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ABSTRACT 

Sea ice is of fundamental importance in weather, climate and other geophysical 
processes. It is also an important factor for naval operations in the polar regions, in 
particular regarding transport of personnel and material in regions where sea ice is likely 
to be found and assessment and prediction of acoustic environments in polar regions. 
Ridges (and keels) in sea ice are important because they provide a rougher surface and 
thus a higher drag coefficient for both atmospheric winds and ocean currents. This 
impacts sea ice motion. In addition ridges and keels can impact travel on the ice and 
operations under the ice since they constitute barriers to easy surface travel over the ice 
and a hazard to operations in the water column just under the surface. Because sea ice 
has a large geographic extent and short time scale for variability synthetic aperture radar 
(SAR) is a valuable technique in studying sea ice, particularly since images can be 
collected through clouds and at night. SAR information on sea ice is available from 
several satellites (ERS-1 & 2, JERS-1 and Radarsat). Automated interpretation 
techniques are required because of the large number and high information content of the 
SAR images becoming available.  Here we report research on automated-computer- 
based techniques for such interpretation. The general problem that we face is to extract 
geophysical information from one or more SAR images. The work reported here concerns 
automated extraction of ridges and leads in sea jce. This amounts to segmentation of a 
sea ice surface into ice, ridges and leads. The principle approach under this grant is to 
use genetic algorithms to implement the segmentation. 

This final report on ONR grant N00014-92-J-6005 contains a summary of research 
under the grant together with an appendix of the several research papers that were 
produced under this grant. The papers themselves as well as demonstrations of the 
algorithms can be accessed through the ACERS website at the University of Michigan 
http://www.sprl.umich.edu/acers/.  Many paper have an electronic appendix accessed 
through this website that allows the reader to run some of the algorithms himself and thus 
become more familiar with their operation. The algorithms discovered through the genetic 
programming paradigm are shown to be efficient in extracting ridges features from SAR 
images, even those with low-contrast. We also apply the genetic paradigm to the problem 
of segmenting a SAR image into ridges, ice and leads. The SAR interpretation algorithms 
to which this research contributes can assure that SAR image information is available in a 
timely manner for use in ice science and naval applications. 

In this report we include a bibliography of the publications that were supported by this 
research grant.  In addition we have constructed an appendix of papers published. An 
important feature of our research is that we have constructed a world wide web site where 
users can not only access the text of the papers and high quality images, but also 
exercise the algorithms via the internet. This site called the ACERS (Adaptive 
Computation for Environmental and Remote Sensing Sciences) web site is 

http://www.sprl.umich.edu/acers/papers.html 

The sponsors of this work at NRL Stennis (Drs. Al Pressman and Florence Fetterer) 
and at ONR (Drs. Chuck Luther and Frank Herr) have contributed strongly to the success 
of this work both through financial support and through inspiration and useful 
suggestions. 
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I. Introduction and Motivation for Sea Ice Research 

Sea ice is of fundamental importance in weather, climate and other geophysical 
processes. It is also an important factor for naval operations in the polar regions, in 
particular regarding transport of personnel and material in regions where sea ice is likely 
to be found and assessment and prediction of acoustic environments in polar regions. 
Because sea ice has a large geographic extent and short time scale for variability 
synthetic aperture radar (SAR) is a valuable technique in studying sea ice. A SAR image 
is a 'radar picture' of a scene on the Earth's surface. The picture elements or pixels of the 
scene are a map of the radar reflectivity of the pixel's area on the surface. SAR images 
are particularly useful in that they can be collected through clouds and at night. Such a 
capability is clearly important in polar regions. SAR information on sea ice will be 
available from several satellites in the 1990's (ERS-1, JERS-1, Almaz, Radarsat and 
possibly an EOS SAR). Automated interpretation techniques are required because of the 
large number and high information content of the SAR images becoming available. We 
have worked to develop automated-computer-based techniques for such interpretation 
and make use of advanced methods and concepts in image processing, computer vision 
and artificial intelligence. 

The general problem that we face is to extract geophysical information from one or 
more SAR images. The work reported here concerns extraction of ridge features from sea 
images using genetic paradigm, automatic programming methods. The research reported 
here contains important results for the solution of this problem.   The SAR interpretation 
algorithms to which this research contributes assure that SAR image information is 
available in a timely manner for use in ice science and naval applications.  Ideas in the 
results reported here were fundamental to both the general scheme of the ice ridge 
feature extraction algorithms as well as the use of genetic programming methods in image 
processing for sea ice remote sensing. 

II. Research Objectives 

The objectives of research reported here follow from the circumstances discussed 
above. The objectives can be summarized as follows: 

1. Apply the genetic programming paradigm to develop an image processing 
algorithm for extracting bright curvilinear features (ridges) from SAR images of sea ice. 

2. Apply the genetic programming paradigm to the segmentation of SAR sea ice 
images into areas of differing surface roughness 

3. Apply the genetic programming paradigm to the evaluation of image processing 
algorithms for sea ice remote sensing using SAR images 

4. Apply the genetic programming paradigm to the general problem of image 
processing for sea ice image interpretation 



III.   Research Results 

The research results stemming from the objectives above can be summarized under 
four topics: 

A. Genetic programming for extracting sea ice ridges from SAR images 
B. Evaluation of sea ice interpretation methods 
C. Genetic programming for sea ice remote sensing in general. 

The most important progress has been made in the first two items. 

A. Genetic programming for extracting sea ice ridges from SAR images 
Research work on extracting ridges from SAR images of sea ice began with previous 

work by Vesecky et al. (1988). Genetic programming is a method for generating 
algorithms to accomplish a given task in a manner similar to natural selection in biology. 
A wide variety of algorithms are generated and tested against a criteria for success. Only 
the best survives the natural selection process. The skill and art of genetic programming 
are in generating the algorithms that are tested and testing these algorithms in an efficient 
manner. An excellent introduction to the concept of genetic programming and current 
techniques is given by Koza (1992). We have applied the automatic programming 
process using the biological metaphors of genetic crossover and natural selection.  In the 
process we specified a limited set of functions that includes algebraic and nonlinear 
image operators. As a fitness test for the natural selection process we compare the 
automatically generated algorithm results for a SAR image of sea ice with results of a 
manual analysis by an experienced operator. The results of the automatic programming 
are impressive, but are still not a good as a manual analysis by an experienced operator. 
The resulting algorithm and its results on a SAR sea ice image are shown in the paper 1 
of the Appendix (Daida, et al., 1995). 

This work was pursued further in Daida et al. (1996a).  Here we used genetic 
programming (GP) to complement the normal hypothesis-test derivation of such 
algorithms. The most successful solution consists of a standard GP technique with a 
dynamic fitness function. The results for SAR images of sea ice are shown in the paper 2 
of the Appendix. They are a distinct improvement over the results of Daida et al. (1995). 

B. Evaluation of sea ice interpretation methods 
Here we evaluate of the GP generated algorithms described in section A above. 

The evaluation is done using a SAR image of an Arctic ice camp. Members of the 
expedition on the ice surveyed the area for ridge and rubble features in multiyear ice and 
mapped them. We then used the algorithm of Daida (1996a) above with low resolution 
ERS-1 SAR images and extracted the ridge features. The results shown in Daida et al. 
(1996b, paper 3 in the Appendix) show that the GP algorithm performs well on low- 
resolution ERS-1 SAR images. 

C. Genetic programming for sea ice remote sensing in general 
Work under this topic includes genetic programming methods that apply both to the 

problem of extracting ridges in sea ice and to the application of GP techniques to remote 



sensing algorithms in general. The general techniques developed are summarized 
briefly as follows: 

1. Preprocessing: to speed up the use of GP techniques the problem presented to 
the GP automated programming is truncated as much as is practical, e.g. computing 
texture measures for an image before beginning the GP process 

2. Test points: use of manually interpreted test points in an image to serve and GP 
programming benchmarks 

3. Dynamic Fitness: increase the rigor of the fitness test as the programming 
process proceeds, i.e. use a relatively simple fitness test at the beginning to weed out the 
weak algorithms and then use a more rigorous and hence more complicated fitness test to 
select from among the stronger algorithms 

4. Chunking: to reduce the computational overhead we divided an image into 
smaller subimages (chunks) so that computation speed could be increased because the 
computation time was more than proportional to the image size 

5. Use of C-language: Although LISP is very well suited to GP methods, C- 
language can speed up processing on images 

6. Scaffolding: Rather than let GP attempt to generate a code ab initio we let the 
used intervene from time to time to evaluate the natural selection process and change the 
fitness test points or prune off classes of algorithm that are not practical. 

The papers by Daida et al. (1996c and 199d) describe these GP techniques and illustrate 
them with examples. These two papers are included in the Appendix as papers 4 and 5. 

IV.   Conclusions 
The primary conclusions of this research can be summarized as follows: 

1. Genetic programming techniques can automatically generate algorithms for sea ice 
image interpretation that are as good or better than algorithms generated by the normal 
hypothesis-test scheme. 

2. Evaluation of GP generated algorithms for extraction of sea ice ridges from SAR 
images shows that these algorithms perform well on ERS-1 low-resolution SAR images. 

3. We have developed and applied a number of techniques to increase the speed of 
GP methods, including preprocessing, chunking, scaffolding, etc. This makes the use of 
GP algorithms more practical since computation time is greatly reduced. 
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Extracting Curvilinear Features from Synthetic Aperture Radar Images of Arctic Ice: 
Algorithm Discovery Using the Genetic Programming Paradigm 

Jason M. Daida*. Jonathan D. Hommes*. Steven J. Ross*, and John F. Vesecky" 

*The University of Michigan. Artificial Intelligence Laboratory & Space Physics Research Laboratory 
2455 Hayward Avenue. Ann Arbor. Michigan 48109-2143 
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Abstract—This paper focuses on how a method for automated 

programming (i.e.. genetic programming) applies in the computer- 

aided discovery of algorithms that enhance and extract features 

from remotely sensed images. Highlighted as a case study is the 

use of this method in the problem of extracting pressure ridge 

features from ERS-1 SAR imagery: a problem for which there has 

been no known satisfactory solution. 

1. INTRODUCTION 

Pressure ridges in arctic ice are a significant geophysical feature 

in sea-ice research. [1] Pressure ridges (and their corresponding 

keels, which are below-water features) help to transfer kinetic 

energy from meteorological systems and polar oceanic currents 

to the ice pack. In particular, pressure ridges and keels signifi- 

cantly increase sea-ice drag coefficients, which subsequently af- 

fect sea-ice movement and deformation. 

To observe meso-scale features such as pressure ridges, research- 

ers have used satellite SAR (synthetic aperture radar) imagery. In 

such imagery, pressure ridges often appear as filamentary, curvi- 

linear features of variable width. With ERS-1. pressure ridges have 

radar backscatter signatures that differ only slightly from non- 

ridged multiyear-ice signatures. Pressure ridges subsequently ap- 

pear mostly as low-contrast features in ERS-1 imagery. Extrac- 

tion of such features bv hand for quantitative analysis has proven 

extremely time consuming and tedious. Furthermore, current al- 

gorithms have also been shown to be ineffective with either low- 

or high-resolution ERS-1 data products. [2| 

Current algorithms (e.g.. (1|. which are based on line detec- 

tion and morphology) partially extract ridge features not as cur- 

vilinear segments, but as disjointed short segments and points. 

Current algorithms also extract many other non-ridge features— 

also as short segments and points—which result in a significant 

amount of clutter. We have hypothesized that texturally-filtered 

images have sufficient information for clutter removal and curvi- 

linear feature enhancement. However, the number of possible tex- 

turallv filtered images is large: and a proper combination of them 

is unknown. Consequently, we have chosen the genetic program- 

ming paradigm as a wav to derive and systematically test possible 

algorithmic solutions. 

2. OVERVIEW OF GENETIC PROGRAMMING 

The genetic programming paradigm is a bottom-up. unsuper- 

vised programming method by Koza [3| that uses the biological 

metaphors of genetic crossover and natural selection for auto- 

matic programming. This fairly recent method loosely belongs to 

the class of domain-independent techniques in artificial intelli- 

gence (including neural nets and genetic algorithms) and is dis- 

tinct from top-down automatic programming methods using plan- 

ning techniques (e.g.. [4]). Genetic programming represents one 

of the few approaches that exploit combinatorial search and that 

are capable of automatically deriving non-trivial code [5|. The 

paradigm has alreadv been applied to solve a wide variety of prob- 

lems in a number of domains, including an image analysis prob- 

lem using feature vectors that were previously derived from im- 

age data [6|. However, as far as we know, there exists no pub- 

lished account of applying the paradigm directly to remotely sensed 

image data for solving geoscience problems. 

3. PROBLEM-SPECIFIC IMPLEMENTATION 

As in most domain-independent techniques, genetic program- 

ming requires the specification of a problem-specific portion of 

the genetic programming code. We have specified a limited set of 

terminals that includes subsets from an image and its associated 

texturallv filtered counterparts (e.g.. mean, variance) We have 

also specified a limited set of functions that includes algebraic 

and nonlinear image operators. The most difficult specification 

has been in deriving an appropriate fitness measure. Table 1 shows 

our current specification, which describes this situation: given 

one (8x 8 pixel) training set. derive a nonlinear ROI (region-of- 

interest) filter for pressure ridges in an entire image 

To evaluate the code, all of the benchmark matrices (8x8 

subimages of intensity data and corresponding texturallv- filtered 

subimages) were replaced with full-sized image data. 

4. RESULTS & DISCUSSION 

Table 2 shows the current algorithm (in LISP) that has been 

derived under the specifications described in Section 3. It has not 

been simplified, which has resulted in occasional sections of re- 

dundant code (e.g.. subtracting a matrix from itself). The par- 
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ticular run that developed this individual took about an hour on 

a Sparc 2. 

Figs, lc and Id show the results of this code on a 128x128 

pixel image. (At the time of this writing, we were not ready to 

execute the code over a full-size image. We are contemplating 

porting the code from LISP to parallel C++) Dark areas are the 

ROI in which there exists a high probability of finding a ridge. 

Upon close inspection, the results show that the algorithm has 

correctly identified the possible ROI. On one hand, the result is 

surprising since only one benchmark was used: conventional wis- 

dom suggests that multiple benchmarks are needed to automati- 

cally generate robust code. Indeed, of the 64 pixels the genetic 

program had available to it. only 18 pixels (hand-selected) were 

used to derive an appropriate fitness measure. 

Table 1. Problem-Specific Characterization 

Terminal Set Consists of a list of n selected points from an 8x8 
benchmark, as well as corresponding points from 
four 8x8 filtered subimages (5x5 Laplacian of a 3x3 
Mean. 5x5 Laplacian. 3x3 Mean. 5x5 Mean), and 
a random floating-point constant. 

Function Set Arithmetic operators defined to operate on matri- 
ces and constants in any combination (+. -. *. /). 
and the threshold operator If-Less-Than-or-Equal 
(IFI.TE). 

Fitness Cases List of »manually selected points from benchmark. 
Pixels that are part of pressure ridge features are given 
a gray-scale value of 255 and all other non-feature 
pixels take a value of zero. 

Raw Fitness The sum over all n fitness cases of the difference 
between the target value and the output value for a 
given individual. 

Standard Fitness       (Number of fitness cases. /;) - (Number of hits). 

Hits The number of fitness cases for which an individual 
programs output is less than 50 away from the tar- 
get gray-scale value of 255 or 0. 

Success Predicate The run ends when an individual program scores a 
hit on every fitness case or when the maximum num- 
ber of generations is reached. 

On the other hand, the result is typical of how genetic pro- 

gramming works. Genetic programming is parsimonious, espe- 

cially when it comes to specifying functions and terminal sets. 

Either over-constraining a fitness function (e.g.. by supplying too 

many data points to fit) or over-specifying the number and type 

of terminals and function sets has been found to be detrimental 

to algorithm discovery. In a sense, the paradigm forces a researcher 

to throw out as much of the extraneous information as is possible 

and to retain only a minimal set of functions and terminals from 

which to build a program. While this type of algorithmic behav- 

ior is unacceptable for many applications, it is acceptable, per- 

haps even desirable, in scaffolding the discovery process for other 

algorithms. 

5. CONCLUSIONS & FUTURE WORK 

This paper demonstrated how the genetic programming para- 

digm can apply to image processing. An open ended case example 

was studied, which involved deriving a nonlinear ROI filter for 

low-contrast curvilinear features. This paper has shown that the 

genetic programming paradigm can be used in the discovery pro- 

cess of deriving image processing algorithms. 

Near-term future work features testing the robustness of the 

best-individual found so far. Other near-term work includes modi- 

fying the problem-specific code to include a dynamic fitness mea- 

sure that uses generational benchmark swapping, which mav help 

in deriving robust code. 

We note that our specification for the problem-specific por- 

tion of the code is also generalizable to other similar problems 

that involve extracting features from image data. Finally, we be- 

lieve that our specification is also generalizable for use with multi- 

spectral (and possibly multi-sourced) image data, since the mul- 

tiple textural channels for each of our benchmarks can be replaced 

with a spectral channel. 
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Table 2. Best-of-Run Individual 

(+ (+ Laplacian-of-MeanMean^J (- (+ 1.9492742 Mean^J (x (- 

(x (- (< Meart^-4.42039 (- (-MeanM Mean^^) (< (+ Laplacian.^. 
Mean^ (< Image Mean.s%. Image Mean. ^ (-^-Laplacian.^. Mean,^) 
{^Laplacian-of-Mean Mean.x.))) Mean.m) (- Mean^ -4.87104)) 

(- (--4.721524 Image) l+Mean.^ 3.8854232))) (- (-*(- (-Mean.^ 
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Mean^ (< Image Mean.n. Image Mean. J (+Laplacian.n. Mean^.) 
(+ Laplacian-of-Mean Mean.J))) Laplacian..) (- Laplacian.^ 

Mean.ws) (- (+ (-Mean^ Laplacian.^.) (x Laplacian,^ 
Laplacian.^.)) (< I+Laplacian.^ Mean^) (< imaje Mean.^ Image 

Mean.x.) (-Laplacian.^. Mean^J) (- Laplacian-of-Mean 
Mean"j)))) (+ (- (- (x"(- (x (-"(< .fc,,, 4.42039 (< (+ 
1.9492742 Mean2x.) (x (< /ma^p foa^f Laplacian.^ Image) (+ 

Laplacian-of-Mean Laplacian-of-Mean)) (+ /ma^p Mean.w) (x 

Ma/j,^ Man, J) Mea/i.,,) (- Man,,., -4.87104)) (- (- -4.721524 
Imagefl+Meanl- 3.8854232))) (+ (-('- (x -1.2301508 0.2565225) 
(< (+ 3.6199708 MB/J.J (- Image Image) (--2.134516 %P) 
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Figure 1. (a) Pressure ridges often 
appear as low-contrast curvilinear 
features in low-resolution SAR 
imagery, (b) 128 x 128 subimage 
from April 23. 1992. ERS-1 
©ESA 1992. Although contrast- 
enhanced, the figure still does not 
show all of the pressure ridge fea- 
tures that can be detected by eye. 
(c) Solution from best-of-run in- 

dividual (with image overlay.) 
Areas where there may be a ridge 
are darkened, (d) Solution (only) 
from best-of-run individual. 
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21 Algorithm Discovery Using the Genetic Programming 
Paradigm: Extracting Low-Contrast Curvilinear Features 
from SAR Images of Arctic Ice 

Jason M. Daida, Jonathan D. Hommes, Tommaso F. Bersano-Begey, Steven J. Ross, 
and John F. Vesecky 

This chapter discusses the application of genetic programming (GP) to image analysis problems in 
geoscience and remote sensing and describes how a GP can be adapted for processing large data sets 
(in our case. 1024 x 1024 pixel images plus texture channels). The featured problem is one that has 
not been adequately solved for this type of imagery. We describe the placement of GP in the overall 
scheme of algorithm discovery in geoscience image analysis and describe how GP complements a 
scientist's hypothesis-test derivation of such algorithms. The featured solution consists of a standard 
non-ADF GP that incorporates a dynamic fitness function. 

21.1 Introduction 

Computer-assisted design of image processing and analysis algorithms has helped scien- 
tists in five ways, all of which allow them to focus on their domain of expertise. First, 
repetitive processing sequences can be automated (i.e.. task planning) [Chien 1994]. [Matwin 
et al. 1995]. Second, fine-grained algorithmic detail—like data models and code-level pro- 
gramming—can he hidden to facilitate rapid prototyping of algorithms (i.e.. visual pro- 
gramming) [Chang et al. 1990]. [Konstatinides and Rasure 1994]. [Rasure and Williams 
1991 ]. Third, the extraction of patterns and features in an image can be automated. In some 
applications, patterns that may have escaped notice can be automatically sought for. ex- 
tracted, and brought to a scientist's attention (e.g.. data mining) [Hsu and Alexander 1994]. 
[Koch and Moya 1994]. [Nguyen and Huang 1994], [Openshaw 1995]. [Tackett 199?]. 
Fourth, all algorithmic development can be hidden, which often involves automatic pro- 
gramming of image algebraic systems (e.g.. automatic programming) [Barrera et al. 1994]. 
[Chen 1992], [Vogt 1989]. Fifth, algorithmic development can be selectively exposed to 
guide a user, as well as to scaffold discovery of other algorithms. This chapter focuses on 
the fifth area and discusses the genetic programming paradigm [Koza 1992. 1994] as it 
applies to the computer-assisted design of classification filters for image processing. High- 
lighted as a case study is the use of genetic programming in the problem of extracting sea- 
ice pressure-ridge features from ERS SAR (synthetic aperture radar) imagery: a problem 
for which there has been no known satisfactory solution. 

This chapter consists of seven sections. Section 21.1 covers background material, while 
Section 21.2 elaborates upon the use of GP as a method for scaffolding scientists in the 
algorithm-design process for image processing and analysis. Section 21.3 gives an over- 
view of the implementation. Section 21.4 describes procedures and results concerning this 
chapter's case study. Sections 21.5 and 21.6 discuss the results, with the former emphasiz- 
ing GP matters and the latter emphasizing domain-related issues. Section 21.7 concludes 
this chapter. 

Preprint To appear in Advances m Generic Programming ti P Angeline and K Kmnear (ed ) Cambridge The MIT Pre« 1996 



Figure 21.1 
(a) Pressure ridges appear as low-contrast features in ERS SAR imagery, (a) 200 x 200 subimage from April 23. 
1992. ERS-I © ESA 1992. (hi Enlarged 32x 32 subimage from la). Although these figures are contrast-enhanced, 
they still do not show all of the pressure ndge features that can be detected by eye. 

21.1.1 Domain of Case Study 

The particular domain considered in this chapter involves extracting pressure-ridge features 
from ERS (European Remote Sensing Satellite) SAR images of arctic sea ice.1 Pressure 
ridges are a significant geophysical feature in sea-ice research: ridges (and their corresponding 
keels, which are below-water features) help to transfer kinetic energy from meteorological 
systems and polar oceanic currents to the ice pack. In particular, pressure ridges and keels 
significantly increase sea-ice drag coefficients, which subsequently affect sea-ice move- 
ment and deformation [Burns and Wegener 1988]. (Mellor I986|. [Vesecky et al. 1990], 

Pressure ridges often result when thinner, first-year sea ice buckles under compression 
from thicker, multiyear ice. Since first-year ice often forms in long cracks (sometimes up to 
several hundreds of kilometers in length) between multiyear ice. pressure ridges usually 
appear as linear features on the ice cover. To a person standing on the ice. a new pressure 
ridge would appear as a several kilometer long hill about 5-10 m high and made of shat- 
tered, broken blocks about a meter thick [Mellor 1986]. When ridging occurs in a general 
area over an extended period of time, ridges consolidate to form rubble fields, which can 
also play a significant role in the transfer of kinetic energy. 

When imaged with SAR. pressure ridges and rubble fields often appear to be brighter 
than their surrounding background (i.e.. ridges and rubble have a slightly higher backscatter 

Like manv other radars. SAR allows for all-weather, day or night operation. That is helpful in our case hecau-e 
sea ice occurs in areas of extended winter darkness and thick cloud cover. 



signature). However, to say that pressure ridges appear as bright, curvilinear features in 
SAR imagery is to state something of an oversimplification. Pressure ridges appear as cur- 
vilinear features of varying width that often degenerate into blobs (rubble fields). Their 
radar backscatter. and hence their brightness in an image, greatly depend upon the particu- 
lars of a given SAR instrument. 

When imaged with the SAR on board a European Space Agency ERS satellite (currently, 
ERS-1 and ERS-2). pressure ridges have radar backscatter signatures that differ only slightly 
from non-ridged multiyear-ice signatures. Pressure ridges subsequently appear mostly as 
low-contrast features in ERS imagery. (See Figure 21.1.) Extraction of such features by 
hand for quantitative analysis has proven extremely time consuming and tedious. Extrac- 
tion of such features by current image processing algorithms has also proven untenable for 
several reasons, including: difficulties in specifying a shape grammar (as is possible in 
extracting roads from SAR imagery), low contrast (the sensor was optimized for other ap- 
plications), clutter, and lack of ground truth (the phenomena occurs in remote locations), 
(c/ [Vesecky et al. 1990]. which used data from a different SAR). 

21.1.2 Objectives 

We have hypothesized that there exists enough textural information in an ERS SAR image 
from which to design an ROI (region-of-imerest) filter, a kind of spatial classifier that local- 
izes the search area within which a particular feature can be found. However, the number of 
possible texture measures is large; and a proper combination of them is unknown.: Conse- 
quently, this chapter has several objectives: 

• To describe the computer-assisted design of an image processing algorithm using a GP. 

• To present a GP-derived solution for the case at hand. 

• To offer an innovative approach in specifying fitness for problems using large data sets. 

21.1.3 Contributions 

This work makes the following contributions: 

• Both this chapter and [Daida et al. 1995a] represent the first works featuring GP for 
image processing applications in geoscience and remote sensing. (Some of the special con- 
siderations of usi-ng image processing in these fields are given in Sections 21.2.2 and 21.3.) 

' [Harahck and Shapiro 1992] gives an excellent overview in the treatment of texture in image processing. I In their 
work, they recognize thirteen major approaches to texture. Note that in just one of those techniques under those 
approaches—i.e.. Haralick's gray-level co-occurrence matrices—consists of eight texture measures. The number 
of variations that can be tried with just these eight measures can significantly increase the total number of mea- 
sures to consider in solving a given problem. I Throughout ihis chapter, we use the terms texture measure, texture 
filter, and texture channel as loosely interchangeable in deference to a textural energy approach. 



• Presents an algorithm for extracting pressure-ridge features for ERS SAR imagery, a 
problem for which there has been no known satisfactory solution. 

• Describes a general method for incorporating GP into scaffolded algorithm discovery for 
pattern recognition and classification of image data. We believe this method would also 
apply to image and texture types not presented in this chapter (e.g.. multispectral images). 

21.2 GP in Context of Scaffolding Algorithm Development 

Algorithm design involves a wide range of activities that can span over several disciplines 
(e.g.. computer science, mathematics, the domain science). Consequently, when we say that 
GPcan be used for computer-assisted design of algorithms, we need to qualify where in the 
design process a method like GP would apply. This section describes our particular use of 
GP in the design process, notably in the scaffolding of algorithm discovery. 

21.2.1 Scaffolding 

Scaffolding—a term borrowed from education and learning theory—refers to supporting 
learners while they engage in activities that are normally beyond their reach [Brown and 
Palincsar 1989]. [Vygotsky 1978]. [Wood et al. 1975]. (The term metaphorically alludes to 
the temporary rigging that is erected around, say. a statue under construction.) Although 
scaffolding can take many forms, an accessible form is thai of a mentor guiding an assistant. 
Current research in education includes extending the concept of scaffolding to include com- 
puter-assisted learning, (e.g.. [Guzdial 1995]. [Merrill and Reisner 1993]) 

In this chapter, we use the term scaffolding to include the computer-assisted support of 
experts (e.g.. scientists, image analysts) who engage in activities that have an incompletely 
specified goal. (In a sense, even experts become learners when confronted with novel prob- 
lems.) Incompletely specified goals are commonly encountered during the development of 
algorithms for interpreting remotely-sensed imagery, especially when: 

• Firsthand knowledge (i.e.. ground truth) of the area depicted in the scenes of interest is 
incomplete or missing. 

• There is a high degree of ambiguity in how the phenomenon appears in a scene. 
The case of extracting pressure-ridge features from ERS SAR imagery is typical of com- 

putational problems in remote sensing with incompletely specified goals for feature extrac- 
tion [Cogalton 1991]. [Daidaet al. 1995b]. [Lunetta et al. 1991 ]. Such computational prob- 
lems often require extensive algorithm development, usually because a fair amount of do- 
main-specific information needs to be built into the feature extraction algorithm. For that 



reason, "off-the-shelf software rarely succeeds and tailor-made code becomes the rule, 
rather than the exception. 

With the overall task of discovering and creating a tailor-made algorithm comes a whole 
series of subtasks. of which only some of these subtasks can be replaced with GP. Conse- 
quently, before we can incorporate GP for computer-assisted support of algorithm discov- 
ery and development, we need to review some of these key subtasks. 

21.2.2 GP and Scaffolding 

For many applications. GP is used not as a scaffold for supervised design, but as a black box 
for unsupervised programming. On one hand, a black-box approach presupposes that per- 
formance metrics can be reasonably specified in advance of a GP run. There are three key 
subtasks that are subsequently involved: selection of components (i.e.. function and termi- 
nal sets), selection of an evaluation metric (i.e.. fitness function and fitness cases), and 
generation of an algorithm. With a black-box approach, a user supplies as input both algo- 
rithm components and performance metrics. GP. in turn, yields as output a program that fits 
the specifications that are implicit in the supplied metrics. In this way form follows func- 
tion, as a GP '•discovers*' an appropriate form (an algorithm) to meet a prescribed func- 
tionality. Note that with this approach, functionality of a program is usually not in ques- 
tion—i.e.. a programmer knows what she wants before the algorithm is ever written. Subse- 
quent amendments to black-box inputs often end up serving as adjustments for getting GP 
to run on a particular problem. 

On the other hand, a scaffolded approach does not necessarily presume that performance 
metrics are well-specified at the outset of a GP run. Under this approach, functionality of an 
algorithm can be very much in question—i.e.. a programmer does not necessarily know 
what exactly needs to be accomplished. For example, specifying fitness cases for ridge 
extraction is anything but an absolute science. While it would be common for experts to 
agree that a ridge feature does exist in a particular location in an image, it would also be 
common for variations to exist on a pixel-by-pixel characterization of that ridge between 
those same experts. Furthermore, even with one expert examining a ridge, there is com- 
monly a variation over time as that expert gains experience in seeing that type of feature. 

An expert usually gains experience by formulating and then testing a hypothesis. For our 
domain problem, an expert would formulate a hypothesis that consists of classification rules 
(a kind of algorithm) categorizing ridge and non-ridge features in a sample subset. That 
hypothesis would be tested by applying those rules to an out-of-sample subset. Depending 
on that test's outcome, a hypothesis would be refined and another test would he run. Classi- 
fication usually improves in this way. Discovery of what completely specifies a ridge fea- 
ture becomes intrinsicallv linked with discoverv of an algorithm that extracts such features. 
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"Form" and "function" drive each other in a closed interactive cycle that, subsequently, 
involves several key subtasks: selection of components, selection of an evaluation metric 
(with fitness cases from a sample subset), generation of an algorithm, and an evaluation of 
that algorithm (with an out-of-sample subset). 

We contend that GP can be used as a scaffold within this cycle of hypothesis-test by 
enabling the formulation of hypotheses of what would be involved in classification and also 
by facilitating rapid testing of these hypotheses to check for consequences. In comparison 
with a black-box approach, a user would supply as input both algorithm components and 
performance metrics. GP. in turn, would yield as output an algorithm that may fit the speci- 
fications that are implicit in the supplied metrics. By so doing, a hypothesis takes the form 
not as a full-blown algorithm, but as an algorithm sketch that consists of guesses and as- 
sumptions of what pans would make up such an algorithm. GP is then left to figure out the 
programming details. In contrast, a scaffolded approach requires a user to evaluate the per- 
formance of that algorithm on an out-of-sample subset to test not only the robustness of a 
GP-derived solution, but also the validity of the assumptions that went into a hypothesis. A 
user is then expected to modify a hypothesis should evidence so warrant. Unsupervised 



programming and generation of a program then, becomes only one aspect in scaffolding a 
hypothesis-test cycle. The other relevant aspect includes educating an expert. 

Figure 21.2 shows a flowchart of how we incorporated GP into this cycle. The upper half 
ofthat figure (boxed section) indicates those processes that are open for human interven- 
tion. The lower half indicates those processes that are intended mostly for autonomous 
operation. We designed this process to deliberately establish a problem-solving partnership 
between human and computer. The next section describes the components of Figure 21.2 in 

further detail. 

21.3 Implementation Overview 

Image analysis/processing problems in remote sensing and geosciences pose at least two 
major challenges to genetic programming: memory requirements and computational inten- 
sity.' Memory requirements are usually large: one image may typically have a size that 
measures in megabytes (e.g.. a low-resolution data product) to tens of megabytes (e.g.. a 
high-resolution satellite radar data product) to hundreds, even thousands of megabytes (e.g.. 
a hyperspectral data product). Low resolution ERS SAR data products like the ones fea- 
tured in this chapter are one megabyte in size (not including an image's meta-data). Compu- 
tational intensities are reflected in processing times for typical geoscience image process- 
ing/analysis algorithms: many algorithms require CPU minutes; some, even CPU hours. 
Evaluation of even modestly sized populations of algorithms could require inordinate amounts 
of memory and processing times. 

There exist at least two approaches to address these challenges: indirect processing using 
feature vectors and direct processing using training sets. Both approaches attempt to bring 
the memory and computation requirements down to GP-manageable levels: using feature 
vectors assumes that germane information can be described by an intermediate data product 
that is computationally derived and smaller in size than the original data set: using training 
sets assumes that there exists a small subset of the original data that adequately represents 
the image data in loio. The net effect of either approach is to constrain in size the amount of 
data used as input terminals for GP. We note that meeting this constraint is nontrivial and 
amounts to condensing information contained in several megabytes of image data into pro- 
gram inputs as small as a few hundred bytes.J While these constraints may seem severe, 
previous work has shown that working within these constraints is doable. [Tackett 1993] 
was the first to use genetic programming for image analysis problems. His work featured 

These challenges applv mostly to geoscience image processing. In comparison, many induslnal (machine-vision) 
applications require video-frame rate processing times for images much smaller than a megabyte per frame, 
'in some of our early work, we were working with compression ratios of roughly 60.000:1 (Daida et al. IWa]. 



the indirect approach and applied GP to twenty statistical features that were derived from 
simulated infrared images. Likewise. [Nguyen and Huang 1994] also uses feature vectors to 

reduce memory and computational overhead. 
This chapter describes an implementation based on the second approach. A key reason 

for using subimage training sets instead of feature vectors involves the presence or absence 
of a "grammar" that can be used to describe scene content. Man-made objects, like Nguyen 
and Huang's airplanes, can be decomposed into shape primitives, which can serve as a kind 
of grammar from which other airplanes can be modeled. Other man-made objects, like 
Tackett's infrared targets, can be decomposed into a series of metrics that can reasonably 
separate objects of interest from their background. In contrast, natural and geophysical 
objects often resist shape or metric decomposition because such decompositions usually 
suffer from a large number of exceptions. For that reason, "(machine) learning by (training 
set) example" is an option when working with natural objects. This chapter builds upon 
work previously presented in [Daida et al. 1995a] The following sections present an over- 
view of our implementation of GP fitness measures. 

21.3.1 Terminals 

In addition to a stochastic variable (floating point), all of the terminal sets in this chapter use 
the same combination of image data and texture tillers: image data. Laplacians„< of Mean,„,. 

Laplacianv?. Mean,*,, and Mean5y*. 
This set of texture filters is based on Marr's work on representing an image [Marr 1982]. 

The first two filters (Laplacian5x< of Mean,,,, which is an approximation to V"C. and 
Laplacian^) are edge-detection type filters, which help to enhance ridges. The particular 
implementation of these filters involves rescaling the lonal values to fit an unsigned eight- 
bit gray scale. The last two filters (Mean,*, and Mean<x?) are low-pass filters (for differing 
spatial scales), which help to enhance non-ridge features in first-year and multiyear ice. 
Note that subscripts appended to each filter name refer to the size of the convolution kernel 

associated with that filter. 

21.3.2 Function Sets 

Except where noted, we have used a similar function set that has been featured in many of 
the early test problems in GP[Koza 1992]. including: arithmetic operators +. -. *. andx. as 
well as the logical operator If-Less-Than-or-Equal-to (IFLTE. shown in this chapter as <). 
The selection of these functions were chosen in pan because of their use in image process- 
ing of multichannel data (e.g.. spectral ratioing. see [Lillesand and Kiefer 1987]). Unlike 
their mathematical counterparts, these operators have required a few algorithmic modifica- 
tions to account for being closed under integer (unsigned eight-bit) arithmetic and mixed 



Table 21.1 
Arithmetic Operators. 

Arguments (Type Argument,. Type Argument.) 

Operation      Implementation (Arrav. Arravl (Array. Number) (Number. Numberl 

(Plus) 

P 
(Plus) 

(Minus) 

M 
(Minus) 

(Multi- 
plication) 

I 
(Protected 
Division) 

Iv + \ I modulo 255 

(v+ v): if (A + vl<0.0: 
if <.v + v) > 255. 255: 

cast (A - vias unsigned 
byte, then modulo 255 

(.<•- v): if (v- vi<().0: 
it (v - v) > 255. 255: 

l.iv) modulo 255 

(A 7v) modulo 255: 
if v=0. (\ /vi =1 

Adds arrays element 
by element 

Adds arrays element 
by element 

Subtract arrays 
element by element 

Adds arrays element 
by element 

Multiplies arrays 
element by element 

Divides arrays 
element bv element 

Adds number to each 
array element 

Adds number to each 
array element 

Subtracts number from 
each array element 

Subtracts number to 
each array element 

Multiplies number 
to each array element 

Divides number (array 
element) by each 
arrav element (number) 

Adds number lo 
number 

Adds number to 
number 

Subtracts number 
from number 

Adds number to 
number 

Multiplies number 
by number 

Divides number by 
number 

data type usage (i.e.. numbers and arrays). Note that we have used two versions of arith- 
metic + and -Tables 21.1 and 21.2 describe the function set used by the problem-specific 
code described in this chapter. 

21.3.3 Fitness 

Fitness is computed over a training set that consists of image test points, as opposed to an 
image or even a subimage. For the purposes of this chapter, we define a test point as an array 
of pixel values at a point (.v. y) in an image that has the form m. y) x /(.v. y) x 7"„(.v. \)x ... 
x Tst.v. y). where <.•(.) is a manually derived classification of an image at location (.v. y). /(.) 
is the pixel intensity value for an image at location u.y) and 7\-(.) is the pixel intensity value 
for the image that has been processed by the Mh filter in a bank of textural filters. Since in 
the case of extracting pressure ridges the relevant classifications are either "ridge" or"non- 
ndge" features. c(.) is simply a Boolean quantity. 

We have noted in [Daida et al. 1995a] that use of subimages for the case at hand, even 
with subimages as small as 8 x 8 pixels, produces two undesirable effects. 

• Computational intensity dramatically increases, with the result of slowing execution du- 
ration down from CPU minutes (or hoursl to CPU days. 

• The accuracy of the resultant ROI algorithm significantly decreases. 

This is true for all cases of subtraction. However m retrospect, there should have been a distinction between 
Arrav-Number and Number-Array. The Haw went unnoticed until recently, in pan because GP found a workaround. 



Table 21.2 
IFLTE operator. This operator has the form of (IFLTE Argument, Argument. Argument. Argument,), i.e.. IF 
Argument, < Argument. THEN Argument, ELSE Argument,. 

Argument,    Argument.     Argument,     Argument,      Comments  

Returns an array whose mh element is from either 
the mh element of Arg, or the mh element of Arg, 

Returns an array whose mh element is from either 
the mh element of Arg, or the number of Arg, 

Returns an array whose nth element is from either 
the number of Arg, or the mh element of Arg, 

Returns an array whose nth element is from either 
the number of Arg, or the number of Arg, 

Returns an array whose mh element is from either 
the mh element of Arg, or the mh element of Arg, 

Returns an array whose mh element is from either 
the mh element of Arg, or the number of Arg, 

Returns an array whose mh element is from either 
the number of Arg, or the mh element of Arg, 

Returns an array whose nth element is from either 
the number of Arg, or the number of Arg, 

Returns an an-ay whose mh element is from either 
the mh element of Arg, or the mh element of Arg, 

Returns an array whose mh element is from either 
the /ith element of Arg, or the number of Ars, 

Returns an array whose mh element is from either 
the number of Arg, or the mh element of Arg, 

Returns an array whose nth element is from either 
the number of Arg, or the number of Arg, 

Returns an array that is either Arg, or Arg, 

Returns either an array l Arg) or a number (Arg,) 

Returns either a number i Arg,) or an array (Arg,) 

Retunis a number that is either Arc, or Arg, 

Array Array Array Array 

Array Array Array Number 

Array Array Number Array 

Array Array Number Number 

Array Number Array Array 

Array Number Array Number 

Array Number Number Array 

Array Number Number Number 

Number Array Array Array 

Number Array Array Number 

Number Array Number Array 

Number Array Number Number 

Number Number Array Array 

Number Number Array Number 

Number Number Number Array 

Number Number Number Number 

A fitness input consisting of entire subimages apparently provides a GP with too much 
information at any one time, with much of the information being either extraneous or re- 
dundant. For that reason, we have used manually classified test points instead of subimage 
arrays. Note that a manual classification consists of a user's best guess of what classifica- 
tion to apply to each test point, which may not necessarily coincide with the underlying 
reality of each test point. (See also Section 21.5.) 

21.3.4 Implementation Notes 

Texturally filtered images that correspond to filters 7",, through Tv (where N = 3) were ob- 
tained using NIH Image running on a Macintosh computer. Selection of test subimages and 
generation of concatenated image files that were used by the GP input- and output-wrap- 

NIH Image is a public domain image processing and analysis program by W. Rasband that is available via 
anonymous ftp at zippy.nihm.nih.gov in directory /pub/image 



pers were implemented largely with custom-made NIH Image macros. 
All implementations of the code associated with the GP were done in LISP (Allegro 

Common LISP) and run on a Unix workstation (either a SunSPARC 2. SunSPARC 20 or 
HP 715) that typically had 32 MB RAM. These programs included custom-made input- 
terminal generators (which are implicit in the step "Select Test Points"), custom-made visu- 
alization-wrappers (which are implicit in the step "Evaluate Best S-Exp"). our fitness func- 
tions, and a slightly modified version of Koza's GP kernel (modifications were mostly for 
input/output). We note that the IFLTE function was done as a LISP macro, as opposed to a 

LISP function. 
Even with 32 MB RAM. a workstation cannot process in LISP a full 1024 x 1024 eight- 

bit image without running into memory problems. .For that reason, all low-resolution ERS 
data products were chunked into 128 x 128 pixel subimages in NIH Image ith a custom 
macro) before applying a GP-derived algorithm (an s-expression). The chunked subimages 
were reassembled in NIH Image (with another custom macro) after processing (i.e.. during 
the step "Evaluate Best S-Exp"). 

One key feature in the GP-assisted design process lies in the placement of the feedback 
loop (see Figure 21.2). Note that for many GP applications, the acceptance or rejection of 
an algorithm can be largely determined by that algorithm^ fitness measure. For our particu- 
lar application, a fitness measure is only a rough indicator of performance, largely because 
the input terminals represent only a small fraction of an entire data set (i.e.. many low- 
resolution data productsi. Consequently, an algorithm needs lo be evaluated over a much 
larger data set than is represented by the training set of test points. For our purposes, we 
processed 128 x 128 pixel subimages to make intermediate decisions about algorithm per- 
formance, since that size subimage was about as a large a data set as our LISP visualization- 
wrapper could accept in one pass. In this way. feedback and the scaffolding of "what is 
important" in extracting ridge features was based on a qualitative assessment of output 
image data, rather than relying on a quantitative metric dike a fitness measure). 

21.3.5 Image Data 

The image data featured in this chapter is part of a larger series of temporal SAR data 
beginning in August 1991 and ending in July 1992. This data set describes the synoptic- 
coverage of an area in the Beaufort Sea gyre (roughly 72° N. 140° W). The particular area 
and year of coverage were chosen to coincide with the LEADEX campaign. All the images 
shown in this chapter are low-resolution ERS-1 SAR data products. 1024 x 1024 pixels in 
size, eight-bit gray scale, calibrated. 100 m pixel size, and non-geocoded. Figure 21.3 shows 
the particular images that are featured in this chapter. Note that Figure 21.3b represents the 
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Figure 21.3 
ERS-I SAR images featured in this chapter Both images are contrast-enhanced for publication and are 1024 x 
1024 pixels in size, which is approximately equivalent to 100 x 1(X) sq km. The black stripe on the right of each 
imaee indicates an absence of imaee data for those corresponding locations. A gray-level histogram for each 
image is also shown, (a) March 2. 1992. ©ESA 1992. Ibl April 23. 1992. ©ESA 1992. 



image that contained fitness test points: Figure 21.3a represents the image that did not. 

21.4 GP-Assisted Discovery Using A Dynamic Training Set 

Our first work on using GP for this domain problem [Daida et al. 1995a] featured the use of 
a fixed training set. i.e.. fitness evaluations were based upon a training set that did not 
change over the course of a GP run. Although the results were encouraging, a major short- 
fall in using a static training set had to do with the controllability and repeatability of evolv- 
ing a desired result. A different choice of test points can and has yielded entirely different 
algorithms with widely varying degrees of success. For this and other reasons that are dis- 
cussed in Section 21.5. we opted to go with a dynamic training set. i.e., fitness evaluations 
are based upon a training set that changes during the course of a GP run. 

The particular strategy that we designed into the fitness function borrows from Goldberg's 
work in genetic algorithm classifiers [Goldberg 19891 and Holland's work in default hierar- 
chies and induction [Holland et al. 1986]. The idea is fairly straightforward. A GP system 
starts a run with a training set that is relatively small and contains test points that should, in 
theory, be easy for the algorithm to score well. When an individual scores a certain number 
of hits, a few more points are added to the training set under evaluation. This process can 
continue until either an individual scores a maximum number of hits or a maximum number 
of generations has been reached. Not only has this strategy resulted in a better individual 
than described in [Daida et al. 1995a]. but the overall process under this fitness function has 
proven to be more controllable than when using a static training set. 

21.4.1 Procedure 

Table 21.3 summarizes the problem-specific portion of the GP code described in this chap- 
ter. The other GP parameters that were used included: maximum number of generations 
equal to 30: size of population. 357: maximum depth of individuals 10: maximum depth of 
new subtrees for mutants. 4: maximum depth of individuals after crossover. 20: fitness- 
proportionate reproduction fraction. 0.1: crossover at any point fraction. 0.2. crossover at 
function points fraction. 0.7: selection method, fitness-proportionate: generation method. 
ramped-half-and:half. Note that the population size and number of generations used were 
modest and chosen in part so that we could complete a run on a SunSPARC 20 within a few 
CPU hours. 

Figure 21.4 details our implementation of this fitness evaluation function by elaborating 
on the fitness set used to generate results shown later in this chapter. Figure 21.4a shows a 
portion of the image data plus associated texture images. The boxed areas show the loca- 
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Figure 21.4 
Fitness Set Construction. Starting from the upper left image: la) 128 x 12K pixel ERS-I SAR Image (April 23. 
1992 (and associated layers oftexturally filtered images (Laplacian,,, of Mean.,.. Laplacian,,,. Mean....and Mean,,), 
lb) Overlay of test point locations. White points indicate ridge guesses, while black points indicate background 
guesses, (c) Detail of Fitness Set. Each row corresponds to either a manual classification, image data, or layer of 
texturally filtered image data. Each column corresponds to a test point. Test points are loaded into an evaluation 
function by sets, starting from P. to P.. Loading of a set is triggered by criteria that are set by a user. 



Table 21.3 
Tableau for Case Study.   

Terminal Set: Consists of an array of size A/ of manually selected test points, which contains data from 
an image and its corresponding filtered versions (i.e.. 5x5 Laplacian of a 3x3 Mean. 5x5 
Laplacian. 3x3 Mean. 5x5 Mean): a random floating-point variable. 

Function Set: Arithmetic operators defined to operate on matrices and constants in any combination 
(+. -. x. +. P. Ml. and the threshold operator If-Less-Than-or-Equal l<). 

Fitness Cases: List of N manually selected control points from benchmark. Pixels that are part of 
pressure ridge features are given a gray-scale value of 255 and all other non-feature 
pixels take a value of zero. The number of current fitness cases increases dynamically 
(See Figure 21.4). 

Raw Fitness: The number of hits. 

Standard Fitness:     (Number of current fitness cases. iV) - (Number of hits). 

Hits: The number of fitness cases for which an individual program's output is less than 9 
away from the target gray-scale value of 255 or 0. 

Success Predicate:    The run ends when the maximum number of generations is reached. 

tions of the 36 x 36 pixel area depicted in Figure 21.4b as it occurs in all five layers of either 
image data or texturally-fiItered image data. Figure 21.4b shows the locations of the test 
points that were used and overlays those locations on the image-data layer. Also shown are 
the manual classifications associated with each point. Figure 21.4c shows the detail of the 
fitness set. There are 53 test points shown, which are arranged in six layers. Each layer 
corresponds to a channel of data (e.g.. image data). The test points were manually ordered 
so that the easiest test points were loaded in for evaluation first. The bars showing the fitness 
set increments depict an initial starting set of fifteen test points, with four set increments of 
nine points apiece, and a fifth set increment of two points. In all there were at most six 
fitness sets total (Sets P„ to P,) that were considered during a single GP run. 

We note that our particular implementation uses the following event to trigger the loading 
of the next fitness set: when a fitness evaluation for any one individual in a population is less 
than or equal to q standard fitness, load in the next increment of test points for the next 
generation to evaluate (e.g.. to obtain the best-of-runs individual featured in Figure 21.7. we 
used a trigger value of six). 

21.4.2 Results 

Figure 21.5 shows the result of applying the best-of-runs individual to both the March 2 and 
April 23 images. In a qualitative examination of these results, we have found that the ex- 
tracted features are well correlated with ridge and rubble features in both multiyear and 
first-year ice. Black (gray value 255) represents extracted pressure-ndge features. Varying 
shades of gray indicate the likelihood of a pressure ridge—the darker the gray, the higher 
the likelihood. The performance of this individual has been deemed better than the perfor- 



Grav Scale Value 

Gra\ Scale Value 

Figure 21.5 
Images after processing with GP switch filter. Each image is 1024 x 1024 pixels, 
histogram for each image is also shown. The histograms show that the classificat 
with a value of 0 (white) correspond to non-ridge features, while pixels with 
correspond to ridge features, la) March 2. 1<W2. (h) April 23. IW2. 
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mance of the individual described in [Daida et al. 1995a]. since this algorithm (called a 
switch filter in this chapter) provided better connectivity of ridge features than the filter 

described in [Daida et al. 1995a] (called a stipple filter). 

21.5 Discussion: GP & Scaffolding 

Discussion of the results in Section 21.4 are divided into two sections. The first section, 
which is covered here, involves a discussion of the results from the standpoint of algorithm 
discovery and genetic programming. The second section (Section 21.6) involves a discus- 
sion of the results from the standpoint of the domain of polar oceanography. 

21.5.1 Scaffolding and the Evolution of Hypotheses 

The role of GP in scaffolding algorithm discovery has been to generate possible solutions 
based on a given hypothesis, which has usually taken the form of a strategy for selecting 
training sets. In some instances, these strategies affected the GP fitness evaluations func- 
tion. In other instances, these strategies affected the kinds of test points that were eventually 
selected. The following paragraphs provide a synopsis of hypothesis evolution from our 
earlier work presented in [Daida et al. 1995a] to this present work. Described are only the 
major hypotheses—implicit are the numerous minor hypotheses subsumed under each ma- 

jor hypothesis. 

1. Our first hypothesis was that a small representative subimage (and associated textures) of 
a pressure ridge could be used to evolve an individual. In a sense, we defined a pressure 
ridge to be a somewhat bright ridge feature in a patch. Our first implementation used an 8x8 
pixel training set. which corresponded to 64 fitness cases. The results from these runs were 
unpublished: GP simply evolved individuals that essentially classified every pixel as back- 
ground (i.e.. matrix zeroing). In retrospect, these results were not surprising, since each 8x8 
pixel subimage training set contained as few as 6-12 ridge points, and as many as 52-58 

background points. 
2. Our second hypothesis was that test points of roughly equal amounts of background and 
ridge points could be used to evolve an individual. We defined a ndge feature as a somewhat 
bright feature that is bracketed by somewhat darker features. Implementation and corre- 
sponding results are described in [Daida et al. 1995a]. The use of test points yielded two 
immediate benefits. First, an even ratio of ridge to background points discouraged the evo- 
lution of matrix-zeroing algorithms. Second, the small number of fitness cases reduced run 
times from CPU days to CPU hours (or minutes). The most significant shortcoming of this 
approach was in having too few fitness cases, which often allowed for individuals that did 



not exhibit ridge finding behavior yet obtained perfect fitness scores within a few genera- 
tions. The problem presented to GP was too "easy" and fitness was not closely enough 

linked to ridge finding behavior. 

3. Our third hypothesis was to increase the number of fitness cases, as well as to include 
points that would be more difficult to classify. We subsequently defined a ridge feature to be 
a somewhat bright feature that is bracketed by somewhat darker features, in addition to 
specifying many of the other instances that were not ridges. This particular hypothesis did 
not involve a change in implementation. However, this strategy resulted in a breakdown of 
continuous ridge features into singlets and doublets. Apparently, over-specification of the 
fitness function created algorithms not robust enough to perform on larger image segments. 

4. Our fourth hypothesis was to retain the idea of increasing the number of fitness cases, 
except this time it would be implemented along the idea of a default hierarchy. We defined 
a ridge as a somewhat bright and long feature that is bracketed by somewhat darker fea- 
tures. Emphasis was placed on finding the most clearly delineated ridges, with the more 
difficult ridges to be extracted by what was hoped to be an emergent property of the evolved 
solution. Implementation and corresponding results are described in this chapter. This hy- 
pothesis has proven to have been the most successful to date. 

21.5.2 Sensitivities to Function-Set Implementation 

For work in this chapter, we introduced two new operators P and M. These functions were 
introduced because of a result shown in Figure 21.6. which was evolved with the same 
fitness evaluation function, terminal, and function sets as were the results shown in Figure 
21.4. The only noteworthy difference for the results shown in Figure 21.6 was the absence 
of operators P and M. 

The algorithm that corresponds to Figure 21.6 was the individual (- Mean,,,, Mean,«,). 
Over the course of several runs without P and M. the probability of finding this individual in 
any one run was high. This individual did score perfectly on all fitness cases. However, this 
individual still produced an unacceptable result, which showed the presence of pressure 
ridges even where none existed. 

At first glance, the evolved algorithm looks similar to [Marr 1982]'s difference-of- 
Gaussians filter, which is a zero-crossings edge detector. Its behavior is also similar to 
Marr's filter. Note that on the right-hand side of Figure 21.6 in the area of the black stripe. 
there is a thin white stripe that extends the length of the image. This image artifact is consis- 
tent with the kind of artifact one would obtain with an edge detector. 

Upon close inspection, however, our evolved "difference-of-means" algorithm was not 
quite what one would expect. We note that the histogram corresponding to the data shown 
in Fiaure 21.6 is not characteristic of a difference-of-Gaussians filter; there are humps at 
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Figure 21.6 
1024 x 1024 pixel ERS-I SAR image (April 23. 1992) after filtering with the GP ditference-of'-means filter. Its 
srav-level histogram is also shown. 

both ends of the gray scale. This histogram arose from our particular implementation of the 
arithmetic "-" operator. In particular, the use of mod 255 and unsigned byte type casting 
resulted in negative quantities showing up as numbers around 255. (What was novel about 
our '"difference-of-means" filter was that GP exploited the nature of the "-" operator to 
create a nonlinear filter out of what should have been a linear one.) It was this unexpected 
histogram that prompted us to also include P and M in the function set. 

21.5.3 Switch Filter Analysis 

An analysis of the current best-of-runs individual shown in Figure 21.7—the switch filter— 
demonstrates how GP exploits seemingly benign idiosyncrasies that are built into a given 
function set. In particular, this individual has exploited the exception handling for the divi- 
sion operator to create a series of logic switches (hence the name "switch filter"). Further- 
more, these logic switches were used to create two error-trapping devices that performed 
the task of exception handling between two imperfect ridge-finding subroutines. 

The first error-trapping device prevented the division operator from returning an unde- 
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Figure 21.7 
GP Switch-Filter Code. 

fined result by setting division by zero to yield a value of one. In referring to Figure 21.7. we 
observed that Branch 2 zeroed-out all background points while Branch I always returned 
zero. With the numerator of the division operator at Node 2 set to zero. Node 2 produced a 
zero if its denominator was nonzero Indge) and produced a one it' its denominator was zero 

(background). 
The second error trapping device prevented the division operator from returning an out- 

of-range value (i.e.. greater than 255 or less than zero). The evolved code took advantage of 

this in the following way: 
Branch 4 yielded nonzero values for ridge points (with only two exceptions among the 53 

fitness cases) and zero values for every background point. Notably. Branch 5 almost zeroed 
the matrix, but instead left residual values of 10° to 1 0"* for every fitness case. When Branches 
4 and 5 were summed in Branch 6. the nonzero ndge points remained relatively unchanged, 
while significantly, zeroed background points acquired very small nonzero values. 

The root-node divisor apparently handled exceptions and pushed the output values of the 
algorithm close to either 255 or zero. Background points took on their output value from 
evaluation of forms like (+ 1.0 6.0x10"4). which yielded 255. Ridge points took on their 
output value from evaluation of expressions like (■*• zero nonzero), which yielded zero. 
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Figure 21.8 
Evolution of GP Switch Filter. This series shows the best-of-generation results of filtering the 128 x 128 pixel 
ERS-I SAR image shown in Figure 21.4. (a) Generation U (10 hits out of 15 possible test points), (hi Generation 
1 {I <) mil of 24i. ic i Generation 4 i.11 out of .1.1). idl Generation 7 (4U out of 5.1). (el Generation 12(51 out of 5.1). 
(II Generation 18(52 out of 53). (g) Generation 26151 ou! of ^}). The best-ol-generation individual did noi change 
much after this, in-part because there were no further fitness cases to consider, (h) Generation 28 (5.1 out of 5.1). 

Ridge points misclassified by the subroutine represented by Branch 3 were corrected 
through division with a large number from Branch 6. For example. Branch 3 incorrectly 
classified fitness-case seven as a background point. The subroutine represented by Branch 
6. however, would correctly classify this point as a ridge point. Evaluation at the root node, 
(-a- 1.0 65.9) yielded 0.0154. which has the net result of mediating the conflict between 
ridge-finding subroutines by correctly assigning the output for fitness-case seven a ridge 
value. 

In effect, the root-node division operator acted as a final line of defense against 
misclassification. With two different sub-algorithms classifying each fitness case, it simply 
acted as a conflict moderator. For fitness-case seven, while the Branch 3 made an oversight, 
the Branch 6 sub-algorithm did not make the same mistake and adjusted for the error. While 
it was certain that a number of points on a 1024 x 1024 pixel images may be misclassified 
by both sub-algorithms, the odds of both failing simultaneously was much smaller than the 
odds of one or the other failing. 

Figure 21.8 charts the evolution of the switch filter. In all instances shown in this figure, 
black corresponds to ridges: white, to background. Note that: 
• Generation 0 yielded an individual that picks out some ridge features and some back- 
ground features correctly. 



• By Generation 1. an individual has adopted a strategy of using the division operator for a 
logic switch. Although the ridge classification contains a number of false positives, this 
individual correctly classified the dark diagonal structure as a non-ridge feature. 

• By Generation 4. the switching strategy has become firmly adopted by many members of 
the population. An individual began to correctly pick out the most prominent ridge feature 

in the image. 

• By Generation 7. the overall structure for most of the solution becomes evident. For 
several successive generations, the solution was continually refined. 

• By Generation 26. an individual readopts a strategy for correctly classifying the dark 
diagonal structure as a non-ridge feature. Note that on one hand, the performance of this 
individual is fairly different from the performance of the individual shown in Generation 
18. On the other hand, they are nearly similar on our fitness scale with an almost identical 
number of hits. This situation does consequently point out that a fitness metric is not neces- 
sarily a reliable indicator of performance. 

21.5.4 Other Variations on Fitness 

The described implementation of a dynamic fitness function based on default hierarchies 
represents but one instance. We have also considered but have not tried other means for 
triggering a change in fitness set during a run. These other implementations are subject for 
another paper. 

21.6 Discussion: Domain 

We leave an extended discussion of a geophysical interpretation based on data products like 
those shown in Figure 21.5 for another paper. However, we do have several comments about 
the results that have been shown in this chapter. 
• The switch filter extracted both high- and low-contrast ridge features. This could be par- 
ticularly important when a low-contrast ridge feature is located near a high-contrast ridge 
feature. In referring to Figure 21.9. we expect that a human operator would likely pick out 
the brightest ridges labeled "a." but miss the low-contrast ones labeled "b" because of the 
close proximity of the low-contrast features to the high-contrast ones. In contrast, the algo- 
rithm identified both low- and high-contrast features. Note that this behavior is an emergent 
property of the switch filter, since the filter was trained on only high-contrast features. 

• The switch filter yielded textures that are based mostly on pressure ridge and rubble 
features, as opposed to edge features (as in Figure 21.6). These textures can be enhanced for 
visual inspection by smoothing. See Figure 21.10. 



Figure 21.9 
Detail of Results from Switch Filter (a) 2()0x 200 pixel ERS-1 SAR image (April 23. 1992). Note pressure ridge 
features labeled with "a" are highly prominent, while ndge features labeled "b" are not. (hi From switch filter. The 
filter identifies both ndee features labeled "a" and "h" 

• The textures that are present in Figure 21.5 are consistent with the geophysical explana- 
tion behind pressure ridges. The linear textures in areas where there is first-year ice are 
consistent with the expected compressive forces in those areas. The somewhat isotropic 
textures on multiyear ice are consistent with what is known about ice kinematics. Even 
though the process that generates leads and pressure ridges may be biased towards a certain 
directions. Hoes of multiyear ice continually rotate, which eventually subject those does to 
ridge formations in all directions. 

21.7 Conclusions 

This chapter demonstrated how the genetic programming paradigm can apply to image 
processing in geoscience and remote sensing. A problem for which no known solution was 
studied, which involved extracting low-contrast curvilinear features from SAR imagery. 
This chapter has shown that the genetic programming paradigm can be used in the discov- 
ery process in deriving an appropriate spatial classifier. 

We note that our overall approach in using test points in the context of dynamic training 
sets is generalizable to other similar problems that involve extracting features from multi- 
band image data (by replacing data in multiple textural channels with multiple spectral 



Figure 21.10 
Smoothed Detail of Results from Switch Filter Smoothing enhances visual perception of lexture. 1024 x 1024 
pixel ERS-I SAR image (April 2.1. 19921. Inset: enlargement of 200 x 2(X> pixel hoxed area. 

channels). This approach should be generalizable since the problem-specific characteriza- 
tion has been made with only a few assumptions about image content. 
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Abstract — This paper describes a validation of accuracy associ- 
ated with a recent algorithm that has been designed to extract 
ridge and rubble features from multiyear ice. Results show that 
the algorithm performs well with low-resolution ERS SAR data 
products. 

1. INTRODUCTION 

Roughness in the polar ice cover—like meso-scale features of 
pressure ridges and rubble fields—is of significant geophysical 
interest. Pressure ridges and rubble fields help to transfer kinetic 
energy from meteorological systems to the ice cover. Pressure ridges 
can significantly increase sea-ice drag coefficients, which subse- 
quently affect sea-ice movement and deformation. Ridges and 
rubble fields are also of interest because thev account for a large 
portion of the total ice mass. 

In ERS synthetic aperture radar (SAR) imagery, pressure ridges 
commonly appear as filamentary, curvilinear features of variable 
width. These features have radar backscatter signatures that differ 
only slightly from those of non-ridged multivear-ice: pressure ridges 
subsequently appear as mostly low-contrast features. Rubble fields 
often form when sea ice undergoes multiple ridging events in the 
same geographic region. Not surprisingly, rubble fields have back- 
scatter signatures that are similar to that of pressure ridges, except 
that rubble fields mav have shapes ranging from consolidated blobs 
to interlaced networks of curvilinear features. 

The difficulty in extracting such features has been noted in work 
such as [ 11. The problem has been considered untenable for stan- 
dard image processing algorithms for a variety of reasons. Such 
reasons include low signal-to-noise ratios, arbitrariness of feature 
shapes, and radar cross-sections that change depending on the 
orientation of a feature. The problem, however, has not been con- 
sidered impossible, since researchers have been able to link the 
roughness caused by sea ice deformation (like ridges and rubble 
fields) with ERS SAR backscatter. [4] 

This paper evaluates an ice-roughness algorithm that we have 
developed over the past vear. The next section (2) briefly discusses 
our algorithm. Section 3 describes our procedure for evaluating 
this algorithm, which involves validation of a derived data prod- 
uct from this algorithm with an area that has ground truth. Sec- 
tion 4 presents and discusses our results. Section 5 summarizes 
our major conclusions. 

2. ALGORITHM NOTES 

Our algorithm has been developed by using a relatively new- 
procedure in computer-assisted software design. This procedure, 
which uses genetic programming, has been developed to help a 
user to focus more on the problem at hand and less on program- 
ming detail. Another paper in this conference highlights some of 
the salient characteristics of our procedure [2] 

We have designed our algorithm to extract ridge and rubble 
features in multiyear ice. It has been developed for use with low- 
resolution (ERS) SAR data products, partly because we desired 
meso-scale distributions and partly because we wanted to track 
temporal changes. For more information on the development of 
this particular algorithm (called a switch filter), see [3). 

■• -3. PROCEDURE 

The image that we have chosen for validation is part of a larger 
series of temporal ERS-1 SAR data that we have analyzed. The 
series, which begins in August 1991 and ends in July 1992. de- 
scribes the synoptic coverage of an area in the Beaufort Sea gyre 
(roughly 72°N. 140°W). The particular area and dates of cover- 
age overlap with the Lead Processes Experiment (LEADEX) in 
1992. which featured both in-situ and ERS-1 observations around 
a chosen floe. 

Figure la shows the low-resolution ERS SAR image taken 29 
March 1992. while Figure lb shows the corresponding data prod- 
uct derived with the ice-roughness algorithm. We note that the 
algorithm was developed using data from a different image (23 
April 1992)—the 29 March data is entirely out-of-sample. The 
boxed area shown in both these figures corresponds to the ice clas- 
sification map shown in Figure lc. Classifications for this map 
were based on ground observations from the LEADEX base ramp 

To validate the derived data product, we used a ridge and rubble 
map that was manually obtained from the high-resolution (nomi- 
nally 12 m resolution) ERS SAR data product for ihe same dav 
and area To ensure accuracy, we limited the extent of this ridge 
and rubble map to the immediate area (- one km) around the 
base camp. The map was verified by personnel present at the base 
camp at the time the image was taken (i.e.. R. Onstott). The boxed 
area in Figure lc shows theextent of the manually derived ridge 
and rubble map. 

4. RESULTS AND DISCUSSION 

Figures 2a - ri show our results. Figure 2a depicts the high- 
resolution subimage that was used to create the manually derived 
ridge and rubble map. The image has been enhanced for publica- 
tion to highlight those features, which show as light gray pixels on 
a gray background. (Grav generally corresponds to multiyear ice. 
while dark gray generally corresponds to first-year ice.) The ihrer 
bright collinear dots in the center of this figure correspond to 
corner reflectors placed on first year ice. (A fourth dot—another 
corner reflector—is also visible, but on multivear ice.) 

Figure 2b shows the manually derived ridge and rubble map. 
(Black denotes ridge and rubble features in multivear ice. or ex- 
treme ridging in first year ice. Note that the three dots have been 
retained for comparison.) 

Figure 2c shows the results from the ice-roughness algorithm 



Figure 1. Data and Ground Truth, (a) Top. 29 March 1992 Image 
(1024x 1024 pixels) ©ESA 1992. (b). Upper right. Derived Data 
Product, (c) Lower Right. Map of Ground Truth. 

Note that the pixels are noticeably larger than those shown in 
Figures 2a and 2b. This is expected, since the ice-roughness algo- 
rithm works on low-resolution data products (Black and dark 

grays denote ridge and rubble features.) 
Figure 2d shows the results of overlaying the results from the 

ice-roughness algorithm on the manually derived ridge and rubble 
map. (Black indicates a high degree of correlation for ridge and 
rubble features, while white indicates a high degree of correlation 

for smooth features. Gray without any interior black denotes ar- 
eas of possible conflict.) 

The results show excellent correspondence between the manu- 
ally derived map and the data product from the ice-roughness 
algorithm. Much of the identified ridge and rubble features in 
multivear ice have been correctly classified in the data product. 
Tolerance accuracies in the data product are better than ±100 m 
(± 1 pixel) of a ridge or rubble feature in the high-resolution map. 

We note that the data product shows a correct classification of 
ridge features in an area just below the three collinear dots in Fig- 

ure 2a. Ground truth corresponding to this area indicates an area 
of old pressure ridges—worn and smoothed. Radar backscatter 
signatures corresponding to ridges like these are not much differ- 

ent from non-ridged multiyear ice: such features are difficult to 
classify. 

The ice-roughness algorithm does seem to identify ridges and 
rubble features regardless of whether such features yield strong or 
weak signatures in contrast to the mean backscatter values of 
multivear ice. If this is the case, such an attribute would help to 
desensitize the algorithm from ridge orientation effects on radar 
backscatter 

We further note that the algorithm has classified a series of pix- 
els in the lower right corner of Figure 2c as ridge or rubble fea- 
tures, even though such pixels correspond to areas of first-year ice. 

A IndicalM Corner Rstlaclon 

The algorithm apparently identifies a few. but not all the ridge 
and rubble features in first-year ice. These features do appear in 

the image data but not in Figure 2a. (As mentioned earlier, we 
enhanced Figure 2a to show, for publication, ridge and rubble 
features in multiyear. not first-year ice.) We have found that the 
few first-year ridge and rubble features that have been identified 
do show a high correspondence with major stress and deforma- 
tion patterns in first-year ice. (See [3].) 

4. CONCLUSIONS 

This paper has evaluated the performance of an ice-roughness 
algorithm that was developed using a relatively new procedure in 
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Figure 2. Results, (a) High-Resolution Subimage. (b) Manual Interpretation, (cj Derived Data Product, (d) Comparison. 

computer-assisted software design. To evaluate this algorithm, we 
used ERS SAR image data that coincides with in-situ observations 

obtained during LEADEX '92. The results have shown excellent 
agreement between the derived data product and a manually in- 
terpreted ERS SAR data product. The algorithm has been shown 
to extract features corresponding to ridges and rubble fields in 
multiyear ice. We have suggested that the algorithm does extract 
enough of the ridge and rubble features in first-year ice to show- 

gross deformation patterns. ■ 
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Abstract—This paper discusses a relatively new procedure in 
the computer-assisted design of pattern-extraction algorithms. 
The procedure involves the adaptation of genetic programming, 
a recent technique that has been used for automatic 
programming, for image processing and analysis. This paper 
summarizes several of the measures we have taken to develop 
two prototype systems that help a user to design pattern- 
extraction algorithms 

1. INTRODUCTION 

The task of extracting patterns from remotelv sensed imagery- 
can be difficult, particularly if increasingly novel patterns need 
extraction or when using data from new imaging technologies. 
In such cases, off-the-shelf software—e.g.. geographic image 
processing systems or image analysis software libraries—may be 
able to meet a part, but not all the specifications for a pattern- 
extraction problem at hand. To fulfill such specifications, the 
best software tool to use may end up being code that has been 
specifically designed for a particular problem. 

To assist in the development of problem-specific pattern- 
extraction tools, there has existed a range of options from which 
one could choose. On one hand, one could choose to program 
such tools from scratch, usually in a high-level programming 
language. On the other hand, one could also program in an 
even higher-level macro-language (e.g.. many geographic image 
processing systems or scientific visualization systems often 
feature a macro- or a scripting-language capability). In either 
case, success of custom-tailored, pattern-extraction tools resides 
not only in one's ability to design a procedure with which to 
extract patterns, but also in one s ability to program. 

The overhead associated with programming can be 
substantial and often include such tasks as specifying software, 
programming, debugging, and testing, as well as contending 
with learning curves associated with new languages, new 
software libraries, or new programming tools. To reduce this 
overhead would be a desirable objective, since programming 
often represents only a means (albeit a time-consuming one) for 
delivering what is needed—namely, a tool for extracting a 
particular pattern. 

In part to address this objective, previous work has included 
investigations of strong and weak methods in artificial 
intelligence. The terms "strong" and "weak" refer not to a 
measure of a method s performance, but to the amount of 
knowledge about a given problem that a method requires. An 
example of a "strong" method is an expert system, which 
consists of a substantial portion of code that is problem-specific 

and a smaller portion of code that is generic. An example of a 
weak method is a neural network, which consists of a 
substantial portion of code that is largely generic, and a smaller 
part that is problem-specific. Either of these methods can still 
involve a fair amount of programming, although one could 
argue that these methods can reduce programming overhead. 
(In particular, bv making programs more adaptable, more 
robust, and more intelligent, less programming would be 
required on the part of a user.) 

In the past several years, there have been new techniques in 
weak methods that show additional promise in reducing 
programming overhead. This paper describes one of these 
techniques and highlights how this particular technique can be 
used for creating problem-specific pattern-extraction algorithms 
for use with remotely sensed image data. 

2. GENETIC PROGRAMMING 

This paper specifically discusses our use of gcnnic 
programming, an unsupervised technique that generates 
computer code. Originally introduced in 1989 bv Koza [5]. 
genetic programming has since been applied in a variety of 
domains, ranging from molecular biology to robotics to 
economics. Genetic programming has been shown to solve <i 
number of problems that have served as benchmarks for neural 
nets [4. 6|. It has also been shown to solve problems in which 
neural nets might not be the most appropriate technology to 
use (e.g.. symbolic regression) [6]. 

Genetic programming does have several attributes that 
potentially justify its use with remotely sensed image data. First, 
it has been shown to work with imperfect or incomplete 
problem specifications, while still yielding reasonable solutions 
[2] Second, it has been able to produce extremely robust 
classification code that yields accuracies that are coniparnhle to 
that which has been obtained with manually produced 
algorithms (4]. Third, it has been able to work with linear or 
nonlinear problems with little or no changes to its core (generic) 
portion (6. 7|. Fourth, it has been shown to work with a wide 
range of data types, including multi-channel image data |2| 
Fifth, it has been able to output several types of code ranging 
from macros (which would require some type of interpreter) [6| 
to assembler [9| Sixth, it has been used to automatically 
produce code with features such as subroutines, registers, and 
iterative loops [8]. Seventh, it has been routinely used to 
manipulate both symbolic and numeric data [6. 7|. 

Basic genetic programming can be briefly described as 
follows.  A genetic  programming run starts with  a  set  of 



randomly created programs that have been generated from the 
components that a user has supplied. We presume that 
somewhere in this random collection of programs are the 
building blocks necessary for the desired solution. The trick, of 
course, is to sift through this random code in order to 
synthesize a desired solution from these building blocks. To 
implement this trick, genetic programming uses two operations 
that are modeled after biological processes: natural selection and 
genetic crossover. In this case, natural selection means that only 
the most fit individuals reproduce and have offspring. In terms 
of an operator, natural selection means that these random 
programs need to be ranked by performance. Ranking is 
accomplished by means of a fitness function, which has been 
specified by a user before a run. A fitness function is supplied as 
a subroutine that tests for how close a program comes to a 
known result given a known set of inputs. Reproduction and 
the bearing of offspring refer to the biological process of how 
offspring are the genetic composite of both parents—i.e.. 
through genetic crossover. In terms of an operator, crossover 
means that a portion of code from one program is replaced with 
a portion of code from another program. The resulting 
composite program is analogous to an "offspring Crossover 
occurs mostly among the fittest programs (the pairing of 
prospective parents is stochastic, but probabilities favor the 
fittest programs) and continues until a new population of 
offspring is attained. The operations corresponding to natural 
selection and crossover are then repeated for this new 
population. A genetic programming run continues for 
subsequent populations until a candidate program obtains the 
best score allowable under the user-supplied fitness function. 

Detailed descriptions of genetic programming can be found 
in [6. 7]. 

3. PROBLEMS 

In spite of its apparent advantages and benefits, genetic 
programming has only recently appeared in the geoscience and 
remote sensing literature. Part of this relatively late appearance 
can be traced to two difficulties. One difficulty involves 
computational overhead. In Section 2. we noted that basic 
genetic programming involves the creation and test of many 
individual candidate programs. A typical run in genetic 
program mav involve the creation and test of several thousand 
of such candidate programs. For numerous problems previously 
addressed bv genetic programming, testing of each candidate 
solution is relatively quick and inexpensive (e.g.. each program 
uses several tens of kilobytes of memory and executes in under a 
minute). For problems involving remotely sensed imagery, 
candidate solutions could easily use major blocks of memory 
and minutes to hours of CPU time. 

The other difficulty is that the canonical genetic 
programming system, which has been freely available for some 
time, is in LISP. (The code for the canonical genetic 
programming system can be obtained at 
ftp://ftp.io.com/pub/genetic-programming.) While LISP is 
arguably the most intuitive language for genetic programming 
to use. LISP has a few idiosyncrasies that can hinder processing 
remotely sensed imagery. 

4. ADAPTATIONS 

This section summarizes our experiences to date in adapting 
genetic programming for processing remotely sensed imagery 
[1. 2. 3]. Our particular experience involves the extraction of 
low-contrast ridge and rubble patterns in low-resolution ERS 
synthetic aperture radar images of arctic sea ice. (See [3| in this 
conference proceedings.) Our problem has been relatively 
typical of those that involve multiple channels of image data (in 
our case, several textural channels). 

To solve our problem, we have implemented six adaptations 
to genetic programming. The first three have helped in 
reducing computation time (for a LISP version of our system) 
to several CPU hours on a Sun SPARCStation 20 workstation. 
A fourth adaptation has enabled the LISP version of our system 
to process megabyte images. A fifth adaptation has helped to 
further reduce computation time to tens of minutes. A sixth 
adaptation has been proven necessary when using our methods 
for directly processing images with genetic programming. 

4.1 Preprocessing 

We preprocessed as much of the data as was possible to 
reduce genetic programming run time. For our problem, this 
has meant that the texture measures were computed 
beforehand. In particular, our problem was one in which it was 
possible to use texture channels, where each channel represents 
a different filtered version of the image data to be processed. 
(Two of the channels we specified corresponded to layers in an 
image pyramid: mean images filtered with kernel sizes of 3x3 
and 5x5. respectively. The other two channels corresponded to 
edge detection: a Laplacian image of kernel size 5x5 and a 
Laplacian. 5x5. of a mean. 3x3. image.) In a sense, what was 
left for genetic programming to do was to formulate an 
algorithm (a rule set) that governs how the data in each channel 
was to be combined with the others. 

Note that a complete algorithm produced bv genetic 
programming would then consist not only of a rule set. but 
would also include the subroutines implicit with each filtered 
channel. While this may seem obvious, there mav be 
unintentional side effects if one simply converted the algorithm 
produced bv genetic programming to a standalone application 
and then used a different software implementation to generate 
each filtered channel 

4.2 Test Points 

We used test points in an image that have been manually 
interpreted to serve as programming benchmarks Each 
candidate algorithm produced in genetic programming is 
executed with these test points to assess that algorithm s 
accuracy in extracting a desired pattern (i.e.. in the context of a 
fitness function). The number of test points that need to be 
provided does not have to be large. For our problem, the best 
algorithm that we have obtained to process full-sized low- 
resolution ERS SAR data products was developed using only 53 
test points. 

Note that we used test points, rather than subimage patches, 
to serves as "training sets' for genetic programming. We have 
found that the use of subimage patches was too constraining, 
did not help, and has even hindered processing times. See |2|. 



4.3 Dynamic Fitness 

Instead of requiring all candidate algorithms to use a fixed 
standard, we opted to use a sliding standard. By that we mean 
the number of test points needing to be solved at the outset of a 
genetic programming run are fewer than the number of test 
points needing to be solved towards the end of that run. We 
have found this technique to result in better quality algorithms 
than without this technique, when genetic programming needs 
to solve for the entire test point set at the outset. See [1. 2] for 
implementation details. 

4.4 Chunking 

LISP requires a fairly sizable amount of processing overhead, 
which negatively affects the size of an image that can be 
processed at any one time. As a workaround intended mostly 
for LISP systems, we chunked low-resolution ERS SAR image 
data into smaller subimages. processed the subimages. then 
integrated the processed subimages to obtained a whole derived 
data product. The nature of the operators that we used for 
genetic programming allowed for seamless integration of 
subimages. 

Our first prototype was built around the canonical genetic 
programming kernel, which means that our prototype system 
was implemented in LISP. 

4.5 C-Language Port 

As well suited for LISP as genetic programming is. there have 
been several reasons that have prompted us to design our second 
prototype in C: larger arrav sizes, faster run times, broader user 
communitv. wider range of programming flavors and tools. We 
have developed our second prototype around a recently' 
introduced C-language version of genetic programming. (The 
code for the C-language version of the genetic programming 
kernel is available at the following URL: 
http://isl.cps.msu.edu/GA/software/lil-gp/) Early tests have 
shown that our second prototype runs about an order of 
magnitude faster than our LISP version. 

4.6 Scaffolding 

More often times than not. in cases where custom-designed 
code is needed, one is not able to start with an exact 
specification of a pattern. There often exists an uncertainty on 
what does, indeed, constitute the desired pattern. This 
uncertainty can show up as inappropriately interpreted test 
points, or even as inappropriately chosen test points. Several 
iterations of trying and interpreting different test points are 
usually the norm. 

For this and other reasons described in [1. 2], we have 
designed our system with the deliberate intent to involve the 
user. In a sense, we have designed our system so that genetic 
programming facilitates the testing of a user's hypotheses on 
what a desired pattern should be. The user learns about 
specifying a desired pattern in a consistent manner, while the 
computer assumes the role of a human programmer, who would 
logically extend a user s specification into code. This 
cooperative relationship has been referred in the education and 
technology literature as scaffolding. 

5. CONCLUSIONS 

This paper has highlighted some of the adaptations used to 
incorporate genetic programming in the design of algorithms 
that extract features from remotely sensed images. In particular, 
this paper has summarized six adaptations: preprocessing, test 
points, dynamic fitness, chunking (for LISP versions). C- 
language port, and scaffolding. Although many applications 
have employed genetic programming as an unsupervised 
method, we have integrated genetic programming as part of an 
interactive system that serves as a tool for computer-assisted 
algorithm design. The overall system has been developed to 
help a user to focus more on the problem at hand and less on 
programming detail. 

Additional references on genetic programming include (6. 7|. 
One can also obtain information and software about genetic 
programming at the following URL addresses: 
• http://www.cs.ucl.ac.uk/research/genprog/ 
• ftp://ftp.io.com/pub/genetic-programming 
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ABSTRACT 
This paper discusses several issues in ap- 

plying genetic programming to image 
classification problems in geoscience and 
remote sensing. In particular, this paper 
examines the role in using dynamic and 
static fitness evaluation functions. This pa- 
per also examines a few of the aspects in 
human-computer interactions that facili- 
tate computer-assisted learning and prob- 
lem solving (i.e., scaffolding) for our sys- 
tem. We describe a possible means for vi- 
sualizing and summarizing a solution 
space without having to resort to an ex- 
haustive search of individuals. 

1. Introduction 
1.1 Background 
Classification (alternately, pattern classification, or pattern 
identification) denotes a process in which a decision rule is 
applied to categorize a set of image data (Haralick and Shapiro 
(1993)). This process often represents a key step in transform- 
ing image data into information. Francone et al. (1996) sug- 
gest that genetic programming (GP) can be used to evolve 
robust classification algorithms. However, there are certain 
trade-offs that are involved in using GP for classification tasks 
with image data, particularly with satellite image data used in 
the fields of geoscience and remote sensing. Of these, one key 
trade-off involves computational effort and human supervi- 
sion, 

in an "ideal" world, image classification tasks would require 
minimal, if any. human supervision and most of the program- 
ming would be done by a computer. Unfortunately, the com- 
putational effort associated with classifying satellite image data 
is nontrivial. A typical satellite image may consist of one to 
hundreds of megabytes, which often involves a fair amount of 
CPU time for processing. Common geoscience problems can 
also often involve the classification of many images. When 
one considers that GP involves the evaluation of many candi- 
date solutions, each of which could require seconds to hours 
of computation per image, the prospect of using just one im- 

age for evaluation becomes daunting; the cost of using just 
one image as a fitness set becomes prohibitive. Of course, one 
could reduce the amount of computation involved by reduc- 
ing the size of the fitness set from whole images to subimage 
samples. 

Although the idea of using subimage samples may seem 
straightforward, in practice, it is not. One often encounters 
situations where there exists incomplete knowledge about the 
variations in the features to be classified. In such situations, 
what exactly constitutes the minimal set that completely de- 
scribes the categories of interest is unknown. It becomes en- 
tirely possible that a subimage sample may in fact represent 
an ill-posed problem. Moreover, the available computational 
resources might further constrain the size of a subimage sample 
to such an extent that the only practical sample corresponds to 
an ill-posed problem. In either circumstance, a workaround 
involves human supervision. 

In Daida et al. (1996). we introduced a GP system for the 
computer-assisted design of image classification algorithms. 
The system has been used to solve a difficult pattern recogni- 
tion problem that has had no prior satisfactory solution. The 
system has been designed to classify megabyte-sized gray- 
scale images, even though the corresponding fitness set may 
consist of only a handful of manually classified pixels (test 
points). The system has featured a canonical GP with a dy- 
namic evaluation function (i.e.. a function that increases the 
number of the fitness cases that are evaluated during the course 
of a run). 

In designing this system, we have presumed the following. 
First, there exists incomplete knowledge on the user's pan 
about the classification problem at hand. Second, there exists 
a high probability of a user formulating an imperfect fitness 
set (at least initially). Third, that GP provides "logical" out- 
comes to a presented fitness set. Fourth, that learning on the 
user's part about the classification task at hand would result in 
the crafting of better fitness sets, which would in turn gener- 
ate better solutions. In this sense. GP is used as a kind of agent 
that handles the task of programming while the user is left to 
concentrate on the task of program specification. In other 
words. GP "scaffolds" a user to learn about the problem's es- 
sentials by illuminating consequences of specifications made 
with incomplete knowledge, while hiding the potentially dis- 
tracting details associated with programming. 
Although this system has performed well, we left for later 

the task of qualifying the necessity of using GP in a scaffolded 
fashion. In particular, this paper shows just how ill-posed fit- 



ness sets can be, if only because large fitness sets are not 
computationally tractable. We also left for later the task of 
qualifying the reasoning for using dynamic, as opposed to 
static, fitness evaluation functions. This paper subsequently 
addresses these issues. 
1.2 Previous Work 
We have observed that most work in GP has not required scaf- 
folding, since fitness, as defined by an evaluation function, 
has usually been sufficient in determining program success. 
We note that although we have not yet found other works us- 
ing GP as a scaffolding technology for image analysis, we 
have found a similar use of GP in the area of computer-pro- 
duced art (e.g.. Sims (1991)). 
The idea for using a dynamic evaluation function—one in 

which either the fitness cases or the evaluation function itself 
changes during the course a run—is not new. Koza (1992) 
used such functions in many examples. However, the particu- 
lar strategy on which we based our work stems from Goldberg's 
(1989) work in genetic algorithm classifiers and Holland's 
(1986) work in default hierarchies and learning. Of interest to 
us has been how their strategies applies to image analysis prob- 
lems that involve using GP to extract information from image 
data. Although Tackett (1993) has used GP with this type of 
image analysis problem, he used a different evaluation strat- 
egy. To date, we have encountered few works that evaluate the 
effectiveness of Holland's and Goldberg's type of dynamic 
evaluation function with GP systems for image analysis. We 
do note, however, that Schoenjuer (1996) has used this type 
of evaluation function to increase the numerical precision of 
computational models. (See also Siegel (1994) and Angeline 
and Pollack (199?).) 

2. Highlighted Methods 
This section details two notable distinctives about our system 
described in Daida et al. (1996) and briefly mentions how these 
distinctives relate to the experiment discussed in this paper. 

2.1 Dynamic Fitness Evaluation 
For our system, dynamic fitness specifically refers to evaluat- 
ing a set of program benchmarks that changes in membership 
during the course of a GP run. The following paragraphs 
supplement the qualitative description given in Daida et al. 
(1996). 

Let Pn represent the set of initial test cases, i.e.. 

P» = K«. ««)• 
where a represents a test case (an image test point in our case), 
and M is a positive integer. 

Furthermore, let P' denote the set of additional test-case ar- 
rays, i.e.. 

P'= ({*....*.. (*,„•*„ *,.„) I^,A 

where P' is a A'-element array of arrays (which do not neces- 
sarily have a uniform length). bt, is a test case, and l(k) is (in- 
teger length - 1) of the k\h test-case array. 
Given an evaluation function/such that 

fie ,   , ,. P.t. trigger): 
c ApU. trigger)) ^> raw fitness score. 

where c ,„„,„„,denotes an individual from a population of pro- 
grams. P = /At. trigger) denotes the set of test cases to be evalu- 
ated by c ,„,„.„,„„, at a time t. let /; be a mapping such that 

p(t.trigger) = 

P„vP(\), 

P„v\JPtk). 

uUP(k). 

f = 0. 

;, </</.. where t, 
represents the first time 
trigger = TRUE and ;, 
represents the second 
time trigger = TRUE. 

tk < t < tK^. where tk 

represents the fC th time 
trigger = TRUE and tK _. 
represents the next time 
trigger = TRUE. 

tK < t < f.,„,. where /„„ 
represents the total amount 
of allowable time steps. 

For our purposes, we let /denote generational time. e.g.. / =0 
denotes generation zero. (Note: function/) can also be ex- 
pressed in terms of individual time, which would be relevant 
for some cases of adaptation.) The Boolean trigger in function 
p represents the conditional in which the test-case set is 
incremented with new test cases. Although there are several 
different ways to trigger an increment, for both this paper and 
in Daida et al. 11996). the trigger used was strictly perfor- 
mance based. In particular, an increment was triggered when 
enough hits were scored for a particular set P. i.e.. 

trigger ■■ 

TRUE.      (Number of Hits)  > 

(Length(P) - Margin). 

FALSE.   Otherwise. 

We denote Margin as a parameter that a user defines, where 
Margin is an nonnegative integer such that Margin <LengllnP) 
for all sets P. 

2.2 Scaffolding 
Figure 1 shows a flowchart of how we have used GP in a sys- 
tem for the computer-assisted design of image classification 
algorithms. For this paper, we deliberately chose not to use 
the full configuration in Daida et al. (1996). but instead al- 
lowed GP to execute without human supervision for two se- 
ries of runs (i.e.. feedback loops indicated by The dashed gray 
lines were not used). (This scenario could happen in actuality: 
a user would execute a series of GP runs to get a probabilistic 
assessment of her hypothesis before she would amend any 
inputs to the GP kernel). This partial configuration was used 
for this paper to test scaffolding and fitness evaluation func- 
tions. 
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Figure 1. Described Scaffolded GP System. 

3. Procedure 
3.1 Domain Problem 
The domain problem featured in this paper is identical to that 
described in Daida et al. (1995. 1996). The problem involves 
extraction of light-gray curvilinear and blob features from a 
light-gray background. The images are synthetic aperture ra- 
dar (SAR) low-resolution data products that depict scenes of 
the Arctic Ocean and surrounding seas. The particular SAR of 
interest is mounted on the European Space Agency ERS-se- 
ries of satellites. The curvilinear and blob-like features in these 
scenes of the ice cover correspond to pressure-ridges and rubble 
fields, respectively. This particular problem has been difficult 
to solve because of the low signal-to-noise ratio of the desired 
features to background. There has been no record of an algo- 
rithm that satisfactorily solves this problem for ERS SAR 
imagery prior to Daida et al. (1996). 

3.2 Experiment Design 
The dynamic case portion of this experiment consisted of ex- 
ecuting 20 runs of system configuration shown in Figure 1 
with the dynamic evaluation function described in Section 2.2. 
Each run used a different random number seed. The static case 
portion of this experiment consisted of executing 20 runs of 
GP with a static evaluation function. Identical random num- 
ber seeds were used for both dynamic- and static-case runs. 
All other common parameters, terminals, functions, and an 
out-of-sample evaluation image remained constant. Table 1 
summarizes some of those items. 

Note that the following items have been presented in greater 
detail in Daida et al. (1996). Information in parentheses refers 
to where in that work a description for a particular item is 
given, namely: terminal set (Figure 21.4). function set (Tables 
21.1-21.3). and image data (in particular, the April 23. 1992 
data shown in Figure 21.3b). We further note that implement- 
ing the function set for closure under eight-bit image data does 
involve more than what can be conveyed in this paper. For 
example, addition can be implemented in at least two ways: 
saturation 255 or modulo 255. (Under saturation 255 arith- 
metic, the sum of any number greater than 255 is 255.) We 
included both implementations in the function set as P and +. 
for saturation 255 and modulo 255 addition, respectively. 
The following parameters were used for both dynamic- and 

static-case portions: maximum number of generations were 
equal to 50: size of population. 300: maximum depth of new 
individuals. 6: maximum depth of new subtrees for mutants. 
4; maximum depth of individuals after crossover. 17: fitness 
proportionate reproduction fraction. 0.1; crossover at any point 
fraction. 0.2: crossover at function points fraction. 0.7: selec- 
tion method, fitness-proportionate: generation method, ram- 
ped-half-and-half. Note that the population size and number 
of generations used were modest and chosen in pan so that we 
could complete a run on an HP 715 within a few CPU hours. 
The following parameters were used for the dynamic evalu- 

ation function: 15 initial test points, subsequent increments of 
nine test points. Margin of six hits. Note that both dynamic 
and static cases used the same set of test points. The most 
significant difference was that the dynamic evaluation func- 
tion made the test points gradually available by small incre- 
ments, while the static evaluation function made all 53 test 
points available as a single chunk. 
Figure 2a shows the out-of-sample test image that was used. 

This 128x128 pixel image is a subset from the original non- 
geocoded April 23. 1992 ERS SAR data product that has been 
calibrated in gray scale. (Note: image attributes of geocoding 
and calibration are mostly for domain science purposes. 
Geocoding refers to image data that has been geometrically 
corrected according to a specified latitude-longitude grid. 
Calibration allows for direct comparison between images taken 
from different times and different satellites.) The subimage 
shown in Figure 2a has been contrast enhanced for publica- 
tion. For comparison purposes. Figure 2b shows the classifi- 
cation results using the best known algorithm i from the switch 
filter, described in Daida et al. (1996)). 

Table 1. Settings and Parameters 

Terminal Consists of an array of size N of manually selected lesi 
Set: points, which contains data from an image and its 

corresponding filtered versions (i.e.. 5>5 Laplacian oi a 
.1x1 Mean. 5x5 Laplacian. .1x1 Mean. 5x5 Meani; a 
random floating-point variable. 

Function Arithmetic operators defined to operate on matrices and 
Set: constants in any combination l+. -. x. ^. ?. Mi. and the 

threshold operator If-Less-Than-or-Euual (<). 

Fitness List of A' manually selected control points from 
Cases: benchmark. Pixels that are part of pressure ridge leatures 

are given a gray-scale value of 255 and all other non- 
feature pixels take a value of zero. The number of 
current fitness cases depends on the type of evaluation 
function used. 

Raw Fitness:     The number of hits. 

Standardized 
Fitness: 

Hits: 

Success 
Predicate: 

(Number of fitness cases. ,V) - (Number of hits) 

The number of fitness cases for which an individual 
program's output is less than 9 away from the target 
gray-scale value of 255 or 0. 

A run ends when the maximum number of generations 
is reached or when an S-expression scores the maximum 
number of hits. 
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Figure 2. (a) Subimage from April 23,1992. Image of sea 
ice near Beaufort Sea gyre. ERS-1 © ESA 1992. (b) Refer- 
ence classification. 
3.3 Experiment Rationale 
The experiment design of Section 3.2 allowed us to: 
• isolate the role of the evaluation function by completely 

removing human supervision from fitness evaluation. In 
particular, it allowed us to ask whether supplying test cases 
in toto or by increments would make for significant differ- 
ences in classification output. We have hypothesized that a 
dynamic fitness function would likely yield better solu- 
tions than a static fitness function, given identical sets of 
fitness test cases. 

• examine the case where no scaffolding is allowed. Although 
our use of scaffolding does indicate that a human is in- 
volved in some aspect of fitness evaluation, we have de- 
signed the system to limit that involvement mostly to ac- 
tions taken between GP runs (i.e.. evaluations of out-of- 
sample results, as well as changes made to fitness cases 
and GP parameters). Still, we have hypothesized that even 
this amount of restricted access is (for all practical pur- 
poses) necessary because the problem is likely to be ill- 
posed. For this case where no scaffolding is allowed, one 
can test for this hypothesis by showing that the out-of- 
sample results are not well correlated to fitness scores. 

3.4 Implementation Notes 
Most of the implementation did not change from that described 
in Daida et al. (1996). All of the runs were concurrently ex- 
ecuted on a network of HP 715 UNIX workstations using Al- 
legro Common LISP. 
Each run takes about four hours to complete. Although the 

workarounds described in Daida et al. (1996) can and have 
allowed for the processing of 1024x1024 pixel images, we 
chose to use 128x128 pixel subimages for out-of-sample in- 
spection. We have found that this size of subimage is suffi- 
cient to inspect all of this experiment's images on a monitor 
without having to sacrifice the detail necessary for a qualita- 
tive assessment. (At least this is true for our domain problem. 
Other problems may require larger subimage sizes than what 
we used.) 

4. Results 
Figure 3 shows the performance curves associated with the 
experiment. All of the curves are displayed as box plots, which 
summarize the statistical variability measured for each gen- 
eration. 

Figures 3a and 3b show the box plots associated with the 

average standardized fitness measured for each generation for 
static and dynamic evaluation functions, respectively. A per- 
fect standardized fitness score is zero hits and the worst case 
score is 53 hits, which is indicated by dotted lines. Figures 3c 
and 3d show the box plots associated with the raw fitness score 
for the best individual of each generation for static and dv- 
namic evaluation functions, respectively. A perfect score is 53 
hits, which is also indicated by dotted lines. 
Figures 4 shows an excerpt from the out-of-sample test im- 

age for static and dynamic evaluation functions. For each row. 
each image corresponds to an output from a best-performing 
individual from a single run. Only the first individual that the 
kernel identified as having the highest raw fitness score has 
been visualized. (A run can generate many individuals with 
the same score.) Black (gray value 255) represents regions 
that supposedly have pressure-ridge or rubble-field features. 
The images in each row are organized by trial so that the main 
difference between images in a column is the type of evalua- 
tion function (and not a random-number seed). Visualized are 
the results corresponding to the first ten random-number seeds. 

5. Discussion 
5.1 Interpreting Performance Curves 
The shapes of the performance curves are the most different 
at the outset, from zero to about seven generations. According 
to Figure 4. the static evaluation function allowed for GP to 
create an individual that solves about 757r of the presented 
problem (approximately 38 hits in raw fitness score) in gen- 
eration zero, which indicates that most of the solution has been 
generated by a pure random process. In contrast, the dynamic 
evaluation function allowed for the GP to solve at most 30'« 
of the presented problem (15 hits, raw fitness score) also by a 
pure random process. The short rise of the average standard- 
ized fitness curve for the dynamic case suggests that the pre- 
sented problem has increased in difficulty for several genera- 
tions. Figure 4 suggests that one effect, then, of using dynamic 
evaluation was to shift the predominant means of obtaining a 
solution from a pure random process to one of crossover and 
reproduction. 
The shapes of the performance curves are the most similar 

towards 50 generations. The particular fitness set used in this 
experiment did yield an individual with either a perfect or near- 
perfect score for all of the runs, w hether static or dynamic. 

::-***«»*-., **'! 
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Figure 3. Performance curves. 
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Figure 4. Excerpt of Out-of-Sample Results. 
5.2 Classification Output and Scaffolding 
The results presented in Figures 3 and 4 indicate that the out- 
of-sample classification results were not well correlated with 
high fitness scores (which is an expected finding for this ex- 
periment). At face value, the performance curves shown in 
Figure 3 would have suggested that all algorithms obtained 
from runs under either static or dynamic fitness evaluation 
functions correspond to reasonable classification solutions. 
However, when these algorithms classified imagery that con- 
tained data exclusive of that used in fitness calculations, the 
quality of classification output has varied greatly. Even per- 
fectly scoring algorithms yielded questionable results that 
looked nothing like the solution shown in Figure 2b. These 
results did strongly suggest that the provided fitness set was 
ill-posed, which is what we expected for the case of no scaf- 
folding, and which is why we have advocated the use of scaf- 
folding. 
The out-of-sample processing requirement for image analy- 

sis tasks is often many times larger than the number of in- 
sample test cases with which GP can feasibly process. Con- 
sidering the out-of-sample requirement for just one ERS low- 
resolution (1024x1024 pixel) data product, the ratio of the 
number of out-of-sample cases to the number of in-sample 
cases for our fitness set is almost 20.000:1. (In an operational 
environment, a 2.000.000.000:1 ratio would not be unreason- 
able.) Even if one could accurately and precisely quantify ev- 
ery relevant aspect of a feature for processing (which is un- 
likely at the start of problem solving, cf. Congalton (1991)). 
the possibility of undersampling would still remain. For that 
reason, using GP as a means for scaffolding (which would 
include a human in an evaluation loop with GP) in image analy- 
sis tasks makes more sense than using GP without human su- 
pervision. 

5.3 Likelihood of Success 
Are there any predictors that might indicate whether a reason- 
able solution is likely? Fortunately, the answer may be yes. To 
assess whether a set of parameters, terminals, and function 
sets might yield a solution, a user would likely end up execut- 
ing a large number of runs, if only because GP is a probabilis- 
tic method. Furthermore, for ill-posed cases, a single run can 
generate upwards of several thousand individuals that have 
scores that would merit human inspection. In any case, with- 
out a predictor, a user could be faced with a fairly laborious 
task of inspecting each candidate without necessarily being 
assured of whether any solution would be possible for that 
particular set of GP parameters or fitness test cases. 
Figures 5a and 5b show the result of doing a matrix addition 

and normalization over the twenty images for dynamic and 
static cases, respectively. White represents low average val- 
ues; and black, high values. What has surprised us was how 

close the resulting averaged images were to the solution shown 
in Figure 2b. Part of this surprise came from noting that none 
of the images in Figure 4 looked like the solution. Indeed, 
some of those images looked quite different. Another part of 
this surprise came from also noting that the number of images 
averaged was fairly modest, given a considerable number of 
individuals (e.g.. over 5000 in the dynamic case) having similar 
fitness scores. 
We have hypothesized that each image represents the out- 

come of one or more genotypic building blocks that have 
evolved over the course of a run. The expression of those build- 
ing blocks would depend on what building blocks exist and 
what blocks become expressed, which depend upon the struc- 
tures that link these blocks together. Because components in 
the function set were Cartesian operators, an average image 
would represent a projection in image space of those building 
blocks that commonly occur. An average image would subse- 
quently provide a rough indication of allowable and 
disallowable solutions. 

If this hypothesis were the case, thresholding an averaged 
image would then yield a likelihood map of classified image 
data for some probability (i.e.. given M runs, the probability 
that all the components necessary for a solution are attained). 
Assuming that the values associated with the probability of 
assembling all necessary building blocks remains relatively 
constant, the most likely map of classified image data should 
be comparable between static and dynamic cases for some 
fixed threshold. 
Figure 6 shows the result of thresholding the averaged im- 

ages. Figure 6a shows a subimage of the original data shown 
in Figure 2a. Figure 6b shows the corresponding classified 
solution for reference purposes. Figure 6c shows the 
thresholded averaged image for the dynamic case, while Fig- 
ure 6d shows the thresholded averaged image for the static 
case. The thresholded values corresponding to Figures 6c and 
6d were kept identical. 

Figure 6 indicates that the dynamic evaluation function has a 

Figure 5. Averaged outputs, (a) Dynamic, (b) Static. 



*W..rt^i 

(a) (b) (d) 
Figure 6. Probablistic outputs, (a) Data, (b) Reference so- 
lution, (c) Dynamic, (d) Static. 
greater likelihood of obtaining a solution in comparison with 
the static evaluation function (i.e.. Figure 6c is more similar to 
Figure 6b than is Figure 6d). What is missing in the static case 
is the building block(s) associated with classifying ridge and 
rubble features at the edge of multiyear ice. In other words, 
the probability of obtaining code that detects just the presence 
of bright curvilinear features at the boundaries between light 
gray and dark gray regions appears to be fairly low for the 
static case. Note that the required code would not be an edge 
detector. (If it were, all the edges between the light and dark 
gray regions would be incorrectly classified as ridge features.) 

At the time of this experiment, we did not have the means to 
track building blocks for entire populations of algorithms and 
consequently did not have the means for testing this hypoth- 
esis. We have subsequently left this assignment for future work. 

6. Conclusions 
This paper has examined some of the issues involved in using 
GP in the computer-assisted design of image classification al- 
gorithms. Although it would be desirable to have the com- 
puter to do much, if not all of the work in deriving an appro- 
priate classification algorithm, for practical reasons, we have 
indicated that a human should be involved in at least part of 
fitness evaluation. In particular, we have indicated that there 
is a trade-off in the number of fitness cases considered during 
evaluation versus the available computational resources. We 
have also pointed out that there may exist uncertainty about 
the quality of fitness cases used. In any case, we have indi- 
cated than an image classification problem could be ill-posed, 
which was certainly the case for this paper's experiment. 
This paper has also has described the role of using either 

dynamic and static evaluation functions in deriving a solu- 
tion. Results have suggested that use of a dynamic evaluation 
function would be more likely to evolve a classification solu- 
tion than would a static evaluation function using the same set 
of fitness test cases. A novel means of visualizing and predict- 
ing the solution space for a given set of parameters, functions. 
and terminal sets was also described. 
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