on survival and reproduction throughout the 
life cycle. 

Knowing that a treatment produces a particular value of A leaves 
unresolved the question of how the manifold changes in the vital 
rates contribute to the effect on growth rate. After all, some vital 
rates can be changed a great deal without affecting A (e.g., the 
survival of a post-reproductive age class), whereas small changes 
in other vital rates produce large changes in A. In addition, most 
environmental factors have differential effects on the different vital 
rates. A given treatment may affect survival, growth, and fertility 
differently, with different effects on those rates in different stages. 

Treatment effects on A can be decomposed into contributions 
from the effects on each of the vital rates (Caswell 19896, 1996a). 
This decomposition makes it possible to pinpoint where in the 
life history the treatment has its greatest impact. The decom- 
position uses a first-order linear approximation to the effect on 
A. I outline the simplest case here: a set of M treatments Tm, 
m = 1,..., M, each of which produces its own matrix Am and 
population growth rate X^. (I use parenthetical superscripts to 
denote treatments when subscripts distinguish matrix elements.) 
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Choose some condition as a reference treatment; this might be the 
mean of all the treatments, a control treatment, or any other con- 
dition of particular interest. The reference matrix is denoted Ar, 
and treatment effects on A are measured relative to A(r). 

To first order, we can write 

A<->-AM«£(af>-aj?)   9X 
daij 

Z3 J 

(34) 
(Am+Ar)/2 

for m = 1,..., M. Each term in the summation gives the contri- 
bution of the effect of treatment m on one of the vital rates to its 
overall effect on A. That contribution is the product of the vital- 
rate effect and the sensitivity of A to changes in that vital rate. If 
either of these terms is small—if the treatment doesn't effect a^- 
or if A is insensitive to a,j—then the contribution of effects on a^- 
to effects on A is small. The converse is also true. 

The sensitivities in (34) must be calculated from some particular 
matrix; here they are calculated from a matrix "halfway between" 
the two matrices (ATO and Ar) being compared. There is some 
theoretical justification for this (Caswell 1989&), and it works well 
in practice. 

The reason for using A as a statistic to summarize the results of 
an LTRE is that it integrates the diverse and stage-specific effects 
of the treatments. The decomposition analysis complements this 
use; it pinpoints the source, within the fife cycle, of the effects on 
A. Experience with this kind of analysis shows that it is not safe to 
assume that the biggest changes in vital rates are responsible for 
the effects of a treatment on A. Without some analysis like (34), 
half of the information contained in an LTRE is wasted. 

Equation (34) describes a simple, one-way, fixed-effect experi- 
mental design. The approach has been extended to factorial de- 
signs, random designs, and regression designs (Caswell, in press). 
It can also be applied to statistics other than A (as long as a per- 
turbation theory is available for the statistic) and to parameters 
other than matrix elements (Caswell 1989c, 1996a, in press). 

Prospective and Retrospective Analyses 

The preceding subsections outline two ways of using perturbation 
analysis. Sensitivity and elasticity calculations are prospective anal- 
yses; they predict the results of perturbations of the vital rates 
before they happen. Indeed, they even show the results of pertur- 
bations that are biologically impossible. They tell nothing about 
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which vital rates are actually responsible for an observed change 
in A. The LTRE decomposition analysis answers this kind of retro- 
spective question. It does so by combining sensitivity analysis with 
information on the actual variance in the a^-. 

Don't confuse these two kinds of analysis, especially in ambigu- 
ous questions such as, "which of the vital rates is most important 
to population growth?" One way to answer this question is to find 
the rate with the biggest sensitivity (or elasticity); that rate is most 
important in the sense that if you were to change all the rates by 
the same amount (or same proportion), it would have the biggest 
impact. Another answer is based on an LTRE analysis; the most 
important vital rate is the one with the variation that makes the 
biggest contribution to the variability in A. The two answers are 
usually different. Both are valid, but they answer different ques- 
tions, the first prospective, the second retrospective. Chapter 7, by 
Horvitz et al., explores these issues further. 

4 Density-Dependent Matrix Models 

The models analyzed so far have been linear and time-invariant; 
the vital rates are independent of population density or tempo- 
ral changes. Time-varying models are discussed in Chapter 3; here 
I consider the inclusion of density dependence, which makes the 
model nonlinear. Although the mathematical tools are different 
from those used in the linear case, the focus is still on asymp- 
totic behavior and perturbation. Unlike linear models, density- 
dependent models do not grow exponentially. Instead, solutions 
tend to converge to limited subsets of the state space, called at- 
tractors. The attractors may be fixed points (also called equilibria), 
cycles, or more-complicated structures. 

Two kinds of perturbation analysis are important. One asks the 
effect of perturbing initial conditions. This is of no interest in the 
linear case, since the ergodic theorem guarantees convergence to 
the stable population structure and asymptotic growth rate from 
any nonzero initial condition. In a density-dependent model, how- 
ever, small perturbations of initial conditions can lead to very dif- 
ferent dynamics, depending on the stability of a fixed point. The 
second kind of perturbation considers changes in the parameters of 
the model. Often, small changes in parameters leave the qualitative 
asymptotic behavior unchanged. But sometimes small parameter 
changes have big effects on asymptotic dynamics: stable trajecto- 
ries become unstable, fixed points are created or destroyed, attrac- 
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tors change from fixed points to cycles, cycles give way to chaos, 
etc. These qualitative changes are called bifurcations, and finding 
them is a major pastime of people who study density-dependent 
models. 

There are many ways of incorporating density dependence in ma- 
trix models (Caswell 1989a; see also Cushing 1988; Getz & Haight 
1989; Silva & Hallam 1992; Logofet 1993; Dennis et al. 1995). "Den- 
sity" can be defined as the abundance of a stage or set of stages, 
as a weighted combination of the abundances of a set of stages, or 
simply as the total number N — J2ni- Density can affect the vital 
rates at many points in the life cycle or at only one. Each of the 
vital rates may be a different function of the density, or the entire 
set of vital rates may be affected by density in the same way. In this 
section, I introduce three models that incorporate simple density 
effects on reproduction, on growth, and on survival, using them to 
demonstrate some dynamic consequences of density dependence. 

Basic Formulations 

Consider a two-stage model, with a matrix 

A = Pi    F2 (35) 

and suppose that the matrix entries are given by 

Pi        =       <TlU-7l): 
G\    —    <7i7i. 

P2    -    a2. 

where o~\ and o~2 are survival probabilities, and --i is the probability 
of growth from stage 1 to stage 2, approximated by l/~i. where ~i 
is the mean duration of stage 1. 

This simple model contains the rates of reproduction, growth, 
and survival, each of which can be made density-dependent. 

Density-dependent reproduction. Let fertility at zero density be 
given by /o, and suppose that fertility declines exponentially with 
increases in density. Then, 

F2(N) = f0exp(-bN), (36) 
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where b is a constant that measures the strength of density depen- 
dence. The resulting matrix is 

A<f> = Pi    foe~bN 

Gi       Pi 
(37) 

Density-dependent survival. Let cr^o and 02,0 denote the survival 
probabilities of stages 1 and 2 at zero density. Assume that both 
juvenile and adult survival probabilities are affected in the same 
way by density, so that 

ci(iV)    =   <7i,0exp(-WV), (38) 

<J2{N)    =    a2fi exp(-bN). (39) 

resulting matrix is 

A«    = '<7i,o(l-7i)e-6JV         F 
o-i,o7ie bN        °2fie 

1 
-bN 

= ' Pi,oe-b'N          F2 

G!,0e-bliV    P2)0e-62JV (40) 

Density-dependent growth.    Suppose that the mean duration of 
the juvenile stage increases with density: 

r(JV) = TO exp(WV); 

then the growth probability is given by 

-r(N)   = 
1 

r(N) 

70exp(-WV). (41) 

The resulting matrix is 

A(g)    = 
aa(l-7oe-6N) F2 

all0e-bN P2 

ffi(l-7oe-6JV F2 ' 
Glfie-bN P2 

(42) 

The assumption of exponential density dependence ("overcompen- 
sation" in the language of fisheries biology) has important dynamic 
consequences. A strictly compensatory form (e.g., 1/(1 + bN)), or 
a depensatory form with some range of positive density depen- 
dence, may produce different dynamics (Caswell 1989a; Silva & 
Hallam 1992). 
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Equilibria and Stability 

The equilibria of a density-dependent model are population vectors 
n that satisfy 

n = AÄn. (43) 

Depending on the form of the density dependence, there may be 
more than one equilibrium. In the absence of immigration, n = 
0 is always an equilibrium. With a little luck, equation (43) can 
be solved analytically for n. More often than not, however, the 
equilibria must be found numerically. 

Density-dependent reproduction.   The equilibrium n is defined by 

nj    =   Pjni +/oe-^fta , (44) 

h2   =    Gifii + P2fi2 ■ (45) 

The second of these equations can be solved for nx: 

ni = —7;—n2; (46) 

substituting this in the first equation yields 

Combining these two results gives an expression for n2, 

GiN 

and hi can be found as hi = N — h2. 

Density-dependent survival. The equations defining the equilib- 
rium are 

hi = Pifie~bflhi + F2h2 , 
(49) 

ft2 = Gi,oe-wvn1+P2,oe-wvn2. 

The second of these equations can be solved for n2: 

n2 = 
: -n\. (50) 

(l-P2,o)e-bN 

When substituted into the first equation this eventually yields 

Pi,o - Pi.oP2,oe-b* + F2Gho + P2,o = ehfl. (51) 
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Multiplying both sides by ebN gives a quadratic equation in the 
new variable y = ebN. Solving this equation for y and substituting 
leads to 

N = \ogyb, 

Ä>=i^(6(i+Ä)r>   <52) 
h2 = N — hi. 

Density-dependent growth. The equations to be solved for the 
equilibrium are 

hi = o-i (l - 7oe~6N) hi + F2h2 , 
(53) 

hi = <Tiioe~hNhi + P2h2 ■ 

As before, the second equation can be solved for h2, 

— bN 

n2 = — 5— nx; (54) 
1 — f2 

substituting this relation into the first equation eventually leads to 

,v = -llc.gMi-^)(i-^n (55) 
blOZ\all0{F2 + P2-l)) K    ' 

None of these analytical solutions for n is particularly informa- 
tive at first glance. This is typical; only in exceptional circum- 
stances are the formulas for the equilibria in a matrix population 
model simple enough to appear informative. 

An equilibrium is said to be locally stable if small perturbations 
remain close to the equilibrium, and locally asymptotically stable 
if small perturbations eventually return to the equilibrium. The 
adjective "local" refers to the smallness of the perturbations; it may 
well happen that small perturbations return to an equilibrium, but 
large ones are attracted to another equilibrium, or to some other 
kind of attractor (a cycle, for example, or a strange attractor). 

The local stability of a fixed point is determined by approximat- 
ing the nonlinear density-dependent model by a linear model that 
is accurate for small perturbations. Begin by defining a vector x of 
deviations from the equilibrium n: 

x(t) = n(t)-fi. (56) 
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The dynamics of x, near the equilibrium, are given by 

x(i + l) = Bx(i). (57) 

where the constant matrix B, called the Jacobian matrix, is the 
linear approximation to the full nonlinear system near the equi- 
librium. 

To illustrate, let us write a two-dimensional matrix model as 

rn(t+l)    =    aiin1(«)+ai2n2(*) = /i(n), 

n2{t + l)    =   02mi(t) + a22n2(t) = /2(n), 

with the understanding that atj = ay(n). 
The Jacobian matrix B is 

B = 
dni 

ih. 

dn2 

ih. 
dn2 

Differentiating fx gives 

dni 

dn2 

On + n\ — \-n2- 
drtx 
dan 

0-12 + ni — 1- n2 

dni 
dai2 

dn2   ' '"z dn2 

The derivatives of f2 have the same form. Thus, B is given by 

(58) 

(59) 

(60) 

(61) 

(62) 

B   =   AA + 
„   9o2x _i_ _   da2i 

. niö^r+n2ä^ 

-n, Q°ii   _i_ n   dan niä^r + n2-ä^ 

=    A*+[i£*    &*]• (63) 

All of the derivatives are evaluated at the equilibrium. 
Equation (63) makes the calculation of the Jacobian straightfor- 

ward for matrix population models (it is due to Beddington 1974). 
Given the equilibrium vector n, calculate the derivatives of A with 
respect to each of the n» and multiply these matrices by n; put 
the resulting vectors as columns in a matrix, and add this to A 
evaluated at the equilibrium. 

The equilibrium n is asymptotically stable if the eigenvalues of 
B are all less than one in magnitude (or are "within the unit cir- 
cle," referring to the circle with radius one in the complex plane). 
It is unstable if any of the eigenvalues are outside the unit circle. 
An eigenvalue falling exactly on the unit circle (i.e., with magni- 
tude exactly equal to one) signals a transition from stability to 
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instability, or vice versa, and is considered in the next section. 
Remember that (63) describes the dynamics of perturbations, 

not the dynamics of numbers of individuals. Thus, the entries of 
x can be negative, and the matrix B often contains negative en- 
tries. The Perron-Frobenius theorem is of little use in evaluating 
the eigenvalues of B, except in special cases (DeAngelis et al. 1980; 
Caswell 1989a, Example 9.3), and the eigenvalue of largest magni- 
tude may be negative or complex. 

The Jacobian matrices for our three density-dependent models 
can be written down easily. Note that all density effects depend on 
N = ni + n2, so that 

da ■v _ daij 
dni      dri2 

Thus, the matrix B reduces to 

ÖA 
dN 

~dN 

B = AÄ + 
7*1 

h2 h2 

(64) 

(65) 

The resulting Jacobian matrices for the three example models are 
as follows: for density-dependent reproduction, 

B = Pi 
Gi 

foe~bN 

Pi 
bfoe -bN n2 

0 
7*2 

0 
(66) 

for density-dependent survival, 

B = 
p     c-bN F2 

P2,oe"^ _ 

P\,ofii Pi,oni 
Gififii + P2fifi2    Gififii + P2fih2 J ' 

and for density-dependent growth, 

-be -bN 

B = ai(l-7oc-6JV) 
Gi,oc-^ 

F2 

P2 

bGifie -bN Til 

-hi 
Til 

-hi 

In each case, N and n are evaluated using the appropriate equi- 
librium formulas. Note that I have not attempted to insert the 
formulas for the equilibria. In general, it is a lucky circumstance in 
which such expressions simplify usefully. More often, the best that 
can be done is to write the Jacobian in terms of the equilibria and 
to carry out further analyses numerically. 
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In studying a linear model, the response of the eigenvalues to 
changes in parameters is usually more interesting than their values 
for one specific parameter set. Similarly, in studying a nonlinear 
model it is usually more interesting to see how the stability proper- 
ties change as parameters are varied than to characterize stability 
for one parameter set. A qualitative change in stability is called a 
bifurcation. 

Bifurcations 

Roger Tory Peterson published the first edition of A Field Guide to 
the Birds in 1934. At the time, the standard guide for the would-be 
birdwatcher was Chapman's (1932) Handbook of Birds of Eastern 
North America, first published in 1895. Chapman's book contained 
detailed dichotomous keys to the bird species, most of which would 
be useless without having the bird in one hand (and, most likely, 
a smoking shotgun in the other). Peterson's innovation was to sac- 
rifice rigor but to focus on characters that would distinguish most 
of the species, most of the time, in the field. 

My goal in this section is to provide a kind of field guide to 
bifurcations of equilibria of nonlinear matrix models. I describe 
the basic ideas of bifurcation theory, without assuming that my 
reader is equipped with the powerful tools of rigorous bifurcation 
theory, but assuming the ability to conduct numerical simulations. 
The question is, what to look for that will help to identify the 
bifurcations that occur. 

Be forewarned that, just as there are situations where Peterson 
had to admit that a reliance on field marks was misleading or 
impossible, there are no doubt situations in which my suggestions 
here will be incorrect. (In a notorious case, Chapman distinguished 
the Alder and Least flycatchers of the genus Empidonax on i the 
basis of whether the wing is longer or shorter than 2.60 inches 
and whether the lower mandible is flesh-colored or strongly tinged 
with brownish. Peterson, by contrast, said that "it is quite risky to 
attempt to tell them apart by mere variations in color" and relied 
on calls during the breeding season.) In such cases, you can make 
use of the many detailed treatments of bifurcation theory (two 
excellent recent examples are Wiggins 1990 and Hale & Kocak 
1991; see also the review paper Whitley 1983) that provide the 
mathamatical analogue of the birdwatcher's shotgun. See Chapter 
6, by Cushing, for an introduction to the application of this theory 
to matrix models. 
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Types of bifurcations. An equilibrium point can bifurcate when it 
loses stability in response to a change in a parameter, that is, when 
the dominant eigenvalue A of the Jacobian matrix B in equation 
(63) is equal to one. This can happen in three ways: 

A = 1, a "+1 bifurcation," 
A = -1,        a "-1 bifurcation," (67) 
A = a ± bi,    a "complex conjugate pair" bifurcation. 

When an eigenvalue (or a complex conjugate pair) crosses the 
unit circle, the others must still be inside, or there would be no 
change in stability, since the equilibrium would already be unsta- 
ble. (I am ignoring the rare cases in which more than one eigen- 
value crosses the unit circle simultaneously.) Perhaps surprisingly, 
the bifurcation does not depend on what those other eigenvalues 
are doing, nor on how many of them there are. The mathematical 
expression of this fact is the Center Manifold Theorem (e.g., Wig- 
gins 1990). Roughly, it says that the state space can be divided 
into two parts, one associated with the eigenvalue leaving the unit 
circle and the second associated with all the other eigenvalues. The 
dynamics on the second part remain stable, while the bifurcation 
can be studied on the first part. Thus all the basic behaviors of 
+1 and -1 bifurcations can be studied in one-dimensional mod- 
els, while the Hopf bifurcation can be studied in two-dimensional 
models. 

What different bifurcations are possible in response to a param- 
eter change? First, +1 bifurcations are of three types. 

1. At a trans critical bifurcation, two fixed points, one stable and 
the other unstable, collide and exchange stability. This occurs in 
all density-dependent matrix models as a bifurcation of the zero 
equilibrium. On one side of the bifurcation the zero equilibrium 
is stable. An unstable equilibrium exists, but it is negative and 
usually ignored in our thinking about populations. However, it 
does exist. On the other side of the bifurcation, the zero equi- 
librium is unstable, and there is a stable positive equilibrium. 
See Chapter 6, by Cushing, for a detailed description of this 
bifurcation. 

2. On one side of the saddle-node bifurcation, there is no fixed 
point at all. At the bifurcation point, two fixed points appear, 
one stable and the other unstable. What you see in a saddle- 
node bifurcation depends on where you look. If you follow the 
stable fixed point, it suddenly disappears (as it collides with the 
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unstable fixed point of which you were blissfully unaware), and 
trajectories move off to some other attractor in the state space. 

Saddle-node bifurcations occur in population models when there 
is an Allee effect (also known as depensatory density depen- 
dence) present, that is, when, at low densities, survival or fertil- 
ity depends positively on density. Typically, such a population 
has three fixed points: zero, an intermediate critical density, and 
a high density. Zero and the high density are both stable fixed 
points, while the intermediate critical density is unstable. Popu- 
lations below the critical density decay to extinction, and those 
above it increase to the high-density fixed point. As some param- 
eter is varied, the high-density fixed point and the intermediate- 
density fixed point collide and annihilate each other; the popu- 
lation at that point crashes to extinction. Cushing (Chapter 6) 
shows an example. 

3. On one side of a pitchfork bifurcation, there is one stable fixed 
point. On the other side, one unstable fixed point is surrounded 
by two new, stable fixed points. At the bifurcation, the two sta- 
ble fixed points appear close to the now-unstable fixed point; a 
trajectory may approach either of the two stable fixed points, de- 
pending on initial conditions. The canonical examples of pitch- 
fork bifurcations occur in one-dimensional cubic maps. These 
maps appear in some genetic models (May 1979), but pitchfork 
bifurcations rarely appear in density-dependent matrix models. 

Second are -1 bifurcations, or flip bifurcations. At this type 
of bifurcation point, a stable fixed point becomes unstable, and 
a stable 2-cycle appears. Just beyond the bifurcation point, the 
amplitude of the 2-cycle is small, and it surrounds the unstable 
fixed point. 

The third type of bifurcation develops from complex-conjugate 
pairs of eigenvalues and is also called a Hopf or Naimark-Sacker 
bifurcation. As a complex conjugate pair of eigenvalues leave the 
unit circle, the fixed point loses its stability and an invariant circle 
forms around the now-unstable fixed point. An invariant circle is a 
continuous closed curve (not necessarily an exact circle). Any point 
on this curve is mapped to another point on the curve, hence the 
term "invariant." 

Trajectories on the invariant circle may be periodic, or they may 
be quasiperiodic, rotating around the circle without ever repeat- 
ing themselves, depending on the location of the eigenvalues when 
they cross the unit circle at the bifurcation. In general, trajecto- 
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ries immediately following a Hopf bifurcation are quasiperiodic, 
containing two periods that are not integer multiples of each other 
(see example below). 

There are two other possibilities. One is called strong resonance 
and occurs when the bifurcation point happens at 

\ = e2*ki,        where       k = l,1/2,%
1U. (68) 

The second is called weak resonance and occurs when 

A = e2*ip/q, (69) 

where p/q is a ratio of small integers but does not equal any of the 
first four roots of unity. In this case, the trajectory on the invariant 
circle has period q. 

Strong resonance is complicated. Mathematicians say things like 
"the strong resonances ... exhibit rather different behavior, the 
details of which are not yet fully understood" (Whitley 1983), or 
"the dynamics of such maps ... can be exceedingly complicated 
and the answer is not yet completely known" (Hale & Kocak 1991). 
I cannot improve on that, but it appears that bifurcations with 
strong resonance often have trajectories with period 1/fc lurking in 
their dynamics, often mixed up with quasiperiodic and, eventually, 
chaotic dynamics (for an example, see Guckenheimer et al. 1977). 

Examples: bifurcations of the zero equilibrium. The three simple 
density-dependent models in this section provide examples of these 
bifurcations. Zero is an equilibrium of all three models; to examine 
its bifurcations, evaluate the Jacobian matrix at zero and track the 
magnitude of its eigenvalues as parameters in the matrix change. In 
the examples below, I show bifurcations resulting from changes in 
reproductive output F2 (or /0 in the model with density-dependent 
fertility). Note, however, that Cushing (1988; Chapter 6) has shown 
in general that the bifurcation parameter can be taken to be the 
net reproductive rate (the expected number of offspring produced 
by an individual over its lifetime); he has shown how to calculate 
this quantity for arbitrary stage-structured matrices. 

The Jacobian matrix for the zero equilibrium is particularly sim- 
ple, because the second term on the right-hand side of equation 
(63) is zero. Thus, the Jacobian is simply the projection matrix 
evaluated at zero, and it is the same in all three examples. 

Figure 3 shows the magnitude of the dominant eigenvalue of 
B as a function of F2; it exceeds one when Fi « 0.8. The lower 
panel shows the location in the complex plane of the dominant 
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FIGURE 3. TTie bifurcation of the zero equilibrium for the three two- 
stage examples. Upper panel, The magnitude of the dominant eigenvalue 
of the Jacobian matrix B as a function of the reproductive output F2. 
Lower panel. The location, relative to the unit circle in the complex 
plane, of the eigenvalue just before (open circle) and after (closed circle) 
the bifurcation. Parameter values: a\ = 0.6, a2 = 0.8, 71,0 = 0.2. 6 = 1. 

eigenvalue before and after the bifurcation; this is a +1 bifurcation 
since the eigenvalue leaves the unit circle at +1. Figure 4 shows the 
equilibrium (for total population size N = m + n2) as a function 
of F2. The pattern is typical of a transcritical bifurcation. Note 
that all three models bifurcate from zero at the same value of F2, 
because all three matrices are identical evaluated at n = 0, even 
though they differ in their subsequent behavior. 

Bifurcations of the positive equilibrium. What happens to the sta- 
ble positive equilibrium that appears after the zero equilibrium 
becomes unstable? Each of the three models shows a different bi- 
furcation pattern. I show examples for each model, using F2 (or /0 

in the model with density-dependent fertility) as the bifurcation 
parameter. There is no reason to expect that this exhausts the 
possibilities; other types of bifurcations may well be produced by 
varying other parameters. 

For density-dependent reproduction, the bifurcation occurs when 
/o « 95. The eigenvalue leaves the unit circle at -1 (Fig. 5), 
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FIGURE 4. Bifurcation plots for the three two-stage examples, showing the 
equilibrium value of N = n\ + n2 as a function of reproductive output 
(F2; in the model with density-dependent fertility, fo). Other parameter 
values as in Figure 3. 
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FIGURE 5. The bifurcation of the positive equilibrium for the density- 
dependent fertility model as a function of reproductive output f0. Inter- 
pretation and parameter values as in Figure 3. 
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FIGURE 6. Bifurcation plots for the three two-stage examples, showing the 
long-term, behavior of total population size (N = n\+n2) as a function of 
reproductive output (F2; for the model with density-dependent fertility, 
fo). Other parameters as in Figure 3. 

implying a flip bifurcation, as seen in Figure 6a. The fixed point is 
replaced by a 2-cycle. 

For the model with density-dependent survival, the equilibrium 
becomes unstable when F<i « 50. The eigenvalue leaves the unit cir- 
cle very near (but not quite on) the imaginary axis (Fig. 7). This 
implies a Hopf bifurcation, but one very close to strong resonance. 
The bifurcation pattern is shown in Figure 66. Just after the bifur- 
cation point, trajectories are quasiperiodic on an invariant circle. 
As F2 increases further, the invariant circle begins to look more 
like an invariant square, finally collapsing to a stable 4-cycle (Fig. 
8). See Wikan and Mjolhus (1995) for an exploration of this period- 
4 behavior in a fully age-classified model with density-dependent 
survival. 

For the model with density-dependent growth, the bifurcation 
occurs when F2 « 1200. This time, the eigenvalues leave the unit 
circle as a complex conjugate pair (Fig. 9) that is not one of the first 
four roots of unity. The result is a Hopf bifurcation to quasiperiodic 
dynamics on an invariant circle (Fig. 10). 

Subcritical and supercritical bifurcations. The flip, pitchfork, and 
Hopf bifurcations come in two varieties, the supercritical (which 
I have discussed so far) and the subcritical. For purposes of this 
discussion, suppose that the bifurcation happens when / = /c, and 
that the fixed point is stable for f < fc and unstable for / > /c. In 
the supercritical bifurcations, the unstable fixed point for / > /c 

is accompanied by a stable 2-cycle, two stable fixed points, or a 
stable invariant circle. In the subcritical bifurcations, the 2-cycle, 



MATRIX METHODS FOR POPULATION ANALYSIS 51 

D-D Survival 

40 60 80 100 120 140 160 180 200 
Reproductive Output 

<> 

5 

FIGURE 7. The bifurcation of the positive equilibrium for the model with 
density-dependent survival as a function of reproductive output F2. In- 
terpretation and parameter values as in Figure 3. 
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FIGURE 8. Phase portraits for the asymptotic dynamics of the model with 
density-dependent survival. The inner invariant curve is for F% = 52; 
the outer curve, F2 = 53; the 4-cycle, F2 = 55. Other parameters as in 

Figure 3. 
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FIGURE 9. The bifurcation of the positive equilibrium for the model with 
density-dependent growth as a function of reproductive output Fi- Inter- 
pretation and parameter values as in Figure 3. 

FIGURE 10. Phase portraits for the asymptotic dynamics of the model 
with density-dependent growth. The inner equilibrium point is for Fi = 
1150; the invariant curves are for F2 = 1250 and F2 = 1300. Other 
parameters as in Figure 3. 
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the two fixed points, or the invariant circle exist for f < fc, but 
they are unstable. At the bifurcation point fc, the original fixed 
point becomes unstable and the other structures disappear. 

What happens after a subcritical bifurcation (i.e., for / > /c) 
is hard to predict. Since the fixed point becomes unstable at /c, 
trajectories do not remain close by, but no nearby stable fixed 
points, cycles, or invariant circles appear to attract trajectories. 
Therefore, solutions leave the vicinity of the original fixed point, 
and their dynamics depend on the location of other attractors in 
the system. 

Subcritical bifurcations are not as common as supercritical ones, 
but they cannot be ignored. Neubert and Kot (1992) found that, in 
four discrete predator-prey models in which the prey alone exhib- 
ited a supercritical flip bifurcation, the system with both predator 
and prey exhibited a subcritical flip bifurcation, leading to ex- 
tinction of the predator. Guckenheimer et al. (1977) and Levin 
(1981) found subcritical bifurcations in age-structured models with 
strongly resonant Hopf bifurcations, and Dennis et al. (1995) found 
a subcritical bifurcation in a stage-structured model fit to labora- 
tory data on Tribolium populations. 

Analytical methods exist for determining whether a bifurcation 
is supercritical or subcritical, on the basis of terms in the Taylor 
series expansion of the model near the fixed point. However, these 
methods require that the model first be reduced to one or two di- 
mensions using the Center Manifold Theorem, which is not always 
easy. 

On beyond the first bifurcation. The positive fixed point of a ma- 
trix population model usually first loses stability through a super- 
critical flip or supercritical Hopf bifurcation and, then, is replaced 
by a 2-cycle or a quasiperiodic trajectory on an invariant circle. 
As the bifurcation parameter increases further, these attractors go 
through a series of bifurcations, often leading to chaos. The flip 
bifurcation is typically followed by a series of period-doublings. 
Successively higher periods are stable for smaller ranges of the bi- 
furcation parameter; eventually, trajectories become chaotic. The 
resulting bifurcation diagram is similar to the familiar diagram for 
the discrete logistic equation. 

Quasiperiodic solutions produced by a Hopf bifurcation usually 
go through a series of frequency locking events in which trajectories 
become periodic for a range of values of the bifurcation parameter. 
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FIGURE 11. Bifurcation plots beyond the first bifurcation for the three 
two-stage examples, showing the long-term behavior of total population 
size (N = n\ + ni) as a function of reproductive output (F2 or, for 
the model with density-dependent fertility, fo). Other parameters as in 
Figure 3. 

Frequency locking is followed by more quasiperiodicity. Eventually, 
the invariant circle may begin to break up. or become wrinkled or 
folded, leading to chaotic dynamics. 

Both patterns can be found in our examples. Figure 11 shows 
the bifurcation diagrams for the three models as reproductive out- 
put is increased even further, and Figure 12 shows examples of 
the attractors in the chaotic regime. Note that although all three 
models eventually become chaotic, the structures of the resulting 
attractors are quite different. 
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FIGURE 12. Phase portraits for chaotic attractors for the three two-stage 
examples, plotting n2 vs. rii for several thousand iterations, after tran- 
sients have died out. For the growth plot, the vertical axis is 100,000 xn2- 
Values of reproductive output (F2 or, for the model with density-depen- 
dent fertility, fo) are shown; other parameters as in Figure 3. 

5 Conclusion 

This chapter introduces some of the most immediately useful meth- 
ods for analyzing population dynamics with matrix models. In 
combination with Chapter 3 on stochastic models (Tuljapurkar), 
and Chapter 6 on density-dependent models (Cushing), it should 
provide the tools needed to begin the analysis of matrix models 
and to understand the relevant literature. 

Remember that the objective of a matrix model (indeed, any 
structured-population model) is to describe the individual-level 
processes of development, growth, aging, survival, and reproduc- 
tion to their population-level consequences. How much detail is 
required depends on the goals of the model. To characterize popu- 
lation response to a current environment, a linear, time-invariant 
model provides a powerful tool. To characterize the effects of popu- 
lation and environmental variability, the stochastic tools in Chap- 
ter 3 are necessary. To include feedback between the state of the 
population and the environmental conditions faced by the indi- 
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viduals, incorporate density-dependent nonlinearities and use the 
methods presented here and in Chapter 6. Regardless of the level 
of detail in the model, the analysis usually considers long-term 
dynamics, problems of ergodicity, and a perturbation analysis. 
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