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Abstract  

Successful application of the electrothermal chemical (ETC) propulsion concept will require 
an understanding of the propagation and interaction of plasmas in propellant beds. This 
information is necessary to exploit the ignition and combustion control that is possible with 
plasmas. Toward this end, an experimental program was designed to gain an understanding of 
the functioning of the plasma and the interaction of the plasma with the propelling charge, and 
finally a series of 30-mm gun tests, incorporating the experience gained in the first two parts of 
the program, was conducted. 

This report describes the results of the first two parts of this program. Here results are 
described of tests on different igniter centercore configurations to be used for distributing the 
electrical plasma within the combustion chamber. High-speed photographic measurements were 
made of open air firings (with various centercore designs) and in a 30-mm gun simulator. 
Propagation velocities along with the time-sequence of events for the functioning in the 
centercore tubes were recorded. High axial pressure gradients were observed, necessitating 
mechanically robust centercores. Radiation levels substantially in excess of conventional igniters 
were also noted. These observations were exploited in the design of a plasma distribution 
centercore for 30-mm gun tests. 
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1.  INTRODUCTION 

The electrothermal chemical (ETC) propulsion concept has been proposed as a technique for increasing 

projectile muzzle velocity by enhancing conventional chemical gun performance. The improvement in 

gun performance was based on two concepts: (a) the electrical energy would supplement the conventional 

propellant chemical energy, and, (b) since the input of the electrical energy is readily programmed, it could 

be selectively introduced into the gun chamber to maintain an ideal (flat) pressure profile for a longer 

time, increasing the muzzle velocity. To test these ideas, ideal interior ballistic calculations were carried 

out on numerous gun systems to estimate the potential performance gains from employing the 

electrothermal concept (White, Oberle, and Juhasz 1992). The calculations showed that, using realistic 

sized power supplies together with standard conventional solid propellant charges, only marginal 

performance improvement was realized, even under ideal conditions. However, it was discovered that 

more significant improvement could be achieved by using higher loading density and/or energy charges. 

In practice, though, the high-loading density charges are difficult to ignite in a reproducible manner with 

conventional chemical igniters. Moreover, practical propellant grain geometry design limits performance 

improvement at high-loading densities since the propellant will not bum up prior to muzzle exit (Robbins 

1993; White et al. 1994). However, since the electrical energy pulse can be carefully tailored and ignition 

and flame spreading can be improved because of plasma characteristics such as velocity and temperature, 

it is believed that electrothermal energy could be used to overcome these difficulties. To capitalize on 

the potential performance gain offered by ETC concepts with high-loading density solid propellant, an 

experimental program was initiated to test these concepts. 

To properly ignite the propelling charge in a gun chamber, electrical energy, in the form of a plasma, 

must be introduced into the chamber in an optimized way with respect to time and position. As 

preliminary tests to gun firings, open-air firings were carried out on various designs of plasma distribution 

devices such as centercores. High-speed photography and light-detecting diodes were used to determine 

flow and radiative characteristics of the plasma output. Based on these results, tests were then performed 

in a 30-mm diagnostic simulator. This simulator allowed for high-speed photographic studies of the 

interaction of the plasma output with a high-loading density propelling charge. Finally, instrumented gun 

firings were performed based on the simulator results. The results from these gun tests are discussed in 

greater detail in a separate report (Stobie et al. 1993). 



A schematic of a rear-injected ETC gun system is shown in Figure 1. It has been found over years 

of ballistic research, that for high-loading density charges, this configuration will lead to localized ignition 

of the charge with subsequent chamber pressure waves. To avoid this in conventional chemical igniter 

systems, centercore tubes have been used to distribute the ignition energy throughout the propellant bed. 

The centercore runs coaxial with the chamber and distributes the energy radially throughout the bed. This 

general energy distribution concept will be used to introduce the plasma energy into the propellant bed. 

Energetic 
Working Fluid 

Plasma        (PropeHant)     Combustion Chamber 
Cartridge K^_XSSX       /      projectäle 

Pulse Forming 
Network (PFfi 

Figure 1.  Schematic of rear plasma injected ETC gun. 

There are, however, some significant differences between the output from chemical igniters and plasma 

generators. The products for the former have a temperature on the order of 3,000 K, while the latter are 

approximately 10,000 K (Beyer and Bunte 1992; Mach et al. 1994). If both are optically dense, the 

radiative component of the energy is proportional to T4 (Stobie et al. 1993). Thus, the radiative energy 

from a plasma may be up to 100 times greater than for a chemical igniter. This radiative component may 

be important in ignition and should be considered when designing a centercore or any other energy 

distribution system. 

Most centercore tubes used in conventional large-caliber cannons are made of metallic components. 

However, plastic was chosen as the material for the centercore tube in ETC firings for a number of 

reasons. First, plastic has a lower thermal conductivity than metal and thus a lower heat loss. Hence, less 

energy from the plasma would be lost in heating plastic components. Second, if the hot plasma gases 

cause erosion, it would be better to have hydrocarbon rather than metal products from the centercore tube 

entering the gun combustion chamber to avoid fouling. Third, the plasma has a large component of 

radiation energy. If this radiation is important in the subsequent ignition of the propellant, then the plastic 



would allow transmission of radiation into the propellant bed.  Measurements were made on radiation 

transmission characteristics of plexiglass, acetate and mylar materials (McNesby 1993). 

All of these materials have similar spectral characteristics and the transmission property differences 

depend principally on material thickness. At thicknesses up to 3.2 mm (1/8 in), over 80% radiation is 

transmitted at wavelengths from 400 nm up to 1,600 nm. There is a strong absorption from 1,600 nm out 

to 1,700 nm. Beyond that, the 3.2-mm (1/8-in) material has approximately 40% transmission from 1,700 

to 2,100 nm. From 2,100 to 20,000 nm (2.1 to 20 urn), there is very little transmission, except for a small 

band at 2.7 urn. However, with the acetate/mylar materials (thickness, 76 um [0.003 in]) there was 

considerable transmission from the visible out to 7 pm, followed by absorption from 7 to 10 um and some 

transmission from 10 to 20 um. Thus, the transmission characteristics of the longer wave radiation are 

strongly dependent on the thickness of the plastic material. If radiation is an important mechanism in the 

propellant ignition process, then the centercore material thickness may have an effect on the ballistic 

process. 

The ultraviolet (uv) transmission characteristics of the materials were not measured. There is, 

however, a significant amount of uv radiation at 10,000 K from a black body radiator. This could produce 

photochemical effects in the propellant combustion process. Furthermore, the transmission characteristics 

of the material at these plasma high-energy densities may also change due to either bleaching effects or 

chemical changes induced in the plastic by the uv. 

The experimental program described in the following sections is directed at understanding and 

measuring the sequence of events associated with the functioning of the plasma generator by itself, and, 

additionally, the interaction of the plasma output with a propellant bed using radiation detectors and high- 

speed photographic techniques. The following sections will include a description of the experimental 

setup, open-air firings of the plasma generator, firings of the plasma generator with a variety of centercore 

tubes and finally, firings of the plasma/centercore in a 30-mm gun simulator. 

2.  EXPERIMENTAL SETUP 

The general view of the plasma generator with and without centercore is shown in Figure 2. Because 

of the large dynamic range of the plasma luminosity, up to four high-speed cameras were used. Two 

mechanical cameras with color film and one or two electronic cameras were operated at different framing 
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Figure 2.  (a) Schematic of plasma generator, (b) open-air firing, (c) with centercore. 

rate speeds, viewing areas, and apertures. To orient the reader, Figure 2 is the general view angle of all 

photographs that will be shown in this report. The photographic results complemented each other as they 

recorded different aspects of the plasma output 

A witness plate was placed beyond the end of the centercore tube, perpendicular to the axis of the 

centercore. Combustible material could be mounted on this plate to see the effects of radiation and 

convective flow output from the centercore tube. In some instances, combustible material was mounted 

axially on the centercore tube itself to monitor combustion events. 

Camera No. 1 was a general purpose, high-speed framing camera. Its field of view included the 

centercore tube and some distance down from the tube, including the witness plate. This camera was run 

at a nominal speed of 5,000 pictures/s (interframe time, 200 ps; shutter speed, 80 us). 

Camera No. 2 (for most tests, a one-half frame camera) was run at a nominal speed of 

14,000 pictures/s (interframe time, 70 ps; shutter speed, 28 ps). A lens was chosen to include only the 

first 15-20 cm beyond the output of the plasma, which was mainly the centercore tube (see dotted outline 



in Figure 2c). The plasma luminosity was extremely bright, and an optical density filter of 2 (providing 

an attenuation of 100) with a lens aperture of f/22 was required to keep from overexposing the pictures, 

even at 14,000 pictures/s. 

Camera No. 3, a Cordin electronic camera that records three pictures at any predetermined time 

interval, was setup with a shutter speed of 500 ns (OD = 3, f/16) in an effort to freeze the plasma motion. 

The interframe time of the three pictures was adjusted to record data that could be used to measure 

propagation velocity. 

Camera No. 4, an EEV electronic camera, was setup in a manner similar to the Cordin camera. 

However, due to equipment malfunction, only one picture was taken for each test. This camera was not 

used for some of the later tests. 

Silicon photodiodes were used to record the total radiation output from the test. A model S1336BQ 

was used that has a sensitivity range from 190 to 1,100 nm. Thus, uv, visible, and ir radiation were 

recorded. For later tests, a GaAsP photodiode (Gl 116) was also used. It has a sensitivity range from 300 

to 680 nm, allowing the differentiation of the uv, visible, and ir radiative components of the plasma tube. 

The electrical power supplied to the plasma generator was supplied by a five-stage, pulse-forming 

network (PFN) that could store up to 130 U (Figure 3). The five stages could be charged to different 

voltages and fired at different times to obtain the desired power pulse shape. The electrical data were 

recorded using a Rogowski coil for load current and a voltage divider and current transformer for load 

voltage. These data were used to generate load current, voltage, power, energy, and impedance as a 

function of time. The power input to the load will be presented for some tests in this report. 

In general, three types of pulses were used: a low-energy short pulse (6 kJ, 20 MW), a high-energy 

short pulse (50 kJ, 200 MW), and a high-energy long pulse (40 kJ, 90 MW). Examples of these will be 

given in succeeding sections. The first discussion will be on open-air firings (i.e., firings of the plasma 

without any centercore tubes [Figure 2b]). This will be followed by a discussion of firings using a large 

acrylic centercore tube (Figure 2c). Next will be a discussion using 12.5-mm centercore tubes consisting 

of acetate material and also of polyethylene material. Finally, a description will be given of firings carried 

out in a 30-mm simulator using a mixture of live and inert propellant. 
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Figure 3. Five-stage pulse-forming network and sample electrical pulse. 

3.  OPEN-AIR FIRINGS 

The purpose of these tests was to characterize the output of the plasma generator without any 

centercore or propellant chamber. The view of the plasma tube as seen by the cameras is shown in 

Figure 2b. As was mentioned, each camera had a different field of view of the plasma output. The 

sequence of pictures (70 ps between pictures) for the output is shown in Figures 4a and 4b. Figure 4c 

shows the corresponding plasma power curve and diode response. The flow pattern is typical of an 

underexpanded free jet There is a sudden cooling of the jet as it emerges from the nozzle just beyond 

the conical region. As the gases pass through the compression waves, they are reheated. This is seen in 

the bright illumination down stream in pictures at 140, 210, and 280 us (time between pictures 70 us). 

The shock wave continues to expand and weaken as time goes on and as the electrical power drops off, 

as seen in Figure 4c. As the last stage fires at approximately 700 ps, an increase is observed in the plasma 

brightness (10th frame) and the shock wave moves further down stream. 

Looking at the power curve and the diode response, it is seen that there is approximately a 70-80 us 

delay in the response of the diode. It should be remembered that the power is measured at the input to 

the plasma generator, but the diode and cameras are observing the output of the plasma generator. This 

70-80 ps is believed to be the conversion time from electrical energy to plasma radiative output. Note 

also that the diode has the same general shape as the power curve, including the increase at 700 ps when 
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Figure 4.  Open-air ID 091793, (a) frames 1-5. (b) frames 6-10, (c) plasma power and diode response 
vs. time. 
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the last stage of the PFN was turned on.   This delay was observed for all four open-air tests shown in 

Table 1. 

Table 1.  Open-Air Tests 

ID 

Centercore Energy Power 
Comment OD 

(mm) 
thickness 

(mm) 
length 
(mm) 

load 
(kJ) 

peak 
(MW) 

012793,2 

042093,1 

042093,2 

091793,1 

open air 

open air 

open air 

open air 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

~7 

38 

42 

-24 

147 

87 

no control tube, low E 

open air for efficiency base line 

open air for eff. base line, high E 

long, hi E pulse 

4.  LARGE ACRYLIC CENTERCORE TUBES 

Early in the program it was not evident as to what type of centercore tube (Figure 2c) would be 

adequate for use in a gun system. Consequently, relatively large, clear acrylic tubes (OD = 32 mm 

[1.5 in], wall = 3 mm [1/8 in]) were used (described in Table 2). This was a compromise between 

strength and radiation transmission characteristics. These tubes remained intact out to 1-2 ms, long after 

the plasma energy front had propagated through the tube. However, the tube failed later in time and the 

rupture of the tube always took place at the rear most section, indicating an axial pressure gradient within 

the tube. 

Table 2.  Large Acrylic Centercore Tubes 

ID 

Centercore Energy Power 

Comment OD 
(mm) 

thickness 
(mm) 

length 
(mm) 

load 
(kJ) 

peak 
(MW) 

122192,1 32 3.2 150 — — 1 1/4-in acrylic tube, low E 

122492,1 32 3.2 150 6.5 20.0 1 1/4-in acrylic tube, low E 

011193,1 32 3.2 150 5.8 20.1 1 1/4-in acrylic tube, low E 

012093,1 12.5 3.2 140 5.4 20.5 1/2-in acrylic tube, low E 

012893,1 19 1.6 146 6.2 21.2 3/4-in acrylic tube, low E 

012993,1 19 1.6 711 6.5 21.7 3/4x28-in acrylic tube, low E 



Propagation velocity measurements were made for a number of different powers for the leading edge 

of the plasma as it moved down the centercore. Measured from the film records, this velocity appeared 

to be approximately 1,800 m/s. 

To test the effect of the convective and radiative component of the plasma as an ignition device, 

combustible materials such as tissue paper and JA2 propellant sheets were placed both on the surface of 

the acrylic tube and on the witness plate located perpendicular to the axis of the tube (see Figure 5a, 

frames 2 and 3). The material on the tube surface would be subject to radiative energy only. Those 

located on-axis, approximately 10 cm from the end of the acrylic tube, would be subjected to both the 

radiative output and convective flow from the plasma generator. To separate the two effects, one of the 

two adjacent pieces of the combustible material was covered with a thin (0.1 mm, 0.004 in) mylar layer 

protecting it from the (axial) convective flow, but allowing the radiation to reach the sample. The other 

piece was left uncovered, subjecting it to both the radiative and convective flow. These samples were 

unconfined. In no case, listed in Table 2, was there any evidence of reaction taking place with any of the 

samples, be they tissue paper or propellant. As is seen in Table 2, the energy and power used in these 

experiments was relatively low compared with that used in most gun experiments that usually employ 

anywhere from hundreds of kilojoules to megajoules. 

Although these acrylic tubes seemed to be relatively durable and allowed for a measurement of 

propagation velocity, they were too large to be considered for application in a 30-mm system. They 

would consume too much volume in the gun chamber, limiting the ability to reach high-loading densities. 

5.   CENTERCORE TUBES, 12.5-mm (1/2 in) OUTSIDE DIAMETER 

5.1 Acetate Centercore, 0.1-mm (0.004 in) Wall Thickness. As was discussed in an earlier section, 

the radiation transmission characteristics of the plastic centercore material depends on the thickness, 

especially in the infrared spectral region. A thin acetate film (0.1 mm [0.004 in]) was chosen for its high 

radiation transmission properties and its low mass. Such a centercore material would minimize heat loss 

and residue left behind in the chamber after a gun firing. 

Thus, a 12.5-mm (1/2 in) diameter cylinder was made from the thin acetate film. The seam was 

closed by heat-sealing with a soldering iron and then reinforced with epoxy. In some cases, the cylinder 

was reinforced with a helix of 134 N (30-lb) test nylon single strand cable. 
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Table 3 gives a summary of conditions for firing with this configuration. An example of the 

photographic results from a test firing is seen in Figure 5, along with power and diode response data. 

Examination of the high-speed film records indicated that none of the tubes remained intact for more than 

170 ps (Figure 5b). Rupturing took place at the base where the centercore joins up with the plasma 

generator (Figure 2c). Additionally, post-firing examination of the centercore also revealed that rupturing 

took place at the rear. The remainder of the cylinder was largely intact. 

Table 3. Acetate Centercore 

ID 

Centercore Energy Power 

Comment OD 
(mm) 

thickness 
(mm) 

length 
(mm) 

load 
(kJ) 

peak 
(MW) 

012793,1 

012893,2 

050393,2 

051193,1 

12.5 

12.5 

12.5 

12.5 

0.1 

0.1 

0.1 

0.1 

150 

152 

203 

203 

7.4 

6.5 

51.3 

52 

24.3 

20.9 

214 

217 

acetate, 1/2-in unreinforced, low E 

acetate, 1/2-in unreinforced, low E 

acetate reinforced, high E, <70 ps 

acetate reinforced, high E, epoxy to 
anode 

Later tests with reinforcing materials did not improve performance. An attempt was made to use this 

configuration in a 30-mm test fixture (White et al. 1994) using a granular propellant, M5. If the ignition 

delay was shorter than 170 ps, it was hoped that uniform ignition might be achieved prior to the rupturing 

of the acetate centercore. The pressure time curves are given in Figure 6. Strong pressure waves were 

observed and are discussed in White et al. (1994). It can be seen that ignition delays are 250 ps or 

greater, long after the centercore has ruptured. Consequently, this design would lead to localized rear 

ignition and not give satisfactory ballistic performance, at least in this 30-mm test fixture. 

5.2 Polyethylene, 1.6-mm (1/16 in) Wall Thickness. It became obvious that the 0.1-mm wall 

thickness acetate film would not be strong enough to prevent plasma energy from entering the rear of the 

charge at an early time. Using this in a high-loading density charge would probably result in localized 

(rear) ignition with subsequent pressure waves. As with the acrylic tube tests, it is clear that there is a 

strong axial pressure gradient in the flow that must be contained.  A tubular polyethylene material was 

11 



TIME (ms) 

Figure 6.  Pressure-time histories (Pl dark, and P2 light) for 30-mm firing (M5 granular propellant) using 
acetate centercore, ID 022693. 

chosen as a compromise material. It has good toughness (wall thickness, 1.6 mm, 1/16 in) although the 

"milky" coloring causes radiation scattering, reducing the optical transparency of the material. To increase 

this transparency, four axial slits (at 0°, 90°, 180°, 270°) were cut along the length of the centercore at 

specific axial locations to enhance energy transmission at the most desirable areas when the centercore 

would be used in a propellant bed.  The test conditions are listed in Table 4. 

A number of configurations were used in an effort to eliminate the rupturing of the tube at the rear. 

The design evolved into the configuration shown in Figure 7. The rear section of the polyethylene tube 

is encased in a steel sleeve that affords added strength to that section of the tube. The four axial slits are 

placed forward of the steel sleeve and are located in approximately the center of the gun chamber. 

Photographic test results, along with power input and diode response, are shown in Figure 8 (the time 

between pictures is 70 ps). The steel sleeve at the left remains intact. The plasma output is clearly 

observed coming from the slits. As the power diminishes, so too does the radiation output, followed by 

an increase of both power and radiation at the 10th frame, 700 ps. As is seen from the power curve, at 

this time, the last stage of the PFN (Figure 3) is fired, accompanied by a large increase in light output. 

In a gun environment, the initial pulse is used to ignite the propelling charge and the last stage at 700 ps 

would occur later in the ballistic cycle and would be used to boost the chamber pressure and mass 

generation rate of the high-loading density charge. 

12 



Table 4.  Polyethylene Centercore 

ID 

Centercore Energy Power 

Comment, 1 OD 
(mm) 

thickness 
(mm) 

length 
(mm) 

load 
(kJ) 

peak 
(MW) 

050393,1 32 3.1 229 52 220 large pe tube uniform 
rupture 

051193,2 12.5 1.6 178 49.6 186 1/2 pe, high E, 180 us, end 
held 

051293,1 12.5 1.6 178 48.7 211 repeat of above 

051293,2 12.5 1.6 178 47.9 180 repeat but rear rupture 

051393,1 12.5.A1 1.6 178 50.8 224 reduce radiation with 
Al/mylar 

072093,1 12.5 re pe 1.6+1.6 178 51.7 279 microswitch; tube moved @ 
2 ms; reinforce 
no help; diodes deviate @ 
435 ps 

082393,1 12.5 re pe 1.6+1.6 215+pe89 40.5 91 pe w 3.5 in pe reinforce; 
still ruptured 

082493,1 12.5 re gl 1.6+3.1 215+gl89 41 75 pe w 3.5 in f-glass rein; 
held ok 

082693,1 12.5 re pe 1.6+1.6 241+pe89 41.7 95 pe w 3.5 in pe rein; 1/4-in 
plasma; better 
lasted 70 us longer 

090293,1 12.5 re Fe 1.6+0.8 203+Fe89 43 97 pe w slits & 3.5 in steel 
reinf 
tube held, pe slits ok 

091693,1 12.5 re Fe 1.6+0.8 206+Fe89 40.7 91 pe/Fe cc with 3/8 plasma; 
FMCok 

This centercore was used in the 30-mm gun and the pressure time curve is shown in Figure 9. It is 

seen that the forward pressure gage, P2, increases prior to the rear gage, Pv The reverse was true when 

the acetate centercore was used (see Figure 6). This dissimilarity indicates that the new configuration has 

moved the ignition further forward in the bed, even possibly causing ignition towards the base of the 

13 
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Figure 7.  Slotted polyethylene centercore with steel reinforcement. 

projectile. Pressure waves are still observed and arc likely due to the sensitivity of the charge 

configuration. In particular, the very large length-to-diameter ratio of the chamber (7/1) and the high mass 

generation rate of the specific propellant used in this test can lead to such sensitivity. (This issue is 

discussed in Stobie et al. [1993]). The pressure is seen to rise at approximately 270 us, which would be 

at the fourth frame in Figure 8. 

6.   30-mm SIMULATOR 

The open-air testing of the various centercore configurations established the general time sequence of 

events for the plasma injection process. The next step in understanding the ETC process was to examine 

the interaction of the plasma output with the propelling charge under conditions that more closely simulate 

the gun environment. As a consequence, a 30-mm gun simulator with an optical access port was used to 

examine the interaction of the plasma output with the propellant configuration. A photo of the setup using 

an acrylic chamber (length, 152 mm, ID, 38 mm) is given in Figure 10a. The plasma generator is on the 

left. The forward retaining plate on the right also acts as a short gun tube for the projectile that is inserted 

into a 30-mm hole in the plate (thickness, 12 mm). A later design used a steel chamber with a 

25-mm-wide optically clear epoxy window (Figure 10b). The interior dimensions of the chamber are 

identical to those of the 30-mm gun fixture (ID = 32 mm, length = 216 mm). Two pressure gage ports 

are located at 38 mm from the rear and forward ends of the chamber, as in the 30-mm gun fixture (Stobie 

et al. 1993). 

14 
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Figure 8. Polyethylene/steel centercore, ID 091693, (a) 14.000 DPS, frames 1-5, Ob) frames 6-10, (c) 
plasma power and diode response vs. time. 
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TIME (ms) 

Figure 9.  Pressure-time histories fP1 dark, and P2 light) for 30-mm firing (M5 granular propellant) using 
polyethylene/steel centercore, ID 092292-1. 

(a) (b) 

Figure 10.   (a) 30-mm simulator, acrylic chamber; (b) steel chamber with epoxv window. 
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Some tests were carried out with a mix of granular inert and M5 propellant. Other tests were 

performed using the inert and live (JA2) disc propellant (Robbins et al. 1993). This configuration of 

propellant (OD = 30 mm, ID = 12.5 mm, web = 1.4 mm) was chosen since it can be "stacked" together 

to reach very high loading densities. For conventional chemical ignition charges, it may be difficult to 

achieve the potential performance of this charge design since the propellant may not be completely 

consumed prior to muzzle exit. However, with the introduction of electrical energy near or beyond peak 

pressure, it may be possible to maintain a constant pressure and increase the burn rate to extract more of 

the propellant energy than is possible with conventional ignition. Thus, investigation of the interaction 

of the plasma with this propellant geometry becomes very important. 

Charges were constructed with several centercore designs with a mixture of the JA2 discs and inert 

(cardboard) discs (Figure 11). In Figure 11, a steel-sleeved polyethylene centercore was used. The dark 

rings indicate location of the live JA2 propellant discs. A slot was cut radially into the charge and an 

acrylic window was inserted so that the functioning of the centercore and interaction with the propellant 

could be observed. The charge assembled in the chamber is shown in Figure 10b. A summary of the data 

is shown in Table 5. 

Two test results will be discussed. For test 081193, a slotted (nonreinforced) polyethylene centercore 

was used. The results are shown in Figure 12. As was seen in the open-air tests, the tube ruptures at the 

rear (800 us), causing ignition of the propellant at the rear of the chamber. This coincides with the 

increase in power when the last stage on the PFN is fired. Only the rear propellant discs ignited. The 

discs in the middle and at the front were recovered, unbumed. Post-firing examination of the polyethylene 

centercore also showed that the tube ruptured at the rear. 

For test 091493, the steel-sleeved polyethylene centercore was used (Figures 7 and 11). The results 

of the simulator test are shown in Figure 13. Ignition of the central grains took place at approximately 

600 us. The power curve is similar to that in Figure 12. It appears then that the steel-reinforced 

polyethylene centercore reduces the likelihood of rear ignition of the charge and is a good candidate as 

an igniter tube for the 30-mm fixture. 
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Table 5.   30-mm Simulator Tests 

ID 

Centercore Energy Power 

Comments OD 
(mm) 

Thickness 
(mm) 

Length 
(mm) 

Load 
(Id) 

Peak 
(MW) 

052193,1 12.5 pe 1.6 140 47 222 simulator 6x6x1 1/2, empty 

052693,1 12.5 ace 0.1 140 11.3 36 simulator 6x6x1 1/2, mostly 
cardboard, proj 

052793,1 12.5 pe 1.6 25 51 207 simulator 6x6x1 1/2, most card, 
4 JA2, proj 

081193,1 12.5 pe 
with 1 in pe 

1.6+1.6 216+25 pe 42.4 86 30-mm sim, disc iner/live, back 
burned 
p strange, long pulse 

081793,1 12.5 pe 
with 1 in pe 

1.6+1.6 216+25 pe 42.7 95 30-mm sim, gran iner/live, rear 
ig 
p strange, long pulse, small proj 
move 

090793,1 12.5 pe 
3.5 Fe, 1/32 

1.6+0.8 Fe 209+89 Fe 39 74 30-mm sim, gran/inert/liv center 
ig 
pe cc w steel reinf, no p, 

091493,1 12.5 pe 
3.5 Fe, 1/32 

1.6+0.8 Fe 206+89 Fe 39 70 30-mm sim, disc inert/live, 
center ig 
slits at center prop only 

1 

Figure 11.   Inert/JA2 disc charge with stecl/polvethylene centercore and viewing window. 
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Figure 12.  30-mm simulator, polyethylene centercore, ID 081193, (a) 5,000 pps, frames 1-3, (b) frames 
4—6, (c) plasma power and diode vs. time. 
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Figure 13.  30-mm simulator, polyethylene/steel centercore, ID 091493, (a) 14,000 pps. frames 1-5, 
(b) frames 6-10, (c) plasma power and diode vs. time. 
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7.  CONCLUSIONS 

The following general conclusions can be drawn from the tests described in this report that were 

conducted on different centercore configurations: 

• Open-air free plasma firings exhibit the typical underexpanded jet formation patterns. 

• The radiation component of the plasma is much greater than for a chemical igniter.   Its role in 

ignition has not been clarified. 

• Propagation velocity down the centercore is on the order of 1,800 m/s. 

• Large axial pressure and energy gradients exist in the centercores. This must be considered when 

designing practical systems. 

Future plans involve scaling up the centercore and simulator tests for larger caliber application. 

Ultimately, the ETC concept will be applied to tank or artillery-type guns for performance improvement. 

The methodology and techniques described here will be used to evaluate large-scale centercore concepts. 
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