
FINAL REPORT

SAR Remote Sensing Algorithms for Automated
Extraction of Sea Ice Ridges and Leads

University of Michigan Project
030098

Office of Naval Research Grant:
N00014-92-J-6005

Prof. John F. Vesecky, Principal Investigator

ÄBRioved tea guoiic teiecss* f

Atmospheric, Oceanic and Space Science Dept.
The University of Michigan

August, 1997

19971010 059

Z* '■ «3 -C«3 »5- ^«

REPORT DOCUMENTATION PAGE

;*•♦<«";' *T"*':*?-. f^ljulf

0«t *o. J/94-4f|#

I. AfliNCT ull ONLY (LM* ounti

t*V-'?i "iVr*-*" '""' V:M" ': ••'«"1'*' -«••*."-•-' ^n<«. ;.WM» Gr Mir-*.«. QomrniHtJ, •«••SfcVT?«^

«. riTLe «NO jutriTu

i. MtrVIRI 3ATI
Janaary, 1997

 «#w»ito«v a« met
). MHftT TYH AN6 OAT< J dovmo
Technical Report, 8/26/92 - 8/25/95

5. JuNOtNO NUMIIftS *"

SAR Remote-Sensing Algorithms for Automated Extraction
of Sea Ice Ridges & Leads

•. AUTHOR!)

John F. Vesecky & Jason M. Daida

i pevoRMwo QHGANUAno* NAMNSVANG A&tafo^ii}

Atmospheric, Oceanic, and Space Sciences Department
The University of Michigan
2455 Hayward St.
Ann Arbor, MI 48109-2143

1. SPONSORING/MON1T0MN4 A61NCY NAMC(S) ANO AOOAlSMfJ)

N00O14-92-J-6005

Office of Naval Research

i\. SUPPLEMENTARY NOTES

1. tmommi OACANIZATJON
«IPORT NUMItft

030098-97-1

il. sPONsonMO/lNioNrrol(M<i
AaiMCY won NUMIU

W«. WSTMUTlON/AVAIlAilüh $TATIME*f

Unlimited Distribution

tik OiJTWIUT'tON COOT

1). ABSTRACT rM<jri/num;00«voT*J

Sea ice is of fundamental importance in weather, climate and other geophysical processes. It is also
an important factor for naval operations in the polar regions, in particular regarding transport of personnel
and material in regions where sea ice is likely to be found and assessment and prediction of acoustic
environments in polar regions. Because sea ice has a large geographic extent and short time scale for
variability synthetic aperture radar (SAR) is a valuable technique in studying sea ice. Automated
interpretation techniques are required because of the large number and high information content of the SAR
images becoming available. Here we report research on automated-computer-based techniques for such
interpretation. The principle approach under this grant is to use genetic algorithms to implement the
segmentation. This final report on ONR grant N00014-92-J-6005 contains a summary of research under
the grant together with an appendix of the several research papers that were produced under this grant.
The papers themselves as well as demonstrations of the algorithms can be accessed through the
ACERS website at the University of Michigan http://www.sprl.umich.edu/acers/. Many paper have an
electronic appendix accessed through this website. The algorithms discovered through the genetic
programming paradigm are shown to be efficient in extracting ridges features from SAR images, even
those with low-contrast. We also apply the genetic paradigm to the problem of segmenting a SAR image
into ridges, ice and leads. The SAR interpretation algorithms to which this research contributes can assure

^ that SAR image information is available in a timely manner for use in ice science and naval applications.
1*. SutJtCT t(HMS

Synthetic Aperture Radar, Genetic Paradigm, Automated Image
Interpretation, Sea Ice, Polar

17. SCCLAITV CLASJWCATlOlT
Q* «P0*T

UNC

NSN 7540-01 iMSJOO

II. SECUAirr OAJSIHCAIION
Of THIS »AGE
UNC

19. SfCUAITY CLASSIFICATION
Ot A8STTUCT

UNC

11. HUMS» Of »AGIS

14. HUM cooe

20. LIMITATION OF ABSTRACT

Unlimited

St*nO«rfl Form 29fl (Rt< <!<S9>
"I«««« at «nti \m in- %

a

ABSTRACT

Sea ice is of fundamental importance in weather, climate and other geophysical
processes. It is also an important factor for naval operations in the polar regions, in
particular regarding transport of personnel and material in regions where sea ice is likely
to be found and assessment and prediction of acoustic environments in polar regions.
Ridges (and keels) in sea ice are important because they provide a rougher surface and
thus a higher drag coefficient for both atmospheric winds and ocean currents. This
impacts sea ice motion. In addition ridges and keels can impact travel on the ice and
operations under the ice since they constitute barriers to easy surface travel over the ice
and a hazard to operations in the water column just under the surface. Because sea ice
has a large geographic extent and short time scale for variability synthetic aperture radar
(SAR) is a valuable technique in studying sea ice, particularly since images can be
collected through clouds and at night. SAR information on sea ice is available from
several satellites (ERS-1 & 2, JERS-1 and Radarsat). Automated interpretation
techniques are required because of the large number and high information content of the
SAR images becoming available. Here we report research on automated-computer-
based techniques for such interpretation. The general problem that we face is to extract
geophysical information from one or more SAR images. The work reported here concerns
automated extraction of ridges and leads in sea jce. This amounts to segmentation of a
sea ice surface into ice, ridges and leads. The principle approach under this grant is to
use genetic algorithms to implement the segmentation.

This final report on ONR grant N00014-92-J-6005 contains a summary of research
under the grant together with an appendix of the several research papers that were
produced under this grant. The papers themselves as well as demonstrations of the
algorithms can be accessed through the ACERS website at the University of Michigan
http://www.sprl.umich.edu/acers/. Many paper have an electronic appendix accessed
through this website that allows the reader to run some of the algorithms himself and thus
become more familiar with their operation. The algorithms discovered through the genetic
programming paradigm are shown to be efficient in extracting ridges features from SAR
images, even those with low-contrast. We also apply the genetic paradigm to the problem
of segmenting a SAR image into ridges, ice and leads. The SAR interpretation algorithms
to which this research contributes can assure that SAR image information is available in a
timely manner for use in ice science and naval applications.

In this report we include a bibliography of the publications that were supported by this
research grant. In addition we have constructed an appendix of papers published. An
important feature of our research is that we have constructed a world wide web site where
users can not only access the text of the papers and high quality images, but also
exercise the algorithms via the internet. This site called the ACERS (Adaptive
Computation for Environmental and Remote Sensing Sciences) web site is

http://www.sprl.umich.edu/acers/papers.html

The sponsors of this work at NRL Stennis (Drs. Al Pressman and Florence Fetterer)
and at ONR (Drs. Chuck Luther and Frank Herr) have contributed strongly to the success
of this work both through financial support and through inspiration and useful
suggestions.

DTIC QUALITY nJS?ECTll> %

TABLE of CONTENTS

Cover 1

Abstract 2

Table of Contents 3

I. Introduction and Motivation for Sea Ice Research 4

II. Research Objectives 4

III. Research Results 5

A. Extracting Curvilinear Features from SAR Images
of Sea Ice 5

B. Evaluation of Feature Extraction Algorithms using
Genetic Programming 6

C. Computer Assisted Design of
Image Classification Algorithms 6

IV. Conclusions 6

References 7

Bibliography 8

Appendix of Papers Published 9

I. Introduction and Motivation for Sea Ice Research

Sea ice is of fundamental importance in weather, climate and other geophysical
processes. It is also an important factor for naval operations in the polar regions, in
particular regarding transport of personnel and material in regions where sea ice is likely
to be found and assessment and prediction of acoustic environments in polar regions.
Because sea ice has a large geographic extent and short time scale for variability
synthetic aperture radar (SAR) is a valuable technique in studying sea ice. A SAR image
is a 'radar picture' of a scene on the Earth's surface. The picture elements or pixels of the
scene are a map of the radar reflectivity of the pixel's area on the surface. SAR images
are particularly useful in that they can be collected through clouds and at night. Such a
capability is clearly important in polar regions. SAR information on sea ice will be
available from several satellites in the 1990's (ERS-1, JERS-1, Almaz, Radarsat and
possibly an EOS SAR). Automated interpretation techniques are required because of the
large number and high information content of the SAR images becoming available. We
have worked to develop automated-computer-based techniques for such interpretation
and make use of advanced methods and concepts in image processing, computer vision
and artificial intelligence.

The general problem that we face is to extract geophysical information from one or
more SAR images. The work reported here concerns extraction of ridge features from sea
images using genetic paradigm, automatic programming methods. The research reported
here contains important results for the solution of this problem. The SAR interpretation
algorithms to which this research contributes assure that SAR image information is
available in a timely manner for use in ice science and naval applications. Ideas in the
results reported here were fundamental to both the general scheme of the ice ridge
feature extraction algorithms as well as the use of genetic programming methods in image
processing for sea ice remote sensing.

II. Research Objectives

The objectives of research reported here follow from the circumstances discussed
above. The objectives can be summarized as follows:

1. Apply the genetic programming paradigm to develop an image processing
algorithm for extracting bright curvilinear features (ridges) from SAR images of sea ice.

2. Apply the genetic programming paradigm to the segmentation of SAR sea ice
images into areas of differing surface roughness

3. Apply the genetic programming paradigm to the evaluation of image processing
algorithms for sea ice remote sensing using SAR images

4. Apply the genetic programming paradigm to the general problem of image
processing for sea ice image interpretation

III. Research Results

The research results stemming from the objectives above can be summarized under
four topics:

A. Genetic programming for extracting sea ice ridges from SAR images
B. Evaluation of sea ice interpretation methods
C. Genetic programming for sea ice remote sensing in general.

The most important progress has been made in the first two items.

A. Genetic programming for extracting sea ice ridges from SAR images
Research work on extracting ridges from SAR images of sea ice began with previous

work by Vesecky et al. (1988). Genetic programming is a method for generating
algorithms to accomplish a given task in a manner similar to natural selection in biology.
A wide variety of algorithms are generated and tested against a criteria for success. Only
the best survives the natural selection process. The skill and art of genetic programming
are in generating the algorithms that are tested and testing these algorithms in an efficient
manner. An excellent introduction to the concept of genetic programming and current
techniques is given by Koza (1992). We have applied the automatic programming
process using the biological metaphors of genetic crossover and natural selection. In the
process we specified a limited set of functions that includes algebraic and nonlinear
image operators. As a fitness test for the natural selection process we compare the
automatically generated algorithm results for a SAR image of sea ice with results of a
manual analysis by an experienced operator. The results of the automatic programming
are impressive, but are still not a good as a manual analysis by an experienced operator.
The resulting algorithm and its results on a SAR sea ice image are shown in the paper 1
of the Appendix (Daida, et al., 1995).

This work was pursued further in Daida et al. (1996a). Here we used genetic
programming (GP) to complement the normal hypothesis-test derivation of such
algorithms. The most successful solution consists of a standard GP technique with a
dynamic fitness function. The results for SAR images of sea ice are shown in the paper 2
of the Appendix. They are a distinct improvement over the results of Daida et al. (1995).

B. Evaluation of sea ice interpretation methods
Here we evaluate of the GP generated algorithms described in section A above.

The evaluation is done using a SAR image of an Arctic ice camp. Members of the
expedition on the ice surveyed the area for ridge and rubble features in multiyear ice and
mapped them. We then used the algorithm of Daida (1996a) above with low resolution
ERS-1 SAR images and extracted the ridge features. The results shown in Daida et al.
(1996b, paper 3 in the Appendix) show that the GP algorithm performs well on low-
resolution ERS-1 SAR images.

C. Genetic programming for sea ice remote sensing in general
Work under this topic includes genetic programming methods that apply both to the

problem of extracting ridges in sea ice and to the application of GP techniques to remote

sensing algorithms in general. The general techniques developed are summarized
briefly as follows:

1. Preprocessing: to speed up the use of GP techniques the problem presented to
the GP automated programming is truncated as much as is practical, e.g. computing
texture measures for an image before beginning the GP process

2. Test points: use of manually interpreted test points in an image to serve and GP
programming benchmarks

3. Dynamic Fitness: increase the rigor of the fitness test as the programming
process proceeds, i.e. use a relatively simple fitness test at the beginning to weed out the
weak algorithms and then use a more rigorous and hence more complicated fitness test to
select from among the stronger algorithms

4. Chunking: to reduce the computational overhead we divided an image into
smaller subimages (chunks) so that computation speed could be increased because the
computation time was more than proportional to the image size

5. Use of C-language: Although LISP is very well suited to GP methods, C-
language can speed up processing on images

6. Scaffolding: Rather than let GP attempt to generate a code ab initio we let the
used intervene from time to time to evaluate the natural selection process and change the
fitness test points or prune off classes of algorithm that are not practical.

The papers by Daida et al. (1996c and 199d) describe these GP techniques and illustrate
them with examples. These two papers are included in the Appendix as papers 4 and 5.

IV. Conclusions
The primary conclusions of this research can be summarized as follows:

1. Genetic programming techniques can automatically generate algorithms for sea ice
image interpretation that are as good or better than algorithms generated by the normal
hypothesis-test scheme.

2. Evaluation of GP generated algorithms for extraction of sea ice ridges from SAR
images shows that these algorithms perform well on ERS-1 low-resolution SAR images.

3. We have developed and applied a number of techniques to increase the speed of
GP methods, including preprocessing, chunking, scaffolding, etc. This makes the use of
GP algorithms more practical since computation time is greatly reduced.

REFERENCES

Koza, J. R., Genetic Programming: On the Programming of Computers by Means of
Natural Selection, MIT Press, Cambridge MA (1992

Vesecky, J. F., R. Samadani, J. M. Daida, M. P. Smith and R. N. Bracewell, "Remote
sensing of sea ice motion using floe edge and pressure ridge features in SAR images",
417-418, IGARSS' 88 Conf. Proa, SEA SP-284, European Space Agency, Paris
(Sept, 1988).

V. BIBLIOGRAPHY

Journal Papers and Book Chapters:

Daida, J.M., J.D. Hommes, T.F. Bersano-Begey, S.J. Ross, and J.F. Vesecky,
"Algorithm Discovery Using the Genetic Programming Paradigm: Extracting Low-
Contrast Curvilinear Features from SAR Images of Arctic Ice," to appear in Advances in
Genetic Programming 2, P. Angeline and K. Kinnear, Jr. (ed.) Cambridge: The MIT
Press, 1996a. pp. 417-442. See also
the e-appendix* for this paper.

Conference and Symposia Papers:

Daida, J.M., J.D. Hommes, S.J. Ross, A.D. Marshall, & J.F. Vesecky, Extracting
Curvilinear Features from SAR Images of Arctic Ice: Algorithm Discovery Using the
Genetic Programming Paradigm, Proceedings of the IEEE International
Geoscience and Remote Sensing Symposium, Firenze, Italy, T. Stein (ed.),
Washington: IEEE Press (1995)

Daida, J.M., R.G. Onstott, T.F. Bersano-Begey, S.J. Ross, and J.F. Vesecky, Ice
Roughness Classification and ERS SAR Imagery of Arctic Sea Ice: Evaluation of
Feature-Extraction Algorithms by Genetic Programming, 1520-1522, Proceedings of
the 1996 International Geoscience and Remote Sensing Symposium,
Washington: IEEE Press (1996b). See also
the e-appendix* for this paper.

Daida, J.M., T.F. Bersano-Begey, S.J. Ross, and J.F. Vesecky, "Evolving Feature-
Extraction Algorithms: Adapting Genetic Programming for Image Analysis in
Geoscience and Remote Sensing, 2077-2079, Proceedings of the 1996
International Geoscience and Remote Sensing Symposium, Washington:
IEEE Press (1996c). See also
the e-appendix* for this paper.

Daida, J.M., T.F. Bersano-Begey, S.J. Ross, and J.F. Vesecky, Computer-Assisted
Design of Image Classification Algorithms: Dynamic and Static Fitness Evaluations in
a Scaffolded Genetic Programming Environment, 279-284, Genetic Programming
1996: Proceedings of the First Annual Conference, J.R. Koza, D.E. Goldberg,
D.B. Fogel, and R.L. Riolo (eds.). Cambridge: The MIT Press (1996d). See also
the e-appendix* for this paper.

*Papers with and e-appendix can be accessed through the ACERS (Adaptive
Computation Environmental and Remote Sensing Sciences) web site
(http://www.sprl.umich.edu/acers/papers.html).

8

APPENDIX of PAPERS

PUBLISHED under ONR SPONSORSHIP

1995-1996

Paper 1

Daida, J.M., J.D. Hommes, SJ. Ross, A.D. Marshall, & J.F. Vesecky,
Extracting Curvilinear Features from SAR Images of Arctic Ice: Algorithm Discovery

Using the Genetic Programming Paradigm, Proceeding! of the IEEE
International Geotcience end Remote Sensing Symposium, Firenze, Italy,

T. Stein (ed.), Washington: IEEE Press (1995)

Preprint, Proceedings of the 1995 International Geoscience and Remote Sensing Symposium: Quantitative Remote Sensing for
Science and Applications, 10-14 Julyl 995, Firenze, Italy.

Extracting Curvilinear Features from Synthetic Aperture Radar Images of Arctic Ice:
Algorithm Discovery Using the Genetic Programming Paradigm

Jason M. Daida*. Jonathan D. Hommes*. Steven J. Ross*, and John F. Vesecky"

*The University of Michigan. Artificial Intelligence Laboratory & Space Physics Research Laboratory
2455 Hayward Avenue. Ann Arbor. Michigan 48109-2143

(313)747-4581 FAX (313)764-5137 EMAIL: daida@eecs.umich.edu
"The University of Michigan. Dept AOSS. 2455 Hayward Ave.. Ann Arbor. MI 48109-2143

Abstract—This paper focuses on how a method for automated

programming (i.e.. genetic programming) applies in the computer-

aided discovery of algorithms that enhance and extract features

from remotely sensed images. Highlighted as a case study is the

use of this method in the problem of extracting pressure ridge

features from ERS-1 SAR imagery: a problem for which there has

been no known satisfactory solution.

1. INTRODUCTION

Pressure ridges in arctic ice are a significant geophysical feature

in sea-ice research. [1] Pressure ridges (and their corresponding

keels, which are below-water features) help to transfer kinetic

energy from meteorological systems and polar oceanic currents

to the ice pack. In particular, pressure ridges and keels signifi-

cantly increase sea-ice drag coefficients, which subsequently af-

fect sea-ice movement and deformation.

To observe meso-scale features such as pressure ridges, research-

ers have used satellite SAR (synthetic aperture radar) imagery. In

such imagery, pressure ridges often appear as filamentary, curvi-

linear features of variable width. With ERS-1. pressure ridges have

radar backscatter signatures that differ only slightly from non-

ridged multiyear-ice signatures. Pressure ridges subsequently ap-

pear mostly as low-contrast features in ERS-1 imagery. Extrac-

tion of such features bv hand for quantitative analysis has proven

extremely time consuming and tedious. Furthermore, current al-

gorithms have also been shown to be ineffective with either low-

or high-resolution ERS-1 data products. [2|

Current algorithms (e.g.. (1|. which are based on line detec-

tion and morphology) partially extract ridge features not as cur-

vilinear segments, but as disjointed short segments and points.

Current algorithms also extract many other non-ridge features—

also as short segments and points—which result in a significant

amount of clutter. We have hypothesized that texturally-filtered

images have sufficient information for clutter removal and curvi-

linear feature enhancement. However, the number of possible tex-

turallv filtered images is large: and a proper combination of them

is unknown. Consequently, we have chosen the genetic program-

ming paradigm as a wav to derive and systematically test possible

algorithmic solutions.

2. OVERVIEW OF GENETIC PROGRAMMING

The genetic programming paradigm is a bottom-up. unsuper-

vised programming method by Koza [3| that uses the biological

metaphors of genetic crossover and natural selection for auto-

matic programming. This fairly recent method loosely belongs to

the class of domain-independent techniques in artificial intelli-

gence (including neural nets and genetic algorithms) and is dis-

tinct from top-down automatic programming methods using plan-

ning techniques (e.g.. [4]). Genetic programming represents one

of the few approaches that exploit combinatorial search and that

are capable of automatically deriving non-trivial code [5|. The

paradigm has alreadv been applied to solve a wide variety of prob-

lems in a number of domains, including an image analysis prob-

lem using feature vectors that were previously derived from im-

age data [6|. However, as far as we know, there exists no pub-

lished account of applying the paradigm directly to remotely sensed

image data for solving geoscience problems.

3. PROBLEM-SPECIFIC IMPLEMENTATION

As in most domain-independent techniques, genetic program-

ming requires the specification of a problem-specific portion of

the genetic programming code. We have specified a limited set of

terminals that includes subsets from an image and its associated

texturallv filtered counterparts (e.g.. mean, variance) We have

also specified a limited set of functions that includes algebraic

and nonlinear image operators. The most difficult specification

has been in deriving an appropriate fitness measure. Table 1 shows

our current specification, which describes this situation: given

one (8x 8 pixel) training set. derive a nonlinear ROI (region-of-

interest) filter for pressure ridges in an entire image

To evaluate the code, all of the benchmark matrices (8x8

subimages of intensity data and corresponding texturallv- filtered

subimages) were replaced with full-sized image data.

4. RESULTS & DISCUSSION

Table 2 shows the current algorithm (in LISP) that has been

derived under the specifications described in Section 3. It has not

been simplified, which has resulted in occasional sections of re-

dundant code (e.g.. subtracting a matrix from itself). The par-

Extracting Cunilinear Features from SAR Iwaeri 1

ticular run that developed this individual took about an hour on

a Sparc 2.

Figs, lc and Id show the results of this code on a 128x128

pixel image. (At the time of this writing, we were not ready to

execute the code over a full-size image. We are contemplating

porting the code from LISP to parallel C++) Dark areas are the

ROI in which there exists a high probability of finding a ridge.

Upon close inspection, the results show that the algorithm has

correctly identified the possible ROI. On one hand, the result is

surprising since only one benchmark was used: conventional wis-

dom suggests that multiple benchmarks are needed to automati-

cally generate robust code. Indeed, of the 64 pixels the genetic

program had available to it. only 18 pixels (hand-selected) were

used to derive an appropriate fitness measure.

Table 1. Problem-Specific Characterization

Terminal Set Consists of a list of n selected points from an 8x8
benchmark, as well as corresponding points from
four 8x8 filtered subimages (5x5 Laplacian of a 3x3
Mean. 5x5 Laplacian. 3x3 Mean. 5x5 Mean), and
a random floating-point constant.

Function Set Arithmetic operators defined to operate on matri-
ces and constants in any combination (+. -. *. /).
and the threshold operator If-Less-Than-or-Equal
(IFI.TE).

Fitness Cases List of »manually selected points from benchmark.
Pixels that are part of pressure ridge features are given
a gray-scale value of 255 and all other non-feature
pixels take a value of zero.

Raw Fitness The sum over all n fitness cases of the difference
between the target value and the output value for a
given individual.

Standard Fitness (Number of fitness cases. /;) - (Number of hits).

Hits The number of fitness cases for which an individual
programs output is less than 50 away from the tar-
get gray-scale value of 255 or 0.

Success Predicate The run ends when an individual program scores a
hit on every fitness case or when the maximum num-
ber of generations is reached.

On the other hand, the result is typical of how genetic pro-

gramming works. Genetic programming is parsimonious, espe-

cially when it comes to specifying functions and terminal sets.

Either over-constraining a fitness function (e.g.. by supplying too

many data points to fit) or over-specifying the number and type

of terminals and function sets has been found to be detrimental

to algorithm discovery. In a sense, the paradigm forces a researcher

to throw out as much of the extraneous information as is possible

and to retain only a minimal set of functions and terminals from

which to build a program. While this type of algorithmic behav-

ior is unacceptable for many applications, it is acceptable, per-

haps even desirable, in scaffolding the discovery process for other

algorithms.

5. CONCLUSIONS & FUTURE WORK

This paper demonstrated how the genetic programming para-

digm can apply to image processing. An open ended case example

was studied, which involved deriving a nonlinear ROI filter for

low-contrast curvilinear features. This paper has shown that the

genetic programming paradigm can be used in the discovery pro-

cess of deriving image processing algorithms.

Near-term future work features testing the robustness of the

best-individual found so far. Other near-term work includes modi-

fying the problem-specific code to include a dynamic fitness mea-

sure that uses generational benchmark swapping, which mav help

in deriving robust code.

We note that our specification for the problem-specific por-

tion of the code is also generalizable to other similar problems

that involve extracting features from image data. Finally, we be-

lieve that our specification is also generalizable for use with multi-

spectral (and possibly multi-sourced) image data, since the mul-

tiple textural channels for each of our benchmarks can be replaced

with a spectral channel.

ACKNOWLEDGMENTS

This research has been partially funded with grants from the

Naval Research Laboratory (Slennis) and the Space Phvsics Re-

search Laboratory (UM). We gratefully thank F. Fetterer. D.

Rothrock. H. Stern. R. Shuchman. R. Onstott. and F. Tanis for

our early discussions on pressure ridges. We are indebted to R

Riolo and J. Koza for conversations on GP

BIBLIOGRAPHY

[1| Vesecky. J.F.. M.P. Smith, R. Samadani. "Extraction of lead and

ridge characteristics from SAR images of sea ice." T-CRS. 28:4. pp.

303-309. 1990.

[2| Gineris. D.J. & F.M. Fetterer. The Joint Ice Center SAR Workstation.

Algorithm Evaluation. Memorandum Report 7019. Stennis Spare

Center. Naval Research Laboratory Detachment. March 1993.

|3| Koza, J.R., Genetic Programming: On the Programming of Comput-

ers by Means of Natural Selection. Cambridge:MIT Press. 1992.

[41 Chien. S.. "Using Al planning techniques to automatically gener-

ate image processing procedures: A preliminarv report. Procrnl-

ings of the Second International Conference on AI Planning S\stetns.

pp. 303-309. 1994.

[5| Holland. J.. personal communications. 1994.

[6] Tackett. W.A.. "Genetic programming for feature discovery and

image discrimination." Proceedings of the Fifth International Confer-

ence on Genetic Algorithms, pp. 219-224. 1993.

Extracting Curvilinear Features from SAR Images 2

Table 2. Best-of-Run Individual

(+ (+ Laplacian-of-MeanMean^J (- (+ 1.9492742 Mean^J (x (-

(x (- (< Meart^-4.42039 (- (-MeanM Mean^^) (< (+ Laplacian.^.
Mean^ (< Image Mean.s%. Image Mean. ^ (-^-Laplacian.^. Mean,^)
{^Laplacian-of-Mean Mean.x.))) Mean.m) (- Mean^ -4.87104))

(- (--4.721524 Image) l+Mean.^ 3.8854232))) (- (-*(- (-Mean.^
Laplacian.^.) (x Laplacian.^ Laplacian.^.)) (< (+Laplacian.^.
Meanly.) (- (x (x Laplacian-of-Mean Meanu) (- (- (-Mean,^
Laplacian.^ (x Laplacian.^ Laplacian.,.)) (< {+Laplacian. .
Mean^ (< Image Mean.n. Image Mean. J (+Laplacian.n. Mean^.)
(+ Laplacian-of-Mean Mean.J))) Laplacian..) (- Laplacian.^

Mean.ws) (- (+ (-Mean^ Laplacian.^.) (x Laplacian,^
Laplacian.^.)) (< I+Laplacian.^ Mean^) (< imaje Mean.^ Image

Mean.x.) (-Laplacian.^. Mean^J) (- Laplacian-of-Mean
Mean"j)))) (+ (- (- (x"(- (x (-"(< .fc,,, 4.42039 (< (+
1.9492742 Mean2x.) (x (< /ma^p foa^f Laplacian.^ Image) (+

Laplacian-of-Mean Laplacian-of-Mean)) (+ /ma^p Mean.w) (x

Ma/j,^ Man, J) Mea/i.,,) (- Man,,., -4.87104)) (- (- -4.721524
Imagefl+Meanl- 3.8854232))) (+ (-('- (x -1.2301508 0.2565225)
(< (+ 3.6199708 MB/J.J (- Image Image) (--2.134516 %P)

(+ Laplacian-of-Mean Image))) (< (+Laplacian. . Mean, .) (-
Laplacian.^ Laplacian.^) (+Laplacian.y.i Mean,,.) (- (- (-V/pa/)Kt

Laplacian.^.) (■*■ Laplacian-of-Mean3.8854232)) (< (+Laplacian. .
MeanJ<t) (< ImageMean.^ ImageMean.%.) (^Laplacian. . Mean,,)
(+ Laplacian-of-Mean Mean. J)))) (+ (- (-Mea/7.;<. 3.8854232)"(-
Laplacian-of-Mean Mean3 .)) (x (< 2.3869586 Laplacian-of-Mean
(< MeanM Image -3.3760195 Laplacian.^.) Laplacian.,.) (+■ •

2.9275842 Image))))) (- Laplacian.^. 'image)) Mea'n.J (-
Laplacian-of-MeanMean^)) (x (< 2.3869586 Laplacian-of-Mean
(< Mean^ Image -3.3760195 Laplacian.^.) Laplacian.,.) (- -

2.9275842 %p))))) (-Laplacian.^ Image))))

Figure 1. (a) Pressure ridges often
appear as low-contrast curvilinear
features in low-resolution SAR
imagery, (b) 128 x 128 subimage
from April 23. 1992. ERS-1
©ESA 1992. Although contrast-
enhanced, the figure still does not
show all of the pressure ridge fea-
tures that can be detected by eye.
(c) Solution from best-of-run in-

dividual (with image overlay.)
Areas where there may be a ridge
are darkened, (d) Solution (only)
from best-of-run individual.

V.:.- ^

#;

Extracting Curvilinear Features from SAR Images 3

Pftpar 2

Daida, J.M., J.D. Hommes, T.F. Bersano-Begey, S J. Ross, and J.F. Vesecky,
"Algorithm Discovery Using the Genetic Programming Paradigm: Extracting Low-
Contrast Curvilinear Features from SAR Images of Arctic Ice," in Advances in
Genetic Programming 2, P. Angeline and K. Kinnear, Jr. (ed.) Cambridge: The MIT

Press, 1996a. pp. 417-442.

21 Algorithm Discovery Using the Genetic Programming
Paradigm: Extracting Low-Contrast Curvilinear Features
from SAR Images of Arctic Ice

Jason M. Daida, Jonathan D. Hommes, Tommaso F. Bersano-Begey, Steven J. Ross,
and John F. Vesecky

This chapter discusses the application of genetic programming (GP) to image analysis problems in
geoscience and remote sensing and describes how a GP can be adapted for processing large data sets
(in our case. 1024 x 1024 pixel images plus texture channels). The featured problem is one that has
not been adequately solved for this type of imagery. We describe the placement of GP in the overall
scheme of algorithm discovery in geoscience image analysis and describe how GP complements a
scientist's hypothesis-test derivation of such algorithms. The featured solution consists of a standard
non-ADF GP that incorporates a dynamic fitness function.

21.1 Introduction

Computer-assisted design of image processing and analysis algorithms has helped scien-
tists in five ways, all of which allow them to focus on their domain of expertise. First,
repetitive processing sequences can be automated (i.e.. task planning) [Chien 1994]. [Matwin
et al. 1995]. Second, fine-grained algorithmic detail—like data models and code-level pro-
gramming—can he hidden to facilitate rapid prototyping of algorithms (i.e.. visual pro-
gramming) [Chang et al. 1990]. [Konstatinides and Rasure 1994]. [Rasure and Williams
1991]. Third, the extraction of patterns and features in an image can be automated. In some
applications, patterns that may have escaped notice can be automatically sought for. ex-
tracted, and brought to a scientist's attention (e.g.. data mining) [Hsu and Alexander 1994].
[Koch and Moya 1994]. [Nguyen and Huang 1994], [Openshaw 1995]. [Tackett 199?].
Fourth, all algorithmic development can be hidden, which often involves automatic pro-
gramming of image algebraic systems (e.g.. automatic programming) [Barrera et al. 1994].
[Chen 1992], [Vogt 1989]. Fifth, algorithmic development can be selectively exposed to
guide a user, as well as to scaffold discovery of other algorithms. This chapter focuses on
the fifth area and discusses the genetic programming paradigm [Koza 1992. 1994] as it
applies to the computer-assisted design of classification filters for image processing. High-
lighted as a case study is the use of genetic programming in the problem of extracting sea-
ice pressure-ridge features from ERS SAR (synthetic aperture radar) imagery: a problem
for which there has been no known satisfactory solution.

This chapter consists of seven sections. Section 21.1 covers background material, while
Section 21.2 elaborates upon the use of GP as a method for scaffolding scientists in the
algorithm-design process for image processing and analysis. Section 21.3 gives an over-
view of the implementation. Section 21.4 describes procedures and results concerning this
chapter's case study. Sections 21.5 and 21.6 discuss the results, with the former emphasiz-
ing GP matters and the latter emphasizing domain-related issues. Section 21.7 concludes
this chapter.

Preprint To appear in Advances m Generic Programming ti P Angeline and K Kmnear (ed) Cambridge The MIT Pre« 1996

Figure 21.1
(a) Pressure ridges appear as low-contrast features in ERS SAR imagery, (a) 200 x 200 subimage from April 23.
1992. ERS-I © ESA 1992. (hi Enlarged 32x 32 subimage from la). Although these figures are contrast-enhanced,
they still do not show all of the pressure ndge features that can be detected by eye.

21.1.1 Domain of Case Study

The particular domain considered in this chapter involves extracting pressure-ridge features
from ERS (European Remote Sensing Satellite) SAR images of arctic sea ice.1 Pressure
ridges are a significant geophysical feature in sea-ice research: ridges (and their corresponding
keels, which are below-water features) help to transfer kinetic energy from meteorological
systems and polar oceanic currents to the ice pack. In particular, pressure ridges and keels
significantly increase sea-ice drag coefficients, which subsequently affect sea-ice move-
ment and deformation [Burns and Wegener 1988]. (Mellor I986|. [Vesecky et al. 1990],

Pressure ridges often result when thinner, first-year sea ice buckles under compression
from thicker, multiyear ice. Since first-year ice often forms in long cracks (sometimes up to
several hundreds of kilometers in length) between multiyear ice. pressure ridges usually
appear as linear features on the ice cover. To a person standing on the ice. a new pressure
ridge would appear as a several kilometer long hill about 5-10 m high and made of shat-
tered, broken blocks about a meter thick [Mellor 1986]. When ridging occurs in a general
area over an extended period of time, ridges consolidate to form rubble fields, which can
also play a significant role in the transfer of kinetic energy.

When imaged with SAR. pressure ridges and rubble fields often appear to be brighter
than their surrounding background (i.e.. ridges and rubble have a slightly higher backscatter

Like manv other radars. SAR allows for all-weather, day or night operation. That is helpful in our case hecau-e
sea ice occurs in areas of extended winter darkness and thick cloud cover.

signature). However, to say that pressure ridges appear as bright, curvilinear features in
SAR imagery is to state something of an oversimplification. Pressure ridges appear as cur-
vilinear features of varying width that often degenerate into blobs (rubble fields). Their
radar backscatter. and hence their brightness in an image, greatly depend upon the particu-
lars of a given SAR instrument.

When imaged with the SAR on board a European Space Agency ERS satellite (currently,
ERS-1 and ERS-2). pressure ridges have radar backscatter signatures that differ only slightly
from non-ridged multiyear-ice signatures. Pressure ridges subsequently appear mostly as
low-contrast features in ERS imagery. (See Figure 21.1.) Extraction of such features by
hand for quantitative analysis has proven extremely time consuming and tedious. Extrac-
tion of such features by current image processing algorithms has also proven untenable for
several reasons, including: difficulties in specifying a shape grammar (as is possible in
extracting roads from SAR imagery), low contrast (the sensor was optimized for other ap-
plications), clutter, and lack of ground truth (the phenomena occurs in remote locations),
(c/ [Vesecky et al. 1990]. which used data from a different SAR).

21.1.2 Objectives

We have hypothesized that there exists enough textural information in an ERS SAR image
from which to design an ROI (region-of-imerest) filter, a kind of spatial classifier that local-
izes the search area within which a particular feature can be found. However, the number of
possible texture measures is large; and a proper combination of them is unknown.: Conse-
quently, this chapter has several objectives:

• To describe the computer-assisted design of an image processing algorithm using a GP.

• To present a GP-derived solution for the case at hand.

• To offer an innovative approach in specifying fitness for problems using large data sets.

21.1.3 Contributions

This work makes the following contributions:

• Both this chapter and [Daida et al. 1995a] represent the first works featuring GP for
image processing applications in geoscience and remote sensing. (Some of the special con-
siderations of usi-ng image processing in these fields are given in Sections 21.2.2 and 21.3.)

' [Harahck and Shapiro 1992] gives an excellent overview in the treatment of texture in image processing. I In their
work, they recognize thirteen major approaches to texture. Note that in just one of those techniques under those
approaches—i.e.. Haralick's gray-level co-occurrence matrices—consists of eight texture measures. The number
of variations that can be tried with just these eight measures can significantly increase the total number of mea-
sures to consider in solving a given problem. I Throughout ihis chapter, we use the terms texture measure, texture
filter, and texture channel as loosely interchangeable in deference to a textural energy approach.

• Presents an algorithm for extracting pressure-ridge features for ERS SAR imagery, a
problem for which there has been no known satisfactory solution.

• Describes a general method for incorporating GP into scaffolded algorithm discovery for
pattern recognition and classification of image data. We believe this method would also
apply to image and texture types not presented in this chapter (e.g.. multispectral images).

21.2 GP in Context of Scaffolding Algorithm Development

Algorithm design involves a wide range of activities that can span over several disciplines
(e.g.. computer science, mathematics, the domain science). Consequently, when we say that
GPcan be used for computer-assisted design of algorithms, we need to qualify where in the
design process a method like GP would apply. This section describes our particular use of
GP in the design process, notably in the scaffolding of algorithm discovery.

21.2.1 Scaffolding

Scaffolding—a term borrowed from education and learning theory—refers to supporting
learners while they engage in activities that are normally beyond their reach [Brown and
Palincsar 1989]. [Vygotsky 1978]. [Wood et al. 1975]. (The term metaphorically alludes to
the temporary rigging that is erected around, say. a statue under construction.) Although
scaffolding can take many forms, an accessible form is thai of a mentor guiding an assistant.
Current research in education includes extending the concept of scaffolding to include com-
puter-assisted learning, (e.g.. [Guzdial 1995]. [Merrill and Reisner 1993])

In this chapter, we use the term scaffolding to include the computer-assisted support of
experts (e.g.. scientists, image analysts) who engage in activities that have an incompletely
specified goal. (In a sense, even experts become learners when confronted with novel prob-
lems.) Incompletely specified goals are commonly encountered during the development of
algorithms for interpreting remotely-sensed imagery, especially when:

• Firsthand knowledge (i.e.. ground truth) of the area depicted in the scenes of interest is
incomplete or missing.

• There is a high degree of ambiguity in how the phenomenon appears in a scene.
The case of extracting pressure-ridge features from ERS SAR imagery is typical of com-

putational problems in remote sensing with incompletely specified goals for feature extrac-
tion [Cogalton 1991]. [Daidaet al. 1995b]. [Lunetta et al. 1991]. Such computational prob-
lems often require extensive algorithm development, usually because a fair amount of do-
main-specific information needs to be built into the feature extraction algorithm. For that

reason, "off-the-shelf software rarely succeeds and tailor-made code becomes the rule,
rather than the exception.

With the overall task of discovering and creating a tailor-made algorithm comes a whole
series of subtasks. of which only some of these subtasks can be replaced with GP. Conse-
quently, before we can incorporate GP for computer-assisted support of algorithm discov-
ery and development, we need to review some of these key subtasks.

21.2.2 GP and Scaffolding

For many applications. GP is used not as a scaffold for supervised design, but as a black box
for unsupervised programming. On one hand, a black-box approach presupposes that per-
formance metrics can be reasonably specified in advance of a GP run. There are three key
subtasks that are subsequently involved: selection of components (i.e.. function and termi-
nal sets), selection of an evaluation metric (i.e.. fitness function and fitness cases), and
generation of an algorithm. With a black-box approach, a user supplies as input both algo-
rithm components and performance metrics. GP. in turn, yields as output a program that fits
the specifications that are implicit in the supplied metrics. In this way form follows func-
tion, as a GP '•discovers*' an appropriate form (an algorithm) to meet a prescribed func-
tionality. Note that with this approach, functionality of a program is usually not in ques-
tion—i.e.. a programmer knows what she wants before the algorithm is ever written. Subse-
quent amendments to black-box inputs often end up serving as adjustments for getting GP
to run on a particular problem.

On the other hand, a scaffolded approach does not necessarily presume that performance
metrics are well-specified at the outset of a GP run. Under this approach, functionality of an
algorithm can be very much in question—i.e.. a programmer does not necessarily know
what exactly needs to be accomplished. For example, specifying fitness cases for ridge
extraction is anything but an absolute science. While it would be common for experts to
agree that a ridge feature does exist in a particular location in an image, it would also be
common for variations to exist on a pixel-by-pixel characterization of that ridge between
those same experts. Furthermore, even with one expert examining a ridge, there is com-
monly a variation over time as that expert gains experience in seeing that type of feature.

An expert usually gains experience by formulating and then testing a hypothesis. For our
domain problem, an expert would formulate a hypothesis that consists of classification rules
(a kind of algorithm) categorizing ridge and non-ridge features in a sample subset. That
hypothesis would be tested by applying those rules to an out-of-sample subset. Depending
on that test's outcome, a hypothesis would be refined and another test would he run. Classi-
fication usually improves in this way. Discovery of what completely specifies a ridge fea-
ture becomes intrinsicallv linked with discoverv of an algorithm that extracts such features.

Interactive
;utput !mja-

Imaae A

T

s-iect
n.innels T^sl Points

Inpu

.. i .

1 Texture
Filtering n 1 ■

•
Tentur-

]

1 Select GP
j Pirametprs

1
i

GP

Evalu.li*
B°st SExp

■.Subirnane)

Fiit-'ira "n I

j Select T«t
j iuDin-.aaeis»

L-*i r,«rr;ör-.

Figurt 21.2
Flowchart of GP-scaftoldecl alcoritlim discovers for imaee analysis.

t Aiiuate

Best SE«p
:E:jli Image:

"Form" and "function" drive each other in a closed interactive cycle that, subsequently,
involves several key subtasks: selection of components, selection of an evaluation metric
(with fitness cases from a sample subset), generation of an algorithm, and an evaluation of
that algorithm (with an out-of-sample subset).

We contend that GP can be used as a scaffold within this cycle of hypothesis-test by
enabling the formulation of hypotheses of what would be involved in classification and also
by facilitating rapid testing of these hypotheses to check for consequences. In comparison
with a black-box approach, a user would supply as input both algorithm components and
performance metrics. GP. in turn, would yield as output an algorithm that may fit the speci-
fications that are implicit in the supplied metrics. By so doing, a hypothesis takes the form
not as a full-blown algorithm, but as an algorithm sketch that consists of guesses and as-
sumptions of what pans would make up such an algorithm. GP is then left to figure out the
programming details. In contrast, a scaffolded approach requires a user to evaluate the per-
formance of that algorithm on an out-of-sample subset to test not only the robustness of a
GP-derived solution, but also the validity of the assumptions that went into a hypothesis. A
user is then expected to modify a hypothesis should evidence so warrant. Unsupervised

programming and generation of a program then, becomes only one aspect in scaffolding a
hypothesis-test cycle. The other relevant aspect includes educating an expert.

Figure 21.2 shows a flowchart of how we incorporated GP into this cycle. The upper half
ofthat figure (boxed section) indicates those processes that are open for human interven-
tion. The lower half indicates those processes that are intended mostly for autonomous
operation. We designed this process to deliberately establish a problem-solving partnership
between human and computer. The next section describes the components of Figure 21.2 in

further detail.

21.3 Implementation Overview

Image analysis/processing problems in remote sensing and geosciences pose at least two
major challenges to genetic programming: memory requirements and computational inten-
sity.' Memory requirements are usually large: one image may typically have a size that
measures in megabytes (e.g.. a low-resolution data product) to tens of megabytes (e.g.. a
high-resolution satellite radar data product) to hundreds, even thousands of megabytes (e.g..
a hyperspectral data product). Low resolution ERS SAR data products like the ones fea-
tured in this chapter are one megabyte in size (not including an image's meta-data). Compu-
tational intensities are reflected in processing times for typical geoscience image process-
ing/analysis algorithms: many algorithms require CPU minutes; some, even CPU hours.
Evaluation of even modestly sized populations of algorithms could require inordinate amounts
of memory and processing times.

There exist at least two approaches to address these challenges: indirect processing using
feature vectors and direct processing using training sets. Both approaches attempt to bring
the memory and computation requirements down to GP-manageable levels: using feature
vectors assumes that germane information can be described by an intermediate data product
that is computationally derived and smaller in size than the original data set: using training
sets assumes that there exists a small subset of the original data that adequately represents
the image data in loio. The net effect of either approach is to constrain in size the amount of
data used as input terminals for GP. We note that meeting this constraint is nontrivial and
amounts to condensing information contained in several megabytes of image data into pro-
gram inputs as small as a few hundred bytes.J While these constraints may seem severe,
previous work has shown that working within these constraints is doable. [Tackett 1993]
was the first to use genetic programming for image analysis problems. His work featured

These challenges applv mostly to geoscience image processing. In comparison, many induslnal (machine-vision)
applications require video-frame rate processing times for images much smaller than a megabyte per frame,
'in some of our early work, we were working with compression ratios of roughly 60.000:1 (Daida et al. IWa].

the indirect approach and applied GP to twenty statistical features that were derived from
simulated infrared images. Likewise. [Nguyen and Huang 1994] also uses feature vectors to

reduce memory and computational overhead.
This chapter describes an implementation based on the second approach. A key reason

for using subimage training sets instead of feature vectors involves the presence or absence
of a "grammar" that can be used to describe scene content. Man-made objects, like Nguyen
and Huang's airplanes, can be decomposed into shape primitives, which can serve as a kind
of grammar from which other airplanes can be modeled. Other man-made objects, like
Tackett's infrared targets, can be decomposed into a series of metrics that can reasonably
separate objects of interest from their background. In contrast, natural and geophysical
objects often resist shape or metric decomposition because such decompositions usually
suffer from a large number of exceptions. For that reason, "(machine) learning by (training
set) example" is an option when working with natural objects. This chapter builds upon
work previously presented in [Daida et al. 1995a] The following sections present an over-
view of our implementation of GP fitness measures.

21.3.1 Terminals

In addition to a stochastic variable (floating point), all of the terminal sets in this chapter use
the same combination of image data and texture tillers: image data. Laplacians„< of Mean,„,.

Laplacianv?. Mean,*,, and Mean5y*.
This set of texture filters is based on Marr's work on representing an image [Marr 1982].

The first two filters (Laplacian5x< of Mean,,,, which is an approximation to V"C. and
Laplacian^) are edge-detection type filters, which help to enhance ridges. The particular
implementation of these filters involves rescaling the lonal values to fit an unsigned eight-
bit gray scale. The last two filters (Mean,*, and Mean<x?) are low-pass filters (for differing
spatial scales), which help to enhance non-ridge features in first-year and multiyear ice.
Note that subscripts appended to each filter name refer to the size of the convolution kernel

associated with that filter.

21.3.2 Function Sets

Except where noted, we have used a similar function set that has been featured in many of
the early test problems in GP[Koza 1992]. including: arithmetic operators +. -. *. andx. as
well as the logical operator If-Less-Than-or-Equal-to (IFLTE. shown in this chapter as <).
The selection of these functions were chosen in pan because of their use in image process-
ing of multichannel data (e.g.. spectral ratioing. see [Lillesand and Kiefer 1987]). Unlike
their mathematical counterparts, these operators have required a few algorithmic modifica-
tions to account for being closed under integer (unsigned eight-bit) arithmetic and mixed

Table 21.1
Arithmetic Operators.

Arguments (Type Argument,. Type Argument.)

Operation Implementation (Arrav. Arravl (Array. Number) (Number. Numberl

(Plus)

P
(Plus)

(Minus)

M
(Minus)

(Multi-
plication)

I
(Protected
Division)

Iv + \ I modulo 255

(v+ v): if (A + vl<0.0:
if <.v + v) > 255. 255:

cast (A - vias unsigned
byte, then modulo 255

(.<•- v): if (v- vi<().0:
it (v - v) > 255. 255:

l.iv) modulo 255

(A 7v) modulo 255:
if v=0. (\ /vi =1

Adds arrays element
by element

Adds arrays element
by element

Subtract arrays
element by element

Adds arrays element
by element

Multiplies arrays
element by element

Divides arrays
element bv element

Adds number to each
array element

Adds number to each
array element

Subtracts number from
each array element

Subtracts number to
each array element

Multiplies number
to each array element

Divides number (array
element) by each
arrav element (number)

Adds number lo
number

Adds number to
number

Subtracts number
from number

Adds number to
number

Multiplies number
by number

Divides number by
number

data type usage (i.e.. numbers and arrays). Note that we have used two versions of arith-
metic + and -Tables 21.1 and 21.2 describe the function set used by the problem-specific
code described in this chapter.

21.3.3 Fitness

Fitness is computed over a training set that consists of image test points, as opposed to an
image or even a subimage. For the purposes of this chapter, we define a test point as an array
of pixel values at a point (.v. y) in an image that has the form m. y) x /(.v. y) x 7"„(.v. \)x ...
x Tst.v. y). where <.•(.) is a manually derived classification of an image at location (.v. y). /(.)
is the pixel intensity value for an image at location u.y) and 7\-(.) is the pixel intensity value
for the image that has been processed by the Mh filter in a bank of textural filters. Since in
the case of extracting pressure ridges the relevant classifications are either "ridge" or"non-
ndge" features. c(.) is simply a Boolean quantity.

We have noted in [Daida et al. 1995a] that use of subimages for the case at hand, even
with subimages as small as 8 x 8 pixels, produces two undesirable effects.

• Computational intensity dramatically increases, with the result of slowing execution du-
ration down from CPU minutes (or hoursl to CPU days.

• The accuracy of the resultant ROI algorithm significantly decreases.

This is true for all cases of subtraction. However m retrospect, there should have been a distinction between
Arrav-Number and Number-Array. The Haw went unnoticed until recently, in pan because GP found a workaround.

Table 21.2
IFLTE operator. This operator has the form of (IFLTE Argument, Argument. Argument. Argument,), i.e.. IF
Argument, < Argument. THEN Argument, ELSE Argument,.

Argument, Argument. Argument, Argument, Comments

Returns an array whose mh element is from either
the mh element of Arg, or the mh element of Arg,

Returns an array whose mh element is from either
the mh element of Arg, or the number of Arg,

Returns an array whose nth element is from either
the number of Arg, or the mh element of Arg,

Returns an array whose nth element is from either
the number of Arg, or the number of Arg,

Returns an array whose mh element is from either
the mh element of Arg, or the mh element of Arg,

Returns an array whose mh element is from either
the mh element of Arg, or the number of Arg,

Returns an array whose mh element is from either
the number of Arg, or the mh element of Arg,

Returns an array whose nth element is from either
the number of Arg, or the number of Arg,

Returns an an-ay whose mh element is from either
the mh element of Arg, or the mh element of Arg,

Returns an array whose mh element is from either
the /ith element of Arg, or the number of Ars,

Returns an array whose mh element is from either
the number of Arg, or the mh element of Arg,

Returns an array whose nth element is from either
the number of Arg, or the number of Arg,

Returns an array that is either Arg, or Arg,

Returns either an array l Arg) or a number (Arg,)

Returns either a number i Arg,) or an array (Arg,)

Retunis a number that is either Arc, or Arg,

Array Array Array Array

Array Array Array Number

Array Array Number Array

Array Array Number Number

Array Number Array Array

Array Number Array Number

Array Number Number Array

Array Number Number Number

Number Array Array Array

Number Array Array Number

Number Array Number Array

Number Array Number Number

Number Number Array Array

Number Number Array Number

Number Number Number Array

Number Number Number Number

A fitness input consisting of entire subimages apparently provides a GP with too much
information at any one time, with much of the information being either extraneous or re-
dundant. For that reason, we have used manually classified test points instead of subimage
arrays. Note that a manual classification consists of a user's best guess of what classifica-
tion to apply to each test point, which may not necessarily coincide with the underlying
reality of each test point. (See also Section 21.5.)

21.3.4 Implementation Notes

Texturally filtered images that correspond to filters 7",, through Tv (where N = 3) were ob-
tained using NIH Image running on a Macintosh computer. Selection of test subimages and
generation of concatenated image files that were used by the GP input- and output-wrap-

NIH Image is a public domain image processing and analysis program by W. Rasband that is available via
anonymous ftp at zippy.nihm.nih.gov in directory /pub/image

pers were implemented largely with custom-made NIH Image macros.
All implementations of the code associated with the GP were done in LISP (Allegro

Common LISP) and run on a Unix workstation (either a SunSPARC 2. SunSPARC 20 or
HP 715) that typically had 32 MB RAM. These programs included custom-made input-
terminal generators (which are implicit in the step "Select Test Points"), custom-made visu-
alization-wrappers (which are implicit in the step "Evaluate Best S-Exp"). our fitness func-
tions, and a slightly modified version of Koza's GP kernel (modifications were mostly for
input/output). We note that the IFLTE function was done as a LISP macro, as opposed to a

LISP function.
Even with 32 MB RAM. a workstation cannot process in LISP a full 1024 x 1024 eight-

bit image without running into memory problems. .For that reason, all low-resolution ERS
data products were chunked into 128 x 128 pixel subimages in NIH Image ith a custom
macro) before applying a GP-derived algorithm (an s-expression). The chunked subimages
were reassembled in NIH Image (with another custom macro) after processing (i.e.. during
the step "Evaluate Best S-Exp").

One key feature in the GP-assisted design process lies in the placement of the feedback
loop (see Figure 21.2). Note that for many GP applications, the acceptance or rejection of
an algorithm can be largely determined by that algorithm^ fitness measure. For our particu-
lar application, a fitness measure is only a rough indicator of performance, largely because
the input terminals represent only a small fraction of an entire data set (i.e.. many low-
resolution data productsi. Consequently, an algorithm needs lo be evaluated over a much
larger data set than is represented by the training set of test points. For our purposes, we
processed 128 x 128 pixel subimages to make intermediate decisions about algorithm per-
formance, since that size subimage was about as a large a data set as our LISP visualization-
wrapper could accept in one pass. In this way. feedback and the scaffolding of "what is
important" in extracting ridge features was based on a qualitative assessment of output
image data, rather than relying on a quantitative metric dike a fitness measure).

21.3.5 Image Data

The image data featured in this chapter is part of a larger series of temporal SAR data
beginning in August 1991 and ending in July 1992. This data set describes the synoptic-
coverage of an area in the Beaufort Sea gyre (roughly 72° N. 140° W). The particular area
and year of coverage were chosen to coincide with the LEADEX campaign. All the images
shown in this chapter are low-resolution ERS-1 SAR data products. 1024 x 1024 pixels in
size, eight-bit gray scale, calibrated. 100 m pixel size, and non-geocoded. Figure 21.3 shows
the particular images that are featured in this chapter. Note that Figure 21.3b represents the

Gra> Scale Value

Figure 21.3
ERS-I SAR images featured in this chapter Both images are contrast-enhanced for publication and are 1024 x
1024 pixels in size, which is approximately equivalent to 100 x 1(X) sq km. The black stripe on the right of each
imaee indicates an absence of imaee data for those corresponding locations. A gray-level histogram for each
image is also shown, (a) March 2. 1992. ©ESA 1992. Ibl April 23. 1992. ©ESA 1992.

image that contained fitness test points: Figure 21.3a represents the image that did not.

21.4 GP-Assisted Discovery Using A Dynamic Training Set

Our first work on using GP for this domain problem [Daida et al. 1995a] featured the use of
a fixed training set. i.e.. fitness evaluations were based upon a training set that did not
change over the course of a GP run. Although the results were encouraging, a major short-
fall in using a static training set had to do with the controllability and repeatability of evolv-
ing a desired result. A different choice of test points can and has yielded entirely different
algorithms with widely varying degrees of success. For this and other reasons that are dis-
cussed in Section 21.5. we opted to go with a dynamic training set. i.e., fitness evaluations
are based upon a training set that changes during the course of a GP run.

The particular strategy that we designed into the fitness function borrows from Goldberg's
work in genetic algorithm classifiers [Goldberg 19891 and Holland's work in default hierar-
chies and induction [Holland et al. 1986]. The idea is fairly straightforward. A GP system
starts a run with a training set that is relatively small and contains test points that should, in
theory, be easy for the algorithm to score well. When an individual scores a certain number
of hits, a few more points are added to the training set under evaluation. This process can
continue until either an individual scores a maximum number of hits or a maximum number
of generations has been reached. Not only has this strategy resulted in a better individual
than described in [Daida et al. 1995a]. but the overall process under this fitness function has
proven to be more controllable than when using a static training set.

21.4.1 Procedure

Table 21.3 summarizes the problem-specific portion of the GP code described in this chap-
ter. The other GP parameters that were used included: maximum number of generations
equal to 30: size of population. 357: maximum depth of individuals 10: maximum depth of
new subtrees for mutants. 4: maximum depth of individuals after crossover. 20: fitness-
proportionate reproduction fraction. 0.1: crossover at any point fraction. 0.2. crossover at
function points fraction. 0.7: selection method, fitness-proportionate: generation method.
ramped-half-and:half. Note that the population size and number of generations used were
modest and chosen in part so that we could complete a run on a SunSPARC 20 within a few
CPU hours.

Figure 21.4 details our implementation of this fitness evaluation function by elaborating
on the fitness set used to generate results shown later in this chapter. Figure 21.4a shows a
portion of the image data plus associated texture images. The boxed areas show the loca-

•^KV ^'i
7rS£*
/ * **« ^$f

-:-H ■'"'

~.y- ?x
.".'■.-

I* : >■**

lb)

Laniaoan of Wean.

Test Point at Index 0

h
fitness Set P

I
Fitness Set P,

I-

Figure 21.4
Fitness Set Construction. Starting from the upper left image: la) 128 x 12K pixel ERS-I SAR Image (April 23.
1992 (and associated layers oftexturally filtered images (Laplacian,,, of Mean.,.. Laplacian,,,. Mean....and Mean,,),
lb) Overlay of test point locations. White points indicate ridge guesses, while black points indicate background
guesses, (c) Detail of Fitness Set. Each row corresponds to either a manual classification, image data, or layer of
texturally filtered image data. Each column corresponds to a test point. Test points are loaded into an evaluation
function by sets, starting from P. to P.. Loading of a set is triggered by criteria that are set by a user.

Table 21.3
Tableau for Case Study.

Terminal Set: Consists of an array of size A/ of manually selected test points, which contains data from
an image and its corresponding filtered versions (i.e.. 5x5 Laplacian of a 3x3 Mean. 5x5
Laplacian. 3x3 Mean. 5x5 Mean): a random floating-point variable.

Function Set: Arithmetic operators defined to operate on matrices and constants in any combination
(+. -. x. +. P. Ml. and the threshold operator If-Less-Than-or-Equal l<).

Fitness Cases: List of N manually selected control points from benchmark. Pixels that are part of
pressure ridge features are given a gray-scale value of 255 and all other non-feature
pixels take a value of zero. The number of current fitness cases increases dynamically
(See Figure 21.4).

Raw Fitness: The number of hits.

Standard Fitness: (Number of current fitness cases. iV) - (Number of hits).

Hits: The number of fitness cases for which an individual program's output is less than 9
away from the target gray-scale value of 255 or 0.

Success Predicate: The run ends when the maximum number of generations is reached.

tions of the 36 x 36 pixel area depicted in Figure 21.4b as it occurs in all five layers of either
image data or texturally-fiItered image data. Figure 21.4b shows the locations of the test
points that were used and overlays those locations on the image-data layer. Also shown are
the manual classifications associated with each point. Figure 21.4c shows the detail of the
fitness set. There are 53 test points shown, which are arranged in six layers. Each layer
corresponds to a channel of data (e.g.. image data). The test points were manually ordered
so that the easiest test points were loaded in for evaluation first. The bars showing the fitness
set increments depict an initial starting set of fifteen test points, with four set increments of
nine points apiece, and a fifth set increment of two points. In all there were at most six
fitness sets total (Sets P„ to P,) that were considered during a single GP run.

We note that our particular implementation uses the following event to trigger the loading
of the next fitness set: when a fitness evaluation for any one individual in a population is less
than or equal to q standard fitness, load in the next increment of test points for the next
generation to evaluate (e.g.. to obtain the best-of-runs individual featured in Figure 21.7. we
used a trigger value of six).

21.4.2 Results

Figure 21.5 shows the result of applying the best-of-runs individual to both the March 2 and
April 23 images. In a qualitative examination of these results, we have found that the ex-
tracted features are well correlated with ridge and rubble features in both multiyear and
first-year ice. Black (gray value 255) represents extracted pressure-ndge features. Varying
shades of gray indicate the likelihood of a pressure ridge—the darker the gray, the higher
the likelihood. The performance of this individual has been deemed better than the perfor-

Grav Scale Value

Gra\ Scale Value

Figure 21.5
Images after processing with GP switch filter. Each image is 1024 x 1024 pixels,
histogram for each image is also shown. The histograms show that the classificat
with a value of 0 (white) correspond to non-ridge features, while pixels with
correspond to ridge features, la) March 2. 1<W2. (h) April 23. IW2.

(lOOx 100 sq km). A gray-level
ions are strongly bimodal: pixels
values at or nearbv 2?5 iblack)

mance of the individual described in [Daida et al. 1995a]. since this algorithm (called a
switch filter in this chapter) provided better connectivity of ridge features than the filter

described in [Daida et al. 1995a] (called a stipple filter).

21.5 Discussion: GP & Scaffolding

Discussion of the results in Section 21.4 are divided into two sections. The first section,
which is covered here, involves a discussion of the results from the standpoint of algorithm
discovery and genetic programming. The second section (Section 21.6) involves a discus-
sion of the results from the standpoint of the domain of polar oceanography.

21.5.1 Scaffolding and the Evolution of Hypotheses

The role of GP in scaffolding algorithm discovery has been to generate possible solutions
based on a given hypothesis, which has usually taken the form of a strategy for selecting
training sets. In some instances, these strategies affected the GP fitness evaluations func-
tion. In other instances, these strategies affected the kinds of test points that were eventually
selected. The following paragraphs provide a synopsis of hypothesis evolution from our
earlier work presented in [Daida et al. 1995a] to this present work. Described are only the
major hypotheses—implicit are the numerous minor hypotheses subsumed under each ma-

jor hypothesis.

1. Our first hypothesis was that a small representative subimage (and associated textures) of
a pressure ridge could be used to evolve an individual. In a sense, we defined a pressure
ridge to be a somewhat bright ridge feature in a patch. Our first implementation used an 8x8
pixel training set. which corresponded to 64 fitness cases. The results from these runs were
unpublished: GP simply evolved individuals that essentially classified every pixel as back-
ground (i.e.. matrix zeroing). In retrospect, these results were not surprising, since each 8x8
pixel subimage training set contained as few as 6-12 ridge points, and as many as 52-58

background points.
2. Our second hypothesis was that test points of roughly equal amounts of background and
ridge points could be used to evolve an individual. We defined a ndge feature as a somewhat
bright feature that is bracketed by somewhat darker features. Implementation and corre-
sponding results are described in [Daida et al. 1995a]. The use of test points yielded two
immediate benefits. First, an even ratio of ridge to background points discouraged the evo-
lution of matrix-zeroing algorithms. Second, the small number of fitness cases reduced run
times from CPU days to CPU hours (or minutes). The most significant shortcoming of this
approach was in having too few fitness cases, which often allowed for individuals that did

not exhibit ridge finding behavior yet obtained perfect fitness scores within a few genera-
tions. The problem presented to GP was too "easy" and fitness was not closely enough

linked to ridge finding behavior.

3. Our third hypothesis was to increase the number of fitness cases, as well as to include
points that would be more difficult to classify. We subsequently defined a ridge feature to be
a somewhat bright feature that is bracketed by somewhat darker features, in addition to
specifying many of the other instances that were not ridges. This particular hypothesis did
not involve a change in implementation. However, this strategy resulted in a breakdown of
continuous ridge features into singlets and doublets. Apparently, over-specification of the
fitness function created algorithms not robust enough to perform on larger image segments.

4. Our fourth hypothesis was to retain the idea of increasing the number of fitness cases,
except this time it would be implemented along the idea of a default hierarchy. We defined
a ridge as a somewhat bright and long feature that is bracketed by somewhat darker fea-
tures. Emphasis was placed on finding the most clearly delineated ridges, with the more
difficult ridges to be extracted by what was hoped to be an emergent property of the evolved
solution. Implementation and corresponding results are described in this chapter. This hy-
pothesis has proven to have been the most successful to date.

21.5.2 Sensitivities to Function-Set Implementation

For work in this chapter, we introduced two new operators P and M. These functions were
introduced because of a result shown in Figure 21.6. which was evolved with the same
fitness evaluation function, terminal, and function sets as were the results shown in Figure
21.4. The only noteworthy difference for the results shown in Figure 21.6 was the absence
of operators P and M.

The algorithm that corresponds to Figure 21.6 was the individual (- Mean,,,, Mean,«,).
Over the course of several runs without P and M. the probability of finding this individual in
any one run was high. This individual did score perfectly on all fitness cases. However, this
individual still produced an unacceptable result, which showed the presence of pressure
ridges even where none existed.

At first glance, the evolved algorithm looks similar to [Marr 1982]'s difference-of-
Gaussians filter, which is a zero-crossings edge detector. Its behavior is also similar to
Marr's filter. Note that on the right-hand side of Figure 21.6 in the area of the black stripe.
there is a thin white stripe that extends the length of the image. This image artifact is consis-
tent with the kind of artifact one would obtain with an edge detector.

Upon close inspection, however, our evolved "difference-of-means" algorithm was not
quite what one would expect. We note that the histogram corresponding to the data shown
in Fiaure 21.6 is not characteristic of a difference-of-Gaussians filter; there are humps at

J
Figure 21.6
1024 x 1024 pixel ERS-I SAR image (April 23. 1992) after filtering with the GP ditference-of'-means filter. Its
srav-level histogram is also shown.

both ends of the gray scale. This histogram arose from our particular implementation of the
arithmetic "-" operator. In particular, the use of mod 255 and unsigned byte type casting
resulted in negative quantities showing up as numbers around 255. (What was novel about
our '"difference-of-means" filter was that GP exploited the nature of the "-" operator to
create a nonlinear filter out of what should have been a linear one.) It was this unexpected
histogram that prompted us to also include P and M in the function set.

21.5.3 Switch Filter Analysis

An analysis of the current best-of-runs individual shown in Figure 21.7—the switch filter—
demonstrates how GP exploits seemingly benign idiosyncrasies that are built into a given
function set. In particular, this individual has exploited the exception handling for the divi-
sion operator to create a series of logic switches (hence the name "switch filter"). Further-
more, these logic switches were used to create two error-trapping devices that performed
the task of exception handling between two imperfect ridge-finding subroutines.

The first error-trapping device prevented the division operator from returning an unde-

— (+ (- 0! Laplaciarfc^ Stage) (M Laplaciart,; Stage))
 (+ (P I-fearv.c Stage) (P laplaciar,^ Image)))
:— (x (+ (+ Tpplarian-nf-Mmn Laplacian-of-Maan) (P Stage 2 .0845768))

(« (i- Means,- LapiacLan-of-Mean)
(M (- (P Stage Image) H-Maan^ -4.0135384))

— <* (* laplacian-of-Jten laplacian-of-Vean) (P Stage 2.0845768))))))

■(+ (■ (+ 4.209729 M=an^)
(+ (P Stage 2.0845768)
(- (P Stage Image) (+Kfearv^. -4.01353 84))))

(- (P Stage Msan^j) <+ Inage Maan,^)))

-IP (SJten-,: (+ MaaTK, -4.0135384) (? Meart.= Stage)
(< (- TaplaHan- - Maatv^) (- IP *an:j5 Stage) Laplaciarv^)

(- Msary,, Mear,;.)
(M (- (P Stage Snage) I+Mäar,.., -4.0135384))

(< (< Stage -2.451423 Laplaciar.^,-. Msan-^)
(< -0.140 65579 Stags 3.3760252 Maarv,-)

(+ MB3V_ -2.9378424)
(< Laplaciatv^ Image Laplaciar,^ Lapiaciarv,«)))))

(M (P 4.3900576 1 .3324584)
(< Stage (+ Man < Lap lacian-of -Maan) 4. 413246 0. 3524242)))))

Figure 21.7
GP Switch-Filter Code.

fined result by setting division by zero to yield a value of one. In referring to Figure 21.7. we
observed that Branch 2 zeroed-out all background points while Branch I always returned
zero. With the numerator of the division operator at Node 2 set to zero. Node 2 produced a
zero if its denominator was nonzero Indge) and produced a one it' its denominator was zero

(background).
The second error trapping device prevented the division operator from returning an out-

of-range value (i.e.. greater than 255 or less than zero). The evolved code took advantage of

this in the following way:
Branch 4 yielded nonzero values for ridge points (with only two exceptions among the 53

fitness cases) and zero values for every background point. Notably. Branch 5 almost zeroed
the matrix, but instead left residual values of 10° to 1 0"* for every fitness case. When Branches
4 and 5 were summed in Branch 6. the nonzero ndge points remained relatively unchanged,
while significantly, zeroed background points acquired very small nonzero values.

The root-node divisor apparently handled exceptions and pushed the output values of the
algorithm close to either 255 or zero. Background points took on their output value from
evaluation of forms like (+ 1.0 6.0x10"4). which yielded 255. Ridge points took on their
output value from evaluation of expressions like (■*• zero nonzero), which yielded zero.

r - ... "*;• \i

Figure 21.8
Evolution of GP Switch Filter. This series shows the best-of-generation results of filtering the 128 x 128 pixel
ERS-I SAR image shown in Figure 21.4. (a) Generation U (10 hits out of 15 possible test points), (hi Generation
1 {I <) mil of 24i. ic i Generation 4 i.11 out of .1.1). idl Generation 7 (4U out of 5.1). (el Generation 12(51 out of 5.1).
(II Generation 18(52 out of 53). (g) Generation 26151 ou! of ^}). The best-ol-generation individual did noi change
much after this, in-part because there were no further fitness cases to consider, (h) Generation 28 (5.1 out of 5.1).

Ridge points misclassified by the subroutine represented by Branch 3 were corrected
through division with a large number from Branch 6. For example. Branch 3 incorrectly
classified fitness-case seven as a background point. The subroutine represented by Branch
6. however, would correctly classify this point as a ridge point. Evaluation at the root node,
(-a- 1.0 65.9) yielded 0.0154. which has the net result of mediating the conflict between
ridge-finding subroutines by correctly assigning the output for fitness-case seven a ridge
value.

In effect, the root-node division operator acted as a final line of defense against
misclassification. With two different sub-algorithms classifying each fitness case, it simply
acted as a conflict moderator. For fitness-case seven, while the Branch 3 made an oversight,
the Branch 6 sub-algorithm did not make the same mistake and adjusted for the error. While
it was certain that a number of points on a 1024 x 1024 pixel images may be misclassified
by both sub-algorithms, the odds of both failing simultaneously was much smaller than the
odds of one or the other failing.

Figure 21.8 charts the evolution of the switch filter. In all instances shown in this figure,
black corresponds to ridges: white, to background. Note that:
• Generation 0 yielded an individual that picks out some ridge features and some back-
ground features correctly.

• By Generation 1. an individual has adopted a strategy of using the division operator for a
logic switch. Although the ridge classification contains a number of false positives, this
individual correctly classified the dark diagonal structure as a non-ridge feature.

• By Generation 4. the switching strategy has become firmly adopted by many members of
the population. An individual began to correctly pick out the most prominent ridge feature

in the image.

• By Generation 7. the overall structure for most of the solution becomes evident. For
several successive generations, the solution was continually refined.

• By Generation 26. an individual readopts a strategy for correctly classifying the dark
diagonal structure as a non-ridge feature. Note that on one hand, the performance of this
individual is fairly different from the performance of the individual shown in Generation
18. On the other hand, they are nearly similar on our fitness scale with an almost identical
number of hits. This situation does consequently point out that a fitness metric is not neces-
sarily a reliable indicator of performance.

21.5.4 Other Variations on Fitness

The described implementation of a dynamic fitness function based on default hierarchies
represents but one instance. We have also considered but have not tried other means for
triggering a change in fitness set during a run. These other implementations are subject for
another paper.

21.6 Discussion: Domain

We leave an extended discussion of a geophysical interpretation based on data products like
those shown in Figure 21.5 for another paper. However, we do have several comments about
the results that have been shown in this chapter.
• The switch filter extracted both high- and low-contrast ridge features. This could be par-
ticularly important when a low-contrast ridge feature is located near a high-contrast ridge
feature. In referring to Figure 21.9. we expect that a human operator would likely pick out
the brightest ridges labeled "a." but miss the low-contrast ones labeled "b" because of the
close proximity of the low-contrast features to the high-contrast ones. In contrast, the algo-
rithm identified both low- and high-contrast features. Note that this behavior is an emergent
property of the switch filter, since the filter was trained on only high-contrast features.

• The switch filter yielded textures that are based mostly on pressure ridge and rubble
features, as opposed to edge features (as in Figure 21.6). These textures can be enhanced for
visual inspection by smoothing. See Figure 21.10.

Figure 21.9
Detail of Results from Switch Filter (a) 2()0x 200 pixel ERS-1 SAR image (April 23. 1992). Note pressure ridge
features labeled with "a" are highly prominent, while ndge features labeled "b" are not. (hi From switch filter. The
filter identifies both ndee features labeled "a" and "h"

• The textures that are present in Figure 21.5 are consistent with the geophysical explana-
tion behind pressure ridges. The linear textures in areas where there is first-year ice are
consistent with the expected compressive forces in those areas. The somewhat isotropic
textures on multiyear ice are consistent with what is known about ice kinematics. Even
though the process that generates leads and pressure ridges may be biased towards a certain
directions. Hoes of multiyear ice continually rotate, which eventually subject those does to
ridge formations in all directions.

21.7 Conclusions

This chapter demonstrated how the genetic programming paradigm can apply to image
processing in geoscience and remote sensing. A problem for which no known solution was
studied, which involved extracting low-contrast curvilinear features from SAR imagery.
This chapter has shown that the genetic programming paradigm can be used in the discov-
ery process in deriving an appropriate spatial classifier.

We note that our overall approach in using test points in the context of dynamic training
sets is generalizable to other similar problems that involve extracting features from multi-
band image data (by replacing data in multiple textural channels with multiple spectral

Figure 21.10
Smoothed Detail of Results from Switch Filter Smoothing enhances visual perception of lexture. 1024 x 1024
pixel ERS-I SAR image (April 2.1. 19921. Inset: enlargement of 200 x 2(X> pixel hoxed area.

channels). This approach should be generalizable since the problem-specific characteriza-
tion has been made with only a few assumptions about image content.

Acknowledgments

This research has been partially funded with grants from the Office of Naval Research, the
Naval Research Laboratory (Stennis) and the Space Physics Research Laboratory (U-M).
We gratefully acknowledge the following people: Roben Onstott (Environmental Research

Institute of Michigan) for ERS-1 image data: Florence Fetterer (NRL), Drew Rothrock.
Harry Stern (University ot'Washington). Robert Shuchman. and FredTanis (ERIM) for our
discussions on pressure ridges: Ramesh Jain (University of California. San Diego). Elliot
Soloway. Elke Rundensteiner, and Paul Hays (U-M) for our discussions on task analysis for
scientific computation: Mark Guzdial (Georgia Institute of Technology), for scaffolding by
computer: Peter Angeline (Loral Federal Systems). Kenneth Kinnear (Adaptive Computing
Technology). Marc Schoenauer (Ecole Polytechnique). William Punch (Michigan State
University) and Sandra Daida. for editorial support and technical review: Mark Sakala (U-
M). for his timely computer work: and last but definitely not least. Rick Riolo (U-M) and
John Koza (StanfordI. for our discussions on GP.

Bibliography

Barrera. J.. F.S.C. da Silva. & G.J.F Banon (1994). -'Automatic programming of binary morphological machines."
/iJKJ.ne Algebra and Morphological Image Processing V: Pmceedmgs of the SP1E. 2300. pp. 229-240.

Burns. B. A. & A. Wegener 11988 >. "SAR image statistics related to atmospheric drag over sea ice." Proceedings of
the International Geoscience and Remote Sensing Symposium. ESA Publications. ESA SP-284. pp. 409-412.

Brown. A. &. A. Pahncsar (19891. -Guided cooperative learning and individual knowledge acquisition." Knowing,
Learning and Institution: Essavs in Honor o) Robert Glaser. L.B. Resnick (ed.). Hillsdale: Lawrence Erlbaum
Associates, pp. 393—451.

Chang. S.K.. et al. (I99(li. ed.. Visual Umganges. Plenum Press. 1986. second edition 1990.

Chen. C.-H. (1992). "Automatic vision programming." CVGIP: Image Understanding. 55:2. pp. 170-83.

Chien. S. 119941. "Using Al planning techniques to automatically generate image processing procedures: A pre-
liminary report." Proceedings at the Fitth International Conference on Genetic Algorithms, pp. 219-224.

Consalton. R.G. (1991). "A review of assessing the accuracy of classifications of remotely sensed data." Remote
Sensing ot the Environment. 37:1. pp. 35-36.

Daida. J.M.. J.D. Hommes. S.J. Ross. & J.F. Vesecky (1995a). "Extracting curvilinear features from synthetic
aperture radar images of arctic ice: Algorithm discovery using the genetic programming paradigm." Proceedings
ot the 1995 International Geoscience and Remote Sensing S\mposium: Quantitative Remote Sensing for Science
and Applications. IEEE Press, pp 1415-1417.

Daida. J.M.. A Freeman. & R.G. Onstott (I995hl. "Evaluation of a hybrid symbiotic system on segmenting SAR
imagery." Prm eediugs ot the 1995 International Geoscience and Remote Sensing Symposium: Quantitative Re-
mote Sensing tor Science and Applications. IEEE Press, pp. 673-675.

Gineris. D.J.& F.M. Fetteren 1993). The Joint It e Center SAR Workstation: Algorithm Evaluation. Memorandum
Report 7019. Stennis Space Center. Naval Research Laboratory Detachment. March.

Goldberg. D.E. (1989), Genetic Algorithms in Search. Opnmi:ation. and Machine Learning. Reading: Addison-
Wesley."

Gow. A.J. & W.B. Tucker III (1990). "Sea ice in the polar regions." Polar Oceanography. Part A: Physical Science.
W.O. Smith. Jr. (ed). San Diego: Academic Press. Inc.. pp. 47-122.

Guzdial. M. (1995). "Software-realized scaffolding to facilitate programming lor science learning." Interactive
Learning Environments. 4:1. pp. 1-44.

Harahck. R.M. & L.G. Shapiro 11992). Computer and Robot Vision: Volume I. Reading: Addison-Wesley Publish-
ing Company. Inc.

Holland. J.H. (\992). Adaptation in Natural and Artificial Systems: An Intmdticron Analysis with Applications to
Biology. Control, and Artificial Intelligence. Cambridge: MIT Press 1992. First edition 1975. The University of
Michigan.

Holland. J.H.. K.J. Holyoak. RE. Nisbett. & P.R. Thagard 11986). Induction: Processes of Inference. Learning,
and Discoven. Cambridge: MIT Press.

Hsu. R.C. & S.S. Alexander (19941. "A neural network approach to seismic event identification using reference
seismic images." Proceedings of the IEEE International Conference on Systems. Man. and Cybernetics, pp. 2108-
13.

Koch. M.W. & M.M. Moya (1994). "Feature discovery in gray level imagery for one-class object recognition."
Proceedings of the IEEE Int Conference on Neural Networks. IEEE Press, pp. 2979-84.

Konstatinides. K. & J. Rasure (1994). "The Khoros software development environment for image and signal
processing." IEEE Transactions Image Processing. 3:3. pp. 243-252.

Koza. J.R. (1992). Genetic Programming: On the Programming of Computers In Means of Natural Selection.
Cambridge: MIT Press.

Koza. J.R. 11994). Genetic Programming II: Automatic Discovery of Reusable Programs. Cambridge: MIT Press.

Lillesand. TM. & R.W. Kiefer I \W7). Remote Sensing and Image Interpretation. Second Edition. New York: John
Wiley and Sons.

Lunetta. R.S.. R.G. Congalton. L.K. Fenstermaker. JR. Jensen. K.C. McGwire. & L.R. Tinney 11991). "Remote
sensing and geographic information system data integration: error sources and research issues." Photogrammetric
Engineering and Remote Sensing. 57:6. pp. 677-87.

Marr. D. 11982). Vision: A Computational Investigation into the Human Representation and Pwcesstng of Visual
Information. New York: W.H. Freeman and Company.

Matwin. S.. D. Chärlebois. & DG. Goodenough 11995). "Training agents in a complex environment." Proceed-
ingsofthe Ulli Conference on Artificial Intelligence for Applications. IEEE Computer Society Press, pp. 94-1 (X)

Mellor. M. (19861. "Mechanical behavior of sea ice." The Geophviics ot Sea Ice. N. Untersiemer led. I. New York:
Plenum Press, pp. 165-281.

Merrill. DC. & B.J. Reisner (1993). "Scaffolding (he acquisition of complex skills with reasoning-congruent
learning environment." Workshop in Graphical Representations. Reasoning and Communication: World Confer-
ence on Artificial Intelligence in Education. The University of Edinburgh, pp. 9-16.

Nguyen. T. & T. Huans 11994i. "Evolvable 3D modeling for model-based object recognition systems." Advances
in Genetic Programming. K.E. Kinnear. Jr. (ed.). Cambridge: MIT Press, pp. 459-475.

Openshaw. S. (1995). "Developing automated and smart spatial pattern exploration tools for geographical infor-
mation system applications." Statistician. 44:1, pp 3-16.

Rasure. J. & C. Williams (1991). "An integrated data How visual language and software development environ-
ment." Journal of Visual Languages and Computing, pp. 217-246.

Samadam. R. & J.F. Vesecky (I99ÜI. "Finding curvilinear features in speckled images." IEEE Transactions Geo-
science and Remote Sensing. 28:4. pp. 669-673.

Tackett. W.A. (1993). "Genetic programming for feature discovery and image discrimination." Proieedings of the
Second International Conference on Al Planning Systems, pp. 303-309.

Vesecky. J.F.. M.P. Smith. & R. Samadani (1990). "Extraction of lead and ndge characteristics from SAR images
of sea ice." IEEE Transactions Geoscience Remote Sensing. 28:4. pp. 740-744.

Vogt. R.C. (1989). Automatic Generation of Morphological Set Recognition. New York: Springer-Verlag.

Vygotsky. L. (1978). Mind in Society. Cambridge: Cambridge University Press.

Wood. D.. J.S. Bruner. & G. Ross I I975i. "The role of tutoring in problem solving." Journal o/ Child Psychology
and Psvchiatn. 17. pp. 89-100.

Paper i

Daida, J.M., R.G. Onstott, T.F. Bersano-Begey, SJ. Ross, and J.F. Vesecky,

Ice Roughness Classification and ERS SAR Imagery of Arctic Sea Ice: Evaluation

of Feature-Extraction Algorithms by Genetic Programming, 1520-1522,

Proceedings of the 1996 International Geoscience end Remote
Sensing Symposium, Washington: IEEE Press (1996b).

To appear in the Proceedings of the 1996 International Geosoence ana demote 5e"sm£ Svrrcosium Remote Sensing for a SusrG.inobe '■mure. Wasnn^tor- cc

1996.

Ice Roughness Classification and ERS SAR Imagery of Arctic Sea Ice:
Evaluation of Feature-Extraction Algorithms by Genetic Programming

Jason M. Daida*. Robert G. Onstott". Tommaso F. Bersano-Begey*. Steven J. Ross*, & John F. Vesecky"
*The University of Michigan. Department of Armospheric. Oceanic and Space Sciences.

2455 Hayward Avenue Ann Arbor. Michigan USA 48109-2113 (313) 747-4581 (uork). (313) 764-5137 (fax) daidat'eecs umirh.edu
"Environmental Research Institute of Michigan. Center for Earth Sciences. Advanced Concepts Division

P.O. Box 134001. Ann Arbor. Michigan 48113-4001

Abstract — This paper describes a validation of accuracy associ-
ated with a recent algorithm that has been designed to extract
ridge and rubble features from multiyear ice. Results show that
the algorithm performs well with low-resolution ERS SAR data
products.

1. INTRODUCTION

Roughness in the polar ice cover—like meso-scale features of
pressure ridges and rubble fields—is of significant geophysical
interest. Pressure ridges and rubble fields help to transfer kinetic
energy from meteorological systems to the ice cover. Pressure ridges
can significantly increase sea-ice drag coefficients, which subse-
quently affect sea-ice movement and deformation. Ridges and
rubble fields are also of interest because thev account for a large
portion of the total ice mass.

In ERS synthetic aperture radar (SAR) imagery, pressure ridges
commonly appear as filamentary, curvilinear features of variable
width. These features have radar backscatter signatures that differ
only slightly from those of non-ridged multivear-ice: pressure ridges
subsequently appear as mostly low-contrast features. Rubble fields
often form when sea ice undergoes multiple ridging events in the
same geographic region. Not surprisingly, rubble fields have back-
scatter signatures that are similar to that of pressure ridges, except
that rubble fields mav have shapes ranging from consolidated blobs
to interlaced networks of curvilinear features.

The difficulty in extracting such features has been noted in work
such as [11. The problem has been considered untenable for stan-
dard image processing algorithms for a variety of reasons. Such
reasons include low signal-to-noise ratios, arbitrariness of feature
shapes, and radar cross-sections that change depending on the
orientation of a feature. The problem, however, has not been con-
sidered impossible, since researchers have been able to link the
roughness caused by sea ice deformation (like ridges and rubble
fields) with ERS SAR backscatter. [4]

This paper evaluates an ice-roughness algorithm that we have
developed over the past vear. The next section (2) briefly discusses
our algorithm. Section 3 describes our procedure for evaluating
this algorithm, which involves validation of a derived data prod-
uct from this algorithm with an area that has ground truth. Sec-
tion 4 presents and discusses our results. Section 5 summarizes
our major conclusions.

2. ALGORITHM NOTES

Our algorithm has been developed by using a relatively new-
procedure in computer-assisted software design. This procedure,
which uses genetic programming, has been developed to help a
user to focus more on the problem at hand and less on program-
ming detail. Another paper in this conference highlights some of
the salient characteristics of our procedure [2]

We have designed our algorithm to extract ridge and rubble
features in multiyear ice. It has been developed for use with low-
resolution (ERS) SAR data products, partly because we desired
meso-scale distributions and partly because we wanted to track
temporal changes. For more information on the development of
this particular algorithm (called a switch filter), see [3).

■• -3. PROCEDURE

The image that we have chosen for validation is part of a larger
series of temporal ERS-1 SAR data that we have analyzed. The
series, which begins in August 1991 and ends in July 1992. de-
scribes the synoptic coverage of an area in the Beaufort Sea gyre
(roughly 72°N. 140°W). The particular area and dates of cover-
age overlap with the Lead Processes Experiment (LEADEX) in
1992. which featured both in-situ and ERS-1 observations around
a chosen floe.

Figure la shows the low-resolution ERS SAR image taken 29
March 1992. while Figure lb shows the corresponding data prod-
uct derived with the ice-roughness algorithm. We note that the
algorithm was developed using data from a different image (23
April 1992)—the 29 March data is entirely out-of-sample. The
boxed area shown in both these figures corresponds to the ice clas-
sification map shown in Figure lc. Classifications for this map
were based on ground observations from the LEADEX base ramp

To validate the derived data product, we used a ridge and rubble
map that was manually obtained from the high-resolution (nomi-
nally 12 m resolution) ERS SAR data product for ihe same dav
and area To ensure accuracy, we limited the extent of this ridge
and rubble map to the immediate area (- one km) around the
base camp. The map was verified by personnel present at the base
camp at the time the image was taken (i.e.. R. Onstott). The boxed
area in Figure lc shows theextent of the manually derived ridge
and rubble map.

4. RESULTS AND DISCUSSION

Figures 2a - ri show our results. Figure 2a depicts the high-
resolution subimage that was used to create the manually derived
ridge and rubble map. The image has been enhanced for publica-
tion to highlight those features, which show as light gray pixels on
a gray background. (Grav generally corresponds to multiyear ice.
while dark gray generally corresponds to first-year ice.) The ihrer
bright collinear dots in the center of this figure correspond to
corner reflectors placed on first year ice. (A fourth dot—another
corner reflector—is also visible, but on multivear ice.)

Figure 2b shows the manually derived ridge and rubble map.
(Black denotes ridge and rubble features in multivear ice. or ex-
treme ridging in first year ice. Note that the three dots have been
retained for comparison.)

Figure 2c shows the results from the ice-roughness algorithm

Figure 1. Data and Ground Truth, (a) Top. 29 March 1992 Image
(1024x 1024 pixels) ©ESA 1992. (b). Upper right. Derived Data
Product, (c) Lower Right. Map of Ground Truth.

Note that the pixels are noticeably larger than those shown in
Figures 2a and 2b. This is expected, since the ice-roughness algo-
rithm works on low-resolution data products (Black and dark

grays denote ridge and rubble features.)
Figure 2d shows the results of overlaying the results from the

ice-roughness algorithm on the manually derived ridge and rubble
map. (Black indicates a high degree of correlation for ridge and
rubble features, while white indicates a high degree of correlation

for smooth features. Gray without any interior black denotes ar-
eas of possible conflict.)

The results show excellent correspondence between the manu-
ally derived map and the data product from the ice-roughness
algorithm. Much of the identified ridge and rubble features in
multivear ice have been correctly classified in the data product.
Tolerance accuracies in the data product are better than ±100 m
(± 1 pixel) of a ridge or rubble feature in the high-resolution map.

We note that the data product shows a correct classification of
ridge features in an area just below the three collinear dots in Fig-

ure 2a. Ground truth corresponding to this area indicates an area
of old pressure ridges—worn and smoothed. Radar backscatter
signatures corresponding to ridges like these are not much differ-

ent from non-ridged multiyear ice: such features are difficult to
classify.

The ice-roughness algorithm does seem to identify ridges and
rubble features regardless of whether such features yield strong or
weak signatures in contrast to the mean backscatter values of
multivear ice. If this is the case, such an attribute would help to
desensitize the algorithm from ridge orientation effects on radar
backscatter

We further note that the algorithm has classified a series of pix-
els in the lower right corner of Figure 2c as ridge or rubble fea-
tures, even though such pixels correspond to areas of first-year ice.

A IndicalM Corner Rstlaclon

The algorithm apparently identifies a few. but not all the ridge
and rubble features in first-year ice. These features do appear in

the image data but not in Figure 2a. (As mentioned earlier, we
enhanced Figure 2a to show, for publication, ridge and rubble
features in multiyear. not first-year ice.) We have found that the
few first-year ridge and rubble features that have been identified
do show a high correspondence with major stress and deforma-
tion patterns in first-year ice. (See [3].)

4. CONCLUSIONS

This paper has evaluated the performance of an ice-roughness
algorithm that was developed using a relatively new procedure in

-7*V\.V

• /'•-..

vr .•'»«:

.-•r?.-. ■'.;*>.

M%*&

Figure 2. Results, (a) High-Resolution Subimage. (b) Manual Interpretation, (cj Derived Data Product, (d) Comparison.

computer-assisted software design. To evaluate this algorithm, we
used ERS SAR image data that coincides with in-situ observations

obtained during LEADEX '92. The results have shown excellent
agreement between the derived data product and a manually in-
terpreted ERS SAR data product. The algorithm has been shown
to extract features corresponding to ridges and rubble fields in
multiyear ice. We have suggested that the algorithm does extract
enough of the ridge and rubble features in first-year ice to show-

gross deformation patterns. ■

BIBLIOGRAPHY
' IEEE T [1! Burns. B A.. SAR Image Statistics Related to Atmospheric Drag Over Sea [

GRS. 28 2. p. 158-65 "

[2] Daida J M . TF Bersano-Begev SI Ross, and J F Veseckv Evolving Feature Extrac-
tion Alßonthms Adapting Genetic Programming for [maße Analysis in Geusnence and

Remote Sensing," Pmcfedinn ofIGARSS 96 IEEE Press In Press
[3] Daida, |M. J D Honimes TF Bersano-Begev. S.J Ross, and 1 F Veseckv. Algorithm

Discovers' Lsing the Genetic Programming Paradigm Extracting Low-Contrast C ui\i

linear Features from SAR Images of Arctic Ice. Aclvanm in Genetic Piotnammmil 11. P
Anseline and K Kmnear (ed I Cambridge The MIT Press 19% In Press

i'4] Onstott R G . D Miller, and R A Shuchnian. Srndy of the Relationship B-uveen the
Scale of 5ea Ice Deformation and Radar Backscatter Intensity I sing ERS-1 SAR Fin

rmlinft of IGARSS 95. IEEE Press pp. 419-421.

Paper 4

Daida, J.M., T.F. Bersano-Begey, SJ. Ross, and J.F. Vesecky, "Evolving
Feature-Extraction Algorithms: Adapting Genetic Programming for Image Analysis in

Geoscience and Remote Sensing, 2077-2079, Proceeding* of the 1996
International Geoscience end Remote Sensing Symposium, Washington:

IEEE Press (1996c).

To acpear m the P'oceedirp of r*e ' 996 International Geosoe.nce and Remote Se^S'og Symposium Remote Sensing for a Susta nab'e ^uvjre. Wasrungton- 'Et

'996.

Evolving Feature-Extraction Algorithms:
Adapting Genetic Programming for Image Analysis in Geoscience and Remote Sensing

Jason M. Daida*. Tommaso F. Bersano-Begey*. Steven J. Ross*, and John F. Vesecky"

"The University of Michigan. Artificial Intelligence Laboratory and the Space Physics Research Laboratory
2455 Hayward Avenue. Ann Arbor. Michigan 48109-2143

(313)747-4581 FAX (313)764-5137 EMAIL: daida@eecs.umich.edu
"The University of Michigan. Department of Atmospheric. Oceanic and Space Sciences

2455 Hayward Avenue. Ann Arbor. Michigan 48109-2143

Abstract—This paper discusses a relatively new procedure in
the computer-assisted design of pattern-extraction algorithms.
The procedure involves the adaptation of genetic programming,
a recent technique that has been used for automatic
programming, for image processing and analysis. This paper
summarizes several of the measures we have taken to develop
two prototype systems that help a user to design pattern-
extraction algorithms

1. INTRODUCTION

The task of extracting patterns from remotelv sensed imagery-
can be difficult, particularly if increasingly novel patterns need
extraction or when using data from new imaging technologies.
In such cases, off-the-shelf software—e.g.. geographic image
processing systems or image analysis software libraries—may be
able to meet a part, but not all the specifications for a pattern-
extraction problem at hand. To fulfill such specifications, the
best software tool to use may end up being code that has been
specifically designed for a particular problem.

To assist in the development of problem-specific pattern-
extraction tools, there has existed a range of options from which
one could choose. On one hand, one could choose to program
such tools from scratch, usually in a high-level programming
language. On the other hand, one could also program in an
even higher-level macro-language (e.g.. many geographic image
processing systems or scientific visualization systems often
feature a macro- or a scripting-language capability). In either
case, success of custom-tailored, pattern-extraction tools resides
not only in one's ability to design a procedure with which to
extract patterns, but also in one s ability to program.

The overhead associated with programming can be
substantial and often include such tasks as specifying software,
programming, debugging, and testing, as well as contending
with learning curves associated with new languages, new
software libraries, or new programming tools. To reduce this
overhead would be a desirable objective, since programming
often represents only a means (albeit a time-consuming one) for
delivering what is needed—namely, a tool for extracting a
particular pattern.

In part to address this objective, previous work has included
investigations of strong and weak methods in artificial
intelligence. The terms "strong" and "weak" refer not to a
measure of a method s performance, but to the amount of
knowledge about a given problem that a method requires. An
example of a "strong" method is an expert system, which
consists of a substantial portion of code that is problem-specific

and a smaller portion of code that is generic. An example of a
weak method is a neural network, which consists of a
substantial portion of code that is largely generic, and a smaller
part that is problem-specific. Either of these methods can still
involve a fair amount of programming, although one could
argue that these methods can reduce programming overhead.
(In particular, bv making programs more adaptable, more
robust, and more intelligent, less programming would be
required on the part of a user.)

In the past several years, there have been new techniques in
weak methods that show additional promise in reducing
programming overhead. This paper describes one of these
techniques and highlights how this particular technique can be
used for creating problem-specific pattern-extraction algorithms
for use with remotely sensed image data.

2. GENETIC PROGRAMMING

This paper specifically discusses our use of gcnnic
programming, an unsupervised technique that generates
computer code. Originally introduced in 1989 bv Koza [5].
genetic programming has since been applied in a variety of
domains, ranging from molecular biology to robotics to
economics. Genetic programming has been shown to solve <i
number of problems that have served as benchmarks for neural
nets [4. 6|. It has also been shown to solve problems in which
neural nets might not be the most appropriate technology to
use (e.g.. symbolic regression) [6].

Genetic programming does have several attributes that
potentially justify its use with remotely sensed image data. First,
it has been shown to work with imperfect or incomplete
problem specifications, while still yielding reasonable solutions
[2] Second, it has been able to produce extremely robust
classification code that yields accuracies that are coniparnhle to
that which has been obtained with manually produced
algorithms (4]. Third, it has been able to work with linear or
nonlinear problems with little or no changes to its core (generic)
portion (6. 7|. Fourth, it has been shown to work with a wide
range of data types, including multi-channel image data |2|
Fifth, it has been able to output several types of code ranging
from macros (which would require some type of interpreter) [6|
to assembler [9| Sixth, it has been used to automatically
produce code with features such as subroutines, registers, and
iterative loops [8]. Seventh, it has been routinely used to
manipulate both symbolic and numeric data [6. 7|.

Basic genetic programming can be briefly described as
follows. A genetic programming run starts with a set of

randomly created programs that have been generated from the
components that a user has supplied. We presume that
somewhere in this random collection of programs are the
building blocks necessary for the desired solution. The trick, of
course, is to sift through this random code in order to
synthesize a desired solution from these building blocks. To
implement this trick, genetic programming uses two operations
that are modeled after biological processes: natural selection and
genetic crossover. In this case, natural selection means that only
the most fit individuals reproduce and have offspring. In terms
of an operator, natural selection means that these random
programs need to be ranked by performance. Ranking is
accomplished by means of a fitness function, which has been
specified by a user before a run. A fitness function is supplied as
a subroutine that tests for how close a program comes to a
known result given a known set of inputs. Reproduction and
the bearing of offspring refer to the biological process of how
offspring are the genetic composite of both parents—i.e..
through genetic crossover. In terms of an operator, crossover
means that a portion of code from one program is replaced with
a portion of code from another program. The resulting
composite program is analogous to an "offspring Crossover
occurs mostly among the fittest programs (the pairing of
prospective parents is stochastic, but probabilities favor the
fittest programs) and continues until a new population of
offspring is attained. The operations corresponding to natural
selection and crossover are then repeated for this new
population. A genetic programming run continues for
subsequent populations until a candidate program obtains the
best score allowable under the user-supplied fitness function.

Detailed descriptions of genetic programming can be found
in [6. 7].

3. PROBLEMS

In spite of its apparent advantages and benefits, genetic
programming has only recently appeared in the geoscience and
remote sensing literature. Part of this relatively late appearance
can be traced to two difficulties. One difficulty involves
computational overhead. In Section 2. we noted that basic
genetic programming involves the creation and test of many
individual candidate programs. A typical run in genetic
program mav involve the creation and test of several thousand
of such candidate programs. For numerous problems previously
addressed bv genetic programming, testing of each candidate
solution is relatively quick and inexpensive (e.g.. each program
uses several tens of kilobytes of memory and executes in under a
minute). For problems involving remotely sensed imagery,
candidate solutions could easily use major blocks of memory
and minutes to hours of CPU time.

The other difficulty is that the canonical genetic
programming system, which has been freely available for some
time, is in LISP. (The code for the canonical genetic
programming system can be obtained at
ftp://ftp.io.com/pub/genetic-programming.) While LISP is
arguably the most intuitive language for genetic programming
to use. LISP has a few idiosyncrasies that can hinder processing
remotely sensed imagery.

4. ADAPTATIONS

This section summarizes our experiences to date in adapting
genetic programming for processing remotely sensed imagery
[1. 2. 3]. Our particular experience involves the extraction of
low-contrast ridge and rubble patterns in low-resolution ERS
synthetic aperture radar images of arctic sea ice. (See [3| in this
conference proceedings.) Our problem has been relatively
typical of those that involve multiple channels of image data (in
our case, several textural channels).

To solve our problem, we have implemented six adaptations
to genetic programming. The first three have helped in
reducing computation time (for a LISP version of our system)
to several CPU hours on a Sun SPARCStation 20 workstation.
A fourth adaptation has enabled the LISP version of our system
to process megabyte images. A fifth adaptation has helped to
further reduce computation time to tens of minutes. A sixth
adaptation has been proven necessary when using our methods
for directly processing images with genetic programming.

4.1 Preprocessing

We preprocessed as much of the data as was possible to
reduce genetic programming run time. For our problem, this
has meant that the texture measures were computed
beforehand. In particular, our problem was one in which it was
possible to use texture channels, where each channel represents
a different filtered version of the image data to be processed.
(Two of the channels we specified corresponded to layers in an
image pyramid: mean images filtered with kernel sizes of 3x3
and 5x5. respectively. The other two channels corresponded to
edge detection: a Laplacian image of kernel size 5x5 and a
Laplacian. 5x5. of a mean. 3x3. image.) In a sense, what was
left for genetic programming to do was to formulate an
algorithm (a rule set) that governs how the data in each channel
was to be combined with the others.

Note that a complete algorithm produced bv genetic
programming would then consist not only of a rule set. but
would also include the subroutines implicit with each filtered
channel. While this may seem obvious, there mav be
unintentional side effects if one simply converted the algorithm
produced bv genetic programming to a standalone application
and then used a different software implementation to generate
each filtered channel

4.2 Test Points

We used test points in an image that have been manually
interpreted to serve as programming benchmarks Each
candidate algorithm produced in genetic programming is
executed with these test points to assess that algorithm s
accuracy in extracting a desired pattern (i.e.. in the context of a
fitness function). The number of test points that need to be
provided does not have to be large. For our problem, the best
algorithm that we have obtained to process full-sized low-
resolution ERS SAR data products was developed using only 53
test points.

Note that we used test points, rather than subimage patches,
to serves as "training sets' for genetic programming. We have
found that the use of subimage patches was too constraining,
did not help, and has even hindered processing times. See |2|.

4.3 Dynamic Fitness

Instead of requiring all candidate algorithms to use a fixed
standard, we opted to use a sliding standard. By that we mean
the number of test points needing to be solved at the outset of a
genetic programming run are fewer than the number of test
points needing to be solved towards the end of that run. We
have found this technique to result in better quality algorithms
than without this technique, when genetic programming needs
to solve for the entire test point set at the outset. See [1. 2] for
implementation details.

4.4 Chunking

LISP requires a fairly sizable amount of processing overhead,
which negatively affects the size of an image that can be
processed at any one time. As a workaround intended mostly
for LISP systems, we chunked low-resolution ERS SAR image
data into smaller subimages. processed the subimages. then
integrated the processed subimages to obtained a whole derived
data product. The nature of the operators that we used for
genetic programming allowed for seamless integration of
subimages.

Our first prototype was built around the canonical genetic
programming kernel, which means that our prototype system
was implemented in LISP.

4.5 C-Language Port

As well suited for LISP as genetic programming is. there have
been several reasons that have prompted us to design our second
prototype in C: larger arrav sizes, faster run times, broader user
communitv. wider range of programming flavors and tools. We
have developed our second prototype around a recently'
introduced C-language version of genetic programming. (The
code for the C-language version of the genetic programming
kernel is available at the following URL:
http://isl.cps.msu.edu/GA/software/lil-gp/) Early tests have
shown that our second prototype runs about an order of
magnitude faster than our LISP version.

4.6 Scaffolding

More often times than not. in cases where custom-designed
code is needed, one is not able to start with an exact
specification of a pattern. There often exists an uncertainty on
what does, indeed, constitute the desired pattern. This
uncertainty can show up as inappropriately interpreted test
points, or even as inappropriately chosen test points. Several
iterations of trying and interpreting different test points are
usually the norm.

For this and other reasons described in [1. 2], we have
designed our system with the deliberate intent to involve the
user. In a sense, we have designed our system so that genetic
programming facilitates the testing of a user's hypotheses on
what a desired pattern should be. The user learns about
specifying a desired pattern in a consistent manner, while the
computer assumes the role of a human programmer, who would
logically extend a user s specification into code. This
cooperative relationship has been referred in the education and
technology literature as scaffolding.

5. CONCLUSIONS

This paper has highlighted some of the adaptations used to
incorporate genetic programming in the design of algorithms
that extract features from remotely sensed images. In particular,
this paper has summarized six adaptations: preprocessing, test
points, dynamic fitness, chunking (for LISP versions). C-
language port, and scaffolding. Although many applications
have employed genetic programming as an unsupervised
method, we have integrated genetic programming as part of an
interactive system that serves as a tool for computer-assisted
algorithm design. The overall system has been developed to
help a user to focus more on the problem at hand and less on
programming detail.

Additional references on genetic programming include (6. 7|.
One can also obtain information and software about genetic
programming at the following URL addresses:
• http://www.cs.ucl.ac.uk/research/genprog/
• ftp://ftp.io.com/pub/genetic-programming

ACKNOWLEDGMENTS

This research has been partially funded with grants from the
Office of Naval Research, the Naval Research Laboratory
(Stennis) and the Space Physics Research Laboratory (U-M).
We gratefully acknowledge the following individuals for their
invaluable assistance: I. Kristo. S. Daida. J. Hommes. J. Koza.
R. Onstott. R. Riolo. E. Soloway. and A. Wu.

BIBLIOGRAPHY

|1| Daida. J.M. T F. Bersano-Begev. S J Rnss. and J.F Veseckv "Computer-
Assisted Design of Image Analysis Algonthms: Dynamic and Static rnness
Evaluations in a Scaffolded Environment," Submitted to Genetic

Programming 96
|2| Daida. J.M.. J D. Hommes. T.F Bersano-Begev. S.J. Ross, and J.F

Vesecky. "Algorithm Discovery Using ihe Genetic Programming Paradigm.
Extracting Low-Contrast Curvilinear Features from SAR Images of Arctic
Ice." Advances in Generic Programming II. P. Angeline and K Kinnear. Jr .

(ed.). Cambridge The MIT Press. 1996 In Press.
[3] Daida. J.M. R G Onstott. T.F Bersano-Begev. S J Ross, and J F Veseckv

Ire Roughness Classification and ERS SAR Imagery of \t.-nc Va IM-

Evaluation of Feature-Extrarnon Algorithms bv Genetic Programming

Proceedings of IGARSS 96 IEEE Press In Press.
[4] Francone. F.D.. P. Nordm. B. Banzhaf "Benchmarking the Real-World

Generalization Capabilities of an Advanced. Compiling Genenr
Programming System Using Sparse Data Sets." Submitted to Genetic

Programming 96
|5| Koza. J.R. "Hierarchical Genetic Algorithms Operating on P"pnl noMI-, of

Computer Programs." Proceedings of the 11th International joins (nnteience
on Artificial Intelligence. Volume 1 . Morgan Kaufmann

[B] Koza. J.R.. Genetic Programming: On the Programming nf Compureis In

Means of Natural Selection. Cambridge: The MI I Press 1992
[7] Koza. JR.. Genetic Programming II: Automatic Discovert of Reusahle

Programs Cambridge The MIT Press. 1994
(8| Koza. JR.. D Andre. "Evolution of Iteration in Genetic Programming.

Evolutionary Programming V: Proceedings of the Fifth Annual Confeience on

Evolutionan Programming. Cambridge: The MIT Press. In Press.
(9| Nordin. P.. "A Compiling Genetic Programming System thai Directly

Manipulate the Machine Code " Advances in Genetic Programming K
Kinnear. Jr. (ed.). Cambridge: The MIT Press, pp. 311-331

Paper 5

Daida, J.M., T.F. Bersano-Begey, S J. Ross, and J.F. Vesecky, Computer-

Assisted Design of image Classification Algorithms: Dynamic and Static Fitness

Evaluations in a Scaffolded Genetic Programming Environment, 279-284,

Genetic Programming 1996: Proceedings of tho First Annual
Conference, J.R. Koza, D.E. Goldberg, D.B. Fogel, and R.L Riolo (eds.).

Cambridge: The MIT Press (1996d).

To acpear in the Geneve "'oimmmr^ : 99b Proceedings of 'pe F.rsr Amuc Ccrfetrce.]'jiy 28-31. 1996. Star.icrd University l.R. Kcza. D.E. GcldbeT O.E cc;ei.

R.L. Ric:o ,'eds.i Cambndge:Tne M!T Press..

Computer-Assisted Design of Image Classification Algorithms:
Dynamic and Static Fitness Evaluations in a

Scaffolded Genetic Programming Environment

Jason M. Daida, Tommaso F. Bersano-Begey, Steven J. Ross, and John F. Vesecky
The University of Michigan

Artificial Intelligence Laboratory and Space Physics Research Laboratory
2455 Hayward Avenue. Ann Arbor, Michigan 48109-2143

daida@umich.edu. tombb@umich.edu, stevross@umich.edu. jfv@umich.edu

ABSTRACT
This paper discusses several issues in ap-

plying genetic programming to image
classification problems in geoscience and
remote sensing. In particular, this paper
examines the role in using dynamic and
static fitness evaluation functions. This pa-
per also examines a few of the aspects in
human-computer interactions that facili-
tate computer-assisted learning and prob-
lem solving (i.e., scaffolding) for our sys-
tem. We describe a possible means for vi-
sualizing and summarizing a solution
space without having to resort to an ex-
haustive search of individuals.

1. Introduction
1.1 Background
Classification (alternately, pattern classification, or pattern
identification) denotes a process in which a decision rule is
applied to categorize a set of image data (Haralick and Shapiro
(1993)). This process often represents a key step in transform-
ing image data into information. Francone et al. (1996) sug-
gest that genetic programming (GP) can be used to evolve
robust classification algorithms. However, there are certain
trade-offs that are involved in using GP for classification tasks
with image data, particularly with satellite image data used in
the fields of geoscience and remote sensing. Of these, one key
trade-off involves computational effort and human supervi-
sion,

in an "ideal" world, image classification tasks would require
minimal, if any. human supervision and most of the program-
ming would be done by a computer. Unfortunately, the com-
putational effort associated with classifying satellite image data
is nontrivial. A typical satellite image may consist of one to
hundreds of megabytes, which often involves a fair amount of
CPU time for processing. Common geoscience problems can
also often involve the classification of many images. When
one considers that GP involves the evaluation of many candi-
date solutions, each of which could require seconds to hours
of computation per image, the prospect of using just one im-

age for evaluation becomes daunting; the cost of using just
one image as a fitness set becomes prohibitive. Of course, one
could reduce the amount of computation involved by reduc-
ing the size of the fitness set from whole images to subimage
samples.

Although the idea of using subimage samples may seem
straightforward, in practice, it is not. One often encounters
situations where there exists incomplete knowledge about the
variations in the features to be classified. In such situations,
what exactly constitutes the minimal set that completely de-
scribes the categories of interest is unknown. It becomes en-
tirely possible that a subimage sample may in fact represent
an ill-posed problem. Moreover, the available computational
resources might further constrain the size of a subimage sample
to such an extent that the only practical sample corresponds to
an ill-posed problem. In either circumstance, a workaround
involves human supervision.

In Daida et al. (1996). we introduced a GP system for the
computer-assisted design of image classification algorithms.
The system has been used to solve a difficult pattern recogni-
tion problem that has had no prior satisfactory solution. The
system has been designed to classify megabyte-sized gray-
scale images, even though the corresponding fitness set may
consist of only a handful of manually classified pixels (test
points). The system has featured a canonical GP with a dy-
namic evaluation function (i.e.. a function that increases the
number of the fitness cases that are evaluated during the course
of a run).

In designing this system, we have presumed the following.
First, there exists incomplete knowledge on the user's pan
about the classification problem at hand. Second, there exists
a high probability of a user formulating an imperfect fitness
set (at least initially). Third, that GP provides "logical" out-
comes to a presented fitness set. Fourth, that learning on the
user's part about the classification task at hand would result in
the crafting of better fitness sets, which would in turn gener-
ate better solutions. In this sense. GP is used as a kind of agent
that handles the task of programming while the user is left to
concentrate on the task of program specification. In other
words. GP "scaffolds" a user to learn about the problem's es-
sentials by illuminating consequences of specifications made
with incomplete knowledge, while hiding the potentially dis-
tracting details associated with programming.
Although this system has performed well, we left for later

the task of qualifying the necessity of using GP in a scaffolded
fashion. In particular, this paper shows just how ill-posed fit-

ness sets can be, if only because large fitness sets are not
computationally tractable. We also left for later the task of
qualifying the reasoning for using dynamic, as opposed to
static, fitness evaluation functions. This paper subsequently
addresses these issues.
1.2 Previous Work
We have observed that most work in GP has not required scaf-
folding, since fitness, as defined by an evaluation function,
has usually been sufficient in determining program success.
We note that although we have not yet found other works us-
ing GP as a scaffolding technology for image analysis, we
have found a similar use of GP in the area of computer-pro-
duced art (e.g.. Sims (1991)).
The idea for using a dynamic evaluation function—one in

which either the fitness cases or the evaluation function itself
changes during the course a run—is not new. Koza (1992)
used such functions in many examples. However, the particu-
lar strategy on which we based our work stems from Goldberg's
(1989) work in genetic algorithm classifiers and Holland's
(1986) work in default hierarchies and learning. Of interest to
us has been how their strategies applies to image analysis prob-
lems that involve using GP to extract information from image
data. Although Tackett (1993) has used GP with this type of
image analysis problem, he used a different evaluation strat-
egy. To date, we have encountered few works that evaluate the
effectiveness of Holland's and Goldberg's type of dynamic
evaluation function with GP systems for image analysis. We
do note, however, that Schoenjuer (1996) has used this type
of evaluation function to increase the numerical precision of
computational models. (See also Siegel (1994) and Angeline
and Pollack (199?).)

2. Highlighted Methods
This section details two notable distinctives about our system
described in Daida et al. (1996) and briefly mentions how these
distinctives relate to the experiment discussed in this paper.

2.1 Dynamic Fitness Evaluation
For our system, dynamic fitness specifically refers to evaluat-
ing a set of program benchmarks that changes in membership
during the course of a GP run. The following paragraphs
supplement the qualitative description given in Daida et al.
(1996).

Let Pn represent the set of initial test cases, i.e..

P» = K«. ««)•
where a represents a test case (an image test point in our case),
and M is a positive integer.

Furthermore, let P' denote the set of additional test-case ar-
rays, i.e..

P'= ({*....*.. (*,„•*„ *,.„) I^,A

where P' is a A'-element array of arrays (which do not neces-
sarily have a uniform length). bt, is a test case, and l(k) is (in-
teger length - 1) of the k\h test-case array.
Given an evaluation function/such that

fie , , ,. P.t. trigger):
c ApU. trigger)) ^> raw fitness score.

where c ,„„,„„,denotes an individual from a population of pro-
grams. P = /At. trigger) denotes the set of test cases to be evalu-
ated by c ,„,„.„,„„, at a time t. let /; be a mapping such that

p(t.trigger) =

P„vP(\),

P„v\JPtk).

uUP(k).

f = 0.

;, </</.. where t,
represents the first time
trigger = TRUE and ;,
represents the second
time trigger = TRUE.

tk < t < tK^. where tk

represents the fC th time
trigger = TRUE and tK _.
represents the next time
trigger = TRUE.

tK < t < f.,„,. where /„„
represents the total amount
of allowable time steps.

For our purposes, we let /denote generational time. e.g.. / =0
denotes generation zero. (Note: function/) can also be ex-
pressed in terms of individual time, which would be relevant
for some cases of adaptation.) The Boolean trigger in function
p represents the conditional in which the test-case set is
incremented with new test cases. Although there are several
different ways to trigger an increment, for both this paper and
in Daida et al. 11996). the trigger used was strictly perfor-
mance based. In particular, an increment was triggered when
enough hits were scored for a particular set P. i.e..

trigger ■■

TRUE. (Number of Hits) >

(Length(P) - Margin).

FALSE. Otherwise.

We denote Margin as a parameter that a user defines, where
Margin is an nonnegative integer such that Margin <LengllnP)
for all sets P.

2.2 Scaffolding
Figure 1 shows a flowchart of how we have used GP in a sys-
tem for the computer-assisted design of image classification
algorithms. For this paper, we deliberately chose not to use
the full configuration in Daida et al. (1996). but instead al-
lowed GP to execute without human supervision for two se-
ries of runs (i.e.. feedback loops indicated by The dashed gray
lines were not used). (This scenario could happen in actuality:
a user would execute a series of GP runs to get a probabilistic
assessment of her hypothesis before she would amend any
inputs to the GP kernel). This partial configuration was used
for this paper to test scaffolding and fitness evaluation func-
tions.

Interactive

Figure 1. Described Scaffolded GP System.

3. Procedure
3.1 Domain Problem
The domain problem featured in this paper is identical to that
described in Daida et al. (1995. 1996). The problem involves
extraction of light-gray curvilinear and blob features from a
light-gray background. The images are synthetic aperture ra-
dar (SAR) low-resolution data products that depict scenes of
the Arctic Ocean and surrounding seas. The particular SAR of
interest is mounted on the European Space Agency ERS-se-
ries of satellites. The curvilinear and blob-like features in these
scenes of the ice cover correspond to pressure-ridges and rubble
fields, respectively. This particular problem has been difficult
to solve because of the low signal-to-noise ratio of the desired
features to background. There has been no record of an algo-
rithm that satisfactorily solves this problem for ERS SAR
imagery prior to Daida et al. (1996).

3.2 Experiment Design
The dynamic case portion of this experiment consisted of ex-
ecuting 20 runs of system configuration shown in Figure 1
with the dynamic evaluation function described in Section 2.2.
Each run used a different random number seed. The static case
portion of this experiment consisted of executing 20 runs of
GP with a static evaluation function. Identical random num-
ber seeds were used for both dynamic- and static-case runs.
All other common parameters, terminals, functions, and an
out-of-sample evaluation image remained constant. Table 1
summarizes some of those items.

Note that the following items have been presented in greater
detail in Daida et al. (1996). Information in parentheses refers
to where in that work a description for a particular item is
given, namely: terminal set (Figure 21.4). function set (Tables
21.1-21.3). and image data (in particular, the April 23. 1992
data shown in Figure 21.3b). We further note that implement-
ing the function set for closure under eight-bit image data does
involve more than what can be conveyed in this paper. For
example, addition can be implemented in at least two ways:
saturation 255 or modulo 255. (Under saturation 255 arith-
metic, the sum of any number greater than 255 is 255.) We
included both implementations in the function set as P and +.
for saturation 255 and modulo 255 addition, respectively.
The following parameters were used for both dynamic- and

static-case portions: maximum number of generations were
equal to 50: size of population. 300: maximum depth of new
individuals. 6: maximum depth of new subtrees for mutants.
4; maximum depth of individuals after crossover. 17: fitness
proportionate reproduction fraction. 0.1; crossover at any point
fraction. 0.2: crossover at function points fraction. 0.7: selec-
tion method, fitness-proportionate: generation method, ram-
ped-half-and-half. Note that the population size and number
of generations used were modest and chosen in pan so that we
could complete a run on an HP 715 within a few CPU hours.
The following parameters were used for the dynamic evalu-

ation function: 15 initial test points, subsequent increments of
nine test points. Margin of six hits. Note that both dynamic
and static cases used the same set of test points. The most
significant difference was that the dynamic evaluation func-
tion made the test points gradually available by small incre-
ments, while the static evaluation function made all 53 test
points available as a single chunk.
Figure 2a shows the out-of-sample test image that was used.

This 128x128 pixel image is a subset from the original non-
geocoded April 23. 1992 ERS SAR data product that has been
calibrated in gray scale. (Note: image attributes of geocoding
and calibration are mostly for domain science purposes.
Geocoding refers to image data that has been geometrically
corrected according to a specified latitude-longitude grid.
Calibration allows for direct comparison between images taken
from different times and different satellites.) The subimage
shown in Figure 2a has been contrast enhanced for publica-
tion. For comparison purposes. Figure 2b shows the classifi-
cation results using the best known algorithm i from the switch
filter, described in Daida et al. (1996)).

Table 1. Settings and Parameters

Terminal Consists of an array of size N of manually selected lesi
Set: points, which contains data from an image and its

corresponding filtered versions (i.e.. 5>5 Laplacian oi a
.1x1 Mean. 5x5 Laplacian. .1x1 Mean. 5x5 Meani; a
random floating-point variable.

Function Arithmetic operators defined to operate on matrices and
Set: constants in any combination l+. -. x. ^. ?. Mi. and the

threshold operator If-Less-Than-or-Euual (<).

Fitness List of A' manually selected control points from
Cases: benchmark. Pixels that are part of pressure ridge leatures

are given a gray-scale value of 255 and all other non-
feature pixels take a value of zero. The number of
current fitness cases depends on the type of evaluation
function used.

Raw Fitness: The number of hits.

Standardized
Fitness:

Hits:

Success
Predicate:

(Number of fitness cases. ,V) - (Number of hits)

The number of fitness cases for which an individual
program's output is less than 9 away from the target
gray-scale value of 255 or 0.

A run ends when the maximum number of generations
is reached or when an S-expression scores the maximum
number of hits.

3fV>

(b)

Figure 2. (a) Subimage from April 23,1992. Image of sea
ice near Beaufort Sea gyre. ERS-1 © ESA 1992. (b) Refer-
ence classification.
3.3 Experiment Rationale
The experiment design of Section 3.2 allowed us to:
• isolate the role of the evaluation function by completely

removing human supervision from fitness evaluation. In
particular, it allowed us to ask whether supplying test cases
in toto or by increments would make for significant differ-
ences in classification output. We have hypothesized that a
dynamic fitness function would likely yield better solu-
tions than a static fitness function, given identical sets of
fitness test cases.

• examine the case where no scaffolding is allowed. Although
our use of scaffolding does indicate that a human is in-
volved in some aspect of fitness evaluation, we have de-
signed the system to limit that involvement mostly to ac-
tions taken between GP runs (i.e.. evaluations of out-of-
sample results, as well as changes made to fitness cases
and GP parameters). Still, we have hypothesized that even
this amount of restricted access is (for all practical pur-
poses) necessary because the problem is likely to be ill-
posed. For this case where no scaffolding is allowed, one
can test for this hypothesis by showing that the out-of-
sample results are not well correlated to fitness scores.

3.4 Implementation Notes
Most of the implementation did not change from that described
in Daida et al. (1996). All of the runs were concurrently ex-
ecuted on a network of HP 715 UNIX workstations using Al-
legro Common LISP.
Each run takes about four hours to complete. Although the

workarounds described in Daida et al. (1996) can and have
allowed for the processing of 1024x1024 pixel images, we
chose to use 128x128 pixel subimages for out-of-sample in-
spection. We have found that this size of subimage is suffi-
cient to inspect all of this experiment's images on a monitor
without having to sacrifice the detail necessary for a qualita-
tive assessment. (At least this is true for our domain problem.
Other problems may require larger subimage sizes than what
we used.)

4. Results
Figure 3 shows the performance curves associated with the
experiment. All of the curves are displayed as box plots, which
summarize the statistical variability measured for each gen-
eration.

Figures 3a and 3b show the box plots associated with the

average standardized fitness measured for each generation for
static and dynamic evaluation functions, respectively. A per-
fect standardized fitness score is zero hits and the worst case
score is 53 hits, which is indicated by dotted lines. Figures 3c
and 3d show the box plots associated with the raw fitness score
for the best individual of each generation for static and dv-
namic evaluation functions, respectively. A perfect score is 53
hits, which is also indicated by dotted lines.
Figures 4 shows an excerpt from the out-of-sample test im-

age for static and dynamic evaluation functions. For each row.
each image corresponds to an output from a best-performing
individual from a single run. Only the first individual that the
kernel identified as having the highest raw fitness score has
been visualized. (A run can generate many individuals with
the same score.) Black (gray value 255) represents regions
that supposedly have pressure-ridge or rubble-field features.
The images in each row are organized by trial so that the main
difference between images in a column is the type of evalua-
tion function (and not a random-number seed). Visualized are
the results corresponding to the first ten random-number seeds.

5. Discussion
5.1 Interpreting Performance Curves
The shapes of the performance curves are the most different
at the outset, from zero to about seven generations. According
to Figure 4. the static evaluation function allowed for GP to
create an individual that solves about 757r of the presented
problem (approximately 38 hits in raw fitness score) in gen-
eration zero, which indicates that most of the solution has been
generated by a pure random process. In contrast, the dynamic
evaluation function allowed for the GP to solve at most 30'«
of the presented problem (15 hits, raw fitness score) also by a
pure random process. The short rise of the average standard-
ized fitness curve for the dynamic case suggests that the pre-
sented problem has increased in difficulty for several genera-
tions. Figure 4 suggests that one effect, then, of using dynamic
evaluation was to shift the predominant means of obtaining a
solution from a pure random process to one of crossover and
reproduction.
The shapes of the performance curves are the most similar

towards 50 generations. The particular fitness set used in this
experiment did yield an individual with either a perfect or near-
perfect score for all of the runs, w hether static or dynamic.

::-***«»*-., **'!
'■*•»*•»(„

..^-i"

Figure 3. Performance curves.

MM
3

Figure 4. Excerpt of Out-of-Sample Results.
5.2 Classification Output and Scaffolding
The results presented in Figures 3 and 4 indicate that the out-
of-sample classification results were not well correlated with
high fitness scores (which is an expected finding for this ex-
periment). At face value, the performance curves shown in
Figure 3 would have suggested that all algorithms obtained
from runs under either static or dynamic fitness evaluation
functions correspond to reasonable classification solutions.
However, when these algorithms classified imagery that con-
tained data exclusive of that used in fitness calculations, the
quality of classification output has varied greatly. Even per-
fectly scoring algorithms yielded questionable results that
looked nothing like the solution shown in Figure 2b. These
results did strongly suggest that the provided fitness set was
ill-posed, which is what we expected for the case of no scaf-
folding, and which is why we have advocated the use of scaf-
folding.
The out-of-sample processing requirement for image analy-

sis tasks is often many times larger than the number of in-
sample test cases with which GP can feasibly process. Con-
sidering the out-of-sample requirement for just one ERS low-
resolution (1024x1024 pixel) data product, the ratio of the
number of out-of-sample cases to the number of in-sample
cases for our fitness set is almost 20.000:1. (In an operational
environment, a 2.000.000.000:1 ratio would not be unreason-
able.) Even if one could accurately and precisely quantify ev-
ery relevant aspect of a feature for processing (which is un-
likely at the start of problem solving, cf. Congalton (1991)).
the possibility of undersampling would still remain. For that
reason, using GP as a means for scaffolding (which would
include a human in an evaluation loop with GP) in image analy-
sis tasks makes more sense than using GP without human su-
pervision.

5.3 Likelihood of Success
Are there any predictors that might indicate whether a reason-
able solution is likely? Fortunately, the answer may be yes. To
assess whether a set of parameters, terminals, and function
sets might yield a solution, a user would likely end up execut-
ing a large number of runs, if only because GP is a probabilis-
tic method. Furthermore, for ill-posed cases, a single run can
generate upwards of several thousand individuals that have
scores that would merit human inspection. In any case, with-
out a predictor, a user could be faced with a fairly laborious
task of inspecting each candidate without necessarily being
assured of whether any solution would be possible for that
particular set of GP parameters or fitness test cases.
Figures 5a and 5b show the result of doing a matrix addition

and normalization over the twenty images for dynamic and
static cases, respectively. White represents low average val-
ues; and black, high values. What has surprised us was how

close the resulting averaged images were to the solution shown
in Figure 2b. Part of this surprise came from noting that none
of the images in Figure 4 looked like the solution. Indeed,
some of those images looked quite different. Another part of
this surprise came from also noting that the number of images
averaged was fairly modest, given a considerable number of
individuals (e.g.. over 5000 in the dynamic case) having similar
fitness scores.
We have hypothesized that each image represents the out-

come of one or more genotypic building blocks that have
evolved over the course of a run. The expression of those build-
ing blocks would depend on what building blocks exist and
what blocks become expressed, which depend upon the struc-
tures that link these blocks together. Because components in
the function set were Cartesian operators, an average image
would represent a projection in image space of those building
blocks that commonly occur. An average image would subse-
quently provide a rough indication of allowable and
disallowable solutions.

If this hypothesis were the case, thresholding an averaged
image would then yield a likelihood map of classified image
data for some probability (i.e.. given M runs, the probability
that all the components necessary for a solution are attained).
Assuming that the values associated with the probability of
assembling all necessary building blocks remains relatively
constant, the most likely map of classified image data should
be comparable between static and dynamic cases for some
fixed threshold.
Figure 6 shows the result of thresholding the averaged im-

ages. Figure 6a shows a subimage of the original data shown
in Figure 2a. Figure 6b shows the corresponding classified
solution for reference purposes. Figure 6c shows the
thresholded averaged image for the dynamic case, while Fig-
ure 6d shows the thresholded averaged image for the static
case. The thresholded values corresponding to Figures 6c and
6d were kept identical.

Figure 6 indicates that the dynamic evaluation function has a

Figure 5. Averaged outputs, (a) Dynamic, (b) Static.

*W..rt^i

(a) (b) (d)
Figure 6. Probablistic outputs, (a) Data, (b) Reference so-
lution, (c) Dynamic, (d) Static.
greater likelihood of obtaining a solution in comparison with
the static evaluation function (i.e.. Figure 6c is more similar to
Figure 6b than is Figure 6d). What is missing in the static case
is the building block(s) associated with classifying ridge and
rubble features at the edge of multiyear ice. In other words,
the probability of obtaining code that detects just the presence
of bright curvilinear features at the boundaries between light
gray and dark gray regions appears to be fairly low for the
static case. Note that the required code would not be an edge
detector. (If it were, all the edges between the light and dark
gray regions would be incorrectly classified as ridge features.)

At the time of this experiment, we did not have the means to
track building blocks for entire populations of algorithms and
consequently did not have the means for testing this hypoth-
esis. We have subsequently left this assignment for future work.

6. Conclusions
This paper has examined some of the issues involved in using
GP in the computer-assisted design of image classification al-
gorithms. Although it would be desirable to have the com-
puter to do much, if not all of the work in deriving an appro-
priate classification algorithm, for practical reasons, we have
indicated that a human should be involved in at least part of
fitness evaluation. In particular, we have indicated that there
is a trade-off in the number of fitness cases considered during
evaluation versus the available computational resources. We
have also pointed out that there may exist uncertainty about
the quality of fitness cases used. In any case, we have indi-
cated than an image classification problem could be ill-posed,
which was certainly the case for this paper's experiment.
This paper has also has described the role of using either

dynamic and static evaluation functions in deriving a solu-
tion. Results have suggested that use of a dynamic evaluation
function would be more likely to evolve a classification solu-
tion than would a static evaluation function using the same set
of fitness test cases. A novel means of visualizing and predict-
ing the solution space for a given set of parameters, functions.
and terminal sets was also described.

Acknowledgments
This research has been partially funded by grants from the Office of Naval
Research, the Naval Research Laboratory iStennts) and the Space Physics
Research Laboratory lU-M). We appreciate the thoughtful critiques given to
us by the reviewers of this paper. We gratefully acknowledge I. Knsto. P.
Angeline. M. Bassin. S. Daida. J. Homines. J. Koza. R. Onstott. R. Riolo. E.
Solowav. and A. Wu for their invaluable comments and assistance.

Bibliography
Angeline. P.J.. & J.B. Pollack, 1993. Competitive environment

evolve better solutions for complex tasks. In S. Forrest (ed.).
Proceedings Fifth International Conference on Genetic Al-
gorithms. San Mateo: Morgan Kaufmann Publishers. Inc..
pp. 264-270.

Congalton. R.G.. 1991. A review of assessing the accuracy of
classifications of remotely sensed data. Remote Sensing of
the Environment. 37:1, pp. 35-36.

Daida. J.M.. J.D. Hommes. S.J. Ross. & J.F. Vesecky. 1995.
Extracting curvilinear features from synthetic aperture radar
images of arctic ice: Algorithm discovery using the genetic
programming paradigm. Proceedings 1995 International
Ceoscience and Remote Sensing Symposium: Quantitative
Remote Sensing for Science and Applications. IEEE Press.,
pp. 1415-1417.

Daida, J.M.. J.D. Hommes. T.F. Bersano-Begey. S.J. Ross. &
J.F. Vesecky. 1996. Algorithm discovery using the genetic
programming paradigm: Extracting curvilinear features from
synthetic aperture radar images of arctic ice. In P. Angeline
and K. Kinnear. Jr. (eds.). Advances in Genetic Program-
ming II. Cambridge: MIT Press.

Francone.F.D.. P. Nordin. & B. Banzhaf. 1996. Benchmarking
the real-world generalization capabilities of an advanced,
compiling genetic programming system. Proceedings Ge-
netic Programming '96. In press.

Goldberg. D.E.. 1989. Genetic Algorithms in Search. Optimi-
zation, and Machine Learning. Addison-Wesley. Reading.

Guzdial. M.. 1995. Software-realized scaffolding to facilitate
programming for science learning. Interactive Learning En-
vironments. 4:1. pp. 1-44.

Haralick. R.M.. & L.G. Shapiro. 1993. Computer and Robot
Vision: Volume II. Reading: Addison-Wesley Publishing
Company.

Holland. J.H.. K.J. Holyoak. R.E. Nisbett. & PR. Thagard.
1986. Induction: Processes of Inference, Learning, and Dis-
covery. Cambridge: MIT Press.

Koza. J.R.. 1992. Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection. Cam-
bridge: MIT Press.

Schoenauer. M.. M. Sebag. F. Jouve. B. Lamy. & H.
Maitournam. 1996. Identification of mechanical behavior b\
genetic programming: Part I rheological formation. In P.
Angeline and K. Kinnear. Jr. (eds.). Advances in Genetic
Programming II. Cambridge: MIT Press.

Siegel, E.V., 1994. Competitively evolving decision trees. In
K. Kinnear. Jr. (ed.). Advances in Genetic Programming.
Cambridge: MIT Press.

Sims. K.. 1991. Artificial evolution for computer graphics.
Computer Graphics. 24:4. pp. 319-328. July 1991.

Tackelt, W.A.. 1993. Genetic programming for feature dis-
covery and image discrimination. Proceedings 2nd Interna-
tional Conference on Al Planning Systems, pp. 303-3(W.

