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Abstract 

We describe the Phase-Space Nonlinear Control 
Toolbox, a suite of computational tools for syn- 
thesizing and evaluating control laws for a broad 
class of nonlinear dynamical systems. The Tool- 
box comprises computational algorithms for iden- 
tifying optimal control reference trajectories in 
the phase space of dynamical systems and ex- 
perimental methods for evaluating performance 
of the control laws. These algorithms combine 
knowledge of the geometric theory of modern 
nonlinear dynamical systems with efficient com- 
putational methods for geometric reasoning and 
graph search; they define the properties of con- 
trollability and robustness in terms of phase- 
space geometric structures and exploit the phase- 
space neighborhood adjacencies to obtain compu- 
tational efficiency. Compared to the traditional 
analytic control design methods, the phase-space 
based control synthesis and evaluation rely on 
high-performance computational techniques and 
are applicable to physical systems operating in 
large nonlinear regimes. Using a proof-of-concept 
physical experiment for stabilizing a nonlinear 
magnetic levitation system, we have successfully 
demonstrated the feasibility of the phase-space 
control technology. 

Introduction 
Many physical systems such as man-made electro- 
mechanical systems operate in large nonlinear regimes. 
These systems often exhibit extremely complex behav- 
iors that defy conventional analytical analysis and nu- 
merical simulations. 

This paper describes a suite of computational meth- 
ods for nonlinear control synthesis and analysis that 
computationally explore the phase space of dynami- 
cal systems guided by domain knowledge of dynami- 
cal systems and control theory. We have constructed 
a proof-of-concept physical experiment for a nonlin- 
ear magnetic levitation (maglev) control system and 
demonstrated the feasibility of the phase-space control 
technology. The maglev project serves as a testbed 
for developing practical phase-space based control al- 

gorithms, performance criteria, and evaluation meth- 
ods. 

The phase-space based control has several important 
advantages compared to conventional control design 
methods. It relies on a computational characteriza- 
tion of phase-space geometry and exploits the geomet- 
ric knowledge to guide control planning and execution. 
It captures global dynamical behaviors and requires no 
linear approximation. It explores a much larger space 
of possible control strategies than linear control meth- 
ods do. It trades computational resources with con- 
trol performance. The important stability and robust- 
ness properties of a control system are geometrically 
interpreted in phase space and can be operationally 
verified using the geometric models. We expect the 
phase-space control methods to complement conven- 
tional techniques and find niches where conventional 
methods are not applicable. 

Phase-Space Control Synthesis 
Poincare's geometric method of modern dynamical sys- 
tems provides the theoretical basis for the phase-space 
analysis and synthesis of nonlinear dynamics (Guck- 
enheimer & Holmes 1983). A phase space for a dy- 
namical system is spanned by the independent state 
variables of the system. For instance, a swinging pla- 
nar pendulum's phase space is a two-dimensional plane 
of position versus velocity. In phase space, important 
qualitative behaviors of dynamical systems are char- 
acterized by the geometric features of the space such 
as points, curves, surfaces, and volumes — equilib- 
rium points, limit cycles, stability regions, trajectory 
flows, and their spatial arrangement — that can be 
extracted, identified, and exploited through computa- 
tional means. 

Control theory and engineering provide a body of 
tools for designing linear control systems. Mathemati- 
cal results on stability and controllability of linear sys- 
tems have successfully guided practical implementa- 
tions of linear controllers. In contrast, nonlinear con- 
trol lacks general methods that provide a unified treat- 
ment of and approach to a wide class of nonlinear sys- 
tems. Recent theoretical work on the controllability of 



nonlinear systems that employs a differential geomet- 
ric approach is still far from being practical (Isidori 
1985). Conventional analytical methods have two im- 
portant limitations: they require accurate models and 
labor-intensive simulation and calibration. 

As an example of a nonlinear control system, we 
examine the well-studied control problem for legged 
robots. The hopping motion of a legged robot can 
be described as a limit cycle in a phase space of po- 
sition and velocity, with distinct points (events) de- 
lineating phases such as lift-off, touch-down, or flight 
phase of the motion (Raibert 1986). The behaviors of 
the robot are characterized by the number and shapes 
of the limit cycle. After having successfully designed 
several generations of legged robots, Marc Raibert an- 
ticipated the need for and the possibility of automatic 
control synthesis methods for designing more complex 
legged machines such as gymnastic robots: 

The strategy we chose is based on several de- 
cisions... Each of these decisions was made by hu- 
mans based on knowledge of the mechanics of the 
problem and intuition. It is not hard to imagine 
that future control systems may be able to formu- 
late strategies such as these automatically (Hod- 
gins k Raibert 1987). 

The phase-space approach provides a systematic way 
to explore the control spaces of physical systems. Rad- 
ically different control behaviors can be automatically 
synthesized and evaluated, by systematically varying 
operating conditions and initial states of the robots. 
For instance, by varying the magnitude and length of 
the thrust for the robot, distinct trajectories may be 
generated, examined, and selected according to speci- 
fied optimality criteria. 

Overview of phase-space control 

Combining the phase-space geometric description of 
dynamics with mathematical characterization of sta- 
bility and controllability from control theory, we have 
developed computational algorithms for aggregating, 
classifying, and searching for optimal control refer- 
ence trajectories (Bradley & Zhao 1993; Zhao 1991; 
1994). The main ideas of the phase-space control 
synthesis are illustrated here using the spatial ag- 
gregation framework (Yip k Zhao 1996). For sim- 
plicity, we consider the stabilization control problem 
where the control objective is to find reference trajec- 
tories to steer the system towards a prespecified goal 
state in phase space. Given the phase-space data de- 
scriptions as input, the spatial aggregation operators 
aggregate, classify, and search transform the low- 
level field data into global control policies by exploiting 
the spatial-temporal neighborhood structures of the 
vector fields. 

• Aggregation: A phase-space vector field, parame- 
terized for a particular control action, are aggregated 

into a neighborhood graph explicitly encoding adja- 
cencies for a grid of phase-space cellular regions. At 
the higher level, neighborhood graphs parameterized 
for different control actions are aggregated to a com- 
posite neighborhood graph. Two cells are adjacent 
if there is a trajectory that connects the cells under 
a certain control action. 
The nodes of neighborhood graph can further record 
probabilities of transition due to discretization or 
uncertainties in measurements. It is possible to have 
multiple edges directly connecting two cells due to 
different control actions. The edges of the graph 
can be weighed according to the quality of control. 
For instance, the weight can measure the amount 
of control resources such as time or control energy 
consumed while making the transition. 

• Classification: A neighborhood graph is classified 
into equivalence classes of cells. At the first level, the 
cells are grouped into behavioral classes according 
to robustness or other control concerns. Information 
such as the likelihood of being perturbed off the path 
is valuable for the search procedure at the higher 
level. 
At the next level, the cells in the composite neighbor- 
hood graph are classified into two classes: one cor- 
responds to the collection of cells in the controllable 
region, i.e., each cell has a path to the goal state; 
the other class comprises cells that are disconnected 
from the goal. A more sophisticated classification 
scheme labels groups of cells according to the proba- 
bility of making it to the goal starting at different ini- 
tial states in a cell. We have implemented a version 
that classifies regions into controllable, marginally 
controllable, and uncontrollable types. 

• Search: The classified phase-space neighborhood 
structure is then searched for optimal control trajec- 
tories. A control reference trajectory (or a control 
law) consists of a sequence of cells and the associated 
control actions that induce transitions from cell to 
cell. 
We have implemented an iterative algorithm that 
computes optimal paths based on a given optimality 
function (e.g. based on response time or robustness). 
Additionally, we have implemented a dynamic pro- 
gramming algorithm that efficiently identifies short- 
est paths to the goal in the graph according to vari- 
ous definitions of distance functions. 
The control paths can be computed using the system 
model or state measurements taken directly from 
the system. The paths are then stored in a table 
for efficient run-time retrieval. Sub-optimal control 
paths can also be retained to permit graceful control 
degradation in the presence of uncertainties. The 
controller can trade off the amount of computation 
with run-time control quality. 

The main steps of aggregation, classification, and 
search are summarized in Figure 1. 
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Figure 1: Spatial aggregation of phase-space control 
trajectories. The phase-space trajectories, parameter- 
ized for a particular control action, are first aggregated 
into a neighborhood graph and classified into behav- 
ioral groups according to various definitions of behav- 
ioral equivalence. Given admissible control actions, the 
classified neighborhood graphs are aggregated to form 
a composite neighborhood graph which can be then be 
classified and searched out to identify optimal control 
policies. 

Geometric interpretation of control 
performance 
We formalize the important control properties for non- 
linear dynamical systems using the phase-space geo- 
metric structures. More specifically, we define control- 
lability, stability, robustness, and optimality of control 
systems geometrically so that these properties can be 
operationally verified. 

• The controllability criterion tests if a particular tar- 
get state is reachable from a given initial state or an 
operating region of a system under a control signal. 
The set of reachable states form a subspace of phase 
space that can be computed geometrically. 

• The stability criterion tests if a system remains 
within the neighborhood of a target state for a rea- 
sonable amount of time. Stability is characterized 
by the stability region—the set of initial states that 
evolve to the same limit set. The stability region is a 
subspace of phase space that can also be computed 
geometrically. 

• The robustness criterion checks if a system attains 
the same properties when parametric or structural 
uncertainties are introduced. Geometrically, certain 
types of uncertainties like noise or measurement er- 
rors can be modeled as regions around states or a 
sequence of states. 

• The optimality criterion tests if the system achieves 
the goal with an optimal amount of resources such as 
time and energy. The consideration on the resource 
consumption parameterizes phase-space trajectories. 
Control reference trajectories are ranked according 
to prespecified optimality metric. 

The phase-space geometric definition of controllabil- 
ity and robustness becomes the basis for developing the 
experimental evaluation methods for the maglev con- 
trol system. 

The Maglev Control Experiment 
Magnetically levitated vehicles such as the German 
Transrapid train (Figure 2(a)) require active suspen- 
sion technology that maintains a constant air gap and 
dampens disturbances caused by road irregularities 
and wind loads (Eastham 1989). Figure 2(b) shows 
a maglev vehicle and guideway system with active pri- 
mary and secondary suspensions (McCallum & others 
1992). In such a system, the control objective for the 
active suspension system is to ensure a good ride qual- 
ity for passengers on realistic guideway systems. 

In the earlier work, we had developed a phase-space 
control algorithm that searches through equivalence 
classes of trajectories to synthesize a global switching 
control law (Zhao 1991; Zhao k Thornton 1992). Simu- 
lation result shows that the synthesized controller com- 
pares favorably to classical linear feedback design and 
does not require linear approximations to the model 
dynamics.   The current maglev control project aims 
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Figure 2: (a) German Transrapid magnetically levi- 
tated transportation system, (b) A maglev vehicle and 
guideway system with active primary and secondary 
suspensions, subject to aerodynamic disturbances and 
guideway variations. Such a system, often highly non- 
linear, requires a high-performance controller to ensure 
ride smoothness. 

at developing practical phase-space control algorithms 
and implementations for a prototype of maglev system 
whose dynamics resembles that of the German Tran- 
srapid. The implemented control system monitors the 
state of the maglev system, computes the required con- 
trol action, and actuates an electromagnet to counter 
disturbances. 

A maglev control system prototype 

We have constructed a prototype for the maglev con- 
trol experiment in the lab, shown in Figure 3. The 
system uses an electromagnet to suspend a steel ball in 
the air and is representative of magnetically levitated 
transportation systems (EMS system) such as the Ger- 
man Transrapid system. At the equilibrium point, the 
attracting magnetic force balances the gravitational 
force acting on the ball. However, this attractive sys- 
tem is inherently unstable1. An active controller is 
required to maintain a constant air gap between the 
ball and the magnet in the presence of disturbances. 

The block diagram of the experimental control sys- 
tem is shown in Figure 4. The data for ball dis- 
placement, velocity, and solenoid current is collected 
through photo sensors and current sensor. A 12- 
bit analog-to-digital converter samples the data at a 
rate of about 5000Hz. A digital computer (Pentium 
75MHz) implements the control algorithm and a low- 
pass filter, and provides a run-time user interface. The 
digital controller employs either a global or a local 
control algorithm, depending on the current state in 
phase space. The appropriate control signal is deliv- 
ered to the digital-to-analog converter, amplified, and 
then applied to the electro-magnet that suspends the 
ball. While the control is in progress, the user can in- 
terrupt the system through the user interface for tasks 
such as introducing disturbance. 

The maglev model 

The nonlinear model for the maglev system is de- 
scribed by 

&■ = v 

4»  - n - L"ZnI ^   > 
dt  ~ y        2mx2 

where the state variables x and v represent the vertical 
gap between steel ball and magnet and the vertical ve- 
locity of the ball, respectively. The control parameter 
is the coil current /. The other parameters are the ball 
mass m = 0.008432^, the solenoid-ball system induc- 
tance LQ = 0.00802if at the equilibrium, the desired 
equilibrium vertical gap x0 - 0.0066m, and the grav- 
itational acceleration g = 9.81m/s2. The nonlinearity 
of the system comes from the inverse square magnetic 
force law. 

f äs. 
) dt 
I is. 
I. dt 

In contrast, an EDS maglev system uses repulsive mag- 
netic force to suspend vehicles and is inherently stable. 
However, an EDS system requires superconducting circuits 
in order to reduce energy loss. 
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Figure 3: The maglev control system prototype: (a) 
Photo of the physical experiment, (b) Basic compo- 
nents. 
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Figure 4: Block diagram for the maglev control system. 

At the desired equilibrium gap x0, there is a unique 
coil current IQ for which the magnetic force exactly 
counterbalances the force due to gravity and the ball 
has no vertical velocity and acceleration. However, 
the equilibrium is a saddle node which is not stable. 
The control objective, therefore, is to stabilize the ball 
and maintain a constant air gap despite any distur- 
bances. The available control input is the coil current 
/ in the model (1) provided by a voltage-controlled cur- 
rent source, varying from 0.03A to 0.83A. The power 
supply delivers I0 = 0.38A at the equilibrium. 

Phase-Space Control Trajectory 
Design: an algorithm 

The phase-space based control algorithm determines 
a control law for a discrete sampled system. The al- 
gorithm assumes that the control objective is to move 
the system to a prespecified goal state (or set of states) 
and that the behavior of the system is governed by the 
following map: 

Zn+l = F(xn,c) 
where xn is the state vector of the system at a given 
time, c is the control input vector, and xn+i is the 
state of the system after one sampling period (it is 
assumed that the sampling period is fixed). If the be- 
havior of the system is described in continuous terms, 
the discrete equation can be obtained by integrating 
the continuous equation over one sampling period. 

The algorithm takes as input the model for the sys- 
tem, the goal state, the set of allowable control val- 
ues, and information about how to partition the phase 
space. It outputs a table of control actions, with each 
cell having its own entry in the table. The runtime con- 
trol program determines which cell contains the current 
system state and indexes into the control table to re- 
trieve the appropriate control output. 

The algorithm consists of three main steps. 
1. Partition the phase space into cellular regions2. 

2. Compute the graph of cell adjacencies. A cell x is 
said to be adjacent to a cell y if, for some allow- 
able control value c, there exists a natural num- 
ber n such that Fk(center(x),c) € x,Vfc < n and 
Fn(center(x),c) £ y. 

3. For each cell c, find a path to the goal cell (i.e. the 
cell containing the goal state). If no such path exists, 
c is marked as outside the controllable region of the 
system. Otherwise, choose one such path, and enter 
the control output corresponding to this path into 
the control table. 
Step three employs path selection algorithms to 

choose a path to the goal cell when multiple such paths 
exist. Typically, path selection will be based on system 
performance criteria. For example, if a fast system re- 
sponse is desired, short paths can be chosen over longer 
paths. 

The phase-space partition does not have to be uniform. 



Phase-Space Control Performance 
Evaluation 
Most nonlinear systems are not amenable to analytic 
characterization of control performance such as con- 
trollability and robustness. The phase-space control 
method is particularly well suited for synthesizing con- 
trol for this class of systems. The phase-space in- 
terpretation of control properties provides a basis for 
computational implementation of practical control per- 
formance evaluation methods for nonlinear systems. 
These evaluation methods can be used to experimen- 
tally validate if an implementation satisfies the design 
specification and compare different control strategies. 

• Controllable region and robustness 
The controllable region is defined as the collection 
of cells from which the goal states are reachable. 
Operationally, the region is characterized by aggre- 
gating cell transitions using measured trajectories. 
The controllable region can be labeled with sizes and 
other more refined performance characterization. 
Robustness measures the ability of the system to 
withstand disturbances. Experimentally, we char- 
acterize for each state of the system the magnitude 
and duration of destabilizing disturbance. In the 
experiment, the disturbance is introduced as part of 
the control input to the system. 
A system with a larger controllable region is gener- 
ally more stable and robust to disturbances such as 
a sudden displacement. 

• Settling time, rise time, and overshoot 
Settling time is defined as the time for the system 
to settle in the vicinity of the steady state. That 
is, it measures the time required for the transient 
state to decay. On the other hand, rise time is the 
time for the system output to reach the vicinity of 
the desired point for the first time, and measures 
the response time of the system. Overshoot is the 
maximum amount the system output overshoots the 
final value. The amount of overshoot is a good indi- 
cation of the smoothness of control and is normally 
measured as the percent relative to the final value. 
A control design typically requires trade-off between 
response time and overshooting. 
Experimentally, we define a set of iso-curves for set- 
tling time with respect to a steady state in phase 
space, shown in Figure 5. Rise time is likewise char- 
acterized. Overshoot is indirectly characterized by 
the curvature along trajectories in the neighborhood 
of an equilibrium. 

Experimental Results and Analysis 
We have implemented and evaluated the phase-space 
control algorithm on the maglev system. In the exper- 
iment, the phase space of the maglev system is par- 
titioned into a 50 by 50 uniform cellular space.   The 
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Figure 5: Iso-curves for settling time with respect to a 
stable equilibrium state, shown in phase space. 
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Figure 6: Two adjacent phase-space cells at a behav- 
ioral boundary. Each arrow, for a given control value, 
indicates the direction of the field at the cell center. 
The two shaded cells lie on a behavioral boundary since 
their field directions differ substantially. 

control space is also sampled to form a discrete con- 
trol set. The path search algorithm uses an iterative 
order en2 method (where n is the number of cells in 
the phase space discretization and c is the number of 
divisions in the control space) that does not require 
computation of all possible paths. Paths are selected 
on the basis of two criteria. The first criteria gives pref- 
erence to shorter paths (with respect to the number of 
cells contained in the path) over longer paths. The 
second criteria gives preference to paths that are more 
robust with respect to disturbances or modeling errors. 
More specifically, it prefers paths that are further away 
from the "behavioral boundaries" of the system. For 
our purposes, a behavioral boundary in phase space 
is an area of phase space where the field direction in 
neighboring cells differs substantially (Figure 6). Paths 
that use cells close to a behavioral boundary are more 
susceptible to disturbances or modeling error, since a 
small error can result in a large change in the expected 
trajectory near these boundaries. 

Figure 7 shows the control graph generated for 
the magnetic levitation system.- The control table is 
computed off-line. Real-time control is accomplished 
by fast sensing, state estimation, and control action 
lookup. The phase-space control incorporates a lo- 
cal control that takes over when the system enters the 
neighborhood of the equilibrium. 

The experimental results on the physical maglev sys- 
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Figure 7: Synthesized control paths (to the goal) are 
plotted against phase space, with lines indicating paths 
traveled for each cell. The phase space is divided into a 
uniform 20 by 20 grid for the purpose of visualization. 
Continuous lines indicate the chosen path from a cell 
to the goal state. The height of a point along a path 
corresponds to the magnitude of the control input at 
that location. 

tern show that the global, phase-space control algo- 
rithm is able to suspend the steel ball reliably under 
normal operating conditions for at least 15 minutes 
(after 15 minutes the apparatus must be turned off to 
avoid overheating of the solenoid). We have also in- 
troduced external disturbances into the system (in the 
form of a momentary current drop that results in a sud- 
den change in air gap and velocity) and experimentally 
measured the robustness of the system. 

The phase space plot of the controlled trajectory is 
shown in Figure 8. Figure 9 shows how the air gap, 
velocity, and control vary over time. The initial bump 
in the air gap plot is due to the disturbance artificially 
introduced. The controller is activated to stabilize the 
system as soon as the disturbance is detected. 

Using the phase-space performance evaluation 
method, the controllable region for the global con- 
troller is depicted in Figure 10. 

Related work 
The field of nonlinear control has developed a rich col- 
lection of design methods that apply to specific classes 
of problems (Slotine & Li 1991). For instance, methods 
of linearization and describing functions generalize lin- 
ear techniques to nonlinear systems. The technique of 
gain scheduling, for example, approximates a nonlin- 
ear control system with a piecewise-linear one and de- 
signs a linear controller for each linear piece. To apply 
the gain scheduling technique, one has to decompose 
the phase space into locally linear regions and design 
a linear controller for each region.   Phase-space con- 
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Figure 8: A sample maglev control trajectory shown 
in phase space (position x velocity). The equilibrium 
point (0.0066, 0) is inside the dense region covered by 
the orbit. Notice that the global controller is able to 
bring the trajectory back to equilibrium after an initial 
disturbance. 

trol generalizes the decomposition process to permit a 
systematic computational exploration. 

Hsu developed a cell-based method called cell-to-cell 
mapping for approximating state spaces (Hsu 1987). A 
continuous state space is discretized into regular cells 
forming a cell space. The associated map of a sys- 
tem becomes a cell-tö-cell map which maps one cell to 
another cell. The cell-to-cell mapping method approx- 
imates the stability region of an attracting cell with 
a collection of cells that eventually map to that cell. 
Our phase-space control algorithm goes a major step 
beyond the cell-based analysis. We had previously de- 
veloped a phase-space control framework for exploiting 
phase-space global knowledge to obtain high-quality 
control design (Bradley & Zhao 1993). This work fo- 
cuses on developing practical methods and implemen- 
tations for the phase-space control technology. We use 
the cell decomposition as a first order approximation 
to the phase-space geometry to develop practical con- 
trol synthesis and evaluation methods. The cellular 
neighborhood structure serves as a place holder for 
phase-space control performance data such as resource 
consumption, controllability, and robustness that can 
be actively exploited in synthesizing high-quality con- 
trol actions. Additionally, the structure permits pro- 
grammed trade-offs between computation and control 
quality. 

Research in hybrid systems, a class of dynamical 
systems that possess both continuous dynamics and 
discrete transitions, has produced a body of theo- 
ries and algorithms for control analysis and synthe- 
sis (Asarin, Maler, & Pnueli 1995; Caines & Wei 1995; 
Branicky 1995; Brockett 1993; Henzinger et al.  1995; 
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Figure 9: Experimental data from the maglev system: 
(a) Disturbance introduced at the beginning, (b) Air 
gap x vs. time. Notice that the system stabilizes af- 
ter the initial disturbance, (c) Velocity v vs. time, 
(d) Control / vs. time. The global, phase-space con- 
troller is activated whenever the position or velocity of 
the ball deviates from the desired value significantly. 
When the system is within the capture region of the 
local control, the controller switches to the local con- 
trol. 

Nerode k Kohn 1993; Stiver, Antsaklis, k Lemmon 
1995). Phase-space control systems form a special class 
of hybrid systems. The formal results obtained in hy- 
brid systems research provide theoretical characteriza- 
tions for the phase-space control systems. We have fo- 
cused on developing practical algorithms for synthesiz- 
ing control actions for nonlinear systems, using phase 
space as a geometric model. We have also character- 
ized the computational complexity for a restricted class 
of hybrid systems (Kolen k Zhao 1997). 

Recently, neural net technology has been success- 
fully applied to the control of highly nonlinear sys- 
tems. In one case, a neural net is used to model the 
inverse dynamics of a high-performance fighter jet in 
order to produce high-quality control design (Totah 
1996). However, one major drawback of the neural-net 
based controller is its lack of stability and performance 
guarantee required by the FAA certification process. 
The tools described in this paper can computationally 
characterize operational properties of these nonlinear 
controllers that are not amenable to traditional analyt- 
ical analysis. Hence, our approach is complementary 
to existing nonlinear control technology. 

Conclusion 
We have described the Phase-Space Nonlinear Control 
Toolbox for synthesizing and evaluating control laws in 
phase space. We have demonstrated, using the maglev 

6.5 7 
Position(m) 

Figure 10: Region of controllability for the phase-space 
based global control law, comprising cells marked by *. 

experiment, that the phase-space control technology 
is feasible. The current capability of the Toolbox is 
limited in a number of ways. We plan to incorporate 
and exploit additional global phase-space features, new 
optimization metrics, statistics-based evaluation meth- 
ods, and learning into the phase-space framework. The 
phase-space control is applicable to a broad class of 
physical systems operating in large nonlinear regimes, 
for which conventional linear, analytic methods are ill- 
suited. 

The rapid advances in information processing, 
micro-fabrication, and MEMS are fueling a new gener- 
ation of distributed autonomous systems (Williams k 
Nayak 1996). Our abilities to sense and act in the com- 
plex physical environments are increasingly augmented 
by massive networks of tiny, invisible sensors, actua- 
tors, and computers embedded in everything from ap- 
pliances to materials to building structures. These dis- 
tributed computational agents are immersed in phys- 
ical media and governed by the fundamental laws of 
computation and physics. Computational methods 
such as phase-space control may enable these agents to 
maximumly exploit the environment at the juncture of 
digital universe and continuous physical world. 
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