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1     Introduction 

1.1 An overview of combustion phenomena 

Question 1 What are the chemical and physical 
phenomena occurring in combustion 
systems? 

Question 2        How do these phenomena interact 
with each other? 

Question 3 For a given application, which of the 
above are most important and how can 
they be represented in a numerical model? 



Processes Occurring in Turbulent Combustion 
and Their Interaction 

Answer 1, 2 

Reactions forming 

pollutants, NOx, SOx 

Droplet and 

particle dynamics 
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thermal conductivity, 
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Radiative properties: 
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Answer 3 

Dependent on the type of application. 

Different boundary conditions will lead to different combustion regimes for 
which different model approximations may be appropriate. 

Dependent on the level of information required from the model. 

For example if the code is not required to predict wall temperatures, or is 
not required to predict NOx emissions, a simpler modelling strategy might 

be employed. 

1 .2 Classification of combustion problems. 

Interaction of combustion chemistry and turbulence. 
The Damköhler number. 

The Damköhler number is a ratio of characteristic flow time to chemical 

reaction time: 

^ t 
Da = -^ = 

U'T 

where t and u' are turbulent length and velocity scales respectively. 



Using the k, s turbulence model and an Arrhenius kinetic rate expression we 
may write: 

( 
D = - 

8 

-T ^ 
ATne—-a- 

T ) 

Values of D for an industrial propane burner.  Taken from computations by 
Bai,X.S. and Fuchs, L.i 
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'Bai, X. S., and Fuchs, L, Improved Efficiency of Combustion in Furnaces with Flow Redistribution Royal Institute 
Stockholm. 



Low Damköhler number flames: 

Da«l 

Chemical reactions are orders of magnitude slower than turbulent mixing 
rates and the influence of turbulence on reaction can be neglected. 

High Damköhler number flames: 

Da»l 

Finite  rate  chemistry  can  be  neglected  as   turbulent  mixing  controls 
combustion. 

Intermediate Damköhler number: 

Both turbulent mixing and finite rate chemistry must be considered. 



An important classification for flames is into the categories of Diffusion and 
Premixed. 

For premixed flames there is a laminar flame speed UL which defines a scale 
of thickness, eL- 

Da=h, 
( ~   \ 

VUL7 

( l\V 

\QLJ V 

Da < 

Types of turbulent premixed flame 

taken from Borghi, H., and Pourbaix, E2 

2
Borghi, H., and Pourbaix, E., On the Coupling of Complex Chemistry with a turbulent Combustion Model. PCH, 1981. 
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Characteristic Scales, Buoyancy and Froude Number. 

For combustion chambers of characteristic size L and mean velocity U a 
dimensional graph can be constructed. 

]Y        I      • i   i  i 1111/ ^-^i 1—i  I i 11 hi 

).oi o.i l o.oi 
Urn) 

Parameters for combustion with air at atmospheric pressure. 

Froude number:      Fr = 
gL 

g = acceleration due to gravity. 



Classification of Radiative Heat Transfer 

OOT   ÖÖ2   0.04 
REDUCED FIRING DENSITY 

OIL TUBE STILLS 

DOMESTIC BOILER COMBUSTION CHAMBERS 

OPEN HEARTH FURNACES 

SOAKING PITS  " 

GAS TURB.NE COMBUSTORS - OFF SCALE, FAR RIGHT 

Hottel's diagram for Radiative Heat Transfer in furnaces and combustors. 

Different practical applications are seen 

graph. 

to occupy different regions on the 



Hottel's model is based on a well stirred reactor with speckled walls and grey 
5   ' Reduced Efficiency = 

hi = 
q "T   -T lAF      Ao 

T 
_        AF      . 

Reduced Firing Density = 

DR = 
H. in 

aATT^(TAF-T> L8G Ce, 

Ax 
C 
Hin 
TAF 
To 
Tl 
q 
8G and £\ 

the chamber surface area 
the fraction of surface acting as heat sink 
the enthalpy of entering streams 
the adiabatic flame temperature 
the base temperature 
temperature of sink surface 
heat flux to sink 
the emissivities of gas and surface respectively 

The proportion of energy transferred to the walls by radiation may be 
negligible in the gas turbine combustor while it is the dominant heat transfer 
mechanism in industrial furnaces. 
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2     Modelling the combustion reactions 

2.1 Chemical kinetics 

A detailed description of methane combustion chemistry typically contains 
20 to 100 individual reactions and their associated rate coefficients. 

Reaction B" a" £*(= RTa) 

9.1 02 + H -♦ OH + O 2.00 X 1014 0.00 70.30 

9.1* OH + 0 -» 02 + H 1.40 X 10" 0.00 320 

9.2 0 + H2 - H + OH 1.50 X 107 2.00 31.60 

9.2* H + OH -» O + H2 6.73 X 106 2.00 2135 

9.3 OH + H2 -♦ H + H20 1.00 X 108 1.60 13.80 

9.3* H + H20 -» OH + H2 4.62 X 10s 1.60 77.50 

9.4 OH + OH - H20 + O 1.50 X 10' 1.14 0.42 

9.4* H20 + O -► OH + OH 1.49 X 1010 1.14 71.14 

9.5' H + 02 + M -» OH2 + M 2.30 X 1018 -0.80 0.00 

9.6 H02 + H -» OH + OH 1.50 X 1014 0.00 4.20 

9.7 H02 + H - H2 + 02 2.50 X 10n 0.00 2.90 

9.8 H02 + H -> H20 + O 3.00 X 1013 0.00 7.20 

9.9 H02 + OH ->• H20 + 02 6.00 X 1013 0.00 0.00 

9.10 CO + OH - COj + H 4.40 X 10* 1.50 -3.10 

9.10* C02 + H -> CO + OH 4.% X 108 1.50 89.71 

9.11 CH4 + H - H2 + CH3 220 X 104 3.00 36.60 

9.11* H2 + CH3 - CH4 + H 8.83 X 10- 3.00 33.53 

9.12 CH„ + OH - H20 + CH3 1.60 X 106 2.10 10.30 

9.13 CH3 + O - CH20 + H 7.00 X 1013 0.00 0.00 

9.14 CH3 + OH - CH20 + H + H 9.00 X 1014 0.00 64.80 

9.15 CH3 + OH -» CH20 + H2 8.00 X 1012 0.00 0.00 

9.16' CH3 + H - CH4 6.00 X 1016 -1.00 0.00 

9.17 CH20 + H -» CHO + H2 2.50 X 1013 0.00 16.70 

9.18 CH20 + OH - CHO + H20 3.00 X 1013 0.00 5.00 

9.19 CHO + H - CO + H2 2.00 X 1014 0.00 0.00 

9.20 CHO + OH - CO + H20 1.00 X 1014 0.00 0.00 

9.21 CHO + O} -* CO + HO^ 3.00 X 10n 0.00 0.00 

9.22c CHO +A/-»CO + H + .M 7.10 X 1014 0.00 70.30 

9.23 CH3 + H -» CH2 + H2 1.80 X 1014 0.00 63.00 

9.24 CH2 + 02 - C02 + H + H 6.50 X 1012 0.00 6.30 

9.25 CH2 + 02 -» CO + OH + H 6.50 X 1012 0.00 6.30 

9.26 CH2 + H -» CH + H2 4.00 X 1013 0.00 0.00 

9.26* CH + H2 -<• CH2 + H 2.79 X 1013 0.00 12.61 

9.27 CH + 02 - CHO + O 3.00 X 1013 0.00 0.00 

9.28 CH3 + OH - CH2 + H20 1.50 X 1013 0.00 20.93 

9.29 CH2 + OH -► CH20 + H 2.50 X 1013 0.00 0.00 
9.30 CH2 + OH - CH + H20 4.50 X 1013 0.00 12.56 
9.31 CH + OH - CHO + H 3.00 X 1013 0.00 0.00 

Mechanism  for methane oxidation  (Peters, N.,  and Williams, F.  A., 
Combustion   and   Flame,   Vol   65,   1987).      (Units   cm   mol   K   kJ) 

k = BTaexp(-%T) 
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Detailed mechanisms have only been derived for a relatively small number 
of simple hydrocarbons. 

Even when available the application of such mechanisms in CFD presents 
many problems: 

1. Large computer storage and CPU requirements. 

2. Difficulty in solving coupled non-linear rate terms with differing time 
scales. 

3. Difficulty in coupling to other parts of the CFD model, in particular in 
dealing with the interaction of turbulence and chemistry. 

2.2 Global kinetics 

Simpler descriptions of chemistry are available based on empirically derived 
global mechanisms. 

The detailed mechanism is replaced by a small number of steps which 
describe the course of reaction by means of the major reactants and products. 

Example: 

Single step irreversible reaction: 

Fuel+xO,->yCCL+zH20 

d [Fuel] _ 
dt 

Aexp 
f-E ^ 

vRTy 
[Fuelf[02]

1 
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Rate parameters in the Arrhenius expression are selected to give agreement 
with experimental results in laminar flames or with computations performed 
using detailed kinetic models. 

(Care must be taken to ensure that the model is applied under conditions for 
which is valid.) 

Data is available for a range of hydrocarbon fuels. 

Fuel A E. a b 

CH4 1.3 X 10s 48.4 -0.3 1.3 
CH4 8.3 X 105 30.0 -0.3 1.3 

QH« 1.1 X Kf2 30.0 0.1 1.65 

CjHg 8.6 X 1011 30.0 0.1 1.65 

C4Hj0 7.4 X 10" 30.0 0.15 1.6 
CjH,2 6.4 X 1011 30.0 0.25 1.5 

QH„ 5.7 X 1011 30.0 0.25 1.5 
C7H16 5.1 X 1011 30.0 0.25 1.5 

QHjg 4.6 X 10n 30.0 0.25 1.5 

QH18 7.2 X 1012 40.0 0.25 1.5 

C9H20 4.2 X 1011 30.0 0.25 1.5 

Cl0"22 3.8 X 10" 30.0 0.25 1.5 
CH30H 3.2 X 1012 30.0 0.25 1.5 
CJHJOH 1.5 x 1012 30.0 0.15 1.6 
QH6 2.0 x 10" 30.0 -0.1 1.85 
C7Hg 1.6 X 1011 30.0 -0.1 1.85 

Single step.rate parameters due to Westbrook and Dryer3 

(units cm, sec, kcal, K). 

Constants are selected to correctly predict flammability limits and laminar 
flame speed over a range of equivalence ratios and pressures. 

Single step mechanisms over predict adiabatic flame temperature. 

The problem worsens with increasing equivalence ratio. 
Incomplete conversion to CO2 and H2O is responsible. 

3 Westbrook, C. K.; and Dryer, F. L., Simplified Reaction Mechanisms for Oxidation of Hydrocarbon Fuels in Flames, 

Comb Sei Tech, Vol 27, 1981. 
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At temperatures over 2000 K significant amounts of dissociation products 

exist. 

/Slope = 1.0 

Inlet temperature 

Effect of inlet temperature on flame temperature 
(stoichiometric fuel air mixture at atmospheric pressure). 

Water 

soo 1000     •        1500 2000 

Temperature [K] 
cp H20 without dissociation 

 cp H20 with dissociation 

Carbondioxide 

2500 3000 

Effect of dissociation 
on water and CO2 
specific heats 

(equilibrium calculations) 

500 1000 1500 2000 

Temperature [K] 
cp C02 without dissociation 

  cp C02 with dissociation 

2500 3000 
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Improvements can be made by introducing 2 or more reaction steps? 

Fuel+xO,-^->yCO + zH20 

n      2        . •< 

k^AfFueirfO.fexp^ 

k2 = 1014 6 exp 
(-, ^)cO][H2of

5[02f 25 

Fuel 

k3=5xl(f exp 

CH< 
CH< 
C,H6 

C,Hg 

C4H10 

QHIJ 

QHl4 

C7H14 

CgHlg 

CgHlg 

C9H20 
C10H22 
CHjOH 
QHjOH 
QH6 

C7Hg 

2.8 X 109 

1.5 X 107 

1.3 X 1012 

1.0 X 1012 

8.8 X 10" 
7.8 X 1011 

7.0 X 10" 
6.3 X 10" 
5.7 X 1011 

9.6 X 1012 

5.2 X 10n 

4.7 X 10" 
3.7 XlO12 

1.8 X 1012 

2.4 X 10u 

1.9 X 10" 

-400°5][co2] RT 

48.4 
30.0 
30.0 
30.0 
30.0 
30.0 
30.0 
30.0 
30.0 
40.0 
30.0 
30.0 
30.0 
30.0 
30.0 
30.0 

-0.3 
-0.3 

0.1 
0.1 
0.15 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.15 

-0.1 
-0.1 

1.3 
1.3 
1.65 
1.65 
1.6 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.6 
1.85 
1.85 

Reaction rate parameters for the 2 step combustion mechanism?. 

For fuel rich cases further reaction steps are sometimes included to account 
for the presence of hydrogen in the combustion products. 
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2.3 Modelling combustion reactions in a turbulent flow 

In turbulent flows we solve time average (or density weighted time average) 
transport equations. These require time average reaction source terms. 

The basic problem: 

W = ATß     n     [CjjW-E/RT) 
j reactants 

W*ATß    n    [cT]Vjexp(-E/Rf) 
j reactants 

Possible solutions: 

1. Chemical reactor models 

2. Reynolds decomposition 

3. EBU Models 

4. Statistical descriptions 

5. Turbulent flame speed in premixed systems 

16 



Summary of modelling approaches for the source terms due to chemical 

reaction 

Chemistry turbulence 
interaction problem 

±<L 

Reynolds 
Decomposition 

Chemical 
Reactor 
Models 

zr 

^ki 
Statistical 
Models 

_^L 

EBU 
Models 

N^_ 

Single PDF Models 
(for simple diffusion 
or premixed flames) 

^ 

Well stirred 
reactor models 

i 
Coalescence 
dispersion 
models 

Description of flames 
as ensembles of 
laminar flamelets 

^L 

Joint PDF models 

^L £ 
Modelling of joint PDF's 
using coalescence 
dispersion mixing models 

NUI/ 

Flamelet models 
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Chemical Reactor Models 

FUEL VAPOUR 

Chemical Reactor Network 
Representing a Gas Turbine Combustor 

Reynolds Decomposition 

PRODUCT 

For the reaction: 
A+B->C 

W = kp mAmB 

Decomposition: 
mA = mA+mA 

mB = mB + mB 

For constant temperature and density: 

W = kp mA mB 

m'A m'B 
1 + 

V        mAmB 



Eddy dissipation or Eddy break up models. 

FLUENT'S formulation 

This is a very flexible formulation allowing any number of reactions with 
kinetic or mixing control. 

N transport equations for species mass conservation: 

dt dxt oxi 

A single energy conservation equation for multi component systems. 

a , ,;   a ,   7X   a ( dT\ 
d 0,01       u \r 1   T  , Q iph) + ^(puih) = —\k — \- — 2.hJJij+Sh 

dt dx; dXjV   dxj    dxi   } 

a 

The equation of state: 

P 
P = Y 

Reaction rate model: 

«,=I* ik 

k' 

19 



Where any of the following can be rate limiting: 

I.      R^v^M/'A,    n    [Cjpexpt-E./RT) 
j reactants 

II      R.  =v'. M-Ap- ^—      where Xj are the reactants in reaction k 
ik ik      i        tr v*  X/f k vJ^Mj 

8 X: 
in.    Rik = VikMiABp-2:^ 

i     jk     J 

where Xj are the products of reaction k and Z represents 
summation for all products in reaction k. 

20 



By appropriate selection of the rate constants the model of Magnussen and 
Hjertager4 for diffusion and premixed flames can be constructed: 

Fuel + S09-> product 

MI4P^Xfuel>4P 

Y Y 
8     02 S ^product 

k    S k   1+S 

(S is a mass stoichiometric constant.) 

Magnussen's predictions for 
a gas diffusion flame. 

2000 

'1000 

200 

Experimental mean temperature on the 
axis of the city gas diffusion flame (Re 24000) 
compared with predictions 

2000 
(90) (X/D) 

i ~A""i^A UO) (10) 

1S00( 
(120) w^ 

? '  A, \  * \ 
1000J ss> AVA (170)" \ \ V \ >^v/7x \.   V \\  \ 

\\\\\ 
soo o/      ^ x*K ^5 \ \ 

y 
cf EXP(S) 

—PREa 
■            i >             - 

0.05 Q1 
Y/X 

0.1 S 0.2 

Experimental   and predicted local mean 
temperatures of a city gas diffusion flame (Re 24000). 

"Magnussen, B. F., and Hjertager, B. H., On Mathematical Modelling of Turbulent Combustion, 15th symposium 

combustion. 

on 
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Magnussen's predictions for a premixed propane wake flame4. 

150 

EXBU7) 

(X/W) 

250 

■ -PRED.O) 

— PRED. 

_L 
0.2 O.i 

Y/W 

 L_ 
0.6 0.8 

Mean axial velocity 
(Inlet velocity 31 m/s) 

Advantages of the Magnussen formulation: 

Mean axial velocity 
(Inlet velocity 76 m/s) 

• Not computationally demanding 
• Can be applied to premixed, diffusion and partially premixed flames 
• Has been used widely 

Disadvantages: 

• Applies only for high Damköhler number flames.    When chemical 
kinetics and mixing are simultaneously important the model is unreliable. 

• Phenomena which depend on detailed chemical kinetics, such as stability 
can not be predicted. 

• Intermediate species and dissociation can not be predicted.    Flame 
temperatures are over predicted. 

• There is uncertainty regarding the values of the Magnussen constants. 
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Extension to multiple step reaction. 

The following can be constructed for diffusion flames. 

Fuel + S102-ir->S'1CO + S,,
1H20 

CO + S.O ■>S\C(X 2W2       R2    '"2~~2 

Rl=|Rlk'4PrXfüeP4P 
8X0 

k S, 

R2 = 
sXo 

R2k>4PkXCO>4Pk   s. 

There exists little theoretical basis for this model. 

A more rigorous two step eddy dissipation model is being developed by the 
IFRF (such a model is easily implemented into FLUENT via user 
subroutines). 

Oxygen rich condition X>\.   (Dissipation of fuel and CO eddies control 
rates Ri and R2 respectively.) 

R 
Fuel +Sj 02 —^-*S\ C02 +S"! H20 

R 
CO + S, O0 2-Kl + S,)C0 "1 ~2 2/—2 

23 



Fuel rich condition X<\ (Dissipation of oxygen containing eddies control 

rates R3 and R4). 

Fud + S^-^S'.CO+S-.HjO 

co+s2o2-^-^(i+s2)co2 

mereRi, R2, R3, M.« obtained using the eddy dissipation concept. 

The model applies in the fast chemistry limit for diffusion flames, where 
impred flame temperature predictions have been obtamed. 

24 



Statistical Treatments 

Concept of the PDF (Probability Density Function) 

lim   1 
The PDF P(V) is defined: P(V)AY -I At 

SothatP(V)AVis 
to V +AV 

P(vV 

t-»oot 

the fraction of time that the variable V lies in the range V 

It follows that: 

JP(V)dV = 1 
— 00 

jp(V)dV=the fraction of time that the random variable takes on a value 

— 00 

less than a. 

If  W=f(V), 

then a property of the PDF is that: 

00 

W= JW(V)P(V)dV 

25 



Statistical Treatments for Diffusion Flame Modelling 

The Conserved Scalar Approach 

• Well established 

• Computationally efficient 

.  Allows intermediate species formation and dissociation effects to be 
predicted with little additional computer effort 

. Allows true mean densities to be used in the flow field calculation 

BASIS:     Under certain simplifying assumptions the instantaneous 
thermochemical state is a function of a single conserved 
scalar quantity known as the mixture fraction f 

f= 
Zk~Zko 
ZkF     Zko 

REQUIREMENTS ARE: 

• Diffusion type flame with discrete fuel and oxidiser inlets 

• Negligible heat loss to surroundings 

• Negligible radiative transfer 

• Unity Lewis number 

26 



If 

♦i=*i(f) 

t.=JP(f)*,(f)df 
0 

Determination of <|>i (f) 

1)     Assuming Fast Irreversible Reaction 
(the Flame Sheet Description) 

< 
X 

o 

< 

MIXTURE  FRACTION 

27 



2)     The Flamelet Description 

Assumes that reaction zones within a turbulent flame possess a laminar 

structure. 

Experimental data or laminar flame models then provide the conserved 

scalar relationship. 

z 
o 

o.«x. 

0.06 

< 

< 
cc 

0.1 W      0.6        0*        1.0 

Composition correlation for heptane diffusion flame 
(Ticks on Data Points indicate position of radial traverse around cylinder) 
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3)     The Equilibrium Description 

The chemistry is assumed rapid enough for equilibrium always to be 
attained. 

An equilibium calculation can be performed to provide the conserved scalar 
relationships. 

An algorithm using minimization of Gibbs free energy can be employed for 
the above. 

KEY 

CH+ 

N2 

H20 

H2 

T   - 

l-OE-'-OO 

0.SE4OO- 

M o 
l_ 

0-ÖE+OO- 

0-4.E*OO- 

0.2E+OO- 

O.O&+OO 

O. 0 

-j 1 [- 

0.2 O.X O.S O.ä 

MIXTURE  FRACTION 

27 07.5-r 

1.0 

Equilibrium relationship for a methane air flame. 
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Determination of P(f) 

Prescription of the PDF 

A two parameter PDF is usually employed.   The function is then fully 
defined by the mean and variance of the fluctuating quantity. 

P(V,Xl) 

P(V,Xi) 

P(V,x,) 

(A) Double Delta Probability 
Density Function 

(B) Clipped Gaussian Probability 
Density Function 

(C) ß Probability Density Function 

30 



Determination of P(f) 

A beta or double delta function can be employed iff and Fare known 

Two Transport equations are solved. 

The equation for conservation of mixture fraction. 

^pUi"f)=Ä vataxi 

The conservation equation for mixture fraction variance. 

d (      f2\d (ik^ 
ä^pu'f j-äxT^ax^ 

a.   ax: I       dHK 
t  V      l. 
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The double delta function is given by:- 

p(f)=o.5 @ f=f-vr 

P(f) = 0.5   @   f=f+Vf* 

P   /N 

0.5   - 

* , 

AP f+Vf" 

The beta function is more computationally expensive but is thought to 
better represent experimentally observed PDF shapes. 

P(f)= 
f-'U-ff"' 

jp-'q-ff'df 

a=f(f(l-f)/F-l) 

ß=(l-f) f(l-f) 

32 



PDF shapes for various values of mean and variance. 

KEY F=-BAR   -   3-00E-01.   F-FLUC   -   S.OOE-03. 

A 4-0' 
f 

l - 

"I' "        » "     I "" 

o.o o.a O.A o.« *•* *•« 
MIXTURE   FRACTtOM   F 

KEY 
F-BAR   - l.OOE-01.    F-FLUC   -    1-006-02- 

31.2- 

P 
R 
O 
e 
A   -j».r- 
? 
L 
I 
T 
Y 

H 
S 
I 
T 
Y 
p      a-* 

o.o «.a            O.A            o.c            «-«            s .O 

MIXTlCte  FRACTION   1= 

KEY 
F- -BAR -   S-OOE-01.   F-FLUC   -    l.OOE-01- 

s-r- 

p 
R 
o 
e 
A 
? 

^.-2- 

T 
Y 
O 
S 
s 
I 
T 
Y 

2.0- 

f> 1-4- v- -J 
0-0- 

o o              o.a             o.4              c -«              o.«              i .o 1 MIXTURE   PRACTION   *= 

33 



Experimentally   measured   Probability   density   functions   of  mixture 
fraction. Non-reacting propane jet mixing with a co-flowing air stream' 

(Jet velocity = 53 m/s   Co flow velocity = 9.2 m/s   x/D = 30) 

E- 

1 Y/D = 2.04 

8- 

Q. -    . ill 
4- 

ML. 
O- 

uxz           ox            Q38 0£S 

-0.02 

5 Schefcr, R. W., and Dibble, K W., AIAA J. 23, 1985. 
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Extending the model for non-adiabatic conditions. 

. Under these conditions J, is no longer a function only of f but depends 

also on enthalpy. 

.  A so called joint PDF can be employed to describe the simultaneous 
fluctuations of two or more variables. 

p=p(v2) 

thenifw = w(v1v2) 

w=JJP(v1v2)w(v1v2)dv1dv2 

.  Prescription of a 2 parameter PDF is no longer possible and the solution 
ono^PDF transport equations is not practical for engineering 

problems 

.  The solution normally adopted is to modify h=h(f) in a prescribed 

manner 

The relationship \=\ (f) is then retained, for any given mean enthalpy 

Modification of h = h(f) for 
non-adiabatic flames 

(Fast irreversible reaction) 

Mixture Fraction 
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Diffusion Flame Model Program Structure 
FLUENT V4.3 

Available user options 

.  adiabatic/non-adiabatic flames 

.   fast irreversible chemistry / equilibrium chemistry / user input flamelet 
relationships (adiabatic case only) 

.  double delta PDF/ß function PDF 

Equilibrium     
Chemistry 
Preprocessor 

Chemical 
Property 
Database 

\/ 

Equilibrium 
Data file 

♦jCtf2.!») 

\/ 

«->  
FLUENT 

■ L ■ 

Transport Models -cß f,randh 
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Statistical Treatments for Premixed Flame Modelling 

A similiar concept can be employed for the premixed problem. 

Rather than f, a reaction progress variable C is defined. 

C = 0        Unburnt mixture 
C = 1        Fully reacted mixture 

If all rate determining variables area function of the progress variable C: 

W=W(C) 

Determining a 2 parameter PDF P(c,x) 

w(xi)=lw(C)P(c,xi)dC 

We may use a "look up" table of the function: 

w^McW <?(*,)) 
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The concept of Turbulent Flame Speed for modelling premixed flames 

Ut-> 

Cross 
Sectional 
area A 

Fuel air 
mixture 

products 

Interface 
area Aj 

When combustion takes place in the wrinkled laminar flame regime 

where UT = the turbulent flame speed 

The flame can be modelled by solving the equation 

^+u-VG = -UT|VG| 

where G is a scalar which tracks the front (G=1 at flame front) 

A number of turbulent flame speed formula are available which describe 
the increase in area due to wrinkling 

UT 
üX=exp 

(       '   ^\2 

—     Yakhot6 expression derived from RG theory 
V
U

TJ 

6 Yakhot, V., Combustion Science and Technology, 1988. 
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3     Modelling Variable Density Reacting Flow 

In combustion density fluctuations are not insignificant. 

density, weighting, rather than Reynolds decomposition and averaging, is 

frequently employed 

u^uT+u     (3.1)       u=0 (3.2) 

u.=üi+u:     (3.3)       VO (3.4) 

where ~ denotes a density weighted average defined by 

PvjTjV (3-5) 

Substitution of (3.3) into the conservation equations and time averaging 
results in the equations for density weighted quantities 

For example the continuity equation dx 

8 fa)=o 

since pu"=0, density fluctuations are eliminated. 

Employing the  equations  derived  by  Reynolds  decomposition  and 
Scflng all density fluctuations implicitly results m the calculation of 
density weighted quantities. 
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When PDF methods are employed it is possible to inter-convert between 
weighted and unweighted values. 

<M(f) 

$ = U(f)P(f)df 
o 

^-Pifp(f)df 

pcan be accurately calculated if p=p(f) 

P= op(f) 

Close to density weighted quantities are measured by diagnostic methods 
such as isokinetic gas sampling and suction pyrometry. 

The averaged quantity measured by LDA depends on the system employed 
and the experimental conditions. 
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4     Additional Sub Models 

4.1 Radiative Heat Transfer 

Two approaches are practical 1) differential models such as those derived 
using the PI approximation 

2) ray tracing methods such as the discrete 
transfer model 

Differential Models 

.  Differential models are computationally efficient 

.   Perform well in optically dens media where the average distance 
travelled by photons before absorption or scattering is small 

.   Are suitable for many combustion problems where heat transfer from 
•flame to walls predominates. 

T-V4^VeR-eR + T4 = 0 
3a    a+s     K     K 

where 6*=J-    and I is a composite radiative flux 

a = aborption coefficient s = scattering coefficient 

Discrete Transfer Models 

.   Are computationally more demanding 

.   Are more accurate, especially for clear gases and where wall to wall 
radiation is important in complex geometries 

.   Accuracy can be increased by increasing the number of rays traced 
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4.2 Second Phase Models 

.  Heat transfer to inert particles 

mPcPif=hSA(T«-Tp^+Q^ 

Nu=^=2.0+a6R^Pr* 
oo 

Evaporation of droplets Mass transfer control 

Ni = kc(Cis-Cj 

k D 
Nu=-^-^ = 2.0 + 0.6ReV2Sc1/3 

im 

Droplet boiling (evaporation at high temperature)     Heat transfer 
control 

rh=27tD 
VCP, 

ln(l+BT) 
oo 

c (T -T ) 
no\   oo D' 

BT=J8^_^if(Re,Pr) 

•   Devolatilisation 

.   Char Combustion 
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Radiative heat transfer to particles and drops 

GAS   ItMPERATUBE   <   K  ) 
VELOCITY   (   K/S   ) 

CAS   UMPERATURE  (  K  ) VELOCITY   i   «'S 

300 um particle 700 urn particle 

Error associated with neglecting radiative heat transfer for large particles. 
Steady state solution. (Hot transparent gas, cold walls ep = 0.2) 

l.SOOE + 03- 

' TemperoLure 
I Kelvin) 

l.OOOE+03-i 

1.0   MICRON 

5.000E+02-- 

100 MICRON 

300 MICRON 

0.000E+00 
0   000E+00     2.000E-03     4.000E-03    6.000E-03     8.000E-03     1.000E-02 

TIME   (SECONDS) 

The effect of radiative heat transfer on heating rate for various particle 
sizes. (Transparent gas at 1500 K, walls at 1500 K, sp = 0.8) 
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Accounting  for wall/particle  radiation  with  user subroutines  in 
FLUENT V4.2. 

Subroutine USRLW7 allows a particle temperature history to be defined. 

SUBROUTINE USRLW7( TP,     DP,     MP,     MPINIT, RE,    STEP, 
+ VFRACO, ITYPE,  INJECT, FPTR,   OPTR, 
+ YY4,    YY5,    YY6, ITRIP ) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 

C NAME   :   USRLW7 
c 

m^p ^p ( \ 
particle cp jf      = ^n \Tg ~ Tp) + Ap Qk 

CPH=1800. 
wall temperature [K] 

TEW=1073. 2X. 
emissivity       [-] U—  

EPSILO=0.9 D 
Stefan-Boltzman constant     [W/M2K4] P 

SIGMA=5.6697e-8 
LAMBDA=TCMIX(L) . •> 

heat  transfer  coefficient r\           rrlT^—T^l 
ALPHA»2 . *TCMIX (L) /DP Vfc ~fcp°\1w       lp ) 
QK=EPSILO*SIGMA*(TEW**4,-TP**4.) 

area mass ratio 
AP=6./DP/RHOP 
CK=AP/CPH 
TP-T(L)+1./ALPHA*QK-(T(L)-TP+1./ALPHA 

1     *QK)*EXP(-CK*ALPHA*STEP) 

The particle energy equation is integrated over the time step "STEP" 

Particle radiation in a participating medium 

Using the differential model for radiation 

iv±ve^a(e£-T<)+£pAp(T;-e£)=o 

av = a+A e 
L P   P 

dmCT 
p   _ hAD(T-TD)+BAa(e£-T;) 

dt PV g    P'     P   P 
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5     Predicting NOx Emissions 

5.1  Introduction 

.  NO formation is of primary concern 

HO 
HOLE 
FRACTIOH 

1E-4 

1E-5 

lZ-fi 

O.S 1.0 

EQOIVALEKCE RATIO 

1.5 

CH4/Air   1 Atmosphere 

Chemical kinetics are of key importance in predicting NO emissions 

In  "clean"  fuel  combustion the thermal NOx mechanism usually 
dominates. Prompt NOx formation is of less significance 

As fuel Nitrogen content increases the fuel NOx mechanisms become 
important 

Fuel 
Light distillates 
Residual fuel oil 
Bituminous coal 

Nitrogen wt % 
0-0.4 

0.3-2.0 
1.0-2.0 
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•  Accurate   flame   temperature   predictions   are   of   importance   for 
determining NO formation rates. 

1800 1900      2000 2100  TEMPERATURE (K) 

Rate Constant Versus Temperature for the Rate Controlling Thermal NO 
40 

400 600 
Combustor inlet temperature, K 

800 

Gas Turbine NOx Emissions as a Function of Combustor Inlet 
Temperature 
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5.2 The Post Processing Concept 

•  NOY reactions involve little heat release 

• NOY concentrations are low 

• NOx reactions have little influence on the main combustion or fluid 
dynamic processes 

Combustion Chamber Design 

\/ 

FLUENT V3 or V4 | 

\/ 

CFD Results 

\/ 

NO       Post-Processing 
<■ 

\/ 

NO    Predictions 
.A. 

NO    Model Parameters 
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OBJECTIVE 

•   Solve the main combustion reactions and fluid dynamics as accurately 
as possible 

Solve a scalar transport equation for NO concentration 

+S 
aXNO ,   d ,     y    ,__d 

_ X. 
i l 

fr^m^ 
V     dxi   J 

NO 

REQUIREMENTS 

• Good CFD and combustion modelling 

• .Solver for the NO transport equation 

• Means to compute SN0 based on a knowledge of NOx chemistry 
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5.3   Thermal NOx 

Formation determined by a set of highly temperature dependent chemical 
reactions known as the extended Zeldovich mechanism 

0+N2<->N + NO 

N + 02«*0+NO 

A third reaction has been shown to contribute, particularly at near 
stoichiometric and in excess fuel mixtures 

N + OH<->H + NO 

The rate constants for these reactions have been the subject of much study. 
The values recommended by Hanson and Salimian7 are given here: 

K^LSxltfexp^^ÄJ^mol-is-1 

K_1 = 3.8xl07expf^Y^lm3mor1s-1 

K^LSxlO^expf^jm^ol^s-1 

K_2 = 3.8 x 103 Texpp^j m3 mol"1 s"1 

7
 Hanson, R. K., and Salimian, S., Survey of rate constants in H/N/O system, Combustion Chemistry, J984. 
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K3 = 7.1xl07exp(^Y^jm3mol ls l 

K_^1.7xl08expf^5]m3mor1S-1 

Where Kb K2, and K3 are the rate constants for the forward reactions. 
K_i, K_2 and K_3 are the corresponding reverse rates. 

The net rate of formation of NO is given by: 

^&=K1[0][N2]+K2[N][02]+K3[N][OH]-K_1[NO][N] 

-K_JNO][0]-K_3[NO][H] 

The formation rate is significant at high temperatures (T > 1800 K) as 
(E. ^ 

large energy is required to break the N2 triple bond ^=38370ü: 

Under the quasi steady assumption for nitrogen atoms: 

dfNOI   K?[0? + K,[OHJ], 
dt    "    1+KJNO] 

2K ,K 2[NO]2[0]   2K 1K_3[NOf [H] 
2K1[N2][0]- jyo^+^oH]     KJpJ+KJLOH] (mol/m3s) 
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We can conclude: 

1. High temperature => large thermal NOx production 

2. High O atom concentration => large thermal NOx production 

3. Thermal NOx formation is independent of fuel type 

4. To determine NO formation rate O and OH concentrations must be 
obtained. 

We may predict the rate of NOx formation by either: 

1. Coupling the equations with a detailed hydrocarbon combustion 
mehanism, 

.or 

2. Using an assumption of equilibrium or partial equilibrium to obtain [O] 
concentration and assuming that for combustion of lean fuel air 
mixtures: 

Hence: 

d[NO]   2[0](KIK2[Q2][N2]-K_1K_2[N0]
2
) 

dt K^O^+KjNO] 

[0]-K[02] 
yi 
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5.4   Prompt NOx 

A second NOx formation mechanism was identified by Feinmore8 and is 
termed "prompt NOx" formation. 

Prompt NOx is significant: 

1. where temperatures are low 

2 where residence times are short 

3 in the more recently designed "low NOx" burners 

The route for prompt NOx formation: 

CH + N2oHCN+N (1) 

N + 02^NO+0 (2) 

HCN + OH<-»CN + H20 (3) 

CN + 02^NO + CO (4) 

Other reactions via CH, CH2, C, C2H: 

CH2 + N2<->HCN+NH 

8 Fenimore, C. P., 13th Symposium Ontemational) 0n Combustion, p373,1971. 
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We can conclude: 

1. Prompt NO formation increases with increasing concentration of 
hydrocarbon radicals 

2. Prompt   NO   formation   is   dependent   on   hydrocarbon   radical 
concentration and not parent fuel type 

3. Prompt NO formation increases with equivalence ratio provided O2 is 
present for the oxidation step 

It is thought that the CH reaction dominates NO formation and that it is 
the rate controlling step. 

M=KltCH][N2] 
dt 

Example of use for CH4 combustion: 

CH formation step 

CH4 + OH<r*CH3 + H2Oetc^ ->CH 5,6,7 

partial equilibrium assumption: 

OH + OH^H20 + 0 

02^20 

M=k1k5k6k7Ke[H20]-U[N2][CH4] 
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Practical Limitations: 

1. The radical reactions are not well defined for many fuels 

2. Uncertainty exists over the rate constant for reaction 1 

Solution: 

Recourse is made to empirically derived global expressions as proposed by 
De Soete9 

E^ 

For example: 

^l=K[02r[N2][FUEL]exp^ 

K, Ea and a are determined from experimental study 

9 De Soete, G. G., 15th Symposium (International) on Combustion, p 103, 1975. 
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5.5 FuelNOx 

Formed by oxidation of fuel bound nitrogen. 

• A major source of NOx emissions in fossil fuel combustion 

. NOx formation is little influenced by the type of nitrogen containing 
compund (amines, pyridine, etc) 

• Strongly depends on the local combustion environment (temperature 
and stoichiometry) 

• Dependent on the fuel nitrogen concentration present in the reactants. 

The fractional conversion of fuel nitrogen to NO is seen to decrease with 
increasing fuel nitrogen content. 

CONVERSION 
OF FUEL N 
TO NOX 
( * ) 

100 

Kerosene 
Lignite 

Fuel Oil 

50 

Bituminous Coal 

1.0 2.0 

NITROGEN  IN  FUEL      (   HT  %   ) 
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Chemical Mechanism: 

Fuel Nitrogen 

> NO 
emission 

2 
emission 

.  Fuel bound nitrogen containing compounds are released into the gas 
phase when fuel drops or particles are heated 

.  Thermal decomposition results in HCN formation (and some NH3 
formation) 

.  Reaction with OH initiates NO formation: 

HCN + OH<-»HOCN + H 

HCN + 0<->NCO + H 

NCO+H<-»NH + CO 

NH + H<->N + HL 

HNCO + H«*NH2 + CO 
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NHX so formed can be converted to NO or N2 

N + OH<->NO + H 

N + 02<->NO+0 

NH+0<->NO + H 

NO+N^N2 + 0 

NO+NH<^N2 + OH 

N02+NH2<r*N2 + H20 

Complications: 

• The kinetics of HCN formation are not well known. 

• Under fuel lean conditions it is thought that O atoms may react directly 
with HCN to form NO 

• Under very fuel rich conditions, hydrocarbon free radicals may react to 
remove NO. Carbon particles present in the fuel rich flame may also 
have this effect. 
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Solution: 

Empirical rate expressions can be employed: 

dKL R _R dt    ~       oxi    ^Red 

d[NO]_p    _R 
(Jt     ~ 'oxi    ^Red 

RO^AKIN^TU^ 

RRcd=KBKIN°]exp|^^ 

A global expression for fuel NO formation: 

d[NO]F   (Rcd-RRedWx    Mm 
^-=1 R-TR^J dt X

NO MN 

where XN0 = mass fraction of nitrogen in fuel 
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5.6 Modelling NOx Chemistry Turbulence Interaction 

To obtain time averaged NO production rates in a turbulent flow a 
statistical treatment is employed. 

If    W = f(V) 

Then a property of the PDF P(V) is that: 

^  00 

W= J W(V)P(V)dV 
—oo 

IfW = f(VbV2 ) 

a joint PDF can be employed P (Vls V2 ) 

W=J W(V15V2 )P(VPV2 JdVjdVj 

If WN0 is the rate of NO formation and is a function of the variables VT 

and V2. 

Then: 

WNo = iJWNO(V1,V2)P(V1,V2)dV1dV2 

P(V1,V2) = P1(V1)P2(V2) 
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A two parameter PDF can be fully defined with knowledge of the mean 
and variance of the fluctuating quantity. 

The ß probability density function is described 

P(V) = jv^Hi-v^dv 

Where 

a = v(v(l-V)/V2-l) 

P=(i-v) '%v) ^ 
V V '2 

) 

V 

v'2  = 

the mean value of V 

the variance of V 

V is known 

V2 can be obtained from an additional modelled transport equation or an 
algebraic expression 

V2=^C 
P £ 

ff^r\2    f^r\2    /"dvY^ 

\dXJ 
+ 

vöyy 

+ dz) 
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Conclusion 

No  general  model  exists  which  is  suitable  for  all  combustion 
applications 

Limitations exists in the models for turbulence and for turbulence 
chemistry interaction 

Useful engineering predictions can be obtained provided an appropriate 
model is used under conditions where it is valid 

Pollutants such as NOx can be computed by decoupling from the main 
combustion calculation. Useful predictions can be obtained but the 
chemistry of NOx formation is still an active area of research 
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Modelling convective, conductive and 
radiative heat transfer 

by Brian Spalding (CHAM Ltd) 

Contents of the lecture: 

* The nature of modelling 

* The components of modelling 
1. Engineering formulae 
2. Differential equations 
3. Models of complex physical processes 

3.1 Turbulence      3.2 Radiation 
4. Numerical analysis 
5. Computer software 

* Recent advances and developments 

Note: Exemplifications are provided in a companion lecture 
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heat 
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Definitions of modelling: 
(a) mathematical 
(b) physical 

Modelling is the attempt to predict what will happen in 
not-yet-arisen circumstances, by either: 

(a) solving mathematical equation systems which embody 
relevant scientific and empirical knowledge, or 

(b) conducting physical experiments on (usually) small-scale 
replicas of the apparatus or environment in question. 

Both techniques have their own advantages and disadvantages. 

Thev are best used in concert, experiments on the physical 
model being used to test the validity of the mathematical 
one, which can then be used for speedy extrapolation. 

Modelling 
heat 

transfer, 1 46 

Mathematical modelling of conductive, 
convective and radiative heat transfer: 
the main components 

"Engineering formulae" 

These embody the results of previously-conducted 
experiments or calculations in easily-usable form. 

When available and applicable, they often provide the 
quickest, cheapest and most reliable predictions. 

Differential (or integro-differential^equations 

These'embody some aspects of scientific knowledge in a 
qeneral and compact form. Sometimes (but rarely) they 
may be solved (ie caused to yield formulae amenable to 
manual evaluation) by analytical (ie not numerical) ma ths, 
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Mathematical modelling of conductive, 
convective and radiative heat transfer: 
the main components; continued. 

3. Models of complex physical processes 

The word "model" is here used in a different sense, namely 
for a set of equations (differential or algebraic) which 
may approximately represent the important features of 
complex physical phenomena without attention to all their 
details. 

The models relevant to heat transfer are those of: 

* turbulence,    *   radiation,   * multi-phase flow, 
and         *  chemical reaction. 

This lecture concerns only the first two. 

Modelling 
heat 

transfer, 1 46 

Mathematical modelling of conductive, 
convective and radiative heat transfer: 
the main components; continued 

4. Numerical analysis 

The differential equations can be solved by numerical 
methods which usually involve:- 

* discretization, ie confinement of attention to a finite 
number of locations in the space-time domain in question; 

* formulation of algebraic equations embodying as much as 
possible of the content of the differential equations; 

* solution of the resulting equations by iterative 
successive-adjustment procedures, conducted by means of 
a digital computer. 

Modelling 
heat 

transfer, 1 
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Mathematical modelling of conductive, 
convective and radiative heat transfer: 
the main components; concluded 

5. Computer software 

Computer codes, often general-purpose ones with special- 
purpose adaptivity, are used to instruct the computer. 

They usually comprise:- 
* a pre-processor for input of data on: 

- problem-defining geometry, 
- initial/boundary conditions, 
- numerical-solution-control data; 

* a main processor for solving the equations; 

* a post-processor for displaying and interpreting the 
simulated phenomena. 



Modelling 7 The components in more detail 
heat   1. Engineering formulae 

transfer, 1 46 Steady conduction 

* "Shape-factor" formulae connect steady-state heat-flux 
QDOT, with conductivity K, temperature difference DT, and 
shape factor S, by     QDOT = K * DT * S      where: 

S = area / thickness           for a plane wall 
S = 2 * PI * length * ln(R2/Rl) for concentric cylinders 
S = 4 * PI * (1/R1 - 1/R2)     for concentric spheres 
S = 2 * PI * length / 

cosh minus 1((R2**2 + Rl**2 - E**2)/(2 * Rl * R2)) 
for eccentric cylinders 

S=4*PI*R1/ (1- 0.5*R1/H) for a sphere buried H deep 

* These formula are copied from AF Mills, "Heat Transfer", 
published by Irwin, 1992, where more can be found. 

Modelling 
heat 

transfer, 1 46 

The components in more detail 
1. Engineering formulae 

Transient (ie time-dependent) conduction) 

* Engineering formulae for time-dependent conduction are 
more numerous and more complex, because there is one more 
dimension (viz time) and two more relevant properties (viz 
density and heat capacity). 

An example is: Q = DT * SQRT((K * CP * RHO)/(PI * TIME)) 
where Q is the heat flux into a semi-infinite cold body of 
which the temperature is suddenly raised. 

However, few transient-heat-conduction formulae are so 
brief; and they are restricted to: 
* a few simple geometries,  * uniform material properties, 
* simple initial conditions (eg uniform temperature), 
* simple boundary conditions (eg uniform heat flux). 

Modelling 9 The components in more detail 
heat   1. Engineering formulae 

transfer, 1 46 Convective heat transfer and friction 

* Formula« 5 for forced and free convection at surfaces of 
simple c jeometry with simple boundary conditions are usually 
present« 2d as relations between: 

CF, 1 ehe friction coefficient or CD the drag coefficient, 
NU, 1 -he Nusselt Number or ST the Stanton Number, 

and 
RE, 1 ehe Reynolds Number, 
PR, 1 Che Prandtl Number, and (for free convection) 
RA, 1 the Rayleigh Number 

They ma1 /  be found in textbooks and handbooks; that by 
AF Mill 3 (loc cit) provides formulae for 25 configurations. 

However , to assemble formulae for all needs is impossible. 
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The components in more detail 
1. Engineering formulae 

Radiation from surface to surface 

Formulae for the heat radiated by surface Al across a wholly 
transparent space to surface A2 are usually expressed as: 

QD0T1= SIGMA * Tl**4 * EMISSIVITY * Al * VF12 
where SIGMA is 5.6697E-8  W/m**2 K**4, 

VF12 is the proportion of the radiation emitted by 
Al which impinges on A2, and 

EMISSIVITY is a fraction, less than unity, which 
depends on the material in question, its 
surface finish and on its temperature Tl. 

VF12, called either view factor or shape factor, depends on 
the shapes, sizes and relative locations of Al and A2. If 
these are sufficiently simple, VF12 can be computed from 
a formula.  Examples follow. 
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The components in more detail 
1. Engineering formulae 

Radiation between surfaces, continued 

For an inner concentric cylinder,   VF12 = 1 
For an outer concentric cylinder,   VF12 = A2 / Al 
For long parallel plates of VF12 = SQRT(1 + (S/W)**2) 

width W and separation S, - (S/W) 
For long surfaces with parallel edges, A, B, C and D, 

Hottel's "string rule" is: 

VF12 
(AD + BC - AC -BD) 

LAB 

■\  AB is surface Al 
\ 

C 
\ 

B 
where AD, BC etc are the 
distances apart of the edges  \  
indicated, and LAB is the \_ 
distance from A to B along surface Al. 

/— D 
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The components in more detail 
1. Engineering formulae 

Radiation between surfaces, concluded 

Formulae for more complex three-dimensional shapes are either 
much more complex than the above (see AF Mills, loc cit) or 
non-existent. 

When the intervening space itself absorbs part of the 
radiation directed through it, the only simple formula for 
VF12 is that for two surfaces of dimensions which are small 
in comparison with the intervening distance D12, and for 
a uniformly absorptive medium. It is: 

VF12 = exp(-ABSRPTVTY * D12) * A2projctd / (PI*D12*L12**2) 

To take full account of practically-encountered geometries, 
materials and thermal conditions defeats formula makers. 
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The components in more detail 
1. Engineering formulae 

Concluding remarks 

* The engineering formulae have great practical value, 
because, even when their conditions of applicability are 
not wholly complied with (eg because of non-uniform heat- 
flux or temperature conditions, or of geometric complexity) 
they can often yield realistic order-of-magnitude answers 
to prediction guestions. 

* However, when such answers are too imprecise, only computer 
based mathematical modelling can suffice, as will be 
explained; for this can handle complex geometries, non- 
uniform properties and boundary conditions, and processes 
in which conduction, heat-transfer and radiation (AND two- 
phase and chemical-kinetic effects) all participate. 
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The components in more detail 
2. Differential eguations 

The main conservation laws 

* The differential (and integro-differential) equations used 
in modelling heat transfer represent balances, over space- 
time domains of infinitesimal size, of the entities 
(whether of the total prevailing mixture or for distinct 
phases or substances within it): 

- mass, expressed by way of density and concentration, 
- momentum, expressed by way of velocity, 
- energy, expressed by way of temperature or enthalpy. 

* The equations balance the CHANGES WITH TIME, and the 
SOURCES AND SINKS, within the domain, against the INFLOWS 
AND OUTFLOWS across the surface of the domain. 
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The components in more detail 
2. Differential equations 

The main conservation laws, contd. 

* CHANGES WITH TIME are expressed as: 
d(property * entity value per unit mass * density) / d(time; 

* SOURCES are expressed as: 
rate of creation of entity per unit volume and time 

* INFLOWS and OUTFLOWS per unit area are expressed as: 
- CONVECTION fluxes, viz velocity * density * entity value 

per unit mass, and 
- DIFFUSION fluxes, often represented by (negative of) 

gradient of entity_per_unit_mass * exchange_coefficient 

* Insofar as diffusion fluxes are ill-represented by the 
gradient formula, corrections are added to the sources. 
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The components in more detail 
2. Differential equations 

The main conservation laws, concluded 

* The differential equations form a rather secure foundation 
for the mathematical modelling process. They express well- 
established laws of physics. 

* Less certainty attaches to the AUXILIARY RELATIONS which 
are needed to complete them, namely: 
- thermodynamic relations connecting density (say) with 

temperature, pressure and concentration; 
- transport-property relations from which exchange coeffs. 

(viscosity, thermal conductivity and diffusivities) can 
be derived; and 

- relations connecting the absorptivity and emissivity of 
materials with wave-length, temperature and concentration 
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The components in more detail 
3. Models of complex physical processes 

Introduction 

* "Models" of complex physical phenomena, in the sense of 
panel 4 above, are the result of deliberate ignorance. They 
are answers to the question: "What can we ignore, yet still 
retain the essence?" There are no "right answers". 

* Even well-established laws such as Newton's viscosity law, 
are "models", valid only in restricted circumstances. Thus 
viscosity ceases to be a useful model for shear stresses in 

. gases when the distance between molecules ceases to be much 
smaller that the apparatus dimensions. The viscosity concept 
ignores the distance-beween-molecules effect. 

* The use of the viscosity concept for atmospheric-pressure 
flows entails little error; other models are more dubious. 
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The components in more detail 
3. Models of complex physical processes 
'3.1 Turbulence models; general 

* Turbulent fluctuations involve times which are too short, 
and distances which are too small, to be resolved by present- 
day computational techniques. Therefore the details are 
deliberately ignored, and attention is focussed on time- 
average quantities such as the energy of the fluctuating 
motions and the average length scale of the fluctuations. 

* Most models derive from the ideas of Ludwig Prandtl, who 
saw turbulent fluids as being like gases: the energy of the 
turbulent fluctuations corresponded to the gas temperature; 
and the length scale to the average distance between 
molecules, ie the mean free path. By analogy with molecular 
theory: 

"turbulent viscosity" = const * SQRT(energy) * length 
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The components in more detail 
3. Models of complex physical processes 
3.1 Turbulence models; general (contd) 

* The differential eguations for turbulent flows are thus 
often regarded as similar to those of laminar flows, with 
time-average velocities, energies and concentrations in the 
places of the instantaneous ones, and "turbulent viscosities" 
and other transport properties in the places of the true 
(ie laminar-flow) ones. 

* The question then is: How can the "turbulent transport 
properties" be computed? And, if the answer is "from the 
energy and length scale", the next question is: "Then how 
are these to be computed?" 

* The commonly-used turbulence models differ mainly in the 
ways in which these questions are answered. 
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The components in more detail 
3. Models of complex physical processes 
3.1 Turbulence models; general (contd) 

* Prandtl proposed in 1925 that the length scale should be 
proportional to the distance across the mixing layer, and 
the energy to the square of ( velocity gradient times length 
scale). This "mixing-length" theory remains one of the more 
reliable models; but one needs not-always-available data 
for the proportionality constants. 

* In 1945, he made a different proposal for getting the energy 
-of turbulence, namely from a differential equation of the 
same form as that used for thermal energy (see above); but 
the length was still prescribed in the same way as before. 

* However, in 1942 Kolmogorov had already proposed a means of 
getting also the length-scale from a differential equation. 
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The components in more detail 
3. Models of complex physical processes 
3.1 Turbulence models; general (contd) 

* Nowadays, most turbulence models are developments of the 
first "two-differential-equation" turbulence model, which 
in effect combined Prandtl's and Kolmogorov's ideas, albeit 
by re-discovery rather than development. 

* The first re-discoveries took place in 1968, when Harlow and 
Nakayama invented the k-epsilon model, and Saffmann and 
Spalding (independently of each other) invented the k-W 
model. 

epsilon = energy-dissipation rate = const*energy**l.5/length 

W = (vorticity fluctuations)**2   = const*energy/length**2 
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The components in more detail 
3. Models of complex physical processes 
3.1 Turbulence models; general (contd) 

* All the above authors, and their successors, have had to 
make guesses about the diffusional-transport mechanism 
and about the source and sink (ie negative source) terms. 
They have differed only in detail. 

* The diffusional term is easiest: let the diffusivities of 
k, epsilon, W, etc equal a constant * turbulent viscosity. 

* The source of energy is also easy, viz the turb. viscosity 
times the sum of appropriate velocity gradients. Then the 
sources of epsilon, W etc are taken as proportional to this, 

* The sink terms are similarly treated. The big question is: 
What are the values of the proportionality constants? 
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The components in more detail 
3. Models of complex physical processes 
3.1 Turbulence models; general (concluded] 

* Almost all authors propose constants which enable predictions 
based on the models to fit (selected) experimental data. 
No-one has ever succeeded in finding constants which will 
procure agreement with all data. 

* Moreover, as even Harlow and Nakayama recognised, the 
"constants" are in fact dependent on (at least) Reynolds 
number; and the interaction of density fluctuations with 

- body-force fields introduces new and important influences 
requiring further terms in the equations and further 
experimentally-derived constants to go with them. 

* Some authors have sought to escape the difficulties by 
introducing more differential equations, 
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The components in more detail 
3. Models of complex physical processes 
3.1 Turbulence models; advances. 

* A major motive for solving MORE differential equations is to 
be enabled to abandon the Prandtl-Kolmogorov turbulent- 
viscosity hypothesis, which is known not to fit all data, 
some of which imply that the viscosity must be negative! 

* Two distinct directions have been taken, namely: 
(1) To invent and solve differential equations having the 

turbulent-stress components (ie the "Reynolds Stresses") 
as the solved-for variables. 

(2) To treat a turbulent fluid as a mixture of (at least) 
two distinct fluids, each having its own set of velocity 
components, temperatures, etc. 
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The components in more detail 
3. Models of complex physical processes 
3.1 Turbulence models; advances (contd) 

* While researchers have been proposing ever more complex 
models (which so far are notable more for their promise than 
their achievement), the application of turbulence modelling 
in practical circumstances has necessitated a return to 
models which employ FEWER differential eguations. 

* Many practical circumstances involve simultaneous convection 
in a fluid and conduction within numerous solids immersed 
within it. Because the spaces between the solids are small, 
(1) the local Reynolds numbers are low, and 
(2) the number of grid nodes is too small to allow accurate 

computation of turbulence energy generation. 

* Two recent developments (Spalding, 1994) provide a solution. 
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The components in more detail 
3. Models of complex physical processes 
3.1 Turbulence models; advances (contd) 

* The first development is the so-called LVEL model, which 
postulates that the local effective (ie laminar + turbulent) 
viscosity depends only upon the local velocity, the distance 
from the nearest solid wall, the distance between the two 
nearest walls, and the local laminar viscosity. 

* An analytical relationship exists between these quanitities, 
derived from a formulation of the "universal law of the wall" 

■ (Spalding, 1961). 

* The calculation of the said distances is effected by way of 
by the second development. This entails the once-for-all 
solution of an elliptic differential eguation of Laplace 
type at the start of the calculation. This is easy. 
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The components in more detail 
3. Models of complex physical processes 
3.1 Turbulence models; advances (conclud) 

* The merits of the LVEL model are: 
- it is inexpensive computationally; 
- it can therefore be applied to practical problems, for 

example those arising in electronics cooling; 
- it yields predictons which are in accordance with 
measurements when the nearby walls are wide and parallel; 

- it yields results which are at least plausible in all 
other circumstances. 

* On the other hand, it is new and therefore relatively 
little tested. 

* Exemplifications of LVEL and other models will be provided 
in the companion lecture. 
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The components in more detail 
3. Models of complex physical processes 
3.2 Radiation: general 

Models of radiation involve the deliberate ignoring of one or 
more of:- 

* Absorption and emission by the medium through which the 
radiation passes. This may be valid when the medium is 
room-temperature air or the distances between solid 
surfaces are small. 

* The possibility that very little of the radiation is 
absorbed or scattered as it passes through the medium. 
This may be valid when the medium is "murky", as in a 
coal-fired furnace. It is of course at the opposite extreme 
from the first presumption. 
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The components in more detail 
3. Models of complex physical processes 
3.2 Radiation: general (continued) 

or the ignoring of:- 

* The dependences of the radiative properties of the 
materials on temperature and wave-length. This may be 
valid for some solids, but never for gases. 

* The fact that rays are transmitted at all angles, not just 
at right angles to surfaces at solids. This is valid only 
in rare circumstances. 

Often the ignored factors are of practical significance; 
so simulations of heat-transfer processes which involve 
radiation are frequently of low accuracy. 
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The components in more detail 
3. Models of complex physical processes 

■3.2 Radiation: general (continued) 

The most accurate radiation calculations are made when the 
medium is very "murky" indeed; for then the "mean free path" 
of radiation is small compared with the size of the apparatus 
and the effect of radiation is akin to that of heat 
conduction. 

The effective conductivity of such a mixture is equal to: 

3 * sigma * (absolute temperature)**3 / (a + s) 

where a and s are respectively the absorption and scattering 
coefficients. 

This is added to the laminar and turbulent components. 
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transfer, 1 46 3.2 Radiation: general (concluded) 

The conductivity approximation is congenial to those who 
are already simulating conduction and convection, because 
it fits into the already-existing calculation scheme, 
namely that for solving elliptic differential equations. 

So valuable is this feature that several other models have 
been devised so as to have the same merit, if possible with 
less departure from realism. 

However, no attempt of this kind can succeed fully, because 
the equations which describe radiation correctly are of 
INTEGRO-differential kind. 

Radiation involves "action at a distance". 
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heat   3. Models of complex physical processes 

transfer, 1 46 3.2 Radiation: particular models 

* The "six-flux" model used in some computer codes limits the 
angular distribution of radiation to 6 bundles of rays, 
positively and negatively directed in the three coordinate 
directions. 

It involves the solution of three rather simple elliptic 
equations (unless distribution in wave-length space is to 
be considered also). 

It is usable for both dense and transparent media, and is 
most accurate when the radiation flux approaches one- 
dimensionality . 

The six-flux model originated in astrophysics, and is 
associated with the names of Shuster and Schwarzschild. 
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The components in more detail 
3. Models of complex physical processes 
3.2 Radiation: particular models (contd) 

* A more elaborate method than the six-flux model is the 
"discrete-transfer" method of Lockwood and Shah (18th 
Combustion Symposium, 1980). This allows for radiation in 
a greater number of directions, and so is better able to 
account for geometrical complexity. The computational 
expense is proportionatly greater. 

* A method which is simpler than either is that based upon 
the "Eddington spherical-harmonic approximation". This 
involves the solution of only one elliptic equation, and 
has been used with some success for coal-fired furnaces 
(Liu and Swithenbank, Eurotherm 17, 1990). It appears to 
be restricted to rather dense media; but it is more widely 
applicable than the conduction approximation. 
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The components in more detail 
3. Models of complex physical processes 
3.2 Radiation: particular models (concl) 

The "zone method" of Hottel and Sarofim (Radiative Transfer, 
McGraw Hill, 1967) is potentially the most accurate method; 
for it seeks to account for all directions of radiation, 
and for all absorptions, reflections and re-emissions. 
Moreover it can be fitted into the computational framework 
of a computer code for solving conduction and convection. 
It is however generally believed to be prohibitively costly 
to implement; and it is certainly litle used. 

Another expensive method, which has however the merit of 
representing the physical processes rather faithfully, is 
the Monte Carlo method of Howell (Advances in Heat Transfer, 
Acad Press, 1968). As computers become more powerful, its 
expense may become less of a deterrent to use. 
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The components in more detail 
3. Models of complex physical processes 
3.2 Radiation: a particular need 

Radiative heat transfer in congested spaces 

* Just as the commonly-used turbulence models have proved 
unsuitable for electronics-cooling simulation, and for 
other problems in which many solids are distributed within 
the fluid, so is it also with radiation. 

* On the one hand the calculation of all the view factors 
. is a huge task, because account has to be taken of which 

surfaces are obscured from view by intervening objects. 

* On the other hand, the medium is almost completely non- 
absorbing and non-scattering; so the conduction and 
Eddington approximations are invalid. 

. 
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The components in more detail 
3. Models of complex physical processes 
3.2 Radiation: a particular need (concld) 

A suggestion for development 

* The radiant flux from a wide plate to another parallel to 
it increases with the temperature difference; so one can 
define an "effective conductivity for the empty space. 

* However, the flux is independent of the distance apart; so 
the conductivity must depend upon (indeed be proportional 
to) that distance. 

* The inter-wall distances can now be calculated from an 
elliptic eguation, as explained in connexion with the LVEL 
model of turbulence. Could this not be used as the basis of 
a conduction model for empty spaces? Yes, it could. 
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transfer, 1 46 Overview 

The numerical-analysis component of heat-transfer modelling 
is a large subject which can not be thoroughly expounded 
here. Therefore only a few aspects will be higlighted and 
briefly discussed, namely:- 

* Grids and solution algorithms 

* The main difficulties 

* Some ways of diminishing them 
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The components in more detail 
4. Numerical analysis 
4.1 Grids and solution algorithms 

* Most methods for solving the differential equations of 
CFD involve "discretising" the space and time dimensions, 
so as to form a "grid", of which the nodes, surfaces and 
volumes define which elements of the space-time continuum 
will be selected for attention. 

* What happens between the selected nodes and surfaces is not 
ignored; but it is guessed as being deducible from what is 

, computed for the considered elements by way of simple 
interpolation formulae. 

* Therefore human choice enters the simulation and 
influences (perhaps impairs) its results, rendering them 
at least somewhat uncertain. 
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The components in more detail 
4. Numerical analysis 
4.1 Grids and algorithms (concluded) 

* Once the grid and the interpolation formulae have been 
chosen, there are further parameters to introduce which, 
though they should not influence the final solution, will 
have an effect on how quickly (indeed even whether!) the 
results will be obtained. 

* So-called "relaxation factors" are of this kind. Correctly 
chosen, they bring speedy convergence of the iterative 
calculation procedure; wrongly chosen they may introduce 
numerical instability, causing the computer to "crash". 

* Further choices concern the type of linear-equation solver 
(Gauss-Seidel, Stone, conjugate-gradient, etc). Some are 
good for some problems, but bad for others. 
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heat   4. Numerical analysis 

transfer, 1 46 4.2 The main difficulties 

* What difficulties faced by the mathematical modeller of 
heat transfer can be deduced from the last two panels. 
They arise from the lack of any clear and certain 
knowledge about:- 

- how fine a grid is necessary for the desired accuracy; 
- which of the available interpolation schemes is most 

suitable; 
- what values should be used for the relaxation factors 

(which may, and probably should, be different for each 
dependent variable and should change as convergence is 
approached); 

- which equation solver should be chosen for which 
variable. 

1 
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The components in more detail 
4. Numerical analysis 
4.2 The main difficulties (concluded) 

* Aggravating these difficulties is the knowledge that every 
increase in grid size makes the computation take longer 
and cost more. 

* Moreover, too large an increase may entail the necessity of 
gaining access to a larger machine. 

* Finally, once the computation has been completed, how is 
, one to know whether the grid was fine enough to give the 

required accuracy, without repeating it with a finer grid 
and then a still finer one? 

* All this is on top of the doubtfulness regarding the models 
of turbulence, radiation, etc. 
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The components in more detail 
4. Numerical analysis 
4.3 Diminishing the difficulties 

* ACCURACY ASSESSMENT is achievable without repeating the 
whole calculation; for one can make a cell-by-cell check 
to answer the question: "If this cell were subdivided, by 
how much would its influence on its immediate neighbours 
change?  This is not costly, and may suffice. 

* FINE-GRID-EMBEDDING allows one to put cells only where they 
are (believed to be) needed. This can be done with grids 
which are basically structured: a completely-unstructured 
grid, which brings its own problems (computational expense; 
MORE questions to answer!) is not needed. 

* ADAPTIVE GRID REFINEMENT (or coarsening) combines the 
above two features. It is what all are vendors are seeking. 
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4. Numerical analysis 
4.3 Diminishing the difficulties (concld; 

* GRID-LESS Modelling is what is needed by the users. Even 
though a grid may still be used, the users should not 
need to see it unless they want to. The "Virtual-Reality" 
front end is a move towards it. 

Of course, the less the user does himself, the greater 
the amount of expertise that must be built into the 
software. 

* "IN-FLIGHT" ADJUSTMENT of relaxation factors can make their 
initial choice less important. 

All the above features are in embryonic existence. They can 
only improve with time. 
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The components in more detail 
4. Computer software 

General remarks 

* Most practitioners of heat-transfer modelling are more 
interested in heat transfer than in computer programming; 
so they prefer to use commercial packages than create their 
own. 

* However, some of them still need access to (parts of) the 
source code, in order to add modelling, property or output 
features of their own. Some commercial codes allow this. 

* Such codes are now cheaper to acquire than formerly; and 
some are even available as "shareware", which means that 
they may be freely copied. 

* However, learning to use them still takes time. 
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The components in more detail 
4. Computer software 

General remarks  (concluded) 

* Although the ideal of creating "expert" software packages 
is inspiring current developments, it is not yet a reality. 
Until it is, users of all software packages need to look 
critically at the results which they produce. 

* When these results prove to be at variance with reasonable 
expectations, it is not necessarily the package which is 
at fault. The user may have supplied it with inappropriate 
data; or the phenomenon being simulated may be one for 
which the built-in science is not yet adequate. 

* Modelling heat transfer still requires thought and care. 
Those who proclaim that it is easy do a disservice to the 
heat-transfer community. 
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Recent developments and current 
trends 

Some allusions to developments and trends have already been 
made; and more will be mentioned in the companion lecture. 
Therefore here only two such topics will be mentioned, viz: 

1. Parallel computing. 
Recent developments with distributed-memory machines of 
low cost make unprecedentedly large problems affordable. 
Users should prepare themselves mentally (and financially) 

2. Fluid flow and solid stress in one software package. 
The necessity to use two different packages, one for fluid 
flow and the other stresses in the solids within them, may 
soon disappear. The technique exists already. 



Modelling 
heat 

transfer, 2 

Modelling heat transfer by means of 
the PHOENICS Computer Code 

by Brian Spalding (CHAM Ltd) 

Purpose of the lecture 

This lecture illustrates some of the facts and arguments 
mentioned in lecture 1, by way of excerpts form the 
PHOENICS On-Line Information System (POLIS) and of 
demonstrations of PHOENICS in action. 

The following panels list topics which will probably be 
discussed; but wishes expressed by the audience will be 
followed as far as possible. 
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General topics 

* The structure of PHOENICS, seen via the "Commander" 

* The Application Album 

* The Encyclopaedia 

* The Satellite Menu, the libraries and tutorials 

* The demonstrations 
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Turbulence-model topics 

* Low-Reynolds-Number models 

* The Two-Fluid model 

* The LVEL model 
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Radiation topics 

* The six-flux model 

* Surface-to-surface radiation 

* The radiosity model 

Modelling 
heat 

transfer, 1 
Numerical-analysis topics 

* The CLDA formulation 

* Other low-dispersion models 

* Fine-grid embedding 

* Expert 
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Other topics 

* Stress analysis in solids 

* Virtual reality 

* Shareware 
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1.      Two-Phase Flows: Theoretical Foundations 
1.1 Definition Of A Two-Phase Flow 
There exists a variety of multiphase phase flows depending on combinations of phases as well as 
on their flow structure. In the typical engineering context, a material exists in one of three phases: 
Solid, Liquid or Gas. Early attempts at classifying two-phase flows were developed by Zuber 
(1971), Ishii (1971) and Kocamustafaogullari (1971) among others. These authors defined three 
classes of multiphase flows based on the geometry of the interfaces, i.e. separated flows, mixed 
flows and dispersed flows. The class of separated flows is characterized by the existence of a 
single interface. This is generally the case for jet flows, film boiling, crystal growth, solidification 
of metals, or layer flows of different liquids, as in coating or coextrusion problems. At the other 
extreme, dispersed flows are characterized by a large number of interfaces. This often occurs in 
particulate, bubbly and droplet flows such as sprays, sedimentation or erosion problems. The 
change in interfacial structures occurs gradually, which leads to a third class of multiphase flows 
characterized by the existence of both separated and dispersed flows. This would be the case in 
most steam-water systems. 

Following on from the above concepts, we define a multiphase flow as one in which one or many 
materials coexist in any combinations of the three possible states of matter described above. This 
view extends the definition of multiphase flows to one that characterizes a multiphase flow by the 
existence of one or several interfaces irrespective of the materials present in the flow. Thus, we 
can have the following combinations: Gas-Liquid,, Gas-Solid, Solid-Liquid as well as immiscible 
liquid mixtures. The latter is clearly not a two-phase flow in the traditional sense, however for all 
practical purposes it can be treated as a two-phase flow mixture. Given this, the term "two-phase 
flow" is generally understood to mean a flow in which two material phases are simultaneously 
present. In most applications the two phases are phases of different materials, for example, dust 
particles (solid phase) in air (gas phase). 

1.2 Engineering Applications 
The analysis of two-phase or multiple phase flow has been increasingly important in engineering 
systems for design, optimization, or safety concerns. 

Power: Condensers, engines, conventional and nuclear reactors, desuperheaters, 
erosion; 

Heat Transfer: Heat exchangers, dryers, refrigerators, electronic cooling systems; 

Environmental: Air conditioners,  dust collectors,  sewage  treatment  plants,  clarifiers, 
pollutant separators; 

Geo-Meteorological: Sedimentation, rain drops, snow drifts; 
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Biological: Blood flows, separation devices; 

Chemical Processes:   Dissolution processes, crystallization; 

Food Processing:       Aseptic heating, dissolution, spray drying 

1.3 Characteristics Of Two-Phase Flows 
The two-phase flow classification by flow structure has important ramifications with, respect to 
the mathematical model used to describe the physics of multiphase flows. A large class of 
separated flows usually involves the existence of a single interface between phases. For instance, 
in crystal growth or solidification problems the two phases are clearly separated in space. For 
such problems a two-phase flow model is not required; a single-phase model with adequate 
representation of the interfacial conditions is sufficient. 

In theory, it is possible to formulate a two-phase flow problem in terms of the local instantaneous 
variables. In a dispersed flow problem such a formulation would ultimately lead to a multi- 
boundary problem with the location of the interface being unknown due to the coupling of the 
fields and the boundary conditions. The mathematical difficulties encountered in obtaining a 
solution are prohibitively great and for many practical problems, they are beyond our present 
mathematical capabilities. These difficulties stem from the existence of the deformable moving 
interfaces with their motions being unknown and from the existence of fluctuations of variables 
due to turbulence and to the motions of the interfaces. The first effect causes complicated 
coupling between the field equations of each phase and the interfacial conditions, while the second 
effect introduces a statistical characteristic caused by the instability of the Navier-Stokes 
equations and the interfacial waves. However in most practical engineering problems the 
microscopic details are rarely needed, but rather macroscopic aspects of the flow are much more 
important. There are in the literature two distinct modeling approaches, commonly known as the 
Eulerian and Lagrangian methods. 

1.4 Modeling Approaches 
Eulerian Approach 

One approach consists in using averaging procedures that effectively eliminates the unwanted 
fluctuations. Note however that the statistical properties of the fluctuations which influence the 
macroscopic process are retained. In the Eulerian method each of the phases is treated as a 
continuum. This implies that there is a set of continuum equations (Navier-Stokes, energy, etc.) 
for each phase at every point in the computational domain. These equations are averaged with 
respect to time, space or statistics. To account for the fact that two-phases may simultaneously 
exist at a given point, a function which identifies whether one of the phases or possibly the 
interface itself occupies the locus of the point is introduced. The average of the function -spatial 
or temporal- is commonly known as the void or time fraction. The transfer of information 
between phases is then accounted for through momentum, energy and mass transfer terms as well 
as a void or volume fraction. 

The Eulerian approach is generally advantageous in cases where high particle concentrations 
occur and where high volume fractions of particulate matter becomes a dominating flow 
parameter. A complete description of this approach is found in Durst (1984). 
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In the Eulerian approach, the particle phase is considered a "pseudo-fluid" in combination with a 
real fluid or gas. The "multi-fluid" model is characterized by 

• the co-existence of the particle and fluid carrier phase at each geometric location, 

• a "smeared" velocity, temperature, volume fraction for each particle phase, 

• each size grouping of particles can have a continuous velocity, temperature, and volume 
fraction distribution, 

• each particle phase having its own turbulent fluctuation resulting in turbulent transport of 
mass, momentum, and energy, 

• particle fluctuations are determined by convective diffusion, production, and interactions with 
gas phase turbulence, 

• the inclusion of large slip and particle diffusion 

Lagrangian Approach 

In the second approach the "dispersed" phase is represented by discrete particles that are 
continually introduced at a given mass flow rate. These particles coexist with the "carrier" phase 
in the flow domain. The conservation equations for the carrier phase are described by the 
standard Eulerian equations for conservation of mass, momentum, and energy while the motion of 
the particles is described in a Lagrangian frame of reference. The information transfer between 
phases is accounted for by the momentum, energy, and mass gains or losses along particle 
trajectories. This methodology, referred to as the "Lagrangian" model will be described in the 
following sections. The Lagrangian method assumes that the particles are dilute. This assumption 
means that the motion of particles is controlled by local aerodynamic forces. In a dense particle 
flow, the particle motion is controlled by particle-particle collisions. In other words, in this 
approach, particles have enough time to respond to aerodynamic forces before colliding with 
another .particle. This assumption implies that information between phases is not carried through 
pressure waves but instead, along particle trajectories. Note that this model, currently does not 
account for break-ups, or coalescence and assumes a steady state simulation. There are, on the 
other hand, some problems that respond better to one approach then the other. 

Solution by the Eulerian approach implies an elliptic system of equations and a boundary value 
type of solution. The Lagrangian approach with the solution along particle trajectories is 
parabolic in nature. An advantage of the Lagrangian approach is illustrated in by the injection of 
particles from a vertical source as shown in Figure 1.1. By considering a small computational 
domain or volume, one can see the possibility of particles both flowing upwards and downwards. 
The particle velocity would not be unique in this cell and definable in a two-fluid model. On the 
other hand, this application would offer no problem to the Lagrangian approach. 
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computation cell 
r x - -_L 

Figure 1.1 Particle Trajectories From A Vertical Source 

The Lagrangian approach or "particle trajectory model" is characterized by 

• the interaction through momentum, mass, and energy exchange between the continuum and 
dispersed phases, 

• the capability of handling large slip and temperature variation between phases, 

• the neglect of particle diffusion, 

• the designation of particle groups by their size distribution. 

It is interesting to note that the Lagrangian approach is fitted to the analysis of the dynamics of a 
single particle. The Lagrangian approach has proven to be particularly successful in simulating 
aerosols, atomizers, spray drying, spray combustion, pollutant dispersion, filtration, evaporation 
and condensation processes, and so forth. On the other hand the Eulerian approach is best suited 
to the analysis of the collective behavior of a cloud of particles. However, there is evidence in the 
literature, Durst (1984) that in the range of small void fractions, the "two-fluid" model and the 
"Lagrangian" model lead to similar predictions. Additional discussion on the Lagrangian 
approach is found in Crowe (1977, 1982). 

1.5     Comparisons and Applicability 
A brief summary and comparison of the Lagrangian (discrete) and Eulerian (continuous) 
approaches to modeling multi-phase flow is given in the following tables. 

Table 1-1 Physical Characteristics of Modeling Approaches 

Modeling 
Approach 

Coordinates Gas Phase 
Affected by 

Particles 

Phase 
Slip 

Particle Transport 
Properties 

Continuum Eulerian considered yes diffusion 

Discrete Lagrangian considered yes stochastic 
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Table 1-2 Applicability of Modeling Approaches 

Model Particle Number 
Density 

Continuum no limit small to moderate no limit 

Discrete small or moderate no limit very small 

The ratios present in the above table provide indications of the capability of the modeling 
approaches in certain flow situations. These "residence" times, briefly described here, will be 
discussed more fully later in the course. The fluid residence time is defined as the ratio of physical 
dimension of the flow field and the mean flow field velocity. 

Flow time (residence time)=> x f -LIU 

The particle relaxation time is thought of as the time that a particle can respond to changes in the 
surrounding flow field. 

Particle Relaxation Time=> x' = x 1 + 
Re 2/3 A 

where D> PV p Rep = 

6 

lu-uJD 

) 

j 

v "      18ji ' 

Particle-particle Interaction time=> x pp = (cKnprp )   (up') 

(1.5.1) 

where xp is based on Stokes Drag, and x'p accounts for non-Stokesian drag. From the above 

definitions, certain types of flow can be characterized.   Strong slip flow (frozen or diffusion- 
x' 

frozen) is characterized with large ratios of the particle relaxation time to the flow time, — » 1. 
xf 

Flows characterized by small values of this ratio are usually defined as "small slip", equilibrium, or 
diffusion equilibrium flows. Flows with small values of the ratio of particle relaxation to particle- 

X'P particle impacting times, —— « 1, are usually classified as "dilute" suspension flows.   "Dense" 
x PP 

suspension flows are classified with large values of this parameter. 

1.6      Approximation Levels 

Depending upon the characteristics of the problem under examination there are three levels at 
which a two-phase flow model can be applied. The following section outlines these three levels 
which, as will become apparent, increase in order of complexity. 
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Under certain conditions it may happen that the particles of the dispersed pha« follow he paAs 
of the particles of the carrier phase, have the same temperature and velocity■» the™ phase 
and do not gain or lose mass. In other words, the dispersed phase has no life of its own Fo 
this to be a reasonable approximation it is necessary that the dispersed phase be very dilute, that 
h dens ti so the two phases are not very different and possibly that some other res tncUons ho d 
Tweri When all these requirements are met, we in fact no longer have a two-phase flow Fo 
llttl^oses we are'essentially dealing with massless particles. This is clearly a trivial 
situation, which only formally belongs to the two-phase classification. 

Level Two , . ^ 
ATthe next level of complexity the dispersed phase has »a life of its own," but the interactton 
tetwL the two phases is strictly one-way. This means that while the dynam.es of the came 
S drivTs he motion of the dispersed phase, the presence of the dispersed phase has no effect 

he dyn-cs of the carrier phase. To jnstify this mode, it is necessary ^.'hed'spersed phase 
shonld be dilute, that the particles of the dispersed phase be sufficently small, and that the 
interfacial forces between the two phases be negligible. 

Because of the one-way coupling in this model it is possible ,0 solve problemsi„i sequence; ttatia 
first solve for the carrier phase then solve for the paniculate phase. The equations of the^ earner 
nhase Much can also be regarded as the equations of the mixture) are the standard equations of 
nuMdynZes momentum conservation, mass conservation, energy conservation specie 
transport turbulent kinetic energy and turbulent dissipation. These are, or course, Eule™, 
equatas, and once solved, give field variables such as velocity, pressure, temperature, etc., at 

every point in the computational domain. 

For the next step a Lagrangian approach is used to simulate the dispersed phase. The motion of 
a^a^W Sclc of the paniculate phase is followed by solving a Newtonian momentum 
balaSaüon for that particle: the mass-acceleration of the particle ^^£^£ 
The forces acting on a particle of the dispersed phase certainly include the drag force exerted by 
"er phlg(StokePs drag generalized for arbitrary Reynolds number). Other forces will be 
problem-specific, but may include gravitational, centrifugal or electrical forces. 

The formulation allows a completely arbitrary force in the Lagrangian particle £»*™ £> * 
specified  It will also allow arbitrary settings of the initial position and velocity of the part cleA 
s^d boundaries it will be possible to stipulate various conditions, including that the particle sticks 

or reflects back to the flow. 

In a non-isothermal process there may be heat transfer between the dispersed phase and the 
narticukte phase M equation to account for this effect states that the rate of change of the 
£Ä£*»re is determined by the difference between the *m^ «^ 
as well as the loss or gain of latent heat where appropriate. Other potential sources of 
temperature change are included through a user-definable heat-source function. 

Similarlv mass transfer between the phases, as occurs for example with evaporation 
" tfoT ombustion, etc., is simulated by the inclusion of an equation for the ^°» 
o^ass of a particle of the paniculate phase. Mass transfer may be governed by a form of Picks 
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law, relating the mass flux to the gradient of concentration between the dispersed phase and the 
carrier phase, or by a general rate equation. Other potential forms of mass transfer are included 
through a user-definable function. 

It is interesting to note the limitations of this model, as implied by the preceding discussion. Since 
the carrier phase is assumed to be unaffected by what is happening in the dispersed phase, the 
amount of heat and mass gained or lost by the dispersed phase particles must be sufficiently small 
that the imbalance created by the model is not significant. If this criterion is violated the model 
fails, and it becomes necessary to choose the next level of complexity. 

Level Three 

A more general situation arises when there is non-negligible transfer of momentum, heat and mass 
between the phases, so that the interaction between them is a two-way coupling. 

The solution procedure used in the Lagrangian two-phase flow model is an iterative one. First, a 
solution to the governing continuum equations for the carrier phase is obtained. Next the 
Lagrangian (ordinary differential) equations are solved, using the fields from the continuum 
solution, for a number of particles of different sizes and different starting locations. 

To this point the method is the same as that used in the Level 2 model. It is recognized now, 
however, that the presence of the particulate phase affects the continuum phase by transfer of 
momentum, heat and mass from the former to the latter. This is quantified by means of the 
Particulate Source in Cell (PSIC) method: the computed trajectories, temperatures, and masses of 
the particles are combined into source terms for momentum, heat and mass, which are then 
inserted into the right-hand sides of the respective continuum equations. Specifically, the 
equations of motion for the particle trajectories provide the source term for the momentum 
equations, the heat transfer equations for the particles provide the source term for the continuum 
energy equation and the mass transfer equations for the particles provide the source terms for the 
continuity and species equations. 

The continuum equations are next solved again, with these source terms in place. The output of 
this computation is then used to specify a new set of field quantities for the Lagrangian equations, 
which are then re-integrated. Modified source terms are calculated, substituted back into the 
continuum equations, and so on. The process of iteration is continued until an equilibrium has 
been attained between the solutions for the two phases. 

In turbulent flow the effect of turbulent fluctuations on the motion of the particles will be taken 
into account by use of a stochastic model. Several references are provided which outline the 
theoretical basis of the Lagrangian approach to modeling two-phase flow. It is not unlikely that 
situations may exist where energy, momentum, or mass may be represented by a combination of a 
Level 2 and a Level 3 analysis. 
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2.      Mathematical description (Lagrangian approach) 

Modeling of multi-phase flows can be complicated by the fact that the flows can be laminar or 
turbulent. The particles can interchange momentum, energy, and mass with the surrounding fluid 
with two-way coupling. The Lagrangian approach, as presented in this course, assumes that the 
particles are dilute with no particle interaction. 

One way to estimate the dilution of the particle field is to estimate the particle relaxation times for 
diffusion and particle-particle collisions. The particle time constant or relaxation time is an 
indication of how fast a particle responds to changes in the velocity of the surrounding carrier 
medium. Particles with small time constants (relaxation time) very quickly attain the velocity of 
the surrounding carrier medium. The relaxation time for particle-to-particle collision is a measure 
of the time, for a particle traveling at a given velocity, required between collisions. When the 
ratio of the particle time constant to the particle-particle collision time is very small, the particle 
suspension is considered dilute. 

2.1      Conservation Of Particle Linear Momentum 
The prediction of particle trajectories is determined by the Lagrangian formulation of particle 
motion. In its general form. 

du 
"''       j, drag gravity corialis centrifugal user 

of (2.1.1) 

A brief description of the forces follows 

Drag Force 

The drag force on a solid particle is a function of the relative velocity between the particle and the 
surrounding fluid, the fluid density, and the projected area of the particle. In general, the drag 
coefficient can be given in terms of the local particle Reynolds number. The Oseen force, which is 
a correction to the steady state drag, can be considered to be included into the general 
relationships for drag, some of which are provided later in this section. 

¥ärag=^PfCD{uf-Up]uf-Ut 

(2.1.2) 

Gravity or Buoyancy Force: 

F    .   =m gravity 

(2.1.3) 

Centrifugal Force: 

^8a, = -^x(Qxr) (2.1.4) 
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Coriolis Force: 

User supplied forces 

F   ... =-2mflxu„ carious p (2.1.5) 

^user = /(geometry, field variables, t) ,~ i f.\ 

The Lagrangian form of the particle equation with the drag and buoyancy forces included is 

^ = RepCD^^(uf-up)+v(Pp-Pf)g (2.1.7) 
du, 

dt 

Dividing through by the particle mass yields 

dup = 18|i/ 

dt      PPD2
P 

Re^ 

24 
Co(U/~U/')" W 

V PP 

g (2.1.8) 

The drag coefficient, CD, can be given in terms of a polynomial expansion of the particle Reynolds 

number. If Stokes Drag applies (CD = 24/Rep) for the particles, the above equation reduces to 

d»P _(uf~up) 

dt 
+ g 

In general, 

P D p   p 

"     18u/ 
where / = 24 

(2.1.9) 

(2.1.10) 

The more commonly used models for the drag coefficient and alternatively for the parameter/ 

are the polynomial models where 

/ = 
CDRe, 

24 
a + Z?Re+cRe„ + 

p p Re 
p ) (2.1.11) 

and power law models such as, 

/ = 
CDRep 

24 
= 1 + 0.15 Re 0.687 

(2.1.12) 

Additional relationships are available for non-Stokesian drag models, such as Eq. (1.5.1), or for 
instance, see Table 2-1 as given in White (1985). 
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Table 2-1 Drag vs Particle Reynolds Number 

CDRtp 

24 

Rep 

1.0 Rep<0.1 

0.94708 + 0.15375 Re . + ft00376 

P      Re„ 

0.1 < Rep < 1.0 

0.16203 
1.21527 + 0.0.5091 Re _  

P      Rep 

1.0<Rep<10. 

1.9375,0.02569 Re,-486250 10.< Re,, < 100. 

115.750 
4.0970 + 0.01518 Re _  

P      Rep 

100.< Rep < 1000. 

1979.16 
6.19250 + 0.01487 Re _  

P      Rep 

1000. <Rep <5000. 

24112 
-20.4394 + 0.01916 Re _+—  

P     Rep 

5000. < Rep < 10000. 

-69.270 + 0.02163 Re _ + 225, 95 

P      Rep 

10000.<Rep < 50000. 

0.0183 Re, Rep> 50000. 

Example 1 

Predict the terminal velocity of particles in a fluid having the following properties, 

p./ = 2cp =.02 poise =.002Pa -sec pp = 1100kg I m3 

Dp=15\lm pf=l000kg/m3 

The particle time constant, assuming Stokes flow, is given by Equation 2.1.10 with "f" =1. 

\ = '"   p-0.00017sec 
1811, 

dxxr 
Substituting into Equation 2.1.9 with the condition on particle terminal velocity to be ——- - 0, 

yields: 

terminal W 
V pp) 

g-X   =0.015cm /sec = 0.15mm /sec 

10 
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Example 2 

Determine the estimated relative velocity of air bubbles moving in a counter-flowing liquid stream 
having a downward velocity of U = 0.1 m/sec. For the following conditions, 

Db= 0.001m 

\if =L2E-03Pa-sec 

pf=\000kg/m3 

pp = U5kg/m' 

an estimate of the bubble upward terminal velocity, is calculated as 

g-X   - 0.45m/ sec 

assuming a Stokes drag relationship yielding a particle time constant of Tp = 5.3E-05 sec. The 

resulting upward bubble velocity is 0.35 m/sec (as seen by a stationary observer). 

The calculation of the particle Reynolds number yields a value of 900 which is definitely greater 
than that assumed for Stokes flow. Using Equations 2.1.10 for the drag coefficient, the 
relationship for bubble time constant becomes 

4p D2 

3CDR^ 

Since the above equation is a function of Reynolds number and therefore, the relative velocity of 
the particle, an iterative procedure is employed. One first obtains the solution assuming Stokes 
flow and calculates the Reynolds number. With this as the first iteration, one estimates the value 
of the drag coefficient from Equation 2.1.12 for example. A new estimate of the particle terminal 
velocity is obtained from solving Equation 2.1.9. This process is repeated until the computed and 
estimated Reynolds number for the particle is identical to within a reasonable value. The final 
upward bubble velocity obtained is 0.112 m/sec which is significantly different than that assuming 
Stokes flow. Other drag coefficient versus Reynolds number relations are expected to yield 
similar results. 

Particle Relaxation Time 

The parameter, x    is a very important term.   It is referred to as the particle relaxation time 

representing the time required by the particle to reduce or increase its velocity to e"1 th of its 
original value. It is a measure of the particle's responsiveness to changes in the surrounding flow 
field. The magnitude of the particle relaxation time, sometimes called the particle time constant, 
is important in understanding particle dynamics, as well as devising appropriate numerical 
strategies to predict trajectories. Discussions of the effect of the particle time constant on the 
numerical methods for calculating particle trajectories will be presented later. 

11 
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The particle relaxation time is a time scale associated with contact forces and represents the time 
it takes for a particle to adjust to changes in the surrounding flow field and reach that state of 
equilibrium with the carrier phase. A small particle relaxation time (relative to the time scale of 
the fluid) means that the particle has a chance to reach a local equilibrium with the fluid before the 
fluid itself has a chance to change. 

The Stokes number, StH=^ is the ratio of the relaxation time of the particle to the fluid 

residence time, xf = 
u, 

within a given domain traveled by the particle.   For very small Stokes 

numbers, the particles can be considered to react instantaneously to the conditions of the 
surrounding flow field. As a result, the dynamics of the particle will be very similar to the 
dynamics of a massless particle and will follow the streamlines. Conversely, if the Stokes number 
for the particle is large, changes in the flow occur much faster than the particle can react. As a 
result, the dynamic behavior of the particle is governed by factors other than contact forces, and 
the particle trajectories are dissociated from the trajectory of a massless particle. 

In a two-way (Level 3) coupling simulation, the particles of the dispersed phase are able to 
influence the dynamic characteristics of the carrier. This influence is made possible by an 
exchange of momentum between the phases due to contact forces. Momentum transferred from 
the particle to the carrier phase appears as a source term in the governing momentum equations 
for the carrier medium. Thus, in the absence of mass transfer: 

dp", = 0 

dx, (2.1.13) 

dx 
■(pUPj): 

dp      d 
dx,     dx, V- 

3«, 
dx. 

du.} 

du. 
+o. 

(2.1.14) 

where 

>J       I/JT1' ' ' K^ (2.1.15) 

is the momentum transfer contribution of the j* particle stream to the element source term. In the 
case where the particles are subject only to drag and gravity forces, and in the absence of mass 
transfer (the particle mass is not a function of time) the source term contribution with units of 
(Nt/m3) is given by 

O, 
m. ("L-<,)-A 

Y 

■pj (2.1.16) 

12 
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2.2 Conservation Of Energy 

Particles can exchange energy with the surrounding fluid medium. The standard energy equation 
satisfying the heat balance for a particle is given by 

mcp^ = hA(Tf-T) + A^ p  dt A f      p)        dt (2.2.1) 

dTp 

dt 
(Tf-TP),    L 

xT         mc 

T   _PpcnP
Dn 

T      6Nukf 

dm 
dt 

This equation states that the total change of energy in the particle is due to the fluid/particle 
convection at the surface of the particle plus the energy created or destroyed by the mass transfer 
processes when they exist. The current model assumes that for phase change problems, the 
droplets are evaporating slowly, and for pure liquid droplets, the partial pressure at the surface of 
the each particle corresponds to saturation conditions at the droplet temperature. In other words, 
the liquid particles continuously evaporate, but their rate of evaporation varies with the 
temperature experienced by the droplets. This is not to be confused with a boiling problem, 
where the partial pressure is fixed, and therefore, the droplets evaporate at a constant 
temperature. It is assumed here that the temperature inside the particle is uniform and is 
accurately described by the temperature at the surface. The heat transfer coefficient, h, is 
generally calculated from empirical data. (2.2.1) is usually written in terms of the Nusselt number, 
Nu which is the ratio of the convection heat transfer at the surface of the particle to the heat 
transfer conducted through the fluid medium: 

(2.2.2) 

(2.2.3) 

where density and specific heat are properties of the particle and conductivity is a fluid property. 
The Nusselt number is, in general, a function of the particle Reynolds number given in terms of 
the relative (slip) velocity between a particle and the surrounding fluid. An estimate of the 
particle Nusselt number, or Sherwood number in the case of mass transfer, for the limiting 
condition of a spherical particle in a stagnant gaseous medium (zero sup velocity) can be 
calculated from the equation for conduction from a sphere to a surrounding stagnant fluid layer 

2KKAT 2        AT 

\DP~DJ 

where Dp and Dm are the diameters of the particle and medium surrounding the particle.  In the 
limiting case when the diameter of the surrounding medium becomes infinite, the Nusselt number 
is determined by 

Nu,..   _       .=-±-2- = p- . = 2 (2.2.5) 
0™°,-»-)        kf        Dp(l-Dp/Dm) 

13 
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This limiting case is valid when the relative velocity between the fluid and particle is zero, i.e. the 
particle travels along the fluid streamline. This can also be the limiting condition when the particle 
momentum time constant is very small (Stokes flow - dilute system). 

In the general case, there is a relative velocity between the particle and the surrounding fluid 
which results an increased particle heat transfer coefficient due to the relative convective effects 
of the surrounding fluid. This is represented by a functional relationship between the Nusselt, 
Prandtl, and Reynolds numbers. 

hDn „,„ „ 
Nu = —^ = a + bRe"lYrn 

k p (2.2.6) 

where 

and 

uf~uP (2.2.7) 

pr = tlSs. (2.2.8) 
kf 

While a set of coefficients for the Nusselt number relationship is available, such as 

Nu = 2.0 + 0.6Re55Pr0-33 (2.2.9) 

the user has the capability of supplying a Nusselt number of a general form such as 

Nu =   Vde =2 + 016Reo.667.     Rep(15o (2.2.10) 

The Nusselt number given above is generally applied to heat transfer without evaporation or with 
low intensity evaporation. For high intensity evaporation or evaporation with combustion, the 
above relationship is modified to include 

NUe=Nu(^M!±fl)j;        where B^'^' (2.2.11) 

where cp is the specific heat, £ is the latent heat of vapor. The ratio of ln(l+B)/B is smaller than 
unity which means that the total mass flux at the surface of the particle reduces the heat and mass 
transfer in evaporation. The total surface mass flux includes diffusive flux plus convective flux 
and is sometimes called the Stefan flux. 

Particle Thermal Relaxation Time 
The particle thermal relaxation time,Tr, plays the same role as the particle relaxation time. In 
effect it measures the time required before the particle reaches a state of thermal equilibrium with 
the fluid.  If the particle thermal relaxation time is large relative to the thermal time scale of the 

14 
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fluid, the particle does not have time to adjust to the more rapidly changing energy levels in the 
fluid. If that is the case the particle temperature is determined essentially by its initial condition 
and factors other than the convective heat transfer between the two phases. Conversely, as the 
particle thermal relaxation time gets smaller, the particle temperature is able to adjust more 
quickly to changes in fluid temperature. We will see later that xT is an important parameter to 
consider in order to set an appropriate numerical procedure. 

In a two-way {Level 3) coupling simulation, energy transferred to or from the particlesrto the fluid 
serves as a source or sink of energy with respect to the carrier phase. 

h^M=h (  *Tf\ 
dxi ) (2.2.12) 

where 

V¥ = yS-r-{Tf-Tp)ü 
v

<*>  %T (2.2.13) 

is the energy per unit volume transferred from the particles to the carrier fluid. In the absence of 
mass transfer, (2.2.13) is integrated analytically and the source term becomes 

4* =   p    IT       -T .   | 
v   V Pout     Pm) Ve (2.2.14) 

where Tp out and Tp in are the particle temperatures at the entrance and at the exit of the element. 
In the case of phase change problems, better results were obtained by integrating (2.2.12) with a 
trapezoidal method despite the fact the accuracy of the integration is a function of the number of 
time steps a particular particle takes within the same element. An exception to this method is in 
effect when the mode of heat transfer is user defined. In that case the unpredictability of the heat 
transfer mode being specified by the user prohibits the use of the trapezoidal method. In that case 
the heat transfer between the phases is computed by 

ve[y >>>   L i >,p    u (2215) 

2.3 Conservation Of Mass 

Frequently, the standard conservation of mass for the particle is described by a form of Fick's law, 
relating the mass flux to the gradient of concentration between the dispersed phase and the carrier 
phase. Though one can use any other model, for the purpose of this course we will limit the 
discussion to the use of the Fick's law mode of mass transfer. The equation of conservation of 
momentum is given by: 

^ = Sh(p/oocDVcoo-Ca) 
dt (2.3.1) 
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where the Sherwood number, Sh, is the ratio of the mass transfer at the particle surface (or 
through a boundary layer) to the mass transfer rate in the bulk fluid due to diffusion. (2.3.1) is 
rewritten 

dm _ m 
dt     %m (2.3.2) 

where 

*m = 
6Sh(p/a)(C00-CJ) 

(2.3.3) 

This formulation isolates a time scale for the changes in particle mass. For many applications, the 
Nusselt number and Sherwood number have analogous forms and if knowledge of a relationship 
for the Nusselt number is available, it can be similarly applied as a Sherwood number with the 
correct interpretation. Generally 

Sh = a + bRe™Scn (2 3 4) 

As already noted above, in this model, the evaporation rate of the particle is dictated by the partial 
pressure at its surface. 

C = -pM«t 

PfRT (2.3.5) 

An empirical equation to yield the vapor pressure can be derived by integrating the Clausius- 
Clapeyron's equation. The Clapeyron equation relates the saturation pressure, temperature, the 
change in enthalpy, and the change in specific volumes associated with both phases. 

dT 
(2.3.6) 

/ sat •*■ u liquid -vapor 

Using the assumption of an ideal gas, the above equation can be rewritten as 

Jdln(FU,)=£j«ig) (2-3.7) 

Integrating between a reference point on the liquid-vapor interface yields 

T    Trefy 

(2.3.8) 

The coefficients depend upon the reference conditions  (PrefTref).     This  equation can be 

reformulated as 
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IMwt [ Tr*f 

P = Pref* 
RT, Ttf 

(2.3.9) 

Since the thermodynamic diagrams representing the liquid-vapor interface are highly non-linear, 
care must be taken to "curve-fit" the above equations in the region of interest. Knowing the 
temperature of the particle, Equation (2.3.1) together with (2.3.5) and (2.3.9) can be solved at 
each iteration to determine the mass transfer due to evaporation. r 

Continuity 

Note that in Equations (2.1.25), (2.1.26) and (2.2.5) it was assumed that the flow was 
incompressible and without mass transfer. As a result mass was conserved throughout the whole 
system and continuity still held. In this section as the particles increase or decrease in size, mass is 
transferred to the carrier phase. The effects are two-fold. On one hand, because mass is created 
or destroyed in the carrier phase, the continuity equation does not hold anymore, and is replaced 
by: 

3p«i 

dx. (2.3.10) 

with 

= J 
dm 

~dt 
dt = mom-mit 

(2.3.11) 

On the other hand, the mass created can be tracked throughout the domain with a species 
equation that reads 

a /    x   a de 
pa- 

ar, 
+ r 

(2.3.12) 

If we assume that mass is not conserved, introducing (2.3.5) in (2.1.25), (2.2.5) and (2.3.7) yields 

(-.       -v. V 
-   L 

dx:    dx: 

du:     _ dp      d 
puj -r-1- + Tu: = —~ + - 

dx: H 
dU; KdXj 

+ <D, 

dT                      d 
pcn M, Hi c„ T —  W p<  } dxj pf        dxt 

37/1 

dx 
+V 

i J 

dc   _    a 
pM^+rc = aT pa 

dX: 
+ r 

(2.3.13) 

(2.3.14) 

(2.3.15) 

Note that in the preceding equations we have assumed that particles of a given material evaporate 
to produce the vapor of that particular material.  In that case we only need one specie equation. 
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p"'s;+rc' ^ 
dc. 

-P«1T~ 
dJC, 

+ 0, 

dC2    ,   1-               d 3c, 
-pa2T~ dxi 

+ 02 

dP", _ r _ 0,+G2 

It may happen however, that particles of different material are introduced. For mstar.ce we can 
oSerf mixture of water and ethanol droplets flowing in air.  If both matenals are allowed to 

evapomte we need two species equation to track the evolution of each parttcnlar vapor m the 

domain. Thus: 

r    (2.3.16) 

(2.3.17) 

dxt '       ' (2.3.18) 

2.4 Particles in Turbulent Flows 
Turbulence in itself is a very complex phenomenon: in general it will not be possible for any 
Xtmton'o describe the details of the interactions between particles and turbulence and some 
S of modeL is required. The model should describe the way particles behave in a turbulent 
flow iralso the modification of the turbulent field due to the presence of particles^ It is 
expected htwever, that, if the particle loading is sufficiently small, Pfff^^^ 
affect the turbulent properties of the carrier phase. Regardless of particle loading, "rbulencejs 
hfdo^inant mechaLm by which momentum, heat and mass are ^^T^^ 

phase and between the dispersed phase and the carrier flow. In the absence of particle-particle 
interactions, it is the only mechanism which can lead to the spreading of particles. 

In the Eulerian formulation the field variables are mean values obtained by time (or ensemble) 
^^L complemented with closure models. The turbulence model for the particle^ 
Safe'described via me Lagrangian approach, requires instead that^ some informat.on.* 
retrieved about the fluctuations of velocities, temperature and mass frac ion of the species 
Eclated with the dispersed phase. Referring for the moment to isothermal flows, the^heartof 
rmodelT the specification of the time history of the carrier fluid as experienced b>> the 
prides This time history is the velocity to which the particles respond through the coupling 
le^s in'the equation of motion: the fluid velocity variations directly determine the extent of 

particle dispersion. 

The tvDical approach for the approximation of the velocity experienced by the particle is a 
Random walk" model which assumes the carrier phase velocity be the sum of a ocaj mean 
veTo^aTTrandom fluctuations. The random fluctuation is selected from a Gaussian dtsüabufon 
wiSo mean and a variance related to the turbulent velocity scale eormng from the model used 
JlTmZ flow solution. A stochastic approach can be used in conjuncuon w, h the t-e 
mdl wfch allows, under the assumption of Isotropie turbulence, the evaluatton of the ve octty 
fl^tton from the kinetic energy obtained as field variable from the solutton of the Eulenan 

problem. 
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u =XQkf (2.4.1) 

where X is the random generated number sampled from a normal distribution. 

In addition to the velocity fluctuation, further information is required to model the particle-eddy 
interactions, that is the frequency of the fluctuation sampling. For the particle eddy interaction the 
"eddy lifetime" concept, initially developed by Gosman and Ioannides (1981) and successively 
modified by other authors, is used. An assumed eddy length is computed, based on the local 
kinetic energy and dissipation 

3 

Le = q— (2.4.2) 
e 

the eddy lifetime is estimated by 

(2.4.3) m 
In addition to the eddy lifetime, the time needed for the particle to cross the eddy of length L, is 

computed. This takes into account the so called "crossing trajectories effect", that is the 
possibility that the particle can leave the eddy before the end of eddy lifetime. The transit time is 
found using the linearized equation of motion for a particle in a uniform flow 

t. =-2 In 
TU, —U  i I   /        P\J 

(2.4.4) 

where  u —uJ is the relative velocity at the start of the interval andx is the particle relaxation 

time. During the computation of the trajectories, whenever an interval of time equal to the 
minimum of (2.4.3) and (2.4.4) is elapsed, it is assumed that the interaction with a new eddy has 
begun and a new fluctuation is sampled. 

In (2.4.4) if Le >T u-uJ no solution exists (the particle is captured within the eddy) and the 

interaction time is always taken to be te. The integration time step is also adjusted so that it can 

never be greater than the minimum of (2.4.3) and (2.4.4), in order to avoid loss of information 
about the particle-turbulence interactions. 

Temperature and mass fraction associated with the particle also experience turbulent fluctuations: 
it is important, however, to point out that the velocity history has an indirect but very strong 
effect on the exchanges of heat and mass between the particles and the fluid since the state of the 
fluid surrounding the particle depends on where in the flow field the particles have been 
transported by mean and fluctuating fluid motions. In addition to this effect, local fluctuations of 
temperature and species composition are added to the mean (averaged solution), based on the 
temperature and species gradients. 

T = f + XQ' (2.4.5) 
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where 

e'=  c 
3   fdTdT 

^e2a. ydxjdx]y 

c = c + \($' 

(2.4.6) 

(2.4.7) 

where 

<P   = JCu e25, 

de dc 

dXjdxu 

(2.4.8) 

In the above formulas A, is the random generated number while G, and S{ are the turbulent 

Prandtl number and the turbulent Schmidt number. The eddy lifetime model is widely adopted in 
the computation of particles in turbulent flows. It has proven to give results in good agreement 
with experiments and with more sophisticated and expensive models for the point source 
dispersion. It has also successfully been used in spray computations and for particle laden 
swirling flows. Due to the assumption of isotropic turbulence in (2.4.1), it can be expected not to 
give accurate results if the particle dispersion is governed by the motion of strongly anisotropic 
eddies. Being a stochastic model, it requires a significant number of particles to be tracked before 
the statistical distribution can be reached. The number of paths depend on the level of accuracy 
required. 

3.      Numerical analysis 
3.1      Non-dimensionalization 
Non-dimensionalization of the governing equations is a powerful tool that increases our 
understanding of the physics at play as well as help us devise the most appropriate numerical 
technique. This is particularly true for dispersed two-phase flows. The table below summarizes 
some of the important non-dimensional parameters and variables relevant to two-phase flows. All 
the governing equations can be rewritten in non-dimensional forms with the use of these 
parameters. 
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Non-Dimensionalization of Flow Variables 

JC   =■ 

Uf 

U 
c 

CPI = 

Pi 

CP{ 

* = tU_ 

~ L 

* U
P u'=ir 

LPP ,. 

p/ = 

r* - Tf 

P/ 

II 
AT 

a D, 1 
a 

PfUL 
A  =■ 

Pi 
A 

cfAT 

O M 
PfU   I L 

OT = 

/- 

* 
P 

UL      Per 

*     PP 

T 
T* =    p 

"     AT 

'/ 1 

P/t/
2 /?  = 

UL     PeT 

RAT 

(kfAT 
Pen 

J 

Ul 

Fluid Time Constants 

xf 
L 

Xrp _PPDP 
öNuiky 

TP 
_PPD; 

18JI, tm 
PP

D
P 

6Shp^am 

Dimensionless Parameters 

The dimensionless parameters defined above are: Fr, the Froude number, is a ratio of the inertial 
to the gravitational forces in the system; Load, the Loading number, is the ratio of the particle 
mass flow to the fluid mass flow; Sh, the Sherwood number, is the ratio between the mass transfer 
at the particle surface or through the boundary layer to the mass transfer in the bulk fluid because 
of the diffusion mechanism; Sc, the Schmidt number, is the ratio of the momentum diffusivity to 
the mass diffusivity in the fluid; Ste, the Stefan number, is the ratio of sensible heat to latent heat; 
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St", St*1, StT, the hydrodynamic, inertial and thermal Stokes numbers, respectively, are the ratio of 
the respective time constants to the fluid (system) time constant; Eck, the Eckert number, is the 
ratio of the thermal capacity of the fluid to the fluid kinetic energy. 

The particle relaxation numbers do not provide enough information in and of themselves. These 
time scales need to be measured against the fluid, and that number is what characterizes a 
particular aspect of the flow. Clearly, when any of those numbers become very small the system 
of ODEs that need to be solved becomes stiff, and the evaluation of the right hand side of these 
equations is likely to result in overshoots and undershoots. 

The Froude number measures the relative importance of gravitational forces. This influence 
competes with the hydrodynamic Stokes number. The source terms in the carrier phase are 
treated explicitly, that is they appear on the right hand side of the governing equation. As a result 
when these source terms are significantly larger than other terms in the equations, the problem 
gets more difficult to converge and typically, higher levels of relaxation are required. This may 
arise if the Froude number becomes exceedingly small. In most cases the mass flow rate is small 
enough that the total contribution of gravity to the source term remains small. 

The following table attempts to illustrate the relative contribution of momentum and gravity to a 
discrete phase in a moving carrier medium. The carrier is assumed to have a average velocity of 
U = 1.0 m/sec and a characteristic length of L = 1 m. The particle transport equation can be 
written as 

du* u. 
— + — 

dt*     StH     StH    Fr' (3.1.1) 

where 

Fr' 
Ul 

(Pp-P/) gL 
PP 

The magnitudes of the Stokes and Froude numbers are: 

Case Particle Size 
(m) 

Particle 
Density 
Kg/m3 . 

Carrier Fluid 
Density 
Kg/m3 

Carrier Fluid 
Viscosity 
Pa-sec 

Stokes 
Number 

Froude 
Number 

A 1.0E-03 1200 1.2 1.8E-05 3.7 0.102 

B 1.0E-03 1200 1000 1.0E-03 0.08 0.612 

C 5.0E-05 1200 1000 1.0E-03 0.0002 0.612 
D 1.0E-03 1.2 1000 1.0E-03 0.00007 -1.2E-04 
E 1.0E-05 1.2 2500 1 5.0E-12 -5.0E-05 

Cases A, B, and C illustrate the particle time constants for a solid particle in air and water. Cases 
D and E illustrate the particle time constant for air particles in water and glycerin.  One can see 
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from the above table the first and second terms can have differences of many orders of magnitude 
in the worst scenario. As will be seen in the next section, the method that one uses to time 
integrate the equations for determination of particle trajectory can be computationally intensive 
depending on the magnitude of the terms on the right hand side of the equation. 

3.2 Particle Integrators 
The following section describes three methods to solve the ODEs describing the paniculate phase, 
namely the explicit, the implicit, and the semi-analytical methods. It also suggests ways to choose 
between solvers to bypass potential difficulties. 

In order to evaluate the benefits of each solver let us consider the general form of an ODE: 

^ = F(yt) 
dt     ny,) (3.2.1) 

The explicit method consists of a standard second order Runge-Kutta approach, that is 

y^=y>+dtF{y^\) 0.2.2) 

with 

y^ = yi+4F{y^i) 2    v '  " (3.2.3) 

Being explicit, the Runge-Kutta method begins to break down when the system of equations 
becomes stiff. In such cases an implicit method is more reliable. 

The implicit method used is a fully implicit method known as Backward Euler. Even though this 
method is one order less accurate than the explicit solver, the stability qualities of this solver 
compensate for the accuracy level. Note also that when used in conjunction with a variable step 
control algorithm the accuracy is increased to order 2. The algorithm reads 

y£ =yi+dtF(y-+vtM) (3-2.5) 

The Semi-analytic algorithm assumes that within a time step, all quantities are constant and 
therefore the solution can readily be obtained with a simple integration between the beginning and 
the end of the time step: 

yM=^Fiy**)K (3.2.6) 

In order to evaluate the merits of each solver relative to each other let us start with the following 

equation 

d<3>     Q-Q 
~di~      x      +8 (3.2.7) 
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All the governing equations for the particle equations can be put in that format. For the sake of 
simplicity we will also assume that the Background velocity field is constant and that we are 
dealing with a Stokes flow for which the particle relaxation time is constant. The following table 
describes the solution at each time step given by each solver: 

x=dt/x Explicit Implicit Semi-Analytic 

*,-+i <t>,+(<!>„-<J>,+gt) K) Q>i+x(<b00+gx) 

l + x 

<D «, - (<*> «, - <E>,)e~x + gx (l - e~x) 

lim 
x->0 

<D,. */ *,• 

lim 
x—»<*> 

oc O^+gT Ooc+gt 

Clearly x never goes to zero or infinity, however the point of this exercise is to show how each 
solver behaves as x becomes very large or very small. A situation for which x is small occurs 
when the particle relaxation time is large and we look for an accurate solution by using a small 
DT. All three solvers are expected to give us the same solution in the extreme case where x is 
significantly small. For values of x significantly large, the explicit solver can not be used due to 
instabilities. In all other cases, any of the solvers can be used, the accuracy of the solution 
depends on the characteristics of the solver. For instance the explicit solver would be the most 
desirable alternative in that area since it enjoys the highest order of accuracy 0(h2) for fixed time 
step and 0(h3) for variable time step. As the particle relaxation time decreases (x increases) there 
comes a point where the time step required to keep x<l becomes prohibitively small and the 
explicit solver simply becomes unusable. 

Example: Air bubbles in Water 

pp = l.2Kg.S-1 

\lf = \Qr*Kg.m~xs' 

D=\0~6m 

18(i 

In order to properly integrate this system we would need a time step two orders of magnitude 
smaller than the particle relaxation time for a total x value of about 0.01. In that case any of the 
solvers would be appropriate. Unfortunately a time step of the order of 10E-12 is prohibitively 
expensive. We have to find a solver that gives reasonable results even with a time step much 
larger than the particle relaxation time. The next choice could be the implicit solver or the Semi 
analytic solver. The trick here is to compare the time scale of the particle to the time scale of the 
carrier phase, in other words the value of the Stokes number. If the Stokes number is significantly 
smaller than one, then we know from the discussion in section 2 that the particles essentially 
behaves like fluid. In this case we can use the Semi-analytic solver with a large time step for an 
economic run with very limited loss of accuracy. Ideally one would always use a time step that is 
smaller than the minimum between the particle relaxation time and the time scale of the carrier. 
Unfortunately, this is not always possible. The following table describes some of the strategies 
that we have found to work in most cases. It should be stressed that this is not a panacea, rather, 

24 



Modeling Multiple Phase Flow and Phase Change 

it is expected that the user will develop his/her own feel of the various trade-offs involved when 
switching from one solver to another. The first line represents actual Stokes numbers relevant to 
the problem, and the first column provides a range of time steps that a user may or may not be 
able to afford on his/her system. 

St«l                              St=l                              St»l 

dt/x«l 

dt/x-1 

dt/x»l 

ExpVlmp/Semi               ExpTlmp/Semi                   Exp'/Imp 

Imp*/Exp/Semi               Imp*/Exp/Semi                   Imp*/Exp/ 

SemiVlmp                       Imp/Semi                            Imp 
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Nomenclature 

c,C Mass fraction 

CD Drag coefficient 

cp Specific heat 

D Particle diameter 

F Force 

g Gravity 

k Conductivity 

t Latent heat 

L Length 

M Vapor molecular weight 

n Number density 

R Universal gas constant 

T Temperature 

cp 
Specific Heat 

/ 
CDRe 

24 
k Turbulent kinetic energy 

m Mass 

P Pressure 
t Time 
U,u,v Velocity 

nimpnsinnless Numbers 
Fr ' Froud number 
Nu Nusselt number 

Pe Peclet number 

Re Reynolds number 

Sc Schmidt number 

Sh Sherwood number 

St Stokes number 

Ste Stefan number 

Modeling Multiple Phase Flow and Phase Change 

M Momentum 

T 
m 

Energy 
Continuity (Mass) 

Subscript 
p         Particle 
s          Surface 
t          Turbulent 

Greek 
a         Specie's diffusivity 
e         Turbulent dissipation rate 
A        Length 
X         Random number 
ri         Number density, number of particles 

V 

Viscosity 
Kinematic viscosity 

P 
4> 

Density 
Volume fraction 

O Source Term 

V Energy 

X Relaxation time 
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1.     Particle Characteristics In Flow Fields 
1.1      Basic Definitions 
The volume or void fraction of the paniculate phase is described by the density of the 
paniculate in bulk form ("material" density or "bulk" density) and the density of the 
material as dispersed in the carrier medium ("apparent" density).   The densities of the 
dispersed phase and the carrier medium are given by 

PP=<I>PP (1.1.1) 

Conversely, the apparent density of the carrier medium is given by 

P/=(l-40p/ (1.1.2) 

The "barred" quantities are the "bulk" densities of the paniculate 
volume fraction, usually given as parts per million-ppra, is given as 

and the carrier.   The 

())=PL 

PP 

(1.1.3) 

The volume fraction of the carrier fluid is defined as 

e = l-<|) (1.1.3a) 

The mixture density and the mass ratio between the particle and fluid phases can now be 
written in terms of the mixture volume and bulk properties as 

Pm=PP+P/=<t>PP+(l-<l>)p/ (1.1.4a) 

and 

PP_   <t>   PP 

P/     1-<I>P/ 
(1.1.4b) 

In terms of a particle diameter, Dp, the mass of an individual particle can be given as 

(1.1.5) 

If the number of particles per unit volume, the particle density, is 
density of the dispersed particulate phase can also be written as 

1 

given by np, then the 
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PP=npmp (1.1.6) 

An estimate of the particle spacing can be obtained by substitution of Equation 1.1.5 into 
1.1.6 yielding 

"6   p <t> = nD-^ (1.1.7) 

where np is the particle number density. The ratio of the particle spacing to the particle 

diameter is equal to 

I   =_/L = _<l_=  JL (1.1.8) 
P    Dp      Dp     {(*) 

For example, for a volume fraction of particles, <|> = 0.01 (10000 ppm), the particle spacing 
is approximately four (4) particle diameters. Estimates of the validity of the assumption of 
dilute particles neglecting multiple interactions between particles will be discussed in a 
later section. 

In principle, the particle volume fraction can be calculated from the Lagrangian solutions 
of particle trajectories by summing up the volumetric contribution of all particles, of "i" 
different diameters, starting from "j" locations passing through a volume, Ve in a increment 
of time, 8t. 

_ _  771; ,8* 

f-llfr "•'•9> 
i      J    r p,ir e 

The residence time for the particle in the element of volume is 8t. For a single particle 
diameter, the above equation can be written as 

1 _,Ti,m ßt      1 _TI,V_& 
<b=— y j p =—y j p (l.i.io) 

V ^    ö V ^     l ve    J Yp Ye    J x 

where rjj is the particle frequency (number of particles per second), Vp and Ve are the 

particle and element volumes respectively. 

1.2     Particle Dilution 
For multi-phase flow analysis in FTDAP, a critical assumption is that the particle field is 
dilute and that no significant particle-particle interaction (collisions) takes place. It is 
important to obtain a prediction as to the validity of this assumption in order to obtain 
some confidence level that the analysis will capture the physics of the process correctly. 
This section presents the basic definitions of relevant parameters, and formulas to obtain 
an estimate of the valid particle loading range for a given problem. 

The following table gives the definitions of some of the important parameters that are used 
for the derivation of the particle loading formulation: 
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Table 1.2.1 Parameter definitions relevant to particle dilution. 

A 1/3 

XPP=~ 
U„ 

A = (Ä7tD2)" 

= r = D2 PA 
pf    ü    18v p, 

<J) = f «D3 

a = A« 
2 

where T is the mean particle spacing (characteristic distance between particles); A is the 
mean free path (characteristic distance traveled by the particles); <|> is the particle volume 
fraction; xpp is the characteristic particle-particle interaction time; Tpf is the characteristic 
particle-fluid interaction time; n is the particle number density (number of particles/m3); u 
is the characteristic fluid velocity (root-mean-square); up is the characteristic particle 

velocity (root-mean-square); D is the particle diameter; v is the kinematic viscosity; p is 

the density; a is the diffusivity. 

For a system to be considered dilute, the ratio of particle-particle interaction time (Xpp) to 

particle fluid interaction time (v) must be much greater than 1: 

K*=-^ = 
%pf     V2np7tDjMT 

»1 (1.2.1) 

pf 

This simply means that the time it takes a particle to collide with another is much greater 
than the time it takes for it to react to the flow. By using the definition of the particle 
volume fraction given in Table 1.2.1, the same ratio can be written in terms of <|>: 

R* = 
D 

&j2uptyzpf 

The particle fluid interaction parameter is defined as 

»1 (1.2.2) 

K = 2w^- (1.2.3) 

The ratio R* can then be rewritten as 

R = 
D/A   u 

3V2<j>K üp 

»1 (1.2.4) 

Rearranging Equation (1.2.4), and using the second definition of tpf and of a from Table 

1.2.1, the following expression for § is obtained: 

+ see Hetsroni, G., Handbook of Multi-Phase Systems. Mc Graw Hill, 1982. 
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<j>« 
34% vAp/ M (1.2.5) 
2V2 a D p„ up 

For small particles (K«1), the ratio ü/üp « 1, and for large particles (K»1), the ratio 

ü/üp = (K/V^)"
2
 • This gives the following limiting expressions for the volume fraction: 

3Vrc vAp/ <J>« 
2V2 aDp. 

1« 
1 

1/2 

UP/ 

V«PPy 

for small particles 

for large particles 

(1.2.6) 

(1.2.7) 

For example, for diffusivity of 2.e-5 m2/sec, and a fluid mean velocity of 2 m/sec, we have: 

small particle (~5 |im) 

large particle (-100 urn) 

for pp/pf= 1000 

4><0.5% 

4><0.5% 

pp/pf=100 

<|><5% 

(Jxl.5% 

As seen from this table, the volume fraction limit is independent of particle size for heavy 
particles. However, the limits are significantly different for lower density ratios. 

An upper limit on <j> can also be computed by requiring that the characteristic distance 
traveled by the particles (the mean free path) be greater than the distance between 
particles (particle spacing): 

A>r (()< 
3/4 

6Vrc 
or        <|>< 0.056 (1.2.8) 

A rough estimate of the validity of the model can be obtained as follows. The first check 
that can be performed is the evaluation of the mass loading number, defined as the ratio of 
the mass flow of the particles to the mass flow of the carrier phase. If the mass loading 
number is not much less than unity, the dispersed phase cannot be considered dilute. 

The mass loading gives only a first approximation of the relative importance of the two 
phases in the flow, due to the large difference that can exist between the densities of the 
two phases For this reason the volumetric loading, obtained dividing each of the mass 
flow rates by the respective densities, is a much better indicator of the relative importance 

of the dispersed phase. 

A low value of the volumetric loading does not mean that the suspension is necessarily a 
dilute one The reason for this is that the volumetric loading compares the volumetric 
flow of the particles to the whole flow rate of the carrier fluid, while the region where the 
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particles are injected could be only a limited part of the fluid domain.   A more reliable 
information can be obtained computing the local volume fraction at the inlet section. 

The computation of the volume fraction requires an estimate of a characteristic inflow 
velocity Up of the particles at the inlet section. The number of particles per unit time can 

be computed dividing the mass flow rate by the mass of the single particle. 

f) = - (1.2.9) 
m 

For a given time interval St, the number of particles entering the domain is 

np=i]bt (1.2.10) 

and the distance traveled in that time is 

L = Upbt (1.2.11) 

If A, is the inlet area, the particles which have entered the domain in the interval bt will 
occupy a volume given by 

V = Aiüpbt (1.2.12) 

The volume fraction of the dispersed phase can be computed dividing the total volume of 
the particles by the volume V 

nnün $ = -£-£- (1.2.13) 

Substituting in (1.2.13) the expressions for np and V: 

<|)=     m (1.2.14) 
PpVc 

If the particles are uniformly distributed in space, the volume fraction allows an estimate 
of the ratio of a typical particle-particle distance relative to the particle diameter 

I    fni 
v6(tV 

(1.2.15) 

The following table gives some characteristic values of the ratio 1/d vs. the volume 
fraction. Values of <j> around 0.01 are the upper limit for the dispersed phase solution to 
be considered dilute. 
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4> 1/d 

10-4 17 

10"3 8 

10"2 4 

6.5xlCT2 2 

lo-1 1.73 

8x10"' 1. 

The volume fraction can reach values above the limits of applicability of the model if the 
mass flow is increased or if the inlet section is reduced. Note, however, that the volume 
fraction increases also if the particle inlet velocity is very low. This can be the case, for 
example, for very small bubbles rising in a quiescent fluid (the terminal velocity decreases 
with the square of the particle diameter) and imposes stringent limits to the mass flow rate 
that can be handled by the model. 

1.3      Modeling Inlet Conditions 
The above description of the volume fraction is based on particles in a three dimensional 
domain. Establishing flow boundary conditions for a 3D flow field analysis or a 2D 
approximation to a 3D field requires some interpretation. In a flowing system, the fluid 
and particle information must be supplied at the boundaries of the computational domain. 
The complete information on flow and particle fields must include fluid and particle mass 
flow rates, particle size, and material density, and frequency of particles flowing into the 
domain at all locations. This information at the boundary needs to be consistent with the 
volumetric descriptions of the particulate flow. 

In general, flow fields with discrete particles are strictly three dimensional. Consider, for 
instance, a fluid/gas containing discrete particles flowing through a duct. Suppose the 
duct has a width, W, a height, H, and a length, L. 

Figure 1.3.1 Geometry of Duct with a Multi-Phase Flow 

Flow information is usually supplied by defining a particle loading, a , which is the ratio 
of the mass flow rate of particles to that of the carrier medium. 
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m. 
a = 

m, 
(1.3.1) 

The loading can also be given in terms of a) the particle and fluid velocities and the 
apparent densities or b) in terms of the particle and fluid velocities, the volume fraction of 
the particles, and the material densities. 

a = 
(     lul ̂  

V u n) Pf 
1- 

u. Y 
u fly 

♦ \ 

!-♦ Pf 
(1.3.2) 

where the "relative" velocity is defined as |ur|= uf -uj  .   In the case where the 

"relative" velocity is zero, the mass concentration and the loading are identical. 

The total number of particles per unit time entering the domain, ^(r"1), or the particle 

frequency crossing the plane of the inlet can also be calculated knowing the material 
density and particle volume. 

il' = - 
m. 

pnvn 
(1.3.3) 

The total particle frequency, T|', is interpreted as the number of particles per unit time 
entering the domain. The particle frequency, T|, at an individual location requires a 
knowledge of the total number of particles passing across the inlet plane.   For a given 

r 
particle volume fraction, <|), the particle spacing, £,   = ——, can be determined from 

p 

Equation (1.1.8).   As particles pass through the plane of the inlet, the projected area 
fraction of solid particles of diameter, Dp, can be given as the ratio of the projected 

particle area to the projected area of diameter Tp which characterizes as the spacing 
between particles. 

Figure 1.3.2 Area Fraction of Solid Material between Particles 
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a„M = ^L      1   J2T (1.3.4) 
"      *T2      T/      V      U 

4    " 

The total number of particles per unit total area can be estimated by dividing Equation 
(1.3.4) by the projected area of a single particle yielding 

2/3    i 1 rwc,k2/3 ap      4 r6(t>Y/3  1     1.96(j>2/3 

pn(particles I total area) = „       = — —       —0- = 9—        (l.J.D; 

4   p 

From Equation (1.3.5) and the total inlet area, the particle frequency at an individual 
location can be determined. 

p     m 

The total mass flow of particles across the inlet plane is the product of the particle 
frequency, particle material density, particle volume, particles per unit area, and total inlet 
cross sectional flow area 

™p=r]pppVp$pAMet (1.3.7) 

Substituting the above equation into Equation (1.3.5) yields an expression for the total 
inlet flow rate through a duct based upon a particle frequency at each location, the particle 
material density, a known particle diameter, Dp ,a known particle volume fraction, <J>, and 

the total inlet area. 

^=1026^0,(1)^ (1.3.8) 

The total number of particles crossing the inlet plane of a rectangular duct is 

np = ßpW-H = (^w)(^ß;H) (1.3.9) 

For a circular duct of radius R, the expression becomes 

np = ßp7cR2=7i(Vß;R)(Vß;R) (1.3.10) 

Example 1: Determination of Particle Inlet Conditions in 3D 
Consider a fluid flowing through a 5m by 5m duct as shown in Figure 1.3.1. The carrier 
fluid, material density of 1000 kg/m3, has a volumetric flow rate of 10 cubic meters per 
second. Particulate matter, 75p,m in diameter with a material density of 1100 kg/m3 has a 
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volume fraction given as 3500 ppm. Estimate the mass flow rate of particles, the particle 
frequency, and the number of particles in the inlet plane. 

Material densities of the fluid and particles, particle diameter, inlet area and volume 
fraction for a duct flow with uniform particle distribution are 

pp = 1100kg/m3 

pf =1000 kg/m3 

Dp=75E-06m 

Ain=//W = 5-5 = 25m2 

|U|(>)= 0.4m/sec 

$ = 3500 ppm = 0.0035 

Particles of this size fall in the range of coal dust, catalyst fines, and lint fibers. 

Prior to any analysis being undertaken, the boundary conditions of the flow and particle 
fields at the inlet to the duct must be estimated. The particle spacing can be calculated 
from Equation (1.3.8) 

i 

71 
5.3 

v6<f>y 

r = P D_ = 5.3• 75um = 0.0003975m 

Assuming a uniform distribution of single sized particles, an estimate of the number of 
particles per unit area in the inlet plane can be given by 

\2/3    i , H/:A2/3 

ßp = —£- = - —       -Ö- =■       9     = 8.035£ + 06particles I m2 

4    P 

The total number of particles, np, passing through the plane of the inlet duct is therefore 

np = ßpA^ = 2.01E +08 particles 

The particle loading, assuming equal particle and fluid velocities, is given by Equation 
(1.3.2) 

( 
a = <$>   )Pp ■ 0.00386kgp/kgf 

}-*)Pf 

The particle flow rate is therefore 

mp = a(l - <}>)ÖP/ = 38.47Jtgp / sec 
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The frequency of particles (total number of particles per unit time) entering the duct at 

each of np locations is given by Equation (1.3.3) 

«' =     mP     = 38-47 = 788 particles I sec/ location 

PpVnnp    noo.7c^P2.01£ + 08 
6 . 

For a correct interpretation of a uniformly distributed dispersed phase, a particle mass 
flow rate of 38.47 kg/sec results in approximately 788 particles per second being 
generated at each of 2.01E+08 particle locations in the inlet plane. 

One can note that, if the inlet is discretized so as to provide one element (cell) for each 
particle, the mesh would be roughly 2.E+08 elements in the inlet. This is, of course, 
unrealistic from a computational viewpoint. What is usually done is to reduce Ae 
"resolution" of the mesh to something realistic numerically and decrease the total number 
of particle locations present in the inlet plane. If this is done, the particle frequency must 
increase to conserve the correct mass loading. The new particle frequency is the old 
particle frequency multiplied by the ratio of original number of particle locations to the 

new number of locations. 

/     nP 
np. 

Determination nf Particle Inlet Conditions in 2D 
O^nhe^implifying assumptions in CFD is to reduce a problem from a 3D to 2D For a 
2D analysis, several restrictive and physically unrealistic conditions must be applied. Ihe 
first is that any variation of any variable in the "y" direction (Figure 1.3.1) must be 
negligible This holds for the carrier medium and also for particulates. For instance, 
particle trajectories calculated in 2D must be identical along any plane in the  y  direction 

The distribution of particles in the "y" direction must not vary in size or spacing, and the 
number frequency of particles at any location must remain constant. The inlet momentum 
of both particles and fluid must be identical along any plane normal to the y  coordinate. 

Referring to the previous example for all properties and conditions, the average flow rate 

of the fluid per unit depth is given by 

U _ Q. = 12. = 2.0m3 / sec- m 
W     5 

Dividing the particle mass flow rate by the material density and the depth dimension of the 
duct yields the average volume flow of particles per unit depth 

mp - _38'47   = 6.998JB - 03 ml I m - sec 
m"     pW     1100-5      ' P 

10 
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Based upon the given particle diameter of 75 microns, Vp = 2.209E -13 m3, the 

number of particles per unit time per unit depth is 

r\' =    m"     =3.164£ + 10 
VpWpp 

In a two dimensional analysis, the concept of a unit depth implies lumping of all particles 
into a single particle located in the width direction per unit depth. In actuality this is the 
limiting case for the worst accuracy possible since all momentum is located at a single 
location. The highest accuracy would occur if the particle frequency in 2D would be 
equivalent to the particle frequency in a 3D solution. Since the volume concentration is 
known, the estimated particle spacing in the "y" direction can be used to distribute the 
particle momentum more evenly. Therefore, the number of particles per unit depth in the 
"y" coordinate becomes 

—- = ^/ß~ = V8.031E + 06- = 2.834£ + 03particles I unit depth 

The particle frequency per unit depth becomes 

TI" = -JL= =11165^ + 07 

This still indicates that one particle location is present in the inlet of the 2D domain but 

 are present in the depth direction. Obviously a better solution would be to distribute 

the particles to more locations along the inlet. Dividing the particle frequency per unit 

depth with the number of particles present across the height of the inlet, L/ßpHj, will 

yield a particle frequency identical to that in a 3D analysis: 

xi =   , —TI" = r\" = 788 particles I sec 
fi^H L417S + 04 

To provide the correct mass flow of particles for a Level 3 analysis, the number of 
particles in the inlet duct and the particle frequency required at the inlet for a consistent 
mass flow and momentum between 2D or 3D analyses is np = 7. IE + 04particles and 

r|p = 789particles I sec. Again, it is obvious that discretizing the height of the inlet duct 
with approximately 70,000 elements would be unrealistic from a computational viewpoint. 
If the number of particle locations is reduced to 100 across the height of the duct, then the 
particle frequency would have to be increased to 

T|' = ——T) = 5.6E + 05    particles I sec/ location 
100 

to provide the correct flow rate and particle momentum at the inlet. 

11 
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IN SUMMARY, when undertaking a two dimensional analysis, care must be taken as 
to the interpretation of the third dimension. The mass flow rate obtained in the two 
dimensional analysis for a single phase flow is interpreted as flow per unit width of the 
channel. In a discrete phase analysis, the flow per unit width can be interpreted to 
range from a single particle to as much as the actual number of particles per unit 
width of duct. 

Particle Size Distributions 

At any point in the domain, particles can be introduced at a given mass flow rate. Given 
the number of particles and the mass flow rate, the number of particles per unit time, T|, at 
each location is computed to be 

rip 
Tl- 

npPpVp 

Particles introduced at a point can be of a single size, or consist of a distribution of sizes. 
If injection is monodisperse, FIDAP, automatically calculates the particle frequency, rj, if 
the mass flow rate/per location and size of particle are supplied. The mass flow rate per 
location in the last example is 

mn 
m" = ^-= 2.184E - 05 kg / sec / location 

n 

The frequency of particles, calculated internally by FIDAP, is unavailable to the user but is 
calculated internally to be approximately 49 particles per second at each location. If 
injection is assumed monodisperse (same particle size) each command given to FIDAP for 
particle injection, assumes that the mass flow rate supplied is for "each" location specified 
by the user. 

zn" = _£. = 2.184E - 05 kg / sec / location 
n 

At each of the five (5) locations specified, FIDAP would utilize a particle frequency of 

rhplnp _ 2.1ME - 05 

r p     p r,m f 

6 

■q' - —I L — ^1^—^1 = 49,08 particles I sec 

850-71    p 

Correct calculation of the particle frequency is important when a "two-way" coupling 
(Level 3 analysis) is undertaken. 

Using a particle distribution at "each" location which is Gaussian, LogNormal or in the 
form of a histogram, the mass flow specified on the PARTICLE command in FIDAP is the 
total flow rate at an individual location. Based on the specified size distribution, FIDAP 
will calculate the particle frequencies for each size with the sum of the mass flows adding 
up to the total mass flow rate per location. 

12 
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1.4     Two-Phase Capabilities in FIDAP 

TWOPHASE COMMAND 

The operations driven by the TWOPHASE command are independent of the various 
particles in the flow. The keywords in that command set general parameters ranging from 
integration parameters, to descriptions of forces applied to the particles. 

SOURCE SOLVER ALGORITHM INTEGRATION 

PARAMETERS 
FORCES HEAT TRANSFER 

MODE 

EXPLICIT 

SEMI-ANALYTIC 

FIXED 

DT 

DRAG 

FRACTIONALERROR GRAVITY 
FIPOST GLOBALERROR TEND BUOYANCY THETA TMPUSER 
FISOLV 

IMPLICIT TOLERANCE VARIABLE 

LOCALERROR 

WINDOW 

TSTART 

DTMAX 

PHI ISOTHERMAL 

TEMPERATURE OMEGA 

UCHAR DTMIN CORIOLIS X 

VCHAR NSTEPS CENTRIFUGAL Y 

WCHAR 

SCHAR,SPEC=N 

Z 

DRUSER 

MASS TRANSFER DRAG COEFFICIENT NUSSELT NUMBER SHERWOOD FLOW SOURCE TERMS 
MODE MODEL MODEL NUMBER 

MODEL 

REGIME 

MDNONEVAPORATE 

PHUSER MDEVAPORATE 

PHASECHANGE MDUSER PUPDATE 

PARTOLERANCE 

MNNONEVAPORATE 

MNEVAPORATE 

MSHERWD 

MSUSER 

LAMINAR 

TURBULENT 

NOMASS 

NOMOMENTUM ACOEF 

POLYNOMIAL BCOEF MNUSER NOTEMPERATURE 
GASCONSTANT CCOEF 

ECOEF 

PARTICLE COMMAND 

The role of the particle command is to provide a description of the particles that are to be 
introduced in the flow. These particle characteristics range from initial position, to 
chemical composition. Each particle command defines a set of particles that all have the 
same characteristics. The following tables summarize the keywords that may be used 
depending on the type of problem to be solved. 

ISOTHERMAL PROBLEMS 

PARTICLE PARTICLE INITIAL PARTICLE PARTICLE PROPERTIES 
ID POSITION CONDITIONS TYPE SIZE 

COORDINATE ux/uzc SOLID GAUSSIAN DENSITY 

ELEMENT UY/URC LOGNORMAL MSOLID 
SET NODES UZ/UTHETA HISTOGRAM 

PARCEL LOCAL MONO 
MASSFLOW X/ZC 

Y/RC 

Z PSIZE 

STANDARDDEV 

13 
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THERMAL PROBLEMS 

PARTICLE PARTICLE PARTICLE PARTICLE PARTICLE PROPERTIES 

ID POSITION VELOCITY TYPE SIZE 

COORDINATE ux/uzc SOLID GAUSSIAN DENSITY 

ELEMENT UY/URC LOGNORMAL MSOLID 

SET NODES UZ/UTHETA HISTOGRAM 

PARCEL LOCAL MONO MSSPHT 

MASSFLOW x/zc 
Y/RC 

Z 

TEMPERATURE 

PSIZE 

STANDARDDEV 

PHASE CHANGE PROBLEMS 

PARTICLE PARTICLE INITIAL PARTICLE PARTICLE PROPERTIES CHEMICAL 

ID POSITION CONDITIONS TYPE SIZE COMPOSITION 

COORDINATE ux/uzc MIXED GAUSSIAN MFLU SPECIES 

ELEMENT UY/URC EVAPORATING LOGNORMAL MSOL HUMIDITY 

SET NODES UZ/UTHETA HISTOGRAM 

PARCEL LOCAL MONO MSPHT 

MASSFLOW x/zc 
Y/RC 

Z 

TEMPERATURE 

PSIZE 

STANDARDDEV 

MSSPHT 

MVSPHT 

MLATENT 

MMVAPOR 

MCAP 

MVAPOR 

BOILING - VAPOR 

CONTINUUM 

CONSTANT 

PATH COMMAND 
The path command is used purely for postprocessing purposes. This commands allows the 
user to display particle paths in variety of formats while providing plots for the analysis of 
a large number of fluid and particle variables. 

PLOT TYPE PATH TYPE PARTICLE 

IDENTIFIER 

DISPLAY 

TYPE 

WINDOW PRINTOUT VARIABLES 

CONTINUOUS PARTICLE ALL PLOT TSTART PRINT UPAR 

DISCRETE DYE SET NOPLOT TEND FLPRINT VPAR 

CHAR MATERIAL LIST LINEPLOT DTPLOT NOPRINT WPAR 

PREVIOUS ID 

ARCLENGTH 

TIME 

DTMOV 

FILE 

NOFILE 

TPAR 

DIAM 

SPAR 

ALL FLOW 

VARIABLES 

14 
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2.      Level 1 & 2 Examples 
This section contains an assortment of one-way coupling problems designed to illustrate 
some of the concepts developed in the previous sections. 

2.1      Flow Impingement On a Flat Plate 
The analytical solution for the particle path in an inviscid flow near a stagnation point is 
presented. The inviscid flow near a 90 degree corner can be described by the Complex 

potential 

w(z) = U 
<      ^ 

(2.1.1) 

The analysis of inviscid flows through complex potential has shown that for such a 

complex potential 

dw 

dz 
= u-iv (2.1.2) 

In the case of a flow near a 90 degree corner, after the carrier velocities are given by 

Us  — Ul   L I. V f  — V   \*" 1-j) „,=y|,-i;     V,-Uj. 

Given the above carrier phase velocity field, and after non-dimensionalization, the particle 
trajectories are described by the following equations: 

'   (i-y)) 
1-jA     '**>   withx(t = 0) = 0   and   ^(t = 0) = U 

Frl dt (2.1.4) 

d x    dx    „ „_ . 1- Stxx = btz 

dz*     dz 

^l + dl + Sty = Owithy(t = 0)=l    and   ^(t = 0) = 0 
dz2     dz dt 

The analytical solution for this system reads: 

™>i 

(    ( 
1 + 

>    c,   "\ 

x = 

where 

V    vP) 

St 

Frl 
+ St m\ 

(     ( 
1 + 

„™\i 

^ 

•P) Fr< 
+ St (     ( 

e"ht + 
mx-m2 mx-m1 

1 + 
1 

\ 

1  
St 

Fr1 

y=    ~™l    e"hz+_J!h_enhz 
mx-m^ n\-m2 

m 
-l±Jl-4St , t 1 
    and    z=—    far    St< — 

2 x 4 
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2.2     Inviscid Flow Around a Cylinder 
The analytical solution for the particle path in an inviscid flow around a cylinder is 
presented here. The objective of this example is to illustrate the use of user subroutines. 
The inviscid flow around a cylinder of radius a can be described by the complex potential 

w(z) = U 
a 

z +— 
z 

r(2.2.1) 

For this function, the corresponding velocities are: 

uf=U 

vf = — 

2/   2        2\ 

1+—^ i- 
(*W)2 

2Ua2xy 

(2.2.2) 

we assume the Lagrangian model accurately describes the physics of the problem, and we 
assume the following drag model: 

Cn=-^ + 

1 --A-+*, (2.2.3) 
Re„     Re 

The first approach to this problem is to use a user subroutine to define the drag 
coefficient. On the other hand, we may also choose to create a user defined force that 
applies to the particles. In this case, the momentum equation for the particle may be 
written: 

du w 
dt 4>ii - §iiuip + $nuip 

foi = 
3[iK{uif + 

3\l2K2 ■ + | 3K&f4 
4ppD2  ' 4pppfD3 T    4ppD 

*i2=^*+   2PpD 

4ppD 

(2.2.4) 
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Applications of Multiple Phase Modeling Using FIDAP 

2.3     Turbulent Flow in a Bank of Tubes 
This example illustrates the stochastic model for particle tracking available in FIDAP in 
conjunction with the k - e closure for the Eulerian turbulent field. The geometry is 
shown in the following page and represents the flow past multiple tubes at a Reynolds 
number of 8000 with respect to the tube diameter (whose length is 12 cm.). For a given 
location, particles of different diameters are tracked using a Gaussian distribution. 

The interaction between particle and turbulence is dictated by the particle relaxation time. 
For a particle density of 2000 kg/m3 the larger particles (about 1mm.) experience a very 
small influence from the turbulent fluctuations due to their larger inertia. In other words, 
the eddy lifetime is too small compared to the particle relaxation time and the particles do 
not have time to respond to the velocity fluctuations caused by the eddy. The smaller 
particles have a lower relaxation time (note that the relaxation time changes with the 
square of the diameter) and their paths are substantially modified by the turbulent 
fluctuations, with particle paths reaching the zone in between the two cylinders. Note also 
that the velocity fluctuations can be responsible for multiple collisions between the 
particles and the tubes, especially if the restitution coefficient of the impact is close to 
unity. 
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Applications of Multiple Phase Modeling Using FIDAP 

2.4     Erosion Estimation in Successive Elbows 
In many industrial applications involving transport of abrasive granules, pipe erosion near 
elbows can create a significant problem. Certain combinations of elbows can increase the 
erosion significantly due to the cumulative effect of particle's inertia moving from one 
elbow to the next. This example attempts to demonstrate the effect of particle size in 
successive elbows. The fluid is air, and particles are sand particles. The Reynolds number 
of the flow is 45,000 and particles of 500 and 100 UMn are tracked. As the trajectories 
reveal, larger particles can actually cause erosion on the back side of subsequent elbows. 
Furthermore, as the line plots of particle speed reveal, the large particles lose their 
momentum with every impact, whereas the small ones regain most of their momentum 
between impacts. 
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Applications of Multiple Phase Modeling Using FIDAP 

2.5     Virtual Impactor 
This example illustrates a particle separation process using a virtual impactor device. The 
virtual impactor device is an inertial particle size separator. The incoming flow is assumed 
to contain 1 and 5 micron particles. Fresh air is introduced along the center line. The goal 
is to separate the two particle sizes such that the small ones go out from the outer ring 
(major flow), and the large ones from the center pipe (minor flow). The Reynolds number 
at the throat is 4000. Experiments indicate a 90% efficiency of the device. The 
trajectories of the two particle sizes predict the same efficiency. 
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Applications of Multiple Phase Modeling Using FIDAP 

3.      Level 3 Examples 
This section contains a few two-way coupling problems showing the full capabilities of 
multiple phase simulation in FIDAP. 

3.1      Buoyancy Induced Flow in a Liquid Tank 
This example refers to the two-way coupling interaction between the fluid and the 
particles. A source term is included in the Navier-Stokes equation, accounting for the 
force exerted on the fluid that counterbalances the drag force on the particles. The force 
is expected to have some significant effect as a relative velocity between the two phases 
exists in a large region of the fluid domain. In this case the drift velocity is induced by the 
presence of lighter particles rising in the fluid. The computational domain and the input 
file are reported in the following pages. 

The most significant parameters in this example are the density ratio between the two 
phases, the mass flow of the dispersed phase and the particle size. A large density 
between the two phases increases the buoyancy content of the particle and conversely the 
magnitude of the source term in the momentum equation. The induced fluid velocities are 
increased and the corresponding Reynolds number can reach values in the transition 
regime (9000 for air bubbles of 1mm. in water). Increasing the mass flow rate has the 
same effect as the density ratio in increasing the source term in the momentum equation. 
Also note that the same mass flow rate corresponds to very different volume loading and 
void fraction if the difference between the two phases is relevant. The particle size 
influences the terminal velocity: larger particles have a higher terminal velocity that can 
increase the magnitude of the source term. On the other hand, the smaller particles, being 
much slower, have a longer residence time in the element that translates in a larger volume 
fraction and by consequence a more considerable impact on the fluid flow. For this reason 
it is not to be expected that decreasing the particle size decreases the influence on the fluid 
flow if the mass flow rate is kept constant. Note also, that the smaller particles are more 
prone to respond to the instabilities that can occur in the convergence process and can 
therefore increase the effect of these instabilities. 
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Applications of Multiple Phase Modeling Using FIDAP 

3.2     Spray Dryer 
The fully coupled momentum, energy and mass transfer capabilities in FIDAP are 
presented in this example, which models the interaction between a flow of air and 
evaporating water droplets injected in the flow. The geometry and some of the results of 
the computation are shown in the following figures. The water droplets are injected on 
the top of the computational domain and have a lower temperature than the fluid, while 
the velocity is much higher. Droplets are also allowed to evaporate and the combined 
effect of evaporation and convective heat transfer determines the final temperature: the 
fluid temperature on its turn changes throughout the domain due to the source term in the 
energy equation. The mass lost by the droplets as result of the evaporation process is 
accounted for in the source term for a species equation. The vapor distribution is then 
computed as a transported variable. The problem is solved in a non-dimensional form. 
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Applications of Multiple Phase Modeling Using FIDAP 

3.3     Turbulent Cylindrical Spray Dryer 
In the context of FIDAP simulations the term "cylindrical" refers to the kind of problems 
where three components of velocities are solved in a two-dimensional geometry (r-z). For 
the purpose of particle tracking the third component of velocity, which does not appear in 
the particle paths, is computed and used in the context of the two-way coupling 
capabilities. Furthermore the corrective terms for cylindrical geometries (centrifugal and 
Coriolis terms) are added in the momentum equations for the radial and axial direction. 

In this example the particles (water droplets) are assumed to enter in the domain in a 
primary jet with higher velocities and lower temperature respect to the secondary air. The 
effect of turbulent fluctuations is to increase the spreading of the droplets. This spreading 
mechanism increases the thermal exchange due to the enhanced contact with the external 
(hotter) jet. No mass transfer model has been accounted for and the only term in the 
particle energy equation is the convective heat transfer due to the temperature difference 
between the two phases. 
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Applications of Multiple Phase Modeling Using FIDAP 

3.4     Fully Coupled Counter-Current Spray Dryer 
In this example, particles are injected from a spinning disk atomizer, sending them across 
the incoming air jet. Both the air flow and the particles have a tangential velocity 
component. The initial humidity factor of the particles is 80%. The air flow rate is about 
36,000 kg/hr at 380°C, and the dry particle flow rate is about 1,500 kg/hr at 30°C. A 
gaussian distribution of particle diameter about 100 micron is used. Particle trajectories 
indicate that the large particles are caught in the recirculation near the top of the chamber 
and are likely to stick to the top before they have a chance to dry. Also, some smaller 
ones are caught in the lower recirculation region and trickle down the cone, and are likely 
to cause accumulation at the bottom part of the cone. The temperature and the humidity 
fraction (species contours) are also shown in the figures. 

53 





EH 
W O 
S J 
H ft 

O 
EH 

O 
U 

W 

EH 

Q 
S3 
W 
Ü 
W 

OIHH 
ooo 
+ + + 
WWW 
co >£> ro 
ro ro o 
OCN-vf 
rHCh CO 

o o o o o 
+ + + + + 
W W W W W 

CN U3 CN MD <H 
ro LO «tf VD LO 
t> kO IT) sf OO 

o o o o o o 
+ + + + + + 
W W W W W W 
«vt1 o o o o «* vC 
LO rH !> t> VD O 
O VD «vji <T\ O CO 
CN rH CX) 03 tH CN 

-""•; o 
!" + 

U.i m 
\C> o 
x O  i 
,-c. v ; 

<~H rH vH rH 
O O O O 
+   +   +   + 
w w w w 
ro O cTi ro 
t> rH F» CM 
CX) O O CT\ (^ 
«vf <JD <£> O ft 

I      I      I      I 

I     I     I 

I      I      I 

I      1      I      I 
I      I      I      I 

I      I 
I      1      I 

O rH rH rH 
OO OO 
+ + + + 
W W W W 
cninnn 
■^ ro c- yo 
CT\1> rH LD 

i i 

O 
LD 

in ^f 

■ » 

dj CD 

Qco 

fa 

o 

Ö 
(U 

rH 

rH 

EH 

O 
rH 
fa 

Ö 
(U 
SH 
5H 

u 
I 

rH 

(U 
-U 
Ö 

o 
u 

I 

^H 

>1 
iH 
Q 

>1 

}H 
a 

N 

a;<- 

55 





EH 
W O 

H 
EH X 

Ei 

H CN ^ «5 00 O x i CO LT> O Ch O CM ^  «> a:> en v-t ro in 
,_(     ^     ^    ^_j     ^     ^     (^     (^j    ^     {'v;     ,-^     fx;     (-,-•(    pr,    (V) 

**************    *    *    *    *   *   * 

I      I      I      I      I      !       I      I      I      I      I      I      I      I       I      !      !      I      I      I 

<PPUOHfcO   ffi   H   b  W   J   S   S   O   ft   CD« K  O)  EH 

CM "sji o -=# 
o o o o 
+ + + + 
W W pq w 
voa\no 
nowo 
^HIDH 

•       ♦       •       • 

i        i 

O 
LD 

^  (T\ O 

0*   (Ur 

Gaol 
P4 

a) 
rH 

rQ 
u 
EH 

o 
Pn 

4J 
Ö 
0) 
u 
u 
u 

I 
u 
Q) 
4J 
Ö 

0 
U 

l 

CD 
>1 

Q 

>i 
id 

a 
03 

CM 

IT) 

o s *vP a\ 
ro <? ro 
LO H 

i >x> 
■*# O 

o ro 
KD ^    1 in 

00 

1> 
CM 

l> 
LO 
00 
rH 
ro 

O 
CM 

O 
O 
O 
O 
O 

O 
o 
o 
o 
<M 

CO 

o 
o 
o 
o 

CM 

O 
O 
O 
O 

o 
o 
o 
o 
00 

o 
o 
o 
o 
o 

+ 
o 
rH 

2 
H 

57 



w 
p 
EH 

EH 
O 
P 
P-t 

ss P 
W O 
Pu EH 

w o 
EH U 

-P 
Ö 

rH 
P 

iH 
P 

5 o 
En 

Ö 
Q) 
in 

P 
U 

l 
in 
0) 
-P 
Ö 
P 
o 
u 

I 

iH 
0) 
>1 
iH 
Q 

>i 
CO 
iH 

en 

(■> o o o a 
..£..      ..L.      ^4"      --4^     Hj** 

;■!., u; W pu fx) 
■f > rH <\j P") rO 
r"; , < \0 i ! U3 

p ■ ■'■■ '"'■■, {'""> —J       ! 

53 ,:■' "-j '■      lh. .;    ^^w,;     w^^-x    w^-^-s 

W . 
CD 
W 
P i     1     !     !     1 

HHHHHvHHrlrlrlrlHHHH 
ooooooooooooooo 
1 + + + + + + + + + + + + + + 
WWWWWWWWWWWWWWW 
^mu3^r-c»ooo>oHHMro^^ 
^U3rH>X>THV£>rH»X>CMr-CNll>CNI>Oa 

^^^-j^HrHrMrHrHrHrHrHrHTHrHrH 

i      I     I 
I     I      I      I     I 
I      I     I      I 

I     1     1 
I      I     I     I 

I     I 
I     I 

I      I      I 
I      I     I 

P o 
53 
H 
PS 
(h 

W 
W 

* 

w O 
EH o 
H + 
S W 
H <Xi 
P ^ 

en 
B • 
W i 
w 
Pi 53 
u H 
U) g 

ISl 

HHH 
o o o 
+ + + 
WWW 
in m ro 
m r> VD 
r> rH LD 

I 

o 
LD 

LD OH 
* CTI ro 

l> 

^0 
goOH 
H CM 
p4 

IS] 

tf<- 

58 



EH 
rH  O 

HD 
U O 

0] O 
U 

4-» 

Ö 
Q) 
H 

rH 

EH 

O 
rH 

4-) 
£ 
0) 
rH 

U 

u 
I 

rH 
0) 
-P 
Ö 

O 
U 

l 

u 
>1 
u 
Q 

>i 
(d 

Q 

Ü 
W 

ON <  < . ■••■•< H rHr^rHrHrHrHOOOOOOOOOOEH 
o o o o o o o o o o o o o o o o o o o o |D 

§   i   i    i   i    i   i   i    i   I+ + + + + + + + + +0 
Du Co EaWHHWWMWWWpqWWWWWWWEH 
KO ON C\rHrHOO<Ti0>iC0l>'^tlIHCX)LnCN|0,»Lr)CNCT»S 
,N -^ < i cOLOCNicnix)(Nc^LnLr)Ln'^''sj<'st<rorooocN]H 
r- cocx>r-r-i>u>vr)<x)LnorHCNiro"sfiLnvx)[>oocTip^ 

XD H CKU^^UO^I>C0CnrHrHrHrHrHrHrHrHrHrHflj 

CTi 
O 

I 
W 
O 
O 
O 
o 

i     1     ! 
I     !     ! 

I     I     I 
I     I     I 

I     I 
I     I 

I     I 
I     I 

I     I 
I     I 

I     I 

w 
W 

i   i in 
i   i -x 

o 
o 
JL 

W 
rH 
en 
m 

rH 

O rH 
OO 
+   + 
W pq 
Ch LD 

CTi r- 
•        • 

I 

rH rH 
O O 
+   + 
W pq 
ro ro 

rH IT) 

O 
LD , in ID 

l> 
ALT) 

CU (D ^ 
<:* 
PcOrH 
I—I 03 
PH 

tsl 

tf-e- 



von Karman Institute for Fluid Dynamics 

Lecture Series 1995-03 

INDUSTRIAL COMPUTATIONAL FLUID DYNAMICS 

April 3-7, 1995 

NUMERICAL SIMULATION IN NON-NEWTONIAN FLUID MECHANICS 

M.J. Crochet 

POLYFLOW S.A., Belgium 



1. Introduction 

Rheology is defined as "the study of the deformation and flow of matter". This definition 

would allow a consideration of all materials, including the classic extremes of Newtonian 

fluids like water and elastic solids like rubber. However, these extremes are usually 

considered to be outside the scope of rheology and attention is restricted to materials that 

can be classified as "viscoelastic". If such materials are basically solid-like they are called 

"viscoelastic solids" and if they exhibit liquid-like behaviour they are now usually called 

"elastic liquids". An important class of industrial liquids are not strongly viscoelastic 

and yet possess features which cannot be associated with classical Newtonian behaviour. 

These so-called inelastic non-Newtonian liquids are certainly regarded as being within the 

scope of rheology and together with elastic liquids, form the basis for the important 

modern research field called non-Newtonian Fluid Mechanics. Most liquids of industrial 

interest are non-Newtonian. Multigrade oils, liquid detergents, paints, printing inks, 

contact adhesives and molten plastics are just some of the examples that come readily to 

mind, but the complete list would be endless. 

It is useful at this stage to introduce the concept of Deborah number defined as 

De = X/T (1) 

where X is a characteristic (relaxation) time of the material and T is a characteristic time of 

the flow process under consideration. X would be zero for a Newtonian liquid and 

infinite for an elastic solid. For industrial materials X might be expected to vary from 

10"^ s for lubricating oils to seconds for many molten plastics. The concept of the 

Deborah number is useful since it highlights the fact that it is not only the material's 
relaxation time, X, which determines material behaviour but also the time-scale of the 

deformation process. So, for example, a mobile liquid with a very modest relaxation 

time exposed to a very fast deformation process can lead to a high Deborah number, 

resulting in its behaviour appearing solid-like. 

Computer-aided processing has made considerable advances over the last ten years. A 

better understanding of mathematical models for polymer behaviour has provided the 

necessary tools for progress in numerical analysis. Simultaneously, the fact that today's 

workstations calculate faster than super-computers of the early 80's has generated the 

possibility of solving problems of a size comparable to what is found in practical 

applications. 



A number of polymer processes have already received attention with a view to specific 

improvements. In extrusion, for example, one may wish to calculate the flow between 

the rotating screw and the barrel in order to obtain better mixing or a more homogeneous 

temperature distribution. In extrusion too, die design is a central problem which can be 

formulated as follows: what should be the shape of the die in order to obtain an 

extrudate with a pre-assigned profile ? In blow moulding, a complete calculation should 

lead to a more homogeneous (or at least appropriate) thickness distribution in the final 

product. In spinning, numerical simulation allows us to calculate stresses in the jet, 

temperature distribution, free surface shapes. Similar questions are addressed in many 

other processes such as coextrusion, compression moulding, film casting, film blowing, 

etc. 

In section 2, we examine some experimental observations which summarize typical non- 

Newtonian effects. In section 3, we briefly review the concepts of rheometry which 

allow us to characterize material properties. In section 4, we give a summary of 

mathematical models. Sections 5 and 6 are devoted to numerical methods, first for 

generalized Newtonian flow and next for viscoelastic applications, which are typical of 

polymer flow. We concentrate in particular on a number of industrial flows where 

numerical simulation is of considerable help for process improvement. 



2. Experimental observations 

In order to highlight the type and scale of the problems of current interest, it may be 

helpful to introduce a specific flow which has been taken as one of the benchmark 

problems by researchers in the field. Consider a 4:1 asisymmetric contraction in which 

a fluid is forced to flow from one capillary into another of smaller diameter through an 

abrupt contraction, the flow being generated by a pressure gradient. Of immediate 

concern are the general features of the flow in the case of Theologically complex fluids. 

Figure 1 shows a well-documented progression of the flow field as the pressure gradient 

is increased for one particular polymer solution [1]. The appearance of large vortices is a 

classic example of so-called vortex enhancement, which is directly attributable to 

viscoelasticity. 

Another feature of interest relates to the extra pressure loss involved in forcing the elastic 

liquid through the contraction. This is studied through the so-called Couette correction, a 

typical schematic example of which is included in figure 2. The slight drop in the Couette 

correction at low values of De is difficult to measure experimentally, but numerical codes 

testify to its existence. The large increase in the Couette correction at high values of De is 

very easy to measure experimentally but provides significant challenges to numerical 

simulators as they attempt to model contraction flows for high elastic liquids. 

Free-surface flow problems are also of interest in rheological computation. To illustrate 

one of the most popular flows we refer to so-called die swell, exhibited by an elastic 

liquid as it emerges from a capillary. It is well known that for a Newtonian liquid the 

diameter of the issuing liquid is either slightly greater than or slightly less than the 

diameter of the capillary, depending on the magnitude of the Reynolds number. For an 

elastic liquid, the ratio of the jet to capillary diameter can be significantly greater than 

unity and values as high as four have been observed. In some cases, "delayed die swell" 

can occur, as illustrated in figure 3. Only recently have numerical techniques been able to 

handle the "change of type" associated with the governing equations (see later). 

Another well-known free-surface phenomenon in rheology is the so-called Weissenberg 

effect, which is demonstrated in figure 4. In the case of Newtonian liquids like water our 

expectation would be that the height of the free surface would increase with the radius in 

order to compensate for centrifugal forces, and this is indeed found to be the case. 

However, for elastic liquids, viscoelastic effects, manifested through so-called "normal- 

stress" effects result in a substantial rise in the free surface near the rotating rod. This 

"rod climbing" is called the Weissenberg effect. 



Figure 1. Vortex growth in a 4:1 axisymmetric contraction for 0.04 per cent 
polyacrylamide in corn syrup and water solution. The flow rate is progressively 
increased in moving through the sequence of photographs, the lowest flow rate bein<* on 
the left [1]. c 

Newtonian value 

Deborah number 

Figure 2.   A schematic representation of the Couette correction as a function of the 
Deborah number for contraction flow. 

I 1 f 

'./..v.. 

äfcuatf. 

Figure 3. Delayed die swell for a 5 per cent aqueous solution of polvacrviamiuc. »,.e 
How rate is increased in moving through the sequence of photographs'. As the flow rate 
increases, the conflict between fluid inertia and viscoelasticitv is apparent and the 
swelling phenomenon is delayed 1381. 1431 



Figure 4.   The Weissenberg effect shown for a solution of polyisobutylene (Oppanol 
B200) in polybutene |2]. 



3. Rheometry 1 

In Newtonian fluid mechanics, it is sufficient to know the value of the shear viscosity of 

the fluid under consideration as a function of temperature. Non-Newtonian fluids are 

much more complex. The selection of a mathematical model requires the identification of 

a number of material properties. As a good introduction to rheometry, the reader is 

referred to Barnes et al [2]. 

3.1. Shear flow 

Viscoelastic fluids are endowed with a peculiar property called "normal stresses". Let us 

consider in figure 5 a simple shear flow : a viscoelastic fluid, say a polymer solution, is 

sheared between a fixed bottom plate and an upper one sliding at a constant velocity U. 

The shear rate is given by U/d , where d is the thickness of the fluid layer. Isaac 

Newton, writing in the Principia in 1687, pointed out that the fluid motion requires a 

tangential shearing force at the layer surface which is proportional to the shear rate y = 

U/d ; such a "linear" behavior characterizes the Newtonian fluid. 

The situation is much more complex in most real fluids. First, the shearing force is 

generally not proportional to the shear rate; most polymer fluids exhibit "shear-thinning", 

that is, the viscosity is a decreasing function of the shear rate. Secondly, most fluids 

exhibit what is commonly called "normal stress differences". In figure 5, we have 
indicated a set of orthogonal Cartesian axes. For a Newtonian fluid, the shearing motion 

requires only the application of an appropriate shear stress. For a viscoelastic fluid, the 

same flow requires normal stresses which differ in the x, y and z directions. More 

practically, a fluid layer of thickness d cannot be sheared unless it is acted upon by a 

normal force on its upper surface. 

This flow can be conveniently expressed in terms of Cartesian coordinates in the 

following form: 

vx = yy , vy = vz = o (2) 

where vx, vy and vz are the velocity components and y is a constant shear rate. For a 

non-Newtonian fluid, the corresponding stress distribution can be written in the form 

1 This section on rheometry is borrowed from "Rheometry: general concepts and measurement 
techniques", K. Walters, in Newtonian fluid mechanics. Lecture series 1994-03, von Kaiman Institute for 
Fluid Dynamics. 



(3) 

Oxx - ayy = Ni( 1) , ayy - GZZ =N2( y) , 

where a is the shear stress, r\ the shear-dependent viscosity and Ni and N2 are the first 

and second normal stress differences, respectively. Rheometers can now be purchased to 

measure the viscosity r|("$ over the complete range of interest, but at least three different 

instruments would be required for that purpose. For shear thinning materials, the general 

shape of the viscosity curve is shown in figure 6. The curves indicate that in the limit of 

very low shear rates (or stresses) the viscosity is constant, whilst in the limit of high 

shear rates the viscosity is again constant, but at a lower level. Equations that predict the 

shape of the general flow curve will be reviewed in the next section. Shear thickening is 

encountered in some non-Newtonian fluids. In almost all known cases of shear 

thickening, there is a region of shear thinning at low shear rates. 

Viscosity can be measured using either rotational or capillary (or slit) viscometers. In 

rotational instruments, the geometry is usually either concentric cylinder, cone and plate 

or parallel plate. 

So far as the normal-stress differences are concerned, typical behaviour for a polymer 

solution is provided in figure 7. The first normal stress difference can be much higher 

than the shear stress and can often be represented by a power-law equation (like the shear 

stress). The second normal stress difference is usually negative and much smaller than 

Mi. As a rough guide, on can take N2 = - O.lNi. The Weissenberg effect and extrudate 

swell are the two most observable consequences of normal stress differences. Cone and 

plate flow (and to a lesser extent torsional flow) are the preferred flows for determining 

the normal stress differences.   . 

3.2. Oscillatory shear 

Small amplitude oscillatory shear flow is used to determine the functions relevant to linear 

viscoelasticity. Considering the system of figure 5, we apply an oscillatory shear rate of 

the form ^t) = 7* exp(icüt); the stress response is given by a(t) = o* exp(i(Dt). We 

shall concentrate on the complex dynamic viscosity T]*, which is usually expressed in the 

form 



iG' 
r\* = o* If =t\' , (4) 

CO 

where ri' is the dynamic viscosity and G' the dynamic rigidity. 

Available controlled stress and controlled strain rate rheometers have been adapted to 

perform oscillatory shear experiments. In the controlled strain rate techniques, the 

sample is usually contained between a cone and plate or parallel plates. One member 

undergoes forced harmonic oscillations about its axis, while the other member is 

constrained by a torsion wire. The measured quantitites are the amplitude ratio and phase 

lag between the motion of the two instrument members. These can be immediately 

converted into complex viscosity data provided non linear effects are not present and fluid 

inertia is not too strong. Typical dynamic data for a non-Newtonian liquid are given in 

figure 8. 

3.3. Extensionalflow 

The subject of extensional flow received scant attention until the mid 1960's. Up to that 

time rheology was dominated by shear flows. In the last twenty years or so the situation 
has changed dramatically with the dual realization that extensional flow is of significant 

relevance in many practical situations and also that elastic liquids often exhibit 

dramatically different extensional flow characteristics from Newtonian liquids. 

Various flows of relevance to polymer processing have strong extensional components. 

The turbulent drag phenomenon of drag reduction is also thought to be due to the 

extensional viscosity characteristics of the polymer solutions involved. These are just 

some examples of the importance of extensional flow within an industrial context. The 

subject is also important in that it provides a critical test of any proposed constitutive 

equation for Theologically complex fluids. To emphasise the second point made above it 

is only necessary to say that the extensional viscosity behavior is frequently qualitatively 

different from that of the shear viscosity. So, for example, highly elastic polymer 

solutions that posses a shear viscosity that decreases monotonically (showing shear- 

thinning) often exhibit an extensional viscosity that increases dramatically with strain rate 

(showing so-called tension-thickening). 

For the velocity field 

£ 8 
vx = ex , vy = - ^ y , vz = . ^ z (5) 
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where eis a constant extensional strain rate. The corresponding stress distribution can be 

conveniently written in the form 

cjxx - Oyy = <?xx - azz = enE (e) (6) 

where T)E is the (uniaxial) extensional viscosity. In general it is a function of the 

extensional strain rate £ It can be shown that 

T|E (e) = 3r| (i) , for e and y => 0. (7) 

The ratio between extensional and shear viscosity is called Trouton's ratio. Its value is 3 

for Newtonian fluids but it can be much higher for polymeric liquids. 

It is generally agreed that it is much more difficult to measure extensional viscosity than 

shear viscosity, this being especially so for mobile liquids. There is therefore a gulf 

between the strong desire to measure extensional viscosity and the likely expectation of 

its fulfilment. For. stiff systems like polymer melts the basic problem is one of 

maintaining a uniaxial flow for a sufficient time for the stress (in a controlled strain-rate 

experiment, or the strain rate (in a controlled stress experiment) to reach a steady state, 

thus enabling the steady extensional viscosity T|E to be determined. Under these 

circumstances, it is convenient to define a transient extensional viscosity T]E (£>t) which is 

clearly a function of time as well as strain rate. The problems of determining the 

extensional viscosity of mobile liquids like dilute polymer solutions are even more acute, 

but they are of a different type from those experienced for stiff systems. With mobile 

liquids, severe difficulties arise in trying to achieve a continuous extensional flow field 

which approximates that given in (5). In general the most that one can hope for is to 

generate a flow which is dominated by extension and then to address the problem of how 
best to interpret the data in terms of material functions that are Theologically meaningful. 

Amongst the many methods that are currently being employed are the following : 

I Homogeneous stretching method. This is only applicable to stiff systems. 

II. Spinning. The flow is clearly dominated by extension. The basic problem is not one 

of experimentation, but with data interpretation. 

III Open-syphon. Similar to II. 

IV Lubricated flows. Experimentation is extremely difficult 



11 

V. Contraction flows. Experimentation is relatively easy. Data interpretation is open to 

criticism. 

VI Stagnation-point devices. These are applicable to all liquids and the flow contains a 

strong element of extension. Data interpretation is not beyond criticism. 
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Figure 5. The geometry of a simple shear flow. 

Vo -. 
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Figure 6.  Schematic representation of the variation of viscosity with shear-rate for a 
shear-thinning fluid. 
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Figure 7. Typical viscometric data for a polymer solution. 
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Frequency 

Figure 8. Typical dynamic data for an elastic liquid. 
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X. ' 

Figure 9. Motion of a continuum. 
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4.   Mathematical model 

The mathematical model consists of the field and constitutive equations together with 

appropriate boundary conditions. Let us limit ourselves in the present section to 

isothermal constitutive equations. Since we have assumed the fluid to be 
incompressible, the stress tensor a is decomposed into an indeterminate pressure term -pi 

and the extra-stress tensor T, 

a = -pi + T. (8) 

The selection of an appropriate constitutive equation for T is a central question in 

simulating the low of complex fluids. 

4.1. Generalized Newtonian flow 

The simplest case is the Newtonian fluid for which 

T = 2ri   d    , (9) 

where d is the rate of deformation tensor, 

d = [Vv + Vv) T]l/2    , (10) 

and T| is the shear viscosity. The Newtonian model (9) is a low shear rate approximation 

of the dependence of the viscosity upon the rate of deformation tensor. With most fluids 

of practical importance in the study of flow processes, the viscosity depends upon the 

shear rate in a simpe shear flow. Most commonly encountered is the shear-thinning 

behavior shown in figure 6. The viscosity is characterized by two Newtonian plateau 

zones for low and high shear rates; the corresponding viscosities may differ by several 

orders of magnitude. We write 

T = 2TI(Y)   d (11) 

where yis the shear rate. For general flows, we must replace yin (11) by an appropriate 

invariant of d in (10) which reduces to yin a simple shear flow. Satisfying such a 

condition is the expression 

IId = (2 tr d2) ] 1/2    . (12) 
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The constitutive equation of the generalized Newtonian fluid is then given by 

T = 2ri(nd)d   . (13) 

There exist several types of constitutive equations for characterizing generalized 

Newtonian fluids. Their name defines in fact the dependence of rj upon y at a fixed 

temperature. For the power-law fluid we have, at a reference temperature, 

r^Kyn-1) (14) 

where K is the consistency factor and n is the power-law index. The power law behavior 

correctly describes the linear part of the viscosity curve in figure 6. The Carreau model is 

given by 

ri-ri00 = (rio-Ti0o)(l+?i2T2)n-1/2    ; (15) 

it exhibits a zero shear rate viscosity TJO , a viscosity r|oo for large y and a power law 

behavior at intermediate values. It is easily found that A."1 is a characteristic shear-rate at 

which the material shifts from Newtonian to power-law behavior. For more details on 

various viscosity laws, the reader is referred to Bird et al [3]. 

4.2. Viscoelastic fluids of the differential type 

We have seen in section 4.1 that, for generalized Newtonian fluids, the extra-stress tensor 

T is given by an algebraic function of the local velocity gradient tensor which appears in 

the invariant lid in (12). For viscoelastic fluids, the tensor T depends upon the strain 

history of the material particle.. In figure 9, the stress T at X and time t depends upon the 
function Q (x ), where x < t and Q is the relative right Cauchy-Green strain tensor. One 

may consider that, at time t, T is the solution of a differential equation. The resulting 

constitutive equation is said to be of the "differential type". In section 4.3, we will 

consider an explicit dependence of T at time t upon the relative strain history and thus 

define a viscoelastic fluid of the integral type. 

Let us first consider the class of differential models for which T is related to the velocity 

gradients by means of a differential equation. Let v denote the velocity field and L be its 
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gradient. The constitutive equation for the upper-convected Maxwell fluid (or Maxwell-B 

fluid) is given by 

v 
T + XT  =2r|d   , (16) 

where X, is a relaxation time, r| a shear viscosity, while a triangle V superscript denotes 

the upper-convected, or contravariant, derivative, i.e. 

T =  T - LT - TLT , (17) 

where a dot designates the material time derivative, 

T = -— + v.VT . (18) 
dt 

The Maxwell-B constitutive equation is not realistic for modeling polymer flow; in 

particular it is endowed with a constant shear viscosity and an infinite steady extensional 

viscosity at a finite value of the rate of elongation. The same is true for the often used 

Oldroyd-B fluid for which T is given as follows, 

T = Ti +T2   , 

T + XTi =2riid, (19) 

T2 = 2ri2d , 

where one finds that T2 is a purely viscous part of the stress tensor. It is interesting to 

see the form of Equation (19) after elimination of Ti and T2. One finds 

v 7 
T + XTi  =2(TU+Ti2)(d + Ä/  d)   , (20) 

where 

X' = \ ^  (21) 
Til  + T12 
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is called a retardation time. Equation (20) is a special case of the class of constitutive 

equations introduced by Oldroyd [4]. 

Despite their inability to quantitatively represent polymer behavior, Maxwell-B and 

Oldroyd-B fluids have frequently been used for developments in numerical simulation. 

With only two, or three, available material parameters, such models are easy to 

understand and, on a qualitative basis, they have been able to generate a number of 

macroscopic observations in polymer flow. Simultaneously, it has been found that the 

flow of such fluids is one of the most difficult to simulate among the set of available 

constitutive equations; in that sense, they have helped considerably in the development of 

numerical algorithms for modeling viscoelastic flow. 

Several constitutive equations of the differential type with a more realistic behavior for 

modeling polymer flow have been used over the past few years in numerical simulation. 

With a single relaxation time, they may be written in the general form 

Y(T)T + A, T =2rid   . (22) 

In this expression, a square superscript stands for a linear combination of the upper and 

lower convected derivatives 

□ v A 
T = (1 - tjT)  T + (5 12)   T    , (23) 

with 

A 
T   =   T + TL + LTT    . (24) 

In Table I, we show the definition of Y(T) and the value of t, for some popular equations; 

e and a are scalar parameters. As shown in Table I, the Leonov fluid appears as a special 

case of the Giesekus constitutive equation when the mobility parameter a equals 1/2, but 

this is only true in plane flow. 

An accurate fit of experimental data will usually require the use of a spectrum of 

relaxation times; one writes 

= £   TO) 
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(25) 

Y(T W) T(») + Xi T =2Tiid   . 

With most equations of Table I, it is also necessary to include in the T®' s a purely 

viscous partial stress tensor without which the shear stress would go through a maximum 

at a finite value of the shear rate in simple shear flow. 

Table 1. Nature of the function Y(T) and of the $ parameter for various models. 

Type of fluid % Y(T) 

Phan-Thien-Tanner [5] 0< \ <2 exp (eA/Tl tr T) I 

Phan-Thien-Tanner [5] 0< \ <2 (1 + e)Jr\ tr T) I 

Johnson-Segalman [6] 0< t, <2 I 

Leonov [7] (plane flow) 0 I + 0.5 X/r| T 

Giesekus[8] 0 I + ccA/r|T 

Upper-convected Maxwell 0 I 

A discussion of the virtues and defects of these equations for modeling polymer flow lies 

beyond the scope of the present chapter; a detailed discussion and guidelines for practical 

applications may be found in Tanner 1985. Since numerical simulation is addressing 

flows in complex geometries, it is clear that the behavior of constitutive equations in 

extensional or time-dependent flows is of major importance. It is interesting at this stage 

to mention the FENE-P model based on kinetic theory; it will be used later in the analysis 

of some practical problems. 

4.3. Viscoelastic fluids of the integral type 

Differential models have generally been more popular than integral ones in numerical 

developments over the last ten years. Both types of models are representations of the 

simple fluid concept which defines the extra-stress tensor as a functional of the relative 

right Cauchy-Green tensor C, 

T = T [C(t') ; -oo < t' < tl    . (26) 
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With integral models, the functional T is given as an integral relationship between T(r) 

and C(0. For Lodge's rubber-like liquid, the functional T takes the form 

r 
T = H (t-f) [C-l (f) -1] df . (27) 

When the kernel function (i is expressed as a sum of exponentials, one recovers a 

summation such as Equation (25) where each partial stress is also satisfying the Maxwell- 
B constitutive Equation, with r\\ and X[ as material parameters. Of course Lodge's 

model, as compared to experimental behavior, has the same defects as the UCM fluid but, 

once more, its formal simplicity together with its complex behavior in numerical work has 

given it a special status in the development of algorithms for fluids of the integral type. 

The other models of the integral type which have been used in the numerical literature 

belong to the KBKZ [10] family for which T is given as follows, 

T-J[£^«-£H*- (28) 

where U is a potential depending upon the trace / of C and of its inverse. 

Let us mention the idea of separability introduced by Wagner [11], which assumes that 

the integrand in Equation (28) may be written as the product of a factor depending solely 

upon the past time t' and another factor depending upon f only through C and its inverse. 

Assuming that the second term in the integrand on the right of Equation (28) may be 
neglected in front of the first, we may then write 

T = 

t 

c 
m(t-t')H(Ic-i,Ic)C-l(Odt' (29) 

A more empirical approach has been used by Papanastasiou, Scriven, and Macosko [121 

for deriving a constitutive equation of the Wagner type with good response in shear and 
extension. The time function m(s) is given by 
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m(s) = Y, ^exp(-sAk), (30) 
k=l X* 

where ak are elastic moduli corresponding to a spectrum of relaxation times Xk, while the 

function H is given as 

H = oc/[oc-3 ßlc-i + (l-ß)lc], (31) 

where a and ß are constants which are selected for fitting experimental data. 

For the Wagner [13] model, the damping function H is defined as follows 

H = exp [-n(ß Ic-i + (l-p) Ic - 3)lf2] (32) 

where n is a material parameter. 

It is beyond the scope of this text to discuss the virtues and defects of these 

models and to compare them with differential models; the reader is referred to Tanner [9] 

and Larson [14] for a detailed analysis of the current state of the art in constitutive 

equations. It is important to note that, in numerical simulation, going from one model to 

another, as long as they belong to the same family (i.e., differential or integral) is not a 

major enterprise once an accurate algorithm has been developed for a particular 
constitutive equation. For differential models, the presence of the advective term v.V T 

in Equation 18 presents a major challenge for the numerical integration while, for integral 

models, an accurate calculation of the strain history C_1(0 is the most difficult part. 
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5.    Numerical methods for generalized Newtonian flow 

5.1. Numerical algorithms 

Numerous techniques have been used to solve the equations governing the flow of 

Theologically complex fluids. Finite difference methods figured prominently in early 

developments, a major attraction being their relative ease of implementation. However, 

the finite element technique has dominated recent development and is the preferred one 

for most practitioners in the field. Indeed, all the examples we shall give in the next 

section were obtained using finite elements. Finite element codes may be relatively 

difficult to implement but there is no doubt that a code, once written, can be made very 

versatile. In recent years, finite-volume and boundary-integral techniques have also been 

used while spectral methods are also beginning to appear in the rheological literature. 

There are many complex flows in industrial applications for which some of the major 

viscoelastic effects are unimportant. Such flows are typically dominated by shear 

viscosity; in that sense, they are non-Newtonian since the shear viscosity is highly shear- 

rate dependent, as we have seen in section 3.1. However, memory, extensional viscosity 

and normal stress difference may not dominate the flow. Under such circumstances, it is 

useless to make use of the arsenal of viscoelastic constitutive equations instead of 

concentrating on some simpler models which are able to generate very meaningful 

results. Flows in confined geometries are typical cases where the use of a generalized 

Newtonian fluid (possibly non-isothermal) is fully satisfactory. We show below several 

examples of such flows. Even in extrusion flows, the amount of shear thinning may be 

such that viscoelastic normal stress differences may not be necessary to generate useful 

results. 

The basic algorithms to solve generalized Newtonian flow (GNF) are very similar to those 

used in Newtonian CFD and will not be detailed here. The velocity, pressure (and 

temperature) are the basic unknowns (see e.g. Crochet et al [15]). In many material 

processing problems, inertia effects are unimportant; however, non-linearities dominate 

through the viscosity laws and through geometrical complexity due to the presence of a 

priori unknown free surfaces, interfaces and contact areas. In POLYFLOW, we use fully 

implicit techniques which simultaneously solve the fluid motion and the geometrical 

problem. To solve the non-linear systems, we use Newton-Raphson's method together 

with automatic continuation techniques when the final result lies too far from the initial 

guess. It is then possible to select any material or geometrical parameter as the 

continuation variable. As a typical example, consider the case of non-isothermal polymer 

flow. Thermal conductivity is so low that it may be necessary to start the calculation with 
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a higher conductivity and to let the program progress step by step towards the desired 

material properties. 

5.2. Die design 

A typical application of the use of GNF is shown in figure 10, where one finds the 

geometry of a coat-hanger die. A polymer melt enters the die through the square cross 

section A and is distributed across the contour of the die though a peripheral channel. It 

is then flowing through a three-dimensional channel of low gap width towards the exit of 

the die. The objective of the calculation is to design the geometry of the channel in order 

to obtain a velocity distribution at the exit which is as uniform as possible. 

An intrinsic difficulty here is that the first peripheral channel is essentially three- 

dimensional; further downstream, the gap width is so small that the flow should be 

considered as two-dimensional on a curved surface. The use of three-dimensional 

elements throughout the die would be very expensive and meaningless. In POLYFLOW, 

we have implemented an algorithm which allows us to link two-dimensional to three- 

dimensional flow domains while satisfying the necessary continuity requirements. In the 

two-dimensional flow domain, the non-uniform thickness of the gap is part of the data; 

we use the Hele-Shaw approximation to calculate the flow. Figure 11 shows the 

pressure distribution throughout the die. In figure 12, we show the uniformity (in %) of 

the velocity profile in the thin exit section corresponding to the design of figure 10. It is 

obvious that further iterations on the thickness distribution could lead to an even better 

velocity profile. 

Another typical application of GNF in confined flow is shown in figure 13 where we find 

the geometry of the channel in a single screw extruder; a precise knowledge of material 

properties allows us to calculate the temperature and pressure distribution in the channel. 

5.3. Mixing 

The GNF model is useful in mixing problems. Let us examine the geometry of the 

Kenics mixer in figure 14. It is made of a cylindrical outer boundary containing a 

number of helical plates. The relative angular position of these plates is such that the 

fluid is sheared and periodically sliced; moreover, the angular rotation of the fluid 

changes sign when it moves from one plate to the next. Let us assume that, in the entry 

section, we introduce two fluids of similar viscosity but with different colors. After N 

plates, one expects the fluid to be made of 2N layers of alternating color. Of course, one 

does not expect layers of uniform thickness; a typical distribution is shown in figure 15. 
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Flow analysis through CFD allows us to predict the final state of mixing and to calculate a 

number of interesting mixing parameters. 

We have analized an experimental mixer through which two clays of different color were 

forced to flow (Avalosse [16]). A power -law fluid with a power index of 0.6 was used 

as the fluid model. In the present geometry, we can use spatial periodicity to calculate the 

flow. A geometrical element corresponding to one period is shown in figure 16; an 

additional torsion of the mesh is needed before the calculation. Figure 17 compares 

experimental and theoretical results. The shades correspond to clays of different color. 

The cross sections of figure 17 are obtained at 1/4, 2/4, 3/4 and 4/4 of the axial distance 

along the plates. The correspondance between theoretical and experimental results is 

remarkable. It is also worth noting that, experimentally, it is very difficult to distinguish 

between both fluids beyond the fourth plate. The same is true for numerical results in 

view of discretization errors. 

5.4. Blow molding 

Blow molding is a popular industrial process used to produce hollow bodies. Their 

shape can be very simple and axisymmetric (bottles for example), or may be complex 

and require a 3-D model. The quality and productivity requirements are severe, making 
the design of the process a challenging task. In particular, the thickness distribution of 
the blown product must be as uniform as possible. 

Polyflow contains an efficient numerical tool for the simulation of the blow molding 

process, in 2-D as well as in 3-D cases. Typical outputs of the simulation are the final 

product thickness, the temperature profile during inflation (for non-isothermal 

simulations), and the total inflation time. Several models were already proposed for the 

simulation of blow molding [17]. Whilst most of those approaches are based on a 

(hyper)-elastic description of the material, we use the alternate description of the material 

as a fluid (viscoelastic or not). Indeed, polymers do not have a reference configuration at 
the process temperature. 

The numerical technique is based on an implicit time-dependent simulation of a flow 

which involves internal and external free surfaces. Along the internal free surface, a 
normal force equal to the blowing pressure is applied. The model also incorporates 

contact detection between the fluid parison and the wall of the mold. The occurrence of 

the contact is unknown in time and space. Mechanical as well as thermal contacts are 

handled by means of penalty techniques. One of the obvious difficulties is that the flow 

involves large deformations and that a robust remeshing technique is required. For blow 
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molding, an elliptic remeshing algorithm based on a stationary form of a deformation 

energy guarantees the regularity of the mesh. 

Our first example is two-dimensional, generalized Newtonian isothermal blow molding 

simulation. One wishes to make an axisymmetric product out of an extruded parison. 

The complete process has been simulated, including extrusion of the parison, closure of 

the mold and inflation of the parison. Once the material hits the wall, zero velocity 

boundary conditions apply, but the product thickness is still allowed to vary. Figure 18 

shows the time evolution of the parison shape at various stages during the process. 

During the simulation, we track the position of material points and we locate their origin. 

This information is particularly useful to modify the initial parison shape (or its initial 

temperature) in order to control the product uniformity. 

Our second example in blow molding is three-dimensional, generalized Newtonian and 

isothermal. An cylindrical parison is pinched in a three-dimensional mold and then 

inflated. Figure 19 shows the mold and the initiial parison. In Figure 20, we present the 

shape of the final blown product Based on our initial configuration, the thickness of the 

product is not very uniform so that the process conditions need to be optimized. 
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Figure 10. Geometrical confisuration of a coat-hanser die. 

°o uniformity 

Angular position 

Figure 11. Pressure distribution through the coat-hanger die. 

Figure 12.  Uniformity of the velocity distribution as a function of the angular position 
in the coat-hanger die. 



Figure 13. Finite element representation of the channel on a screw. 

Figure 14. Geometry of the Kenics mixer. 

Figure 15.  Typical cross-section showing the distribution of fluids mixed in a Kenics 
mixer. 
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Figure 16. Finite element mesh for a spatial period of the Kenics mixer. 



Figure 17.  Comparison between experimental and calculated cross-sections showing 
the mixing of two colored fluids in a Kenics mixer. 

Figure 18. Axisymmetric blow-molding: time evolution of the parison. 
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Figure 19. Shape of the mould and of the initial parison. 

R   - «1 

•igure 20. Thickness distribution in the final blown nrodu ct. 
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5.5. Extrusion 

Normal stresses can have a deep influence on fluid behaviour in free surface flows. 

Imagine that the shearing section of figure 5 is followed by a free flow where the fluid is 

not bounded by walls. It is then easy to understand the effect of the normal stresses we 

have described above : the unbounded fluid tends to swell in the absence of applied 

pressure on the free surface. This is called "die swell" or, more precisely, "extrudate 

swelling". The first picture in figure 3 shows a typical example of normal die swell. 

While it is known that at low Reynolds numbers Newtonian flow out of a capillary tube 

of circular cross-section generates a swelling of 13 per cent, polymer melts and polymer 

solutions produce jets with radii often more than three times as large as that of the 

capillary. 

The effects that we have just described are important from two points of view. First, 

they are directly related to the physics of the fluid at hand; a good mathematical model 

must be able to generate such effects. At the same time, extrudate swelling has major 

consequences in the widely used extrusion process. The purpose of extrusion is to 

generate long cylindrical bodies with an assigned cross-section. Such cross-sections can 

have a very complicated shape. In extrusion, the molten polymer flows through a die 

which assigns the shape of the free surface. Because of normal stresses and other 

complications, the extrudate profile is never identical to the die profile. An accurate 

prediction of the final profile would be of considerable help in die design which would 

otherwise require a large number of costly iterations. 

A peculiar difficulty of the simulation of extrusion is that the flow domain is a priori 

unknown; the shape of the free surface needs to be calculated toghether with the velocity, 

pressure, and possibly stress fields. Consider, for example, in figure 21a the cross- 

section of a straight capillary die which is followed, as an initial guess, by a jet of 

constant cross-section. The flow domain is covered by a mesh of initially rectangular 

elements associated with nodes at which one wishes to calculate velocity, pressure, and 

stresses in the case of viscoelastic fluids. Simultaneously, one wishes to calculate the 

location of the nodes of the free surface in order to satisfy free surface boundary 

conditions : fluid particles do not cross the free surface, while normal and tangential 

forces vanish there. Early calculations were made by Nickell et al [181 for generalized 

Newtonian flow based on a method of successive substitutions for predicting the final 

profile. However, a fully implicit technique introduced by L.E. Scriven and his 

collaborators [19] is now widely used for an accurate prediction of free surfaces. Figure 

6b shows extrudate swelling of a Newtonian fluid; for a unit radius of the capillary, one 
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obtains a final radius of the jet equal to 1.13; figure 21b shows contourlines of the 

stream function within lines of uniform shading corresponding to the pathlines of fluid 

particles. It is interesting to note that even in the Newtonian case, the problem is 

nonlinear because of the kinematic condition defining the free surface shape. 

We have already mentioned that an accurate numerical simulation would be most helpful 

in the design of complex shapes. In effect, this amounts to solving "an inverse problem": 

that is, for a given shape of the extrudate, what is the appropriate shape of the die? The 

problem is of course clearly threee-dimensional. Early attempts made use of iterative 

techniques, the correct die shape being attained by means of successive corrections to the 

die. 

However, the finite-element method provides the necessary tools for calculating once and 

for all the die profile once the shape at the end of jet is prescribed [20]. The problem is 

nonlinear in view of the free surface conditions and the rheology of the fluid, when this is 

non-Newtonian. 

The discretization scheme is based on a Galerkin technique for the momentum, mass 

conservation and kinematic equations. For the velocity-pressure discretization, we use 

the mini-element developed by Fortin [21]. This element has proved to be stable for 

incompressible flows, whereas the number of variables is relatively low. Accuracy is 

surprisingly good when compared to more expensive stable elements such as the tri- 

quadratic velocity element. Extrusion flow problems involve the calculation of free 

surfaces, the position of which is governed by kinematic conditions. A variable h, called 

the geometrical degree of freedom is associated to that kinematic condition. Moving free 

surface nodes without updating internal nodes would lead to unacceptable element 

deformation. One needs to propagate the motion of the free surfaces into the interior 

domain according to a remeshing rule. In our calculations, we use either a Euclidean 

distance rule described in [22] or a new remeshing scheme called Optimesh based on 

energy considerations. The linearity of the rule allows us to derive a full Newton- 

Raphson scheme at a reasonable cost and to reach quadratic convergence. 

Figure 22 shows an interesting example for the flow of a Newtonian fluid. The problem 

here is to define a cylindrical die profile for extruding a star-shaped jet; one finds that the 

die is characterized by sharp angles which are eroded during extrusion. One frequently 

observes that regions of low axial velocity in the die shrink in the free surface and that 

fine geometrical details of the die shape are erased during extrusion. 
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Figure 23 illustrates an Inverse Extrusion Problem involving internal and external free 

surfaces. The problem is to extrude a trilume silicon rubber tube used for medical 

applications. Many industrial profile extrusion processes operate at low speed, so that 

normal stress effects do not dominate with highly shear-thinning materials; one may then 

use a generalized Newtonian fluid model. Here, we use a power law described by 

equation (14) with a power index of 0.25. Figure 24 compares the prescribed extrudate 

shape and the calculated die lip section. The grey-scale represents the magnitude of the 

velocity vector, which is not uniform at the die exit while it is constant at the exit of the 

extrudate. The numerical simulation and the calculation of an improved die exit section 

has led to the production of tubes which correspond much more precisely to the required 

shape, and to maintain this shape when the extrusion velocity is increased [23]. 

Another interesting example is shown in figure 25. The dotted line shows the desired 

profile at the end of the jet. The plain line shows the required shape of the die which has 

been calculated with the inverse method of POLYFLOW. We also show in figure 25 the 

deformed finite element mesh in the exit section of the die. 



fS Hn- fil Finite,eIement mesh covering the central portion of the flow domain near 
the die lip; (b) circular extrudate swelling of a Newtonian fluid. 
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Extrudate 

Figure 22.   Shape of the die needed for extruding a Newtonian jet with a star cross- 
section. The angles in the die are much more acute than in the jet. 

—->- 

Figure 23    Finite element mesh for the numerical simulation of the processing of a 
trilume silicon rubber tube. p wc^m..      a 



Figure 24.  Comparison between the velocity profile in the die lip section and in the 
final extrudate section. 

Figure 25. Comparison between the desired profile at the end of the jet (dotted) and the 
calculated shape of the die (plain); cross-section of the finite element mesh. 
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6.    Numerical methods for viscoelastic flow 

6.1 Recent developments 

Early numerical work on the solution of viscoelastic flow only appeared in the mid- 

1970s, with the advent of powerful computers. The constitutive equations were now 

viewed as implicit equations for the stress components and the whole set of field and 

constitutive equations were solved with the stress components as variables in addition to 

the velocity components and the pressure involved in the solution of the corresponding 

Navier-Stokes equations. This fundamental development was therefore a major one, 

which introduced problems not hitherto encountered in Newtonian Fluid Mechanics. 

Developments up to the early 1980s are discussed in detail in [15] while more recent 

advances are covered by a review in [24]. 

Early developments were plagued by the so-called "high Weissenber number problem"; 

numerical codes invariably broke down at relatively modest (and often frustratingly 

small) values of We [15]. Much research effort has been expended in tackling this 

important problem and there are strong indications that the basic difficulties are now 

resolved. Let us consider an example. One of the major interests in rheology is the 

calculation of non-Newtonian flow around obstacles, or the migration of solid bodies, 

and possibly bubbles, through a rehologically complex fluid. Settling in suspensions, 

fluidized beds, sperm navigation in biological fluids, are all examples of the practical 

relevance of the problems. Let us consider an apparently simple example but one which 

has recently served as a benchmark problem in computational rheology. 

We consider the fall of a sphere along the axis of a vertical cylindrical tube, the radius of 

the cylinder being twice as large as that of the sphere. What we wish to predict here is 

fairly simple : considering a set of spheres, at what velocity do they fall? If the motion of 

the sphere starts from rest, is one able to predict the oscillatory motion which is 

sometimes observed when a sphere is dropped in a bath of real viscoelastic fluid? Once 

more, inertia effects are considered small as most experiments are performed in very 

viscous fluids. The Newtonian problem is simple; in fact, analytical solutions are 

available for evaluating the drag, including the effect of the cylindrical wall. In a 

viscoelastic fluid, the drag on the sphere for a given Wissenberg number is compared to 

the Newtonian drag in a medium of infinite dimensions, the ratio being called the "drag 

correction factor". 

If turns out that the flow is extremely difficult to calculate. However, at least for low 

Weissenberg numbers and the case of an upper-convected Maxwell fluid, there is now 
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excellent agreement between various research groups [25-27] on the value of the drag 

correction factor up to a value of the Weissenberg number of 2. A plot of the drag 

correction factor is shown in figure 26. 

The reasons for the difficulty appears in figure 27 where we show contour lines of the 

axial stress component in the flow domain near the sphere. It is found that normal 

stresses generate thin stress boundary layers near the wall of the sphere; a poor 

discretization is unable to resolve the boundary layer and leads to major discretization 

errors. 

6.2. Algorithms for fluids of the differential type 

Let us briefly review the algorithms for solving flows of the differential type; for the sake 

of simplicity, we examine the steady flow of a Maxwell fluid. We need to solve the 

following system of equations, 

v 
T + n   =2r]d   , 

-Vp + V.T+f = pa, (33) 

V.v =0, 

with appropriate boundary conditions on T and v. By comparison with Newtonian 

CFD, we realize immediately that the constitutive equations for T are not explicit in the 

velocity field. It is thus not possible to obtain a system of p.d.e. in terms of v and p. 

Mixed methods for viscoelastic flow use T, v and p as primitive variables. A central 

question is the selection of appropriate finite element representations for these variables. 

In early days (see Crochet et al [15]), a P2-C0 representation was used for T and v. It 

became clear however that such a selection could not satisfy the BBL condition of 

compatibility. In 1987, Marchal and Crochet [28] introduced the so-called 4x4 element: 

the velocity is represented by means of P2-C0 elements, but the stresses on a 

quadrilateral are discretized by means of 16 sub-elements on which one adopts a PI-CO 

representation. Simultaneously, it was found that the hyperbolic character of the 

constitutive equations requires the use of upwinding techniques (SU or, better. SUPG). 

The 4x4 element has been widely used for numerous applications but its use is restricted 

to plane and axisymmetric problems in view of its high computational cost. 
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In 1990, Rajagopalan et al [29] introduced a new element called EVSS. Instead of T, the 

method uses a new variable S defined as follows, 

T = 2r)d + S. (34) 

The advantage of the method is that it introduces a Newtonian-type term in the 

momentum equations and removes the above difficulty of compatibility between primitive 

variables. The method had been used earlier without success, because it was still 

expressed in terms of S, v and p. Rajagopalan et al [29] add the tensor d as an additional 

variable and thus remove difficulties which had been encountered before. An advantage 

of the method is that it gives much freedom for the selection of polynomial 

representations and in that sense may be cheaper than the 4x4 element. A comparison 

between various types of interpolations has been recently given by Debae et al [30]. 

POLYFLOW makes use of the 4x4 element and of EVSS. The latter is especially useful 

for 3D extensions and for the use of constitutive equations with multiple relaxation times; 

under such circumstances, the use of 4x4 (or 4x4x4) would be prohibitive. 

We wish to point out that, despite the fact that many problems are solved today up to 

appreciable (and practical) values of the Deborah number, viscoelastic flow is difficult. 

The continuation procedure implemented in POLYFLOW, using the relaxation time as an 

incremental variable, is unavoidable to reach significant values of the Deborah number. 

6.3. Algorithms for fluids of the integral type 

For fluids of the integral type, the constitutive equations have the general form (27). One 

realizes immediately that their form is entirely different from what one finds in Newtonian 

CFD. For steady-state flow, it is imperative to use an iterative method which may be 

briefly summarized as follows (the reader will find a detailed description in Goublomme 

et al [31]). The calculation starts from an initial guess, typicaly the solution of a GNF 

problem. For a given velocity field, it is then necessary to calculate the pathline of every 

quadrature point in the finite element mesh. Along these pathlines, on the basis of the 

velocity field, one then calculates the strain history. A numerical quadrature along the 

history leads to an evaluation of the stress tensor. The latter does not generally satisfy the 

momentume equations. A correction process on the velocity field, based on a 

perturbation of the constitutive equations, generates a new iteration. A difficulty with 

such a procedure is that it does not enjoy the convergence of Newton's method. Many 

iterations may be necessary to obtain converged results. However, integral models are 
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very useful for very accurate and realistic constitutive equations based on a spectrum of 

relaxation times, which are presently very costly for fluids of the differential type. 

6.4. Extrusion. 

Let us return to the axisymmetric problem considered in section 5.6 and examine the flow 

of an Oldroyd-B fluid through a capillary die. It is found that the amount of swelling 

increases considerably with the Weissenberg number. In figure 28, we show the jet 

configuration together with the streamlines for increasing Weissenberg numbers. 

We conclude that, at least on a qualitative basis, viscoelastic constitutive equations, 

together with numerical simulation, are able to generate the extrudate swelling observed 

in polymer solutions and polymer melts. It is possible to simulate the intriguing 

phenomenon known as delayed die swell which was discussed earlier. It is clear from 

figure 3 that beyond a critical flow rate, one observes a change of curvature of the free 

surface up to the point where the swelling is truly delayed. An important observation 

made by D.D. Joseph et al [32] is that delayed die swell is a critical phenomenon : for a 

given fluid and a given capillary tube, it occurs only beyond a critical flow rate. Its 

explanation can be related to the well-known phenomenon of acoustic waves. Let us 

briefly consider the flow of a compressible fluid where the velocity of sound is denoted 

by Cp. As long as the velocity U of the fluid is lower than Cp, the pressure distribution is 

governed by an elliptic partial differential equation which changes type to a hyperbolic 

equation when U is larger that cp . Hyperbolic equations produce characteristic features 

such as the generation of shock waves. Most viscoelastic fluids can be considered as 

incompressible and prevent the generation of acoustic waves. However, viscoelastic 

fluids are endowed with shear waves which travel at velocity cp. In a Maxwell fluid, one 

can show that: 

cs = (TloMlP)1/2 (34) 

A critical state is reached in the viscoelastic flow as soon as the fluid velocity exceeds that 

of shear waves; Joseph et al [32] have shown that, under such circumstances, the 

vorticity equation becomes hyperbolic. 

Delayed die swel is a critical phenomenon in the sense that it only occurs when the mean 

velocity in the capillary is higher than Cp. The occurence of delayed die swell under 

increasing flow rate can be verified by numerical simulation. Figure 29 shows the 

configuration of streamlines for various values of the viscoelastic Mach number which is 

defined as follows : 
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Mv = v/cs, (35) 

where v is the mean veloicty of the fluid in the tube. When Mv is high enough, the 

central portion of the flow is not informed that the tube has ended; swelling is delayed 

and the curvature of the free surface is modified. 

We have just considered some examples based on the use of a relatively simple Oldroyd- 

B fluid. We have found a correct qualitative behaviour, but the model is far too coarse to 

represent the behaviour of real polymer melts, if the associated numerical methods are to 

have an accurate predictive capability. Interestingly, a detailed analysis has recently been 

published by Goublomme et al [31] in order to predict the die swell results on high- 

density polethylene published by Koopmans [33]. Koopmans used the experimental 

layout sketched in figure 30; the melt coming from the extruder flows through a capillary 

die preceded by a conical entry section with a 50° opening angle. The extrudate flows in 

an isothermal oil bath of equal density. The length of the capillary is 30mm, while its 

diameter is 2 mm. Special devices are used for monitoring the growth of the extrudate 

when it leaves the capillary tube. Constitutive models of the integral type are available for 

describing the behaviour of melts such as the high-density polyethylene under simple 
flow histories. The use of these models for simulating flows through complex 

geometries poses new challenges, and we wish to show some typical features. For a 

flow rate of 335 mm^s"! through the capillary tube, Koopmans [33] obtained a swelling 

ratio of the order of 1.8 at a distance of 200mm from the die lip. In figure 31 we show 

how the upstream geometry of the die and the mathematical model can affect the final 

prediction. Figure 31a shows the streamlines and the shape of the free surface obtained 

with Wagner model [11] and the assumption that the die is a capillary tube of infinite 

length. The final swelling ratio is 1.44 as compared to 1.8 in the experiments. The low 

amount of swelling indicates the necessity of considering in the calculations a shorter 

capillary tube with a conical entry. The results, shown in figure 31b, come as a total 

surprise. One obtains a swelling ratio of the order of 8! In fact, we observe here the 

dominance of the elastic character of the fluid: the deformation of the fluid in the capillary 

occurs in such a short time that, according to the model used, the material behaves 

essentially like a piece of rubber which, squeezed through the capillary tube, would 

recover its shape at the other end. By adopting the "irreversible" version of the original 

Wagner model and by taking into account the second normal stress difference, 

Goublomme et al [31] were able to obtain the data shown in figure 31c. The theoretical 

swelling ratio of 1.86 is now very close to its experimental counterpart. The present 

example reveals that computational rheology can be used most effectively in 
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understanding the extrusion of complex fluids and eventually die design as we will now 

discuss withing the context of three-dimensional problems. 

The three-dimensional problem is much harder for the case of polymer metis endowed 

with a viscoelastic behaviour. The numerical method is more complex whilst the 

computation time is high. Moreover, normal stresses, and consequently swelling, 

increase with the flow rate. For the inverse problem, one thus expects a die shape which 

depends not only upon the required shape but also upon the assigned flow rate. The 

significant amount of swelling in viscoelastic flow results in a die profile which differs 

considerably from the jet profile. In figure 32 we show the cylindrical die shape required 

to obtain a cross-section of the jet with a viscoelastic fluid (more precisely a so-called 

Giesekus fluid) at an assigned flow-rate. One finds again that sharp angles in the die are 

necessary to produce the right angles in the extruded profile. 

Our second example in 3-D extrusion is relative to an Inverse Problem for a differential 

viscoelastic fluid of the Giesekus type. The objective is to obtain an octagonal profile 

and the calculation provides the necessary die lip section required to achieve this goal. 

The problem was solved for various values of the relaxation time, ranging from 0 to 

0.155 s. This last value is typical for highly elastic polymers. Figure 33 is a plot of the 

die lip shapes which have been calculated for various values of the relaxation time (the 

final shape of the extrudate is an octagon). The more elastic the fluid, the more the die lip 

shape deviates form the desired extrudate shape. For a viscoelastic fluid, there is a 

strong dependence of the die shape upon the extrusion speed. 

6.5 Weissenberg effect. 

We have already discussed in figure 4 the occurrence of the Weissenberg effect due to the 

presence of normal stresses in regions of high shear. The calculation of the free surface 

in such flows presents an additional difficulty as compared to the prediction of extrudate 

swelling. In the latter case, the velocity varies monotonically on the jet surface from the 

lip of the die to the outflow section of the jet; it is then possible to calculate the free 

surface by successive iterations between a trial velocity field and an estimated free 

surface. In figure 4 we are dealing with a "swirling flow" : there are three velocity 

components depending upon two cylindrical polar coordinates r and z. The largest 

velocity component on the free surface occurs in the azimuthal direction ; the radial and 

axial components are small and possibly nonmonotonic. It is then generally impossible 

to calculate the free surface iterations, and one needs an "implicit" method where the 

shape of the flow domain is calculated together with the pressure and the velocity and 

stress components.  The problem has been recently solved by Debbaut and Hocq [34] 
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who found good agreement between their numerical simulations and some experimental 

data. Figure 34 shows the central part of the flow near the rod in a typical application, 

the bulge of the free surface being associated with a recirculating clockwise vortex; we 

also observe a partial view of the main counter-clockwise vortex. 

Another interesting application is in the so-called "normal stress amplifier" shown in 

figure 35 [35]. Here, the viscoelastic fluid floats on a layer of water. The effect of the 

rotating rod is to provoke a small bulge on the upper free surface, together with a more 

pronounced bulge near the rod at the lower interface. One finds that the flow is 

characterized by a complex system of vortices of alternating directions. 

The potential of such calculations is evident: numerical simulation allows a comparison 

between experimental data and theoretical results for a selection of constitutive equations 

and material parameters; complex free-surface flows of industrial importance are clearly 

within the orbit of available numerical techniques. 

6.6. Flow through contractions . 

We have observed in figure 1 the appearance of large vortices in the flow of a viscoelastic 

liquid through a 4:1 asixymmetric contraction. In that particular application, the liquid 

was a solution of polyacrylamide in glucose syrup and water called a "Boger fluid". 

S.uch fluids are highly viscoelastic and transparent at room temperature; they are used as 

substitutes for polymer melts in experimental investigations of non-Newtonian flow. A 

particular feature of these fluids is that, at low enough shearr rates, their viscosity is 

constant, while the primary normal stress difference is a quadratic function of shear rate. 

For these reasons they are often assumed to behave as Oldroyd B fluids. 

Remarkable photographs of vortex enhancement in Boger fluids were first published in 

the late 1970sd [36]; they contributed to the excitement of computational rheologists who 

wanted to simulate such effects without realizing at the time that they were attempting to 

solve one of the most difficult problems in their field. Some real progress has been 

made, and a number of observed features are today very well understood. 

A first encouragement came when numerical analysts discovered the existence of a slight 

Newtonian vortex which had not been observed before by experimentalists. A 

remarkable correspondence between calculated and observed streamlines is shown in 

figure 36. The fluid is Newtonian and the Reynolds number of the die flow is very low, 

so low in fact that inertia terms can be neglected in the momentum equations. Early 

attempts at flow calculation with the upper-convected Maxwell fluid met with failure. In 
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the 4:1 contraction flow, the relevant Weissenberg number is usuallly defined by the 

group Xy»,, where 7W is the shear rate on the wall of the downstream tube. While 

experimentalists observed vortex enhancement at Weissenberg numbers of the order of 1, 

most numerical calculations failed to converge at about the same value and, when they did 

converge, they did not show any vortex enhancement! Such failure was a reflection of 

the "high Weissenberg number problem" discussed earlier. 

Many possible causes of the problem have been put forward, but it has taken several 

years to understand that the true origin of the problem is related to numerical errors. A 

limited number of numerical methods have recently become available for solving flows at 

high Weissenberg numbers within the context of abrupt contractions and we show in 

figure 37 typical results showing vortex enhancement in the 4:1 contraction flow; in these 

figures, it is found that the vortex grows from the salient corner towards the axis of 

symmetry. Early calculations of such vortices [28] showed a correct qualitative 

behaviour, but the Weissenberg numbers at which they occurred differed by one order of 

magnitude from the observations. It took another five years for Boger et al [37] to realize 

that numericists and experimentalists were using different measures for the Weisenberg 

number, arising from the fact thtat the Oldroyd B model does not represent the properties 

of Boger liquids over a wide enough range of shear rates. 

In passing, we remark that good semi-quantitative correspondence between calculated 

and observed vortices has also been found for the flow of low-density polyethylene 

through an abrupt contraction with the help of models fo the integral type and several 

relaxation times. 

While figure 37 shows that viscoelasticity does indeed generate recirculation regions, 

many outstanding problems remain to be solved. There is much experimental evidence 

that observed vortices are generated from the lip of the abrupt contraction and not by 

enhancement of the Newtonian corner vortex [38]. It is also true that the maximum size 

of vortices calculated at the present time is much smaller than that of the observations; the 

calculations seem to show saturation of the vortex size which is not observed 

experimentally. In fact, some experiments [39] reveal an apparent bifurcation from 

steady-state flow to a time-dependent rotating flow beyond some value of the Deborah 

number. Despite recent efforts in this direction bifurcations have not been detected in 

numerical simulations. The difficulty in simulating these complex patterns is presently 

attributable to at least three possible causes: a misunderstanding of the behaviour of the 

fluid near the re-entrant corner; the inability of the constitutive equations to capture the 
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behaviour of real fluids in complex flows; and the possible inadequacies of the numerical 

codes. 

Quite recently, Purnode ans Crochet [40] have reexamined the flow of Boger fluids and 

of polyacrylamide-in-water solutions through abrupt ontractions of various ratio with the 

use of the FENE-P constitutive equation [41]. They have found a truly remarkable 

agreement between experimental observations and numerical results. In particular, they 

have obtained the appearance of "lip vortices" as shown in figure 38. Quite clearly, the 

constitutive equations are more problematic today than the numerical methods which have 

progressed considerably over the last ten years. 

6.8 Film casting. 

As a final example of viscoelastic effects, we wish to briefly describe briefly the film 

casting process where viscoelasticity plays a major role [42]. Film casting (also called 

film stretching) is a process commonly used to produce plastic films. The polymer exits 

a coat-hanger die, forms a free surface and is stretched by a take-up roll. During 

stretching the thickness is reduced by a factor 30..100, leading to a final thicknesses of 

the order of a small fraction of a millimeter. Typically, the width of the die is of the order 

of lm and the distance between the die exit and the take-up roll is of the order of 

0.5...lm. Although the 3-D free surface model described in section 2 could in principle 

be used, the thickness of the film is so small that the aspect ratio of the volume elements 

would be extremely large. This is the reason why we have developed a 2-D plane stress 

model where the thickness is being handled as a separate variable. However the model 

can be applied for differential viscoelastic fluids as well as for generalized Newtonian 

fluids. The model predicts the film thickness at every location on the film, as well as the 

position of side free surfaces which are updated according to a kinematic condition. 

Outputs of the model are the thickness distribution (for example on the take-up roll) and 

the absolute value of the 'necking' (width reduction as compared to the initial coat-hanger 

die width). 

Let us first solve the problem for a generalized Newtonian fluid. We have considered the 

film stretching problem described in figure 39. The film thickness as well as the average 

velocity are imposed along the coat-hanger die exit (which is the entry section of our 

simulation domain). The position of the side free surfaces is a priori unknown : 

dynamic and kinematic conditions are imposed to locate those lines. In the exit section, 

we prescribe a fluid velocity equal to the linear speed of the roll. Figure 40 shows the 

film geometry for various values of the power law index n, for a draw ratio equal to 30. 
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Note the generalized Newtonian model predicts that the higher the draw ratio, the large 

the necking will be. 

In film stretching, fluid memory plays however a significant role because of the strong 

elongational character of the flow. It is found that viscoelastic results significantly differ 

from their Generalized Newtonian counterpart. Using a Giesekus model, we have solved 

the problem for the same value of the relaxation time for increasing values of the draw 

ratio D. Film geometry is shown in figure 41. As we would expect in view of the high 

extensional viscosity, the film necking is now much lower than for the generalized 

Newtonian case. One also observes an improved film thickness uniformity on the take- 

up roll. This prediction has been experimentally confirmed for some LDPE films. 
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Figure 26. A plot of the drag correction factor as a function of Weissenberg number for 
an upper-convected Maxwell model. The radius of the cylinder is twice that of the 
sphere [25-27]. 
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Figure 27.   Contour lines of the axial stress components showing the intensity of the 
stress in boundary layers and in the wake of the sphere. 

Figure 28. Circular extrudate swelling for an Oldroyd-B fluid at De = 2 and De = 5. 
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Figure 29. Shape of the jet in the case of delayed die swell; one observes the change of 
curvature of the free surface when M increases from 0.3 to 2.4 and eventually to 4.3. 

02 mm 

30 cm 

Figure 30.  The capillary die is preceded by a conical entry section with an opening 
angle of 50° [33]. 

Figure 31.  Simulation of the swelling of a high density polyethylene with a Wagner 
model (a) out of a long capillary tube and (b) out of a die with a conical entry section 
The results are very similar to experimental data when one uses a modified rheological 
model (c). 
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Figure 32. Die shape required for ex trading a viscoelastic jet of square cross-section. 
The outer square represents the cross-section of the jet. The inner curves represent the 
shape of the die at various values of the flow rate. 

Die shape required for extruding a viscoelastic jet of octagonal cross- 
section. The outer curve represents the cross-section of the jet. The inner curves 
represent the shape of the die at various values of the How rate. 
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Figure 34.   Central portions of the free surface for the flow of an Oldroyd-B fluid 
caused by a rotating rod, showing the Weissenberg effect. 

Figure 35. As for figure 34, except that the polymer fluid floats on water and creates a 
second lower bulge at the interface. 
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Figure 36.  Comparison between experimental and calculated streamlines for the flow 
of a Newtonian fluid through a 4:1 contraction. 
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Figure 37.  Vortex enhancement due to viscoelasticity in the 4:1 contraction problem 
(a) at De = 15 and (b) De = 35. 

Figure 38. Comparison between experimental and numerical results showing the 
appearance of lip vortices in the flow of polyacrylamide-in-water solution through an 
abrupt contraction [40]. 
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Figure 39. The film stretching process: geometry and boundary conditions. 
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Figure 40. Necking for different values of the power-law index; the draw ratio is equal 
to 30. 
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Figure 41.    Numerical simulation of film stretching of a viscoelastic fluid with 
increasing values of the draw ratio. 
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Modelling of Flows with Unknown Free 
Surfaces 

S. Subbiah, Ph.D. 
Fluent Inc. 

10 Cavendish Court 
Lebanon, NH 03766, U.S.A. 

Introduction 

This lecture reviews the computational approaches for the solution of the incompressible 
Navier-Stokes equations in a domain bounded in part by an unknown free surface whose 
location is desired to be tracked as part of the solution. 

Free surface flows occur in many industrial processes where one or more of the fluid bound- 
aries is unknown and is desired as part of the solution. Examples include coating flows, extru- 
sion, coextrusion, melting/freezing processes, casting, mold filling, etc. From the modelling 
viewpoint, the presence of this unknown free boundary adds an extra level of complexity to 
the solution of the non-linear Navier-Stokes system. The free surface has to be represented 
and tracked in such a manner that appropriate boundary conditions can be applied on the 
free boundary, and the overall problem solved coupled to the main flow. Often this means 
that the CFD practitioner has to consider one of several choices in terms of how the free 
surface interacts with the computational mesh used to solve the flow equations: 

• Fixed mesh (Eulerian) 

• Moving mesh (Lagrangian) 

• Moving mesh (Arbitrary Lagrangian-Eulerian) 

1    Fixed Mesh Methods 

Some of the earlier approaches to solving free boundary problems suggested treating the 
domain of interest by a computational mesh which is fixed in space and time.   The free 
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surface is then tracked as an internal, migrating boundary whose position is tracked via a 
scalar representation of the presence of liquid. 

1.1    The MAC method 

The Marker And Cell Method (MAC), first proposed by Harlow and Welch (1965) was de- 
signed to model time-dependent, incompressible flows with free surfaces. The flow governing 
equations were solved over a fixed mesh using a finite difference discretisation. 

^ + ^   =   0 (1) 
dx     dy 

du du dv 1 dp ,    (d2u d2u\                               m 

dt dx dy pdx \dx2 dy2 J 

dv du dv I dp (d2v d2v\                                  m 

dt dx dy pdy \dx2 dy2J 

The authors suggested a control volume discretization on a structured mesh, with a staggered 
representation of velocities and pressure on each cell. The MAC method then introduces 
"marker" particles into those cells that are filled with fluid at time * = 0. The solution 

procedure is then as follows: 

• Solve the unsteady flow field (u,v,p) for one time step 

- on those cells with marker particles only 

- subject to specified boundary conditions 

Move each marker particle to a new position based upon the local velocity field. 

• Determine the new free surface location. 

• Resolve the unsteady flow field and continue. 

• 

The boundary condition that the authors applied on the free surface essentially imposed a 
normal stress balance across the free surface. For example, consider two fluids of viscosities 
Mi and fr. Let the interfacial surface tension coefficient be a and denote the surface curvature 

as K. Then a normal stress balance yields: 

(-»^-(-»^H ,4) 
The above boundary condition can be further simplified if we were to make the following 

assumptions about the flow system: 
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• Let /ii » H2 (say5 water and air). 

• Let o = 0 and let p = 0 on the free surface 

• Then, the normal stress balance statement becomes: 

Pi + 2^=p2 = 0 (5) 

• Which yields a simplified set of b.c. on the free surface: 

p   =   0 
dun 

dn 
=   0 

To locate and describe the free surface, the authors define any cell with a marker particle 
that is adjacent to an empty cell as a surface cell. The free surface is then defined by the 
line segments connecting the outermost marker particles. With this approach, in general, 
the number of marker particles has to be greater than the number of cells for good resolution 
of the free surface location. In fact, the resolution of the free surface depends upon both the 
number of marker particles as well as the no. of cells. 

Once all the boundary cells have been nagged with appropriate boundary conditions, the 
unsteady flow equations are solved for one time step. The authors used an explicit update 
here, which has a limitation on the size of the time step that can be taken (due to numerical 
stability constraints). 

1   /   Ax2Ay2   \ ,.. 
At<2-„{Ä^b) (6) 

The marker particles are then moved to their new positions xm, ym using locally averaged 
velocities um, vm: 

.      vT     =    Vl + Vm&t 

The marker velocities are calculated as a weighted average of the nearest known cell velocities: 

_ AiUi + A2u2 + A3u3 + A4U4 
Um~ Ä^Ky 

where A,- represents a weighting based upon the distance from the marker location to the 
nearest nodes where the velocity data is stored. 

Although a powerful technique, the MAC method has some limitations: 

• The calculation of the free surface location is very sensitive to no. of marker particles 
used. 



• 

• 

It is difficult to calculate surface curvatures accurately, and hence to include surface 

tension effects. 

In some cases, certain fluid cells within a domain might temporarily not contain any 
particles. Marking scheme should be sophisticated enough to ensure that false internal 

surfaces are not produced. 

Time step size is limited by Az2 and by i/-1. Calculations for large mesh sizes and 
large values of viscosity can be computationally expensive. 

Inaccurate for long time span simulations (numerical smearing) 

1.2    The VOF Method 

The Volume Of Fluid (VOF) method was proposed by Hirt and Nichols (1981) to address 
some of the limitations of the MAC method. The main change is to move away from using 
marker particles, and instead, use a function F that indicates the volume of fluid in each 
cell. The discretisation continues to use a finite volume approach on a fixed mesh. 

The function F is defined as the (normalized) volume of fluid in each cell. 

F = 0   Empty Cell 

F = 1     Fluid Cell 

0 < F < 1   Surface Cell 

The function is defined at the cell centers of each cell (only 1 storage word per cell). How is 
the free surface described with this approach? In an analogous manner to the MAC method, 
surface cells are those that contain non-zero values of F and are adjacent to at least one cell 
that has F = 0. Assume that the free surface boundary can be represented by a straight line 
cutting through the cell. The first step is to determine the slope of the free surface line for 
that cell. This is determined by noting that the normal direction on the free surface is the 
direction in which F is varying most rapidly. Next, the free surface boundary is located by 
finding the position at which the free surface intersects the known amount of fluid volume 

in the cell. 

As with the MAC method, the pressure boundary condition is interpolated (or extrapolated) 
to ensure the correct pressures are posed on the surface cells. Once all the boundary cells 
have been flagged with the appropriate boundary conditions, the unsteady flow calculations 

are performed for the next time step. 

The transport of the scalar F is defined as a purely convected process. 

dF       dF       dF 

dt        dx       ay 



The discretized form of the above equation for F is solved in each cell. Care must be taken 
to avoid the numerical dissipation of F during the solution (using upwinding, second-order 
upwinding, QUICK, etc.) 

After the convective calculation is complete, a pass has to be made throughout the mesh to 
reset values of F. 

• If F < 0, then F = 0. 

• If F> 1, thenF= 1. 

These changes in F are also included in the accumulated volume change. 

1.3    Surface Tension Effects 

With the more accurate representation of the free surface location by the VOF method, it 
is possible to include surface tension effects in the free surface boundary conditions. Here, 

• Normal stress: 

• Tangential Stress: 

Pambient ~P+ ^^~ = aK 

On 

'dun     dut 

However, the calculations are still limited by the accuracy of the curvature evaluation of the 
free surface. The solutions can be improved by the (costly) increase in mesh size. 

In summary, the VOF method enables the natural tracking of complicated, colliding free 
surfaces. The method is best suited for modeling inviscid flows neglecting surface tension 
effects. 

2     Moving Mesh Methods 

The use of Eulerian methods (MAC, VOF) have traditionally involved large storage and 
computing resources. The need for large meshes comes about due to (a) the need to cover 
the entire possible range of fluid motion, and (b) the need to locate the free surface accurately. 
An alternate approach would be to fix a mesh on the fluid domain only such that: 

• The mesh is only as large as the fluid domain 

• The free surface is an explicit boundary of the mesh itself 



2.1 Lagrangian Treatment 

One approach is to fit the fluid domain with a mesh (BFC, finite element, etc.) The free 
surface then directly forms a portion of the mesh boundary. At every time step, the flow 
field is evaluated and all nodes (including the free surface nodes) are relocated with their 
local velocities. The advantage of this approach is that it is Compact and efficient. The 
disadvantage is that it is limited to small deformations only. (This approach is more popular 

in structural mechanics). 

2.2 Arbitrary Lagrangian Eulerian Treatment 

The Arbitrary Lagrangian Eulerian method (ALE) is also a moving mesh approach where 
only the fluid domain is meshed. The improvement comes from decoupling the free surface 
tracking from the bulk flow field analysis. The algorithm is as follows: 

1. The nodes on the free surface are relocated based upon the surface flow field. 

2. The surface nodes are smoothed (along the free surface) if excessive clustering is seen 

to have taken place. 

3. The internal mesh is regenerated using the boundary nodes as constraints (minimizing 

mesh distortion). 

4. The entire flow field (calculated on the old mesh) is mapped from the old mesh to the 

new mesh. 

5. The flow equations are solved for the next time step on the new mesh. 

Since the mesh deforms with the fluid, the use on an unstructured grid will allow for capturing 
truly arbitrary deformations. Since repeated mapping of data is called for and since this can 
lead to a diffusive corruption of the flow data, a high-order, low diffusion scheme would be 
an attractive choice. The Spectral Element Method provides both the unstructured grid as 
well as the high-order resolution, making it an attractive forum to explore free surface flows 

with the ALE approach. 

Since the ALE approach allows us to track the surface explicitly, the curvature (K) can also 
be evaluated accurately. As a result, the complete set of stress boundary conditions can be 

treated with this scheme. 

Consider two fluids of viscosities ^ and /i2. Let the interfacial surface tension coefficient be 
a and denote the surface curvature as K. Then a normal stress balance yields: 

(-»+**£)-(-»+2*£H (7) 



• And a tangential stress balance yields: 

(dun     dus\ fdun     dus\      da 

^[-d7 + -d^)-lil{-d7 + -d^)=Ts (8) 

Recently, Lee Ho et al. (1992) have applied a high-order finite element approach (spectral 
element method) towards the tracking of free boundary flow problems via an ALE scheme. In 
the spatial discretization procedure, a Legendre spectral element method is used to generate 
the discrete equations. For effective solution of the set of algebraic equations, the geometry 
is decoupled from the fluid velocity and pressure. In addition, two different algorithms are 
proposed depending on the importance of surface tension effects. 

2.3    Background Review 

Multi-phase and free-surface flows are encountered in a large number of important engineer- 
ing applications, particularly in the area of material processing. As the geometry of the free 
boundary constitutes a part of the solution, its presence significantly complicates the solution 
of the Navier-Stokes equations. Analytical solutions of practical free boundary flow problems 
are virtually nonexistent, and increasingly numerical methods are employed for the design 
and analysis of these flow processes. Despite the many physical complexities embodied in 
the flow, most of these flow processes operate at a steady state. Thus, the flow characteris- 
tics at steady state is of practical interest for both design and analysis purposes. Moreover, 
many studies of flow instability require the availability of a (nominal) steady state to which 
a perturbation is superimposed. Hence, effective numerical techniques for the evaluation of 
steady state solutions are essential for these types of applications. 

Transient algorithms can, of course, be used directly or in conjunction with extrapolation 
techniques to predict the steady state response. However, in practical flow systems the re- 
quired physical models are often quite complex (such as variable fluid properties and nonlin- 
ear boundary conditions); these models often lead to multiple physical time scales which can 
preclude effective use of transient algorithms. For example, for explicit and semi-implicit 
algorithms (which do not require Newton-Raphson or similar equilibrium iterations), the 
size of the time step increment is restricted by stability requirement to be smaller than the 
smallest physical time scale, while the time required to reach steady state is governed by 
the largest physical time scale. In either case, the physical effect whose time scale is the 
most costly to accommodate (computationally) may not even be the dominant effect that 
influences the flow behavior. Thus, the end result is the requirement of a large number of 
time steps in order to obtain the steady state solution, which is computationally inefficient. 
Implicit transient algorithms are not restricted by stability requirement; however, the solu- 
tion of the nonlinear equations at each time step generally requires equilibrium iterations 
which have to be repeated over many time steps (to reach steady state). Thus, this approach 
can be as computationally intensive as well. Clearly, specially designed steady algorithms 
are needed to adequately address the needs of these free-surface flow applications. 

7 



3    Variational Formulation 

Consider viscous steady incompressible flow of a Newtonian fluid, with density p and viscosity 
fi , in a three-dimensional domain tt . The domain boundary T is decomposed as T = 
T0 U Ta , with (Dirichlet) no-slip boundary conditions imposed on T0 , and (Neumann) 

traction boundary conditions imposed on FV . 

The equations governing the fluid flow are the steady Navier-Stokes and continuity equations 

which can be written as: 

pUjuhJ  = Tih3 + fi inO, (2.1a) 

«,-„• = 0 ^ Ü , (2.1b) 

subject to the boundary conditions 

Ul  = 0 on ro > (2-2) 

Tij nj  =  (JKUi + V; a on Tff , (2.3) 

where «,- is the fluid velocity, /,• is the body force, and T0- is the stress tensor defined as 

Tij  =  -P % + ß ( Uij + uJ,i) > ^2'4^ 

where p is the pressure (relative to zero ambient) and ^ is the Kronecker delta. On the free 
surface Tff , cr is the surface tension coefficient, m is the outward unit normal, V; is the 
surface gradient operator, and K is the curvature in two-dimensional geometry and twice the 
mean curvature in three-dimensional geometry (the curvature along a surface coordinate is 
considered positive if the liquid region below the free surface along that surface coordinate 
is concave). We shall use the following notation and conventions: Roman indices range from 
1 to 3, a subscript comma denotes derivative (e.g., ui}] = dui/dx3), and repeated Roman 
indices are summed from 1 to 3. The governing equations are in reference to a Cartesian 
coordinate system, therefore we need not distinguish between covariant and contravariant 
components of vectors and tensors. However, this distinction is required in three-dimensional 
geometry if a surface-intrinsic representation is adopted on the free surface. 

Let the two-dimensional free surface be described by a local curvilinear coordinate system 
ra,a = 1,2 , which are in general non-orthogonal. Recall several useful definitions from 

differential geometry [18]: 

a   ■   -   x- (2-5) 

gai9ßi  =    9aß  , ^    "    ' 



ß 
9a i 9 i € , (2-7) 

9 = 4^\; (2-8) 

where gai is the covariant base vector, g0- is the contravariant base vector, gaß is the 
covariant metric tensor, 6f is the Kronecker delta. Using the above definitions, the surface 
gradient term in (2.3) can be expressed as 

V,- a = g<* a,a , (2-9) 

where repeated Greek indices are summed from 1 to 2. 

The variational form of (2.1) to (2.4) is given by [9-11]: find (u,-,p), with u{ G H\{Ü) and 
p G L2(0), such that 

/  {pViUjUij + Vij[-pSij + n (uitj + uj,i)] - Vifi} dV   - 
JQ. 

h{vi) = 0 Vvi G ä3(0) , (2.10a) 

/   quudV  =  0 VqeL2(Sl); (2.10b) 

where Vi and q are test functions, L2(0) is the space of functions which are square integrable, 
and #o(0) is the space of functions which are in L2(tt), whose first derivatives are in L2(fl), 
and which vanish on T0 . The term Ia{vi) is the variational form that corresponds to natural 
imposition of the traction boundary conditions given in (2.3). In three-dimensional geometry, 
this form can be written as [11]: 

h{vi)  =   i a Vi g ga
{ eaß drß -   f   v^ag^dA, (2.11) 

where 7 is the line segment that bounds the free surface T0 , eaß is the permutation symbol 
(cn = e22 = 0, ew = -e2i = 1 ), and dA = gdrldr2 ; see Fig. 2.1. 

Note that in two-dimensional geometry, (2.11) reduces to the following variational form 
which is presented in [4]: 

hivi)  =  (aviti)\b
a ~   t vlXaUd(, (2.12) 

Ja 

where U is the unit tangent vector and ( is the curvilinear coordinate on the free surface 
segment ab; see Fig. 2.2. 

The variational forms given in (2.11) and (2.12) have the following important advantages 
which are discussed in [11].   First, it automatically generates the equivalent normal and 



tangential traction conditions as given in (2.3), including the effect of variable surface tension 
(Marangoni flows) [19,20]. Second, in the subsequent domain decomposition it provides a 
natural (weak) condition for continuity of slope across elemental boundaries on the free 
surface. Third, it is entirely surface-intrinsic, with no need to reference global coordinates or 
locally orthogonal systems. Lastly, it requires a lower-order geometric representation when 
compared with formulations that use the mean curvature directly in the imposition of the 

normal traction boundary condition. 

3.1     Spectral Element Discretization 

In the spectral element discretization [12,13], we subdivide the domain into K disjoint el- 
ements (quadrilaterals in two-dimensional geometry and hexahedrons in three-dimensional 

geometry): Ü = U*Li^fc» and we sna11 require tnat the variational statement be satisfied 
for the piecewise high-order polynomial subspaces for the velocity and pressure, that is, 
(Ui)h £ Xh and ph G Mk, where the subspaces Xh and Xh are defined as 

Mh = c2{n)nvN-2,K{fy; (3-lb) 
where VN,KW = {$ e £2(^);$k e VN{nk)}, and VN{ük) denotes the tensor-product 
space of all polynomials of degree TV or less with respect to each spatial variable. It is shown 
in [14-16] that the above choice of approximation spaces are compatible in the sense that 
spurious pressure modes are not present in the solution. In addition, the discretization error 
is only a constant away from the best fit in the given approximation spaces. 

For numerical evaluation of the elemental integrals [13], we perform a mapping of the phys- 
ical (x!,x2,a;3)-system into a local (r , s , i)-system : (xi, x2 , x3)k G Ofc =» (r, s , t) G 
AxAxA;A=]-l,l[, and we define two integration rules, the first one (for the velocity 
mesh) by taking the tensor product of Gauss-Lobatto formulas, and the second rule (for the 
pressure mesh) by taking the tensor product of Gauss formulas. 

We now introduce an interpolant Gauss-Lobatto-Legendre basis for the spectral element 

approximation space Xh  [13]: 

(xt)
k(r,s,t) = (*0fm« Hr) hm(s) hn(t) , (3.2) 

where (z,-)fmn is the physical ^-coordinate of local collocation point (l,m,n) of element k, 
hp(z) is the Nth order elemental Lagrangian interpolant through the Gauss-Lobatto points, 
that is, hq(zp) = 6pq , and summation is performed for l,m,n = 0,1,2, ... ,7V . Thus, the 
coordinate xt, body force (/;)/*, fluid velocity (u,-)fc and test function (vi)h are expanded 
in the same tensor-product form as given by (3.2). Similarly we introduce an interpolant 
Gauss-Legendre basis for the space Mh and we expand the pressure ph (and the test function 

qh) as : 
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rf(r,M) = Pin k(r)hm(s)hn(t) , (3.3) 

where pfmn is the pressure of element k, local collocation point (l,m,n), hm(z) denotes the 
(N-2 )th order elemental Lagrangian interpolants through the Gauss points, and summation 
is performed for /, m, n = 1,2, ... , (JV — 1). 

The final discrete system of algebraic equations are obtained by imposing successively (at 
all degrees-of-freedom) test functions (i;,-)/, and qn which are unity at one global collocation 
point while zero at all others, and we arrive at: 

Df P - A^-U; + F,- + F* - CUi = 0; (3.4a) 

D, U,- = 0 ; (3-4b) 

where A,j is the discrete viscous coefficient matrix, D, is the discrete gradient matrix, U,- 
and P are vectors of the fluid velocity and pressure, respectively, at all the collocation points, 
Fj is the body force vector, Fai is the surface force vector defined on Ta that corresponds to 
Ia(vi) in (2.10a), and C comprises the advection contributions. Thus, (3.4) is the discrete 
spectral element equations that govern steady viscous incompressible free-surface flows. We 
note that since the free surface geometry is not known apriori, the nodal coordinates X,- at 
steady state must be determined in conjunction with (3.4). 

3.2     Steady-State Solvers 

As the geometry of the computational domain constitutes part of the solution due to the 
presence of a free surface, an effective steady state solution strategy is to compute successive 
approximations of the solution via iteration. To this end, we consider the following iterative 
equations obtained by rewriting the discrete equations (3.4) in terms of the incremental 
solution variables and including the update of the nodal coordinates on the free surface Ta : 

(D™ )TAPm+1 - A£AU™+1 - ACm AU™+1 = 

-(Df )TPm + A^UJ1 - F™ - Fa™ + Cm Uf 

D™AU7+1 = -D™Uf 

HmAxm+l    =    ARm 

U™+1  = Uf + AU™+1 

pm+l    _   pm     i      A pm+1 
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in 0, , (4.1a) 

in 0 . (4-lb) 

on rv. (4.2) 

in Q , (4.3a) 

in fi . (4.3b) 



Xm+1   = X™ + AX™+1 on Ta . (4.4) 

In the above set of iterative equations, the superscript m is the iteration counter, AU;, AP 
and AX,- are vectors of the incremental nodal-point fluid velocity, pressure and coordinates, 
respectively; AC denotes the linearized convection operator; H is the curvature operator 
and AR; is the vector which stores the residual/source contribution, respectively, used 
in the free-surface geometry solution. Both H and AR; in (4.2) must be formulated in 
conjunction with the surface force vector FCTi in (4.1a); the selection of the appropriate 
formulation depends largely on the role played by surface-tension effects, as described in 
Sections 4.1 and 4.2 below. The following remarks apply concerning the above formulation. 

First, note that the equations are completely general, as they are applicable to both two- 
dimensional and three-dimensional geometries, as well as to constant or variable material 
properties. Second, one can deliberately make use of a decoupling strategy in which the 
solution of the Navier-Stokes and continuity equations is decoupled from that of the geometry 
equations. That is, (4.1) and (4.2) are solved alternately based on the last computed solution 
rather than simultaneously. One of the disadvantages of such an approach could potentially 
be a slower convergence rate. However, the decoupled approach offers the following important 

advantages. 

• 

• 

The number of nodal degrees of freedom in either (4.1) or (4.2) is greatly reduced 
compared to that of a fully coupled approach. This is an important consideration 
when using direct solvers since for high-order discretization methods, the bandwidth 
of the assembled matrices are substantially larger than that of low-order methods. 

The decoupling of (4.1) and (4.2) facilitates easy switch of the free-surface boundary 
conditions between the kinematic and the dynamic conditions during the solution of 
these equations; this option allows for the design of a novel scheme which can achieve 
rapid convergence to steady state, as described in Section 4.2. 

The decoupled form allows for the possible use of different types of solvers for the 
solution of (4.1) and (4.2); this flexibility enables the employment of optimal solvers. 

This approach is easily extendable to the modelling of more complex flow physics; for 
example, the thermal energy transport equation as well as the transport equations for 
any other passive scalars can readily be introduced within the proposed framework (as 
an additional system of equations), without further increase in the size and bandwidth 

of the matrices. 

Before we consider the details in the proposed algorithms, we briefly review some issues 
related to application of a transient free-surface algorithm from which important insights 
can be gained to benefit the design of effective steady free-surface algorithms. We consider 
a front-tracking transient algorithm which uses semi-implicit time integration schemes to 
decouple all nonlinearities; that is, the two-dimensional transient spectral element algorithm 

12 



[10] and its extension to three-dimensional geometry [11]. The use of a front-tracking ap- 
proach requires an arbitrary Lagrangian-Eulerian description [9] and hence the employment 
of a mesh velocity u>, for which the following kinematic conditions must hold on the free 
surface: 

Wi  =  (uknk)rii . (4.5) 

Using (4.5), a boundary-value-problem can be constructed by applying an appropriate ellip- 
tic operator to extend the mesh velocity into the interior domain. With the establishment 
of the mesh velocity field, the time evolution of the flow domain can be evaluated as 

~ = wi . (4.6) 
at 

Applying the semi-implicit strategy given in [10], the Stokes operator in the momentum equa- 
tions is treated implicitly, while the convection operator is treated explicitly. In addition, 
explicit schemes are employed for (4.6) to decouple the Navier-Stokes equations from the 
geometry evolution equations. In this way, costly iterative procedures for implicit treatment 
of all nonlinearities and couplings can be effectively avoided. 

In the time integration of the free-surface flow equations, a semi-implicit scheme gives rise to 
two criteria and consequently two step size restrictions; the more stringent of the two must 
be satisfied for stability. For the convection operator, the critical step size Atc

crit is given by 
the Courant condition: 

A^t oc  £ , (4.7) 

where h  is the minimum mesh spacing and V is the characteristic flow speed.  For the ge- 
ometry evolution given in (4.6), the critical step size At°rit is given by [9] 

AC -  J^- . (4.8) 

We can now identify several drawbacks which arise from the use of the above transient 
semi-implicit scheme for evaluation of the steady state free-surface solution. First, whenever 
the surface tension effect is dominant (as in the case of a large surface tension coefficient 
coupled with small physical dimensions), it is clear that the critical step size given in (4.8) 
can be severely restrictive. Second, when the steady state is reached, the mesh velocity is 
everywhere zero from (4.6). Consequently, at steady state (4.5) reduces to 

u,n,  = 0. (4.9) 

Transient algorithms are not able to exploit this important kinematic condition effectively to 
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speed up the convergence to the steady state solution. Third, even when the surface tension 
effect is small, the free surface evolution as governed by the kinematic conditions (4.5) may 
still require a substantial number of steps to reach steady state if the steady state is very far 

from the initial state. 

As the free surface geometry deforms from an initial (unsteady) state towards the steady 
state, the dominant physical effect that effectuates this deformation needs to be identified. 
Since the surface tension contribution is directly involved in the normal traction boundary 

condition on the free surface: 

—   OK (4.10) 

it is therefore plausible that in order to design an effective steady state free-surface solu- 
tion schemes, it is advantageous to distinguish between flows dominanted by surface tension 
from those dominated by others. In this study we consider the following three major phys- 
ical forces that influence the free surface flow behavior: inertia, viscous and surface-tension 
forces. The relevant non-dimensional groups that indicate the balance of these forces are: 
the Reynolds number (inertia versus viscous effects) 

Re PVL (4.11) 

where L and V are the characteristic length and velocity, respectively; the capillary number 

(viscous versus surface tension effects) 

Ca =  ^ ; (4-12) 
a 

the Weber number (surface tension versus inertia effects) 

W =  ^— . (4-13) 
pLV2 

We now consider effective use of the boundary conditions (4.9) and (4.10) for the computation 
of the free-surface geometry. For the case where the surface-tension effect is insignificant 
(that is, Ca > 1 when Re < 1 , or W < 1 when Re > 1 ), the use of (4.10) is 
clearly inefficient since physical forces other than those of surface tension are determining 
the free surface geometry. In addition, the use of an analogous form of (4.5) in the successive 
approximation of the geometry solution is also ineffective since its solution mechanism is 
similar to that of the semi-implicit transient schemes. In this study we achieve substantial 
improvement in convergence to the steady state by treating the contribution «,• n,- as a source 
term for an elliptic free-surface operator rather than as a kinematic condition. This strategy 
is presented in Section 4.1 below. In the design of an effective algorithm for the surface- 
tension dominant case (that is, Ca  <   1   when Re  <   1 , or W  >   1   when Re  >   1 ), 
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we are able to make use of (4.9) and (4.10) alternately in a novel way to achieve very rapid 
convergence. This strategy is described in Section 4.2. 

In the following sections, for clarity of presentation we only consider two-dimensional geom- 
etry even though all of the above derivations and discussions are applicable both to steady 
two-dimensional and three-dimensional free-surface flows. 

3.3     Free Surface Algorithm for Low Surface Tension 

In this section we present the solution algorithm which is effective for free-surface flows not 
dominated by surface-tension effect. This algorithm is denoted as the "lowV algorithm, 
and it consists of the following steps. 

Step 1 
Solve the discrete Navier-Stokes and continuity equations (4.1) for which FCT4- on IV is com- 
puted by imposition of both the tangential and the normal traction boundary conditions 
according to the variational form (2.12). 

Step 2 
Compute the quantity u,- nt- on the free surface TCT ; this quantity should be equal to zero at 
steady state according to (4.9). 

Step 3 
Compute the incremental coordinates on the free surface Ta by solving (4.2); for which 
the vector AR; corresponds to the contribution of the source term ut- n; (with appropriate 
scaling), and the curvature operator H corresponds to the second derivative operator with 
respect to the curvilinear free-surface coordinate ( . The variational form for the generation 
of (4.2) is given in (4.14). 

Step 4 
Extend the incremental coordinates on the free surface into the interior domain by solving a 
boundary value problem with an appropriate elliptic operator (such as the Laplacian), and 
then updating the coordinates of all collocation points. 

Step 5 
Repeat Step 1 to Step 4, for which the evaluation of all operators are based on the newly 
updated geometry, until convergence is achieved. 

We next describe the basis for (4.2) in order to formulate the required curvature op- 
erator and other contributions. For Step 3, the geometry equation (4.2) is generated based 
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on the following variational form: 

- t vit c An, c d( + (vi AxiX )\ba  =   I   \vi (uknk) m d( ■ (4.14) 
Ja J°- 

where A is a scaling factor which limits the size of Ai, in each curvature solve. The use of 
(4.14) has the following advantages. First, the formulation is consistent; that is, the steady 
state solution obtained from applying the above steps satisfies both (4.9) and (4.10) on the 
free surface. Second, the use of the contribution u; n; as a source term (rather than as a 
kinematic condition) provides a faster spread of the "local deformations" along the entire 
free surface. In this way, the elliptic solve can be considered as a relaxation technique which 
accelerates the propagation of information. Third, it is sufficient for (Aar^fc € H1 in (4.14). 
Lastly, the corresponding operator H , being elliptic, provides smooth free-surface updates 
and is therefore a robust technique for the free-surface geometry solution. 

3.4    Free Surface Algorithm for High Surface Tension 

In this section we first present the solution algorithm for surface-tension dominant free- 
surface flows, followed by the derivation of the variational form on which the algorithm is 
based. This algorithm is denoted as the "highV algorithm, and it consists of the following 

steps. 

Step 1 
Solve the discrete Navier-Stokes and continuity equations (4.1) subject to the following 
boundary conditions on the free surface Ta : the traction conditions according to (2.12) in 
the direction tangent to Ta , and the kinematic condition according to (4.9) in the direction 
normal to Ta ; the resulting traction force vector is denoted as Ff i. 

Step 2 
Recompute the traction forces on the free surface Ta using the variational form (2.12) for 
both the tangential and normal directions; this traction force vector is denoted as Fai. Next, 
evaluate the difference between Ff{ from Step 1 and Fai, and denote the result as the resid- 
ual force vector AR; . Note that AR; = 0 if only if the steady state is reached. 

Step 3 
Apply (4.2) to compute the incremental coordinates on the free surface Ta , where AR; 
is computed in Step 2.  The curvature operator H  defined on Ta   correspond to a second 
derivative operator with respect to the curvilinear free-surface coordinate (. The variational 

form from which (4.2) is generated is derived below. 
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Step 4 
Extend the incremental coordinates on the free surface computed in Step 3 into the interior 
domain by solving a boundary-value problem with an appropriate elliptic operator (such as 
the Laplacian), then update the coordinates of all collocation points. 

Step 5 
Repeat Step 1 to Step 4, for which the evaluation of all operators are based on the newly 
updated geometry, until convergence is achieved. 

We now describe the basis (that is, the appropriate variational form) from which the 
curvature operator H and the residual force vector AR,- in (4.2), together with the surface 
traction vector F^,- in (4.1a) are formulated. In Step 1, the Navier-Stokes and continuity 
equations are solved subject to the following boundary conditions: 

uf m = 0 , (4.15a) 

UrVni  = <7,c    , (4.15b) 

where the superscript "ss" indicates the use of the steady-state kinematic conditions (4.9). 
We remark that (4.15a) is imposed as an essential boundary condition while (4.15b) is 
imposed as a natural boundary condition through the use of (2.12). Hence, the approximation 
solution space for both the fluid velocity u; and test functions t>,- has to be modified to 
accommodate the imposition of (4.9). 

We note that there are two boundary conditions on T^ in the normal direction; that 
is, in addition to the kinematic condition (4.9) there is the normal traction condition given 
by (4.10). If the steady state configuration has not been reached, then the solution r™ will 
not satisfy (4.10), and a residual of normal traction will result. Since in the surface tension 
dominant case the deformation of the free surface is directly effectuated by surface tension 
forces, we make use of this residual normal traction to formulate a consistent "driving force" 
for computing corrections to the free-surface geometry: 

tb 
AI*{vi) =   /    Vi[T°*nj - a Km - axti]d(; (4.16) 

Ja 

which can be rewritten as 

M0(vi) =   t Vi \r°*n3 - (a ti ),c ] d( , (4.17) 
Ja 

using the following relation on Ta : 

Km = tix. (4.18) 

Next, we consider an update of the free-surface geometry as defined by a new tangent vector 
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u •■ 

U = U + AU . (4-19) 

We now require that the change in geometry should approach the steady state configuration 
for which AIa(vi)  =  0 . Using this condition and substituting (4.19) into (4.17) and using 

At.-  =  Axix , (4.20) 

we obtain 

t Vi ( a AxiX ),c d( =   f" Vi [Tgnj-{a U )x ] d( . (4.21) 
Ja Ja 

Lastly, we perform integration by parts on both sides of (4.21) to we arrive at the desired 

form: 

rb b 

- /    viX aAxiXd( + (viaAxiX)\a  = 
Ja 

t [ Vi T£ n3 + viXa U }d( - (vl(rtt)\ba. (4.22) 
Ja 

This is the consistent variational form from which the discrete equations given by (4.2) are 
generated. The advantage of this formulation is that it results in a symmetric operator for 
Aa;^ which allows for use of inversion techniques such as preconditioned conjugate gradient 
iterations. In addition, the application of integration-by-parts implies that (Axi)h G H1 is 

sufficient. 

4     Conclusion 

The treatment of fluid flows with free surfaces has been reviewed with two viewpoints: (1) 
Eulerian (fixed mesh) approaches (MAC, VOF methods) and (2) Deforming mesh approaches 
(ALE). The strength of the Eulerian approaches in capturing complex free surface deforma- 
tions (even to the point of rupture) has been highlighted, with the remark that the weakness 
lies in the effort needed to locate free surface positions exactly as well in being able to include 

surface tension effects. 

The ALE approaches are restricted to less severe deformations, but can track free 
surface locations and surface tension effects readily. The application of the spectral element 
method towards the ALE tracking of unknown free surfaces has been described. Two algo- 
rithms are reviewed for the solution of steady viscous free-surface flows, the selection between 
the two depends on the role played by surface tension in the flow physics. The algorithms 
have the following important advantages:   (1) it is based on a general three-dimensional 
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variational approach which provides a natural and consistent treatment of variable material 
properties, and which provides natural (that is, in a weak sense) continuity conditions for 
both traction and slope across interelemental boundaries; (2) the use of the spectral element 
method in the spatial discretization provides a high-order representation of both the fluid 
flow fields and the flow geometry and hence the advantage of yielding more accurate solu- 
tions at comparable computational resources when compared to low-order elements; and (3) 
the iterative scheme employed in the solution of the discretized equations are formulated 
in a decoupled form which minimizes the size of elemental (and global) matrices, allows for 
easy inclusion of additional transport equations, and provides flexibility for use of different 
solution strategies and solvers for different equations. 
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Outline 

This lecture reviews the application of a relatively new discretisation scheme, spectral ele- 
ments, towards the modelling of coating flows. First, the numerical aspects of the spectral 
element method (SEM) are described, with some attention being given to the application of 
this .method towards the modelling of unknown free surface problems. The boundary condi- 
tions applied at the free surface, as well as the tracking of the moving mesh boundary, are 
described next with some comment on the similarities and differences between the spectral 
element method and the traditional finite element method (FEM). 

The capability of the SEM for modeling industrial coating flows is then demonstrated through 
the analysis of the reverse roll, slide, slot, and forward roll coating processes. Whenever pos- 
sible, the results obtained are compared with experimental data in the published literature. 
The commercial software package NEKTON, based on the SEM, was used to obtain all of 
the flow solutions presented here. 

The Spectral Element Method 

The spectral element method was first proposed by Patera [1] in 1984. The computational 
domain is subdivided into macro-elements and the field variables (velocities, pressures and 
geometry) are expanded using high-order polynomials within each element. The basis func- 
tions are 4th - 14th order Legendre polynomials. Variational projection operators and Gauss- 
numerical quadrature are used to derive the discrete equations. The SEM is similar to p-type 
FEM, but combines the flexibility to model complex geometries with the rapid convergence 



of spectral methods. Note that the macro-elements can have curved sides, which are also 
represented by high-order polynomials. 

Like traditional FEM, the SEM shares all of the advantages of the variational approach, 
including the natural (weak) imposition of traction boundary conditions. The SEM uses 
an unequal-order discretization of velocity and pressure. That is, Nth-order polynomial 
expansions are used to represent the velocities while N-2th-order polynomials are used to 
expand the pressure field. This choice of approximation polynomials avoids spurious pressure 
modes in the solution and minimizes the discretization error. 

Two other differences with traditional FEM are worth noting. First, to minimize the compu- 
tational effort involved with matrix-matrix multiplications, tensor product sum factorization 
[2] is used. Also, each operator in the governing equations is solved separately and sequen- 
tially, primarily using iterative methods (such as pre-conditioned conjugate gradient). 

Free Surface Modeling 

The modeling of coating flows requires the ability to determine the location of one or more 
liquid free surfaces. In this section, we derive the variational form of the natural imposition 
of the free surface traction boundary condition to the governing Navier-Stokes equations. 

We consider the viscous steady incompressible flow of a Newtonian fluid, with density p and 
viscosity fi, in a three-dimensional domain tt. The domain boundary T is decomposed as 
T = To U r^, with (Dirichlet) no-slip boundary conditions imposed on To, and (Neumann) 
traction boundary conditions imposed on T^. 

The equations governing the fluid flow are the steady Navier-Stokes and continuity equations 
which can be written as: 

pUjUij = Tijtj + fi in Ü 

«,-,,• = 0 in ft                                                     (1) 

subject to the boundary conditions: 

m = 0 on To                                                  (2) 

TijHj — anrii + Vier on T^ (3) 
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where U{ is the fluid velocity, /,- is the body force and T,J is the stress tensor defined as: 

Tij = -pSij + n (uij + Ujj) (4) 

Here, p is the pressure (relative to zero ambient) and Sij is the Kronecker delta. On the 
free surface IV, a is the surface tension coefficient, n; is the outward unit normal, V,- is the 
surface gradient operator, and K is the curvature in two-dimensional geometry and twice the 
mean curvature in three-dimensional geometry (the curvature along a surface coordinate is 
considered positive if the liquid region below the free surface along that surface coordinate 
is concave). We shall use the following notation and conventions: Roman indices range from 
1 to 3, a subscript comma denotes derivative (e.g., U{j = dui/dxj), and repeated Roman 
indices are summed from 1 to 3. 

Let the two-dimensional free surface be described by a local curvilinear coordinate system 
ra,a = 1,2, which are in general non-orthogonal. We recall several useful definitions from 
differential geometry [3]: 

ga%   -   £;,a (5) 

9ai9ßi     =     9aß (6) 

gaig?  = € (7) 

9 \l\g*ß\ (8) 

where ga{ is the covariant base vector, gf is the contravariant base vector, gaß is the covariant 
metric tensor, 6% is the Kronecker delta. Using the above definitions, the surface gradient 
term in Eqn. (3) can be expressed as 

V,a = g?a,a (9) 

where repeated Greek indices are summed from 1 to 2. 

The variational form of Eqns. (1) to (4) is given by [4-6]: find (uf,p), with «,• G H*(tt) and 
p G L2(tt), such that 

/  {p Vi Uj uitj + vitj [-pSij + ß (uij + uhi)] - Vifi] dV - 

faquitidV = 0 Wq£L2(Ü) (10) 
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where u,- and q are test functions, L2(tt) is the space of functions which are square integrable, 
and HQ(SI) is the space of functions which are in £2(0), whose first derivatives are in L2(tt), 
and which vanish on T0. The term /„(u,-) is the variational form that corresponds to natural 
imposition of the traction boundary conditions given in Eqn. (3). In three-dimensional 
geometry, this form can be written as [6]: 

Ia{vi) = iaviggf eaß drß - I   vi<a a gf dA (11) 

where 7 is the line segment that bounds the free surface Ta, eaß is the permutation symbol 

(en = e22 = 0, e12 = -e2i = 1), and dA - gdr^dr2. 

We remark that in two-dimensional geometry, Eqn. (11) reduces to the following variational 

form which is presented in [7]: 

h{vi) = {(TViU)t- thVi,c<rtidC (12) 
Ja 

where U is the unit tangent vector and ( is the curvilinear coordinate on the free surface 

segment ab. 

The variational forms given in Eqns. (11) and (12) have the following important advantages 
which are discussed in [6]. First, it automatically generates the equivalent normal and 
tangential traction conditions as given in Eqn. (3), including the effect of variable surface 
tension (Marangoni flows). Second, in the subsequent domain decomposition it provides 
a natural (weak) condition for continuity of slope across elemental boundaries on the free 
surface. Third, it is entirely surface-intrinsic, with no need to reference global coordinates or 
locally orthogonal systems. Lastly, it requires a lower-order geometric representation when 
compared with formulations that use the mean curvature directly in the imposition of the 
normal traction boundary condition. 

The location of the free surface can be incremented by solving the curvature operator, which 
can be derived for high- and low-surface tension cases — see solution algorithms below. Thus, 
the relocation of the free surface during the solution process requires a mesh deformation 

algorithm. 

The spectral element discretization of the variational statement given in Eqn. (10) proceeds 
as follows. The domain is subdivided into quadrilateral (2-D) or hexahedral (3-D) elements. 
We require that the variational statement be satisfied for the piecewise polynomial spaces: PN 

for velocity and PN-2 for pressure. For the numerical evaluation of the elemental integrals, 
we map the physical (x1,x2,x3) system to a local (r,s,t) system and use Gauss numerical 
integration. The interpolant Gauss-Lobatto-Legendre basis are introduced to expand the 
coordinates, body force, fluid velocity and test function v{. We also introduce the Gauss- 
Legendre basis for expanding the pressure and test function qh. The final discrete system 
of algebraic equations is obtained by imposing successively the test functions (vi)h and qh, 



which are unity at one global collocation point and zero at all others. 

Mesh Deformation Strategy 

Previous numerical methods for simulating free surface flows have used either spines, which 
allow free surface deformation with respect to a line, or elliptic mesh generation, which 
allows more general 2-D deformation of the free surface but with structured meshes. The 
approach taken in the present work uses a second order elliptic (elastostatic) operator [6] to 
extend the mesh velocity into the interior of the domain with a minimum of mesh distortion. 
This approach provides the flexibility of multi-dimensional adjustments to the mesh point 
locations and can be used on unstructured meshes. 

The steps used by the surface-intrinsic moving mesh description are: 

1. Solve for the fluid flow field. 

2. Compute the new position of the free surface. 

3. "Smooth" the nodal spacings along the free surface. 

4. Extend the change in free surface mesh location into the interior of the domain (elas- 
tostatic solver). 

5. Update the geometric coefficients. 

6. Repeat until convergence. 

The details involved in step #2 are described below for the cases of high and low surface 
tension. A complete derivation of these solution algorithms is given in [8]. 

High Surface Tension Solution Algorithm 

For high surface tension cases (i.e., Ca < 1 or We > 1), the following algorithm is used for 
computing the change in free surface position. First, the Navier-Stokes equations are solved 
subject to the following "symmetry-like" boundary conditions on the free surface: 

Uim   =   0 (13) 

tiTijUj     =     <7X (14) 



The resulting traction force vector is denoted T".   Based on the current velocity field, we 
compute a point-by-point force balance: 

r, = Tifnj ~ aKUi _ *,< (15) 

Note that r{ is zero only at steady state. This residual traction is used as a driving force for 
computing corrections to the free surface location, Ax{, according to: 

- / viX a Axix d( + (vi a AxiX)\ba = f v{ n d( (16) 
Ja Ja- 

Low Surface Tension Solution Algorithm 

For the case of low surface tension (i.e., Ca > 1 or We < 1), the Navier-Stokes equations 
are solved subject to both tangential and normal traction boundary conditions on the free 

surface: 

lliTijU-i     =     CTK (I') *>i I ij ,l,j 

tiTijUj   -   at( (18) 

Since the normal velocity u ■ h on the free surface is in general non-zero, we can compute the 

following source term: 

n   =   (uknk)ni (19) 

The source term r<, with the appropriate scaling, drives the the change in free surface position 

according to: 

- / viX Axt,c d( +  (Vi AxlX)\ba = [ Xvi r, d( 
Ja Ja 

where A is a scale factor to ensure that Ax; < LQ . 

(20) 



Kinematic Algorithm 

An alternate form of the low-surface tension algorithm advances the position of the free 
surface by deriving a mesh velocity on the free surface (which of course becomes zero at 
steady state). First, the governing fluid flow equations are solved subject to 

UiTijUj     =     OK (21) 

UTijUj     =     <7C (22) 

on the free surface. This solution is then used to derive the mesh velocity on the free surface, 

Wi = (uknk)ni (23) 

The change in mesh coordinates on the free surface is then given by the simple time integra- 
tion: 

Ax; = WiAr (24) 

where AT is a pseudo-time step computed from the fluid velocity and mesh spacing on the 
free' surface. Note that the solution of Eqn. 24 does not require iteration, thus the kinematic 
algorithm is less CPU-intensive compared with the two solution algorithms presented above. 
However, the Ar does not honor the time step required for free surface stability and so, if 
surface tension effects are not completely negligible, the pseudo-time step must be reduced. 

In the next sections, the SEM (implemented in our commercial software package) is used to 
solve several coating flows and comparison with available experimental and numerical results 
is given. 

Reverse Roll Coating 

The reverse roll coater is shown schematically in Figure 1. A thin layer of fluid approaches 
the nip gap from the lower right on the applicator roll at velocity Va. The height of the 
arriving film is arbitrarily set to 1.25 times the gap height. Part of this fluid is transferred 
to the metering roll which is rotating in the opposite direction with velocity Vm. The result 
is a very precise thin film on the applicator roll which is later transferred to the web. The 
position of the dynamic contact line, where the free surface on the left touches the metering 
roll, is unknown and is sensitive to the roll speed ratio, Vm/Va. 
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A series of solutions was obtained using the software for various roll speed ratios. The other 
governing parameters for the problem are: 

li 

• R/H0 = 1000 

• C7«=^ = 0.1 
a 

• Rm = Ra — R 

The spectral element mesh and boundary conditions for this problem are illustrated in Figure 
2. 41 to 51 spectral elements, employing 4th-order polynomials, were typically used. The 
steady-state stream function contours for selected roll speed ratios are shown in Figure 
3. In all cases, the flow is characterized by a large flow recirculation adjacent to the free 
surface on the right. For Vm/Va = 0.4, the contact line position is well to the left of the 
minimum gap between the rolls and a second recirculation can be seen. As the speed of 
the metering roll is increased, the recirculation disappears and the contact line moves to 
the right and eventually passes through the gap. The change in the coating film thickness 
as a function of roll speed ratio is shown in Figure 4 and the SEM solutions are compared 
with the experimental and numerical results of Coyle, et al [9]. At low speed ratios, the 
film thickness can be predicted via a lubrication approximation of the flow. However, as 
the-speed ratio is increased, the thickness of the coating film reaches a minimum and then 
actually increases again as described in [9]. The computational results predict a minimum 
film thickness near Vm/Va = 0.9 while Coyle's FEM results indicate a slightly higher value, 
Vm/Va = l. Some of the discrepancy between the SEM and FEM results is attributed to the 
different contact angles used. The experimental data show a minimum coating film thickness 
near Vm/Va = 0.9, but show an overall larger film thickness because of the effect of ribbing 
on the film thickness measurements. Additional computational results are presented in [10]. 

Slide Coating 

In conjunction with the Anitec Image Corporation, a division of International Paper, a 
combined experimental and analytical study of slide coating was conducted. The objectives 

of the study were to: 

• establish the limits of operability, and to 

• observe the behavior of the static and dynamic contact lines for different: 

— flow rates, 



— web speeds, and 

— vacuum pressures 

A description of the experimental apparatus is given in [11]. The position of the wetting 
line on the slide face was captured on video tape as the vacuum pressure was varied. The 
wetting line position was then measured with respect to the slide nose. The software was 
used simulate the slide coater for a range of vacuum pressures. The spectral element mesh 
and boundary conditions used are shown in Figure 5. The velocity inlet boundary condition 
used was a fully-developed profile for a falling film on an inclined plane. The contours of 
stream function corresponding to a vacuum pressure of 0.65 inches of water are shown in 
Figure 6. For these conditions, the fluid wets the slide face and there is a recirculation in 
the bead. The free surface on the slide exhibits the tell-tale "standing wave" in response to 
the capillary pressure built up as the flow turns and is transferred to the moving web. The 
position of the static contact line on the slide face is compared in Figure 7 with experimental 
data for a several vacuum pressures. Good agreement is observed both in the trend and 
absolute value of the wetting length. 

Slot Coating 

A schematic diagram of the slot coater is given in Figure 8. The liquid is applied through 
the die slot to a moving web. Two free surfaces are formed: the upstream meniscus which 
may be pinned at one of the die lips and the free surface downstream formed by the coating 
film. In this study, the conditions corresponding to the experimental and numerical data of 
Sartor [12] were used to investigate the turning point behavior as the vacuum pressure on 
the upstream meniscus is increased. In Figure 9, the spectral element mesh and boundary 
conditions are illustrated. A fully-developed velocity profile was specified at the inlet. The 
other governing parameters for the problem are: 

• Re = 6.05 

• Ca = 0.208 

. St = ^f = 0.0575 

• h = 84.7 p, dx = 250 pm, d2 = 271 p, L = 1.016 mm 

The details of the flow field for two different vacuum pressures are shown in Figure 10 as 
stream function contours. Only a portion of the solution domain is shown. One can clearly 
see how the increased vacuum pressure causes the upstream meniscus to bow outward and 
the dynamic contact line to move upstream. As the vacuum is further increased, stable 
coating is no longer possible — this behavior is clearly illustrated by the trend in predicted 
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wetting line position displayed in Figure 11. For the critical vacuum pressure at this turning 
point, Sartor gives an experimental value of approximately 9.34 inches of water (±4 percent) 
and a numerical (FEM) value of 9.84, certainly in good agreement with the present study 
for which we obtained a value of 9.03. 

Forward Roll Coating 

The governing parameters for the forward roll coating process are given in Figure 12. The 
height of the arriving film on the lower roll dictates the flow rate, which can be represented 

in non-dimensional form as: 

A = fUdy 
2VH0 

where U is the horizontal velocity component, V is the average roll velocity and the inte- 
gration above is taken over the gap between the rolls. The point (Xm,Ym) in Figure 12 is 
designated as the film split location. It is measured from the origin at the center of the gap 
between the two rolls and the distances are non-dimensionalized with respect to the roll half 
gap, H0. If the rolls have the same radius and speed, the numerical analysis of the problem 
can exploit the line of symmetry as shown in Figure 13. Note that the velocity profile at 
the inlet is specified as a function of the average pressure as given by lubrication theory, see 
Coyle, et al. [13]. The other governing parameters used in the numerical study are: 

• R/H0 = 1000 

• Re < 1 

• Ca = 0.1 to oo 

The stream function contours for three different values of Ca are depicted in Figure 14. 
As expected, the film split location moves away from the origin as the Capillary number is 
decreased and a recirculation zone develops adjacent to the free surface. Coyle, et al. have 
published the results of their FEM simulations, asymptotic analysis and lubrication approx- 
imation for the dimensionless flow rate and split point location over a range of operating 
conditions. For the conditions listed above (Ca = oo), a comparison of these results with 
the computational solution is given in Table 1. 

A Xm 

Lubrication theory 1.302 76.21 

FEM (Coyle, et al) 1.293 65.20 
SEM (Present study)) 1.293 65.69 

For these conditions, the lubrication approximation compares well with both the FEM and 
SEM analyses, which are almost identical. 
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Conclusions 

The spectral element method and surface intrinsic moving mesh strategy incorporated in our 
software have been shown to successfully address a range of industrial coating flows, including 
reverse roll, slide, slot and forward roll coating. The benefits of this approach that we have 
observed include the large radius of convergence afforded by the decoupled solution strategy, 
the capability of handling complex free surface deformations with no manual remeshing and 
the ability of the unstructured mesh to refine local flow details. 

To eliminate the effort of mesh generation and supplying a good initial condition, we are 
presently completing work on a template-based approach to solving coating flows. In this 
approach, the user will select from a library of pre-solved templates the mesh and operating 
conditions that most closely resembles his problem. The actual boundary conditions and 
fluid properties can then be specified. The solver uses the existing solution as an initial 
condition and ramps the boundary conditions and fluid properties from the initial values 
to the user-supplied values over a number of iterations. We have found this to be a very 
time-effective way of solving many coating flows. Additionally, each converged solution can 
then be used as a template for further parametric analysis. 
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Figure 1: Schematic figure of reverse roll coater. 
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Figure 6: Stream function contours for slide coater. 
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1.  INTRODUCTION 

.Mathematical modelling of environmental flows is becoming increasingly used for 
quantification of Major Hazards, both in Industry and among Legal Authorities and 
specialized consultants. Compared to wind or water tunnels and to field test experiments, it 
offers a greater flexibility and can be run at lower costs. 

In the field of Major Hazards, it is common knowledge that the quality of mathematical 
models and their fitness for purpose has not always been clearly established. The relatively 
large number of models developed on the market to date, in Universities, in Research 
Centres and in Industry means it is vital to assess the quality of each model individually as 
well as the quality of a model when compared with others. 

In other words, to ensure that hazard studies remain as relevant and reliable as possible, it 
has become necessary, along with the scientific push, to judge more severely the quality of 
computerized models looked at as the vital part of a more general Problem Solving 
Environment context. 

In this lecture we will focus on considering Mathematical Models involved in studying the 
consequences of major accidents i.e. on issues which are relevant to industrial concern as 
opposed to advanced architectures which are still in the scope of academic research. 



The Mathematical Model terminology covers three main categories of models : 

• Empirical Mathematical Models which can be distilled down to : 

- either smoothing experimental results with the aim to make them easy to 
interpret, 

- or statistical correlations between characteristic sizes of physical phenomena 

Empirical Models should however not be confused with correlation models used to 
estimate the physical and chemical properties of chemical products likely to play a 
part in accident scenarios. 

• Analytical Mathematical Models, exact or approximate solutions of simplified ones, 

• Numerical Mathematical Models (computational models) which require a numerical 
algorithm and computation. 

We will concentrate particularly on the latter as they are the more practised though at 
different levels of sophistication and complexity, and as the former two categories can be 
regarded as particular cases from the Quality-Assurance viewpoint which will be a major 
concern in this presentation. 

On this matter, we have already mentioned the diversity, not to say the discrepancy, 
between mathematical models available today; to this should be added the diversity of end- 
users categories who may differ in the approach of analyzing the consequences of an 
accident. Thus, in addition to the problem of technical quality of a model; its fitness for 
use must also be juged. Models based on similar scientific foundations may behave very 
differently, for example : 

• Models aimed at meeting emergency situations requiring real time measures and swift 
access to pre-calculated data. 

• Models aimed at planning or establishing emergency plans usually requiring large 
numbers of tests covering a broad spectrum of scenarios. 

• Models used in the most accurate calculations possible of the consequences of 
accidents which rely on advanced research and which do not normally worry about 
constraints in calculation time or hardware in general. 

In this lecture, we will mostly focus on the second criterion; the first one will be evoked 
shortly. 

In the first section, we specify what we mean by an Industrial Environment in the context of 
Risk Analysis. 

In a second part, we review three models: one (EUROCHLOR) which is operational and 
has been used for more than ten years for assessing the consequences of heavy gas releases 
in medium range domains; one whose industrial ß-test has just started (SEVEX) and which 
intends to predict the consequences of accidents at meso-scale level, and finally, one full 3D 
model   (DISCO)   whose      aim   is   to   replace   EUROCHLOR   in   a   medium   term. 



In the third section, we introduce a methodology for embedding numerical codes in so 
called Knowledge-Based Front-Ends (KBFEs); this technique was developed in the 
framework of an Esprit 2 Project [1] and aimed at enhancing the capabilities of existing 
numerical codes by adjunction of ruled-based expertise. 

The last section is devoted to the Quality-Assurance approach as a means for evaluating 
Mathematical Models used to quantify the consequences of Major Hazards; it basically 
means : 

- producing a structured measurement of the quality of a model which can be 
communicated to all the parties interested (Legal Authorities, Industries, Central and 
Local Administrations, Insurance Firms, Consultants, Question and Research Groups), 

- authorising an open audit performed by an independent expert on the use of the model by 
end-users which should result in a written opinion as to the relevance of the results, the 
field of applicability of the model and the type of users it is aimed at, 

- providing the end-user with clear documentation on the field of applicability of the 
model, on its limitations and on the degree of accuracy of the results. 

2.  THE INDUSTRIAL CONTEXT 

The domain of interest of Major Hazard studies typically ranges from a few hundred meters 
up to a few tenths of kilometers (sub-mesoscale) which means that we have in mind Plant 
Safety studies (basically an industrial concern) as well as Emergency Plan settings in case of 
an accident (basically a Legal Authorities concern). 

The number and the types of scenarios of interest has dramatically increased in the past ten 
years; they must cover: 

• various types of sources : jets, leaks, stack emissions, ground level sources,... 

• various types of releases : instantaneous, short duration (~5 minutes), continuous. 

Gases heavier or lighter than air are to be taken into account, either toxic or explosive; the 
size of the emissions may range from a few kilogrammes per second up to tons per second 
as shown in the figures below. In the past ten years we can say that me moved from realism 
to catastrophism ! 
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Obstacles (buildings, forests, canyons, fences, water-ways,...) are to be taken into account 
explicitely as well as the site topography. 
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A full range of atmospheric conditions has also to be considered ranging from typical 
inversion situations with low wind speeds up to rather dispersive neutral cases. 
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Also of significant importance is the fact that industrial people, as well as public authorities, 
are much more interested in the consequences of an accident than in its effects (see Fig. 6 
below). 
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Figure 6 : Consequences of an accident versus effect 



3. MATHEMATICAL MODELS OF ENVIRONMENTAL FLOWS 

3.1. EUROCHLOR : A MEDIUM RANGE ATMOSPHERIC DISPERSION 
MODEL 

The Eurochlor model [2,3,4] was initiated by the European Chlorine Producers Association 
EUROCHLOR (formerly BITC) and carried out at the von Karman Institute for Fluid 
Dynamics and the Solvay Central Research Laboratory; it has been designed to meet the 
following challenging objectives : 

• it should be applicable to the study of toxics (rather than flammable gases) characterized 
by low concentrations at distances a long way from the source; 

• it should be sufficiently rigourous to handle atmospheric turbulence in complex domains 
over a full range of atmospheric conditions; 

• it should be capable of dealing with both continuous and instantaneous releases of 
passive gases and also gases which may be lighter or heavier than air; 

• it should be capable to be run on a workstation. 

We shall first review the basic physics the model is based on and say some words about its 
computerization. We then discuss the methodology that was developed in order to validate 
the model against wind tunnel and field test experiments on the one hand, and to simulate 
pratical industrial cases on the other. 

3.1.1.   THE MATHEMATICAL MODEL 

Insofar as Prandtl's concept of a purely laminar sub-layer near a smooth surface is not 
applicable to atmospheric flows, we have to introduce turbulence mechanisms in the 
conservation laws of fluid mechanics that express the problem mathematically. 

The Reynolds decomposition acting on the state variables - wind velocities, viscosities, 
pressures, temperatures and concentrations - allows us to separate the average value effect 
from its purely turbulent counterpart; typically we obtain for the horizontal component of 
the velocity u, with straightforward notations: 

u = U + u' 

A full quantitative treatment of the derived system of equations would require a huge 
amount of both theoretical and computer work; it is however possible, by a judicious choice 
of approximations, to keep the problem sufficiently rigourous and tractable for solving a 
large range of industrial scenarios [5]. 



More precisely, although we must be aware that over a substantial range of applications, the 
source effects, where gravity spread dominates, interact with ambient turbulence effects, we 
have the feeling that, in the case of small up to medium size releases of toxic gases (no 
flammability problems), we are allowed to look at heavy gas releases as a transient 
disturbance of the atmospheric surface layer. The model describes the continuous transition 
from heavy gas controlled flow at ambient temperature to dispersion by ambient turbulent 
dispersion only. 

3.1.1.1. The basic physics 

One basic assumption the model is based on is that the pollutant is supposed not to interact 
dynamically or thermically with air, which in other terms means that any interaction between 
pollutant and air momentum can be neglected even in the source area [2,3,5]. It also means 
that whenever this assumption does not hold, in the case of high pressure jets for instance, 
we have to deal with the source term separately in order to estimate the gas cloud size at 
the end of this initial phase. 

More precisely, the two first stages following the release, i.e. the one where the turbulence 
generated by the accidental release process is important, and the second phase, in which the 
heavy gas cloud slumps as a gravity flow, are supposed to be studied separately in order to 
provide the necessary source characteristics to get the study started at a stage where the 
major effects the cloud excess density and the ambient turbulence. Dilution effects for 
example, should be quantified separately. This last assumption is essential in the sense that 
it allows us to decouple the concentration diffusion equation from the turbulent flow 
balances. 

From a mathematical point of view this led us to consider, on the one hand a two 
dimensional steady turbulent flow field and on the other a 3-D unsteady mass transfer 
balance. 

Let us now review the other basic assumptions the model is based on : 

The incompressibility of the atmospheric flow 

The atmospheric flow is assumed to be incompressible, which means that dynamic effects 
on compressibility can be neglected [3,5]. 

du    dvj 
— + = 0 
dx     dz 

u denotes the horizontal component (x) of velocity and w the vertical (z) one. 
This neither means, however, that air flow is incompressible nor that thermodynamic 
changes with height will not generate significant changes in density; in the latter case, 
temperature is assumed to be the main factor reponsible for height-density variations. 
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The Boussinesq approximation and the gradient hypothesis for turbulent closure 

Boussinesq's approximation neglects density variations insofar as they affect inertia and 
retains them only when combined with the acceleration of gravity in the buoyancy term of 
the momentum equation [3,5,6]. 

The gradient turbulent hypothesis, in direct analogy with laminar transport, relates the 
turbulent transport to the gradient of the transported quantity. Starting from the Reynolds 
decomposition which naturally induces turbulent stresses and heat fluxes, we adopt a 
closure which assumes that the turbulent stresses and the heat fluxes averages are 
proportional to their mean value counterparts: 

du'2      d f 

dx      dx M, 
v 

dU 

dx 

\ du'w' _ d 

dz      dz 

( \ 

M2 
V 

dU 

dz ) 

diiW     d / 

dx       dx 

\ dW 

V      dx) 

dw 
2 "   f J3U/\ d 

dz      dz 
M2 

V 

dW 
dz ) 

du'T     d ( 

dx       dx 

dT \ 

V       dx) 

dW T     d r 

dz       dz 

\ 

MT; 
V 

dT 

dz) 

A major consequence of this type of closure is that the momentum and energy equations 
now contain viscous contributions, jux , /4 , Ur,x and \xr,z (they still have to be modelled 
explicitely): 

Momentum : 

du2     d(uw)     d (     du] 
— +—- = — Mx^r 
dx        dz       dx\     dx) 

+ d_ 

dz 

f 
M 

du \ 

V     dz) 

d<Z> 

dx 
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d(uw)    dwJ 

dx dz      dx 

d (     dw~\ 

V dx) 
g- 

T-0, 
0, 

Energy: 

d(uT)    d(wT) d 
r 

dx dz dx 
M 

dT \ 

V 
Tjc dx) 

+ 
d ( 

dz 
M 

dT \ 

T,z 
V dz ) 

Here u denotes the mean horizontal wind velocity, w the mean vertical wind velocity, x the 
downwind distance, z the altitude, // the mechanical turbulent viscosity, 0 the kinematic 
pressure, g the gravitational acceleration, T the temperature and 60 the reference potential 
temperature. In practice juT,x = jxx and pu = &   due to the fact that the turbulent Prandtl 

number  Pr 
M, 

MT.X     MT* 

is assumed to be equal to unity. 

The Nee-Kovasnay turbulence model 

The way turbulent viscosity has been dealt with in the model is basically due to Nee and 
Kovasnay [7], who treated both vertical and downwind turbulent viscosities as scalar 
quantities that are subject to classical conservation laws; that is as quantities which are 
transported by advection, which are produced and/or destroyed. Moreover, they treated 
turbulent viscosity as a self-diffusive process, the diffusion coefficient being viscosity itself: 

d(uju )     d(wju )      d 
f 

X + X 

dx dz 

dfj, \ 

V 
x d 

f 
+ 

dx\  x  dx )     dz 

dju \ 

V  z   & J 

+ A(jux-r) 
du    dw 

+ 
dz    dx 

B 
MX (t*x - r) 

Y denotes the kinematic air viscosity, A and B are model constants, Ld is a characteristic 
length scale. 

The original Nee-Kovasnay model has been extended by adding a buoyancy production/loss 
term Pe in the vertical turbulent viscosity balance in order to reflect the effect of 
temperature stratification on turbulence: 
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d(uju )     d(wju )      d (      d/j, \ 

+ 
dx dz dx 

M + 
y  x   dx ) 

d 

dz 

f dfi \ 

M     
\  z   dz j 

+ A(/uz-y) 
du    dw 
— + 
dz    dx 

B 
Mz(Mz-r) + Pe 

Using the gradient Richardson number (Rig), the buoyancy production/loss term Pe is 

expressed in the form 

Ri 
Pn = -c-^(juz-r) 0 PK t 

du    dw — +  
dz     dx 

where C is a model constant and Pr, the turbulent Prandtl number. 

Adding natural boundary conditions : 

• a given upstream velocity profile, 

.  ground level values for the state variables (null velocity, given temperature), as well as 
along buildings, 

• continuous flux conditions elsewhere (downstream and along the upper boundary), 

the system is then solved numerically by using a time marching iterative procedure based on 
the Marker and Cell (MAC) finite difference scheme [8,9,10]. 

The MAC method, which was. originally developed for calculating transient flows, has been 
used in the present work, as an iterative technique for getting the steady state of the Navier- 
Stokes equations. The original MAC technique was slightly adjusted by introducing an 
artificial viscous contribution [8], which places our formulation between the centered 
discretization and the full upstream one (Donor Cell). 
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Typically, we obtain for the convection terms, expressions like : 

-(viJA +vw,_1)(^,_, +%)-c\vtJ_l +VJ+1,_,|(M,„1 -%) ] 

where a is an adjustable model parameter varying between 0 et 1; a=0 leads to the original 
MAC formulation, while a=\ corresponds to the Donor Cell one which introduces a 
significant artificial viscosity. The latter, only influences the transient state and by no way, 
penalizes the steady state. 

However, the damping introduced by the artificial viscosity, if not controlled, will strongly 
affect the computer code performances; that is why we choose a, slightly larger than the 

maximum value of the quantities 

uAt 

uAt 

1 > a > max 
Ax 

Ax 

vAt 

and 
wAt 

Az 
as close as possible to 1 : 

Ay 

The restrictions made on the time step At, mainly come from the fact that the finite 
difference forms of the continuous equations account for transfers between adjacent cells. 

Ax   Az 
The condition  At < nun which expresses the fact that the fluid is not allowed 

\U\      \M>\ 

to flow across more than one computational cell in one time step, is natural in the sense that 
the convective flux approximations assume adjacent cell exchanges only. 

On the other hand the "parabolic type" condition 

2 
1 

(1/AJC)
2
+(1/AZ)

2 
min(1/Mx '1/y"z^ 

limits the speed at which momentum of heat diffuses,  again in order to keep the 
phenomenon inside one cell. 
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de     d f Mxdc) d (     *) d ( 
M*dc\ 

— + — 
dt     dx 

c u- 
cdx ) dy \     dy) 

+ — 
dz 

c w - 
cdz ) 

The Dispersion Model 

It should be reminded that the pollutant dispersion balance is solved independently from the 
turbulent flow field; it is expressed by the equation : 

= S 

S being the source term. 

In this three dimensional unsteady equation, the mass transfer coefficients are assumed 
equal to the mechanical ones; this is due to the fact that their ratio - the Schmidt number - is 
close to unity [5]. The dispersion equation is solved by using a Lagrangian discretization 
technique, the pollutant being considered as the sum of a sufficiently large number of 
particles moving in the previously calculated velocity field. 

The diffusional velocities    — x -^     and   — x-^    are replaced by randomized ones 
c     dx c     dz 

[1,2,5]. The total displacement of a particle dx dx is assumed to be the sum of four 

terms : 

dx = vdt + JljT dW + ^dt + —y-^-dt2 

0Z Pair        PPOU 

The first term is the advection contribution induced by the mean velocity field. The second 
term is the homogeneous turbulence contribution; entirely random, it is assumed to be of 
Gaussian probability with standard deviation a = -y/2/i, A/ , /' = x,y . 

The third term takes into account the tendency of the pollutant to be transported in the 
direction of increasing turbulent length scales.   This term proportional to the gradients of 
the typical turbulent parameters, does account for the mean 'turbulent" displacement of the 
plume centroid [11]. 

The last term in the sum reflects the Archimedian force effects; p denotes the density, either 
of the air or of the pollutant, c is the pollutant concentration, g the gravitational acceleration 
and Ap the excess of pollutant over air. 
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3.1.2. The EUROCHLOR code validation 

The validation of the EUROCHLOR code was a key element of the study which was carried 
out both at the von Karman Institute for Fluids Dynamics and at the Solvay Research 
Laboratory; it required direct comparison with data obtained at full scale and from wind 
tunnel experiments. Is was also necessary to check the code against other ones currently 
used in atmospheric dispersion prediction. 

3.1.2.1. Validation against wind tunnel tests 

A preliminary, but extensive, validation was undertaken at the von Karman Institute for 
Fluid Dynamics by comparing calculated values with wind tunnel data. 

Among these tests, CBrF3 (molar mass 149 g) releases from an elevated point source 
(ZsourCc=0.055, where 5 is the boundary layer thickness) in an artificially thickened turbulent 
boundary layer seem to be particularly significant [12]. The wind tunnel which had a 
180 mm by 350 mm rectangular cross section was characterized by a 2 m long test section. 
Vortex generators and surface roughness were used to generate a turbulent mean velocity 
profile close to the one in the atmospheric boundary layer. 

Figure 7 compares the experimental and predicted decay of maximum concentration 
downstream of the source; apart from the near surroundings of the source, the two profiles 
are in agreement. 
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Figure 7 : Longitudinal decay of maximum concentration for heavy gases free 
dispersion from a point source: o Experiment and - Prediction 
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A more detailed study conducted by Riethmuller and Borrego [12] compares predicted and 
experimental concentration profiles at different longitudinal locations; it shows a quite good 
agreement apart from a slight underestimation of the plume spread quite near to the source. 

3.1.2.2. Validation against other mathematical models 

To ensure and check the robustness of the code and the soundness of the underlying 
physics, intensive tests were carried out by Solvay to show : 

• the consistency with Gaussian models in typical free-field situations, 
• the effect of the pollutant density on the dispersion process, 

• the influence of atmospheric stability, 
• the effect of the wind speed on dispersion, 
• the dependence on the pollutant release rate, 

• the influence of the emission duration, 
• the prominent part played by buildings in the dispersion phenomena, 
• the agreement with the results from the experimental releases of methane in the Burro 

tests (China Lake Experiments) and from the Thorney Island tests. 

Examples are shown in Figures 8, 9 and 10 below : 

400 600 1000 1200 1«00 

Figure 8 : Comparison of the EUROCHLOR code with a GAUSSIAN Model: 
the influence of stability 

The legend is: -+- Neutral Gauss, - + - neutral EUROCHLOR, -0- stable Gauss, 
- O - stable EUROCHLOR, -•- unstable Gauss, and - • - unstable EUROCHLOR. 
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The scenario characteristics are: continuous emission, free field, passive gas and source at 
ground level. The value for zo is 0.03 m, for u at 10 m : 3 m/s and for the flowrate : lkg/s. 

The agreement between both models is good in spite of the fact that the Gaussian model is 
not really appropriate for emissions at ground level. 

To show the influence of the wind speed on dispersion, we considered a 10 kg/s chlorine 
release in neutral atmospheric conditions, with 3 different wind speeds (5, 10 and 15 m/s). 

10 "200 400 600 600 1000 
Distance   from    the   source     (nil 

Figure 9 : The influence of Wind Speed in a Neutral Atmosphere 

The legend is : u(10 m) = (-+-: 5 m/s, -O-: 10 m/s -D- 15 m/s); in this test, z0 = 0.01 m 
and the temperature gradient is -1 °C/100m. 

As expected, dispersion is significantly improved as the wind speed increases . 

In the next Figure, we show the influence of buildings. We must remind that due to the fact 
that the velocity field is 2-D, obstacles must be assumed to be infinite perpendicularly to the 
wind direction. This means that only a restricted selection of obstacles can be simulated, 
such as walls, large buildings, channels or roadways; in Figure 10, the 2-D buildings are 
interposed in the gas path and extend 80 m downwind. 
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Figure 10 : The influence of 2-D buildings on Chlorine puffs in a Stable Atmosphere 

The legend is: - x - Free Field (300 s); -*- with building (300 s); - • - Free Field (60 s); 
-•- with buildings (60 s). 

The experimental conditions are : a source at ground level;  z,, = 0.1m;  u(10 m) = 2 m/s. 
The building dimensions are respectively : length = 80 m, height = 24 m. 

3.2.  SEVEX : A MESO-METEOROLOGICAL 3-D CODE 

The SEVEX initiative was started in the late eighties under the leadership of the Ministry of 
the Southern Region of Belgium (Region Wallonne), in cooperation with three Universities: 
the University of Louvain (UCL), the University of Liege (Ulg) and the Faculte 
Polytechnique de Mons (FPMs) [13,14,15]. 

The goal of the project was to provide Public Authorities in charge of Emergency Planning 
with a reliable quantification tool capable of helping them in setting up their emergency 
procedures. 
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In 1991, SOLVAY joined the Project Supervisory Committee and was asked in 1993 to re- 
engineer the existing codes and particularly to develop a user-friendly interface. 

The SEVEX Code architecture is very similar tho the EUROCHLOR one as shown in the 
next Figure. 

SEVEX   SOURCE 

Graphical 
auxiliaries 

Printouts 

I 
3D permanent 
turbulent 
wind field 

Graphical 
files 

i 
Graphics used 
for qualitative 
and quantitative 
representation 

Printouts 

I 
3D transient 
dispersion 
calculation 

Graphical 
files 

Graphics used 
for qualitative 
and quantitative 
representation 

Figure 11 : The SEVEX Architecture. 

The main differences between the SEVEX and the EUROCHLOR Models are : 

• the Source module is much more sophisticated and can be compared with the best 
similar models on the market; 

• the turbulent wind velocity field is based on a 3-D Meso-Meteorological Model 
originated from the Model developed by Bornstein in 1987 [16] and allows for long 
range dispersion simulations. 
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3.2.1.  The SEVEX Source Term Module 

In the Source Term Module, the gas is assumed to be confined in a cylinder with uniform 
concentration and temperature; gases of any density can be dealt with. Two types of 
releases, both of great interest, are considered: the Instantaneous and the Continous 
Releases. The SEVEX Source Module actually solves the Boiling Liquid Expanding Vapor 
Explosion fireball (BLEVE), the Unconfmed Vapor Cloud Explosion (UVCE) and the 
dispersion of a dense toxic gas. The BLEVE-fireball and the UVCE will not be treated 
here. 

3.2.1.1. The Instantaneous Releases 

Four quite different effects characterize the Source Term in this case: 

• The Initial phase 

The cold gas cloud is there assumed to be a cylinder with initial height (h) equal to its 
radius (R); the initial temperature is supposed to be the pollutant normal boiling point. 
The vapor fraction is computed on the basis of an adiabatic flash at atmospheric 
pressure. 

• The Gravity phase 

-   Due to the gravity effect (g), the gas cylinder gradually sinks down    The rate of change 
in the radius follows the semi-emperical law : 

dR = K \ghP^'P air 

dt V P air 

where K is an experimental coefficient whose value ranges between 1 and 1.44; p 
denotes the density. 

The concentration is uniform in the cylinder and directly related to the mass and the 
volume of the cloud. The gravity phase is responsible for the radius increase and the 
decrease of the cloud height. 

The Entrainment phase 

The entrainment of air in the gas cylinder induces cloud heating and increases its volume; 
natural and forced convection may generate additional heating of the cloud. 
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The rate of entrainment of air is given by : 

f = Pat,{'rR2)U-0P+P^(2'rRh)Ul 
V d 

where : 

d R 
Ur, = a,  denotes the entrainment velocity at the edge of the cylinder, 

dt 

UTop =cc 2UxRi
x        denotes entrainment velocity at the top and 

R    _g\s   P cloud'P, 

U\       pair 

with Ui the longitudinal turbulent velocity which is proportional to the friction velocity 
u : Uf = c . u* . The coefficients c and the characteristic turbulent length ls are 
given in tables; they depend on the Pasquill Stability Classes and on the cloud height. 
The best values obtained so far for ai and a2   are respectively 0.5 and 0.05. 

When the temperature of the ground and of the cloud differ, convection (natural and 
forced) as well as solar and earth radiation must be incorporated. Liquid droplet 
vaporization and moisture are also taken into account in the enthalpy balance in order to 
get a better description of the physics. 

The cloud is supposed to be advected downwind, with a wind speed estimated at mid- 
cloud height. 

The transition to the passive phase 

Progressively the dilution of the gas increases and the diffusion becomes passive.   Two 
tests are proposed: 

a first and very natural one compares the specific masses of the cloud and of air; 
typically a difference of 10"3 kg/m3 is considered. 

a second test compares the rate of increase of the gas cloud radius due to gravitational 
effects to the one induced by turbulence.. 
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Dispersion is then considered as passive when : 

dt \ r air 

u(t) denotes the wind speed at half cloud height; C* is a constant depending on the 
Pasquill Stability Class and varying between 0.22 (class A) and 0.04 (class F). 

After one of these criteria is satisfied, the cloud is supposed to diffuse as a passive 
constituent. 

At this stage, the user has the choice between using a classical Gaussian model in which the 
radial and vertical dispersion coefficients are calculated according to Briggs [17], or to 
switch to a 3-D dimensional passive dispersion model in which case SEVEX is capable of 
taking complex terrains and orography into account. 

The data to be transferred from the source term module to the 3-D dispersion model are 
characterizing the meterorology, of geographical nature (the topography, the surface 
roughness, ...), and the gas cloud characteristics (size, location,...). The gas with uniform 
concentration is supposed to be confined in a cylinder. 

3.2.1.2. The Continuous Releases 

The modeling of this type of release is subdivided into three parts: the jet phase, the dense 
cloud phase and the neutral cloud dispersion phase. Different scenarios of releases are 
considered: liquid, gaseous and flashing liquids, with and without friction through ducts. 

The discharge rate and other characteristics like pressure, temperature, vapor fraction, 
velocity,... are determined by more or less classical formulas. 

The Jet Phase 

The model is based on the work by Iannello et al. [18]; the jet leaving the source 
expands and is computed by means of two dedicated sub-modules (this jet calculation is 
necessary both for further phases of dispersion and for the study of UVCEs). 

The Expansion Module 

In this phase, the jet atomizes to droplets and flashes. 1-D momentum and energy 
conservation laws give the jet velocity after expansion and the partial vapor pressure in 
which the total pressure is supposed to be equal to the atmospheric one. The 
temperature is supposed to be the boiling point of the released chemical. The fraction of 
unflashed liquid leaving the jet and forming the rain-out liquid is then determined 
following a model developed by Wheatley [19]. 
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- The Entrainment Module 

The jet, at ambient pressure, is diluted by turbulent mixing with the atmosphere. A model 
based on the work of Ricou and Spalding [20] evaluates the mixing process. The 1-D 
spatial behavior of the temperature vapor fraction and composition is derived rigorously 
from the energy balance. The jet structure and its modelization remains as long as the 
momentum dominates over buoyancy and atmospheric turbulence effects. The 
Richardson number is introduced as a criterion to decide if the jet structure is still 
applicable. 

The Dense Cloud Dispersion Module 

The dissipation of the jet structure can generate a dense cloud. The gas cloud forms a 
steady plume with a rectangular cross section; it is studied by means of a Box Model 
which is very similar to the one described in the case of an instantaneous release 

The parameters describing the evolution of the cloud are its height (h), its half width (L), 
its velocity (u) and its concentration (C). 

The volume flow rate of the pollutant (Qv) is given by the expressions 

Q Qv=2Lhu    and    C = 
Qv 

The Gravity Phase 

The the cloud half width change in space is given by the expression: 

d L _    K       \ Pdoud-pair 
dx       u 

gh 

■ The Entrainment Phase 

For the mass flow rate through a given cross section of the plume, we have 

^ = 2pairLUTop+2pairhUE 
ax 

the edge entrainment velocity UE     is expressed by:    UE = a}u ——    and the top 
dx 

entrainment velocity Utop by :   UTop = a2U xRi 
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As in the case of an instantaneous release, the downwind evolution of the characteristics 
(temperature, water vapor and composition) of the cloud is deduced from the enthalpy 
balance taking into account the liquid droplet vaporization and the incorporation of 
moisture. 

The Transition to Passive Diffusion 

The criteria of transition from a dense to a passive dispersion are the same as in the case 
of an instantaneous release. Once neutral, the dispersion and the transport are driven by 
a 3D-Lagrangian model. 

3.2.2. The Meso-Meteorological module 

The meso-meteorological module calculates the 3-D wind and turbulence fields; the studied 
domain in centred around the location of the accident. The ground can be flat or hilly. This 
module is a 3-D Planetary Boundary Layer Model [21] originating from the URBMET 
model developed by Bornstein [16], in which the topography treatment and more refined 
surface influence have been adapted to our applications. 

The model is governed by the Boussinesq flow equations and based on the vorticity 
formulation whose main advantage is that we can drop the density and pressure terms in the 
equations of motion. The horizontal turbulent viscosity and diffusivity are supposed to be 
equal: 103 m2/sec each. 

The vertical turbulent viscosity JL and diffusivity X6 , in turn, are related to the mean 

kinetic energy    e = -(«2 + v'2 +w'2)     and to the mixing length 4   by 

Äm = cmlk£
0'5    and    Xg = ag Xm , with a6= 1.35. 

The mixing length 4 takes into account the atmospheric layer stability by integrating the 
Monin Obukov length. Moreover, in order to account for the anisotropy of the atmospheric 
turbulence,    Therry    and    Lacarrere    [22]    suggested    the    following    correction 

f   'i\ w 
for\k Ak =  —  \e , where 1E is given by 

\ e ) 

1     1    C    [1    cl c 
— = —H—l-- — + —*- m,nt)+-2- 
\£     k    ZI    U    27 J  ^   *     1 
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with: m [1 + (C3.Z7) / k] 

m2 < 
[l-(QxZ)/Z7] 

ifL>0 

ifL<0 

gß dz 

J    dz 

V™>0 
dz 

d are experimental constants, L is the Monin-Obukov length and ZI the height of the 
atmospheric boundary layer. K and 0 are respectively the von Karman constant and the 
potential temperature. 

Geographical maps provide altimetrical and roughness data of the studied region. 
A transformation for the vertical coordinate z ->•  T]  is introduced and given by : 

Z-Z. 
7] = S 

with s, z and zg respectively the altitude of the top of the studied domain, z the altitude of 
the courant point and zg the altitude of the ground; it has the advantage to simplify the 
topography representation. 

Near the ground, the surface layer with constant fluxes is treated analytically; modified 

logarithmic profiles [23] give the vertical distributions as a function of the atmospheric layer 

stability. 

At each grid point, the model provides the vorticity, the wind velocity, the potential 
temperature and the friction velocity u*. The model is solved using a 1 km x 1 km 
horizontal grid. The vertical size of the mesh cells varies from 10 m to several hundred 
meters. The number of vertical grid points is 12. The horizontal size of the studied domain 
is 29 km x 29 km. 
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In order to delimit properly the risk areas, it is extremely important to consider not only the 
most frequent situations but also the worst meteorological conditions. A set of typical 
scenarios has been set up : 3 geostrophic wind speeds (4, 8, 12 m/sec), 12 or 16 directions 
and 2 stability classes, one corresponding to a covered sky during the day and the second to 
a clear night. 

The meso meteorological module finally transfers information on the ground roughness, the 
turbulent velocity field and the data characterizing the stability of the atmospheric layer to 
the dispersion module. 

3.2.3. The Lagrangian passive dispersion module 

A Lagrangian particle diffusion method based on a scheme introduced by Yamada and 
Bunker [24] is used to calculate the transport and the dispersion of the released pollutant. 

The principles the method is based on are: 

• the mass of toxic gas is subdivided into a great number of elements or "particles"; 

• the size of each particle is finite and each particle has its own characteristics (velocity, 
temperature, pressure, concentration,...); 

• each particle is advected by air; 

• the positions of the particles are updated every time step (At ~ 10 sec); 

• the concentration at a particular location is the sum of all the contributions of the active 
particles. 

The concentration following Yamada and Bunker [24] is : 

N 

C(x,y,T],t) = 
(2*0 1.5 

M. 

p=l    Xp 
a    x ex „ x(T 

-exp 
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2     a2 

exp 
2      a2 
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where Mp is the mass of particle p ,     \Xp ?y p ?1 p)     and     \*xp >°'yT 
7<Jr}pJ 

respectively its coordinates and its geometrical characteristics; N refers to the total number 
of particles. 

3.2.3.1. Model equations 

•  The velocity distribution 

The position of a particle, at each time step At is expressed by the following equation : 

Using the Reynolds decomposition : up= um+ ut where um denotes the mean velocity 
calculated by the meso-scale meteorological model and ut the turbulent contribution, and if 
u', v', w' respectively represent the downwind, the crosswind and the vertical component 
of the turbulent velocity contribution, we get following Yamada : 

r^(t+St) = auu\t)+buaJ 

u'(t + St) = avV(t)+bvo-J 

(t + St) = awv'(t) + bwawt + {l-aw)TLw—al 

where au,v,w ~ exP 

= (VT^) 
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<ju,v,w denote the standard deviations of the wind velocity fluctuations and TLU,V,W the 
Lagrangian time scales for the components of the velocity (u,v,w,); g is a random number 
got from a Gaussian distribution with zero mean and unit variance. 

The first term in the expressions above is an autocorrelation component of the wind velocity 
fluctuations; the second is directly associated to the turbulence in the planetary boundary 
layer and the last one in the third equation was introduced to avoid any accumulation of 
particles in regions of very weak turbulence. 

The Lagrangian time scales depend on the stability within the planetary boundary layer and 
on the height of inversion. They are estimated as follows (Hanna [25] and Zannetti [26] : 

7LM=0.15 
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with (Tu=(Tv=2u* \-^-\     and    crw=Uu* 

u* is the friction velocity and A,-the inversion height. If 77 > 0.9A,  the computed values are 
those corresponding to  77=0.9 ht . 

•  The particle distribution 

Each particle is to be looked at as the center of a puff. The distribution of mass around this 
center is assumed to be Gaussian; the variances are determined by integrating the velocity 
variances over the "history" of the puff. According to the classical theory of homogeneous 
turbulence it is given in the x direction by : 

t  z 

a I = 2 a I JJexp 
f 

$ 
\ 

0 0 ^    TL) 
d% dz 
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This expression simplifies into : 

0-,=°V if   t<2TLu 

a2
x = 2cr2

uTLut        if   t>2TLu 

Similar expressions are obtained for the variances in the other space directions. 

3.2.4. Typical output from SEVEX. 

Specially dedicated to Emergency Planing issues, SEVEX outputs contours on maps 
covering the areas where SEVESO plants are located; these maps are delivered to the staff 
involved in Major Hazard exercises. 

Cas de JOUR: 
3-DISPERSION INST 55 t CHLOR 
+ CONCENTRATION :   3.8 ppm 
• CONCENTRATION : 15.0 ppm 
■ CONCENTRATION: 25.0ppm 

Vent ä 10.0 metres 
N 

-AC 

Figure 12 : A SEVEX typical graphical output 
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3.3.  DISCO : A 3-D MEDIUM RANGE ATMOSPHERIC DISPERSION MODEL 

After a more than ten years use of the EUROCHLOR Model, there was a need for 
extending its capabilities in order to handle more complex scenarios [27,28]. DISCO 
intends not only to extend the 2-D turbulent field modelling of the EUROCHLOR code to a 
3-D one, but it is aimed at: 

• giving a better description of the turbulent flow field based on a (k, s) approach, 

• giving a better description of the turbulence around obstacles, which is one of the 
weaknesses of the Lagrangian approach. This pactically means that the pollutant 
mass balance and the Navier-Stokes equations are not anymore decoupled, 

• providing the end-user with a better numerical solver, both from a convergence and 
an accuracy point of view, 

• providing the end-user with a more user-friendly interface with powerful vizualization 
capabilities, 

• offering good computing performances. 

The decision was taken not to develop such a code internally, but to start from a 
commercial general purpose hydrodynamic code (PHOENICS) which already disposes of 
rather good visualization facilities 

3.3.1. The DISCO Model 

The basic equations, boundary and initial conditions DISCO is based on are described 
below; then follows a description of the source term. 

3.3.1.1. The Continuity Equation 

As in the EUROCHLOR Model, the atmospheric flow is supposed to be incompressible; 
with straightforward notations : 

£^ = o 

3.3.1.2. The Momentum Equations 

The momentum conservation principle leads to : 

dU,     dU,Uj        dp      d 

d t        dx3 dxx     dx} V      dxj j 
+ F. 
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where the body force has the form   Ft = ——— gt   , //,   denotes the turbulent viscosity 
P 

and p and pa the density of the pollutant and air, respectively. 

3.3.1.3. The Energy Equation. 

The energy transport is given by: 

d&     TT   de       d — + u 
dt 

( \ //,   de 
j dXj     dXj yPr dXjj 

where 0 denotes the potential temperature. 

3.3.1.4. The air and the pollutant as ideal gases. 

Both the air and the pollutant are assumed to be ideal gases : P = Rp 
M 

It allows us to express the body force in the momentum equation explicitly; the expressions 
are different when expressed in mass fraction q : 

P-Pa     Mg-M           .                                  p-p          (Mg-Ma)co 
 q  or in volume fraction a:   

M. p        (M -Ma)co + Ma 

3.3.1.5. The (k,e) Turbulence Closure. 

The turbulent eddy viscosity u,t is modeled as a function of the turbulent kinetic energy 
(TKE) and its dissipation 

£ 

The equations for k and e are respectively: 

dk     dU{k        d 
 + — 
dt      dx, 

( 

dXj v 
Mt 

dk 

dx< 

\ 

+ Pk+Gk-s 
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and 

d ju, ds 

dt      dXj      dXj \<JE dXj) 

dE    dU; s 
+ + j[Ce,P„+Ccl(l-Cc3)Gk-Cc2£] 

with 

?k=Mt  '- + —- 
\0Xj     dxt dxj ' 

C8fl=1.44; Cs,2=1.92; GE=1.3; CE;3 = 0//Gk>0   ;   C8>3=l//Gk<0 

It can be seen that the equation for s is relatively more complicated and includes a number 
of turbulence modelling constants. 

The presence of the pollutant strongly affects the buoyancy production/loss term Gk whose 
modelling is responsible, to a great extent, for the quality of the results; its modelling is 
connected to the density gradient within the limits of the eddy diffusivity approach [29]; it is 
expressed by: 

Gk=-g 
1 1 d<d 

l + cr„ co    \T dz 

d (o     1 
~dz~~~T dz 

\ 
X co 

where   a«, = (Mg-Ma)/Ma   ; 0 is the potential temperature and co the pollutant volume 
fraction. 

This  expression  reduces  to   a  more  classical  form  when  the   contaminant  volume 
concentration approaches zero or is nearly passive. 

When expressed  in mass fraction form,  the  expression  for  Gk is  somewhat  more 
complicated: 

Prt 

7 dq     1 (d%     .) 
dz    T dz 

X 

where    oq = (Mg - Ma)/Mg. 

The turbulent Prandtl number is taken equal to 1, the same value as in the EUROCHLOR 
code   let us however notice that PHOENICS can not handle more general values. 
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The Contaminant Concentration Balance 

The concentration transport equation has the same form in mass and volume fraction; in 
mass fraction q we have: 

*±+U    dl _   d  (v,    dq^ 
dt       ] dxj     dXj\Pr dx}) 

3.3.2. The Boundary conditions 

Typical boundary conditions, near the ground, for the velocity, the turbulent kinetic energy 
and its dissipation are: 

U 
C/ = —Mn 

K 
f4 k="L. s=c».r 

K being the von Karman constant and z the altitude. 

For the contaminant mass fraction and the potential temperature, we assume respectively: 

dq 
dx^ 

= 0;   0 = 0 ground 

3.3.3. The Initial conditions 

The initial conditions for DISCO are deduced from a source area model [30,31], they are 
only needed for instanteneous releases. 

The processes near the source, in turn, are complicated and have to be modelled separately. 
In DISCO as in many 3D similar models [1], a relatively simple approach was used which 
assumes uniform contaminant concentrations in the vicinity of the source. It consist of 
calculating a realistic volume of diluted contaminant at ambiant temperature (the same 
technique was used in the EUROCHLOR code). 
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Typical conditions near the source are : 

resource       source s s s 
source 

r-,       - y source \"0      f/ 

Other variants of the conditions for k and s have been tested but no substantial difference 
has been observed. 

The top region 

dz      dz      dz     dz     dz     dz 

The lateral planes 

dU _dW _dT = dq = dk ^de _ 
dy      dy     dy     dy    dy    dy 

The outlet 

dU     dV     dW    dT    dq     dk     ds 
= 0 

dx      dx      dx     dx     dx     dx     dx 

The inlet 

V = W = q = 0 ;  U = Uiniet;  k = kiniet;   8 = siniet;   © = ©iniet 

The inlet quantities are computed from the above specified mathematical model with 
periodic boundary conditions and over a flat terrain; actually this problem is to be 
considered as a 1-D problem in the vertical direction [31]. 

3 34   The present state of DISCO 

DISCO is presently tested on a qualitative base. Tests with or without buildings, with 
heavy of passive contaminants are underway. Up to now, no anisotropy has been taken into 
account for in the turbulent flow field. 
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4.  THE KNOWLEDGE BASED FRONT-END TECHNOLOGY 

The motivation for enhancing the capabilities of existing user software such as CFD codes 

^t3&^S3^Based Systems (KBS) and H—c— *3£ 
• existing environmental CFD codes represent a body of valuable knowledge which in 

Zn,CaSeVS ' i°uUSe bu6CaUSe thC kn°WledSe * encapsulates is inherently 
complex and is presented through a poor, out-of-date user interface, 

• part of the domain knowledge relies on common sense and can only be formalized in 
terms of production or inference rules. 

Some attempts in this direction were already made at Solvay [4] which led to the 
development of preprocessors to existing codes; they howeve" luirTom . 1 ck of 
genencity as we show in the example below. 

4.1. THE METEO PRE-PROCESSOR TO THE EUROCHLOR CODE. 

The Mathematical Model EUROCHLOR is based on handles physical quantities such as the 
roughness height z0, the Monin-Obukhov length L an the friction velocity u* quantitZ 
which are natural y related both to the mechanically and thermally induced turbulence and to 
the dispersive behavior of the atmospheric surface layer. Industrial users are more familiar 
with an expression of the Pasquill stability classes, with a typical velocity at some reference 
height (usually 10 m) and roughness height as given in the tables below 

Wind speed at 
10 m 

Daytime insolation Night time cloud cover thinly 
overc. 

m/s Strong Moderate Slight or > 4/8 cloud or < 3/8 cloud 

<2 A A-B B 
2-3 A-B B C E F 
3-5 B B-C C D E 5-6 C C-D D D n 
>6 C D 

D D                           D 
— ■ ' ■ _ 

Table 1 : Pasquill stabil, classes related to wind speed and insolation 
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Pasquill stability class Ambient temperature gradient 

A : very unstable Less then -1.90 C/100m 
B : unstable -1.90 to -1.70 C/100 m 
C : slightly unstable -1.70 to -1.50 C/100m 
D : Neutral -1.50 to -0.50 C/100 m 
E : slightly stable -0.50 to + 1.50 C/100 m 
F : stable More then + 1.50 C/100 m 

Table 2 : Pasquill stability classes versus thermal stratification 

A pre-processor asking for these data, called METEO, was developed in order to calculate 
the relevant information for running the code. The physics it relies upon essentially relates 
the Monin-Obukhov length L which expresses the height at which thermal stresses balance 
the mechanical ones and the friction velocity u* to practical data as shown below [5] : 

• the bulk Richardson Number : 

RB = JLX^XZ B     T0     U
2 

• the Monin-Obukhov Length : 

In 

L = -RBxPR    x 
-^(iK*(i 

In UJ V, 

-12 

L, 

the friction velocity : 

ku 
u 

In -¥, 
L, 

hi and h2 are typical heights between which the temperature @ has been measured ( in 
practice, temperature will not be measured at ground level), z0 is the roughness height to 
characterize the small scale irregularities of the surface, u the wind velocity at height z and g 
the gravity acceleration. 
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\|/h and \|/m are empirical functions which may be formulated as follows 

- neutral stability conditions  (dT/dz =-1 K/ 100 m) : 

v|/m = 0 

\|/h = 0 

- sta&/e stability conditions (dT/dz > -1 K/ 100 m ) : 

V™ = -5 — 

^ = -%1F-&-L 

- unstable stability conditions (dT/dz < -1 K7 100 m) 

Wm = In ^ *• - 2 arctg(x) + - 

where :  x = | l-15x 

,= 2 1n^^   where   y = \\-9 —J 

The resulting EUROCHLOR code architecture is shown in Figure 13 below. 
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c Printouts c Printouts 

METEO 
physical data 
preprocessor 

Graphical 
auxiliaries 

2D permanent 
turbulent 
wind field 

Graphical 
files 

Graphics used 
for testing 
mathematical 
properties 

3D transient 
dispersion 
calculation 

Graphical 
files 

Graphics used 
for qualitative 
and quantitative 
representation 

Figure 13 : The preprocessed EUROCHLOR Code architecture. 

When developing the METEO pre-processor, the intention was twofold: 

• to keep the input data tractable to industrial end-users, 

• to balance the uncertainty on the information supplied to the model and the model 
inherent inaccuracy. 

METEO was not able however to deal with common sense or expertise expressed in terms 
of rules close to the natural language. That is why a new approach called the Front-End 
Based Technology was investigated. 
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4.2. THE KNOWLEDGE BASED FRONT-END TECHNOLOGY 

The KBFE technology was developed in the framework of an ESPRIT 2 project called 
FOCUS (No 2620) which started in december 1989 an finished mid 1994 [1,32,33]. Its 
main features are genericity, modularity and re-usability. 

The purpose of the Front-End is to fill in the gap between the End-Users, typically Safety 
Engineers, and with the Back-Ends, typically EUROCHLOR or SEVEX. In addition to 
traditional computerized pre-processors like METEO, KBFEs should be capable to handle 
common sense, decision rules or rules of thumb which are quite frequent in the definition of 
Major Hazard scenarios. How to get the roughness height or the initial pollutant dilution 
factor may proceed from such a pragmatic approach, as well as the management of the 
constraints induced by the domain of applicability of the CFD code. 

The expertise which traditionnally lies in the hands of experts or consultants should, to 
some extent be captured, formalized and computerized [34] as shown in Figure 14 below. 

Salety Engineer 
MERADIS 

Problem Posers 

Knowledge-Based 
Front-End Back-Ends 

Numerical Fluid Chemical 
Meteorology       """  Toxicology 

Analysis Mechanics Engineering 

Experts 

Figure 14 : The Knowledge Based Front-End Philosophy. 
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The Knowledge Based Front-End architecture is based on a communication harness which 
provides the framework for the interaction between end users, the application codes 
considered as Back-Ends and the knowledge-based modules 

B 
A M 
C A 
K N 

A 
F G 
N t 
D K 

KNOWLEDGE-BASED MODULES 

KBM  1 

T 

KBM 2 KBM n 

BE1 

BE2 BE 

■. Back—Ends; 

BEn 

Expertise 

Figure 15 : The Knowledge Based Front-End Architecture. 

The interactions between the KBFE and the Back-Ends are conceptually quite simple, they 
consist of: 

• producing a structured input file with all the parameters of a simulation, 

• reading and interpreting the output file(s) produced by the back-ends. 

The End-User should however be provided with clear assistance and guidance when 
entering and validating the data and with reliable reason maintenance and adaptative 
dialogue capabilities. The SEDIS project that intends to produce a Knowledge Based Front- 
End to the EUROCHLOR code is still ongoing although with low priority. The 
specifications for a first prototype have been outlined and preliminary knowledge elicitation 
is achieved. The next steps will be structuring the knowledge and designing the Human 
Computer Interface [35], tasks that revealed much more complex and costly than it was 
expected. 
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The future of Knowledge-Based Systems will of course depend on the quality of the 
embedded CFD software; it seems however that the initial trend consisting of developing 
KBFE architectures, 'just" front-ending expertise to CFD codes will move to a more 
general Problem Solving Environment offering real time capabilities. 

5. THE QUALITY ASSURANCE APPROACH FOR CALCULATION MODELS 

Today there there is quite an impressive number of computerised models covering various 
aspects of risk analysis; their quality however varies drastically and their reliability and field of 
application are not always well defined. 

We can see only too clearly that the field of application, the limitations and even the use of 
models are very often poorly understood by end-users. The fact that this kind of tool is based on 
non-trivial scientific considerations may represent a considerable obstacle when making it 
available to users spread over a range of different activities or unable to be acquire a thorough 
understanding of complex systems. 

There is a wide gulf between the scientific community, at the heart of developments and 
research, and the industrial world. The first group which is well aware of the theoretical 
foundations of models considerably underestimates the gap separating an academic prototype 
from a validated industrial software, applicable in real cases. The second group often 
underestimates the need to invest in an understanding of models, or even how they are 
computerised, preferring to use "black boxes" whose inescapable "advantage" is to conceal the 
difficulties to users who do not have to worry about the relevance of the model. 

In the framework of a working group, funded by the Directorate General Xu of the European 
Commission (Model Evaluation Group), Dr. Rex Britter [36] stressed the need for methods and 
tools to evaluate and improve the quality of models. He also set out the bases for an evaluation 
protocol allowing the end-user to grasp the objectives, field(s) of application and limitations of 
the models unambiguously [37,38]. We ourselves have formalised this step [39], intending to 
provide users with industrial-type simulation tools, a straightforward procedure to evaluate the 
quality of calculation models of Major Hazard Consequences. 

This procedural step naturally covers the following fields: 

- Evaluation of the scientific quality of the mathematical model. 

- Validation of the model in terms of all available techniques : analysis of sensitivity to 
physical parameters, comparison with experimental results, comparisons with other 
models and "benchmark exercises". 

- Computation and algorithmic aspects requiring qualities of reliability, robustness and ease 
of maintenance. 

- User-friendliness and fitness of the Man-Machine Interface to users' needs. 

- Scientific and technical documentation for the model and its computerisation. 
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This step is definitely placed in the "Quality-Assurance" framework and is justified below. 

A quality approach can be justified by the desire to clarify a field which is still blurred around 
the edges. In practical terms, this means: 

Producing a structured measurement of the quality of a model which can be 
communicated to all the interested parties (Legal Authorities, Industries, Central and 
Local Administrations, Insurance Firms, Consultants, Question and Research Groups). 

Authorising an open audit on the use of the model by end-users. This audit should 
result in a written opinion as to the relevance of the results, the field of applicability of 
the model and the type of users it is aimed at. 

Providing the end-user with clear documentation on the field of applicability of the 
model and the degree of accuracy of the results. 

By means of these three initiatives, we should be able : 

1. firstly, to encourage and assist the development and maintenance of quality models 

satisfying the "Fitness for purpose" criterion; 

2. secondly, reduce any distortions existing between the models; 

3. next, identify those improvements required for future models; 

4. finally and especially, satisfy the expectations of users by satisfying the "Fitness for use" 
criterion. 
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The Quality approach for Environmental Calculation Models is based on 5 concepts : 

• Scientific quality-assurance, 

• Algorithmic quality-assurance, 

• Computerisation quality-assurance, 

• Man-Machine Interface quality-assurance, 

• Model validation and analysis of sensitivity. 

It presupposes two things : 

• a clear definition of the end-users' expectations including amongst others : 

°   the scale of the problem, 

°   the types of scenario to be handled, 

°   the nature and degree of accuracy of results to be provided; 

«i that the data used during the validation process are themselves subject to a certification 
process by those who have established the Databases in terms of the quality-assurance 
criteria. 

5.1. THE SCIENTIFIC QUALITY-ASSURANCE. 

This is based on a detailed presentation of the model, its underlying hypotheses and/or physical 
approximations, its limitations and duly motivated answers to the following questions : 

• Is the mathematical modelling targeted at a given type of problem ? Does it cover the 
physical nature of the problem ? Totally or partially ? 

• Do the hypotheses and/or approximations correctly reflect the main physical effects, 
omitting any side effects if the case arises ? Do they correctly take scale effects into 
consideration ? 



44 

• Can the limitations of the model be justified, primarily with regard to the problem in 
question ? Can they be removed and at what cost ? 

• Is there a guarantee that no non-scientific constraint, e.g. hardware type, is behind 
excessive simplifications of the model ? 

Scientific quality-assurance should also be capable of addressing the experimentation if this 
proves necessary, notably to support any choices made or validate the hypotheses. 

Finally, scientific quality-assurance involves active participation in scientific events at the highest 
level as well as encounters with specialists. The same remark can be made for algorithmic 
quality-assurance which we will be covering in the next paragraph. 

5.2.  THE ALGORITHMIC QUALITY-ASSURANCE 

This affects the numerical strand i.e. the approached formulation of the mathematical model to 
computer treatment. Algorithmic quality-assurance is characterised by three concepts : 

• the stability of the scheme, 

• the convergence of the scheme and, 

• • the accuracy of the scheme. 

This strand of the modelling is very often hidden from the user for the obvious reason that (s)he 
is, in most cases, incompetent in this field, and questioning on numerical aspects may well 
perturb him(her). 

We should remember that mathematical convergence is usually determined by stability and the 
numerical schemes used are supposed to be stable. By contrast, accuracy is closely linked to the 
grid, and it should be ensured that the code can converge towards the machine-zero, i.e. the 
residues do not stay and stagnate in terms of the number of iterations. In addition, the real 
accuracy involves defining the level of error as a function of the grid and verifying the slope (in a 
logarithmic graph). Another major condition to be determined is the refinement threshold from 
which point the solution is independent of the grid. This is clearly a function of the kind of 
problem, but it is only in this case that the validation of the physical models and the study of 
sensitivity described in paragraph 4.5. hereafter can be estimated objectively. 
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5.3. THE COMPUTERISATION QUALITY-ASSURANCE 

This paragraph deals with how the models and, in particular, their numerical approximations 
have been computerised. At this stage, no consideration relating to the physical nature of the 
problem is included (other than those translating a direct influence of the physical nature on the 
calculation techniques being proposed), nor the algorithm itself. 

We focus here on the quality (translation and performance) of the computer coding of numerical 
algorithms and relevant databases. In particular, the coding should either be an exact translation 
of the numerical algorithms and there should be no drift with regard to the analytical model. 

In addition, the code's architecture should be modular and in particular the expert user should 
check experimentally the results announced in 5.2. by himself. The effort made in this field 
should also be considered at as early a stage as possible in the development of the computerised 
model for two reasons : 

1. It is undesirable that, while the programme is being operated for practical purposes, 
questions which are of a purely mathematical nature should be considered. 

2. The operating cost of the model, whether expressed as the number of operations 
(computational costs) or in currency (financial costs), depends crucially on the quality of the 
computerisation. 

For the relevant Databases for the model, it must be carefully assured that: 

• they are structured according to a standardised format if possible, and portable; 

• their content has been validated and certified by experts. This validation and 
certification work is crucial both regarding the physical/chemical and cartographic 
data, including land characteristics; 

• their content is accessible to the expert user. 

5.4. THE MAN-MACHINE INTERFACE QUALITY-ASSURANCE 

The Man-Machine Interface (MMI) strand involves the computerised interface enabling the end- 
user to interact with the application programme, both in terms of acquiring data and interpreting 
results. The MMI must be designed to allow the user to carry out his task successfully, in a user- 
friendly way and with the provision of any help necessary. 

In particular, the MMI must help a user to check the adequation between the scenario being 
offered and the model underlying the application programme; it should be designed so that the 
system is in the service of the user and not the other way round. 
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5.5. MODEL VALIDATION AND ANALYSIS OF SENSITIVITY 

The word validation is used in the strict sense of the term, as is the verification of suitability 
between those results predicted theoretically and experimental results. The term experimental 
results is used in the broad sense to mean: 

• the results of real scale tests (field tests), 

• the results of wind tunnel tests, 

• results of "laboratory" or "pilot" scale tests, 

• results provided by other models, 

• benchmarking exercises. 

The validation of a computerised mathematical model involves the prerequisite of the existence 
of validated databases and accessibility to these databases. The validation supposes that the 
experimental results have not been used when developing the model itself. 

This exercise is usually a complex one, costly in terms of time for thought and use of the 
computer; it is often accompanied by qualitative validations and an analysis of sensitivity to the 
physical parameters intervening in the model. It may even require experimentation itself! 

Qualitative validations are often the only ones that can be considered in the hypothesis of very 
complicated scenarios. 

Analyses of sensitivity are intended to study the variability of results in terms of the variability of 
the physical and mathematical parameters of the model. Analyses of sensitivity for physical 
parameters are used to characterise the level of uncertainty of the model; they must contribute to 
defining the validity ranges. 
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QUESTIONNAIRE ON SCIENTIFIC QUALITY-ASSURANCE 

0    Do you have the context in which the mathematical model was developed ? 

0    Are the model's designers accessible ? 
If yes :   - where ? [name(s), address(es)] 

- how ? (E-mail) 

0    Do you have a detailed mathematical description of the model including : 
- general equations for the model ? 
- the hypotheses and/or physical approximations leading to the operational model ? 
- the equations for the operational model ? 
- the initial conditions and/or boundary conditions ? 
- the internal parametrisation of the equations ? 

0    Is the mathematical description easily accessible ? 
-  in the literature ? 
- from the model's designers ? 

0    Are the limitations of the model : 
- justified primarily from a physical reasoning ? 

If yes : which ? 
- directly related to a specific industrial problem ? 

If yes : which ? 
-  independent of software constraints ? 

(SW) 
- independent of hardware constraints ? 

(HW) 

0    Has the model been validated ? 
If yes :   by whom ? 

where ? 
when ? 
in what context ? 
- with real scale tests (field tests) 
- with wind tunnels 
-  with hydraulic tunnels 
- by inter-model comparisons 
-  using laboratory or pilot experimentations 

0    Has the model encountered the opinion of specialists in : 
- international conferences ? 
- seminars or workshops ? 
If yes :   where ? 

when ? 

0    Has the model been submitted to the opinion of industrial experts ? 
If yes :   to whom ? 

where ? 
when ? 
how ? 

Whenever the term "mathematical model" or simply "model" is used, it is a general term 
which in some cases can actually cover several models. 
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QUESTIONNAIRE ON ALGORITHMIC QUALITY-ASSURANCE 

0 What algorithm2 is used to discretise the mathematical model ? 

0 Who was responsible for this choice ? 

0 What are the references for the proposed model ? 

0 Has the stability of the numerical scheme been studied ? 
If yes : by whom ? 

where ? 
when ? 
is the scheme unconditionally stable ? 
conditionally stable ? 

0 Is the numerical scheme convergent ? 
If yes : who demonstrated this result ? 

where ? 

0 What is the accuracy of the numerical scheme ? 

0 Has a comparative study with other algorithms been made ? 
If yes : by whom ? 

where ? 
when ? 
are the results of this study available ? 

0 What justified the choice of the algorithm : 
its accuracy ? 
its robustness ? 
its ease of implementation ? 

0 Can the algorithm be vectorised ? 
If yes : has it been vectorised ? 

0 Can the algorithm be parallelised ? 
If yes : has it been parallelised ? 

As for the notion of the model, the term "algorithm" must be taken in the general sense and may 
n1   nlrt(-\ri*V»mc 
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QUESTIONNAIRE ON COMPUTERISATION QUALITY-ASSURANCE 

0 In what language(s) has the software been coded ? 

0 Are the source codes accessible ? 
If yes : where ? 

how? 
If no :   why not ? 

0 Is it structured in functional modules ? 

0 Is there a conceptual analysis file ? 
If yes : where is it accessible ? 

0 Is there an organisational analysis file ? 
If yes : where is it accessible ? 

0 Is the software documented ? 
If yes : in which language(s) 

0 Is the user-interface functionally decoupled from the application modules ? 

0 Is/are the computer language(s) used standardised ? 
If yes : is it the standardised version of the language(s) (without extension) that 

has been used ? 

0 Is the code portable ? 
If not: what proportion of the code is not portable ? 

why hasn't it been designed to be portable ? 

0 Is there an implementation procedure ? 
If yes : where is it accessible ? 

0 Is there a user's manual ? 
If yes : where is it accessible ? 

0 Is the software maintained ? 
If yes : by whom ? 

where ? 
how? 

If no :   why not ? 
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QUESTIONNAIRE ON COMPUTERISATION QUALITY-ASSURANCE 

0 On what computer platform(s) is the software available ? 

0 If the software was to be run on several machines, are the software versions the 
same release ? 

0 Is there a code version in single-length precision (32 bits) ? 

If yes : is this precision enough ? 
have comparisons with a double-length precision version of the 

code been made ? 
If yes :   by whom ? 

where ? 
on which machine(s) ? 
have the results been included in an accessible report ? 

If no :   why not ? 

If no :    why not ? 

0    Have the topographic data been structured to be portable where necessary ? 

If yes :   by whom ? 
how ? 
are they available ? 
if yes :   where ? 

If no :   why not ? 

0    Have the results of the calculation (e.g. field of wind and/or field of concentration) 
been structured to be portable ? 

If yes :   by whom ? 
how ? 
are they available ? 
if yes :   where ? 

If no :   why not ? 

0    Has a particular structure for files reserved for graphic designs been provided ? 

If yes :   what is it ? 

If no :    why not ? 
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QUESTIONNAIRE ON COMPUTERISATION QUALITY-ASSURANCE 

0          Has the type of graphism used by the code been standardised (GKS, PHIGS, 
POSTSCRIPT,...)? 

If yes : what standard is it based on ? 
If no : why not ? 

which solution has been adopted ? 

0          Does the software require portions of code covered by external licences ? 
If yes : how much does it cost ? 

can these portions of code be easily replaced (at low cost) ? 

0          Is the supply of the code accompanied by training in its use ? 

0          Is there a Help Desk in the case of difficulties ? 
If yes : where ? 

accessible when ? 
accessible how ? 
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QUESTIONNAIRE ON THE QUALITY-ASSURANCE OF SENSITIVITY 
ANALYSIS 

t:* 

Analysis of mathematical sensitivity : 

0 Are the results of the calculation independent of the mathematical 
parametrisation ? 

(answer only if the question is pertinent to the model) 

spatial grid ? 
time steps ? 
relaxation parameters ? 
artificial viscosity coefficients ? 
criteria for stopping in iterative procedures ? 
initial conditions used in iterative procedures ? 

0 Is the user capable of controlling these various points easily by himself ? 

Analysis of physical sensitivity : 

0 Did the variability studies of calculation results concerning the physical 
parametrisation of the model cover the following : 

the internal parameters of the model ? 
If yes : what tests were made ? 

by whom ? 
where ? 

the results :   are they accessible ? 
have they been published ? 
have they been expertised ? 

if yes :     which expertise ? 
by whom ? 
where ? 

- the physical data of the programme ? 
If yes :   what tests have been made ? 

by whom ? 
where ? 
the results :   are they accessible ? 

have they been published ? 
have they been expertised ? 
if yes :   which expertise ? 

by whom ? 
where ? 
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QUESTIONNAIRE ON VALIDATION QUALITY-ASSURANCE 

Have the results of the model been compared with those from real scale tests ? 
If no :   why not ? 

If yes : 
Which ones ? 
On what scenario platform ? 
Did this platform have the consent of experts : 
. from Industry ? 
. from the competent Legal Authorities ? 
. from specialised Consultants ? 
Have the data relating to the scenarios and the results of the simulations 

been published ? 
If yes : by whom ? 

where ? 
when ? 

If no : why not ? 

Have the data and the results of the various scenarios been analysed critically by 
external experts ? 

If yes : by whom ? 
where ? 
when ? 
how? 

If no : why not ? 

Have the results of the model been compared with those from wind tunnel tests ? 
If no :   why not ? 

If yes : 
Which ones ? 
On what platform of scenarios ? 
Has this platform had the consent of the experts : 
. from Industry ? 
. from the competent Legal Authorities ? 
. from specialised Consultants ? 
Have the data relating to the scenarios and the results of the simulations 

been published ? 
If yes : by whom ? 

where ? 
when ? 

If no :   why not ? 
Have the data and the results of the various scenarios been analysed 

critically by external experts ? 
If yes : by whom ? 

where ? 
when ? 
how ? 

If no :   why not ? 
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QUESTIONNAIRE ON VALIDATION QUALITY-ASSURANCE 

0 

Have the results of the model been compared with those coming from hydraulic 

tunnel tests ? 
If no :   why not ? 

If yes : 
Which ones ? 
On which scenario platform ? 
Has this platform had the consent of experts : 
. from Industry ? 
. from the competent Legal Authorities ? 
. from specialised Consultants ? 
Have the data relating to scenarios and the results of the simulations been 

published ? 
If yes: by whom ? 

where ? 
when? 

If no : why not ? 
Have the data and the results of the various scenarios been analysed 

critically by external experts ? 
If yes : by whom ? 

where ? 
when ? 
how ? 

If no : why not ? 

Have the results of the model been compared with those of laboratory and/or pilot 

installation tests ? 
If no :   why not ? 

If yes : 
Which ones ? 
On which scenario platform ? 
Has this platform had the consent of experts : 
. from Industry ? 
. from the competent Legal Authorities ? 
. from specialised Consultants ? 
Have the data relating to scenarios and the results of the simulations been 

published ? 
If yes : by whom ? 

where ? 
when ? 

If no : why not ? 
Have the data and the results of the various scenarios been critically 

analysed by external experts ? 
If yes : by whom ? 

where ? 
when ? 
how? 

If no :   why not ? 
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QUESTIONNAIRE ON VALIDATION QUALITY-ASSURANCE 

Have the results of the model been compared with those coming from other 
models ? 

If yes : 
With which models ? 
On what scenario platform ? 
Has this platform had the consent of experts : 
. from Industry ? 
. from the competent Legal Authorities ? 
. from specialised Consultants ? 
Have the data relating to scenarios and the results of the simulations been 

published ? 
If yes : by whom ? 

where ? 
when ? 

If no : why not ? 

Have the data and the results of the various scenarios been critically 
analysed by external experts ? 

If yes : by whom ? 
where ? 
when ? 
how? 

If no : why not ? 

Have the results of the model been critically analysed in a "benchmark exercise" ? 
If yes : by whom ? 

where ? 
when ? 
how? 
is a report available ? 
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QUESTIONNAIRE ON THE MAN-MACHINE INTERFACE 
QUALITY-ASSURANCE 

What category of users is the code aimed at ? 
a fluid mechanics expert ? 
an atmospheric physics expert ? 
an engineer responsible for Industrial safety studies? 
an engineer responsible for Emergency Plans with Legal Authorities ? 
a Consultant in the field of major hazards ? 

Has the user-interface been developed with the help of end-users ? 
If yes : which ones ? 

where ? 
how ? 

Has the user-interface been evaluated (usability assessment) : 

by end-users ? 
If yes : which ones ? 

where ? 
under what conditions ? 
is a final report available ? 
if yes : where ? 

If no : why not ? 

by software engineering specialists ? 
If yes : which ones ? 

where ? 
under what conditions ? 
is a final report available ? 
if yes : where ? 

If no : why not ? 

by cognitician engineers ? 
If yes : which ones ? 

where ? 
under what conditions ? 
is a final report available ? 
if yes : where ? 

If no : why not ? 

by ergonomists ? 
If yes : which ones ? 

where ? 
under what conditions ? 
is a final report available ? 
if yes : where ? 

If no : why not ? 
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6. CONCLUSION 

Starting from the observation that: 

- an intensive use is made of the mathematical models as quantification tools for the 
consequences of Major Hazards, 

- this use is going to increase, 

- little has been done to formalise the evaluation of existing models and increase the 
transparency of the ins and outs of these models to the user, 

- models are only a part of a larger Problem Solving Environment context 

we wanted, in a practical sense, to set out the bases for a strict Quality-Assurance approach from 
our industrial experience. 

The questionnaire technique used in this work has been structured in such a way that a "task 
chain" approach, to be carried out by experts with different skills : modelling experts, physicists, 
chemists, engineers, mathematicians, computer experts, ergonomists and end-users. 

Environmental Mathematical Modelling cannot be seen as an isolated discipline anymore; 
although it provides people with an essential simulation tool, its capabilities must be 
enhanced by domain knowledge in order to get a reliable and robust consequence analysis 
tool for industrial purposes. 

In terms of strategy, the management of Quantified Major Hazards is to be thought of as a 
two phase strategy as shown in figure 16 below: 

• the first one based on off-line simulations and 

• the second structured as a real time operational system. 

PHASE 1   : Off-line simulations 

Scenarios 
of major 
hazards 

Data Base 

Knowledge 
B?>se 

Knowledge 
Based 

System 

PHASE 2 

Accident 

?n line system 

Knowledge 
Eased 

System 

Sensors 

Follow 
LID 

Figure 16 : Strategy for Major Hazard Consequences Management. 
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