
AEROSPACE REPORT NO.
ATR-94(4778)-5

SDVS 13 Users' Manual

30 September 1994

Prepared by

L. G. MARCUS
Trusted Computer Systems Department
Computer Science and Technology Subdivision
Computer Systems Division
Engineering and Technology Group

THE AEROSPACE
CORPORATION

El Segundo, California

Prepared for

DEPARTMENT OF DEFENSE
Ft. George G. Meade, MD 20744-6000

Engineering and Technology Group

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION IS UNLIMITED

JBiiC QXTALIrF m8PEÜTBD S

AEROSPACE REPORT NO.
ATR-94(4778)-5

SDVS 13 USER'S MANUAL

Prepared by

L. G. MARCUS
Trusted Computer Systems Department

Computer Science and Technology Subdivision
Computer Systems Division

Engineering and Technology Group

30 September 1994

Engineering and Technology Group
THE AEROSPACE CORPORATION

El Segundo, CA 90245-4691

Prepared for

DEPARTMENT OF DEFENSE
Ft. George G. Meade, MD 20744-6000

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION IS UNLIMITED

AEROSPACE REPORT NO.
ATR-94(4778)-5

SDVS 13 USERS' MANUAL

Prepared by

L. G. Marcus

Approved by

D. B. Baker, Director

Trusted Computer Systems Department

iii

Abstract

This is a guide for users of the State Delta Verification System (SDVS), Version 13. Its
style is somewhere between that of a tutorial and a reference manual.

All facets of the verification system a.re covered here: the underlying logic (state deltas),
the proof language, the user interface, the actual use of the system, the translation from
the register-transfer-level language ISPS to state deltas, the translation from Ada to state
deltas, the translation from VHDL to state deltas, the capabilities of the static solvers,
and example proofs. A set of exercises is provided in the last chapter and a comprehensive
SDVS bibliography is included.

Acknowledgments

The author gratefully acknowledges the other members of the SDVS Verification Project:
Mark Bonier, John Doner, Ivan Filippenko, Beth Levy, Telis Menas, Ranwa Haddad, and
David Schulenburg for their substantial contributions to this manual, and to Melodee Lydon
for valuable technical assistance.

VI

Contents

Abstract

Acknowledgments vi

1 INTRODUCTION 1

1.1 PRELUDE 1

1.2 OVERVIEW 2

1.3 INSTALLING SDVS 5

1.4 STATE DELTAS 8

1.4.1 Expressing a Computation as a State Delta 8

1.4.2 Expressing a Claim about a Computation as a State Delta 11

1.4.3 Assuming and Proving a State Delta 12

1.5 THE MODEL OF STORAGE 13

1.6 THE STRUCTURE OF SDVS 15

1.7 INPUTTING THEOREMS 16

1.8 GETTING AROUND IN SDVS 17

1.9 SOME PRACTICE ON THE SYSTEM 18

1.10 SYSTEM HELP 22

2 THE PROOF LANGUAGE 41

2.1 A DYNAMIC EXAMPLE 41

2.2 STARTING AND ENDING A PROOF 46

2.3 STRAIGHT-LINE SYMBOLIC EXECUTION 47

2.4 PROOF BY CASES 49

2.5 PROOF BY INDUCTION 54

2.6 PROOF BY CONTRADICTION 61

2.7 STATIC PROOF 65

2.7.1 Axioms 66

2.7.2 Rewriting 70

VJl

2.7.3 Current Axiom List 71

2.7.4 Lemmas 81

2.7.5 Notice 87

2.7.G Solvers 88

2.8 MANIPULATING THE PROOF 90

2.8.1 Defer 90

2.8.2 Pop 94

2.8.3 Stop and Continue 95

2.9 MISCELLANEOUS 96

2.9.1 Flags 96

2.9.2 Queries 98

2.9.3 Introduction of Constants 105

2.9.4 Declarations 106

2.9.5 Data and Array Allocation 108

2.9.0 Negate Ill

2.9.7 Linearize 117

2.9.8 Natural Number Induction 120

2.9.9 Mapping 121

2.9.10 Formulas 127

2.9.11 Macros 130

2.9.12 Composition of State Deltas 131

2.9.13 The SDVS Language Parser 134

2.9.14 Reading, Writing, and Editing 137

2.9.15 Batch Proofs 140

2.9.10 Disjunctions of State Deltas 140

2.9.17 System Commands 142

2.9.18 Errors 142

2.9.19 Breaks in SDVS 142

2.9.20 Bugs in SDVS 143

vni

3 INTERACTION WITH ISPS 145

3.1 TR: TRANSLATOR FROM ISPS TO STATE DELTAS 145

3.2 MARKING 147

3.3 EXTENSIONS OF ISPS 152

3.3.1 Extending ISPS by Assumptions and State Deltas 152

3.3.2 External and Auxiliary Variables 158

3.3.3 External Variables 159

3.3.4 Auxiliary Variables 161

3.4 THE NEW ISPS TRANSLATOR 164

4 INTERACTION WITH ADA 167

4.1 TR: TRANSLATOR FROM ADA TO STATE DELTAS 167

4.1.1 Ada Language Subsets 168

4.1.2 SDVS 13 Ada Language Features 168

4.2 COMMANDS DEALING WITH ADA 169

4.2.1 Theorems 170

4.2.2 Input and Output 171

4.2.3 Proof Strategy 171

4.3 EASY EXAMPLE OF AN ADA PROOF 173

4.4 NONTRIVIAL EXAMPLE OF AN ADA PROOF 179

4.5 OFFLINE CHARACTERIZATION 182

4.6 AN EXAMPLE PROOF WITH ADALEMMA 199

5 INTERACTION WITH VHDL 209

5.1 INTRODUCTION 209

0.2 STAGE 4 VHDL . 210 r

5.3 TRANSLATION OF STAGE 4 VHDL 215

5.4 COMMANDS DEALING WITH VHDL 217

5.5 AN EXAMPLE 219

6 QUANTIFICATION 237

IX

6.1 QUANTIFICATION PROOF COMMANDS 238

6.1.1 Quantification 238

6.1.2 Usablequantifiers 238

6.1.3 Enotice 239

6.1.4 Instantiate 240

6.1.5 Provebygeneralization 243

6.1.6 Provebyinstantiation 244

6.1.7 Makeboundedquantifier 248

6.1.8 Quantification Axioms 250

6.1.9 Quantification Flags 252

6.2 PROOF OF A SORT PROGRAM 253

7 USER-DEFINED DATA TYPES 263

7.1 INTRODUCTION 263

7.2 SDVS COMMANDS 265

8 INVARIANTS IN SDVS 267

8.1 NOTICEIN VARIANT 269

8.2 LINEARIZE 271

8.3 NOTICECONCURRENTSD 280

8.4 NEGATE 284

8.5 OMEGAINDUCT 287

9 THE SIMPLIFIER 295

9.1 PROPOSITIONS 296

9.2 EQUALITY 297

9.3 ARITHMETIC 299

9.3.1 Linear Integer Arithmetic 301

9.3.2 Integer Multiplication 302

9.3.3 Integer Division, Remainder, Modulus, and Absolute Value 304

9.3.4 Integer Exponentiation 305

9.4 BITSTRINGS 308

9.5 ARRAYS 312

9.6 COVERINGS 316

9.7 LISTS 323

9.8 QUEUES 323

9.9 ENUMERATION TYPES 326

9.10 VHDL TIME 328

9.11 VHDL WAVEFORMS 329

10 SDVS EXERCISES 331

References 335

Comprehensive SDVS Bibliography 341

Index 350

XI

DISCARD THIS PAGE ***** DISCARD THIS PAGE **** DISCARD THIS PAGE

This still has to be changed to reflect the mul3 changes.

[1] [2] [3] [4] [5] [G] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23]
[24] [25] [20] [27] [28] [29] [30] [31] [32] [33] [34] [35] [30] [37] [38] [39] [40] [41] [42] [43] [36]
[44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [32] [56] [57]

[58] [59] [60] [61] [62] [63] [64] [65] [66] [67]

Xll

1 INTRODUCTION

1.1 PRELUDE

This manual is intended for users of the State Delta. Verification System Version 13 (SDVS
13). It is a blend of a reference manual and a tutorial. This version of the manual supersedes
the previous manual [1], which described SDVS 12, although most of the text is common
to both. The SDVS 13 tutorial [2] contains additional examples and explanations.

Other easily accessible published background material on SDVS can be found in [3], [4], and
[6]. References for further information on SDVS are to be found in the SDVS bibliography
at the end of this manual.

SDVS 13 currently runs under Franz Allegro Common Lisp (FACL) 4.2 on either Sparc
2 or Sparc 10 processors. Aerospace has a "runtime generator" license agreement from
Franz, Inc., which allows Aerospace to deliver SDVS to end users without requiring them
to purchase a Common Lisp system (the runtime version removes some features from the
development version of Common Lisp).

SDVS 13 is for the most part upwardly compatible with all previous version of SDVS.
Since most of the group's effort during the year were directed toward proving the VHDL
TAXIchip example ([7], [8]), the main improvements of SDVS 13 over SDVS 12 are in the

VHDL capability (Chapter 5).

This introductory chapter will be sufficient to let the user get started on the system. Other
chapters detail the following aspects of the theory and operation of SDVS 13:

1. the internal logic (state deltas) (Chapter 1)

2. the proof language (Chapter 2)

3. the user interface (throughout)

4. actual system use (throughout)

5. the translation from the hardware description language ISPS to state deltas (Chap-

ter 3)

6. the tra.nsla.tion from a. subset of the programming language Ada to state deltas (Chap-

ter 4)

7. the translation from a. subset of the hardware description language VHDL to state

deltas (Chapter 5)

8. the handling of quantification (Chapter 0)

9. user-defined data types (Chapter 7)

10. the invariant extension to state deltas (Chapter 8)

11. the capabilities of the static solvers (Chapter 9)

12. example proofs (throughout)

13. exercises (Chapter 10)

A word about the index at the end of this manual: command names are listed under
"Command-name" as well as individually.

Before one begins the significant effort involved in learning to use a verification system such
as SDVS, he or she should certainly be aware that the utility of verification, or the role that
verification plays in providing confidence in computer systems, is an important issue. We
assume that the potential user is either already aware of the value of verification, or at least
believes in the possibility of such value. For a strong, if sometimes overstated, argument in
favor of verification, we recommend [12].

1.2 OVERVIEW

The State Delta Verification System, SDVS, is a. system for checking proofs about the
course of a computation, usually called "correctness" proofs. SDVS can be used to check
microcode implementation correctness proofs, program verification proofs (e.g. liveness and
safety for Ada programs), or hardware correctness proofs (e.g. liveness and safety for VHDL
hardware descriptions). As a test of the system's microcode correctness capabilities, SDVS
5 was used to analyze most of the instruction set of the BBN C/30 computer. A summary
of that work is presented in [13].

In SDVS 13, the theorems to be proved for the above cases of program and hardware
correctness must still be explicitly written by the user in the internal logic of state deltas.
However, beginning with SDVS (i, if the user is interested in proving implementation or
microcode correctness theorems, SDVS will construct the theorem automatically, given the
relevant information; i.e., the system can be instructed to prompt the user for

1. the descriptions of a host machine (often microprogrammed) and target machine writ-
ten in either a somewhat "extended subset" of the machine description language ISPS,
or the internal SDVS state delta language;

2. the microcode (if any);

3. the correspondence between the program variables (machine places) in the host and
target; and

4. the proof of correctness that the host implements the target with respect to the above
correspondence (if such a proof is already constructed).

SDVS then automatically constructs the state delta representing the theorem of correctness
of the implementation, and either checks the proof, if one was given in step 4 above, or
allows the user to construct one interactively.

The user communicates to SDVS through several languages. The proof language is used
to write the proof that the system will check. The state delta language is used to write
the theorems to be proved and to describe the relevant programs and specifications. The
user-interface language allows for interactive proof building, querying, and so on. Finally,
there is a module that translates from a subset of ISPS ([14], [15]), from a subset of Ada
([16] - [25]), and from a. subset of the hardware description language VHDL ([26] - [33])

into state deltas.

Recently, the underlying logic has been enhanced to allow for the specification of (state-
transition) invariants. For more background on the use of invariants in state deltas, consult

[34] - [38].

Technically, SDVS aids in the writing and checking of proofs of state deltas. For example,
state deltas can specify claims of the form "If P is true now, then Q will become true in the
future." If P is (the translation of) a program (perhaps with some initial conditions) and
Q is an output condition, then the above claim is an input-output assertion about P. SDVS
can also specify (a.nd prove) claims of the form "If P is true now, then Q is true now." In
this case, if P is a (state delta representing a) program or hardware description and Q is a
(state delta representing a) specification, then the above claim asserts the implementation
correctness of P with respect to Q.

Finally, SDVS can prove claims of the form "If P is true now, then Q will always be true
in the future," or until some other condition becomes true.

The view of the world captured by state deltas is that there are "places" (to be thought of
as abstract machine registers, usually called program variables in other contexts) that can
"hold" contents. A "state" of a computation or a machine is, to first approximation, an
association of contents with places. In general, a set of states can be specified by any set
of sentences that relate the contents of some places with the contents of other places. For
example, the sentence .:/: > 5 can be thought of as specifying the set of states in which the
current contents of x are greater than or equal to 5, with no restriction on any other places
that happen to "exist."

The "if-now, then-later" statement above is the basic, building block of state deltas. It can
be thought of as a specification of a state change, with P being the "precondition" (the
condition allowing the state change to occur) and Q the "postcondition" (the description
of the state after the change has occurred). A sequential computa.t,ion is thought of as a
sequence of state changes; as we will see, there are several ways in which such a sequence
of state changes can be specified by a. state delta or set of state deltas. The word "delta"
indicates our intention to describe "small" state changes, those state changes in which only
a small part of a large state is changing. In order to specify the resultant state after the
change, instead of listing all true facts, it would be much more efficient, simply to list those
places that have (or possibly have) changed during the transition. Typically this will be a
small list, called the "modification" list. The true statements at the end of the transition
are those explicitly given in Q, plus those statements true in the precondition state that
involve variables that do not appear in the modification list. In particular, if it is specified
that no variables are allowed to change as the state changes from P to Q (the modification

list is empty), and Q is a first-order sentence, then Q must be true in the state that satisfies
P, and we are simply looking at the static claim that P implies Q.

The proof language can be divided into two parts, the dynamic and the static. The dynamic
part controls the state transitions made by the system. There are constructs for proof by
symbolic, execution for straight-line code, proof by cases for branching code, and proof by
induction for loops. In addition, there are several more-specialized proof commands, such
as the command to sequentialize two simultaneously true state deltas. Of course, when
the execution has arrived at a new state, a static proof may be needed to verify that new
relations do in fact hold, i.e., they follow from the facts known explicitly about the new
state (in order to show that the postcondition is true and the goal is reached, or to show
that a precondition is true and a new state delta, may be applied; see below).

The static part of the proof language deals with proving tha.t certain assumptions imply

certain conclusions about a given state. For simple domains where efficient decision proce-
dures exist and are implemented, the system will be aide to derive all conclusions without

any user-input proof. Examples are equality over uninterpreted function symbols, a frag-
ment of naive set theory, and linear arithmetic. For more complicated domains, our current
philosophy and impleiiienta.tion allow the user to write proofs by having the system notice
incrementally more difficult conclusions, where the newly verified conclusions are stored
and used as facts on which to base the next conclusion. The derivation from a given set of
facts to the next conclusion may be automatic in some cases, or it may require the user to
designate that an axiom or a previously proved lemma is to be applied.

SDVS may be run in interactive mode, batch mode, or, as in most real applications, as
a combination of the two. In interactive mode the user writes the proof in SDVS with
help from system prompts, with the system executing each proof command as it is written.
Expressions are written in standard infix notation (e.g. x+y). In batch mode the proof
is written either by the SDVS dump-proof and write command, or in an editor, and then
is executed in SDVS with no further user interaction. Most commonly, a partial proof
is written interactively, stored, and then rerun in batch mode at a later time when the
proof-writing process is being continued.

(Technical note: currently some proofs can be rerun only in a new SDVS session. This is the
case when names of formulas are created during the proof. The system does not currently
allow names to be reused without the user explicitly and interactively validating such an
action. Since the name appearing in the proof will already have been used, the proof will
abort at that point. Such a proof is the example on page 117 using the command linearize.)

The most important property of a proof-checker is that it. should not allow invalid proofs
to be accepted. Nevertheless, there is a trade-off. Our philosophy has been to protect the
benign user from inadvertently proving falsehoods; we do not guarantee that a scheming
and knowledgeable user will be unable to do so intentionally. Thus, no absolute guarantee
should be attached to a proof, just because it comes out, of an SDVS run with a "QED"
certificate.

An example of this trade-off comes in the use of lemmas stored in a file. It is of course
possible for users to change the statement of a lemma or its proof in an editor inadvertently.

Thus we have provided a means for users to protect themselves against this possibility, if
they so desire, by having the proof of a lemma rerun as the lemma is read into SDVS before
it is actually used. But for efficiency's sake, we do not require that this be done.

Another example of the lack of total soundness is that it is possible, through self-referencing
state deltas, to prove a contradiction. We have not gone to the trouble of eliminating this
loophole (although we know how: see [39]), because under "normal" circumstances a user
would not employ explicit self-reference. See Section 2.9.20 for an example.

1.3 INSTALLING SDVS

SDVS is available on magnetic tape in three different formats: source code; object code for
Franz Allegro Common Lisp (FACL); and as a standalone executable utilizing the Franz
Allegro Runtime package. Each format requires its own procedure for creating or loading
SDVS, as outlined below. However, the procedure for reading the system files from the tape
is the same for all formats.

SOFTWARE REQUIREMENTS

SDVS currently runs under Franz Allegro Common Lisp release 4.2. SDVS is also available
as a standalone executable utilizing the Franz Allegro Runtime package; users of this version
of SDVS are not required to supply their own Common Lisp environment. SDVS assumes
that the underlying operating system is Unix, Sun OS 4.1, or equivalent.

HARDWARE REQUIREMENTS

The FACL binary and FACL runtime versions of SDVS require a Sparc processor. The
source code should run under FACL on other architectures without modification, although
this has not been tested. SDVS should port easily to other Common Lisp implementations
on other architectures, although, again, this has not been done.

Table 1: Disk Space Requirements for SDVS 13, in MB

To Load From Tape Installed
Source (.lisp) 11.3 44.2
Franz Object (.fasl) 17.G 35.4
Franz Runtime 21.9 21.9

DISK SPACE REQUIREMENTS

Table 1 gives the disk space requirements for SDVS 13. "To Load From Tape" is the amount
of disk space required for the compressed .tar file plus the untai'd .tar file. "Installed"
represents the disk requirements of the system after SDVS has been installed, and assumes
that the tar file from the tape has been recompressed. The size of your installed executable
image, if you are building SDVS from either the source or binary version, will depend on
the size of your (vanilla) Common Lisp image; the numbers given in Table 1 are therefore
approximate. All numbers are in megabytes (MB).

READING THE SYSTEM FILES

First, you should create a top-level directory to contain all of the files and subdirectories
associated with SDVS. On our system, this directory is called versys (for VERification
SYStem) and resides as a. subdirectory under /u giving /u/versys. Although you can give
your directory any name, we suggest you use the same name for compatibility; yours can
be located anywhere, however. For example, you might put it as a subdirectory of /usr/lib,

giving /usr/lib/versys. For the examples below, we assume you have /usr/lib/versys as your
top-level directory.

Next, you will want to load the SDVS system tar file from the tape. To do this, create a
imp directory in your top-level versys directory, connect (cd) to it, and extract (tar) the
system tar file as follows ([unix] is the system prompt):

[unix] tar xfmv xxx

where xxx is the device name for your tape drive, e.g., /dcv/rstO. This will create a file
named sdvs»m-xxxx. tar• Z where nn is the current release number (e.g. 13) and xxxx is
lisp (for source files),f asl (for FACL object), or runtime (for FACL runtime). The file is
compressed, so it must be uncompressed:

[unix] uncompress sdvsnn-xxxx. tar

replacing nn and xxxx appropriately.

Now, the system directories must, be extracted from the tar file:

[unix] tar xfmv sdvsnn-xxxx. tar

This process creates a file structure containing the individual files from which the SDVS
system can be used or built. Once this process is complete, you may delete sdvsnn-xxxx.tar

if you feel you have no further need for it. An alternative is to recompress the file:

[unix] compress sdvsnn-xxxx.tiir

Both will save disk space.

Before you can build and use an SDVS executable image or use the FACL Runtime exe-
cutable, you must define a UNIX environment variable as follows. This can be done directly
in the shell in which you plan to build or use SDVS or by adding the command to your

. cshrc file.

[unix] setenv SDVSJDIR "/usr/lib/vcrsys/"

Of course, you will need to supply the correct path you have chosen for your top-level
directory. Please note the slash (/) character at the end; it is required.

BUILDING AN SDVS EXECUTABLE IMAGE

Once you have all of the system files available, you can build an executable SDVS image.
To do this, you must start up a. (vanilla) Common Lisp session and load the init-sdvs.lisp
file found in your top-level directory. (If you don't know how to start up a Common Lisp
session, see your system administrator.)

To load the init-sdvs.lisp file, type

> (load "/usr/lib/versys/init-sdvs")

After the init-sdvs.lisp file has been loaded, you are ready to tell Lisp to build your SDVS
executable. Two functions will do this: inukc-sdvs builds from the object files; make-new-
sdvs builds from the source files and compiles the entire system. Each function takes one
argument, the name you wish to give the executable; the executable will automatically
reside in your top-level directory. You may give the executable any name you want; in the
following examples, we use the name sdvsl3 for our exec.uta.ble. Each of these functions will
produce a. trace of what is happening. (NOTE: For these operations, you must have write
privileges to the appropriate directories.)

For creating an SDVS executable from source:

> (makc-ncw-sdvs "sdvsl3")

For creating an SDVS executable from binary:

> (muke-sdvs "sdvslS")

You may safely ignore any warning messages printed by the system. When you return to
the Lisp prompt, you can exit Lisp by

> (quit)

USING THE SDVS RUNTIME EXECUTABLE

If you have extracted the SDVS system files from a tape containing the "runtime" format,
the file /usr/lib/versys/sdvs!3 (assuming the appropriate top-level directory) contains

the executable image. This can be used to run SDVS directly, as noted below.

RUNNING SDVS

You have gone through this procedure and have created your executable. How do you run
SDVS? At the Unix shell, just type, for example

[unix] /usv/lib/versys/sdvsl3

or just sdvs13 if you are connected (cd) to the top-level directory (/usr/lib/versys in our
example) or if your $PATH environment variable contains the path to the top-level directory.

RUNNING THE TEST SUITE

Included in the SDVS release is a set of tests that exercise the system. To run these tests,
you must first start up SDVS. (After building your SDVS executable, you should restart

SDVS so that the system is initialized properly.) When you get to the SDVS prompt, invoke
the tests as follows:

<sdvs . 1> run-test.-proofs
test proofs[alI]: < CR > .

A very long trace will appear. If the tests run successfully (this may take over two hours on
a Sun 4), you will return to the SDVS prompt. If something goes wrong, Lisp will "break,"
allowing you to examine the system; Lisp will print out some diagnostic information and
put you at a prompt. If this should happen, you may exit Lisp by typing (quit).

You may restart SDVS by first returning to the top level of Lisp and invoking the function
sdvs as follows:

> (sdvs)

From the SDVS prompt, you can return to Lisp by typing the SDVS command bye.

1.4 STATE DELTAS

In this section we gradually lead up to the full definition of (standard) state deltas, which
appears on page 11. State deltas with invariants are defined in Chapter 8. We adopt an
outlook that sees a duality between programs and certain kinds of theories (collections of
facts), in the sense that a program (a set of computations) can be seen as the set of all
(temporal) facts that hold in all its computations, and a computational theory can be seen
as the set of all possible computations the theory allows. For a fuller discussion, see [40] or
[41].

1.4.1 Expressing a Computation as a State Delta

A state delta is a description of a transition from one state to another. For example,

[sd pre: (.a = 1) post: (#b = 2)]

where sd indicates that this is a state delta formula, pre: is the precondition field, post: is
the postcondition field, a and b are places, the dot (.) is the function symbol for "contents
of" before the transition, and the pound (#) is the function symbol for "contents of" after
the transition. We have temporarily left out two more fields, the comodificationUst (comod:)

and modification list (mod:) fields. This incomplete state delta represents the transition
from the precondition, a state in which the contents of a are 1, to the postcondition, a
state in which the contents of b are 2; that is, if at any time .a=l, then there will be a
later time when #b=2. (Note that there is no specification as to ivhen this later time is.)
The modification field (mod:) will list those places that are allowed to change between the
precondition and postcondition times. One possibility is that a given place does not change,
or that such a change is irrelevant. However, it could be that the system described has some
interrelationships that imply that when b gets the value 2 as indicated above, b or some
other places may in fact change, or have to change, but the user is either unaware of or
uninterested in what those changes are. A mechanism is needed that allows the expression
of the fact that during a transition, certain places may have changed their contents, i.e.,
that the contents of those places cannot be assumed to remain the same. More generally,
any sentence dependent on those places that, change cannot be assumed to be preserved

during such a transition.

The problem is solved by including in a state delta an explicit list of the places that are not
guaranteed to preserve their contents, or that may have their contents modified. Thus the
above state delta, could become

[sd pre: (.a = 1) mod: (a.b.c) post: (#b = 2)]

This means that, from a state in which the contents of a are 1, we will get to a state in
which the contents of b are 2, and in this transition all places, except perhaps «, b, and c,
preserve their contents. Thus, a state delta, with an empty mod list encodes a static claim,
i.e., a claim about, a transition in which nothing changes, and thus, if first-order, a claim

about, the current state.

If one wanted to encode the assignment statement a := a + 1 as a state delta, it would be,

to first approximation,

[sd pre: (true)
mod: (a)

post: C#a = .a + 1)]

If a were not in the mod list above, the resulting state delta would be inconsistent, that
is, it. could never be realized by a real computation, since a could not. be replaced by a + 1
without a being allowed to change value. We currently do not allow pounds (#) to appear
in the precondition.1 A dotted place in the postcondition refers to the contents of that

1 Although this change is not planned, we could interpret pounds in the precondition to refer to precon-
dition time, as dots do now, and then interpret dots to refer to the time at which the state delta became
true.

place at. the time the precondition is checked.

The last ingredient of basic (i.e., without invariant list) state deltas, the comodification list,
is used to regulate how lony a usable state delta remains usable. It helps to consider the
following intuition behind state deltas: state deltas describe various computations, and the
validity or accessibility of those descriptions changes (possibly) as a function of time. For
example, one may think of state deltas as processes that may be "activated" at one time
and "deactivated" at other times. So in order to specify that the assignment statement
a := a + 1 will be applied only once (not repeatedly as in a loop), and then will be no longer
accessible, the state delta will have to be

[sd pre: (true)
comod: (a)

mod: (a)
post: (#a = .a + 1)]

or possibly

[sd pre: (true)
comod: (pc)

mod: (a,pc)
post: (#a = .a + 1)]

where pc (program counter) is some new place. As long as the places in the comodification
list do not change values, a usable state delta will remain usable and thus applicable at
any time its precondition is true. So for the above state deltas, once either is applied it
may not be reapplied, since the mod list and the comod list intersect. Note that this result
holds simply because of the intersection, not because any places actually change value, a
fact that, in some cases, we may never know. SDVS, for the sake of soundness, must take
the conservative position that established facts will go away, unless we can prove that they
remain. This is to be contrasted with the "default reasoning" position that established facts
will stick around, unless we have good reason to believe that they should go away.

To continue with the intuition behind the comod list, consider a supply of state deltas,
each of which is introduced at. a, certain time, and each of which must have its precondition
become true in order to "execute" (or be "applied") and bring about, its postcondition.
It could be the case that for a certain state delta to be applicable, most of the state at
the time of its introduction must be unchanged except for one condition that is stated in
the precondition. In order not to have to list all state characteristics that must remain
in force, one can list those places that, must remain unchanged since the time of the state
delta's introduction in order for that state delta, to be applicable. This is the comodification
list. If one of those places changes before the precondition becomes true, the state delta
cannot, become applicable and is removed from the supply. (Of course, it can be explicitly
introduced again in the future.) So, the following state delta.

[sd pre: (.a gt 0)
mod: (a)

post: (#a = .a + 1)]

10

is true at a certain time ("now"), if at any time in the future (from then) when the contents
of a are greater than Ü, there is a (not necessarily strictly) later time at which the contents
of a will be incremented by 1, and nothing else would have changed. However, at this later
time the contents of a are still greater than 0, and so the state delta is "inapplicable." In
other words, there is a still later time at which the contents of a are further incremented,
and the process can be continued ad infinitum.

The state delta

[sd pre: (.a gt 0)
comod: (a)

mod: (a)
post: (#a = .a + 1)]

is true "now" if at any later time at which the contents of a are greater than 0, and
in the interval between now and that time the contents of a have not changed (a is in the
comodification list), then there is a (not necessarily strictly) later time at which the contents
of « are incremented by 1 and nothing has changed except the contents of a (only a is in the
modification list). The truth of this state delta now does not imply that it will still be true
at the time when the contents of a are actually incremented, because the comodification
list, will have changed. Note that a true state delta, with an empty comodification list will
be true at any time in the future.

The general definition follows.

Definition: Let p and q be lists of first-order sentences or previously defined state deltas (an
implicit conjunction), where the first-order sentences in p and in the preconditions of any
state deltas embedded within p and q are #-free, and let. c and m be lists of places. The
state delta.

[sd pre: (p) comod: (c) mod: (m) post: (q)]

is true at time 1.0 in a. given computation if at any later t\ > tu at which p is true and the
contents of the places in c have not changed between t0 and t\, then there is some still later
time t2 > t\ in the computation at which q is true and only the contents of the places in m
may have changed between t\ and t}.

The extra, invariant (inv:) field is discussed in Chapter 8.

1.4.2 Expressing a Claim about a Computation as a State Delta

Much added expressive power comes from allowing the precondition and postcondition
themselves to contain state deltas in addition to first-order sentences. This is well-defined,
since all one must do is evaluate the truth of the precondition and postcondition at certain
times, and this evaluation can be done for state deltas as well as for "static" sentences.

Thus the following is a true state delta:

11

[sd pre: (.a = 1,
[sd pre: (.a gt 0)

mod: (a)
post: (#a = .a + 1)])

mod: (a)
post: (#a = 1000)]

This state delta, can be interpreted as a claim about the computation represented by the
state delta (call it S) embedded in the precondition; i.e., if the contents of a are 1 and S is
constantly active, then definitely at some future time the contents of a will be 1000. Note
that the above does not determine anything else about the values of a (for example, that
a increases monotonically). Intermingled between the times when a takes on the values 1,

2, ..., 1000, ..., a can take on arbitrary values. Also, nothing is specified about the length
of the time interval between these increasing values, nor about how long these values are

maintained once they are achieved.

1.4.3 Assuming and Proving a State Delta

First, we want to clarify several terms relating to sta.te deltas that have been found to
be confusing to users of SDVS. They are: "true state delta," "usable state delta," and
"applicable state delta." A true, or valid, state delta is one that holds in every computation
according to the .semantics given on page 11. Every state delta theorem proved in SDVS,
i.e., proved at the top level, is (we hope) a true state delta. A usable state delta is one
that is known by SDVS to be true at the current time in the current context, i.e., is in
the list of usdblcsds. An applicable state delta is a usable state delta that can be applied
in the current context, i.e., whose precondition is true. After it is applied, it may remain
applicable, usable, or neither in the new state.

In order to prove the above state delta, i.e., that it is true "now," SDVS assumes there is
a later time at which the precondition is true and the contents of the places in the comodi-
fication list (there are no such places in this example) have not changed. The precondition
consisting of the first-order sentence about a and the state delta S is stored in a database
representation of the "current state" of the computation. Then one shows, in this case by

direct execution or induction, that there exists a state in which the postcondition becomes
true.

For the sake of simplicity, we now describe a step of the symbolic execution proof. (Induction
will be discussed in Section 2.5.) The fact that S is in the current state (i.e., true) allows
a state transition to take place. The precondition of S, .a yt 0, is also true in the current
state, so one may advance the state to the time of S's postcondition, #« = .a + 1. Now
one must update the current state. It contains the fact that the contents of a are now 2.
How about S? S has an empty comodincation list also, so it will be true at any time after
the original "now." Thus S also belongs to the new current state. Since the precondition
of S is still true, S may be reapplied, which brings about the state where the contents of a
are 3. This process can obviously be continued until the contents of a become 1000. One
final check is needed to prove the state delta: it must be verified that the postcondition

12

was achieved within the constraints of the modification list. Indeed this is so: since the
modification list of S contained only «, the whole computation involved only changes in a.

1.5 THE MODEL OF STORAGE

There is one additional element of the state delta paradigm that we have not yet considered,
the dependence relations among the places. The covering predicate represents architectural
information about the "overlap" of places, and is needed in processing the comod and mod

lists in order to update the state. Without an explicit covering statement mentioning all
places in a given state delta, SDVS may behave too conservatively. If there is no overlap

among places, that has to be explicitly stated.

For example, if b is in the modification list of a state delta, then b is allowed to change when
that state delta is applied, and thus we cannot know a priori (i.e., based on the previous
value of b) what its new value will be. The contents of b must be explicitly updated at
postcondition time (either in accordance with the information in the postcondition about
b, or simply to "don't know"). If a happens to be defined a.s the concatenation of b with
c, say, then a must also be similarly updated at postcondition time. In this case, or in the
more general case of a being the disjoint union of b and c, one would write COVERING (A,
B, C). If the user has knowledge that is more explicit (e.g. that a is the concatenation of
b and c), those details would have to be specified separately, and then of course further
information about the relation among the values of a, b, and c could be deduced.

Think of
covering(place, subplace^, $ubplace2,..., subplucen)

as representing the condition that place is the disjoint union of {subplace1, subplace2, ..., subplacen}.
[Note to advanced SDVS users: to model more general situations, think of

covcring(place, subplace^, $ubplace2, ■ ■ •-, subplacen)

as representing the condition that, {subplace^, subplaee2,..., subplaccn} is a minimal inde-
pendent set. such that the value of placc'is a function oi (.$ubplaccx, .subplace2,..., .subplacen).
But. we will not get. into the technical details here.] In particular, if place is actually the dis-
joint, union of the mentioned subplaces, and the contents are calculated by concatenating the
contents of the subplaces, then certainly the above covering relation holds. Thus, a change in
.place means that there was a change in at. least one of .aubplacei, .subplace2,..., .subplacen;
therefore, unless we know more specifics, we must assume all have potentially changed value.
Similarly, unless we know otherwise, a change in the value of one of the subplaces means
we must assume that .place changed. Note that we do not. insist that the value of place
be a one-one function of (.subplacc1, .nubplace2,..., .subplacen); thus, the value of a sub-
place may change without the value of place actually changing. However, in cases where
we do want to enforce that the function be one-one, we have the stronijcoverings flag (see

Section 2.9.1).

Thus, under the hypothesis that covering (all, a, b) (all represents the set of all places) and
covering(u, c, d) hold, the following state delta is inconsistent:

13

SI:

[sd pre: (true)
mod: (d)

post: (#c = .c + 1)]

while the following are consistent:

S2:

[sd pre: (true)
mod: (c)

post: (#c = .c + l,#a = .a)]

S3:

[sd pre: (true)
mod: (b,c)

post: (#a = .a,#b = 1)]

S4:

[sd pre: (true)
mod: (c)

post: (#a = .a + 1)]

(To see how the system responds to the hypothesis of an inconsistent state delta, see Section
2.6.) To see why S2 is consistent, we liuist use the abstract dependency interpretation of
coverings. For example, assuming that covering (a, c, d) means that a depends on c and d,
but c and d are independent, we can consider the situation in which .a = .c + .(/if .c < 5,
and .a = 5 + .d otherwise. Then .c can go from 5 to (i without changing the value of a. S3
is similar: in S3 the contents of d are not allowed to change during the computation, since

d does not appear in the mod list, a does not have to appear in the mod list, even though
its contents may have changed during the computation (as a result of the fact that c is in
the mod list). If c had been omitted in the mod list and #1>=1 had been omitted in the
postcondition, then the resulting state delta would have been true (and provable in SDVS).

S4 is seen to be consistent by making the part of a that changes be c.

The covering language actually represents a fragment of set theory. The other symbols in
the covering language are pcovcrin<j("partial" covering, with pcoveriny(x, a, b, ...) meaning
that the place :/: contains, but is not necessarily equal to, the disjoint union of a, b, ...),
union (with union(a, b, ...) meaning the list of the places a, b, ...), alldisjoint (with
alldisjoint(n, b, ...) meaning that, the places «., b, ..., have no locations in common, i.e.,
they are independent), diff (with diff(A, B), where A and B are lists of places, meaning
those places in the list A but. not in B), everyplace (the universal place, pcovering all other
places), and emptyplace (meaning the unique place that has no contents, that is pcovered
by all other places). The name all is used as an abbreviation for everyplace.

14

Figure 1: Basic Structure of SDVS

1.6 THE STRUCTURE OF SDVS

Figure 1 illustrates the various modules of SDVS. SDVS is organized around the kernel,
which is the manager for the state delta logic and thus performs dynamic reasoning within
SDVS. Access to the kernel is gained through the command interface, which is in turn
accessed by users of the system through the user interface. The kernel uses the place table,
which stores the associations between places (variables) and their values, and both the kernel
and the place table use the simplifier for static reasoning and value simplification. Also
available with SDVS are translators for translating from software and hardware languages
(currently parts of ISPS, Ada, and VHDL) into the state delta logic. Finally, some general-

purpose modules of SDVS are the utilities, parsers, and printers.

The simplifier module processes static expressions (i.e., those not. involving state changes)
by maintaining a database of equivalence classes of expressions, which is kept closed under
congruences [42] (see Figure 2). The entry to the simplifier is through two modules that deal
with normalizing expressions into standard form and analyzing the propositional (boolean)
nature of any expression. E is the part of the simplifier that performs deductions that are
based solely on equality reasoning. The other "solvers" deal with special theories, such as
Z: the integers, C: coverings, B: bitstrings, and A: arrays.

The simplifier has two properties that facilitate its use. First, it is incremental; that is,
the simplifier can accept atomic formulas one by one, maintain a representation of their

15

Simp

Pushing and popping the state
making assertions
making new terms

Pushing and popping i
the state [

Assertions '
Equalities i

rhe predicate propagations

Simpe

• Assertions to sub-solvers
i New terms
| New equalities
i

Arrays Bitstrings Coverings Integer Solver
Arithmetic Modules

Figure 2: Shnplifier Structure

conjunction, and detect an unsatisfiability as soon as it occurs. Second, it is resettable; that
is, the shnplifier can mark its state, accept further formulas, and then return to the marked
state by removing the formulas received after the mark.

1.7 INPUTTING THEOREMS

The user is able to input descriptions of target and host machines in ISPS (see Chapter 3),
as well as a mapping between states in the host and target, which gives the "interpretation"
of one machine in the other. These are the ingredients of the state delta representing the
statement of the theorem that the host implements the target via the given mapping.

The implementation command prompts the user to supply these components and automat-
ically creates the theorem expressing the implementation relation (see page 122).

Theorems representing the input-output correctness or safety of Ada programs must be writ-
ten as state deltas by the user: the Ada program in its udutr form (written as ada<proyram-
name> along with any other necessary input conditions in the precondition, and the output
condition appearing in the postcondition along with the predicate terminated<proyram-
name> (see Chapter 4.) A similar procedure employing the predicate vhdl<desc-name> must
be followed for theorems representing the correctness of VHDL descriptions (see Chapter 5.)
The terminated predicate is made true when the translator arrives a.t the end statement of
an Ada program or VHDL description. Note that ada<proyram-name> or vhdl<desc-name>
can occur only as implicit conjuncts separated by a comma; use of the word and or the
symbol <fe, as allowed with all other predicates, is not allowed, and will result in an error.

10

1.8 GETTING AROUND IN SDVS

Throughout this manual, italic type indicates user input and

this kind of type

indicates system type-back. All arguments input to SDVS must be followed with a carriage

return <CR>.

To run SDVS, just type the name of the executable load module given when the system
was created, e.g. sdvs!3.2 (This assumes that the correct path has been put into the Unix
$PATH variable. Otherwise, you will have to type in the entire pathname.) When SDVS
starts up, you will see a system header message followed by the SDVS command prompt,

which looks like this:

<sdvs.1>

Suffixes other than "1" indicate proof depth.

SDVS is now ready to accept, your commands to create state deltas, parse ISPS, Ada, or
VHDL files, and build proofs. Most, of SDVS's commands require further information from
the user. A short prompt message followed by : will describe the type of information that
SDVS is expecting. The user should then supply the requested information. SDVS expects
all of the requested information on one line; therefore, the user should press the "return"
key only after typing in all of the information. Occasionally, the prompt will contain a
default value to be used. The default, value for any prompt is displayed within enclosing
brackets " [] " before the ":". To use the default, value, one need only press the "return"
key. (In the examples in the manual, you will see <CR> indicating this.)

Certain commands prompt the user to supply file (or path) names. In these instances, the
full pathname for a, file may be supplied (e.g. /usr/jones/sdvs/proof s/ada.proof) or a
partial (relative) pathname (e.g. testproof s/mult. ada). If a. partial pathname is supplied,
it. is relative to the current working directory. Initially, it, is the sdvs subdirectory of the
top-level directory created to hold the SDVS system when it, was loaded from the release
tape by the system administrator.

A useful feature of SDVS is its ability to return to a previous step in the proof by means
of the pop command. The proof structure is kept as a. stack so that, the intermediate proof
steps are lost. It is a good idea to do a proofstatc first, showing the proof steps executed
so far, in order to see how many steps you need to pop. Several query commands come in
handy: whynotyoal can help direct, the proof by showing the user which goals are not yet
verified; whynotapply will give the reasons why a. state delta cannot be applied (e.g. becaxxse
part of the precondition is not known to be true; it. will also inform the user if the mod
list is too large, and therefore the proof can be closed only by reaching a contradiction; see

Section 2.G).

2See your system ;uliiiiiiistnitor lor the name you should use.

17

When the proof is either partially or totally written, it may be saved by the command dump-
proof. Saved variables (e.g. state deltas, proofs, lemmas, formulas) may be written to a file
by the command write, and read by the command read. See Section 2.9.14. Incorporating
into the current SDVS environment a state delta, or proof that has a defining form in the
editor is accomplished by evaluating that form at the Lisp prompt: simply type bye in
SDVS to get the Lisp prompt, and (sdvs) to return. Alternatively, evul can be used at the
SDVS prompt.

1.9 SOME PRACTICE ON THE SYSTEM

In this section we want to give the user interactive experience with SDVS. This section uses
the following commands:

• createsd: define a state delta

• ppsd <sd>: prettyprint the state delta <sd>

• init: initialize the system before beginning a, new proof

• prove <sd> <proof>: prove (check the proof of) the state delta <sd> by <proof>

• *: execute (apply usable state deltas as long as possible)

• ps: prints the current proof state

• isps <file>: translates the ISPS program on <file> into a state delta.

• quit.: terminates a proof session

The following simple example illustrates the creation and proof of the state delta claim-
ing that if a starts out at 1, and, if nonnegative, a is repeatedly incremented by 1, then
eventually a gets to be 3.

<sdvs . 1 > cre.ulexd
name: s2

[SD pre: .a tjr 0
comod[]: <CH>

mod[] : a
post: #a = .a + 1

]

<sdvs.l>])]isd
state delta: x2

[sd pre: (.a ge 0)
mod: (a)

post: (#a = .a + 1)]

18

One way to insert a state delta in the precondition or postcondition of another state delta
is by means of the formula command. The internal state delta can also be typed in directly

(see Section 2.1).

<sdvs.l> creuttsd
name: s3

[SD pre: .a = 1, formulafs!!)
comod[]: <CR>

mod[] : a
post: #<i = 3

]

<sdvs.l> ppud
state delta: s3

[sd pre: (.a = 1,formula(s2))
nod: (a)

post: (#a = 3)]

<sdvs.l> init
proof name[]: <('R>

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> prove
state delta[] : n3
proof [] : < OR>

open — [sd pre: (.a = l,formula(s2))
mod: (a)

post: (#a = 3)]

inserting — pcovering(all,a)

Complete the proof.

The message about pcovcriny announces that SDVS has discovered an undeclared place, a.
SDVS discovers places either because they appear in mod or cornod lists, or because they
appear with dots or pounds. It. is recommended that all places be declared explicitly by
means of a covcriny statement. To continue the proof (make sure the autoclose flag is on by
typing flays; it should be, unless you have explicitly turned it offhy the setflag command):

<sdvs.l.l> *

apply — [sd pre: (.a ge 0)
mod: (a)

post: (#a = .a + 1)]

apply — [sd pre: (.a ge 0)
mod: (a)

19

post: (#a = . a + 1)]

close — 2 steps/applications

<sdvs.2> quit

Q.E.D. The proof for this session is in 'sdvsproof'.

State Delta Verification System, Version 13

Restricted to authorized users only.

The next little example deals with the ISPS program auu.isp. See Chapter 3 for detailed
information about the translation from ISPS descriptions to state deltas.

MACHINE:=(

»♦Registers**

A<1:0>

»♦Process**

CYCLE{MAIN}:=

BEGIN

A_l
END

)

Now we wish to access this program. It resides in testproofs/inamial/isps/aaa.isp. When
a path name or a file name is required as an argument to an SDVS command, the user
is prompted with an expression of the proper form as a default. Sometimes SDVS will
guess correctly; if so, hitting <CR> instructs SDVS to use the default. Otherwise, a new
expression may be typed in. After initiug, the session continues:

<sdvs.l> isjis
path name[f oo. isp] : ttstproofs/maiiuiil/ispx/auu.ixp

unique name level[l] : <(!R>

Parsing ISPS file — "testproofs/manual/isps/aaa.isp"

Translating ISPS file — "testproofs/manual/isps/aaa.isp"

In translating from ISPS to state deltas, the control point is considered as a place <machine-
name>\upc (for microprogram counter, u being the poor man's //.) that takes label names
for values, thereby allowing execution from one label to the next or to any other. The labels
niacliinc\st(irU:d and mncliiiiv\hultcd are generated automatically.

We create and prove the state delta theorem claiming that if we start executing the program
aaa.isp at its start point, we will eventually get to a state in which a has the bitstring value
1(2), that is, value 1 and length 2 (as specified in the semantics of ISPS).

2Ü

<sdvs.2> pj>sd
state delta: isps

file name: utui.isp

covering(machine,a,machine\upc)
declare(a,type(bitstring,2))
[tr «MACHINE\STARTED {in MACHINE} A ;]

<sdvs.2> create.i<l
name: isjis.ml

[SD pre: ispa(aaa.inp), .machitit\u]ic = mtichint\.startt:d
comodü: <CR>

mod[] : all
post: #a = 1(2)

]

<sdvs.2> ppsil
state delta: ixji.v.xd

[sd pre: (isps(aaa.isp),.machine\upc = machine\started)
mod: (all)

post: (#a = 1(2))]

<sdvs.2> se-tfluy
flag variable: mdoclose
on or off[off] : on

setflag autoclose — on

<sdvs.3> itiit
proof name [] : < ('/>'>

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> prout
state delta[]: isps.sd
proof [] : *

open — [sd pre: (isps(aaa.isp),.machine\upc = machine\started)

mod: (all)

post: (#a = 1(2))]

apply — [sd pre: (.machine\upc = machine\started)

mod: (machine\upc,a)

post: (#a = 1(2),
[tr QMACHINE\halted])]

close — 1 steps/applications

<sdvs.2> quit

Q.E.D. The proof for this session is in 'sdvsproof.

21

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> pi>
object: sdvsproof

proof sdvsproof:

prove isps.sd

proof: execute

Consider these examples showing the use of the lielp command. (Note that the system
output has been suppressed.) The first example shows that the user wishes to accept the
default value (all) supplied by the system by just pressing the "return" key. In the second
example, the user wishes to supply a value different from the default and so types it in.

<sdvs.l> help
with [all]: <CR>

<sdvs.l> help
with [all] : help

1.10 SYSTEM HELP

All possible user input has on-line documentation. The help command may be typed in.
The total output for system help is listed below.

<sdvs.l> htlp
withfall] : till

<<<SDVS Help>>> Proof Commands <<<SDVS Help>>>

Commands — * activate adatr apply apply! applydecls applydeclsandstats

automatedatatype cases cleardate close comment consider createadalenuna

createvhdllemma date deactivate defer execute finduct go

hidepropagations induct interpret invokeadalemma invokevhdllemma isps

ispstr let letsd linearize meases mpisps mptr natinduct negate notice

noticeconcurrentsd noticeinvariant omegainduct parse prove proveadalemma

provebyaxiom provebylemma provelemma provevhdllemma quantification read
readaxioms readlemmas restorepropagations rewritebyaxiom rewritebylemma

selecti setflag stop subcases tr until vhdltr

*
Symbolically executes state deltas until either no more state deltas can be

applied or the current goal is satisfied. If the 'autoclose' flag is on, the goal

is checked after each state delta application; otherwise, the goal is never

checked.

22

activate <solver-name>
Activates one of the simplifier's solvers, when <solver-name> is one of a, b, c,

d, e, 1, in, p, q, or z. Use the 'solvers' command to see what the single

character <solver-name> designations denote.

adatr <pathname>
Initiates the incremental translation of the <file> identified by <pathname> into

the language of the state delta logic, assuming <file> contains a Stage 4 Ada

program. The <file> is not re-parsed if it has already been parsed, and is not

re-translated if it has previously been translated. The resulting translation is

associated with <file>'s name, and becomes available via the predicate

ada(<file>).

apply {<n>}
Symbolically execute, if possible, the next <n> highest applicable state deltas,

executing only once if <n> is omitted. If the invariance flag is ON, the

application is preceded by the opening of a proof that the invariant of the state

delta to be proved is implied by the invariant of the state delta to be applied.

apply <sdspec>
Symbolically execute the state delta specified by <sdspec> if applicable. If the

invariance flag is ON, the application is preceded by the opening of a proof that

the invariant of the state delta to be proved is implied by the invariant of the

state delta to be applied.

apply! {<n>}
Symbolically execute, if possible, highest applicable state deltas until the nth

markpoint is reached, executing only to the first markpoint if <n> is omitted.

applydecls
Performs symbolic execution of Ada declarations.

applydeclsandstats

See the command 'go'.

automatedatatype <datatype-name>
Automates the axioms for an untyped user-defined datatype created via the

'createdatatype' command, by defining a simplifier solver which implements the

axioms. This command must be performed at the top level, because it causes

additional simplifier initialization and must be invoked in a guaranteed

consistent state. Use the 'deautomatedatatype' command to eliminate the

automation.

cases <preterm> {<then-proof>} {<else-proof>}
Starts a proof by cases of the current goal, the two cases being conditional on

<preterm> and its negation. Unless omitted, the proof commands in <then-proof>

are used for the proof of the first case and those in <else-proof> for the proof

of the second case.

cleardate
Zeros out the elapsed proof time since previous 'date' command, so the next 'date'

command will display new elapsed time.

close
Tries to close the current proof, which is possible only if the current goal has

n

been satisfied. When the 'autoclose' flag is on, SDVS attempts to close the proof

after each proof command, and explicit 'close' commands are unnecessary.

comment <text>

Comments a portion of the proof. Anything may be embedded within a comment, but
only text may be typed in from command level.

consider <preterm>

Adds <preterm> to the simplifier's database.

createadalemma <lemma-name> <file-name> <subprogram-name> <qualified-name>

<preformulas> <mod-places> <postformulas>

Create and name a lemma about an Ada subprogram contained in the indicated file.

One must provide the fully qualified name of the subprogram, the optional

precondition formulas for executing the subprogram, the optional list of places

(variables) modified by the subprogram, and the desired postcondition formulas

resulting from the execution of the subprogram. The lemma is represented by a

state delta with appropriate precondition, modlist, and postcondition. The lemma

may be printed via the 'pp adalemma'command, may be proved via the 'proveadalemma'

command, and may be invoked by the 'invokeadalemma' command.

createvhdllemma <lemma-name> <design-name> <subprogram-name> <qualified-name>

<preformulas> <mod-places> <postformulas>

Create and name a lemma about a VHDL subprogram contained in the indicated design

entity. One must provide the fully qualified name of the subprogram, the optional

precondition formulas for executing the subprogram, the optional list of places

(variables, signals) modified by the subprogram, and the desired postcondition

formulas resulting from the execution of the subprogram. The lemma is represented

by a state delta with appropriate precondition, modlist, and postcondition. The
lemma may be printed via the 'pp vhdllemma'command, may be proved via the

'provevhdllemma' command, and may be invoked by the 'invokevhdllemma' command.

date

Displays the time of day and the elapsed proof time since previous 'date' command,

displaying only the time of day if no 'date' command since the last SDVS
initialization.

deactivate <solver-name>

Deactivates one of the simplifier's solvers, when <solver-name> is one of a, b, c,

d, e, 1, m, p, q, or z. Use the 'solvers' command to see what the single

character <solver-name> designations denote.

defer {<ns>}

Defers either all goals if not provided an argument, or defers the goals whose
goal numbers appear in <ns>.

execute

Symbolically executes state deltas until either no more state deltas can be

applied or the current goal is satisfied. If the 'autoclose' flag is ON, the goal

is checked after each state delta application; otherwise, the goal is never
checked.

finduct <tr-goal> <invariant-preformulas> {<base-proof>} {<step-proof>}

CURRENTLY NOT IMPLEMENTED. Opens a fixed point inductive proof of the specified

goal, which must be a TR-generated continuation. The invariant, base proof, and

24

step proof are as in the 'induct' command.

go {<postf ormula>}
Is similar to the 'until' command, except that 'go' will instantiate existentially

qualified state deltas and apply them if a state is reached where no more state

deltas are applicable. This command is especially useful for symbolically

executing Ada programs and VHDL descriptions.

hidepropagations
Hides propagated facts, essentially making the system forget about the current set

of propagated disjunctions. Turning on the 'reportpropagations' flag forces the

system to print propagated disjunctions after they appear during the course of a

proof. The 'restorepropagations' command restores any hidden propagated

disjunctions.

induct <induct-preterm> <from-preterm> <to-preterm> <invariant-preformulas>

<comod-places> <mod-places> {<base-proof>} {<step-proof>}

Initiates an inductive proof on the expression <induct-preterm> in the range

<from-preterm> to <to-preterm>. The loop invariant is the conjunction of

<invariant-preformulas>, and <comod-places> and <mod-places> are lists of places
for the comodification and modification lists of the inductive step proof. Unless

omitted, the base and step proofs are taken from <base-proof> and <step-proof >,

respectively. Currently, induction expressions must be integer-valued, and the

induction counter is either incremented or decremented by exactly one during the

inductive step.

interpret <proof-name>

Interprets the proof commands in <proof>.

invokeadalemma <lemma-name>
<lemma-name> must be the name of a valid Ada lemma, previously created via the

'createadalemma' command. This lemma characterizes the execution of some

subprogram P. If the current proof is symbolically executing an Ada program, and

the symbolic execution point indicates that we are "at P," then the lemma is

invoked to replace the execution of the body of P by its state delta

characterization. After the state delta resulting from the lemma is applied,

symbolic execution can resume.

invokevhdllemma <lemma-name>
<lemma-name> must be the name of a valid VHDL lemma, previously created via the

'createvhdllemma' command. This lemma characterizes the execution of some

subprogram P. If the current proof is symbolically executing a VHDL hardware

description,and the symbolic execution point indicates that we are "at P," then

the lemma is invoked to replace the execution of the body of P by its state delta

characterization. After the state delta resulting from the lemma is applied,

symbolic execution can resume.

isps <file> {<unique-name-level>}
Parses the ISPS file <file>, generating a parse tree file, and produces the state

delta semantics of <file>, associating these semantics with <file>'s name.

ispstr <pathname>
Initiates the incremental translation of the <file> identified by <pathname> into

the language of the state delta logic, assuming <file> contains an ISPS program.

The <file> is not re-parsed if it has already been parsed, and is not

25

re-translated if it has previously been translated. The resulting translation is
associated with <file>'s name, and available via the predicate isps(<file>) .

let <name> <preterm>
Instantiates <name> to the current value of <preterm> if name is not already in
use by the simplifier.

letsd <name> <sdspec>
Generates a new <name> for the state delta referenced by <sdspec>, if <name> is
not in use by the current proof.

linearize <sdspecl> <sdspec2> <namel> <name2> {<name3>}
Linearizes the two applicable state deltas specified by creating and asserting the
disjunction of two resultant state deltas (three, if the invariance flag is ON).
The name of each disjunct is supplied by the user.

meases <n> <first-preformula> {<first-proof>} ... <nth-preformula> {<nth-proof>}
Starts a proof of the current goal by multiple cases predicated on the n
<preformula>s, using the associated proof commands if provided.

mpisps <file> <starting-markpoint-name> <ending-markpoint-names> <dotformulas>
{ <unique-name-level>}

Produces the markpoint-to-markpoint state delta semantics of <file>, after parsing
it, generating state deltas only for those paths which start at
<starting-markpoint-name> and go no further than any markpoint in
<ending-markpoint-names>, where <dotformulas> must hold at the beginning of each
such path.

mptr <file> <starting-markpoint-name> <ending-markpoint-names> <dotformulas>
{<unique-name-level>}

Produces the markpoint-to-markpoint state delta semantics of the already 'isps'ed
<file>, generating state deltas only for those paths which start at
<starting-markpoint-name> and go no further than any markpoint in
<ending-markpoint-names>, where <dotf ormulas> must hold at the beginning of each
such path.

natinduct <induction-variable> <formulas> {<base-proof>} {<step-proof>}
Performs natural induction on n for the specified formulas, where n is the new
induction variable.

negate <sdspec> <namel> {<name2> <name3>}
If the specified state delta is known to be FALSE, SDVS creates and asserts an
equivalent state delta. The postcondition of the asserted state delta contains
the disjunction of three formulas (one formula, if the invariance flag is OFF),
whose names are given by the user.

notice <preformula>
Inserts <preformula> into the state if it is known to be TRUE.

noticeconcurrentsd <n> <sdspecl> . . . <sdspecn>
Creates and asserts the concurrent state delta obtained from the n specified
applicable state deltas.

noticeinvariant <sdspec>
Asserts the invariant of the state delta specified, if the state delta is known to

2(i

be applicable.

omegainduct <on> {<auxiliary-formulas>} <places> {<base-proof >} {<step-proof>}

Initiates an inductive proof on the <on> formulas which must be of precondition

type. The optional <auxiliary-f ormulas>, which must also be of precondition type,

will usually be loop state deltas. <Places> is a set of places one of which will

change infinitely often in the induction. The <base-proof> and <step-proof> are

optional.

parse <file> <language-name>
Parses <file> and creates a parse tree file.tree, according to the grammar and

semantic actions associated with <language-name>.

prove <sdspec> {<proof>}
Opens a proof of the state delta specified by <sdspec>, using <proof> if supplied.

Then, if the invariance flag is ON, a proof of the invariant of the specified

state delta is opened.

proveadalemma <lemma-name> {<proof>}
Starts a proof of the Ada lemma named <lemma-name>, using the proof commands in

<proof> if provided. This command, like the 'provelemma' command, is available

only as a top level command.

provebyaxiom <preformula> {<axiom-name>} [<freevar-symbol> <matching-preterm>]*

Attempts to prove the truth of <preformula> using a single instantiation of a

single axiom whose consequent matches <formula>, using the axiom whose name is

<axiom-name> and matching free variables appearing in the antecedent but not the

consequent if matching terms are provided.

provebylemma <preformula> {<lemma-name>} [<freevar-symbol> <matching-preterm>]*

Attempts to prove the truth of <preformula> using a single instantiation of a

single lemma whose consequent matches <formula>, using the lemma whose name is
<lemma-name> and matching free variables appearing in the antecedent but not the

consequent if matching terms are provided.

provelemma <lemma-name> {<proof>}
Starts a proof of the lemma named <lemma-name>, using the proof commands in

<proof> if provided.

provevhdllemma <lemma-name> {<proof>}
Starts a proof of the VHDL lemma named <lemma-name>, using the proof commands in

<proof> if provided. This command, like the 'provelemma' command, is available

only as a top level command.

quantification {<on/off>}
Turns the quantification solver on or off, unless the arguments are omitted, in

which case the state of the solver is toggled. This command is not accepted if

any proofs have been started since initialization, since it causes system

re-init ializ at ion.

read <file>
Reads state deltas, proofs, axioms, lemmas, formulas, formula lists, datatypes,

macros, adalemmas, and vhdllemmas from <file>, indicating which definitions were

read. Use the 'write' command to place definitions in a file.

27

readaxioms <file>

Reads axioms from <file>, inserting them into the current set of axioms.

readlemmas <file>

Reads lemmas from <file>, inserting them into the current set of lemmas.

restorepropagations

Restores all hidden propagated disjunctions. See the 'hidepropagations' command.

rewritebyaxiom <preterm> {<axiom-name>}

Attempts to rewrite <preterm> by finding some axiom whose consequent is of the

form tl=t2, where either tl or t2 matches <preterm>, and if the antecedent of the

axiom is satisfied, then the equality assertion is made, instantiating tl and t2

using subterms of <preterm>. The axiom whose name is <axiom-name> is used if

<axiom-name> is provided.

rewritebylemma <preterm> {<lemma-name>}

Attempts to rewrite <preterm> by finding some lemma whose consequent is of the

form tl=t2, where either tl or t2 matches <preterm>, and if the antecedent of the

lemma is satisfied, then the equality assertion is made, instantiating tl and t2

using subterms of <preterm>. The lemma whose name is <lemma-name> is used if

<lemma-name> is provided.

selecti <preterm> <n> <f irst-selecti-clause> {<f irst-proof >} . . . <nth-selecti-clause>
<nth-proof>

Permits proof selection based on the value of the integer-valued expression

<preterm>. The <selecti-clause>s are checked against the value of <preterm> one

at a time, and if a clause matches, then its proof is executed. A final clause of
"t" matches any value for <preterm> .

setflag <flag-name> {<on/off/n>}

Sets the flag denoted by <flag-name> to the indicated value, toggling the flag if
the value is omitted.

stop {<string/symbol>}

Halts the current batch proof, printing out the <string/symbol> unless it is

omitted. This command has no effect in interactive mode.

subcases <preterm> <mod-places> <postformulas> {<then-proof>} {<else-proof>}

Starts a proof by cases of the goals indicated by <postf ormulas>, the two cases

being conditional on <preterm> and its negation. Only the places in <mod-places>

are permitted to be modified during the course of the proof. Unless omitted, the

proof commands in <then-proof> are used for the proof of the first case and those

in <else-proof> for the proof of the second case.

tr <file> {<unique-name-level>}

Produces the state delta semantics of already parsed <file> from its parse tree,
associating these semantics with <file>'s name.

until <postformula>

Symbolically executes highest applicable state deltas until <postformula> is TRUE,

there are no more applicable state deltas, or the 'autoclose' flag is on and the

current goal is satisfied.

vhdltr <design name> <directory name> <file names> <using configuration>

28

Initiates the incremental translation, into the language of the state delta logic,

of a VHDL design entity to be called <design name>, specified by the Stage 4 VHDL

descriptions residing in <file names>. All these files are contained in a single

directory identified by <directory name> (which must be terminated by a /) . The

name of the configuration declaration (if any) that will configure the design

entity is supplied in response to the prompt <using conf iguration>, for which

'none' should be specified if no components need to be configured. The

configuration declaration should occur in the last file to be processed. Files

unchanged since their last parsing are not re-parsed. When successful, the

translation yields a list of formulas associated with the symbol <design name>;

these formulas may be asserted in the precondition of a state delta via the

predicate vhdl(<design name>) .

<<<SDVS Help>>> Quantification Commands <<<SDVS Help>>>

Commands — enotice instantiate provebyeklaxiom provebygeneralization

provebyinstantiation provebymakeboundedquantifier

enotice <postformula>
Informs EKL of the non-quantified formula <postformula>, which is already known to

be true by the simplifier.

instantiate <goal> [<existential-symbol> <substitute-symbol>]*
The goal must be an existential formula. Replaces the goal with the formula

obtained by substituting names for the existentially quantified variables in the

original goal. The substitutions must be specified in order of appearance if more

than one variable is to be substituted.

instantiate <quant> [<existential-symbol> <substitute-symbol>]*
Substitutes names for existentially quantified variables in the usable quantified

formula <quant>. The variable names are used as the subsitution names if no

substitutions are specified.

instantiate <postformula> [<existential-symbol> <substitute-symbol>]*

Substitutes names for existentially quantified variables in the true existential

formula <postf ormula>. The variable names are used as the subsitution names if no

substitutions are specified.

provebyeklaxiom <postformula> {<axiomname>}

Attempts to prove the truth of the quantifiers formula <postformula> using a

single instantiation of a single axiom whose consequent matches <postformula>,

returning either the name of the axiom used, or NIL if no axiom proves

<postf ormula>. The axiom whose name is <axiomname> is used if <axiomname> is

specified.

provebygeneralization <universal-formula> <universal-formulas>

Attempts to prove <universal-formula> by using the already known to be true
statements <universal-formulas>. It checks that the conjunction of the first

levels of <universal-formulas> implies the first level of <universal-formula>.

The first level of a quantified formula is obtained by removing the first

quantifier and variable.

provebyinstantiation {<postformula>} <universal-postformula> <universal-varl> <terml>

. . . <universal-vark> <termk>

Attempts to prove <postformula> by using the already known to be true universal

29

Statement <universal-postformula> with specified terms substituted for universal

variables. This commands checks to see that the non-quantified part of

<universal-postformula> with the terms substituted implies <postformula>. If

<postformula> is omitted, the result of the substitution is inserted as a true

fact into the current state.

provebymakeboundedquantifier <universal-formula> <universal-formulas>

Attempts to prove <universal-formula> by using the already known to be true
universal statements <universal-f ormulas>. Checks to see that the prefixes are

all the same and that the bound in <universal-formula> implies the disjunction of

the bounds of the sentences in <universal-f ormulas> .

<<<SDVS Help>>> Query/Printing Commands <<<SDVS Help>>>

Commands — adasubprogenv applicable axiomnames datatypes decls eval flags goals help

lasterror lemmanames next nsd placevalue pp ppeq ppl ppsd proofcommands

proofstate ps range simp solvers usable usablequantifiers usablesds

usabletrs values vhdl-processes vhdl-signals vhdlsubprogenv vhdltime

whynotapply whynotgoal

adasubprogenv <file-name> <subprogram-name> <qualified-name>

Displays the mapping between fully and uniquely qualified names constituting the

environment of the Ada subprogram in the indicated file. In addition to the file
name, both the (textual) name and the fully qualified name of the subprogram must

be provided.

applicable

Prints the indexed set of currently applicable state deltas.

axiomnames {<function/predicate-names>}

Prints the names of the axioms having each function or predicate symbol in

<function/predicate-names> in their consequents, unless <function/predicate-names>

is omitted, in which case the names of all axioms are printed.

datatypes

Prints the names of all known datatypes.

decls

Prints all declarations currently in effect.

eval <s-expression>
Prints the result of evaluating <s-expression>.

flags

Prints the values of all SDVS flag variables.

goals

Prints the current set of goals.

help {<names>}
Prints help information about <names>, unless <names> is omitted, in which case

all SDVS help information is printed. The name "commands" produces help for all

SDVS commands; the name "args" produces help for all SDVS command arguments; the
name "flags" prints help for all SDVS flag variables; the name "proofcommands"

prints help for all SDVS proof commands; the name "quantcommands" prints help for

:U)

all SDVS quantification commands; the name "querycommands" prints help for all

SDVS query commands; the name "interactivecommands" prints help for all SDVS

solely interactive commands; the name "batchcommands" prints help for all SDVS

commands »hich can appear in a batch proof. For other names, such as the names of

flags and commands, the help for that particular name is printed.

lasterror
Prints the last command error, if SDVS is in an erroneous state.

lemmanames {<function/predicate-names>}

Prints the names of the lemmas having each function or predicate symbol in
<function/predicate-names> in their consequents, unless <function/predicate-names>

is omitted, in which case the names of all lemmas are printed.

next {<n>}
Prints the next <n> batch proof commands, or just the next command if <n> is

omitted.

nsd
Prints the highest applicable state delta.

placevalue <place>
Prints the current value of <place>.

pp <name>
Prettyprints objects associated with <name>. The objects currently recognized are
state deltas, proofs, axioms, usable quantifier formulas, goals, lemmas, formulas,

formula lists, and s-expressions.

pp ada <file-name>
Prettyprints the state delta translation of the Ada file identified by

<file-name>.

pp vhdl <design name>
Prettyprints the state delta translation of the VHDL design entity identified by

<design name>.

pp axiom <name>
Prettyprints the axiom named <name>.

pp axioms {<axiom-names>} {<function/predicate-names>}

Prettyprints all axioms if the optional arguments are omitted, prints those axioms

with names in <axiom-names> if provided, and prints those axioms whose consequents

contain all of the function and predicate symbols in <function/predicate-names> if

<axiom-names> is omitted but <function/predicate-names> is not.

pp datatype <name>
Prettyprints the datatype named <name>.

pp formula <name>
Prettyprints the formula named <name>.

pp formulas <name>
Prettyprints the list of formulas named <name>.

31

PP g <n>
Prettyprints the nth current goal.

pp isps <file-name>
Prettyprints the state delta translation of the ISPS file identified by
<file-name>.

pp lemma <name>
Prettyprints the lemma named <name>.

pp lemmaproof <name>
Prettyprints the lemma proof named <name>.

pp lemmas {<lemma-names>} {<function/predicate-names>}
Prettyprints all lemmas if the optional arguments are omitted, prints those lemmas
with names in <lemma-names> if provided, and prints those lemmas whose consequents
contain all of the function and predicate symbols in <function/predicate-names> if
<lemma-names> is omitted but <function/predicate-names> is not.

pp mpisps <file-name> {<starting-markpoint-name>} {<ending-markpoint-names>}
{<pref ormulas>}

Prettyprints the markpoint-to-markpoint state delta translation of the ISPS file
identified by <file-name>, translated according to the remaining optional
arguments.

pp proof <name>
Prettyprints the proof named <name>.

pp q <n>
Prettyprints the nth usable quantifier formula.

pp <sdspec>
Prettyprints the state delta specified by <sdspec>.

ppeq <preterm>
Prints all of the terms that are in the same equivalence class as <preterm>.

ppl {<places>}
Prints, for each place in <places>, the current value of the place and any
declarations associated with place. If <places> is omitted, this information is
printed for all places.

ppsd ada <file-name>
Prettyprints the state delta translation of the Ada file identified by
<file-name>.

ppsd vhdl <design name>
Prettyprints the state delta translation of the VHDL design entity identified by
<design name>.

ppsd isps <file-name>
Prettyprints the state delta translation of the ISPS file identified by
<file-name> .

ppsd mpisps <file-name> {<starting-markpoint-name>) {<ending-markpoint-names>}

■A2

{< pr ef ormul as >}
Prettyprints the markpoint-to-markpoint state delta translation of the ISPS file

identified by <file-name>, translated according to the remaining optional

arguments.

ppsd <sdspec>
Prettyprints the state delta specified by <sdspec>.

proofcommands <proof-name>
Prints a list of the proof commands which were used in the proof denoted by

<proof-name>.

proofstate

Prints a trace of the current proof.

ps

Synonymous with proofstate.

range <preterm>

Prints the numeric range of <preterm>.

simp <preterm>
Prints the result of simplifying <preterm>.

solvers
Indicates which solvers are available and which are active.

usable
Prints the indexed set of currently usable state deltas and quantified formulas.

usablequantifiers
Prints the list of currently usable quantified statements.

usablesds
Prints the indexed set of currently usable state deltas.

usabletrs
Prints the indexed set of currently usable TRs.

values
Prints the values of all declared variables.

vhdl-processes {<process-names>}

Prints information about current state of indicated VHDL processes.

vhdl-signals {<signal-names>} {<simplify?>}

Prints information about the current state of the indicated VHDL signals. Any

input other than a carriage return for <simplify?> causes simplifications to be

performed, usually slowing the response time.

vhdlsubprogenv <design-name> <subprogram-name> <qualified-name>

Displays the mapping between fully and uniquely qualified names constituting the

environment of the VHDL subprogram of the indicated design entity. In addition to

the design name, both the (textual) name and the fully qualified name of the

subprogram must be provided.

33

vhdltime

Prints the current VHDL simulation time (a <global,delta> pair).

whynotapply <sdspec>

Indicates why the state delta specified by <sdspec> is not applicable.

whynotgoal {<simplify?>}

Shows which goals are not yet satisfied, simplifying the unsatisfied goals unless

<simplify?> is omitted.

<<<SDVS Help>>> Solely Interactive Commands <<<SDVS Help>>>

Commands — bye cd compose continue createaxiom createdatatype createeklaxiom

createformula createformulas createlemma createmacro createproof

createsd datatypeaxiom deautomatedatatype delete deleteaxioms

deletelemmas dump-proof exit implementation init Is pop pwd quit

run-test-proofs shell skip step write writeaxioms writelemmas

bye
Returns the user to the LISP read-eval-print-loop.

cd <file>
Changes the current working directory.

compose {n}

Composes the last n state deltas applied. The third field determines what type of

proof commands to compose through. The default is :applications which includes

all applications of state deltas including apply, until, apply!, and *.

continue

Continues interpretation of suspended batch proof commands.

createaxiom <axiom-name> <term> <free-variable-names> <constant-names>
<function-names> <predicate-names>

Creates an axiom identified by <axiom-name>, with the axiom pattern <term>, free
variables <free-variable-names>, new constant symbols <constant-names>, new
function symbols <function-names>, and new predicate symbols <predicate-names>.
If <axiom-name> already names an axiom, the user is prompted for overwrite
permission.

createdatatype <datatype-name> <constructor-name> <constructor-arity> <accessor>*
{<base-name>}

Permits the user to define a (possibly recursive) abstract datatype. The user
chooses a new name for the abstract datatype, chooses a name for its constructor
function, tells the arity (n) of the constructor function, and then goes on to
describe the n accessor functions. For each accessor function, its name is given,
its output type (which may be a list representing a union of previously defined
types, including the type currently being defined, or may be arbitrary) is given,
and a default access value is given. If the new type is recursive, the user must
specify the name of the base constant for the type.

createeklaxiom <axiom-name> <term> <free-variable-names> <constant-names>
<function-names> <predicate-names>

Creates a quantifier axiom identified by <axiom-name>, with the axiom pattern

u

<term>, free variables <free-variable-names>, new constant symbols
<constant-names>, new function symbols <function-names>, and new predicate symbols
<predicate-names>. If <axiom-name> already names an axiom, the user is prompted
for overwrite permission.

createformula <postformula-name> <postformula>
Associates the typed-in <postformula> with <postformula-name>, unless
<postformula-name> already names a formula and the user does not wish to overwrite
it.

createformulas <postformulas-name> <postformulas>
Associates the typed-in <postformulas> with <postformulas-name>, unless
<postformulas-name> already names a list of formulas and the user does not wish to
overwrite it.

createlemma <lemma-name> <term> <free-variable-names> <constant-names>
<function-names> <predicate-names>

Creates a lemma identified by <lemma-name> , with the lemma pattern <term>, free
variables <free-variable-names>, new constant symbols <constant-names>, new
function symbols <function-names>, and new predicate symbols <predicate-names>.
If <lemma-name> already names an lemma, the user is prompted for overwrite
permission.

createmacro <macro-name> <preterm> <free-variable-names> <quantifier-names>
Creates a macro identified by <macro-name>, with the macro definition <preterm>,
free variables <free-variable-names>, and quantified variables <quantif ier-names>.
If <macro-name> already names a macro, the user is prompted for overwrite
permission. All free variables must occur free in the definition, quantified
variables appearing in the definition must be listed in their order (inorder) of
appearance, the definition may not be recursive or contain references to other
macros, and it may not contain state deltas.

createproof <proof-name> <proof>
Associates the typed-in <proof> with <proof-name>, unless <pr oof-name > already
names a proof and the user does not wish to overwrite it.

createsd <sd-name> <preformulas> <comod-places> <mod-places> {<inv-postformulas>}
<postformulas>

Prompts the user for the precondition, comodification list, modification list,
invariant (when the invariance flag is ON), and postcondition, of a state delta to
be named <sd-name>. If <sd-name> already names a state delta, the user is
prompted for overwrite permission.

datatypeaxiom <datatype-name> <axiom-name> <term> <free-variable-names>
<constant-names> <function-names> <predicate-names>

Adds a new axiom to the set currently associated with a user-defined datatype
created via the 'createdatatype' command. Use the 'pp' command applied to
datatype name to display the axioms currently associated with a datatype.

deautomatedatatype <datatype-name>
Removes a datatype axiom automation initiated by the 'automatedatatype' command.

delete <type-name> <object-name>
If <type-name> is the name of a recognized type and <object-name> is associated
with an object of this type, then the name/object association is deleted.

35

deleteaxioms {<axiom-names>}
Deletes those axioms with names in <axiom-names> from the current set of axioms,
indicating which axioms were deleted. If <axiom-names> is omitted, all axioms are
deleted.

deletelemmas {<lemma-names>}
Deletes those lemmas with names in <lemma-names> from the current set of lemmas,
indicating which lemmas were deleted. If <lemma-names> is omitted, all lemmas are
deleted.

dump-proof <proof-name>
Associates the current (possibly partial) proof with <proof-name>, unless
<proof-name> already names a proof and the user does not wish to overwrite it.

exit
Exits the SDVS system AND the Lisp environment.

implementation <thm-name> <upper-spec-postformulas> <lower-spec-postformulas>
<mapping-preformulas> < const ant -pref ormulas> < invariant -preiormulas>

Create a theorem (state delta) named <thm-name> which when proved verifies the
implementation of the upper-level specification <upper-spec-postformulas> by the
lower-level specification <lower-spec-postformulas>. Both the upper and
lower-level specifications must have a certain format, which permits them to be
composed only of predicates headed by covering, alldisjoint, declaration, and
distinct, plus state deltas, TR statements and "formula" or "formulas" predicates
made up of only the preceeding types of statements. <mapping-preformulas> is a
list of mappings from upper-level to lower-level places, <constant-prefonnulas> is
a list of constant-specifying formulas involving lower-level places, and
<invariant-preformulas> is a list of lower-level invariants.

init {<pr oof-name >}
Initializes the proof system, optionally starting the interpretation of the proof
associated with <proof-name>.

Is
Prints the contents of the current working directory.

pop {<n>}
Pops the proof step to level <n> in the proof, popping one level if <n> is

omitted. Use the 'ps' command to see the proof state and the proof levels, which

are bracketed numerals, e.g. <3>, following each proof step.

pwd

Prints the current working directory.

quit

Terminates the proof session if no proofs are in progress. The proof steps

executed before termination are made into a proof which is associated with the
name 'sdvsproof'.

run-test-proofs <test proof suite>

Runs the desired test proof suite. Valid options are: all, »original-tests*,
»strongcoverings-tests*, »negation-tests*, *inv-tests*, *new-inv-omega-tr-tests*,

♦quant-tests*, *isps-tests*, *ada-tests*, and *vhdl-tests*.

;u>

shell <command>
Execute the given string in a UNIX shell.

skip {<n>}
Skips the next <n> batch proof commands, skipping one command if <n> is omitted.

step {<n>}
Steps through <n> batch proof commands, stepping only once if <n> is omitted.

write <file> {<sd-names>} {<proof-names>} {<axiom-names>} {<lemma-names>}
{<formula-names>} {<formulas-names>} {<macro-names>} {<datatype-names>}
{<adalemma-names>} {<vhdllemma-names>}

Writes the state deltas, proofs, axioms, lemmas, formulas, formula lists, macros,
datatypes, adalemmas, and vhdllemmas corresponding to the appropriate names onto
either a new version of <file> or onto the end of <file>. If the file previously
existed, the user is asked if the object definitions are to be appended to the
file. Use the 'read' command to retrieve definitions from a file.

writeaxioms <file> {<axiom-names>}
Writes the axioms whose names appear in <axiom-names> onto a new version of
<file>. If <axiom-names> is omitted, all axioms are written. Use the
'readaxioms' command to retrieve axioms from a file.

writelemmas <file> {<lemma-names>}
Writes the lemmas whose names appear in <lemma-names> onto a new version of
<file>. If <lemma-names> is omitted, all lemmas are written. Use the
'readlemmas' command to retrieve lemmas from a file.

Type 'help help' for more help.

<<<SDVS Help>>> Command Arguments <<<SDVS Help>>>

{} Encloses optional command arguments.

<> Encloses command argument names.

<x/y> A command argument of type <x> or of type <y>.

<y-x> A command argument of type <x> qualified by the symbol y. The purpose of the
qualification is usually to disambiguate multiple occurrences of <x> in a
command (quote s) arguments or to provide some additional contextual
information about the particular <x>.

<xs> A command argument which is a list of objects of type <x>, separated by commas.

<x>* Zero or more command arguments of type <x>.

<x>+ One or more command arguments of type <x> .

[] Encloses of group arguments to which the * and + operators may be applied.

... Are used as ellipses.

<file> A file name in string quotes.

37

<formula> A formula which may involve neither DOTs nor POUNDs.

<g> The identifier reserved to indicate the current list of goals, always followed
by a nonzero natural number which chooses one from the list.

<goal> A goal <g> <n>.

<n> A natural number.

<name> An identifier used to name an object, such as a state delta.

<pathname> A string which completely identifies a file name, by including its
directory path and possible a host designator.

<place> The name of a variable to which the DOT and POUND operators may be applied.

<postformula> A formula which may involve both DOTs and POUNDs.

<postterm> A term which may involve both DOTs and POUNDs.

<preformula> A formula which may involve DOTs but not POUNDs.

<preterm> A term which may involve DOTs but not POUNDs.

<proof> A list of SDVS batch proof commands.

<q> The identifier reserved to indicate the current list of quantified formulas,
always followed by a nonzero natural number which chooses one from the list.

<quant> A quantified formula <q> <n>.

<s-expression> An s-expresion, that is, either a symbol or a list.

<selecti-clause> An integer selection clause which is either an integer, a list of
integers, an integer range n...m, or the symbol t.

<sdspec> A state delta specification, which is either a state delta <name>, a state
delta goal <g> <n>, a usable state delta <u> <n>, or a usable TR state
delta <tr> <n>.

<string> A single line of text.

<symbol> Same as <name>.

<term> A term which may involve neither DOTs nor POUNDs.

<tr> The identifier reserved to indicate the stack of usable TR state deltas, always
followed by a nonzero natural number which chooses one from the stack.

<u> The identifier reserved to indicate the stack of usable state deltas, always
followed by a nonzero natural number which chooses one from the stack.

<usablesd> Some usable state delta <u> <n>.

ax

<unique-name-level> A positive integer specifying the level of qualification given

to variable and procedure names in ISPS files. Level 0

specifies no qualification. The value of the 'uniquenamelevel'

flag will be used whenever <unique-name-level> is omitted.

<<<SDVS Help>>> Flags <<<SDVS Help>>>

abbreviationlevel
This flag controls the printing level (during proof traces) of state deltas and

Ada, VHDL, or ISPS program fragments appearing inside translator continuations in

state deltas. It takes on the values NONE, SOME, and MAX, indicating that these

objects are never to be abbreviated, should be somewhat abbreviated, or should be

maximally abbreviated, respectively.

acceptfileproofs
While this flag is ON the system will accept proofs it reads from files as valid,

otherwise such proofs will be ignored.

autoclose
While this flag is ON the system will attempt to close the proof after each proof

command, otherwise the user must explicitly close the proof.

checkexistence
When this flag is on existential quantifiers of type place are automatically

instantiated in all possible combinations.

checksyntax
While this flag is ON all commands will be checked for proper syntax, and errors

will be generated if an improper command is found. This flag should only be
turned OFF for an efficient run of a proof that ran successfully with the flag ON.

displaympsds
When this flag is ON, the state deltas created during the 'mpisps' and 'mptr'

commands will be displayed.

ekltraceflag
When this flag is ON, EKL internal messages will be printed.

enumerate
When this flag is on bounded universally quantified variables are enumerated.

invariance
While this flag is ON the use of invariants is permitted in SDVS.

optimizeassignments

While this flag is anything but OFF the values assigned to changing places are

optimized to create fewer simplifier database entries. This may result in

decreased proof execution speed.

ppdottednames
When this flag is ON, any symbolic value which is the current value of a place is

pretty-printed by printing the dotted place name.

pplinewidth
The value of this flag controls the right margin for pretty-printing.

39

reportpropagations

While this flag is ON propagated disjunctions are traced between proof commands.

shovstats

Flag not currently implemented.

showstep#

When this flag is OK and traceflag is OK the sequential number of the current

proof step will be traced during proof execution.

strongcoverings

When this flag is OK coverings are interpreted as real set partitions so that a

real change in a subplace implies a real change in every superplace.

stronglytyped

While this flag is OH, the 'createdatatype' command will construct strongly typed

datatype definitions; i.e., a type recognizer predicate will be associated with

each datatype and be present in each of the datatype's axioms. This flag is

initially OFF.

traceflag

This flag can be be turned OFF to inhibit printing of proof trace information.

uniquenamelevel

A non-negative integer, this flag controls the degree of qualification of variable
and procedure names during the translation (into the state delta logic) of ISPS

descriptions. The default value is 1, which is adequate if all names unique. If

the value is not high enough to prevent name clashes, an error will be signalled

during translation.

usedots

When this flag is ON, true-quantifiers? will automatically check the effect of

dots in trying to prove a universal tautology.

weaknext_tr

When this flag is ON the state deltas generated by the translators have the

nontrivial invariant (#all=.all). The invariance flag must be OH for the

application of these state deltas.

40

2 THE PROOF LANGUAGE

The proof language is the formal vehicle for writing proofs of state deltas. Thus, the proof
language allows the user to describe segments of computations and to describe logical deriva-
tions within a given state. Another way to view the proof language is as a programming
language: if the proof language "program" is accepted by SDVS, then the proof is "correct."

Some actions of proof commands are determined by the settings of system flags or by
whether or not various solvers are activated. The solvers (see Section 2.7.6) can be acti-
vated by the command activate <s>, where <s> is the first initial of a solver (e.g. m for
multiplication). Brief descriptions of all the commands are listed in Section 1.10.

2.1 A DYNAMIC EXAMPLE

The following example illustrates some of the dynamic proof commands used in an inter-
active session, although it is not expected that the reader understand thoroughly all the
details at this point. For example, the subtleties of the induct command are dealt with
only in Section 2.5. In interactive mode with crcatesd, all field entries (e.g. pre:) must
be typed on a continuous line with wrap-around (no <CR>). Note that the precondition
and postcondition each should be a list, of sentences, separated by commas. Within each
sentence that is an element of the list, no commas can appear. The word and or the symbol
fc can be used interchangeably for conjunction. The translator predicates ada, vhdl, and
isps can appear only as top-level elements in the list.

The interactive input is identical to the prettyprinted output. Note also that there is no
"graceful" way to abort an interactive command in the middle. The user must persevere
to the end of the argument list, as SDVS 13 has no interrupt command. Thus, if for some
reason you wish to halt the action of SDVS before SDVS gives you a command prompt,
you simply must kill the process and start again.

The state delta ainduct represents the theorem that if a is continually incremented, then its
value will eventually be greater than 1000. It should be noted that the default data type
for the predicate yt is integer, so that the value increases by at least 1.

<sdvs.l> creiitfxil

name: situluct
[SD pre: covrrimj(ull, <t, h), [sil (true) () (a) (#<i yt .n)]

comod[]: <CB>
mod[] : a
post: #(i yt 1000

]

Notice that here we input the interior state delta directly "by hand," without using the
formula command applied to an extant state delta. We could also have typed the internal

sd as

41

[sd pre: (true) comod: () mod: (a) post: (#a yt .a)]

or

[sd pre: (true) mod: (a) post: (#a. yt .a)]

instead of

[sd (true) () (a) (#n yt .a)]

<sdvs.l> pp
object: siniluct

[sd pre: (covering(all,a,b),
[sd pre: (true)

mod: (a)
post: (#a gt .a)])

mod: (a)
post: (#a gt 1000)]

<sdvs.l> it lit
proof name[]: <(!B>

State Delta Verification System, Version 13

Restricted to authorized users only.

Let us prove this. The SDVS proof follows the "natural" proof quite closely: it will be done
by induction on the value of «., taking into account the two cases that either a is or is not
already greater than 1000.

<sdvs.l> prove
state delta[] : sniiluct
proof [] : < CR>

open — [sd pre: (covering(all,a,b),
[sd pre: (true)

mod: (a)
post: (#a gt .a)])

mod: (a)
post: (#a gt 1000)]

Complete the proof.

We will do a proof by cases based on the current value of a. Let us assign the name aa to
the current contents of a.

42

<sdvs.l.l> let
new variable: an

value: .a

let — aa = .a

<sdvs . 1. 2> cases
case predicate: ait ijt 1000

cases — aa gt 1000

open — [sd pre: (aa gt 1000)
comod: (all)

mod: (a)
post: (#a gt 1000)]

close — 0 steps/applications

open — [sd pre: C(aa gt 1000))
comod: (all)

mod: (a)
post: (#a gt 1000)]

Complete the proof.

<sdvs. 1.2.2.1> jis

<< initial state >>
proof in progress of sinduct <3>

let aa = .a <2>
case analysis in progress on: aa gt 1000 or "(aa gt 1000) <1>

1st case: complete
2nd case: in progress
— > you are here < —

Note that the bracketed numbers < 1 >, etc., in the listing of the proofstate are proof step
numbers that can be revisited by pop.

If the contents of a are not greater than 1000, we will do an induction on a new variable,

called counter:*

We know that the value of a must increase by at least, 1 every time through the loop.
Therefore, we have to execute the loop at most 1001 - aa times. Notice we are not assuming

aa ge 0.

<sdvs.l.2.2.1> induct
induction expression: counter

from: 0
to: 1001 - aa

invariant list [] : counter le .a - uu

'Any new name can l>e used here.

43

comodification list[]

modification list[]

base proof []

step proof []

< CR>
(i

< CR>
<CR>

induction — counter from 0 to 1001 - aa

open — [sd pre: (counter = 0)

comod: (all)

post: (counter le .a - aa)]

close — 0 steps/applications

open — [sd pre: (counter ge O.counter It 1001 - aa,

counter le .a - aa)

mod: (a)

post: (counter + 1 le #a - aa)]

Complete the proof.

Now let. us check where we are in the proof.

<sdvs. 1.2.2.1.2.1>]is

<< initial state >>
proof in progress of sinduct <4>

let aa = .a <3>
case analysis in progress on: aa gt 1000 or "(aa gt 1000) <2>

1st case: complete
2nd case: in progress
induction in progress on counter from 0 to 1001 - aa <1>

base case: complete
step case: in progress

— > you are here < —

Let us see why the open state delta is not true.

<sdvs .1.2.2.1.2.1> mhijnotijiml
simplify? [no] : < (.'/?>

g(l) counter + 1 le #a - aa

Let us check which state deltas are known to be true at. this point in the proof.

<sdvs .1.2.2.1.2.1> usubltr.iils

u(l) [sd pre: (true) mod: (a) post: (#a gt .a)]

If we apply this state delta., the remaining goal will be achieved.

44

<sdvs.l.2.2.1.2.1> tipiily
sd/number[highest applicable/once]: <CR>

apply — [sd pre: (true)

mod: (a)

post: (#a gt .a)]

close — 1 steps/applications

join induction cases — [sd pre: (0 le 1001 - aa)

comod: (all)

mod: (a)

post: (1001 - aa le #a - aa)]

close — 1 steps/applications

join — [sd pre: (true)
comod: (all)

mod: (a)
post: (#a gt 1000)]

close — 2 steps/applications

<sdvs.2> dutnp-jiroof
name: sinductproof

Current proof dumped to sinductproof.

<sdvs.2>]>]>
object: sindmtjirooj

proof sinductproof:

prove sinduct

proof:
(let aa = .a,

cases aa gt 1000

then proof:

else proof:

induct on: counter

from: 0
to: 1001 - aa

invariants: (counter le .a - aa)

comodlist:

modlist: (a)

base proof:

step proof: apply u(D)

<sdvs.2> quit

Q.E.D. The proof for this session is in 'sdvsproof.

State Delta Verification System, Version 13

Restricted to authorized users only.

4.r>

We could store this proof and rerun it using the interpret command. We could also input
this proof directly into SDVS at the proof level. In the latter case it must be typed in
verbatim with all the fields (e.g. then, proof:) given explicitly.

2.2 STARTING AND ENDING A PROOF

The command init must be typed before typing any one or any combination of the "top-level
commands": activate, deactivate, provelcutina, and quantification. All other commands
may be typed at any time. Init opens up a new proof context, and makes the state "clean"
and free of any contextual information. Of course, the names of previously defined state
deltas, proofs, and so on are preserved. Init may be followed by a proof name, whose
associated proof will then be executed.

The primary proof command is

<sdvs.l> prove
state delta: <sd>

proof [] : < proof>

where <sd> is the name of a state delta and <proof> is either empty (<CR>), in which case
SDVS will prompt with "complete the proof" and the user can interactively input either
the proof commands, or an atom that evaluates to a. list of proof commands.

The prove command takes a state delta as an argument: this state delta may be specified
either by name or by typing <(TI> and having SDVS prompt for state delta fields to be
input explicitly. The command causes a proof to be "opened," or started, and ensuing
proof commands have as their goal the current theorem corresponding to the most recently
opened proof in a stack discipline. The precondition of the state delta, that is the argument
to prove is added to the current state (also in the case that the state has not been initialized
by the init command) and a new proof context is opened. When the proof is "closed," i.e.,
when the current theorem or subtheorem has been proved, the proved state delta is added
to the usable state delta list and is preserved until the enclosing context is popped or the
comodification list of the proved state delta is violated.

In the normal case (when the autoclose Hag is on), the goal is checked after each proof
command to see if the proof can l>e closed. If autoclose is off, the proof will have to be
closed explicitly with the close command. This may be advantageous when the simplifier
spends a noticeable amount of time trying to prove that the goal is reached in a state the
user knows does not satisfy the goal.

When the proof is complete, the proven state delta is inserted into the database as "usable."

To exit the proof session, type quit. This is the time when any messages about pending
proof steps will appear, for example if an unproved lemma is used. However, if it is desired
to save the proof, this must be done before (putting.

40

2.3 STRAIGHT-LINE SYMBOLIC EXECUTION

The basic proof step is apply. The system searches through the stack of usable state deltas,
the most recently added state delta first, and finds the first one with the precondition true
in the current state. That state delta is then applied; that is, a new state is stored consisting
of

• the postcondition of the applied state delta,

• those facts from the previous state that are not dependent on places in the applied
state delta's modification list, and

• those state deltas true in the previous state whose comodification lists do not contain
places dependent, on places in the applied state delta's modification list.

The common case is that at most one state delta is applicable at one time, so apply is
sufficient. If more than one state delta, is applicable, the specific one we are interested in
applying can be designated. Instead of having to type a. sequence of apphjs, we can specify
how many times to apply; to indicate "as many applications as possible," use the command
* (or (jo or execute). This causes apply to be performed until the goal is reached or until
there is no applicable state delta. Notice that the flag autoclose must be on for this to work.
The command apply! causes application until the next mark point (see Section 3.2). The
integer n following apply or apply! means to use that command it times. A state delta <sd>
or name of a state delta, may be used as an argument to apply. The name of a usable state
delta may be found by the command usablesds.

<sdvs.l> ppstl
state delta: s,ri

[sd pre: (covering(all.a),.a = 1,
[sd pre: (covering(all.a),.a = 1)

mod: (all)
post: (#a = 2)],

[sd pre: (covering(all.a),.a = 2)
mod: (all)

post: (#a = 3)],
[sd pre: (covering(all,a),.a = 3)

mod: (all)
post: (#a = 4)])

mod: (all)
post: (#a = 4)]

<sdvs.l> provt
state delta[] : sü
proof []: <CR>

open — [sd pre: (covering(all.a),.a = 1,
[sd pre: (covering(all.a),.a = 1)

mod: (all)

post: (#a = 2)] ,
[sd pre: (covering(all,a),.a = 2)

mod: (all)
post: (#a = 3)],

[sd pre: (covering(all,a),.a = 3)
mod: (all)

post: (#a = 4)])
mod: (all)

post: (#a = 4)]

Complete the proof.

<sdvs.l.l> *

apply — [sd pre: (covering(all.a),.a = 1)

mod: (all)
post: (#a = 2)]

apply — [sd pre: (covering(all,a),.a = 2)
mod: (all)

post: (#a = 3)]

apply — [sd pre: (covering(all,a),.a = 3)
mod: (all)

post: (#a = 4)]

close — 3 steps/applications

If no state delta is applicable in the given state, it may be that the goal cannot be achieved
from the given state; that is, the current state contradicts the precondition of any currently
true state deltas, or it could be that although the current state does in fact satisfy the
preconditions of some true state deltas, not enough information is known by SDVS to
be aide to decide this. In this case SDVS may need some hints, by way of static proof
commands, to establish that the precondition of the applicable state delta is true.

Another variation ol' apply is until. The proof command "im<z'/P," where P is some predicate,
causes state deltas to be applied until P is known. P may contain both DOTs and POUNDs,
where DOT refers to the contents of a place at the time the until command is given, and
POUND refers to the contents at the time P is subsequently evaluated. This command is
useful (or essential) in cases where the user wants to stop, even though execute may be able
to continue (for example, where the system needs input about static assertions from the
user in order to verify that the postcondition state has been reached). Recall that if the
system cannot prove the postcondition, it will continue to apply state deltas; but then the
correct postcondition time may be passed. So, for example, if the postcondition is P & Q,
and P is automatically provable at. the right time (i.e., when P and Q are in fact both true)
but Q requires assistance, then "until P" would bring the system to the required state, at
which time the user gives the necessary assistance to allow Q to be proved also. If P is true
also at states before Q is true, then the above strategy will have to be modified, for example
by using some other "marker" for the until, or jumping from true P state to true P state,
each time using one apply followed by the "until P."

4<S

Another use for until is the case where the state delta the user wants to apply, say SI, has a
precondition that the shnplifier cannot prove automatically, and thus another (lower) state
delta, say S2, whose precondition is provable is applied instead. In this case the user would
make the condition P in "until?" the postcondition of the last proved state delta, and then
insert hints to prove the precondition of SI.

2.4 PROOF BY CASES

A typical instance of proof by cases occurs at a branch point of a program. In order to
proceed symbolically to the goal, the current state before the branch must be split into
two (or into as many branches as there are), and each branch must be pursued separately.
When a split into two is desired, the cases command may be used. When a case proof is
desired to achieve a goal other than the current goal, the subcases command is used.

The command syntax is

cases <cond> <thenproof> <elseproof>

where <cond> is some predicate such that the assumption of <cond> allows the choice of
branch to be determined, <thenproof> is the proof for that branch, and <elseproof> is the
proof for the rest of the computation, which assumes that <cond> is not true. If one or
both of <thenproof> and <elseproof> are empty, then SDVS will try to close with no proof.
If it is not able to close, it will respond with "complete the proof," and then the user may
interactively submit proof commands. The predicate <cond> can be first order or a state
delta; see the example in Section 2.9.7. Consider the following example:

<sdvs.2> i)]i!nl
state delta: vuseiitnl

[sd pre: (lormula(casesl),formula(cases2))
mod: (a)

post: (#a gt 0)]

<sdvs.2> pji.stl
state delta: cuatsi

[sd pre: (.a It 0) mod: (a) post: (#a = 1)]

<sdvs.2> pimd
state delta: ctixt.i2

[sd pre: (.a ge 0) mod: (a) post: (#a = 2)]

<sdvs.2> itiit
proof name [] : < (■[{>

4!)

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> prove
state delta[] : ciist-trnd
proof [] : < CR>

open— [sdpre: (formula(casesl),formula(cases2))
mod: (a)

post: (#a gt 0)]

Complete the proof.

<sdvs.l.l> cunts
case predicate: .11 It I)

cases — .a It 0

open — [sd pre: (.a It 0)
comod: (all)

mod: (a)
post: (#a gt 0)]

<sdvs.l.l.l.l> *

inserting — pcovering(all,a)

apply — [sd pre: (.a It 0)
mod: (a)

post: (#a = 1)]

inserting — pcovering(all.a)

close — 1 steps/applications

open — [sd pre: ("(.a It 0))
comod: (all)

mod: (a)
post: (#a gt 0)]

Complete the proof.

<sdvs.l.l.2.1> *

inserting — pcovering(all,a)

apply — [sd pre: (.a ge 0)
mod: (a)

post: (#a = 2)]

inserting — pcovering(all,a)

close — 1 steps/applications

join — [sd pre: (true)

comod: (all)

mod: (a)

post: (#a gt 0)]

inserting — pcovering(all,a)

inserting — pcovering(all.a)

close — 1 steps/applications

In this example both cases were proved by the execute command (*). Note that the two
subcases were opened, closed, and joined, and the joined state delta was applied to complete
the proof of the top level.

When there are more than two cases to consider, and the user wants to describe each
explicitly rather than translate the problem into a nested cases, there is the command
meases (m for multiple):

meases (<condl>.<proofl>) (<cond2>.<proof2>) ... (<condn>.<proofn>)

SDVS must be able to prove that the disjunction of the <cond> clauses is true.

For example, consider the following proof:

<sdvs.2> pp
object: casesproof

proof casesproof:

prove [sd pre: ([sd pre: (pi ft p2)
mod: (all)

post: (ql)],
[sd pre: (pi ft ~p2)

mod: (all)
post: (q2)],

[sd pre: ("pi ft p2)
mod: (all)

post: (q2)],
[sd pre: (~pl ft ~p2)

mod: (all)
post: (ql)])

mod: (all)
post: (ql or q2)]

proof:
meases

(case: pi ft p2
proof: *

51

case: pi ft ~p2

proof: *

case: ~pl ft p2

proof: *

case: ~pl ft ~p2

proof: *)

<sdvs.2> init
proof name[]: casesproof

State Delta Verification System, Version 13

Restricted to authorized users only.

open — [sd pre: ([sd pre: (pi ft p2)
mod: (all)

post: (ql)],
[sd pre: (pi ft ~p2)

mod: (all)
post: (q2)],

[sd pre: ("pi ft p2)
mod: (all)

post: (q2)],
[sd pre: ("pi ft ~p2)

mod: (all)
post: (ql)])

mod: (all)
post: (ql or q2)]

open — [sd pre: (pi ft p2)
comod: (all)

mod: (all)
post: (ql or q2)]

apply — [sd pre: (pi ft p2)
mod: (all)

post: (ql)]

close — 1 steps/applications

open — [sd pre: (pi ft ~p2)
comod: (all)

mod: (all)
post: (ql or q2)]

apply — [sd pre: (pi ft "p2)
mod: (all)

post: (q2)]

close — 1 steps/applications

open — [sd pre: ("pi ft p2)
comod: (all)

52

mod: (all)
post: (ql or q2)]

apply — [sd pre: ("pi ft p2)
mod: (all)

post: (q2)]

close — 1 steps/applications

open — [sd pre: (~pl ft "p2)

comod: (all)

mod: (all)

post: (ql or q2)]

apply — [sd pre: ("pi k ~p2)

mod: (all)

post: (ql)]

close — 1 steps/applications

join — [sd pre: (pi ft p2 or pi ft ~p2 or ~pl ft p2 or

"pi ft ~p2)

comod: (all)

mod: (all)
post: (ql or q2)]

close — 1 steps/applications

Another variety of cases is subcases. This is used for proving a statement other than the
current goal by cases. Of course, there is no essential need for subcases, since starting a new
subproof of a state delta with the subcases goal as the postcondition, followed by applying
that state delta, will suffice.

The format is

subcases <cond> <mod> <subgoal> <thenprooi> <elseproof>.

This is similar to the cases command, but the cases are joined at <subgoal> instead of at
the goal of the current proof. The field <mod> is the mod list for each execution path to
the subgoal.

<sdvs. 1> subcases
subcase predicate:

modification list[]:
P
<CR>

subgoal:
then proof □ :
else proof □ :

p or q
<CR>
<CR>

subcases

53

open — [sd pre: (p) comod: (all) post: (p or q)]

close — 0 steps/applications

open — [sd pre: (~p)
comod: (all)
post: (p or q)]

Complete the proof.

Of course, the proof is not closed, because the above state delta is not valid.

2.5 PROOF BY INDUCTION

Induction arguments are in general more complex than straight-line symbolic execution or
branching. Several useful forms of induction that are applicable in many naturally occurring
proofs are identified and incorporated into SDVS 13. SDVS 13 is able to prove claims about
terminating loops by induction on the natural numbers using the induct command. A fixed
point induction command for proving claims about TR-generated continuations has been
implemented on an experimental basis, but does not appear in robust form in SDVS 13. In
addition, there are experimental commands for general mathematical induction (natinduct:
see Section 2.9.8) and for proving properties of Ada recursive procedures (recurse) [43]. The
omegainduct command (Section 8.5) is primarily intended for proving safety properties of
Ada programs.

The induct command allows for proofs of theorems about programs containing certain kinds
of loops. Note: the restrictions on the kind of loops make the current implementation unable
to handle some cases. However, probably any proof involving induction over a set essentially
ordered like the natural numbers is verifiable in this implementation.

Sometimes a proof by induct is a short version of another proof by symbolic execution, if
the loop is of known length. For loops with data-dependent length, induction may be the
only way to take the proof over the loop.

The typical use of the induct command is when you are at a place in the proof where you
want to prove the following state delta (call it Si):

[SD pre: (TRUE)
comod: (ALL)

mod: (M)
post: (Q)]

and then apply it, bringing the symbolic computation to a state in the future at which Q
is true, and during which interval only the places in M have changed.

Proving SI by induction involves finding a predicate Inv(.X) (the invariant) that depends
on some number-valued place X such that Inv(n) implies Q for some n, and such that

54

Inv(O) is true now, i.e.,

(1) [SD pre: (TRUE)
comod: (ALL)

mod: ()
post: (Inv(O))]

and

(2)[SD pre: (Inv(i))
comod: ()

mod: (M)
post: (Inv(i+1))]

If these two state deltas are true, then it is true that for all n,

[SD pre: (TRUE)

comod: (ALL)

mod: (M)

post: (Inv(n))]

Thus, we can apply this state delta, obtaining Inv(n), and thus Q.

[Note for the advanced SDVS user: the above conclusion is valid if we use any comod list
C instead of the empty comod list in (2), as long as C and M are disjoint. However, we
strongly suggest (and this may be enforced in later versions of SDVS) that the induct comod
list be always chosen to be empty. Similarly we suggest that there be no dots in the induct
mod list, for example a[.i] where a is an array place. Instead, use a in the mod list and
make the invariant strong enough to imply that part of the array is held constant in the
transition represented by the step-case state delta.

However, when using induction to characterize iterations of a loop involving arrays, more
care on the user's part might be needed. For example, if one iteration of the loop changes
only the slice a[.i: 10], where A has a different value depending on which iteration you are
doing, you really would need to give a[.i : 10] as the induct command modlist. Then the
state delta representing the net result of all the iterations (the "join state delta" constructed
at the successful completion of the induct command) will have simply a in its modlist: there
is no simple way to restrict the part of a that may have changed. If in fact a is actually
of length 20, say, and you need to preserve the values of a[ll : 20] over the course of the
induction, do a

<sdvs.l> let
new variable: aa

value: a[l:10]

55

and give aa[.i : 10] as the induct modlist. Then the step-case state delta will preserve the
first part of aa, and thus of a, and the join-case state delta will have only aa as its modlist,
so that a[ll : 20] will be preserved. End of Note for the advanced SDVS user.]

Actually, SDVS makes the user choose initial ("from") and final ("to") values for .X, instead
of using 0 and some arbitrary n. Also, Inv must be a predicate without top-level pounds.
It may, and often does, contain state deltas. Inv(./#) is the result of substituting pounds
for dots in Inv.

Therefore, SDVS sets up proofs of

(1) [SD pre: (TRUE)

comod: (ALL)
mod: ()

post: (Inv(from))]

and

(2) [SD pre: (Inv(i), i ge from, i It to)
comod: (C)

mod: (M)
post: (Inv(i+1)(./#))]

If the system can prove these two, then it creates and automatically applies the state delta:

[SD pre: (TRUE)
comod: (ALL)

mod: (M)
post: (Inv(to)(./#))]

If Inv was chosen shrewdly (for example, if Inv(to) implies Q), then Q will be true in the
resulting new state, thus essentially proving and applying Si.

The induct command has eight parameters,

induct <indexp> <from> <to> <invariant> <comod> <mod> <baseproof> <stepproof>

and means "Do an induction proof (of the current goal) using the expression <indexp> in
the range <from> to <to>" (both of type integer, with one provably less than or equal to
the other); <indexp> can be any expression of type integer that contains only one variable
of type place and no pounds. A new (previously undeclared) place may be introduced as

56

the only place in <indexp>. <invariant> (a list of predicates) is the loop invariant. The
invariant can also contain state deltas, but cannot contain pounds at the top level. Do not
leave the invariant field blank; if you really do not need an invariant, type "true." <comod>
and <mod> are the lists for the induction step; they must be disjoint.

In the above typical case, <indexp> is .X, <from> is Initial, <to> is Final, <invariant> is Inv,
<comod> is C, <mod> is M, and <baseproof> and <stepproof> would be proofs of the two
claims (1) and (2) above. If either <baseproof> or <stepproof> is empty, SDVS tries to close
the current proof automatically. If it cannot, it responds with "complete the proof," and
then the user may submit interactive proof commands.

The step modification list gives the places that change in executing the loop once, and the
step comodification list gives those places that must be preserved for the loop to execute
again. These lists must be disjoint. Indeed, the comodification list of the induct command
may always be taken to be empty, if the invariant is chosen to be strong enough. Also, the
mod list of the induct command must be contained in the mod list of the state delta being
proved. However, there need not be any connection between the comodification lists of the
two state deltas.

Here is a typical proof. Note that the comodification list is empty, as is the base proof;
under certain circumstances related to the pretty-printer, these fields may not show up in
the pretty printed form.

(prove [sd pre: (.a = l,.b = l,covering(all,a,b),

[sd pre: (.a = l,.b ge l,covering(all,a,b))

mod: (b)

post: (#b = .b + 1)])
mod: (b)

post: (#b = 100,#a ge 0)]

proof:

induct on: .b

from: 1

to: 100

invariants: (.a= 1)

comodlist:

modlist: (b)

base proof:

step proof:

apply [sd pre: (.a = l,.b ge l,covering(all,a,b))

mod: (b)

post: (#b = .b + 1)])

And here is a transcript of the proof:

<sdvs.l.2.1> init
proof name[]: pr.eg28proof

State Delta Verification System, Version 13

57

Restricted to authorized users only.

open — [sd pre: (.a = l,.b = l,covering(all,a,b),
[sd pre: (.a = l,.b ge 1,covering(all,a,b))

mod: (b)
post: (#b = .b + 1)])

mod: (b)
post: (#b = 100,#a ge 0)]

induction — .b from 1 to 100

open — [sd pre: (true)
comod: (all)
post: (.a = l,.b = 1)]

close — 0 steps/applications

open ~ [sd pre: (.b ge l,.b It 100,.a = 1)
mod: (b)

post: (#a = l,#b = .b + 1)]

apply — [sd pre: (.a = l,.b ge 1,covering(all,a,b))
mod: (b)

post: (#b = .b + 1)]

close — 1 steps/applications

join induction cases — [sd pre: (1 le 100)
comod: (all)

mod: (b)
post: (#b = 100,#a = 1)]

close — 1 steps/applications

If the invariant is left out, then the proof will not go through. However, if the comodification
list is made to contain a, the proof will go through with trivial invariant.

A minor change in the state delta will allow both the comodification list and the invariant
to be "true:"

[sd pre: (.a = l,.b = l,covering(all,a,b),
[sd pre: (.b ge 1,covering(all,a,b))

mod: (b)
post: (#b = .b + 1)])

mod: (b)
post: (#b = 100,#a ge 0)]

Another option is to use a new name as an induction variable, for example counter. This
variable is automatically incremented by 1 every time around the loop, i.e., from the precon-
dition to the postcondition of the step-case state delta. See Section 2.1 for another example
involving counter.

58

If the induction argument is over a larger well-ordered set, then a more complicated proof
will have to be used. For example, we could be faced with the situation of a loop within a
loop, where the inner loop bounds are possibly different each time.

For an abstract illustration, consider the pairs of natural numbers ordered lexicographically
(the order is a;2). If a loop takes a pair into a lower pair, then there is no finite bound on the
number of times around the loop, even in terms of the initial pair. However, the loop does
terminate with the value (0,0). Thus, the following state delta ind.sd is true and provable
in SDVS:

[sd pre: (covering(all,a,b),.a ge 0,.b ge 0,

[sd pre: (.a gt 0,.b gt 0)

mod: (a,b)

post: (#a It .a or #a = .aft #b It .b,#a ge 0,#b ge 0)],

[sd pre: (.a = 0,.b gt 0)

mod: (a,b)

post: (#a = .a,#b It .b,#b ge 0)],

[sd pre: (.a gt 0,.b = 0)

mod: (a,b)

post: (#a It .a,*a ge 0,*b ge 0)])
mod: (a,b)

post: (#a = 0,#b - 0)]

Here is the proof 4.

(prove ind.sd
proof:

(prove si

proof:

(prove sl.l

proof:

(let aa = .a,

let bb = .b,

Induct on: k

from: 0

to: bb

invariants: (.a It aa or

.a = aa ft .b le bb - k,

.a ge 0,.b ge 0)

comodlist:

modiist: (a,b)

base proof:

step proof:

cases .b = 0
then proof:

else proof:

cases .a gt 0

then proof: apply il

else proof:),

let aa = .a,

4 The proof is due to John Doner.

59

apply sl.l,
cases .a = aa
then proof: apply i3
else proof:),

prove s2
proof:

(let aa = .a,
induct on: i

from: 0
to: aa
invariants: (.a le aa - i
comodlist:
modlist: (a,b)
base proof:
step proof:

cases .a = 0
then proof:
else proof: apply si),

prove s3
proof:

(let bb = .b,
induct on: j

from: 0
to: bb
invariants: (.b le bb - j
comodlist:
modlist: (a,b)
base proof:
step proof:

cases .b = 0
then proof:
else pro of: apply i2),

cases .a = 0
then proof: apply s3
else proof:

(apply s2,
apply s3)))

ere si is

.a ge 0,.b ge 0)

.a = 0,.b ge 0)

[sd pre: (.a gt 0,.b ge 0)
mod: (a,b)

post: (#a It .a,#a ge 0,#b ge 0)]

sl.l is

[sd pre: (.a gt 0,.b ge 0)
mod: (a,b)

post: (#a It .a or #a = .a * #b = 0,#a ge 0,#b ge 0)]

s2 is

60

[sd pre: (.a gt 0,.b ge 0)
mod: (a,b)

post: (#a = 0,#b ge 0)]

and s3 is

[sd pre: (.a = 0,.b ge 0)
mod: (a,b)

post: (#a = 0,#b = 0)]

2.6 PROOF BY CONTRADICTION

In SDVS, if the symbolic execution proof brings about an inconsistent state (e.g. one
containing 0 = 1 or i / i), then the most recently begun proof is closed, and that state
delta that was being proved is proclaimed usable. The explanation is that in opening the
proof of that state delta, we assumed that there was a state (subject to the comod list
restrictions) that satisfied its precondition, and on the basis of that state we were able to
execute forward. If we arrive at an inconsistent state, that must mean that our previous
assumption was false. Thus, there was in fact no state satisfying those conditions, and thus
the state delta is "vacuously" true.

When trying to achieve the postcondition of the goal state delta, a usable state delta
can (only) be applied if its mod list is contained in that of the goal, since that is part
of the satisfaction condition. However, if reaching a contradiction is the intended proof
strategy, one need not worry about this restriction; in that case we are not executing to
the state fulfilling the postcondition, but are simply trying to get to a state manifesting the
contradiction in the precondition.

Another way to put this is that if the mod list of an applied state delta is not contained in
the mod list of the state delta to be proven, then the only way the proof can be closed is
by reaching a contradiction. The user is suitably warned by an SDVS message.

First, we show how proof by contradiction can be exploited to eliminate false cases. The
state delta eqdotx below essentially says that if we can execute to a state, allowing x to
change along the way, in which we learn that the original value of x was 1, then in fact, the
current value of x is 1. Note that we cannot prove this fact by simply executing to a future
state, because the mod list x of the applied state delta is not included in the mod list of the
state delta to be proven, which is empty, and thus we would have to reach a contradiction
in order to close the proof. But since .a; is 1, there is no contradiction. The way to reach a
contradiction is first to assume that the current value of x is not 1. This calls for a proof
by cases.

<sdvs.l> pp
object: dotx

[sd pre: (true) mod: (x) post: (.i = 1)]

61

<sdvs.l> pp
object: eqdotx

[sd pre: (formula(dotx))
comod: (all)
post: (.x = 1)]

<sdvs.l> prove
state delta[]: eqdotx
proof []: <CR>

open — [sd pre: (formula(dotx))
comod: (all)
post: (.x = 1)]

Complete the proof.

<sdvs.l.l> cases
case predicate: .x = 1

cases — .x = 1

open — [sd pre: (.x = 1)
comod: (all)
post: (x\863 = 1)]

close — 0 steps/applications

open — [sd pre: (~(.x = 1))
comod: (all)
post: (x\863 = 1)]

Complete the proof.

<sdvs.l.l.2.1> usable

u(l) [sd pre: (.x = 1)
comod: (all)
post: (x\863 = 1)]

u(2) [sd pre: (true) mod: (x) post: (.x = 1)]

No usable quantified formulas.

<sdvs.l.l.2.1> apply
sd/number [highest applicable/once] : <CR>

inserting — pcovering(all.x)

apply — [sd pre: (true)
mod: (x)

post: (.x = 1)]

Warning: the modiist of the last applied state delta mentions places

62

(x) outside of the modlist of the state delta to be proven. The

current proof can only be closed by contradiction.

The postcondition of the last applied state delta is inconsistent

with the current state.

close — 0 steps/applications

join — [sd pre: (true)

comod: (all)

post: (x\863 = 1)]

close — 1 steps/applications

Now here is the example from Section 1.5. This shows how we may sometimes want to
execute to achieve a false state in order to prove the inconsistency of a precondition.

<sdvs.l> ppsd
state delta: covsd

[sd pre: (covering(a,c,d))
mod: (d)

post: (#c = .c + 1)]

<sdvs.l> ppsd
state delta: contrasd

[sd pre: (formula(covsd),covering(a,c,d))
mod: (all)

post: (false)]

<sdvs.l> prove
state delta[]: contrasd
proof [] : < CR>

open— [sd pre: (formula(covsd),covering(a,c,d))
mod: (all)

post: (false)]

Complete the proof.

<sdvs.l.l> usablesds

u(l) [sd pre: (covering(a,c,d))
mod: (d)

post: (#c = .c + 1)]

<sdvs.l.l> apply
sd/number[highest applicable/once]: <CR>

apply — [sd pre: (covering(a,c,d))
mod: (d)

post: (#c = .c + 1)]

63

The postcondition of the last applied state delta is inconsistent with
the current state.

close — 0 steps/applications

The final example shows how to prove that if p can bring about false, then p holds in the
current state.

<sdvs.l> prove
state delta[]: negate3.sd
proof []: <CR>

open — [sd pre: ([sd pre: (p)
comod: (all)

mod: (all)
post: (false)])

post: (~p)]

Complete the proof.

<sdvs.l.l> cases
case predicate: p

cases — p

open — [sd pre: (p) comod: (all) post: (~p)]

<sdvs.l.l.l.l> usable

u(l) [sd pre: (p) comod: (all) mod: (all) post: (false)]

No usable quantified formulas.

Now we would like to apply u(l) to bring about false and thereby negate the precondition.

<sdvs.l.l. 1.1> apply

sd/number[highest applicable/once]: u

number: 1

apply — [sd pre: (p)

comod: (all)

mod: (all)

post: (false)]

Warning: the modlist of the last applied state delta mentions places

(all) outside of the modlist of the state delta to be proven. The

current proof can only be closed by contradiction.

64

The postcondition of the last applied state delta is inconsistent

with the current state.

close — 0 steps/applications

open — [sd pre: (~p)

comod: (all)

post: ("p)]

close — 0 steps/applications

join — [sd pre: (true) comod: (all) post: (*p)]

close — 1 steps/applications

2.7 STATIC PROOF

Now we describe the static proof language. These commands relate only to deductions
within a given state. They do not open or apply state deltas, though they certainly can
cause state deltas to close.

There are essentially three different ways in which the system can prove static assertions,
i.e., that a static assertion A follows from the database D:

1. Automatically: The assertion follows from the database without any user interaction;
the system "knows" it to be true.

2. Proof by "axiom" or "lemma" invocation: The assertion A follows by axiom or lemma
invocation from database D if there is an axiom or lemma of the form "if C then P,"
where A is of the pattern P and C follows from D automatically. This is implemented
so that the user need not, but may, specify the axiom or lemma to be used to verify
A. If no name is specified, SDVS checks all the axioms or lemmas with the required
pattern until it finds one with the provable precondition C. (Note that the appropriate
list of axioms must be read before being used. The command help axioms gives the
names of the files of axioms.) The database is then updated by adding A. The choice
of the word "axiom" simply indicates that these rules are useful and basic enough
to be built into SDVS. Of course, they are not independent or necessarily elegant.
"Lemmas" are rules that the user may create and prove from the axioms and already
proven lemmas.

3. Proof "by notice": In the case that A does not follow automatically from the database
D or by axiom or lemma, one must construct a sequence A\,...,An such that A\
follows automatically from D, A{ follows automatically from D,A\,..., J4,_I, and A
is An. This is implemented by the notice command. Thus, notice A{ checks to see
whether Ai follows (automatically) from the current database, and if so, updates the
database by adding Ai explicitly.

Chapter 9, on the simplifier, specifies how much about a given domain is fully automated
knowledge (decision procedures) and how much is partially automated.

65

2.7.1 Axioms

The provebyaxiom command causes the system to try to prove the subsequent statement by
invoking an axiom. An axiom is represented as a pattern of the form (implies q p), or just p
[equivalent to (implies true p)], where q and p are predicate patterns that may contain free
variables. A single instantiation of an axiom can be used to prove the truth of a formula that
"matches" the consequent of the axiom "at the top level." By "matches at the top level"
we mean that the axiom consequent (p) has the same syntactic form as the formula, except
for free variables, which match arbitrary terms. If a free variable is duplicated, then the
formula must have identical terms that match the multiple occurrences of the free variable.

Consider a formula F and an axiom A of the form (implies q p). We say that "A proves F"
if and only if p matches F at the top level, and q, when instantiated, simplifies (in SDVS)
to TRUE. An axiom pattern is instantiated by the replacement of all of its free variables
with matched terms taken from the formula. In mathematical notation, if p and q are of the
form p(xi,...,xn) and q(x-i,...,xn), then F has to be of the form p(t\,...,<„) for terms
ti, and q{tu... ,tn) must simplify to TRUE.

The syntax of the command is provebyaxiom <expr> <axiom-name>. If <axiom-name> is
omitted, the system will search the list of all currently loaded axioms to try to find one
with the right pattern. The system prompts for instantiations of variables that appear on
the left side but not on the right side.

This next little example only illustrates what would happen if test.ax really were an axiom.
You cannot duplicate this without using the createaxiom command, which we like to dis-
courage.

<sdvs.l> pp
object: axiom
axiom name: test.ax

axiom test.ax (x,y,z):
p(x,y) —> q(x,z)

<sdvs.l> prove
state delta[]: test.sd
proof []: <CR>

open — [sd pre: (p(l,2)) post: (q(l,3))]

Complete the proof.

<sdvs.l.l> provebyaxiom
formula to prove: q(l, 3)

axiom name[] : test.ax
match for y: 2

provebyaxiom test.ax — q(l,3)

close — 1 steps/applications

66

The following is a list of the commands related to axioms that are illustrated in the example
below:

<sdvs.l> read
path name[testproofs/manual/ada/exchangetest.proofs] : axioms/array coverings, axioms

Definitions read from file "axioms/arraycoverings.axioms"
— (disjoint\adjacent\slices,disjoint\slices,disjoint\elements,

pcovering\slice ,pcovering\ele)iient ,pcovering\slice\slice,
pcovering\slice\element,disjoint\slice\element)

<sdvs.2> axiomnames
symbol list [] : < CR>

Axiom names — (pcovering\slice\element,pcovering\slice\slice,
pcovering\element,pcovering\slice,disjoint\slice\element,
disjoint\elements,disjoint\slices,
disjoint\adjacent\slices,test.ax,test.3,test.2,test.1,
stack.6,stack.5,stack.4,stack.3,stack.2.stack.1)

<sdvs.2> pp
ob j ect: axioms
axiom names [] : < CR>
with symbols D : < CR>

axiom pcovering\slice\element (a,i,m,n): (disjointarray(a) ft m le i) ft i le n
—> pcovering(a[m:n] ,a[i])

axiom pcovering\slice\slice (a,i,j,m,n): ((disjointarray(a) ft m le i) ft i le j) ft
j le n —> pcovering(a[m:n] ,a[i: j])

axiom pcovering\element (a,i): disjointarray(a) —> pcovering(a,a[i])

axiom pcovering\slice (a,i,j): disjointarray(a) —> pcovering(a,a[i:j])

axiom disjoint\slice\element (a,i,m,n): disjointarray(a) ft
(m gt i or i gt n)
—> alldisjoint(a[m:n],a[i])

axiom disjoint\elements (a,i,j): disjointarray(a) ft i "= j
—> alldisjoint(a[i] ,a[j])

axiom disjoint\slices (a,i,j,k,l): disjointarray(a) ft (j It k or 1 It i)
—> alldisjoint(a[i:j],a[k:l])

axiom disjoint\adjacent\slices (a.i.j.k.l): ((disjointarray(a) ft j ge i) ft
j + 1 = k) ft

1 ge k —> covering(a[i:l],a[i:j],
a[k:l])

axiom test.ax (x,y,z): p(x,y) —> q(x,z)

axiom test.3 (xl,x2): unscrunch2(scrunch(xl,x2)) = x2

67

axiom test.2 (il,x2): unscrunchl(scrunch(xl,x2)) = xl

axiom test.1 (t): t = scrunch(unscrunchl(t),unscrunch2(t))

axiom stack.6 (i,s): stacksize(push(i,s)) = 1 + stacksize(s)

axiom stack.5 0 : stacksize(O) = 0

axiom stack.4 (i,s): pop(push(i,s)) = s

axiom stack.3 (i,s): top(push(i,s)) = i

axiom stack.2 (s): () ~= s —> s = push(top(s) ,pop(s))

axiom stack.1 (i,s): () ~= push(i.s)

<sdvs.2> pp
object: axioms
axiom names [] : < CR>
with symbols [] : pcovering

axiom pcovering\slice\element (a,i,m,n): (disjointarray(a) ft m le i) ft i le n
—> pcovering(a[m:n] ,a[i])

axiom pcovering\slice\slice (a,i,j,m,n): ((disjointarray(a) ft m le i) ft i le j) ft
j le n —> pcovering(a[m:n],a[i:j])

axiom pcovering\element (asi): disjointarray(a) —> pcovering(a,a[i])

axiom pcovering\slice (a,i,j): disjointarray(a) —> pcovering(a,a[i:j])

<sdvs.2> axiomnames
symbol list [] : pcovering

Axiom names with symbol pcovering — (pcovering\slice\element,
pcovering\slice\slice,
pcovering\element,pcovering\slice)

<sdvs.2> pp
object: axioms
axiom names [] : disjoint\elements

axiom disjoint\elements (a,i,j): disjointarray(a) ft i "= j
—> alldisjoint(a[i] ,a[j])

Now assume that we know that a is a disjoint array. Then SDVS automatically knows (if
the array solver is active) that a[i] and a[j] are alldisjoint for any two distinct integers i, j,
whether or not they are in range (real indices).

<sdvs.2> simp
expression: disjointarray(a) -> alldisjoint(a[l], a[2j)

true

68

Also,

<sdvs.2> simp
expression: (disjointarray(a) and i ~= j) -> alldisjoint(a[l], a[2j)

true

The axiom disjoint\elements is used in the case that a[i] and a[j] are introduced before the
system knows that i / j. For example:

<sdvs.3> prove
state delta[]: disjoints.sd
proof [] : < CR>

open— [sd pre: (declare(a,type(array,l,2,type(bitstring,8))),
.a[i] = .a[j])

post: (false)]

Complete the proof.

<sdvs.3.1> cases
case predicate: i = j

cases — i = j

open — [sd pre: (i = j)
comod: (all)
post: (false)]

<sdvs.3.1.1.1> defer
numbers of goals[all]: < CR>

deferring all current goals

close — 1 steps/applications

open — [sd pre: ("(i = j))
comod: (all)
post: (false)]

Complete the proof.

<sdvs.3.1.2.1> simp
expression: alldisjoint(a[i], afj])

alldisjoint(a[i] ,a[j])

<sdvs.3.1.2.1> provebyaxiom
formula to prove: alldisjoint(a[i], a[j])

axiom name []: disjoint\elements

provebyaxiom disjoint\elements — alldisjoint(a[i],a[j])

69

<sdvs.3.1.2.2> simp
expression: alldisjoint(a[i], afjj)

true

2.7.2 Rewriting

The rewrite command is based on the mechanism for invoking axioms and applies to equality
assertions that are provable by existing axioms. When the user wants to cause an equality
between two terms to be asserted, but does not want (or need) to write the "simpler" term,
he or she may simply type rewritebyaxiom x. The system then scans the axioms to find an
equality axiom based on the pattern of x (on either side of the equality) and causes the
equality to be asserted. Again, the name of the axiom desired to do the rewriting may be
added to the end of the command.

Another method has been implemented for rewriting when not all the variables appear on
one side of the equality to be rewritten. However, the general mechanism whereby SDVS
prompts for unmatched variables (appearing on the left side of the implication but not the
right side), as in the case of provebyaxiom, has not been implemented for rewritebyaxiom.
For example, consider the axiom

ussub\ussub (x,h,i,j,k,l,m): h = min(i,k + max(j.O)) ft
m = mai(j.O) + mar(l,0) —> x<i:jxk:l> = x<h:m>

As a matter of convenience, the user may want to say rewritebyaxiom x <i: j><k:n>. This is
possible only if the precondition is true. However, since some variables in the precondition
do not have matches in the input term, there is nothing to check. In this case, the system
will substitute the correct values for h and m.

<sdvs.l> prove
state delta[] : rewrite.sd
proof [] : < CR>

open — [sd pre: (h = min(i,k + max(j,0)) ft
m = max(j,0) + max(n,0))

post: (x<i:j><k:n> = x<h:m>)]

Complete the proof.

<sdvs.l.l> rewritebyaxiom
term to rewrite: x<i:jxk:n>

axiom name[]: ussub\ussub

rewritebyaxiom ussub\ussub — x<i:jxk:n>
= x<min(i,k + max(j.O))

70

:max(j,0) + max(n,0)>

close — 1 steps/applications

Note that if the bitstring solver were activated at level 3 or 4, then the above proof would
have closed because the simplifier would know the truth of the implication to be proved
(remember that solvers must be activated before init):

<sdvs. 1> activate
solver: 65

Bitstring solver (level 3) activated.

<sdvs.3> prove
state delta []: rewrite.sd
proof [] : < CR>

open — [sd pre: (h = min(i,k + max(j.O)) t
m = max(j,0) + max(n,0))

post: (x<i:j><k:n> = x<h:m>)]

close — 0 steps/applications

2.7.3 Current Axiom List

The axioms are grouped according to the domain to which they apply. The intent is that
each group be complete for its domain; i.e., every (universal) true statement about that
domain can be proved from the axioms. In addition, there is a supply of less "basic"
axioms that have been found to be useful in actual proofs. For example, in the bitstring
domain there are axioms for distributing substring over concatenation, for compressing
concatenation, and so on.

The user may peruse the list of axioms of the domain of interest to see if there is an axiom
that will exactly solve a given problem, or one may use the command axiomnames or pp
< CR > axioms with the symbol or symbols of interest. The "symbol" refers to the actual
symbol in the axiom, and not in the name of the axiom. Also note that it is the alphabetic
name, not the mathematical symbol, e.g. "mult" not "*". The simplifier names of the
symbols used in the axioms can be obtained by the help symbols query, which responds:

<«SDVS Help>» Symbols used in Axioms and Lemmas «XSDVS Help>»

constants false, true, emptyarray, 0, 1, emptyplace, everyplace, nullqueue

functions mkarray, val, inertial.update, transport.update, transaction,
waveform, frontqueue, dequeue, enqueue, cdr, car, cons, diff,

71

union, slice, range, origin, element, aconc, lh, usval, bs,
bcons, ussub, usconc (©), useql (==), usneq ("==), uslss
(uslt), usleq (usle), usgtr (usgt), usgeq (usge), usplus (++),
usdifference (—), ustimes (**), usquotient (//), usremainder
(usmod), usnot (""), usand (&&), usor, usxor, usnand, usnor,
useqv, zeros, ones, lastone, parity, idiv, irem, icons, plus
(+), minus (-), mult (*), expt ("), max, min, div (/), rem,
mod, abs, vhdltime, timeglobal, timedelta, timeplus, tcval

predicates timege, timegt, timele, timelt, vhdltimep, sd-value, distinct,
neq ("=), eq (=), not ("), implies (—>), xor, or, and (&),
cond, epred, esucc, ege, egt, ele, elt, usvalp, lhp,
disjointarray, covering, pcovering, alldisjoint, ge, gt, le,
It, emptyqueue, preemption, waveformp

If a particular claim proven by a sequence of steps involving axioms is to be used more than
once, it may be advisable to make a lemma by createlemma, which then may be reused.

Below we list all SDVS axioms, grouped by filename. The following list is given as response
to the help axioms query:

<sdvs.l> help
with [all] : axioms

<«SDVS Help>>> Axioms <<<SDVS Help>»

axioms/abs.axioms integer absolute value

axioms/arraycoverings.axioms arrays and coverings

axioms/arrays.axioms O-origin arrays (obsolete)

axioms/bitstring.axioms bitstrings

axioms/div.axioms integer division

axioms/exp.axioms integer exponentiation

axioms/idiv.axioms unsigned integer division

axioms/lastone.axioms the LAST.ONE bitstring function

axioms/log2.axioms integer log base 2

axioms/minmax.axioms integer min and max

72

axioms/mod.axioms integer modulus

axioms/mult.axioms integer multiplication

axioms/origin-arrays.axioms arbitrary-origin arrays

axioms/quant.axioms quantification

axioms/rem. axioms integer remainder

axioms/sqrt.axioms integer square root

Axioms for Integer Absolute value (contained in file axioms/abs.axioms):

abs\pos abs\pos (x) : x ge 0 —> abs(x) = x

abs\neg abs\neg (x) : x It 0 —> abs(x) = -x

Axioms for Bitstrings (contained in file axioms/bitstring.axioms):

usval\lt\lh usval\lt\lh (b): 2 ' lh(b) gt |b|

usval\usplus\carry usval\usplus\carry (x,y,k): lh(x) = lh(y) ft k It lh(x)
—> |(x ++ y)<k:0>|

= |(x ++ y)<k - 1:0>| +
|(x ++ y)<k:k>| * 2 * k

ussub\ltO ussub\ltO (x,i,j): 0 ge j —> x<i:j> = x<i:0>

ussub\usdifference ussub\usdifference (u,v,x,y,m,n): u = |x| ft
(v = |y| ft

(u ge v ft
(n = 0 ft

2 " (m + 1) gt u - v)))
—> |(x — y)<m:n>| = u - v

ussub\ustimes ussub\ustimes (x,y,i,j): j = 0 ft 2 " i gt |x| * |y|
—> |(x ** y)<i:j>| = |x ** y|

ussub\ustimes\0 ussub\ustimes\0 (x,y,i,j): 2 " j gt |x| * |y| —> |(x ** y)<i:j>| = 0

usval\ussub\0 usval\ussub\0 (x,i,j): |x| = 0 —> |x<i:j>| = 0

usor\usplus usor\usplus (x.y.z): lh(x) = 1 ft (lh(y) = 1 ft z = 1(D)
—> x usor y = (z ++ (x ++ y))<l:l>

usorO usorO (x,y): |x| - 0 ft lh(y) ge lh(x) —> x usor y = y

equsvals equsvals (x.y.i.j): |x| = |y| —> |x<i:j>| = |y<i:j>|

73

usandl usandl (x,y): x = 1(1) ft lh(y) = 1 —> x ftft y = y

ussub\usand ussub\usand (x,y,i,j): (x ftft y)<i:j> = x<i:j> kk y<i:j>

ussub\usxor ussub\usxor (x,y,i,j): (x usxor y)<i:j> = x<i:j> usxor y<i:j>

ussub\usor ussub\usor (x,y,i,j): (x usor y)<i:j> = x<i:j> usor y<i:j>

ussub\usplus\ussub ussub\usplus\ussub (x.y.i,j,k,l,m,n): j = 0 k (1 = 0 k (i ge m k k ge m))
— > (x<i:j> ++ y<k:l>)<m:n> = (x ++ y)<m:n>

usxorO usxorO (x,y): lh(x) = 1 k x = y —> x usxor y = 0(1)

usxorl usxorl (x,y): lh(x) = 14 (lh(y) = 1 k x ~= y) —> x usxor y = 1(1)

usorl usorl (x,y): lh(x) = 1 k (lh(y) = 1 ft (x = 1(1) or y = 1(1)))
—> x usor y = 1(1)

usandO usandO (x,y): lh(x) = 1 ft

(lh(y) = 1 ft (x = 0(1) or y = 0(1))) —> x ftft y = 0(1)

restrict\ussub restrict\ussub (x,y,i,j,k,l,m,n): m ge 0 ft (n ge 0 ft |x<i:j>| = |y<k:l>|)
—> |x<i - m:j + n>| = |y<k - m:l + n>|

ussub\ussub ussub\ussub (x,h,i,j,k,l,m): h = min(i,k + max(j,0)) ft
m = max(j.O) + max(l,0) —> x<i:jxk:l> = x<h:m>

usval\usconc usval\usconc (x,y,l): 1 = lh(y) —> |x 0 y| = |x| * 2 " 1 + |y|

chop chop (x.y.l): lh(x) ge lh(y) ft
(2 * lh(x) - 1 ge |x| + |y| ft 1 = lh(x) - 1)
—> |x ++ y| = |(x ++ y)<l:0>|

usval\ussub2 usval\ussub2 (x.y.i.j): i = lh(x) - 1 ft (j = 0 ft |x| = |y|) —> |x| = |y<i:j>|

usval\ussub3 usval\ussub3 (x,i,j): |x<i:j>|
= (|x| rem 2 " (min(i,lh(x) - 1) + 1))

/ 2 " max(j.O)

usval\ussub usval\ussub (x,i,j): |x<i:j>|
= idiv(irem(|x|,

2 " (min(i,lh(x) - 1) + 1)),
2 " max(j,0))

squash squash (x,i,j,k,l): j = k + 1 ft
((I ge 1 or 0 ge 1) ft

(i ge j or i ge lh(x) - 1)) —> x<i:j> C x<k:l> = x<i:l>

ussub\usconc ussub\usconc (x.y.i,j,il,jl): il = i - lh(y) ft jl = j - lh(y)
—> (x 0 y)<i:j> = x<il:jl> C y<i:j>

usval\usconc\0 usval\usconc\0 (x,y): |x| = 0 —> |x C y| = |y|

ussub\usplus ussub\usplus (x,y,m,n,u,v): 2 * n gt |x<n - 1:0> ++ y<n - 1:0>| ft
(2 * (m + 1) gt |x<m:0> ++ y<m:0>| ft

74

(u = | r<m:n>| ft v = |y<m:n>|))
--> |(x ++ y)<m:n> = u + V

chop\general chop\general (x .i.j): J = 0 ft 2 * (i + 1) gt 1*1 — > |x<i j>l = 1*1

usior\usplus usxor\usplus (x ,y): lh(x) = 1 ft lh(y) = 1 —> x usxor y = (x ++ y)
<0 0>

usand\usplus usand\usplus (x,y): lh(x) = 1 ft lh(y) = 1 —> x ftft y = (x ++ y)<l:l>

notO notO (x) : lh(x) = 1 ft x ~= 0(1) ~> x = 1(1)

notl notl (x): lh(x) = 1 ft x "= 1(1) —> x = 0(1)

usor\commute usor\comjnute (x,y): x usor y = y usor x

conmuteusand commuteusand (x,y): x ftft y - y ftft x

lh\ussub lh\ussub (b,i,j): lh(b<i:j>)
= max(0,

1 + (min(lh(b) - l,i) - max(O.j)))

lh\ones lh\ones (n): lh(ones(n)) = max(n,0)

lh\zeros lh\zeros (n): lh(zeros(n)) = max(n,0)

lb.\usdiiference lh\usdifference (ll,12,x,y): 11 = lh(x) ft 12 = lh(y)
—> lh(x — y) = max(ll,12) + 1

usval\usdifierence\2 usval\usdifierence\2 (u,v,x,y,l): u = |x| ft
(v = |y| ft

(v gt u ft
1 = max(lh(x),lh(y)) + D)

—> |x — y| = 2 " 1 + (u - T)

usval\usdifference\l usval\usdifference\l (x,y,u,v): u = |x| ft (v = |y| ft u ge v)
—> |x — y| = u - v

ussub\total ussub\total (j,k,b): j ge lh(b) - 1 ft 0 ge k —> b = b<j:k>

ussub\gt\lh ussub\gt\lh (j.k.b): j ge lh(b) - 1 —> b<j:k> = b<lh(b) - l:k>

ussub\empty ussub\empty (x,i,j): i It j —> x<i:j> = 0(0)

usval\ge\0 usval\ge\0 (b): |b| ge 0

usval\le usval\le (x,i,j,k,l): i ge k ft 1 ge j —> |x<i:j>| ge |x<k:l>|

ge\usval\usor ge\usval\usor (bl,b2): |bl usor b2| ge |bl|

Axioms for Integer Multiplication (contained in file axioms/mult.axioms):

multgt multgt (x,y,z): x gt 0 ft y gt z or 0 gt x ft z gt y

—> x * y gt x * z

75

multltO multltO (x,y): 0 gt x ft y gt 0 or x gt 0 ft 0 gt y —> 0 gt x * y

multgtO multgtO (x,y): 0 gt x ft 0 gt y or x gt 0 ft y gt 0 —> x * y gt 0

multge multge (x.y.z): x ge 0 ft y ge z or 0 ge x ft z ge y
—> x * y ge x * z

multleO multleO (x,y): 0 ge x ft y ge 0 or x ge 0 ft 0 ge y —> 0 ge x * y

multgeO multgeO (x,y): 0 ge x ft 0 ge y or x ge 0 ft y ge 0 —> x * y ge 0

multsquaregeO multsquaregeO (x): x * x ge 0

multminus multminus (x,y): (-x) * y = -(x * y)

multdistributeminus multdistributeminus (x,y,z): x* (y-z) = x*y-x*z

multdistributeplus multdistributeplus (x,y,z): x*(y+z)=x*y+x*z

multassoc multassoc (x,y,z): x * (y * z) = (x * y) * z

multcommute multcommute (x,y): x * y = y * x

multl multl (x,y): y = 1 —> x * y = x

multO multO (x,y): y = 0 —> x * y = 0

Axioms for Integer Exponentiation (contained in file axioms/exp.axioms):

multeqsquare multeqsquare (a): a * a = a " 2

expdiv expdiv (a,k): k ge 1 —> a" (k-l)=a"k/a

expmult expmult (a,k): k ge 1 —> a"k=a*a" (k-1)

e5 e5 (x,a): a = 0 ft x ~= 0 —> a * x = 0

e4 e4 (a,x): a = 0 ft x ~= 0 —> x " a = 1

e3 e3 (a,b,c,x): c = a + b —> x"a*x"b = x"c

expabsval expabsval (a.b.c): ((b ge a ft a ge -b) ft b ge 0) ft c ge 1
—> b " c ge a " c

ell ell (a.b.c): (c gt 0 ft b ge 0) ft a ge b —> a * c ge b * c

e8 e8 (a.x.y): (a ge 1 ft x ge 1) ft x ge y —> x " a ge y

e2 e2 (b,x,y): b ge 0 ft y ge x —> b " y ge b " x

elO elO (a.b.c): (c gt 0 ft b ge 0) ft a gt b —> a * c gt b " c

e9 e9 (a.x.y): (a ge 2 ft x ge 2) ft x ge y —> x " a gt y

76

e7 e7 (b,x,y): b gt 1 ft y gt x —> b " y gt b * x

e6 e6 (a,x) : a gt 1 ft 0 gt x —> 1 gt a " x

el el (b,x): b gt 0 ft x ge 0 —> b " x gt 0

Axioms for Min-Max Functions (contained in file axioms/minmax.axioms):

maxge maxge (x,y): max(x.y) ge x

minie minle (x,y): x ge min(x,y)

lemin lemin (x,y,z): y ge x ft z ge x —> min(y,z) ge x

gemax gemax (x,y,z): x ge y ft x ge z —> x ge max(y,z)

gemin gemin (x,y,z): x ge y or x ge z —> x ge min(y,z)

lemax lemax (x,y,z): y ge x or z ge x —> max(y,z) ge x

mineq mineq (x,y): min(x,y) "= x —> min(x,y) = y

maxeq naxeq (x,y): max(x,y) ~= x —> max(x.y) = y

commutemax commutemax (x,y): max(x,y) = max(y,x)

commutemin commutemin (x,y): min(x.y) = min(y,x)

Axioms for Coverings of Arrays (contained in file axioms/arraycoverings.axioms):

pcovering\slice\element pcover±ng\slice\element (a,i,m,n): (disjointarray(a) ft m le i) ft i le n

—> pcovering(a[m:n] ,a[i])

pcovering\slice\slice pcovering\slice\slice (a,i,j,m,n): ((disjointarray(a) ft m le i) ft i le j) ft

j le n —> pcovering(a[m:n],a[i:j])

pcovering\element pcovering\element (a,i): disjointarray(a) —> pcovering(a,a[i])

pcovering\slice pcovering\slice (a,i,j): disjointarray(a) —> pcovering(a,a[i:j])

disjoint\slice\element disjoint\slice\element (a,i,m,n): disjointarray(a) ft (m gt i or i gt n)

—> alldisjoint (a[m:n] ,a[i])

disjoint\elejnents disjoint\elements (a,i,j): disjointarray(a) ft i ~= j —> alldisjoint(a[i] ,

a[j])

disjoint\slices disjoint\slices (a,i,j,k,l): disjointarray(a) ft (j It k or 1 It i)

—> alldisjoint(a[i:j],a[k:l])

disjoint\adjacent\slices disjoint\adjacent\slices (a,i,j,k,l): ((disjointarray(a) ft j ge i) ft

77

j + 1 = k) ft
1 ge k —> covering(a[i:l],a[i:j],a[k:l])

Axioms for Arrays with Arbitrary Origin (contained in file axioms/origin-arrays.axioms)

emptyslice emptyslice (v,i,j): i gt j — > v[i:j] = emptyarray

lowerslice lowerslice (v,i,j,lb): lb = origin(v) ft origin(v) gt i —> v[i:j] = v[lb:j]

upperslice upperslice (v.i.j.ub): ub = (origin(v) + range(v)) - 1 ft j ge ub
—> v[i:j] = v[i:ub]

totalslice totalslice (v.i.j): origin(v) ge i ft
j ge (origin(v) + range (v)) - 1 —> v[i:j] = v

slicerange slicerange (v.i.j.r): ((ige origin(v) ft j ge i) ft
origin(v) + range(v) gt j) ft

r = (j - i) + 1 —> range(v[i:j]) = r

sliceorigin sliceorigin (v,i,j): (i ge origin(v) ft j ge i) ft
origin(v) + range(v) gt j —> origin(v[i:j]) = i

adjacentslices adjacentslices (v,i,j,k,l): (j ge i ft j = k + 1) ft 1 ge k
—> aconc(v[i:j],v[k:l]) = v[i:l]

elementofslice elementofslice (v,i,j,k,m): (j ge i ft i ge origin(v)) ft
m = (i + k) - origin(v) —> v[i:j][k] = v[m]

elementofaconcl elementofaconcl (vl,v2,j): origin(vl) + range(vl) gt j
—> aconc(vl,v2)[j] = vl[j]

elementofaconc2 elementofaconc2 (vl,v2,j.k): j ge origin(vl) + range(vl) ft
k = origin(v2) +

(j - (origin(vl) + range(vl)))
—> aconc(vl,v2)[j] = v2[k]

sliceoiaconc sliceofaconc (vl,v2,i,j,i2,j2): i2 = origin(v2) +
(i - (origin(vl) + range(vl))) ft

j2 = origin(v2) +
(j - (origin(vl) + range(vl)))

—> aconc(vl,v2)[i:j] = aconc(vl[i:j],v2[i2:j2])

Axioms for Log Base 2 (contained in file axioms/log2.axioms):

log2expgt log2eipgt (x,y): x ge 1 ft y = log2(x) —> 2 " (y + 1) gt x

log2exple log2exple (x,y) : x ge 1 ft y = log2(x) —> 2 * y le x

log2del log2def (x,y): (x ge 1 ft 2 * y le x) ft 2 * (y + 1) gt x —> y = log2(x)

Axioms for Integer Division (contained in file axioms/div.axioms):

78

divgtO divgtO (a,b): (a ge 0 ft b gt 0) ft a ge b or
(0 ge a ft 0 gt b) ft b ge a —> a / b gt 0

divltO divltO (a,b): (a ge 0 ft 0 gt b) ft b gt a or
(0 ge a ft b gt 0) ft a gt b —> 0 gt a / b

divlt divlt (a,b): a gt 0 ft b gt 1 —> a gt a / b

diveqO diveqO (a,b): (a = 0 ft b "= 0 or a ge 0 ft b gt a) or

0 ge a ft a gt b —> a / b = 0

diveql diveql (a,b): a = b ft b ~= 0 —> a / b = 1

divnegl divnegl (a,b): (-a) / b = -(a / b)

divneg2 divneg2 (a,b): a / (-b) = -(a / b)

divmulteq divmulteq (a,b) : a ge 1 —> (a * b) / a = b

divdistl divdistl (a,b,n): ((n gt 0 ft a ge 0) ft b It n) ft 0 le b
—> (n*a + b)/n=a

divby2repeat divby2repeat (a,j): j ge 0

—> (a / 2 - j) / 2 = a / 2 " (j + 1)

divgeO divgeO (a,b): a ge 0 ft b gt 0 or 0 ge a ft 0 gt b —> a / b ge 0

divleO divleO (a,b): a ge 0 ft 0 gt b or 0 ge a ft b gt 0 —> 0 ge a / b

divgemult divgemult (a,b) : a ge 0 ft b ~= 0 —> a ge (a / b) * b

divlemult divlemult (a,b) : 0 ge a ft b ~= 0 —> (a / b) * b ge a

divposlemax divposlemai (a,b): a ge 0 ft b gt 0

—> (a / b) * b ge max(0,(a - b) + 1)

divposorder divposorder (a,b,c): a ge 1 ft c ge b —> c / a ge b / a

Axioms for Modulo Arithmetic (contained in file axioms/mod.axioms):

modpos modpos (x,y): y gt 0 —> x mod y ge 0

modneg modneg (x,y) : 0 gt y —> 0 ge x mod y

modO modO (x,y) : x = 0 —> x mod y = 0

modmult modmult (x,y,k): x mod y = (x + k * y) mod y

modreml modreml (x,y): (y ~= 0 ft (x / y) * y = x or 0 gt x ft 0 gt y) or

x gt 0 ft y gt 0 —> x mod y = x rem y

modrem2 modrem2 (x,y): (y ~= 0 ft (x / y) * y "= x) ft

(0 gt x ft y gt 0 or x gt 0 ft 0 gt y)

—> abs(x rem y) = abs(y) - abs(x mod y)

79

Axioms for Remainder Function (contained in file axioms/rem.axioms):

remub remub (x,y): absd rem y) It abs(y)

remlb remlb (x,y): abs(x rem y) ge 0

rem2ntoremn rem2ntoremn (a,n): a ge 0 ft n gt 0
—> a rem (2 * n)

= a rem n +
((a rem (2 * n)) / n) * n

remneg2 remneg2 (x,y): x rem (-y) = x rem y

remnegl remnegl (x,y): (-x) rem y = -(x rem y)

remneg remneg (x,y): x It 0 ft y ~= 0 —> abs(x rem y) = -(x rem y)

rempos rempos (x,y): x gt 0 ft y ~= 0 —> abs(x rem y) = x rem y

remO remO (x,y): x = 0 —> x rem y = 0

remdef remdef (x,y): y *= 0 —> x=(x/y)*y+x rem y

Axioms for Square Root (contained in file axioms/sqrt.axioms):

sqrt3 sqrt3 (y) : y ge 0 —> y ge sqrt(y) * sqrt(y)

sqrt2 sqrt2 (y) : y = 0 --> sqrt(y) = 0

sqrt4 sqrt4 (y): y ge 0 —> (sqrt(y) + 1) * (sqrt(y) + 1) gt y

sqrtl sqrtl (y) : y gt 0 —> sqrt(y) gt 0

Axioms for "Last One" Function (contained on the file axioms/lastone.axioms):

lastl\value2 lastl\value2 (x) : |x| gt 0 —> lh(x) gt |lastone(x)|

lastl\value lastl\value (x): lh(x) ge |lastone(x)|

lastl\usval\ge lastl\usval\ge (x,i): x<i:i> = 1(1) —> i ge |lastone(x)|

lastl\valuedei lastl\valuedei (x,m): x<m:m> = 1(1) ft |x<m - 1:0>| = 0 —> |lastone(x)| = m

lastl\lhdef lastl\lhdef (x,k): lh(x) ge 2 " k ft 2 " (k + 1) gt lh(x)
--> lh(lastone(x)) = k + 2

lastl\def lastl\def (l,x): |x| gt 0 ft (x<0:0> = 0(1) ft lh(x) -1 = 1)
—> |lastone(x)| = |lastone(x<l:l>)| + 1

80

lastl\usor lastl\usor (i,y): |lastone(x usor y)| = min(|lastone(x)| ,|lastone(y)|)

lastl\firstone lastl\firstone (ux,x): |x| gt 0 ft ux = |lastone(x)| —> x<ux:ux> = 1(1)

lastl\usconc lastl\usconc (x,y): |x| gt 0 —> |lastone(y 0 x)| = |lastone(x)|

lastl\zeros lastl\zeros (x,l): 1 ge 0 ft |lastone(x)| gt 1 —> x<l:l> = 0(1)

lastl\zerosO lastl\zerosO (x,k): |lastone(x)| = k + 1 —> |x<k:0>| = 0

lastl\ussub lastl\ussub (ux,x,l,n): ux = |lastone(x)| ft
(1 = lh(x) - 1 ft (n ge 0 ft ux ge n))
— > |lastone(x<l:n>)| = ux - n

Axioms for Experimental ("Unsigned") Integer Division (contained in file axioms/idiv.axioms):

idivdef idivdef (a,x): a gt 0 —> x = idiv(x,a) * a + irem(x,a)

idivO idivO (a,b): a ge 0 ft b gt a —> idiv(a.b) = 0

iremdef iremdef (q,r,y): r ge 0 ft y gt r —> r = irem(q * y + r,y)

idiv\order2 idiv\order2 (al,a2,b): al ge 0 ft (a2 ge al ft b gt 0)

—> idiv(a2,b) ge idiv(al.b)

irem\order2 irem\order2 (a,b): a ge 0 ft b gt 0 —> b ge irem(a,b)

irem\orderl irem\orderl (a,b): a ge 0 ft b gt 0 —> a ge irem(a.b)

idiv\order idiv\order (a,b) : a ge 0 ft b gt 0 —> a ge idiv(a.b)

The axioms for quantification are discussed in Chapter 6.

2.7.4 Lemmas

The following commands are covered in this section:

read
writelemmas (or write lemmas)
createlemma
provelemma
provebylemma

Lemmas enable the user to extend the static derivation capability of SDVS. A lemma is
written in the same format as the system-supplied axioms. Note that quantifiers cannot
appear in the statement of the lemma.

81

The command createlemma prompts the user for the various components. The resulting
lemma may be stored through the command writelemmas or just the write command. A
previously written lemma can be read in by the read command. A proof of the lemma (from
axioms and previous lemmas) is initiated in the context of a larger proof by the command
provelemma <lemma-name>. The lemma is used in the same way as an axiom is used (for
pattern matching, prompting for unmatched variables, and so on) through the command
provebylemma. Note that the provebylemma command only proves sentences that match
the lemma's conclusion, not the whole implication.

If an unproved lemma is used during a proof, a message to that effect, similar to the
statement about deferred goals, will appear at the end of the proof (after quitting). All
unexplained bitstring notation used below is described in Section 9.4.

<sdvs.l> createlemma
name: carrylemma

pattern: (lh(x) = 1 & lh(y) = 1 & lh(z) = 1) -> (x && y usorx&& z usor y && z) = (x ++ y ++ z)<l:V.
free variables D : x, y, z

constant symbolsD : <CR>
function symbolsD : <CR>

predicate symbols D: < CR>

Lemma 'carrylemma' created.

The prompts for constant, function, and predicate symbols relate to only those (uninter-
preted) symbols that SDVS does not already recognize.

<sdvs.l> pp
object: lemmas
lemma names []: carrylemma

unproved lemma carrylemma (x.y.z): (lh(i) = 1 ft lh(y) = 1) ft lh(z) = 1
—> (i ftft y usor i ftft z) usor y ftft z

= ((x ++ y) ++ z)<l:l>

<sdvs.l> provelemma
lemma name: carrylemma

proof [] : < CR>

open — [sd pre: ((lh(i) = 1 ft lh(y) = 1) ft lh(z) = 1)
post: (d ftft y usor i ftft z) usor y ftft z

= (d ++ y) ++ z)<l:l>)]

<sdvs.l.l> meases
number of cases: 8

1st case: x = 0(1) & y = 0(1) & z = 0(1)
proof []: <CR>

2nd case: x = 0(1) & y = 0(1) & z = 1(1)
proof []: <CR>

3rd case: x = 0(1) & y = 1(1) & z = 0(1)
proof[]: <CR>

82

4th case: x = 0(1) & y z -.1(1) & z = 1(1)
proof [] : <CR>

5th case: x = 1(1) & y = = 0(1) & z = 0(1)
proof [] : <CR>

6th case: x = 1(1) & y = = 0(1) & z= 1(1)
proof [] : <CR>

7th case: x = 1(1) & y : -.1(1) & z = 0(1)
proof [] • <CR>

8th case: x = 1(1) & y = --l(l) & z = 1(1)
proof [] . <CR>

meases - — 8

open - — [sd pre: (d = 0(1) t y = 0(1)) t z = 0(D)
comod: (all)
post: ((x tt y usor x tt z) usor y tt z

= ((x ++ y) ++ z)<l:l>)]

close — 0 steps/applications

open - -- [sd pre: ((x = 0(1) t y = 0(1)) t z = KD)
comod: (all)
post: ((x tt y usor x kk z) usor y tt z

= ((x ++ y) ++ z)<l:l>)]

close — 0 steps/applications

open - — [sd pre: ((x = 0(1) k y = 1(D) t z = o(D)
comod: (all)
post: ((x tt y usor x kk z) usor y tt z

= ((x ++ y) ++ z)<l:l>)]

close — 0 steps/applications

open - — [sd pre: ((x = 0(1) k y = 1(D) t z = KD)
comod: (all)
post: ((x tt y usor x tt z) usor y tt z

= ((x ++ y) ++ z)<l:l»]

close — 0 steps/applications

open - — [sd pre: ((x = 1(1) t y = 0(D) t z = o(D)
comod: (all)
post: ((x tt y usor x tt z) usor y tt z

= ((x ++ y) ++ z)<l:l»]

close — 0 steps/applications

open - - [sd pre: ((x = 1(1) t y = 0(D) t z = IM)
comod: (all)
post: ((x tt y usor x tt z) usor y tt z

= ((x ++ y) ++ z)<l:l>)]

close — 0 steps/applications

83

open — [sd pre: ((x = 1(1) ft y = 1(1)) ft z = o(l»

comod: (all)

post: ((x ftft y usor x ftft z) usor y ftft z

= ((x ++ y) ++ z)<l:l>)]

close — 0 steps/applications

open — [sd pre: ((x = 1(1) ft y = 1(1)) ft z = 1(1))
comod: (all)

post: ((x ftft y usor x ftft z) usor y ftft z

= ((x ++ y) ++ z)<l:l>)]

close — 0 steps/applications

join — [sd pre: ((x = 0(1) ft y = 0(1)) ft z = 0(1) or
fx = nf-n »■ v = nr-ni & *, = in\ . (x = 0(1)

(x = 0(1)

(x = 0(1)

(x = 1(1)

comod:
post:

(x
(x

(x
(all)
((x ftft y usor

1(1)
1(1)

1(1)

0(D)
= 1(1»
= 1(1»
= 0(1))
= 0(1))
= 1(D)
= KD)

KD or
= 0(1) or

= 1(1) or

= 0(1) or

= 1(1) or
= 0(1) or

= KD)

ftft z) usor y ftft z
((x ++ y) ++ z)<l:l>)]

close — 1 steps/applications

<sdvs. 1 > dump-proof
name: carryproof

Current proof dumped to carryproof.

<sdvs.l> write
path name[axioms/arraycoverings.axioms]:

state delta names []:
proof names [] :
axiom names [] :
lemma names [] :

formula names [] :
formulas names []:

macro names [] :
datatype names [] :
adalemma names []:

vhdllemma names []:

lemmas/lemmas.lemmas
<CR>
carryproof
<CR>
carrylemma
<CR>
<CR>
<CR>
<CR>
<CR>
<CR>

Do you wish to append to the already existing file? y

Append to file "lemmas/lemmas.lemmas" — (carryproof.carrylemma)

<sdvs.l> read

path name [lemmas/lemmas. lemmas] : lemmas/lemmas.lemmas

Definitions read from file "lemmas/lemmas.lemmas"

84

— (carryproof,carrylemma,carryprooi,carrylemma,carryproof,carrylemma,

carryproof,carrylemma,carryprooi,carrylemma,carryproof,carrylemma,

carryproof,carrylemma,carryproof,carrylemma,carryproof,carrylemma,

carryproof,carrylemma,carryproof,carrylemma,carryproof,carrylemma,

carryproof,carrylemma,carryproof,carrylemma,carryproof.carrylemma,

carryproof,carrylemma,carryproof,carrylemma,carryproof,carrylemma,

carryproof,carrylemma,carryproof,carrylemma,carryproof,carrylemma,

carryproof.carrylemma,carryproof.carrylemma,carryproof.carrylemma,

carryproof,carrylemma,carryproof,carrylemma,carryproof,carrylemma,

carryproof,carrylemma,carryproof,carrylemma)

<sdvs.2> pp
object: lemmas
lemma names [] : carrylemma

lemma carrylemma (x.y.z): (lh(x) = 1 ft lh(y) = 1) ft lh(z) = 1
—> (x ftft y usor x ftft z) usor y ftft z

= ((x ++ y) ++ z)<l:l>

Actually, one does not have to store the proof explicitly; it is stored automatically with the
proven lemma. It can be viewed as follows:

<sdvs.2> pp
object: lemmaproof
lemma name: carrylemma

(provelemma carrylemma
proof:

meases
(case: (x = 0(1) ft y = 0(1)) ft z = 0(1)

proof:
case: (x = 0(1) ft y = 0(1)) ft z = 1(1)
proof:

case: (x = 0(1) ft y = 1(1)) ft z = 0(1)

proof:

case: (x - 0(1) ft y = 1(D) ft z = 1(1)

proof:

case: (x = 1(1) ft y = 0(1)) ft z = 0(1)

proof:

case: (x = 1(1) ft y = 0(D) ft z = 1(1)

proof:

case: (x = 1(1) ft y = 1(1)) ft z = 0(1)

proof:
case: (x = 1(1) ft y = 1(D) ft z = 1(1)

proof:))

Now we shall use carrylemma in proving carrysd:

<sdvs.l> ppsd
state delta: carrysd

85

[sd pre: (declared,type(bitstring, 1)) ,declare(y,type(bitstring,l)) ,
declared,type(bitstring,1)),covering(all,a,b.x.y.z),
[sd pre: (true)

mod: (a)
post: (#a = (.1 ft«: .y usor .1 ftft .z) usor .y ftft .z)],

[sd pre: (true)
mod: (b)

post: (#b = ((.x ++ .y) ++ .z)<l:l>)])
mod: (a,b)

post: (#a = #b)]

<sdvs.l> init
proof name [] : < CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> prove
state delta[]: carrysd
proof []: <CR>

open— [sd pre: (declared,type(bitstring.l)) ,
declare(y,type(bitstring.l)),
declared, type (bitstring, 1)) .covering (all, a, b, i, y.z) ,
[sd pre: (true)

mod: (a)
post: (#a = (.i ftft .y usor .i ftft .z) usor

.y ft* .z)],
[sd pre: (true)

mod: (b)
post: (#b = ((.i ++ .y) ++ .z)<l:l»])

mod: (a,b)
post: (#a = #b)]

Complete the proof.

<sdvs.l.l> whynotgoal
simplify? [no] : < CR>

g(l) #a = #b

<sdvs.l.l> usablesds

u(l) [sd pre: (true)
mod: (b)

post: (#b = ((.i ++ .y) ++ .z)<l:l>)]

u(2) [sd pre: (true)
mod: (a)

post: (#a = (.x ftft .y usor .x ftft .z) usor .y ft«; .z)]

<sdvs.l.l> apply
sd/number[highest applicable/once]: u

number: 1

86

apply __ [sd pre:
mod:

(true)
(b)

post: (#b = ((. x ++ -y) ++ .z)<l 1»]

<sdvs.l.2> apply
sd/number[highest applicabl e/once]: u

number: 2

apply — [sd pre: (true)
mod: (a)

post: (#a = (.z kk .y usor .1 kk .z) usor .y kk .z)]

<sdvs.l.3> whynotgoal
simplify? [no] : < CÄ>

g(l) #a = #b

<sdvs.l.3> provebylemma
formula to prove: .x && .y usor .x && .z usor .y && .z = (.x ++ -y ++ .z)<l:l>

lemma name []: carrylemma

provebylemma carrylemma — (.x ftft .y usor .x kk .z) usor
.y kk .z = ((.x ++ .y) ++ .z)

<1:1>

close — 3 steps/applications

2.7.5 Notice

The user may need to create a sequence of notices to lead the system from its perception of
the current state to the realization of the truth of some other facts about the current state.
The system must be able to verify automatically the current fact being noticed on the basis
of the facts that were previously noticed or proved by axiom or lemma.

A command similar to notice is consider. An essential role in the automatic deduction
mechanism of SDVS is played by the demons, that is, by rules triggered by patterns of
terms that cause certain statements to be inserted into the database. Consider allows
the user the possibility of supplying the system with those key terms that will cause the
appropriate demons to "fire" and thus automatically carry out part of the proof. Note that
"consider t" has the same effect as "notice t = <".

As an example of the use of consider, suppose the user knows that for some 0 < i < 8,
a<9 : i>=b<9 - i: 0> and wants to prove that a<9 : 8> = 6<9 - i : 8 - i>. The system
knows that a<9 : 8> = a<9 : i><9 — i : 8 — i> when the solver b3 is in force (see Section
2.7.6), because of the equation

a<i : jxk : m> = a<min(i,k+ max(j,0)): max(j,0) + max(m,0)>

However, this demon will not fire unless the term a<9 : z><9 — i : 8 — i>. is introduced
explicitly. This is accomplished by consider. Then a<9 : 8> = a<9 : i><9 — i : 8 — i> =

87

6<9 - i : 0><9 - i : 8 - i> and the demon fires again, giving 6<9 — i : 8 - i>.

Below is a transcript illustrating the above argument:

<sdvs.l> prove
state deltaD: notice.sd
proof [] : < CR>

open — [sd pre: ((0 le i ft i le 8) ft a<9:i> = b<9 - i:0>)
post: (a<9:8> = b<9 - i:8 - i>)]

Complete the proof.

<sdvs.l.l> consider
term: a<9:i><9 - i:8 - i>

consider — a<9:i><9 - i:8 - i>

close — 1 steps/applications

One could have also used notice:

<sdvs.l> prove
state delta[]: notice.sd
proof []: <CR>

open — [sd pre: ((0 le i ft i le 8) ft a<9:i> = b<9 - i:0>)
post: (a<9:8> = b<9 - i:8 - i>)]

Complete the proof.

<sdvs.l.l> notice
term: a<9:8> = a<9:i><9 - i:8 - i>

notice — a<9:8> = a<9:i><9 - i:8 - i>

close — 1 steps/applications

2.7.6 Solvers

The commands activate and deactivate control the solvers described in the simplifier. If a
given solver is activated, the embedded knowledge for that domain in the simplifier is used.
The system must be reinitialized after a solver is activated. If a given solver is deactivated,
all function symbols in its domain will be treated as uninterpreted. The solvers e and p
cannot be deactivated.

The solvers can be tested by typing eval (test-simp-solvers).

Below is the current list of solvers with their default settings:

<sdvs.l.4> solvers

Quantification solver inactive.

Simplifier Solvers:
a arrays (activated)

b bitstrings (activated, level 3)

c coverings (activated)

d integer division (deactivated)

e equality (activated)

enum enumerations (activated)

k extra boolean operators (activated)

1 lists (deactivated)

m associative/commutative multiplication (deactivated)

p propositional logic (activated)

q queues (deactivated)

t vhdl time (activated)

w vhdl waveforms (activated)

z integer arithmetic (activated)

The query solvers will produce the above table with the settings in force at the time of the
query.

There are four varieties of bitstring solver: b, b2, b3, and b4. For more information about
bitstring arithmetic, see Section 9.4. The solver b is the basic bitstring solver. When the
query solvers shows b activated, it means that only the basic bitstring solver is activated.
The other bitstring solvers are activated and displayed as follows:

The solver b2 contains the capability to do some derivations involving bitstrings with non-
constant substring selectors.

The solver b3 incorporates six capabilities not included in b:

1. (x@y)<i:j> = x<i - lh(y): j - lh(y)> @ y<i:j>

2. x<i:j><k:l> is simplified to x<m:n> under certain conditions

3. I0(k)<i:j>| =0

4. x<i:j>@x<k:l> is simplified to x<m:n> under certain conditions

5. |(x ++ y)<i:j>l is simplified to |x<m:n> ++ y<m:n>| under certain conditions

6. I (x ** y)<i:j> I is simplified to 0 under certain conditions

The solver b4 combines b2 and b3.

For example,

<sdvs. 1> activate
solver: b4

89

Bitstring solver (level 4) activated.

<sdvs.3> simp
expression: i It j -> b<i:j> = 0(0)

true

If the high substring selector is lh(b) - 1 and the low selector is 0, then the whole expression
just simps to b:

<sdvs.3> simp
expression: t = 0 & j = lh(b) - 1 -> b<j:i>

true

2.8 MANIPULATING THE PROOF

This section describes the two means currently available for interactively manipulating the
proof structure: deferring and popping. A goal for some future version of SDVS is to
allow the user to edit the proof essentially at will, moving around the proof tree, proving,
deferring, and so on. Of course, these actions would be checked in such a way that the
finished proof structure would indeed be a correct proof, or at least that the holes in the
proof would be correctly identified.

Defer is used to postpone proving the current goal or goals and move on to the next. Pop
is used to back up to some previous proof step. Currently, the "popped" proof steps are
not saved.

2.8.1 Defer

The purpose of the defer command is to allow the user to postpone proving a given goal or
state delta. The deferred goal or state delta is asserted or added to usablesds, as if it had
been proved, and the proof may be continued interactively or in batch mode by the continue
command. After deferring a certain goal, the user may continue with proving and deferring
until the opened state delta is proved. He may quit, thus storing the (partial) proof. Now
when the stored proof is rerun, there will be stop commands in the proof in place of defer.
The user will be able to complete the deferred sections, either by typing interactively, or by
using interpret. Then the proof will continue as stored. The final proof will be updated (or
completed) when the goal is reached. The user can also step through a proof, any number
of steps at a time. If the proof is stopped, either because of a defer or an explicit stop, the
user may simply type step. In order to step through a whole proof, the user must insert a
"stop" at the beginning and then "step."

We illustrate this with a reproof of the induct example from Section 2.1.

90

<sdvs.l> ppsd
state delta: sinduct

[sd pre: (covering(all,a,b),
[sd pre: (true)

mod: (a)
post: (#a gt .a)])

nod: (a)
post: (#a gt 1000)]

<sdvs.l> init
proof name[]: <CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> prove
state delta[] : sinduct
proof [] : < CR>

open— [sd pre: (covering(all,a,b),
[sd pre: (true)

mod: (a)
post: (#a gt .a)])

mod: (a)
post: (#a gt 1000)]

Complete the proof.

<sdvs.l.l> let
new variable: aa

value: .a

let — aa = .a

<sdvs.l.2> cases
case predicate: aa le 1000

cases — aa le 1000

open — [sd pre: (aa le 1000)
comod: (all)

mod: (a)
post: (#a gt 1000)]

<sdvs.l.2.1.1> defer
numbers of goals[all]: < CR>

deferring all current goals

close — 1 steps/applications

open — [sd pre: (~(aa le 1000))

comod: (all)

91

mod: (a)
post: (#a gt 1000)]

close — 0 steps/applications

join — [sd pre: (true)
comod: (all)

mod: (a)
post: (#a gt 1000)]

close — 2 steps/applications

<sdvs.2> quit

Proof session closed with one deferred goal.
The proof for this session is in 'sdvsproof.

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> pp
object: sdvsproof

proof sdvsproof:

prove sinduct
proof:

(let aa = .a,
cases aa le 1000

then proof: stop All current goals must be proved here,
else proof:)

<sdvs.l> init
proof name [] : < CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> interpret
proof name: sdvsproof

open— [sd pre: (covering(all,a,b),
[sd pre: (true)

mod: (a)
post: (#a gt .a)])

mod: (a)
post: (#a gt 1000)]

let — aa = .a

cases — aa le 1000

open — [sd pre: (aa le 1000)

92

comod: (all)
nod: (a)

post: (#a gt 1000)]

All current goals must be proved here.

<sdvs. 1.2.1.1> induct
induction expression: counter

from: 0
to: 1001 - aa

invariant list[] : counter le .a - aa
comodification list[]: <CR>
modification list [] : a

base proof [] : < CR>
step proof []: <CR>

induction — counter from 0 to 1001 - aa

open — [sd pre: (counter = 0)
comod: (all)
post: (counter le .a - aa)]

close — 0 steps/applications

open — [sd pre: (counter ge 0,counter It 1001 - aa,
counter le .a - aa)

mod: (a)
post: (counter + 1 le #a - aa)]

Complete the proof.

<sdvs.l.2.1.1.2.1> apply
sd/number[highest applicable/once]: <CR>

apply — [sd pre: (true)
mod: (a)

post: (#a gt .a)]

close — 1 steps/applications

join induction cases — [sd pre: (0 le 1001 - aa)
comod: (all)

mod: (a)
post: (1001 - aa le #a - aa)]

close — 1 steps/applications

open — [sd pre: ("(aa le 1000))
comod: (all)

mod: (a)
post: (#a gt 1000)]

close — 0 steps/applications

join — [sd pre: (true)

93

comod: (all)
mod: (a)

post: (#a gt 1000)]

close — 2 steps/applications

2.8.2 Pop

Pop returns the user to a previous proof state. Let us re-examine the sinduct example. This
time pretend we forgot to do the let before the induction.

<sdvs.l> prove
state delta[] : sinduct
prooffj: <CR>

open — [sd pre: (covering(all,a,b),
[sd pre: (true)

mod: (a)
post: (#a gt .a)])

mod: (a)
post: (#a gt 1000)]

Complete the proof.

<sdvs.l.l> cases
case predicate: .a gt 1000

cases — -a gt 1000

open — [sd pre: (.a gt 1000)
comod: (all)
mod: (a)

post: (#a gt 1000)]

close — 0 steps/applications

open — [sd pre: ("(.a gt 1000))
comod: (all)

mod: (a)
post: (#a gt 1000)]

Complete the proof.

<sdvs.l.l.2.1> ps

« initial state >>
proof in progress of sinduct <2>

case analysis in progress on: .a gt 1000 or ~(.a gt 1000) <1>
1st case: complete
2nd case: in progress
—> you are here <—

94

<sdvs.1.1.2.1> pop
number of levels[1]: <CR>

One level popped.

<sdvs.l.l> ps

« initial state >>
proof in progress of sinduct <1>

—> you are here < —

<sdvs.l.l> let
new variable: aa

value: .a

let — aa = .a

<sdvs.l.2> cases
case predicate: aa gt 1000

cases — aa gt 1000

open — [sd pre: (aa gt 1000)
comod: (all)

mod: (a)
post: (#a gt 1000)]

close — 0 steps/applications

open — [sd pre: ("(aa gt 1000))
comod: (all)

mod: (a)
post: (#a gt 1000)]

Complete the proof.

<sdvs.1.2.2.1> ps

« initial state >>
proof in progress of sinduct <3>

let aa = .a <2>
case analysis in progress on: aa gt 1000 or "(aa gt 1000) <1>

1st case: complete
2nd case: in progress
—> you are here <—

2.8.3 Stop and Continue

The stop command is a batch command that causes the batch proof to halt gracefully. It is
inserted automatically into the SDVS-constructed proof (sdvsproof) by the defer command.
It may also be inserted "by hand."

95

Continue causes the execution of the proof to continue from the next batch proof command.
Note that if a subproof of a state delta within a larger proof closes before the end of the
list of proof commands for that subproof (appearing on the batch proof being run), then
SDVS will skip the remaining proof commands for that closed state delta, and go on to the
next proof command at the higher level.

2.9 MISCELLANEOUS

2.9.1 Flags

There are currently twenty-one flags that allow the user to "fine-tune" the operation of
SDVS, in accordance with the needs of the specific verification problem at hand. The
default settings are as follows:

<sdvs.l> flags

abbreviationlevel = none
acceptfileproofs = on
autoclose = on
checkexistence = off
checksyntax = on
displaympsds = on
ekltraceflag = off
enumerate = off
invariance = off
opt imizeassignment s = simp

ppdottednames = off
pplinewidth = 75
reportpropagat ions = on
shovstats = off
showstep* = off

strongcoverings = off
stronglytyped = off
traceflag = on
uniquenamelevel = 1
usedots = off
weaknext_tr = off

Type 'help flags' for a description.

Flag settings are changed with the command setflag.

In addition to the information that can be obtained from the help flags command (see
Section 1.10), we highlight several of the more common flags and their uses.

We have provided a flag acceptfileproofs, which, when off, essentially causes previous proofs
stored in files to be ignored, and requires any proof to proceed "from scratch." This way
the user is protected, if so desired, from his or her own editing mistakes.

The autoclose flag determines whether SDVS will try to "close" the current proof after every
user command. It is handy sometimes to have autoclose on if the user is in user-interaction

96

mode and building a proof on-line. However, it is more time-consuming than simply waiting
until you think the proof should close, and then simply typing close.

The invariance flag determines whether state deltas will have an inv field or not. This flag
is described in detail in Chapter 8.

The flag optimizeassignments regulates the method by which new values for contents of
places are stored. There are three settings: OFF, ON, and SIMP, with SIMP being the
system default. When this flag is in any state but OFF, the values assigned to changing
places are optimized to create fewer simplifier database entries. This may result in decreased
proof execution speed. Consider the statement

#x = .x + 1

where initially .x = xl. We will consider the situation where #x = .x + 1 is twice evaluated
under the three settings of optimizeassignments. First, if the flag is OFF, a new value x2 will
be created, .x will be associated with x2, and the equality x2 = xl -f 1 will be generated.
Then a value x3 will be created, .x will be associated with x3, and the equality x3 = x2 +
1 will be generated.

Next, under the setting ON, xl + 1 will be associated with .x, then (xl + 1) + 1 will be
associated with .x.

Finally, under the setting SIMP, xl + 1 will be associated with .x (as in the ON case), then
xl + 2 will be associated with .x.

The strongcoveringsflag strengthens the semantics of coverings so that an actual (as opposed
to potential) change in a subplace implies an actual change in a superplace. Without
strongcoverings on, an actual (as well as potential) change in a subplace implies only a
potential change in a superplace.

The usedots flag was new in SDVS 12. It is concerned with proving universal tautologies
automatically without the quantification solver being on. Previously, occurrences of dotted
subformulas inside of the formula matrix (the "body" of the formula) were evaluated and
taken into account in trying to prove the formula. However, often evaluating these dotted
terms is unnecessary for the proof to succeed, and even more usually, SDVS attempts to
simplify formulas with dotted subformulas at inopportune times. Now the default {usedots
NIL) causes the dotted terms essentially to be substituted away and the proof of that
universal sentence stands or falls on more general grounds. If the user does want dotted
terms to be taken into account, setting usedots to T causes the previous (longer) method
of proof to be used.

Much time is saved with the usedots flag turned off. For example, the testproof of mergesort
has two places where dots are needed. With the flag off except surrounding those two places,
the execution time is reduced from 7 minutes to 3 minutes. One such fragment is the given
in the following trace:

open — [sd pre: (n = 1)

97

comod: (all)
post: (forall k forall j (((0 It j ft j le k) & 0 It k) &

k le n —> .b[j] le .b[k]))]

setflag usedots — on

close — 1 steps/applications

open — [sd pre: (n ge l,n It range(b),
forall k forall j (((0 It j ft j le k) ft 0 It k) ft

k le n —> .b[j] le .b[k]))
comod: (all)

post: (forall k forall j (((0 It j ft j le k) ft 0 It k) ft
k le n + 1 — > #b[j] le #b[k]))]

setflag usedots — off

which expands the following part of the proof:

induct on: n
from: 1
to: range(a)
invariants: (forall k forall j (((0 It j ft j le k) ft 0 It k) ft

k le n --> .a[j] le .a[k]))
comodlist: (all)
modlist:
base proof: (setflag usedots on, close)
step proof:

(setflag usedots off,
provebyaxiom alldisjoint(a[n],a[(n + 1)])

The weaknext.tr flag causes the Ada and VHDL language translators to create state deltas
with #a// = .all as an invariant. This means that execution essentially takes place in
discrete steps, thus guaranteeing that no actual changes take place during state transitions,
but only at their termination.

2.9.2 Queries

Queries are proof commands that do not change the current state, but only give answers
to users' questions. Most of these commands have been described in detail and illustrated
with examples in other sections (for example, in the section on axioms). In this section we
discuss the following queries:

98

date, lastappliedsd, next, nsd, placevalue, ppeq, ppl, proof commands, range, sdtobeproven,
whynotapply, and whynotgoal.

Example:

<sdvs.1.2.2.1> date

date — 10/5/94 10:15:02 Elapsed time is 2 seconds.

When put at the beginning and end of a batch proof, date serves as a timer.

Next gives the next (n) proof steps. This is useful if a batch proof has halted either because
of a command error or an explicit stop.

<sdvs.l> pp
object: proof2

proof proof2:

(notice x = x,
stop,
notice y = y)

<sdvs.l> init
proof name [] : < CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> interpret
proof name: proof2

notice — x = x

Proof stopped by 'stop' command.

<sdvs.2> next
number of steps[1]: <CR>

(notice y = y)

Ppl with an argument (place) prints three things: the place, its value (contents), if known,
and any declarations. Ppl without an argument prints the values and declarations of all
places. Placevalue just prints the contents.

<sdvs.l> ppsd
state delta: carrysd

99

[sd pre: (declared,type(bitstring, 1)) ,declare(y, type (bitstring.D) ,
declare(z,type(bitstring,1)),covering(all,a,b,x,y,z),
[sd pre: (true)

mod: (a)
post: (#a = (.x &ft .y usor .1 ft& .z) usor .y ft»: .z)] ,

[sd pre: (true)
mod: (b)

post: (#b = ((.i ++ .y) ++ .z)<l:l»])
mod: (a,b)

post: (#a = #b)]

<sdvs.l> ppl
places [all] : < CR>

<sdvs.l> prove
state delta[]: carrysd
proof []: <CR>

open — [sd pre: (declared, type (bitstring, 1)) ,
declare (y, type (bitstring.D) ,
declare (z, type (bitstring.D), covering (all, a, b, i, y,z),
[sd pre: (true)

mod: (a)
post: (#a = (.x fcft .y usor .x kk .z) usor

.y kk .z)],
[sd pre: (true)

mod: (b)
post: (#b = ((.x ++ .y) ++ .z)<l:l»])

mod: (a.b)
post: (#a = #b)]

Complete the proof.

<sdvs.l.l> ppl
places [all]: <CR>

b b\950
a a\949
z UNDEFINED declare(z,type(bitstring,D)

lh(*) = 1
y UNDEFINED declare(y,type(bitstring, D)

lh(*) = 1
x UNDEFINED declared, type (bitstring.D)

lh(*) = 1

<sdvs.l.l> apply
sd/number[highest applicable/once]: <CR>

apply — [sd pre: (true)
mod: (b)

post: (#b = ((.x ++ .y) ++ .z)<l:l>)]

<sdvs.l.2> ppl
places [all]: <CR>

100

everyplace UNDEFINED
b (d\951 ++ y\952) ++ z\953)<l:l>
a a\949
z z\953 declare (z, type (bitstring.D)

lh(*) = 1

y y\952 declare(y,type(bitstring,l))

lh(*) = 1
x x\951 declared, type(bitstring,l))

lh(*) = 1

Notice above that when the value is unknown, a new name is generated, e.g. b\22. (In
certain cases the words "value unknown" will appear.)

Proofcommands gives the list of proof commands appearing in a given proof. It is useful,
for example, in determining whether there is a defer in a proof.

<sdvs.l> pp
object: mproof

proof mproof:

prove [sd pre : ([sd pre: (pi k p2)
mod: (all)

post: (ql)],
[sd pre: (pi ft -p2)

mod: (all)
post: (q2)] ,

[sd pre: ("pi ft p2)
mod: (all)

post: (q2)] ,
[sd pre: (~pl ft ~p2)

mod: (all)
post: (ql)])

mod (all)
post (ql or q2)]

proof:
meases

(case: pi ft p2
proof *

case: pi ft ~p2
proof *

case: " pi ft p2
proof *

case: " pi k "p2
proof *)

<sdvs. 1> proofcommands
proof name: mproof

proof commands: (*,meases,prove)

101

Example:

<sdvs.l> ppsd
state delta: casesl.sd

[sd pre: (.a = 0) mod: (a) post: (#a = 1)]

<sdvs.l> ppsd
state delta: casesS.sd

[sd pre: (.a gt 0) mod: (a) post: (#a =2)]

<sdvs.l> ppsd
state delta: cases.sd

[sd pre: (.a ge 0,formula(casesl.sd),formula(cases2.sd))
mod: (a)

post: (#a = 1 or #a = 2)]

<sdvs.l> init
proof name [] : < CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> prove
state delta[] : cases.sd
proofD: <CR>

open — [sd pre: (.a ge 0,formula(casesl.sd),formula(cases2.sd))
mod: (a)

post: (#a = 1 or #a = 2)]

inserting — pcovering(all.a)

Complete the proof.

<sdvs.l.l> cases
case predicate: .a = 0

cases — .a = 0

open — [sd pre: (.a = 0)
comod: (all)

mod: (a)
post: (#a = 1 or #a = 2)]

<sdvs.l.l.l.l> placevalue
place: a

value = a\958

<sdvs.1.1.1.1> ppeq

102

expression: .a

eqclass = a\958
range(emptyarray)
0

<sdvs.1.1.1.1> nsd

[sd pre: (.a = 0) mod: (a) post: (#a = 1)]

<sdvs. 1.1.1.1> whynotapply
state delta[highest usable]: <CR>

Because the following is not known to be true — .a gt 0

<sdvs.l.l. 1.1> usablesds

u(l) [sd pre: (.a gt 0) mod: (a) post: (#a = 2)]

u(2) [sd pre: (.a = 0) mod: (a) post: (#a = 1)]

<sdvs.1.1.1.1> whynotapply
state delta[highest usable]: u

number: 2

Quite applicable.

<sdvs. 1.1.1.1 > apply
sd/number[highest applicable/once]: <CR>

apply — [sd pre: (.a = 0)
mod: (a)

post: (#a = 1)]

close — 1 steps/applications

open — [sd pre: (~(.a = 0))
comod: (all)

mod: (a)
post: (#a = 1 or #a = 2)]

Complete the proof.

<sdvs.l.l.2.1> ppsd
state delta: sdtobeproven

[sd pre: ("(.a = 0))
comod: (all)

mod: (a)
post: (#a = 1 or #a = 2)]

<sdvs.l.l.2.1> nsd

[sd pre: (.a gt 0) mod: (a) post: (#a = 2)]

103

<sdvs. 1.1.2.1> placevalue
place: a

value = a\958

<sdvs.1.1.2.1> ppeq
expression: .a

eqclass = a\958

<sdvs.l.l.2.1> usablesds

u(l) [sd pre: (.a = 0)
comod: (all)

mod: (a)
post: (#a = 1 or #a = 2)]

u(2) [sd pre: (.a gt 0) mod: (a) post: (#a = 2)]

u(3) [sd pre: (.a = 0) mod: (a) post: (#a = 1)]

<sdvs.l.l.2.1> whynotapply
state delta[highest usable]: <CR>

Because the following is not known to be true — .a = 0

<sdvs.l.l.2.1> whynotapply
state delta[highest usable]: u

number: 2

Quite applicable.

<sdvs.l.l.2.1> apply
sd/number[highest applicable/once]: <CR>

apply — [sd pre: (.a gt 0)
mod: (a)

post: (#a =2)]

close — 1 steps/applications

join — [sd pre: (true)
comod: (all)

mod: (a)
post: (#a = 1 or #a = 2)]

close — 1 steps/applications

Whynotgoal can be used with two options: default (return = no simp of the goal) or "yes"
(or anything at all = simp the goal). For example,

<sdvs.l> prove
state delta[]: why.sd

104

proof [] : < CR>

open — [sd pre: (.x = 1)
mod: (all)

post: (#x = .x + .y)]

inserting — pcovering(all,x)

Complete the proof.

<sdvs.l.l> whynotgoal
simplify? [no] : < CR>

g(l) #x = x\965 + y\966

<sdvs.l.l> whynotgoal
simplify? [no]: yes

g(l) 1=1+ y\966

2.9.3 Introduction of Constants

The let command allows a new alphanumeric variable to be equated to any expression.5

Thus, for example, the contents of a place at a certain time can be "stored" and will not
be lost when the state changes. If a variable already in use has been let, SDVS will complain:

<sdvs.l.l> let
new variable: a

value: .x

let — a = .x

<sdvs.l.2> let
new variable: x

value: .y

let error: the variable is already in use x

<sdvs.l.3> let
new variable: b

value: .x

let — b = .x

<sdvs. 1. 4> simp
expression: a = b

true

5 Although SDVS does not check to see that the variable is in fact alphanumeric, it is strongly recom-
mended that the user adhere to this guideline.

105

A similar command for naming state deltas is letsd. The use of letsd is primarily in situations
where a state delta is usable (and thus has a "u" usable number attached to it), but one
wants to rename it in order to refer to it later when it may not be usable anymore. For
example, this happens when you want to name the state delta(s) designating the top of a
loop, in order to refer to them in an induction invariant.

It is also possible to name a goal state delta (with a "g" number), or simply to type in a
state delta, as with createsd. However, letsd can only be used within a proof context, and
the connection between a state delta and its letsd name is preserved only within a proof
context.

2.9.4 Declarations

Declarations are statements that are true over all state changes. They may be thought of
as describing the "architecture" of the machine or the type of program variables. There are
several forms of declarations:

1. In ISPS programs, declarations of type and dimension appear (automatically) in de-
clare statements. Covering statements are also generated.

2. In state delta translations of Ada programs, variables are declared (automatically) in
the declare statement. Covering statements are also generated.

3. As components to preconditions or postconditions to state deltas, the user can write
covering and pcoverings, as well as explicit declare statements.

The primary use of declarations is in the translation from ISPS, Ada, and VHDL to state
deltas, but they also may be inserted directly into state deltas.

The syntax for the declare statement is

(declare var type)

where the possible types are (obtained by the help types query):

<sdvs.3> help
with [all] : types

<<<SDVS Help>>> Types <<<SDVS Help>>>

type(boolean) Boolean

type(character) Ada characters

type(bitstring.n) bitstring of length n

type(polymorphic) polymorphic (any type)

106

type(fn.exp) a function defined by the expression exp

type(float) floating point

type(integer) integer

type(integer,lb,ub) bounded integer, that is, lb<=i<=ub

type(array,lb,ub,type) array with lower bound lb, upper bound ub, and
specified element type

type(record,fieldl(typel),...,fieldj(typej)) record with field names of
specified types

type(time) VHDL time

type(waveform) VHDL waveform

type(integerwaveform) VHDL integer waveform

type(bitwaveform) VHDL bit waveform

type(bitstringwaveform,n) VHDL bitstring (length n) waveform

The following example illustrates some of these rules (for examples of bitstring declarations,
see Section 2.9.9):

<sdvs.l> ppsd
state delta: sll

[sd pre: (covering(all,a),
declare(a,type(array,1,128,type(bitstring,16))))

mod: (a)
post: (#a[l] = 5(16))]

<sdvs.l> ppsd
state delta: slZ

[sd pre: (formula(sll).covering(all,a),
declare(a,type(array,1,128,type(bitstring,16))),
covering(a[l],b),declare(b,type(fn,.a[l])))

mod: (a)
post: (#b = 5(16))]

<sdvs.l> prove
state delta[]: si 2
proof [] : < CR>

open— [sd pre: (formula(sll).covering(all,a),
declare(a,type(array,1,128,type(bitstring,16))),
covering(a[l],b),declare(b,type(fn,.a[l])))

mod: (a)

107

post: (#b = 5(16))]

Complete the proof.

<sdvs.l.l> *

apply — [sd pre: (covering(all,a),
declare(a,type(array,l,128,type(bitstring,16))))

mod: (a)
post: (#a[l] = 5(16))]

close — 1 steps/applications

Note that without the covering relationship between a[l] and b, the declaration of b as
a function of a[l] is still invalid; that declaration just expresses the fact that there is a
functional dependency between the two, without there being an architectural one.

<sdvs.l> ppsd
state delta: sl4

[sd pre: (formula(sll).covering(all,a),
declare(a,type(array,1,128,type(bitstring,16))),
declare (b, type (in, .a[l])))

mod: (a)
post: (#b = 5(16))]

<sdvs.l> prove
state delta[]: sl4
proof [] : < CR>

open— [sd pre: (formula(sll).covering(all,a),
declare(a,type(array,1,128,type(bitstring,16))),
declare(b,type(fn,.a[l])))

mod: (a)
post: (#b = 5(16))]

inserting — pcovering(all,b)

Complete the proof.

<sdvs.l.l> *

apply — [sd pre: (covering(all,a),
declare(a,type(array,1,128,type(bitstring,16))))

mod: (a)
post: (#a[l] = 5(16))]

close — 1 steps/applications

2.9.5 Data and Array Allocation

One must activate the array solver (see Section 2.7.6) to use the data and array allocation
statements. The array initialization construct has the form

108

(DATA <slice><file-name> <starting-value>)

where <slice> is a slice of a previously declared array, <file-name> is the name of the file from
which the data are to be read, and <starting-value> is the ordinal value of the "s-expression"
(sequence; for example, (BS 7 3), in the case of bitstrings) from which the data are to be
read, up to the required size of <slice>. This is the preferred way to specify the contents of
the ROM (read-only memory) for a microcoded machine. Of course, it could be specified
by a (typically long) list of .mem[0] = 3(7), .memfl] = 10(7), and so on.

The ALLOCATE <slice> DENSE statement associates a Lisp array of the appropriate size
with the designated slice in the symbol table. One may also ALLOCATE <slice> SPARSE,
which associates an "association list" with the slice. The ALLOCATE assertion will be
allowed only if no value has previously been stored for any element of the slice and if no
previous allocation has been made for any slice intersecting it. Allocation should be used
only for read-only memory, since the occurrence of any element of the slice in a mod list will
cause the Lisp storage array or alist to be wiped clean. To assign initial values to memory
that will be written into later, one must use ISPS assignment statements, or their equivalent
in state deltas.

Below is an example of a state delta that uses the "DATA" declaration and array allocation:

<sdvs. 1> createsd
name: s22

[SD pre: declare(a, typefarray, 0, 128, type(bitstring, 3))), allocate(a[0:7],dense), data(a[0:7j, "testproofs/'manual'/data/a
comod[] : <CR>

mod[]: <CR>
post: #a[2] = 2(3)

]

<sdvs.l> ppsd
state delta: s22

[sd pre: (declare(a,type(array,0,128,type(bitstring,3))),
allocate(a[0:7].dense),
data(a[0:7],"testproofs/manual/data/array2.data",0))

post: (#a[2] = 2(3))]

The file array2.data looks like this:

(bs 0 3)(bs 1 3)(bs 2 3)(bs 3 3)(bs 4 3)(bs 5 3)(bs 6 3)(bs 7 3)

With the flag autoclose on, the proof will close automatically:

<sdvs.l> prove
state delta[]: s22
proof [] : < CR>

109

open— [sd pre: (declare(a,type(array,0,128,type(bitstring,3))),
allocate(a[0:7],dense),

data(a[0:7],"testproofs/manual/data/array2.data",0))
post: (#a[2] = 2(3))]

close — 0 steps/applications

However, if we turn off those flags, the proof will not close and we can examine the decla-
rations:

<sdvs.2> setflag
flag variable: autodose
on or off[off] : off

setflag autoclose — off

<sdvs.3> flags

abbreviationlevel = none
acceptfileproofs = on
autoclose = off
checkexistence = off
checksyntax = on
displaympsds = on
ekltraceflag = off
enumerate = off
invariance = off
opt imizeass ignment s = simp
ppdottednames = off

pplinewidth = 75

reportpropagat ions = on
shows tats = off

shovsteptt = off

strongcoverings = off

stronglytyped = off

traceflag = on
uniquenamelevel = 1
usedots = off

veaknext.tr = off

Type 'help flags' for a description.

<sdvs.3> init
proof name [] : < CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> prove
state delta[] : s22
proof [] : < CR>

110

open— [sd pre: (declare(a,type(array,0,128,type(bitstring,3))),
allocate(a[0:7],dense),
data(a[0:7]."testproof s/ntanual/data/array2.data",0))

post: (#a[2] = 2(3))]

Complete the proof.

<sdvs. 1. 1> decls

a[2] type(bitstring,3)

a type(array,0,128,type(bitstring,3))

<sdvs.l.l> simp
expression: .a[Z] — 2(3)

true

<sdvs.l.l> close

close — 0 steps/applications

2.9.6 Negate

The proofs involving negation can be run by typing run-test-proofs *negation-tests*. They
include proofs of negations of state deltas by contradiction and also proofs that use the
negate command.

The negate command asserts the negation of a specified state delta, through the equivalence
(in the case where Q does not have any top-level dots or quantifiers) between

" [sd pre: P
comod: C

mod: M
post: Q]

and

[sd pre: true

comod: all

mod: all - C

post: P(#/.) &
[sd pre: true

comod: all - M
mod: ()

post: -q]]

111

if the state delta is known to be false (see [36]). (For the case where the state delta has
invariants, see Section 8.4.)

For example, consider the state delta negateö.sd:

[sd pre: ("(([sd pre: (p) comod: (c) mod: (m) post: (q)])))
post: ("(([sd pre: (true) comod: (c) mod: (m) post: (q)])))]

Below is a transcript of the proof session:

<sdvs.l> prove
state delta[] : negateß.sd
proof []: <CR>

open — [sd pre: ("(([sd pre: (p) comod: (c) mod: (m) post: (q)])))
post: ("(([sdpre: (true)

comod: (c)
mod: (m)

post: (q)])))]

Complete the proof.

<sdvs.l.l> usable

No usable state deltas.

Mo usable quantified formulas.

<sdvs. 1. 1> cases
case predicate: ~([sd pre: (true) comod: (c) mod: (m) post: (q)])

cases — ~(([sd pre: (true) comod: (c) mod: (m) post: (q)]))

open — [sd pre: (~(([sd pre: (true)
comod: (c)

mod: (m)
post: (q)])))

comod: (all)
post: ("(([sdpre: (true)

comod: (c)
mod: (m)

post: (q)])))]

close — 0 steps/applications

open — [sd pre: (~((~(([sd pre: (true)
comod: (c)

mod: (m)
post: (q)])))))

comod: (all)
post: (~(([sd pre: (true)

comod: (c)

112

mod: (m)

post: (q)])))]

Complete the proof.

<sdvs. 1.1.2.1 > usable

u(l) [sd pre: (true) comod: (c) mod: (m) post: (q)]

u(2) [sd pre: (~(([sd pre: (true) comod: (c) mod: (m) post: (q)])))
comod: (all)

post: (~(([sd pre: (true) comod: (c) mod: (m) post: (q)])))]

No usable quantified formulas.

<sdvs. 1.1.2.1> negate
state delta: [sd pre: (p) comod: (c) mod: (m) post: (q)]
formula name #1: fmll

negated result — [sd pre: (true)

comod: (all)

mod: (diff(all.c))
post: (p,

[sd pre: (true)

comod: (diff(all,m))

post: (~q)])]

<sdvs.l.l.2.2> pp
object: fmll

formula fmll: [sd pre: (true)

comod: (diff(all,m))

post: (*q)]

<sdvs.l.l.2.2> usable

u(l) [sd pre: (true)

comod: (all)

mod: (diff(all.c))

post: (p,

[sd pre: (true)

comod: (diff(all,m))

post: ("q)])]

u(2) [sd pre: (true) comod: (c) mod: (m) post: (q)]

u(3) [sd pre: (~(([sd pre: (true) comod: (c) mod: (m) post: (q)])))
comod: (all)

post: (~(([sd pre: (true) comod: (c) mod: (m) post: (q)])))]

No usable quantified formulas.

<sdvs.l.l.2.2> apply

113

sd/number[highest applicable/once]: u
number: /

apply — [sd pre: (true)
comod: (all)

mod: (diff(all,c))
post: (p,

[sd pre: (true)
comod: (diff(all,m))
post: (~q)])]

Warning: the modlist of the last applied state delta mentions places
(diff(all,c)) outside of the modlist of the state delta to be
proven. The current proof can only be closed by contradiction.

<sdvs.l.l.2.3> usable

u(l) [sd pre: (true)
comod: (diff(all,m))
post: ("q)]

u(2) [sd pre: (true) comod: (c) mod: (m) post: (q)]

No usable quantified formulas.

<sdvs.l.l.2.3> apply
sd/number[highest applicable/once]: u

number: 2

inserting — pcovering(all,m)

apply — [sd pre: (true) comod: (c) mod: (m) post: (q)]

Warning: the modlist of the last applied state delta mentions places
(m) outside of the modlist of the state delta to be proven. The
current proof can only be closed by contradiction.

inserting — pcovering(all.m)

<sdvs. 1.1.2.4> usable

u(l) [sd pre: (true)
comod: (diff(all,m))
post: (~q)]

No usable quantified formulas.

<sdvs.l.l.2.4> apply
sd/number[highest applicable/once]: u

number: 1

apply — [sd pre: (true)
comod: (diff(all,m))

114

post: (~q)]

The postcondition of the last applied state delta is inconsistent
with the current state.

close — 3 steps/applications

join — [sd pre: (true)
comod: (all)
post: (~(([sd pre: (true)

comod: (c)
nod: (m)

post: (q)])))]

close — 1 steps/applications

Here is another example, also illustrating that formulas can be negated:

<sdvs.l> pp
object: tobeneg

formula tobeneg: [sd pre: (true)
comod: (all)
post: (p)]

<sdvs.l> pp
object: negged.sd

[sd pre: ("(formula(tobeneg)))
comod: (all)
post: (~p)]

<sdvs.l> prove
state delta[] : negged.sd
proof [] : < CR>

open — [sd pre: (~(formula(tobeneg)))
comod: (all)
post: ("p)]

Complete the proof.

<sdvs.l.l> usable

No usable state deltas.

No usable quantified formulas.

<sdvs.l.l> negate
state delta: [sd pre: (true) comod: (all) post: (p)]
formula name #1: fml2

negated result — [sd pre: (true)

115

comod: (all)
mod: (di« (all, all))

post: (true,
[sd pre: (true)

comod: (all)
post: (~p)])]

<sdvs.l.2> usable

u(l) [sd pre: (true)
comod: (all)

mod: (difi(all,all))
post: (true,

[sd pre: (true)
comod: (all)
post: (~p)])]

No usable quantified formulas.

<sdvs.l.2> apply
sd/number[highest applicable/once]: <CR>

apply — [sd pre: (true)
comod: (all)

mod: (diff(all,all))
post: (true,

[sd pre: (true)
comod: (all)
post: (~p)])]

< sdvs. 1. 3> usable

u(l) [sd pre: (true) comod: (all) post: (~p)]

u(2) [sd pre: (true)
comod: (all)
mod: (diff(all,all))

post: (true,
[sd pre: (true)
comod: (all)
post: (~p)])]

No usable quantified formulas.

<sdvs. 1. 3> apply
sd/number [highest applicable/once] : < CR>

apply — [sd pre: (true)
comod: (all)
post: (~p)]

close — 3 steps/applications

116

2.9.7 Linearize

Linearize is the command intended to take two usable state deltas S\ and S2 having true
preconditions and form the disjunction of two state deltas: the first claiming that S\ : post
occurs first in the future and then 52 : post, and the second claiming that £2 : post occurs
first and then 5i : post. In both cases the modlist in force until the first postcondition is
achieved is the intersection of S\ : mod and 52 : mod. The possible simultaneous occur-
rence of both postconditions is allowed in either case. This situation corresponds to the
interleaving of two parallel program fragments. For a discussion of linearize in the presence
of invariants, see Section 8.2.

For example, consider the state delta incboth:

[sd pre: (covering(all,i,y),.x = 0,.y = 0,formula(incx),formula(incy))
comod: (all)

mod: (all)
post: (false)]

where incx and incy are as follows:

[sd pre: (true) mod: (x) post: (#x = 1)]

[sd pre: (true) mod: (y) post: (#y = 1)]

This state delta is true because the two interior state deltas in the precondition are contra-
dictory with the covering statement. The linearize command gives us the means to force
the system to recognize this contradiction by making one of the postconditions true, with
a mod list equal to the intersection of the mod lists of the linearized state deltas. This
intersection is empty, and thus neither x nor y can change value.

<sdvs.l> prove
state delta[]: incboth
proof [] : < CR>

open — [sd pre: (covering(all,x,y),.x = 0,.y = 0,formula(incx),
formula(incy))

comod: (all)
mod: (all)

post: (false)]

Complete the proof.

<sdvs. 1.1 > usable

u(l) [sd pre: (true) mod: (y) post: (#y = 1)]

117

u(2) [sd pre: (true) mod: (i) post: (#i = 1)]

No usable quantified formulas.

< sdvs. 1.1 > linea rize
state delta #1: u

number: 1
state delta #2: u

number: 2
formula name #1:
formula name #2:

tncy
incx

linearize — formula(incy) or formula(incx)

non-trivial propagations — ([sd pre: (true)
comod: (all)

mod: (inter(y,i))
post: (#y = 1,

[sd pre: (true)
comod: (all)

mod: (x)
post: (#x = 1)])]) or

([sd pre: (true)
comod: (all)

mod: (inter(y.x))
post: (#x = 1,

[sd pre: (true)
comod: (all)

mod: (y)
post: (#y = 1)])])

<sdvs.l.2> cases
case predicate: [sd (true) (all) (inter(y, x)) (#y = 1, [sd (true) (all) (x) (#x = 1)])]

cases — [sd pre: (true)
comod: (all)

mod: (inter(y,x))
post: (#y = 1,

[sd pre: (true)
comod: (all)

mod: (x)
post: (#x = 1)])]

open — [sd pre: ([sd pre: (true)
comod: (all)
mod: (inter(y.x))

post: (#y = 1,
[sd pre: (true)
comod: (all)

mod: (x)
post: (#x = 1)])])

comod: (all)
mod: (all)

post: (false)]

118

<sdvs. 1.2.1.1> usable

u(l) [sd pre: (true)

comod: (all)

mod: (inter(y.i))

post: (#y = 1,

[sd pre: (true)

comod: (all)

mod: (x)

post: (#x = 1)])]

u(2) [sd pre: (true) mod: (y) post: (#y = 1)]

u(3) [sd pre: (true) mod: (x) post: (#x = 1)]

No usable quantified formulas.

<sdvs. 1.2.1.1> apply
sd/number [highest applicable/once] : < CR>

apply — [sd pre: (true)

comod: (all)

mod: (inter(y,x))

post: (#y = 1,

[sd pre: (true)

comod: (all)

mod: (x)
post: (#x = 1)])]

The postcondition of the last applied state delta is inconsistent
with the current state.

close — 0 steps/applications

open — [sd pre: ("(([sd pre:'(true)

comod: (all)

mod: (inter(y.x))

post: (#y = 1,

[sd pre: (true)

comod: (all)

mod: (x)

post: (#x = 1)])])))

comod: (all)

mod: (all)

post: (false)]

Complete the proof.

<sdvs.1.2.2.1> usable

u(l) [sd pre: (true)

comod: (all)

mod: (inter(y.x))

119

post: (#x = 1,
[sd pre: (true)
comod: (all)

mod: (y)
post: (#y = 1)])]

u(2) [sd pre: ([sd pre: (true)
comod: (all)

mod: (inter(y.x))
post: (#y = 1,

[sd pre: (true)
comod: (all)

mod: (x)
post: (#i = 1)])])

comod: (all)
mod: (all)

post: (false)]

u(3) [sd pre: (true) mod: (y) post: (#y = 1)]

u(4) [sd pre: (true) mod: (x) post: (#x = 1)]

No usable quantified formulas.

<sdvs. 1.2.2.1> apply
sd/number[highest applicable/once]: <CR>

apply — [sd pre: (true)
comod: (all)

mod: (inter(y,x))
post: (#x = 1,

[sd pre: (true)
comod: (all)

mod: (y)
post: (#y = 1)])]

The postcondition of the last applied state delta is inconsistent
with the current state.

close — 0 steps/applications

join — [sd pre: (true) comod: (all) mod: (all) post: (false)]

close — 2 steps/applications

The postcondition of the last applied state delta is inconsistent with the
current state.

2.9.8 Natural Number Induction

Natural number induction, or what is commonly referred to as "mathematical induction,"
was incorporated into SDVS 10 specifically to help overcome a hurdle in the proof of a

120

sorting program; see [44].

The command can be used to prove claims of the form Vna(n), where n is assumed to
range over the natural numbers. The command simply requests the user for the induction
expression (n above), the formula (a(n)), the base proof, and the step proof. The proofs,
as in other similar commands, can be left empty at the time of the command invocation,
and supplied interactively during the continuation of the proof. The base-case state delta
claims that the formula is true for n = 0, i.e., a(0), and the step-case state delta claims
that if the formula is true for n, then it is true for n + 1.

As a simple example, we prove that Vn(n + 1 > n). The proof closes automatically.

<sdvs.l> natinduct
induction expression: n

formulas: n+1 gt n
base proof [] : < CR>
step proof [] : <CR>

natural induction on n — (n+1 gt n)

open — [sd pre: (n = 0)
comod: (all)
post: (n + 1 gt n)]

close — 0 steps/applications

open — [sd pre: (n ge 0,n + 1 gt n)
comod: (all)
post: ((n + 1) + 1 gt n + 1)]

close — 0 steps/applications

join natural induction cases
— forall n (n ge 0 —> n + 1 gt n)

2.9.9 Mapping

The proof language must allow the user to specify the mapping (correspondence) between
the places of one state delta and another state delta that implements it, or, more generally,
between the states of one computation and another that implements it. For a more detailed
treatment of mapping, see [45].

A mapping is an assignment for each target (upper level) place of a set of host (lower level)
places such that the value of the target place is a function of the values of the associated
host places. A technicality forces the requirement that this function must be one-to-one
if the target place appears in the comodification list of a target state delta. However, the
user does not have to worry about this, since the implementation command does not allow
nonempty comodification lists in the upper level at all. Three types of statements must be
proved about the mapping:

121

1. Disjointness among a set of target places must be reflected in the disjointness of the
associated sets of host places.

2. Declarations of the target places (length of bitstrings, or range of arrays) must be
proved from the declarations associated with the corresponding host places.

3. The translations of the target state deltas into the host language induced by the
mappings must be proved from the host description.

The command implementation fills the role of "theorem constructor." It takes (or prompts
the user for) a theorem name, the upper-level specification, the lower-level specification, the
formula containing the mapping functions, the places in the host that must be constant for
the implementation to be valid, and the invariants for host state changes that must hold
for the implementation to be valid.

The result is a theorem (state delta) that denotes the implementation of the upper level by
the lower level. The precondition of the theorem contains the lower-level specification, the
constant formulas, and some equalities that provide names for certain sets of places in the
lower level, specifically,

1. names for the set of all lower-level places,

2. the set of all mapped lower-level places,

3. the set of all unmapped lower-level places, and

4. the set of all constant lower-level places.

The comod and mod of the theorem are empty. The postcondition of the theorem contains
n+2 items, where there are n state deltas in the upper-level specification. The first item is
an alldisjoint predicate stating the disjointness of the sets of mapped-onto lower-level places.
The second item is a state delta representing the validity of the upper-level declarations and
the one-to-oneness of certain mapping functions. The next n items are upper-level state
deltas that have been transformed into lower-level theorems.

The mapping construct can take either the form

1. mapping(.tplace, f(.hplacei, ..., .hplacen)), where f is some explicit function, e.g.
mapping(.tplace, .hplace); or

2. mapping(.tplace, f^hplacej, ..., .hplacen),values(tval1,f(hvall
1, ..., hvaln1), ... tvalk,

f(hvalik, ..., hvalm
k))), where the tvals are possible values of tplace and the hvals are

possible values of the hplaces.

122

The constant field can take four kinds of statements:

1. constant(.p), expressing the fact that .p is constant, but we do not know or care what
that value is;

2. .p = c, the actual value that does not change;

3. data(.p[i:j], file, offset), for values of arrays (here is where the ROMs for microprograms
could be initialized); or

4. allocate statements to accompany the data statements.

The invariants field takes a formula or list of formulas. The invariants field, if needed, is
used to specify the significant states in the lower-level machine. In other words, sometimes
the mapping of places to places as specified by the mapping formula is not sufficiently rich to
induce the state-to-state mapping required by the implementation theorem. Invariants must
hold for every lower-level state, including the initial state. They are usually implications
of the following form: if certain mapped places have certain values, then other conditions
must hold.

As an example, consider the following simple case:

First, the lower-level machine, the host machine alO.isp:

machinea:=(
♦♦Registers**

a<l:0>

♦♦Process^

cyclea{main}:=

begin
a_l next a_0
end
)

<sdvs.l> ppsd
state delta: isps

file name: atO.isp

covering(machinea,a,machinea\upc)
declare(a,type(bitstring,2))
[tr «MACHINEA\STARTED {in MACHINEA} A ; A ;]

Now, the upper-level machine, the target machine bO.isp:

123

machineb:=(
»»Registers**

b<l:0>

•♦Process**

cycleb{main} : =

begin
b_0
end
)

You need to mpisps the file and then you may look at the result (although it is not necessary
to ppsd it):

<sdvs.2> ppsd
state delta: mpisps

file name: bO.isp
starting nark point[]: <CR>
ending mark points D : <CR>

preconditionsD : <CR>

covering(machineb,b,machineb\upc)
declare(b,type(bitstring,2))
[sd pre: (.machineb\upc = machineb\started)

mod: (b,machineb\upc)
post: (#machineb\upc = machineb\halted,#b = 0(2))]

Here is the mapping specification from target places to host places:

<sdvs.2> pp
object: bOa 10.mapping

formulas bOalO.mapping: mapping(.b,.a)
mapping(.machineb\upc,map\upc(.machinea\upc),

values(machineb\started,
map\upc(machinea\started),
machineb\halted,
map\upc(machinea\halted)))

Next, we invoke the implementation command (after having mpispsed bO.isp and ispsed
alO.isp; for more information about mpisps, see page 147):

<sdvs.2> implementation
theorem name: bOalO.thm

124

upper-level spec: mpisps
file name: bO.isp

starting mark point[]: <CR>
ending mark pointsD: <CR>

preconditions 0: < CR>
lower-level spec: isps

file name: alO.isp
mappings: formulas(bOalO.mapping)

constants []: <CR>
invariants [] : <CR>

Implementation theorem 'bOalO.thm' created.

Here is the theorem (formula) that was created:

<sdvs.2> pp
object: bOalO.thm

[sd pre: (isps(alO.isp),bOalO.thm.places - union(a,machinea\upc),

bOalO.thm.mapped.places = union(a,machinea\upc),

bOalO.thm.unmapped.places

= diff(bOalO.thm.places,bOalO.thm.mapped.places))
post: (alldisjoint(a,machinea\upc),

[sd pre: (true)

comod: (all)
post: (forall al (lh(al) = 2 —> lh(al) = 2))],

[sd pre: (.machinea\upc = machinea\started)

mod: (a,machinea\upc,bOalO.thm.unmapped.places)
post: (#machinea\upc = machinea\halted,#a = 0(2))])]

Make sure to use the formulas construct around the mapping name (the mappings have
already been defined). Note that the three clauses in the postcondition correspond to the
three types of statements above. Now let us prove it.

<sdvs.2> prove
state delta[]: bOalO.thm
proof [] : < CR>

open — [sd pre: (isps(alO.isp),

bOalO.thm.places = union(a,machinea\upc),

bOalO.thm.mapped.places = union(a,machinea\upc),

bOalO.thm.unmapped.places

= diff(bOalO.thm.places,bOalO.thm.mapped.places))

post: (alldisjoint(a,machinea\upc),
[sd pre: (true)

comod: (all)

post: (forall al (lh(al) = 2 —> lh(al) = 2))],
[sd pre: (.machinea\upc = machinea\started)

mod: (a,machinea\upc,bOalO.thm.unmapped.places)

post: (#machinea\upc = machinea\halted,#a = 0(2))])]

125

Complete the proof.

<sdvs.2.1> whynotgoal
simplify? [no] : < CR>

g(2) [sd pre: (true)

comod: (all)

post: (forall al (lh(al) = 2 —> lh(al) = 2))]
g(3) [sd pre: (.machinea\upc = aachinea\started)

mod: (a,machinea\upc,bOalO.thm.unmapped.places)
post: (#machinea\upc = machinea\halted,#a = 0(2))]

<sdvs.2.1> prove

state delta[] : g

number: 3
proof []: <CR>

open — [sd pre: (.machinea\upc = machinea\started)

mod: (a,machinea\upc,bOalO.thm.unmapped.places)

post: (#machinea\upc = machinea\halted,#a = 0(2))]

Complete the proof.

<sdvs.2.1.1> until
formula: #machine\upc = machine\halted

apply — [sd pre: (.machinea\upc = machinea\started)
mod: (machinea\upc, a)

post: (#a = 1(2),
[tr {in MACHINEA} A ;])]

apply — [sd pre: (true)
comod: (machinea\upc)

mod: (machinea\upc,a)
post: (#a = 0(2),

[tr «MACHINEA\halted])]

apply — [sd pre: (true)
comod: (machinea\upc)

mod: (machinea\upc)
post: (#machinea\upc = machinea\halted)]

close — 3 steps/applications

Complete the proof.

<sdvs.2.2> whynotgoal
simplify? [no] : < CR>

g(2) [sd pre: (true)
comod: (all)
post: (forall al (lh(al) = 2 —> lh(al) = 2))]

<sdvs.2.2> prove

126

State delta[] : g
number: 2

proof [] : < CR>

open — [sd pre: (true)
comod: (all)
post: (forall al (lh(al) = 2 —> lh(al) = 2))]

close — 0 steps/applications

close — 2 steps/applications

<sdvs.3> ps

« initial state >>
mpisps testproofs/manual/isps/bO.isp <2>
proved bOalO.thm <1>
—> you are here <—

2.9.10 Formulas

The command formulas (<name-of-list-of-exprs>) will insert the list of formulas associated
with the name. It is useful when a long hypothesis occurs in more than one state delta.

The command formula(<expr-name>) inserts the single formula associated with the <expr-
name>. One may also insert state deltas by using formula (<sd-name>).

<sdvs. 1> createformula
name: hyp2

formula: .a = 5

<sdvs.1> createsd
name: flO.sd

[SD pre: .a = 5
comod[] : <CR>

mod [] : all
post:

]
#" = 10

<sdvs.1> createsd
name: fU.sd

[SD pre: formula(flO.sd), formula(hyp2)
comod [] : <CR>

mod [] : all
post: #a = 10

]

<sdvs.l> prove
state delta[]: fl4.sd
proof [] : < CR>

open — [sd pre: (formula(flO.sd),formula(hyp2))

127

mod: (all)
post: (#a = 10)]

inserting — pcovering(all,a)

Complete the proof.

<sdvs.l.l> usablesds

u(l) [sd pre: (.a = 5)

mod: (all)
post: (#a = 10)]

<sdvs.l.l> apply

sd/number[highest applicable/once]: <CR>

apply — [sd pre: (.a = 5)

mod: (all)

post: (#a = 10)]

close — 1 steps/applications

<sdvs.2> createformulas
name: hyp3

formula list: .a = 1, .a = 2

<sdvs.2> pp
object: hyp3

formulas hyp3: .a = 1

.a = 2

<sdvs.2> createsd
name: fl5.sd

[SD pre: formulas(hyp3)
comodD: <CR>

mod[]: all

post: false

]

<sdvs.2> init
proof name [] : < CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> prove
state delta[]: fl5.sd
proof [] : < CR>

open — [sd pre: (formulas(hyp3))
mod: (all)

post: (false)]

128

The state delta is vacuously TRUE because its precondition is FALSE,

close — 0 steps/applications

Here is another example illustrating the disjunction of formulas and using a state delta as
a case predicate.

<sdvs.l> pp
object: queue

formula queue: q

<sdvs.l> pp
ob j ect: disj.formula.sd

[sd pre: (formula(tobeneg) or formula(queue))
mod: (all)

post: (p or q)]

<sdvs.l> prove
state delta[]: disj.formula.sd
proof [] : < CR>

open — [sd pre: (formula(tobeneg) or formula(queue))
mod: (all)

post: (p or q)]

non-trivial propagations — ([sd pre: (true)
comod: (all)
post: (p)]) or

q

Complete the proof.

<sdvs.l.l> usable

No usable state deltas.

No usable quantified formulas.

<sdvs.l.l> cases
case predicate: [sd pre: (true) comod: (all) post: (p)]

cases — [sd pre: (true) comod: (all) post: (p)]

open — [sd pre: ([sd pre: (true)
comod: (all)
post: (p)])

comod: (all)
mod: (all)

post: (p or q)]

129

<sdvs. 1.1.1.1> usable

u(l) [sd pre: (true) comod: (all) post: (p)]

No usable quantified formulas.

<sdvs.l.l.l.l> apply
sd/number[highest applicable/once]: <CR>

apply — [sd pre: (true) comod: (all) post: (p)]

close — 1 steps/applications

open — [sd pre: ("(([sd pre: (true)

comod: (all)
post: (p)])))

comod: (all)
mod: (all)

post: (p or q)]

close — 0 steps/applications

join — [sd pre: (true)
comod: (all)
mod: (all)

post: (p or q)]

close — 1 steps/applications

2.9.11 Macros

The macro facility is essentially a parametrized formula of the preceding section. This
capability was initially developed to aid in the quicksort proof (see [44]). A macro is a
named formula (possibly quantified) with designated lists of free and quantified variables
(possibly NIL). It is defined by the command createmacro(name)(free variables)(quantified
variables). It is invoked by the term name(subs), where subs is a list of terms corresponding
to the declared variables, both free and quantified, in one contiguous sequence separated
by commas. The characteristic distinguishing between the substitutions corresponding to
the free variables and those corresponding to the quantified variables is that the latter can
be only names (atoms), not arbitrary terms. When invoked, the correct substitutions are
performed and the resulting formula is inserted in place of the macro.

As an example, consider the macro sorted and the state delta sorted.sd, exhibited below.

<sdvs. 1> createmacro
name: sorted

pattern: forall i (1 le i and i It range(a) -> .a[i:i] le .a[i+l:i+l])
free variables []: a

quantifier symbols[] : i

<sdvs.l> pp

130

object: macro
macro name: sorted

macro sorted (a),(i): forall i (1 le i ft i It range(a)
—> .a[i:i] le .a[(i + l):(i + 1)])

<sdvs.l> pp
object: sorted.sd

[sd pre: (sorted(x.i))
post: (sorted(x[j :k] ,i))]

<sdvs.l> prove
state delta[] : sorted.sd
proof [] : usable

open — [sd pre: (sorted(x,i))
post: (sorted(x[j:k] ,i))]

No usable state deltas.

q(l) forall i (1 le i ft i It ranged)
—> .x[i:i] le .x[(i + 1) : (i + 1)])

Complete the proof.

< sdvs. 1.1 > goals

g(l) forall i (1 le i ft i It range(x[j:k])
—> .x[j:k][i:i] le .x[j:k][(i + l):(i + 1)])

At this point, the macro has been invoked and the problem is reduced to a simple question
of proving a state delta (which we do not bother to do here).

2.9.12 Composition of State Deltas

Composition is the method for combining the effect of the sequential execution of several
state deltas into one state delta. The command is called compose. Composition is used
internally in processing mpisps and vhdltr, and it can also be called explicitly by the user
in interactive mode. Here is an example illustrating an arithmetic swap.

<sdvs. 1> compose
composed sd name: swapcompose.sd

Do you wish to compose sds from the proof stack? (y or n) [n]: n
sd [] : [sd (true) (all) (x) (#x = .x + .y)]
sd []: [sd (true) (all) (y) (#y = .x - .y)]
sd [] : [sd (true) (all) (x) (#x = .x - .y)]
sd []: <CR>

declarations[] : covering(all, x, y)

131

Experimental Composer

Composed

[sd pre: (true)
mod: (y,i)

post: (#x = .y,#y = .x)]

For a more detailed look at composition, see [45].

The following example illustrates the use of composition in a proof of the state delta cö.sd:

<sdvs.l> pp
object: c5.sd

[sd pre: (covering(all,x,y,upc,tmp),iormulas(machine),.upc = 1)
mod: (all)

post: (#x = .x + l,#y = .y)]

where

(defformulas machine "cl.sd" "c2.sd" Mc3.sd" "c4.sd")

Of course, c5.sd could be proved by direct execution:

<sdvs.l> prove
state delta[]: c5.sd
proof [] : *

open — [sd pre: (covering(all,x,y,upc,tmp).formulas(machine),.upc = 1)
mod: (all)

post: (#x = .x + l,#y = .y)]

apply — [sd pre: (.upc = 1)
mod: (upc.tmp)

post: (#tmp = .x,#upc = .upc + 1)]

apply — [sd pre: (.upc = 2)
mod: (x.upc)

post: (#x = .y,#upc = .upc + 1)]

apply — [sd pre: (.upc = 3)
mod: (y.upc)

post: (#y = .tmp,#upc = .upc + 1)]

apply — [sd pre: (.upc = 4)
mod: (y.upc)

post: (#y = .y + l,#upc = 1)3

132

apply — [sd pre: (.upc = 1)

mod: (upc.tmp)

post: (#tmp = .x,#upc = .upc + 1)]

apply — [sd pre: (.upc = 2)

mod: (x.upc)

post: (#x = .y,#upc = .upc +1)]

apply — [sd pre: (.upc = 3)

mod: (y.upc)

post: (#y = .tmp,#upc = .upc + 1)]

close — 7 steps/applications

However, we are really only interested in applying cl.sd, c2.sd, and c3.sd in succession. So
let us make a state delta that will have the same effect as that successive application.

<sdvs. 1> compose
composed sd name: composedsd

Do you wish to compose sds from the proof stack? (y or n) [n]: n
sd []: cl.sd
sd []: c2.sd
sd []: cS.sd
sd []: <CR>

declarations[] : covering(all, x, y, tmp, upc)

Experimental Composer

Composed

[sd pre: (.upc = 1)

mod: (y,x,upc,tmp)

post: (#upc = 4,#y = .x,#x = .y,#tmp = .x)]

Now we can use the following as a proof:

(defproof example "(prove c5.sd
proof:(prove composedsd

proof: (apply cl.sd,
apply c2.sd,
apply c3.sd,
close) ,

apply composedsd,
apply c4.sd,
apply composedsd,
close))")

Notice that composedsd will have to be proved before it can be applied. Every state delta
resulting from the compose command should be provable by *. The <declarations> field can

133

be only a covering or declaration statement.

<sdvs.l> init
proof name[]: example

State Delta Verification System, Version 13

Restricted to authorized users only.

open— [sd pre: (covering(all,x,y,upc,tmp).formulas(machine),.upc = 1)
mod: (all)

post: (#i = .x + l,#y = .y)]

open — [sd pre: (.upc =1)
mod: (y,x,upc,tmp)

post: (#upc = 4,#y = .x,#x = .y,#tmp = .x)]

apply — [sd pre: (.upc = 1)
mod: (upc.tmp)

post: (#tmp = .x,#upc = .upc + 1)]

apply — [sd pre: (.upc = 2)
mod: (x,upc)

post: (#x = .y,#upc = .upc + 1)]

apply — [sd pre: (.upc = 3)
mod: (y.upc)

post: (#y = .tmp,#upc = .upc + 1)]

close — 3 steps/applications

apply — [sd pre: (.upc = 1)
mod: (y,x,upc,tmp)

post: (Jtupc = 4,#y = .x,#x = .y,#tmp = .x)]

apply — [sd pre: (.upc = 4)
mod: (y.upc)

post: (#y = .y + l,#upc = 1)]

apply — [sd pre: (.upc = 1)
mod: (y,x,upc,tmp)

post: (#upc = 4,#y = .x,#x = .y,#tmp = .x)]

close — 4 steps/applications

2.9.13 The SDVS Language Parser

Internally, SDVS deals with expressions in prefix notation, e.g. (USSUB X 7 0). The
prettyprinter will print this expression in infix notation as X<7:0>. Those operators that
have different infix and prefix symbols (such as "plus" and "+") may be input interactively
either in infix or in mathematical (not Lisp) prefix notation, in any combination. Some

134

operators have only one symbol for both the infix and the prefix notation (such as "It,"
since the character < is reserved for substring selection). Some operators have only a
mathematical prefix form, such as the enumeration type relations and queueing operations.
SDVS is not case sensitive.

For example,

<sdvs.l> createsd
name: sd5

[SD pre: covering(all, a), eq(plus(x, y), 1)
comod[]: <CR>

mod[]: <CR>
post: pound(a) = .a + 1

]

<sdvs.l> ppsd
state delta: sd5

[sd pre: (covering(all,a),x + y = 1)
post: (#a = .a + 1)]

It is essential to parenthesize expressions that may be ambiguous, for example p -> q or r.
Otherwise, they may be interpreted differently than intended, with unpredictable results.

Some symbols may be typed in at the terminal in their prettyprinted format, some must
be typed in in their non-prettyprinted format, and some may be typed in either way. For
example,

<sdvs.l> simp
expression: a or b

a or b

<sdvs.l> simp
expression: a andb

a k b

<sdvs.l> simp
expression: a & b

a t b

The infix-prefix correspondence (for those operators with both forms) is as follows:

prefix infix

aconc aconc

135

abs abs
and &
div /
dot .
eq =

exists 3
expt

Ä

forall V
ge ge

gt gt
implies —> (input), —► (prettyprinted)
invert "*

le le
lh lh
It It
minus -
mult *
neq "= (input), ^ (prettyprinted)
not **

ones ones
or or (input), V (prettyprinted)
plus +
pound #
rem rem
usand &&
usconc (2
usdifference —
useql ==

usgeq usge
usgtr usgt
usleq usle
uslss uslt
usneq ~==
usnot *■ ~

usor usor (input), VV (prettyprinted)
usplus ++

usquotient II
usremainder usmod

ustimes **
usxor usxor
zeros zeros

Nonstandard transformations:

136

(usval X) IXl
(cond ABC) (if A then B else C)
(bs X Y) X(Y)
(ussub A X Y) A<X:Y>
(element AX) A[X]
(slice A X Y) A[X:Y]

The following is a list of reserved words, other than commands and the standard interpreted
function symbols, that have special meaning in SDVS and should not be used in other than
their official capacity.

all

constant

covering
declaration

diff

inter

map

pcovering

sd

sdtobeproven

tr

union

2.9.14 Reading, Writing, and Editing

The commands read and write are the SDVS input-output commands for user-created files.
Write prompts the user for the names of all objects that can possibly be stored (e.g. state
deltas and proofs). SDVS converts all the objects into the def form, e.g. defproof, which
can then be edited as desired. Readgoes to the designated file and processes all the def forms.

<sdvs.l> write
path name[lemmas/lemmas.lemmas]

state delta names []

proof names []

axiom names []

lemma names []

formula names []

formulas names []

macro names []

datatype names []

adalemma names []

vhdllemma names []

junk
<CR>
<CR>
<CR>
<CR>
<CR>
<CR>
<CR>
<CR>
<CR>
<CR>

Do you wish to append to the already existing file? n

137

No objects written.

The primary method for creating proofs interactively is simply to type in proof commands in
an SDVS proof session. The proof can then be named by the dump-proof command (see be-
low) and written to a file. Another method is to use the command createproof. For example,

<sdvs. 1> createproof
name: testproof

proof: (prove [sd pre: (p) comod: () mod: () post: (true)] proof: ())

<sdvs.l> pp
object: testproof

proof testproof:

prove [sd pre: (p) post: (true)]
proof:

The proper constructors for use in the editor, corresponding to the interactive create con-
structs, are defproof, defsd, and defformulas.

The form in which these definitions can be evaluated in the editor is

(defitem <itemname> ''<itembody>'')

A common situation arises when the user has finished an interactive proof, SDVS has
collected this into sdvsproof, and the user would like to change the name. The easiest way
to do this is to use the dump-proof command. Another way, which might be useful under
certain circumstances, is to write the proof to a file using the write command, change the
name in the editor, and then evaluate the defsd.

For example,

(defproof casesproof "(prove [sd pre: ([sd pre: (pi ft p2)

mod (all)
post : (ql)],

[sd pre (pi ft •p2)
mod (all)

post (q2)],
[sd pre Cpl ft p2)

mod (all)
post (q2)],

[sd pre ("pi ft -P2)
mod (all)
post (ql)])

(all) mod:

post: (ql or q2)]

138

proof:

meases

(case: pi ft p2

proof: *

case: pi ft ~p2

proof: *

case: ~pl ft p2

proof: *

case: "pi ft ~p2

proof: *))")

If the state delta exists in unparsed (input) notation in the editor, say as

[sd ...]

it may be input into SDVS by typing in the editor

(defsd sdname "[sd ...]")

and then evaluating.

If defproof does not work on some proof, putproof raa,y be used. The differences are that
in putproof, the name of the proof and the proof itself must be single quoted, and with
defproof the proof must be string quoted. Also, in putproof, the proof itself is given in Lisp
notation, whereas defproof takes the unparsed prettyprint version.

Also note that in using the defproof method, quotation marks around path names must be
preceded by backslashes to appear as follows:

(defproof proof1
"(prove s22

proof: readaxioms \"axioms/bitstring.axioms\")")

For example, in case you wish to change the name of a proof, and the above defsd method
does not work, do the following:

(putproof '<new-proofname> (proofp 'sdvsproof))

and then evaluate.

To summarize, the two methods of obtaining a proof are evaluating in Lisp

1. (proofp 'proofname) and

2. (get 'proofname 'proof).

Similarly, the two methods of obtaining a state delta named sdname are

1. (sdp 'sdname) and

2. (get 'sdname 'sd).

139

2.9.15 Batch Proofs

The user may write a batch proof in the editor by using the commands of the previous
section, or may write it interactively by using the command createproof.

<sdvs. 1 > createproof
name: tproof

proof: prove test3 proof: (*, close)

Of course, the user may also type in the actual state delta in place of just giving its name,
and may type in an arbitrarily long proof. However, given the complexity of the syntax and
the probabibty of making an error, it is strongly recommended that the user modularize
the work, or use the editor.

A batch proof may be run by typing its name at the prompt after the init command (if a
clean system is needed), or after the interpret command (if it is desired to continue from
the current context).

2.9.16 Disjunctions of State Deltas

Disjunctions of state deltas in preconditions are treated just like disjunctions of any other
sentences. (Be sure that when typing in disjunctions of state deltas the state delta square
brackets are enclosed by parentheses: (fsd]) or (fsd]).) To use a disjunction of state
deltas, a proof by cases must be done:

<sdvs.l> ppsd
state delta: intl.sd

[sd pre: (true) post: (q)]

<sdvs.l> ppsd
state delta: int2.sd

[sd pre: (true) post: (r)]

<sdvs.l> ppsd
state delta: s8

[sd pre: (formula(intl.sd) or iormula(int2.sd))
post: (q or r)]

<sdvs.l> prove
state delta[] : s8
proof []: <CR>

open — [sd pre: (formula(intl.sd) or formula(int2.sd))
post: (q or r)]

140

non-trivial propagations — ([sd pre: (true)
post: (q)]) or

([sd pre: (true)
post: (r)])

Complete the proof.

<sdvs.l.l> cases
case predicate: formula(intl.sd)

cases — formula(intl.sd)

open — [sd pre: (formula(intl.sd))
comod: (all)
post: (q or r)]

<sdvs.l.l. 1.1> usable

u(l) [sd pre: (true) post: (q)]

No usable quantified formulas.

<sdvs.l.l.l.l> apply
sd/number[highest applicable/once]: <CR>

apply — [sd pre: (true) post: (q)]

close — 1 steps/applications

open — [sd pre: ("(formula(intl.sd)))
comod: (all)
post: (q or r)]

Complete the proof.

<sdvs. 1.1.2.1> usable

u(l) [sd pre: (true) post: (r)]

u(2) [sd pre: (formula(intl.sd))
comod: (all)
post: (q or r)]

No usable quantified formulas.

<sdvs. 1.1.2.1> apply
sd/number [highest applicable/once]: <CR>

apply — [sd pre: (true) post: (r)]

close — 1 steps/applications

141

join — [sd pre: (true)

comod: (all)

post: (q or r)]

close — 1 steps/applications

2.9.17 System Commands

The two commands cd and pwd, when typed at the SDVS prompt, do the same as the
Unix commands of the same name, i.e., connect to a directory and print the name of the
working directory. The command shell allows the user to enter Unix commands at the
prompt, and the command exit kills the currently running SDVS job. Exit is the same as
doing bye in SDVS followed by (quit) in Lisp.

2.9.18 Errors

When the user (interactively) types a proof command that cannot be executed, an explana-
tory message is generated. When this same error occurs in a batch proof, a "command
error" is generated and the proof halts. The command lasterror returns the current error
message.

2.9.19 Breaks in SDVS

Although we are confident that SDVS will usually not "crash" under normal operation,
there are still some instances where a determined (or unlucky) user can break the system.
One example is given here:

<sdvs. 1> createsd
name: decsd8

[SD pre: declarefx, typeffn,
■*))

comod []: <CR>
mod[]: <CR>
post: false

]

<sdvs.l> prove
state delta[]: decsd8
proof []: <CR>

open — [sd pre: (declared, type (in, .i)))
post: (false)]

inserting — pcovering(all.x)

Complete the proof.

142

If at this point you were to simp x = .x, the control stack would overflow.

Some of the reading and writing commands still react ungracefully if you type in a partic-
ularly nonsensical path name, for example.

There are surely more examples.

2.9.20 Bugs in SDVS

In addition to errors and breaks, there are, unfortunately, still bugs. This means that
there are still some instances where a determined (or unlucky) user can prove false. It is
reassuring when an automated proof succeeds, but the user should understand that success
as an increase in confidence in the correctness of the theorem, not a fool-proof guarantee.

Here is an example of using self-reference to prove false:

<sdvs.l> ppsd
state delta: self

[sd pre: (formula(self)) post: (false)]

<sdvs.l> ppsd
state delta: foo

[sd pre: (true) post: (false)]

<sdvs.l> prove
state delta[] : foo
proof [] : < CR>

open — [sd pre: (true) post: (false)]

Complete the proof.

<sdvs.l.l> prove
state delta[]: self
proof []: <CR>

open — [sd pre: (formula(self))
post: (false)]

The state delta to be proven is already known to be TRUE.

close — 0 steps/applications

Complete the proof.

<sdvs.l.2> apply
sd/number [highest applicable/once] : < CR>

apply — [sd pre: (formula(self))
post: (false)]

143

The postcondition oi the last applied state delta is inconsistent with
the current state.

close — 1 steps/applications

<sdvs.2> ps

« initial state >>
proved foo <1>
—> you are here <—

AB algorithm to detect the unsoundness of circular state delta definitions (see [39]) has been
implemented, but is not yet part of the distributed SDVS.

144

3 INTERACTION WITH ISPS

3.1 TR: TRANSLATOR FROM ISPS TO STATE DELTAS

In SDVS the internal language for expressing computations is the state delta language;
thus the programs and specifications must be written in, or converted to, state deltas for
processing by SDVS. For programs that already exist in other, more common, languages,
or for programs that are more easily written in other languages, the problem of how to
translate accurately into the state delta language must be overcome. In the simplest cases
this may be done manually. However, for "real" programs, and in order to eliminate possible
inaccuracies in the translation, the task is too difficult to be left to the user; the slightest
error in the translation could invalidate the connection between the proof (about state
deltas) and the original claim (about a program in some other language).

This section describes the action of the translator TR on the machine description language
ISPS. Subsequent chapters discuss the translation of Ada and VHDL.

In fact, there are two different versions of the translator from ISPS to state deltas. The
more recent translator will be discussed only in the last section of this chapter. It is still
to be considered experimental, although it will eventually replace the old translator. It has
been generated by the same uniform method as the translators for Ada ana VHDL, and
recognizes a slightly larger piece of ISPS (it allows "don't care" digits, and bit order in
bitstrings can be low to high).

The version of ISPS that the (old) translator (TR) recognizes differs from the version
described in the ISPS Manual ([14]) in several respects. The first category of differences
contains those aspects of the "official" ISPS that TR does not support (see Figure 3): these
include parallelism and two's-complement arithmetic.

The second category of differences consists of extra features that SDVS needs for the im-
plementation proof paradigm. For example, when one is not interested in implementing
the action of all target places, some of the machine variables ("place" names) must be
designated as significant and the others as auxiliary. The mapping is defined only on the
designated significant places. Another useful feature is the capability to intersperse stan-
dard ISPS code with state deltas. This can be used when one is not interested in the details
of how a certain postcondition was brought about, but only in its effect, or in case that
effect is not expressible in ISPS.

A complete description of Aerospace ISPS is given in the report ISPS for SD VS ([46]); the
semantics of TR are described in [68], [15], and [47]; tests for static semantic errors are
described in [47]; and problems with ISPS are described in [48].

145

• Bit declarations must be from high to low and have zero as the rightmost bit.

• Word declarations must be from low to high and have zero as the leftmost word.

• One-bit scalars must be declared with brackets, e.g. A<> (or A<0>), not A.

• The right-hand side of a mapping must have been declared prior to the mapping.

• In our implementation only scalar entities may be on the right-hand side of a mapping
declaration. The left-hand entity may be either a scalar or an entire element of an
array.

• The REQUIRE and DEFINE declarations are unsupported.

• Function formals and return value cannot be arrays.

• ";" is interpreted as if it were "NEXT," i.e., parallel action is unsupported.

• Except for arithmetic transfer, unsigned is the only arithmetic mode implemented,
and is required at the ISPS-Declaration level for compatibility with C-MU ISPS. The
TC qualifier is required on arithmetic transfer.

• "?" is not allowed as a constant digit.

• The RESUME and TERMINATE statements are not allowed.

• UNPREDICTABLE, STOP, NO.OP, LAST.ONE, and UNDEFINED are the only
implemented predeclared entities. UNDEFINED is allowed only on the right-hand
side of a transfer operation.

• The arithmetic relation TST is unimplemented.

• MAIN, US, and TC are the only allowable qualifiers, with TC allowable only in the
context of transfer operations.

• The user definition of qualifers is unimplemented.

• Quoted strings after BEGIN/END are not allowed.

• There is no call by reference.

• Side-effect-causing operations on the left-hand side of any transfer operation are not
permitted.

• Nonfunction, nonassignment expressions, e.g. A+B, cannot be statements.

• The right operand in shifts cannot be longer than the left operand.

• The array index out of bounds may cause errors.

Figure 3: ISPS Features not Implemented in TR

146

3.2 MARKING

SDVS does the processing necessary to turn an ISPS program into an equivalent state
delta or set of state deltas. Thus, ISPS programs can be used in, or as, preconditions or
postconditions of state deltas.

A very simple example was given in Section 1.9. A more complicated example illustrating
the capability to execute from an ISPS mark point is shown next. One can run a set of
example ISPS proofs by typing run-test-proofs *isps-tests*.

When dealing with a proof based on state deltas created by TR from an ISPS program, the
user does not have a convenient method of handling the specific state deltas representing
the "continuation" of the program from each control point. To solve that problem, the
system allows the user to label the location of control points in the ISPS program.

The initial and final control points are named by the system <machine-name>\STARTED
and <machine-name>\HALTED, respectively. The exit point for an internal subroutine,
<subroutine>, is <subroutine>\exited.

Consider the following ISPS program:

gcd.machine {US} := BEGIN ! gcd algorithm computes gcd(x.y)

! for inputs x and y

** local.variables **

x<15:0>, ! input variable x
y<15:0>, ! input variable y
twos<5:0>, ! indicates common factor of twos between x and y
gcdresult<15:0> ! result of gcd(x.y)

** algorithm **

gcd {MAIN} := BEGIN
twos _ LAST.0NE(x OR y) NEXT ! store common factor of twos
y _ y SRO LAST.ONE(y) NEXT ! strip low-order zeros from y
x _ x SRO LAST.ONE(x) NEXT ! strip low-order zeros from x
REPEAT ! main loop

BEGIN
ml:= IF x LSS y => x«y . y«x NEXT ! swap x,y if x<y

x _ x - y NEXT ! assign x-y to x
m2:= IF x EQL 0 => ! if x=0 (finished) then

(m4 := gcdresult _ y NEXT ! assign y to gcdxy,
gcdresult _ gcdresult SLO twos NEXT ! remember common twos,
LEAVE gcd) NEXT ! and exit

m3:= x _ x SRO LAST.ONE(x) ! strip low-order zeros from x
END

END
END

The command mpisps generates state deltas corresponding to the state changes between
mark points, instead of every state change represented in the unmarked ISPS program. If
mpisps is used on an ISPS program with a potentially infinite loop in which the loop does

147

not have a mark point at the top, mpisps will not terminate. Gcd.isp has five mark points,
including the initial state, which is a default mark point.

Mpisps prompts for starting mark point, stopping mark point, and preconditions.

<sdvs. 1 > mpisps
path name[testproofs/manual/isps/alias.isp] : testproofs/manual/isps/gcd.isp

starting mark point[] : <CR>
ending mark points[] : <CR>

preconditions[] : <CR>
unique name level[1]: <CR>

Parsing ISPS file — "testproofs/manual/isps/gcd.isp"

Markpoint-to-markpoint translating ISPS file
— "testproofs/manual/isps/gcd.isp"

[sd pre: (.gcd.machine\upc = gcd.machine\started)
mod: (twos,gcd.machine\upc,y,x)

post: (ffgcd.machine\upc = ml,
#i = (zeros(|lastone(.i)|) • .x)

<15 + |lastone(.x)|:|lastone(.x)|>,
#y = (zeros(|lastone(.y)|) C .y)

<15 + |lastone(.y)|:|lastone(.y)|>,
»twos = lastone(.x usor .y))]

[sd pre: (|.y| gt |.x|, .gcd.machine\upc = ml)

mod: (y,x,gcd.machine\upc)

post: (#gcd.machine\upc = m2,#x = (.y — .x)<15:0>,#y = .x)]

[sd pre: (|.y| le |.x|, .gcd.machine\upc = ml)

mod: (x,gcd.machine\upc)

post: (#gcd.machine\upc = m2,#x = (.x — .y)<15:0>)]

[sd pre: (|.x| = 0, .gcd.machine\upc = m2)
mod: (gcd.machine\upc)

post: (#gcd.machine\upc = m4)]

[sd pre: (|.x| ~= 0, .gcd.machine\upc = m2)

mod: (gcd.machine\upc)

post: (#gcd.machine\upc = m3)]

[sd pre: (.gcd.machine\upc = m4)

mod: (gcdresult,gcd.machine\upc)

post: (»gcd.machine\upc = gcd.machine\halted,

«gcdresult = (.y 0 zeros(|.twos|))<15:0>)]

[sd pre: (.gcd.machine\upc = m3)
mod: (x,gcd.machine\upc)

post: (#gcd.machine\upc = ml,
#x = (zeros(|lastone(.x)|) 0 .x)

<15 + |lastone(.x)|:|lastone(.x)|>)]

The flag displaympsds was on. If it were off, the above state deltas would not be displayed.

148

<sdvs.2> ppsd
state delta: mpisps

file name: gcd.isp
starting mark point[]: <CR>
ending mark pointsD : <CR>

preconditions □ : <CR>

covering(gcd.machine,x,y,twos,gcdresult,gcd.machine\upc)
declared, type (bitstring, 16))
declare(y,type(bitstring,16))
declare(twos,type(bitstring,6))
declare(gcdresult,type(bitstring,16))
[sd pre: (.gcd.machine\upc = gcd.machine\started)

mod: (twos,gcd.machine\upc,y,x)
post: (#gcd.machine\upc - ml,

#x - (zeros(|lastone(.x)|) • .x)
<15 + |lastone(.x)|:|lastone(.x)|>,

#y = (zeros(|lastone(.y)|) 0 .y)
<15 + |lastone(.y)|:|lastone(.y)|>,

#twos = lastoneC.x usor .y))]

[sd pre: (|.y| gt |.x|, .gcd.machine\upc = ml)

mod: (y,x,gcd.machine\upc)

post: (#gcd.machine\upc = m2,#x = (.y —

[sd pre: (|.y| le |.x|, .gcd.machine\upc = ml)

mod: (x,gcd.machine\upc)

post: (#gcd.machine\upc * m2,#x = (.x —

[sd pre: (|.x| = 0, .gcd.machine\upc = m2)

mod: (gcd.machine\upc)

post: (#gcd.machine\upc - m4)]

[sd pre: (|.x| "= 0, .gcd.machine\upc = m2)

mod: (gcd.machine\upc)

post: (#gcd.machine\upc = m3)]

[sd pre: (.gcd.machine\upc = m4)

mod: (gcdresult,gcd.machine\upc)

post: (#gcd.machine\upc - gcd.machine\halted,

»gcdresult = (.y C zeros(|.twos|))<15:0>)]

[sd pre: (.gcd.machine\upc - m3)

mod: (x,gcd.machine\upc)
post: (#gcd.machine\upc - ml,

#x = (zeros(|lastone(.x)|) • .x)

<15 + |lastone(.x)|:|lastone(.x)|>)]

.x)<15:0>,#y = .x)]

.y)<15:0>)]

Now we will use mpisps with mark points chosen.

<sdvs.2> mpisps
path name[testproofs/manual/isps/gcd.isp]:

starting mark point []:
ending mark points []:

preconditions[] :
unique name level[1]:

testproofs/manual/isps/gcd.isp
m2
m3
<CR>
<CR>

Parsing ISPS file — "testproofs/manual/isps/gcd.isp"

Markpoint-to-markpoint translating ISPS file

— "testproofs/manual/isps/gcd.isp"

149

[sd pre: (|.x| = 0, .gcd.machine\upc = m2)
mod: (gcd.machine\upc)

post: (#gcd.machine\upc = m4)]

[sd pre: (|.x| ~= 0, .gcd.machine\upc = m2)
mod: (gcd.machine\upc)

post: (#gcd.machine\upc = m3)]

[sd pre: (.gcd.machine\upc = m4)
mod: (gcdresult,gcd.machine\upc)

post: (#gcd.machine\upc = gcd.machine\halted,
«gcdresult = (.y C zeros (|.twos|))< 15:0>)J

<sdvs.3> mpisps
path name [testproof s/manual/isps/gcd. isp] : < CR>

starting mark point [] : m2
ending mark points[]: <CR>

precondit ions [] : < CR>
unique name level[1]: <CR>

Parsing ISPS file — "testproofs/manual/isps/gcd.isp"

Markpoint-to-markpoint translating ISPS file
— "testproofs/manual/isps/gcd.isp"

[sd pre: (|.x| = 0, .gcd.machine\upc = m2)
mod: (gcd.machine\upc)

post: (#gcd.machine\upc = m4)]

[sd pre: (|.x| ~= 0, .gcd.machine\upc = m2)
mod: (gcd.machine\upc)

post: (#gcd.machine\upc = m3)]

[sd pre: (.gcd.machine\upc = m3)
mod: (x,gcd.machine\upc)

post: (#gcd.machine\upc = ml,
#x = (zeros(|lastone(.x)|) C .x)

<15 + |lastone(.x)|:|lastone(.x)|>)]

[sd pre: (.gcd.machine\upc = m4)

mod: (gcdresult,gcd.machine\upc)

post: (#gcd.machine\upc = gcd.machine\halted,

»gcdresult = (.y C zeros(|.twos|))<15:0>)]

[sd pre: (|.y| le |.x|, .gcd.machine\upc = ml)
mod: (x,gcd.machine\upc)

post: (#gcd.machine\upc = m2,#x = (.x — .y)<15:0>)]

[sd pre: (|.y| gt |.x|, .gcd.machine\upc = ml)
mod: (y,x,gcd.machine\upc)

post: (#gcd.machine\upc = m2,#x = (.y — .x)<15:0>,#y = .x)]

<sdvs.4> mpisps
path name [testproof s/manual/isps/gcd. isp] : <CR>

150

starting mark pointG: m2
ending mark points[]: <CR>

preconditions!!] : |.x| ge \.y\
unique name level[1]: <CR>

Parsing ISPS file — "testproofs/manual/isps/gcd.isp"

Markpoint-to-markpoint translating ISPS file
— "testproofs/manual/isps/gcd.isp"

[sd pre: (|.x| ge |.y|,|.i| = 0, .gcd.machine\upc = m2)
mod: (gcd.machine\upc)

post: (#gcd.machine\upc = m4)]

[sd pre: (|.x| ge |.y|,|.x| "= 0,.gcd.machine\upc = m2)
mod: (gcd.machine\upc)

post: (#gcd.machine\upc = m3)]

[sd pre: (.gcd.machine\upc - m3)
mod: (x,gcd.machine\upc)

post: (#gcd.machine\upc = ml,
#x = (zeros(|lastone(.x)|) • .x)

<15 + |lastone(.x)|:|lastone(.x)|>)]

[sd pre: (.gcd.machine\upc = m4)

mod: (gcdresult,gcd.machine\upc)

post: (#gcd.machine\upc = gcd.machine\halted,

«gcdresult = (.y • zeros(|.twos|))<15:0>)]

[sd pre: (|.y| le |.x|, .gcd.machine\upc = ml)
mod: (x,gcd.machine\upc)

post: (#gcd.machine\upc = m2,#x = (.x — .y)<15:0>)]

[sd pre: (|.y| gt |.x|, .gcd.machine\upc = ml)
mod: (y,x,gcd.machine\upc)

post: (#gcd.machine\upc = m2,#x = (.y — .x)<15:0>,#y = .x)]

<sdvs.5> tnpisps
path name[testproofs/manual/isps/gcd. isp]

starting mark point []
ending mark points []

preconditions []
unique name level[1]

<CR>
m2
<CR>
\.x\ = 0
<CR>

Parsing ISPS file — "testproofs/manual/isps/gcd.isp"

Markpoint-to-markpoint translating ISPS file
— "testproofs/manual/isps/gcd.isp"

[sd pre: (|.x| = 0, .gcd.machine\upc = m2)

mod: (gcd.machine\upc)

post: (#gcd.machine\upc = m4)]

[sd pre: (.gcd.machine\upc = m4)

mod: (gcdresult,gcd.machine\upc)

151

post: (#gcd.machine\upc = gcd.machine\halted,

#gcdresult = (.y C zeros(|.twos|))<15:0>)]

The differences between isps and mpisps are as follows:

1. isps gives an incremental translation (with TRs in the postcondition); mpisps gives a
set of state deltas;

2. isps translates every ISPS state change; mpisps accumulates effects from mark point
to mark point;

3. mpisps takes account of extensions of ISPS by state deltas, assumptions, and external
and auxiliary variables; and

4. «sps(file.isp) should be used only in the precondition of a state delta (as a host de-
scription).

3.3 EXTENSIONS OF ISPS

The user may extend ISPS code in two main ways:

1. by interspersing assumptions or state deltas between ISPS statements, and

2. by declaring some ISPS variables to be external or auxiliary.

These extensions were found to be useful in specifying real machines in the context of setting
up implementation proofs. They were found to be necessary, for example, in the work on
the C30 machine [13].

3.3.1 Extending ISPS by Assumptions and State Deltas

The two methods for extending ISPS that are discussed in this section are

1. the assumptions .'.'[ASSUME: (expr)], and

2. inserting state deltas '.'.[EXTSD () (pre) (comod) (mod) (post)].

The expr field in assumption is any state delta formula (note that a statement such as "#x
= 1" is not a legal state delta formula); it is interpreted to be a precondition to the rest of
the ISPS routine. In other words, if the assumption is not true, execution cannot continue
from that point.

152

The extended state delta has room for a markpoint field which is currently unimplemented
and must be left empty. Other than that, it is interpreted with the same internal semantics
as any state delta, and with the same control as if it had been a regular ISPS statement.
It is useful for expressing state changes that cannot be expressed in ISPS. Notice that one
may make a static assertion by using an extended state delta with (nil markpoint field and)
nil precondition and nil mod list.

As an example, consider the following extended ISPS program (extest2.isp):

sd.machine {US} :=
BEGIN
•»Registers**

x<15:0>, y<15:0>

♦♦Algorithm**

exec {MAIN}:=
BEGIN

!![EXTSD: () (|.x| ge |.y|) () (x, y) (#x = 0(16) or #y = 0(16))] NEXT
POINT:=
if x eql 0 => y _ 1 NEXT
if y eql 0 => x _ 0
END
END

Let us mpisps it and look at the resulting state deltas.

<sdvs. 1 > mpisps
path name[testproofs/manual/isps/gcd.isp] : testproofs/manual/xsps/extestS.isp

starting mark point[]: <CR>
ending mark points[]: <CR>

precondit ions [] : < CR>
unique name level[1]: < CR>

Parsing ISPS file — "testproofs/manual/isps/extest2.isp"

Markpoint-to-markpoint translating ISPS file
— "testproofs/manual/isps/extest2.isp"

[sd pre: (|.x| ge |.y|, .sd.machine\upc = sd.machine\started)
mod: (y,x,sd.machine\upc)

post: (*x = 0(16) or #y = 0(16),#sd.machine\upc = point)]

[sd pre: (|.x| It |.y|, .sd.machine\upc = sd.machine\started)
mod: (sd.machine\upc)

post: (#sd.machine\upc = point)]

[sd pre: (|.x| = 0, .sd.machine\upc = point)
mod: (y,sd.machine\upc)

post: (#sd.machine\upc = sd.machine\halted,#y = 0(14) 0 1(2))]

[sd pre: (|.x| ~= 0 t .sd.machine\upc = point,|.y| = 0)

153

mod: (x,sd.machine\upc)
post: (#sd.machine\upc = sd.machine\halted,#x 0(16))]

[sd pre: (|.i| ~= 0 ft .sd.machine\upc = point,|.y| ~= 0)
mod: (sd.machine\upc)

post: (#sd.machine\upc = sd.machine\halted)]

<sdvs.2> ppsd
state delta: mpisps

file name: extestS.isp
starting mark point[]: <CR>
ending mark pointsD : <CR>

preconditions D : < CR>

covering(sd.machine,x,y,sd.machine\upc)
declare(x,type(bitstring,16))
declare(y,type(bitstring,16))
[sd pre:

mod:
post:

[sd pre:
mod:

post:
[sd pre:

mod:
post:

[sd pre:
mod:

post:
[sd pre:

mod:
post:

|.x| ge |.y|,.sd.machine\upc = sd.machine\started)
y,x,sd.machine\upc)
#x = 0(16) or #y = 0(16),#sd.machine\upc = point)]
|.x| It |.y|,.sd.machine\upc = sd.machine\started)
sd.machine\upc)
#sd.machine\upc = point)]
|.x| = 0, .sd.machine\upc = point)
y,sd.machine\upc)
#sd.machine\upc = sd.machine\halted,#y = 0(14) C 1(2))]
|.x| ~= 0 ft .sd.machine\upc = point,|.y| = 0)
x,sd.machine\upc)
#sd.machine\upc = sd.machine\halted,#x = 0(16))]
|.x| ~= 0 ft .sd.machine\upc = point,|.y| "= 0)
sd.machine\upc)
#sd.machine\upc = sd.machine\halted)]

Let extest.isp be the above without POINT:

sd.machine {US} :=
BEGIN
♦♦Registers**

x<15:0>, y<15:0>

♦♦Algorithm**

exec {MAIN}:=
BEGIN

!![EXTSD: () (|.x| ge |.y|) () (x, y) (#x = 0(16) or #y = 0(16))] NEXT

if x eql 0 => y . 1 NEXT
if y eql 0 => x _ 0
END
END

< sdvs. 1 > mpisps

154

path name[testproof s/manual/isps/extest2.isp] : testproofs/manual/isps/extest.isp
starting mark pointD: <CR>
ending mark points□ : <CR>

preconditions □ : <CR>
unique name level[1]: <CR>

Parsing ISPS file — "testproofs/manual/isps/extest.isp"

Markpoint-to-markpoint translating ISPS file
— "testproofs/manual/isps/extest.isp"

[sd pre: (|.x| ge |.y|, .sd.machine\upc = sd.machine\started)
mod: (y,x,sd.machine\upc)

post: (exists gv-y-1279 exists gv-x-1278 (((gv-x-1278 = 0(16) or
gv-y-1279 = 0(16)) ft

lh(gv-x-1278) = 16 ft
lh(gv-y-1279) = 16) ft

(|gv-x-1278| = 0
—> #sd.machine\upc

= sd.machine\halted ft

#y = 0(14) C

1(2) ft

#x = 0(16))))]

[sd pre: (|.x| ge |.y|, .sd.machine\upc = sd.machine\started)

mod: (y,x,sd.machine\upc)

post: (exists gv-y-1279 exists gv-x-1278 (((gv-x-1278 = 0(16) or

gv-y-1279 = 0(16)) ft

lh(gv-x-1278) = 16 ft
lh(gv-y-1279) = 16) ft

(|gv-x-1278| ~= 0

—> #sd.machine\upc
= sd.machine\halted ft

#x = 0(16) ft
#y = 0(16))))]

[sd pre: (|.x| It |.y| ft .sd.machine\upc = sd.machine\started,|.x| = 0)
mod: (y,sd.machine\upc)

post: (tsd.machine\upc * sd.machine\halted,#y = 0(14) t 1(2))]

[sd pre: (|.x| It |.y| ft .sd.machine\upc = sd.machine\started,
|.x| -= 0)

mod: (sd.machine\upc)
post: (tsd.machine\upc = sd.machine\halted)]

<sdvs.2> ppsd
state delta: mpisps

file name: extest.isp
starting mark point[]: <CR>
ending mark points O: <CR>

precondit ions D: < CR>

covering(sd.machine,x,y,sd.machine\upc)
declare(x,type(bitstring,16))
declare(y,type(bitstring,16))

155

[sd pre: (|.x| ge |.y|, .sd.machine\upc = sd.machine\started)

mod: (y,x,sd.machine\upc)

post: (exists gv-y-1279 exists gv-x-1278 (((gv-x-1278 = 0(16) or

gv-y-1279 = 0(16)) ft

lh(gv-x-1278) = 16 ft

lh(gv-y-1279) = 16) ft

(|gv-x-1278| = 0

—> #sd.machine\upc

= sd.machine\halted ft
#y = 0(14) C

1(2) ft
#x = 0(16))))]

[sd pre: (|.x| ge |.y|, .sd.machine\upc = sd.machine\started)

mod: (y,x,sd.machine\upc)

post: (exists gv-y-1279 exists gv-x-1278 (((gv-x-1278 = 0(16) or

gv-y-1279 = 0(16)) ft

In(gv-x-1278) = 16 ft

lh(gv-y-1279) = 16) ft

(|gv-x-1278| ~= 0

— > #sd.machine\upc

= sd.machine\halted ft
#x = 0(16) ft

#y = 0(16))))]
[sd pre: (|.x| It |.y| ft .sd.machine\upc = sd.machine\started,|.x| = 0)

mod: (y,sd.machine\upc)

post: (#sd.machine\upc = sd.machine\halted,#y = 0(14) C 1(2))]
[sd pre: (|.x| It |.y| ft .sd.machine\upc = sd.machine\started,

|.x| ~= 0)

mod: (sd.machine\upc)

post: (#sd.machine\upc = sd.machine\halted)]

It is clear that the following state delta (call it extsdl) is true:

[sd pre: (mpisps(extest2.isp),.sd.machine\upc = sd.machine\started)
mod: (all)

post: (|#x| le |#y|,#sd.machine \upc = sd.machine\halted)]

and the following proof works:

(prove extsdl

proof:

cases |.x| ge |.y|

then proof:

(apply,

cases |.x| = 0

then proof:

(apply,

close)

else proof:

(notice |.y| = 0,

apply,

close))

else proof:

(apply,

156

cases |.x| = 0

then proof:

(apply,

close)

else proof:

cases | .y| = 0

then proof:

else proof:

(apply,

close)))

As a good exercise, try to input the above state delta and proof in the editor, using the
defsd and defproof functions. See Section 2.9.14. Remember to use two backslashes "\\"
in the editor to get one real backslash.

We cannot currently prove the corresponding state delta involving extest.isp; any state
deltas resulting from mpisps that contain existential quantifiers should be suspect. The
user should eliminate these quantifiers by adding mark points in suitable places in the
original ISPS code.

Now let us examine the state delta formed by making .xge.y an assumption. Call the fol-
lowing extended ISPS program extest3.isp:

sd.machine {US} :=
BEGIN
♦•Registers**

K15:0>, y<15:0>

♦♦Algorithm**

exec {HAIN}:=

BEGIN

!! [ASSUME: (|.x| ge |.y|)] NEXT
if x eql 0 => y . 1 NEXT
if y eql 0 => x _ 0
END
END

<sdvs. 1 > mpisps
path name[testproofs/manual/isps/extest.isp]: testproofs/manual/isps/extest3.isp

starting mark point[]: <CR>
ending mark points[]: <CR>

preconditions [] : < CR>

157

unique name level[1] : <CR>

Parsing ISPS file — "testproofs/manual/isps/extest3.isp"

Markpoint-to-markpoint translating ISPS file
— "testproofs/manual/isps/extest3.isp"

[sd pre: (|.x| ge |.y| ft .sd.machine\upc = sd.machine\started,|.x| = 0)
nod: (y,sd.machine\upc)

post: (#sd.machine\upc = sd.machine\halted,#y = 0(14) « 1(2))]

[sd pre: (|.x| ge |.y| ft .sd.machine\upc = sd.machine\started,
|.x| "= 0,|.y| = 0)

mod: (x,sd.machine\upc)
post: (#sd.machine\upc = sd.machine\halted,#x = 0(16))]

[sd pre: (|.x| ge |.y| ft .sd.machine\upc = sd.machine\started,
|.x| -=0,|.y| -=0)

mod: (sd.machine\upc)
post: (#sd.machine\upc = sd.machine\halted)]

<sdvs.2> ppsd
state delta: mpisps

file name
starting mark point []
ending mark pointsD

preconditions □

extestS.isp
<CR>
<CR>
<CR>

covering(sd.mach ine.x.y.sd.machine\upc)
declare (x .type (bitstring, 16))
declare(y,type(bitstring,16))
[sd pre: (|.x| ge |.y| ft .sd. machine \upc = sd.machine\started,| .x| = 0)

mod: (y,sd.machine\upc)
post: (#sd.machine\upc = sd.machine\halted,#y = 0(14) C 1(2))]

[sd pre: (|.x| ge |.y| ft .sd.machine\upc = sd.machine\started,
|.x| -- 0,|.y| = 0)

mod: (x,sd.machine\upc)
post: (#sd.machine\upc = sd.machine\halted,#x = 0(16))]

[sd pre: (|.x| ge |.y| ft .sd.machine\upc = sd.machine\started,
|.x| "= 0,|.y| -=0)

mod: (sd.machine\upc)
post: (#sd.machine\upc = sd.machine\halted)]

3.3.2 External and Auxiliary Variables

External and auxiliary variables are introduced into ISPS descriptions in order to extend
the possibilities of expression, not just to facilitate expression. These extended possibilities
are reflected in the translation of the description into state deltas and the methods of proof
needed to verify claims of implementation between two levels of description.

Both external and auxiliary variables satisfy specification needs arising from real problems.
External variables have their intuitive motivation in "input variables," that is, in variables
whose value may change at random, upon receipt of a signal from some external source

158

(external with respect to the level of description in which they appear designated as "ex-
ternal"), in addition to any changes explicitly required by that description.

The idea for auxiliary variables is found in the concept of temporary variables. Generally
speaking, the designation "auxiliary" is used for any variable whose contents are not to
be relied on, or even considered, by any "outside" observer (although, of course, they may
be essential to the internal workings of the description). When viewed from the outside,
auxiliarly variables are not considered to be part of the state of the system.

3.3.3 External Variables

The suffix Hext may be appended to any ISPS declaration, e.g.

X<15:0>!!ext.

This indicates that the variable may change value during any state change explicitly allowed
by the ISPS program. There is no need to change the syntax or semantics of state deltas to
account for the external variables. An ISPS program with ext is translated into state deltas
just as before, with the addition that the external variables appear in every mod list.

In the case of markpoint-to-markpoint translation, care must be taken, for example, when
there is a case split on an external variable between the starting and ending markpoint.
However, when we take the view that markpoint-to-markpoint translation equals the com-
position of the state deltas representing the translation of the fine-grained state changes,
the problem of external variables is just a subcase of the general problem (remember that
the only special handling that external variables need is to be placed in every mod list).

For example, consider the machine (assumed below to be in file extest4.isp):

sd.machine {US} :=
BEGIN
♦♦Registers**

x<15:0>,
y<15:0>! !ext

»♦Algorithm**

exec {HAIN}:=
BEGIN

if x eql 0 => y . 1 NEXT
if y eql 0 => x _ 0
END
END

and consider the state delta

<sdvs.l> ppsd

159

State delta: extsd

[sd pre: (|.x| = 1 ,isps(eitest4.isp) ,
.sd.machine\upc = sd.machine\started)

mod: (all)
post: (#sd.machine\upc = sd. machine \halted,|#x| = 0 or |#x| = 1)]

The following proof works:

<sdvs.l> pp
object: extproof

proof eitproof:

prove extsd
proof:

(apply,
cases |.y| = 0

then proof:
(apply 3,
close)

else proof:
(apply 2,
close))

<sdvs. 1> interpret
proof name: extproof

open — [sd pre: (|.x| = 1 ,isps(extest4.isp),
.sd.machine\upc = sd.machine\started)

mod: (all)
post: (#sd.machine\upc = sd.machine\halted,

|#x| = 0 or |#x| = 1)]

apply — [sd pre: (.sd.machine\upc = sd.machine\started,
.x == 0(2) "= 1(1))

mod: (sd.machine\upc,y)
post: ([tr {in SD.MACHINE} IF;])]

cases — |.y| » 0

open — [sd pre: (|.y| = 0)
comod: (all)

mod: (all)
post: (#sd.machine\upc = sd.machine\halted,

|#x| = 0 or |#x| = 1)]

apply ~ [sd pre: (.y == 0(2) = 1(1))
comod: (sd.machine\upc)

mod: (sd.machine\upc,y)
post: ([tr {in SD.MACHINE} X ;])]

apply — [sd pre: (true)

comod: (sd.machine\upc)

160

mod: (sd.machine\upc,x,y)

post: (#x = 0(14) C 0(2),

[tr «SD.MACHINE\halted])]

apply — [sd pre: (true)

comod: (sd.machine\upc)
mod: (sd.machine\upc,y)

post: (#sd.machine\upc = sd.machine\halted)]

close — 3 steps/applications

open — [sd pre: (~(|.y| = 0))

comod: (all)

■od: (all)

post: (#sd.machine\upc - sd.machine\halted,

|»x| = 0 or |#x| = 1)]

apply -- [sd pre: (.y == 0(2) "= 1(1))

comod: (sd.machine\upc)
mod: (sd.machine\upc,y)

post: ([tr CSD.MACHINE\halted])]

apply — [sd pre: (true)
comod: (sd.machine\upc)
mod: (sd.machine\upc,y)

post: (#sd.machine\upc = sd.machine\halted)]

close — 2 steps/applications

join — [sd pre: (true)

comod: (all)

mod: (all)

post: (#sd.machine\upc = sd.machine\halted,

|#x| = 0 or |#x| = 1)]

close — 2 steps/applications

3.3.4 Auxiliary Variables

The suffix V.aux may be appended to any ISPS declaration, e.g.

X<15:0>!!aux.

The difference between the semantics of such an annotated ISPS program and the semantics
of an unannotated one becomes apparent only when one considers the interaction of the
programs with another level. Auxiliary variables in target or host cannot play a role in
the mapping. Thus, target auxiliary variables are not mapped from, and host auxiliary
variables are not mapped to. Auxiliary variables do not appear in state deltas that are the
result of mpisps.

Consider the machine

aux.machine {US} :=

161

BEGIN
♦♦Registers**

x<15:0>,
y<15:0>,
temp<15:0>! !aui

♦♦Algorithm**

exec {MAIN}:=
BEGIN
temp _ i next
x _ y next
y _ temp
END
END

<sdvs.l> ppsd
state delta: mpisps

file name: auxtest.isp
starting mark point[] : <CR>
ending mark pointsD : <CR>

preconditions □ : <CR>

covering(aux.machine,x,y,aux.aachine\upc)
declare(x,type(bitstring,16))
declare(y,type(bitstring,16))
[sd pre: (.aux.machine\upc = aux.machine\started)

mod: (aux.machine\upc,x,y)
post: (#aux.machine\upc = aux.machine\halted,#y = .x,#x = .y)]

Now we construct a theorem saying that auxtest implements itself.

<sdvs. 1> implementation
theorem name: aux.thm

upper-level spec: mpisps
file name: auxtest.isp

starting mark point [] : <CR>
ending mark pointsÜ : <CR>

preconditionsD : <CR>
lower-level spec: isps

file name: auxtest.isp

mappings: mapping(.x, .x), mapping(.y, .y), mapping(.aux.machine\upc,.aux.machine\upc)
constants[]: <CR>

invariants [] : < CR>

Implementation theorem 'aux.thm' created.

<sdvs.l> ppsd
state delta: aux.thm

[sd pre: (isps(auxtest.isp),

aux.thm.places = union(x,y,aux.machine\upc,aux.machine\aux),
aux.thm.mapped.places = union(x,y,aux.machine\upc),

162

aux.thm.unmapped.places
= diff(aux.thm.places,aux.thm.mapped.places))

post: (alldisjoint(x,y,aux.machine\upc),
[sd pre: (true)

comod: (all)
post: (forall al (lh(al) = 16 —> lh(al) = 16),

forall al (lh(al) = 16 —> lh(al) = 16))],
[sd pre: (.aux.machine\upc = aux.machine\started)

mod: (aux.machine\upc,x,y,aux.thm.unmapped.places)
post: (#aux.machine\upc = aux.machine\halted,#y = .x,

#x = .y)])]

<sdvs.l> prove
state delta[] : aux.thm
proof [] : < CR>

open — [sd pre (isps(auxtest.isp),
aux.thm.places

= union(x,y,aux.machine\upc,aux.machine\aux),
aux.thm.mapped.places = union(x,y,aux.machine\upc),
aux.thm. unmapped.places

= diff(aux.thm.places,aux.thm.mapped.places))
post: (alldisjoint(x,y,aux.machine\upc),

[sd pre: (true)
comod: (all)
post: (forall al (lh(al) = 16 —> lh(al) = 16),

forall al (lh(al) = 16 —> lh(al) = 16))],
[sd pre: (.aux.machine\upc = aux.machine\started)

mod: (aux.machine\upc,x,y,aux.thm.unmapped.places)
post: (#aux.machine\upc = aux.machine\halted,

#y = .x,#x = .y)])]

Complete the proof.

<sdvs.l.l> whynotgoal
simplify? [no] : < CR>

g(2) [sd pre: (true)
comod: (all)
post: (forall al (lh(al) = 16 —> lh(al) = 16),

forall al (lh(al) = 16 --> lh(al) = 16))]
g(3) [sd pre: (.aux.machine\upc = aux.machine\started)

mod: (aux.machine\upc,x,y,aux.thm.unmapped.places)
post: (#aux.machine\upc - aux.machine\halted,#y = .x,#x = .y)]

<sdvs.l.l> prove
state delta[] : g

number: 2
proof [] : < CR>

open — [sd pre: (true)
comod: (all)
post: (forall al

forall al
(lh(al) = 16 --> lh(al) = 16),
(lh(al) = 16 —> lh(al) = 16))]

163

close — 0 steps/applications

Complete the proof.

<sdvs.l.2> prove
state delta[]: g

number: 3
proof []: <CR>

open — [sd pre: (.aux.machine\upc = aux.machine\started)
mod: (aux.machine\upc,x,y,aux.thm.unmapped.places)

post: (#aux.machine\upc = aux.machine\halted,#y = .x,
#x = -y)]

Complete the proof.

<sdvs.l.2.1> *

apply — [sd pre: (.aux.machine\upc = aux.machine\started)

mod: (aux.machine\upc,temp)
post: (#temp = .x,

[tr {in AUX.MACHINE} X ; Y ;])]

apply — [sd pre: (true)

comod: (aux.machine\upc)

mod: (aux.machine\upc,x)
post: (#x = .y,

[tr {in AUX.MACHINE} Y ;])]

apply — [sd pre: (true)

comod: (aux.machine\upc)

mod: (aux.machine\upc,y)
post: (#y = .temp,

[tr «AUX.MACHINE\halted])]

apply — [sd pre: (true)

comod: (aux.machine\upc)
mod: (aux.machine\upc)

post: (#aux.machine\upc = aux.machine\halted)]

close — 4 steps/applications

close — 2 steps/applications

3.4 THE NEW ISPS TRANSLATOR

The new translator can be accessed by the command ispstr. The associated predicate is
newisps. We present an example comparing the new with the old translator on the ISPS
program incl.isp:

! incl.ISP

incl {US} := (

164

»♦Registers**

i<7:0>

•♦Processes**

incl {MAIK} := BEGIN

REPEAT BEGIN
loopl:= x _ i + 1

END
END

)

First, using the new translator:

<sdvs.l> pp
object: newincO.sd

[sd pre: (newisps(incl.isp))
post: (newisps(incl.isp))]

We would expect this to be true and trivially provable, and it is with the new translator:

<sdvs. 1> setflag
flag variable: autoclose
on or off[off]: off

setflag autoclose — off

<sdvs.2> prove
state delta[] : newincO.sd
proof[]: <CR>

open — [sd pre: (newisps(incl.isp))
post: (nevisps(inc1.isp))]

Complete the proof.

<sdvs.2.1> goals

g(l) covering(incl,incl\upc,x)
g(2) declared,type(bitstring,8))
g(3) [sd pre: (.incl\upc = incl\started)

comod: (all)
mod: (incl\upc)

post: ([ispstr t(incl) incl ...])]

<sdvs.2.1> whynotgoal
simplify? [no] : < CR>

165

The goal is TRUE. Type 'close'.

<sdvs.2.1> close

close — 0 steps/applications

<sdvs.3> setflag
flag variable: autoclose
on or off[on]: on

setflag autoclose — on

With the old translator, things are not so trivial:

<sdvs.l> pp
object: newincl.sd

[sd pre: (isps(incl.isp))
post: (isps(incl.isp))]

<sdvs.l> prove
state delta[] : newincl.sd
proof [] : < CR>

open— [sd pre: (isps(incl.isp))
post: (isps(incl.isp))]

Complete the proof.

<sdvs.l.l> whynotgoal
simplify? [no] : < CR>

g(3) [tr «INC1\STARTED {in IHCl} REPEAT;]
g(4) [tr «L00P1 {in IHCl} X ; REPEAT;]

In fact, it appears that this is unprovable in SDVS 13.

166

4 INTERACTION WITH ADA

This chapter describes the ability of SDVS 13 to deal with Ada programs and their proofs
of correctness with respect to specifications written in state deltas. We first describe the
subset of the Ada language that SDVS can currently handle ("SDVS 13 Ada" is the same
as "SDVS 12 Ada.") Then we give the proof rules that have been added to SDVS in order
to reason about programs written in that language. Finally, we give some example proofs
using those commands.

The report [69] describes a verification experiment involving a large piece of "real" Ada
code whose proof used some of the more recently added Ada capabilities.

In addition, research has been performed on translating (and proving claims about) pro-
grams with real (floating) types ([49]), access types ([50]), and recursive programs ([51] and
[43]), but these capabilities are not part of SDVS yet.

We are often interested in translating an Ada program in such a way that the resulting
state deltas have invariants equivalent to (#all = .all), which essentially means that the
execution happens in discrete steps. This is because in order to prove even simple safety
properties of a program, the symbolic execution of that program in SDVS must contain
only those states that are necessitated by the program. When weaknext-tr flag is on, the
language translators of SDVS behave in this manner.

The user interface has been enhanced by the addition of a prototype X-Window capability
for viewing the Ada code as it is being symbolically executed in the SDVS window. This
feature is not part of the distributed SDVS 13 system, but at this time must be requested
separately.

??? Dave: this does not work. The user types load-xpp at the Lisp prompt in order to turn
on the Ada window.

Then the specific line of Ada code that is being reasoned about or translated is highlighted.
The Ada window cannot be resized or scrolled when SDVS is writing to it, although you
may do this when SDVS is passive. If you intend to use this feature, all translation and
Adalemma creation must be done while the Ada window is on.

More details and examples can be found in [16], [44], and [52] - [54].

4.1 TR: TRANSLATOR FROM ADA TO STATE DELTAS

As mentioned above, the current Ada capability of SDVS includes Stage 3 Ada, plus for
loops and the elimination of existential quantification of declared variables, plus subtypes
of scalar types, integer type definitions, explicit type conversions, the generic function
UNCHECKEDXONVERSION, and length clauses.

SDVS 12 Ada is a nontrivial subset of Ada. It is the sixth (after Core Ada, Stage 1 Ada,
Stage 2 Ada, Stage 3 Ada, and SDVS 11 Ada) of a series of Ada language subsets of
increasing semantic complexity whose translators have been implemented in SDVS. Core

167

Ada was intended to be the basis of a rapid initial adaptation of SDVS to Ada, providing
early confirmation of technically sound but untested techniques: formal (Ada) translator
specification and specification-directed translator implementation.

4.1.1 Ada Language Subsets

The features of the six Ada subsets are as follows:

Core Ada: scalar assignment statements and simple expression evaluation; straight-line
program flow; branching (if, case), and iteration (loop) statements; simple input and
output (through the GET and PUT procedures); block structure, scoping and variable
declarations; simple packages containing only variable declarations and other simple
packages; use clauses; basic data types (integer, boolean, array).

Stage 1 Ada: the features of Core Ada, plus nonscalar assignment, subprogram declara-
tions and subprogram calls, package bodies, record types, and enumeration types.

Stage 2 Ada: the features of Stage 1 Ada, plus user-defined exceptions and the character
data type.

Stage 3 Ada: the features of Stage 2 Ada, plus context clause declarations (for certain
I/O subpackages of the STANDARD package), rudimentary overload resolution for
subprogram arguments, the string data type, and a preliminary version of floating-
point types and operations.

SDVS 11 Ada: the features of Stage 3 Ada, plus for loops.

SDVS 12 (and 13) Ada: the features of SDVS 11 Ada, plus subtypes of scalar types,
integer type definitions, explicit type conversions, instances of the generic function
UNCHECKED-CONVERSION, and length clauses (representation clauses specifying
an amount of storage associated with a type).

Core Ada posed no fundamental technical obstacles to interfacing it to SDVS, and the
technical challenges inherent in the adaptation of successive Ada stages to SDVS have been
successfully overcome. On the other hand, it is presently not clear how to interface certain
advanced Ada language features, such as generics, real-time features, and tasking.

4.1.2 SDVS 13 Ada Language Features

A more detailed description of SDVS 13 Ada language features now follows.

These features are partitioned into four groups: statements, expressions, declarations, and
data types. More details and examples can be found in [53].

Statements
The kinds of statements included in SDVS 13 Ada are null, assignment, conditional (if),

168

case, loop (while loops with and without a condition and for loops over integer or enumer-
ation type ranges), block, exit, simple input (GET), simple output (PUT), subprogram
call and return, and raise statements.

Expressions
A representative class of Ada expressions is included in SDVS 13 Ada. These expressions
contain simple names (identifiers), and dotted names (e.g. pkg. subp.blk. id, where pkg
is the name of a package, subp the name of a subprogram, blk the name of a block, and
id is a simple name). Other forms of names in SDVS 13 Ada denote array and record
components, and function calls. Also included in expressions are numeric and boolean
constants, short-circuit boolean operators (and then, or else), relational operators (=,
/=, <, < = , >, >=), binary boolean and arithmetic operators (and, or, xor, +,—, *, /,
mod, rem, **), and unary arithmetic and boolean operators (—, abs, not). SDVS 13
Ada expressions can contain aggregates. These aggregates must consist only of positional
component associations (an array aggregate) or named component associations (a record
aggregate).

Declarations
SDVS 13 Ada includes declarations of objects that can be constants and variables of scalar,
one-dimensional array, string, record, and enumeration types. Also included are package
specifications, package bodies, "with" clauses (the only packages recognized in such clauses
are the STANDARD packages TEXT.IO, TEXT_IO.INTEGER.IO, and TEXT_I0.FL0AT_I0;
the only subprograms made available through these subpackages are GET and PUT),
"use" clauses, subprogram (i.e., procedure and function) specifications and bodies, and
user-defined exceptions and exception handlers.

Data Types
SDVS 13 Ada includes the following basic data types: integer, boolean, character (see
Section 9.9 for details), string, and float. Arrays in SDVS 13 Ada are limited to be one-
dimensional; the elements of these arrays can have any SDVS 13 Ada type. Thus multi-
dimensional arrays are synthesized in a "curried" way from one-dimensional ones. SDVS
13 Ada has record and enumeration types, where record fields can have any SDVS 13 Ada
type. SDVS 13 Ada also encompasses subtypes of scalar types, and integer type definitions.
Furthermore, explicit type conversions between integer types are allowed.

Miscellaneous
SDVS 13 Ada includes instances of the generic function UNCHECKED_CONVERSION,
as well as length clauses (representation clauses specifying an amount of storage associated
with a type).

4.2 COMMANDS DEALING WITH ADA

SDVS 13 has the ability to prove theorems of input-output total correctness6 or safety
for SDVS 13 Ada programs. This section demonstrates the construction of theorems to
be proved, describes the contents of these theorems, and then gives some hints on proof

5The phrase "total correctness" means correct and terminating.

169

strategy.

The user can run some example proofs by typing run-test-proofs *ada-tests*.

4.2.1 Theorems

Theorems stating total correctness properties for SDVS 13 Ada programs are essentially
input/output assertions. The notations for the input and output of SDVS 13 Ada programs
are described in the next section. Theorems about SDVS 13 Ada programs are always
written in the state delta language, which currently provides the only specification language
for Ada in SDVS. The formats of typical state deltas specifying total correctness and safety
properties for an SDVS 13 Ada program are shown below.

First, the total correctness case:

[sd pre: (ada(adaprog.ada),<initial correctness requirements>)
comod: (all)

mod: (all)
post: (<final correctness requirements>, terminated(mainprog))]

Two predicates are introduced in the state delta shown above. The formula ada(adaprog.ada)
represents the translation of the SDVS 13 Ada program in the file adaprog.ada into the
language of the state delta logic. The formula terminated(mainprog) is asserted when
SDVS symbolically executes to the end of the SDVS 13 Ada procedure mainprog, providing
explicit representation of program termination.

Now we consider the nonterminating safety case. We want to show that there exists a time
when some triggering condition holds, and thereafter a safety requirement is true. The
safety state delta is

[sd pre: (true)
comod: ()

mod: ()
post: (<safety requirement^]

and the safety claim about the Ada program is

[sd pre: (ada(adaprog.ada),<initial correctness requirements>)
comod: (all)

mod: (all)
post: (^triggering condition^ <safety state delta>)]

170

We put off an example until Section 8.5, since knowledge of state deltas with invariants is
necessary first.

The ada predicate is given meaning only by the proof command adatr, which takes as its
only argument the name of a file to be translated. The execution of this command causes the
translation of the file (assuming the file contains a syntactically valid SDVS 13 Ada program)
into the state delta logic, which yields formulas describing the predefined environment of
the SDVS 13 Ada program, in addition to a single state delta for the symbolic execution of
the program. The remaining SDVS 13 Ada proof command, applydecls, is discussed below.

4.2.2 Input and Output

Input and output buffers (arrays) are part of the predefined environment for all SDVS 13
Ada programs. Translating a file containing an Ada program prog by the adatr proof
command yields SDVS 13 declare formulas for four objects, described below.

stdin is an arbitrary size, 1-origin array of polymorphic type that holds input values for
prog.

stdin\ctr is an integer counter, initialized to 1, that indexes stdin for the get statement.

stdout is an arbitrary size, 1-origin array of polymorphic type that holds output values
for prog.

stdout\ctr is an integer counter, initialized to 1, that indexes stdout for the put state-
ment.

Conditions on the sizes of the input and output buffers and the contents of the input buffer
are typical correctness requirements held in the preconditions of state deltas representing
SDVS 13 Ada theorems. Conditions relating the contents of the output buffer to those of
the input buffer are typical correctness requirements held in the postconditions of those
theorems. For example, the state delta shown below claims the total correctness property
that the example program adaprog.ada has two elements in its input and output buffers,
and terminates with the values in its input buffer written into its output buffer.

[sd pre: (ada(adaprog.ada).range(stdin) = 2,range(stdout) = 2)
conod: (all)

aod: (all)
post: (#stdout[l] = .stdin[l],«stdout[2] = .stdin[2],

terminated(adaprog))]

4.2.3 Proof Strategy

Now that Ada theorems and their contents have been introduced, a strategy for developing
their proofs may be discussed. Proofs in SDVS that involve dynamic properties7 of Ada

7The static properties of Ada programs are fairly uninteresting. They involve only the predefined envi-
ronment discussed in the previous section.

171

programs proceed by symbolic execution. The user develops proofs by integrating symbolic
execution commands with commands that prove properties about the current state. Thus,
at any point in an Ada proof, there is an analogous execution point in the corresponding
Ada program.

A typical step the prover wishes to make (in fact, the first step) is to elaborate Ada decla-
rations. Elaborating a declaration consists of asserting and symbolically executing a state
delta with those declarations in the postcondition. This involved multiple proof commands
in SDVS 6 for each declaration. For this reason, the proof command applydecls was in-
troduced to SDVS 7 (and retained in all later versions). This command elaborates the
declarations; it generates an error if the current symbolic execution point does not immedi-
ately precede an SDVS 13 Ada declaration. The command go does the work of applydecls
and then continues to execute state deltas until symbolic execution cannot proceed for some
reason (for example, the declaration had a conditional initialization).

Subprogram calls are handled by the following sequence of actions:

1. declare formal parameters

2. assign input values to IN parameters

3. assert .pc=at(fully.qualified.subprogram.name)

4. execute body

5. assert .pc=exited(fully.qualified.subprogram.name)

6. assign output values to OUT parameters

7. undeclare formal parameters

The symbolic execution of straight-line code can be accomplished by one of the proof com-
mands available for that purpose, such as until, execute, and apply. The symbolic execution
of conditionals (if-then-else statements) may be accomplished by the cases or subcases
proof commands, which split the proof into two cases, the then case and the else case.
The symbolic execution of SDVS 13 Ada case statements (multi-way conditionals) may be
accomplished by the meases proof command. The only dynamic SDVS 13 Ada constructs
remaining are the (while and for) loop statements, discussed below.

The symbolic execution of SDVS 13 Ada loops is performed by induction, through the proof
command induct. A basic recurse command for the symbolic execution of Ada programs
with recursive procedures has been implemented in an experimental fashion, but is not yet
available in SDVS 13.

As one can see, the structure of an SDVS 13 Ada proof roughly assumes the structure of
the program it proves. In fact, the dynamic structure of the proof will usually have a one-
to-one correspondence with the structure of the Ada program being considered. However,
writing the dynamic portion of the proof is usually not the difficult part of the proof. The

172

difficult part is proving static claims about the state without full decision procedures for
the domains in question.

Finally, we have implemented a "statement marking" capability for SDVS 13 Ada. One
sets a mark in a comment line just before the statement being marked, using the notation
"—Q" (no spaces), e.g.

—0 foo
x := 1;

During symbolic execution, this will yield ".pc = at(foo)" at the point where the state
delta(s) representing the marked statement become usable, so that a go ... until .pc =
at (foo) command can be given to execute symbolically to the particular point in the Ada
program just before the marked statement.

Any statement can be so marked, and the program remains acceptable to an Ada compiler.
A mark can be turned into a regular (uninterpreted in SDVS) comment simply by inserting
a space between the "—" and the "Q", or by beginning the whole line with an extra pair of
hyphens (even one extra will do, so long as it's not followed by a space).

4.3 EASY EXAMPLE OF AN ADA PROOF

First we give the proof of correctness of a very trivial Ada program. Consider the program
triv:

with text-io; use text-io;
with integer_io; use integer_io;

procedure triv is

x : integer; — inputs
begin

get(x);

x := x + 1;

put(x) ;

end triv;

We translate it to state deltas by the adatr command:

<sdvs.l> adatr
path name[testproofs/f oo.ada] : testproofs/manual/ada/triv.ada

Parsing Stage 4 Ada file — "testproofs/manual/ada/triv.ada"

Translating Stage 4 Ada file — "testproofs/manual/ada/triv.ada"

<sdvs.2> pp
object: ada

173

file name[triv.ada] : triv.ada

alldisjoint(triv,.triv)
covering(.triv,triv\pc,stdin,stdin\ctr,stdout,stdout\ctr)
declare(stdin,type(array,1,range(stdin).type(polymorphic)))
declare(stdin\ctr,type(integer))
.stdin\ctr = 1
declare(stdout,type(array,1,range(stdout),type(polymorphic)))
declare(stdout\ctr,type(integer))

.stdout\ctr = 1

Now we create a state delta that claims that the value of x (the standard input) will go
from 2 to 3, and be recorded in the standard output:

<sdvs.2> createsd
name: triv.sd

[SD pre: ada(triv.ada), .stdin[l]=Z
comodD: all

mod[] : all
post: #stdout[lJ = 3, terminated(triv)

]

We now prove triv.sd by repeated application:

<sdvs.2> prove
state delta[]: triv.sd
proof [] : < CR>

open — [sd pre: (ada(triv.ada),.stdin[l] = 2)
comod: (all)

mod: (all)
post: («stdout[1] = 3,terminated(triv))]

Complete the proof.

<sdvs.2.1> usable

u(l) [sd pre: (true)
comod: (all)

mod: (triv\pc)
post: (<adatr procedure triv is

i : integer
begin

get (x);

end triv;>)]

No usable quantified formulas.

<sdvs.2.1> apply
sd/number[highest applicable/once]: <CR>

174

apply — [sd pre: (true)

comod: (all)

nod: (triv\pc)

post: (<adatr procedure triv is

x : integer

begin

get (x);

end triv; >)]

<sdvs.2.2> usable

u(l) [sd pre: (true)

comod: (all)

mod: (triv\pc,triv)

post: (alldisjoint(triv,.triv.x),covering(ttriv,.triv,x),
declared,type (integer)) ,

<adatr x : integer>)]

No usable quantified formulas.

<sdvs. 2. 2> applydecls

apply — [sd pre: (true)

comod: (all)

mod: (triv\pc,triv)

post: (alldisjoint(triv,.triv,x),covering(#triv,.triv.x),
declared,type(integer)) ,

<adatr x : integer>)]

apply — [sd pre: (true)

comod: (all)

mod: (triv\pc,triv)
post: (alldisjoint(triv,.triv,get\item),

covering(#triv,.triv,get\item),

declare(get\item,type(polymorphic)),
<adatr get (x)>)]

applydecls — declaration elaboration complete.

<sdvs.2.4> usable

u(l) [sd pre: (true)

comod: (all)

mod: (triv\pc)

post: (#triv\pc = at(standard.text_io.get) ,

<adatr get (x)>)]

No usable quantified formulas.

< sdvs. 2. 4> apply
sd/number[highest applicable/once]: <CR>

175

apply — [sd pre: (true)
comod: (all)

mod: (triv\pc)
post: (#triv\pc = at(standard.text_io.get) ,

<adatr get (x)>)]

<sdvs.2.5> usable

u(l) [sd pre: (.triv\pc = at(standard.text-io.get))
comod: (all)

mod: (triv\pc,stdin\ctr,get\item)
post: (#get\item = .stdin[.stdin\ctr],

#stdin\ctr = .stdin\ctr + 1,
#triv\pc = exited(standard. text _io. get),
<adatr null;>)]

No usable quantified formulas.

<sdvs.2.5> apply
sd/number[highest applicable/once] : <CR>

apply — [sd pre: (.triv\pc = at(standard.textj.o.get))
comod: (all)

mod: (triv\pc,stdin\ctr,get\item)
post: (#get\item = .stdin[.stdin\ctr],

#stdin\ctr = .stdin\ctr + 1,
#triv\pc = exited(standard.text_io.get),
<adatr null;>)]

<sdvs.2.6> usable

u(l) [sd pre: (true)
comod: (all)

mod: (triv\pc,x)
post: (#x = .get\item,

<adatr get (x)>)]

No usable quantified formulas.

<sdvs.2.6> apply
sd/number [highest applicable/once]: <CR>

apply — [sd pre: (true)
comod: (all)

mod: (triv\pc,x)
post: (#x = .get\item,

<adatr get (x)>)]

<sdvs.2.7> usable

u(l) [sd pre: (true)
comod: (all)

176

mod: (triv\pc,triv,get\item)
post: (covering(.triv,#triv,get\item),undeclare(get\item),

<adatr get (x)>)]

No usable quantified formulas.

<sdvs. 2. 7> apply
sd/number[highest applicable/once]: <CR>

apply — [sd pre: (true)
comod: (all)

mod: (triv\pc,triv,get\item)
post: (covering(.triv,#triv,get\item),undeclare(get\item),

<adatr get (x)>)]

<sdvs.2.8> usable

u(l) [sd pre: (true)
comod: (all)

mod: (triv\pc,x)
post: (#x = .1 + 1,

<adatr x := x + 1;>)]

No usable quantified formulas.

< sdvs. 2.8 > apply
sd/number [highest applicable/once] : <CR>

apply — [sd pre: (true)
comod: (all)

mod: (triv\pc,x)
post: (#x = .x + 1,

<adatr x := x + 1;>)]

We could continue typing applys until the proof (and program) terminates, but the same
effect can also be achieved by the one proof command go:

<sdvs.l> prove
state delta[]: triv.sd
proof [] : go

open — [sd pre: (ada(triv.ada),.stdin[l] = 2)
comod: (all)

mod: (all)
post: (#stdout[l] = 3,terminated(triv))]

apply — [sd pre: (true)
comod: (all)

mod: (triv\pc)
post: (<adatr procedure triv is

x : integer
begin

177

get (x);

end triv;>)]

apply — [sd pre: (true)
comod: (all)

mod: (triv\pc,triv)
post: (alldisjoint(triv,.triv.x),covering(#triv,.triv.x),

declare(x,type(integer)),
<adatr x : integer>)]

apply — [sd pre: (true)
comod: (all)

mod: (triv\pc,triv)
post: (alldisjoint(triv,.triv,get\item),

covering(#triv,.triv,get\item),
declare(get\item,type(polymorphic)),
<adatr get (x)>)]

apply — [sd pre: (true)
comod: (all)

mod: (triv\pc)
post: (#triv\pc = at(standard.text_io.get),

<adatr get (x)>)]

apply — [sd pre: (.triv\pc = at(standard.text_io.get))
comod: (all)

mod: (triv\pc,stdin\ctr,get\item)
post: («get\item = .stdin[.stdin\ctr],

#stdin\ctr = .stdin\ctr + 1,
#triv\pc = exited(standard.text_io.get),
<adatr null;>)]

apply — [sd pre: (true)
comod: (all)

mod: (triv\pc,x)
post: (#x = .get\item,

<adatr get (x)>)]

apply — [sd pre: (true)
comod: (all)

mod: (triv\pc,triv,get\item)
post: (covering(.triv,#triv,get\item),undeclare(get\item),

<adatr get (x)>)]

apply — [sd pre: (true)
comod: (all)

mod: (triv\pc,x)
post: (#x = .x + 1,

<adatr x := x + 1;>)]

apply — [sd pre: (true)
comod: (all)

mod: (triv\pc,triv)
post: (alldisjoint(triv,.triv,put\item),

178

covering(#triv,.triv,put\item),
declare(put\item,type(polymorphic)),
<adatr put (x)>)]

apply — [sd pre:
comod:

mod:
post:

(true)
(all)
(triv\pc,put\item)
(#put\item = .x,
<adatr put (x)>)]

apply — [sd pre:
comod:

mod:
post:

(true)
(all)
(triv\pc)
(#triv\pc = at(standard.text-io.put),
<adatr put (x)>)]

apply — [sd pre:
comod:

mod:
post:

(.triv\pc = at(standard.text_io.put))
(all)
(triv\pc.stdout[.stdout\ctr],stdout\ctr)
(#stdout[.stdout\ctr3 = ,put\item,
#stdout\ctr = .stdout\ctr + 1,
#triv\pc = exited(standard.text_io.put) ,
<adatr null;>)]

apply — [sd pre:
comod:

mod:
post:

(true)
(all)
(triv\pc,triv,put\item)
(covering(.triv,#triv,put\item),undeclare(put\item),
<adatr put (x)>)]

apply — [sd pre:
comod:

mod:
post:

(true)
(all)
(triv\pc,triv,x)
(covering(.triv,#triv,x) .undeclared) ,
<adatr x : integer>)]

apply — [sd pre:
comod:

mod:
post:

(true)
(all)
(triv\pc)
(terminated(triv))]

close — 15 steps/applications

4.4 NONTRIVIAL EXAMPLE OF AN ADA PROOF

We give here an example of a proof of an Ada program containing enumeration types,
records, in-out parameters, a procedure called within a loop, and a function. In the next
section we consider offline characterization and proving lemmas about Ada procedures. In
the final section we present another example proof, that of an SDVS 13 Ada program with
packages and the "use" clause.

The program discussed in this section is called WorkWeek, and it calculates the number of
hours worked and rested in one week. See Figures 4 and 5.

179

with text_io; use teit_io;

with integer_io; use integer jo;

PROCEDURE WorkMeek IS

TYPE days IS

(monday, tuesday, Wednesday, thursday, Iriday,
Saturday, Sunday);

TYPE time IS

RECORD

work : integer;

rest : integer;

END record;

week : ARRAY(1..7) OF days;

divlabor : time;

PROCEDURE Assign-Time (day : IN days;

work, rest : IN OUT integer) IS
BEGIN

IF day < Saturday

THEN BEGIN

work := work + 8;

rest := rest + 16;
END;

ELSE rest := rest + 24;

END IF;

END Assign-Time;

FUNCTION Check-Divlabor (work, rest : integer)
RETURN integer IS
BEGIN

IF work = 40 AND rest = 128

THEN RETURN 1;

ELSE RETURN 0;
END IF;

END Check_Divlabor;

i : integer;

timecheck : integer;

Figure 4: The Program WorkWeek, Part 1

180

BEGIN

week(l) = monday;

week(2) = tuesday;

week(3) = Wednesday;

week(4) = thursday;

week(5) = friday;

week(6) = Saturday;

week(7) = Sunday;

divlabor work := 0;

divlabor rest := 0;

i := 1;
WHILE i < 8 LOOP

Assign-Time(seek(i), divlabor.work, divlabor.rest);

i := i + 1;

END LOOP;

timecheck := CheckJ)ivlabor(divlabor.work, divlabor.rest);

put(timecheck);

END VorkVeek;

Figure 5: The Program WorkWeek, Part 2

181

The state delta to be proven is workweek.sd:

[sd pre: (ada(workweek.ada).range(stdout) = 1)
mod: (all)

post: (#stdout[l] = 1,terminated(workweek))]

The proof workweek.proof (see Figures 6 and 7) is by induction, with two extra complica-
tions: First, the universe of declared places changes inside the loop when the procedure is
called. This necessitates the line let loop.universe = .workweek in the proof. Second, there
must be a proof by enumerating subcases that for i le 5, (elt(.week[.i],.days.saturday)).

4.5 OFFLINE CHARACTERIZATION

The Ada offline characterization facility comprises three commands:

• the createadalemma command, which defines a lemma about an Ada subprogram
(procedure or function), and which collects other necessary descriptive information
from the user;

• the proveadalemma command, which sets up an environment within which the state
delta of the lemma can be proved — this must be at the top level of symbolic execution,
and we do not allow lemmas dependent on an existing context; and

• the invokeadalemma command, which uses a previously created lemma to construct
a usable state delta, including the substitution of an actual program continuation for
the unspecified (null) continuation, and the application of the resulting state delta.

A fourth command adasubprogenv (a query command newly implemented in SDVS 12) is
quite useful in connection with Ada offline characterization. It displays the mapping of fully
qualified program names to uniquely qualified place names for all places constituting the
environment for the proof of an adalemma about a subprogram. This assists the user to
specify correctly these places in the statement and proof of the adalemma. In the absence
of such a mapping, for a large program it can be difficult for the user to predict, simply by
manual inspection of the Ada source code, the unique place names that will be automatically
generated by the translator for the adalemma proof.

Perhaps the best way to discuss these commands is through an example. Below, we give
an annotated SDVS session in which a lemma is created, proved, and invoked. The target
program xtest (Figure 8) is very simple, but adequate for this illustration. It includes a
two-parameter procedure that exchanges the values of its two integer parameters, and a
main program that invokes the procedure.

The lemma will simply assert, in the form of a state delta, the fact that the procedure
exchanges its parameters. It will be invoked twice in the proof of a state delta describing
the effect of the program as a whole, which is simply this: if the input stream consists of
three integers i, j, k, then the output stream will be j, k, i.

182

(adatr "testproofs/manual/ada/workweek.ada",

prove workweek.sd

proof:

(applydecls,

until #i = 1,

letsd ul = u(l),

letsd u2 = u(2),

let loop.universe = .workweek,

induct on: .i

from: 1

to: 8

invariants: (formula(ul),formula(u2),

covering(.workweek,loop.universe),

.record(divlabor.work)

= (if .i le 5

then (.i - 1) * 8

else 40),
.record(divlabor,rest)

= (if .i le 5

then (.i - 1) * 16
else 80 + (.i - 6) * 24))

comodlist: (stdout\ctr,week)

modlist: (diff(all,union(stdout\ctr,week)))

base proof: close

step proof:

cases .i le 5
then proof:

(subcases .i le 5

modlist:
subgoal: (elt(.week[.i],Saturday))

then proof:

meases
(case: 1 le .i ft .i It 2

proof: close

case: 2 le .i ft .i It 3

proof: close

case: 3 le .i ft .i It 4

proof: close

case: 4 le .i ft .i It 5

proof: close

case: 5 le .i

proof: close)

Figure 6: The Proof WorkWeek.Proof, Part 1

183

else proof: ,
go #i = .i + 1,
close)

else proof:
(subcases . i le 5

modlist:
subgoal: (~(elt(.week[.i] .Saturday)))
then proof:
else proof:

meases
(case: 6 le .i ft .i It 7

proof: close
case: 7 le .i
proof: close),

go #i = .i + 1,
close),

go terminated(workweek),
close))

Figure 7: The Proof WorkWeek.Proof, Part 2

with teitj.o; use teit_io;

with integerj.o; use integerj.o;

PROCEDURE xtest IS

x, y, z : integer := 1;

PROCEDURE exchange(a, b : IN OUT integer) IS

c : integer;
BEGIN

c := a;

a := b;

b := c;

END exchange;
BEGIN

get(x);

get(y);

get(z);

exchange(x, y);

exchange(y, z);

put(x);

put(y);

put(z);
END xtest;

Figure 8: The Program Xtest

184

First, we input a file that contains the predefined state delta describing the action of the
test program:

<sdvs.4> pp
object: xtest.sd

[sd pre: (adadtest.ada))
comod: (all)

mod: (all)
post: (#stdout[l] = .stdin[2],#stdout[2] = .stdin[3],

#stdout[3] = .stdin[l])3

Next, we use the adatr command to parse and translate the program file:

<sdvs.4> adatr
path name[testproof s/manual/ada/xtest .ada] : testproofs/manual/ada/xtest.ada

Previously translated Stage 4 Ada file
— "testproofs/manual/ada/xtest.ada"

We can use the adasubprogenv query command to establish the correspondence between
fully qualified Ada program names for objects constituting the execution environment of
procedure exchange and the uniquely qualified place names that will be selected by the
SDVS Ada translator to represent these objects:

<sdvs.5> adasubprogenv
file name: testproofs/manual/ada/xtest.ada

subprogram name: exchange
qualified name: xtest.exchange

fully qualified name —> uniquely qualified name (= place name)

XTEST —> XTEST

XTEST.X —> X

XTEST.Y —> Y

XTEST.Z —> Z

XTEST.EXCHANGE.A —> A

XTEST.EXCHANGE.B —> B

XTEST.EXCHANGE.C —> C

STANDARD.TEXTJO.STDIN —> STDIN

STANDARD. TEXTJO. STDIN\CTR —> STDIN\CTR

185

STANDARD. TEXTJEO. STDOUT — > STDOUT

STANDARD. TEXT-JO. STDOUT\CTR ~> STDOUT\CTR

The createadalemma command is used to create the lemma, which will be a certain state
delta:

<sdvs.5> createadalemma
lemma name: exchange.lemma
file name: testproofs/manual/ada/xtest.ada

subprogram name: exchange
qualified name: xtest.exchange

preconditions[] : < CR>
mod list[]: a,b

postconditions: #a=.b,#b=.a

createadalemma — [sd pre: (.xtest\pc = at(xtest.exchange))
comod: (all)

mod: (xtest\pc,a,b)
post: (#a = ,b,#b = .a,

#xtest\pc = exited(xtest.exchange))]

Notice that the system supplies additional entries for the state delta besides those given
by the user. To explain these, and indeed the requirements for the usage of the other
commands as well, we need to understand a little more about the symbolic execution of
procedure calls.

In general, the main steps in the symbolic execution of a call to procedure exchange are as
follows:

1. Declarations of the formal parameters of exchange are processed: The universe of
places is expanded to include new places a and b.

2. The actual parameters are evaluated, and the resulting values are bound to the places
a and 6.

3. The declarations of the local variables of exchange are processed: The universe of
places is expanded to include a new place c.

4. The body of procedure exchange is executed symbolically.

5. Undoing 3: The local variables are undeclared, so c is no longer among the places.

6. in out and out formal parameter values are assigned to the corresponding actual
parameters: These values are determined and bound to the appropriate places.

7. Undoing step 1: The formal parameters are undeclared, so a and b are deleted from
the universe of places.

186

Now we can explain the parts of the state delta of exchange.lemma. The condition .xtest\pc
= at(xtest.exchange) becomes true exactly when the symbolic execution of a call to proce-
dure exchange has completed step 2. Similarly, the condition #xtest\pc = exited(xtest.exchange)
will be true when the symbolic execution of a call has completed step 5. Also, xtest\pc should
always be part of the mod list for a state delta about any part of the program xtest. To iden-
tify fully the code to which the lemma refers, one must supply a full path name to the file,
and a fully qualified procedure name. The fully qualified name in this case is xtest. exchange;
in general, it is a list in order of the containing procedure or block names, ending with the
given procedure, all separated by periods. (If a containing block is unnamed, the parser
supplies an internal name, which in principle could be used in this context; however, it is
recommended that the user name the containing block explicitly.)

The proveadalemma command causes SDVS to set up the environment for proving the
lemma.

<sdvs.6> proveadalemma
Ada lemma name: exchange.lemma

proof [] : < CR>

open— [sd pre: (alldisjoint(xtest,.xtest),

covering(.xtest,xtest\pc,x,y,z,stdin,stdin\ctr,stdout,

stdout\ctr),

declare(x,type(integer)),declare(y,type(integer)),

declare(z,type(integer)),

declare(stdin,type(polymorphic)),

declare(stdin\ctr,type(integer)),
declare(stdout,type(polymorphic)),

declare(stdout\ctr,type(integer)),

<adatr null;;>)

comod: (all)

mod: (all)

post: ([sd pre: (.xtest\pc = at(xtest.exchange))

comod: (all)

mod: (diff(all,

diii(union(xtest\pc,x,y,z,stdin,

stdin\ctr,stdout,stdout\ctr,a,

b),
union(xtest\pc,a,b))))

post: (#a = .b,#b = .a,

#xtest\pc = exited(xtest.exchange))])]

apply

apply

[sd pre: (true)

comod: (all)

mod: (xtest\pc,xtest)

post: (alldisjoint(xtest,.xtest,a,b),

covering(»xtest,.xtest,a,b),

declare(a,type(integer)),declare(b,type(integer)),
<adatr null;>)]

[sd pre: (true)

comod: (all)

mod: (xtest\pc,a,b)

post: (#a = .a,#b = .b,

187

<adatr null;>)]

apply — [sd pre: (true)
comod: (all)

mod: (xtest\pc)
post: (#xtest\pc = at(xtest.exchange),

<adatr null;>)]

go — breakpoint reached

open — [sd pre: (.xtest\pc = at(itest.exchange))
comod: (all)

mod: (diii(all,
diff(union(xtest\pc,x,y,z,stdin,stdin\ctr,stdout,

stdout\ctr,a,b),
union(xtest\pc,a,b))))

post: (#a = .b,#b = .a,
#xtest\pc = exited(xtest.exchange))]

The environment at this point is like what would exist after the completion of steps 1
and 2 of the symbolic execution of a call to the procedure. Examining the output above,
we see that this environment was created by opening the proof of a state delta having a
precondition establishing the necessary environment, and a postcondition consisting of the
state delta of the lemma. The last step above is opening the proof of the latter state delta.
The system's response to each intermediate apply command (these are internally generated)
shows the state delta being applied, and the adatr fields show the particular Ada program
statement with which the currently applied state delta is associated.

The reader will notice that the last state delta opened for proof is not exactly the same
as that of the lemma: the mod list is apparently more complex. This is done to allow
for modification, during the proof, of new places created by declarations arising during the
symbolic execution of the procedure body. The evaluation of the expression for the mod
list will show that in the current context it describes no more than the places named in the
original mod list. However, the value of this expression will change appropriately as other
places are created through declaration, or deleted by undeclaration.

The usable command will help us ascertain the current position in symbolic execution.

<sdvs.6.4.1> usable

u(l) [sd pre: (true)
comod: (all)

mod: (xtest\pc,xtest)
post: (alldisjoint(xtest,.xtest,c),covering(#xtest,.xtest,c),

declare(c,type(integer)),
<adatr c : integer>)]

No usable quantified formulas.

This shows that symbolic execution is just at the point of the declaration of the local variable
in the exchange procedure—i.e., just before step 3 of processing a procedure call. The next

step will be an application of the state delta that is usable at this point.

<sdvs.6.4.1> apply
sd/number[highest applicable/once]: <CR>

apply — [sd pre: (true)
comod: (all)

mod: (xtest\pc,xtest)
post: (alldisjoint(xtest,.xtest,c),

covering(#xtest,.xtest,c),
declare(c,type(integer)),
<adatr c : integer>)]

<sdvs.6.4.2> usable

u(l) [sd pre: (true)
comod: (all)

mod: (xtest\pc,c)
post: (#c = .a,

<adatr c := a;>)]

No usable quantified formulas.

The application of the state delta to effect the necessary declaration brings us to the first
executable statement in the body of the procedure. From here, we need only continue until
the end of the procedure.

<sdvs.6.4.2> go
until[] : #test\pc = exited(xtest.exchange)

apply — [sd pre: (true)
comod: (all)

mod: (xtest\pc,c)
post: (#c = .a,

<adatr c := a;>)]

apply — [sd pre: (true)

comod: (all)

mod: (xtest\pc,a)

post: (#a - .b,

<adatr a := b;>)]

apply — [sd pre: (true)
comod: (all)

mod: (xtest\pc,b)
post: (#b = .c,

<adatr b := c;>)]

apply — [sd pre: (true)

comod: (all)

mod: (xtest\pc,xtest,c)
post: (covering(.xtest,#xtest,c),undeclare(c),

189

<adatr c : integer>)]

apply — [sd pre: (true)

comod: (all)

mod: (itest\pc)

post: (#xtest\pc = exited(xtest.exchange),

<adatr null;>)]

close — 6 steps/applications

close — 4 steps/applications

proveadalemma — [sd pre: (.xtest\pc = at(xtest.exchange))

comod: (all)

mod: (xtest\pc,a,b)

post: (#a = .b,#b = .a,

#xtest\pc = exited(xtest.exchange))]

The facts to be proved here are sufficiently simple that the proof of the lemma closes
automatically. Having proved the lemma, the next step is to reinitialize SDVS and prove
the overall state delta, xtest.sd.

<sdvs.6> init
proof name [] : < CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> prove
state delta[]: xtest.sd
proof [] : < CR>

open — [sd pre: (ada(xtest.ada))
comod: (all)

mod: (all)
post: (#stdout[l] = .stdin[2] ,#stdout[2] = .stdin[3],

#stdout[3] = .stdin[l])]

Complete the proof.

<sdvs.l.l> usable

u(l) [sd pre: (true)
comod: (all)

mod: (xtest\pc)
post: (<adatr procedure xtest is

x, ... : integer := 1

begin
get (x);

end xtest ;>)]

190

No usable quantified formulas.

The go command can be used to cause the system to apply state deltas and perform in-
stantiations until a specified condition holds.

<sdvs.l.l> go
until[] : #xtest\pc = at(xtest.exchange)

apply — [sd pre: (true)
comod: (all)

mod: (xtest\pc)
post: (<adatr procedure xtest is

x, ... : integer := 1

begin
get (x);

end xtest;>)]

apply — [sd pre: (true)
comod: (all)

mod: (xtest\pc,xtest)
post: (alldisjoint(xtest,.xtest,x),

covering (txtest,. xtest, x) , declared, type (integer)) ,
<adatr x, ... : integer := 1>)]

apply — [sd pre: (true)
comod: (all)

mod: (xtest\pc,x)
post: (#x = 1,

<adatr x, ... : integer := 1>)]

apply — [sd pre: (true)
comod: (all)

mod: (xtest\pc,xtest)
post: (alldisjoint(xtest,.xtest,y) ,

covering(#xtest,.xtest,y),declare(y,type(integer)),
<adatr x, — : integer := 1>)]

apply — [sd pre: (true)
comod: (all)

mod: (xtest\pc,y)
post: (#y = 1,

<adatr x, ... : integer := 1>)3

apply — [sd pre: (true)
comod: (all)

mod: (xtest\pc,xtest)
post: (alldisjoint(xtest,.xtest,z),

covering(#xtest,.xtest,z),declare(z,type(integer)),
<adatr x, ... : integer := 1>)]

apply — [sd pre: (true)

191

comod: (all)

mod: (rtest\pc,z)
post: (#z = 1,

<adatr x, . : integer := 1>)]

apply — [sd pre: (true)

comod: (all)

mod: (xtest\pc,xtest)

post: (alldisjoint(xtest,.xtest,get\item),

covering(#xtest,.xtest,get\item),

declare(get\item,type(polymorphic)),
<adatr get (x)>)]

apply — [sd pre: (true)

comod: (all)

mod: (xtest\pc)

post: (#xtest\pc = at(standard.textJ.o.get),

<adatr get (x)>)]

apply — [sd pre: (. xtest \pc = at (standard, text jo. get))
comod: (all)

mod: (xtest\pc,stdin\ctr,get\item)

post: (#get\item = .stdin[.stdin\ctr],

#stdin\ctr = .stdin\ctr + 1,

#xtest\pc = exited(standard.text_io.get),
<adatr null;>)]

apply — [sd pre: (true)

comod: (all)

mod: (xtest\pc,x)

post: (#x = .get\item,

<adatr get (x)>)]

apply — [sd pre: (true)
comod: (all)

mod: (xtest\pc,xtest,get\item)
post: (covering(.xtest,»xtest,get\item),

undeclare(get\item),
<adatr get (x)>)]

apply — [sd pre: (true)
comod: (all)

mod: (xtest\pc,xtest)
post: (alldisjoint(xtest,.xtest,get\item!2),

covering(#xtest,.xtest,get\item!2),
declare(get\item!2,type(polymorphic)),
<adatr get (y)>)]

apply — [sd pre: (true)
comod: (all)

mod: (xtest\pc)
post: (#xtest\pc = at (standard, text _io. get) ,

<adatr get (y)>)]

apply — [sd pre: (.xtest\pc = at(standard.text-io.get))

192

comod: (all)

mod: (xtest\pc,stdin\ctr,get\item!2)

post: (#get\item!2 = .stdin[.stdin\ctr],

#stdin\ctr = .stdin\ctr + 1,

#xtest\pc = exited(standard.textJLo.get) ,
<adatr null;>)]

apply — [sd pre: (true)

comod: (all)

mod: (xtest\pc,y)

post: (#y = .get\item!2,

<adatr get (y)>)]

apply — [sd pre: (true)

comod: (all)

mod: (xtest\pc,xtest,get\item!2)

post: (covering(.xtest,#xtest,get\item!2),

undeclare(get\item!2),

<adatr get (y)>)]

apply — [sd pre: (true)

comod: (all)

mod: (xtest\pc,xtest)

post: (alldisjoint(xtest,.xtest,get\item!3),

covering(#xtest,.xtest,get\item!3),

declare(get\item!3,type(polymorphic)),
<adatr get (z)>)]

apply — [sd pre: (true)

comod: (all)

mod: (xtest\pc)

post: (#xtest\pc = at(standard.text-io.get),

<adatr get (z)>)]

apply — [sd pre: (.xtest\pc = at (standard, text J.O. get))
comod: (all)

mod: (xtest\pc,stdin\ctr,get\item!3)

post: (#get\item!3 = .stdin[.stdin\ctr],

#stdin\ctr = .stdin\ctr + 1,

#xtest\pc = exited (standard. text_io. get) ,

<adatr null;>)]

apply — [sd pre: (true)

comod: (all)

mod: (xtest\pc,z)

post: (#z = .get\item!3,

<adatr get (z)>)]

apply — [sd pre: (true)

comod: (all)

mod: (xtest\pc,xtest,get\item!3)

post: (covering(.xtest,»xtest,get\item!3),

undeclare(get\item!3),
<adatr get (z)>)]

193

apply — [sd pre: (true)
comod: (all)
mod: (itest\pc,rtest)

post: (alldisjointdtest, .xtest.a.b) ,
covering(#xtest,.xtest.a.b),

declare(a,type(integer)),declare(b,type(integer)),
<adatr exchange (x, ...)>)]

apply — [sd pre: (true)
comod: (all)
mod: (xtest\pc,a,b)

post: (#a = .x,#b = .y,
<adatr exchange (x, ...)>)]

apply — [sd pre: (true)
comod: (all)
mod: (xtest\pc)

post: (#xtest\pc = at(xtest.exchange),
<adatr exchange (x, ...)>)]

go — breakpoint reached

<sdvs.l.26> usable

u(l) [sd pre: (true)
comod: (all)
mod: (xtest\pc,xtest)

post: (alldisjoint(xtest,.xtest,c),covering(#xtest,.xtest,c),
declare(c,type(integer)),
<adatr c : integer>)]

No usable quantified formulas.

Symbolic execution is now at precisely the point where steps 1 and 2 of the first call to the
exchange procedure have been completed, where the next step would be the instantiation for
the declaration of the local variable. Instead, we can invoke the lemma to bypass symbolic
execution of the procedure body.

<sdvs.l.26> invokeadalemma
Ada lemma name: exchange.lemma

invokeadalemma — [sd pre: (.xtest\pc = at(xtest.exchange))
comod: (all)

mod: (xtest\pc,a,b)
post: (#a = .b,#b = .a,

#xtest\pc = exited(xtest.exchange),
<adatr return;>)]

<sdvs.l.27> usable

u(l) [sd pre: (.xtest\pc = exited(xtest.exchange))
comod: (all)

mod: (xtest\pc)

194

post: (<adatr exchange (x, ...)>)]

u(2) [sd pre: (true)
comod: (all)

mod: (xtest\pc)
post: (#xtest\pc = exited(xtest.exchange),

<adatr exchange (x, ...)>)]

No usable quantified formulas.

<sdvs.l.27> apply
sd/number[highest applicable/once]: <CR>

apply — [sd pre: (.xtest\pc = exited(xtest.exchange))
comod: (all)

mod: (xtest\pc)
post: (<adatr exchange (x, ...)>)]

<sdvs.l.28> usable

u(l) [sd pre: (true)
comod: (all)

mod: (xtest\pc,x,y)
post: (#x = .a,#y = .b,

<adatr exchange (x, ...)>)]

No usable quantified formulas.

This point immediately follows the completion of step 5. Two more state deltas are applied
to complete steps 6 and 7.

<sdvs.l.28> apply
sd/number[highest applicable/once]: 2

apply — [sd pre: (true)
comod: (all)

mod: (xtest\pc,x,y)
post: (#x = .a,#y = .b,

<adatr exchange (x, ...)>)]

apply — [sd pre: (true)
comod: (all)

mod: (xtest\pc,xtest,a,b)
post: (covering(.xtest,#xtest,a,b),undeclare(a,b),

<adatr exchange (x, ...)>)]

<sdvs.l.30> usable

u(l) [sd pre: (true)

comod: (all)

mod: (xtest\pc,xtest)
post: (alldisjoint(xtest,.xtest,a!2,b!2),

195

covering(#xtest,.xtest,a!2,b!2),
declare(a!2,type(integer)),declare(b!2.type(integer)),
<adatr exchange (y, ...)>)]

No usable quantified formulas.

This is the beginning of the next Ada statement.

We go on to the point where the lemma can be invoked again, invoke it, and then apply
the state deltas to complete the return from the call.

<sdvs.l.30> go
until[] : #xtest\pc = at(xtest.exchange)

apply — [sd pre: (true)
comod: (all)

mod: (xtest\pc,xtest)
post: (alldisjoint(xtest,.xtest,a!2,b!2),

covering(#xtest,.xtest,a!2,b!2),
declare(a!2.type(integer)),
declare(b!2,type(integer)),
<adatr exchange (y, ...)>)]

apply — [sd pre: (true)
comod: (all)

mod: (xtest\pc,a!2,b!2)
post: (#a!2 = .y,#b!2 = .z,

<adatr exchange (y, ...)>)]

apply — [sd pre: (true)
comod: (all)

mod: (xtest\pc)
post: (#xtest\pc = at(xtest.exchange),

<adatr exchange (y, ...)>)]

go — breakpoint reached

<sdvs.l.33> invokeadalemma
Ada lemma name: exchange.lemma

invokeadalemma — [sd pre: (.xtest\pc = at(xtest.exchange))
comod: (all)

mod: (xtest\pc,a!2,b!2)
post: (#a!2 = .b!2,#b!2 = .a!2,

#xtest\pc = exited(xtest.exchange),
<adatr return;>)]

< sdvs. 1.34 > apply
sd/number[highest applicable/once]: 3

apply — [sd pre: (.xtest\pc = exited(xtest.exchange))
comod: (all)
mod: (xtest\pc)

196

post: (<adatr exchange (y, ...)>)]

apply — [sd pre: (true)
comod: (all)

mod: (xtest\pc,y,z)
post: (#y = .a!2,#z = .b!2,

<adatr exchange (y, ...)>)]

apply — [sd pre: (true)
comod: (all)

mod: (xtest\pc,xtest,a!2,b!2)
post: (covering(.xtest,#xtest,a!2,b!2),undeclare(a!2,b!2),

<adatr exchange (y, ...)>)]

<sdvs.l.37> usable

u(l) [sd pre: (true)
comod: (all)

mod: (xtest\pc,xtest)
post: (alldisjoint(xtest,.xtest,put\item),

covering(#xtest,.xtest,put\item),
declare(put\item,type(polymorphic)),
<adatr put (x)>)]

No usable quantified formulas.

We now simply go on through the rest of the test program.

<sdvs.l.37> go
until []: terminated(xtest)

apply — [sd pre: (true)
comod: (all)

mod: (xtest\pc,xtest)
post: (alldisjoint(xtest,.xtest,put\item),

covering(#xtest,.xtest,put\item),
declare(put\item,type(polymorphic)),
<adatr put (x)>)]

apply — [sd pre: (true)
comod: (all)

mod: (xtest\pc,put\item)
post: (#put\item = .x,

<adatr put (x)>)]

apply — [sd pre: (true)

comod: (all)

mod: (xtest\pc)

post: (#xtest\pc = at (standard.text J.o.put) ,

<adatr put (x)>)]

apply — [sd pre: (.xtest\pc = at (standard, text -io. put))

comod: (all)

mod: (xtest\pc,stdout[.stdout\ctr],stdout\ctr)

197

post: (#stdout[.stdout\ctr] = .put\item,

#stdout\ctr = .stdout\ctr + 1,

#xtest\pc = exited(standard.text_io.put) ,
<adatr null;>)]

apply — [sd pre: (true)

comod: (all)

mod: (xtest\pc,xtest,put\item)

post: (covering(.xtest,#xtest,put\item),

undeclare(put\item),

<adatr put (x)>)]

apply — [sd pre: (true)

comod: (all)

mod: (xtest\pc,xtest)

post: (alldisjoint(xtest,.xtest,put\item!2),

covering(»xtest,.xtest,put\item!2),

declare(put\item!2,type(polymorphic)),

<adatr put (y)>)]

apply

apply

[sd pre: (true)
comod: (all)

mod: (xtest\pc,put\item!2)
post: (#put\item!2 = .y,

<adatr put (y)>)]

[sd pre: (true)
comod: (all)

mod: (xtest\pc)
post: (#xtest\pc = at(standard.textj.o.put) ,

<adatr put (y)>)]

apply — [sd pre: (.xtest\pc = at(standard.text_io.put))
comod: (all)

mod: (xtest\pc,stdout[.stdout\ctr],stdout\ctr)
post: (»stdout[.stdout\ctr] = .put\item!2,

#stdout\ctr = .stdout\ctr + 1,

#xtest\pc = exited(standard.textjio.put),
<adatr null;>)]

apply — [sd pre: (true)
comod: (all)

mod: (xtest\pc,xtest,put\item!2)

post: (covering(.xtest,«xtest,put\item!2),
undeclare(put\item!2),

<adatr put (y)>)]

apply — [sd pre: (true)

comod: (all)

mod: (xtest\pc,xtest)

post: (alldisjoint(xtest,.xtest,put\item!3),

covering(#xtest,.xtest,put\item!3),

declare(put\item!3.type(polymorphic)),
<adatr put (z)>)]

198

apply [sd pre: (true)
comod: (all)

mod: (xtest\pc,put\item!3)
post: (#put\item!3 = .z,

<adatr put (z)>)]

apply — [sd pre: (true)

comod: (all)

mod: (xtest\pc)

post: (#xtest\pc = at (standard, text -io. put) ,

<adatr put (z)>)]

apply — [sd pre: (.xtest\pc = at (standard. textJLo. put))

comod: (all)

mod: (xtest\pc,stdout[.stdout\ctr],stdout\ctr)

post: (#stdout[.stdout\ctr] = .put\item!3,

#stdout\ctr = .stdout\ctr + 1,

#xtest\pc = exited(standard.text_io.put) ,

<adatr null;>)]

close — 50 steps/applications

<sdvs.2> ps

« initial state >>
proved xtest.sd <1>
—> you are here <—

The postcondition of xtest.sd is sufficiently simple that the system can verify it without
assistance, and the proof closes automatically.

The reader may well wonder why the Ada lemma can be invoked only after a call to the
procedure has been partly processed and why afterwards we still have to apply two more
state deltas to complete the call. Why shouldn't the system be programmed to perform these
instantiations and state delta applications automatically? In fact, there is no reason why
this wouldn't have worked in our example. But here, all the conditions to be proven were
simple enough that they could be verified by the simplifier and propagated automatically.
With conditions that are more complex, perhaps involving quantifiers, this would not be the
case, and the user would need to assist the system in propagating these conditions through
the steps at the beginning and end of the procedure call.

4.6 AN EXAMPLE PROOF WITH ADALEMMA

In this final section we give one more example of an SDVS 13 Ada proof for the program
packages (Figures 9, 10, and 11). This rather complex program has a nullhody, but contains
functions testl through test4, and as procedures testb and exceptions. The adalemma that
we state and prove characterizes the behavior of the procedure exceptions; all the other
subprograms are irrelevant (but it is comforting to see that SDVS knows this.) This proof
illustrates the SDVS capability for packages and exceptions. It essentially claims that the
two values 5 and 23 are output, and then the procedure exceptions is exited. The label

199

#packages\pc = at(Q!ll)

is generated internally.

We create an adalemma and proof as follows:

<sdvs.2> adatr
path name[testproofs/manual/ada/xtest.ada] : testproofs/manual/ada/packages.a

Parsing Stage 4 Ada file — "testproofs/manual/ada/packages.a"

Translating Stage 4 Ada file — "testproofs/manual/ada/packages.a"

<sdvs.3> createadalemma
lemma name: packages.exceptions.lemma
file name: testproofs/manual/ada/packages.a

subprogram name: exceptions
qualified name: packages.exceptions

preconditionsD: alldisjoint(stdout[l], stdoutß]), .stdout\ctr = 1
mod list [] : all

postconditions: #stdout[l]=5, #stdout[2]=23

createadalemma — [sd pre: (.packages\pc = at(packages.exceptions),
alldisjoint(stdout[l] ,stdout[2]) ,
.stdout\ctr = 1)

comod: (all)
mod: (packages\pc,all)

post: («stdout[1] = 5,#stdout[2] = 23,
#packages\pc = exited(packages.exceptions))]

<sdvs.4> proveadalemma
Ada lemma name: packages.exceptions.lemma

proof [] : < CR>

open— [sd pre: (alldisjoint(packages,.packages),
covering(.packages,packages\pc,stdin,stdin\ctr,stdout,

stdout\ctr),
declare(stdin,type(polymorphic)),
declare(stdin\ctr,type(integer)),
declare(stdout,type(polymorphic)),
declare(stdout\ctr,type(integer)),
<adatr null;;>)

comod: (all)
mod: (all)

post: ([sd pre: (.packages\pc = at(packages.exceptions),
alldisjoint(stdout[1],stdout[2]),
.stdout\ctr = 1)

comod: (all)
mod: (diff(all,

diff(union(packages\pc,stdin,stdin\ctr,
stdout,stdout\ctr),

union(packages\pc,all))))
post: («stdout[1] = 5,«stdout[2] = 23,

#packages\pc = exited(packages.exceptions))])]

200

with tert_io; use text_io;

with integer_io; use integer_io;

procedure packages is

function testl return integer is

package p is

x: integer := 10;

end p;

use p;

begin

return x;

end testl;

function test2 return boolean is

x : boolean := true;

package p is

x: integer := 10;

end p;

use p;

begin

return x;

end test2;

function test3 return integer is
package pi is

x : integer;

end pi;

package p2 is

x : boolean;

end p2;
use pi, pi;

begin

return x;

end test3;

Figure 9: Program Packages, Part 1

201

function test4 return integer is
package pi is

x : integer;
end pi;
package p2 is

x : boolean;
end p2;
use pi, p2;

begin
return pl.x;

end test4;

procedure test5 is
package pO is

v: integer;
end pO;
package pi is

x: integer;
function f return integer;
use pO;
package p is

z: integer := v;
u: integer := x;
use pi;
package q is

w: integer;
end q;

end p;
end pi;
package p2 is

x: boolean;
end p2;
use pl.p;
use p2;
use q;

package body pi is
function f return integer is
begin
return 5;
end f;
end pi;

begin
null;
w := 2;
x := true;
z := 1;

end test5;

Figure 10: Program Packages, Part 2

202

procedure exceptions is

foo: exception;

x: integer;

function f (z: integer) return integer is

begin

raise foo;

exception

when foo => return 1;

end f;

package p2 is

x: integer;

procedure p(z: integer);

package p3 is

x: integer;

end p3;

end p2;

package body p2 is

w: integer := f(0);

procedure p(z: integer) is

begin

¥ := z;

put(w);

raise foo;

end p;

begin

x := 5;
put(5);

raise foo;
exception

vhen foo => x := 23;

put(x);

raise;

end p2;

begin

p2.p(86);

exception

vhen foo => put(100);
end exceptions;

begin

null;

end packages;

Figure 11: Program Packages, Part 3 (conclusion)

203

apply — [sd pre: (true)
comod: (all)

mod: (packages\pc)
post: («packages\pc = at(packages.exceptions),

<adatr null;>)]

go — breakpoint reached

open — [sd pre: (.packages\pc = at(packages.exceptions),
alldisjoint(stdout[l],stdout[2]),.stdout\ctr = 1)

comod: (all)
mod: (diif(all,

diff(union(packages\pc,stdin,stdin\ctr,stdout,
stdout\ctr),

union(packages\pc,all))))
post: («stdout[1] = 5,«stdout[2] = 23,

#packages\pc = exited(packages.exceptions))]

<sdvs.4.2.1> go
until [] : #packages\pc = exitedfpackages.exceptions)

apply — [sd pre: (true)

comod: (all)

mod: (packages\pc,packages)

post: (alldisjoint(packages,.packages,exceptions.x),

covering(«packages,.packages,exceptions.!),
declare(exceptions.x.type(integer)),
<adatr x : integer>)]

apply — [sd pre: (true)

comod: (all)

mod: (packages\pc,packages)

post: (alldisjoint(packages,.packages,exceptions.p2.x),

covering(«packages,.packages,exceptions.p2.x),

declare(exceptions.p2.x,type(integer)),
<adatr x : integer>)]

apply — [sd pre: (true)

comod: (all)

mod: (packages\pc,packages)

post: (alldisjoint(packages,.packages,p3.x),

covering(»packages,.packages,p3.x),

declare(p3.x,type(integer)),
<adatr x : integer>)]

apply — [sd pre: (true)

comod: (all)

mod: (packages\pc,packages)

post: (alldisjoint(packages,.packages,exceptions.f),

covering(»packages,.packages,exceptions.f),
declare(except ions.f,type(integer)),

<adatr null;>)]

apply — [sd pre: (true)

comod: (all)

204

mod: Cpackages\pc,packages)

post: (alldisjoint(packages,.packages,f.z),

covering(»packages,.packages,f.z),

declare(f.z,type(integer)),

<adatr f (0)>)]

apply — [sd pre: (true)

comod: (all)

mod: (packages\pc,f.z)

post: (»f.z = 0,

<adatr f (0)>)]

apply — [sd pre: (true)

comod: (all)

mod: (packages\pc)

post: (#packages\pc = at(packages.exceptions.f),

<adatr f (0)>)]

apply — [sd pre: (true)

comod: (all)

mod: (packages\pc)

post: (#packages\pc = at(C111),

[sd pre: (true)

comod: (all)

mod: (packages\pc,exceptions.!)

post: (»exceptions.! = 1,

<adatr return 1 ;>)])]

apply — [sd pre: (true)
comod: (all)

mod: (packages\pc,exceptions.i)

post: (»exceptions.i = 1,

<adatr return 1;>)]

apply — [sd pre: (true)
comod: (all)

mod: (packages\pc)

post: (#packages\pc = exited(packages.exceptions.!),

[sd pre: (true)

comod: (all)

mod: (packages\pc.packages,f.z)

post: (covering(.packages,»packages,f.z),

undeclared,z) ,

<adatr f (0)>)])]

apply — [sd pre: (true)

comod: (all)

mod: (packages\pc.packages,f.z)

post: (covering(. packages, »packages, f.z) .undeclared .z) ,

<adatr f (0)>)]

apply — [sd pre: (true)

comod: (all)

mod: (packages\pc,packages)

post: (alldisjoint(packages,.packages,p2.w),

205

covering(«packages,.packages,p2.w),

declare(p2.w,type(integer)),
<adatr s : integer := i (0)>)]

apply — [sd pre: (true)

comod: (all)

mod: (packages\pc,p2.w)

post: (#p2.w = .exceptions.f,

<adatr w : integer := f (0)>)]

apply — [sd pre: (true)

comod: (all)

mod: (packages\pc,except ions.p2.x)

post: (#exceptions.p2.x = 5,

<adatr x := 5;>)]

apply __ [sd pre: (true)

comod: (all)

mod: (packages\pc,packages)

post: (alldisjoint(packages,.packages,put\item),

covering(«packages,.packages,put\item),

declare(put\item,type(polymorphic)),
<adatr put (5)>)]

apply __ [sd pre: (true)
comod: (all)

mod: (packages\pc,put\item)
post: («put\item = 5,

<adatr put (5)>)]

apply — [sd pre: (true)

comod: (all)

mod: (packages\pc)

post: (#packages\pc = at (standard.text J.O.put) ,
<adatr put (5)>)]

apply — [sd pre: (.packages\pc = at (standard, text _io. put))
comod: (all)

mod: (packages\pc,stdout[.stdout\ctr],stdout\ctr)
post: (#stdout[.stdout\ctr] = .put\item,

#stdout\ctr = .stdout\ctr + 1,

#packages\pc = exited(standard.text_io.put) ,
<adatr null;>)]

apply — [sd pre: (true)

comod: (all)

mod: (packages\pc,packages,put\item)

post: (covering(.packages,«packages,put\item),

undeclare(put\item),

<adatr put (5)>)]

apply — [sd pre: (true)

comod: (all)

mod: (packages\pc)

post: (#packages\pc = at(«!18),

206

[sd pre: (true)

comod: (all)

mod: (packages\pc,except ions.p2.z)

post: (#ezceptions.p2.x = 23,

<adatr x := 23;>)])]

apply — [sd pre: (true)

comod: (all)

mod: (packages\pc,exceptions.p2.x)

post: (#exceptions.p2.x - 23,

<adatr x := 23;>)]

apply — [sd pre: (true)

comod: (all)

mod: (packages\pc,packages)

post: (alldisjoint(packages,.packages,put\item!2),

covering(«packages,.packages,put\item!2),

declare(put\item!2,type(polymorphic)),

<adatr put (x)>)]

apply — [sd pre: (true)

comod: (all)

mod: (packages\pc,put\item!2)
post: (#put\item!2 = .exceptions.p2.x,

<adatr put (x)>)]

apply — [sd pre: (true)

comod: (all)

mod: (packages\pc)
post: (#packages\pc = at(standard.text-io.put) ,

<adatr put (x)>)]

apply — [sd pre: (. packages \pc = at (standard.text j.o.put))

comod: (all)

mod: (packages\pc,stdout[.stdout\ctr],stdout\ctr)
post: (#stdout[.stdout\ctr] = .put\item!2,

#stdout\ctr = .stdout\ctr + 1,

#packages\pc = exited(standard.text_io.put) ,
<adatr null;>)]

apply — [sd pre: (true)

comod: (all)

mod: (packages\pc,packages,put\item!2)

post: (covering(.packages,«packages,put\item!2),

undeclare(put\item!2),

<adatr put (x)>)]

apply — [sd pre: (true)

comod: (all)

mod: (packages\pc)

post: ([sd pre: (true)

comod: (all)

mod: (packages\pc,packages,p2.v)

post: (covering(.packages,«packages,p2.w),

undeclare(p2.w),

207

<adatr w : integer := JE (0)>)])]

apply — [sd pre: (true)

comod: (all)

mod: (packages\pc,packages,p2.w)

post: (covering(.packages,«packages,p2.w),

undeclare(p2.w),

<adatr w : integer := i (0)>)]

apply — [sd pre: (true)

comod: (all)

mod: (packages\pc,packages,p3.x)

post: (covering(.packages,«packages,p3.x),

undeclare(p3.x),

<adatr x : integer>)]

apply — [sd pre: (true)

comod: (all)

mod: (packages\pc,packages,except ions.p2.x)

post: (covering(.packages,«packages,exceptions.p2.x),
undeclare(exceptions.p2.x),

<adatr x : integer>)]

apply — [sd pre: (true)

comod: (all)

mod: (packages\pc,packages,exceptions.x)

post: (covering(.packages,«packages,exceptions.!),

undeclare(exceptions.!),

<adatr x : integer>)]

apply — [sd pre: (true)

comod: (all)

mod: (packages\pc)

post: («packages\pc = exited(packages.exceptions),
[sd pre: (true)
comod: (all)

mod: (packages\pc)

post: (<adatr null;>)])]

close — 32 steps/applications

close — 2 steps/applications

proveadalemma -- [sd pre: (.packages\pc = at(packages.exceptions),

alldisjoint(stdout[l] ,stdout[2]) ,

.stdout\ctr = 1)

comod: (all)

mod: (packages\pc,all)

post: (#stdout[l] = 5,#stdout[2] = 23,

«packages\pc = exited(packages.exceptions))]

208

5 INTERACTION WITH VHDL

VHDL (VHSIC Hardware Description Language) is an IEEE standard hardware description
language, for which [26] is the definitive reference. SDVS 13 has the capability to translate
from a subset of the language — Stage 4 VHDL — into state deltas, and to prove claims
about the resulting hardware description representations. To run the VHDL test proofs,
type run-test-proofs *vhdl-tests*.

We present a brief description of the Stage 4 VHDL language subset and an example proof
of a property of a VHDL hardware description. The Stage 4 VHDL translator itself is
documented in detail in [30], on which the next section is based.

Our projections for the partition of VHDL into language subsets are set forth in [32] (though
the features actually included in the subsets have deviated somewhat from this plan). Ex-
ample correctness proofs for hardware descriptions written in the initial subset, Core VHDL,
are discussed in [57]. The translator for the second subset, Stage 1 VHDL, is described in
[56], that for the third subset, Stage 2 VHDL, is described in [55], and that for the fourth
subset, Stage 3 VHDL, is described in [70]. For further information on the evolution of the
state delta semantics for VHDL, refer to [27], [28], [33], and [29]. The VHDL translator is
invoked with the command vhdltr, which operates like adatr, but takes several arguments
specifying the VHDL description to be translated.

5.1 INTRODUCTION

Prior to 1987, we adapted SDVS to handle a subset of the hardware description language
ISPS. However, ISPS has serious limitations regarding the specification of hardware at
levels other than the register transfer level. In 1988 we documented a study of some of the
hardware verification research being performed outside Aerospace and investigated VHDL,
an IEEE and DoD standard hardware description language released in December 1987. We
selected VHDL as a possible medium for hardware description within SDVS.

Prerequisites for adapting SDVS to VHDL are (1) to define VHDL semantics formally in
terms of SDVS's underlying logic (the state delta logic) and (2) to implement a translator
from VHDL to the state delta logic. As with the incorporation of Ada into SDVS, the
approach taken with VHDL has been to implement increasingly complex language subsets;
this enables a graded, structured approach to hardware verification.

In 1989 we defined an initial subset of VHDL, called Core VHDL, that captured the essential
behavioral features of VHDL. We defined both the concrete syntax and abstract syntax for
Core VHDL, formally specified its semantics and, on the basis of this semantic definition,
implemented a Core-VHDL-to-state-delta translator. In 1990, SDVS was enhanced to pro-
vide the capability of verifying hardware descriptions written in Core VHDL. In 1991, 1992,
and 1993, the translator underwent extensive revisions to accommodate Stage 1 VHDL,
Stage 2 VHDL, and Stage 3 VHDL, respectively. The translator for the SDVS 13 VHDL
language subset, Stage 4 VHDL, was implemented in 1994.

209

The VHDL translator essentially functions as a simulator kernel, maintaining a clock and a
list of future events that are defined as state deltas. For Core VHDL, however, the translator
transformed possibly multiple Core VHDL statements: sequential statements between WAIT
statements within a process were all translated and then composed into a single state delta.
The translator updated the clock to the next time at which a signal driver became active
or a process resumed. As the clock advanced, the translator merged the composite state
deltas into a single state delta that specified the behavior of all processes at that point in
the execution.

For Stage 1 VHDL, we reevaluated the feasibility of using composition in the translation
of VHDL to state deltas, and concluded that although composition had initially seemed
viable in the case of Core VHDL, it is impossible in principle to apply the technique to
more complex VHDL subsets, as the attempt would require the ability to compose over
sections of VHDL code that would necessitate static proof in SDVS. More generally, the
ability to compose over arbitrary WAIT-bracketed code in PROCESS statements would be
tantamount to the automatic construction of correctness proofs without user intervention
— a theoretically undecidable problem.

Therefore, we decided to abandon composition for Stage 1 VHDL and succeeding SDVS
VHDL subsets. Instead, within a given execution (simulation) cycle, processes are translated
sequentially, in the order in which they appear in the VHDL description, and the user has
control over stepping through the sequential statements within each process. Thus, rather
than trying to have the VHDL translator model the concurrency of the processes, we chose
to take for granted a certain "metatheorem" about VHDL: that any two sequentializations
of the processes are equivalent. A brief justification for this point of view is that the problem
of mutual exclusion is not a concern in VHDL, since

• all variables are local to the process in which they are declared; and

• distinct processes modify distinct drivers of a given signal (known as a resolved signal),
and the ultimate signal value is obtained by the application of a user-defined resolution
function.8

A gratifying benefit of the revised translation strategy is that the understandability of the
resulting proofs has been remarkably improved — the dynamic flow of process execution
precisely reflects the simulation semantics of VHDL (as defined in the VHDL Language
Reference Manual [26]), but with the crucial aspect of symbolic execution (the use of ab-
stract values rather than concrete) thrown in. The current VHDL translator thus functions
as a "symbolic simulator," and is a considerably more intuitive proof engine than was its
incarnation for Core VHDL.

5.2 STAGE 4 VHDL

Stage 4 VHDL comprises a significantly more powerful subset of VHDL than did previous
stages, in that Stage 4 VHDL admits the structural description of hardware in terms of its

As of Stage 4 VHDL, however, resolved signals are still disallowed.

210

hierarchical decomposition into connected subcomponents as outlined in [71]. Previous ver-
sions of the SDVS VHDL translator handled only behavioral (e.g., algorithmic or dataflow)
hardware descriptions.

The primary VHDL abstraction for modeling a digital device is the design entity. A design
entity consists of two parts: an entity declaration and an architecture body. The entity
declaration provides the "external view" of the device: it defines the interface between
the design entity and its environment, including the number, direction, and type of ports,
and corresponds to a symbol in a traditional CAE (Computer-Aided Engineering) design
methodology. The architecture body provides the "internal view" of the device, describing
its behavior or structure, and thereby expressing the relationship between its inputs and
outputs. A given entity declaration may be shared by several design entities, each with a
different architecture body.

In Stage 4 VHDL, each architecture body consists of a set of declarations and concurrent
statements defining the structure or function of the device being modeled. The allowable
concurrent statements are of four kinds, to be discussed below: PROCESS statements, con-
current signal assignment statements (conditional and selected), BLOCK statements, and
component instantiation statements.

The special case of a structural architecture, in particular, corresponds to the CAE notion of
a schematic. A structural architecture for a design entity is described by declaring internal
signals and connecting these, as well as the ports of the entity declaration, to the ports
of various subcomponents declared in component declarations and created by component
instantiation statements in the architecture body.

Component declarations provide a "template" mechanism, whereby an architecture body
containing component instantiations can be analyzed — checked for syntactic and semantic
correctness — independently of prior analysis of entity declarations for those components.
This is accomplished by having the instantiations refer not to entity declarations, but to
component declarations.

The configuration declaration provides the mechanism whereby architecture bodies are
paired with entity declarations to configure specific design entities. A configuration dec-
laration is analogous to a "parts list," describing which part to use for each component
of a design. (The configuration specification, an essentially equivalent alternative, is not
supported by Stage 4 VHDL.)

A component instantiation statement specifies an instance of a child component occurring
inside a parent component. At the point of instantiation, only the external view of the
child component — the names, types, and directions of its ports — is visible; the child
component's internal signals are not visible. The component instantiation statement iden-
tifies the child component and specifies which ports or signals in the parent component
are connected to which ports in the child component. Component instantiation statements
are transformed, in a manner prescribed by the VHDL LRM [26], to pairs of nested BLOCK
statements during the elaboration of a VHDL design entity prior to its execution. A BLOCK
statement provides a block-structured scope with local declarations and a body consisting
of concurrent statements. Elaboration of a design entity recursively transforms component

211

instantiation statements occuring in BLOCK statements until the innermost blocks contain
only PROCESS and concurrent signal assignment statements.

A PROCESS statement, the most fundamental kind of concurrent statement in VHDL, is a
block of sequential zero-time statements that execute sequentially but "instantaneously" in
zero time [33], and some (possibly none) distinguished sequential WAIT statements whose
purpose is to suspend process execution and allow time to elapse.

A process typically schedules future values to appear on data holders called signals, by
means of sequential signal assignment statements. The execution of a signal assignment
statement does not immediately update the value of the target signal (the signal assigned
to); rather, it updates the driver associated with the signal by placing (at least one) new
transaction, or time-value pair, on the waveform that is the list of such transactions con-
tained in the driver. Each transaction projects that the signal will assume the indicated
value at the indicated time; the time is computed as the sum of the current clock time of the
model and the delay specified (explicitly or implicitly) by the signal assignment statement.

Two types of time delay can be specified by a sequential signal assignment statement, and
Stage 4 VHDL encompasses both. Inertial delay, the default, models a target signal's inertia
that must be overcome in order for the signal to change value; that is, the scheduled new
value must persist for at least the time period specified by the delay in order actually to
be attained by the target signal. Transport delay, on the other hand, must be explicitly
indicated in the signal assignment statement with the reserved word TRANSPORT, and models
a "wire delay" wherein any pulse of whatever duration is propagated to the target signal
after the specified delay.

In lieu of explicit WAITs, a process may have a sensitivity list of signals that activate process
resumption upon receiving a distinct new value (an event). The sensitivity list implicitly
inserts a WAIT statement as the last statement of the process body.

Concurrent signal assignment statements always represent equivalent PROCESS statements,
and come in two varieties: conditional signal assignment and selected signal assignment.
A conditional signal assignment is equivalent to a process with an embedded IF statement
whose branches are sequential signal assignments; similarly, a selected signal assignment
is equivalent to a process with an embedded (possibly degenerate) CASE statement whose
branches are sequential signal assignments. The VHDL translator syntactically transforms
concurrent signal assignment statements to their corresponding PROCESS statements before
translating them into state deltas.

Signals act as data pathways between processes. Each process applies operations to values
being passed through the design entity. We may regard a process as a program implementing
an algorithm, and a Stage 4 VHDL description as a collection of independent programs
running in parallel.

In full VHDL, a target signal can be assigned to in multiple processes, in which case it
possesses correspondingly many drivers for updating by the different processes; the value
taken on by the signal at any particular time is then computed by a user-defined resolution
function of these drivers.

212

Currently Stage 4 VHDL disallows such resolved signals: a signal is not permitted to appear
as the target of a sequential signal assignment statement in more than one process body;
equivalently, every signal has a unique driver.

The Stage 4 VHDL data types are: BOOLEAN, BIT, UNIVERSAL-INTEGER, INTEGER, REAL (pre-
liminary version), TIME (a predefined physical type of INTEGER range), CHARACTER, STRING
(arrays of characters), BIT_VECTOR (arrays of bits), user-defined enumeration types, user-
defined array types, subtypes of scalar types, and integer type definitions. Furthermore,
explicit type conversions between integer types are allowed. The preliminary implemen-
tation allows VHDL descriptions involving type REAL to be parsed and translated, but
provides no support for reasoning about floating point numbers.

Concrete and abstract syntaxes for Stage 4 VHDL have been defined [70] — as required,
of course, for the implementation of the Stage 4 VHDL translator. Perhaps the following
summary provides the best way of seeing the Stage 4 VHDL language subset and translator
at a glance.

• VHDL design files

• package STANDARD

— predefined types: BOOLEAN, BIT, INTEGER, TIME, CHARACTER, REAL, STRING, BIT-VECTOR

— various units of type TIME: FS, PS, NS, US, MS, SEC, MIN, HR

— restriction: implementation of type REAL is preliminary

• user-defined packages

— package declarations

— package bodies

• USE clauses for accessing packages

• entity declarations

— entity header: generics, port declarations

— entity declarative part: other declarations

• architecture bodies

• configuration declarations

— generic maps, port maps

• object declarations

— CONSTANT, VARIABLE, SIGNAL

— octal and hexadecimal representations of bitstrings

— entity ports of default object class SIGNAL

213

• array type declarations

- arrays (bidirectional; constrained or not) of arbitrary element type

- attributes 'low and 'high for lower and upper bounds of an array type (restric-
tion: but not of an object of type array)

• user-defined enumeration types

• subtypes of scalar types

• integer type definitions

• type conversion

• signals of arbitrary types

• subprograms

- procedures and functions: declarations and bodies

- restriction: excluding parameters of object class SIGNAL

• concurrent statements

- PROCESS statements

- conditional signal assignments

- selected signal assignments

- BLOCK statements

- component instantiation statements

• sequential statements

- null statement: NULL

- variable assignments (scalar and composite)

- signal assignments (scalar and composite, inertial or TRANSPORT delay)

- conditionals: IF, CASE

- loops: LOOP, WHILE, FOR

- loop exits: EXIT

- subprogram calls

- subprogram return: RETURN

- process suspension: WAIT

• operators

- numeric unary operators: ABS, +, -

- numeric binary operators: +, -, *, /, ** (exponentiation), MOD (modulus),
REH (remainder)

214

- boolean and bit operators: NOT, AND, NAND, OR, NOR, XOR

- relational operators: =, /=, <, <=, >, and >=

- array concatenation operator: k

- restriction: =, /=, and k are the only Stage 4 VHDL operators defined for user-
defined array types

5.3 TRANSLATION OF STAGE 4 VHDL

A Stage 4 VHDL hardware description is first parsed according to the Stage 4 VHDL
grammar, producing an abstract syntax tree that serves as the input to Phase 1 of the
translation.

Phase 1 of the translation accomplishes the following.

• Performs static semantic checks to verify that certain conditions are met, for example:

Objects, subprograms, packages, and process and loop labels must be declared
prior to use.

Identifiers with the same name cannot be declared in the same local context.

References to objects and labels must be proper, e.g. scalar objects must not be
indexed, array references must have the correct number of indices, and EXIT state-
ments must reference a loop label.

All components of statements and expressions must have the proper type, e.g.
expressions used as conditions must be boolean, array indices must be of the proper
type, operators must receive operands of the correct type, procedure and function
calls must receive actual parameters of the proper type, function calls must return a
result of a type appropriate for their use in an expression.

Sensitivity lists in PROCESS and WAIT statements must contain signal identifiers.

The collection of discrete ranges defining a CASE statement alternative must be
exhaustive and mutually exclusive.

The time delays in the AFTER clause of a signal assignment statement must be
increasing.

• Creates a new abstract syntax tree — a transformed version of the original abstract
syntax tree (used by Phase 1) — that will be more conveniently utilized by Phase 2
of the translation.

• Creates and manipulates a tree-structured environment (TSE) that, in the absence of
errors, is provided to Phase 2 of the translation.

If the VHDL translator completes Phase 1 without error, then it can proceed with Phase 2,
state delta generation. Phase 2 requires two inputs: the transformed abstract syntax tree
and the tree-structured environment (TSE) for the hardware description, both constructed

215

by Phase 1. The TSE contains a complete record of the name/attribute associations cor-
responding to the hardware description's declarations, and its structure reflects that of the
description. Referring to the TSE, Phase 2 incrementally generates and (per user proof
commands) applies state deltas via symbolic execution and the theories built into the Sim-
plifier.

To understand Phase 2 of the VHDL translator, it is important to recognize that in defin-
ing the semantics of concurrent processes within a given architecture body, the translator
involves a significant operational component. This is to be distinguished from the seman-
tics of sequential statements within processes, which the translator defines in a primarily
denotational manner.

We are referring here to our strategy of designing aspects of a simulator kernel into the
VHDL translator. After the application of the state deltas specifying the behavior of one
execution cycle for the active processes, the translator is responsible for

• determining the next VHDL clock time at which a driver becomes active or a process
resumes,

• advancing the SDVS state to this new time, and

• generating the state delta that specifies the next sequential statement in the first
resuming process for the new execution cycle.

After a given resuming process suspends, its continuation is the textually next-resuming pro-
cess, or "end of execution cycle" when none such remain. The internal translator machinery
to perform these tasks is operationally defined, much of it embodied in the translator's im-
plementation rather than described by semantic equations.

Finally, Stage 4 VHDL has a "sequential statement marking" capability. One sets a mark
in a comment line just before the sequential statement being marked, using the notation
"—Q" (no spaces), e.g.

—a foo
x := 1;

During symbolic execution, this will yield ".pc = at(foo)" at the point where the state
delta(s) representing the marked statement become usable, so that a go ... until .pc =
at (foo) command can be given to execute symbolically to the particular point in the
VHDL hardware description just before the marked statement.

Any sequential statement can be so marked, and the hardware description remains accept-
able to a VHDL simulator. A mark can be turned into a regular (uninterpreted in SDVS)
comment simply by inserting a space between the "—" and the "<3", or by beginning the
whole line with an extra pair of hyphens (even one extra will do, so long as it's not followed
by a space).

216

Note that marking concurrent statements would actually not be meaningful, since execution
is never really "at" a concurrent PROCESS statement, but rather somewhere inside of one
(conceptually, inside several at once). Another way to view this is to notice that the
simulation cycle semantics of concurrent statements is determined by that of the sequential
WAIT statement.

5.4 COMMANDS DEALING WITH VHDL

The user can run some example VHDL proofs by typing run-test-proofs *vhdl-tests*.

The typical form of a state delta specification for a VHDL design entity is

[sd pre: (vhdl(<design name>))
comod: (all)

mod: (all)
post: (vhdl_model_elaboration_complete(<design name>),

[sd pre: (<initial correctness requirements>)
comod: (all)

mod: (all)
post: (<final correctness requirements>)])]

The automatic elaboration of the VHDL design entity is accomplished by issuing the
SDVS command go, supplying the predicate vhdl_model_elaboration_complete(<design
name>) as its until argument. This processes the design entity's declarations, creating
SDVS places corresponding to signals and variables and making these available for refer-
ence in the nested state delta.

When it is desired to prove eventual quiescence of the design entity, the <f inal correctness
requirements> include the predicate vhdl_model_execution_complete(<design name>).

SDVS makes available several VHDL-specific commands. Those illustrated bye the Example
in Section 5.5 include the following.

• vhdltr

Execution of the proof command vhdltr causes the translation of a VHDL design en-
tity, possibly distributed over more than one file, into the state delta logic. Assuming
that the files comprise a syntactically valid Stage 4 VHDL description, the translation
yields formulas describing the predefined environment of the Stage 4 VHDL descrip-
tion, in addition to a single state delta for initiating the symbolic execution of the
description.

The command vhdltr prompts for the following arguments: "design name," "directory
name," "file names," and "using configuration."

The design name is simply an identifier, of the user's choosing, that will be used
during the proof to refer to the design entity.

217

The directory name specifies the single directory in which all VHDL source files for
the translation are required to reside; care should be taken to terminate the directory
name with a "/".

The file names specify the VHDL source files for the design entity; typically, they will
end with the extension ".vhdl", but need not. The file names, in the event there are
more than one, should be separated by spaces.

The prompt "using configuration" requests the identifier naming the configuration
declaration, if any, to be used for the elaboration of a design entity involving compo-
nents; this configuration declaration must occur in the last file to be translated. If a
VHDL design entity is purely behavioral, requiring no configuration declaration for
the binding of component instances, the response "none" should be specified.

• vhdltime

Execution of the query command vhdltime causes the current VHDL simulation time
— a global/delta pair — to be displayed.

• vhdl-signals

The query command vhdl-signals is used to examine the state of signals present in
the design entity, displaying their current value, previous value, projected output
waveform, and driver history. It accepts two optional arguments: a list of signal
names (separated by commas), and an indication of whether to simplify the displayed
expressions.

• vhdl-processes

The query command vhdl-processes displays information about the state of processes
in the VHDL design entity, including whether they are active or suspended, and the
scheduled time and reason for their next resumption.

The offline characterization facility for VHDL is similar to that for Ada (see Section 4.5),
comprising four commands:

• createvhdllemma

The proof command createvhdllemma defines a lemma about a VHDL subprogram
(procedure or function), and collects other necessary descriptive information from the
user.

• provevhdllemma

The proof command provevhdllemma sets up an environment within which the state
delta expressing the lemma can be proved. This must be at the top level of symbolic
execution; lemmas dependent on an existing context are not permitted.

• invokevhdllemma

The proof command invokevhdllemma uses a previously created lemma as a template
to construct a usable state delta, substituting an actual program continuation for the
unspecified (null) continuation in the template and applying the resulting state delta.

218

vhdlsubprogenv

The query command vhdlsubprogenv is quite useful in connection with VHDL offline
characterization. It displays the mapping of fully qualified program names to uniquely
qualified place names for all places constituting the environment for the proof of
a vhdllemma about a subprogram. This assists the user with correctly specifying
these places in the statement and proof of the vhdllemma. In the absence of such
a mapping, for a large program it can be difficult for the user to predict, simply by
manual inspection of the VHDL source code, the unique place names that will be
automatically generated by the translator for the vhdllemma proof.

5.5 AN EXAMPLE

Here we present a very simple example, illustrating the translation of a Stage 4 VHDL
hardware description and the manner in which SDVS keeps track of signals and the clock
during symbolic execution. The following are the contents of file switch, vhdl.

PACKAGE switclupackage IS

CONSTANT halfjlelay : TIME := 500 FS;

END switch-package;

USE switch-package.ALL;

ENTITY switch IS

PORT (x, y : INOUT INTEGER);

END switch;

ARCHITECTURE behavior OF switch IS

BEGIN

x-gets_y :

x <= y AFTER (2 * half jielay) ;

y_gets_x :
y <= x AFTER (2 * half jdelay);

END behavior;

The package declaration of switch-package declares the constant half .delay of type TIME
(predefined as part of package STANDARD) that will be referenced in the architecture body.
The TIME unit FS represents femtoseconds (1 femtosecond = 10-15 second).

219

The USE clause is necessary to make the declaration(s) in switch^ackage accessible to the
rest of the description.

The entity declaration, or interface, of the description declares two ports x and y; these are
signals connecting the hardware device being modeled to other (unspecified) devices in the
design environment. The ports are of mode inout, meaning that they may be both read
from and written to by the accompanying architecture body.

The architecture body consists of two labeled concurrent signal assignment statements (de-
generate selected signal assignments, actually), each of which schedules the current value of
a "source" port to become the future value of the other "target" port after 1000 femtosec-
onds, or 1 picosecond.

As indicated in Section 5.2, each of the concurrent signal assignments is equivalent to a
process that (1) has a similar, but unlabeled, sequential signal assignment statement as its
body, and (2) waits for an event — an actual change in the value of the source port — in
order to resume execution. We simply continue to refer to these processes in the sequel.

The net effect is to describe a device that switches the values of x and y every picosecond,
provided their original values are different, and only a single time during an initialization
phase provided their original values are the same.

We wish to formulate and prove the following claim about the VHDL design entity switch:

At any time at which the translation of switch holds, there will be a time
when the declarations of switch have been elaborated, and such that (1) if the
input values of x and y are the same, then they will be switched 1 picosecond
later and the VHDL model will have completed execution, whereas (2) if the
input values are different, the values of x and y will be switched 1 picosecond
later, and then in 1 more picosecond they will be switched again.

This English-language specification is formulated as the state delta switch2.sd, which we
read from a file:

<sdvs.l> read
path name [axioms/quant, axioms] : testproofs/manual/vhdl/switch.spec

Definitions read from file "testproofs/manual/vhdl/switch.spec"
— (switchl.sd,switch2.sd,switch2.badsd,switch2.sd2)

<sdvs.2> ppsd
state delta: switchZ.sd

[sd pre: (vhdl(switch))
mod: (all)

post: (vhdljnodeljelaboratioiLxomplete(switch) ,
[sd pre: (.x = .y)

comod: (all)
mod: (all)

post: («vhdltime = vhdltime(1000,0),#x = .y,#y = .x,

220

vhdl_model_execution_complete(switch))] ,
[sd pre: (.1 "= .y)
comod: (all)

mod: (all)
post: (»vhdltime = vhdltimeUOOO.O) ,#i = .y,#y =

[sd pre: (true)
comod: (all)
mod: (all)

post: («vhdltime = vhdltime(2000,0),#x

#y = .1)])])]

• X,

Our first essential order of business is to translate the VHDL design entity switch into its
state delta representation, vhdl(switch), so that we may prove our claim about it. This
is done by invoking the VHDL translator with the command vhdltr, given the following
arguments: design name, directory name, source files, and name of the configuration dec-
laration to be used. Care should be taken to terminate the directory name with a "/"• If
a VHDL design is purely behavioral, requiring no configuration declaration for the binding
of component instances, then "none" should be specified in response to the prompt "using
configuration"; otherwise, the name of the configuration declaration should be given, and
this configuration declaration should occur in the last file to be translated.

<sdvs.2> vhdltr
design name [foo] : switch

directory name [testproois/vhdl/] : testproofs/manual/vhdl/
file names [foo. vhdl] : switch.vhdl

using configuration[none]: none

Parsing Stage 4 VHDL file — "testproofs/manual/vhdl/switch.vhdl"

Translating Stage 4 VHDL design — "SWITCH"

<sdvs.3> pp
object: vhdl
design name [switch] : switch

alldisjoint(switch,.switch)
cover ing(.switch, switch\pc .vhdltime, vhdltime_previous)
declare(vhdltime,type(vhdltime))
declare(vhdltime-previous,type(vhdltime))
.vhdltime = vhdltime (0,0)
. vhdlt ime_previous = vhdltime(0,0)
<>

We have just exhibited the "initial segment" of the translation of the switch description,
consisting of the declaration and initialization of the places vhdltime and vhdlt ime-previous,
as well as a state delta whose postcondition contains a representation of (a state delta for)
the incremental continuation of the translation.

In general, each state delta generated by the VHDL translator will contain, as part of
its postcondition, a continuation label enclosed in angle brackets; this continuation label
simply stands for the next state delta to be incrementally generated by the translator —

221

the continuation. The generic label <VHDLTR> appears most frequently, but occasionally
labels attempt to be more descriptive of the next increment of translation.

Sometimes, as in the initial segment of translation, the translator generates a state delta
with precondition (true), comodlist (all), a (\pc) modlist, and only a continuation in
the postcondition. Such a state delta corresponds to an action, to be unconditionally
performed by the translator, resulting in no change in the state (contents of places) except
for the program counter. When such a state delta is applied, for brevity it is not printed
out in its entirety in the proof trace; rather, the tag action is printed, followed by the
continuation label.

<sdvs.3> setflag
flag variable: autodose
on or off[off]: off

setflag autoclose — off

The autoclose flag has been turned off to allow the proof to be developed without SDVS
closing it automatically.

We now open the proof of switch2.sd:

<sdvs.4> prove
state delta[]: switchZ.sd
proof []: <CR>

open — [sd pre: (vhdl(snitch))
mod: (all)

post: (vhdlJiodeljelaboration-jcomplete(switch) ,
[sd pre: (.x = .y)
comod: (all)

mod: (all)

post: («vhdltime = vhdltime(1000,0),#x = .y,

#y = .x,

vhdl_model_execution_complete(switch))] ,
[sd pre: (.x "= .y)

comod: (all)

mod: (all)

post: («vhdltime = vhdltime(1000,0),#x = .y,

#y = -x,
[sd pre: (true)

comod: (all)

mod: (all)

post: (#vhdltime = vhdltime(2000,0),

#x = .y,#y = .x)])])]

Complete the proof.

The automatic elaboration of the VHDL description is accomplished by issuing the SDVS
command go with the predicate vhdl_model_elaboration_complete(switch) as the until
argument. This elaborates the declarations of the constant half-delay and the entity ports

222

x and y, applying state deltas until the elaboration is complete. Any declarations internal
to the architecture)ody or the processes are also elaborated (in the present example, there
are none).

<sdvs.4.1> go
until [] : vhdLmodeLelaboration.complete(switch)

action — <VHDLTR>

apply — [sd pre: (true)
comod: (all)

mod: (switch\pc.switch)
post: (alldisjoint (switch, .switch,half .delay) ,

covering (»switch, .switch,half jdelay) ,
declare (half jdelay, type (integer)) ,
<VHDLTR>)]

apply — [sd pre: (true)
comod: (all)

mod: (switch\pc,half jdelay)
post: («halfjdelay = 500,

<VHDLTR>)]

apply — [sd pre: (true)
comod: (all)

mod: (switch\pc,switch)
post: (alldisjoint(switch,.switch,x,y,driver\x,driver\y),

covering(#switch,.switch,x,y,driver\i,driver\y),
declare(x,sigtype(integer)),
declare(driver\x,type(waveform,type(integer))),
declare(y,sigtype(integer)),
declare(driver\y,type(waveform,type(integer))),
<VHDLTR>)]

apply — [sd pre: (true)
comod: (all)

mod: (switch\pc,x,y,driver\x,driver\y)
post: (#driver\x

= waveform(x,transaction(vhdltime(0,0),x\1484)),
#driver\y

waveform(y,transaction(vhdltime(0,0),y\l486)),
<VHDLTR»]

action — <ELAB0RATE PROCESS: X_GETS_Y>

action — <ELABDRATE PROCESS: Y.GETSJO

go — breakpoint reached

The evaluation of the three SDVS commands vhdltime, vhdl-signals, and vhdl-processes
is a convenient means of querying SDVS about aspects of the state of the Stage 4 VHDL
proof. Particularly in the case of signals, this query method provides information in a much
more intelligible form than that returned by, say, the query command ppl .

223

<sdvs.4.8> vhdltime

global time = 0

delta tine = 0

<sdvs.4.8> vhdl-signals
signal-names [all] : <CR>

simplify?[no]: <CR>

signal X

current value = x\1484

previous value = i\1484

projected output waveform = ()

driver history = (transaction (vhdltime«),0) ,x\1484))

signal Y

current value = y\l486

previous value = y\l486

projected output waveform = ()

driver history = (transaction(vhdltime(0,0),y\l486))

The declarations have been symbolically elaborated. For example, places x and driver\x
have been created to represent the signal (of the same name) and its driver, respectively, and
the contents of driver\x have been initialized with a waveform (indexed by x) consisting of
a single transaction, waveform(x,transaction(vhdltime(0,0) ,x\20)). This transaction
stipulates that at vhdltime(0,0), x acquires the symbolic bit value x\20.

In the display generated by the command vhdl-signals, the driver is split conceptually
into two disjoint parts, each represented as a list:

• A projected output waveform, consisting of future transactions scheduled to occur
on the signal (some of which might be preempted, or deleted from the waveform,
during subsequent execution of the description). The time components of projected
transactions are all greater than the placevalue .vhdltime. For ease of reference, the
projected transactions are displayed in chronological order according to their time
components, so that the next scheduled transaction occurs first in the bst.

224

• A driver history, consisting of those transactions that have already been "actualized,"
i.e., whose time component is at most the placevalue .vhdltime. For ease of refer-
ence once again, but in contradistinction to the projected output waveform, these
transactions are displayed in reverse chronological order: the most recent actualized
transaction for the signal appears at the head of the driver history, and its value
component is always the current value of the signal driver.

Thus, the entire signal driver itself is the concatenation of the reverse of the driver history
with the projected output waveform.

<sdvs.4.8> vhdl-processes
process-names [all] : < CR>

process X_GETS_Y :

current state = SUSPENDED

scheduled time = VHDLTTJHE(0,0)

scheduled reason = INITIALIZATION

process Y.GETSJC :

current state = SUSPENDED

scheduled time = VHDLTIME(0,0)

scheduled reason = INITIALIZATION

All processes are shown as currently suspended, because we have not yet begun executing the
model, but they are scheduled to "resume" execution at vhdltime(0,0), by reason of the
initialization phase of the simulation semantics informally defined in the VHDL Language
Reference Manual [26]. In the initialization phase, each process is executed until it suspends.
As the next applicable state delta indicates, the translation is ready to commence model
execution.

<sdvs.4.8> nsd

[sd pre: (true)
comod: (all)

mod: (switch\pc)
post: (<BEGIN VHDL MODEL EXECUTIONS]

<sdvs.4.8> whynotgoal
simplify?[no] : <CR>

g(2) [sd pre: (.1 = .y)

225

comod: (all)

mod: (all)

post: («vhdltime = vhdltime(1000,0),#x = .y,#y = .1,

vhdl_model_fixecutionjcomplete (switch))]
g(3) [sd pre: (.x "= .y)

comod: (all)

mod: (all)

post: («vhdltime = vhdltime(1000,0),«x = .y,#y = .x,
[sd pre: (true)

comod: (all)

mod: (all)

post: («vhdltime = vhdltime(2000,0),#x = .y,#y = .x)])]

This is an appropriate point at which to open a proof of the goal g(2). Later, after this
goal has been proved, we will also need to prove the goal g(3).

<sdvs.4.8> prove
state delta[] : g

number: 2
proof [] : < CR>

open — [sd pre: (.x = .y)
comod: (all)

mod: (all)
post: («vhdltime = vhdltime(1000,0),#x = .y,#y = .x,

vhdl_model_execution_complete (switch))]

Complete the proof.

<sdvs.4.8.1> go
until [] : vhdLmodeLexecution-Complete(switch)

action — <BEGIN VHDL MODEL EXECUTIDN>

action — <BEGIN INITIALIZATION PHASE>

action ~ <... INITIALIZATION PHASE: EACH PRDCESS EXECUTES UNTIL SUSPENSION>

action ~ <EXECUTE PROCESS: X_GETS_Y>

apply — [sd pre: (~(preemption(.driver\x,
transact ion(t imeplus(.vhdlt ime,

vhdltime(2 *
.halfjdelay,

0)),

•y))))
comod: (all)

mod: (switch\pc,driver\x)

post: (#driver\x

= inert ial jupdat e (. dr iver\x,

transact ion(t imeplus(. vhdlt ime,

vhdltime(2 *

.half jdelay,

0)),

226

• y».
<VHDLTR>)]

action — <SUSPEND PROCESS: X_GETS_Y>

action ~ <... INITIALIZATION PHASE: EACH PROCESS EXECUTES UNTIL SUSPENSION>

action — <EXECUTE PROCESS: Y.GETSJO

apply — [sd pre: (~(preemption(.driver\y,

transaction(timeplus(.vhdltime,

vhdltime(2 *

.half .delay,

0)),

.x))))
comod: (all)

mod: (switch\pc,driver\y)
post: (#driver\y

= inertialjipdate(.driver\y,

transaction(timeplus(.vhdltime,

vhdltime(2 *

.halljdelay,
0)),

.i)),

<VHDLTR>)]

action ~ <SUSPEND PROCESS: Y_GETSJC>

action — <END INITIALIZATION PHASE>

action — <BEGIN EXECUTION CYCLE:
1. ADVANCE EXECUTION TIME,
2. UPDATE SIGNALS,
3. RESUME PR0CESSES>

apply — [sd pre: (true)

comod: (all)

mod: (switch\pc,vhdltime,vhdltime_previous,x,y)

post: (tvhdltime = vhdltime(1000,0),

#vhdltime_previous = .vhdltime,

<UPDATE SIGNALS>)]

action — <RESUME (?) NEXT SCHEDULED PROCESS: X_GETS_Y>

apply — [sd pre: (.y = val(.driver\y, .vhdltime-previous))

comod: (all)

mod: (switch\pc)

post: (<RESUHE (?) NEXT SCHEDULED PROCESS: Y_GETS_X>)]

apply — [sd pre: (.x = val(.driver\x, .vhdltimcprevious))

comod: (all)

mod: (switch\pc)

post: (<END EXECUTION CYCLE>)]

action — <BEGIN EXECUTION CYCLE:

227

1. ADVANCE EXECUTION TIME,

2. UPDATE SIGNALS,

3. RESUME PROCESSES>

action — <END VHDL MODEL EXECUTION>

apply — [sd pre: (true)
comod: (all)

mod: (switch\pc)
post: (vhdl-model^execution_complete(switch))]

go — breakpoint reached

<sdvs.4.8.20> vhdltime

global time = 1000

delta time = 0

<sdvs.4.8.20> vhdl-signals
signal-names [all] : <CR>

simplify?[no] : yes

signal X

current value = y\l486

previous value = y\l486

projected output waveform = ()

driver history = (transaction(vhdltime(2 * 500,0),y\l486),
transaction(vhdltime(0,0),y\I486))

signal Y

current value = y\l486

previous value = y\l486

projected output waveform = ()

driver history = (transaction(vhdltime(2 * 500,0),y\l486),
transaction(vhdltime(0,0),y\I486))

<sdvs.4.8.20> goals

g(l) «vhdltime = vhdltime(1000,0)
g(2) #x = y\l493

g(3) #y = x\l492

228

g(4) vhdl_model_execution_complete(switch)

<sdvs.4.8.20> whynotgoal
simplify? [no] : < CR>

The goal is TRUE. Type 'close'.

<sdvs.4.8.20> close

close — 19 steps/applications

Complete the proof.

<sdvs.4.9> goals

g(l) vhdl_model_elaboration_complete(switch)
g(2) true
g(3) [sd pre: (.x "= .y)

comod: (all)
mod: (all)

post: (»vhdltime = vhdltime(1000,0),#x = .y,#y = .x,
[sd pre: (true)

comod: (all)
mod: (all)

post: («vhdltime = vhdltime(2000,0),#x = .y,#y = .x)])]

<sdvs.4.9> whynotgoal
simplify? [no] : < CR>

g(3) [sd pre: (.x ~» .y)
comod: (all)

mod: (all)
post: (#vhdltime = vhdltime(1000,0),#x = .y,#y = .x,

[sd pre: (true)
comod: (all)

mod: (all)
post: («vhdltime = vhdltime(2000,0),#x = .y,#y = .x)])]

<sdvs.4.9> prove
state delta[] : g

number: 3
proof [] : < CR>

open — [sd pre: (.x ~= .y)
comod: (all)

mod: (all)
post: («vhdltime = vhdltime(1000,0),#x = .y,#y = .x,

[sd pre: (true)
comod: (all)

mod: (all)
post: («vhdltime = vhdltime(2000,0),#x = .y,

#y = .x)])]

Complete the proof.

229

<sdvs.4.9.1> go
until [] : #vhdltime = vhdltime(1000,0)

action — <BEGIN VHDL MODEL EXECUTION>

action — <BEGIN INITIALIZATION PHASE>

action — <... INITIALIZATION PHASE: EACH PROCESS EXECUTES UNTIL SUSPENSION>

action — <EXECUTE PROCESS: X_GETS_Y>

apply — [sd pre: ("(preemption(.driver\x,

transact ion(t imeplus(.vhdlt ime,

vhdltime(2 *
.half -delay,

0)),
•y))))

comod: (all)

mod: (switch\pc,driver\x)
post: (#driver\x

= inertial_iipdate(.driver\x,
transaction(timeplus(.vhdltime,

vhdltime(2 *
.half -delay,

0)),

.y»,
<VHDLTR»]

action ~ <SUSPEND PROCESS: X_GETS_Y>

action — <... INITIALIZATION PHASE: EACH PROCESS EXECUTES UNTIL SUSPENSION>

action — <EXECUTE PROCESS: Y_GETSJC>

apply — [sd pre: C(preemption(.driver\y,

transaction(timeplus(.vhdltime,
vhdltime(2 *

.half .delay,
0)),

•x))))
comod: (all)

mod: (switch\pc,driver\y)
post: (#driver\y

= inert ial-update (. driver \y,

transaction(timeplus(.vhdltime,
vhdltime(2 *

.half .delay,
0)),

• x)),
<VHDLTR»]

action ~ <SUSPEND PROCESS: Y.GETSJO

action — <END INITIALIZATION PHASE>

230

action -- <BEGIN EXECUTION CYCLE:

1. ADVANCE EXECUTION TIME,

2. UPDATE SIGNALS,

3. RESUME PROCESSES>

apply — [sd pre: (true)
comod: (all)

mod: (switch\pc,vhdltime,vhdltime.previous,x,y)
post: («vhdltime = vhdltijne(1000,0) ,

#vhdltime.previous = . vhdltime,
<UPDATE SIGNALS>)]

go — breakpoint reached

<sdvs.4.9.14> vhdltime

global time = 1000

delta time = 0

<sdvs .4.9.14> vhdl-signals
signal-names [all] : <CR>

simplify?[no] : yes

signal X

current value = y\l486

previous value = x\l484

projected output waveform = ()

driver history = (transaction(vhdltime(1000,0),y\1486),transaction(vhdltime(0,0),x\1484))

signal Y

current value = x\1484

previous value = y\1486

projected output waveform = ()

driver history = (transaction(vhdltime(1000,0),x\l484),transaction(vhdltime(0,0),y\l486))

<sdvs.4.9.14> goals

g(l) «vhdltime = vhdltime(lOOO.O)
g(2) #x = y\l524
g(3) #y = X\1523
g(4) [sd pre: (true)

231

comod: (all)
mod: (all)

post: («vhdltime = vhdltime(2000,0),#x = .y,#y = .x)]

<sdvs.4.9.14> whynotgoal
simplify? [no] : < CR>

g(4) [sd pre: (true)
comod: (all)

mod: (all)
post: («vhdltime = vhdltime(2000,0),«x = .y,#y = .x)]

<sdvs.4.9.14> prove
state deltaG: g

number: 4
proof []: <CR>

open — [sd pre: (true)
comod: (all)

mod: (all)
post: («vhdltime = vhdltime(2000,0),#x = .y,#y = .i)]

Complete the proof.

<sdvs.4.9.14.1> go
until[] : #vhdltime = vhdltime(2000,0)

action — <RESUME (?) NEXT SCHEDULED PROCESS: X_GETS_Y>

apply — [sd pre: (.y "= val(.driver\y, .vhdltime-previous))
comod: (all)

mod: (ssitch\pc)
post: ([sd pre: (true)

comod: (all)
mod: (switch\pc)

post: (<EXECOTE PROCESS: X.GETS_Y>)])]

action — <EXECUTE PROCESS: X_GETS_Y>

apply — [sd pre: ("(preemption(.driver\i,

transaction(timeplus(.vhdlt ime,

vhdltime(2 *

.halfjdelay,
0)),

.y))))
comod: (all)

mod: (sBitch\pc,driver\i)
post: (#driver\i

= inertialjupdate(.driver\x,
transaction(timeplus(.vhdltime,

vhdltime(2 *
.halfjdelay,

0)),
• y».

<VHDLTR>)]

232

action — <SUSPEND PROCESS: X_GETS.Y>

action — <RESUME (?) NEXT SCHEDULED PROCESS: Y_GETSJC>

apply — [sd pre: (.x ~= val(.driver\x, .vhdltime_previous))
comod: (all)

nod: (switch\pc)
post: ([sd pre: (true)

comod: (all)
mod: (snitch\pc)

post: «EXECUTE PROCESS: Y_GETSJC>)])]

action — <EXECUTE PROCESS: Y_GETSJC>

apply — [sd pre: ("(preemption(.driver\y,
transaction(timeplus(.vhdltime,

vhdltime(2 *
.halfjdelay,

0)),
.r))))

comod: (all)
mod: (switch\pc,driver\y)

post: (#driver\y
= inert ial-iipdate(.driver\y,

transaction(timeplus(.vhdltime,
vhdltime(2 *

.half jdelay,
0)),

.i)),

<VHDLTR>)]

action ~ <SUSPEND PROCESS: Y.GETSJO

action ~ <END EXECUTION CYCLE>

action — <BEGIN EXECUTION CYCLE:
1. ADVANCE EXECUTION TIME,
2. UPDATE SIGNALS,
3. RESUME PROCESSES>

apply — [sd pre: (true)

comod: (all)

mod: (swit ch\pc, vhdlt ime, vhdlt ime jpr e vious, x, y)

post: (#vhdltime = vhdltime(2000,0),

#vhdltimejprevious = .vhdltime,

<UPDATE SIGNALS»]

go — breakpoint reached

<sdvs.4.9.14.14> vhdltime

global time = 2000

233

delta time

<sdvs.4.9.14.14> vhdl-signals
signal-names [all] : < CR>

simplify? [no] : yes

signal X

current value = x\l484

previous value = y\1486

projected output waveform = ()

driver history = (transaction(vhdltime(2000,0),x\1484),

transaction(vhdltime(1000,0),y\1486),transaction(vhdltime(0,0),x\1484))

signal Y

current value = y\l486

previous value = I\1484

projected output waveform = ()

driver history = (transaction(vhdltime(2000,0),y\1486),

transaction(vhdltime(1000,0),x\1484),transaction(vhdltime(0,0),y\1486))

<sdvs.4.9.14.14> goals

g(l) #vhdltiaie = vhdltime(2000,0)
g(2) #i = y\l542

g(3) #y = x\l543

<sdvs.4.9.14.14> whynotgoal
simplify? [no] : < CR>

The goal is TRUE. Type 'close'.

<sdvs.4.9.14.14> close

close — 13 steps/applications

Complete the proof.

<sdvs.4.9.15> goals

g(l) «vhdltime = vhdltime(1000,0)

g(2) #x = y\l524

g(3) #y = X\1523

g(4) true

234

<sdvs.4.9.15> whynotgoal
simplify? [no] : < CR>

The goal is TRUE. Type 'close'.

<sdvs.4.9.15> close

close — 14 steps/applications

Complete the proof.

<sdvs.4.10> goals

g(l) vhdlj»odel_elaboration-complete(switch)
g(2) true
g(3) true

<sdvs.4.10> whynotgoal
simplify? [no] : < CR>

The goal is TRUE. Type 'close'.

<sdvs.4.10> close

close — 9 steps/applications

<sdvs.5> usablesds

u(l) [sd pre: (vhdl(switch))
mod: (all)

post: (vhdljnodel-elaboration-complete(svitch) ,
[sd pre: (.x = .y)

comod: (all)
mod: (all)

post: («vhdltime = vhdltime(lOOO.O),#x = .y,#y = .x,
vhdljiodeljexecutioiLjcomplete(switch))] ,

[sd pre: (.x ~= .y)
comod: (all)

mod: (all)
post: («vhdltime = vhdltime(1000,0),#x = .y,#y = .x,

[sd pre: (true)
comod: (all)

mod: (all)
post: («vhdltime = vhdltime(2000,0),

#x = .y,#y = .x)])])]

235

6 QUANTIFICATION

This chapter describes the way SDVS handles quantification. (SDVS 13 does not have any
new quantifier capability compared to that of SDVS 12.) The universal quantifier V has the
intuitive meaning "for all," and the existential quantifier 3 means "there exists." So, for
example, the sentence Va: (3y(x<y)) would be true in a set in which < was an order with
no last element. In SDVS syntax the parentheses must be used as shown, and, of course, <
must be written as It.

While it is true that the domains over which quantifiers may range in SDVS are (usually
considered to be) finite, and therefore quantification is just an abbreviation for disjunction
or conjunction (we shall call the operations disjunction and conjunction "junctions"), there
are two obvious reasons for pursuing an independent quantification-reasoning mechanism:

1. The potentially large size of the junction can be neatly captured in a much smaller
quantification statement.

2. The quantification represents a very structured kind of junction, and therefore is
amenable to more powerful reasoning than the corresponding junction would be.

SDVS uses quantification in two main ways: in existential quantification over "places" (for
example, in the declaration of procedure variables in Ada; see page 172) and in general
untyped first-order predicate logic inferences. The former type of reasoning relies on ex-
amining the actual list of places in the proof context. We do not currently allow universal
quantification over places, and an error message will be produced if places occur in the scope
of a universal quantifier. The latter uses some special SDVS proof rules supplemented with
a part of EKL ([58]), an interactive predicate logic solver developed at Stanford University.

In evaluating a nontautological claim of the form "there exists a place R such that ..."
one must find such a place explicitly, instantiate that place in "...", and verify the result.
Likewise, "for all places R ..." would require that "..." be checked for all places (whatever
that might mean); however, as stated above, this is not allowed in SDVS 13.

The quantification solver uses the same style and repertoire of command types as the other
solvers do, namely, a mix of automatic deduction, user-invoked proof rules, and an axiom
capability.

Quantification is an independent module of SDVS that may be turned on or off with the
quantification command. A large part of the quantification commands will work even
if quantification is not turned on; for example, trivial deductions are done automatically,
such as the truth or falsity of a quantified statement whose matrix is a tautology or a
contradiction, respectively, and most of the quantification-specific user-invoked commands.

There is a set of quantifier test proofs that one can run by typing run-test-proofs *quant-
tests*.

Trying to access a quantification command that uses EKL when the quantification solver is
not activated will cause an error message to be printed.

237

It should be borne in mind that the quantification solver does have an experimental and
rudimentary status, and does not enjoy the same degree of robustness or confidence as the
rest of SDVS. This limitation manifests itself in two aspects: applicability and reliability. For
example, sentences not in prenex normal form (all quantifiers first, followed by a quantifier-
free sentence) may not be handled. Simply, we have decided that most sentences arising
naturally in the context of program verification are already in prenex normal form (for
example, the order property), and the quantified sentences generated internally by SDVS
(for example, in the implementation command) are all prenex universal sentences.

Besides the fact that EKL and SDVS use a somewhat different syntax, another difference
between the EKL and SDVS interface is that the EKL user must keep track of the line
number of proof steps and occasionally give these as hints to the system. SDVS does not
have the concept of line number, so SDVS functions implementing the EKL interface must
do the bookkeeping for the user.

Warning: EKL is strongly typed while SDVS is untyped. The result is that SDVS input
to EKL is considered to be of type "arbitrary." This works well for the most part, but
occasionally it causes problems. For example, in the context of quantification, the user
should use only the letters i through n for integer variables. Other letters may be implicitly
declared by EKL to be of type "predicate," for example. Type mismatch could cause SDVS
to break.

6.1 QUANTIFICATION PROOF COMMANDS

Most of the quantification commands will accept the designators "g <goal-number>" and
"q <usable-quant-number>" as arguments. This is a welcome alternative to typing the
quantified sentences by hand. However, it should be remembered that this makes for added
difficulty in reading and understanding the proofs, in addition to the problem that a change
in an earlier part of the proof may affect the labeling of the usable quantifiers.

6.1.1 Quantification

The command quantification turns the quantification solver on or off, unless the arguments
are omitted, in which case the state of the solver is toggled. This command is not accepted
if any proofs have been started since initialization, since it causes system re-initialization.
The command solvers will show whether quantification is on or off.

6.1.2 Usablequantifiers

The command usablequantifiers returns the list of currently true quantified statements. This
information is also included in a usable query.

238

6.1.3 Enotice

The enotice command is used to notify EKL of some true nonqualified statement that may
be needed for the deduction of a quantified statement. For example,

<sdvs. 1> quantification
on or off[on]: on

Quantification solver activated.

<sdvs.3> pp
object: enoticeproof

proof enoticeproof:

prove [sd pre: (([sd pre: (true) post: (true)])
—> forall x ([sd pre: (p)

comod: (a)
mod: (b)

post: (q)]))
post: (forall x ([sd pre: (p)

comod: (a)
mod: (b)

post: (q)]))]
proof:

(prove [sd pre: (true) post: (true)]
proof: ,

enotice
[sd pre: (true) post: (true)])

<sdvs.3> init
proof name [] : enoticeproof

State Delta Verification System, Version 13

Restricted to authorized users only.

open — [sd pre: (([sd pre: (true)

post: (true)])

—> forall x ([sd pre: (p)

comod: (a)

mod: (b)

post: (q)]))
post: (forall x ([sd pre: (p)

comod: (a)

mod: (b)

post: (q)]))]

open — [sd pre: (true) post: (true)]

Complete the proof.

<sdvs.l.l.l> usable

No usable state deltas.

239

q(l) ([sd pre: (true) post: (true)])
— > forall x ([sd pre: (p)

comod: (a)
mod: (b)

post: (q)])

<sdvs.l.l.l> goals

g(l) true

<sdvs.l.l.l> close-

close — 0 steps/applications

enotice — [sd pre: (true) post: (true)]

Complete the proof.

<sdvs.l.3> goals

g(l) forall i ([sd pre: (p) comod: (a) mod: (b) post: (q)])

<sdvs.l.3> usable

u(l) [sd pre: (true) post: (true)]

q(l) [sd pre: (true) post: (true)]

q(2) ([sd pre: (true) post: (true)])
—> forall i ([sd pre: (p)

comod: (a)
mod: (b)

post: (q)])

<sdvs.l.3> close

close — 2 steps/applications

Sometimes enotice of a state delta will not work if the "timestamp" of the enoticed state
delta does not correspond to other incarnations of that state delta that exist in other parts
of the system. Unfortunately, enotice does not currently take a "u" argument.

6.1.4 Instantiate

The command instantiate is the existential instantiation command. It can be applied to
existential formulas in the usable quantifier stack or in the goal stack. When instantiating
usable formulas the system checks to see that all instantiations are with new symbols. This
is needed for soundness, because we are not allowed to assume extra information about

240

these symbols. This check is not needed when instantiating an existential formula in the
goal stack; there it is sufficient to find any symbols that will work, i.e., make the goal true.

If more than one quantifier, e.g. 3x 3y A, is to be instantiated, then all the instantiations
must be specified at the same time and in the right order, <<x c>, <y d>, ...>. When
instantiating in a usable existentially quantified statement, the resulting instantiated state-
ment is simply made true. When instantiating in an existentially quantified goal, that goal
specified by <goal-number> is replaced by the resulting instantiated sentence.

First consider an example where the goal is an existentially quantified sentence.

<sdvs.l> prove
state delta[]: qsdfZ
proof [] : < CR>

open — [sd pre: ([sd pre: (true)
mod: (a)

post: (#a = .a + 1)],
.a = l,.b = 3)

mod: (a)
post: (exists x exists y (#x = .y - 1))]

inserting — pcovering(all,b)

inserting — pcovering(all.a)

Complete the proof.

<sdvs.l.l> whynotgoal
simplify? [no] : < CR>

g(l) exists x exists y (#x = .y - 1)

<sdvs.l.l> instantiate
existential formula: g

number: 1
existential variable[] : x

instantiated by: a
existential variabler.]: y

instantiated by: 6
existential variable[]: <CR>

instantiate in goal 1 — a for x, b for y.

<sdvs.l.2> whynotgoal
simplify? [no] : < CR>

g(l) #a = b\lllO - 1

<sdvs.l.2> usablesds

u(l) [sd pre: (true)
mod: (a)

post: (#a = .a + 1)]

241

<sdvs.l.2> apply
sd/number [highest applicable/once]: <CR>

apply — [sd pre: (true)
mod: (a)

post: (#a = .a + 1)]

close — 2 steps/applications

<sdvs.2> quit

Q.E.D. The proof for this session is in 'sdvsproof.

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> pp
object: sdvsproof

proof sdvsproof:

prove qsdf2
proof:

(instantiate (i=a,y=b) in g(l),
apply u(l))

<sdvs.l> init
proof name [] : sdvsproof

State Delta Verification System, Version 13

Restricted to authorized users only.

open — [sd pre: ([sd pre: (true)
mod: (a)

post: (#a = .a + 1)],
.a = l,.b = 3)

mod: (a)
post: (exists x exists y (#x = .y - 1))]

inserting — pcovering(all.b)

inserting — pcovering(all,a)

instantiate in goal 1 — a for x, b for y.

apply — [sd pre: (true)
mod: (a)

post: (#a = .a + 1)]

close — 2 steps/applications

As an example where we must instantiate in a true existential sentence, consider the fol-

242

lowing situation. Assume that we have an integer array a initialized to 0, about which it is
known that there is some index j such that a\j] will be continually incremented by 1 (this
is the existentially quantified fact), and we wish to show that there exists an array element
that will eventually have the value 3 (this is the existentially quantified goal).

The state delta we want to prove is (assuming for simplicity's sake that the array has range
of 2)

[sd pre: (declare(a,type(array,1,2,type(integer))),
exists j ((1 le j t j le 2) * formula(inc.sd)),.a[l] = 0,
.a[2] = 0)
comod: (all)

nod: (all)
post: (exists k (#a[k] = 3))]

where inc.sd is

[sd pre: (true)
mod: (all)

post: (#a[j] = .a[j] + 1)]

A similar example is discussed on page 246.

6.1.5 Provebygeneralization

The command provebygeneralization <exprl> <expr2> attempts to prove exprl by using the
statement (already known to be true) expr2. It checks that the nonqualified part of expr2
implies the nonqualified part of exprl.

<sdvs.l> prove
state delta[]: gensd
prooi [] : < CR>

open — [sd pre: (forall x (p(x) —> x gt 1))
post: (forall x (p(x) —> x gt 0))]

Complete the proof.

<sdvs.l.l> whynotgoal
simplify? [no] : < CR>

g(l) forall x (p(x) —> x gt 0)

<sdvs. 1. 1> provebygeneralization
prove universal formula: g

number: 1
number of universal formulas: 1

using universal formula: forall x (p(x) -> x gt 1)

243

provebygeneralization — forall x (p(i) —> x gt 0)

close — 1 steps/applications

<sdvs.2> quit

Q.E.D. The proof for this session is in 'sdvsproof.

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> pp
ob j ect: sdvsproof

proof sdvsproof:

prove gensd
proof: provebygeneralization g(l)

using: (forall x (p(x) —> x gt 1))

<sdvs.l> init
proof name [] : sdvsproof

State Delta Verification System, Version 13

Restricted to authorized users only.

open — [sd pre: (forall x (p(x) —> x gt 1))
post: (forall x (p(x) —> x gt 0))]

provebygeneralization — forall x (p(x) —> x gt 0)

close — 1 steps/applications

6.1.6 Provebyinstantiation

The command provebyinstantiation <exprl> <expr2> <termlist> is the universal instantia-
tion command of SDVS. It attempts to prove exprl by using the already known to be true
universal statement expr2 with terms <termlist> substituted. SDVS checks to see that the
nonqualified part of expr2 with the terms substituted implies exprl.

If exprl is not given (default NIL), SDVS just proves the instantiated form of expr2.

Some future implementation of this command will contain a positional identification scheme
for the variables to be instantiated, instead of simply their names. This will make the
command repeatable even if the names of those variables are randomly generated by some
other command in SDVS.

<sdvs.l> ppsd
state delta: instan.sd

244

[sd pre: (forall x pd)) post: (p(j))]

<sdvs.l> prove
state delta[]: instan.sd
proof [] : < CR>

open — [sd pre: (forall x p(x))
post: (p(j))]

Complete the proof.

<sdvs.l.l> usable

No usable state deltas.

q(l) forall x p(x)

<sdvs. 1. 1> provebyinstantiation
prove f ormula[] : p(j)

using universal formula: q
number: /

universal variable[]: x
instantiated by: j

universal variable []: <CR>

provebyinstantiation — p(j)

close — 1 steps/applications

Below is another example relying on some automatic arithmetic reasoning:

<sdvs.l> prove
state delta[]: intsd
proof [] : < CR>

open — [sd pre: (forall k ((i gt 0 k 0 le k) ft
k It (n - i) + 1
—> |.a[k]| le |.a[(n - i) + 1]|),

j le n - i,i gt 0,0 le j)
post: (|#a[j]| le |#a[(n - i) + 1]|)]

inserting — pcovering(all,a[(n - i) + 1])

Complete the proof.

<sdvs.l.l> whynotgoal
simplify? [no] : < CR>

g(D |#a[j]| le |#a[(n - i) + 1]|

<sdvs.l.l> usable

No usable state deltas.

245

q(l) forall k ((i gt 0 ft 0 le k) ft k It (n - i) + 1 —> |.a[k]| le |a\U25|)

<sdvs. 1. 1> provebyinstantiation
prove formula[]: \.a[j]\ le \.a[((n - i) + 1)]\

using universal formula: q
number: 1

universal variable [] : k
instantiated by: j

universal variable [] : <CR>

provebyinstantiation — |a\1127| le |a\ll25|

close — 1 steps/applications

<sdvs.2> quit

Q.E.D. The proof for this session is in 'sdvsproof.

State Delta Verification System, Version 13

Restricted to authorized users only.

Here is an example combining both instantiate and provebyinstantiation.

Note that if the internal state delta is changed to have a comod list of all, then it will
still not be usable after having been applied once and the state delta will not be true (nor
provable).

<sdvs.l> ppsd
state delta: arrayquantl.sd

[sd pre: (covering(all,a,b),
declare(a.type(array,1,10.type(bitstring,8))),
forall j (.a[j] = 1),
exists k ([sd pre: (true)

comod: (all)
mod: (all)

post: (#a[k] = .a[k] + 1)]))
mod: (all)

post: (exists i (#a[i] =3))]

<sdvs.l> prove
state delta[]: arrayquantl.sd
proof [] : < CR>

open— [sd pre: (covering(all,a,b),
declare(a,type(array,l,10,type(bitstring,8))),
forall j (.a[j] = 1),
exists k ([sd pre: (true)

comod: (all)
mod: (all)

post: (#a[k] = .a[k] + 1)]))

246

mod: (all)
post: (exists i (#a[i] = 3))]

Complete the proof.

<sdvs.l.l> usable

No usable state deltas.

q(l) exists k ([sd pre: (true)
comod: (all)

mod: (all)
post: (#a[k] = .a[k] + 1)])

q(2) forall j (.a[j] = 1)

<sdvs.l.l> instantiate

existential formula: q
number: 1

existential variable[]: k
instantiated by: k

existential variable[] : <CR>

instantiate in q(l) — k for k.

<sdvs. 1. 2> provebyinstantiation
prove formula[] : .a[k] = 1

using universal formula: q
number: 2

universal variablen: j
instantiated by: k

universal variablen: <CR>

provebyinstantiation — a\1139 = 1

<sdvs.l.3> usable

u(l) [sd pre: (true)
comod: (all)

mod: (all)
post: (#a[k] = .a[k] + 1)]

q(l) exists k ([sd pre: (true)
comod: (all)

mod: (all)
post: (#a[k] = .a[k] + 1)])

q(2) forall j (.a[j] = 1)

<sdvs.l.3> simp
expression: .ajk]

247

<sdvs.l.3> apply
sd/nvunber[highest applicable/once]: <CR>

apply — [sd pre: (true)
comod: (all)

mod: (all)
post: (#a[k] = .a[k] + 1)]

<sdvs.l.4> usable

No usable state deltas.

No usable quantified formulas.

6.1.7 Makeboundedquantifier

The command provebymakeboundedquantifier <exprl> <explist> attempts to prove exprl by
using the already known to be true universal statements in explist. It checks to see that the
prefixes are all the same and that the bound in exprl implies the disjunction of the bounds
of the sentences in explist.

<sdvs.l> prove
state delta[]: quantsd
proof []: <CR>

open — [sd pre: (forall k ((|.i| gt 0 ft 0 le k) ft k It jO
--> |.a[k]| le |.a[(|.n| - |.i

forall k ((|.i| gt 0 ft jO le k) ft k It jO
—> |.a[k]| le |.a[(|.n| - |.i

forall k ((|.i| gt 0 ft jO + 1 le k) ft
k It (jO + 1) + 1
—> |.a[k]| le |.a[(|.n| - |.i

forall k ((|.i| gt 0 ft (JO + 1) + 1 le k)
k It Cj.n| - |.i|) + 1
—> |.a[k]| le |.a[(|.n| - |.i

post: (forall k ((|#i| gt 0 ft 0 le k) ft
k It (|#n| - |#i|) + 1
—> |#a[k]| le |#a[(|#n| - |#i

inserting — pcovering(all,a[(|n\ll46| - |i\ll45|) + 1])

inserting — pcovering(all.n)

inserting — pcovering(all.i)

Complete the proof.

<sdvs. 1. 1> whynotgoal
simplify? [no] : < CR>

g(l) forall k ((|#i| gt 0 ft 0 le k) ft k It (|#n| - |#i|) + 1

248

) + 1]|),
+ 1

) + 1]|),

) + 1]|),
ft

) + 1]|))

) + 1]|))]

--> |#a[k]| le |#a[(|#n| - |#i|) + 1]|)

<sdvs.l.l> usable

No usable state deltas.

q(l) forall k ((|i\ll45| gt 0 ft (jO + 1) + 1 le k) ft
k It (|n\H46| - |i\H45|) + 1 —> |.a[k]| le |a\ll47|)

q(2) forall k ((|i\ll45| gt 0 ft jO + 1 le k) ft
k It (jO + 1) + 1 —> |.a[k]| le |a\H47|)

q(3) forall k ((|i\H45| gt 0 ft jO le k) ft k It jO + 1
—> |.a[k]| le |a\1147|)

q(4) forall k ((|i\ll45| gt 0 ft 0 le k) ft k It jO —> |.a[k]| le |a\H47|)

<sdvs. 1. 1> provebymakeboundedquantifier
prove bounded universal formula: g

number: 1
number of universal formulas: 4

using universal formula: q
number: 1

using universal formula: q
number: 2

using universal formula: q
number: 3

using universal formula: q
number: 4

provebymakeboundedquantifier — forall k ((|i\1145| gt 0 ft 0 le k) ft
k It (|n\1146| - |i\H45|) +

1
—> |.a[k]| le |a\H47|)

close — 1 steps/applications

<sdvs.2> quit

Q.E.D. The proof for this session is in 'sdvsproof.

State Delta Verification System, Version 13

Restricted to authorized users only.

Of course, instead of naming the formulas by "g" or "q," one could have typed them out.

Here is the way the proof looks:

(prove quantsd
proof: provebymakeboundedquantifier g(l)

using: (q(l),q(2),q(3),q(4)))

249

6.1.8 Quantification Axioms

Another manifestation of the experimental nature of the quantification solver is that the
quantification axioms are not completely connected to the SDVS axiom mechanism. There-
fore, some strange things may occasionally happen. For example, if even after having read
in the quantification axiom(s) SDVS does not recognize that fact, execute deleteaxioms and
try reading the quantification axiom again via readaxioms.

There are now only two user-invokable quantification axioms in SDVS, quant2 and quant3,
located on axioms/quant.axioms. The content of quant2 was needed in an induction proof
involving properties of numbers, and instead of proving the result in EKL by using a more
basic axiomatization of natural numbers, we decided to "cheat" and just make quant2 an
axiom.

<sdvs.l> pp
object: quant2

axiom quant2 (j,l,k):
forall predtomatch forall j forall 1 (forall k (1 le k ft

k le j
—> predtomatch(k)) ft

predtomatch(j + 1)
—> forall k (1 le k ft

k le j +
1

—> predtomatch(k)))

<sdvs.l> pp
object: quant3

axiom quant3 (k.i.l.j):

forall predtomatch forall k forall 1 (exists j ((1 le j ft

j It k) ft

"(predtoaatch(j)))
—> exists j (((1 le j ft

j It k) ft

"(predtomatch(j))) ft

forall i(l le i ft

i It j

—> predtomatch(i))))

To print an EKL axiom use the pp command, not pp axioms.

<sdvs.l> pp
object: axiomproof

proof axiomproof:

provebyeklaxiom (forall k (0 le k ft k le jO - 1 —> |.a[k]| le |.a[jl]|) ft
|.a[(j0 - 1) + 1]| le |.a[jl]|
—> forall k (0 le k ft k le (jO - 1) + 1

250

--> |.a[k]| le |.a[jl]|»
using: quant2

<8dvs.l.l> interpret
proof name: axiomproof

provebyeklaxiom quant2 — forall k (0 le k ft k le jO - 1
--> |.a[k]| le |.a[jl]|) ft

|.a[(j0 - 1) + 1]| le |.a[jl]|
—> forall k (0 le k ft

k le (jO - 1) + 1
-> |.a[k]| le |.a[jl]|)

Notice that we had to use interpret instead of init, since the first proof command cannot
be provebyeklaxiom. Note that to create the above axiomproof it is necessary to do the
following in the editor:

(putproof 'axiomproof
'((provebyeklaxiom

(implies
(and (forall k

(implies (and (le 0 k) (le k (minus jO 1)))
(le (usval (dot (element a k))) (usval (dot (element a jl))))))

(le (usval (dot (element a (plus (minus jO 1) 1)))) (usval (dot (element a jl)))))
(forall k
(implies (and (le 0 k) (le k (plus (minus jO 1) 1)))
(le (usval (dot (element a k))) (usval (dot (element a jl)))))))

quant2)))

Here is an example of a proof involving quantS: Let. the following state delta be called
test.sd:

[sd pre: ('(forall j (.k le j * j It .1 —> .x[j] le .x[l])))
post: (exists j (((.k le j ft j It .1) ft "(.x[j] le .x[l])) ft

forall i (.kle itilt j —> .x[i] le .x[l])))]

and let the following proof be called quant-good.proof:

(prove testl.sd
proof:

(provebyeklaxiom (exists j ((.k le j ft j It .1) ft
.x[j] gt .x[l])

--> exists j (((.k le j ft j It .1) ft
.x[j] gt .x[l]) ft

forall i (.k le i ft i It j
--> .x[i] le .x[l])))

using: quant3,
notice
exists j (((.k le j ft j It .1) ft ~(.x[j] le .x[l])) ft

forall i (.k le i ft i It j —> .x[i] le .x[l])),
close))

251

The transcript of the proof session follows:

<sdvs.l.2> init
proof name [] : quant-good.proof

State Delta Verification System, Version 13

Restricted to authorized users only.

open -- [sd pre: ("(forall j (.k le j ft j It .1 —> .x[j] le .x[l])))
post: (exists j (((.k le j t j It .1) ft

-(.x[j] le .x[l])) ft
forall i (.k le i ft i It j —> .x[i] le .x[l])))]

inserting — pcovering(all.l)

inserting — pcovering(all.k)

provebyeklaiiom quant3 — exists j ((.k le j ft j It .1) ft
-(.x[j] le .x[l]))

— > exists j (((.k le j ft j It .1) ft
-(.x[j] le .x[l])) ft

forall i (.k le i ft
i It j
--> .x[i] le .x[l]))

close — 1 steps/applications

Note that care has to be taken to save the proof in its Lisp form, so that the internal form
of the predtomatch part of the axiom will really be a predicate and its negation, and not in
terms of le and It; thus

(defproof quant-good.proof
((prove testl.sd

(provebyeklaiiom
(implies
(exists j (and (and (le (dot k) j) (It j (dot 1))) (not (le (dot (element x j)) (dot (el«
(exists j

(and (and (and (le (dot k) j) (It j (dot 1))) (not (le (dot (element x j)) (dot (elemenl
(forall i (implies (and (le (dot k) i) (It i j)) (le (dot (element x i)) (dot (elei

quant3)
(notice
(exists j
(and (and (and (le (dot k) j) (It j (dot 1))) (not (le (dot (element x j)) (dot (element

(forall i (implies (and (le (dot k) i) (It i j)) (le (dot (element x i)) (dot (elem<
(close))))

6.1.9 Quantification Flags

checkexistence When this flag is on, existential quantifiers of type place are automatically
instantiated in all possible combinations.

252

ekltraceflag When this flag is on, EKL internal messages will be printed.

enumerate When this flag is on, bounded universally quantified variables are enumerated.

6.2 PROOF OF A SORT PROGRAM

Now we present an example proof of a standard bubble-sort algorithm stated in ISPS. The
SDVS proof of a "quicksort" Ada program is given in [44].

ISPS.SORT {US} :» BEGIN

** Declaration.Section **

I<15:0>,
J<15:0>,
N<15:0>,
TMP<15:0>,
A[0:99]<15:0>,

** Interpretation.Section **

SORT {main} := BEGIN
1.0 NEXT
Lll :« REPEAT
LI :- BEGIN

IF I EqL N -> LEAVE Lll NEXT
J_0 NEXT
L22 :- REPEAT

L2 :» BEGIN
IF J EqL N => LEAVE L22 NEXT
IF A[J] GTR A[J+1] => BEGIN

TMP-ACJ] NEXT
A[J]-A[J+1] NEXT
A[J+1]_TMP

END NEXT
J.J+1

END NEXT
I-I+l

END
END

END

The theorem, as given in sort.sd, expresses the order property of the array a upon termi-
nation of sort.isp.

[sd pre: (isps(sort.isp),.isps.sort\upc - isps.sort\started,
|.n| It range(a))

■od: (all)
post: (#isps.Bort\upc = isps.sort\halted,

forall k (0 le k ft k It |.n| —> |#a[k]| le |#a[k + 1]|))]

253

The proof of sort.sd is given in sort.proof.

<sdvs.l> pp
object: sort.proof

proof sort.proof:

(setflag enumerate off,

setflag ekltraceflag off,

setflag autoclose off,

date,

prove sort.sd

proof:

cases |.n| = 0

then proof:

(until #isps.sort\upc = isps.sort\halted,
close)

else proof:

(until #isps.sort\upc = 12,
induct on: |. j |
from: 0

to: |.n|

invariants: (.isps.sort\upc = 12,

forall k (0 le k ft k It |.j|

--> |.a[k]| le |.a[|.j|]|»
comodlist: (n,i)

modiist: (j,isps.sort\upc,a,tmp)

base proof: close

step proof:

(comment Let jO, jl, notice jl=j0+l bistring-wise.,

let JO = |.j|.
let jl « JO + 1,

notice jl = |(.j ++ 1(2))<15:0>|,

comment Notice initial inner invariants in terms of jO.,

provebygeneralization forall k (0 le k ft k It jO

—> |-a[k]| le |.a[j0]|)
using: (forall k (0 le k ft k It |.j| --> |.a[k]| le |.a[|.j|]|».

comment Apply to inner greater-than test.,

apply,

cases |.a[|.j|]| le |.a[|.j ++ 1(2)|]|

then proof:

(int erpret s ort inner01.proof,
close)

else proof:

(interpret sortinner02.proof,

close) ,
close) ,

until #isps.sort\upc = 11,

notice

forall k (0 le k ft k It |.j| --> |.a[k]| le |.a[|.j|]|),

provebygeneralization forall k ((|. i| gt 0 ft 0 le k) ft

k It (|.n| - |.i|) + 1

--> |.a[k]|

le |.a[(|.n| - |.i|) +

254

using: (forall k (0 le k ft k It |.j| —> |.a[k]| le | .a[|. j|]|)),
notice
forall k ((|.n| - |.i|) + 1 le k t k It |.n|

—> |.a[k]| le |.a[k + 1]|),
induct on: |.i|

from: 1
to: |.n|
invariants: (.isps.sort\upc =11,

forall k ((|.n| - |.i|) + 1 le k ft
k It |.n|
--> |.a[k]| le |.a[k + 1]|).

forall k ((|.i| gt 0 ft 0 le k) 6

k It (|.n| - |.i|) + 1

--> |.a[k]|
le |.a[(|.n| - |.i|) + 1]|))

comodlist: (n)

modlist: (a,i,j,tmp,isps.sort\upc)

base proof: close

step proof:

(comment Let iO, il, notice il=i0+l bitstring-wise.,
let iO - |.i|,

let il « iO + 1,
notice il « |(.i ++ 1(2))<15:0>|,

until #isps.sort\upc = 12,

induct on: |. j |

from: 0

to: |.n| - |.i|

invariants: (.isps.sort\upc = 12,

forall k (0 le k ft k It |.j|

--> |.a[k]| le |.a[|.j|]|).
forall k ((|.n| - |.i|) + 1 le k ft

k It |.n|
—> |.a[k]| le |.a[k + 1]|),

forall k ((|.i| gt 0 ft 0 le k) ft
k It (|.n| - |.i|) + 1
--> |.a[k]|

le |.a[(|.n| - |.i|) +
1]|))

comodlist: (n,i)
modlist: (j,a[0:(|.n| - | .i|)] ,isps.sort\upc,tmp)
base proof: close
step proof:

(comment Let jO, jl, notice jl=j0+l bistring-wise.,
let JO = |.j|,
let jl = jO + 1,
notice jl - |(.j ++ 1(2))<15:0>|,
comment Notice initial inner invariants in terms of jO.,
provebygeneralization forall k (0 le k ft k It jO

--> |.a[k]| le |.a[j0]|)

using: (forall k (0 le k ft k It |.j| --> |.a[k]| le |.a[|.jPI»,

comment Apply to inner greater-than test. ,

apply,

cases |.a[|.j|]| le |.a[|.j ++ 1(2)|]|

then proof:

(interpret sortinnerll.proof,

255

close)

else proof:

(interpret sortinner12.proof,
close) ,

close),
notice

forall k (0 le k ft k It |.j| --> |.a[k]| le |.a[|.j|]|),

provebygeneralization forall k (0 le k ft

k It |.n| - |.i|

--> |.a[k]|

le |.a[|.n| - |.i|]|)
using: (forall k (0 le k ft k It |.j| —> |.a[k]| le |.a[|. j|]|)) ,

induct on: |. j |
from: |.n| - |.i|
to: j.nj
invariants: (.isps.sort\upc = 12,

forall k ((|.n| - |.i|) + 1 le k ft

k It |.n|

"> |.a[k]| le |.a[k + 1]|),
forall k ((|.i| gt 0 ft 0 le k) ft

k It (|.n| - |.i|) + 1

--> |.a[k]|

le |.a[(|.n| - |.i|) +

1]|))
comodlist: (n,i,a)

modlist: (j,isps.sort\upc)
base proof: close

step proof:

(comment Let jO, jl, notice jl=j0+l bistring-wise.,
let JO = |.j|,

let jl = jO + 1,

notice jl = |(.j ++ 1(2))<15:0>|,

comment The next notice was inserted by leo.,
notice

forall k ((|.n| - |.i|) + 1 le k ft k It |.n|

--> |.a[k]| le |.a[k + 1]|),

comment Apply to inner greater-than test. ,
apply,

comment Prove that a[.j] <= a[.j + l],

comment The next notice was inserted by leo.,
notice

forall k ((|.n| - |.i|) + 1 le k ft k It |.n|

— > |.a[k]| le |.a[k + 1]|),
subcases |.j| le |.n| - |.i|
modlist:

subgoal: (|.a[|.j|]| le |.a[|.j ++ 1(2)|]|)
then proof:

(provebyinstantiation |.a[|.j|]|

le |.a[(|.n| - |.i|) +

1]|
using: forall k ((|.i| gt 0 ft 0 le k) ft

k It (|.n| - |.i|) + 1
--> |.a[k]|

le |.a[(|.n| - |.i|) + 1]|)
substitutions: (k=|.j|),

25«

close)

else proof:

(provebyinstantiation |.a[|.j|]|

le |.a[|.j|+ «I
using: forall k ((|.n| - |.i|) + 1 le k ft

k It |.n|

—> |.a[k]| le |.a[k + 1]|)

substitutions: (k=|.j|),

close),

comment The next notice was inserted by leo.,

notice
forall k (<|.n| - |.i|) + 1 le k * k It |.n|

—> |.a[k]| le |.a[k + 1]|),

until #isps.sort\upc = 12,

close),

notice

forall k ((|.i| gt 0 ft 0 le k) ft

k It |.n| - |.i|

--> |.a[k]| le |.a[|.n| - |.i|]|),

provebygeneralization forall k ((iO gt 0 ft 0 le k) ft

k It |.n| - iO

--> |.a[k]|

le |.a[|.n| - i0]|)
using: (forall k ((|.i| gt 0 ft 0 le k) ft

k It |.n| - |.i|
--> |.a[k]| le |.a[|.n| - |.i|]|»,

notice
forall k ((|.n| - |.i|) + 1 le k ft k It |.n|

—> |.a[k]| le |.a[k + 1]|),
provebygeneralization forall k (C|.n| - iO) + 1 le k ft

k It |.n|
— > |.a[k]|

le |.a[k + 1]|)
using: (forall k ((|.n| - |.i|) + 1 le k ft k It |.n|

—> |.a[k]| le |.a[k + 1]|)),
notice
forall k ((|.i| gt 0 ft 0 le k) ft

k It (|.n| - |.i|) + 1
--> |.a[k]| le |.a[(|.n| - |.i|) + 1]|),

provebygeneralization forall k ((iO gt 0 ft 0 le k) ft
k It (|.n| - iO) + 1
--> |.a[k]|

le |.a[(|.n| - iO) +
HD

using: (forall k (<|.i| gt 0 ft 0 le k) ft
k It (|.n| - |.i|) + 1
--> |.a[k]| le |.a[(|.n| - |.i|) + 1]|)),

until #isps.sort\upc = 11,
notice |.n| - iO = (| .n| - |.i|) + 1,
provebygeneralization forall k ((|.i| gt 0 ft 0 le k) ft

k It (|.n| - |.i|) +
1

--> |.a[k]|
le |.a[(|.n| - |.i|) +

HD

257

using: (forall k ((iO gt 0 ft 0 le k) ft k It | .n| - iO
-> |.a[k]| le |.a[|.n| - iO]|)),

provebyinstantiation |.a[|.n| - i0]|
le |.a[(|.n| - iO) + 1]|

using: forall k ((iO gt 0 ft 0 le k) ft
k It (|.n| - iO) + 1
—> |.a[k]| le |.a[(|.n| - iO) + 1]|)

substitutions: (k=|.n| - iO),
notice

forall k (|.a[|.n| - iO]| le |.a[(|.n| - iO) + 1]|),
provebygeneralization forall k (|.n| - iO le k ft

k It (|.n| - iO) + 1
--> |-a[k]|

le |.a[k + 1]|)
using: (forall k (|.a[|.n| - i0]| le |.a[(|.n| - iO) + 1]|)),

provebynakeboundedquantifier forall k ((|.n| - |.i|) +
1 le k ft

k It |.n|
--> |.a[k]|

le |.a[k +

HD
using: (forall k (| .n| - iO le k ft

k It (|.n| - iO) + 1
— > |.a[k]| le |.a[k + 1]|),

forall k ((|.n| - iO) + 1 le k ft k It |.n|
— > |.a[k]| le |.a[k + 1]|)),

close) ,
notice
forall k ((|.n| - |.i|) + 1 le k ft k It |.n|

— > |.a[k]| le |.a[k + 1]|),
notice
forall k ((|.i| gt 0 ft 0 le k) ft

k It (|.n| - |.i|) + 1
--> |.a[k]| le |.a[(|.n| - |.i|) + 1]|),

provebygeneralization forall k ((|.i| gt 0 ft 0 le k) ft
k It (|.n| - |.i|) + 1
— > |.a[k]| le |.a[k + 1]|)

using: (forall k ((|.i| gt 0 ft 0 le k) ft
k It (|.n| - |.i|) + 1
-> |.a[k]| le |.a[(|.n| - |.i|) + 1]|)),

provebymakeboundedquantifier forall k (0 le k ft k It |.n|
-> |.a[k]|

le |.a[k + 1]|)
using: (forall k ((|.i| gt 0 ft 0 le k) ft

k It (|.n| - |.i|) + 1
--> |.a[k]| le |.a[k + 1]|),

forall k ((|.n| - |.i|) + 1 le k ft k It |.n|
--> |.a[k]| le |.a[k + 1]|)),

until #isps.sort\upc = isps.sort\halted,
close) ,

date)

<sdvs.l> pp
object: sortinnerOl.proof

258

proof sortinnerOl.proof:

(until #isps.sort\upc » 12,
comment Generalize from a[jO]<=a[jl] and k<jO—>k<=jO-l.,
provebygeneralization forall k (0 le k ft k le jO - 1

--> |.a[k]| le |.a[jl]|)
using: (forall k (0 le k ft k It jO --> |.a[k]| le |.a[j0]|)),

provebyeklaxiom (forall k (0 le k ft k le jO - 1 —> |.a[k]| le |.a[jl]|) *
|.a[(j0 - 1) + 1]| le |.a[jl]|
—> forall k (0 le k k k le (jO - 1) + 1

-> |.a[k]| le |.a[jl]|)>
using: quant2,

notice
forall k (0 le k k k le jO - 1 —> |.a[k]| le |.a[jl]|) k

|.a[(j0 - 1) + 1]| le |.a[jl]|,
notice
forall k (0 le k k k le (JO - 1) + 1 --> |.a[k]| le |.a[jlj|),

comment Generalize from k<=j0-l+l—>k<j0+l and j0+l=jl and jl=usval(.j).,
provebygeneralization forall k (0 le k ft k It |.j| "> |-a[k]| le |.a[|.jP|)

using: (forall k (0 le k ft k le (jO - 1) + 1 —> |.a[k]| le |.a[jl]|)))

<sdv8.1> pp
object: sortinner02. proof

proof sortinner02.proof:

(provebyaiiom alldis joint (a[|. j|] ,a[| .j ++ 1(2)|])
using: disjoint\elements,

apply 2,
provebygeneralization forall k (0 le k ft k It jO —> |.a[k]| le |.tmp|)

using: (forall k (0 le k ft k It jO —> |.a[k]| le |.a[j0]|)),
until tisps.sort\upc = 12,
comment Generalize from a[j0]<=a[jl] and k<j0—>k<=j0-l.,
provebygeneralization forall k (0 le k ft k le jO - 1

—> |.a[k]| le |.a[jl]|)
using: (forall k (0 le k ft k It jO —> |.a[k]| le |.tmp|)),

provebyeklaxiom (forall k (0 le k ft k le jO - 1 —> |.a[k]| le |.a[jl]|) ft
|.a[(j0 - 1) + 1]| le |.a[jl]|
—> forall k (0 le k ft k le (jO - 1) + 1

--> |.a[k]| le |.a[jl]|))
using: quant2,

notice
forall k (0 le k ft k le jO - 1 --> |.a[k]| le |.a[jl]|) ft

|.a[(j0 - 1) + 1]| le |.a[jl]|,
notice
forall k (0 le k ft k le (jO - 1) + 1 —> |.a[k]| le |.a[jl]|),

comment Generalize from k<«j0-l+l—>k<j0+l and j0+l=jl and jl»usval(. j) .,
provebygeneralization forall k (0 le k ft k It |.j| —> |.a[k]| le |.a[|.j|]|)

using: (forall k (0 le k ft k le (jO - 1) + 1 ~> |.a[k]| le |.a[jl]|)))

<sdvs.l> pp
object: sortinnerl 1 .proof

proof sortinnerll.proof:

259

(until #isps.sort\upc * 12,
comment Generalize from a[jO]<=a[jl] and k<jO—>k<=jO-l.,
provebygeneralization forall k (0 le k ft k le jO - 1

--> |.a[k]| le |.a[jl]|)
using: (forall k (0 le k ft k It jO —> |.a[k]| le |.a[j0]|)),

provebyeklaxiom (forall k (0 le k ft k le jO - 1 —> |.a[k]| le |.a[jl]|) ft
|.a[(j0 - 1) + 1]| le |.a[jl]|
—> forall k (0 le k ft k le (jO - 1) + 1

-> |.a[k]| le |.a[jl]|))
using: quant2,

notice
forall k (0 le k ft k le jO - 1 —> |.a[k]| le |.a[jl]|) ft

|.a[(j0 - 1) + 1]| le |.a[jl]|,
notice
forall k (0 le k ft k le (JO - 1) + 1 --> |.a[k]| le |.a[jl]|),

comment Generalize from k<=j0-l+l—>k<j0+l and j0+l=jl and jl=usval(. j) .,
provebygeneralization forall k (0 le k ft k It |.j| —> |.a[k]| le |.a[|.j|]|)

using: (forall k (0 le k ft k le (JO - 1) + 1 —> |.a[k]| le |.a[jl]|)))

<sdvs.l> pp
object: sortinnerlS. proof

proof sortinnerl2.proof:

(comment Start the proof of the third invariant, by breaking it into pieces.,
provebyinstantiation |.a[|.j|]| le |.a[(|.n| - |.i|) + 1] |

using: forall k ((|. i| gt 0 ft 0 le k) ft k It (|.n| - |.i|) + 1
—> |.a[k]| le |.a[(|.n| - |.i|) + 1]|)

substitutions: (k=|.j|),
provebyinstantiation |.a[|.j| + 1] | le |.a[(|.n| - |.i|) + 1]|

using: forall k ((|.i| gt 0 ft 0 le k) ft k It (|.n| - |.i|) + 1
—> |.a[k]| le |.a[(|.n| - |.i|) + 1]|)

substitutions: (k=|.j|),
provebygeneralization forall k ((|.i| gt 0 ft 0 le k) ft k It jO

--> |.a[k]|
le |.a[(|.n| - |.i|) + 1]|)

using: (forall k ((|.i| gt 0 ft 0 le k) ft k It (|.n| - |.i|) + 1
--> |.a[k]| le |.a[(|.n| - |.i|) + 1]|)).

provebygeneralization forall k ((|.i| gt 0 ft jl + 1 le k) ft
k It (|.n| - |.i|) + 1
--> |.a[k]|

le |.a[(|.n| - |.i|) + 1]|)
using: (forall k ((|.i| gt 0 ft 0 le k) ft k It (|.n| - |.i|) + 1

--> |.a[k]| le |.a[(|.n| - |.i|) + 1]|)),
provebyaxiom pcovering(a[0: (|.n| - | .i|)] ,a[|. j|])

using: pcovering\slice\element,

provebyaxiom pcovering (a [0: (|.n| - |.i|)],a[|.j ++ 1(2)|])
using: pcovering\slice\element,

provebyaxiom alldisjoint(a[|.j|] ,a[(|.n| - |.i|) + 1])

using: disjoint\elements,

provebyaxiom alldisjoint(a[|. j ++ 1(2)|] ,a[(|.n| - |.i|) + 1])

using: disjoint\elements,

provebyaxiom alldisjoint(a[|. j|] ,a[| .n|])

using: disjoint\elements,

provebyaxiom alldisjoint(a[|. j ++ 1(2)|] ,a[|.n|])

2G0

using: disjoint\elements,
comment Here is where the equivalent proof for the i=0 case starts.,
provebyaxiom alldisjoint(a[|. j|] ,a[|. j ++ 1(2)|])

using: disjoint\elements,
apply 2,
provebygeneralization forall k (0 le k t k It jO —> |.a[k]| le |.tmp|)

using: (forall k (0 le k * k It jO —> |.a[k]| le |.a[j0]|)),
until *isps.sort\upc » 12,
comment Generalize from a[j0]<=a[jl] and k<j0—>k<=j0-l.,
provebygeneralization forall k (0 le k ft k le jO - 1

--> |.a[k]| le |.a[jl]|>
using: (forall k (0 le k t k It jO —> |.a[k]| le |.tmp|)),

provebyeklaiiom (forall k (0 le k ft k le jO - 1 —> |.a[k]| le |.a[jl]|) ft
|.a[(j0 - 1) + 1]| le |.a[jl]|
—> forall k (0 le k k k le (jO - 1) + 1

--> |.a[k]| le |.a[jl]|))
using: quant2,

notice
forall k (0 le k ft k le jO - 1 --> |.a[k]| le |.a[jl]|) k

|.a[(j0 - 1) + 1]| le |.a[jl]|,
notice
forall k (0 le k ft k le (jO - 1) + 1 —> |.a[k]| le |.a[jl]|),

comment Generalize from k<=j0-l+l—>k<j0+l and j0+l=jl and jl»usval(.j).,
provebygeneralization forall k (0 le k ft k It |.j| —> |.a[k]| le |.a[|.j|]|)

using: (forall k (0 le k ft k le (jO - 1) + 1 —> |.a[k]| le |.a[jl]|)),
comment Finish the proof of the third invariant.,
notice forall k (|.a[j0]| le |.a[(|.n| - |.i|) + 1]|),
provebygeneralization forall k ((|.i| gt 0 ft jO le k) ft

k It jO + 1
— > |.a[k]|

le |.a[(|.n| - |.i|) + 1]|)
using: (forall k (|.a[j0]| le |.a[(|.n| - |.i|) + 1]|)),

notice forall k (|.a[jl]| le |.a[(|.n| - |.i|) + 1]|),
provebygeneralization forall k ((| .i| gt 0 ft jl le k) ft

k It jl + 1
-> |.a[k]|

le |.a[(|.n| - |.i|) + 1]|)
using: (forall k (|.a[jl]| le |.a[(|.n| - |.i|) + 1]|)),

provebymakeboundedquantif ier forall k ((| .i| gt 0 ft 0 le k) ft
k It (|.n| - |.i|) + 1
--> |.a[k]|

le |.a[(|.n| - |.i|) +

using: (forall k ((|. i| gt 0 ft 0 le k) ft k It jO
--> |.a[k]| le |.a[(|.n| - |.i|) + 1]|),

forall k ((|.i| gt 0 ft jO le k) ft k It jO + 1
--> |.a[k]| le |.a[(|.n| - |.i|) + 1]|),

forall k ((|.i| gt 0 ft jl le k) ft k It jl + 1
--> |.a[k]| le |.a[(|.n| - |.i|) + 1]|),

forall k ((|.i| gt 0 ft jl + 1 le k) ft
k It (|.n| - |.i|) + 1
--> |.a[k]| le |.a[(|.n| - |.i|) + 1]|)))

201

7 USER-DEFINED DATA TYPES

7.1 INTRODUCTION

In this section we give some background on user-denned data types in general, and in the
next section we give the specifics of the experimental SDVS capability. This capability is
modeled on the Boyer-Moore system [59]. This chapter is largely taken from [60].

Boyer and Moore, in their program for Computational Logic, introduced a formal method
for the introduction of new data types, called the shell principle. This specifies what func-
tions are introduced for the definition of a new data type, and introduces an automatically
generated set of associated axioms. This is the pattern of the shell principle:

• There is a constructor function const, of n arguments,

• an optional base constant base,

• a recognizer function r,

• accessor functions ac\,ac2,..., «c„,

• type restrictions tr\,tr2,.--, trn, and

• default values dvi,di>2, ■ • •, dvn.

For example, a binary tree could be considered to be a data type with constructor buildTree,
a function of two arguments, where the base is emptyTree, the recognizer would be a pred-
icate isTree(...), and the accessors are leftSubTree, data, and rightSubTree. The type
restrictions, which give the types of the results of the accessor functions, are binaryTree,
int, binaryTree, respectively, and thus imply

• leftSubTree: [binaryTree —► binaryTree]

• data: [binaryTree —► int]

• rightSubTree:[binaryTree —»■ binaryTree]

Finally, the default values are emptyTree, 0, emptyTree for leftSubTree, data, and
rightSubTree, respectively.

Just as before, models of structures introduced by the shell principle are obtained in either
of two ways:

1. by n-tuples in which the i-th term satisfies the type restriction Zr,-, or

2. by all terms being built, up from base using the constructor const.

Axioms for the new data type are automatically generated; a few of these are

2(>3

• r(x) = T V r(x) = F

• r(const(a;1,...,a;n)) = T

• r(base) = T

• base ■£ const(xa,..., xn)

• r(x)-+ x ^ base -+ x = const(ac1(a;),..., acn(x))

Note: The use of r in some of these axioms is needed for a language in which variables can
range over other objects as well as stack s; it could be omitted in a typed situation where
x can be declared to be of type stack.

The type restrictions in the shell principle may take either of two forms; a union of types—
"one of"—or a complement of a union of types— "none of." So the const function may
be polymorphic. When const is applied to objects that do not meet the appropriate type
restrictions, the appropriate default value is used instead. Likewise, the accessor functions
return default values when applied to arguments not of the defined type.

The shell principle does not cover all conceivable abstract data type definitions. In partic-
ular, it does not allow for mutually recursive definitions; this would be a situation in which
two new data types are being defined, with the constructor for each taking one or more
arguments to be of the other type. We do not know of any concrete examples where this
actually needs to be done, so it would seem that the shell principle is adequate for practical
cases. However, it would not be particularly difficult to extend the shell principle to allow
for multiple constructors.

Because the shell principle suffices for the known cases of interest, we have chosen it for
SDVS's preliminary paradigm for data type introduction.

We now describe the user interface by means of an example—defining the stack type—and
discuss the other requirements placed upon SDVS to support this new facility.

<sdvs.l> createdatutype
datatype name: stack

constructor: push
arity: 2

accessorial: top
accessor#l type is stack —> [arbitrary] : integtr

accessor#l default value: 0
accessor#2: pop

accessor#2 type is stack —> [arbitrary] : st«cJt
accessor#2 default value: emptystack

Datatype 'stack' created with the following axioms:

axiom stack.1 (i,s): () "= push(i.s)

axiom stack.2 (s) : () "= s --> s = push(top(s) ,pop(s))

204

axiom stack.3 (i,s): top(push(i,s)) = i

axiom stack.4 (i,s): pop(push(i,s)) - s

axiom stack.5 () : stacksize(O) = 0

axiom stack.6 (i,s): stacksize(push(i,s)) = 1 + stacksize(s)

Writing 'stack' datatype definition to file
/u/versys/sdvs/datatypes/stack.datatype

If more than the standard axioms are required, use the 'datatypeaxioms'
command.

This is a stack of objects of type int, i.e., integers. We could have stacks of other data types
as well, but these stacks would likewise be of different type than the stack of integers. This
is the reason for polymorphic types, as in the Boyer-Moore system and some programming
languages. So top could be declared to have type stack —► int U string, for example;
then the stacks would contain either integers or strings. There could even be a built-in
polymorphic data type ground, which matches any type so that stacks could be defined to
hold any sort of objects.

7.2 SDVS COMMANDS

The command createdatatype prompts the user for the datatype name, the constructor
function name, the number of arguments of the constructor ("arity"), and accessors for
each argument position.

<sdvs.l> crtatedutattjpt
datatype name: test

constructor: scrunch
arity: 2

accessor#l: unscrunchl
accessorial type is test —> [arbitrary]: <CR>

accessorial default value: einptyl
accessor#2: unscrunch2

accessor#2 type is test —> [arbitrary] : < CR>
accessor#2 default value: empty2

Datatype 'test' created with the following axioms:

axiom test.l (t): t = scrunch(unscrunchKt) ,unscrunch2(t))

axiom test.2 (xl,x2): unscrunchl(scrunchCxl,x2)) = xl

axiom test.3 (xl,x2): unscrunch2(scrunchCxl,x2)) = x2

Writing 'test' datatype definition to file
/u/versys/sdvs/datatypes/test.datatype

2G5

If «ore than the standard axioms are required, use the 'datatypeaxioms'
command.

2G(i

8 INVARIANTS IN SDVS

This chapter describes the capabilities of SDVS with regard to state deltas with invariants.
For more details, the reader is referred to [35], [61], [62], and [63].

The motivation for adding invariants to state deltas comes from the desire to specify how
places change in the time between the precondition and the postcondition, not only whether
they change, for which the mod list suffices. For example, in a standard state delta, we may
say that a place x will be incremented by 1, but we cannot say that along the way x will
have only its previous value until it jumps discretely to x+1. For this we need to say that
#x = .x is an invariant. Note that since x does in fact change value, it must appear in the
mod list. This also shows why we interpret the invariant as holding from the time of the
precondition up to, but not including, the time of the postcondition (left-closed, right-open
interval).

The invariance capability is regulated by the flag invariance. When invariance is off, SDVS
essentially assumes that the invariants of all state deltas are "TRUE," and thus the user
need not think about invariants. However, when invariance is on, there is a new "inv"
field in state deltas. (Make sure not to confuse this with the induction invariant.) Two new
commands have been introduced specifically for state deltas with invariants: noticeinvariant
and noticeconcurrentsd; but all the other commands (apply, cases, induct, linearize, meases,
prove, and especially negate) have been altered to handle the invariant case. If a command
is called on a state delta that has an invariant when the invariance flag is off, an error
message will be generated.

<sdvs.l> createsd
name: invl.sd

[SD pre:
comodG :
■od[]:

trut
<CR>
X

inv[] : #X = .X

post:

]

#X = .X + 1

The dot in the invariant refers to the precondition time, and the pound in the invariant
refers to any time between the precondition and postcondition time (including the former
but not the latter).

The modification list of the standard state delta is a restricted kind of invariant. Of course,
there is a connection between the mod list and the invariant. Note that the following are
equivalent state deltas:

mod.sd

[sd pre: (.y = 1) comod: (all) mod: (y) post: (#y = 5)]

and invxy.sd

207

[sd pre: (.y = 1)
comod: (all)

nod: (x,y)
inv: (#x » .x)

post: (#x ■ .x,#y » 5)]

However, SDVS can prove only one direction, namely that the first implies the second. See
[38] for more details.

<sdvs.l> prove
state delta []: equiv.sd
proof []: <CR>

open — [sd pre: (formula(mod.sd))
comod: (all)
post: (formula(inv.sd))]

Complete the proof.

<sdvs.l.l> goals

g(l) [sd pre: (.y = 1)
comod: (all)

mod: (x,y)
inv: (#x = .x)

post: (#x = .x,#y = 5)]

<sdv8.1.1> prove
state delta[] : </

number: 1
proof [] : usable

open — [sd pre: (.y = 1)
comod: (all)

mod: (x,y)
inv: (#x = .x)

post: (#x = .x,#y = 5)]

inserting — pcovering(all,y)

comment — prove the invariant of the state delta to be proven

open — [sd pre: (true)
comod: (all)
post: (#x = x\676)]

close — 0 steps/applications

Complete the proof.

<sdvs.l.l.2> apply
sd/number[highest applicable/once]: H

number: 2

208

comment — prove the invariant prior to the application

open — [sd pre: (true)

comod: (all)

post: (#x = x\676)]

close — 1 steps/applications

apply — [sd pre: (.y ■ 1)
comod: (all)

mod: (y)

post: (#y »5)]

close — 1 steps/applications

close — 1 steps/applications

8.1 NOTICEINVARIANT

Now consider the state deltas inv8.sd:

[sd pre: (.y = 1)
■od: (x)
inv: (#x gt 2)

post: (#y » 5)]

inv9.sd:

[sd pre: (.y = 1)
mod: (x)
inv: (#x gt 1)

post: (#y = 5)]

and invlO.sd:

[sd pre: (formula(inv8.sd))
post: (formula(inv9.sd))]

Clearly invlO.sd is true. The proof will involve showing that one invariant implies the other,
using the noticeinvariunt command.

<sdvs.l> prove
state delta[] : invlO.sd
proof [] : < CR>

open — [sd pre: (formula(inv8.sd))
post: (formula(inv9.sd))]

Complete the proof.

209

<sdvs.l.l> goals

g(l) [sd pre: (.y * 1)
mod: (x)
inv: (#x gt 1)

post: (#y » 5)]

<sdvs.l.l> prove
state delta[] : g

number: 1
proof []: <CR>

open — [sd pre: (.y = 1)
mod: (x)
inv: (#x gt 1)

post: (#y * 5)]

inserting — pcovering(all.y)

comment — prove the invariant of the state delta to be proven

open — [sd pre: (true)
comod: (all)
post: (#x gt 1)]

Complete the proof.

Of course, #x gt 1 follows from #x gt 2, and that, being the invariant of an applicable
state delta, is true. We simply notice it, via noticeinvariant, which prompts for the state
delta whose invariant we wish to notice.

<sdvs .1.1.1.1> noticeinvariant
state delta [highest applicable]: <CR>

inserting — pcovering(all,x)

noticeinvariant — [sd pre: (.y = 1)
mod: (x)
inv: (#x gt 2)

post: (#y = 5)]

close — 1 steps/applications

Complete the proof.

<8dvs. 1.1. 2> usable

u(l) [sd pre: (true) comod: (all) post: (#x gt 1)]

u(2) [sd pre: (.y = 1)
mod: (x)
inv: (#x gt 2)

post: (#y = 5)]

270

No usable quantified formulas.

<8dvs.l.l.2> goals

g(D #y • 5

<sdvs.l.l.2> nsd

[sd pre: (true) comod: (all) post: (#x gt 1)]

<sdvs.l.l.2> simp
expression: .y = 1

true

After the following apply, SDVS requires the proof of the invariant in the transition state.

<sdv8. l. l. 2> apply
sd/number[highest applicable/once]: «

number: 2

inserting — pcovering(all.x)

comment — prove the invariant prior to the application

open — [sd pre: (.x gt 2)

comod: (all)
post: (#x gt 1)]

inserting — pcovering(all.x)

close — 1 steps/applications

apply — [sd pre: (.y = 1)

mod: (x)

inv: (#x gt 2)
post: (#y = 5)]

inserting — pcovering(all.x)

close — 1 steps/applications

close — 1 steps/applications

8.2 LINEARIZE

To remind the reader (see Section 2.9.7), the general situation we are dealing with is where
two state deltas are applicable (they are true and their preconditions are true). Thus,
both of the postconditions must become true according the restrictions inherent in the
modification lists. However, either state delta may be the first to achieve its postcondition.

271

The linearization command makes true the disjunction that says either the first achieves its
precondition and the other is still "pending," or vice versa.

When we linearize state deltas in the presence of invariants, we must of course account for
the intervals over which the respective invariants hold. We must also account for another
possibility: that the two postconditions become true simultaneously with the conjunction
of their invariants as invariant. This is a new case not included in either of the above two
disjuncts.

Now consider the following example:

<sdvs.l> pp

object: linl.sd

[sd pre: (true)
comod: (all)

mod: (all)
inv: (#y = .y)

post: (#x = #y)]

<sdvs.l> pp
object: linZ.sd

[sd pre: (true)
comod: (all)

mod: (all)
inv: (#x = .x)

post: (#y = 6)]

<sdvs.l> pp
object: lin3.sd

[sd pre: (true)
comod: (all)

mod: (all)
inv: (#x = .x,#y * .y)

post: (#x = 5,#y = 5)]

<sdvs.l> pp
object: linl.sd

[sd pre: (true)
comod: (all)

mod: (all)
inv: (#x = .x,#y = .y)

post: (#x = 6,#y - 6)]

We want to prove that if x starts out at 5 and y starts out at 4, and linl.sd and lin2.sd are
true, then either lin3.sd or lin4.sd will hold:

[sd pre: (.x = 5,.y = 4,formula(linl.sd),formula(lin2.sd))
comod: (all)

post: (formula(lin3.sd) or formula(lin4.sd))]

272

Here is the proof.

<sdvs.l> prove
state deltaD: lin.sd
proof []: <CR>

open — [sd pre: (.x ■ 5,.y ■ 4,formula(linl.sd),formula(lin2.sd))
comod: (all)
post: (formula(lin3.sd) or formula(lin4.sd))]

inserting — pcovering(all.y)

inserting — pcovering(all,x)

Complete the proof.

<sdvs. 1. 1> linearize
Btate delta #1: linl.sd
state delta #2: linS.sd
formula name #1
formula name #2
formula name #3

orl
or2
orS

linearize — formula(orl) or formula(or2) or formula(or3)

non-trivial propagations — ([sd pre: (.x = x577)
comod: (all)

mod: (inter(all,all))
inv: (#y = .y,#x = .x)

post: (#x = #y,

[sd pre:
comod:

mod:

inv:

post: . _

(([sd pre: (.y = y576)

comod: (all)

(true)
(all)
(all)
(#x = x577)
(#y = 6)])]) or

mod: (inter(all,all))
inv: (#y = .y,#x = .x)

post: (#y = 6,
[sd pre:

comod:
mod:
inv:

post:
([sd pre: (true)

comod: (all)
mod: (inter(all,all))
inv: (#y = .y,#x = .x)

post: (#x = #y,#y = 6)]))

(true)
(all)
(all)
(#y = y576)
(#x = #y)])]) or

<sdvs.l.2> incases
number of cases:

1st case:
proof [] : < CR>

formula(orl)

273

2nd case: formula(orS)
proof []: <CR>

3rd case: formu!a(or3)
proof [] : < CR>

meases — 3

open — [sd pre: (formula(orl))
comod: (all)
post: (([sdpre: (true)

comod: (all)
mod: (all)
inv: (#x = .x,#y = .y)

post: (#x = 5,#y = 5)]) or
([sd pre: (true)

comod: (all)
mod: (all)
inv: (#x = .x,#y = .y)

post: (#x = 6,#y = 6)]))]

<sdvs. 1.2.1.1> prove
state delta[]: linS.sd
proof [] : < CR>

open — [sd pre: (true)
comod: (all)

mod: (all)
inv: (#x = .x,#y = .y)

post: (#x = 5,#y = 5)]

comment — prove the invariant of the state delta to be proven

open — [sd pre: (true)
comod: (all)
post: (#x = x\688,«y = y\689)]

close — 0 steps/applications

Complete the proof.

<sdvs.l.2.1.1.2> usable

u(l) [sd pre: (true)
comod: (all)
post: (#x = x\688,#y = y\689)]

u(2) [sd pre: (.x = x577)
comod: (all)

mod: (inter(all,all))
inv: (#y = .y,#x * .x)

post: (#x = #y,
[sd pre: (true)

comod: (all)
mod: (all)
inv: (#x = x577)

274

post: (#y = 6)])]

u(3) [sd pre: (true)
comod: (all)

mod: (all)
inv: (#x » .1)

post: (#y » 6)]

u(4) [sd pre: (true)

comod: (all)

mod: (all)

inv: (#y » .y)

post: (#x » #y)]

No usable quantified formulas.

<sdvs. 1.2.1.1.2> whynotapply
state delta[highest usable]: u

number: 2

Quite applicable.

<sdvs.l.2.1.1.2> apply
sd/number[highest applicable/once]: u

number: 2

comment — prove the invariant prior to the application

open — [sd pre: (.y = y\689,.x = x\688)

comod: (all)

post: (#x = x\688,#y = y\689)]

close — 1 steps/applications

apply — [sd pre: (.x = x577)

comod: (all)

nod: (inter(all,all))

inv: (#y = .y,#x = .x)

post: (#x = #y,

[sd pre: (true)

comod: (all)

mod: (all)

inv: (#x = x577)
post: (#y = 6)])]

Complete the proof.

<sdvs.l.2.1.1.2> usublt

u(l) [sd pre: (true)

comod: (all)

mod: (all)

inv: (#x = x577)

post: (#y = 6)]

275

No usable quantified formulas.

<sdvs. 1.2.1.1.2> noticeinvariant
state delta[highest applicable]: <CR>

noticeinvariant — [sd pre: (true)
comod: (all)
mod: (all)
inv: (#x = x577)

post: (#y = 6)]

close — 2 steps/applications

close — 1 steps/applications

open — [sd pre: (formula(or2))
comod: (all)
post: (([sdpre: (true)

comod: (all)
mod: (all)
inv: (#x = .x,#y = .y)

post: (#x = 5,#y = 5)]) or
([sd pre: (true)

comod: (all)
mod: (all)
inv: (#x = .x,#y = .y)

post: (#x = 6,#y = 6)]))].

Complete the proof.

<sdvs. 1.2.2.1> usable

u(l) [sd pre: (.y = y576)
comod: (all)

mod: (inter(all.all))
inv: (#y = .y,#x = .x)

post: (#y = 6,
[sd pre: (true)

comod: (all)
mod: (all)
inv: (#y = y576)

post: (#x = #y)])]

u(2) [sd pre: (formula(orl))
comod: (all)
post: (([sd pre: (true)

comod: (all)
mod: (all)
inv: (#x = .x,#y = .y)

post: (#x = 5,#y = 5)]) or
([sd pre: (true)

comod: (all)
mod: (all)

270

inv: (#x = .x,#y = .y)

post: (#x * 6,#y - 6)]))]

u(3) [sä pre: (true)

comod: (all)

mod: (all)

inv: (#x * .x)

post: (#y = 6)]

u(4) [sd pre: (true)
comod: (all)

mod: (all)

inv: (#y «■ .y)
post: (#x - #y)]

No usable quantified formulas.

<sdvs.1.2.2.1> nsd

[sd pre: (.y = y576)

comod: (all)
■od: (inter(all,all))
inv: (#y « .y,#x » .x)

post: (#y =» 6,

[sd pre: (true)
comod: (all)

mod: (all)
inv: («y = y576)

post: (#x = #y)])]

<8dvs. 1.2.2.1> apply
sd/number[highest applicable/once]: <CR>

apply [sd pre: (.y = y576)
comod: (all)

mod: (inter(all,all))

inv: (#y - .y,#x = .x)
post: (#y = 6,

[sd pre: (true)

comod: (all)

mod: (all)

inv: (#y = y576)

post: (#x = #y)])3

Warning: the modlist of the last applied state delta mentions places

(inter(all,all)) outside of the modlist of the state delta to be

proven. The current proof can only be closed by contradiction.

<sdvs.l.2.2.2> usable

u(l) [sd pre: (true)

comod: (all)
mod: (all)

inv: (#y = y576)

277

post: (#x = #y)]

No usable quantified formulas.

<sdvs.l.2.2.2> noticeinvariant
state delta[highest applicable]: <CR>

noticeinvariant — [sd pre: (true)
comod: (all)
mod: (all)
inv: (#y * y576)

post: (#x = #y)]

The invariant of the last applied state delta is inconsistent with
the current state.

close — 1 steps/applications

open — [sd pre: (formula(or3))
comod: (all)
post: (([sd pre: (true)

comod: (all)
mod: (all)
inv: (#x = .x,#y = .y)

post: (#x = 5,#y = 5)]) or
([sd pre: (true)

comod: (all)
mod: (all)
inv: (#x = .x,#y = .y)

post: (#x = 6,#y = 6)]))]

Complete the proof.

<sdvs. 1.2.3.1> prove
state delta[]: lin^.sd
proof [] : < CR>

open — [sd pre: (true)
comod: (all)
mod: (all)
inv: (#x = .x,#y = .y)

post: (#x = 6,#y = 6)]

comment — prove the invariant of the state delta to be proven

open — [sd pre: (true)
comod: (all)
post: (#x = x\688,#y = y\689)]

close — 0 steps/applications

Complete the proof.

<sdvs.l.2.3.1.2> usable

278

u(l) [sd pre: (true)
comod: (all)
post: (#x = x\688,#y y\689)]

u(2) [sd pre: (true)
comod: (all)

nod: (inter(all,all))
inv: (#y = .y,#x = .x)

post: (#x = #y,#y = 6)]

u(3) [sd pre: (formula(or2))

comod: (all)

post: (([sd pre: (true)

comod: (all)

mod: (all)

inv: (#x = .x,#y = .y)

post: (#x = 5,#y = 5)]) or

([sd pre : (true)

comod : (all)

mod : (all)

inv : (#x = .x,#y = .y)

post . (#x = 6,#y = 6)]))]

u(4) [sd pre: (formula(or D)
comod: (all)

post: (([sd pre: [true)

comod: (all)

mod: (all)
inv: (#x = .x,#y = .y)

post: (#x = 5,#y = 5)]) or

([sd pre (true)

comod (all)

mod (all)

inv (#x = .x,#y = .y)

post (#x = 6,#y = 6)]))]

u(5) [sd pre: (true)

comod: (all)

mod: (all)

inv: (#x = .x)

post: (#y = 6)]

u(6) [sd pre: (true)

comod: (all)

mod: (all)

inv: (#y = .y)
post: (#x = #y)]

No usable quantified formulas.

<sdvs. 1.2.3.1.2> whynotupply
state delta[highest usable]: u

number: 2

279

Quite applicable.

<sdvs. 1.2.3.1.2> apply
sd/number[highest applicable/once]: u

number: 2

comment — prove the invariant prior to the application

open — [sd pre: (.y = y\689,.x = x\688)

comod: (all)

post: (#x = x\688,#y = y\689)]

close — 1 steps/applications

apply — [sd pre: (true)

comod: (all)

mod: (inter(all,all))
inv: (#y = .y,#x = .x)

post: (#x = #y,#y = 6)]

close — 1 steps/applications

close — 1 steps/applications

join — [sd pre: (lormula(orl) or formula(or2) or formula(or3))
comod: (all)

post: (([sd pre: (true)

comod: (all)

mod: (all)

inv: (#x = .x,#y = .y)

post: (#x = 5,#y = 5)]) or

([sd pre: (true)

comod: (all)

mod: (all)

inv: (#x = .x,#y = .y)

post: (#x = 6,#y = 6)]))]

close — 2 steps/applications

8.3 NOTICECONCURRENTSD

The noticeconcurrentsd command is actually a special case of the linearize command, dis-
cussed in the previous section. It is definitely more convenient to use than linearize, and
often sufficient. Again we deal with the situation where two state deltas are applicable,
and we do not know which will achieve its postcondition first. The noticeconcurrentsd com-
mand makes true the state delta whose postcondition is essentially the disjunction of the
postconditions of the two applicable state deltas (without worrying about when the other's
postcondition will become true), and whose invariant is the conjunction of the invariants of
the two applicable state deltas.

Consider the following state deltas:

280

<8dV8.1> ppsJ

state delta: concl.sd

[sd pre: (0 It .x,.x It 10)
coDod: (all)

mod: (all)
inv: (0 It #x)

post: (#x - 10)]

<sdvs.l> ppsd
state delta: conc2.sd

[sd pre: (true)
coaod: (all)

mod: (all)
inv: (#x It 10)

post: (#x = 10)]

<sdvs.l> ppsd
state delta: conc3.sd

[sd pre: (true)
comod: (all)

nod: (all)
inv: (0 It #x,#x It 10)

post: (#x = 10)]

<sdvs.l> ppsd
state delta: concl.sd

[sd pre: (0 It .x,iormula(concl.sd),formula(conc2.sd))
comod: (all)
post: (iormula(conc3.sd))]

<sdvs.l> prove
state delta[] : concl.sd

proof []: <CR>

open — [sd pre: (0 It .x,formula(concl.sd),iormula(conc2.sd))
comod: (all)
post: (formula(conc3.sd))]

inserting — pcovering(all,x)

Complete the proof.

<sdvs.l.l> usable

u(l) [sd pre: (true)
comod: (all)

mod: (all)
inv: (*x It 10)

post: (#x = 10)]

u(2) [sd pre: (0 It .x,.x It 10)

281

comod: (all)
mod: (all)
inv: (0 It #x)

post: (#x = 10)]

No usable quantified formulas.

<sdvs.l.l> whynotapply
state delta[highest usable]: u

number: 2

Because the following is not known to be true — .x It 10

Because its mod list is not contained in the proof mod list.
sd mod list: (all)

proof mod list: ()
list difference: (all)
<sdvs. 1. 1> noticeinvariant

state delta[highest applicable]: concZ.sd

noticeinvariant — [sd pre: (true)
comod: (all)
mod: (all)
inv: (#x It 10)

post: (#x = 10)]

<sdvs.l.2> simp
expression: .x It 10

true

<sdvs.l.2> simp
expression: 0 It .x

true

<sdvs.l.2> goals

g(l) [sd pre: (true)
comod: (all)

mod: (all)
inv: (0 It #x,#x It 10)

post: (#x = 10)]

<sdvs. 1. 2> prove
state delta[] : y

number: /
proof [] : < CR>

open — [sd pre: (true)
comod: (all)

mod: (all)
inv: (0 It #x,#x It 10)

post: (#x = 10)]

282

comment - — prove the invariant of the state delta to be proven

open — isd pre: (true)

comod: (all)
post: (0 It #x,#x It 10)]

close — 0 steps/applications

Complete the proof.

<sdvs.l.2.2> noticeconcurrentsd
number of state deltas: 2

1st state delta: concl.sd
2nd state delta: concS.sd

noticeconcurrentsd (concl.sd,conc2.sd) — [sd pre: (true)

comod: (all)

mod: (inter(all,all))

inv: (0 It #x,
#x It 10)

post: (#x " 10 or

#x - 10)]

<sdv8.1.2.3> usable

u(l) [sd pre: (true)

comod: (all)

mod: (inter(all,all))

inv: (0 It #x,#x It 10)

post: (#x = 10 or #x = 10)]

u(2) [sd pre: (true)

comod: (all)

post: (0 It #x,#x It 10)]

u(3) [sd pre: (true)

comod: (all)

mod: (all)

inv: (#x It 10)

post: (#x = 10)]

u(4) [sd pre: (0 It .x,.x It 10)

comod: (all)

mod: (all)

inv: (0 It #x)

post: (#x = 10)]

No usable quantified formulas.

<sdvs.l.2.3> apply
sd/number[highest applicable/once]: <CR>

comment - - prove the invariant prior to the application

283

open — [sd pre: (0 It .x,.x It 10)
comod: (all)
post: (0 It #x,#x It 10)]

close — 1 steps/applications

apply — [sd pre: (true)
comod: (all)
nod: (inter(all.all))
inv: (0 It #x,#x It 10)

post: (#x - 10 or #x = 10)]

close — 2 steps/applications

close — 2 steps/applications

8.4 NEGATE

Suppose that "inv.sd is known to be true by the system, where inv.sd is the state delta

[sd pre: (.y = 1)
comod: (all)

mod: (x,y)
inv: (#x = .x)

post: (#x = .x,#y = 5)]

Then upon the user's invocation of the negate command, SDVS prompts the user for the
names of the three formulas that it will create and insert in the postcondition of the negated
state delta. We show how SDVS treats the above state delta. The effect of the negation
command is clear from the following transcript. However, note that use of the negate
command on a state delta with invariants implies that the timeline is well-ordered (see
[63]). For the use of negate when the state delta does not have invariants, see Section 2.9.6.
Following this example, we shall show how SDVS treats a case of negation where there are
dots and pounds in the state delta to be negated.

<sdvs.2> pp
object: invtity.sd

[sd pre: (~(formula(inv.sd)))
post: (false)]

We set up a dummy context in which to illustrate the negate command.

<sdvs.2> prove
state delta[] : invney.sd
proof []: <CR>

open — [sd pre: ("(formula(inv.sd)))

284

post: (false)]

Complete the proof.

<sdvs.2.1> tieyute
state delta: inv.sd
formula name #1
formula name #2
formula name #3

negated result -■

invl.sd
inv2.sd
invS.sd

[sd pre: (true)
comod: (all)

mod: (diff(all.all))
post: (#x = x589,#y = 1,

([sd pre: (true)
comod: (diff(all,union(x,y)))
post: C(#x = x589 & #y = 5))]) or

~(#x = #x) or
([sd pre: (true)

comod: (all)
mod: (x,y)
inv: (~(#x = .x ft #y « 5))

post: (~(#x = .x),
~(#x = .x ft #y = 5))]))]

<sdvs.2.2> pp
object: invl.sd

formula invl.sd: [sd pre: (true)
comod: (diff(all,union(x,y)))
post: C(#x = x589 ft #y = 5))]

[sd pre: (true)
mod: (x)
inv: (#x = .x)

post: (#x = .x + 1)]

<sdvs.2.2> pp
object: invU.sd

formula inv2.sd: "(.x = .x)

[sd pre: ([sd pre: (p)
mod: (x)
inv: (#x = .x)

post: (#x ■ .x,q)])
post: ([sd pre: (p) post: (q)])]

<sdvs.2.2> pp
object: inv3.sd

formula inv3.sd: [sd pre: (true)
comod: (all)

mod: (x,y)
inv: C(#x = .x ft #y = 5))

285

post: C(#x = .x),-(#x = .x t #y = 5))]

[sd pre: ([sd pre: (p) post: (q)])
post: ([sd pre: (p)

mod: (x)
inv: (#x = .x)

post: (#x = .x,q)])]

<sdvs.2.2> pp
object: invdots.sd

[sd pre: (.x = 5)
comod: (y)

nod: (x)
inv: (#x = .y)

post: (#x = .x + 1)]

<sdvs.2.2> pp
object: invdotsney.sd

[sd pre: (~(formula(invdots.sd)))
post: (false)]

<sdvs.2.2> prove
state delta[]: invdotsneg.sd
proof [] : < CR>

open — [sd pre: ("(formula(invdots.sd)))
post: (false)]

Complete the proof.

<sdvs.2.2.1> usable

No usable state deltas.

No usable quantified formulas.

<sdvs.2.2.1> negate
state delta: invdots.sd
formula name #1: invdotsl.sd

formula name #2: iuvdotsZ.sd

formula name #3: invdots3.sd

negated result — [sd pre: (true)
comod: (all)

mod: (diff(all,y))
post: (#x = x591,#x = 5,

([sd pre: (true)
comod: (diff(all.x))
post: (~(#x = x591 + 1))]) or

~(#x = #y) or
([sd pre: (true)

comod: (all)

280

mod: (x)
inv: C(#x = • x + D)

post: (~(#x = • y).
"(#x = •X + 1))]))]

8.5 OMEGAINDUCT

This section describes the omegainduct command. A more detailed description can be found

in [54].

For a prooJ ' of a safety property of a nonterminating program, it is often not < snough to
require that each state change in its execution be discrete. We must also disallow possible
states in its execution that are limits of an infinite sequence of other states. This restriction
is inherent n the use of the omegainduct command.

The omegainduct command is based on the principle that, if

[sd pre: (true)
comod: (all)

mod: 0
inv: 0

post: (A & B)

and

[sd pre: (true)
comod: 0

mod: 0
post: ([sd pre:

comod:
mod:
inv:

(A & B)
(all)
(all)
(A(#/.))

post: (A(#/.) & B(#/.) & (#xl "= .xl or ... or #xn "= • xn))

are true now, then also the following is true now:

[sd pre: (true)
comod: 0

mod: 0
inv: ()

post: (A)]

2S7

In the above, A and B are any formulas not containing top-level pounds. A is the safety
formula we are interested in proving, B is the "auxiliary formula," n is an integer greater
than 0, and the z's are places. A(#/.) is the result of substituting pounds for all occurrences
of dots in A.

Intuitively, the reasoning is that if A and B are true now, and if for any time in the future
at which A and B are true, there is a later time when A and B are true, A is preserved true
over the interval, and something has actually changed at that later time, then A is true
always in the future.

This formula is true on precisely those timelines in which u + 1 (the order of the natural
numbers with a limit point at infinity) is not embeddable.

The first conjunct in the antecedent above is the base-case state delta and the second
is the step-case state delta. If omegainduct is used in the course of a proof, the user
must enter as parameters the formula A on which the induction will proceed, the optional
"auxiliary formula" B, and a nonempty set of places xl,x2,...,xn. Both formulas must be
of precondition type.

The induction formula A is the formula that will be asserted to be true henceforth.

The purpose of the auxiliary formula is to allow the induction to proceed over loop bodies
that are generated by the SDVS program translators. In these cases, the auxiliary formula
is intended to be the state delta that asserts that execution is at the top of the loop. If the
user does not enter an auxiliary formula, the system assumes that the formula is "true."

The list of places must have the property that, in the induction step of the proof, at least
one of the places will change its value.

After the parameters to the omegainduct have been given, SDVS opens the proof of the
base case of the induction. Once the base-case state delta is proved, SDVS will open the
proof of the step-case state delta. After the step-case state delta has been proved, SDVS
will assert the goal state delta at the state at which the omegainduct command was given.

Consider the following example. We want to show that i is always greater than or equal to
zero for the Ada program infloop.ada.

with text.io; use text.io;

with integer_io; use integer.io;

procedure infloop is

i,s : integer;

begin

i:= 0;

s:= 3;

while true loop

i:= i+1;

s:= s+1;
end loop;

end infloop;

288

That claim is represented by the state delta loopsd:

[sd pre: (ada(infloop.ada))
comod: (all)
nod: (all)

post: («i = 0 t formula(loopevent))]

where loopevent is

[sd pre: (true) post: (#i ge 0)]

The proof proceeds as follows:

<sdvs.l> adutr
path name[testproofs/manual/ada/packages.a] : testproofs/manual/ada/infloop.ada

Parsing Stage 4 Ada file — "testproofs/manual/ada/infloop.ada"

Translating Stage 4 Ada file — "testproofs/manual/ada/infloop.ada"

<sdvs.2> prove
state deltaD: loopsd
proof [] : < CR>

open — [sd pre: (ada(infloop.ada))
comod: (all)

mod: (all)
post: (#i = 0 t formula(loopevent))]

Complete the proof.

<sdvs.2.1> utitil
formula: #i=0

apply — [sd pre: (true)
comod: (all)

mod: (infloop\pc)
inv: («all = .all)

post: (<adatr procedure infloop is
i, ... : integer

begin
i := 0;

end infloop;>)]

apply — [sd pre: (true)
comod: (all)

mod: (infloop\pc,infloop)

inv: («all = .all)

post: (alldisjoint(infloop,.infloop.i.s),

covering(«infloop,.infloop,i,s),

declared, type (integer)),declare (s, type (integer)) ,

289

<adatr i, ... : integer>)]

apply — [sd pre: (true)
comod: (all)

mod: (infloop\pc,i)
inv: («all = .all)

post: (#i = 0,
<adatr i := 0;>)]

until break point reached — #i = 0

<sdvs. 2. 4> apply
sd/number[highest applicable/once]: u

number: 1

apply — [sd pre: (true)
comod: (all)

mod: (infloop\pc,s)
inv: («all = .all)

post: (#s = 3,
<adatr s := 3;>)3

<sdvs.2.5> Ittsd
name: loopu2
state delta[] : u

number: 2

letsd — loopu2 = u(2)

<sdvs.2.6> oiuegaitit net

on: .« ye 0
auxiliary formulas [] : formula(loopuS)

places: :
base proof [] : < CR>
step proof [] : < CR>

omegainduction on — (.ige 0)

open — [sd pre: (true)
comod: (all)
post: (•i ge 0,

[sd pre: (true)
comod: (all)

mod: (infloop\pc)
inv: («all = .all)

post: (<adatr while true

i := i + 1;

end loop;>)])]

close — 0 steps/applications

open — [sd pre: (true)
post: ([sd pre: (.i ge 0,

290

[sd pre: (true)
comod: (all)

mod: (infloop\pc)
inv: («all = .all)

post: (<adatr while true

i := i + 1;

end loop;>)])

comod: (all)

mod: (all)

inv: (#i ge 0)

post: (#i "= .i,#i ge 0,

[sd pre: (true)

comod: (all)

mod: (infloop\pc)

inv: («all = .all)
post: (<adatr while true

i := i + 1;

end loop;>)])])]

Complete the proof.

<sdvs.2.6.2.1> prove
state delta[]: g

number: 1
proof [] : < CR>

open — [sd pre: (.i ge 0,

[sd pre: (true)

comod: (all)
mod: (infloop\pc)
inv: («all = .all)

post: (<adatr while true

i := i + 1;

end loop;>)])

comod: (all)

mod: (all)

inv: (#i ge 0)

post: (#i ~= .i,#i ge 0,

[sd pre: (true)

comod: (all)

mod: (infloop\pc)

inv: («all = .all)

post: (<adatr while true

i := i + 1;

end loop;>)])]

comment — prove the invariant of the state delta to be proven

291

open — [sd pre: (true)
comod: (all)
post: (#i ge 0)]

close — 0 steps/applications

Complete the proof.

<sdvs.2.6.2.1.2> apply
sd/number[highest applicable/once]: u

number: 2

comment — prove the invariant prior to the application

open — [sd pre: (.all = all\741)
comod: (all)
post: (#i ge 0)]

close — 1 steps/applications

apply — [sd pre: (true)
comod: (all)

mod: (infloop\pc)
inv: (#all = .all)

post: (<adatr while true

i := i + 1;

end loop;>)]

Complete the proof.

<sdvs.2.6.2.1.2> apply
sd/number[highest applicable/once]: 2

comment — prove the invariant prior to the application

open — [sd pre: (.all = all\744)
comod: (all)
post: (#i ge 0)]

close — 1 steps/applications

apply — [sd pre: (true)
comod: (all)

mod: (iniloop\pc,i)
inv: («all = .all)

post: (#i = .i + 1,
<adatr i := i + 1;>)]

comment — prove the invariant prior to the application

open — [sd pre: (.all = all\747)
comod: (all)

292

post: (#i ge 0)]

close — 1 steps/applications

apply — [sd pre: (true)
comod: (all)

mod: (infloop\pc,s)
inv: («all = .all)

post: (#s = .s + 1,
<adatr s := s + 1;>)]

close — 1 steps/applications

close — 1 steps/applications

assert always formula

— [sd pre: (true) post: (#i ge 0)]

close — 6 steps/applications

293

9 THE SIMPLIFIER

This chapter describes the simplifier for static deductions at a level of detail necessary for
the user to have a good idea of the relative strengths of the various solvers, i.e., how much
is done automatically vs. how much must be done by the user. The actual proof commands
and axioms for static proofs are described in Section 2.7. The simplifier is based on the
technique of "cooperating decision procedures" of [64] and [65]. The structure of the SDVS
version is described in [66].

The simplifier is not "typed," so the same variable may be used in different theories and an
operator may be used on variables that originated in different domains.

The simplifier recognizes the languages of the following domains (see Section 2.9.13 for the
infix-prefix correspondences):

• propositional calculus

true, false, ", &, V, —*, if-then-else

• equality

=, ^, distinct

• integer arithmetic

0, 1, -1, 2, -2, ... (all integer constants), It, le, gt, ge, +, - *, ~, /, abs, rem, mod,
min, max

• bitstrings

lh, zeros, ones, @, ", ==, usxor, &&, VV, """, ++, - -, **, //, usgt, uslt, usge, usle,
ll,v(l),<: >

• arrays

emptyarray, aconc, [], [:], range, origin

• coverings

emptyplace, covering, pcovering, alldisjoint, everyplace, diff, union

• queues

nullqueue, emptyqueue, enqueue, dequeue, frontqueue

• lists

cons, car, cdr

• enumeration types

elt, ele, egt, ege, epred, esucc.

295

• VHDL time

vhdltime, timeglobal, timedelta, timeplus, timelt, timele, timegt, timege

• VHDL waveforms

waveform, transaction, inertiaLupdate, transport.update, val, preemption

We now proceed to discuss the semantics and deductive capabilities for each domain.

In discussions of the semantics of a symbol in the language of a theory, the type of the
interpretation of that symbol is indicated in terms of the basic domains with which it is
concerned. For example, if P denotes the domain of propositional (boolean) values, then
the constant symbol true has type P, and the predicate symbol implies has type [PxP^

P].

A domain name superscripted with a plus symbol (for example, P+) denotes the cross
product of one or more objects in the domain. A superscripted asterisk symbol (for example,

P) denotes the cross product of zero or more objects in the domain. For example, the
predicate and may be applied to one or more arguments; the type of and is [P+ -* P].

9.1 PROPOSITIONS

The solver for the theory of propositional logic is a permanent part of the simplifier, and thus
cannot be deactivated (it is always active). The language of the theory of propositional
logic includes the constant symbols true and false and the logical (predicate) symbols not,
and, or, implies, and if-tlien-else. The standard interpretation for propositions is assumed.
Each simplifier theory that follows subsumes the theory of propositional logic; that is, each
theory includes the logical connectives as logical symbols. Some examples of formulas in
this language (in system output format) are

" (P V q)

(p & q) -> p

ifp then q else false

P denotes the domain of propositional (boolean) values. U denotes the universal domain;
any arbitrary object is in U. Table 2 presents a description of the propositional symbols.
Two syntactic representations are given for each symbol. The first representation is the user-
input format. If there is a discrepancy between that format and the prettyprinted version
the system returns, that latter is placed in parentheses. The second shows the prefix form,
which is the internal representation and should be used when one submits batch proofs. For

290

Table 2: Prepositional Symbols

constant symbol simp symbol description type
true TRUE truth P
false FALSE falsity P
predicate symbol simp symbol description type
- NOT logical negation P -> P
& AND conjunction P+ -► P
or OR disjunction P+ — P
—> IMPLIES implication PxP^P
if-then-else COND conditional P x U x U ->■ U

each symbol, Table 2 also gives an English description of the interpretation of that symbol,
as well as the type of the constant, function, or predicate that provides that interpretation.

Note that if-then-else is not treated as a pure predicate, since the then and else parts
may accept objects in any arbitrary domain. This is because expressions of the form
if p then tx else t2, where p is a predicate and t\ and t2 are terms, may be used in place
of a term in an expression. Expressions with embedded if-then-else^ are normalized by
the simplifier before simplification takes place; for example, f(x) = (if p(x) then t\ else t2

normalizes to if p(x) then f(x) = t\ else f(x) — t2 before being processed by the simplifier.

Semantics The semantics of propositions are standard. A complete decision procedure
for propositions is implemented. Some examples are given in Figure 12.

9.2 EQUALITY

The solver for the theory of equality is a central and basic component of the simplifier, and
thus cannot be deactivated (it is always active). The language of the theory of equality
contains three predicate symbols, =, ^, and distinct, representing equality, disequality, and
pairwise disequality, respectively. Note that including ^ and distinct adds no expressive
power and is only for convenience, since any formula using ^ can be rewritten as an equiv-
alent formula using only not and =, and any formula using distinct can be rewritten as an
equivalent formula using only and, not, and =. Some examples of formulas in this language
are

a=b
xj*l
f(f(f(a)))=f(a)

and

distinct(\i,v,x,y,z)

297

<sdvs.l> simp
expression: 'true

false

<sdvs.l> simp
expression: (a -> b) or (a -> ~b)

true

<sdvs.l> simp
expression: if false -> a then a or b else "b

a or b

<sdvs.l> simp
expression: a or b & b

a or b

<sdvs.l> simp
expression: (a or b) & b

<sdvs.l> simp
expression: if p then true else false

Figure 12: Simplification of Propositions

298

Table 3: Equality Symbols

predicate symbol simp symbol description type

distinct

EQ
NEQ
DISTINCT

equality
disequality
pairwise disequality

UxU^P
UxU-^P
U+ -► P

U denotes the universal domain, that is, any arbitrary object is in U. The equality and
disequality predicates operate on objects in the domain U. Table 3 presents a description
of the equality and disequality predicate symbols.

Semantics The nonlogical symbols in the theory of equality are all uninterpreted con-
stant, function, and predicate symbols. The theory of equality obeys symmetry, reflexivity,
transitivity, and substitutivity. Some examples of theorems in this theory are

(a=b & b=c) —*• a=c

f(a,b)=a -> f(f(a,b),b)=a

f(f(f(a)))=a & f(f(f(f(f(a)))))=a - f(a)=a

and

distinct(x,y,z) —>• x^y k x^z & y^z

The simplifier has a complete automatic solver for universal equalities. Some examples are
given in Figure 13.

9.3 ARITHMETIC

The theory of integer arithmetic comes in various levels. SDVS has symbols for integer
addition, subtraction, comparison, multiplication, division, absolute value, remainder, ex-
ponentiation, min, and max. The theory of integer arithmetic under addition, subtraction,
and comparison is decidable, but adding either multiplication, division, or remainder makes
the theory undecidable. Thus, a decision procedure for basic linear integer arithmetic is
provided, and partial decision procedures are provided for the rest of integer arithmetic.
See Section 2.7.1 for the user-invokable axioms pertaining to integer arithmetic.

299

<8dvs.l> simp
expression: a = b & b = c -> a = c

true

<sdvs.l> simp
expression: f(f(f(a))) = a & f(f(f(f(f(a))))) = « -> f(") = «

true

<sdvs.l> simp
expression: g(a) '= a & g(a) = a

false

<sdvs.l> simp
expression: if a then a = false else a = true

false

<sdvs.l> simp
expression: distinct(x, y, z) -> x ~= y & x '= z & y '= z

true

Figure 13: Simplification of Formulas with Equality and Disequality

300

9.3.1 Linear Integer Arithmetic

The character "z" is used to denote the theory of linear integer arithmetic. The command
"activate z" activates the solver for linear integer arithmetic; the command "deactivate z"
deactivates this solver.

The language of the theory of linear integer arithmetic includes the predicate symbol le,
the function symbols + and -, and the constant symbols 0 and 1. The numerals and the
remaining arithmetic relations (It, ge, and gt9) are allowed, but are formally regarded as
abbreviations: 2 abbreviates 1+1 and x gt y abbreviates -i(x le y). Multiplication by integer
constants is also allowed; 3*x abbreviates x+x+x. Some examples of expressions in this
language are

x+y

x-1 It x

and

2 * x+1 le 5

Also included in linear integer arithmetic are the function symbols max and min, for which
full deductive capabilities are obtained only for constants.

Z denotes the domain of integers. The arithmetic functions and predicates operate on
objects in the domain Z. The standard interpretation is assumed for integer arithmetic.
Table 4 presents a description of the arithmetic symbols.

Semantics The theory of integer arithmetic under +, -, and < is the standard Presburger
theory for the integers.

The theory of integer arithmetic under +, -, and < is decidable, admitting a full decision
procedure. However, the decision procedure implemented in the simplifier is based on the
Simplex algorithm and is in fact a solver for rationals, not integers. Thus, the simplifier
does not presently have full deductive capabilities for dealing with integers. Statements that
are valid over the integers but not over the rationals, such as x+x^5, are not consequences
of the above axioms and will not be simplified to true by the simplifier.

The following simple rules, where => denotes "rewrites to," have been added to the decision
procedure for rationals to facilitate proving statements about integers:

1. (x < y) =► (y > x)

2- (x < y) => (y > x)

9The reason that "<" and ">" are not used is that they are reserved for bitstring substring selection.

301

Table 4: Linear Integer Arithmetic Symbols

constant symbol simp symbol description type
... -2-1012 -2-1012 ... the integers Z
function symbol simp symbol description type
+ PLUS addition ZxZ^Z
- MINUS subtraction ZxZ^Z
- MINUS arithmetic negation z-> z
* MULT multiplication by constant ZxZ^Z
max MAX maximum ZxZ^Z
min MIN minimum ZxZ^Z
predicate symbol simp symbol description type
le LE less than or equal ZxZ^P
It LT less than ZxZ^P
ge GE greater than or equal ZxZ-*P
gt GT greater than ZxZ^P

3. (x > y) => (x > y+1), and

4- -i (x > y) =*■ (y> x+1)

These rules allow us to prove the validity of statements over the integers by performing case
splitting. For example, one can prove that x+x/5 is valid by case splitting on x<2. The
two cases are x<2 and ->(x<2) (or x<2 and x>2 or x<2 and x>3). Since x+x<5 for x<2,
and x+x>5 for x>3, we can deduce that x+x^5 is valid over the integers (for all x). Some
examples of simplification are given in Figure 14.

The interaction between the integer and rational semantics of the above arithmetic operators
can lead to some complicated phenomena that cause SDVS not to recognize the truth
of certain statements. We do not have the space to go into an example here, but will
mention the following heuristic that we have found to help in getting the strongest possible
deductions: In any complex expression or sequence of expressions, terms containing strict
inequalities (It, gt) should appear wherever possible before terms with the corresponding
weak inequalities (le, ge).

Note that the axiomatization of linear integer arithmetic fails to deal with the function
symbols max and min. See page 77 for a list of the user-invokable axioms concerning the
operation of max and min.

9.3.2 Integer Multiplication

The character "m" is used to denote the theory of integer multiplication, which subsumes
the theory of linear integer arithmetic. The command "activate m" activates the solver

302

<sdvs.l> simp
expression: 4 + 5

<sdvs.l> simp
expression: x It y and z gt y -> ~(x ge z)

true

<sdvs.l> simp
expression: x le 4 * y - 1 <*nd x gt 3 -> y le 1

x le 4 * y - 1 —> x le 3

Figure 14: Simplification of Linear Integer Arithmetic Expressions

Table 5: Integer Multiplication Symbols

function symbol simp symbol description type
* MULT integer multiplication ZxZ-»Z

for integer multiplication; the command "deactivate m" deactivates this solver, without
deactivating the solver for linear integer arithmetic.

The language of the theory of integer multiplication contains the function symbol *, rep-
resenting the multiplication operation, and includes all symbols from the theory of linear
integer arithmetic, a subtheory of integer multiplication. Some examples of expressions in
this language are

x*y-l

and

(x*y)*z=x*(y*z)

Z denotes the domain of integers. Table 5 presents a description of the symbols in the
language of the theory of integer multiplication, excluding those symbols common to the
theory of linear integer arithmetic.

Semantics The theory of integer multiplication (integer arithmetic under <, -f, -, and
*) is undecidable, because of the presence of multipbcation [67]. The following axioms
characterize the associative/commutative subtheory of integer multiplication that has been
implemented within the simplifier:

303

<sdvs.l> activate
solver: m

Associative/commutative multiplication solver activated.

<sdvs.3> init
proof name[]: <CR>

State Delta Verification System, Version 13

Restricted to authorized users only.

<sdvs.l> simp
expression: l*x*y = y*x

true

<sdvs.l> simp
expression: 0 * (x + 2) = 0

true

<sdvs.l> simp
expression: 0 * x = x

0 = x

<sdvs.l> simp
expression: x*y*z*w = w*z*y*x

true

Figure 15: Simplification of Integer Multiplication Expressions

Vx x*l=x
Vx x*0=0
VxVy x*y=y*x
VxVyVz x*(y*z)=(x*y)*z

The deductive capability of the simplifier, with respect to the theory of integer multipli-
cation, is limited to those facts that are consequences of the above axioms. See page 75
for a list of the user-invokable axioms concerning integer multiplication. Some examples of
simplification are given in Figure 15.

9.3.3 Integer Division, Remainder, Modulus, and Absolute Value

The language consists of the symbols "/", abs, mod, and rem. Table 6 presents a description
of these symbols.

With relation to these symbols, the simplifier knows only about operations with constants.

304

Table 6: Integer Division, Absolute Value, and Remainder

function symbol simp symbol description type

/ DIV integer division ZxZ^Z
rem REM remainder ZxZ^Z
mod MOD modulus Z x Z-* Z
abs ABS absolute value Z ->N

Table 7: Integer Exponentiation Symbol

function symbol simp symbol description type
A EXPT integer exponentiation ZxZ-iZ

The operations rem and mod (though not integer division) are defined in accordance with
the Ada and Common Lisp semantics (they are the same). See page 78 for the user-invokable
axioms.

Figure 16 illustrates the simplification of integer division, absolute value, modulo and re-
mainder expressions.

9.3.4 Integer Exponentiation

The solver for the theory of integer exponentiation is concerned only with the exponentiation
of integer constants. This solver is active as long as the solver for linear integer arithmetic
is active, because the rules for exponentiation of integer constants are built into the solver
for linear integer arithmetic.

The language of the theory of integer exponentiation contains the function symbol ~ (carat),
representing the exponentiation operation, and includes all symbols from the theory of lin-
ear integer arithmetic. Some examples of expressions in this language are

(2*y)-l

Z denotes the domain of integers. Table 7 presents a description of the symbols in the
language of the theory of integer exponentiation, excluding those symbols common to the
theory of linear integer arithmetic.

305

<sdvs.l> simp
expression: x / y

x / y

<sdvs.l> simp
expression: x /1

<sdvs.l> simp
expression: 0/1

<sdvs.l> simp
expression: x / 0

x / 0

<sdvs.l> simp
expression: 0/0

0/0

<sdvs.l> simp
expression: abs(-2)

<sdvs.l> simp
expression: 5 rem 2

Figure 16: Simplification of Integer Division, Absolute Value, and Remainder (Part 1)

306

<sdvs.l> simp
expression: 6 rem 2

<sdvs.l> simp
expression: -7 rem 2

<sdvs.l> simp
expression: -7 mod 2

<sdvs.l> Jimp
expression: 3 rem (-2)

1

<sdvs.l> simp
expression: 3 mod (-2)

Figure 17: Simplification of Integer Division, Absolute Value, and Remainder (Part 2)

307

Semantics The deductive capabilities of the simplifier with respect to the theory of integer
exponentiation are limited to facts about the exponentiation of constants. See page 76 for
a list of the user-invokable axioms concerning integer exponentiation.

See Figure 18 for examples of the simplification of integer exponentiation expressions.

9.4 BITSTRINGS

The character "b" is used to denote the theory of bitstrings. The command "activate b"
activates the solver for the theory of bitstrings; "deactivate b" deactivates this solver.

The language of the theory of bitstrings contains numerous function symbols. Many of them
have the prefix "us." This stands for "unsigned" and is a throwback to the version where
"tc" (two's complement) also existed. Two basic function symbols are Ih and usval, used
for representing the nonnegative length and nonnegative value of a bitstring, respectively.
The expression usval(h) is prettyprinted |b|. The function symbols for substring and
concatenation are ussub and usconc, respectively. The expression ussub(b,i,j) is written
b<i:j>; usconc{bx,b2) is written 6a@62- The symbols for the bitstring value comparison
functions are useql, usneq, uslss, usleq, usgtr, and usgeq. Note that these comparators are
not predicates that return true or false, but return the bitstrings 1(1) (for true) and 0(1)
(for false). The bitstring arithmetic function symbols are usplus, usdifference, ustimes,
usquotient, and usremainder. The symbols for the bitstring logical operation functions are
usnot, usand, usor, usxor, and useqv. When the integer arithmetic operator is represented
as a symbol rather than a word (e.g. as + instead of "plus"), the bitstring counterpart is
represented by two of the symbols in juxtaposition (e.g. ++). In order to distinguish the
cases where "" is to be interpreted as two propositional " symbols or - - as two integer
arithmetic unary minuses, parentheses must be used.

In addition, we have the function symbols zeros, ones, and lastone.

The language of the theory of bitstrings also contains a countably infinite set of constant
symbols that syntactically resemble function symbols applied to terms. These constant
symbols have the form i(j), which denotes the constant bitstring whose integer value is i
and whose integer length is j, where j > 0 and 0 < i < 2* - 1.

Some examples of expressions in this language are

x<3:2> = 2(2)

x ++ 1(1) usgt x

x usor 0(5)

(a @ b)<lh(a)-l: j>

308

<sdvs. 1> readaxioms
path name [axioms/arraycoverings. axioms] : axioms/exp.axioms

readaxioms "axioms/exp.axioms"
— (multeqsquare,expabsval,el1,e10,e9,e8,expdiv,expmult,e7,e6,e5,e4,e3,

e2,el)

<sdvs.2> simp
expression: 2 " 0

<sdvs.2> simp
expression: 0 ' 2

0

<sdvs.2> simp
expression: 3 ' 2

9

<sdvs.2> simp
expression: x " 0 = 1

x " 0 = 1

<sdvs.2> simp
expression: 0 " x

<sdvs.2> ppsd
state delta: expt.sd

[sd pre: (x "= 0)
post: (x * 0 = 1)]

<sdvs.2> prove
state delta[]: expt.sd
proof [] : < CR>

open — [sd pre: (x ~= 0)
post: (x " 0 = 1)]

Complete the proof.

<sdvs. 2. 1> provebyaxiom
formula to prove: x " 0 = 1

axiom name [] : e4

provebyaxiom e4 — x " 0 = 1

close — 1 steps/applications

Figure 18: Simplification of Integer Exponentiation Expressions
309

1(3) ==1(2)

B denotes the domain of bitstrings, Z the domain of all integers, and N the domain of
nonnegative integers. Table 8 presents a description of the symbols in the language of the
theory of bitstrings.

Semantics The following axioms characterize the theory of bitstrings that has been im-
plemented within the simplifier:

VbVc
Vb

Vb

b=c «->|b| = |c| A lh(b)=lh{c)
lh(b)>0

0<|b|<2^(b)-l

ViVj j> -> /A(i(j))=j

ViVj j> A 0<i<2J - 1 - | (i(j)) | =i

t VbViVj lh(b<v.i>)=Tnax(0,min(iJh(b)-l)+l-max(j,0))

t VbViVj |b<i:j>|=(|b|-((|b|/2maa<0'i+1))*2ma^{0'i+1)))/2TOa;c(0'J)
t Vb b=b</A(b)-l:0)
t VbViVj i>lh(b) -+b<i:j>=b<//i(b)-l:j>
t VbViVj j<0 -»• b<i:j>=b<i:0>
t VbViVj i<j -> b<i:j>=0(0)

VbVc

VbVc
f VbVcViVj

Vb
Vb

VbVc
VbVc
VbVc
VbVc
VbVc
VbVc
VbVc
VbVc
VbVc
VbVc
VbVc
VbVc

lh(b@c)=lh(b)+lh{c)

|b@c|=(|b|*2//20))+|c|
(b@c)<i:j>=b<i-/A(b):j-/A(b)>@c<i:j>

b^O(l) A lh(b)=l -► b=l(l)
b^l(l) A lh(b)=l -► b=0(l)

b==c =
b==c =
b-==c :
b"==c =
b uslt c
b uslt c
b usle c
b usle c
b usgt c
b usgt c
b usge c
b usge c

1(1)«
0(1) ~

= 1(1).
= 0(1) ♦
= 1(1)«
= 0(1) «
= 1(1).
= 0(1)-
= 1(1)
= 0(1)
= 1(1)
= 0(1)

lb| = |c|
Ibl^lcl

> IW Icl
► Ibl = |c|
* IbKlcl
* Ibl > Icl
* lb|<|c|
+ Ib|>|c|
-> lb|>|c|
-> lb|<|c|
- lb I > |c|
- IbKlcl

310

Table 8: Bitstring Symbols

constant symbol simp symbol description type
0(0) (BS 0 0) constant bitstring of value 0, length 0 B
0(1) (BS 0 1) constant bitstring of value 0, length 1 B

1(1) (BS 1 1) constant bitstring of value 1, length 1 B
0(2) (BS 0 2) constant bitstring of value 0, length 2 B
1(2) (BS 1 2) constant bitstring of value 1, length 2 B
2(2) (BS 2 2) constant bitstring of value 2, length 2 B
3(2) (BS 3 2) constant bitstring of value 3, length 2 B
0(3) (BS 0 3) constant bitstring of value 0, length 3 B

function symbol simp symbol description type
lh LH bitstring length B -> N

1 1 USVAL bitstring value B -* N
< : > USSUB bitstring substring BxZxZ^B
@ USC0NC bitstring concatenation BxB-+B
== USEQL bitstring equality BxB^B
"== USNEQ bitstring nonequality BxB^B
uslt USLSS bitstring less than BxB^B
usle USLEQ bitstring less than or equal B x B -> B
usgt USGTR bitstring greater than BxB^B
usge USGEQ bitstring greater than or equal B x B -> B
++ USPLUS bitstring addition BxB^B

USDIFFERENCE bitstring subtraction BxB^B
** USTIMES bitstring multiplication BxB^B

// USQU0TIENT bitstring quotient BxB^B
usremainder USREMAINDER bitstring remainder BxB^B
-- USN0T bitstring logical negation B -* B
&& USAND bitstring logical conjunction BxB-^B
usor USOR bitstring logical disjunction BxB^B
usxor USXOR bitstring logical exclusive disjunction BxB-»B
zeros ZEROS bitstring of all 0's Z-> B
ones ONES bitstring of all l's Z-> B
lastone LASTONE bitstring low-order 1 index B -*B

311

VbVc lh(b++c)=max(lh(b),lh(c))+l
VbVc |b++c| = |b| + |c|
VbVc lh(b- -c)=max(lh(b),lh(c))+l
VbVc |b- -c| = j/|b|<|c|

then2lh(h- -c)+|b|-|c|
else |b|-|c|

VbVc lh(b**c)=lh{b)+lh(c)
VbVc |b**c| = |b|*|c|
VbVc lh(b//c)=lh(b)
VbVc lh(b usmod c)=lh(c)

Vb lh(~~b)=lh(b)
VbVc lh(bbbc)=max(lh(b),lh(c))
VbVc lh(b usor c)=max(lh(b),lh(c))
VbVc lh(b usxor c)=max(lh{b),lh(c))

Vi /Ä(zeros(i))=ma2(0,i)
Vi |zeros(i)|=0
Vi lh(ones(\))=max(0,i)
Vi i>0 -► |ones(i)|=2i-l

The deductive capability of the simplifier, with respect to the theory of bitstrings, is ap-
proximately limited to those facts that are consequences of the above axioms. The rules
preceded by "f" are implemented automatically only when the bitstrings involved have
constant lengths and all of the substring selectors are constant-valued. For variable-length
bitstrings and variable-substring selectors, user-invokable axioms have been provided. See
page 73 for a list of the user-invokable axioms for the bitstring function symbols. User-
invokable axioms are also provided for defining the values of the bitstring logical operators
usnot, usand, usor, usxor, and useqv, and for defining the length and value of the lastone
operator.

Note that usplus is not associative: for example, (1(8) ++ 1(2)) ++ 1(2) = 3(10), while
1(8) ++ (1(2) ++ 1(2)) = 3(9). Of course, it is true that I (a ++ b) ++ c| = I a ++ (b
++ c)|.

9.5 ARRAYS

The character "a" is used to denote the theory of arrays. The command "activate a"
activates the solver for the theory of arrays; "deactivate a" deactivates this solver.

The language of the theory of arrays contains the function symbols origin, range, element,
slice, and aconc, as well as the constant symbol emptyarray, denoting the empty array. The
expression origin{\) denotes the integer origin (initial index) of the array v. The expression

312

<sdvs.l> simp
expression: x = 9(5) -> x<3:2> = 2(2)

true

<sdvs.l> simp
expression: 0(1) @ 3(5) = 3(6)

true

<sdvs.l> simp
expression: x ++ 1(1) usgt x

1(1)

<sdvs.l> simp
expression: x ++ y = y ++ x

true

<sdvs.l> simp
expression: x usor 0(5) = x

x usor 0(5) = x

<sdvs.l> simp
expression: lh(x) = 5 -> x usor 0(5) = x

true

<sdvs.l> simp
expression: lh(x) ge 5 -> x usor 0(5) = x

lh(x) ge 5 —> x usor 0(5) = x

Figure 19: Simplification of Bitstring Expressions (Part 1)

313

<sdvs.l> simp
expression: lh(b) = 8 -> b<8:8> = 0(0)

true

<sdvs.l> simp
expression: lh(b) = 8 -> b<100:-l> = b

true

<sdvs.l> simp
expression: lh(b) = 8 -> b<5:-l> = b<5:0>

true

<sdvs.l> simp
expression: lh(b) = 8 -> b<10:4> = b<7:4>

true

<sdvs.l> simp
expression: 6 @ 0(0)

<sdvs.l> simp
expression: |6| = 1 -> b usgt 0(8) = 1(1)

true

<sdvs.l> simp
expression: 1(8) ++ 10(9)

11(10)

<sdvs.l> simp
expression: 1(8) - 10(8)

503(9)

<sdvs.l> simp
expression: lh(b) = 8 -> lh(b usor b) = 8

true

<sdvs.l> simp
expression: \zeros(n)\ = 0

true

Figure 20: Simplification of Bitstring Expressions (Part 2)

314

Table 9: Array Symbols

constant symbol simp symbol description type
emptyarray EMPTYARRAY the empty array V
function symbol simp symbol description type
origin
range

D
[:]
aconc

ORIGIN
RANGE
ELEMENT

SLICE

ACONC

array origin
array length
array element
subarray
array concatenation

V -* N
V -> N
VxZ^U
V x Z x Z -* V
VxV-»V

range(v) denotes the nonnegative range of the array v. The expression element(v,i), written
v[i], denotes the element of the array v with the name i. The expression s/ice(v,i,j), written
v[i:j], denotes the subarray of the array v extending from elements named i to j, inclusively.
The expression aconc(vl,v2) denotes the concatenation of the arrays vl and v2. Some ex-
amples of expressions in this language are

origin(v)=0 —> range(v[0:0]) = 1

range(emptyarray) = 0

range(aconc(v, emptyarray))

v[origin(v): origin(v)+range(v)-l] = v

aconc(v[0:5], v[6:9])

range(vl) = 3 and range(v2) = 3 -> v2[0] = aconc(vl, v2)[3]

V denotes the domain of arrays, Z the domain of all integers, N the domain of nonnegative
integers, and U the universal domain. Table 9 presents a description of the symbols in the
language of the theory of arrays.

Axiomatization The theory of arrays obeys the following axioms:

Vv range(v)> 0
Vv range(v)=0 <-> v=emptyarray
VvlVv2 range(aconc(\l,v2))=range(vl)+range(\2)

315

Vv v=aconc(v,emptyarray)=aconc(emptyarray,v)
VvViVj origin(v)<i<j>origin(v+range(v) —>■ ran#e(v[i:j])=j-i+l
Vv v=v [origin{ v): origin{ v)+range(v)-1]
VvViVj i>j -* v[i:j]=emptyarray
VvViVj i<origin(v) —>■ v[i:j]=v[on'gm(v):j]
VvViVj j>on'firm(v)+ran5e(v) ->• v[i:j]=v[i:on'0m(v)+ran#e(v)-l]
VvViVjVk i<j<k -* aconc(v[i:j],v[j+l:k])=v[i:k]

The deductive capability of the simplifier with respect to the theory of arrays is limited
to those facts that are consequences of the above axioms. The rules preceded by "f" are
implemented automatically only' when the arrays involved have constant origins and ranges
and all of the index selectors are constant-valued. See page 78 for a list of the user-invokable
axioms dealing with variable-length arrays and variable array selectors. Some examples of
simplification are given in Figure 21.

9.6 COVERINGS

The character "c" is used to denote the theory of coverings (set partitions). The command
"activate c" activates the solver for the theory of coverings; "deactivate c" deactivates this
solver.

The language of the theory of coverings includes the predicate symbols alldisjoint, covering,
and pcovering; the constant symbols emptyplace, representing the empty place; everyplace,
representing the universal place; and the function symbols diff, inter, and union. The
symbol all is an abbreviation for everyplace, i.e., all = everyplace "simps" to true. The
predicate alldisjoint(xi, ■ ■ -,xn), n > 1, is satisfied when the places a:,- are pairwise disjoint.
The predicate covering(x,yi, ■ • • ,Vk), k > 1, is satisfied when the places y,- are pairwise dis-
joint, and their union is exactly the place x. The predicate pcovering{x,yi,. ..,yk), k>\,
is satisfied when the places y, are pairwise disjoint and their union is a subplace of the
place x. It is always true (and the simplifier knows) that pcovering (all, x) and pcovering(x,
emptyplace) for any place x, declared or not. Some examples of formulas in this language are

covering(a, b, c, d)

alldisjoint(a, emptyplace)

pcovering(all, a, b)

S denotes the domain of places. The constant emptyplace is in the domain S, and the
alldisjoint, covering, and pcovering predicates operate on objects in the domain S. Table
10 presents a description of the symbols in the language of the theory of coverings.

316

<sdvs.l> simp
expression: origin(v) = 0 and range(v) ge 1 -> range(v[0:0]) = 1

origin (v) = 0 ft range (v) ge 1 —> range (v [0:0]) = 1

(Though true, simp does not know this automatically.)

<sdvs.l> simp
expression: origin(v) = 0 and range(v) = 1 -> range(v[0:0]) = 1

true

<sdvs.l> simp
expression: origin(v) = 0 and range(v) = 1 -> range(v[3:3]) = 0

true

<sdvs.l> simp
expression: range (emptyarray) = 0

true

<sdvs.l> simp
expression: range(aconc(v, emptyarray)) = range(v)

true

<sdvs.l> simp
expression: origin(v) = -10 and range(v) = 3 -> t; = v[-10:-8]

true

<sdvs.l> simp
expression: range(v) ge 0

true

<sdvs.l> simp
expression: origin(v) = 0 and range(v) = 10 -> v = aconc(v[0:5], v[6:9])

true

Figure 21: Simplification of Array Expressions

317

Table 10: Covering Symbols

constant symbol simp symbol description type
emptyplace EMPTYPLACE the empty place S
predicate symbol simp symbol description type
alldisjoint
covering
pcovering

ALLDISJOINT
COVERING
PCOVERING

pairwise disjointness predicate
set partition predicate
partial set partition predicate

S+ -> P
S+ ^P
S+ ^P

function symbol simp symbol description type
diff
inter
union

DIFF
INTER
UNION

set difference
set intersection
set union

SxS-^S
s+ -s
s+ ^s

Semantics A place is a structure on a set. This is incorrectly, though easily, confused
with the contents of a place, which is a specific instance of that structure, e.g. a specific
bitstring. However, the contents of a place may be objects of other types, such as integers,
arrays, sets, or even other places.

For descriptive and intuitive purposes, consider each place p to be associated with an
(unstructured) set loc(p) of locations. For example, if the contents of p were bitstrings,
then loc(p) would be the set of individual bit locations. Two or more places may have the
same set of locations yet still be unequal as places (because their contents, or values, may
be different, for example, because of their component bits being ordered differently.)

The theory of coverings satisfies the following axioms:

Vp alldisjoint(j>)
Vp1...pk alldisjoint^,...,^) ~ /^locfp^nlocfrj) = 0

VsVpj.-.Vpjj cowerm^s.pj,...^) <-» loc(s)=loc(p1)U...Uloc(pk) A alldisjoint^,...,^)
VsVp1...Vpk pcovering(s,j>i,...,j>y,) <-+ loc(s)Dloc(p1)U...Uloc(pk) A alldisjoint^,...,^)

The simplifier has full deductive capabilities for dealing with the theory of coverings. See
Figure 22 for examples of simplification of covering expressions.

The following is an example illustrating the use of alldisjoint. (The machine isps description
of alias.machine is called alias.isp.)

alias.machine{US} :=
BEGIN

»»variables**

mem[0:10]<15:0>,

318

<sdvs.l> simp
expression: pcovering(a, x, y) -> alldisjointfx, y)

true

<sdvs.l> simp
expression: covering(a, b) -> coveringfb, a)

true

<sdvs.l> simp
expression: covering(a, b, c) & covering(a, b) -> c = emptyplace

covering(a,b,c) k covering(a.b) —> c = emptyplace

<sdvs.l> jimp
expression: covering(a, b, c) & covering(a, b) -> covering(c, emptyplace)

true

<sdvs.l> simp
expression: alldisjointfa, b, c, d) -> alldisjoint(a, b)

true

<sdvs.l> simp
expression: alldisjoint(a)

true

<sdvs.l> simp
expression: covering(emptyplace, diff(a, a))

true

<sdvs.l> simp
expression: covering (everyplace, a, diff(everyplace, a))

true

<sdvs.l> »imp
expression: alldisjointfa, diff(b, a))

true

<sdvs.l> simp
expression: pcovering(a, b, c) -> alldisjoint(a, b)

pcovering(a,b,c) —> alldisjoint(a,b)

Figure 22: Simplification of Covering Expressions

319

ir<15:0>,
pc<15:0> := mem[0]<15:0>,
k<3:0> := ir<10:7>

♦♦code**

mpl{MAIN} := BEGIN

ir _ mem[pc] NEXT

pc _ pc + 1 NEXT

mem[k] _ mem[pc]

END
END

<sdvs.l> ppsd
state delta: alias.sd

[sd pre: (isps(alias.isp),.alias.machine\upc = alias.machine\started,
|.pc| ge 0,|.pc| le 9,|.mem[|.pc|]<10:7>| le 10)

mod: (all)
post: (#mem[|.mem[|.mem[0]|]<10:7>|] = .mem[|.mem[0]| + 1])]

<sdvs.l> pp
object: alias.proof

proof alias.proof:

prove alias.sd
proof:

cases |.mem[0]| le 0
then proof:

(provebyaxiom alldisjoint(mem[0] ,mem[|.pc| + 1])
using: disjoint\elements,

*)
else proof:

(apply,
provebyaxiom alldisjoint(mem[0] ,mem[|.pc| + 1])

using: disjoint\elements,
apply,
cases |.k| = |.pc|

then proof:
else proof:

(provebyaxiom alldisjoint(mem[|.k|] ,mem[|.pc|])
using: disjoint\elements,

*))

This proof was actually input to the editor as follows:

((prove alias.sd

(cases (le (usval (dot (element mem 0))) 0)

((provebyaxiom (alldisjoint (element mem 0) (element mem (plus (usval (dot pc)) 1))) |disjoint
((apply nil)

(provebyaxiom (alldisjoint (element mem 0) (element mem (plus (usval (dot pc)) 1))) |disjoint

320

(apply nil)
(cases (eq (usval (dot k)) (usval (dot pc))) nil

((provebyaxiom (alldisjoint (element mem (usval (dot k))) (element mem (usval (dot pc))}
|disjoint\\elements|)

*))))))

<sdvs.l> readaxioms
path name[axioms/arraycoverings.axioms] : axioms/arraycoverings.axioms

readaxioms (redundant) — "axioms/arraycoverings.axioms"

<sdvs.2> interpret
proof name: alias.proof

open — [sd pre: (isps(alias.isp),
.alias.machine\upc - alias.machine\started,|.pc| ge 0,
|.pc| le 9,|.mem[|.pc|]<10:7>| le 10)

mod: (all)
post: (#mem[|.mem[[.mem[0]p<10:7>|] = .mem[|.mem[0]| + 1])]

cases — |.mem[0]| le 0

open — [sd pre: (|.mem[0]| le 0)
comod: (all)

mod: (all)
post: (#mem[|mem\1184<10:7>|] = mem\1187)]

provebyaxiom disjoint\elements — alldisjoint(mem[0],
mem[|.pc| + 1])

apply — [sd pre: (.alias.machine\upc - alias.machine\started)

mod: (alias.machine\upc,ir)

post: (#ir « .mem[|.pc|],

[tr {in ALIAS.MACHINE} PC ; MEM....;])]

apply — [sd pre: (true)
comod: (alias.machine\upc)

mod: (alias.machine\upc,pc)
post: (#pc = (.pc ++ 1(2))<15:0>,

[tr {in ALIAS. MACHINE} MEM....;])]

apply — [sd pre: (|.k| le 10)

comod: (alias.machine\upc)

mod: (alias.machine\upc,mem[|.k|])

post: (#mem[|.k|] = .mem[|.pc|],

[tr «ALIAS.MACHINE\halted])]

close — 4 steps/applications

open — [sd pre: ("(|.mem[0]| le 0))

comod: (all)
mod: (all)

post: (»mem[|mem\1184<10:7>|] = mem\1187)]

apply — [sd pre: (.alias.machine\upc = alias.machine\started)

321

mod: (alias.machine\upc,ir)
post: (#ir = .mem[|.pc|] ,

[tr {in ALIAS.MACHINE} PC. . . ; MEM_. ..;])]

provebyaxiom disjoint\elements — alldisjoint(mem[0],
mem[|.pc| + 1])

apply — [sd pre: (true)
comod: (alias.machine\upc)

mod: (alias.machine\upc,pc)
post: (#pc = (.pc ++ 1(2))<15:0>,

[tr {in ALIAS.MACHINE} MEM ;])]

cases — |.k| = |.pc|

open — [sd pre: (|.k| = |.pc|)
comod: (all)

mod: (all)
post: (#mem[|mem\1184<10:7>|] = mem\1187)]

close — 0 steps/applications

open — [sd pre: (~(|.k| = |.pc|))
comod: (all)

mod: (all)
post: (#mem[|mem\ll84<10:7>|] = mem\H87)]

provebyaiiom disjoint\elements — alldisjoint(mem[| .k|] ,
mem[|.pc|])

apply ~ [sd pre: (|.k| le 10)
comod: (alias.machine\upc)

mod: (alias.machine\upc,mem[|.k|])
post: (#mem[|.k|] = .mem[|.pcp,

[tr «ALIAS.HACHINE\halted])]

close — 2 steps/applications

join — [sd pre: (true)
comod: (all)

mod: (all)
post: (#mem[|mem\ll84<10:7>p = mem\ll87)]

close — 4 steps/applications

join — [sd pre: (true)
comod: (all)

mod: (all)
post: (#mem[|mem\ll84<10:7>p = mem\H87)]

close — 1 steps/applications

322

Table 11: List Symbols

function symbol simp symbol description type
cons
car
cdr

CONS
CAR
CDR

list construction
list head selection
list tail selection

UxU^L

L^ U

9.7 LISTS

The character "1" is used to denote the theory of lists. The command "activate 1" activates
the solver for the theory of lists; "deactivate 1" deactivates this solver.

The language of the theory of lists contains the function symbols cons, car, and cdr. The
expression cons(x,y) denotes a list whose head is x and whose tail is y. The expression
car(x) denotes the head of the list x, and cdr(x) denotes the tail of the list x.

L denotes the domain of list structures. U denotes the universal domain. The list construc-
tion and selection operators represented by cons, car, and cdr operate on objects in the
domains L and U. Table 11 presents a description of the symbols in the language of the
theory of lists. Note that the atom nil is not in the language. If fact, if you try to simp an
expression containing an occurrence of nil, SDVS will break.

Semantics Within the simplifier, only a subtheory of the theory of lists has been imple-
mented. This subtheory is that which satisfies the following axioms:

Vx
VxVy
VxVy

cons(car(x),cdr(x))=x
car{ cons{ x ,y))=x
cdr(cons(x,y))=y

The simplifier has full deductive capabilities for dealing with the subtheory of lists charac-
terized above. See Figure 23 for examples.

9.8 QUEUES

The character "q" is used to denote the theory of queues. The command "activate q"
activates the solver for the theory of queues; "deactivate q" deactivates this solver.

The language of the theory of queues includes the constant symbol nullqueue, the predi-
cate symbol emptyqueue, and the function symbols enqueue, dequeue, and frontqueue. The
symbol nullqueue denotes the empty queue. The predicate emptyqueue is true when applied
to the empty queue. The expression enqueue(q,u) denotes the queue formed by appending

323

<sdvs.l> simp
expression: car(cons(x, y))

<sdvs.l> simp
expression: cons(car(x), cdr(x))

<sdvs.l> simp
expression: a = consfb, c) and d = cons(t, b) -> car(a) = cdr(d)

true

Figure 23: Simplification of List Expressions

Table 12: Queue Symbols

constant symbol simp symbol description type
nullqueue NULLQUEUE the empty queue Q
predicate symbol simp symbol description type
emptyqueue EMPTYQUEUE empty queue predicate Q->P
function symbol simp symbol description type
enqueue
dequeue
frontqueue

ENQUEUE
DEQUEUE
FRONTQUEUE

append to back of queue
remove front from queue
front of queue

QxU^Q
Q-Q
Q-> U

u to the back of q. The expression dequeue(q) denotes the queue formed by removing the
front element from q. The expression frontqueue(q) denotes the front element of q. Some
examples of expressions in this language are

frontqueue(enqueue(nullqueue, u))

dequeue(enqueue(q, u))

Q denotes the domain of queues. U denotes the universal domain. The constant nullqueue
is in the domain Q, and the emptyqueue predicate operates on objects in the domain Q.
The functions enqueue, dequeue, and frontqueue operate on objects in the domains Q and
U, i.e., on queues and elements of queues. Table 12 presents a description of the symbols
in the language of the theory of queues.

Semantics The theory of queues satisfies the following axioms:

324

<sdvs.3> simp
expression: emptyqueue(q) -> q = nullqueue

true

<sdvs.3> simp
expression: frontqueue(enqueue(nullqueue, u)) = u

true

<sdvs.3> simp
expression: dequeue (enqueue (q, u)) = enqueuefdequeue(q), u)

dequeue(enqueue(q,u)) = enqueue(dequeue(q),u)

<sdvs.3> simp
expression: frontqueue(enqueue(nullqueue, u))

<sdvs.3> simp
expression: dequeue (enqueue (nullqueue, u))

nullqueue

<sdvs.3> simp
expression: q ~= nullqueue -> frontqueue(q) = frontqueue(enqueue(q, u))

true

<sdvs.3> simp
expression: 'emptyqueue(q) -> dequeue(enqueue(q, u)) = enqueue(dequeue(q), u)

true

Figure 24: Simplification of Queue Expressions

Vq emptyqueue(q) *-* q=nullqueue
VqVu nullqueue^ enqueue(q,u)
VqVu dequeue(enqueue(q,u)) = if q=nullqueue then nullqueue

else enqueue(dequeue(q),u)
VqVu frontqueue(enqueue(q,u)) = if q=nullqueue then u

else frontqueue(q)

The simplifier has full deductive capabilities for dealing with queues. See Figure 24 for
examples.

325

Table 13: Enumeration Type Symbols

predicate symbol simp symbol description type
ele ELE less than or equal U x U -»• P
elt ELT less than UxU-^P
ege EGE greater than or equal U x U -* P
egt EGT greater than UxU-^P
epred EPRED predecessor U x U - P
esucc ESUCC successor UxU^P

9.9 ENUMERATION TYPES

The symbol "enum" is used to denote the theory of enumeration types. The command
"activate enum" activates the solver for the theory of enumeration types; "deactivate enum"
deactivates this solver.

The language of the theory of enumeration types includes ele, ege, elt, egt, epred, and esucc.
All expressions must be written in prefix notation.

Some examples of expressions in this language are

elt(a, b) - -> ele(a, b)

elt(a, b) or a = b or egt(a, b)

epred(a, b) - -> esucc(b, a)

The domain of enumeration types is simply U, the universal domain. Table 13 presents a
description of the symbols in the language of the theory of enumeration types.

Semantics The theory of enumeration type order satisfies the axioms of total ordering
with predicates for successor and predecessor relations. The primary use of enumeration
types is when order is defined on some non-numeric quantities, such as is possible in Ada.
The range of the Ada character function "char" is ordered by (char m) elt (char n) for
0 < m < n < 127. The translation from characters in Ada programs to char forms in SDVS
is made via the lisp char-code, e.g. (char-code (char "a" 0))=97. Thus, the Ada character
'a' would be translated to char(97). Similary esucc and epred<dso apply for n = m+1.

The simplifier has full deductive capabilities for dealing with enumeration types. See Figure
25 for examples.

326

<sdvs.4> simp
expression: ele(a, b) or ele(b, a)

true

<sdvs.4> simp
expression: ele(a, b) & ele(b, c) & ele(c, d) & ele(d, a) -> a = b

true

<sdvs.4> simp
expression: elt(a, b) & ele(b, c) -> a = c

egt(b.a) —> -(ege(c.b))

<sdvs.4> simp
expression: elt(a, b) & ele(b, c) & (egt(b, a) -> ~ege(c, b)) -> a = c

true

<sdvs.4> simp
expression: elt(char(97), char(98))

true

Figure 25: Simplification of Enumeration Type Expressions

327

Table 14: VHDL Time Symbols

function symbol simp symbol description type
vhdltime VHDLTIME time constructor N x N -> T
timeglobal TIMEGLOBAL global time selector T-> N
timedelta TIMEDELTA delta time selector T-> N
timeplus TIMEPLUS time addition TxT-»T
predicate symbol simp symbol description type
timelt TIMELT time less than TxT^P
timele TIMELE time less than or equal TxT^P
timegt TIMEGT time greater than TxT^P
timege TIMEGE time greater than or equal TxT-»P

9.10 VHDL TIME

The character "t" is used to denote the theory of VHDL time. The command "activate t"
activates the solver for the theory of VHDL time; "deactivate t" deactivates this solver.

The language of the theory of VHDL time contains the function and predicate symbols
described by Table 14, in which T denotes the domain of VHDL time objects, N the domain
of nonnegative integers, and P the domain of prepositional (boolean) values.

The interpretations of the VHDL time symbols are fairly self-explanatory.

Function vhdltime takes two nonnegative integers, m and n, and constructs vhdltime(m,n),
a VHDL time object.

Function timeglobal takes a VHDL time object vhdltime(m,n) and returns m, the global
time component.

Function timedelta takes a VHDL time object vhdltime(m,n) and returns n, the delta time
component.

Function timeplus takes two VHDL time objects, vhdltime(mj,nj) and vhdltime(m2,n2),
and returns a VHDL time object that is their sum, according to the following (idiosyncratic)
definition:

• if rng = 0, then

timeplus(vhdltime(mf, nj), vhdltimeijn^, ng)) = vhdltime{m^ nl + n^)

• if m«) ^ 0, then

timeplus(vhdltime(mj, nj), vhdltime(m2, "#)) = vhdltime{m1 + m2, 0)

328

Table 15: VHDL Waveforms Symbols

function symbol simp symbol description type
waveform
transaction
inertiaLupdate
transport-update
val

WAVEFORM
TRANSACTION
INERTIAL-UPDATE
TRANSPORT-UPDATE
VAL

waveform constructor
transaction constructor
waveform "inertial" update
waveform "transport" update
driver value

TR+^ W
T x U -+ TR
W x TR+ — W
W x TR+ -* W
WxT-»U

predicate symbol simp symbol description type
preemption PREEMPTION preemption test for update WxTR^P

Predicates timelt, timele, timegt and timege compare two VHDL time objects according to
the lexicographic order in their components.

9.11 VHDL WAVEFORMS

The character "w" is used to denote the theory of VHDL waveforms. The command "acti-
vate w" activates the solver for the theory of VHDL waveforms; "deactivate w" deactivates
this solver.

The language of the theory of VHDL waveforms contains the function and predicate symbols
described by Table 15 in which W denotes the domain of waveform objects, TR the domain
of transaction objects, T the domain of time objects, N the domain of nonnegative integers,
P the domain of propositional (boolean) values, and U the universal domain (any arbitrary
object is in U).

We describe the interpretations of the VHDL waveforms symbols.

Function waveform takes a sequence of transaction objects, transaction j, transaction2, ••■,
and constructs waveform(transactionj,transactiong, ...), a waveform object.

Function transaction takes a VHDL time object vhdltime(m,n) and a value u, and constructs
a transaction object transaction(vhdltime(m,n),v).

Function inertiaLupdate (respectively transportjupdate) takes a waveform object and a se-
quence of transaction objects, and returns the updated waveform according to the VHDL
Language Reference Manual's algorithm for updating projected output waveforms, assuming
inertial (respectively transport) delays (Section 8.3.1 of [26]).

Function val takes a waveform object and a VHDL time object, and returns the value of
that transaction in the waveform whose time is nearest to but not greater than the time
object.

Predicate preemption takes a waveform and a transaction, and determines whether that
transaction will preempt (replace) prior transactions on the waveform as a result of the

329

VHDL algorithm for inertial driver update.

330

10 SDVS EXERCISES

Exercise 1. Create a state delta expressing the computation

x := x + 1

Create a state delta expressing the claim that if x has initial value 1, then after the above
computation x will have the value 2. Prove it.

Exercise 2. Create a state delta expressing the computation

x := x + 1;

x := x + x

Create a state delta expressing the claim that if x has initial value 1, then after the above
computation x will have the value 4. Prove it.

Exercise 3. Create a state delta expressing the computation

x :— x + 1;

V := x + y

Create a state delta expressing the claim that if x and y are disjoint places having initial
value 1, then after the above computation, y will have the value 3. Prove it.

Exercise 4. Go into the editor and look at testproofs/manual/isps/chost.isp. Go
back to SDVS and isps it (giving the argument testproofs/manual/isps/chost.isp).
ppsd isps it. Create the following state delta (calling it slO):

[sd pre: isps(chost.isp), |.x| = 1, .machinex\upc = machinex\started
comod: ()
mod: all
post: |#x| = 4]

Type prove <CR> slO. Type "*" after SDVS responds with "proof[]:".

Now let's do it again in slow motion. Type init <CR>. Hit <CR> after SDVS responds
with "proof[]". Now type prove <CR>, slO <CR>, and again <CR> after SDVS responds
with "proof[j".

1. Type usable <CR>

2. Type ppeq <CR> .machinex\upc

3. Type simp <CR> .x

4. Type simp <CR> \.x\

331

5. Type apply <CR><CR>

6. Repeat steps 1 through 4

7. Type whynotapply <CR> u <CR> 2 <CR>

8. Type apply <CR> <CR>

9. Type usable <CR>

Exercise 5. Go over the Ada example on page 173 of this manual.

Exercise 6. Write a state delta expressing the computation

x := x + 1;

if x = 2 then x := x — 1 else x := 1

Write a state delta expressing the claim that if the above fragment is executed, then x will
eventually get the value 1.

Exercise 7. Prove

[sd pre: .x = 1
[sd pre: TRUE

comod: ()
mod: x
post: #x = .x + 1]

comod: ()
mod: x
post: #x = 5]

by execution and by induction.

Exercise 8. Prove

[sd pre: .x = 1
[sd pre: TRUE

comod: ()
mod: x
post: #x > .a:]

comod: ()
mod: x
post: #x > 1000]

Exercise 9. Show that the following simp to true:

332

1. a = 6&6 = c—»a = c

2. /(/(/(a))) = a & /(/(/(/(/(a))))) = a - /(a) = a

3. (x It 4*y !k x gt 3 -+ y le 1) —► (z It 4 * y —► x le 3)

4. z = 9(5) -> x < 3 : 2 >= 2(2)

Exercise 10. Type readaxioms <CR> axioms/bitstring.axioms

simp (x(7 : 0) + +y(5 : 0))(4 : 1) = (x + +y){4 : 1)

Create a static state delta representing the truth of the above equality.

Prove it using the axiom ussub\usplus\ussub.

Exercise 11. Type read <CR> lemmas/lemmas.lemmas

Prettyprint (pp) the lemma carrylemma and its lemmaproof carrylemma

Prove the state delta carry.sd:

[sd pre: covering(all,a,b,c),.a= 1(1),lh(.b) = l,.c= 1(1)
comod: ()
mod: ()
post: ((.a++.6) + +.c)(l:l) = l(l)]

by using rewritebylemmaon the term ((.a++.b) ++.c){l : 1) and the lemma carrylemma.

Exercise 12. Write a state delta representing the static claim that

0 le i & He 8 & a(9 : t) = 6(9 - i : 0) — a(9 : 8) = 6(9 - i: 8 - «)

Activate b3 and use notice a(9 : 8) = a(9 : i)(9 — i: 8 — i) to prove the above state delta.

Exercise 13. Write the state delta equivalent to the program fragment

if x = 0 then y := 1 else z := 1

Write the state delta representing the claim (and prove) that after execution of the above
program fragment some place will have the value 1. (Use quantification.)

Using the following Ada program (on the file testproofs/manual/ada/distribute.ada):

with text Jo; use text jo;
with integer Jo; use integer Jo;
procedure dist is

x,y,z : integer;
begin

333

get(x);
get(y);
get(z);
put((y+z)*x);

end;

prove the following state deltas:

Exercise 14. distO.thm

[sd pre: (ada(distribute.ada)) mod: (all) post: (terminated(dist))]

Exercise 15. distl.thm

[sd pre: (ada(distribute.ada))
mod: (all)
post: (#stdout[l]

= .stdin[l] * .stdin[2) + ,stdin[l] * .stdin[3],
terminated(dist))]

Exercise 16. dist2.thm

[sd pre: (ada(distribute.ada))
mod: (all)
post: (3a(3b(3c(#stdout[l] = (.b + .c) * .a))))]

334

References

[1] L. G. Marcus, "SDVS 12 Users' Manual," Technical Report ATR-93(3778)-4, The
Aerospace Corporation, September 1993.

[2] T. K. Menas and I. V. Filippenko, "SDVS 13 Tutorial," Technical Report ATR-
94(4778)-6, The Aerospace Corporation, September 1994.

[3] B. Levy, I. Filippenko, L. Marcus, and T. Menas, "Using the State Delta Verification
System (SDVS) for Hardware Verification," in Proceedings of the IFIP TC10/WG 10.2
International Conference on Theorem Provers in Circuit Design: Theory, Practice and
Experience: Nijmegen, The Netherlands (ed. V. Stavridou, T. F. Melham, and R. T.
Boute), pp. 337-360, North-Holland, June 1992.

[4] I. V. Filippenko, "VHDL Verification in the State Delta Verification System (SDVS),"
in Proceedings of the 1991 International Workshop on Formal Methods in VLSI Design
(ed. P. A. Subrahmanyam), (Miami, Fla.), ACM, January 1991.

[5] B. H. Levy, "An Overview of Hardware Verification Using the State Delta Verifica-
tion System (SDVS)," in Proceedings of the 1991 International Workshop on Formal
Methods in VLSI Design, (Miami, Fla.), ACM, January 1991.

[6] L. Marcus, S. D. Crocker, and J. R. Landauer, "SDVS: A System for Verifying Mi-
crocode Correctness," in 17th Microprogramming Workshop, pp. 246-255, IEEE, Oc-
tober 1984.

[7] Advanced Micro Devices, Inc., Am7968/Am7969 TAXIchip Integrated Circuits Tech-
nical Manual, October 1992.

[8] I. V. Filippenko, "SDVS/VHDL Application Program Plan," Technical Report ATR-
94(4778)-2, The Aerospace Corporation, March 1994.

[9] T. K. Menas, "A Proposal for the Verification in SDVS of a Portion of the MSX
Tracking Processor Software," Technical Report ATR-92(2778)-7, The Aerospace Cor-
poration, September 1992.

[10] T. K. Menas, J. M. Bouler, and J. E. Doner, "Specifications and Correctness Proofs for
Portions of the MSX Ada Software," Technical Report ATR-93(3778)-5, The Aerospace
Corporation, September 1993.

[11] T. K. Menas, J. M. Bouler, J. E. Doner, I. V. Filippenko, B. H. Levy, and L. G. Marcus,
"Overview of the MSX Verification Experiment using SDVS," Technical Report ATR-
93(3778)-6, The Aerospace Corporation, September 1993.

[12] R. A. Platek, "Making Computers Safe for the World: An Introduction to Proofs of
Programs Part I," in Logic and Computer Science (ed. P. Odifreddi), Springer-Verlag,
1990. Lecture Notes in Mathematics 1429.

335

[13] J. V. Cook, "Verification of the C/30 Microcode Using the State Delta Verification
System (SDVS)," in Proceedings of the 13th National Computer Security Confer-
ence, (Washington, D. C), pp. 20-31, National Institute of Standards and Technol-
ogy/National Computer Security Center, October 1990.

[14] M. R. Barbacci, G. E. Barnes, R. G. Cattell, and D. P. Siewiorek, "The ISPS Computer
Description Language," Technical Report CMU-CS-79-137, Carnegie-Mellon Univer-
sity, Computer Science Department, August 1979.

[15] T. A. Aiken and D. F. Martin, "A Revised Formal Description of the Incremental
Translation of ISPS into State Deltas in the State Delta Verification System (SDVS),"
Technical Report ATR-90(5778)-l, The Aerospace Corporation, September 1990.

[16] D. F. Martin and J. V. Cook, "Adding Ada Program Verification Capability to the
State Delta Verification System (SDVS)," in Proceedings of the 11th National Com-
puter Security Conference, National Bureau of Standards/National Computer Security
Center, October 1988.

[17] American National Standards Institute, Inc., Ada Programming Language, ANSI/MIL-
STD-1815A-1983ed., 1983.

[18] D. F. Martin, "A Formal Description of the Incremental Translation of Core Ada into
State Deltas in the State Delta Verification System," Technical Report ATR-88(3778)-
1, The Aerospace Corporation, September 1988.

[19] D. F. Martin, "A Formal Description of the Incremental Translation of Stage 1 Ada
into State Deltas in the State Delta Verification System (SDVS)," Technical Report
ATR-89(4778)-7, The Aerospace Corporation, September 1989.

[20] J. Doner and J. V. Cook, "Example Proofs of Stage 1 Ada Programs in the State
Delta Verification System (SDVS)," Technical Report ATR-89(4778)-8, The Aerospace
Corporation, September 1989.

[21] J. V. Cook, "Implementing the Formal Description of the Incremental Translation
of Core Ada into State Deltas," Technical Report ATR-88(3778)-2, The Aerospace
Corporation, September 1988.

[22] D. F. Martin, "A Formal Description of the Incremental Translation of Stage 2 Ada
into State Deltas in the State Delta Verification System (SDVS)," Technical Report
ATR-90(5778)-5, The Aerospace Corporation, September 1990.

[23] J. V. Cook and D. F. Martin, "Example Proofs of Stage 2 Ada Programs Containing
Exceptions in the State Delta Verification System (SDVS)," Technical Report ATR-
90(5778)-ll, The Aerospace Corporation, September 1990.

[24] J. V. Cook, "Test Suite for Static Semantic Errors in Core Ada Programs," Technical
Report ATR-88(3778)-3, The Aerospace Corporation, September 1988.

336

[25] T. A. Aiken, J. V. Cook, and L. G. Marcus, "Example Proofs of Core Ada Pro-
grams in the State Delta Verification System," Technical Report ATR-88(3778)-6, The
Aerospace Corporation, September 1988.

[26] IEEE, Standard VHDL Language Reference Manual, 1988. IEEE Std. 1076-1987.

[27] B. H. Levy and I. V. Filippenko, "A Preliminary SDVS Semantics of a VHDL Subset,"
Technical Report ATR-88(3778)-7, The Aerospace Corporation, September 1988.

[28] S. H. Kelem and B. H. Levy, "Preliminary Definition, Examples, and Specifications of
Core VHDL," Technical Report ATR-88(3778)-8, The Aerospace Corporation, Septem-
ber 1988.

[29] T. Aiken, I. Filippenko, B. Levy, and D. Martin, "A Formal Description of the In-
cremental Translation of Core VHDL into State Deltas in the State Delta Verifica-
tion System (SDVS)," Technical Report ATR-89(4778)-9, The Aerospace Corporation,
September 1989.

[30] I. V. Filippenko, "A Formal Description of the Incremental Translation of Stage 4
VHDL into State Deltas in SDVS," Technical Report ATR-94(4778)-4, The Aerospace
Corporation, September 1994.

[31] I. V. Filippenko, "Example Proof of a Core VHDL Description in the State Delta
Verification System (SDVS)," Technical Report ATR-90(5778)-6, The Aerospace Cor-
poration, September 1990.

[32] I. V. Filippenko, "The Partition of VHDL into Language Subsets for the State Delta
Verification System (SDVS)," Technical Report ATR-90(5778)-7, The Aerospace Cor-
poration, September 1990.

[33] L. Marcus and B. H. Levy, "Specifying and Proving Core VHDL Descriptions in
the State Delta Verification System (SDVS)," Technical Report ATR-89(4778)-5, The
Aerospace Corporation, September 1989.

[34] T. K. Menas, "Variants of Invariance," Technical Report ATR-89(8490)-5, The
Aerospace Corporation, September 1989.

[35] T. K. Menas, "The Implementation of Invariance in the State Delta Verification System
(SDVS)," Technical Report ATR-90(5778)-8, The Aerospace Corporation, September
1990.

[36] L. Marcus, "Expressing and Proving Avoidance in SDVS," Technical Report ATR-
88(3778)-4, The Aerospace Corporation, September 1988.

[37] L. Marcus, "The Semantics of Concurrency in SDVS," Technical Report ATR-89(8490)-
4, The Aerospace Corporation, September 1989.

[38] T. K. Menas, "SDVS Enhancements to Verify Claims of Avoidance," Technical Report
ATR-89(4778)-2, The Aerospace Corporation, September 1989.

337

[39] L. Marcus, "An Algorithm for Checking Soundness of Circular State Delta Definitions,"
Technical Report ATR-90(8590)-l, The Aerospace Corporation, September 1990.

[40] L. Marcus, T. Redmond, and S. Shelah, "Completeness of State Deltas," Technical
Report ATR-86(8454)-2, The Aerospace Corporation, September 1986.

[41] T. K. Menas, "The Relation of the Temporal Logic of the State Delta Verification
System (SDVS) to Classical First-Order Temporal Logic," Technical Report ATR-
90(5778)-10, The Aerospace Corporation, September 1990.

[42] G. Nelson and D. C. Oppen, "Fast Decision Procedures Based on Congruence Closure,"
J. ACM, Vol. 27, pp. 356-364, April 1980.

[43] L. Marcus, "More about Proving Recursive Procedures in SDVS," Technical Report
ATR-91(6778)-5, The Aerospace Corporation, September 1991.

[44] J. V. Cook and J. E. Doner, "A Modular Correctness Proof of a Quicksort Proce-
dure Written in Ada using SDVS," Technical Report ATR-91(6778)-8, The Aerospace
Corporation, September 1991.

[45] L. Marcus and T. Redmond, "Two Automated Methods in Implementation Proofs,"
in Ninth International Conference on Automated Deduction (ed. E. Lusk and R. Over-
beek), pp. 622-642, Springer-Verlag, 1988. Lecture Notes in Computer Science, Vol-
ume 310.

[46] E. L. Cohen and J. R. Landauer, "ISPS for SDVS," Technical Report ATR-84(8478)-2,
The Aerospace Corporation, September 1985.

[47] J. V. Cook, "Test Suite for Static Semantic Errors in ISPS Descriptions," Technical
Report ATR-89(4778)-3, The Aerospace Corporation, September 1989.

[48] B. H. Levy, "Inadequacies of ISPS as a Specification Language for Microcode Verifi-
cation," Technical Report ATR-86A(2778)-1, The Aerospace Corporation, September
1987.

[49] L. G. Marcus, "Preliminary Investigations into Specifying and Proving Ada Floating-
Point Programs in the State Delta Verification System (SDVS)," Technical Report
ATR-91(6778)-4, The Aerospace Corporation, September 1991.

[50] L. G. Marcus, "The Semantics of Ada Access Types (Pointers) in SDVS," Technical
Report ATR-92(2778)-5, The Aerospace Corporation, September 1992.

[51] L. Marcus, "Proving Claims about Recursive Procedures in SDVS," Technical Report
ATR-90(5778)-2, The Aerospace Corporation, September 1990.

[52] J. V. Cook and D. F. Martin, "A Formal Description of the Incremental Translation
of Stage 3 Ada into State Deltas in the State Delta Verification System (SDVS),"
Technical Report ATR-91(6778)-2, The Aerospace Corporation, September 1991.

338

[53] J. V. Cook, "Example Proofs of Stage 3 Ada Programs in the State Delta Verifica-
tion System (SDVS)," Technical Report ATR-91(6778)-3, The Aerospace Corporation,
September 1991.

[54] T. Menas, "Safety Properties of Terminating and Nonterminating Ada Programs in
SDVS," Technical Report ATR-92(2778)-2, The Aerospace Corporation, September
1992.

[55] I. V. Filippenko, "A Formal Description of the Incremental Translation of Stage 2
VHDL into State Deltas in the State Delta Verification System (SDVS)," Technical
Report ATR-92(2778)-4, The Aerospace Corporation, September 1992.

[56] I. V. Filippenko, "A Formal Description of the Incremental Translation of Stage 1
VHDL into State Deltas in the State Delta Verification System (SDVS)," Technical
Report ATR-91(6778)-7, The Aerospace Corporation, September 1991.

[57] I. V. Filippenko, "Some Examples of Verifying Core VHDL Hardware Descriptions
Using the State Delta Verification System (SDVS)," Technical Report ATR-91(6778>
6, The Aerospace Corporation, September 1991.

[58] J. Ketonen and J. Weening, "EKL—An Interactive Proof Checker User's Reference
Manual," Technical Report STAN-CS-84-1006, Dept. of Computer Science, Stanford
University, June 1984.

[59] R. Boyer and J. S. Moore, A Computational Logic, (New York: Academic Press, 1979).

[60] J. V. Cook and J. Doner, "User Defined Data Types in the State Delta Verification
System (SDVS)," Technical Report TR-0090(5920-07)-l, The Aerospace Corporation,
September 1990.

[61] T. K. Menas, "A Proof of a Safety Property of a Concurrent Program Using the State
Delta Verification System (SDVS) with Invariants," Technical Report ATR-90(5778)-9,
The Aerospace Corporation, September 1990.

[62] T. Menas, "Safety, In variance, and a New Induction Command in SDVS," Technical
Report ATR-92(2778)-l, The Aerospace Corporation, September 1992.

[63] T. K. Menas and L. G. Marcus, "Timelines and Proofs of Safety Properties in the State
Delta Verification System (SDVS)," Technical Report ATR-92(2778)-9, The Aerospace
Corporation, September 1992.

[64] G. Nelson, "Techniques of Program Verification," Technical Report CSL-81-10, Xerox
Palo Alto Research Center, 1981.

[65] G. Nelson and D. C. Oppen, "Simplification by Cooperating Decision Procedures,"
ACM Trans. Programming Languages and Systems, Vol. 1, pp. 245-257, October 1979.

[66] T. Redmond, "Simplifier Description," Technical Report ATR-86A(8554)-2, The
Aerospace Corporation, September 1987.

339

[67] M. Davis, "Hilbert's Tenth Problem Is Unsolvable," American Mathematical Monthly,
Vol. 80, pp. 233-269, March 1973.

[68] D. F. Martin, "A Preliminary Formal Description of the Incremental Translation of
ISPS into State Deltas in the State Delta Verification System," Technical Report ATR-
86A(2778)-7, The Aerospace Corporation, September 1987.

[69] T. K. Menas, J. M. Bouler, J. E. Doner, I. V. Filippenko, B. H. Levy, and L. G. Marcus,
"Using SDVS to Assess the Correctness of Ada Software Used in the Midcourse Space
Experiment," Technical Report ATR-94(4778)-l, The Aerospace Corporation, April
1994.

[70] I. V. Filippenko, "A Formal Description of the Incremental Translation of Stage 3
VHDL into State Deltas in SDVS," Technical Report ATR-93(3778)-2, The Aerospace
Corporation, September 1993.

[71] I. V. Filippenko and L. G. Marcus, "Integrating Structural VHDL Hardware De-
scriptions into the State Delta Verification System (SDVS)," Technical Report ATR-
92(8180)-!, The Aerospace Corporation, September 1992.

340

Comprehensive SDVS Bibliography

T. A. Aiken, J. V. Cook, and L. G. Marcus, "Example Proofs of Core Ada Programs in the
State Delta Verification System," Tech. Rep. ATR-88(3778)-6, The Aerospace Corporation,
1988.

T. Aiken, I. Filippenko, B. Levy, and D. Martin, "A Formal Description of the Incremen-
tal Translation of Core VHDL into State Deltas in the State Delta Verification System
(SDVS)," Tech. Rep. ATR-89(4778)-9, The Aerospace Corporation, 1989.

T. A. Aiken and D. F. Martin, "A Revised Formal Description of the Incremental Transla-
tion of ISPS into State Deltas in the State Delta Verification System (SDVS)," Tech. Rep.
ATR-90(5778)-l, The Aerospace Corporation, 1990.

L. A. Campbell, "Isolating and Transforming an Ada Heapsort Program for SDVS Analy-
sis," Tech. Rep. ATR-92(2778)-ll, The Aerospace Corporation, Sept. 1992.

E. L. Cohen and J. R. Landauer, "ISPS for SDVS," Tech. Rep. ATR-84(8478)-2, The
Aerospace Corporation, 1985.

E. Cohen and J. Landauer, "Specification Problems Encountered during the Proof of the
C/30 Microcode," Tech. Rep. ATR-86(6778)-2, The Aerospace Corporation, 1986.

J. V. Cook, "A Formal Description of the C/30 Virtual Computer," Tech. Rep. ATR-
86(6771)-2, The Aerospace Corporation, 1986.

J. V. Cook, "A Formal Description of the Incremental Translation of Stage 3 Ada into
State Deltas in the State Delta Verification System (SDVS)," Tech. Rep. ATR-91(6778)-2,
The Aerospace Corporation, 1991.

J. V. Cook, "C/30 Proof," Tech. Rep. ATR-86(6771)-4, The Aerospace Corporation, 1986.
This document contains BBN proprietary information and is not available to the public.

J. V. Cook, "DENOTE (Denotational Semantics Translation Environment)," Tech. Rep.
TR-0091(6920-07)-2, The Aerospace Corporation, Oct. 1990.

J. V. Cook, "Example Proofs of Stage 3 Ada Programs in the State Delta Verification
System (SDVS)," Tech. Rep. ATR-91(6778)-3, The Aerospace Corporation, 1991.

J. V. Cook, "Final Report for the C/30 Microcode Verification Project," Tech. Rep. ATR-
86(6771)-3, The Aerospace Corporation, 1986.

J. V. Cook, "Implementing the Formal Description of the Incremental Translation of Core
Ada into State Deltas," Tech. Rep. ATR-88(3778)-2, The Aerospace Corporation, 1988.

J. V. Cook, "Proof Strategy for the Verification of the C/30 Microcode," Tech. Rep. ATR-
86(6778)-1, The Aerospace Corporation, 1986.

J. V. Cook, "Test Suite for Static Semantic Errors in Core Ada Programs," Tech. Rep.
ATR-88(3778)-3, The Aerospace Corporation, 1988.

J. V. Cook, "Test Suite for Static Semantic Errors in ISPS Descriptions," Tech. Rep.

341

ATR-89(4778)-3, The Aerospace Corporation, 1989.

J. V. Cook, "The Language for DENOTE (Denotational Semantics Translator Environ-
ment)," Tech. Rep. TR-0090(5920-07)-2, The Aerospace Corporation, Sept. 1990.

J. V. Cook, "Verification of the C/30 Microcode Using the State Delta Verification System
(SDVS)," in Proceedings of the 13th National Computer Security Conference (Washington,
D. C), pp. 20-31, National Institute of Standards and Technology/National Computer
Security Center, Oct. 1990.

J. V. Cook, S. D. Crocker, and M. M. Cutler, "A Formal Description of the Micropro-
grammable Building Block Configured for the C/30 Computer," Tech. Rep. ATR-86(6771)-
1, The Aerospace Corporation, 1986.

J. V. Cook and J. Doner, "User Defined Data Types in the'State Delta Verification System
(SDVS)," Tech. Rep. TR-0090(5920-07)-l, The Aerospace Corporation, 1990.

J. V. Cook and J. E. Doner, "A Modular Correctness Proof of a Quicksort Procedure
Written in Ada using SDVS," Tech. Rep. ATR-91(6778)-8, The Aerospace Corporation,
1991.

J. V. Cook, I. V. Filippenko, B. H. Levy, L. G. Marcus, and T. K. Menas, "Formal Computer
Verification in the State Delta Verification System (SDVS)," in Proceedings of the AIAA
Computing in Aerospace Conference (Baltimore, MD), American Institute of Aeronautics
and Astronautics, Oct. 1991.

J. V. Cook and J. R. Landauer, "GCD proof," Tech. Rep. Unpublished, The Aerospace
Corporation, 1984.

J. V. Cook and B. H. Levy, "Mapping in Versions 5 and 6 of SDVS," Tech. Rep. ATR-
86A(2778)-8, The Aerospace Corporation, 1987.

J. V. Cook, L. Marcus, and T. Redmond, "SDVS Version 6 Documentation and Source
Code," Tech. Rep. ATR-86A(2778)-6, The Aerospace Corporation, 1987.

J. V. Cook and D. F. Martin, "Example Proofs of Stage 2 Ada Programs Containing
Exceptions in the State Delta Verification System (SDVS)," Tech. Rep. ATR-90(5778)-ll,
The Aerospace Corporation, 1990.

S. D. Crocker, State Deltas: A Formalism for Representing Segments of Computation.
PhD thesis, University of California, Los Angeles, 1977.

M. M. Cutler, "Verifying implementation correctness using the State Delta Verification Sys-
tem (SDVS)," in Proceedings of the 11th National Computer Security Conference, National
Bureau of Standards/National Computer Security Center, Oct. 1988.

N. Dershowitz and L. Marcus, "Existence and Construction of Rewrite Systems," Tech.
Rep. ATR-82(8478)-3, The Aerospace Corporation, 1982.

N. Dershowitz, L. Marcus, and A. Tarlecki, "Existence, uniqueness, and construction of
rewrite systems," SIAM J. on Computing, vol. 17, pp. 629-639, Aug. 1988.

342

J. Doner, "SDVS Verification of a Stage-3 Ada Program," Tech. Rep. ATR-92(2778)-6,
The Aerospace Corporation, Sept. 1992.

J. Doner and J. V. Cook, "Example Proofs of Stage 1 Ada Programs in the State Delta
Verification System (SDVS)," Tech. Rep. ATR-89(4778)-8, The Aerospace Corporation,
1989.

J. E. Doner and J. V. Cook, "Offline Characterization of Procedures in the State Delta
Verification System (SDVS)," Tech. Rep. ATR-90(8590)-5, The Aerospace Corporation,
1990.

I. V. Filippenko, "A Formal Description of the Incremental Translation of Stage 1 VHDL
into State Deltas in the State Delta Verification System (SDVS)," Tech. Rep. ATR-
91(6778)-7, The Aerospace Corporation, 1991.

I. Filippenko, "A Formal Description of the Incremental Translation of Stage 2 VHDL into
State Deltas in the State Delta Verification System," Tech. Rep. ATR-92(2778)-4, The
Aerospace Corporation, Sept. 1992.

I. V. Filippenko, "A Formal Description of the Incremental Translation of Stage 3 VHDL
into State Deltas in SDVS," Tech. Rep. ATR-93(3778)-2, The Aerospace Corporation,
Sept. 1993.

I. V. Filippenko, "A Formal Description of the Incremental Translation of Stage 4 VHDL
into State Deltas in SDVS," Tech. Rep. ATR-94(4778)-4, The Aerospace Corporation,
Sept. 1994.

I. V. Filippenko, "Applicative Operators and the Composition of Sequential Program Frag-
ments," Tech. Rep. ATR-90(8590)-3, The Aerospace Corporation, 1990.

I. V. Filippenko, "Example Correctness Proof of a Core VHDL Description in the State
Delta Verification System (SDVS)," Tech. Rep. ATR-90(5778)-6, The Aerospace Corpora-
tion, 1990.

I. V. Filippenko, "Some Examples of Verifying Core VHDL Hardware Descriptions using
the State Delta Verification System (SDVS)," Tech. Rep. ATR-91(6778)-6, The Aerospace
Corporation, 1991.

I. V. Filippenko, "Some Examples of Verifying Stage 3 VHDL Hardware Descriptions using
SDVS," Tech. Rep. ATR-93(3778)-l, The Aerospace Corporation, Sept. 1993.

I. V. Filippenko, "The Partition of VHDL into Language Subsets for the State Delta Veri-
fication System (SDVS)," Tech. Rep. ATR-90(5778)-7, The Aerospace Corporation, 1990.

I. V. Filippenko, "VHDL Verification in the State Delta Verification System (SDVS),"
in Proceedings of the 1991 International Workshop on Formal Methods in VLSI Design,
(Miami, Fla), ACM, Jan. 1991.

I. V. Filippenko, "SDVS/VHDL Application Program Plan", Tech. Rep. ATR-94(4778)-2,
The Aerospace Corporation, Mar. 1994.

343

I. Filippenko, J. M. Bouler, and B. H. Levy, "Some Examples of Verifying Stage 1 VHDL
Hardware Descriptions using the State Delta Verification System (SDVS)," Tech. Rep.
ATR-92(2778)-3, The Aerospace Corporation, Sept. 1992.

I. V. Filippenko and L. G. Marcus, "Integrating Structural VHDL Hardware Descriptions
into the State Delta Verification System (SDVS)," Tech. Rep. ATR-92(8180)-1, The
Aerospace Corporation, 1992.

S. H. Kelem and B. H. Levy, "Preliminary Definition, Examples, and Specifications of Core
VHDL," Tech. Rep. ATR-88(3778)-8, The Aerospace Corporation, 1988.

C. Kesselman and S. Taylor, "Reasoning about equality," in New Concepts in Parallel
Programming, Prentice Hall, 1990.

C. Kesselman and S. Taylor, "A study of process structures," Tech. Rep. TR-89(4920-07)-l,
The Aerospace Corporation, 1989.

C. Landauer and S. D. Crocker, "Precise information flow analysis by program verification,"
in Proceedings of the IEEE Symposium on Security and Privacy, pp. 74-80, IEEE, 1982.

J. Landauer, T. Redmond, and E. Cohen, "The SDVS User Interface," Tech. Rep. ATR-
86(6778)-4, The Aerospace Corporation, 1986.

B. H. Levy, "An Approach to Compiler Correctness using Interpretation between Theories,"
Tech. Rep. ATR-85(8354)-l, The Aerospace Corporation, 1984.

B. H. Levy, "An Approach to Compiler Correctness using Interpretation between Theories
- Final Report," Tech. Rep. ATR-86(8454)-4, The Aerospace Corporation, 1986.

B. H. Levy, "An Overview of Hardware Verification Using the State Delta Verification
System (SDVS)," in Proceedings of the 1991 International Workshop on Formal Methods
in VLSI Design (Miami, Fla), ACM, Jan. 1991.

B. H. Levy, "Feasibility of Hardware Verification Using SDVS," Tech. Rep. ATR-88(3778>
9, The Aerospace Corporation, 1988.

B. H. Levy, "Inadequacies of ISPS as a Specification Language for Microcode Verification,"
Tech. Rep. ATR-86A(2778)-1, The Aerospace Corporation, 1987.

B. H. Levy, "Microcode verification using SDVS: The method and a case study," in nth
Microprogramming Workshop, pp. 234-245, IEEE, Oct. 1984. Reprinted in Microprogram-
ming and Firmware Engineering, V. Milutinovic, editor, IEEE, 1989.

B. H. Levy, "SDVS 1988 Final Report," Tech. Rep. ATR-88(3778)-10, The Aerospace
Corporation, 1988.

B. H. Levy, "SDVS 1989 Final report," Tech. Rep. ATR-89(4778)-6, The Aerospace Cor-
poration, 1989.

B. H. Levy, "SDVS 1990 Final Report," Tech. Rep. ATR-90(5778)-12, The Aerospace
Corporation, 1990.

344

B. H. Levy, "SDVS 1991 Final Report," Tech. Rep. ATR-91(6778)-1, The Aerospace
Corporation, 1991.

B. H. Levy, "SDVS 1992 Final Report," Tech. Rep. ATR-92(2778)-10, The Aerospace
Corporation, Sept. 1992.

B. H. Levy, "SDVS 1993 Final Report," Tech. Rep. ATR-93(3778)-3, The Aerospace
Corporation, Sept. 1993.

B. H. Levy and I. V. Filippenko, "A Preliminary SDVS Semantics of a VHDL Subset,"
Tech. Rep. ATR-88(3778)-7, The Aerospace Corporation, 1988.

B. Levy, I. Filippenko, L. Marcus, and T. Menas, "Using the State Delta Verification
System (SDVS for Hardware Verification," in Proceedings of the IFIP TC10/WG 10.2
International Conference on Theorem Provers in Circuit Design: Theory, Practice and
Experience: Nijmegen, The Netherlands, pp. 337-360, North-Holland, June 1992.

L. Marcus, "An Algorithm for Checking Soundness of Circular State Delta Definitions,"
Tech. Rep. ATR-90(8590)-l, The Aerospace Corporation, 1990.

L. Marcus, "Demons and Equivalence," Tech. Rep. ATR-83(8478)-4, The Aerospace Cor-
poration, 1984.

L. Marcus, "Dependence and State Change," Tech. Rep. ATR-85(8354)-4, The Aerospace
Corporation, 1985.

L. Marcus, "Dynamic and Static Reasoning in Program Verification," Tech. Rep. ATR-
82(8478)-2, The Aerospace Corporation, 1982.

L. Marcus, "Expressing and Proving Avoidance in SDVS," Tech. Rep. ATR-88(3778)-4,
The Aerospace Corporation, 1988.

L. Marcus, "Generalized Probabilistic Information Flow," Tech. Rep. ATR-90(8590)-2,
The Aerospace Corporation, 1990.

L. Marcus, "Goals for SDVS: A Usable Proof Checker for Proofs of Program Correctness,"
Tech. Rep. ATR-83(8478)-5, The Aerospace Corporation, 1984.

L. Marcus, "Implementation Mapping between Programs," Tech. Rep. ATR-84(8478)-3,
The Aerospace Corporation, 1984.

L. Marcus, "More about Proving Recursive Procedures in SDVS," Tech. Rep. ATR-
91(6778)-5, The Aerospace Corporation, 1991.

L. Marcus, "Preliminary Investigations into Specifying and Proving Ada Floating Point
Programs in the State Delta Verification System (SDVS)," Tech. Rep. ATR-91(6778)-4,
The Aerospace Corporation, 1991.

L. Marcus, "Proving Claims about Recursive Procedures in SDVS," Tech. Rep. ATR-
90(5778)-2, The Aerospace Corporation, 1990.

L. Marcus, "Proving Varieties of Information Flow Security," Tech. Rep. ATR-90(5778)-3,

345

The Aerospace Corporation, 1990.

L. Marcus, "SDVS 5 Users' Manual," Tech. Rep. TR-0086(6778)-2, The Aerospace Corpo-
ration, 1986.

L. Marcus, "SDVS 6 Users' Manual," Tech. Rep. ATR-86A(2778)-4, The Aerospace Cor-
poration, 1987.

L. Marcus, "SDVS 7 Users' Manual," Tech. Rep. ATR-88(3778)-5, The Aerospace Corpo-
ration, 1988.

L. Marcus, "SDVS 8 Users' Manual," Tech. Rep. ATR-89(4778)-4, The Aerospace Corpo-
ration, 1989.

L. Marcus, "SDVS 9 Users' Manual," Tech. Rep. ATR-90(5778)-4, The Aerospace Corpo-
ration, 1990.

L. Marcus, "SDVS 10 Users' Manual," Tech. Rep. ATR-91(6778)-10, The Aerospace Cor-
poration, 1991.

L. Marcus, "SDVS 11 Users' Manual," Tech. Rep. ATR-92(2778)-8, The Aerospace Cor-
poration, Sept. 1992.

L. Marcus, "SDVS 12 Users' Manual," Tech. Rep. ATR-93(3778)-4, The Aerospace Cor-
poration, Sept. 1993.

L. Marcus, "SDVS 13 Users' Manual," Tech. Rep. ATR-94(4778)-5, The Aerospace Cor-
poration, Sept. 1994.

L. Marcus, "SDVS 1986 Final Report," Tech. Rep. TR-0086(6778)-l, The Aerospace
Corporation, 1986.

L. Marcus, "SDVS 1987 Final Report," Tech. Rep. ATR-86A(2778)-5, The Aerospace
Corporation, 1987.

L. Marcus, "SDVS 1994 Final Report," Tech. Rep. ATR-94(4778)-3, The Aerospace Cor-
poration, Sept. 1994.

L. Marcus, "Syntactic and Semantic Dependence of First-Order Sentences on Array In-
dices," Tech. Rep. ATR-91(8390)-1, The Aerospace Corporation, Sept. 1991.

L. Marcus, "The Incorporation of Formal Testing into Verification: An Introduction to
a Paradigm and Summary of Preliminary Results," Tech. Rep. ATR-93(8354)-l, The
Aerospace Corporation, Sept. 1993

L. Marcus, "The Incorporation of Testing into Verification: Direct, Modular, and Hierarchi-
cal Correctness Degrees, " in Proceedings of the 1994 International Symposium on Software
Testing and Analysis (ISST'A), August 17-19, 1994, Seattle, Washington, p. 197

L. Marcus, "The search for a unifying framework for computer security," IEEE Cipher,
pp. 55-63, Fall 1989. Technical Report ATR-89(8490)-2, The Aerospace Corporation, 1989.

L. Marcus, "The Semantics of Ada Access Types (Pointers) in SDVS," Tech. Rep. ATR-

346

92(2778)-5, The Aerospace Corporation, Sept. 1992.

L. Marcus, "The Semantics of Concurrency in SDVS," Tech. Rep. ATR-89(8490)-4, The
Aerospace Corporation, 1989.

L. Marcus and J. V. Cook, "SDVS User Manual," Tech. Rep. ATR-84(8478)-l, The
Aerospace Corporation, 1984.

L. Marcus, S. D. Crocker, and J. R. Landauer, "SDVS: A system for verifying microcode
correctness," in 17th Microprogramming Workshop, pp. 246-255, IEEE, Oct. 1984.

L. Marcus and B. H. Levy, "Specifying and Proving Core VHDL Descriptions in the State
Delta Verification System (SDVS)," Tech. Rep. ATR-89(4778)-5, The Aerospace Corpora-
tion, 1989.

L. Marcus and T. Menas, "Expressibility of Output Equals Input: Negative and Positive
Results," Ada Informatica 29 (1992), pp. 645-662, Tech. Rep. ATR-90(8590)-4, The
Aerospace Corporation, 1990.

L. Marcus and T. K. Menas, "Safety via state transition language plus invariants," in
Proceedings of the Second Computer Security Foundations Workshop (J. Millen, ed.), pp. 71-
77, IEEE, June 1989. Technical Report ATR-89(4778)-l, The Aerospace Corporation, 1989.

L. Marcus and T. Menas, "Timelines and Proofs of Safety Properties in the State Delta
Verification System (SDVS)," Tech. Rep. ATR-92(2778)-9, The Aerospace Corporation,
Sept. 1992.

L. Marcus and T. Redmond, "A semantics of read," in Ninth National Computer Security
Conference, pp. 184-193, National Bureau of Standards, 1986.

L. Marcus and T. Redmond, "A model-theoretic approach to specifying, verifying, and
hooking up security policies," in Proceedings of the Computer Security Foundations Work-
shop (J. Millen, ed.), pp. 127-138, The MITRE Corporation, Sept. 1988. MITRE Report
M88-37, Aerospace Technical Report ATR-89(8490)-l.

L. Marcus and T. Redmond, "Dependency is a Special Case of Information Flow," Tech.
Rep. ATR-86(8554)-4, The Aerospace Corporation, 1987.

L. Marcus and T. Redmond, "Two automated methods in implementation proofs," in
Ninth International Conference on Automated Deduction (E. Lusk and R. Overbeek, eds.),
pp. 622-642, Springer-Verlag, 1988. Lecture Notes in Computer Science, Volume 310.

L. Marcus, T. Redmond, and S. Shelah, "Completeness of State Deltas," Tech. Rep. ATR-
86(8454)-2, The Aerospace Corporation, 1986.

D. F. Martin, "A Formal Description of the Incremental Translation of Core Ada into State
Deltas in the State Delta Verification System," Tech. Rep. ATR-88(3778)-l, The Aerospace
Corporation, 1988.

D. F. Martin, "A Formal Description of the Incremental Translation of Stage 2 Ada into
State Deltas in the State Delta Verification System (SDVS)," Tech. Rep. ATR-90(5778)-5,

347

The Aerospace Corporation, 1990.

D. F. Martin, "A Formal Description of the Incremental Translation of Stage 1 Ada into
State Deltas in the State Delta Verification System (SDVS)," Tech. Rep. ATR-89(4778)-7,
The Aerospace Corporation, 1989.

D. F. Martin, "A Preliminary Formal Description of the Incremental Translation of ISPS
into State Deltas in the State Delta Verification System," Tech. Rep. ATR-86A(2778)-7,
The Aerospace Corporation, 1987.

D. F. Martin and J. V. Cook, "Adding Ada program verification capability to the State
Delta Verification System (SDVS)," in Proceedings of the 11th National Computer Security
Conference, National Bureau of Standards/National Computer Security Center, Oct. 1988.

T. K. Menas, "A Proof of a Safety Property of a Concurrent Program Using the State Delta
Verification System (SDVS) with Invariants," Tech. Rep. ATR-90(5778)-9, The Aerospace
Corporation, 1990.

T. Menas, "A Proposal for the Verification in SDVS of a Portion of the MSX Tracking
Processor Software," Tech. Rep. ATR-92(2778)-7, The Aerospace Corporation, Sept. 1992.

T. Menas, "Further Aspects of Composition," Tech. Rep. ATR-91(8390)-2, The Aerospace
Corporation, Sept. 1991.

T. K. Menas, "Safety, Invariance, and a New Induction Command in the State Delta Veri-
fication System (SDVS)," Tech. Rep. ATR-91(2778)-1, The Aerospace Corporation, Sept.
1992.

T. Menas, "Safety Properties of Termininating and Nonterminating Ada programs in SDVS,"
Tech. Rep. ATR-92(2778)-2, The Aerospace Corporation, Sept. 1992.

T. K. Menas, "SDVS Enhancements to Verify Claims of Avoidance," Tech. Rep. ATR-
89(4778)-2, The Aerospace Corporation, 1989. T. K. Menas, "The Implementation of In-
variance in the State Delta Verification System (SDVS)," Tech. Rep. ATR-90(5778)-8, The
Aerospace Corporation, 1990.

T. K. Menas, "The Relation of the Temporal Logic of the State Delta Verification System
(SDVS) to Classical First-Order Temporal Logic," Tech. Rep. ATR-90(5778)-10, The
Aerospace Corporation, 1990.

T. K. Menas, "Variants of Invariance," Tech. Rep. ATR-89(8490)-5, The Aerospace Cor-
poration, 1989.

T. K. Menas, J. M. Bouler, and J. E. Doner, "Specifications and Correctness Proofs for Por-
tions of the MSX Ada Software," Tech. Rep. ATR-93(3778)-5, The Aerospace Corporation,
Sept. 1993.

T. K. Menas, J. M. Bouler, J. E. Doner, I. F. Filippenko, B. H. Levy, and L. G. Marcus,
"Overview of the MSX Verification Experiment using SDVS," Tech. Rep. ATR-93(3778)-6,
The Aerospace Corporation, Sept. 1993.

348

T. K. Menas, J. M. Bouler, J. E. Doner, I. F. Filippenko, B. H. Levy, and L. G. Marcus,
"Using SDVS to Assess the Correctness of Ada Software Used in the Midcourse Space
Experiment," Tech. Rep. ATR-94(4778)-l, The Aerospace Corporation, Apr. 1994

T. K. Menas, I. V. Filippenko, J. V. Cook, B. H. Levy, and L. G. Marcus, "SDVS Tutorial,"
Tech. Rep. ATR-91(6778)-11, The Aerospace Corporation, 1991.

T. K. Menas, I. V. Filippenko, J. V. Cook, B. H. Levy, and L. G. Marcus, "SDVS 13
Tutorial," Tech. Rep. ATR-94(4778)-6, The Aerospace Corporation, 1994.

W. T. Overman and S. D. Crocker, "Formal verification of concurrent systems: Function and
timing," in Protocol Specification, Testing, and Verification, pp. 401-411, North-Holland,
1982.

T. Redmond, "Composition of State Changes and Program Verification," Tech. Rep. ATR-
86A(2778)-3, The Aerospace Corporation, 1987.

T. Redmond, "Fixed-Point Methods in State Delta Temporal Logics," Tech. Rep. ATR-
88(8354)-1, The Aerospace Corporation, 1988.

T. Redmond, "Simplifier Description," Tech. Rep. ATR-86A(8554)-2, The Aerospace Cor-
poration, 1987.

T. Redmond, "Status Report on the Bitstring Solver," Tech. Rep. ATR-86(6778)-3, The
Aerospace Corporation, 1986.

T. Redmond and L. Marcus, "Implementation Mapping between Levels and State Deltas,"
Tech. Rep. ATR-86A(2778)-2, The Aerospace Corporation, 1987.

T. Redmond and L. Marcus, "Mapping between Levels and Proofs of Implementation,"
Tech. Rep. ATR-86A(8554)-5, The Aerospace Corporation, 1987.

T. Redmond, L. Marcus, and I. V. Filippenko, "Composition of Sequential Program Frag-
ments," Tech. Rep. ATR-89(8490)-3, The Aerospace Corporation, 1989.

D. A. Schulenburg, "Mil-Std-1750A Validation: Applying VSW to a 1750A Simulation via
Network Communications," Tech. Rep. TR-0091(6920-07)-l, The Aerospace Corporation,
1991.

349

Index
* 18
ada-tests 170
isps-tests 147
negation-tests 111
quant-tests 237
vhdl-tests 209, 217
Ada 167
Ada characters 326
Adalemma 182
Adawindow 167
Command-* 18
Command-activate 46, 70
Command-adasubprogenv 182
Command-adatr 171
Command-apply 47
Command-applydecls 171, 172, 182
Command-cases 49, 182
Command-close 46
Command-compose 131
Command-consider 87
Command-continue 90, 95
Command-createadalemma 182
Command-createdatatype 265
Command-createformula 127
Command-createformulas 127
Command-createlemma 82
Command-createproof 138
Command-createsd 18, 41
Command-createvhdllemma 218
Command-date 99
Command-deactivate 46
Command-decls 106, 110
Command-defer 90
Command-deleteaxioms 250
Command-dump-proof 138
Command-dump-proof 18
Command-enotice 239
Command-execute 47
Command-finduct 54
Command-flags 96, 110

Command-go 172
Command-help 22
Command-implementation 122, 124, 162
Command-induct 54, 182
Command-init 18, 46
Command-instantiate 240
Command-in vokeadalemma 182
Command-invokevhdllemma 218
Command-isps 18, 147
Command-ispstr 164
Command-lasterror 142
Command-let 55, 105
Command-letsd 106, 182
Command-linearize 117, 271
Command-meases 51, 182
Command-mpisps 123, 147, 162
Command-natinduct 120
Command-negate 111, 284
Command-next 99
Command-notice 65, 87
Command-noticeconcurrentsd 280
Command-noticeinvariant 269, 270
Command-nsd 101
Command-omegainduct 287
Command-placevalue 99
Command-pop 94
Command-ppeq 101
Command-ppl 99
Command-ppsd 18
Command-proofstate 17
Command-prove 18, 46
Command-proveadalemma 182
Command-provebyaxiom 66
Command-provebyeklaxiom 250
Command-provebygeneralization 243
Command-provebyinstantiation 244
Command-provebylemma 82
Command-provebymakeboundedquantifier

248
Command-provelemma 46, 82

350

Command-provevhdllemma 218
Command-ps 18
Command-quantification 237, 46
Command-quit 18, 46
Command-read 18, 82, 137
Command-readaxioms 250
Command-rewritebyaxiom 70
Command-run-test-proofs 8, 111, 147,170,

209, 217, 237
Command-setflag 96, 110
Command-step 90
Command-stop 90, 95, 99
Command-subcases 53, 182
Command-until 48
Command-usablequantifiers 238
Command-usablesds 44
Command-vhdl-processes 218
Command-vhdl-processes 223
Command-vhdl-signals 218, 223
Command-vhdlsubprogenv 219
Command-vhdltime 218, 223
Command-vhdltr 209, 217
Command-whynotapply 17, 101
Command-whynotgoal 17, 104
Command-write 18, 82, 137
Command-writelemmas 82
EKL 237
GCD 147
ISPS 3, 145
SDVS1
TR 145, 167, 209
VHDL 209
VHDL time 328
VHDL waveforms 329
VHDLlemma 218
abs 135, 299
absolute value 73, 304
acceptfileproofs 90
aconc 135, 312
activate 46, 70
activating solvers 88
adasubprogenv 182
adatr 171
all 14, 137, 316
alldisjoint 14, 316

allocate 109
and 135, 296
applicable 12
apply 47
apply decls 171, 172, 182
arithmetic 299
array 106
arrays 55, 68, 78, 108, 312, 318
assertion 153
assumption 152
autoclose 46, 96, 110
auxiliary variable 158
axioms 65, 66, 71, 250
b89
b2 89
b3 70
b3 89
b4 89
batch 4, 140
bitstring 106
bitstring solvers 89
bitstrings 73, 308
bitstringwaveform 106
bitwaveform 106
boolean 106
bs 136
bubble sort 253
c30 152, 2
carrylemma 82
carrysd 85
cases 49, 182
cd 142
char 326
character 106
characters 326
checkexistence 252
close 46
comodification list 10
compose 131
composition 131
concurrency 117, 280
cond 136
consider 87
constant 123
constant 137

351

Contents 9
continue 90, 95
contradiction 61
counter 43, 58
covering 13, 137
coverings 106, 316
createadalemma 182
createdatatype 265
createformula 127
createformulas 127
createlemma 82
createmacro 130
createproof 138
createsd 18,41
createvhdllemma 218
data 109
data types 263
date 99
deactivate 46
deactivating solvers 88
declaration 106, 137
declare 106, 172
decls 106, 110
def 137
defer 90
defformulas 138
defproof 137, 138, 157
defsd 138, 157
deleteaxioms 250
demon 65, 87
dense 109
diff 14, 137, 316
disjoint 68
disjoint-elements 69
disjointarray 68
disjunction 129, 140
displaympsds 148
distinct 297
div 135, 299
division 304
dot 9, 135
dump-proof 18, 138
dynamic 4, 41
eklaxiom 250
ekltraceflag 252

element 136, 312
emptyarray 312
emptyplace 14, 316
enotice 239
enumerate 253
enumeration types 135, 179, 326
eq 135
equality 297
error 142
everyplace 14, 316
execute 47
existential quantification 237
exists 135
exit 142
exponentiation 305
expt 135
extended isps 152
external variable 158
false 296
files 20
finduct 54
flags 96, 110
float 106
fn 106
forall 135
formula 19, 115
formulas 127
ge 135
go 172
gt 135
help 22
if-then-else 296, 297
implementation 16, 122, 124, 162
implies 135, 296
induct 54, 182
induction 43, 54, 120, 182
inertiaLupdate 329
infix 134, 135
init 18, 46
input 134
installation procedure 5
instantiate 240
integer 106
integer arithmetic 299, 302
integer multiplication 75, 302

352

integers 301 negate 111, 284
integerwaveform 106 negation 111
inter 137, 316 neq 135
interactive 4, 41 newisps 164
interactive input 41 next 99
interrupt 41 nil 323
invariance 267 not 135, 296
invariant 267 notice 65, 87
invariants 123 noticeconcurrentsd 280
invokeadalemma 182 noticeinvariant 269, 270
invokevhdllemma 218 nsd 101
isps 18, 147 offline characterization 182, 218
ispstr 164 omega-induction 287
labels 147 omegainduct 287
language 135 ones 135, 308
lastappliedsd 101 open 46
lasterror 142 optimizeassignments 97
lastone 308 or 135, 296
le 135 origin 312
lemmaproof 85 packages 179
lemmas 65, 81 partial covering 106
length 308 path name 20
let 55, 105 pc 10
letsd 106, 182 pcovering 14, 19, 137, 316
lh 135, 308 places 9, 13
linearize 117, 271 placevalue 99
lists 323 plus 135
loop 54 polymorphic 106, 171
It 135 pop 94
machine-exited 147 postcondition 9
machine-halted 147 pound 9, 135
machine-started 147 ppeq 101
macros 130 ppl 99
map 137 ppsd 18
mapping 16, 121, 162 precondition 9
marking 147 preemption 329
meases 51, 182 prefix 134, 135
microcode correctness 2, 16 proof language 3, 41
minus 135 proof commands 101
modification list 9 proofp 139
modulus 304 proofstate 17
mpisps 123, 147, 162 propositional logic 296
mult 135 prove 18, 46
multiplication 302 proveadalemma 182
natinduct 120 provebyaxiom 66

353

provebyeklaxiom 250
provebygeneralization 243
provebyinstantiation 244
provebylemma 82
provebymakeboundedquantifier 248
provelemma 46, 82
provevhdllemma 218
ps 18
putproof138, 251
pwd 142
quant2 250
quant3 250
quantification 46, 237
quantified state delta 246
queries 98
queues 135, 323
quit 18, 46
range 312
rational arithmetic 302
rationals 301
read 18, 82, 137
readaxioms 250
record 106
rem 135, 299
remainder 304
rewritebyaxiom 70
run-test-proofs 8, 111, 147, 170, 209, 217,

237
safety 287
sd 137
sdtobeproven 101, 137
sdvsproof 45
setflag 96, 110
shell 142
simplex algorithm 301
slash 157
slice 136, 312
solvers 88
sparse 109
state delta 3, 8
static 4, 65
step 90
stop 90, 95, 99
strongcoverings 97
structural VHDL description 211

subcases 182, 53
symbolic execution 4, 47
symbols 135
terminated 16, 170
test proofs 8
test-simp-solvers 88
time 106
timedelta 328
timege 328
timeglobal 328
timegt 328
timele 328
timelt 328
timeplus 328
timestamp 239, 240
top-level commands 46
tr 137
transaction 329
transport.update 329
true 12, 296
type 106, 238
typing in a proof 320, 46
typing in a state delta 41
union 14, 137, 316
universal quantification 237
until 48
upc 20
usable 12
usablequantifiers 238
usablesds 44
usand 135, 308
usconc 135, 308
usdifference 135, 308
use clause 179
usedots 97
useql 135, 308
useqv 308
usgeq 135, 308
usgtr 135, 308
usleq 135, 308
uslss 135, 308
usneq 135, 308
usnot 135, 308
usor 135, 308
usplus 135, 308

354

usquotient 135, 308
usremainder 135, 308
ussub 136, 308
ustimes 135, 308
usval 136, 308
usxor 135, 308
val 329
vhdl-processes 218, 223
vhdl-signals 218, 223
vhdlsubprogenv 219
vhdltime 218, 223, 328
vhdltr 209, 217
waveform 106, 329
weaknext.tr 98
why not apply 17, 101
whynotgoal 17, 104
window 167
write 18, 82, 137
writelemmas 82
zeros 135, 308

355

Bga THE AEROSPACE
IBBICORPORATION
2350 E. El Segundo Boulevard
El Segundo, California 90245-4691

U.S.A.

