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Abstract

This is a guide for users of the State Delta Verification System (SDVS), Version 12. Its
style is somewhere between that of a tutorial and a reference manual.

All facets of the verification system are covered here: the underlying logic (state deltas),
the proof language, the user interface, the actual use of the system, the translation from
the register-transfer-level language ISPS to state deltas, the translation from Ada to state
deltas, the translation from VHDL to state deltas, the capabilities of the static solvers,
and example proofs. A set of exercises is provided in the last chapter and a comprehensive
SDVS bibliography is included.
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1 INTRODUCTION

1.1 PRELUDE

This manual is intended for users of the State Delta Verification System Version 12 (SDVS
12). It is a blend of a reference manual and a tutorial. This version of the manual supersedes
the previous manual [1], which described SDVS 11, although most of the text is common
to both. The SDVS 11 tutorial [2] contains additional examples and explanations.

Other easily accessible published background material on SDVS can be found in [3], [4], and
[6]. References for further information on SDVS are to be found in the SDVS bibliography
at the end of this manual.

SDVS is written in Common Lisp. It currently runs in Lucid Common Lisp 4.1 and Franz
Allegro Common Lisp 4.1. SDVS can be run directly in Lisp, but it is preferable to run
SDVS from GNU Emacs, which then gives the user certain editing capabilities.

SDVS 12 is for the most part upwardly compatible with all previous version of SDVS. Since
most of the group’s effort during the year were directed toward proving the Ada MSX
example ([7], [8], [9]), the main improvements of SDVS 12 over SDVS 11 are in the Ada
capability (Section 4.1.2) and in performance (parts of the code were re-implemented for
efficiency or bug fixes; however, some additions to SDVS that were made to run the MSX
example have not yet been incorporated in SDVS 12). Also, significant improvements were
made in the VHDL capability (Section 5).

This introductory chapter will be sufficient to let the user get started on the system. Other
chapters detail the following aspects of the theory and operation of SDVS 12:

1. the internal logic (state deltas) (Chapter 1)
the proof language (Chapter 2)

the user interface (throughout)

Ll

actual system use (throughout)

the translation from the hardware description language ISPS to state deltas (Chap-
ter 3)

(@2

6. the translation from a subset of the programming language Ada to state deltas (Chap-
ter 4)

7. the translation from a subset of the hardware description language VHDL to state
deltas (Chapter 5)

8. the handling of quantification (Chapter 6)
9. user-defined data types (Chapter 7)

10. the invariant extension to state deltas (Chapter 8)




11. the capabilities of the static solvers (Chapter 9)
12. example proofs (throughout)

13. exercises (Chapter 10)

A word about the index at the end of this manual: command names are listed under
“Command-name” as well as individually.

Before one begins the significant effort involved in learning to use a verification system such
as SDVS, he or she should certainly be aware that the utility of verification, or the role that
verification plays in providing confidence in computer systems, is an important issue. We
assume that the potential user is either already aware of the value of verification, or at least
believes in the possibility of such value. For a strong, if sometimes overstated, argument in
favor of verification, we recommend [10].

1.2 OVERVIEW

The State Delta Verification System, SDVS, is a system for checking proofs about the
course of a computation, usually called “correctness” proofs. SDVS can be used to check
microcode implementation correctness proofs, program verification proofs (e.g. liveness and
safety for Ada programs), or hardware correctness proofs (e.g. liveness and safety for VHDL
hardware descriptions). As a test of the system’s microcode correctness capabilities, SDVS
5 was used to analyze most of the instruction set of the BBN C/30 computer. A summary
of that work is presented in [11].

In SDVS 12, the theorems to be proved for the above cases of program and hardware
correctness must still be explicitly written by the user in the internal logic of state deltas.
However, beginning with SDVS 6, if the user is interested in proving implementation or
microcode correctness theorems, SDVS will construct the theorem automatically, given the
relevant information; i.e., the system can be instructed to prompt the user for

1. the descriptions of a host machine (often microprogrammed) and target machine writ-
ten in either a somewhat “extended subset” of the machine description language ISPS,
or the internal SDVS state delta language;

2. the microcode (if any);

3. the correspondence between the program variables (machine places) in the host and
target; and

4. the proof of correctness that the host implements the target with respect to the above
correspondence (if such a proof is already constructed).

SDVS then automatically constructs the state delta representing the theorem of correctness
of the implementation, and either checks the proof, if one was given in step 4 above, or
allows the user to construct one interactively.




The user communicates to SDVS through several languages. The proof language is used
to write the proof that the system will check. The state delta language is used to write
the theorems to be proved and to describe the relevant programs and specifications. The
user-interface language allows for interactive proof building, querying, and so on. Finally,
there is a module that translates from a subset of ISPS ([12], [13]), from a subset of Ada
([14] - [23]), and from a subset of the hardware description language VHDL ([24] - [30])
into state deltas.

Recently, the underlying logic has been enhanced to allow for the specification of (state-
transition) invariants. For more background on the use of invariants in state deltas, consult
[31] - [35).

Technically, SDVS aids in the writing and checking of proofs of state deltas. For example,
state deltas can specify claims of the form “If P is true now, then Q will become true in the
future.” If P is (the translation of) a program (perhaps with some initial conditions) and
Q is an output condition, then the above claim is an input-output assertion about P. SDVS
can also specify (and prove) claims of the form “If P is true now, then Q is true now.” In
this case, if P is a (state delta representing a) program or hardware description and Q is a
(state delta representing a) specification, then the above claim asserts the implementation
correctness of P with respect to Q.

Finally, SDVS can prove claims of the form “If P is true now, then Q will always be true
in the future,” or until some other condition becomes true.

The view of the world captured by state deltas is that there are “places” (to be thought of
as abstract machine registers, usually called program variables in other contexts) that can
“hold” contents. A “state” of a computation or a machine is, to first approximation, an
association of contents with places. In general, a set of states can be specified by any set
of sentences that relate the contents of some places with the contents of other places. For
example, the sentence .z > 5 can be thought of as specifying the set of states in which the
current contents of z are greater than or equal to 5, with no restriction on any other places
that happen to “exist.”

The “if-now, then-later” statement above is the basic building block of state deltas. It can
be thought of as a specification of a state change, with P being the “precondition” (the
condition allowing the state change to occur) and Q the “postcondition” (the description
of the state after the change has occurred). A sequential computation is thought of as a
sequence of state changes; as we will see, there are several ways in which such a sequence
of state changes can be specified by a state delta or set of state deltas. The word “delta”
indicates our intention to describe “small” state changes, those state changes in which only
a small part of a large state is changing. In order to specify the resultant state after the
change, instead of listing all true facts, it would be much more efficient simply to list those
places that have (or possibly have) changed during the transition. Typically this will be a
small list, called the “modification” list. The true statements at the end of the transition
are those explicitly given in Q, plus those statements true in the precondition state that
involve variables that do not appear in the modification list. In particular, if it is specified
that no variables are allowed to change as the state changes from P to Q (the modification




list is empty), and Q is a first-order sentence, then Q must be true in the state that satisfies
P, and we are simply looking at the static claim that P implies Q.

The proof language can be divided into two parts, the dynamic and the static. The dynamic
part controls the state transitions made by the system. There are constructs for proof by
symbolic execution for straight-line code, proof by cases for branching code, and proof by
induction for loops. In addition, there are several more-specialized proof commands, such
as the command to sequentialize two simultaneously true state deltas. Of course, when
the execution has arrived at a new state, a static proof may be needed to verify that new
relations do in fact hold, i.e., they follow from the facts known explicitly about the new
state (in order to show that the postcondition is true and the goal is reached, or to show
that a precondition is true and a new state delta may be applied; see below).

The static part of the proof language deals with proving that certain assumptions imply
certain conclusions about a given state. For simple domains where efficient decision proce-
dures exist and are implemented, the system will be able to derive all conclusions without
any user-input proof. Examples are equality over uninterpreted function symbols, a frag-
ment of naive set theory, and linear arithmetic. For more complicated domains, our current
philosophy and implementation allow the user to write proofs by having the system notice
incrementally more difficult conclusions, where the newly verified conclusions are stored
and used as facts on which to base the next conclusion. The derivation from a given set of
facts to the next conclusion may be automatic in some cases, or it may require the user to
designate that an axiom or a previously proved lemma is to be applied.

SDVS may be run in interactive mode, batch mode, or, as in most real applications, as
a combination of the two. In interactive mode the user writes the proof in SDVS with
help from system prompts, with the system executing each proof command as it is written.
Expressions are written in standard infix notation (e.g. z+y). In batch mode the proof
is written either by the SDVS dump-proof and write command, or in an editor, and then
is executed in SDVS with no further user interaction. Most commonly, a partial proof
is written interactively, stored, and then rerun in batch mode at a later time when the
proof-writing process is being continued.

(Technical note: currently some proofs can be rerun only in a new SDVS session. This is the
case when names of formulas are created during the proof. The system does not currently
allow names to be reused without the user explicitly and interactively validating such an
action. Since the name appearing in the proof will already have been used, the proof will
abort at that point. Such a proof is the example on page 117 using the command linearize.)

The most important property of a proof-checker is that it should not allow invalid proofs
to be accepted. Nevertheless, there is a trade-off. Our philosophy has been to protect the
benign user from inadvertently proving falsehoods; we do not guarantee that a scheming
and knowledgeable user will be unable to do so intentionally. Thus, no absolute guarantee
should be attached to a proof, just because it comes out of an SDVS run with a “QED”

certificate.

An example of this trade-off comes in the use of lemmas stored in a file. It is of course
possible for users to change the statement of a lemma or its proof in an editor inadvertently.



Thus we have provided a means for users to protect themselves against this possibility, if
they so desire, by having the proof of a lemma rerun as the lemma is read into SDVS before
it is actually used. But for efficiency’s sake, we do not require that this be done.

Another example of the lack of total soundness is that it is possible, through self-referencing
state deltas, to prove a contradiction. We have not gone to the trouble of eliminating this
loophole (although we know how: see [36]), because under “normal” circumstances a user
would not employ explicit self-reference. See Section 2.9.20 for an example.

1.3 INSTALLING SDVS

SDVS is available on magnetic tape in four different formats: source code; object code for
Franz Allegro Common Lisp (FACL); object code for Lucid Common Lisp (LCL); and as a
standalone executable utilizing the Franz Allegro Runtime package. Each format requires
its own procedure for creating or loading SDVS, as outlined below. However, the procedure
for reading the system files from the tape is the same for all formats.

SOFTWARE REQUIREMENTS

SDVS currently runs under Franz Allegro Common Lisp release 4.1 and Lucid Common Lisp
4.1. SDVS is also available as a standalone executable utilizing the Franz Allegro Runtime
package; users of this version of SDVS are not required to supply their own Common Lisp
environment. SDVS assumes that the underlying operating system is Unix, Sun OS 4.x, or
equivalent.

HARDWARE REQUIREMENTS

The FACL and LCL binary and FACL runtime versions of SDVS require a Sparc processor.
The source code should run under FACL or LCL on other architectures without modifica-
tion, although this has not been tested. SDVS should port easily to other Common Lisp
implementations on other architectures, although, again, this has not been done.




Table 1: Disk Space Requirements for SDVS 12, in MB

To Load From Tape Installed
Source (.lisp) 2.4 N/A
Lucid Object (.sbin) 2.7 31.5
Franz Object (.fasl) 3.7 48.1
Franz Runtime 8.9 38.9

DISK SPACE REQUIREMENTS

Table 1 gives the disk space requirements for SDVS 12. “Installed” represents the disk
requirements of the system after SDVS has been installed, and assumes that the tar file
from the tape has been recompressed. The size of your installed executable image, if you
are building SDVS from the source or either binary version, will depend on the size of your
(vanilla) Common Lisp image. These numbers are therefore approximate. All numbers are
in megabytes (MB).

READING THE SYSTEM FILES

First, you should create a top-level directory to contain all of the files and subdirectories
associated with SDVS. On our system, this directory is called versys (for VERification
SYStem) and resides as a subdirectory under /u giving /u/versys. Although you can give
your directory any name, we suggest you use the same name for compatibility; yours can
be located anywhere, however. For example, you might put it as a subdirectory of /usr/lib,
giving /usr/lib/versys. For the examples below, we assume you have /usr/lib/versys as your
top-level directory.

Next, you will want to load the SDVS system tar file from the tape. To do this, create a
tmp directory in your top-level versys directory, connect (cd) to it, and extract (tar) the
system tar file as follows ([unix] is the system prompt):

[unix] tar zfmv zzz

where zzr is the device name for your tape drive, e.g. /dev/rst0. This will create a file
named sdvsnn-zzrzr.tar.Z where nn is the current release number (e.g. 12) and zzaz is
1isp (for source files), sbin (for LCL object), fasl (for FACL object), or runtime (for
FACL runtime). The file is compressed, so it must be uncompressed:

[unix] uncompress sdvsnn-zzzz.tar
replacing nn and zzzz appropriately.
Now, the system directories must be extracted from the tar file:

[unix] tar zfmv sdvsnn-zzrrzr.tar

This process creates a file structure containing the individual files from which the SDVS
system can be used or built. Once this process is complete, you may delete sdvsnn-zzzz. tar




if you feel you have no further need for it. An alternative is to recompress the file:
[unix] compress sdvsnn-zzzz.tar
Both will save disk space.

Before you can build and use an SDVS executable image or use the FACL Runtime exe-
cutable, you must define a UNIX environment variable as follows. This can be done directly
in the shell in which you plan to build or use SDVS or by adding the command to your
.cshre file.

[unix] setenv SDVS_DIR 7 /usr/lib/versys/”

Of course, you will need to supply the correct path you have chosen for your top-level
directory. Please note the slash (/) character at the end; it is required.

BUILDING AN SDVS EXECUTABLE IMAGE

Once you have all of the system files available, you can build an executable SDVS image.
To do this, you must start up a (vanilla) Common Lisp session (either LCL or FACL) and
load the init-sdvs.lisp file found in your top-level directory. (If you don’t know how to start
up a Common Lisp session, see your system administrator.) For example, to load the file,

type

> (load “/usr/lib/versys/init-sdvs”)

After the init-sdvs.lisp file has been loaded, you are ready to tell Lisp to build your SDVS
executable. Two functions will do this: make-sdvs builds from the object files; make-new-
sdvs builds from the source files and compiles the entire system. Each function takes one
argument, the name you wish to give the executable; the executable will automatically
reside in your top-level directory. You may give the executable any name you want; in the
following examples, we use the name sdvs12 for our executable. Each of these functions will

produce a trace of what is happening. (NOTE: For these operations, you must have write
privileges to the appropriate directories.)

For creating an SDVS executable from source:
> (make-new-sdvs “sdvs12”)

For creating an SDVS executable from binary:
> (make-sdvs “sdvs12”)

You may safely ignore any warning messages printed by the system. When you return to
the Lisp prompt, you can exit Lisp by

> (quit)
USING THE SDVS RUNTIME EXECUTABLE

If you have extracted the SDVS system files from a tape containing the “runtime” format,
the file /usr/1ib/versys/sdvs12 (assuming the appropriate top-level directory) contains
the executable image. This can be used to run SDVS directly, as noted below.




RUNNING SDVS

You have gone through this procedure and have created your executable. How do you run
SDVS? At the Unix shell, just type, for example

Cunix] /usr/lib/versys/sdvs12

or just sdvsi2 if you are connected (ed) to the top-level directory (/usr/lib/versys in our
example) or if your $PATH environment variable contains the path to the top-level directory.

RUNNING THE TEST SUITE

Included in the SDVS release is a set of tests that exercise the system. To run these tests,
you must first start up SDVS. (After building your SDVS executable, you should restart
SDVS so that the system is initialized properly.) When you get to the SDVS prompt, invoke
the tests as follows:

<sdvs.1> run-test-proofs

A very long trace will appear. If the tests run successfully (this may take over two hours on
a Sun 4), you will return to the SDVS prompt. If something goes wrong, Lisp will “break,”
allowing you to examine the system; Lisp will print out some diagnostic information and
put you at a prompt. If this should happen, you may exit Lisp by typing (quit).

You may restart SDVS by first returning to the top level of Lisp and invoking the function
sdvs as follows:

> (sdvs)
From the SDVS prompt, you can return to Lisp by typing the SDVS command bye.

1.4 STATE DELTAS

In this section we gradually lead up to the full definition of (standard) state deltas, which
appears on page 11. State deltas with invariants are defined in Chapter 8. We adopt an
outlook that sees a duality between programs and certain kinds of theories (collections of
facts), in the sense that a program (a set of computations) can be seen as the set of all
(temporal) facts that hold in all its computations, and a computational theory can be seen
as the set of all possible computations the theory allows. For a fuller discussion, see [37] or

[38).

1.4.1 Expressing a Computation as a State Delta

A state delta is a description of a transition from one state to another. For example,

[sd pre: (.a = 1) post: (#b = 2)]




where sd indicates that this is a state delta formula, pre: is the precondition field, post: is
the postcondition field, @ and b are places, the dot (.) is the function symbol for “contents
of” before the transition, and the pound (#) is the function symbol for “contents of” after
the transition. We have temporarily left out two more fields, the comodificationlist ( comod:)
and modification list (mod:) fields. This incomplete state delta represents the transition
from the precondition, a state in which the contents of a are 1, to the postcondition, a
state in which the contents of b are 2; that is, if at any time .a=1, then there will be a
later time when #b=2. (Note that there is no specification as to when this later time is.)
The modification field (mod:) will list those places that are allowed to change between the
precondition and postcondition times. One possibility is that a given place does not change,
or that such a change is irrelevant. However, it could be that the system described has some
interrelationships that imply that when b gets the value 2 as indicated above, b or some
other places may in fact change, or have to change, but the user is either unaware of or
uninterested in what those changes are. A mechanism is needed that allows the expression
of the fact that during a transition, certain places may have changed their contents, i.e.,
that the contents of those places cannot be assumed to remain the same. More generally,
any sentence dependent on those places that change cannot be assumed to be preserved
during such a transition.

The problem is solved by including in a state delta an explicit list of the places that are not
guaranteed to preserve their contents, or that may have their contents modified. Thus the
above state delta could become

[sd pre: (.a = 1) mod: (a,b,c) post: (#b = 2)]

This means that from a state in which the contents of a are 1, we will get to a state in
which the contents of b are 2, and in this transition all places, except perhaps a, b, and ¢,
preserve their contents. Thus, a state delta with an empty mod list encodes a static claim,
i.e., a claim about a transition in which nothing changes, and thus, if first-order, a claim
about the current state.

If one wanted to encode the assignment statement a := a + 1 as a state delta, it would be,
to first approximation,

[sd pre: (true)
mod: (a)
post: (#a = .a + 1)]

If a were not in the mod list above, the resulting state delta would be inconsistent, that
is, it could never be realized by a real computation, since a could not be replaced by a + 1
without a being allowed to change value. We currently do not allow pounds (#) to appear
in the precondition.! A dotted place in the postcondition refers to the contents of that
place at the time the precondition is checked.

! Although this change is not planned, we could interpret pounds in the precondition to refer to precon-
dition time, as dots do now, and then interpret dots to refer to the time at which the state delta became
true.




The last ingredient of basic (i.e., without invariant list) state deltas, the comodification list,
is used to regulate how long a usable state delta remains usable. It helps to consider the
following intuition behind state deltas: state deltas describe various computations, and the
validity or accessibility of those descriptions changes (possibly) as a function of time. For
example, one may think of state deltas as processes that may be “activated” at one time
and “deactivated” at other times. So in order to specify that the assignment statement
a := a+ 1 will be applied only once (not repeatedly as in a loop), and then will be no longer
accessible, the state delta will have to be

[sd pre: (true)
comod: (a)
mod: ()
post: (#a = .a + 1)]

or possibly

[sd pre: (true)
comod: (pc)
mod: (a,pc)
post: (#a = .a + 1)]

where pc (program counter) is some new place. As long as the places in the comodification
list do not change values, a usable state delta will remain usable and thus applicable at
any time its precondition is true. So for the above state deltas, once either is applied it
may not be reapplied, since the mod list and the comod list intersect. Note that this result
holds simply because of the intersection, not because any places actually change value, a
fact that, in some cases, we may never know. SDVS, for the sake of soundness, must take
the conservative position that established facts will go away, unless we can prove that they
remain. This is to be contrasted with the “default reasoning” position that established facts
will stick around, unless we have good reason to believe that they should go away.

To continue with the intuition behind the comod list, consider a supply of state deltas,
each of which is introduced at a certain time, and each of which must have its precondition
become true in order to “execute” (or be “applied”) and bring about its postcondition.
It could be the case that for a certain state delta to be applicable, most of the state at
the time of its introduction must be unchanged except for one condition that is stated in
the precondition. In order not to have to list all state characteristics that must remain
in force, one can list those places that must remain unchanged since the time of the state
delta’s introduction in order for that state delta to be applicable. This is the comodification
list. If one of those places changes before the precondition becomes true, the state delta
cannot become applicable and is removed from the supply. (Of course, it can be explicitly
introduced again in the future.) So, the following state delta

[sd pre: (.a gt 0)
mod: (a)
post: (#a = .a + 1)]
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is true at a certain time (“now”), if at any time in the future (from then) when the contents
of a are greater than 0, there is a (not necessarily strictly) later time at which the contents
of @ will be incremented by 1, and nothing else would have changed. However, at this later
time the contents of a are still greater than 0, and so the state delta is “reapplicable.” In
other words, there is a still later time at which the contents of a are further incremented,
and the process can be continued ad infinitum.

The state delta

[sd pre: (.a gt 0)
comod: (a)
mod: (a)
post: (#a = .a + 1)]

is true “now” if at any later time at which the contents of a are greater than 0, and
in the interval between now and that time the contents of a have not changed (a is in the
comodification list), then there is a (not necessarily strictly) later time at which the contents
of a are incremented by 1 and nothing has changed except the contents of a (only ais in the
modification list). The truth of this state delta now does not imply that it will still be true
at the time when the contents of a are actually incremented, because the comodification
list will have changed. Note that a true state delta with an empty comodification list will
be true at any time in the future.

The general definition follows.

Definition: Let p and g be lists of first-order sentences or previously defined state deltas (an
implicit conjunction), where the first-order sentences in p and in the preconditions of any
state deltas embedded within p and g are #-free, and let ¢ and m be lists of places. The
state delta

[sd pre: (p) comod: (c) mod: (m) post: (q)]

is true at time # in a given computation if at any later t; > to at which p is true and the
contents of the places in ¢ have not changed between to and t;, then there is some still later
time t; > t; in the computation at which g is true and only the contents of the places in m
may have changed between t; and t;.

The extra invariant (inv:) field is discussed in Chapter 8.

1.4.2 Expressing a Claim about a Computation as a State Delta

Much added expressive power comes from allowing the precondition and postcondition
themselves to contain state deltas in addition to first-order sentences. This is well-defined,
since all one must do is evaluate the truth of the precondition and postcondition at certain
times, and this evaluation can be done for state deltas as well as for “static” sentences.

Thus the following is a true state delta:
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[sd pre: (.a =1,
[=2d pre: (.a gt 0)
mod: (a)
post: (#a = .a + 1)1)
mod: (a)
post: (#a = 1000)]

This state delta can be interpreted as a claim about the computation represented by the
state delta (call it S) embedded in the precondition; i.e., if the contents of a are 1 and S is
constantly active, then definitely at some future time the contents of a will be 1000. Note
that the above does not determine anything else about the values of a (for example, that
a increases monotonically). Intermingled between the times when a takes on the values 1,
2. ..., 1000, ..., a can take on arbitrary values. Also, nothing is specified about the length
of the time interval between these increasing values, nor about how long these values are

maintained once they are achieved.

1.4.3 Assuming and Proving a State Delta

First, we want to clarify several terms relating to state deltas that have been found to
be confusing to users of SDVS. They are: “true state delta,” “usable state delta,” and
“applicable state delta.” A true, or valid, state delta is one that holds in every computation
according to the semantics given on page 11. Every state delta theorem proved in SDVS,
i.e., proved at the top level, is (we hope) a true state delta. A usable state delta is one
that is known by SDVS to be true at the current time in the current context, i.e., is in
the list of usablesds. An applicable state delta is a usable state delta that can be applied
in the current context, i.e., whose precondition is true. After it is applied, it may remain
applicable, usable, or neither in the new state.

In order to prove the above state delta, i.e., that it is true “now,” SDVS assumes there is
a later time at which the precondition is true and the contents of the places in the comodi-
fication list (there are no such places in this example) have not changed. The precondition
consisting of the first-order sentence about a and the state delta S is stored in a database
representation of the “current state” of the computation. Then one shows, in this case by
direct execution or induction, that there exists a state in which the postcondition becomes

true.

For the sake of simplicity, we now describe a step of the symbolic execution proof. (Induction
will be discussed in Section 2.5.) The fact that S is in the current state (i.e., true) allows
a state transition to take place. The precondition of S, .a gt 0, is also true in the current
state, so one may advance the state to the time of S’s postcondition, #a = .a+ 1. Now
one must update the current state. It contains the fact that the contents of a are now 2.
How about S? S has an empty comodification list also, so it will be true at any time after
the original “now.” Thus S also belongs to the new current state. Since the precondition
of § is still true, S may be reapplied, which brings about the state where the contents of a
are 3. This process can obviously be continued until the contents of a become 1000. One
final check is needed to prove the state delta: it must be verified that the postcondition
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was achieved within the constraints of the modification list. Indeed this is so: since the
modification list of S contained only a, the whole computation involved only changes in a.

1.5 THE MODEL OF STORAGE

There is one additional element of the state delta paradigm that we have not yet considered,
the dependence relations among the places. The covering predicate represents architectural
information about the “overlap” of places, and is needed in processing the comod and mod
lists in order to update the state. Without an explicit covering statement mentioning all
places in a given state delta, SDVS may behave too conservatively. If there is no overlap
among places, that has to be explicitly stated.

For example, if b is in the modification list of a state delta, then b is allowed to change when
that state delta is applied, and thus we cannot know a priori (i.e., based on the previous
value of b) what its new value will be. The contents of b must be explicitly updated at
postcondition time (either in accordance with the information in the postcondition about
b, or simply to “don’t know”). If @ happens to be defined as the concatenation of b with
¢, say, then a must also be similarly updated at postcondition time. In this case, or in the
more general case of a being the disjoint union of b and c, one would write CO VERING(A,
B, C). If the user has knowledge that is more explicit (e.g. that a is the concatenation of
b and c), those details would have to be specified separately, and then of course further
information about the relation among the values of a, b, and ¢ could be deduced.

Think of
' covering(place, subplace,, subplace,, . .., subplace,,)

as representing the condition that placeis the disjoint union of {subplace,, subplace,, . .., subplace,, }.

[Note to advanced SDVS users: to model more general situations, think of
covering(place, subplace,, subplace,, . . ., subplace,,)

as representing the condition that {subplace;, subplace,, ..., subplace,} is a minimal inde-
pendent set such that the value of placeis a function of (.subplace,, .subplace,, .. ., .subplace,).
But we will not get into the technical details here.] In particular, if place is actually the dis-
joint union of the mentioned subplaces, and the contents are calculated by concatenating the
contents of the subplaces, then certainly the above covering relation holds. Thus, a change in
.place means that there was a change in at least one of .subplace,, .subplace,, ..., .subplace,;
therefore, unless we know more specifics, we must assume all have potentially changed value.
Similarly, unless we know otherwise, a change in the value of one of the subplaces means
we must assume that .place changed. Note that we do not insist that the value of place
be a one-one function of (.subplace,,.subplace,, ..., .subplace,); thus, the value of a sub-
place may change without the value of place actually changing. However, in cases where
we do want to enforce that the function be one-one, we have the strongcoverings flag (see
Section 2.9.1).

Thus, under the hypothesis that covering(all, a, b) (all represents the set of all places) and
covering(a, ¢, d) hold, the following state delta is inconsistent:
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SI:

[sd pre: (true)
mod: (d)
post: (#c = .c + 1)]

while the following are consistent:

S2:

[sd pre: (true)
mod: (c)
post: (#c = .c + 1,%a = .a)]

S3:

[sd pre: (true)
mod: (b,c)
post: (#a = .a,#b = 1)]

S4:

[sd pre: (true)
mod: (c)
post: (#a = .a + 1)]

(To see how the system responds to the hypothesis of an inconsistent state delta, see Section
2.6.) To see why S2 is consistent, we must use the abstract dependency interpretation of
coverings. For example, assuming that covering(a, ¢, d) means that a depends on ¢ and d,
but ¢ and d are independent, we can consider the situation in which .a = .c + .dif .c <5,
and .a = 5 + .d otherwise. Then .c can go from 5 to 6 without changing the value of a. S3
is similar: in S3 the contents of d are not allowed to change during the computation, since
d does not appear in the mod list. a does not have to appear in the mod list, even though
its contents may have changed during the computation (as a result of the fact that c is in
the mod list). If ¢ had been omitted in the mod list and #b=1 had been omitted in the
postcondition, then the resulting state delta would have been true (and provable in SDVS).

S4 is seen to be consistent by making the part of a that changes be c.

The covering language actually represents a fragment of set theory. The other symbols in
the covering language are pcovering (“partial” covering, with pcovering(z, a, b, ...) meaning
that the place z contains, but is not necessarily equal to, the disjoint union of a, b, )y
union (with union(a, b, ...) meaning the list of the places a, b, ...), alldisjoint (with
alldisjoint(a, b, ...) meaning that the places a, b, ..., have no locations in common, ie.,
they are independent), diff (with diff(A, B), where A and B are lists of places, meaning
those places in the list A but not in B), everyplace (the universal place, pcovering all other
places), and emptyplace (meaning the unique place that has no contents, that is pcovered
by all other places). The name all is used as an abbreviation for everyplace.
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Figure 1: Basic Structure of SDVS

1.6 THE STRUCTURE OF SDVS

Figure 1 illustrates the various modules of SDVS. SDVS is organized around the kernel,
which is the manager for the state delta logic and thus performs dynamic reasoning within
SDVS. Access to the kernel is gained through the command interface, which is in turn
accessed by users of the system through the user interface. The kernel uses the place table,
which stores the associations between places (variables) and their values, and both the kernel
and the place table use the simplifier for static reasoning and value simplification. Also
available with SDVS are translators for translating from software and hardware languages
(currently parts of ISPS, Ada, and VHDL) into the state delta logic. Finally, some general-
purpose modules of SDVS are the utilities, parsers, and printers.

The simplifier module processes static expressions (i.e., those not involving state changes)
by maintaining a database of equivalence classes of expressions, which is kept closed under
congruences [39] (see Figure 2). The entry to the simplifier is through two modules that deal
with normalizing expressions into standard form and analyzing the propositional (boolean)
nature of any expression. E is the part of the simplifier that performs deductions that are
based solely on equality reasoning. The other “solvers” deal with special theories, such as
Z: the integers, C: coverings, B: bitstrings, and A: arrays.

The simplifier has two properties that facilitate its use. First, it is incremental; that is,
the simplifier can accept atomic formulas one by one, maintain a representation of their
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Figure 2: Simplifier Structure

conjunction, and detect an unsatisfiability as soon as it occurs. Second, it is resettable; that
is, the simplifier can mark its state, accept further formulas, and then return to the marked
state by removing the formulas received after the mark.

1.7 INPUTTING THEOREMS

The user is able to input descriptions of target and host machines in ISPS (see Chapter 3),
as well as a mapping between states in the host and target, which gives the “interpretation”
of one machine in the other. These are the ingredients of the state delta representing the
statement of the theorem that the host implements the target via the given mapping.

The implementation command prompts the user to supply these components and automat-
ically creates the theorem expressing the implementation relation (see page 121).

Theorems representing the input-output correctness or safety of Ada programs must be writ-
ten as state deltas by the user: the Ada program in its adatr form (written as ada<program-
name> along with any other necessary input conditions in the precondition, and the output
condition appearing in the postcondition along with the predicate terminated<program-
name> (see Chapter 4.) A similar procedure employing the predicate vhdl<desc-name> must
be followed for theorems representing the correctness of VHDL descriptions (see Chapter 5.)
The terminated predicate is made true when the translator arrives at the end statement of
an Ada program or VHDL description. Note that ada<program-name> or vhdl<desc-name>
can occur only as implicit conjuncts separated by a comma; use of the word and or the
symbol &, as allowed with all other predicates, is not allowed, and will result in an error.
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1.8 GETTING AROUND IN SDVS

Throughout this manual, italic type indicates user input and
this kind of type

indicates system type-back. All arguments input to SDVS must be followed with a carriage
return <CR>.

To run SDVS, just type the name of the executable load module given when the system
was created, e.g. sdvs12.2 (This assumes that the correct path has been put into the Unix
$PATH variable. Otherwise, you will have to type in the entire pathname.) When SDVS
starts up, you will see a system header message followed by the SDVS command prompt,
which looks like this:

<sdvs.1>

Suffixes other than “1” indicate proof depth.

SDVS is now ready to accept your commands to create state deltas, parse ISPS, Ada, or
VHDL files, and build proofs. Most of SDVS’s commands require further information from
the user. A short prompt message followed by : will describe the type of information that
SDVS is expecting. The user should then supply the requested information. SDVS expects
all of the requested information on one line; therefore, the user should press the “return”
key only after typing in all of the information. Occasionally, the prompt will contain a
default value to be used. The default value for any prompt is displayed within enclosing
brackets “[1” before the “:”. To use the default value, one need only press the “return”
key. (In the examples in the manual, you will see <CR> indicating this.)

Certain commands prompt the user to supply file (or path) names. In these instances, the
full pathname for a file may be supplied (e.g. /usr/jones/sdvs/proofs/ada.proof) or a
partial (relative) pathname (e.g. testproofs/mult.ada). If a partial pathname is supplied,
it is relative to the current working directory. Initially, it is the sdvs subdirectory of the
top-level directory created to hold the SDVS system when it was loaded from the release
tape by the system administrator.

A useful feature of SDVS is its ability to return to a previous step in the proof by means
of the pop command. The proof structure is kept as a stack so that the intermediate proof
steps are lost. It is a good idea to do a proofstate first, showing the proof steps executed
so far, in order to see how many steps you need to pop. Several query commands come in
handy: whynotgoal can help direct the proof by showing the user which goals are not yet
verified; whynotapply will give the reasons why a state delta cannot be applied (e.g. because
part of the precondition is not known to be true; it will also inform the user if the mod
list is too large, and therefore the proof can be closed only by reaching a contradiction; see
Section 2.6).

2See your system administrator for the name you should use.
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When the proof is either partially or totally written, it may be saved by the command dump-
proof. Saved variables (e.g. state deltas, proofs, lemmas, formulas) may be written to a file
by the command write, and read by the command read. See Section 2.9.14. Incorporating
into the current SDVS environment a state delta or proof that has a defining form in the
editor is accomplished by evaluating that form at the Lisp prompt: simply type bye in
SDVS to get the Lisp prompt, and (sdvs) to return. Alternatively, eval can be used at the

SDVS prompt.

1.9 SOME PRACTICE ON THE SYSTEM

In this section we want to give the user interactive experience with SDVS. This section uses
the following commands:

e createsd: define a state delta

ppsd <sd>: prettyprint the state delta <sd>

e init: initialize the system before beginning a new proof

prove <sd> <proof>: prove (check the proof of) the state delta <sd> by <proof>

e *: execute (apply usable state deltas as long as possible)

ps: prints the current proof state

isps <file>: translates the ISPS program on <file> into a state delta.

e quit: terminates a proof session

The following simple example illustrates the creation and proof of the state delta claim-
ing that if a starts out at 1, and, if nonnegative, a is repeatedly incremented by 1, then

eventually a gets to be 3.

<sdvs.1> createsd
name: s2
[SD pre: .age 0
comod[]: <CR>
mod[]: a
post: #a = .a+ 1
]

<sdvs.1> ppsd
state delta: s2

[sd pre: (.a ge 0)
mod: (a)
post: (#a = .a + 1)]
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One way to insert a state delta in the precondition or postcondition of another state delta
is by means of the formula command. The internal state delta can also be typed in directly
(see Section 2.1).

<sdvs.1> createsd
name: 83
[SD pre: .a = I, formula(s2)
comod[]: <CR>
mod[]: a
post: #a =23
]

<sdvs.1> ppsd
state delta: s3

[sd pre: (.a = 1,formula(s2))
mod: (a)
post: (#a = 3)]

<sdvs.1> nit
proof name[l: <CR>

State Delta Verification System, Version 12
Restricted to authorized users only.
<sdvs.1> prove

state deltal]l: s3

proof[l: <CR>

open —- [sd pre: (.a = 1,formula(s2))

mod: (a)
post: (#a = 3)]
inserting -- pcovering(all,a)

Complete the proof.

The message about pcovering announces that SDVS has discovered an undeclared place, a.
SDVS discovers places either because they appear in mod or comod lists, or because they
appear with dots or pounds. It is recommended that all places be declared explicitly by
means of a covering statement. To continue the proof (make sure the autoclose flag is on by
typing flags; it should be, unless you have explicitly turned it off by the setflag command):

<sdvs.1.1> *
apply -- [sd pre: (.a ge 0)
mod: (a)
post: (#a = .a + 1)]
apply —- [sd pre: (.a ge 0)

mod: (a)
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post: (#a = .a + 1)]
close -- 2 steps/applications
<sdvs.2> quit
Q.E.D. The proof for this session is in ‘sdvsproof’.
State Delta Verification System, Version 12

Restricted to authorized users only.

The next little example deals with the ISPS program aaa.isp. See Chapter 3 for detailed
information about the translation from ISPS descriptions to state deltas.

MACHINE:=(
**Registers**
A<1:0>
**Process*»
CYCLE{MAIN}:=

BEGIN
A1
END

)

Now we wish to access this program. It resides in testproofs/manual/isps/aaa.isp. When
a path name or a file name is required as an argument to an SDVS command, the user
is prompted with an expression of the proper form as a default. Sometimes SDVS will
guess correctly; if so, hitting <CR> instructs SDVS to use the default. Otherwise, a new
expression may be typed in. After initing, the session continues:

<sdvs.1> tsps
path name[foo.ispl: testproofs/manual/isps/aca.isp
unique name level[1]: <CR>

Parsing ISPS file -- '"testproofs/manual/isps/aaa.isp"

Translating ISPS file -- "testproofs/manual/isps/aaa.isp"

In translating from ISPS to state deltas, the control point is considered as a place <machine-
name>\upc (for microprogram counter, u being the poor man’s u) that takes label names

for values, thereby allowing execution from one label to the next or to any other. The labels
machine\started and machine\halted are generated automatically.

We create and prove the state delta theorem claiming that if we start executing the program
aaa.isp at its start point, we will eventually get to a state in which a has the bitstring value
1(2), that is, value 1 and length 2 (as specified in the semantics of ISPS).
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<sdvs.2> ppsd
state delta: isps
file name: aaa.isp

covering(machine,a,machine\upc)
declare(a,type(bitstring,2))
[tr @MACHINE\STARTED {in MACHINE} A_...;]

<sdvs.2> createsd
name: isps.sd
{SD pre: isps(aaa.isp), .machine\upc = machine\started
comod[]: <CR>
mod[]: all
post: #a = 1(2)
]

<sdvs.2> ppsd
state delta: isps.sd

[sd pre: (isps(aaa.isp),.machine\upc = machine\started)
mod: (all)
post: (#a = 1(2))]
<sdvs.2> setflag
flag variable: autoclose
on or off[offl: on

setflag autoclose ~- on

<sdvs.3> init
proof name[]: <CR>

State Delta Verification System, Version 12
Restricted to authorized users only.
<sdvs.1> prove
state delta[]: 1sps.sd
proof{l: *
open -- [sd pre: (isps(aaa.isp),.machine\upc = machine\started)
mod: (all)
post: (#a = 1(2))]
apply -- [sd pre: (.machine\upc = machine\started)
mod: (machine\upc,a)
post: (#a = 1(2),
{tr CMACHINE\halted]l)]
close -- 1 steps/applications

<sdvs.2> quit

Q.E.D. The proof for this session is in ‘sdvsproof’.
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State Delta Verification System, Version 12
Restricted to authorized users only.

<sdvs.1> pp
object: sdusproof

proof sdvsproof:

prove isps.sd
proof: execute

Consider these examples showing the use of the help command. (Note that the system
output has been suppressed.) The first example shows that the user wishes to accept the
default value (all) supplied by the system by just pressing the “return” key. In the second
example, the user wishes to supply a value different from the default and so types it in.

<sdvs.1> help
with[all]l: <CR>

<sdvs.1> help
with[alll:  help

1.10 SYSTEM HELP

All possible user input has on-line documentation. The help command may be typed in.
The total output for system help is listed below.

<sdvs.1> help
with{alll: all

<<<SDVS Help>>>  Proof Commands << <SDVS Help>>>

Commands -- * activate adatr apply apply'! applydecls applydeclsandstats
automatedatatype cases cleardate close comment consider createadalemma
createvhdllemma date deactivate defer execute finduct go
hidepropagations induct interpret invokeadalemma invokevhdllemma isps
ispstr let letsd linearize mcases mpisps mptr natinduct negate notice
noticeconcurrentsd noticeinvariant omegainduct parse prove proveadalemma
provebyariom provebylemma provelemma provevhdllemma quantification read
readaxioms readlemmas restorepropagations rewritebyaxiom rewritebylemma
selecti setflag stop subcases tr until vhdltr

Symbolically executes state deltas until either no more state deltas can be
applied or the current goal is satisfied. If the ‘autoclose’ flag is on, the goal
is checked after each state delta application; otherwise, the goal is never
checked.
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activate <solver-name>
Activates one of the simplifier’s solvers, when <solver-name> is one of a, b, c,
d, e, 1, m, p, q, or z. Use the ‘solvers’ command to see what the single
character <solver-name> designations denote.

adatr <pathname>
Initiates the incremental translation of the <file> identified by <pathname> into
the language of the state delta logic, assuming <file> contains a Stage 4 Ada
program. The <file> is not re-parsed if it has already been parsed, and is not
re-translated if it has previously been translated. The resulting translation is
associated with <file>’s name, and becomes available via the predicate
ada(<file>).

apply {<n>}
Symbolically execute, if possible, the next <n> highest applicable state deltas,
executing only once if <n> is omitted. If the invariance flag is ON, the
application is preceded by the opening of a proof that the invariant of the state
delta to be proved is implied by the invariant of the state delta to be applied.

apply <sdspec>
Symbolically execute the state delta specified by <sdspec> if applicable. If the
invariance flag is ON, the application is preceded by the opening of a proof that
the invariant of the state delta to be proved is implied by the invariant of the
state delta to be applied.

apply! {<n>}
Symbolically execute, if possible, highest applicable state deltas until the nth
markpoint is reached, executing only to the first markpoint if <n> is omitted.

applydecls
Performs symbolic execution of Ada declarationms.

applydeclsandstats
See the command ‘go’.

automatedatatype <datatype-name>
Automates the axioms for an untyped user-defined datatype created via the
‘createdatatype’ command, by defining a simplifier solver which implements the
axioms. This command must be performed at the top level, because it causes
additional simplifier initialization and must be invoked in a guaranteed
consistent state. Use the ‘deautomatedatatype’ command to eliminate the
automation.

cases <preterm> {<then-proof>} {<else-proof>}
Starts a proof by cases of the current goal, the two cases being conditional on
<preterm> and its negation. Unless omitted, the proof commands in <then-proof>
are used for the proof of the first case and those in <else-proof> for the proof
of the second case.

cleardate
Zeros out the elapsed proof time since previous ‘date’ command, so the next ‘date’
command will display new elapsed time.

close
Tries to close the current proof, which is possible only if the current goal has




been satisfied. When the ‘autoclose’ flag is on, SDVS attempts to close the proof
after each proof command, and explicit ‘close’ commands are unnecessary.

comment <text>
Comments a portion of the proof. Anything may be embedded within a comment, but
only text may be typed in from command level.

consider <preterm>
Adds <preterm> to the simplifier’s database.

createadalemma <lemma-name> <file-name> <subprogram-name> <qualified-name>
<preformulas> <mod-places> <postformulas>

Create and name a lemma about an Ada subprogram contained in the indicated file.
One must provide the fully qualified name of the subprogram, the optional
precondition formulas for executing the subprogram, the optional list of places
(variables) modified by the subprogram, and the desired postcondition formulas
resulting from the execution of the subprogram. The lemma is represented by a
state delta with appropriate precondition, modlist, and postcondition. The lemma
may be printed via the ‘pp adalemma’command, may be proved via the ‘proveadalemma’
command, and may be invoked by the ‘invokeadalemma’ command.

createvhdllemma <lemma-name> <file-name> <subprogram-name> <qualified-name>
<preformulas> <mod-places> <postformulas>

Create and name a lemma about a VHDL subprogram contained in the indicated file.
Dne must provide the fully qualified name of the subprogram, the optional
precondition formulas for executing the subprogram, the optional list of places
(variables, signals) modified by the subprogram, and the desired postcondition
formulas resulting from the execution of the subprogram. The lemma is represented
by a state delta with appropriate precondition, modlist, and postcondition. The
lemma may be printed via the ‘pp vhdllemma’command, may be proved via the
‘provevhdllemma’ command, and may be invoked by the ‘invokevhdllemma’ command.

date
Displays the time of day and the elapsed proof time since previous ‘date’ command,
displaying only the time of day if no ‘date’ command since the last SDVS

initialization.

deactivate <solver-name>
Deactivates one of the simplifier’s solvers, vhen <solver-name> is one of a, b, c,

d, e, 1, m, p, q, or z. Use the ‘solvers’ command to see what the single
character <solver-name> designations denote.

defer {<ns>}
Defers either all goals if not provided an argument, or defers the goals whose

goal numbers appear in <ns>.

execute
Symbolically executes state deltas until either no more state deltas can be

applied or the current goal is satisfied. If the ‘autoclose’ flag is ON, the goal
is checked after each state delta application; otherwise, the goal is never
checked.

finduct <tr-goal> <invariant-preformulas> {<base-proof>} {<step-proof>}
CURRENTLY NOT IMPLEMENTED. Opens a fixed point inductive proof of the specified
goal, which must be a TR-generated continuation. The invariant, base proof, and
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step proof are as in the ‘induct’ command.

go {<postformula>}
Is similar to the ‘until’ command, except that ‘go’ will instantiate existentially
qualified state deltas and apply them if a state is reached where no more state
deltas are applicable. This command is especially useful for symbolically
executing Ada programs and VHDL descriptionms.

hidepropagations
Hides propagated facts, essentially making the system forget about the current set
of propagated disjunctions. Turning on the ‘reportpropagations’ flag forces the
system to print propagated disjunctions after they appear during the course of a
proof. The ‘restorepropagations’ command restores any hidden propagated

disjunctions.

induct <induct-preterm> <from-preterm> <to-preterm> <invariant-preformulas>
<comod-places> <mod-places> {<base-proof>} {<step-proof>}

Initiates an inductive proof on the expression <induct-preterm> in the range
<from-preterm> to <to-preterm>. The loop invariant is the conjunction of
<invariant-preformulas>, and <comod-places> and <mod-places> are lists of places
for the comodification and modification lists of the inductive step proof. Unless
omitted, the base and step proofs are taken from <base-proof> and <step-proof>,
respectively. Currently, induction expressions must be integer-valued, and the
induction counter is either incremented or decremented by exactly one during the
inductive step.

interpret <proof-name>
Interprets the proof commands in <proof>.

invokeadalemma <lemma-name>
<lemma-name> must be the name of a valid Ada lemma, previously created via the
‘createadalemma’ command. This lemma characterizes the execution of some
subprogram P. If the current proof is symbolically executing an Ada program, and
the symbolic execution point indicates that we are "at P," then the lemma is
invoked to replace the execution of the body of P by its state delta
characterization. After the state delta resulting from the lemma is applied,
symbolic execution can resume.

invokevhdllemma <lemma-name>>
<lemma-name> must be the name of a valid VHDL lemma, previously created via the
‘createvhdllemma’ command. This lemma characterizes the execution of some
subprogram P. If the current proof is symbolically executing a VHDL hardware
description,and the symbolic execution point indicates that we are "at P," then
the lemma is invoked to replace the execution of the body of P by its state delta
characterization. After the state delta resulting from the lemma is applied,
symbolic execution can resume.

isps <file> {<unique-name-level>}
Parses the ISPS file <file>, generating a parse tree file, and produces the state
delta semantics of <file>, associating these semantics with <file>’s name.

ispstr <pathname>
Initiates the incremental translation of the <file> identified by <pathname> into
the language of the state delta logic, assuming <file> contains an ISPS program.
The <file> is not re-parsed if it has already been parsed, and is not
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re-translated if it has previously been translated. The resulting translation is
associated with <file>’s name, and available via the predicate isps(<file>).

let <name> <preterm>
Instantiates <name> to the current value of <preterm> if name is not already in
use by the simplifier.

letsd <name> <sdspec>
Generates a new <name> for the state delta referenced by <sdspec>, if <name> is
not in use by the current proof.

linearize <sdspecl> <sdspec2> <namel> <name2> {<name3>}
Linearizes the two applicable state deltas specified by creating and asserting the
disjunction of two resultant state deltas (three, if the invariance flag is ON).
The name of each disjunct is supplied by the user.

mcases <n> <first-preformula> {<first-proof>} ... <nth-preformula> {<nth-proof>}
Starts a proof of the current goal by multiple cases predicated on the n
<preformula>s, using the associated proof commands if provided.

mpisps <file> <starting-markpoint-name> <ending-markpoint-names> <dotformulas>
{<unique-name-level>}
Produces the markpoint-to-markpoint state delta semantics of <file>, after parsing
it, generating state deltas only for those paths which start at
<starting-markpoint-name> and go no further than any markpoint in
<ending-markpoint-names>, where <dotformulas> must hold at the beginning of each
such path.

mptr <file> <starting-markpoint-name> <ending-markpoint-names> <dotformulas>
{<unique-name-level>}
Produces the markpoint-to-markpoint state delta semantics of the already ‘isps’ed
<file>, generating state deltas only for those paths which start at
<starting-markpoint-name> and go no further than any markpoint in
<ending-markpoint-names>, where <dotformulas> must hold at the beginning of each
such path.

natinduct <induction-variable> <formulas> {<base-proof>} {<step-proof>}
Performs natural induction on n for the specified formulas, vhere n is the new
induction variable.

negate <sdspec> <namel> {<name2> <name3>}
If the specified state delta is known to be FALSE, SDVS creates and asserts an
equivalent state delta. The postcondition of the asserted state delta contains
the disjunction of three formulas (one formula, if the invariance flag is OFF),
vhose names are given by the user.

notice <preformula>
Inserts <preformula> into the state if it is known to be TRUE.

noticeconcurrentsd <n> <sdspecl> ... <sdspecn>
Creates and asserts the concurrent state delta obtained from the n specified
applicable state deltas.

noticeinvariant <sdspec>
Asserts the invariant of the state delta specified, if the state delta is known to
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be applicable.

omegainduct <on> {<auxiliary-formulas>} <places> {<base-proof>} {<step-proof>}
Initiates an inductive proof on the <on> formulas which must be of precondition
type. The optional <auxiliary-formulas>, which must also be of precondition type,
will usually be loop state deltas. <Places> is a set of places one of which will
change infinitely often in the induction. The <base-proof> and <step-proof> are
optional.

parse <file> <language-name>
Parses <file> and creates a parse tree file.tree, according to the grammar and
semantic actions associated with <language-name>.

prove <sdspec> {<proof>}
Opens a proof of the state delta specified by <sdspec>, using <proof> if supplied.
Then, if the invariance flag is ON, a proof of the invariant of the specified
state delta is opened.

proveadalemma <lemma-name> {<proof>}
Starts a proof of the Ada lemma named <lemma-name>, using the proof commands in
<proof> if provided. This command, like the ‘provelemma’ command, is available
only as a top level command.

provebyaxiom <preformula> {<ariom-name>} [<freevar-symbol> <matching-preterm>]%
Attempts to prove the truth of <preformula> using a single instantiation of a
single axiom whose consequent matches <formula>, using the axiom whose name is
<axiom-name> and matching free variables appearing in the antecedent but not the
consequent if matching terms are provided.

provebylemma <preformula> {<lemma-name>} [<freevar-symbol> <matching-preterm>]*
Attempts to prove the truth of <preformula> using a single instantiation of a
single lemma whose consequent matches <formula>, using the lemma whose name is
<lemma-name> and matching free variables appearing in the antecedent but not the
consequent if matching terms are provided.

provelemma <lemma-name> {<proof>}
Starts a proof of the lemma named <lemma-name>, using the proof commands in
<proof> if provided.

provevhdllemma <lemma-name> {<proof>}
Starts a proof of the VHDL lemma named <lemma-name>, using the proof commands in
<proof> if provided. This command, like the ‘provelemma’ command, is available
only as a top level command.

quantification {<on/off>}
Turns the quantification solver on or off, unless the arguments are omitted, in
which case the state of the solver is toggled. This command is not accepted if
any proofs have been started since initialization, since it causes system
re-initialization.

read <file>
Reads state deltas, proofs, axioms, lemmas, formulas, formula lists, datatypes,
macros, adalemmas, and vhdllemmas from <file>, indicating which definitions were
read. Use the ‘write’ command to place definitions in a file.
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readaxioms <file>
Reads axioms from <file>, inserting them into the current set of axioms.

readlemmas <file>
Reads lemmas from <file>, inserting them into the current set of lemmas.

restorepropagations
Restores all hidden propagated disjunctions. See the ‘hidepropagations’ command.

revritebyaxiom <preterm> {<axiom-name>}
Attempts to rewrite <preterm> by finding some axiom whose consequent is of the
form t1=t2, where either t1 or t2 matches <preterm>, and if the antecedent of the
axiom is satisfied, then the equality assertion is made, instantiating t1 and t2
using subterms of <preterm>. The axiom whose name is <axiom-name> is used if
<axiom-name> is provided.

rewritebylemma <preterm> {<lemma-name>}
Attempts to rewrite <preterm> by finding some lemma whose consequent is of the
form t1=t2, where either t1 or t2 matches <preterm>, and if the antecedent of the
lemma is satisfied, then the equality assertion is made, instantiating t1 and t2
using subterms of <preterm>. The lemma vhose name is <lemma-name> is used if
<lemma-name> is provided.

selecti <preterm> <n> <first-selecti-clause> {<first-proof>} ... <nth-selecti-clause>
<nth-proof>
Permits proof selection based on the value of the integer-valued expression
<preterm>. The <selecti-clause>s are checked against the value of <preterm> one
at a time, and if a clause matches, then its proof is executed. A final clause of
"t matches any value for <preterm>.

setflag <flag-name> {<on/off/n>}
Sets the flag denoted by <flag-name> to the indicated value, toggling the flag if
the value is omitted.

stop {<string/symbol>}
Halts the current batch proof, printing out the <string/symbol> unless it is
omitted. This command has no effect in interactive mode.

subcases <preterm> <mod-places> <postformulas> {<then-proof>} {<else-proof>}
Starts a proof by cases of the goals indicated by <postformulas>, the two cases
being conditional on <preterm> and its negation. Only the places in <mod-~places>
are permitted to be modified during the course of the proof. Unless omitted, the
proof commands in <then-proof> are used for the proof of the first case and those
in <else-proof> for the proof of the second case.

tr <file> {<unique-name-level>}
Produces the state delta semantics of already parsed <file> from its parse tree,
associating these semantics with <file>’s name.

until <postformula>
Symbolically executes highest applicable state deltas until <postformula> is TRUE,

there are no more applicable state deltas, or the ‘autoclose’ flag is on and the
current goal is satisfied.

vhdltr <pathname>
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Initiates the incremental translation of the <file> identified by <pathname> into
the language of the state delta logic, assuming <file> contains a Stage 3 VHDL
hardvare description. The <file> is not re-parsed if it has already been parsed,
and is not re-translated if it has previously been translated. The resulting
translation is associated with <file>’s name, and becomes available via the
predicate vhdl(<file>).

<<<SDVS Help>>> Quantification Commands <<<SDVS Help>>>

Commands —- enotice instantiate provebyeklaxiom provebygeneralization
provebyinstantiation provebymakeboundedquantifier

enotice <postformula>
Informs EKL of the non-quantified formula <postformula>, which is already known to
be true by the simplifier.

instantiate <goal> [<existential-symbol> <substitute-symbol>]#
The goal must be an existential formula. Replaces the goal with the formula
obtained by substituting names for the existentially quantified variables in the
original goal. The substitutions must be specified in order of appearance if more
than one variable is to be substituted.

instantiate <quant> [<existential-symbol> <substitute-symbol>]*
Substitutes names for existentially quantified variables in the usable quantified
formula <quant>. The variable names are used as the subsitution names if no
substitutions are specified.

instantiate <postformula> [<existential-symbol> <substitute-symbol>]=
Substitutes names for existentially quantified variables in the true existential
formula <postformula>. The variable names are used as the subsitution names if no
substitutions are specified.

provebyeklaxiom <postformula> {<axiomname>}
Attempts to prove the truth of the quantifiers formula <postformula> using a
single instantiation of a single axiom whose consequent matches <postformula>,
returning either the name of the axiom used, or NIL if no axiom proves
<postformula>. The axiom whose name is <axiomname> is used if <axiomname> is
specified.

provebygeneralization <universal-formula> <universal-formulas>
Attempts to prove <universal-formula> by using the already known to be true
statements <universal-formulas>. It checks that the conjunction of the first
levels of <universal-formulas> implies the first level of <universal-formula>.
The first level of a quantified formula is obtained by removing the first
quantifier and variable.

provebyinstantiation {<postformula>} <universal-postformula> <universal-varl> <termi>
.. <universal-vark> <termk>

Attempts to prove <postformula> by using the already known to be true universal
statement <universal-postformula> with specified terms substituted for universal
variables. This commands checks to see that the non-quantified part of
<universal-postformula> with the terms substituted implies <postformula>. If
<postformula> is omitted, the result of the substitution is inserted as a true
fact into the current state.
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provebymakeboundedquantifier <universal-formula> <universal-formulas>
Attempts to prove <universal-formula> by using the already known to be true
universal statements <universal-formulas>. Checks to see that the prefixes are
all the same and that the bound in <universal-formula> implies the disjunction of
the bounds of the sentences in <universal-formulas>.

<<<SDVS Help>>> Query/Printing Commands <<<SDVS Help>>>

Commands -- adasubprogenv applicable axiomnames datatypes decls eval flags goals help
lasterror lemmanames next nsd placevalue pp ppeq ppl ppsd proofcommands
proofstate ps range simp solvers usable usablequantifiers usablesds
usabletrs values vhdl-processes vhdl-signals vhdlsubprogenv vhdltime
wvhynotapply whynotgoal

adasubprogenv <file-name> <subprogram-name> <qualified-name>
Displays the mapping between fully and uniquely qualified names constituting the
environment of the Ada subprogram in the indicated file. In addition to the file
name, both the (textual) name and the fully qualified name of the subprogram must
be provided.

applicable
Prints the indexed set of currently applicable state deltas.

axiomnames {<function/predicate-names>}
Prints the names of the axioms having each function or predicate symbol in
<function/predicate-names> in their consequents, unless <function/predicate-names>
is omitted, in which case the names of all axioms are printed.

datatypes
Prints the names of all known datatypes.

decls
Prints all declarations currently in effect.

eval <s-expression>
Prints the result of evaluating <s-expression>.

flags
Prints the values of all SDVS flag variables.

goals
Prints the current set of goals.

help {<names>}
Prints help information about <names>, unless <names> is omitted, in which case

all SDVS help information is printed. The name '"commands" produces help for all
SDVS commands; the name "args" produces help for all SDVS command arguments; the
name "flags" prints help for all SDVS flag variables; the name 'proofcommands"
prints help for all SDVS proof commands; the name "quantcommands" prints help for
all SDVS quantification commands; the name "querycommands" prints help for all
SDVS query commands; the name "interactivecommands" prints help for all SDVS
solely interactive commands; the name "batchcommands" prints help for all SDVS
commands which can appear in a batch proof. For other names, such as the names of
flags and commands, the help for that particular name is printed.
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lasterror
Prints the last command error, if SDVS is in an erroneous state.

lemmanames {<function/predicate-names>}
Prints the names of the lemmas having each function or predicate symbol in
<function/predicate-names> in their consequents, unless <function/predicate-names>
is omitted, in which case the names of all lemmas are printed.

next {<n>}
Prints the next <n> batch proof commands, or just the next command if <n> is
omitted.

nsd
Prints the highest applicable state delta.

placevalue <place>
Prints the current value of <place>.

pp <name>
Prettyprints objects associated with <name>. The objects currently recognized are
state deltas, proofs, axioms, usable quantifier formulas, goals, lemmas, formulas,
formula lists, and s-expressions.

pp ada <file-name>
Prettyprints the state delta translation of the Ada file identified by
<file-name>.

pp vhdl <file-name>
Prettyprints the state delta translation of the VHDL file identified by
<file-name>.

pPp axiom <name>
Prettyprints the axiom named <name>.

pp axioms {<axiom-names>} {<function/predicate-names>}
Prettyprints all arioms if the optional arguments are omitted, prints those axioms
with names in <axiom-names> if provided, and prints those axioms whose consequents
contain all of the function and predicate symbols in <function/predicate-names> if
<axiom-names> is omitted but <function/predicate-names> is not.

pp datatype <name>
Prettyprints the datatype named <name>.

pp formula <name>
Prettyprints the formula named <name>.

pp formulas <name>
Prettyprints the list of formulas named <name>.

pPp g <n>
Prettyprints the nth current goal.

pp isps <file—name>

Prettyprints the state delta translation of the ISPS file identified by
<file-name>.
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pp lemma <name>
Prettyprints the lemma named <name>.

pp lemmaproof <name>
Prettyprints the lemma proof named <name>.

pp lemmas {<lemma-names>} {<function/predicate-names>}
Prettyprints all lemmas if the optional arguments are omitted, prints those lemmas
vith names in <lemma-names> if provided, and prints those lemmas whose consequents
contain all of the function and predicate symbols in <function/predicate-names> if
<lemma-names> is omitted but <function/predicate-names> is not.

pp mpisps <file-name> {<starting-markpoint-name>} {<ending-markpoint-names>}
{<preformulas>} '
Prettyprints the markpoint-to-markpoint state delta translation of the ISPS file
identified by <file-name>, translated according to the remaining optional
arguments.

pp proof <name>
Prettyprints the proof named <name>.

PP 9 <n>
Prettyprints the nth usable quantifier formula.

pp <sdspec>
Prettyprints the state delta specified by <sdspec>.

ppeq <preterm>
Prints all of the terms that are in the same equivalence class as <preterm>.

ppl {<places>}
Prints, for each place in <places>, the current value of the place and any
declarations associated with place. If <places> is omitted, this information is

printed for all places.

ppsd ada <file-name>
Prettyprints the state delta translation of the Ada file identified by
<file-name>.

ppsd vhdl <file-name>
Prettyprints the state delta translation of the VHDL file identified by

<file-name>.

ppsd isps <file-name>
Prettyprints the state delta translation of the ISPS file identified by

<file-name>.

ppsd mpisps <file-name> {<starting-markpoint-name>} {<ending-markpoint-names>}
{<preformulas>}
Prettyprints the markpoint-to-markpoint state delta translation of the ISPS file

identified by <file-name>, translated according to the remaining optional
arguments.

ppsd <sdspec>
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Prettyprints the state delta specified by <sdspec>.

proofcommands <proof-name>
Prints a list of the proof commands which vere used in the proof denoted by
<proof-name>.

proofstate
Prints a trace of the current proof.

ps
Synonymous with proofstate.

range <preterm>
Prints the numeric range of <preterm>.

simp <preterm>
Prints the result of simplifying <preterm>.

solvers
Indicates which solvers are available and which are active.

usable
Prints the indexed set of currently usable state deltas and quantified formulas.

usablequantifiers
Prints the list of currently usable quantified statements.

usablesds
Prints the indexed set of currently usable state deltas.

usabletrs
Prints the indexed set of currently usable TRs.

values
Prints the values of all declared variables.

vhdl-processes {<process-names>}
Prints information about current state of indicated VHDL processes.

vhdl-signals {<signal-names>} {<simplify?>}
Prints information about the current state of the indicated VHDL signals. Any
input other than a carriage return for <simplify?> causes simplifications to be
performed, usually slowing the response time.

vhdlsubprogenv <file-name> <subprogram-name> <qualified-name>
Displays the mapping between fully and uniquely qualified names constituting the
environment of the VHDL subprogram in the indicated file. In addition to the file
name, both the (textual) name and the fully qualified name of the subprogram must
be provided.

vhdltime
Prints the current VHDL simulation time (a <global,delta> pair).

whynotapply <sdspec>
Indicates why the state delta specified by <sdspec> is not applicable.
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whynotgoal {<simplify?>}
Shows which goals are not yet satisfied, simplifying the unsatisfied goals unless
<simplify?> is omitted.

<<<SDVS Help>>> Solely Interactive Commands < <<SDVS Help>>>

Commands -- bye cd compose continue createaxiom createdatatype createeklaxiom
createformula createformulas createlemma createmacro createproof
createsd datatypeaxiom deautomatedatatype delete deleteaxioms
deletelemmas dump-proof exit implementation init ls pop pwd quit
run-test-proofs shell skip step write writeaxioms writelemmas

bye
Returns the user to the LISP read-eval-print-loop.

cd <file>
Changes the current working directory.

compose {n}
Composes the last n state deltas applied. The third field determines what type of
proof commands to compose through. The default is :applications which includes
all applications of state deltas including apply, until, apply!, and =*.

continue
Continues interpretation of suspended batch proof commands.

createaxiom <axiom-name> <term> <free-variable-names> <constant-names>
<function-names> <predicate-names>
Creates an axiom identified by <axiom-name>, with the axiom pattern <term>, free
variables <free-variable-names>, new constant symbols <constant-names>, new
function symbols <function-names>, and nev predicate symbols <predicate-names>.
If <axiom-name> already names an axiom, the user is prompted for overwrite
permission.

createdatatype <datatype-name> <constructor-name> <constructor-arity> <accessor>#*
{<base-name>}

Permits the user to define a (possibly recursive) abstract datatype. The user
chooses a new name for the abstract datatype, chooses a name for its constructor
function, tells the arity (n) of the constructor function, and then goes on to
describe the n accessor functions. For each accessor function, its name is given,
its output type (which may be a list representing a union of previously defined
types, including the type currently being defined, or may be arbitrary) is given,
and a default access value is given. If the new type is recursive, the user must
specify the name of the base constant for the type.

createeklaxiom <axiom-name> <term> <free-variable-names> <constant-names>
<function-names> <predicate-names>
Creates a quantifier axiom identified by <axiom-name>, with the axiom pattern
<term>, free variables <free-variable-names>, new constant symbols
<constant-names>, nev function symbols <function-names>, and new predicate symbols
<predicate-names>. If <axiom-name> already names an axiom, the user is prompted
for overwrite permission.

createformula <postformula-name> <postformula>
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Associates the typed-in <postformula> with <postformula-name>, unless
<postformula-name> already names a formula and the user does not wish to overwrite
it.

\ createformulas <postformulas-name> <postformulas>
Associates the typed-in <postformulas> with <postformulas-name>, unless
<postformulas-name> already names a list of formulas and the user does not wish to
overwrite it.
createlemma <lemma-name> <term> <free-variable-names> <constant-names>
<function-names> <predicate-names>
Creates a lemma identified by <lemma-name>, with the lemma pattern <term>, free
variables <free-variable-names>, new constant symbols <constant-names>, new
function symbols <function-names>, and new predicate symbols <predicate-names>.
If <lemma-name> already names an lemma, the user is prompted for overwrite
permission.

createmacro <macro-name> <preterm> <free-variable-names> <quantifier-names>
Creates a macro identified by <macro-name>, with the macro definition <preterm>,
free variables <free-variable-names>, and quantified variables <quantifier-names>.
If <macro-name> already names a macro, the user is prompted for overwrite
permission. All free variables must occur free in the definition, quantified
variables appearing in the definition must be listed in their order (inorder) of
appearance, the definition may not be recursive or contain references to other
macros, and it may not contain state deltas.

createproof <proof-name> <proof>
Associates the typed-in <proof> with <proof-name>, unless <proof-name> already
names a proof and the user does not wish to overvrite it.

createsd <sd-name> <preformulas> <comod-places> <mod-places> {<inv-postformulas>>}
<postformulas>
Prompts the user for the precondition, comodification list, modification list,
invariant (when the invariance flag is ON), and postcondition, of a state delta to
be named <sd-name>. If <sd-name> already names a state delta, the user is
prompted for overwrite permission.

datatypeaxiom <datatype-name> <axiom-name> <term> <free-variable-names>
<constant-names> <function-names> <predicate-names>
Adds a new axiom to the set currently associated with a user-defined datatype
created via the ‘createdatatype’ command. Use the ‘pp’ command applied to
datatype name to display the axioms currently associated with a datatype.

deautomatedatatype <datatype-name>
Removes a datatype axiom automation initiated by the ‘automatedatatype’ command.

delete <type-name> <object-name>>
If <type-name> is the name of a recognized type and <object-name> is assocjated
with an object of this type, then the name/object association is deleted.

deleteaxioms {<axiom-names>}
Deletes those axioms with names in <axiom-names> from the current set of axioms,
indicating which axioms were deleted. If <axiom-names> is omitted, all axioms are
deleted.
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deletelemmas {<lemma-names>}
Deletes those lemmas with names in <lemma-names> from the current set of lemmas,
indicating which lemmas were deleted. If <lemma-names> is omitted, all lemmas are

deleted.

dump-proof <proof-name>
Associates the current (possibly partial) proof with <proof-name>, unless
<proof-name> already names a proof and the user does not wish to overwrite it.

exit
Exits the SDVS system AND the Lisp environment.

implementation <thm-name> <upper-spec-postformulas> <lower-spec-postformulas>
<mapping-preformulas> <constant-preformulas> <invariant-preformulas>

Create a theorem (state delta) named <thm-name> which vhen proved verifies the
implementation of the upper-level specification <upper-spec-postformulas> by the
lover-level specification <lower-spec-postformulas>. Both the upper and
lower-level specifications must have a certain format, which permits them to be
composed only of predicates headed by covering, alldisjoint, declaration, and
distinct, plus state deltas, TR statements and "formula" or "formulas" predicates
made up of only the preceeding types of statements. <mapping-preformulas> is a
list of mappings from upper-level to lower-level places, <constant-preformulas> is
a list of constant-specifying formulas involving lower-level places, and
<invariant-preformulas> is a list of lower-level invariants.

init {<proof-name>}
Initializes the proof system, optionally starting the interpretation of the proof
associated with <proof-name>.

1s
Prints the contents of the current working directory.

pop {<n>}
Pops the proof step to level <n> in the proof, popping one level if <n> is
omitted. Use the ‘ps’ command to see the proof state and the proof levels, which

are bracketed numerals, e.g. <3>, following each proof step.

pvd
Prints the current vorking directory.

quit
Terminates the proof session if no proofs are in progress. The proof steps
executed before termination are made into a proof which is associated with the

name ‘sdvsproof’.

run-test-proofs <test proof suite>
Runs the desired test proof suite. Valid options are: all, *original-tests*,
*strongcoverings-tests*, *negation-tests*, *inv-tests#, *new-inv-omega-tr-testss,
*quant-tests*, *isps-tests*, sada-tests#, and *vhdl-tests*.

shell <command>
Execute the given string in a UNIX shell.

skip {<n>}
Skips the next <n> batch proof commands, skipping one command if <n> is omitted.
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step {<n>}
Steps through <n> batch proof commands, stepping only once if <n> is omitted.

write <file> {<sd-names>} {<proof-names>} {<axiom-names>} {<lemma-names>}
{<formula-names>} {<formulas-names>} {<macro-names>} {<datatype-names>}
{<adalemma-names>} {<vhdllemma-names>>}
Writes the state deltas, proofs, axioms, lemmas, formulas, formula lists, macros,
datatypes, adalemmas, and vhdllemmas corresponding to the appropriate names onto
either a new version of <file> or onto the end of <file>. If the file previously
existed, the user is asked if the object definitions are to be appended to the
file. Use the ‘read’ command to retrieve definitions from a file.
writeaxioms <file> {<axiom-names>}
Writes the axioms whose names appear in <axiom-names> onto a new version of
<file>. If <axiom-names> is omitted, all axioms are written. Use the
‘readaxioms’ command to retrieve axioms from a file.
writelemmas <file> {<lemma-names>}
Writes the lemmas whose names appear in <lemma-names> onto a new version of
<file>. If <lemma-names> is omitted, all lemmas are written. Use the
‘readlemmas’ command to retrieve lemmas from a file.
Type ‘help help’ for more help.
<<<SDVS Help>>> Command Arguments <<<SDVS Help>>>
{} Encloses optional command arguments.
<> Encloses command argument names.
<x/y> A command argument of type <x> or of type <y>.
<y-x> A command argument of type <x> qualified by the symbol y. The purpose of the
qualification is usually to disambiguate multiple occurrences of <x> in a
command (quote s) arguments or to provide some additional contextual
information about the particular <x>.
<xs> A command argument which is a list of objects of type <x>, separated by commas.
<x>* Zero or more command arguments of type <x>.
<x>+ One or more command arguments of type <x>.
[1 Encloses of group arguments to which the * and + operators may be applied.
Are used as ellipses.
<file> A file name in string quotes.

<formula> A formula which may involve neither DOTs nor POUNDs.

<g> The identifier reserved to indicate the current list of goals, always followed
by a nonzero natural number which chooses one from the list.
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<goal> A goal <g> <n>.
<n> A natural number.
<name> An identifier used to name an object, such as a state delta.

<pathname> A string which completely identifies a file name, by including its
directory path and possible a host designator.

<place> The name of a variable to which the DOT and POUND operators may be applied.
<postformula> A formula which may involve both DOTs and POUNDs.

<postterm> A term which may involve both DOTs and POUNDs.

<preformula> A formula which may involve DOTs but not POUNDs.

<preterm> A term which may involve DOTs but not POUNDs.

<proof> A list of SDVS batch proof commands.

<q> The identifier reserved to indicate the current list of quantified formulas,
always followed by a nonzero natural number which chooses one from the list.

<quant> A quantified formula <q> <n>.
<s-expression> An s-expresion, that is, either a symbol or a list.

<selecti-clause> An integer selection clause which is either an integer, a list of
integers, an integer range n...m, or the symbol t.

<sdspec> A state delta specification, which is either a state delta <name>, a state
delta goal <g> <n>, a usable state delta <u> <n>, or a usable TR state

delta <tr> <n>.
<string> A single line of text.
<symbol> Same as <name>.
<term> A term which may involve neither DOTs nor POUNDs.

<tr> The identifier reserved to indicate the stack of usable TR state deltas, always
followed by a nonzero natural number which chooses one from the stack.

<u> The identifier reserved to indicate the stack of usable state deltas, always
followed by a nonzero natural number which chooses one from the stack.

<usablesd> Some usable state delta <u> <n>.

<unique-name-level> A positive integer specifying the level of qualification given
to variable and procedure names in ISPS files. Level 0
specifies no qualification. The value of the ‘uniquenamelevel’
flag will be used whenever <unique-name-level> is omitted.

<<<SDVS Help>>> Flags <<<SDVS Help>>>
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abbreviationlevel
This flag controls the printing level (during proof traces) of state deltas and
Ada, VHDL, or ISPS program fragments appearing inside translator continuations in
state deltas. It takes on the values NONE, SOME, and MAX, indicating that these
objects are never to be abbreviated, should be somevhat abbreviated, or should be
maximally abbreviated, respectively.

acceptfileproofs
While this flag is ON the system will accept proofs it reads from files as valid,
othervise such proofs will be ignored.

autoclose
While this flag is ON the system will attempt to close the proof after each proof
command, otherwise the user must explicitly close the proof.

checkexistence
When this flag is on existential quantifiers of type place are automatically
instantiated in all possible combinations.

checksyntax
While this flag is ON all commands will be checked for proper syntax, and errors
will be generated if an improper command is found. This flag should only be
turned OFF for an efficient run of a proof that ran successfully with the flag ON.

displaympsds
When this flag is ON, the state deltas created during the ‘mpisps’ and ‘mptr’
commands will be displayed.

ekltraceflag
When this flag is ON, EKL internal messages will be printed.

enumerate
When this flag is on bounded universally quantified variables are enumerated.

invariance
While this flag is ON the use of invariants is permitted in SDVS.

optimizeassignments
While this flag is anything but OFF the values assigned to changing places are
optimized to create fewer simplifier database entries. This may result in
decreased proof execution speed.

ppdottednames
When this flag is ON, any symbolic value which is the current value of a place is

pretty-printed by printing the dotted place name.

pplinewidth
The value of this flag controls the right margin for pretty-printing.

reportpropagations
While this flag is ON propagated disjunctions are traced between proof commands.

showstats
Flag not currently implemented.
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showstep#
When this flag is ON and traceflag is ON the sequential number of the current

proof step will be traced during proof execution.

strongcoverings
When this flag is ON coverings are interpreted as real set partitions so that a
real change in a subplace implies a real change in every superplace.

stronglytyped
While this flag is ON, the ‘createdatatype’ command will construct strongly typed
datatype definitions; i.e., a type recognizer predicate will be associated with
each datatype and be present in each of the datatype’s axioms. This flag is

initially OFF.

traceflag
This flag can be be turned OFF to inhibit printing of proof trace information.

uniquenamelevel
A non-negative integer, this flag controls the degree of qualification of variable
and procedure names during the translation (into the state delta logic) of ISPS
descriptions. The default value is 1, which is adequate if all names unique. If
the value is not high enough to prevent name clashes, an error will be signalled
during translation.

usedots
When this flag is ON, true-quantifiers? will automatically check the effect of

dots in trying to prove a universal tautology.

veaknext_tr
When this flag is ON the state deltas generated by the translators have the
nontrivial invariant (#all=.all). The invariance flag must be ON for the
application of these state deltas.
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2 THE PROOF LANGUAGE

The proof language is the formal vehicle for writing proofs of state deltas. Thus, the proof
language allows the user to describe segments of computations and to describe logical deriva-
tions within a given state. Another way to view the proof language is as a programming
language: if the proof language “program” is accepted by SDVS, then the proofis “correct.”

Some actions of proof commands are determined by the settings of system flags or by
whether or not various solvers are activated. The solvers (see Section 2.7.6) can be acti-
vated by the command activate <s>, where <s> is the first initial of a solver (e.g. m for
multiplication). Brief descriptions of all the commands are listed in Section 1.10.

2.1 A DYNAMIC EXAMPLE

The following example illustrates some of the dynamic proof commands used in an inter-
active session, although it is not expected that the reader understand thoroughly all the
details at this point. For example, the subtleties of the induct command are dealt with
only in Section 2.5. In interactive mode with createsd, all field entries (e.g. pre:) must
be typed on a continuous line with wrap-around (no <CR>). Note that the precondition
and postcondition each should be a list of sentences, separated by commas. Within each
sentence that is an element of the list, no commas can appear. The word and or the symbol
& can be used interchangeably for conjunction. The translator predicates ada, vhdl, and
isps can appear only as top-level elements in the list.

The interactive input is identical to the prettyprinted output. Note also that there is no
“graceful” way to abort an interactive command in the middle. The user must persevere
to the end of the argument list, as SDVS 12 has no interrupt command. Thus, if for some
reason you wish to halt the action of SDVS before SDVS gives you a command prompt,
you simply must kill the process and start again.

The state delta sinduct represents the theorem that if a is continually incremented, then its
value will eventually be greater than 1000. It should be noted that the default data type
for the predicate gt is integer, so that the value increases by at least 1.

<sdvs.1> createsd
name: sinduct
[SD pre: covering(all, a, b), [sd (true) () (a) (#a gt .a)]
comod[]: <CR>
mod[]: a
post: #a gt 1000
]

Notice that here we input the interior state delta directly “by hand,” without using the
formula command applied to an extant state delta. We could also have typed the internal
sd as
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[sd pre: (true) comod: () mod: (a) post: (#a gt .a)]

[sd pre: (true) mod: (a) post: (#a gt .a)]

instead of

[sd (true) () (a) (#a gt .a)]

<sdvs.1> pp
object: sinduct

[sd pre: (covering(all,a,b),
[sd pre: (true)
mod: (a)
post: (#a gt .a)l)
mod: (a)
post: (#a gt 1000)]

<sdvs.1> init
proof name[]: <CR>

State Delta Verification System, Version 12

Restricted to authorized users only.

Let us prove this. The SDVS proof follows the “natural” proof quite closely: it will be done
by induction on the value of a, taking into account the two cases that either a is or is not

already greater than 1000.

<sdvs.1> prove
state deltal[]: sinduct
proof[l: <CR>

open -- [sd pre: (covering(all,a,b),
[sd pre: (true)
mod: (a)
post: (#a gt .a)l)
mod: (a)

post: (#a gt 1000)]

Complete the proof.

We will do a proof by cases based on the current value of a. Let us assign the name aa to
the current contents of a.
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<sdvs.1.1> let
new variable: aa
value: .a

let -- aa = .a

<sdvs.1.2> cases
case predicate: aa gt 1000

cases -- aa gt 1000

open -- [sd pre: (aa gt 1000)
comod: (all)
mod: (a)
post: (#a gt 1000)]

close -- 0 steps/applications

open -- [sd pre: ("(aa gt 1000))
comod: (all)
mod: (a)
post: (#a gt 1000)1

Complete the proof.
<sdvs.1.2.2.1> ps

<< initial state >>
proof in progress of sinduct <3>
let aa = .a <2>
case analysis in progress on: aa gt 1000 or ~(aa gt 1000) <1>
ist case: complete
2nd case: in progress
--> you are here <--

Note that the bracketed numbers < 1 >, etc., in the listing of the proofstate are proof step
numbers that can be revisited by pop.

If the contents of a are not greater than 1000, we will do an induction on a new variable,
called counter.3

We know that the value of a must increase by at least 1 every time through the loop.
Therefore, we have to execute the loop at most 1001 - aa times. Notice we are not assuming

aa ge 0.

<sdvs.1.2.2.1> induct
induction expression: counter
from: 0
to: 1001 - aa
invariant list[]: counterle .a - aa

3 Any new name can be used here.
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comodification list[]: <CR>
modification 1list[]: a

base proof[]}: <CR>

step proof[l: <CR>

induction -- counter from 0 to 1001 - aa
open —- [sd pre: (counter = 0)

comod: (all)
post: (counter le .a - aa)l

close -- 0 steps/applications
open -- [ad pre: (counter ge 0,counter 1t 1001 - aa,
counter le .a - aa)
mod: (a)

post: (counter + 1 le #a - aa)]

Complete the proof.

Now let us check where we are in the proof.

<sdvs.1.2.2.1.2.1> ps

<< initial state >>
proof in progress of sinduct <4>
let aa = .a <3>
case analysis in progress on: aa gt 1000 or ~(aa gt 1000) <2>
1st case: complete
2nd case: in progress
induction in progress on counter from 0 to 1001 - aa <1>
base case: complete
step case: in progress
--> you are here <--

Let us see why the open state delta is not true.

<sdvs.1.2.2.1.2.1> whynotgoal
simplify?[no): <CR>

g(1) counter + 1 le #a - aa

Let us check which state deltas are known to be true at this point in the proof.

<sdvs.1.2.2.1.2.1> usablesds

u(1) [sd pre: (true) mod: (a) post: (#a gt .a)]

If we apply this state delta, the remaining goal will be achieved.
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<sdvs.1.2.2.1.2.1> apply
sd/number [highest applicable/once]: <CR>

apply —- [sd pre: (true)
mod: (a)
post: (#a gt .a)]

close —- 1 steps/applications
join induction cases -- [sd pre: (0 le 1001 - aa)
comod: (all)
mod: (a)

post: (1001 - aa le #a - aa)]

close —— 1 steps/applications
join -- [sd pre: (true)
comod: (all)
mod: (a)

post: (#a gt 1000)]
close -- 2 steps/applications

<sdvs.2> dump-proof
name: sinductproof

Current proof dumped to sinductproof.

<sdvs.2> pp
object: sinductproof

proof sinductproof:

prove sinduct

proof:
(let aa = .a,
cases aa gt 1000
then proof:
else proof:
induct on: counter
from: 0
to: 1001 - aa
invariants: (counter le .a - aa)
comodlist:
modlist: (a)

base proof:
step proof: apply u(1))

<sdvs.2> quit
Q.E.D. The proof for this session is in ‘sdvsproof’.
State Delta Verification System, Version 12

Restricted to authorized users only.
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We could store this proof and rerun it using the interpret command. We could also input
this proof directly into SDVS at the proof level. In the latter case it must be typed in
verbatim with all the fields (e.g. then proof:) given explicitly.

2.2 STARTING AND ENDING A PROOF

The command init must be typed before typing any one or any combination of the “top-level
commands”: activate, deactivate, provelemma, and quantification. ~ All other commands
may be typed at any time. Init opens up a new proof context, and makes the state “clean”
and free of any contextual information. Of course, the names of previously defined state
deltas, proofs, and so on are preserved. Init may be followed by a proof name, whose
associated proof will then be executed.

The primary proof command is

<sdvs.1> prove
state delta: <sd>
proof[l: <proof>

where <sd> is the name of a state delta and <proof> is either empty (<CR>), in which case
SDVS will prompt with “complete the proof” and the user can interactively input either
the proof commands, or an atom that evaluates to a list of proof commands.

The prove command takes a state delta as an argument: this state delta may be specified
either by name or by typing <CR> and having SDVS prompt for state delta fields to be
input explicitly. The command causes a proof to be “opened,” or started, and ensuing
proof commands have as their goal the current theorem corresponding to the most recently
opened proof in a stack discipline. The precondition of the state delta that is the argument
to prove is added to the current state (also in the case that the state has not been initialized
by the init command) and a new proof context is opened. When the proof is “closed,” i.e.,
when the current theorem or subtheorem has been proved, the proved state delta is added
to the usable state delta list and is preserved until the enclosing context is popped or the
comodification list of the proved state delta is violated.

In the normal case (when the autoclose flag is on), the goal is checked after each proof
command to see if the proof can be closed. If autoclose is off, the proof will have to be
closed explicitly with the close command. This may be advantageous when the simplifier
spends a noticeable amount of time trying to prove that the goal is reached in a state the
user knows does not satisfy the goal.

When the proof is complete, the proven state delta is inserted into the database as “usable.”

To exit the proof session, type quit. This is the time when any messages about pending
proof steps will appear, for example if an unproved lemma is used. However, if it is desired
to save the proof, this must be done before quitting.
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2.3 STRAIGHT-LINE SYMBOLIC EXECUTION

The basic proof step is apply. The system searches through the stack of usable state deltas,
the most recently added state delta first, and finds the first one with the precondition true
in the current state. That state delta is then applied; that is, a new state is stored consisting
of

e the postcondition of the applied state delta,

e those facts from the previous state that are not dependent on places in the applied
state delta’s modification list, and

e those state deltas true in the previous state whose comodification lists do not contain
places dependent on places in the applied state delta’s modification list.

The common case is that at most one state delta is applicable at one time, so apply is
sufficient. If more than one state delta is applicable, the specific one we are interested in
applying can be designated. Instead of having to type a sequence of apply’s, we can specify
how many times to apply; to indicate “as many applications as possible,” use the command
* (or go or ezecute). This causes apply to be performed until the goal is reached or until
there is no applicable state delta. Notice that the flag autoclose must be on for this to work.
The command apply! causes application until the next mark point (see Section 3.2). The
integer n following apply or apply! means to use that command n times. A state delta <sd>
or name of a state delta may be used as an argument to apply. The name of a usable state
delta may be found by the command usablesds.

<sdvs.1> ppsd
state delta: s

[sd pre: (covering(all,a),.a =1,
[sd pre: (covering(all,a),.a
mod: (all)
post: (#a = 2)],
[sd pre: (covering(all,a),.a
mod: (all)
post: (#a = 3)],
[sd pre: (covering(all,a),.a
mod: (all)
post: (#a = 4)])
mod: (all)
post: (#a = 4)]

1

2)

3)

<sdvs.1> prove
state delta[l: s5
proof[]l: <CR>

open -- [sd pre: (covering(all,a),.a =1,
[sd pre: (covering(all,a),.a = 1)
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mod: (all)
post: (#a = 2)],
[sd pre: (covering(all,a),.a = 2)
mod: (all)
post: (#a = 3)],
[sd pre: (covering(all,a),.a = 3)
mod: (all)
post: (#a = 4)]1)
mod: (all)
post: (#a = 4)]

Complete the proof.

<sdvs.1.1> *

1)

L}

apply -- [sd pre: (covering(all,a),.a
mod: (all)
post: (#a = 2)]

apply -- [sd pre: (covering(all,a),.a = 2)
mod: (all)
post: (#a = 3)]

apply -- [=d pre: (covering(all,a),.a = 3)

mod: (all)
post: (#a = 4)]

close -- 3 steps/applications

If no state delta is applicable in the given state, it may be that the goal cannot be achieved
from the given state; that is, the current state contradicts the precondition of any currently
true state deltas, or it could be that although the current state does in fact satisfy the
preconditions of some true state deltas, not enough information is known by SDVS to
be able to decide this. In this case SDVS may need some hints, by way of static proof
commands, to establish that the precondition of the applicable state delta is true.

Another variation of apply is until. The proof command “until P,” where P is some predicate,
causes state deltas to be applied until P is known. P may contain both DOTs and POUNDs,
where DOT refers to the contents of a place at the time the until command is given, and
POUND refers to the contents at the time P is subsequently evaluated. This command is
useful (or essential) in cases where the user wants to stop, even though ezecute may be able
to continue (for example, where the system needs input about static assertions from the
user in order to verify that the postcondition state has been reached). Recall that if the
system cannot prove the postcondition, it will continue to apply state deltas; but then the
correct postcondition time may be passed. So, for example, if the postcondition is P & Q,
and P is automatically provable at the right time (i.e., when P and Q are in fact both true)
but Q requires assistance, then “until P” would bring the system to the required state, at
which time the user gives the necessary assistance to allow Q to be proved also. If P is true
also at states before Q is true, then the above strategy will have to be modified, for example
by using some other “marker” for the until, or jumping from true P state to true P state,
each time using one apply followed by the “until P.”
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Another use for untilis the case where the state delta the user wants to apply, say S1, has a
precondition that the simplifier cannot prove automatically, and thus another (lower) state
delta, say S2, whose precondition is provable is applied instead. In this case the user would
make the condition P in “until P” the postcondition of the last proved state delta, and then
insert hints to prove the precondition of S1.

2.4 PROOF BY CASES

A typical instance of proof by cases occurs at a branch point of a program. In order to
proceed symbolically to the goal, the current state before the branch must be split into
two (or into as many branches as there are), and each branch must be pursued separately.
When a split into two is desired, the cases command may be used. When a case proof is
desired to achieve a goal other than the current goal, the subcases command is used.

The command syntax is

cases <cond> <thenproof> <elseproof>

where <cond> is some predicate such that the assumption of <cond> allows the choice of
branch to be determined, <thenproof> is the proof for that branch, and <elseproof> is the
proof for the rest of the computation, which assumes that <cond> is not true. If one or
both of <thenproof> and <elseproof> are empty, then SDVS will try to close with no proof.
If it is not able to close, it will respond with “complete the proof,” and then the user may
interactively submit proof commands. The predicate <cond> can be first order or a state
delta; see the example in Section 2.9.7. Consider the following example:

<sdvs.2> ppsd
state delta: casessd

[sd pre: (formula(casesl),formula(cases2))
mod: (a)
post: (#a gt 0)]

<sdvs.2> ppsd
state delta: cases!

[sd pre: (.a 1t 0) mod: (a) post: (#a = 1)]

<sdvs.2> ppsd
state delta: cases?

[sd pre: (.a ge 0) mod: (a) post: (#a = 2)]

<sdvs.2> nil
proof name[]: <CR>
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<sdvs.1> prove

state deltal[l: casessd

proof[]l: <CR>
open -- [sd pre: (formula(casesl),formula(cases2))

mod: (a)
post: (#a gt 0)]

Complete the proof.

<sdvs.1.1> cases
case predicate: .alt0

cases -- .a 1t 0
open -- [sd pre: (.a 1t 0)
comod: (all)
mod: (a)
post: (#a gt 0)]
<sdvs.1.1.1.1> *
inserting -- pcovering(all,a)
apply -- [sd pre: (.a 1t 0)
mod: (a)
post: (#a = 1)]
inserting -- pcovering(all,a)
close -~ 1 steps/applications
open -- [sd pre: ("(.a 1t 0))
comod: (all)
mod: (a)
post: (#a gt 0)]
Complete the proof.
<sdvs.1.1.2.1> *
inserting -- pcovering(all,a)
apply -- [sd pre: (.a ge 0)
mod: (a)
post: (#a = 2)]

inserting -- pcovering(all,a)

close -- 1 steps/applications
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join -- [sd pre: (true)
comod: (all)
mod: (a)
post: (#a gt 0)]
inserting -- pcovering(all,a)
inserting -- pcovering(all,a)
close ~- 1 steps/applications

In this example both cases were proved by the execute command (*). Note that the two
subcases were opened, closed, and joined, and the joined state delta was applied to complete
the proof of the top level.

When there are more than two cases to consider, and the user wants to describe each
explicitly rather than translate the problem into a nested cases, there is the command
mcases (m for multiple):

mcases (<condi>.<proof1>) (<cond2>.<proof2>) ... (<condn>.<proofn>)

SDVS must be able to prove that the disjunction of the <cond> clauses is true.

For example, consider the following proof:

<sdvs.2> pp

object: casesproof

proof casesproof:

prove [sd pre: ([sd pre: (p1 & p2)

mod: (all)
post: (q1)],

[sd pre: (p1 & “p2)
mod: (all)
post: (q2)],

[sd pre: ("pl1 & p2)
mod: (all)
post: (q2)],

[sd pre: ("p1 & “p2)

mod: (all)
post: (q1)1)

mod: (all)
post: (ql or q2)]

proof:
mcases

(case: p1 & p2

proof: *
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case: pl & “p2
proof: *
case: “pl & p2
proof: *
case: "pl & "p2
proof: *)

<sdvs.2> nit
proof name[]: casesproof
State Delta Verification System, Version 12

Restricted to authorized users only.

open -- [sd pre: ([sd pre: (pi & p2)

mod: (all)
post: (q1)],

[sd pre: (p1 & “p2)
mod: (all)
post: (q2)],

[sd pre: ("pl1 & p2)
mod: (all)
post: (q2)],

[2d pre: ("p1 & ~p2)
mod: (all)
post: (g1)])

mod: (all)

post: (q1 or q2)]

mcases -- 4
open —- [sd pre: (p1 & p2)
comod: (all)
mod: (all)
post: (ql or q2)]

apply -- [sd pre: (pl & p2)
mod: (all)
post: (q1)]

close -- 1 steps/applications

(p1 & ~“p2)
(all)
(all)
(q1 or q2)]

open -~ [sd pre:
comod:

mod:

post:

apply -- [sd pre: (p1 & “p2)
mod: (all)
post: (q2)]

close -- 1 steps/applications

open -- [sd pre: (“pl & p2)
comod: (all)
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mod
post

¢ (all)
: (q1 or q2)]

apply -- [sd pre: ("p1 & p2)

mod: (all)
post: (q2)]
close -- 1 steps/applications
open -- [sd pre: ("p1 & "p2)
comod: (all)
mod: (all)
post: (ql or q2)]

apply -- [sd pre: ("pt & "p2)
mod: (all)
post: (q1)]

close -- 1 step
join -- [sd pre:
comod:

mod:
post:

s/applications

(p1 & p2 or pl & "p2 or “pl & p2 or
“pl & "p2)

(all)

(all)

(q1 or q2)]

close -- 1 steps/applications

Another variety of cases is subcases. This is used for proving a statement other than the
current goal by cases. Of course, there is no essential need for subcases, since starting a new
subproof of a state delta with the subcases goal as the postcondition, followed by applying
that state delta, will suffice.

The format is

subcases <cond> <mod> <subgoal> <thenproof> <elseproof>.

This is similar to the cases command, but the cases are joined at <subgoal> instead of at
the goal of the current proof. The field <mod> is the mod list for each execution path to

the subgoal.

<sdvs.1> subcases
subcase predica
modification list
subgo
then proof
else proof

subcases -- p

te: p

[I: <CR>
al: porg
[1: <CR>

[1: <CR>
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open -- [sd pre: (p) comod: (all) post: (p or gq)l
close -- 0 steps/applications

open -- [sd pre: (“p)
comod: (all)
post: (p or @)l

Complete the proof.

Of course, the proof is not closed, because the above state delta is not valid.

2.5 PROOF BY INDUCTION

Induction arguments are in general more complex than straight-line symbolic execution or
branching. Several useful forms of induction that are applicable in many naturally occurring
proofs are identified and incorporated into SDVS 12. SDVS 12 is able to prove claims about
terminating loops by induction on the natural numbers using the induct command. A fixed-
point induction command for proving claims about TR-generated continuations has been
implemented on an experimental basis, but does not appear in robust form in SDVS12. In
addition, there are experimental commands for general mathematical induction (natinduct:
see Section 2.9.8) and for proving properties of Ada recursive procedures (recurse) [40]. The
omegainduct command (Section 8.5) is primarily intended for proving safety properties of

Ada programs.

The induct command allows for proofs of theorems about programs containing certain kinds
of loops. Note: the restrictions on the kind of loops make the current implementation unable
to handle some cases. However, probably any proof involving induction over a set essentially
ordered like the natural numbers is verifiable in this implementation.

Sometimes a proof by induct is a short version of another proof by symbolic execution, if
the loop is of known length. For loops with data-dependent length, induction may be the

only way to take the proof over the loop.

The typical use of the induct command is when you are at a place in the proof where you
want to prove the following state delta (call it S1):

[SD pre: (TRUE)
comod: (ALL)
mod: (M)
post: (Q)]

and then apply it, bringing the symbolic computation to a state in the future at which Q
is true, and during which interval only the places in M have changed.

Proving Sl by induction involves finding a predicate Inv(.X) (the invariant) that depends
on some number-valued place X such that Inv(n) implies Q for some n, and such that
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Inv(0) is true now, i.e.,

(1) [SD pre: (TRUE)
comod: (ALL)
mod: ()
post: (Inv(0))]

and

(2)[SD pre: (Inv(i))
comod: ()
mod: (M)
post: (Inv(i+1))]

If these two state deltas are true, then it is true that for all n,

[SD pre: (TRUE)
comod: (ALL)
mod: (M)

post: (Inv(n))]

Thus, we can apply this state delta, obtaining Inv(n), and thus Q.

[Note for the advanced SDVS user: the above conclusion is valid if we use any comod list
C instead of the empty comod list in (2), as long as C and M are disjoint. However, we
strongly suggest (and this may be enforced in later versions of SDVS) that the induct comod
list be always chosen to be empty. Similarly we suggest that there be no dots in the induct
mod list, for example a[.i] where a is an array place. Instead, use a in the mod list and
make the invariant strong enough to imply that part of the array is held constant in the
transition represented by the step-case state delta.

However, when using induction to characterize iterations of a loop involving arrays, more
care on the user’s part might be needed. For example, if one iteration of the loop changes
only the slice a[.7 : 10], where .7 has a different value depending on which iteration you are
doing, you really would need to give a[.i : 10] as the induct command modlist. Then the
state delta representing the net result of all the iterations (the “join state delta” constructed
at the successful completion of the induct command) will have simply @ in its modlist: there
is no simple way to restrict the part of ¢ that may have changed. If in fact a is actually
of length 20, say, and you need to preserve the values of a[11 : 20] over the course of the
induction, do a

<sdvs.1> let
new variable: aa
value: afl:10]
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and give aa[.i : 10] as the induct modlist. Then the step-case state delta will preserve the
first part of aa, and thus of a, and the join-case state delta will have only aa as its modlist,
so that a[11: 20] will be preserved. End of Note for the advanced SDVS user.]

Actually, SDVS makes the user choose initial (“from”) and final (“to”) values for .X , instead
of using 0 and some arbitrary n. Also, Inv must be a predicate without top-level pounds.
It may, and often does, contain state deltas. Inv(./#) is the result of substituting pounds
for dots in Inv.

Therefore, SDVS sets up proofs of

(1) [SD pre: (TRUE)
comod: (ALL)
mod: ()
post: (Inv(from))]

and

(2) [SD pre: (Inv(i), i ge from, i 1t to)
comod: (C)
mod: (M)
post: (Inv(i+1)(./#))]

If the system can prove these two, then it creates and automatically applies the state delta:

[(SD pre: (TRUE)
comod: (ALL)
mod: (M)
post: (Inv(to)(./#))]

If Inv was chosen shrewdly (for example, if Inv(to) implies Q), then Q will be true in the
resulting new state, thus essentially proving and applying SI.

The induct command has eight parameters,

induct <indexp> <from> <to> <invariant> <comod> <mod> <baseproof> <stepproof>

and means “Do an induction proof (of the current goal) using the expression <indexp> in
the range <from> to <to>” (both of type integer, with one provably less than or equal to
the other); <indexp> can be any expression of type integer that contains only one variable
of type place and no pounds. A new (previously undeclared) place may be introduced as
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the only place in <indexp>. <invariant> (a list of predicates) is the loop invariant. The
invariant can also contain state deltas, but cannot contain pounds at the top level. Do not
leave the invariant field blank; if you really do not need an invariant, type “true.” <comod>
and <mod> are the lists for the induction step; they must be disjoint.

In the above typical case, <indexp> is .X, <from> is Initial, <to> is Final, <invariant> is Inv,
<comod> is C, <mod> is M, and <baseproof> and <stepproof> would be proofs of the two
claims (1) and (2) above. If either <baseproof> or <stepproof> is empty, SDVS tries to close
the current proof automatically. If it cannot, it responds with “complete the proof,” and
then the user may submit interactive proof commands.

The step modification list gives the places that change in executing the loop once, and the
step comodification list gives those places that must be preserved for the loop to execute
again. These lists must be disjoint. Indeed, the comodification list of the induct command
may always be taken to be empty, if the invariant is chosen to be strong enough. Also, the
mod list of the induct command must be contained in the mod list of the state delta being
proved. However, there need not be any connection between the comodification lists of the
two state deltas.

Here is a typical proof. Note that the comodification list is empty, as is the base proof;
under certain circumstances related to the pretty-printer, these fields may not show up in
the prettyprinted form.

(prove [sd pre: (.a = 1,.b = 1,covering(all,a,b),
[sd pre: (.a =1,.b ge 1,covering(all,a,b))

mod: (b)
post: (#b = .b + 1)])
mod: (b)
post: (#b = 100,%a ge 0)]
proof:
induct on: .b
from:
to: 100
invariants: (.a = 1)
comodlist:
modlist: (b)
base proof:
step proof:
apply [sd pre: (.a = 1,.b ge 1,covering(all,a,b))
mod: (b)

post: (#b = .b + 1)])

And here is a transcript of the proof:

<sdvs.1.2.1> nit
proof name[]: pr.eg28proof

State Delta Verification System, Version 12

57




Restricted to authorized users only.

open -- [sd pre: (.a=1,.b = 1,covering(all,a,b),
{sd pre: (.a = 1,.b ge 1,covering(all,a,b))
mod: (b)
post: (#b = .b + 1))
mod: (b)
post: (#b = 100,#a ge 0)]

induction -- .b from 1 to 100

open —- [sd pre: (true)
comod: (all)
post: (.a =1,.b="1)]

close -- 0 steps/applications

open -- [sd pre: (.b ge 1,.b 1t 100,.a = 1)

mod: (b)

post: (#a = 1,8b = .b + 1)]

apply -- [sd pre: (.a = 1,.b ge 1,covering(all,a,b))

mod: (b)
post: (#b = .b + 1)]
close -- 1 steps/applications
join induction cases -- [sd pre: (1 le 100)
comod: (all)
mod: (b)
post: (#b = 100,%#a = 1)]
close -- 1 steps/applications

If the invariant is left out, then the proof will not go through. However, if the comodification
list is made to contain a, the proof will go through with trivial invariant.

A minor change in the state delta will allow both the comodification list and the invariant
to be “true:”

[sd pre: (.a =1,.b = 1,covering(all,a,b),
[sd pre: (.b ge 1,covering(all,a,b))
mod: (b)
post: (#b = .b + 1))
mod: (b)
post: (#b = 100,%a ge 0)]

Another option is to use a new name as an induction variable, for example counter. This
variable is automatically incremented by 1 every time around the loop, i.e., from the precon-
dition to the postcondition of the step-case state delta. See Section 2.1 for another example

involving counter.




If the induction argument is over a larger well-ordered set, then a more complicated proof
will have to be used. For example, we could be faced with the situation of a loop within a
loop, where the inner loop bounds are possibly different each time.

For an abstract illustration, consider the pairs of natural numbers ordered lexicographically
(the order is w?). If a loop takes a pair into a lower pair, then there is no finite bound on the
number of times around the loop, even in terms of the initial pair. However, the loop does
terminate with the value (0,0). Thus, the following state delta ind.sd is true and provable
in SDVS:

[sd pre: (covering(all,a,b),.a ge 0,.b ge 0,
[sd pre: (.a gt 0,.b gt 0)
mod: (a,b)
post: (#a 1t .a or #a = .a & #b 1t .b,#a ge 0,%b ge 0],
[sd pre: (.a = 0,.b gt 0)
mod: (a,b)
post: (#a = .a,#b 1t .b,#b ge 0)],
[sd pre: (.a gt 0,.b = 0)
mod: (a,b)
post: (#a 1t .a,%a ge 0,#b ge 0)])
mod: (a,b)
post: (#a = 0,#b = 0)]

Here is the proof *:

(prove ind.sd

proof:
(prove si
proof:
(prove si.1
proof:
(let aa = .a,
let bb = .b,
induct on: k
from: 0
to: bb

invariants: (.a 1t aa or
.a=aa &k .ble bb - k,
.a ge 0,.b ge 0)

comodlist:
modlist: (a,b)
base proof:
step proof:
cases .b =0
then proof:

else proof:
cases .a gt 0
then proof: apply il
else proof: ),
let aa = .a,

*The proof is due to John Doner.
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apply si1.1,

cases .a = aa
then proof: apply i3
else proof: ),

prove s2
proof:
(let aa = .a,
induct on: i
from: 0
to: aa
invariants: (.a le aa - i,.a ge 0,.b ge 0)
comodlist:
modlist: (a,b)
base proof:
step proof:

cases .a =0
then proof:
else proof: apply si),

prove s3
proof:
(let bb = .b,
induct on: j
from: 0
to: bb
invariants: (.b le bb - j,.a = 0,.b ge 0)
comodlist:
modlist: (a,b)
base proof:
step proof:
cases .b = 0

then proof:
else proof: apply i2),
cases .a = 0
then proof: apply s3
else proof:
(apply s2,
apply s3)))

where sl is

[sd pre: (.a gt 0,.b ge 0)
mod: (a,b)
post: (#a 1t .a,#a ge 0,#b ge 0)]

sl.lis

[sd pre: (.a gt 0,.b ge 0)
mod: (a,b)
post: (#a 1t .a or #a = .a & #b = 0,%a ge 0,%b ge 0)]

s2 is
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[sd pre: (.a gt 0,.b ge 0)
mod: (a,b)
post: (#a = 0,#b ge 0)]

and s3 is

[sd pre: (.a = 0,.b ge 0)
mod: (a,b)
post: (#a = 0,#b = 0)]

2.6 PROOF BY CONTRADICTION

In SDVS, if the symbolic execution proof brings about an inconsistent state (e.g. one
containing 0 = 1 or = # z), then the most recently begun proof is closed, and that state
delta that was being proved is proclaimed usable. The explanation is that in opening the
proof of that state delta, we assumed that there was a state (subject to the comod list
restrictions) that satisfied its precondition, and on the basis of that state we were able to
execute forward. If we arrive at an inconsistent state, that must mean that our previous
assumption was false. Thus, there was in fact no state satisfying those conditions, and thus
the state delta is “vacuously” true.

When trying to achieve the postcondition of the goal state delta, a usable state delta
can (only) be applied if its mod list is contained in that of the goal, since that is part
of the satisfaction condition. However, if reaching a contradiction is the intended proof
strategy, one need not worry about this restriction; in that case we are not executing to
the state fulfilling the postcondition, but are simply trying to get to a state manifesting the
contradiction in the precondition.

Another way to put this is that if the mod list of an applied state delta is not contained in
the mod list of the state delta to be proven, then the only way the proof can be closed is
by reaching a contradiction. The user is suitably warned by an SDVS message.

First, we show how proof by contradiction can be exploited to eliminate false cases. The
state delta eqdotr below essentially says that if we can execute to a state, allowing z to
change along the way, in which we learn that the original value of z was 1, then in fact, the
current value of z is 1. Note that we cannot prove this fact by simply executing to a future
state, because the mod list = of the applied state delta is not included in the mod list of the
state delta to be proven, which is empty, and thus we would have to reach a contradiction
in order to close the proof. But since .z is 1, there is no contradiction. The way to reach a
contradiction is first to assume that the current value of z is not 1. This calls for a proof
by cases.

<sdvs.1> pp
object: dotz

[sd pre: (true) mod: (x) post: (.x = 1}]
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<sdvs.1> pp
object: eqdotz

[sd pre: (formula(dotx))
comod: (all)
post: (.x = 1)]
<sdvs.1> prove
state delta[l: egdotz
proof[]: <CR>

open -- [sd pre: (formula(dotx))
comod: (all)
post: (.x = 1)]
Complete the proof.

<sdvs.1.1> cases
case predicate: .r =1

cases -- .x =1
open —- [sd pre: (.x = 1)
comod: (all)
post: (x\863 = 1)]
close -- 0 steps/applications

open -- [sd pre: ("(.x = 1))
comod: (all)
post: (x\863 = 1)]
Complete the proof.
<sdvs.1.1.2.1> usable
u(1) [sd pre: (.x = 1)
comod: (all)
post: (x\863 = 1)]

u(2) [sd pre: (true) mod: (x) post: (.x = 1)]

No usable quantified formulas.

<sdvs.1.1.2.1> apply
sd/number [highest applicable/oncel: <CR>

inserting -- pcovering(all,x)
apply -- [sd pre: (true)
mod: (x)
post: (.x = 1)]

Warning: the modlist of the last applied state delta mentions places

62




(x) outside of the modlist of the state delta to be proven. The
current proof can only be closed by contradiction.

The postcondition of the last applied state delta is inconsistent
with the current state.

close -~ 0 steps/applications

join ~-- [sd pre: (true)
comod: (all)
post: (x\863 = 1)]

close -- 1 steps/applications

Now here is the example from Section 1.5. This shows how we may sometimes want to
execute to achieve a false state in order to prove the inconsistency of a precondition.

<sdvs.1> ppsd
state delta: covsd

[sd pre: (covering(a,c,d))
mod: (d)
post: (#c = .c + 1)]

<sdvs.1> ppsd
state delta: contrasd

[sd pre: (formula(covsd),covering(a,c,d))
mod: (all)
post: (false)]

<sdvs.1> prove
state deltall: contrasd
proof[]: <CR>

open —- [sd pre: (formula(covsd),covering(a,c,d))

mod: (all)

post: (false)]
Complete the proof.
<sdvs.1.1> usablesds
u(1) [sd pre: (covering(a,c,d))

mod: (d)
post: (#c = .c + 1)]

<sdvs.1.1> apply
sd/number [highest applicable/oncel: <CR>

apply -- [sd pre: (covering(a,c,d))

mod: (d)
post: (#c = .c + 1)]
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The postcondition of the last applied state delta is inconsistent with
the current state.

close -- 0 steps/applications

The final example shows how to prove that if p can bring about false, then p holds in the
current state.

<sdvs.1> prove
state deltal[l: negate3.sd
proof[]: <CR>

open -- [sd pre: ([sd pre: (p)
comod: (all)
mod: (all)
post: (false)l)
post: ("p)l
Complete the proof.

<sdvs.1.1> cases
case predicate: p

cases -~ p
open -- [sd pre: (p) comod: (all) post: (7p)]
<sdvs.1.1.1.1> usable

u(1) [sd pre: (p) comod: (all) mod: (all) post: (false)l

No usable quantified formulas.

Now we would like to apply u(1) to bring about false and thereby negate the precondition.

<sdvs.1.1.1.1> apply
sd/number [highest applicable/once]: u
number: [

apply -- [sd pre: (p)
comod: (all)
mod: (all)
post: (false)]

Warning: the modlist of the last applied state delta mentions places
(all) outside of the modlist of the state delta to be proven. The
current proof can only be closed by contradiction.




The postcondition of the last applied state delta is inconsistent
with the current state.

close -- 0 steps/applications
open -- [sd pre: (“p)

comod: (all)

post: (“p)]

close -~ 0 steps/applications

join -- [sd pre: (true) comod: (all) post: (“p)]

close -- 1 steps/applications

2.7 STATIC PROOF

Now we describe the static proof language. These commands relate only to deductions
within a given state. They do not open or apply state deltas, though they certainly can
cause state deltas to close.

There are essentially three different ways in which the system can prove static assertions,
i.e., that a static assertion A follows from the database D:

1. Automatically: The assertion follows from the database without any user interaction;
the system “knows” it to be true.

. Proof by “axiom” or “lemma” invocation: The assertion A follows by axiom or lemma
invocation from database D if there is an axiom or lemma of the form “if C then P,”
where A is of the pattern P and C follows from D automatically. This is implemented
so that the user need not, but may, specify the axiom or lemma to be used to verify
A. If no name is specified, SDVS checks all the axioms or lemmas with the required
pattern until it finds one with the provable precondition C. (Note that the appropriate
list of axioms must be read before being used. The command help azioms gives the
names of the files of axioms.) The database is then updated by adding A. The choice
of the word “axiom” simply indicates that these rules are useful and basic enough
to be built into SDVS. Of course, they are not independent or necessarily elegant.
“Lemmas” are rules that the user may create and prove from the axioms and already
proven lemmas.

3. Proof “by notice”: In the case that A does not follow automatically from the database
D or by axiom or lemma, one must construct a sequence Aj,..., A, such that A
follows automatically from D, A; follows automatically from D, Aq,...,A;_y, and A
is A,. This is implemented by the notice command. Thus, notice A; checks to see
whether A; follows (automatically) from the current database, and if so, updates the
database by adding A; explicitly.

Chapter 9, on the simplifier, specifies how much about a given domain is fully automated
knowledge (decision procedures) and how much is partially automated.
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2.7.1 Axloms

The provebyaziom command causes the system to try to prove the subsequent statement by
invoking an axiom. An axiom is represented as a pattern of the form (implies ¢ p), or just p
[equivalent to (implies true p)], where ¢ and p are predicate patterns that may contain free
variables. A single instantiation of an axiom can be used to prove the truth of a formula that
“matches” the consequent of the axiom “at the top level.” By “matches at the top level”
we mean that the axiom consequent (p) has the same syntactic form as the formula, except
for free variables, which match arbitrary terms. If a free variable is duplicated, then the
formula must have identical terms that match the multiple occurrences of the free variable.

Consider a formula F and an axiom A of the form (implies ¢ p). We say that “A proves F”
if and only if p matches F at the top level, and g, when instantiated, simplifies (in SDVS)
to TRUE. An axiom pattern is instantiated by the replacement of all of its free variables
with matched terms taken from the formula. In mathematical notation, if p and ¢ are of the
form p(zi,...,Z,) and ¢(z1,...,2,), then F has to be of the form p(t1, ...,t,) for terms
t;, and ¢(t1,...,t,) must simplify to TRUE.

The syntax of the command is provebyaziom <expr> <axiom-name>. If <axiom-name> is
omitted, the system will search the list of all currently loaded axioms to try to find one
with the right pattern. The system prompts for instantiations of variables that appear on
the left side but not on the right side.

This next little example only illustrates what would happen if test.az really were an axiom.
You cannot duplicate this without using the createaziom command, which we like to dis-

courage.

<sdvs.1> pp
object: aztom
axiom name: test.ar

axiom test.ax (x,y,z):
pix,y) --> q{x,z)
<sdvs.1> prove
state delta[]: test.sd
proof[J: <CR>

open -- [sd pre: (p(1,2)) post: (q(1,3))]
Complete the proof.
<sdvs.1.1> provebyaziom
formula to prove: g¢(1,3)
axiom name[]: test.ax
match for y: 2

provebyaxiom test.ax —- q(1,3)

close -- 1 steps/applications
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The following is a list of the commands related to axioms that are illustrated in the example
below:

<sdvs.1> read
path name[testproofs/manual/ada/exchangetest.proofs]: arioms/arraycoverings.arioms

Definitions read from file "axioms/arraycoverings.axioms"
-- (disjoint\adjacent\slices,disjoint\slices,disjoint\elements,
pcovering\slice,pcovering\element,pcovering\slice\slice,
pcovering\slice\element,disjoint\slice\element)

<sdvs.2> aziomnames
symbol list[]: <CR>

Axiom names -- (pcovering\slice\element,pcovering\slice\slice,
pcovering\element ,pcovering\slice,disjoint\slice\element,
disjoint\elements,disjoint\slices,
disjoint\adjacent\slices,test.ax,test.3,test.2,test.1,
stack.6,stack.5,stack.4,stack.3,stack.2,stack.1)

<sdvs.2> pp
object: azxioms
axiom names[]: <CR>

with symbols[]: <CR>

ariom pcovering\slice\element (a,i,m,n): (disjointarray(a) & m le i) & i len
--> pcovering(alm:n],afi])

axiom pcovering\slice\slice (a,i,j,m,n): ((disjointarray(a) & m le i) & i le j) &
j le n --> pcovering(alm:n],ali:j1)

axiom pcovering\element (a,i): disjointarray(a) --> pcovering(a,afil)
axiom pcovering\slice (a,i,j): disjointarray(a) --> pcovering(a,ali:j])
axiom disjoint\slice\element (a,i,m,n): disjointarray(a) &

(m gt i or i gt n)

--> alldisjoint(alm:n],alil)

axiom disjoint\elements (a,i,j): disjointarray(a) & i "= j
--> alldisjoint(alil,aljl)

axiom disjoint\slices (a,i,j,k,1): disjointarray(a) & (j 1t k or 1 1t i)
--> alldisjoint(ali:j],alk:1])

axiom disjoint\adjacent\slices (a,i,j,k,1): ((disjointarray(a) & j ge i) &
j+1=k) &
1 ge k --> covering(ali:1],ali:j],
alk:1])

axiom test.ax (x,y,z): p(x,y) --> q(x,z)

axiom test.3 (x1,x2): unscrunch2(scrunch(xi,x2)) = x2
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axiom test.2 (x1,x2): unscrunchi(scrunch(x1,x2)) = x1
axiom test.1 (t): t = scrunch(unscrunchl(t),unscrunch2(t))
axiom stack.6 (i,s): stacksize(push(i,s)) = 1 + stacksize(s)

axiom stack.5 (): stacksize(()) =0

]
w0

axiom stack.4 (i,s): pop(push(i,s))

i

axiom stack.3 (i,s): top(push(i,s))
axiom stack.2 (8): () "= s --> s = push(top(s),pop(s))
axiom stack.1 (i,s): () = push(i,s)

<sdvs.2> pp
object: azioms
axiom names[]: <CR>
vith symbols[]: pcovering

axiom pcovering\slice\element (a,i,m,n): (disjointarray(a) & m le i) 8 i len
--> pcovering(alm:n],alil)

axiom pcovering\slice\slice (a,i,j,m,n): ((disjointarray(a) & m le i) £ 1 1le j) &
j le n --> pcovering(alm:n],ali:j])

axiom pcovering\element (a,i): disjointarray(a) --> pcovering(a,alil)
axiom pcovering\slice (a,i,j): disjointarray(a) --> pcovering(a,ali:j1)

<sdvs.2> azxiomnames
symbol 1list[]: pcovering

Axiom names with symbol pcovering -- (pcovering\slice\element,
pcovering\slice\slice,
pcovering\element,pcovering\slice)

<sdvs.2> pp
object: aztoms
axiom names[]: disjoint\elements

axiom disjoint\elements (a,i,j): disjointarray(a) & i "= j
--> alldisjoint(alil,aljD)

Now assume that we know that a is a disjoint array. Then SDVS automatically knows (if
the array solver is active) that a[i] and alj] are alldisjoint for any two distinct integers i, 7,
whether or not they are in range (real indices).

<sdvs.2> simp
expression: disjointarray(a) —> alldisjoint(a[1], a[2])

true
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Also,

<sdvs.2> simp
expression: (disjointarray(a) and i "= j) -> alldisjoint(a[1], a[2])

true

The axiom disjoint\elements is used in the case that a[i] and a[j] are introduced before the
system knows that 7 # j. For example:

<sdvs.3> prove
state deltall: disjoint3.sd
proof[): <CR>
open -- [sd pre: (declare(a,type(array,1,2,type(bitstring,8))),
.afi] = .al[jD)
post: (false)]
Complete the proof.

<sdvs.3.1> cases
case predicate: { =7

cases -- i = j
open -- [sd pre: (i = j)
comod: (all)
post: (false)]

<sdvs.3.1.1.1> defer
numbers of goals[alll: <CR>

deferring all current goals
close -- 1 steps/applications
open -- [sd pre: ("(i = j))
comod: (all)
post: (false)]

Complete the proof.

<sdvs.3.1.2.1> simp
expression: alldisjoint(afi], afj])

alldisjoint(alil,alj])
<sdvs.3.1.2.1> provebyaziom
formula to prove: alldisjoint(afi], afj])

axiom namel]: disjoint\elements

provebyaxiom disjoint\elements -- alldisjoint(alil,afj1)
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<8dvs.3.1.2.2> simp
expression: alldisjoint(afi], afj])

true

2.7.2 Rewriting

The rewrite command is based on the mechanism for invoking axioms and applies to equality
assertions that are provable by existing axioms. When the user wants to cause an equality
between two terms to be asserted, but does not want (or need) to write the “simpler” term,
he or she may simply type rewritebyaziom z. The system then scans the axioms to find an
equality axiom based on the pattern of ¢ (on either side of the equality) and causes the
equality to be asserted. Again, the name of the axiom desired to do the rewriting may be
added to the end of the command.

Another method has been implemented for rewriting when not all the variables appear on
one side of the equality to be rewritten. However, the general mechanism whereby SDVS
prompts for unmatched variables (appearing on the left side of the implication but not the
right side), as in the case of provebyariom, has not been implemented for rewritebyaziom.

For example, consider the axiom

ussub\ussub (x,h,i,j,k,1,m): h = min(i,k + max(j,0)) &
m = max(j,0) + max(1,0) --> x<i:j><k:1> = x<h:m>

As a matter of convenience, the user may want to say rewritebyaziom z <i:j><k:n>. This is
possible only if the precondition is true. However, since some variables in the precondition
do not have matches in the input term, there is nothing to check. In this case, the system
will substitute the correct values for h and m.

<sdvs.1> prove
state deltal]: rewrite.sd
proof[l: <CR>

open -- [sd pre: (h = min(i,k + max(j,0)) &
m = max(j,0) + max(n,0))
post: (z<i:j><k:n> = x<h:im>)]
Complete the proof.
<sdvs.1.1> reuritebyariom
term to rewrite: z<ij><k:n>

axiom name[]: ussub\ussub

revritebyaxiom ussub\ussub -- x<i:j><k:n>
= x<min(i,k + max(j,0))
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:max(j,0) + max(n,0)>

close -- 1 steps/applications

Note that if the bitstring solver were activated at level 3 or 4, then the above proof would
have closed because the simplifier would know the truth of the implication to be proved
(remember that solvers must be activated before init):

<sdvs.1> activate
solver: b3

Bitstring solver (level 3) activated.

<sdvs.3> prove
state deltal]: rewrite.sd
proof[l: <CR>

open -- [sd pre: (h = min(i,k + max(j,0)) &
m = max(j,0) + max(n,0))
post: (x<i:j><k:n> = x<h:m>)]

close -- 0 steps/applications

2.7.3 Current Axiom List

The axioms are grouped according to the domain to which they apply. The intent is that
each group be complete for its domain; i.e., every (universal) true statement about that
domain can be proved from the axioms. In addition, there is a supply of less “basic”
axioms that have been found to be useful in actual proofs. For example, in the bitstring
domain there are axioms for distributing substring over concatenation, for compressing
concatenation, and so on.

The user may peruse the list of axioms of the domain of interest to see if there is an axiom
that will exactly solve a given problem, or one may use the command aziomnames or pp
< CR > azioms with the symbol or symbols of interest. The “symbol” refers to the actual
symbol in the axiom, and not in the name of the axiom. Also note that it is the alphabetic
name, not the mathematical symbol, e.g. “mult” not “*”. The simplifier names of the
symbols used in the axioms can be obtained by the help symbols query, which responds:

<<<SDVS Help>>> Symbols used in Axioms and Lemmas  <<<SDVS Help>>>
constants false, true, emptyarray, O, 1, emptyplace, everyplace, nullqueue

functions mkarray, val, inertial_update, transport_update, transaction,
waveform, frontqueue, dequeue, enqueue, cdr, car, cons, diff,
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union, slice, range, origin, element, aconc, 1lh, usval, bs,
bcons, ussub, usconc (@), useql (==), usneq ("==), uslss
(uslt), usleq (usle), usgtr (usgt), usgeq (usge), usplus (++),
usdifference (--), ustimes (**), usquotient (//), usremainder
(usmod), usnot (~~), usand (&&), usor, usxor, usnand, usnor,
useqv, zeros, ones, lastone, parity, idiv, irem, icons, plus
(+), minus (-), mult (*), expt (), max, min, div (/), rem,
mod, abs, vhdltime, timeglobal, timedelta, timeplus, tcval

predicates timege, timegt, timele, timelt, vhdltimep, sd-value, distinct,
neq (=), eq (=), not (°), implies (-->), xor, or, and (&),
cond, epred, esucc, ege, egt, ele, elt, usvalp, lhp,
disjointarray, covering, pcovering, alldisjoint, ge, gt, le,
1t, emptyqueue, preemption, waveformp

If a particular claim proven by a sequence of steps involving axioms is to be used more than
once, it may be advisable to make a lemma by createlemma, which then may be reused.

Below we list all SDVS axioms, grouped by filename. The following list is given as response
to the help arioms query:

<sdvs.1> help

with[alll: azioms
<< <SDVS Help>>> Axioms <<<SDVS Help>>>
axioms/abs.axioms integer absolute value
axioms/arraycoverings.axioms arrays and coverings
axioms/arrays.axioms O-origin arrays (obsolete)
axioms/bitstring.axioms bitstrings
axioms/div.axioms integer division
axioms/exp.axioms integer exponentiation
axioms/idiv.axioms unsigned integer divisien
axioms/lastone.axioms the LAST.ONE bitstring function
axioms/log2.axioms integer log base 2

axioms/minmax.axioms integer min and max
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axioms/mod.axioms integer modulus
axioms/mult.axioms integer multiplication
axioms/origin-arrays.axioms arbitrary-origin arrays
axioms/quant.axioms quantification
axioms/rem.axioms integer remainder

axioms/sqrt.axioms integer square root

Axioms for Integer Absolute value (contained in file axioms/abs.axioms):

"
]

abs\pos abs\pos (x): x ge 0 --> abs(x)

abs\neg abs\neg (x): x 1t 0 --> abs(x) = -x

Axioms for Bitstrings (contained in file axioms/bitstring.axioms):

usval\lt\lh usval\lt\lh (b): 2 - 1h(b) gt [b]
ussub\1t0 wussub\1t0 (x,i,j): 0 ge j --> x<i:j> = x<i:0>

ussub\usdifference ussub\usdifference (u,v,x,y,m,n): u = |x] &

(v=1yl &
(ugevdt
(n=02%
2" (m+1)gtu-v)))

--> [(x == y)<m:in>|=u-v

ussub\ustimes ussub\ustimes (x,y,i,j): j =0 & 2 " i gt |x| * |y
-=> |(x ** yI<iii>| = |x ** y|

ussub\ustimes\0 ussub\ustimes\0 (x,y,i,j): 2 ~ j gt |x| * |y| -=> [(x *=* y)<i:j>| =0
usval\ussub\0 usval\ussub\0 (x,i,j): |x| =0 --> |x<i:j>| =0

usor\usplus usor\usplus (x,y,z): 1lh(x) =1 & (1h(y) =1 & z = 1(1))
--> x usor y = (z ++ (x ++ y))<i:1>

usor0 usor0 (x,y): |x] = 0 & 1h(y) ge lh(x) --> x usor y =y

equsvals equsvals (x,y,1,3): |x| = |y| --> |x<i:j>| = |y<i:j>|

usandl usandl (x,y): x = 1(1) &£ lh(y) =1 -> x && y =y

ussub\usand ussub\usand (x,y,i,j): (x && y)<i:j> = x<i:j> && y<i:j>

ussub\usxor ussub\usxor (x,y,i,j): (x usxor y)<i:j> = x<i:j> usxor y<i:j>
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ussub\usor ussub\usor (x,y,i,j): (x usor y)<i:j> = x<i:j> usor y<i:j>

ussub\usplus\ussub ussub\usplus\ussub (x,y,i,j,k,1,m,n): j=0& (1 =02 (i gem & k ge m))
--> (x<izj> ++ y<k:1>)<m:n> = (x ++ y)<m:n>

usxor0 usxor0 (x,y): 1h(x) =1 & x =y --> x usxor y = 0(1)

1&x "=y) -->xusxor y = 1(1)

usxorl usxori (x,y): 1lh(x) =1 & (1h(y)

usorl usorl (x,y): 1h(x) =1 & (lh(y) =1 & (x = 1(1) or y = 1(1)))
--> x usor y = 1(1)

usand0 usand0 (x,y): 1lh(x) =1 &
(lh(y) =1 & (x = 0(1) or y

0(1))) --> x & y = 0(1)

restrict\ussub restrict\ussub (x,y,i,j,k,1,m,n): mge 0 & (n ge 0 & [x<i:j>| = Jy<k:1>|)
--> |x<i - m:j + n>| = |y<k - m:l + n>|

ussub\ussub ussub\ussub (x,h,i,j,k,1,m): h = min(i,k + max(j,0)) &
m = max(j,0) + max(1,0) --> x<i:j><k:1> = x<h:m>

usval\usconc usvallusconc (x,y,1): 1 =1h(y) --> |x @ y| = |x| * 2 = 1 + ly]

chop chop (x,y,1): 1lh(x) ge lh(y) &
(2 " 1h(x) - 1 ge |x| + |y| &1 = 1h(x) - D)
-=> Jx ++ y| = |(x ++ y)<1:0>|

usval\ussub2 usvallussub2 (x,y,i,j): i=1h(x) -1 & (j =0 & [x] = [yD ——> |x| = ly<i:ji>]

usval\ussub usvallussub (x,i,j): [x<i:j>|
= idiv(irem(|x|,
2 © (min(i,1h(x) - 1) + 1)),
2 - max(j,0))

squash squash (x,i,j,k,1): j=k+ 1%
((kgel or 0 gel) &
(i ge j or i ge 1n(x) - 1)) --> x<i:j> @ x<k:1> = x<i:1>

ussub\usconc ussub\usconc (x,y,i,j,i1,j1): il =i - 1h(y) & j1 = j - 1h(y)
-—> (x @ y)<i:j> = x<il:j1> @ y<izj>

usval\usconc\0 usvallusconc\0 (x,y): |[x| =0 --> |x @ y| = |y
ussub\usplus ussub\usplus (x,y,m,n,u,v): 2 ~ n gt |[x<n - 1:0> ++ y<n - 1:0>] &
(2 " (m+ 1) gt [x<m:0> ++ y<m:0>| &
(u = |x<m:n>| & v = |[y<m:n>|))
-=> |(x ++ y)<m:n>| =u +v

chop\general chop\general (x,i,j): j =0&2 " (i+ 1) gt [x| --> Jx<izj>| = |x|

usxor\usplus usxor\usplus (x,y): 1h(x) =1 & 1h(y) =1 --> x usxor y = (x ++ y)
<0:0>

usand\usplus usand\usplus (x,y): 1h(x) =1 & lh(y) =1 --> x &k y = (x ++ yI<i:i>
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not0 not0 (x): 1h{(x) =1 & x "= 0(1) --> x = 1(1)

notl notl (x): 1h(x) =1 & x "= 1(1) --> x = 0(1)
usor\commute usor\commute (x,y): X usor y =y usor x
commuteusand commuteusand (x,y): x && y =y && x
lh\ussub 1lh\ussub (b,i,j): 1h(b<i:j>)

= max (0,

1 + (min(1h(b) - 1,i) - max(0,j)))

1lh\ones 1lh\ones (n): 1lh(ones(n)) = max(n,0)
lh\zeros 1lh\zeros (n): 1lh(zeros(n)) = max(n,0)

lh\usdifference lh\usdifference (11,12,x,y): 11 = 1h(x) & 12 = 1lh(y)
--> lh(x -- y) = max(11,12) + 1

usval\usdifference\2 usval\usdifference\2 (u,v,x,y,1): u = |x| &
(v=1yl &
(vgtut
1 = max(1h(x),1h(y)) + 1))
> jx--yl=2"1+@@-Ww

usval\usdifference\l usvall\usdifference\l (x,y,u,v): u = x| & (v = |y| & u ge V)
> yl=u-

ussub\total ussub\total (j,k,b): j ge lh(b) - 1 & 0 ge k --> b = b<j:k>
ussub\gt\lh ussub\gt\lh (j,k,b): j ge lh(b) - 1 --> b<j:k> = b<lh(b) - 1:k>
ussub\empty ussub\empty (x,i,j): i 1t j --> x<i:j> = 0(0)

usval\ge\0 usvall\ge\0 (b): |b| ge 0

usval\le usvall\le (x,i,j,k,1): i gek &1 ge j --> |x<i:j>| ge |x<k:1>|

ge\usval\usor ge\usvallusor (b1,b2): [bl usor b2| ge |bl|

Axioms for Integer Multiplication (contained in file axioms/mult.axioms):

multgt multgt (x,y,z): x gt 0 & ygtzorOgtx &zgty
—> x *ygtxx*z

multlt0 multlt0 (x,y): O gt x & ygtOorxgtO&0gty-—->0gtx=*y
multgt0 multgt0 (x,y): 0 gt x & OgtyorxgtO&ygto-—->x=*ygtod

multge multge (x,y,z): xge O & ygezorOgex &zgey
--> X * yge X *z

multle0 multleO (x,y): O gex & ygeOorxgeO&Ogey-->0gex=*y
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multge0 multge0 (x,y): O ge x &8 O geyor xge O &ygeO-->x*ygeo
multsquarege0 multsquarege0 (x): x * x ge 0

multminus multminus (x,y): (-x) * y = -(x * y)

multdistributeminus multdistributeminus (x,y,z): x * (y - z) =x *y - X * 2
multdistributeplus multdistributeplus (x,y,z): x * (y+ z) =x *y + X * 2
multassoc multassoc (x,y,z): x * (y #2) = (x * y) * z

multcommute multcommute (x,y): x * y =y * X

multl multl (x,y): y=1-->x%y=x

mult0 mult0 (x,y): y =0 -->x%y=20

Axioms for Integer Exponentiation (contained in file axioms/exp.axioms):

multeqsquare multegsquare (a): a * a =a "~ 2

expdiv expdiv (a,k): kget -->a "~ (k-1)=a " k/a
expmult expmult (a,k): kgel-->a " k=a=*a" (k-1)
eb e5 (x,a): a=08&x "=0-->a
e4 e4 (a,x): a=0&x "=0~-->x" a=1

e3 e3 (a,b,c,x): c=a+b-->x " a*x " b=x"c

expabsval expabsval (a,b,c): ((bge a & age-b) &b ge0) &cgel
-->b " cgea”c

e1l ell (a,b,c): (c gt 0 & bgeO) Eageb-->a " cgeb~c
e8 e8 (a,x,y): (agel & xgel)&xgey-—->x" agey
e2 e2 (b,x,y): bgeO&ygex-—->b  ygeb " x

el0 e10 (a,b,c): (c gt 0 & bge 0) Eagtb-->a cgtb "~ c

e9 e9 (a,x,y): (age2&xge2) &xgey-->x" agty

e7 e7 (b,x,y): bgtl &ygtx-->b - ygth"~x

e6 e6 (a,x): agtl&O0gtx-->1gta“x

el et (b,x): bgtO & xgeO-->b" xgto

Axioms for Min-Max Functions (contained in file axioms/minmax.axioms):
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maxge maxge (x,y): max(x,y) ge x

minle minle (x,y): x ge min(x,y)

lemin lemin (x,y,z): y ge x & z ge x --> min(y,z) ge x

gemax gemax (x,y,z): x ge y & x ge z --> x ge max(y,z)

gemin gemin (x,y,z): x ge y or x ge z --> x ge min(y,z)
lemax lemax (x,y,z): y ge x or z ge x --> max(y,z) ge X

mineq mineq (x,y): min(x,y) "= x --> min(x,y) =y

maxeq maxeq (x,y): max(x,y) "= x --> max(x,y) =y
commutemax commutemax (x,y): max(x,y) = max(y,x)

commutemin commutemin (x,y): min(x,y) = min(y,x)

Axioms for Coverings of Arrays (contained in file axioms/arraycoverings.axioms):

pcovering\slice\element pcovering\slice\element (a,i,m,n): (disjointarray(a) & m le i) & i le n
--> pcovering(alm:nl,a[il)

pcovering\slice\slice pcovering\slice\slice (a,i,j,m,n): ((disjointarray(a) & m le i) & i le j) &
j le n --> pcovering(alm:n],ali:j])

pcovering\element pcovering\element (a,i): disjointarray(a) --> pcovering(a,afil)
pcovering\slice pcovering\slice (a,i,j): disjointarray(a) --> pcovering(a,ali:jl)

disjoint\slice\element disjoint\slice\element (a,i,m,n): disjointarray(a) & (m gt i or i gt n)
--> alldisjoint(alm:n],alil)

disjoint\elements disjoint\elements (a,i,j): disjointarray(a) & i "= j --> alldisjoint(alil,

alj])

disjoint\slices disjoint\slices (a,i,j,k,1): disjointarray(a) & (j 1t k or 1 1t i)
~-~> alldisjoint(ali:jl,alk:1])

disjoint\adjacent\slices disjoint\adjacent\slices (a,i,j,k,1): ((disjointarray(a) & j ge i) &

j+1=k) &
1 ge k —-> covering(ali:1],al[i:j],alk:1])

Axioms for Arrays with Arbitrary Origin (contained in file axioms/origin-arrays.axioms)

emptyslice emptyslice (v,i,j): i gt j --> v[i:j] = emptyarray

origin(v) & origin(v) gt i --> v[i:j] = v[1b:j]

loverslice 1lowerslice (v,i,j,1b): 1b

upperslice upperslice (v,i,j,ub): ub = (origin(v) + range(v)) - 1 & j ge ub
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--> v[i:j] = v[i:ub]

totalslice totalslice (v,i,j): origin(v) ge i &
j ge (origin(v) + range(v)) - 1 --> v[i:jl = v

slicerange slicerange (v,i,j,r): ((i ge origin(v) & j ge i) &
origin(v) + range(v) gt j) &
r=(j-i) + 1 --> range(v[i:j]) =r

sliceorigin sliceorigin (v,i,j): (i ge origin(v) & j ge i) &
origin(v) + range(v) gt j --> origin(v[i:jl) =i

adjacentslices adjacentslices (v,i,j,k,1): (jgei & j=k+ 1) &8 1 gek
--> aconc(v[i:j],v[k:1]) = v[i:1]

elementofslice elementofslice (v,i,j,k,m): (j ge i & i ge origin(v)) &
m=(i+k) - origin(v) --> v[i:j][k] = v[m]

elementofaconcl elementofaconcl (v1,v2,j): origin(vl) + range(vl) gt j
--> aconc(v1,v2)[j1 = v1[j]

elementofaconc? elementofaconc2 (vi,v2,j,k): j ge origin(vl) + range(vl) &
k = origin(v2) +
(j - (origin(vl) + range(v1)))
--> aconc(v1,v2)[j] = v2[k]
sliceofaconc sliceofaconc (vi,v2,i,j,i2,j2): i2 = origin(v2) +
(i - (origin(v1) + range(vl))) &
j2 = origin(v2) +
(j - (origin(vl) + range(v1)))
--> aconc(vi,v2)[i:j] = aconc(vi[i:j],v2[i2:j2])

Axioms for Log Base 2 (contained in file axioms/log2.axioms):

log2expgt log2expgt (x,y): xge 1l &y = log2(x) -=> 2 ~ (y + 1) gt x
log2exple log2exple (x,y): x ge it &y = log2(x) --> 2 "~y le x

log2def log2def (x,y): (xge1 &2 " ylex) &2° (y+1) gt x -—=> y = log2(x)

Axioms for Integer Division (contained in file axioms/div.axioms):

divgt0 divgt0 (a,b): (age 0 & b gt 0) & agebor
(0geatOgtb) kbgea-->a/bgto

divlt0 divlt0 (a,b): (age 0 & 0 gt b) & b gt a or
(0geakbgtO) kagtb-->0gta/b

divlt divlt (a,b): agtO &bgtl-->agta/b

diveq0 diveq0 (a,b): (a=0&b "=0 or ageO&bgt a) or
Ogeagtagtb-->a/b=0
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diveql diveql (a,b): a=b&b "=0-->a/b=1

divnegl divnegl (a,b): (-a) /b =-(a/b)
divneg2 divneg2 (a,b): a / (-b) = -(a / b)
divmulteq divmulteq (a,b): age 1l --> (a*b) /fa=Db

divdistl divdistl (a,b,n): ((n gt 0 # age 0) &b ltn) £01leb
—->(n*a+b)/n=a

divby2repeat divby2repeat (a,j): j ge 0
-—->(@/2"§d/2=a/2"(G+1D

divge0 divge0 (a,b): age 0 &b gt Oor 0 geakOgth-->a / bgeo
divle0 divle0 (a,b): ageO & OgtborOgeakbgtO-->0gea/b
divgemult divgemult (a,b): age O &b =0 -->age(a/b)*b
divlemult divlemult (a,b): O ge a &b "=0--> (a/b) *bgea

divposlemax divposlemax (a,b): age 0 & b gt 0
--> (a/ b) * b ge max(0,(a - b) + 1)

divposorder divposorder (a,b,c): agel&cgeb-->c/ageb/a

Axioms for Modulo Arithmetic (contained in file axioms/mod.axioms):

modpos modpos (x,y): y gt 0 -—-> x mod y ge 0

modneg modneg (x,y): O gty --> 0 ge x mod y

mod0 mod0 (x,y): x =0 -->xmody =20

modmult modmult (x,y,k): xmod y = (x + k # y) mod y

modreml modremi (x,y): (y =0 & (x/y) *y=xo0r 0gtx&O0gty)or
xgt0&ygt0-->xmody=xrTemy

modrem?2 modrem2 (x,y): (y =0& (x/y)*y =x)¢&

(Ogtx&ygtOorxgtO&Ogty
--> abs(x rem y) = abs(y) - abs(x mod y)

Axioms for Remainder Function (contained in file axioms/rem.axioms):

remdef remdef (x,y): y =0 -->x=(x/y) *y+xremy
rem0 rem0 (x,y): x =0 -->xremy =20

rempos rempos (x,y): x gt 0 &y "= 0 --> abs(xremy) = xTemy
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remneg remneg (x,y): x 1t 0 & y "= 0 --> abs(x rem y) = -(x rem y)
remneg! remnegl (x,y): (-x) remy = -(x rem y)

remneg? remneg2 (x,y): x rem (-y) = x rem y

remlb remlb (x,y): abs(x rem y) ge O

remub remub (x,y): abs(x rem y) 1t abs(y)

Axioms for Square Root (contained in file axioms/sqrt.axioms):

sqrt3 sqrt3 (y): y ge 0 --> y ge sqrt(y) * sqrt(y)
sqrt2 sqrt2 (y): y = 0 --> sqrt(y) =0
sqrt4 sqrt4 (y): y ge 0 —=> (sqrt(y) + 1) * (sqrt(y) + 1) gt y

sqrtl sqrtl (y): y gt 0 --> sqrt(y) gt O

Axioms for “Last One” Function (contained on the file axioms/lastone.axioms):

lasti\value2 lastl\value2 (x): |[x| gt 0 --> lh(x) gt [lastone(x)|

lasti\value lasti\value (x): 1h(x) ge |lastone(x)|

1(1) --> i ge |lastone(x)|

lasti\usval\ge lasti\usvall\ge (x,i): x<i:i>

1(1) & |x<m - 1:0>| = 0 --> |lastone(x)| = m

lastl\valuedef lasti\valuedef (x,m): x<m:m>

1ast1\1hdef lastl\lhdef (x,k): 1lh(x) ge2 "k & 2~ (k + 1) gt 1h(x)
--> lh(lastone(x)) = k + 2

last1\def lasti\def (1,x): |x| gt 0 & (x<0:0> = 0(1) & 1h(x) - 1 =1)
--> |lastone(x)| = |lastone(x<1:1>)| + 1

lasti\usor lastl\usor (x,y): [lastone(x usor y)| = min(|lastone(x)|,|lastone(y)|)
lasti\firstone lasti\firstone (ux,x): [x| gt 0 & ux = |lastone(x)| --> x<ux:ux> = 1(1)
lasti\usconc lasti\usconc (x,y): |x| gt 0 --> |lastone(y € x)| = [lastone(x)]
lasti\zeros lastl\zeros (x,1): 1 ge 0 & |lastone(x)| gt 1 --> x<1:1> = 0(1)
lasti\zeros0 lastl\zerosO (x,k): |lastone(x)| =k + 1 --> |x<k:0>| = 0

last1l\ussub lasti\ussub (ux,x,1,n): ux = |lastone(x)| &

(1 =1h(x) - 1 & (nge O & ux ge n))
--> |lastone(x<1l:n>)| = ux - n
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Axioms for Experimental (“Unsigned”) Integer Division (contained in file axioms/idiv.axioms):

idivdef idivdef (a,x): a gt 0 --> x = idiv{x,a) * a + irem(x,a)
idiv0 idiv0 (a,b): a ge 0 & b gt a —-> idiv(a,b) = 0
iremdef iremdef (q,r,y): r ge 0 & y gt r --> r = irem(q * y + r,y)

idiv\order2 idiv\order2 (al,a2,b): al ge 0 & (a2 ge al & b gt 0)
--> idiv(a2,b) ge idiv(ai,b)

irem\order2 irem\order2 (a,b): a ge 0 & b gt 0 --> b ge irem(a,b)
irem\order! irem\orderi (a,b): a ge 0 & b gt 0 --> a ge irem(a,b)

idiv\order idiv\order (a,b): a ge 0 &£ b gt 0 --> a ge idiv(a,b)

The axioms for quantification are discussed in Chapter 6.

2.7.4 Lemmas

The following commands are covered in this section:

read

writelemmas (or write lemmas)
createlemma

provelemma

provebylemma

Lemmas enable the user to extend the static derivation capability of SDVS. A lemma is
written in the same format as the system-supplied axioms. Note that quantifiers cannot
appear in the statement of the lemma.

The command createlemma prompts the user for the various components. The resulting
lemma may be stored through the command writelemmas or just the write command. A
previously written lemma can be read in by the read command. A proof of the lemma (from
axioms and previous lemmas) is initiated in the context of a larger proof by the command
provelemma <lemma-name>. The lemma is used in the same way as an axiom is used (for
pattern matching, prompting for unmatched variables, and so on) through the command
provebylemma. Note that the provebylemma command only proves sentences that match
the lemma’s conclusion, not the whole implication.

If an unproved lemma is used during a proof, a message to that effect, similar to the
statement about deferred goals, will appear at the end of the proof (after quitting). All
unexplained bitstring notation used below is described in Section 9.4.
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<sdvs.1> createlemma
name: carrylemma
pattern: (lh(z) =1 & lh(y) = 1 & lh(z) = 1) > (z &6 y usor = E& z usor y 6§ z) =
(z ++ y ++ z)<1:1>

free variables[]: =z, y, 2
constant symbols[]: <CR>
function symbols[]: <CR>
predicate symbols[]l: <CR>

Lemma ‘carrylemma’ created.

The prompts for constant, function, and predicate symbols relate to only those (uninter-
preted) symbols that SDVS does not already recognize.

<sdvs.1> pp
object: lemmas
lemma names[]: carrylemma

unproved lemma carrylemma (x,y,z): (1h(x) =1 & 1h(y) = 1) & 1h(z) = 1
~-> (x && y usor x k& z) usor y && z
= ((x ++ y) ++ z)<1:1>

<sdvs.1> provelemma
lemma name: carrylemma
proof[]l: <CR>

open -- [sd pre: ((1h(x) = 1 & 1lh(y) = 1) & 1h(z) = 1)
post: ((x &k y usor x &% z) usor y && z
= ((x ++ y) ++ 2)<1:1>)]

<sdvs.1.1> mcases
number of cases: &
1st case: z = 0(1) & y=0(1) & z = 0(1)
proof[]: <CR>
2nd case: = 0(1) & y=0(1) & z=1(1)
proof[]: <CR>

I

3rd case: z=0(1)&y=1(1) & z=0(1)
proof[l: <CR>

4th case: z = 0(1) & y=1(1) & z=1(1)
proof[l: <CR>

5th case: z = I(1)& y=0(1) & z=10(1)
proof[l: <CR>

6th case: z = (1) & y=0(1) & z=1(1)
proof[l: <CR>

Tth case: z = I1(1)& y=1(1) & z=10(1)
proof[]l: <CR>

8th case: z = 1(1)& y=1(1)&z=1(1)

proof[l: <CR>
mcases -- 8
open -- [sd pre: ((x = 0(1) &y = 0(1)) & z = 0(1))

comod: (all)
post: ((x &% y usor x &% z) usor y && z
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= ((x ++ y) ++ 2)<1:1>)]

close -- 0 steps/applications
open -- [sd pre: ((x = 0(1) &y = 0(1)) & z = 1(1))
comod: (all)
post: ((x && y usor x && z) usor y && z
= ((x ++ y) ++ 2)<1:1>)]
close -- 0 steps/applications

open -- [sd pre:

comod: (all)
post: ((x &% y usor x &% z) usor y &k z
= ((x ++ y) ++ 2)<1:1>)]
close -- 0 steps/applications
open —- [sd pre: ((x = 0(1) &y = 1(1)) & z = 1(1))
comod: (all)
post: ((x &% y usor x && z) usor y && z
= ((x ++ y) ++ 2)<1:1>)]
close -- O steps/applications
open -- [sd pre: ({(x = 1(1) &y = 0(1)) & z = 0(1))
comod: (all)
post: ((x &% y usor x && z) usor y && z
= ((x ++ y) ++ 2)<1:1>)]
close —- 0 steps/applications
open -- [sd pre: ((x = 1(1) &y = 0(1)) & z = 1(1))
comod: (all)
post: ((x && y usor x && z) usor y && z
= ((x ++ y) ++ z)<1:1>)]
close -- 0 steps/applications
open -- [sd pre: ((x = 1(1) & y = 1(1)) & z = 0(1))
comod: (all) ‘
post: ((x &% y usor x && z) usor y && z
= ((x ++ y) ++ 2)<1:1>)]
close -- 0 steps/applications
open —- [sd pre: ((x = 1(1) &y = 1(1)) & z = 1(1))
comod: (all)
post: ((x &% y usor x &% z) usor y &% z
= ((x ++ y) ++ z)<1:1>)]
close -- 0 steps/applications
join -- [sd pre: ((x o(1) &y 0(1)) £ z=0(01) or
=0(1) &y =0(1)) & z=1(1) or

((x=0(1) £y =1(1)) & z = 0(1))
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(x =0(1) &y =1(1)) & z = 0(1) or
(x=0(1) &y =1(1)) &z = 1(1) or
(x=1(1) &gy = 0(1)) &z = 0(1) or
(x=1(1) 8y =0(1)) &z =1(1) or
(x=1(1) &y =1(1)) &z =0(1) or
(x=11) &y=1(1)) & z = 1(1))

comod: (all)
post: ((x &% y usor x &k z) usor y && z
= ((x ++ y) ++ 2)<1:1>)]

close -~ 1 steps/applications

<sdvs.1> dump-proof
name: carryproof

Current proof dumped to carryproof.

<advs.1> wrile
path name[axioms/arraycoverings.axioms]: lemmas/lemmas.lemmas
state delta names{]: <CR>
proof names[1: carryproof

axiom names[]: <CR>

lemma names[]: carrylemma
formula names[}: <CR>
formulas names[]: <CR>
macro names[]: <CR>
datatype names[]: <CR>
adalemma names[]: <CR>
vhdllemma names[]: <CR>

Do you wish to append to the already existing file? y

Append to file "lemmas/lemmas.lemmas’ —- (carryproof,carrylemma)

<sdvs.1> read
path name[lemmas/lemmas.lemmas]: lemmas/lemmas.lemmas

Definitions read from file "lemmas/lemmas.lemmas"

-~ (carryproof,carrylemma,carryproof,carrylemma, carryproof ,carrylemma,
carryproof,carrylemma,carryproof,carrylemma, carryproof ,carrylemma,
carryproof,carrylemma,carryproof,carrylemma, carryproof ,carrylemma,
carryproof ,carrylemma,carryproof,carrylemma,carryproof,carrylemma,
carryproof,carrylemma,carryproof,carrylenma,carryproof,carrylemma,
carryproof ,carrylemma,carryproof,carrylemma,carryproof,carrylemma,
carryproof,carrylemma,carryproof,carrylemma, carryproof,carrylemna,
carryproof ,carrylemma)

<sdvs.2> pp
object: lemmas
lemma names[]: carrylemma

lemma carrylemma (x,y,z): (lh(x) = 1 & 1h(y) = 1) & 1h(z) =1
--> (x &% y usor x &% z) usor y && z
= ((x ++ y) ++ z)<1:1>
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Actually, one does not have to store the proof explicitly; it is stored automatically with the
proven lemma. It can be viewed as follows:

<sdvs.2> pp
object: lemmaproof
lemma name: carrylemma

(provelemma carrylemma

proof:
mcases

(case: (x = 0(1) &y =0(1)) & z = 0(1)
proof:

case: (x=0(1) & y=0(1)) &z=1(1)
proof:

case: (x =0(1) 2y =1(1)) & z = 0(1)
proof:

case: (x = 0(1) &y =1(1)) &z = 1(1)
proof:

case: (x=1(1) &y =0(1)) &z =0(1)
proof:

case: (x = 1(1) £y =0(1)) & z = 1(1)
proof:

case: (x = 1(1) &y = 1(1)) & z = 0(1)
proof:

case: (x = 1(1) &y = 1(1)) &z = 1(1)
proof: ))

Now we shall use carrylemma in proving carrysd:

<sdvs.1> ppsd
state delta: carrysd

[sd pre: (declare(x,type(bitstring,1)),declare(y,type(bitstring,1)),
declare(z,type(bitstring,1)),covering(all,a,b,x,y,z),
[sd pre: (true)
mod: (a)
post: (#a = (.x && .y usor .x &% .z) usor .y && .z)],
[sd pre: (true)
mod: (b)
post: (#b = ((.x ++ .y) ++ .z)<1:1>)1)
mod: (a,b)
post: (#a = #b)]

<sdvs.1> init
proof name[j: <CR>

State Delta Verification System, Version 12
Restricted to authorized users only.

<sdvs.1> prove
state delta[]: carrysd
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proof[]: <CR>

open -- [sd pre: (declare(x,type(bitstring,1)),
declare(y,type(bitstring,1)),
declare(z,type(bitstring,1)),covering(all,a,b,x,y,2z),
[sd pre: (true)

mod: (a)
post: (#a = (.x &k .y usor .x && .z) usor
.y && .2)],
[sd pre: (true)
mod: (b)
post: (#b = ((.x ++ .y) ++ .z)<1:1>)])

mod: (a,b)
post: (#a = #b)]

Complete the proof.

<sdvs.1.1> whynotgoal
simplify?[no]l: <CR>

g(1) #a = #b
<sdvs.1.1> usablesds

u(1) [ed pre: (true)
mod: (b)
post: (#b = ((.x ++ .y) ++ .2)<1:1>)]

u(2) [sd pre: (true)
mod: (a)
post: (#a = (.x && .y usor .x &t .z) usor .y &% .z)]

<sdvs.1.1> apply
sd/number [highest applicable/oncel: u
number: [

apply -- [sd pre: (true)
mod: (b)
post: (#b = ((.x ++ .y) ++ .2)<1:1>)]

<sdvs.1.2> apply
sd/number [highest applicable/once]: u
number: 2

apply -- [sd pre: (true)
mod: (a)
post: (#a = (.x && .y usor .x && .z) usor .y && .z)]

<sdvs.1.3> whynotgoal
simplify?[nol: <CR>

g(1) #a = #b

<sdvs.1.3> provebylemma
formula to prove: .r && .y usor .z &8 .z usor .y 88 2z = (x ++ .y ++ .2)<1:1>

86




lemma name[]: carrylemma

provebylemma carrylemma -- (.x && .y usor .x &% .z) usor
.y k& .z = ((Lx ++ .y) ++ .zZ)
<1:1>
close -- 3 steps/applications

2.7.5 Notice

The user may need to create a sequence of notices to lead the system from its perception of
the current state to the realization of the truth of some other facts about the current state.
The system must be able to verify automatically the current fact being noticed on the basis
of the facts that were previously noticed or proved by axiom or lemma.

A command similar to notice is consider. An essential role in the automatic deduction
mechanism of SDVS is played by the demons, that is, by rules triggered by patterns of
terms that cause certain statements to be inserted into the database. Consider allows
the user the possibility of supplying the system with those key terms that will cause the
appropriate demons to “fire” and thus automatically carry out part of the proof. Note that
“consider ¢’ has the same effect as “notice t = 1”.

As an example of the use of consider, suppose the user knows that for some 0 < 1 < 8§,
a<9:i>=b<9 —7:0> and wants to prove that a<9 : 8> = b<9 — i : 8 — :>. The system
knows that a<9: 8> = a<9:1><9 — i : 8 — 7> when the solver b3 is in force (see Section
2.7.6), because of the equation

a<i:j><k :m> = a<min(i, k + maz(j,0)) : maz(j,0) + maz(m,0)>

However, this demon will not fire unless the term a<9 : ¢><9 —¢:8 —1>. is introduced
explicitly. This is accomplished by consider. Then a<9:8> = a<9:i><9-1:8-1> =
b<9 —i:0><9—1i:8— 1> and the demon fires again, giving b<9 — 2 : 8 —1>.

Below is a transcript illustrating the above argument:

<sdvs.1> prove
state deltall: notice.sd
proof{l: <CR>

open -- [sd pre: ((0 le i & i le 8) & a<9:1i> = b<9 - i:0>)
post: (a<9:8> = b<9 - i:8 - i>)]

Complete the proof.

<sdvs.1.1> consider
term: a<92:4><9- :8 - 1>

consider -- a<9:i><9 - i:8 - i>

close -~ 1 steps/applications
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One could have also used notice:

<sdvs.1> prove
state deltal]l: notice.sd
proof[]l: <CR>

open -- [sd pre: ((0 le i & i le 8) & a<9:i> = b<9 - i:0>)
post: (a<9:8> = b<9 - i:8 - i>)]

Complete the proof.

<sdvs.1.1> notice
term: a<9:8> = a<9:14><9- :8 - >

notice -- a<9:8> = a<9:i><9 ~ i:8 - i>

close -- 1 steps/applications

2.7.6 Solvers

The commands activate and deactivate control the solvers described in the simplifier. If a
given solver is activated, the embedded knowledge for that domain in the simplifier is used.
The system must be reinitialized after a solver is activated. If a given solver is deactivated,
all function symbols in its domain will be treated as uninterpreted. The solvers e and p

cannot be deactivated.
The solvers can be tested by typing eval (test-simp-solvers).

Below is the current list of solvers with their default settings:

<sdvs.1.4> solvers
Quantification solver inactive.

Simplifier Solvers:

a arrays (activated)
b bitstrings (activated, level 3)
¢ coverings (activated)
d integer division (deactivated)
e equality (activated)
enum enumerations (activated)
k extra boolean operators (activated)
1 lists (deactivated)
m associative/commutative multiplication (deactivated)
p propositional logic (activated)
q queues (deactivated)
t vhdl time (activated)
v vhdl vaveforms (activated)
z integer arithmetic (activated)
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The query solvers will produce the above table with the settings in force at the time of the
query.

There are four varieties of bitstring solver: b, b2, b3, and b4. For more information about
bitstring arithmetic, see Section 9.4. The solver b is the basic bitstring solver. When the
query solvers shows b activated, it means that only the basic bitstring solver is activated.
The other bitstring solvers are activated and displayed as follows:

The solver b2 contains the capability to do some derivations involving bitstrings with non-
constant substring selectors.

The solver b3 incorporates six capabilities not included in b:

1. (x@y)<i:j> = x<i - Ih(y): j - Ih(y)> @ y<izj>

2. x<i:j><k:1> is simplified to x<m:n> under certain conditions

3. 10(k)<i:j>l =0

4. x<i:j>@x<k:1> is simplified to x<m:n> under certain conditions

5. 1(x ++ y)<i:j>| is simplified to |x<m:n> ++ y<m:n>| under certain conditions

6. |(x ** y)<i:;j>| is simplified to 0 under certain conditions

The solver b4 combines b2 and b3.

For example,

<sdvs.1> activate
solver: b4

Bitstring solver (level 4) activated.

<sdvs.3> simp
expression: :ltj-> b<iz> = 0(0)

true

If the high substring selector is lh(b) - 1 and the low selector is 0, then the whole expression
just simps to b:

<sdvs.3> simp
expression: i =08&j=1Ih(b)-1->b<yi>=5b

true
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2.8 MANIPULATING THE PROOF

This section describes the two means currently available for interactively manipulating the
proof structure: deferring and popping. A goal for some future version of SDVS is to
allow the user to edit the proof essentially at will, moving around the proof tree, proving,
deferring, and so on. Of course, these actions would be checked in such a way that the
finished proof structure would indeed be a correct proof, or at least that the holes in the
proof would be correctly identified.

Defer is used to postpone proving the current goal or goals and move on to the next. Pop
is used to back up to some previous proof step. Currently, the “popped” proof steps are

not saved.

2.8.1 Defer

The purpose of the defer command is to allow the user to postpone proving a given goal or
state delta. The deferred goal or state delta is asserted or added to usablesds, as if it had
been proved, and the proof may be continued interactively or in batch mode by the continue
command. After deferring a certain goal, the user may continue with proving and deferring
until the opened state delta is proved. He may quit, thus storing the (partial) proof. Now
when the stored proof is rerun, there will be stop commands in the proof in place of defer.
The user will be able to complete the deferred sections, either by typing interactively, or by
using interpret. Then the proof will continue as stored. The final proof will be updated (or
completed) when the goal is reached. The user can also step through a proof, any number
of steps at a time. If the proof is stopped, either because of a defer or an explicit stop, the
user may simply type step. In order to step through a whole proof, the user must insert a

“stop” at the beginning and then “step.”

We illustrate this with a reproof of the induct example from Section 2.1.

<sdvs.1> ppsd
state delta: sinduct

[sd pre: (covering(all,a,b),
[sd pre: (true)
mod: (a)
post: (#a gt .a)D)
mod: ()
post: (#a gt 1000)]

<sdvs.1> init
proof name[]l: <CR>

State Delta Verification System, Version 12

Restricted to authorized users only.
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<sdvs.1> prove
state delta[]: sinduct
proof[]: <CR>

open -- [sd pre: (covering(all,a,b),
[sd pre: (true)
mod: (a)
post: (#a gt .a)])
mod: (a)
post: (#a gt 1000)]

Complete the proof.

<sdvs.1.1> let
new variable: aa
value: .a

let -- aa = .a

<sdvs.1.2> cases
case predicate: aa le 1000

cases -- aa le 1000

open -- [sd pre: (aa le 1000)
comod: (all)
mod: (a)
post: (#a gt 1000)]

<sdvs.1.2.1.1> defer
numbers of goals[alll: <CR>

deferring all current goals
close —- 1 steps/applications
open -- [sd pre: (~(aa le 1000))
comod: (all)

mod: (a)
post: (#a gt 1000)]

close -- 0 steps/applications
join -- [sd pre: (true)
comod: (all)
mod: (a)

post: (#a gt 1000)]
close -- 2 steps/applications
<sdvs.2> quit

Proof session closed with one deferred goal.
The proof for this session is in ‘sdvsproof’.
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State Delta Verification System, Version 12

Restricted to authorized users only.

<sdvs.1> pp
object: sdusproof

proof sdvsproof:

prove sinduct
proof:
(let aa = .a,
cases aa le 1000
then proof: stop All current goals must be proved here.

else proof: )

<sdvs.1> init
proof name[]: <CR>

State Delta Verification System, Version 12
Restricted to authorized users only.

<sdvs.1> interpret
proof name: sdvsproof

open -- [sd pre: (covering(all,a,b),
[sd pre: (true)
mod: (a)

post: (#a gt .a)])
mod: (a)
post: (#a gt 1000)]

let -- aa = .a
cases —— aa le 1000

open -- [sd pre: (aa le 1000)
comod: (all)
mod: (a)
post: (#a gt 1000)]

All current goals must be proved here.

<sdvs.1.2.1.1> induct

induction expression: counter

from: 0
to: 1001 - aa
invariant list[]: counterle .a - aa

comodification 1ist[]l: <CR>
modification list[]: a

base proof[]: <CR>

step proof[}: <CR>

induction -- counter from 0 to 1001 - aa
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open —- [sd pre: (counter = 0)
comod: (all)
post: (counter le .a - aa)l

close -- 0 steps/applications
open -- [sd pre: (counter ge O,counter 1t 1001 - aa,
counter le .a - aa)
mod: (a)

post: (counter + 1 le #a - aa)l
Complete the proof.

<sdvs.1.2.1.1.2.1> apply
sd/number [highest applicable/once]: <CR>

apply -- [sd pre: (true)
mod: (a)
post: (#a gt .a)l

close —- 1 steps/applications
join induction cases -- [sd pre: (0 le 1001 - aa)
comod: (all)
mod: (a)

post: (1001 - aa le #a - aa)]
close -- 1 steps/applications

open -- [sd pre: (“(aa le 1000))
comod: (all)
mod: (a)
post: (#a gt 1000)]

close -- 0 steps/applications
join -- [sd pre: (true)
comod: (all)
mod: (a)

post: (#a gt 1000)]

close -- 2 steps/applications

2.8.2 Pop
Pop returns the user to a previous proof state. Let us re-examine the sinduct example. This

time pretend we forgot to do the let before the induction.

<sdvs.1> prove
state delta[]: sinduct
proof[]: <CR>
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open -- [sd pre: (covering(all,a,b),
[sd pre: (true)
mod: (a)
post: (#a gt .a)l)
mod: (a)
post: (#a gt 1000)]

Complete the proof.

<sdvs.1.1> cases
case predicate: .a gt 1000

cases -- .a gt 1000

open -- [sd pre: (.a gt 1000)
comod: (all)
mod: (a)
post: (#a gt 1000)]

close -- 0 steps/applications

open -- [sd pre: (“(.a gt 1000))
comod: (all)
mod: (a)
post: (#a gt 1000)]

Complete the proof.
<sdvs.1.1.2.1> ps

<< initial state >>
proof in progress of sinduct <2>
case analysis in progress on: .a gt 1000 or
18t case: complete
2nd case: in progress
--> you are here <--

<sdvs.1.1.2.1> pop
number of levels[1]l: <CR>

One level popped.
<sdvs.1.1> ps
<< inijtial state >>
proof in progress of sinduct <1>
--> you are here <--
<sdvs.1.1> let
nev variable: aa

value: .a

let -~ aa = .a
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<sdvs.1.2> cases
case predicate: aa gt 1000

cases -- aa gt 1000

open -- [sd pre: (aa gt 1000)
comod: (all)
mod: (a)
post: (#a gt 1000)]

close -~ 0 steps/applications

open —- [sd pre: ("(aa gt 1000))
comod: (all)
mod: (a)
post: (#a gt 1000)]

Complete the proof.
<sdvs.1.2.2.1> ps

<< initial state >>
proof in progress of sinduct <3>
let aa = .a <2>
case analysis in progress on: aa gt 1000 or ~(aa gt 1000) <1>
1st case: complete
2nd case: in progress
~-> you are here <--

2.8.3 Stop and Continue

The stop command is a batch command that causes the batch proof to halt gracefully. It is
inserted automatically into the SDVS-constructed proof (sdvsproof) by the defer command.
It may also be inserted “by hand.”

Continue causes the execution of the proof to continue from the next batch proof command.
Note that if a subproof of a state delta within a larger proof closes before the end of the
list of proof commands for that subproof (appearing on the batch proof being run), then
SDVS will skip the remaining proof commands for that closed state delta, and go on to the
next proof command at the higher level.

2.9 MISCELLANEOUS
2.9.1 Flags

There are currently twenty-one flags that allow the user to “fine-tune” the operation of
SDVS, in accordance with the needs of the specific verification problem at hand. The
default settings are as follows:
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<sdvs.1> flags

abbreviationlevel = none
acceptfileproofs = on
autoclose = on
checkexistence = off
checksyntax = on
displaympsds = on
ekltraceflag = off
enumerate = off
invariance = off
optimizeassignments = simp
ppdottednames = off
pplinewidth =75
reportpropagations = on
showstats = off
showstep# = off
strongcoverings = off
stronglytyped = off
traceflag = on
uniquenamelevel =1
usedots = off
veaknext_tr = off

Type ’help flags’ for a description.

Flag settings are changed with the command setflag.

In addition to the information that can be obtained from the help flags command (see
Section 1.10), we highlight several of the more common flags and their uses.

We have provided a flag acceptfileproofs, which, when off, essentially causes previous proofs
stored in files to be ignored, and requires any proof to proceed “from scratch.” This way
the user is protected, if so desired, from his or her own editing mistakes.

The autoclose flag determines whether SDVS will try to “close” the current proof after every
user command. It is handy sometimes to have autoclose on if the user is in user-interaction
mode and building a proof on-line. However, it is more time-consuming than simply waiting
until you think the proof should close, and then simply typing close.

The invariance flag determines whether state deltas will have an inv field or not. This flag
is described in detail in Chapter 8.

The flag optimizeassignments regulates the method by which new values for contents of
places are stored. There are three settings: OFF, ON, and SIMP, with SIMP being the
system default. When this flag is in any state but OFF, the values assigned to changing
places are optimized to create fewer simplifier database entries. This may result in decreased
proof execution speed. Consider the statement
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where initially .x = x1. We will consider the situation where #x = .x + 1 is twice evaluated
under the three settings of optimizeassignments. First, if the flag is OFF, a new value x2 will
be created, .x will be associated with x2, and the equality x2 = x1 + 1 will be generated.
Then a value x3 will be created, .x will be associated with x3, and the equality x3 = x2 +
1 will be generated.

Next, under the setting ON, x1 + 1 will be associated with .x, then (x1 + 1) + 1 will be
associated with .x.

Finally, under the setting SIMP, x1 + 1 will be associated with .x (as in the ON case), then
x1 4 2 will be associated with .x.

The strongcoverings flag strengthens the semantics of coveringsso that an actual (as opposed
to potential) change in a subplace implies an actual change in a superplace. Without
strongcoverings on, an actual (as well as potential) change in a subplace implies only a
potential change in a superplace.

The usedots flag is new in SDVS 12. It is concerned with proving universal tautologies
automatically without the quantification solver being on. Previously, occurrences of dotted
subformulas inside of the formula matrix (the “body” of the formula) were evaluated and
taken into account in trying to prove the formula. However, often evaluating these dotted
terms is unnecessary for the proof to succeed, and even more usually, SDVS attempts to
simplify formulas with dotted subformulas at inopportune times. Now the default (usedots
NIL) causes the dotted terms essentially to be substituted away and the proof of that
universal sentence stands or falls on more general grounds. If the user does want dotted
terms to be taken into account, setting usedots to T causes the previous (longer) method
of proof to be used.

Much time is saved with the usedots flag turned off. For example, the testproof of mergesort
has two places where dots are needed. With the flag off except surrounding those two places,
the execution time is reduced from 7 minutes to 3 minutes. One such fragment is the given
in the following trace:

open -- [sd pre: (n = 1)
comod: (all)
post: (forall k forall j (((0 1t j & j le k) & 0 1t k) &
k le n --> .b[j] 1le .b[k]))]

setflag usedots -- on
close -- 1 steps/applications
open -- [sd pre: (n ge 1,n 1t range(b),
forall k forall j (((0 1t j & j le k) & 0 1t k) &
k le n --> .b[j] le .b[k]1))

comod: (all)
post: (forall k forall j (((0 1t j & j le k) & 0 1t k) &
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k len+ 1 --> #b[j] le #b[k]))]

setflag usedots -- off

which expands the following part of the proof:

induct on: n
from: 1
to: range(a)

invariants: (forall k forall j (((0 1t j & j le k) 2 0 1t k) &
k le n --> .a[j] le .a[kl))
comodlist: (all)
modlist:
base proof: (setflag usedots on, close)
step proof:
(setflag usedots off,
provebyaxiom alldisjoint(aln],al(n + 1)])

The weaknezt_tr flag causes the Ada and VHDL language translators to create state deltas
with #all = .all as an invariant. This means that execution essentially takes place in
discrete steps, thus guaranteeing that no actual changes take place during state transitions,
but only at their termination.

2.9.2 Queries

Queries are proof commands that do not change the current state, but only give answers
to users’ questions. Most of these commands have been described in detail and illustrated
with examples in other sections (for example, in the section on axioms). In this section we
discuss the following queries:

date, lastappliedsd, nezxt, nsd, placevalue, ppeq, ppl, proofcommands, range, sdtobeproven,
whynotapply, and whynotgoal.

Example:

<sdvs.1.2.2.1> date

date -~ 9/16/93 13:36:57 Elapsed time is 1 seconds.

When put at the beginning and end of a batch proof, date serves as a timer.

Nexzt gives the next (n) proof steps. This is useful if a batch proof has halted either because
of a command error or an explicit stop.
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<sdvs.1> pp
object: proof2

proof proof2:

(notice x = x,
stop,
notice y = y)

<sdvs.1> tnit

proof name[]l: <CR>

State Delta Verification System, Version 12

Restricted to authorized users only.

<sdvs.1> interpret

proof name: proof2

notice -- x = x

Proof stopped by ‘stop’ command.

<sdvs.2> next

number of steps[1}: <CR>

(notice y = y)

Ppl with an argument (place) prints three things: the place, its value (contents), if known,
and any declarations. Ppl without an argument prints the values and declarations of all
places. Placevalue just prints the contents.

<sdvs.1> ppsd

state delta: carrysd

[sd pre: (declare(x,type(bitstring,1)),declare(y,type(bitstring,1)),
declare(z,type(bitstring,1)),covering(all,a,b,x,y,2z),

[sd pre:
mod:
post:
[sd pre:
mod:
post:

mod: (a,b)

post: (#a = #b)]

<sdvs.1> ppl

(true)

(a)

(#a = (.x &% .y usor .x &% .z) usor .y && .z)],
(true)

(b)

(#b = ((.x ++ .y) ++ .2z)<1:1>)])

places[all]l: <CR>

<sdvs.1> prove
state deltal]:

proof[l: <CR>

carrysd
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open -- [sd pre: (declare(x,type(bitstring,1)),
declare(y,type(bitstring,1)),
declare(z,type(bitstring,l)),covering(all,a,b,x,y,z),
[sd pre: (true)

mod: (a)
post: (#a = (.x &% .y usor .x && .z) usor
.y && .2)],
[sd pre: (true)
mod: (b)
post: (#b = ((.x ++ .y) ++ .2)<1:1>)])
mod: (a,b)
post: (#a = #b)]
Complete the proof.
<sdvs.1.1> ppl
places[all]l: <CR>
b b\950
a a\949
UNDEFINED declare(z,type(bitstring,1))
lh(*) =1
y UNDEFINED declare(y,type(bitstring,1))
1h(*) = 1
x UNDEFINED declare(x,type(bitstring,1))
lh(*) = 1

<sdvs.1.1> apply
sd/number [highest applicable/oncel: <CR>

apply -- [sd pre: (true)
mod: (b)
post: (#b = ((.x ++ .y) ++ .2)<1:1>)]

<sdvs.1.2> ppl
places[all]: <CR>

everyplace UNDEFINED

b ((x\951 ++ y\952) ++ z\963)<1:1>

a a\9%49

z z\953 declare(z,type(bitstring,1))
1h(*) =1

y y\952 declare(y,type(bitstring,1))
1h(*) =1

¥ x\951 declare (x,type(bitstring,1))
lh(*) =1

Notice above that when the value is unknown, a new name is generated, e.g. b\22. (In
certain cases the words “value unknown” will appear.)

Proofcommands gives the list of proof commands appearing in a given proof. It is useful,
for example, in determining whether there is a defer in a proof.
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<sdvs.1> pp
object: mproof

proof mproof:

prove [sd pre: ([sd pre: (p1 & p2)
mod: (all)
post: (q1)],
{sd pre: (pt & "p2)
mod: (all)
post: (q2)],
[sd pre: ("p1 & p2)
mod: (all)
post: (q2)],
[sd pre: ("pl & "p2)

mod: (all)
post: (q1)1)
mod: (all)
post: (q1 or q2)]
proof:
mcases
(case: pl & p2
proof: =*
case: pl & "p2
proof: *
case: “pl & p2
proof: *
case: “pl & “p2
proof: %)

<sdvs.1> proofcommands
proof name: mproof

proof commands: (#,mcases,prove)

Example:

<sdvs.1> ppsd
state delta: casesl.sd

[sd pre: (.a = 0) mod: (a) post: (#a = 1)]

<sdvs.1> ppsd
state delta: cases2.sd

[sd pre: (.a gt 0) mod: (a) post: (#a = 2)]

<sdvs.1> ppsd
state delta: cases.sd

[sd pre: (.a ge 0,formula(casesl.sd),formula(cases2.sd))

mod: (a)
post: (#a = 1 or #a = 2)]
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<sdvs.1> nit
proof name[l: <CR>

State Delta Verification System, Version 12
Restricted to authorized users only.
<sdvs.1> prove
state delta[l: cases.sd
proof[]l: <CR>
open —- [sd pre: (.a ge 0,formula(casesi.sd),formula(cases2.sd))
mod: (a)
post: (#a = 1 or #a = 2)]
inserting -- pcovering(all,a)

Complete the proof.

<sdvs.1.1> cases
case predicate: .a =0

cases -- .a =0
open -- [sd pre: (.a = 0)
comod: (all)
mod: (a)
post: (#a = 1 or #a = 2)]

<sdvs.1.1.1.1> placevalue
place: a

value = a\958

<sdvs.1.1.1.1> ppeq
expression: .a

eqclass = a\958
range (emptyarray)
0
<sdvs.1.1.1.1> nsd

[sd pre: (.a = 0) mod: (a) post: (¥#a = 1)]

<sdvs.1.1.1.1> whynotapply
state deltal highest usablel: <CE>

Because the following is not known to be true -- .a gt 0
<sdvs.1.1.1.1> usablesds
u(1) [sd pre: (.a gt 0) mod: (a) post: (#a = 2)]

u(2) [sd pre: (.a = 0) mod: (a) post: (#a = 1]
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<sdvs.1.1.1.1> whynotapply
state deltal highest usable]: u
number: 2

Quite applicable.

<sdvs.1.1.1.1> apply
sd/number [highest applicable/once}: <CR>

apply -- [sd pre: (.a = 0)
mod: (a)
post: (#a = 1)]
close -- 1 steps/applications

open —- [sd pre: (“(.a = 0))
comod: (all)
mod: (a)
post: (#a = 1 or #a = 2)]

Complete the proof.

<sdvs.1.1.2.1> ppsd
state delta: sdtobeproven

[sd pre: ("(.a = 0))
comod: (all)
med: (a)
post: (#a = 1 or #a = 2)]
<sdvs.1.1.2.1> nsd

[sd pre: (.a gt 0) mod: (a) post: (#a = 2)]

<sdvs.1.1.2.1> placevalue
place: a

value = a\958

<sdvs.1.1.2.1> ppeg
expression: .a

eqclass = a\958
<sdvs.1.1.2.1> usablesds
u(1) [sd pre: (.a = 0)

comod: (all)

mod: (a)
post: (#a

1 or #a = 2)]
u(2) [sd pre: (.a gt 0) mod: (a) post: (#a = 2)]

u(3) [sd pre: (.a = 0) mod: (a) post: (#a = 1)]
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<sdvs.1.1.2.1> whynotapply
state delta[ highest usable]l: <CR>

Because the following is not known to be true —— .a =0
<sdvs.1.1.2.1> whynotapply
state delta[ highest usable]l: u
number: 2

Quite applicable.

<sdvs.1.1.2.1> apply
sd/number [highest applicable/once]l: <CR>

apply -- [sd pre: (.a gt 0)
mod: (a)
post: (#a = 2)]

close -- 1 steps/applications
join -- [sd pre: (true)
comod: (all)
mod: (a)

post: (#a = 1 or #a = 2)]

close -~ 1 steps/applications

Whynotgoal can be used with two options: default (return = no simp of the goal) or “yes”
(or anything at all = simp the goal). For example,

<sdvs.1> prove
state deltall: why.sd
proof[l: <CR>
open -- [sd pre: (.x = 1)
mod: (all)
post: (#x = .x + .y)]
inserting -- pcovering(all,x)

Complete the proof.

<sdvs.1.1> whynotgoal
simplify?[nol: <CR>

g(1) #x = x\965 + y\966

<sdvs.1.1> whynotgoal
simplify?[nol: wyes

g(1) 1 =1 + y\966
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2.9.3 Introduction of Constants

The let command allows a new alphanumeric variable to be equated to any expression.’
Thus, for example, the contents of a place at a certain time can be “stored” and will not
be lost when the state changes. If a variable already in use has been let, SDVS will complain:

<sdvs.1.1> let
new variable: a
value: .x

let -- a = .x

<sdvs.1.2> let
new variable: =
value: .y

let error: the variable is already in use x

<sdvs.1.3> let
new variable: b
value: .z

let -- b = .x

<sdvs.1.4> simp
expression: a = b

true

A similar command for naming state deltas is letsd. The use of letsd is primarily in situations
where a state delta is usable (and thus has a “u” usable number attached to it), but one
wants to rename it in order to refer to it later when it may not be usable anymore. For
example, this happens when you want to name the state delta(s) designating the top of a
loop, in order to refer to them in an induction invariant.

It is also possible to name a goal state delta (with a “g” number), or simply to type in a
state delta, as with createsd. However, letsd can only be used within a proof context, and
the connection between a state delta and its letsd name is preserved only within a proof
context.

2.9.4 Declarations

Declarations are statements that are true over all state changes. They may be thought of
as describing the “architecture” of the machine or the type of program variables. There are
several forms of declarations:

5 Although SDVS does not check to see that the variable is in fact alphanumeric, it is strongly recom-
mended that the user adhere to this guideline.
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1. In ISPS programs, declarations of type and dimension appear (automatically) in de-
clare statements. Covering statements are also generated.

2. In state delta translations of Ada programs, variables are declared (automatically) in
the declare statement. Covering statements are also generated.

3. As components to preconditions or postconditions to state deltas, the user can write
covering and pcoverings, as well as explicit declare statements.

The primary use of declarations is in the translation from ISPS, Ada, and VHDL to state
deltas, but they also may be inserted directly into state deltas.

The syntax for the declare statement is
(declare var type)

where the possible types are (obtained by the help types query):

<sdvs.3> help
with[all]: types
<<<SDVS Help>>> Types <<<SDVS Help>>>
type(boolean) Boolean
type(character) Ada characters
type(bitstring,n) bitstring of length n
type(polymorphic) polymorphic (any type)
type(fn,exp) a function defined by the expression exp
type(float) floating point
type(integer) integer
type(integer,1lb,ub) bounded integer, that is, lb<=i<=ub

type(array,lb,ub,type) array with lower bound 1b, upper bound ub, and
specified element type

type(record,fieldl(typel),...,fieldj(typej)) record with field names of
specified types

type(time) VHDL time
type(waveform) VHDL waveform
type(integervaveform) VHDL integer waveform

type(bitwvaveform) VHDL bit waveform
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type(bitstringwaveform,n) VHDL bitstring (length n) waveform

The following example illustrates some of these tules (for examples of bitstring declarations,

see Section 2.9.9):

<sdvs.1> ppsd
state delta: sI/

[sd pre: (covering(all,a),
declare(a,type(array,1,128,type(bitstring, 16))))

mod: (a)
post: (#a[1] = 5(16))]

<sdvs.1> ppsd
state delta: s12

[sd pre: (formula(s1l),covering(all,a),
declare(a,type(array,1,128,type(bitstring,16))),
covering(a[1],b) ,declare(b,type(fn,.al1])))

mod: (a)
post: (#b = 5(16))]

<sdvs.1> prove
state delta[]: s12
proof[}l: <CR>

open -- [sd pre: (formula(s11),covering(all,a),
declare(a,type(array,1,128,type(bitstring,16))),

covering(a[1],b) ,declare(b,type(fn,.al1]1)))
mod: (a)

post: (#b = 5(16))]
Complete the proof.

<sdvs.1.1> *

apply -- [sd pre: (covering(all,a),
declare(a,type(array,1,128,type(bitstring,16))))

mod: (a)
post: (#a[1] = 5(16))]

close -- 1 steps/applications
Note that without the covering relationship between a{l] and b, the declaration of b as

a function of a[l] is still invalid; that declaration just expresses the fact that there is a
functional dependency between the two, without there being an architectural one.

<sdvs.1> ppsd
state delta: s14
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[sd pre: (formula(sil),covering(all,a),
declare(a,type(array,1,128,type(bitstring,16))),
declare(b,type(fn,.al1]1)))

mod: (a)
post: (#b = 5(16))]

<sdvs.1> prove
state deltal[]: s14
proof[]l: <CR>

open -- [sd pre: (formula(s11),covering(all,a),
declare(a,type(array,1,128,type(bitstring,16))),
declare(b,type(fn,.al1])))
mod: (a)
post: (#b = 5(16))]

inserting -- pcovering(all,b)
Complete the proof.
<sdvs.1.1> *

apply -- [sd pre: (covering(all,a),
declare(a,type(array,1,128,type(bitstring,16))))
mod: (a)
post: (#a[1] = 5(16))]

close -- 1 steps/applications

2.9.5 Data and Array Allocation

One must activate the array solver (see Section 2.7.6) to use the data and array allocation
statements. The array initialization construct has the form

(DATA <slice><file-name> <starting-value>)

where <slice> is a slice of a previously declared array, <file-name> is the name of the file from
which the data are to be read, and <starting-value> is the ordinal value of the ”s-expression”
(sequence; for example, (BS 7 3), in the case of bitstrings) from which the data are to be
read, up to the required size of <slice>. This is the preferred way to specify the contents of
the ROM (read-only memory) for a microcoded machine. Of course, it could be specified
by a (typically long) list of .mem/[0] = 3(7), .mem[1] = 10(7), and so on.

The ALLOCATE <slice> DENSFE statement associates a Lisp array of the appropriate size
with the designated slice in the symbol table. One may also ALLOCATE <slice> SPARSE,
which associates an “association list” with the slice. The ALLOCATE assertion will be
allowed only if no value has previously been stored for any element of the slice and if no
previous allocation has been made for any slice intersecting it. Allocation should be used
only for read-only memory, since the occurrence of any element of the slice in a mod list will
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cause the Lisp storage array or alist to be wiped clean. To assign initial values to memory
that will be written into later, one must use ISPS assignment statements, or their equivalent
in state deltas.

Below is an example of a state delta that uses the “DATA” declaration and array allocation:

<sdvs.1> createsd
name: $22
[SD pre: declare(a, type(array, 0, 128, type(bitstring, 3))), allocate(a[0:7],dense),
data(af0:7], "testproofs/manual/data/array2.data”,0)
comod[]: <CR>
mod[]: <CR>
post: #af2] = 2(3)
]

<sdvs.1> ppsd
state delta: s22

[sd pre: (declare(a,type(array,0,128,type(bitstring,3))),
allocate(a[0:7],dense),

data(a[0:7],"testproofs/manual/data/array2.data" ,0))
post: (#a[2] = 2(3))]

The file array2.data looks like this:

(bs 0 3)(bs 1 3)(bs 2 3)(bs 3 3)(bs 4 3)(bs 5 3)(bs 6 3)(bs 7 3)

With the flag autoclose on, the proof will close automatically:

<sdvs.1> prove
state delta[]: s22
proof[l: <CR>

open -- [sd pre: (declare(a,type(array,0,128,type(bitstring,3))),
allocate(af0:7],dense),
data(a[0:7],"testproofs/manual/data/array2.data" ,0))
post: (#al[2] = 2(3))]
close -—- 0 steps/applications

However, if we turn off those flags, the proof will not close and we can examine the decla-
rations:

<sdvs.2> setflag
flag variable: autoclose
on or off[off]: off

setflag autoclose -- off
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<sdvs.3> flags

abbreviationlevel = none
acceptfileproofs = on
autoclose = off
checkexistence = off
checksyntax = on
displaympsds = on
ekltraceflag = off
enumerate = off
invariance = off
optimizeassignments = simp
ppdottednames = off
pplinewidth =75
reportpropagations = on
showstats = off
showstep# = off
strongcoverings = off
stronglytyped = off
traceflag = on
uniquenamelevel =1
usedots = off
veaknext._tr = off

Type ’help flags’ for a description.

<sdvs.3> nit
proof namel[]: <CR>

State Delta Verification System, Version 12
Restricted to authorized users only.
<sdvs.1> prove
state delta[]: s22
proot[]: <CR>
open -~ [sd pre: (declare(a,type(array,0,128,type(bitstring,3))),
allocate(al0:7],dense),
data(a[0:7],"testproofs/manual/data/array2.data",0))
post: (#a[2] = 2(3))]
Complete the proof.
<sdvs.1.1> decls
a[2] type(bitstring,3)

a type(array,0,128,type(bitstring,3))

<sdvs.1.1> simp
expression: .af2] = 2(3)

true
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<sdvs.1.1> close

close -- 0 steps/applications

2.9.6 Negate

The proofs involving negation can be run by typing run-test-proofs *negation-tests*. They
include proofs of negations of state deltas by contradiction and also proofs that use the
negate command.

The negate command asserts the negation of a specified state delta, through the equivalence
(in the case where Q does not have any top-level dots or quantifiers) between

~ [sd pre: P
comod: C
mod: M
post: Q]
and

[sd pre: true
comod: all
mod: all - C
post: P(#/.) &
[sd pre: true
comod: all - M
mod: ()
post: "Q]]

if the state delta is known to be false (see [33]). (For the case where the state delta has
invariants, see Section 8.4.)

For example, consider the state delta negate6.sd:

[sd pre: (~(([sd pre: (p) comod: (c) mod: (m) post: (q)1)))
post: (~“(([sd pre: (true) comod: (c) mod: (m) post: (q)1)))]

Below is a transcript of the proof session:

<sdvs.1> prove
state delta[l: negate6.sd
proof[]: <CR>

open -- [sd pre: ("(([sd pre: (p) comod: (c) mod: (m) post: (q)1)))
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post: ("(([sd pre: (true)
comod: (c)
mod: (m)
post: (q)1)))]

Complete the proof.
<sdvs.1.1> usable

No usable state deltas.

No usable quantified formulas.

<sdvs.1.1>
case predicate:

cases

“([sd pre: (true) comod: (c) mod: (m) post: (q)])

cases —- “(([sd pre: (true) comod: (c) mod: (m) post: (q}]1))
open -- [sd pre: (“({([sd pre: (true)
comod: (c)
mod: (m)
post: (q@)1)))
comod: (all)
post: (“(([sd pre: (true)
comod: (c)
mod: (m)
post: (q])))]
close -~ 0 steps/applications
open -- [sd pre: ("(("(([sd pre: (true)
comod: (c)
mod: (m)
post: (921)))))
comod: (all)
post: ("(([=d pre: (true)
comod: (c)
mod: (m)
post: (q)1)))]

Complete the proof.
<sdvs.1.1.2.1> usable

u(1) [sd pre: (true) comod: (c) mod: (m) post: (q)]

u(2) [sd pre: (“(([sd pre: (true) comod: (c) mod: (m) post:

comod: (all)

post: (“(([sd pre: (true) comod: (c) mod: (m) post:

No usable quantified formulas.

<sdvs.1.1.2.1> negate
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state delta: [sd pre: (p) comod: (c) mod: (m) post: (q)]
formula name #1: fml!

negated result -- [sd pre: (true)
comod: (all)
mod: (diff(all,c))
post: (p,
[sd pre: (true)
comod: (diff(all,m))
post: ("q)1)]

<sdvs.1.1.2.2> pp
object: fmll

formula fmll: [sd pre: (true)
comod: (diff(all,m))
post: ("q)]

<sdvs.1.1.2.2> usable

u(1) [sd pre: (true)
comod: (all)
mod: (diff(all,c))
post: (p,
{sd pre: (true)
comod: (diff(all,m))
post: ("q)D)]

u(2) [sd pre: (true) comod: (c) mod: (m) post: (q)]

u(3) [sd pre: (“(([sd pre: (true) comod: (c) mod: (m) post: (g)1)))
: comod: (all)
post: ("(([sd pre: (true) comod: (c) mod: (m) post: (q)1)))]

No usable quantified formulas.

<sdvs.1.1.2.2> apply
sd/number [highest applicable/oncel: u
number: I

apply -- [sd pre: (true)
comod: (all)
mod: (diff(all,c))
post: (p,
[sd pre: (true)
comod: (diff(all,m))
post: ("]

Warning: the modlist of the last applied state delta mentions places
(diff(all,c)) outside of the modlist of the state delta to be

proven. The current proof can only be closed by contradiction.

<sdvs.1.1.2.3> usable
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u(1) [sd pre: (true)
comod: (diff(all,m))
post: ("q)]

u(2) [sd pre: (true) comod: (c) mod: (m) post: (q)]

No usable quantified formulas.

<sdvs.1.1.2.3> apply
sd/number [highest applicable/oncel: u
number: 2

inserting -- pcovering(all,m)
apply ~- [sd pre: (true) comod: (c) med: (m) post: (q)]

Warning: the modlist of the last applied state delta mentions places
(m) outside of the modlist of the state delta to be proven. The
current proof can only be closed by contradiction.

inserting -- pcovering(all,m)
<s8dvs.1.1.2.4> usable

u(1) [sd pre: (true)
comod: (diff(all,m))
post: (7q)]

No usable quantified formulas.

<sdvs.1.1.2.4> apply
sd/number [highest applicable/oncel: u
number: [

apply -- [sd pre: (true)
comod: (diff(all,m))
post: (7q)]

The postcondition of the last applied state delta is inconsistent
with the current state.

close —- 3 steps/applications

join -- [sd pre: (true)
comod: (all)
post: (“(([=d pre: (true)
comod: (c)
mod: (m)
post: (q}1)N1]

close -- 1 steps/applications

Here is another example, also illustrating that formulas can be negated:
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<sdvs.1> pp
object: tobeneg

formula tobeneg: [sd pre: (true)
comod: (all)
post: (p)]

<sdvs.1> pp
object: negged.sd

[sd pre: (~(formula(tobeneg)))
comod: (all)
post: ("p)]

<sdvs.1> prove
state deltall: negged.sd
proofil: <CR>

open -- [sd pre: (" (formula(tobeneg)))
comod: (all)
post: ("p)]

Complete the proof.
<sdvs.1.1> usable

No usable state deltas.

No usable quantified formulas.

<sdvs.1.1> negate

state delta: [sd pre: (true) comod: (all) post: (p)]
formula name #1: fmli2

negated result -- [sd pre: (true)
comod: (all)
mod: (diff(all,all))
post: (true,
[sd pre: (true)
comod: (all)
post: ("p)1)]

<sdvs.1.2> usable

u(1) [sd pre: (true)
comod: (all)
mod: (diff(all,all))
post: (true,
[sd pre: (true)
comod: (all)
post: ("p)1)]
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No usable quantified formulas.

<sdvs.1.2> apply
sd/number [highest applicable/once]l: <CR>

apply -- [sd pre: (true)
comod: (all)
mod: (diff(all,all))
post: (true,
[sd pre: (true)
comod: (all)
post: ("p)1)]

<sdvs.1.3> wusable
u(1) [sd pre: (true) comod: (all) post: (“p)]

u(2) [sd pre: (true)
comod: (all)
mod: (diff(all,all))
post: (true,
[sd pre: (true)
comod: (all)
post: ("p)1)]

No usable quantified formulas.

<sdvs.1.3> apply
sd/number [highest applicable/oncel: <CR>

apply -- [sd pre: (true)
comod: (all)
post: ("p)l

close -- 3 steps/applications

2.9.7 Linearize

Linearize is the command intended to take two usable state deltas S; and S; having true
preconditions and form the disjunction of two state deltas: the first claiming that S) : post
occurs first in the future and then S, : post, and the second claiming that 53 : post occurs
first and then S; : post. In both cases the modlist in force until the first postcondition is
achieved is the intersection of Sy : mod and S, : mod. The possible simultaneous occur-
rence of both postconditions is allowed in either case. This situation corresponds to the
interleaving of two parallel program fragments. For a discussion of linearize in the presence
of invariants, see Section 8.2.

For example, consider the state delta incboth:




[sd pre: (covering(all,x,y),.x = 0,.y = 0,formula(incx),formula(incy))
comod: (all)
mod: (all)
post: (false)]

where incz and incy are as follows:

[sd pre: (true) mod: (x) post: (#x = 1)]

[sd pre: (true) mod: (y) post: (#y = 1)]

This state delta is true because the two interior state deltas in the precondition are contra-
dictory with the covering statement. The linearize command gives us the means to force
the system to recognize this contradiction by making one of the postconditions true, with
a mod list equal to the intersection of the mod lists of the linearized state deltas. This
intersection is empty, and thus neither z nor y can change value.

<sdvs.1> prove
state delta[]: incboth
proof[]l: <CR>

open -- [sd pre: (covering(all,x,y),.x = 0,.y = 0,formula(incx),
formula(incy))
comod: (all)

mod: (all)
post: (false)]

Complete the proof.
<sdvs.1.1> usable

1)]

]

u(1) [sd pre: (true) mod: (y) post: (#y

u(2) [sd pre: (true) mod: (x) post: (#x = 1)]

No usable quantified formulas.

<sdvs.1.1> linearize

state delta #1: u
number: I
state delta #2: u
number: 2

formula name #1: incy
formula name #2: :incz

linearize -~ formula(incy) or formula(incx)
non-trivial propagations -- ([sd pre: (true)

comod: (all)
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mod: (inter(y,x))
post: (#y = 1,
[sd pre: (true)
comod: (all)
mod: (x)
post: (#x = 1)1)]) or
([=sd pre: (true)
comod: (all)
mod: (inter(y,x))
post: (#x = 1,
[sd pre: (true)
comod: (all)
mod: (y)
post: (#y = D11

<sdvs.1.2> cases
case predicate: [sd (true) (all) (inter(y, z)) (#y = 1, [sd (true) (all) (z) (#z = 1)])]

cases -- [sd pre: (true)
comod: (all)
mod: (inter(y,x))
post: (#y =1,
[sd pre: (true)
comod: (all)
mod: (x)
post: (#x = 1)1)]

open -~ [sd pre: ([sd pre: (true)
comod: (all)
mod: (inter(y,x))
post: (#y =1,
[sd pre: (true)
comod: (all)
mod: (x)
post: (#x = 1)1)])
comod: (all)
mod: (all)
post: (false)l

<sdvs.1.2.1.1> usable

u(1) [sd pre: (true)
comod: (all)
mod: (inter(y,x))
post: (#y = 1,
[sd pre: (true)
comod: (all)
mod: (x)
post: (#x = 1)1)]

u(2) [sd pre: (true) mod: (y) post: (#y = 1)]

u(3) [sd pre: (true) mod: (x) post: (¥x = 1)]
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No usable quantified formulas.

<sdvs.1.2.1.1> apply
sd/number [highest applicable/oncel: <CR>

apply -- [sd pre: (true)
comod: (all)
mod: (inter(y,x))
post: (#y =1,
[sd pre: (true)
comod: (all)
mod: (x)
post: (#x = 1)1)]

The postcondition of the last applied state delta is inconsistent
vith the current state.

close -- 0 steps/applications

open -- [sd pre: ("({([sd pre: (true)
comod: (all)
mod: (inter(y,x))
post: (#y =1,
[sd pre: (true)
comod: (all)
mod: (x)
post: (#x = 1)1)1)))
comod: (all)
mod: (all)
post: (false)]

Complete the proof.
<sdvs.1.2.2.1> usable

u(1) [sd pre: (true)
comod: (all)
mod: (inter(y,x))
post: (#x = 1,
[sd pre: (true)
comod: (all)
mod: (y)
post: (#y = 1D1)]

u(2) [sd pre: ([sd pre: (true)
comod: (all)
mod: (inter(y,x))
post: (#y = 1,
[sd pre: (true)
comod: (all)
mod: (x)
post: (#x = 1)1)1)
comod: (all)
mod: (all)
post: (false)]
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u(3) [sd pre: (true) mod: (y) post: (#y = 1)]

u(4) [sd pre: (true) mod: (x) post: (¥#x = 1)]

No usable quantified formulas.

<sdvs.1.2.2.1> apply
sd/number [highest applicable/once]: <CR>

apply -- [sd pre: (true)
comod: (all)
mod: (inter(y,x))
post: (#x =1,
[sd pre: (true)
comod: (all)
mod: (y)
post: (#y = 1)D]

The postcondition of the last applied state delta is inconsistent
with the current state.

close -- 0 steps/applications

join -- [sd pre: (true) comod: (all) mod: (all) post: (false)]

close -- 2 steps/applications

The postcondition of the last applied state delta is inconsistent with the

current state.

2.9.8 Natural Number Induction

Natural number induction, or what is commonly referred to as “mathematical induction,”
was incorporated into SDVS 10 specifically to help overcome a hurdle in the proof of a

sorting program; see [41].

The command can be used to prove claims of the form Vna(n), where n is assumed to
range over the natural numbers. The command simply requests the user for the induction
expression (n above), the formula (a(n)), the base proof, and the step proof. The proofs,
as in other similar commands, can be left empty at the time of the command invocation,
and supplied interactively during the continuation of the proof. The base-case state delta
claims that the formula is true for n = 0, i.e., a(0), and the step-case state delta claims
that if the formula is true for n, then it is true for n + 1.

As a simple example, we prove that Vn(n + 1 > n). The proof closes automatically.

<sdvs.1> natinduct
induction expression: n
formulas: n+1 gtn
base proof[]: <CR>
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step proof[]l: <CR>
natural induction on n -- (n + 1 gt n)

open ~- [sd pre: (n = 0)
comod: (all)
post: (n + 1 gt n)]

close -- 0 steps/applications

open -- [sd pre: (n ge O,n + 1 gt n)
comod: (all)
post: ((n+ 1) + 1 gt n + 1)]

close -~ 0 steps/applications

join natural induction cases
-~ foralln (nge 0 -->n + 1 gt n)

2.9.9 Mapping

The proof language must allow the user to specify the mapping (correspondence) between
the places of one state delta and another state delta that implements it, or, more generally,
between the states of one computation and another that implements it. For a more detailed
treatment of mapping, see [42].

A mapping is an assignment for each target (upper level) place of a set of host (lower level)
places such that the value of the target place is a function of the values of the associated
host places. A technicality forces the requirement that this function must be one-to-one
if the target place appears in the comodification list of a target state delta. However, the
user does not have to worry about this, since the implementation command does not allow
nonempty comodification lists in the upper level at all. Three types of statements must be
proved about the mapping:

1. Disjointness among a set of target places must be reflected in the disjointness of the
associated sets of host places.

2. Declarations of the target places (length of bitstrings, or range of arrays) must be
proved from the declarations associated with the corresponding host places.

3. The translations of the target state deltas into the host language induced by the
mappings must be proved from the host description.

The command implementation fills the role of “theorem constructor.” It takes (or prompts
the user for) a theorem name, the upper-level specification, the lower-level specification, the
formula containing the mapping functions, the places in the host that must be constant for
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the implementation to be valid, and the invariants for host state changes that must hold
for the implementation to be valid.

The result is a theorem (state delta) that denotes the implementation of the upper level by
the lower level. The precondition of the theorem contains the lower-level specification, the
constant formulas, and some equalities that provide names for certain sets of places in the

lower level, specifically,

1. names for the set of all lower-level places,
2. the set of all mapped lower-level places,
3. the set of all unmapped lower-level places, and

4. the set of all constant lower-level places.

The comod and mod of the theorem are empty. The postcondition of the theorem contains
n+2 items, where there are n state deltas in the upper-level specification. The first item is
an alldisjoint predicate stating the disjointness of the sets of mapped-onto lower-level places.
The second item is a state delta representing the validity of the upper-level declarations and
the one-to-oneness of certain mapping functions. The next n items are upper-level state
deltas that have been transformed into lower-level theorems.

The mapping construct can take either the form

1. mapping(.tplace, f(.hplaceq, ..., .hplacep)), where { is some explicit function, e.g.
mapping(.tplace, .hplace); or

2. mapping(.tplace, f(.hplaceq, ..., .hplacey ),values(tvaly,f(hval L, hvalnl), ... tvaly,
f(hvallk, v hva.lmk))), where the tvals are possible values of tplace and the hvals are
possible values of the hplaces.

The constant field can take four kinds of statements:

1. constant(.p), expressing the fact that .p is constant, but we do not know or care what

that value is;
2. .p = ¢, the actual value that does not change;

3. data(.p[i:j], file, offset), for values of arrays (here is where the ROMs for microprograms

could be initialized); or

4. allocate statements to accompany the data statements.
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The invariants field takes a formula or list of formulas. The invariants field, if needed, is
used to specify the significant states in the lower-level machine. In other words, sometimes
the mapping of places to places as specified by the mapping formula is not sufficiently rich to
induce the state-to-state mapping required by the implementation theorem. Invariants must
hold for every lower-level state, including the initial state. They are usually implications
of the following form: if certain mapped places have certain values, then other conditions
must hold.

As an example, consider the following simple case:

First, the lower-level machine, the host machine al0.isp:

machinea:=(
**Registers**

a<1:0>
**Process**
cyclea{main}:=
begin

a_1 next a.0

end

)

<sdvs.1> ppsd
state delta: 1isps
file name: al0.isp
covering(machinea,a,machinea\upc)

declare(a,type(bitstring,2))
[tr OMACHINEA\STARTED {in MACHINEA} A_...; A_...;]

Now, the upper-level machine, the target machine b0.isp:

machineb:=(
*xRegisters**

b<1:0>
**Process*#
cycleb{main}:=
begin

b0

end

)
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You need to mpisps the file and then you may look at the result (although it is not necessary

to ppsd it):

<sdvs.2> ppsd
state delta: mpisps
file name: b0.isp
starting mark point[l: <CR>
ending mark points[l: <CR>
preconditions[]: <CR>

covering(machineb,b,machineb\upc)
declare(b,type(bitstring,2))
[sd pre: (.machineb\upc = machineb\started)

mod: (b,machineb\upc)

post: (#machineb\upc = machineb\halted,#b = 0(2))]

Here is the mapping specification from target places to host places:

<sdvs.2> pp
object: b0al0.mapping

formulas b0al0.mapping: mapping(.b,.a)
mapping (.machineb\upc,map\upc (.machinea\upc),

values(machineb\started,
map\upc (machinea\started),
machineb\halted,
map\upc (machinea\halted)))

Next, we invoke the implementation command (after having mpispsed b0.isp and ispsed
al0.isp; for more information about mpisps, see page 147):

<sdvs.2> implementation
theorem name: b0al0.thm
upper-level spec: mpisps
file name: bO.isp
starting mark point[]: <CR>
ending mark points[l: <CR>
preconditions[1: <CR>
lower-level spec: 1isps
file name: al0.isp
mappings: formulas(b0al0.mapping)
constants{]: <CR>
invariants{]: <CR>

Implementation theorem ‘b0al0.thm’ created.

Here is the theorem (formula) that was created:
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<sdvs.2> pp
object: b0al0.thm

[sd pre: (isps(al0.isp),b0al0.thm.places = union(a,machinea\upc),
b0a10.thm.mapped.places = union{a,machinea\upc),
b0a10.thm.unmapped.places

= diff(b0al0.thm.places,b0al0.thm.mapped.places))
post: (alldisjoint(a,machinea\upc),
[sd pre: (true)
comod: (all)
post: (forall al (lh(al) = 2 --> 1lh(al) = 2))],
[sd pre: (.machinea\upc = machinea\started)
mod: (a,machinea\upc,b0al0.thm.unmapped.places)
post: (#machinea\upc = machinea\halted,#a = 0(2))1)]

Make sure to use the formulas construct around the mapping name (the mappings have
already been defined). Note that the three clauses in the postcondition correspond to the
three types of statements above. Now let us prove it.

<sdvs.2> prove
state delta[]l: b0al10.thm
proof[]l: <CR>

open -- [sd pre: (isps(al0.isp),
b0a10.thm.places = union(a,machinea\upc),
b0a10.thm.mapped.places = union(a,machinea\upc),
b0a10.thm.unmapped.places
= diff(b0a10.thm.places,b0al0.thm.mapped.places))
post: (alldisjoint(a,machinea\upc),
[sd pre: (true)
comod: (all)
post: (forall al (lh(al) = 2 --> lh(al) = 2))],
[sd pre: (.machinea\upc = machinea\started)
mod: (a,machinea\upc,b0a10.thm.unmapped.places)
post: (#machinea\upc = machinea\halted,#a = 0(2))1)]

Complete the proof.

<sdvs.2.1> whynotgoal
simplify?[nol: <CR>

g(2) [sd pre: (true)
comod: (all)
post: (forall al (lh(al) = 2 --> lh(al) = 2))]
g(3) [sd pre: (.machinea\upc = machinea\started)
mod: (a,machinea\upc,b0al0.thm.unmapped.places)
post: (#machinea\upc = machinea\halted,#a = 0(2))]

<sdvs.2.1> prove
state delta[]l: ¢
number: &
proof[]l: <CR>
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open -- [sd pre: (.machinea\upc
mod: (a,machinea\upc
post: (#machinea\upc

Complete the proof.

<sdvs.2.1.1> until
formula:

apply -~ [sd pre:
mod:
post:

apply -~ [sd pre:
comod:

mod:

post:

machinea\started)

machinea\halted, #a

#machine\upc = machine\halted

(.machinea\upc = machinea\started)
(machinea\upc,a)
(#a = 1(2),

[tr {in MACHINEA} A_...;1)]

(true)
(machinea\upc)
(machinea\upc,a)
(#a = 0(2),
[tr @MACHINEA\halted])]

,b0a10.thm.unmapped.places)

apply —- [sd pre: (true)
comod: (machinea\upc)
mod: (machinea\upc)
post: (#machinea\upc = machinea\halted)]
close -- 3 steps/applications
Complete the proof.
<sdvs.2.2> whynotgoal
simplify?[nol: <CR>

g(2) [sd pre: (true)
comod: (all)
post: (forall al (lh(al) = 2 --> 1lh(al) = 2]

<sdvs.2.2> prove

state deltal]: g
number: 2

proof[]: <CR>
open —- [sd pre: (true)

comod: (all)

post: (forall al (lh(al) = 2 --> lh(al) = 2))]
close -- 0 steps/applications

close -- 2 steps/applications

<sdvs.3> ps

<< initial state >>
mpisps testproofs/manual/isps/b0.isp <2>
proved b0al10.thm <1>
--> you are here <--
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2.9.10 Formulas

The command formulas (<name-of-list-of-ezprs>) will insert the list of formulas associated
with the name. It is useful when a long hypothesis occurs in more than one state delta.

The command formula(<ezpr-name> ) inserts the single formula associated with the <expr-
name>. One may also insert state deltas by using formula(<sd-name> ).

<sdvs.1> createformula
name: hyp2
formula: .a =35

<sdvs.1> createsd
name: f10.sd
[SD pre: .a=35
comod[]: <CR>
mod{]}: all
post: #a =10
]

<sdvs.1> createsd
name: f14.sd
[SD pre: formula(f10.sd), formula(hyp2)
comod{]}: <CR>
mod[]: all
post: #a = 10
]

<sdvs.1> prove
state deltall: f14.sd
proof[l: <CR>

open -- [sd pre: (formula(£10.sd),formula(hyp2))
mod: (all)
post: (#a = 10)]
inserting -- pcovering(all,a)
Complete the proof.
<sdvs.1.1> usablesds
u(1) [sd pre: (.a = 5)
mod: (all)
post: (#a = 10)]

<sdvs.1.1> apply
sd/number[highest applicable/oncel: <CR>

apply -- [sd pre: (.a = 5)

mod: (all)
post: (#a = 10)]
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close -- 1 steps/applications

<sdvs.2> createformulas
name: hyp3
formula list: .a=1,.a =2

<sdvs.2> pp
object: hyp3

formulas hyp3: .a =1
a =

<sdvs.2> createsd
name: fI15.sd
[SD pre: formulas(hyp3)
comod[]: <CR>
mod[]: all
post: false

<gdvs.2> nit
proof name[]l: <CR>
State Delta Verification System, Version 12
Restricted to authorized users only.
<sdvs.1> prove
state delta[l: f15.sd
proof[]l: <CR>
open -- [sd pre: (formulas(hyp3))
mod: (all)
post: (false)]
The state delta is vacuously TRUE because its precondition is FALSE.
close -- 0 steps/applications

Here is another example illustrating the disjunction of formulas and using a state delta as
a case predicate.

<sdvs.1> pp
object: queue

formula queue: q

<sdvs.1> pp
object: disj.formula.sd

[sd pre: (formula(tobeneg) or formula(queue))
mod: (all)
post: (p or q)]
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<sdvs.1> prove
state deltall: disj.formula.sd
proof[l: <CR>

open -- [sd pre: (formula(tobeneg) or formula(queue))
mod: (all)
post: (p or q)]

non-trivial propagations -- ([sd pre: (true)
comod: (all)
post: (p)]) or
Complete the proof.

<sdvs.1.1> usable

No usable state deltas.

No usable quantified formulas.

<sdvs.1.1> cases
case predicate: [sd pre: (true) comod: (all) post: (p)]

cases —- [sd pre: (true) comod: (all) post: (p)]

open —- [sd pre: ([sd pre: (true)
comod: (all)
post: (P)1)
comod: (all)
mod: (all)
post: (p or q)]

<sdvs.1.1.1.1> usable

u(1) [sd pre: (true) comod: (all) post: (p)]

No usable quantified formulas.

<sdvs.1.1.1.1> apply
sd/number [highest applicable/oncel]: <CR>

apply -- [sd pre: (true) comod: (all) post: (p)]
close -~ 1 steps/applications

open -- [sd pre: (“(([sd pre: (true)
comod: (all)
post: (p)1)))
comod: (all)
mod: (all)
post: (p or q)]
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close -- 0 steps/applications

join -- [sd pre: (true)
comod: (all)
mod: (all)

post: (p or q)]

close -- 1 steps/applications

2.9.11 Macros

The macro facility is essentially a parametrized formula of the preceding section. This
capability was initially developed to aid in the quicksort proof (see [41]). A macro is a
named formula (possibly quantified) with designated lists of free and quantified variables
(possibly NIL). It is defined by the command createmacro(name)(free variables)(quantified
variables). It is invoked by the term name(subs), where subs is a list of terms corresponding
to the declared variables, both free and quantified, in one contiguous sequence separated
by commas. The characteristic distinguishing between the substitutions corresponding to
the free variables and those corresponding to the quantified variables is that the latter can
be only names (atoms), not arbitrary terms. When invoked, the correct substitutions are
performed and the resulting formula is inserted in place of the macro.

As an example, consider the macro sorted and the state delta sorted.sd, exhibited below.

<sdvs.1> createmacro
name: sorted
pattern: foralli (1 le i and i lt range(a) —> .afi:i] le .afi+1:i+1])
free variables{]: «
quantifier symbols[]: :

<sdvs.1> pp
object: macro
macro name: sorted

macro sorted (a),(i): forall i (1 le i & i 1t range(a)
--> .ali:i] le .al@@ + 1): (1 + 1D])

<sdvs.1> pp
object: sorted.sd

[sd pre: (sorted(x,i))
post: (sorted(x[j:k],i))]

<sdvs.1> prove
state delta{]: sorted.sd
proof[]: usable

open -- [sd pre: (sorted(x,1))
post: (sorted(x[j:x]J,1i))]

No usable state deltas.
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q(1) forall i (1 le i & i 1t range(x)
--> .x[i:i] le .x[(i + 1):(1 + 1]

Complete the proof.
<sdvs.1.1> goals

g(1) forall i (1 le i & i 1t range(x[j:k])
--> .x[j:X1{i:i] le .x[j:kJ[(i + D:({ + DD

At this point, the macro has been invoked and the problem is reduced to a simple question
of proving a state delta (which we do not bother to do here).

2.9.12 Composition of State Deltas

Composition is the method for combining the effect of the sequential execution of several
state deltas into one state delta. The command is called compose. Composition is used
internally in processing mpisps and vhdltr, and it can also be called explicitly by the user
in interactive mode. Here is an example illustrating an arithmetic swap.

<sdvs.1> compose
composed sd name: swapcompose.sd
Do you wish to compose sds from the proof stack? (y or n) [n]: n
sd [1: [sd (true) (all) (x) (#z = . + .y)]
sd [1: [sd (true) (all) (y) (#y = .z - .y)]
sd [1: [sd (true) (all) (z) (#z = .z - .y)/
sda [1: <CR>
declarations[]: covering(all, z, y)

Experimental Composer
Composed
[sd pre: (true)

mod: (y,x)
post: (#x = .y,#y = .x)]

For a more detailed look at composition, see [42].

The following example illustrates the use of composition in a proof of the state delta c5.sd:

<sdvs.1> pp
object: c¢5.sd

[sd pre: (covering(all,x,y,upc,tmp),formulas (machine) , .upc = 1)

mod: (all)
post: (#x = .x + 1,#y = .y)]
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where

(defformulas machine "cl.sd" "c2.sd" "c3.sd" "c4.sd")

Of course, ¢5.sd could be proved by direct execution:

<sdvs.1> prove
state delta[]: c5.sd
proof[]: *

open -- [sd pre: (covering(all,x,y,upc,tmp),formulas(machine),.upc = 1)
mod: (all)
post: (#x = .x + 1,#y = .y)]

apply -- [sd pre: (.upc = 1)
mod: (upc,tmp)
post: (#tmp = .x,#upc = .upc + 1)]

apply -- [sd pre: (.upc = 2)
mod: (x,upc)
post: (#x = .y,#upc = .upc + 1)]

apply -- [sd pre: (.upc = 3)
mod: (y,upc)
post: (#y = .tmp,#upc = .upc + 1)]

apply -- [sd pre: (.upc = 4)
mod: (y,upc)
post: (#y = .y + 1,#upc = 1)]

apply -- [sd pre: (.upc = 1)
mod: (upc,tmp)
post: (#tmp = .x,%upc = .upc + 1)]

apply -- [sd pre: (.upc = 2)
mod: (x,upc)
post: (#x = .y,#upc = .upc + 1)]

apply -- [sd pre: (.upc = 3)
mod: (y,upc)
post: (#y = .tmp,#upc = .upc + 1)]

close ~- 7 steps/applications

However, we are really only interested in applying cl.sd, c2.sd, and ¢3.sd in succession. So
let us make a state delta that will have the same effect as that successive application.

<sdvs.1> compose
composed sd name: composedsd
Do you wish to compose sds from the proof stack? (y or n) [n]: n
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sd [1: cl.sd

sd [1: c¢2.sd
sd [J: c3.sd
sd [1: <CR>

declarations[]: covering(all, z, y, tmp, upc)
Experimental Composer
Composed

[sd pre: (.upc = 1)
mod: (x,tmp,y,upc)
post: (#upc = 4,#y = .x,#x = .y,#tmp = .x)]

Now we can use the following as a proof:

(defproof example "(prove c5.sd
proof: (prove composedsd
proof: (apply cl.sd,

apply c2.sd,
apply c3.sd,
close),

apply composedsd,

apply c4.sd,

apply composedsd,

close))")

Notice that composedsd will have to be proved before it can be applied. Every state delta
resulting from the compose command should be provable by *. The <declarations> field can
be only a covering or declaration statement.

<sdvs.1> nit
proof name[]: example

State Delta Verification System, Version 12
Restricted to authorized users only.
open -- [sd pre: (covering(all,x,y,upc,tmp),formulas(machine),.upc = 1)
mod: (all)
post: (#x = .x + 1,#y = .y)]
open -- [sd pre: (.upc = 1)
mod: (x,tmp,y,upc)
post: (#upc = 4,8y = .x,%x = .y,#tmp = .X)]
apply -- [sd pre: (.upc = 1)

mod: (upc,tmp)
post: (#tmp = .x,#upc = .upc + 1)]

133




apply -- [sd pre: (.upc = 2)
mod: (x,upc)
post: (#x = .y,#upc = .upc + 1)]

apply -- [sd pre: (.upc = 3)
mod: (y,upc)
post: (#y = .tmp,#upc = .upc + 1)1

close -- 3 steps/applications

apply -- [sd pre: (.upc = 1)
mod: (x,tmp,y,upc)
post: (#upc = 4,#y = .x,#x = .y,#tmp = .x)]

apply -- [2d pre: (.upc = 4)
mod: (y,upc)
post: (#y = .y + 1,%upc = 1)]

apply -- [sd pre: (.upc = 1)
mod: (x,tmp,y,upc)
post: (#upc = 4,#y = .x,#x = .y,#tmp = .x)]

close -- 4 steps/applications

2.9.13 The SDVS Language Parser

Internally, SDVS deals with expressions in prefix notation, e.g. (USSUB X 7 0). The
prettyprinter will print this expression in infix notation as X<7:0>. Those operators that
have different infix and prefix symbols (such as “plus” and “+”) may be input interactively
either in infix or in mathematical (not Lisp) prefix notation, in any combination. Some
operators have only one symbol for both the infix and the prefix notation (such as “It,”
since the character < is reserved for substring selection). Some operators have only a
mathematical prefix form, such as the enumeration type relations and queueing operations.
SDVS is not case sensitive.

For example,

<sdvs.1> createsd
name: sd5
[SD pre: covering(all, a), eq(plus(z, y), 1)
comod[]: <CR>
mod[]: <CR>
post: pound(a) = .a + 1
]

<sdvs.1> ppsd
state delta: sd5

(sd pre: (covering(all,a),x +y = 1)
post: (#a = .a + 1)]
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It is essential to parenthesize expressions that may be ambiguous, for example p -> g or .
Otherwise, they may be interpreted differently than intended, with unpredictable results.

Some symbols may be typed in at the terminal in their prettyprinted format, some must
be typed in in their non-prettyprinted format, and some may be typed in either way. For
example,

<sdvs.1> simp
expression: aorb

aorb

<sdvs.1> simp
expression: a andb

agb

<sdvs.1> simp
expression: a & b

a&b

The infix-prefix correspondence (for those operators with both forms) is as follows:

prefix infix
aconc aconc
abs abs
and &
div /
dot
eq =
exists |
expt -
forall v
ge ge
gt gt
implies --> (input), — (prettyprinted)
invert -
le le
1h 1h
1t 1t
minus -
mult
neq "= (input), # (prettyprinted)
not -
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ones
or

plus

pound

rem

usand
usconc
usdifference
useql

usgeq

usgtr

usleq

uslss

usneq

usnot

usor

usplus
usquotient
usremainder
ustimes
usxor

Zeros

ones

or (imput), V (prettyprinted)

+
#
rem
&&
@

usge
usgt
usle
uslt

usor (input), VV (prettyprinted)

++
usmod
*k

usxor
Zeros

Nonstandard transformations:

(usval X)
(cond A B C)
(bs X Y)
(ussub A X Y)
(element A X)
(slice A X Y)

The following is a list of reserved words, other than commands and the standard interpreted
function symbols, that have special meaning in SDVS and should not be used in other than

IX|

(if A then B else C)

XY
AKX Y>
A[X]
A[X:Y]

their official capacity.

all
constant
covering
declaration
diff

inter

map




pcovering

sd
sdtobeproven
tr

union

2.9.14 Reading, Writing, and Editing

The commands read and write are the SDVS input-output commands for user-created files.
Write prompts the user for the names of all objects that can possibly be stored (e.g. state
deltas and proofs). SDVS converts all the objects into the def form, e.g. defproof, which
can then be edited as desired. Readgoes to the designated file and processes all the defforms.

<sdvs.1> write
path name[lemmas/lemmas.lemmas]: junk
state delta names[]: <CR>
proof names[]l: <CR>
axiom names{J: <CR>
lemma names[]: <CR>
formula names[]: <CR>
formulas names{]: <CR>
macro names[]: <CR>
datatype names[]: <CR>
adalemma names[J: <CR>
vhdllemma names[]: <CR>

Do you wish to append to the already existing file? n

No objects written.

The primary method for creating proofs interactively is simply to type in proof commands in
an SDVS proof session. The proof can then be named by the dump-proof command (see be-
low) and written to a file. Another method is to use the command createproof. For example,

<sdvs.1> createproof
name: testproof

proof: (prove [sd pre: (p) comod: () mod: () post: (true)] proof: ()

<sdvs.1> pp
object: testproof

proof testproof:

prove [sd pre: (p) post: (true)]
proof:

The proper constructors for use in the editor, corresponding to the interactive create con-
structs, are defproof, defsd, and defformulas.
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The form in which these definitions can be evaluated in the editor is

(defitem <itemname> ‘‘<itembody>’’)

A common situation arises when the user has finished an interactive proof, SDVS has
collected this into sdvsproof, and the user would like to change the name. The easiest way
to do this is to use the dump-proof command. Another way, which might be useful under
certain circumstances, is to write the proof to a file using the write command, change the
name in the editor, and then evaluate the defsd.

For example,

(defproof casesproof "(prove [sd pre: ([sd pre: (p1 & p2)

mod: (all)

post: (q1)1,
[sd pre: (pl & “p2)

mod: (all)

post: (q2)],
[sd pre: ("pl & p2)

mod: (all)
post: (q2)],
[sd pre: ("pl & “p2)
mod: (all)
post: (q1)])
mod: (all)
post: (ql or g2)]
proof:
mcases
(case: p1 & p2
proof: *
case: pl & "p2
proof: =
case: “pl & p2
proof: *
case: “pl & “p2
proof: *))")

If the state delta exists in unparsed (input) notation in the editor, say as
[sd ...]

it may be input into SDVS by typing in the editor

(defsd sdname "[sd ...]1")

and then evaluating.

If defproof does not work on some proof, putproof may be used. The differences are that
in putproof, the name of the proof and the proof itself must be single quoted, and with
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defproof the proof must be string quoted. Also, in putproof, the proof itself is given in Lisp
notation, whereas defproof takes the unparsed prettyprint version.

Also note that in using the defproof method, quotation marks around path names must be

preceded by backslashes to appear as follows:

(defproof proofi
"(prove s22
proof: readaxioms \"axioms/bitstring.axioms\")")

For example, in case you wish to change the name of a proof, and the above defsd method
does not work, do the following;:

(putproof ’<new-proofname> (proofp ’sdvsproof))

and then evaluate.

To summarize, the two methods of obtaining a proof are evaluating in Lisp

1. (proofp ’proofname) and

2. (get ’proofname ’proof).
Similarly, the two methods of obtaining a state delta named sdname are

1. (sdp ’sdname) and

2. (get ’sdname ’sd).

2.9.15 Batch Proofs

The user may write a batch proof in the editor by using the commands of the previous
section, or may write it interactively by using the command createproof.

<sdvs.1> createproof
name: tproof
proof: prove test3 proof: (*, close)

Of course, the user may also type in the actual state delta in place of just giving its name,
and may type in an arbitrarily long proof. However, given the complexity of the syntax and
the probability of making an error, it is strongly recommended that the user modularize
the work, or use the editor.

A batch proof may be run by typing its name at the prompt after the init command (if a
clean system is needed), or after the interpret command (if it is desired to continue from
the current context).
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2.9.16 Disjunctions of State Deltas

Disjunctions of state deltas in preconditions are treated just like disjunctions of any other
sentences. (Be sure that when typing in disjunctions of state deltas the state delta square
brackets are enclosed by parentheses: ([sd ....J) or ([sd ....]).) To use a disjunction of state
deltas, a proof by cases must be done:

<sdvs.1> ppsd
state delta: intl.sd

[sd pre: (true) post: (q)]

<sdvs.1> ppsd
state delta: int2.sd

[sd pre: (true) post: (r)]

<sdvs.1> ppsd
state delta: 38

[sd pre: (formula(intl.sd) or formula(int2.sd))
post: (q or 1)]

<sdvs.1> prove
state deltall: s8
proof[l: <CR>

open -- [sd pre: (formula(intl.sd) or formula(int2.sd))
post: (g or 1)]

non-trivial propagations -- ([sd pre: (true)
post: (q)]) or

([sd pre: (true)
post: (¥)1)

Complete the proof.

<sdvs.1.1> cases
case predicate: formula(intl.sd)

cases -- formula(intl.sd)
open -- [sd pre: (formula(inti.sd))
comod: (all)
post: (q or )]

<sdvs.1.1.1.1> usable

u(1) [sd pre: (true) post: (q)]

No usable quantified formulas.
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<sdvs.1.1.1.1> apply
sd/number [highest applicable/oncel: <CR>

apply -- [sd pre: (true) post: (q)]
close -- 1 steps/applications
open -~ [sd pre: ("(formula(intl.sd)))
comod: (all)
post: (q or r)]
Complete the proof.
<sdvs.1.1.2.1> usable
u(1) [sd pre: (true) post: (r)]
u(2) [sd pre: (formula(intil.sd))
comod: (all)
post: (q or 1))

No usable quantified formulas.

<sdvs.1.1.2.1> apply
sd/number [highest applicable/oncel: <CR>

apply -- [sd pre: (true) post: (r)]
close -- 1 steps/applications
join -- [sd pre: (true)
comod: (all)

post: (q or r)]

close -- 1 steps/applications

2.9.17 System Commands

The two commands cd and pwd, when typed at the SDVS prompt, do the same as the
Unix commands of the same name, i.e., connect to a directory and print the name of the
working directory. The command shell allows the user to enter Unix commands at the
prompt, and the command exit kills the currently running SDVS job. Exit is the same as
doing bye in SDVS followed by (quit) in Lisp.

2.9.18 Errors

When the user (interactively) types a proof command that cannot be executed, an explana-
tory message is generated. When this same error occurs in a batch proof, a “command
error” is generated and the proof halts. The command lasterror returns the current error
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message.

2.9.19 Breaks in SDVS

Although we are confident that SDVS will usually not “crash” under normal operation,
there are still some instances where a determined (or unlucky) user can break the system.

One example is given here:

<sdvs.1> createsd
name: decsd8
[SD pre: declare(z, type(fn, .z))
comod[]: <CR>
mod[]: <CR>
post: false
]

<sdvs.1> prove
state deltall: decsd8
proof{]: <CR>

open -~ [sd pre: (declare(x,type(fn,.x)))
post: (false)]

inserting -- pcovering(all,x)

Complete the proof.

If at this point you were to simp z = .z, the control stack would overflow.

Some of the reading and writing commands still react ungracefully if you type in a partic-
ularly nonsensical path name, for example.

There are surely more examples.

2.9.20 Bugs in SDVS

In addition to errors and breaks, there are, unfortunately, still bugs. This means that
there are still some instances where a determined (or unlucky) user can prove false. It is
reassuring when an automated proof succeeds, but the user should understand that success
as an increase in confidence in the correctness of the theorem, not a fool-proof guarantee.

Here is an example of using self-reference to prove false:

<sdvs.1> ppsd
state delta: self

[sd pre: (formula(self)) post: (false)]
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<sdvs.1> ppsd
state delta: foo

[sd pre: (true) post: (false)]

<sdvs.1> prove
state deltal]l: foo
proof[l: <CR>

open -- [sd pre: (true) post: (false)]
Complete the proof.

<sdvs.1.1> prove
state deltall: self
proof[l: <CR>

open -- [sd pre: (formula(self))
post: (false)]

The state delta to be proven is already known to be TRUE.
close -- 0 steps/applications
Complete the proof.

<sdvs.1.2> apply
sd/number [highest applicable/once}: <CR>

apply -- [sd pre: (formula(self))
post: (false)]

The postcondition of the last applied state delta is inconsistent with
the current state.

close -- 1 steps/applications
<sdvs.2> ps
<< initial state >>

proved foo <1>
--> you are here <--

An algorithm to detect the unsoundness of circular state delta definitions (see [36]) has been
implemented, but is not yet part of the distributed SDVS.
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3 INTERACTION WITH ISPS

3.1 TR: TRANSLATOR FROM ISPS TO STATE DELTAS

In SDVS the internal language for expressing computations is the state delta language;
thus the programs and specifications must be written in, or converted to, state deltas for
processing by SDVS. For programs that already exist in other, more common, languages,
or for programs that are more easily written in other languages, the problem of how to
translate accurately into the state delta language must be overcome. In the simplest cases
this may be done manually. However, for “real” programs, and in order to eliminate possible
inaccuracies in the translation, the task is too difficult to be left to the user; the slightest
error in the translation could invalidate the connection between the proof (about state
deltas) and the original claim (about a program in some other language).

This section describes the action of the translator TR on the machine description language
ISPS. Subsequent chapters discuss the translation of Ada and VHDL.

In fact, there are two different versions of the translator from ISPS to state deltas. The
more recent translator will be discussed only in the last section of this chapter. It is still
to be considered experimental, although it will eventually replace the old translator. It has
been generated by the same uniform method as the translators for Ada and VHDL, and
recognizes a slightly larger piece of ISPS (it allows “don’t care” digits, and bit order in
bitstrings can be low to high).

The version of ISPS that the (old) translator (TR) recognizes differs from the version
described in the ISPS Manual ([12]) in several respects. The first category of differences
contains those aspects of the “official” ISPS that TR does not support (see Figure 3): these
include parallelism and two’s-complement arithmetic.

The second category of differences consists of extra features that SDVS needs for the im-
plementation proof paradigm. For example, when one is not interested in implementing
the action of all target places, some of the machine variables (“place” names) must be
designated as significant and the others as auxiliary. The mapping is defined only on the
designated significant places. Another useful feature is the capability to intersperse stan-
dard ISPS code with state deltas. This can be used when one is not interested in the details
of how a certain postcondition was brought about, but only in its effect, or in case that
effect is not expressible in ISPS.

A complete description of Aerospace ISPS is given in the report ISPS for SDVS ([43]); the
semantics of TR are described in [65], [13], and [44]; tests for static semantic errors are
described in [44]; and problems with ISPS are described in [45].
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Bit declarations must be from high to low and have zero as the rightmost bit.
Word declarations must be from low to high and have zero as the leftmost word.
One-bit scalars must be declared with brackets, e.g. A<> (or A<0>), not A.

The right-hand side of a mapping must have been declared prior to the mapping.

In our implementation only scalar entities may be on the right-hand side of a mapping
declaration. The left-hand entity may be either a scalar or an entire element of an

array.

The REQUIRE and DEFINE declarations are unsupported.

Function formals and return value cannot be arrays.

“7 is interpreted as if it were “NEXT,” i.e., parallel action is unsupported.

Except for arithmetic transfer, unsigned is the only arithmetic mode implemented,
and is required at the ISPS-Declaration level for compatibility with C-MU ISPS. The
TC qualifier is required on arithmetic transfer.

“?” is not allowed as a constant digit.
The RESUME and TERMINATE statements are not allowed.

UNPREDICTABLE, STOP, NO.OP, LAST.ONE, and UNDEFINED are the only
implemented predeclared entities. UNDEFINED is allowed only on the right-hand

side of a transfer operation.
The arithmetic relation TST is unimplemented.

MAIN, US, and TC are the only allowable qualifiers, with TC allowable only in the
context of transfer operations.

The user definition of qualifers is unimplemented.
Quoted strings after BEGIN/END are not allowed.
There is no call by reference.

Side-effect-causing operations on the left-hand side of any transfer operation are not

permitted.

Nonfunction, nonassignment expressions, e.g. A+B, cannot be statements.
The right operand in shifts cannot be longer than the left operand.

The array index out of bounds may cause errors.
Figure 3: ISPS Features not Implemented in TR
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3.2 MARKING

SDVS does the processing necessary to turn an ISPS program into an equivalent state
delta or set of state deltas. Thus, ISPS programs can be used in, or as, preconditions or
postconditions of state deltas.

A very simple example was given in Section 1.9. A more complicated example illustrating
the capability to execute from an ISPS mark point is shown next. One can run a set of
example ISPS proofs by typing run-test-proofs *isps-tests*.

When dealing with a proof based on state deltas created by TR from an ISPS program, the
user does not have a convenient method of handling the specific state deltas representing
the “continuation” of the program from each control point. To solve that problem, the
system allows the user to label the location of control points in the ISPS program.

The initial and final control points are named by the system <machine-name>\STARTED
and <machine-name>\HALTED), respectively. The exit point for an internal subroutine,
<subroutine>, is <subroutine>\exited.

Consider the following ISPS program:

gcd.machine {US} := BEGIN ! gcd algorithm computes gcd(x,y)
! for inputs x and y
** local.variables **

x<15:0>, ! input variable x

y<15:0>, ! input variable y

twos<5:0>, ! indicates common factor of twos between x and y
gcdresult<15:0> ! result of ged(x,y)

*x algorithm *#

gcd {MAIN} := BEGIN

twos _ LAST.ONE(x OR y) NEXT ! store common factor of twos
y - y SRO LAST.ONE(y) NEXT ! strip low-order zeros from y
x . x SRO LAST.ONE(x) NEXT ! strip low-order zeros from x
REPEAT ! main loop
BEGIN
mi:= IF x LSS y => x@y _ y@x NEXT ! swap x,y if x<y
x _x -y NEXT ! assign x-y to x
m2:= IF x EQL 0 => ! if x=0 (finished) then
(m4 := gcdresult . y NEXT ! assign y to gcdxy,
gcdresult _ gcdresult SLO twos NEXT !  remember common twos,
LEAVE gcd) NEXT !  and exit
m3:= x _ x SRO LAST.ONE(x) ! strip low-order zeros from x
END
END
END

The command mpisps generates state deltas corresponding to the state changes between
mark points, instead of every state change represented in the unmarked ISPS program. If
mpisps is used on an ISPS program with a potentially infinite loop in which the loop does
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not have a mark point at the top, mpisps will not terminate. Ged.isp has five mark points,
including the initial state, which is a default mark point.

Mpisps prompts for starting mark point, stopping mark point, and preconditions.

<sdvs.1> mpisps
path name[testproofs/manual/isps/alias.isp]: testproofs/manual/isps/gcd.isp
starting mark point[]l: <CR>
ending mark points[]: <CRH>
preconditions[]l: <CR>
unique name level[1]: <CR>

Parsing ISPS file -- "testproofs/manual/isps/gcd.isp"

Markpoint-to-markpoint translating ISPS file
-~ "testproofs/manual/isps/gcd.isp"

[sd pre: (.gcd.machine\upc = gcd.machine\started)
mod: (x,twos,y,gcd.machine\upc)
post: (#gcd.machine\upc = mi,
#x = (zeros(|lastone(.x)|) €@ .x)
<15 + |lastone(.x)|:|lastone(.x)|>,
#y = (zeros(|lastone(.y)|) € .y)
<15 + |lastone(.y)|:|lastone(.y)|>,
#twos = lastone(.x usor .y))]

[sd pre: (|.y] gt |.x|,.gcd.machine\upc = m1)
mod: (x,y,gcd.machine\upc)
post: (#gcd.machine\upc = m2,#x = (.y -- .x)<15:0>,%y = .x)]

[sd pre: (|.y| le |.x|,.gcd.machine\upc = m1)
mod: (x,gcd.machine\upc)
post: (#gcd.machine\upc = m2,#x = (.x -- .y)<15:0>)]

[sd pre: (|.x| = 0,.gcd.machine\upc = m2)
mod: (gcd.machine\upc)
post: (#gcd.machine\upc = m4)]

[sd pre: (|.x] "= 0,.gcd.machine\upc = m2)
mod: (gcd.machine\upc)
post: (#gcd.machine\upc = m3)]

[sd pre: (.gcd.machine\upc = m4)
mod: (gcdresult,gcd.machine\upc)
post: (#gcd.machine\upc = gcd.machine\halted,
#gcdresult = (.y @ zeros(|.twos|))<15:0>)]

[sd pre: (.gcd.machine\upc = m3)
mod: (x,gcd.machine\upc)
post: (#gcd.machine\upc = mi,
#x = (zeros(|lastone(.x)|) € .x)
<15 + |lastone(.x)|:|lastone(.x)|>)]

The flag displaympsds was on. If it were off, the above state deltas would not be displayed.

148




<sdvs.2> ppsd
state delta: mpisps
file name: gcd.isp
starting mark point[]: <CR>
ending mark points[J: <CR>
preconditions{]: <CR>

covering(gcd.machine,x,y,twos,gcdresult,gcd.machine\upc)
declare(x,type(bitstring,16))
declare(y,type(bitstring,16))
declare(twos,type(bitstring,6))
declare(gcdresult,type(bitstring,16))
[sd pre: (.gcd.machine\upc = gcd.machine\started)
mod: (x,twos,y,gcd.machine\upc)
post: (#gcd.machine\upc = mi,
#x = (zeros(|lastone(.x)}|) €@ .x)
<15 + |lastone(.x)|:|lastone(.x)|>,
(zeros(|lastone(.y)|) @ .y)
<15 + |lastone(.y)|:|lastone(.y)|>,
#twos = lastone(.x usor .y))]
[sd pre: (|.y| gt |.x|,.gcd.machine\upc = m1)
mod: (x,y,gcd.machine\upc)
post: (#gcd.machine\upc = m2,#x = (.y -- .x)<15:0>,#y = .x)]
[sd pre: (|.y| le |.x|,.gcd.machine\upc = m1)
mod: (x,gcd.machine\upc)
post: (#gcd.machine\upc = m2,#x = (.x -- .y)<15:0>)]
[sd pre: (|.x| = 0,.gcd.machine\upc = m2)
mod: (gcd.machine\upc)
post: (#gcd.machine\upc = m4)]
[sd pre: (|.x| "= 0,.gcd.machine\upc = m2)
mod: (gcd.machine\upc)
post: (#gcd.machine\upc = m3)]
[sd pre: (.gcd.machine\upc = m4)
mod: (gcdresult,gcd.machine\upc)
post: (#gcd.machine\upc = gcd.machine\halted,
#gcdresult = (.y @ zeros(|.twos|))<15:0>)]
[sd pre: (.gcd.machine\upc = m3)
mod: (x,gcd.machine\upc)
post: (#gcd.machine\upc = mi,
#x = (zeros(|lastone(.x)|) ¢ .x)
<15 + |lastone(.x)|:|lastone(.x)|>)]

*y

Now we will use mpisps with mark points chosen.

<sdvs.2> mpisps
path name[testproofs/manual/isps/gcd.ispl: testproofs/manual/isps/gcd.isp
starting mark point[]l: m2
ending mark points[]l: m3
preconditions[]: <CR>
unique name levell[1]: <CR>

Parsing ISPS file -- "testproofs/manual/isps/gcd.isp"

Markpoint-to-markpoint translating ISPS file
-- "“testproofs/manual/isps/gcd.isp"
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(sd pre: (|.x| = 0,.gcd.machine\upc = m2)
mod: (gcd.machine\upc)
post: (#gcd.machine\upc = m4}]

[sd pre: (|.x] "= 0,.gcd.machine\upc = m2)
mod: (gcd.machine\upc)
post: (#gcd.machine\upc = m3)]

[sd pre: (.gcd.machine\upc = m4)
mod: (gcdresult,gcd.machine\upc)

post: (#gcd.machine\upc = gcd.machine\halted,
#gcdresult = (.y @ zeros(|.twos|))<15:0>)]

<sdvs.3> mpisps
path name[testproofs/manual/isps/gcd.isp]:
starting mark point[]:
ending mark points[]:
preconditions[]:
unique name levell[1]:

Parsing ISPS file -- "testproofs/manual/isps

Markpoint-to-markpoint translating ISPS file
-~ "“testproofs/manual/isps/gcd.isp"

[sd pre: (|.x| = 0,.gcd.machine\upc = n2)
mod: (gcd.machine\upc)
post: (#gcd.machine\upc = m4)]

[sd pre: (|.x] "= 0,.gcd.machine\upc = m2)
mod: (gcd.machine\upc)
post: (#gcd.machine\upc = m3)]

[sd pre: (.gcd.machine\upc = m3)
mod: (x,gcd.machine\upc)
post: (#gcd.machine\upc = ml,
#x = (zeros(|lastone(.x)|) @ .x)
<15 + |lastone(.x)|:|lastone(

[sd pre: (.gcd.machine\upc = m4)
mod: (gcdresult,ged.machine\upc)

<CR>
m2

<CR>
<CR>
<CR>

/ged.isp”

.x)|>)]

post: (#gcd.machine\upc = gcd.machine\halted,
#gcdresult = (.y @ zeros(|.twos|))<15:0>)]

[sd pre: (|.y| 1le |.x|,.gcd.machine\upc = m1)
mod: (x,gcd.machine\upc)
post: (#gcd.machine\upc = m2,#¥x = (.x -

[sd pre: (|.y| gt |.x|,.gcd.machine\upc = m1)
mod: (x,y,gcd.machine\upc)
post: (#gcd.machine\upc = m2,#x = (.y —-

<sdvs.4> mpisps
path name [testproofs/manual/isps/gcd.isp]:

1

.y) <15:0>)]

.x)<15:0>,8y = .x)]

< CR>
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starting mark point[]: m2
ending mark points[]: <CR>
preconditions[]: |.z] ge .y
unique name level[1l: <CR>

Parsing ISPS file -- "testproofs/manual/isps/gcd.isp"

Markpoint-to-markpoint translating ISPS file
-- "testproofs/manual/isps/gcd.isp"

[sd pre:
mod:
post:

[sd pre:
mod:
post:

[sd pre:
mod:
post:

[sd pre:
mod:
post:

[sd pre:
mod:
post:

[sd pre:
mod :
post:

(|.x| ge |-y|,|.x| = 0,.gcd.machine\upc = m2)
(gcd.machine\upc)
(#gcd.machine\upc = m4)]

(|.x| ge |.y|,}.x] "= 0,.gcd.machine\upc = m2)
(gcd.machine\upc)
(#gcd.machine\upc

n3)]

(.gcd.machine\upc = m3)
(x,gcd.machine\upc)
(#gcd.machine\upc = m1,
#x = (zeros(|lastone(.x)|) € .x)
<15 + |lastone(.x)|:|lastone(.x)|>)]

(.gcd.machine\upc = m4)
(gcdresult,ged.machine\upc)
(#gcd.machine\upc = gcd.machine\halted,
#gcdresult = (.y @ zeros(|.twos|))<15:0>)]

(|.y| 1e |.x{,.gcd.machine\upc = m1)
(x,gcd.machine\upc)
(#gcd.machine\upc = m2,#x = (.x -- .y)<15:0>)]

(].y| gt |-x|,.gcd.machine\upc = m1)
(x,y,gcd.machine\upc)

(#gcd.machine\upc = m2,#x = (.y -- .x)<15:0>,%y =

<sdvs.5> mpisps
path name[testproofs/manual/isps/gcd.isp]l: <CR>

starting mark point[]: m2
ending mark points[]l: <CR>
preconditions[]: {.z| =0
unique name level[1]l: <CR>

Parsing ISPS file -~ "testproofs/manual/isps/gcd.isp"

Markpoint-to-markpoint translating ISPS file
-- "testproofs/manual/isps/gcd.isp"

[sd pre:
mod :
post:

[sd pre:
mod:

(|.x] = 0,.gcd.machine\upc = m2)
(gcd.machine\upc)
(#gcd .machine\upc

m4)]

(.gcd.machine\upc = m4)
(gcdresult,ged.machine\upc)
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post: (#gcd.machine\upc = gcd.machine\halted,
#gcdresult = (.y @ zeros(|.twos|))<15:0>)]

The differences between isps and mpisps are as follows:

1. isps gives an incremental translation (with TRs in the postcondition); mpisps gives a
set of state deltas;

2. isps translates every ISPS state change; mpisps accumulates effects from mark point

to mark point;

3. mpisps takes account of extensions of ISPS by state deltas, assumptions, and external
and auxiliary variables; and

4. isps(file.isp) should be used only in the precondition of a state delta (as a host de-
scription).

3.3 EXTENSIONS OF ISPS

The user may extend ISPS code in two main ways:

1. by interspersing assumptions or state deltas between ISPS statements, and

2. by declaring some ISPS variables to be external or auxiliary.

These extensions were found to be useful in specifying real machines in the context of setting
up implementation proofs. They were found to be necessary, for example, in the work on
the C30 machine [11].

3.3.1 Extending ISPS by Assumptions and State Deltas

The two methods for extending ISPS that are discussed in this section are

1. the assumptions //JASSUME: (expr)], and
2. inserting state deltas //fEXTSD () (pre) (comod) (mod) (post)].

The expr field in assumption is any state delta formula (note that a statement such as “#x
= 17 is not a legal state delta formula); it is interpreted to be a precondition to the rest of
the ISPS routine. In other words, if the assumption is not true, execution cannot continue

from that point.
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' The extended state delta has room for a markpoint field which is currently unimplemented
and must be left empty. Other than that, it is interpreted with the same internal semantics
\ as any state delta, and with the same control as if it had been a regular ISPS statement.
It is useful for expressing state changes that cannot be expressed in ISPS. Notice that one
may make a static assertion by using an extended state delta with (nil markpoint field and)
nil precondition and nil mod list.

As an example, consider the following extended ISPS program (extest2.isp):

sd.machine {US} :=
BEGIN
**xRegisters*#

x<16:0>, y<15:0>
x*Algorithm**

exec {MAIN}:=
BEGIN

PH{EXTSD: ) (J.x| ge |[.yD) O (x, y) (#x = 0(16) or #y = 0(16))] NEXT
POINT:=

if x eql 0 => y _ 1 NEXT

if yeql 0 => x _0

END

END

Let us mpisps it and look at the resulting state deltas.

<sdvs.1> mpisps
path name[testproofs/manual/isps/gcd.ispl: testproofs/manual/isps/extest2.isp
starting mark point[]: <CR>
ending mark points{]: <CR>
preconditions{]: <CR>
unique name level[1]l: <CR>

Parsing ISPS file -- "testproofs/manual/isps/extest2.isp"

Markpoint-to-markpoint translating ISPS file
-- "testproofs/manual/isps/extest2.isp"

[sd pre: (|.x| ge |.y|,.sd.machine\upc = sd.machine\started)
mod: (y,x,sd.machine\upc)
post: (#x = 0(16) or #y = 0(16),#sd.machine\upc = point)]

[sd pre: (|.x| 1t |.y|,.sd.machine\upc = sd.machine\started)
mod: (sd.machine\upc)
post: (#sd.machine\upc = point)]

[sd pre: (|.x] = 0,.sd.machine\upc = point)
mod: (y,sd.machine\upc)

post: (#sd.machine\upc = sd.machine\halted,#y = 0(14) ¢ 1(2))]

[sd pre: (|.x| = 0 & .sd.machine\upc = point,|.y| = 0)
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mod: (x,sd.machine\upc)
post: (#sd.machine\upc = sd.machine\halted,#x = 0(16))]

[sd pre: (|.x| "= 0 & .sd.machine\upc = point,|.y| "= 0)
mod: (sd.machine\upc)
post: (#sd.machine\upc = sd.machine\halted)]

<sdvs.2> ppsd
state delta: mpisps
file name: extestZ.isp
starting mark point[]l: <CR>
ending mark points[]: <CR>
preconditions[]l: <CR>

covering(sd.machine,x,y,sd.machine\upc)
declare(x,type(bitstring,16))
declare(y,type(bitstring,16))
[sd pre: (|.x| ge |.y|,.sd.machine\upc = sd.machine\started)
mod: (y,x,=d.machine\upc)
post: (#x = 0(16) or #y = 0(16),#sd.machine\upc = point)]
[sd pre: (|.x| 1t |.y],.sd.machine\upc = sd.machine\started)
mod: (sd.machine\upc)
post: (#sd.machine\upc = point)]
[sd pre: (|.x| = 0,.sd.machine\upc = point)
mod: (y,sd.machine\upc)
post: (#sd.machine\upc = sd.machine\halted,#y = 0(14) ¢ 1(2))]
[sd pre: (|.x| "= 0 & .sd.machine\upc = point,|.y| = 0)
mod: (x,sd.machine\upc)
post: (#sd.machine\upc = sd.machine\halted,#x = 0(16))]
[sd pre: (|.x| "= 0 & .sd.machine\upc = point,|.y| "= 0)
mod: (sd.machine\upc)
post: (#sd.machine\upc = sd.machine\halted)]

Let extest.isp be the above without POINT:

sd.machine {US} :=
BEGIN
**Registers**

x<15:0>, y<15:0>
*xAlgorithme*

exec {MAIN}:=
BEGIN

tI[EXTSD: O (|.x| ge |-y]) O (x, y) (#x = 0(16) or #y = 0(16))] NEXT

if x eql 0 => y . 1 NEXT
if yeql 0 => x _ 0

END

END

<sdvs.1> mpisps
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path name[testproofs/manual/isps/extest2.ispl: testproofs/manual/isps/eztest.isp
starting mark point[]: <CR>
ending mark points[]: <CR>
preconditions[]: <CR>
unique name level[1l: <CR>

Parsing ISPS file -- "testproofs/manual/isps/extest.isp"

Markpoint-to-markpoint translating ISPS file
-- “testproofs/manual/isps/extest.isp"

[sd pre: (|.x| ge |.y|,.sd.machine\upc = sd.machine\started)
mod: (x,y,sd.machine\upc)
post: (exists gv-y-2935 exists gv-x-2934 (((gv-x-2934 = 0(16) or
gv-y-2935 = 0(16)) &
lh(gv-x-2934) = 16 &
1h(gv-y-2935) = 16) &
(|gv-x-2934] = 0
--> #sd.machine\upc
= sd.machine\halted &
#y = 0(14) ©
1(2) &
#x = 0(16))))]

[sd pre: (|.x| ge |.y|,.sd.machine\upc = sd.machine\started)
mod: (x,y,sd.machine\upc)
post: (exists gv-y-2935 exists gv-x-2934 (((gv-x-2934 = 0(16) or
gv-y-2935 = 0(16)) &
lh(gv-x-2934) = 16 &
lh(gv-y-2935) = 16) &
(jgv-x-2934] "= 0
--> #sd.machine\upc
= sd.machine\halted &
#x = 0(16) &
#y = 0(16))))]

[sd pre: (|.x| 1t |.y| & .sd.machine\upc = sd.machine\started,|.x| = 0)
mod: (y,sd.machine\upc)
post: (#sd.machine\upc = sd.machine\halted,#y = 0(14) @ 1(2))]

[sd pre: (].x| 1t |.y| & .sd.machine\upc = sd.machine\started,
|.x| = 0)
mod: (sd.machine\upc)
post: (#sd.machine\upc = sd.machine\halted)]

<sdvs.2> ppsd
state delta: mpisps
file name: extest.isp
starting mark point[]: <CR>
ending mark points[]: <CR>
preconditions{]: <CR>

covering(sd.machine,x,y,sd.machine\upc)

declare(x,type(bitstring,16))
declare(y,type(bitstring,16))
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[sd pre: (|.x| ge |.y|,.sd.machine\upc = sd.machine\started)
mod: (x,y,sd.machine\upc)
post: (exists gv-y-2935 exists gv-x-2934 (((gv-x-2934 = 0(16) or
gv-y-2935 = 0(16)) &
lh(gv-x-2934) = 16 &
1h(gv-y-2935) = 16) &
(|gv-x~2934| = 0
--> #sd.machine\upc
= sd.machine\halted &
#y = 0(14) ¢
1(2) &
#x = 0(16))))]
[sd pre: (|.x| ge |.y|,.sd.machine\upc = sd.machine\started)
mod: (x,y,sd.machine\upc)
post: (exists gv-y-2935 exists gv-x-2934 (((gv-x-2934 = 0(16) or
gv-y-2935 = 0(16)) &
lh(gv-x-2934) = 16 &
1h(gv-y-2935) = 16) &
(jgv-x-2934| "= 0
--> #sd.machine\upc
= sd.machine\halted &
#x = 0(16) &
ty = 0(16))))]
[sd pre: (|.x| 1t |.y| & .sd.machine\upc = sd.machine\started,|.x| = 0)
mod: (y,sd.machine\upc)
post: (#sd.machine\upc = sd.machine\halted,#y = 0(14) @ 1(2))]
[sd pre: (].x] 1t |.y| & .sd.machine\upc = sd.machine\started,
|.x| == 0)
mod: (sd.machine\upc)
post: (#sd.machine\upc = sd.machine\halted)]

It is clear that the following state delta (call it extsd1) is true:

[sd pre: (mpisps(extest2.isp),.sd.machine\upc = sd.machine\started)

mod: (all)
post: (j#x| le |#y|,#sd.machine\upc = sd.machine\halted)]

and the following proof works:

(prove extsdil
proof:
cases |.x| ge |.y|
then proof:
(apply,
cases |.x| = 0
then proof:
(apply,
close)
else proof:
(notice |.y| = 0,
apply,
close))
else proof:

(apply,
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cases |.x| = 0
then proof:
(apply,
close)
else proof:
cases [.y| = 0
then proof:
else proof:
(apply,
close)))

As a good exercise, try to input the above state delta and proof in the editor, using the
defsd and defproof functions. See Section 2.9.14. Remember to use two backslashes “\\”
in the editor to get one real backslash.

We cannot currently prove the corresponding state delta involving extest.isp; any state
deltas resulting from mpisps that contain existential quantifiers should be suspect. The
user should eliminate these quantifiers by adding mark points in suitable places in the
original ISPS code.

Now let us examine the state delta formed by making .zge.y an assumption. Call the fol-
lowing extended ISPS program extest3.isp:

sd.machine {US} :=
BEGIN
**Registers**

x<15:0>, y<15:0>
**xAlgorithm**

exec {MAIN}:=
BEGIN

* 1 [ASSUME: (|.x| ge |.y[)] NEXT
if x eql 0 => y _ 1 NEXT

if y eql 0 => x _ 0

END

END

<sdvs.1> mpisps
path name[testproofs/manual/isps/extest.ispl: testproofs/manual/isps/extest3.isp
starting mark point[]: <CR>
ending mark points[]: <CR>
preconditions{]: <CR>
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unique name level[i]: <CR>
Parsing ISPS file -- "testproofs/manual/isps/extest3.isp"

Markpoint-to-markpoint translating ISPS file
-- "testproofs/manual/isps/extest3.isp"

[sd pre: (|.x| ge |.y| & .sd.machine\upc = sd.machine\started,|.x| = 0)
mod: (y,sd.machine\upc)
post: (#sd.machine\upc = sd.machine\halted,#y = 0(14) ¢ 1(2))]

[sd pre: (|.x| ge |.y| & .sd.machine\upc = sd.machine\started,
|.x| = 0,].y] = 0)
mod: (x,sd.machine\upc)
post: (#sd.machine\upc = sd.machine\halted,#x = 0(16))]

[sd pre: (|.x| ge |.y| & .sd.machine\upc = sd.machine\started,
|x] == 0,].3] *= 0)
mod: (sd.machine\upc)
post: (#sd.machine\upc = sd.machine\halted)]

<sdvs.2> ppsd
state delta: mpisps
file name: extest3.isp
starting mark point[]: <CR>
ending mark points[]: <CR>
preconditions[]: <CR>

covering(sd.machine,x,y,sd.machine\upc)
declare(x,type(bitstring,16))
declare(y,type(bitstring,16))
[sd pre: (|.x| ge |.y| & .sd.machine\upc = sd.machine\started,|.x| = 0)
mod: (y,sd.machine\upc)
post: (#sd.machine\upc = sd.machine\halted,#y = 0(14) € 1(2))]
[sd pre: (|.x| ge |.y| & .sd.machine\upc = sd.machine\started,
|.x| == 0,].y| = O
mod: (x,sd.machine\upc)
post: (#sd.machine\upc = sd.machine\halted,#x = 0(16))]
[sd pre: (|.x| ge |.y| & .sd.machine\upc = sd.machine\started,
|.x] == 0,].y] = 0)
mod: (sd.machine\upc)
post: (#sd.machine\upc = sd.machine\halted)]

3.3.2 External and Auxiliary Variables

External and auxiliary variables are introduced into ISPS descriptions in order to extend
the possibilities of expression, not just to facilitate expression. These extended possibilities
are reflected in the translation of the description into state deltas and the methods of proof
needed to verify claims of implementation between two levels of description.

Both external and auxiliary variables satisfy specification needs arising from real problems.
External variables have their intuitive motivation in “input variables,” that is, in variables
whose value may change at random, upon receipt of a signal from some external source
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(external with respect to the level of description in which they appear designated as “ex-
ternal”), in addition to any changes explicitly required by that description.

The idea for auxiliary variables is found in the concept of temporary variables. Generally
speaking, the designation “auxiliary” is used for any variable whose contents are not to
be relied on, or even considered, by any “outside” observer (although, of course, they may
be essential to the internal workings of the description). When viewed from the outside,
auxiliarly variables are not considered to be part of the state of the system.

3.3.3 External Variables

The suffix /fezt may be appended to any ISPS declaration, e.g.
X<15:0> ezt

This indicates that the variable may change value during any state change explicitly allowed
by the ISPS program. There is no need to change the syntax or semantics of state deltas to
account for the external variables. An ISPS program with ezt is translated into state deltas
just as before, with the addition that the external variables appear in every mod list.

In the case of markpoint-to-markpoint translation, care must be taken, for example, when
there is a case split on an external variable between the starting and ending markpoint.
However, when we take the view that markpoint-to-markpoint translation equals the com-
position of the state deltas representing the translation of the fine-grained state changes,
the problem of external variables is just a subcase of the general problem (remember that
the only special handling that external variables need is to be placed in every mod list).

For example, consider the machine (assumed below to be in file extest4.isp):
sd.machine {US} :=
BEGIN

**Registers**

x<15:0>,
y<15:0>!'ext

*xAlgorithm#*

exec {MAIN}:=
BEGIN

if x eql 0 => y - 1 NEXT
if yeql 0 => x _ 0

END

END

and consider the state delta

<sdvs.i1> ppsd
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state delta: extsd

[sd pre: (|.x| = 1,isps(extest4.isp),
.sd.machine\upc = sd.machine\started)
mod: (all)
post: (#sd.machine\upc = sd.machine\halted,|#x| = 0 or [#x| = 1)]

The following proof works:

<sdvs.1> pp
object: extproof

proof extproof:

prove extsd
proof:
(apply,
cases |.y| = 0
then proof:
(apply 3,
close)
else proof:
(apply 2,
close))

<sdvs.1> nterpret
proof name: extproof

open -- [sd pre: (|.x]| = 1,isps(extest4.isp),
.sd.machine\upc = sd.machine\started)
mod: (all)
post: (#sd.machine\upc = sd.machine\halted,
|#x| = 0 or |#x| = 1)]

apply —- [sd pre: (.sd.machine\upc = sd.machine\started,
x == 0(2) ~= 1(1))
mod: (sd.machine\upc,y)
post: ([tr {in SD.MACHINE} IF;1)]

cases —- |.y| = 0

open —- [sd pre: (|.y| = 0)
comod: (all)
mod: (all)
post: (#sd.machine\upc = sd.machine\halted,
|#x] = 0 or |#x| = 1)]

apply -- [sd pre: (.y == 0(2) = 1(1))
comod: (sd.machine\upc)
mod: (sd.machine\upc,y)
post: ([tr {in SD.MACHIKE} X_...;])]

apply -- [sd pre: (true)
comod: (sd.machine\upc)

160




mod:
post:

(sd.machine\upc,x,y)
(#x = 0(14) € 0(2),
[tr @SD.MACHINE\halted])]

apply -- [sd pre: (true)
comod: (sd.machine\upc)
mod: (sd.machine\upc,y)
post: (#sd.machine\upc = sd.machine\halted)]
close -- 3 steps/applications

open -- [sd pre: (“(|].y| = 0))
comod: (all)
mod: (all)

post: (#sd.machine\upc =

sd.machine\halted,

[#x| = 0 or |#x| = 1)]

apply -- [sd pre:

(.y == 0(2) ~= 1(1))

comod: (sd.machine\upc)
mod: (sd.machine\upc,y)
post: ([tr @SD.MACHINE\halted})]

apply -- [sd pre:
comod:

(true)
(sd.machine\upc)

mod:
post:

(sd.machine\upc,y)
(#sd.machine\upc = sd.machine\halted)]
close -~ 2 steps/applications

(true)

(all)

(all)

(#sd.machine\upc = sd.machine\halted,
|#x| = 0 or |#x| = 1)]

join -- [sd pre:
comod:

mod:

post:

close -- 2 steps/applications

3.3.4 Auxiliary Variables

The suffix faur may be appended to any ISPS declaration, e.g.
X<15:00 Nauz.

The difference between the semantics of such an annotated ISPS program and the semantics
of an unannotated one becomes apparent only when one considers the interaction of the
programs with another level. Auxiliary variables in target or host cannot play a role in
the mapping. Thus, target auxiliary variables are not mapped from, and host auxiliary
variables are not mapped to. Auxiliary variables do not appear in state deltas that are the
result of mpisps.

Consider the machine

aux.machine {US} :=
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BEGIN
**Registers#**

x<15:0>,
y<15:0>,
temp<15:0>!!aux

**Algorithm**

exec {MAIN}:=

BEGIN

temp - x next
x _ y next

y - temp

END

END

<sdvs.1> ppsd
state delta: mpisps
file name: auxztest.isp
starting mark point[]: <CR>
ending mark points[]: <CR>
preconditions[]: <CR>

covering (aux.machine,x,y,aux.machine\upc)
declare(x,type(bitstring,16))
declare(y,type(bitstring,16))
[sd pre: (.aux.machine\upc = aux.machine\started)
mod: (y,x,aux.machine\upc)
post: (#aux.machine\upc = aux.machine\halted,#y = .x,#x = 52)

Now we construct a theorem saying that auztest implements itself.

<sdvs.1> implementation
theorem name: auz.thm
upper-level spec: mpisps
file name: auxztest.isp
starting mark point[l: <CR>
ending mark points[]: <CR>
preconditions[J: <CR>
lower-level spec: isps
file name: auxztest.isp
mappings: mapping(.z, .z), mapping(-y, .y), mapping(.aux.machine\upc,.aux.machine\upc)
constants[]: <CR>
invariants[l: <CR>

Implementation theorem ‘aux.thm’ created.

<sdvs.1> ppsd
state delta: auz.thm

[sd pre: (isps(auxtest. isp),
aux.thm.places = union(x,y,aux.machine\upc ,aux .machine\aux),

aux.thm.mapped.places = union(x,y,aux.machine\upc),
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aux.thm.unmapped.places
= diff(aux.thm.places,aux.thm.mapped.places))
post: (alldisjoint(x,y,aux.machine\upc),
[sd pre: (true)
comod: (all)
post: (forall al (lh(al) = 16 --> lh(al) = 16),
forall al (1h(al) = 16 --> 1lh(al) = 16))],
[sd pre: (.aux.machine\upc = aux.machine\started)
mod: (y,x,aux.machine\upc,aux.thm.unmapped.places)
post: (#aux.machine\upc = aux.machine\halted,#y = .x,

#x = .y)1)]

<sdvs.1> prove
state deltall: auz.thm
proof[l: <CR>

open -~ [sd pre: (isps(auxtest.isp),
aux.thm.places
= union(x,y,aux.machine\upc,aux.machine\aux),
aux.thm.mapped.places = union(x,y,aux.machine\upc),
aux.thm.unmapped.places
= diff (aux.thm.places,aux.thm.mapped.places))
post: (alldisjoint(x,y,aux.machine\upc),
[sd pre: (true)
comod: (all)
post: (forall al (1lh(al) 16 --> 1h(al) = 16),
forall al (lh(al) = 16 --> 1lh(al) = 16))],
[ed pre: (.aux.machine\upc = aux.machine\started)
mod: (y,x,aux.machine\upc,aux.thm.unmapped.places)
post: (#aux.machine\upc = aux.machine\halted,
ty = .x,#x = .y)DD]

Complete the proof.

<sdvs.1.1> whynotgoal
simplify?[no]: <CR>

g(2) [sd pre: (true)
comod: (all)
post: (forall at (lh(al) = 16 --> 1lh(al) = 16),
forall ai (lh(al) = 16 --> 1lh(al) = 16))]
g(3) [sd pre: (.aux.machine\upc = aux.machine\started)
mod: (y,x,aux.machine\upc,aux.thm.unmapped.places)
post: (#aux.machine\upc = aux.machine\halted,#y = .x,#x = .y)]

<sdvs.1.1> prove
state deltall: g¢
number: 2
proof[]: <CR>

open -- [sd pre: (true)
comod: (all)
post: (forall al (lh(al) = 16 --> lh(al) = 16),
forall al (lh(al) = 16 --> 1lh(al) = 16))]
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close -- 0 steps/applications
Complete the proof.

<sdvs.1.2> prove
state deltal[l: ¢
number: 3¢
proof[l: <CR>

open -- [sd pre: (.aux.machine\upc = aux.machine\started)
mod: (y,x,aux.machine\upc,aux.thn.unmapped.places)
post: (#aux.machine\upc = aux.machine\halted,#y = .x,

#x = .y)]
Complete the proof.
<sdvs.1.2.1> *
apply -- [sd pre: (.aux.machine\upc = aux.machine\started)

mod: (aux.machine\upc,temp)
post: (d#temp = .x,
[tr {in AUX.MACHIFE} X_...; Y_...;1)]

apply -~ [sd pre: (true)
comod: (aux.machine\upc)
mod: (aux.machine\upc,x)
post: (¥x = .y,
[tr {in AUX.MACHINE} Y_...;1)]

apply -- [sd pre: (true)
comod: (aux.machine\upc)
mod: (aux.machine\upc,y)
post: (#y = .temp,
[tr QAUX.MACHINE\halted])]

apply -- [sd pre: (true)
comod: (aux.machine\upc)
mod: (aux.machine\upc)
post: (#aux.machine\upc = aux.machine\halted)]

close -- 4 steps/applications

close -- 2 steps/applications

3.4 THE NEW ISPS TRANSLATOR

The new translator can be accessed by the command ispstr. The associated predicate is
newisps. We present an example comparing the new with the old translator on the ISPS

program inc/.isp:

! incl1.ISP

inc1 {US} := (

164




**Registers*

x<7:0>

*xProcesses#**

inc1 {MAIN} := BEGIN

REPEAT BEGIN

loopl:= x_x+1
END

END
)

First, using the new translator:

<sdvs.1> pp
object: newincO.sd

[sd pre: (newisps(incl.isp))
post: (newisps(incil.isp))]

We would expect this to be true and trivially provable, and it is with the new translator:

<sdvs.1> setflag
flag variable: autoclose
on or off[off]l: off

setflag autoclose —-- off

<sdvs.2> prove
state deltall: newinc0.sd
proof[l: <CR>

open —- [sd pre: (newisps(incl.isp))
post: (newisps(inci.isp))]

Complete the proof.
<sdvs.2.1> goals

g(1) covering(incl,inc1\upc,x)
g(2) declare(x,type(bitstring,8))
g(3) [sd pre: (.inci\upc = incl\started)
comod: (all)
mod: (inc1\upc)
post: ([ispstr t(incl) inci ...1)]

<sdvs.2.1> whynotgoal
simplify?[nol: <CR>
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Type ‘close’.

The goal is TRUE.
<sdvs.2.1> close
close -- 0 steps/applications
<sdvs.3> setflag

flag variable: autoclose

on or offfon]: on

setflag autoclose -- on
With the old translator, things are not so trivial:
<sdvs.1> pp

object: newincl.sd

[sd pre: (isps(incl.isp))
post: (isps(incl.isp))]

<sdvs.1> prove
state deltall: newincl.sd

proof[}: <CR>

open —- [sd pre: (isps(inci.isp))
post: (isps(incl.isp))]

Complete the proof.

<sdvs.1.1> whynotgoal
simplify?[nol: <CR>

g(3) [tr @INC1\STARTED {in INC1} REPEAT;]
g(4) [tr GLOOP1 {in INC1} X_...; REPEAT;]

In fact, it appears that this is unprovable in SDVS 12.




4 INTERACTION WITH ADA

This chapter describes the ability of SDVS 12 to deal with Ada programs and their proofs
of correctness with respect to specifications written in state deltas. We first describe the
subset of the Ada language that SDVS can currently handle: “SDVS 12 Ada.” Then we give
the proof rules that have been added to SDVS in order to reason about programs written
in that language. Finally, we give some example proofs using those commands.

The additional implemented translational capability for Ada that SDVS 12 has over SDVS
11 spans the following Ada language features: subtypes of scalar types, integer type defini-
tions, explicit type conversions, the generic function UNCHECKED_CONVERSION, and
length clauses (representation clauses specifying an amount of storage associated with a
type). In other words, what we call SDVS 12 Ada here is really what used to be called
Stage 3 Ada, plus for loops and the elimination of existential quantification of declared
variables (which formed SDVS 11 Ada or “Stage 4 Ada”), plus the above-mentioned fea-
tures.

In addition, research has been performed on translating (and proving claims about) pro-
grams with real (floating) types ([46]), access types ([47]), and recursive programs ([48] and
[40]), but these capabilities are not part of SDVS yet.

We are often interested in translating an Ada program in such a way that the resulting
state deltas have invariants equivalent to (#all = .all), which essentially means that the
execution happens in discrete steps. This is because in order to prove even simple safety
properties of a program, the symbolic execution of that program in SDVS must contain
only those states that are necessitated by the program. When weaknezt_tr flag is on, the
language translators of SDVS behave in this manner.

The user interface has been enhanced by the addition of a prototype X-Window capability
for viewing the Ada code as it is being symbolically executed in the SDVS window. This
feature is not part of the distributed SDVS 12 system, but at this time must be requested
separately. The user types load-zpp at the Lisp prompt in order to turn on the Ada window.
Then the specific line of Ada code that is being reasoned about or translated is highlighted.
The Ada window cannot be resized or scrolled when SDVS is writing to it, although you
may do this when SDVS is passive. If you intend to use this feature, all translation and
Adalemma creation must be done while the Ada window is on.

More details and examples can be found in [14], [41], and [49] - [51].

4.1 TR: TRANSLATOR FROM ADA TO STATE DELTAS

As mentioned above, the current Ada capability of SDVS includes Stage 3 Ada, plus for
loops and the elimination of existential quantification of declared variables, plus subtypes
of scalar types, integer type definitions, explicit type conversions, the generic function
UNCHECKED_CONVERSION, and length clauses.

SDVS 12 Ada is a nontrivial subset of Ada. It is the sixth (after Core Ada, Stage 1 Ada,
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Stage 2 Ada, Stage 3 Ada, and SDVS 11 Ada) of a series of Ada language subsets of
increasing semantic complexity whose translators have been implemented in SDVS. Core
Ada was intended to be the basis of a rapid initial adaptation of SDVS to Ada, providing
early confirmation of technically sound but untested techniques: formal (Ada) translator
specification and specification-directed translator implementation.

4.1.1 Ada Language Subsets

The features of the six Ada subsets are as follows:

Core Ada: scalar assignment statements and simple expression evaluation; straight-line
program flow; branching (if, case), and iteration (loop) statements; simple input and
output (through the GET and PUT procedures); block structure, scoping and variable
declarations; simple packages containing only variable declarations and other simple
packages; use clauses; basic data types (integer, boolean, array).

Stage 1 Ada: the features of Core Ada, plus nonscalar assignment, subprogram declara-
tions and subprogram calls, package bodies, record types, and enumeration types.

Stage 2 Ada: the features of Stage 1 Ada, plus user-defined exceptions and the character
data type.

Stage 3 Ada: the features of Stage 2 Ada, plus context clause declarations (for certain
1/0 subpackages of the STANDARD package), rudimentary overload resolution for
subprogram arguments, the string data type, and a preliminary version of floating-
point types and operations.

SDVS 11 Ada: the features of Stage 3 Ada, plus for loops.

SDVS 12 Ada: the features of SDVS 11 Ada, plus subtypes of scalar types, integer type
definitions, explicit type conversions, instances of the generic function
UNCHECKED_CONVERSION, and length clauses (representation clauses specifying
an amount of storage associated with a type).

Core Ada posed no fundamental technical obstacles to interfacing it to SDVS, and the
technical challenges inherent in the adaptation of successive Ada stages to SDVS have been
successfully overcome. On the other hand, it is presently not clear how to interface certain
advanced Ada language features, such as generics, real-time features, and tasking.

4.1.2 SDVS 12 Ada Language Features

A more detailed description of SDVS 12 Ada language features now follows.

These features are partitioned into four groups: statements, expressions, declarations, and
data types. More details and examples can be found in [50].

168




Statements

The kinds of statements included in SDVS 12 Ada are null, assignment, conditional (if),
case, loop (while loops with and without a condition and for loops over integer or enumer-
ation type ranges), block, exit, simple input (GET), simple output (PUT), subprogram
call and return, and raise statements.

Expressions

A representative class of Ada expressions is included in SDVS 12 Ada. These expressions
contain simple names (identifiers), and dotted names (e.g. pkg.subp.blk.id, where pkg
is the name of a package, subp the name of a subprogram, blk the name of a block, and
id is a simple name). Other forms of names in SDVS 12 Ada denote array and record
components, and function calls. Also included in expressions are numeric and boolean
constants, short-circuit boolean operators (and then, or else), relational operators (=,
/=, <, <=, >, >=), binary boolean and arithmetic operators (and, or, xor, +,—, *, /,
mod, rem, **), and unary arithmetic and boolean operators (-, abs, not). SDVS 12
Ada expressions can contain aggregates. These aggregates must consist only of positional
component associations (an array aggregate) or named component associations (a record

aggregate).

Declarations

SDVS 12 Ada includes declarations of objects that can be constants and variables of scalar,
one-dimensional array, string, record, and enumeration types. Also included are package
specifications, package bodies, “with” clauses (the only packages recognized in such clauses

are the STANDARD packages TEXT_IO, TEXT_IO.INTEGER_IO, and TEXT_10.FLOAT_IO;
the only subprograms made available through these subpackages are GET and PUT),
“use” clauses, subprogram (i.e., procedure and function) specifications and bodies, and
user-defined exceptions and exception handlers.

Data Types

SDVS 12 Ada includes the following basic data types: integer, boolean, character (see
Section 9.9 for details), string, and float. Arrays in SDVS 12 Ada are limited to be one-
dimensional; the elements of these arrays can have any SDVS 12 Ada type. Thus multi-
dimensional arrays are synthesized in a “curried” way from one-dimensional ones. SDVS
12 Ada has record and enumeration types, where record fields can have any SDVS 12 Ada
type. SDVS 12 Ada also encompasses subtypes of scalar types, and integer type definitions.
Furthermore, explicit type conversions between integer types are allowed.

Miscellaneous

SDVS 12 Ada includes instances of the generic function UNCHECKED_CONVERSION,
as well as length clauses (representation clauses specifying an amount of storage associated
with a type).
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4.2 COMMANDS DEALING WITH ADA

SDVS 12 has the ability to prove theorems of input-output total correctness® or safety
for SDVS 12 Ada programs. This section demonstrates the construction of theorems to
be proved, describes the contents of these theorems, and then gives some hints on proof

strategy.

The user can run some example proofs by typing run-test-proofs *ada-tests*.

4.2.1 Theorems

Theorems stating total correctness properties for SDVS 12 Ada programs are essentially
input /output assertions. The notations for the input and output of SDVS 12 Ada programs
are described in the mext section. Theorems about SDVS 12 Ada programs are always
written in the state delta language, which currently provides the only specification language
for Ada in SDVS. The formats of typical state deltas specifying total correctness and safety
properties for an SDVS 12 Ada program are shown below.

First, the total correctness case:

[sd pre: (ada(adaprog.ada),<initial correctness requirements>)
comod: (all)

mod: (all)
post: (<final correctness requirements>, terminated(mainprog))]

Two predicates are introduced in the state delta shown above. The formula ada(adaprog.ada)
represents the translation of the SDVS 12 Ada program in the file adaprog.ada into the
language of the state delta logic. The formula terminated(mainprog) is asserted when
SDVS symbolically executes to the end of the SDVS 12 Ada procedure mainprog, providing
explicit representation of program termination.

Now we consider the nonterminating safety case. We want to show that there exists a time
when some triggering condition holds, and thereafter a safety requirement is true. The
safety state delta is

[sd pre: (true)
comod: ()
mod: ()
post: (<safety requirement>)]

and the safety claim about the Ada program is

6 The phrase “total correctness” means correct and terminating.
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[sd pre: (ada(adaprog.ada),<initial correctness requirements>)
comod: (all)
mod: (all)
post: (<triggering condition>, <safety state delta>)]

We put off an example until Section 8.5, since knowledge of state deltas with invariants is
necessary first.

The ada predicate is given meaning only by the proof command adatr, which takes as its
only argument the name of a file to be translated. The execution of this command causes the
translation of the file (assuming the file contains a syntactically valid SDVS 12 Ada program)
into the state delta logic, which yields formulas describing the predefined environment of
the SDVS 12 Ada program, in addition to a single state delta for the symbolic execution of
the program. The remaining SDVS 12 Ada proof command, applydecls, is discussed below.

4.2.2 Input and Output

Input and output buffers (arrays) are part of the predefined environment for all SDVS 12
Ada programs. Translating a file containing an Ada program prog by the adatr proof
command yields SDVS 12 declare formulas for four ob jects, described below.

stdin is an arbitrary size, l-origin array of polymorphic type that holds input values for
prog.

stdin\ctr is an integer counter, initialized to 1, that indexes stdin for the get statement.

stdout is an arbitrary size, 1-origin array of polymorphic type that holds output values
for prog.

stdout\ctr is an integer counter, initialized to 1, that indexes stdout for the put state-
ment.

Conditions on the sizes of the input and output buffers and the contents of the input buffer
are typical correctness requirements held in the preconditions of state deltas representing
SDVS 12 Ada theorems. Conditions relating the contents of the output buffer to those of
the input buffer are typical correctness requirements held in the postconditions of those
theorems. For example, the state delta shown below claims the total correctness property
that the example program adaprog.ada has two elements in its input and output buffers,
and terminates with the values in its input buffer written into its output buffer.

[sd pre: (ada(adaprog.ada),range(stdin) = 2,range(stdout) = 2)
comod: (all)
mod: (all)
post: (#stdout[1] = .stdin[1],#stdout[2] = .stdin[2],
terminated(adaprog))]
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4.2.3 Proof Strategy

Now that Ada theorems and their contents have been introduced, a strategy for developing
their proofs may be discussed. Proofs in SDVS that involve dynamic properties” of Ada
programs proceed by symbolic execution. The user develops proofs by integrating symbolic
execution commands with commands that prove properties about the current state. Thus,
at any point in an Ada proof, there is an analogous execution point in the corresponding
Ada program.

A typical step the prover wishes to make (in fact, the first step) is to elaborate Ada decla-
rations. Elaborating a declaration consists of asserting and symbolically executing a state
delta with those declarations in the postcondition. This involved multiple proof commands
in SDVS 6 for each declaration. For this reason, the proof command applydecls was in-
troduced to SDVS 7 (and retained in all later versions). This command elaborates the
declarations; it generates an error if the current symbolic execution point does not immedi-
ately precede an SDVS 12 Ada declaration. The command go does the work of applydecls
and then continues to execute state deltas until symbolic execution cannot proceed for some
reason (for example, the declaration had a conditional initialization).

Subprogram calls are handled by the following sequence of actions:

1. declare formal parameters

2. assign input values to IN parameters

3. assert .pc=at(fully.qualified.subprogram.name)

4. execute body

5. assert .pc=exited(fully.qualified.subprogram.name)
6. assign output values to OUT parameters

7. undeclare formal parameters

The symbolic execution of straight-line code can be accomplished by one of the proof com-
mands available for that purpose, such as until, ezecute, and apply. The symbolic execution
of conditionals (if-then-else statements) may be accomplished by the cases or subcases
proof commands, which split the proof into two cases, the then case and the else case.
The symbolic execution of SDVS 12 Ada case statements (multi-way conditionals) may be
accomplished by the mcases proof command. The only dynamic SDVS 12 Ada constructs
remaining are the (while and for) loop statements, discussed below.

The symbolic execution of SDVS 12 Ada loops is performed by induction, through the proof
command induct. A basic recurse command for the symbolic execution of Ada programs

"The static properties of Ada programs are fairly uninteresting. They involve only the predefined envi-
ronment discussed in the previous section.
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with recursive procedures has been implemented in an experimental fashion, but is not yet
available in SDVS 12.

As one can see, the structure of an SDVS 12 Ada proof roughly assumes the structure of
the program it proves. In fact, the dynamic structure of the proof will usually have a one-
to-one correspondence with the structure of the Ada program being considered. However,
writing the dynamic portion of the proof is usually not the difficult part of the proof. The
difficult part is proving static claims about the state without full decision procedures for
the domains in question.

Finally, we have implemented a “statement marking” capability for SDVS 12 Ada. One
sets a mark in a comment line just before the statement being marked, using the notation
“--@” (no spaces), e.g.

--@ foo
x :=1;

During symbolic execution, this will yield “.pc = at(foo)” at the point where the state
delta(s) representing the marked statement become usable, so that a go ... until .pc =
at(foo) command can be given to execute symbolically to the particular point in the Ada
program just before the marked statement.

Any statement can be so marked, and the program remains acceptable to an Ada compiler.
A mark can be turned into a regular (uninterpreted in SDVS) comment simply by inserting
a space between the “~--” and the “@”, or by beginning the whole line with an extra pair of
hyphens (even one extra will do, so long as it’s not followed by a space).

4.3 EASY EXAMPLE OF AN ADA PROOF

First we give the proof of correctness of a very trivial Ada program. Consider the program
triv:

with text_io; use text_io;
with integer_io; use integer_io;

procedure triv is
x : integer; -- inputs
begin
get(x);
x :=x + 1;
put (x);
end triv;

We translate it to state deltas by the adatr command:

<sdvs.1> adatr
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path name[testproofs/foo.ada]: testproofs/manual/ada/triv.ada
Reading parse tree file for Stage 4 Ada file -- "triv.ada"

Translating Stage 4 Ada file -- "testproofs/manual/ada/triv.ada"

<sdvs.2> pp
object: ada
file name[triv.adal: triv.ada

alldisjoint (triv,.triv)
covering(.triv,triv\pc,stdin,stdin\ctr,stdout,stdout\ctr)
declare(stdin,type(array,1,range(stdin),type (polymorphic)))
declare(stdin\ctr,type(integer))

.stdin\ctr = 1

declare(stdout ,type(array,1,range(stdout),type(polymorphic)))
declare(stdout\ctr,type(integer))

.stdout\ctr = 1

Now we create a state delta that claims that the value of x (the standard input) will go
from 2 to 3, and be recorded in the standard output:

<sdvs.2> createsd
name: triv.sd
[SD pre: ada(triv.ada), .stdin[1]=2
comod[]: all
mod[]: all
post: #stdout[l] = 3, terminated(triv)

We now prove triv.sd by repeated application:

<sdvs.2> prove
state deltall: triv.sd
proof[l: <CR>

open -- [sd pre: (ada(triv.ada),.stdin{1] = 2)
comod: (all)
mod: (all)
post: (#stdout(1] = 3,terminated(triv))]

Complete the proof.
<sdvs.2.1> usable

u(1) [sd pre: (true)
comod: (all)
mod: (triv\pc)
post: (<adatr procedure triv is
X : integer
begin
get (x);
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end triv;>)]

No usable quantified formulas.

<sdvs.2.1> apply
sd/number [highest applicable/oncel: <CR>

apply -- [sd pre: (true)
comod: (all)
mod: (triv\pc)
post: (<adatr procedure triv is
x : integer
begin
get (x);

end triv;>)]
<sdvs.2.2> wusable

u(1) [sd pre: (true)
comod: (all)
mod: (triv\pc,triv)
post: (alldisjoint(triv,.triv,x),covering(#triv,.triv,x),
declare(x,type(integer)),
<adatr x : integer>)]

No usable quantified formulas.
<sdvs.2.2> applydecls

apply -- [sd pre: (true)
comod: (all)
mod: (triv\pc,triv)
post: (alldisjoint(triv,.triv,x),covering(#triv,.triv,x),
declare(x,type(integer)),
<adatr x : integer>)]

apply -- [sd pre: (true)
comod: (all)
mod: (triv\pc,triv)
post: (alldisjoint(triv,.triv,get\item),
covering(#triv,.triv,get\item),
declare(get\item, type(polymorphic)),
<adatr get (x)>)]

applydecls -- declaration elaboration complete.
<sdvs.2.4> usable
u(1) [sd pre: (true)

comod: (all)
mod: (triv\pc)
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post: (#triv\pc = at(standard.text_io.get),
<adatr get (x)>)]

No usable quantified formulas.

<sdvs.2.4> apply
sd/number [highest applicable/oncel: <CR>

apply -- [sd pre: (true)
comod: (all)
mod: (triv\pc)
post: (#triv\pc = at(standard.text_io.get),
<adatr get (x)>)]

<sdvs.2.5> usable

u(1) [sd pre: (.triv\pc = at(standard.text_io.get))
comod: (all)
mod: (triv\pc,stdin\ctr,get\item)
post: (#get\item = .stdin[.stdin\ctr],
#stdin\ctr = .stdin\ctr + 1,
#triv\pc = exited(standard.text.io.get),
<adatr null;>)]

No usable quantified formulas.

<sdvs.2.5> apply
sd/number fhighest applicable/oncel: <CR>

apply -- [sd pre: (.triv\pc = at(standard.text io.get))
comod: (all)
mod: (triv\pc,stdin\ctr,get\item)
post: (#get\item = .stdin[.stdin\ctr],
#stdin\ctr = .stdin\ctr + 1,
#triv\pc = exited(standard.text_io.get),
<adatr null;>)]

<sdvs.2.6> usable

u(1) [sd pre: (true)
comod: (all)
mod: (triv\pc,x)
post: (#x = .get\item,
<adatr get (x)>)]

No usable quantified formulas.

<sdvs.2.6> apply
sd/number [highest applicable/once}: <CR>

apply -- [=d pre: (true)
comod: (all)
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mod: (triv\pc,x)
post: (#x = .get\item,
<adatr get (x)>)]

<sdvs.2.7> usable

u(1) [sd pre: (true)
comod: (all)
mod: (triv\pc,triv,get\item)
post: (covering(.triv,#triv,get\item),undeclare(get\itenm),
<adatr get (x)>)]

No usable quantified formulas.

<sdvs.2.7> apply
sd/number [highest applicable/oncel: <CR>

apply -- [sd pre: (true)
comod: (all)
mod: (triv\pc,triv,get\item)
post: (covering(.triv,#triv,get\item),undeclare(get\item),
<adatr get (x)>)]

<sdvs.2.8> usable

u(1) [sd pre: (true)
comod: (all)
mod: (triv\pc,x)
post: (#x = .x + 1,
<adatr x :=x + 1;>)]

No usable quantified formulas.

<sdvs.2.8> apply
sd/number [highest applicable/oncel: <CR>

apply -- [sd pre: (true)
comod: (all)
mod: (triv\pc,x)
post: (#x = .x + 1,
<adatr x :=x + 1;>)]

We could continue typing applys until the proof (and program) terminates, but the same
effect can also be achieved by the one proof command go:

<sdvs.1> prove
state deltal[l: triv.sd
proof[1: go

open -- [sd pre: (ada(triv.ada),.stdin[1] = 2)

comod: (all)
mod: (all)
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post: (#stdout[1] = 3,terminated(triv))]

apply —- [sd pre: (true)
comod: (all)
mod: (triv\pc)
post: (<adatr procedure triv is
X : integer
begin
get (x);

end triv;>)]

apply -- [sd pre: (true)
comod: (all)
mod: (triv\pc,triv)
post: (alldisjoint(triv,.triv,x),covering(#triv,.triv,x),
declare(x,type(integer)),
<adatr x : integer>)]

apply -- [sd pre: (true)
comod: (all)
mod: (triv\pc,triv)
post: (alldisjoint(triv,.triv,get\item),
covering(#triv, .triv,get\item),
declare(get\item, type(polymorphic)),
<adatr get (x)>)]

apply -- [sd pre: (true)
comod: (all)
mod: (triv\pc)
post: (#triv\pc = at(standard.text.io.get),
<adatr get (x)>)]

apply -- [sd pre: '(.triv\pc = at(standard.text_io.get))
comod: (all)
mod: (triv\pc,stdin\ctr,get\item)
post: (#get\item = .stdin[.stdin\ctr],
#stdin\ctr = .stdin\ctr + 1,
#triv\pc = exited(standard.text_io.get),
<adatr null;>)]

apply —- [sd pre: (true)
comod: (all)
mod: (triv\pc,x)
post: (#x = .get\item,
<adatx get (x)>)]

apply -- [sd pre: (true)
comod: (all)
mod: (triv\pc,triv,get\item)
post: (covering(.triv,#triv,get\item),undeclare(get\item),
<adatr get (x)>)]

apply -- [sd pre: (true)
comod: (all)
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mod: (triv\pc,x)
post: (#x = .x + 1,
<adatr x :=x + 1;>)]
apply -- [sd pre: (true)
comod: (all)
mod: (triv\pc,triv)
post: (alldisjoint(triv,.triv,put\item),
covering(#triv,.triv,put\item),
declare(put\item, type(polymorphic)),
<adatr put (x)>)]
apply -- [sd pre: (true)
comod: (all)
mod: (triv\pc,put\item)
post: (#put\item = .x,
<adatr put (x)>)]
apply ~-- [sd pre: (true)
comod: (all)
mod: (triv\pc)
post: (#triv\pc = at(standard.text.io.put),
<adatr put (x)>)]
apply -- [sd pre: (.triv\pc = at(standard.text.io.put))
comod: (all)
mod: (triv\pc,stdout[.stdout\ctr],stdout\ctr)
post: (#stdout[.stdout\ctr] = .put\itenm,
#stdout\ctr = .stdout\ctr + 1,
#triv\pc = exited(standard.textio.put),
<adatr null;>)]
apply -- [sd pre: (true)
comod: (all)
mod: (triv\pc,triv,put\item)
post: (covering(.triv,#triv,put\item),undeclare(put\item),
<adatr put (x)>)]
apply -- [=sd pre: (true)
comod: (all)
mod: (triv\pc,triv,x)
post: (covering(.triv,#triv,x),undeclare(x),
<adatr x : integer>)]
apply -- [sd pre: (true)
comod: (all)
mod: (triv\pc)
post: (terminated(triv))]
close -- 15 steps/applications
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4.4 NONTRIVIAL EXAMPLE OF AN ADA PROOF

We give here an example of a proof of an Ada program containing enumeration types,
records, in-out parameters, a procedure called within a loop, and a function. In the next
section we consider offline characterization and proving lemmas about Ada procedures. In
the final section we present another example proof, that of an SDVS 12 Ada program with
packages and the “use” clause.

The program discussed in this section is called WorkWeek, and it calculates the number of
hours worked and rested in one week. See Figures 4 and 5.

The state delta to be proven is workweek.sd:

[sd pre: (ada(workveek.ada),range(stdout) = 1)
mod: (all)
post: (#stdout[1] = 1,terminated(workweek))]

The proof workweek.proof (see Figures 6 and 7) is by induction, with two extra complica-
tions: First, the universe of declared places changes inside the loop when the procedure is
called. This necessitates the line let loop.universe = .workweek in the proof. Second, there
must be a proof by enumerating subcases that for i le 5, (elt(.week/.i],.days.saturday)).

4.5 OFFLINE CHARACTERIZATION

The Ada offline characterization facility comprises three commands:

e the createadalemma command, which defines a lemma about an Ada subprogram
(procedure or function), and which collects other necessary descriptive information
from the user;

e the proveadalemma command, which sets up an environment within which the state
delta of the lemma can be proved — this must be at the top level of symbolic execution,
and we do not allow lemmas dependent on an existing context; and

o the invokeadalemma command, which uses a previously created lemma to construct
a usable state delta, including the substitution of an actual program continuation for
the unspecified (null) continuation, and the application of the resulting state delta.

A fourth command adasubprogenv (a query command newly implemented in SDVS 12) is
quite useful in connection with Ada offline characterization. It displays the mapping of fully
qualified program names to uniquely qualified place names for all places constituting the
environment for the proof of an adalemma about a subprogram. This assists the user to
specify correctly these places in the statement and proof of the adalemma. In the absence
of such a mapping, for a large program it can be difficult for the user to predict, simply by
manual inspection of the Ada source code, the unique place names that will be automatically
generated by the translator for the adalemma proof.
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with text_io; use text_io;
with integer_ic; use integer_io;

PROCEDURE WorkWeek IS

TYPE days IS

(monday, tuesday, wednesday, thursday, friday,

saturday, sunday);

TYPE time IS
RECORD
work : integer;
rest : integer;
END record;

veek : ARRAY(1..7) OF days;

divlabor : time;

PROCEDURE Assign.Time (day : IN days;

work, rest :

BEGIN
IF day < saturday
THEN BEGIN
work := work + 8;
rest := rest + 16;
END;
ELSE rest := rest + 24;
END IF;

END Assign.Time;

FUNCTION Check.Divlabor (work, rest :

RETURN integer IS
BEGIN
IF work = 40 AND rest = 128
THEN RETURN 1;
ELSE RETURK 0;
END IF;
END CheckDivlabor;

i : integer;

timecheck : integer;

Figure 4: The

integer)

Program WorkWeek, Part 1
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BEGIN

week(1) := monday;
veek(2) := tuesday;
veek(3) := vednesday;
veek(4) := thursday;
veek(5) := friday;
veek(6) := saturday;
wveek(7) := sunday;

divlabor.work := 0;
divlabor.rest := 0;

i:=1;

WHILE i < 8 LOOP
Assign Time(week(i), divlabor.work, divlabor.rest);

im=1+1;
END LOOP;

timecheck := CheckDivlabor(divlabor.work, divlabor.rest) ;
put (timecheck);

END WorkWeek;

Figure 5: The Program WorkWeek, Part 2
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(adatr "testproofs/manual/ada/workweek.ada",
prove workweek.sd
proof:
(applydecls,
until #i = 1,
letsd ul = u(1),
letsd u2 = u(2),
let loop.universe = .workweek,
induct on: .1
from: 1
to: 8
invariants: (formula(uil),formula(u2),
covering(.workweek,loop.universe),
.record(divlabor,work)
= (if .i le
then (.1 - 1) * 8
else 40),
.record(divlabor,rest)
= (if .i le 5
then (.i - 1) * 16
else 80 + (.i - 6) * 24))
comodlist:  (stdout\ctr,week)
modlist: (diff (all,union(stdout\ctr,week)))
base proof: close
step proof:
cases .1 le 5
then proof:
(subcases .i le §
modlist:
subgoal: (elt (.week[.i],saturday))
then proof:
mcases
(case: 1 le .1 & .11t 2
proof: close
case: 2 le .1 & .11t 3
proof: close
case: 3 le .i & .i 1t 4
proof: close
case: 4 le .i & .11t 5
proof: close
case: 5 le .i
proof: close)

]

Figure 6: The Proof WorkWeek.Proof, Part 1
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else proof: ,
go #i = .i + 1,
close)
else proof:
(subcases .i le 5
modlist:
subgoal: ("~ (elt(.week[.i],saturday)))
then proof:
else proof:
mcases
(case: 6 le .i & .i1t 7
proof: close
case: 7 le .1
proof: close),
go #i = .1 + 1,
close),
go terminated(workweek),
close))

Figure 7: The Proof WorkWeek.Proof, Part 2

Perhaps the best way to discuss these commands is through an example. Below, we give
an annotated SDVS session in which a lemma is created, proved, and invoked. The target
program ztest (Figure 8) is very simple, but adequate for this illustration. It includes a
two-parameter procedure that exchanges the values of its two integer parameters, and a
main program that invokes the procedure.

The lemma will simply assert, in the form of a state delta, the fact that the procedure
exchanges its parameters. It will be invoked twice in the proof of a state delta describing
the effect of the program as a whole, which is simply this: if the input stream consists of
three integers i, j, k, then the output stream will be j, k, 1.

First, we input a file that contains the predefined state delta describing the action of the

test program:

<sdvs.4> pp
object: ztest.sd

[sd pre: (ada(xtest.ada))
comod: (all)
mod: (all)
post: (#stdout{1] = .stdin[2] ,#stdout[2] = .stdin[3],
#stdout[3] = .stdin[1])]

Next, we use the adatr command to parse and translate the program file:
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with text_io; use text_io;

with integer_io; use integer.io;

PROCEDURE xtest IS

X, y, z : integer

= 13

PROCEDURE exchange(a, b : IN OUT integer) IS

c : integer;

BEGIN
c := a;
a := b;
b :=c;
END exchange;
BEGIN
get(x);
get(y);
get(z);
exchange(x, y);
exchange(y, z);
put(x);
put(y);
put(z);
END xtest;

Figure 8: The Program Xtest
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<sdvs.4> adatr
path name[testproofs/manual/ada/xtest.adal: testproofs/manual/ada/xtest.ada

Previously translated Stage 4 Ada file
-- "testproofs/manual/ada/xtest.ada"

We can use the adasubprogenv query command to establish the correspondence between
fully qualified Ada program names for objects constituting the execution environment of
procedure ezchange and the uniquely qualified place names that will be selected by the

SDVS Ada translator to represent these ob jects:

<sdvs.5> adasubprogenv
file name: testproofs/manual/ada/ztest.ada
subprogram name: ezchange
qualified name: ztest.ezchange

fully qualified name --> uniquely qualified name (= place name)

XTEST --> XTEST

XTEST.X --> X

XTEST.Y --> Y

XTEST.Z --> 2

XTEST.EXCHANGE.A --> A
XTEST.EXCHANGE.B --> B
XTEST.EXCHANGE.C --> C
STANDARD.TEXT.I0.STDIN --> STDIN
STANDARD.TEXT_I0.STDIN\CTR --> STDIN\CTR
STANDARD.TEXT.I0.STDOUT --> STDOUT

STANDARD.TEXT_I0.STDOUT\CTR --> STDOUT\CTR

The createadalemma command is used to create the lemma, which will be a certain state
delta:

<sdvs.5> createadalemma
lemma name: erchange.lemma
file name: testproofs/manual/ada/ztest.ada
subprogram name: ezchange
qualified name: ztest.exchange
preconditions[]: <CR>
mod list[l: a.b
postconditions: #a=.b,#b=.a
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I

createadalemma -~ [sd pre: (.xtest\pc = at(xtest.exchange))
comod: (all)
mod: (xtest\pc,a,b)
post: (#a = .b,#b = .a,
#xtest\pc = exited(xtest.exchange))]

Notice that the system supplies additional entries for the state delta besides those given
by the user. To explain these, and indeed the requirements for the usage of the other
commands as well, we need to understand a little more about the symbolic execution of
procedure calls.

In general, the main steps in the symbolic execution of a call to procedure ezchange are as
follows:

1. Declarations of the formal parameters of ezchange are processed: The universe of
places is expanded to include new places a and b.

2. The actual parameters are evaluated, and the resulting values are bound to the places
a and b.

3. The declarations of the local variables of ezchange are processed: The universe of
places is expanded to include a new place c.

4. The body of procedure ezchange is executed symbolically.
5. Undoing 3: The local variables are undeclared, so ¢ is no longer among the places.

6. in out and out formal parameter values are assigned to the corresponding actual
parameters: These values are determined and bound to the appropriate places.

7. Undoing step 1: The formal parameters are undeclared, so a and b are deleted from
the universe of places.

Now we can explain the parts of the state delta of ezchange.lemma. The condition .ztest\pc
= at(ztest.ezchange) becomes true exactly when the symbolic execution of a call to proce-

dure ezchange has completed step 2. Similarly, the condition #ztest\pc = ezited(ztest.exchange)

will be true when the symbolic execution of a call has completed step 5. Also, ztest\pcshould
always be part of the mod list for a state delta about any part of the program ztest. To iden-
tify fully the code to which the lemma refers, one must supply a full path name to the file,
and a fully qualified procedure name. The fully qualified name in this case is rtest.ezchange;
in general, it is a list in order of the containing procedure or block names, ending with the
given procedure, all separated by periods. (If a containing block is unnamed, the parser
supplies an internal name, which in principle could be used in this context; however, it is
recommended that the user name the containing block explicitly.)

The proveadalemma command causes SDVS to set up the environment for proving the
lemma.
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<sdvs.6> proveadalemma
Ada lemma name: exchange.lemma
proof[]: <CR>

open -- [sd pre: (alldisjoint(xtest,.xtest),
covering(.xtest,xtest\pc,x,y,z,stdin,stdin\ctr,stdout,
stdout\ctr),
declare(x,type(integer)) ,declare(y,type(integer)),
declare(z,type(integer)),
declare(stdin, type(polymorphic)),
declare(stdin\ctr,type(integer)),
declare(stdout,type (polymorphic)),
declare(stdout\ctr,type(integer)),
<adatr null;;>)
comod: (all)
mod: (all)
post: ([=d pre: (.xtest\pc = at(xtest.exchange))
comod: (all)
mod: (diff(all,
diff(union(xtest\pc,x,y,z,stdin,
stdin\ctr,stdout,stdout\ctr,a,
b),
union(xtest\pc,a,b))))
post: (#a = .b,#b = .a,
#xtest\pc = exited(xtest.exchange))l)]

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc,xtest)
post: (alldisjoint(xtest,.xtest,a,b),
covering(#xtest, .xtest,a,b),
declare(a,type(integer)) ,declare(b,type(integer)),
<adatr null;>)]

apply -- [2d pre: (true)
comod: (all)
mod: (xtest\pc,a,b)
post: (#a = .a,#b = .b,
<adatr null;>)]

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc)
post: (#xtest\pc = at(xtest.exchange),
<adatr null;>)]

go -- breakpoint reached

open -- [sd pre: (.xtest\pc = at(xtest.exchange))
comod: (all)
mod: (diff(all,
diff(union(xtest\pc,x,y,z,stdin,stdin\ctr,stdout,
stdout\ctr,a,b),
union(xtest\pc,a,b))))
post: (#a = .b,#b = .a,
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#xtest\pc = exited(xtest.exchange))]

The environment at this point is like what would exist after the completion of steps 1
and 2 of the symbolic execution of a call to the procedure. Examining the output above,
we see that this environment was created by opening the proof of a state delta having a
precondition establishing the necessary environment, and a postcondition consisting of the
state delta of the lemma. The last step above is opening the proof of the latter state delta.
The system’s response to each intermediate apply command (these are internally generated)
shows the state delta being applied, and the adatr fields show the particular Ada program
statement with which the currently applied state delta is associated.

The reader will notice that the last state delta opened for proof is not exactly the same
as that of the lemma: the mod list is apparently more complex. This is done to allow
for modification, during the proof, of new places created by declarations arising during the
symbolic execution of the procedure body. The evaluation of the expression for the mod
list will show that in the current context it describes no more than the places named in the
original mod list. However, the value of this expression will change appropriately as other
places are created through declaration, or deleted by undeclaration.

The usable command will help us ascertain the current position in symbolic execution.

<sdvs.6.4.1> usable

u(1) [sd pre: (true)
comod: (all)
mod: (xtest\pc,xtest)
post: (alldisjoint(xtest,.xtest,c),covering(#xtest,.xtest,c),
declare(c,type(integer)),
<adatr ¢ : integer>)]

No usable quantified formulas.

This shows that symbolic execution is just at the point of the declaration of the local variable
in the exchange procedure—i.e., just before step 3 of processing a procedure call. The next
step will be an application of the state delta that is usable at this point.

<sdvs.6.4.1> apply
sd/number [highest applicable/oncel: <CR>

apply -~ [sd pre: (true)
comod: (all)
mod: (xtest\pc,xtest)
post: (alldisjoint(xtest,.xtest,c),
covering(#xtest,.xtest,c),
declare(c,type(integer)),
<adatr ¢ : integer>)]

<sdvs.6.4.2> usable
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u(1) [sd pre: (true)
comod: (all)
mod: (xtest\pc,c)
post: (#c = .a,
<adatr ¢ := a;>)]

No usable quantified formulas.

The application of the state delta to effect the necessary declaration brings us to the first
executable statement in the body of the procedure. From here, we need only continue until
the end of the procedure.

<sdvs.6.4.2> go
until{]: gtest\pc = exited(ztest.ezchange)

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc,c)
post: (#c = .a,

<adatr c := a;>)]
apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc,a)
post: (#a = .b,
<adatr a := b;>)]

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc,b)
post: (#b = .c,
<adatr b := c¢;>)]

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc,xtest,c)
post: (covering(.xtest,#xtest,c),undeclare(c),
<adatr ¢ : integer>)]

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc)
post: (#xtest\pc = exited(xtest.exchange),
<adatr null;>)]

close —-- 6 steps/applications
close -- 4 steps/applications
proveadalemma -- [sd pre: (.xtest\pc = at (xtest.exchange))

comod: (all)
mod: (xtest\pc,a,b)
post: (#a = .b,#b = .a,
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#xtest\pc = exited(xtest.exchange))]

The facts to be proved here are sufficiently simple that the proof of the lemma closes
automatically. Having proved the lemma, the next step is to reinitialize SDVS and prove
the overall state delta, ztest.sd.

<sdvs.6> inil
proof name[]: <CR>

State Delta Verification System, Version 12
Restricted to authorized users only.
<sdvs.1> prove

state deltall: stest.sd

proof[]l: <CR>

open -- [sd pre: (ada(xtest.ada))
comod: (all)

mod: (all)
post: (#stdoutf1] = .stdin[2],#stdout[2] = .stdin[3],
#stdout{3] = .stdin[1])]

Complete the proof.
<sdvs.1.1> usable

u(1) [sd pre: (true)
comod: (all)
mod: (xtest\pc)
post: (<adatr procedure xtest is
X, ... : integer := 1
begin
get (x);

end xtest;>)]
No usable quantified formulas.

The go command can be used to cause the system to apply state deltas and perform in-
stantiations until a specified condition holds.

<sdvs.1.1> go
until[]: #aztest\pc = at(ztest.exchange)

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc)
post: (<adatr procedure xtest is
X, ... : integer :=1
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apply

apply

apply

apply

apply

apply

apply

apply

[sd pre:
comod:
mod:
post:

(sd pre:
comod:
mod:
post:

[sd pre:
comod:
mod:
post:

[sd pre:
comod:
mod:
post:

[sd pre:
comod:
mod:
post:

[sd pre:
comod:
mod:
post:

[sd pre:
comod:
mod:
post:

[sd pre:
comod:

begin
get (x);

end xtest;>)]

(true)

(all)

(xtest\pc,xtest)

(alldisjoint (xtest,.xtest,x),
covering(#xtest,.xtest,x),declare(x,type(integer)),
<adatr x, ... : integer := 1>)]

(true)

(all)

(xtest\pc,x)

(#x = 1,

<adatr x, ... : integer := 1>)]

(true)

(all)

(xtest\pc,xtest)

(alldisjoint (xtest,.xtest,y),
covering(#xtest, .xtest,y) ,declare(y,type(integer)),
<adatr x, ... : integer := 1>)]

(true)

(all)

(xtest\pc,y)

(#y = 1,

<adatr x, ... : integer := 1>)]

(true)

(all)

(xtest\pc,xtest)

(alldisjoint (xtest,.xtest,z),
covering(txtest,.xtest,z),declare(z,type(integer)),
<adatr x, ... : integer := 1>)]

(true)

(all)

(xtest\pc,z)

(#z = 1,

<adatr x, ... : integer := 1>)]

(true)

(all)

(xtest\pc,xtest)

(alldisjoint (xtest,.xtest,get\item),
covering(#xtest,.xtest,get\item),
declare(get\itenm, type(polymorphic)),
<adatr get (x)>)]

(txrue)
(all)
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mod: (xtest\pc)
post: (#xtest\pc = at(standard.text jo.get),
<adatr get (x)>)]

apply -- [sd pre: (.xtest\pc = at(standard.text_io.get))
comod: (all)
mod: (xtest\pc,stdin\ctr,get\item)
post: (#get\item = .stdin[.stdin\ctr],
#stdin\ctr = .stdin\ctr + 1,
#xtest\pc = exited(standard.textio.get),
<adatr null;>)]

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc,x)
post: (#x = .get\iten,
<adatr get (x)>)]

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc,xtest,get\item)
post: (covering(.xtest,#xtest,get\item),
undeclare(get\item),
<adatr get (x)>)]

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc,xtest)
post: (alldisjoint(xtest,.xtest,get\item!2),
covering(#xtest, .xtest,get\item!2),
declare(get\item!2,type(polymorphic)),
<adatr get (y)>)]

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc)
post: (#xtest\pc = at(standard.text.io.get),
<adatr get (y)>)]

apply -- [sd pre: (.xtest\pc = at(standard.text_io.get))
comod: (all)
mod: (xtest\pc,stdin\ctr,get\item!2)
post: (#get\item!2 = .stdin[.stdin\ctr],
#stdin\ctr = .stdin\ctr + 1,
#xtest\pc = exited(standard.textio.get),
<adatr null;>)]

apply —- [sd pre: (true)
comod: (all)
mod: (xtest\pc,y)
post: (#y = .get\item!'2,
<adatr get (y)>)]

apply -- [sd pre: (true)
comod: (all)
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apply

apply

apply

apply

apply

apply

apply

apply

mod :
post:

[2d pre:
comod:
mod:
post:

[sd pre:
comod:
mod:
post:

[sd pre:
comod:
mod:
post:

[sd pre:
comod:
mod:
post:

[sd pre:
comod:
mod:
post:

[sd pre:
comod:
mod:
post:

(sd pre:
comod:
mod:
post:

[sd pre:

(xtest\pc,xtest,get\item!2)
(covering(.xtest,#xtest,get\item!2),
undeclare(get\item!2),

<adatr get (y)>)]

(true)

(all)

(xtest\pc,xtest)
(alldisjoint(xtest,.xtest,get\item!3),
covering(#xtest, .xtest,get\item!3),
declare(get\item!3,type(polymorphic}),
<adatr get (z)>)]

(true)

(all)

(xtest\pc)

(#xtest\pc = at(standard.textio.get),
<adatr get (z)>)]

(.xtest\pc = at(standard.text_io.get))
(all)

(xtest\pc,stdin\ctr,get\item!3)
(#get\item!3 = .stdin[.stdin\ctr],
#stdin\ctr = .stdin\ctr + 1,

#xtest\pc = exited(standard.text.io.get),
<adatr null;>)]

(true)

(all)

(xtest\pc,z)

(#z = .get\item!3,
<adatr get (z)>)]

(true)

(all)

(xtest\pc,xtest,get\item!3)
(covering(.xtest,#xtest,get\item!3),
undeclare(get\item!3),

<adatr get (z)>)]

(true)

(all)

(xtest\pc,xtest)

(alldisjoint(xtest,.xtest,a,b),

covering(#xtest, .xtest,a,b),
declare(a,type(integer)),declare(b,type(integer)),
<adatr exchange (x, ...)>)]

(true)

(all)

(xtest\pc,a,b)

(#a = .x,#b = .y,

<adatr exchange (x, ...)>)]

(true)
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comod: (all)
mod: (xtest\pc)
post: (#xtest\pc = at(xtest.exchange),
<adatr exchange (x, ...)>)]

go -- breakpoint reached
<sdvs.1.26> usable

u(1) [sd pre: (true)
comod: (all)
mod: (xtest\pc,xtest)
post: (alldisjoint(xtest,.xtest,c),covering(#xtest,.xtest,c),
declare(c,type(integer)),
<adatr c : integer>)]

No usable quantified formulas.

Symbolic execution is now at precisely the point where steps 1 and 2 of the first call to the
ezxchange procedure have been completed, where the next step would be the instantiation for
the declaration of the local variable. Instead, we can invoke the lemma to bypass symbolic
execution of the procedure body.

<sdvs.1.26> invokeadalemma
Ada lemma name: ezchange.lemma

invokeadalemma -- [sd pre: (.xtest\pc = at(xtest.exchange))
comod: (all)
mod: (xtest\pc,a,b)
post: (#a = .b,#b = .a,
#xtest\pc = exited(xtest.exchange),
<adatr return;>)]

<sdvs.1.27> usable

u(1) [sd pre: (.xtest\pc = exited(xtest.exchange))
comod: (all)
mod: (xtest\pc)
post: (<adatr exchange (x, ...)>)]

u(2) [sd pre: (true)
comod: (all)
mod: (xtest\pc)
post: (#xtest\pc = exited(xtest.exchange),
<adatr exchange (x, ...)>)]

No usable quantified formulas.

<sdvs.1.27> apply
sd/number [highest applicable/once]: <CR>

apply -- [sd pre: (.xtest\pc = exited(xtest.exchange))
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comod: (all)
mod: (xtest\pc)
post: (<adatr exchange (x, ...)>)]

<sdvs.1.28> usable

u(1) [sd pre: (true)
comod: (all)
mod: (xtest\pc,x,y)
post: (#x = .a,#y = .b,
<adatr exchange (x, ...)>)]

No usable quantified formulas.

This point immediately follows the completion of step 5. Two more state deltas are applied
to complete steps 6 and 7.

<sdvs.1.28> apply
sd/number [highest applicable/oncel: 2

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc,x,y)
post: (#x = .a,#y = .b,
<adatr exchange (x, ...)>)]

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc,xtest,a,b)
post: (covering(.xtest,#xtest,a,b),undeclare(a,b),
<adatr exchange (x, ...)>)]

<sdvs.1.30> usable

u(1) [sd pre: (true)
comod: (all)
mod: (xtest\pc,xtest)
post: (alldisjoint(xtest,.xtest,a!2,b!2),
covering(#xtest,.xtest,a!2,b!2),
declare(a!2,type(integer)),declare(b!2,type(integer)),
<adatr exchange (y, ...)>)]

No usable quantified formulas.

This is the beginning of the next Ada statement.

We go on to the point where the lemma can be invoked again, invoke it, and then apply
the state deltas to complete the return from the call.

<sdvs.1.30> go

196




until[l: #atest\pc = at(ztest.exchange)

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc,xtest)

post: (alldisjoint (xtest,.xtest,a!2,b!2),
covering(#xtest,.xtest,a!2,b!2),
declare(a!2,type(integer)),
declare(b!?2,type(integer))},
<adatr exchange (y, ...)>)]

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc,a!2,b!2)
post: (#a!2 = .y,#b!2 = .z,
<adatr exchange (y, ...)>)]

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc)
post: (#xtest\pc = at(xtest.exchange),
<adatr exchange (y, ...)>)]

go -- breakpoint reached

<sdvs.1.33> invokeadalemma
Ada lemma name: ezchange.lemma

invokeadalemma -- [sd pre: (.xtest\pc = at(xtest.exchange))
comod: (all)
mod: (xtest\pc,a!2,b!2)
post: (#a!2 = .b!2,#b!2 = .a!2,
#xtest\pc = exited(xtest.exchange),
<adatr return;>)]

<sdvs.1.34> apply
sd/number [highest applicable/once]: 3

apply -- [sd pre: (.xtest\pc = exited(xtest.exchange))
comod: (all)
mod: (xtest\pc)
post: (<adatr exchange (y, ...)>)]

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc,y,z)
post: (#y = .a!'2,%#z = .b!2,
<adatr exchange (y, ...)>)]

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc,xtest,a!2,b!2)
post: (covering(.xtest,#xtest,a!2,b!2),undeclare(a!2,b!2),
<adatr exchange (y, ...)>)]
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<sdvs.1.37> usable

u(1) [ed pre: (true)
comod: (all)
mod: (xtest\pc,xtest)
post: (alldisjoint(xtest,.xtest,put\item),
covering(#xtest,.xtest,put\item),
declare(put\item,type(polymorphic)),
<adatr put (x)>)]

No usable quantified formulas.
We now simply go on through the rest of the test program.

<sdvs.1.37> go
until[]: terminated(ztest)

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc,xtest)
post: (alldisjoint(xtest,.xtest,put\item),
covering(#xtest,.xtest,put\iten),
declare(put\item, type(polymorphic)),
<adatr put (x)>)]

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc,put\item)
post: (#put\item = .x,
<adatr put (x)>)]

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc)
post: (#xtest\pc = at(standard.textio.put),
<adatr put (x)>)]

apply -- [sd pre: (.xtest\pc = at (standard.text_io.put))
comod: (all)
mod: (xtest\pc,stdout[.stdout\ctr],stdout\ctr)
post: (#stdout[.stdout\ctr] = .put\itenm,
#stdout\ctr = .stdout\ctr + 1,
#xtest\pc = exited(standard.textio.put),
<adatr null;>)]

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc,xtest,put\item)
post: (covering(.xtest,#xtest,put\item),
undeclare(put\item),
<adatr put (x)>)]

apply -- [sd pre: (true)
comod: (all)
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mod: (xtest\pc,xtest)

post: (alldisjoint(xtest,.xtest,put\item!2),
covering(#xtest,.xtest,put\item!2),
declare(put\item!2,type(polymorphic)),
<adatr put (y)>)]

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc,put\item!2)
post: (#put\item!2 = .y,
<adatr put (y)>)]

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc)
post: (#xtest\pc = at(standard.text_io.put),
<adatr put (y)>)]

apply -- [sd pre: (.xtest\pc = at(standard.text_io.put))
comod: (all)
mod: (xtest\pc,stdout[.stdout\ctr],stdout\ctr)
post: (#stdout[.stdout\ctr] = .put\item!2,
#stdout\ctr = .stdout\ctr + 1,
#xtest\pc = exited(standard.textio.put),
<adatr null;>)]

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc,xtest,put\item!2)
post: (covering(.xtest,#xtest,put\item!2),
undeclare(put\item!2),
<adatr put (y)>)]

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc,xtest)
post: (alldisjoint(xtest,.xtest,put\item!3),
covering(#xtest, .xtest,put\item!3),
declare(put\item!3,type(polymorphic)),
<adatr put (z)>)]

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc,put\item!3)
post: (#put\item!3d = .z,
<adatr put (z)>)]

apply -- [sd pre: (true)
comod: (all)
mod: (xtest\pc)
post: (#xtest\pc = at(standard.text.io.put),
<adatr put (z)>)]

apply —- [sd pre: (.xtest\pc = at(standard.textio.put))
comod: (all)
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mod: (xtest\pc,stdout[.stdout\ctr],stdout\ctr)
post: (#stdout[.stdout\ctr] = .put\item!3,
#stdout\ctr = .stdout\ctr + 1,
#xtest\pc = exited(standard.text_io.put),
<adatr null;>)]

close -- 50 steps/applications
<sdvs.2> ps

<< initial state >>
proved xtest.sd <1>
--> you are here <--

The postcondition of ztest.sd is sufficiently simple that the system can verify it without
assistance, and the proof closes automatically.

The reader may well wonder why the Ada lemma can be invoked only after a call to the
procedure has been partly processed and why afterwards we still have to apply two more
state deltas to complete the call. Why shouldn’t the system be programmed to perform these
instantiations and state delta applications automatically? In fact, there is no reason why
this wouldn’t have worked in our example. But here, all the conditions to be proven were
simple enough that they could be verified by the simplifier and propagated automatically.
With conditions that are more complex, perhaps involving quantifiers, this would not be the
case, and the user would need to assist the system in propagating these conditions through
the steps at the beginning and end of the procedure call.

4.6 AN EXAMPLE PROOF WITH ADALEMMA

In this final section we give one more example of an SDVS 12 Ada proof for the program
packages (Figures 9, 10, and 11). This rather complex program has a null body, but contains
functions test! through test{, and as procedures test5 and ezceptions. The adalemma that
we state and prove characterizes the behavior of the procedure exceptions; all the other
subprograms are irrelevant (but it is comforting to see that SDVS knows this.) This proof
illustrates the SDVS capability for packages and exceptions. It essentially claims that the
two values 5 and 23 are output, and then the procedure ezceptions is exited. The label

#packages\pc = at(@!11)

is generated internally.

We create an adalemma and proof as follows:

<sdvs.2> adatr
path name[testproofs/manual/ada/xtest.ada]: testproofs/manual/ada/packages.a

Reading parse tree file for Stage 4 Ada file —- "packages.a"
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with text_io; use text_io;
with integer_io; use integer_io;

procedure packages is

function testl return integer is
package p is
x: integer := 10;
end p;
use p;
begin
return x;
end testl;

function test2 return boolean is
x : boolean := true;
package p is
x: integexr := 10;
end p;
use p;
begin
return x;
end test2;

function test3 return integer is
package pl is
x : integer;
end pi;
package p2 is
x : boolean;
end p2;
use pl, pi;
begin
return x;
end test3;

Figure 9: Program Packages, Part 1
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function test4 return integer is
package pl is

x : integer;
end p1l;
package p2 is

X : boolean;
end p2;
use pl, p2;

begin
return pl.x;
end test4;

procedure test5 is
package p0 is
integer;
end p0;
package pl is
x: integer;
function f return integer;
use po;
package p is
z: integer :=
u: integer :=
use pl;
package q is
w: integer;
end q;
end p;
end pl;
package p2 is
x: boolean;
end p2;
use pl.p;
use p2;
use q;

v:

package body pl is
function f return integer is

begin
return 5;
end f;
end pi;
begin

null;

¥ = 2;

x := true;

z = 1;
end testh;

Figure 10

: Program Packages, Part 2
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procedure exceptions is
foo: exception;
x: integer;
function f(z: integer) return integer is
begin
raise foo;

exception
when foo => return 1;
end f;
package p2 is
x: integer;
procedure p(z: integer);
package p3 is
x: integer;
end p3;
end p2;
package body p2 is
w: integer := £(0);
procedure p(z: integer) is
begin
v =z
put(w);
raise foo;
end p;
begin
x := 5;
put(5);
raise foo;
exception
when foo => x := 23;
put(x);
raise;
end p2;
begin
p2.p(86);
exception
when foo => put(100);
end exceptions;

begin
null;
end packages;

Figure 11: Program Packages, Part 3 (conclusion)
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Translating Stage 4 Ada file -- "testproofs/manual/ada/packages.a"

<sdvs.3>
lemma name:

file name:
subprogram name:
qualified name:
preconditions([]:
mod list[]:
postconditions:

createadalemma --

createadalemma

packages.exceptions.lemma
testproofs/manual/ada/packages.a

exceptions

packages.exceptions

alldisjoint(stdout[1], stdout(2]), .stdout\ctr = 1
all

#stdout[1]=5, #stdout[2]=23

[sd pre: (.packages\pc = at(packages.exceptions),
alldisjoint (stdout{1],stdout{21),
.stdout\ctr = 1)

comod: (all)
mod: (packages\pc,all)
post: (#stdout[1] = 5,#stdout{2] = 23,
#packages\pc = exited(packages.exceptions))]

<sdvs.4> proveadalemma

Ada lemma name:
proof[]:

packages.exceptions.lemma

<CR>

open -- [sd pre: (alldisjoint(packages,.packages),

covering(.packages,packages\pc,stdin,stdin\ctr,stdout,
stdout\ctr),

declare(stdin,type(polymorphic)),

declare(stdin\ctr,type(integer)),

declare(stdout,type (polymorphic)),

declare(stdout\ctr,type(integer)),

<adatr null;;>)

(all)

mod: (all)

post: ([sd pre:

comod:

(.packages\pc = at(packages.exceptions),
alldisjoint (stdout[1],stdout[21),

.stdout\ctr = 1)
comod: (all)
mod: (diff(all,
diff (union(packages\pc,stdin,stdin\ctr,
stdout,stdout\ctr),
union(packages\pc,all))))
post: (#stdout[1] = 5,#stdout[2] = 23,
#packages\pc = exited(packages.exceptions))1)]
apply -- [sd pre:.(true)
comod: (all)
mod: (packages\pc)
post: (#packages\pc = at(packages.exceptions),

go -- breakpoint
open -- [sd pre:

comod:

<adatr null;>)]
reached
(.packages\pc = at (packages.exceptions),

alldisjoint(stdout[l],stdout[Z]),.stdout\ctr = 1)
(all)
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<sdvs.4.2.
until[]:

apply

apply

apply

apply

apply

apply

1>

mod: (diff(all,
diff(union(packages\pc,stdin,stdin\ctr,stdout,
stdout\ctr),
union(packages\pc,all))))
post: (#stdout[1] = 5,#stdout[2] = 23,
#packages\pc = exited(packages.exceptions))]

go

#packages\pc = exited(packages.exceptions)

[sd pre:
comod:
mod:
post:

[sd pre:
comod:
mod:
post:

[sd pre:
comod:
mod :
post:

[=sd pre:
comod:
mod:
post:

[sd pre:
comod:
mod:
post:

[sd pre:
comod :
mod :
post:

(true)

(all)

(packages\pc,packages)
(alldisjoint (packages, .packages,exceptions.x),
covering(#packages, .packages, exceptions.x),
declare(exceptions.x,type(integer)),

<adatr x : integer>)]

(true)

(all)

(packages\pc,packages)

(alldisjoint (packages, .packages,exceptions.p2.x),
covering (#packages, .packages,exceptions.p2.x),
declare(exceptions.p2.x,type(integer)),

<adatr x : integer>)]

(true)

(all)

(packages\pc,packages)
(alldisjoint(packages, .packages,p3.x),
covering(#packages, .packages,p3.x),
declare(p3.x,type(integer)),

<adatr x : integer>)]

(true)

(all)

(packages\pc,packages)
(alldisjoint (packages, .packages,exceptions.f),
covering (#packages, .packages,exceptions.f),
declare(exceptions.f,type(integer)),

<adatr null;>)]

(true)

(all)

(packages\pc,packages)
(alldisjoint (packages, .packages,f.z),
covering(#packages, .packages,f.z),
declare(f.z,type(integer)),

<adatr £ (0)>)]

(true)

(all)
(packages\pc,f.z)
(#f.z =0,

<adatr £ (0)>)]
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apply -- [sd pre: (true)
comod: (all)
mod: (packages\pc)
post: (#packages\pc = at (packages.exceptions.f),
<adatr £ (0)>)]

apply —— [sd pre: (true)
comod: (all)
mod: (packages\pc)
post: (#packages\pc = at(e!11),
[sd pre: (true)
comod: (all)
mod: (packages\pc,exceptions.f)
post: (#exceptions.f =1,
<adatr return 1;>)1)]

apply -- [sd pre: (true)
comod: (all)
mod: (packages\pc,exceptions.f)
post: (#exceptions.f = 1,
<adatr return 1;>)]

apply -- [sd pre: (true)
comod: (all)
mod: (packages\pc)
post: (#packages\pc = exited(packages.exceptions.f),
[sd pre: (true)
comod: (all)
mod: (packages\pc,packages,f.z)
post: (covering(.packages,#packages,f.z),
undeclare(f.z),
<adatr £ (0)>)1)]

apply -- [sd pre: (true)
comod: (all)
mod: (packages\pc,packages,f.z)
post: (covering(.packages,#packages,t.z),undeclare(f.z),
<adatr £ (0)>)]

apply -- [sd pre: (true)
comod: (all)
mod: (packages\pc,packages)
post: (alldisjoint (packages, .packages,p2.v),
covering (#packages, .packages,p2.¥),
declare(p2.w,type(integer)),
<adatr v : integer := f (0)>)]

apply -- [sd pre: (true)
comod: (all)
mod: (packages\pc,p2.v¥)
post: (#p2.w = .exceptions.f,
<adatr w : integer := f (0)>)]

apply -- [sd pre: (true)
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comod:
mod:
post:

apply -- [sd pre:
comod:

mod:

post:

apply -- [sd pre:
comod:

mod:

post:

apply -~ [sd pre:
comod:

mod:

post:

apply -- [sd pre:
comod:

mod:

post:

apply -- [sd pre:
comod:

mod:

post:

apply -- [sd pre:
comod:

mod:

post:

apply -- [sd pre:
comod:

mod:

post:

(all)

(packages\pc, exceptions.p2.x)
(#exceptions.p2.x = 5,
<adatr x := 5;>)]

(true)

(all)

(packages\pc,packages)
(alldisjoint (packages, .packages ,put\item),
covering(#packages,.packages,put\item),
declare(put\item,type(polymorphic)),
<adatr put (5)>)]

(true)

(all)
(packages\pc,put\item)
(#put\item = 5,
<adatr put (5)>)]

(true)

(all)

(packages\pc)

(#packages\pc = at(standard.text_io.put),
<adatr put (5)>)]

(.packages\pc = at(standard.text.io.put))
(all)
(packages\pc,stdout[.stdout\ctr],stdout\ctr)
(#stdout[.stdout\ctr] = .put\item,
#stdout\ctr = .stdout\ctr + 1,

#packages\pc = exited(standard.text.io.put),
<adatr null;>)]

(true)

(all)

(packages\pc,packages,put\item)
(covering(.packages, #packages,put\item),
undeclare (put\item),

<adatr put (5)>)]

(true)
(all)
(packages\pc)
(#packages\pc = at(0'!18),
[sd pre: (true)
comod: (all)
mod: (packages\pc,exceptions.p2.x)
post: (#exceptions.p2.x = 23,
<adatr x := 23;>)1)]

(true)

(all)

(packages\pc, exceptions.p2.x)
(#exceptions.p2.x = 23,
<adatr x := 23;>)]
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apply —- [sd pre: (true)
comod: (all)
mod: (packages\pc,packages)
post: (alldisjoint(packages,.packages,put\item!Z),
covering(#packages,.packages,put\item!Q),
declare(put\item!2,type(polymorphic)),
<adatr put (x)>)]

apply -- [sd pre: (true)
comod: (all)
mod: (packages\pc,put\item!2)
post: (#put\item!2 = .exceptions.p2.x,
<adatr put (x)>)]

apply -- [sd pre: (true)
comod: (all)
mod: (packages\pc)
post: (#packages\pc = at(standard.text_io.put),
<adatr put (x)>)]

apply -- [sd pre: (.packages\pc = at(standard.text.io.put))
comod: (all)
mod: (packages\pc,stdout[.stdout\ctr],stdout\ctr)
post: (#stdout[.stdout\ctr] = .put\item!2,
#stdout\ctr = .stdout\ctr + 1,
#packages\pc = exited(standard.text io.put),
<adatr null;>)]

apply -- [sd pre: (true)
comod: (all)
mod: (packages\pc,packages,put\item!2)
post: (covering(.packages,tpackages,put\item!2),
undeclare(put\item!2),
<adatr put (x)>)]

apply -- [sd pre: (true)
comod: (all)
mod: (packages\pc)
post: ([sd pre: (true)
comod: (all)
mod: (packages\pc,packages,p2.v)
post: (covering(.packages,#packages,p2.v),
undeclare(p2.w),
<adatr v : integer := f (0)>)1)]

apply -- [sd pre: (true)
comod: (all)
mod: (packages\pc,packages,p2.w)
post: (covering(.packages, #packages,p2.¥),
undeclare(p2.¥),
<adatr v : integer := f (0)>)]

apply —- [sd pre: (true)
comod: (all)
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mod: (packages\pc,packages,p3.x)

post: (covering(.packages,#packages,p3.x),
undeclare(p3.x),
<adatr x : integer>)}

apply -- [sd pre: (true)
comod: (all)
mod: (packages\pc,packages,exceptions.p2.x)
post: (covering(.packages,#packages,exceptions.p2.x),
undeclare(exceptions.p2.x),
<adatr x : integer>)]

apply -- [sd pre: (true)
comod: (all)
mod: (packages\pc,packages,exceptions.x)
post: (covering(.packages,#packages,exceptions.x),
undeclare(exceptions.x),
<adatr x : integer>)]

apply -- [sd pre: (true)
comod: (all)
mod: (packages\pc)
post: (#packages\pc = exited(packages.exceptions),
[sd pre: (true)
comod: (all)
mod: (packages\pc)

post: (<adatr null;>)])]

close -- 32 steps/applications
close ~- 2 steps/applications
proveadalemma -- [sd pre: (.packages\pc = at(packages.exceptions),

alldisjoint(stdout[1],stdout[2]),
.stdout\ctr = 1)
comod: (all)
mod: (packages\pc,all)
post: (#stdout[1] = 5,#stdout[2] = 23,
#packages\pc = exited(packages.exceptions))]
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5 INTERACTION WITH VHDL

VHDL (VHSIC Hardware Description Language) is an IEEE standard hardware description
language, for which [24] is the definitive reference. SDVS 12 has the capability to translate
from a subset of the language — Stage 3 VHDL — into state deltas, and to prove claims
about the resulting hardware description representations. To run the VHDL test proofs,
type run-test-proofs *vhdl-tests*.

We present a brief description of the Stage 3 VHDL language subset and an example proof
of a property of a VHDL hardware description. The Stage 3 VHDL translator itself is
documented in detail in [66], on which the next section is based.

Our projections for the partition of VHDL into language subsets are set forth in [29] (though
the features actually included in the subsets have deviated somewhat from this plan). Ex-
ample correctness proofs for hardware descriptions written in the initial subset, Core VHDL,
are discussed in [54]. The translator for the second subset, Stage 1 VHDL, is described in
[53], and that for the third subset, Stage 2 VHDL, is described in [52]. For further infor-
mation on the evolution of the state delta semantics for VHDL, refer to [25], [26], [30], and
[27]. The VHDL translator is invoked with the command vhdltr, which operates like adatr,
but takes as argument the name of a file containing the VHDL description to be translated.

5.1 INTRODUCTION

Prior to 1987, we adapted SDVS to handle a subset of the hardware description language
ISPS. However, ISPS has serious limitations regarding the specification of hardware at
levels other than the register transfer level. In 1988 we documented a study of some of the
hardware verification research being performed outside Aerospace and investigated VHDL,
an IEEE and DoD standard hardware description language released in December 1987. We
selected VHDL as a possible medium for hardware description within SDVS.

Prerequisites for adapting SDVS to VHDL are (1) to define VHDL semantics formally in
terms of SDVS’s underlying logic (the state delta logic) and (2) to implement a translator
from VHDL to the state delta logic. As with the incorporation of Ada into SDVS, the
approach taken with VHDL has been to implement increasingly complex language subsets;
this enables a graded, structured approach to hardware verification.

In 1989 we defined an initial subset of VHDL, called Core VHDL, that captured the essen-
tial behavioral features of VHDL. We defined both the concrete syntax and abstract syntax
for Core VHDL, formally specified its semantics and, on the basis of this semantic defini-
tion, implemented a Core-VHDL-to-state-delta translator. In 1990, SDVS was enhanced to
provide the capability of verifying hardware descriptions written in Core VHDL. In 1991
and 1992, the translator underwent extensive revisions to accommodate Stage 1 VHDL and
Stage 2 VHDL, respectively. The translator for the SDVS 12 VHDL language subset, Stage
3 VHDL, was implemented in 1993.

The VHDL translator essentially functions as a simulator kernel, maintaining a clock and a
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list of future events that are defined as state deltas. For Core VHDL, however, the translator
transformed possibly multiple Core VHDL statements: sequential statements between WAIT
statements within a process were all translated and then composed into a single state delta.
The translator updated the clock to the next time at which a signal driver became active
or a process resumed. As the clock advanced, the translator merged the composite state
deltas into a single state delta that specified the behavior of all processes at that point in

the execution.

For Stage 1 VHDL, we reevaluated the feasibility of using composition in the translation
of VHDL to state deltas, and concluded that although composition had initially seemed
viable in the case of Core VHDL, it is impossible in principle to apply the technique to
more complex VHDL subsets, as the attempt would require the ability to compose over
sections of VHDL code that would necessitate static proof in SDVS. More generally, the
ability to compose over arbitrary WAIT-bracketed code in PROCESS statements would be
tantamount to the automatic construction of correctness proofs without user intervention
— a theoretically undecidable problem.

Therefore, we decided to abandon composition for Stage 1 VHDL and succeeding SDVS
VHDL subsets. Instead, within a given execution (simulation) cycle, processes are translated
sequentially, in the order in which they appear in the VHDL description, and the user has
control over stepping through the sequential statements within each process. Thus, rather
than trying to have the VHDL translator model the concurrency of the processes, we chose
to take for granted a certain “metatheorem” about VHDL: that any two sequentializations
of the processes are equivalent. A brief justification for this point of view is that the problem
of mutual exclusion is not a concern in VHDL, since

e all variables are local to the process in which they are declared; and

o distinct processes modify distinct drivers of a given signal (known as a resolved signal),
and the ultimate signal value is obtained by the application of a user-defined resolution
function.®

A gratifying benefit of the revised translation strategy is that the understandability of the
resulting proofs has been remarkably improved — the dynamic flow of process execution
precisely reflects the simulation semantics of VHDL (as defined in the VHDL Language
Reference Manual [24]), but with the crucial aspect of symbolic execution (the use of ab-
stract values rather than concrete) thrown in. The current VHDL translator thus functions
as a “symbolic simulator,” and is a considerably more intuitive proof engine than was its

incarnation for Core VHDL.

5.2 STAGE 3 VHDL

Stage 3 VHDL comprises a relatively powerful behavioral subset of VHDL. That is to say,
Stage 3 VHDL descriptions are confined to the specification of hardware behavior or data

8 As of Stage 3 VHDL, however, resolved signals are still disallowed.
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flow, rather than structure. More-comprehensive VHDL subsets for SDVS (anticipated for
Stage 4 VHDL) will include constructs for the structural description of hardware in terms
of its hierarchical decomposition into connected subcomponents. The Stage 3 VHDL data
types are BOOLEAN, BIT, INTEGER, REAL (preliminary version), TIME (a predefined physical
type of INTEGER range), CHARACTER, STRING (arrays of characters), BIT_VECTOR (arrays of
bits), user-defined enumeration types, user-defined array types, subtypes of scalar types,
and integer type definitions. Furthermore, explicit type conversions between integer types
are allowed.

The primary VHDL abstraction for modeling a digital device is the design entity. A design
entity consists of two parts: an entity declaration, providing an external view of the compo-
nent by declaring the input and output ports, and an architecture body, giving an internal
view in terms of component behavior or structure.

In Stage 3 VHDL, each architecture body is constrained to be behavioral, consisting of a
set of declarations and concurrent statements defining the functional interpretation of the
device being modeled. The allowable concurrent statements are of two kinds: PROCESS
statements and concurrent signal assignment statements, to be discussed below.

A PROCESS statement, the most fundamental kind of behavioral concurrent statement in
VHDL, is a block of sequential zero-time statements that execute sequentially but “in-
stantaneously” in zero time [30], and some (possibly none) distinguished sequential WAIT
statements whose purpose is to suspend process execution and allow time to elapse.

A process typically schedules future values to appear on data holders called signals, by
means of sequential signal assignment statements. The execution of a signal assignment
statement does not immediately update the value of the target signal (the signal assigned
to); rather, it updates the driver associated with the signal by placing (at least one) new
transaction, or time-value pair, on the waveform that is the list of such transactions con-
tained in the driver. Each transaction projects that the signal will assume the indicated
value at the indicated time; the time is computed as the sum of the current clock time of the
model and the delay specified (explicitly or implicitly) by the signal assignment statement.

Two types of time delay can be specified by a sequential signal assignment statement, and
Stage 3 VHDL encompasses both. Inertial delay, the default, models a target signal’s inertia
that must be overcome in order for the signal to change value; that is, the scheduled new
value must persist for at least the time period specified by the delay in order actually to
be attained by the target signal. Transport delay, on the other hand, must be explicitly
indicated in the signal assignment statement with the reserved word TRANSPORT, and models
a “wire delay” wherein any pulse of whatever duration is propagated to the target signal
after the specified delay.

In lieu of explicit WAITs, a process may have a sensitivity list of signals that activate process
resumption upon receiving a distinct new value (an event). The sensitivity list implicitly
inserts a WAIT statement as the last statement of the process body.

The other class of concurrent statement in Stage 3 VHDL is that of concurrent signal
assignment statements. These always represent equivalent PROCESS statements, and come
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in two varieties: conditional signal assignment and selected signal assignment. A conditional
signal assignment is equivalent to a process with an embedded IF statement whose branches
are sequential signal assignments; similarly, a selected signal assignment is equivalent to
a process with an embedded (possibly degenerate) CASE statement whose branches are
sequential signal assignments. The VHDL translator syntactically transforms concurrent
signal assignment statements to their corresponding PROCESS statements before translating

them into state deltas.

Signals act as data pathways between processes. Each process applies operations to values
being passed through the design entity. We may regard a process as a program implementing
an algorithm, and a Stage 3 VHDL description as a collection of independent programs

running in parallel.

In full VHDL, a target signal can be assigned to in multiple processes, in which case it
possesses correspondingly many drivers for updating by the different processes; the value
taken on by the signal at any particular time is then computed by a user-defined resolution
function of these drivers.

Currently Stage 3 VHDL disallows such resolved signals: a signal is not permitted to appear
as the target of a sequential signal assignment statement in more than one process body;
equivalently, every signal has a unique driver.

Concrete and abstract syntaxes for Stage 3 VHDL have been defined [66] — as required,
of course, for the implementation of the Stage 3 VHDL translator. Perhaps the following
summary provides the best way of seeing the Stage 3 VHDL language subset and translator

at a glance.

¢ VHDL design files

— user-defined packages (optional), USE clauses (optional), entity declaration, ar-
chitecture body

— restriction: unique entity and architecture per file

package STANDARD

— predefined types: BOOLEAN, BIT, INTEGER, TIME, CHARACTER, REAL, STRING,BIT_VECTOR
— various units of type TIME: FS, PS, NS, US, MS, SEC, MIN, HR

— restriction: implementation of type REAL is preliminary

user-defined packages

— package declarations

— package bodies
e USE clauses for accessing packages

entity declarations

— entity header: port declarations
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— entity declarative part: other declarations
architecture bodies
object declarations

— CONSTANT, VARIABLE, SIGNAL
— octal and hexadecimal representations of bitstrings

— entity ports of default object class SIGNAL
array type declarations

— arrays (bidirectional; constrained or not) of arbitrary element type

— attributes *1low and ’high for lower and upper bounds of an array type (restric-
tion: but not of an object of type array)

user-defined enumeration types
subtypes of scalar types
integer type definitions

type conversion

signals of arbitrary types
subprograms

— procedures and functions: declarations and bodies

— restriction: excluding parameters of object class SIGNAL
concurrent statements

— PROCESS statements
— conditional signal assignments

- selected signal assignments
sequential statements

null statement: NULL

— variable assignments (scalar and composite)

— signal assignments (scalar and composite, inertial or TRANSPORT delay)
— conditionals: IF, CASE

— loops: LOOP, WHILE, FOR

— loop exits: EXIT

— subprogram calls

— subprogram return: RETURN
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— process suspension: WAIT
e operators

numeric unary operators: ABS, +, -

— numeric binary operators: +, -, *, /, ** (exponentiation), MOD (modulus),
REM (remainder)

— boolean and bit operators: NOT, AND, NAND, OR, NOR, XOR
— relational operators: =, /=, <, <=, >, and >=
— array concatenation operator: &

— restriction: =, /=, and & are the only Stage 3 VHDL operators defined for user-
defined array types

5.3 TRANSLATION OF STAGE 3 VHDL

A Stage 3 VHDL hardware description is first parsed according to the Stage 3 VHDL
grammar, producing an abstract syntazr tree that serves as the input to Phase 1 of the
translation.

Phase 1 of the translation accomplishes the following.

e Performs static semantic checks to verify that certain conditions are met, for example:
Objects, subprograms, packages, and process and loop labels must be declared
prior to use.
Identifiers with the same name cannot be declared in the same local context.
References to objects and labels must be proper, e.g. scalar objects must not be
indexed, array references must have the correct number of indices, and EXIT state-
ments must reference a loop label.
All components of statements a