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Abstract 

This is a guide for users of the State Delta Verification System (SDVS), Version 12. Its 
style is somewhere between that of a tutorial and a reference manual. 

All facets of the verification system are covered here: the underlying logic (state deltas), 
the proof language, the user interface, the actual use of the system, the translation from 
the register-transfer-level language ISPS to state deltas, the translation from Ada to state 
deltas, the translation from VHDL to state deltas, the capabilities of the static solvers, 
and example proofs. A set of exercises is provided in the last chapter and a comprehensive 
SDVS bibliography is included. 
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1    INTRODUCTION 

1.1    PRELUDE 

This manual is intended for users of the State Delta Verification System Version 12 (SDVS 
12). It is a blend of a reference manual and a tutorial. This version of the manual supersedes 

the previous manual [1], which described SDVS 11, although most of the text is common 
to both. The SDVS 11 tutorial [2] contains additional examples and explanations. 

Other easily accessible published background material on SDVS can be found in [3], [4], and 
[6]. References for further information on SDVS are to be found in the SDVS bibliography 

at the end of this manual. 

SDVS is written in Common Lisp. It currently runs in Lucid Common Lisp 4.1 and Franz 
Allegro Common Lisp 4.1. SDVS can be run directly in Lisp, but it is preferable to run 
SDVS from GNU Emacs, which then gives the user certain editing capabilities. 

SDVS 12 is for the most part upwardly compatible with all previous version of SDVS. Since 
most of the group's effort during the year were directed toward proving the Ada MSX 
example ([7], [8], [9]), the main improvements of SDVS 12 over SDVS 11 are in the Ada 
capability (Section 4.1.2) and in performance (parts of the code were re-implemented for 
efficiency or bug fixes; however, some additions to SDVS that were made to run the MSX 
example have not yet been incorporated in SDVS 12). Also, significant improvements were 
made in the VHDL capability (Section 5). 

This introductory chapter will be sufficient to let the user get started on the system. Other 
chapters detail the following aspects of the theory and operation of SDVS 12: 

1. the internal logic (state deltas) (Chapter 1) 

2. the proof language (Chapter 2) 

3. the user interface (throughout) 

4. actual system use (throughout) 

5. the translation from the hardware description language ISPS to state deltas (Chap- 

ter 3) 

6. the translation from a subset of the programming language Ada to state deltas (Chap- 

ter 4) 

7. the translation from a subset of the hardware description language VHDL to state 

deltas (Chapter 5) 

8. the handling of quantification (Chapter 6) 

9. user-defined data types (Chapter 7) 

10. the invariant extension to state deltas (Chapter 8) 

1 



11. the capabilities of the static solvers (Chapter 9) 

12. example proofs (throughout) 

13. exercises (Chapter 10) 

A word about the index at the end of this manual: command names are listed under 

"Command-name" as well as individually. 

Before one begins the significant effort involved in learning to use a verification system such 
as SDVS, he or she should certainly be aware that the utility of verification, or the role that 
verification plays in providing confidence in computer systems, is an important issue. We 
assume that the potential user is either already aware of the value of verification, or at least 
Relieves in the possibility of such value. For a strong, if sometimes overstated, argument in 

favor of verification, we recommend [10]. 

1.2    OVERVIEW 

The State Delta Verification System, SDVS, is a system for checking proofs about the 
course of a computation, usually caUed "correctness" proofs. SDVS can be used to check 
microcode implementation correctness proofs, program verification proofs (e.g. liveness and 
safety for Ada programs), or hardware correctness proofs (e.g. liveness and safety for VHDL 
hardware descriptions). As a test of the system's microcode correctness capabilities, SDVS 
5 was used to analyze most of the instruction set of the BBN C/30 computer. A summary 

of that work is presented in [11]. 

In SDVS 12, the theorems to be proved for the above cases of program and hardware 
correctness must still be explicitly written by the user in the internal logic of state deltas. 
However, beginning with SDVS 6, if the user is interested in proving implementation or 
microcode correctness theorems, SDVS will construct the theorem automatically, given the 
relevant information; i.e., the system can be instructed to prompt the user for 

1. the descriptions of a host machine (often microprogrammed) and target machine writ- 
ten in either a somewhat "extended subset" of the machine description language ISPS, 

or the internal SDVS state delta language; 

2. the microcode (if any); 

3. the correspondence between the program variables (machine places) in the host and 

target; and 

4. the proof of correctness that the host implements the target with respect to the above 

correspondence (if such a proof is already constructed). 

SDVS then automatically constructs the state delta representing the theorem of correctness 
of the implementation, and either checks the proof, if one was given in step 4 above, or 

allows the user to construct one interactively. 



The user communicates to SDVS through several languages. The proof language is used 
to write the proof that the system will check. The state delta language is used to write 
the theorems to be proved and to describe the relevant programs and specifications. The 
user-interface language allows for interactive proof building, querying, and so on. Finally, 
there is a module that translates from a subset of ISPS ([12], [13]), from a subset of Ada 
([14] - [23]), and from a subset of the hardware description language VHDL ([24] - [30]) 

into state deltas. 

Recently, the underlying logic has been enhanced to allow for the specification of (state- 
transition) invariants. For more background on the use of invariants in state deltas, consult 

[31] - [35]. 

Technically, SDVS aids in the writing and checking of proofs of state deltas. For example, 
state deltas can specify claims of the form "If P is true now, then Q will become true in the 
future." If P is (the translation of) a program (perhaps with some initial conditions) and 
Q is an output condition, then the above claim is an input-output assertion about P. SDVS 
can also specify (and prove) claims of the form "If P is true now, then Q is true now." In 
this case, if P is a (state delta representing a) program or hardware description and Q is a 
(state delta representing a) specification, then the above claim asserts the implementation 

correctness of P with respect to Q. 

Finally, SDVS can prove claims of the form "If P is true now, then Q will always be true 
in the future," or until some other condition becomes true. 

The view of the world captured by state deltas is that there are "places" (to be thought of 
as abstract machine registers, usually caDed program variables in other contexts) that can 
"hold" contents. A "state" of a computation or a machine is, to first approximation, an 
association of contents with places. In general, a set of states can be specified by any set 
of sentences that relate the contents of some places with the contents of other places. For 
example, the sentence .x > 5 can be thought of as specifying the set of states in which the 
current contents of x are greater than or equal to 5, with no restriction on any other places 
that happen to "exist." 

The "if-now, then-later" statement above is the basic building block of state deltas. It can 
be thought of as a specification of a state change, with P being the "precondition" (the 
condition allowing the state change to occur) and Q the "postcondition" (the description 
of the state after the change has occurred). A sequential computation is thought of as a 
sequence of state changes; as we will see, there are several ways in which such a sequence 
of state changes can be specified by a state delta or set of state deltas. The word "delta" 
indicates our intention to describe "small" state changes, those state changes in which only 
a small part of a large state is changing. In order to specify the resultant state after the 
change, instead of listing all true facts, it would be much more efficient simply to list those 
places that have (or possibly have) changed during the transition. Typically this will be a 
small list, called the "modification" list. The true statements at the end of the transition 
are those explicitly given in Q, plus those statements true in the precondition state that 
involve variables that do not appear in the modification list. In particular, if it is specified 
that no variables are allowed to change as the state changes from P to Q (the modification 



list is empty), and Q is a first-order sentence, then Q must be true in the state that satisfies 

P, and we are simply looking at the static claim that P implies Q. 

The proof language can be divided into two parts, the dynamic and the static. The dynamic 
part controls the state transitions made by the system. There are constructs for proof by 
symbolic execution for straight-line code, proof by cases for branching code, and proof by 
induction for loops. In addition, there are several more-specialized proof commands, such 
as the command to sequentialize two simultaneously true state deltas. Of course, when 
the execution has arrived at a new state, a static proof may be needed to verify that new 
relations do in fact hold, i.e., they follow from the facts known explicitly about the new 
state (in order to show that the postcondition is true and the goal is reached, or to show 

that a precondition is true and a new state delta may be applied; see below). 

The static part of the proof language deals with proving that certain assumptions imply 
certain conclusions about a given state. For simple domains where efficient decision proce- 
dures exist and are implemented, the system will be able to derive all conclusions without 
any user-input proof. Examples are equality over uninterpreted function symbols, a frag- 
ment of naive set theory, and linear arithmetic. For more complicated domains, our current 
philosophy and implementation allow the user to write proofs by having the system notice 
incrementally more difficult conclusions, where the newly verified conclusions are stored 
and used as facts on which to base the next conclusion. The derivation from a given set of 
facts to the next conclusion may be automatic in some cases, or it may require the user to 
designate that an axiom or a previously proved lemma is to be applied. 

SDVS may be run in interactive mode, batch mode, or, as in most real applications, as 
a combination of the two. In interactive mode the user writes the proof in SDVS with 
help from system prompts, with the system executing each proof command as it is written. 
Expressions are written in standard infix notation (e.g. x+y). In batch mode the proof 
is written either by the SDVS dump-proof and write command, or in an editor, and then 
is executed in SDVS with no further user interaction. Most commonly, a partial proof 
is written interactively, stored, and then rerun in batch mode at a later time when the 

proof-writing process is being continued. 

(Technical note: currently some proofs can be rerun only in a new SDVS session. This is the 
case when names of formulas are created during the proof. The system does not currently 
allow names to be reused without the user explicitly and interactively validating such an 
action. Since the name appearing in the proof will already have been used, the proof will 
abort at that point. Such a proof is the example on page 117 using the command linearize.) 

The most important property of a proof-checker is that it should not allow invalid proofs 
to be accepted. Nevertheless, there is a trade-off. Our philosophy has been to protect the 
benign user from inadvertently proving falsehoods; we do not guarantee that a scheming 
and knowledgeable user will be unable to do so intentionally. Thus, no absolute guarantee 
should be attached to a proof, just because it comes out of an SDVS run with a "QED" 

certificate. 

An example of this trade-off comes in the use of lemmas stored in a file. It is of course 
possible for users to change the statement of a lemma or its proof in an editor inadvertently. 



Thus we have provided a means for users to protect themselves against this possibility, if 
they so desire, by having the proof of a lemma rerun as the lemma is read into SDVS before 
it is actually used. But for efficiency's sake, we do not require that this be done. 

Another example of the lack of total soundness is that it is possible, through self-referencing 
state deltas, to prove a contradiction. We have not gone to the trouble of eliminating this 
loophole (although we know how: see [36]), because under "normal" circumstances a user 
would not employ explicit self-reference. See Section 2.9.20 for an example. 

1.3    INSTALLING SDVS 

SDVS is available on magnetic tape in four different formats: source code; object code for 
Franz Allegro Common Lisp (FACL); object code for Lucid Common Lisp (LCL); and as a 
standalone executable utilizing the Franz Allegro Runtime package. Each format requires 
its own procedure for creating or loading SDVS, as outlined below. However, the procedure 
for reading the system files from the tape is the same for all formats. 

SOFTWARE REQUIREMENTS 

SDVS currently runs under Franz Allegro Common Lisp release 4.1 and Lucid Common Lisp 
4.1. SDVS is also available as a standalone executable utilizing the Franz Allegro Runtime 
package; users of this version of SDVS are not required to supply their own Common Lisp 
environment. SDVS assumes that the underlying operating system is Unix, Sun OS 4.x, or 
equivalent. 

HARDWARE REQUIREMENTS 

The FACL and LCL binary and FACL runtime versions of SDVS require a Sparc processor. 
The source code should run under FACL or LCL on other architectures without modifica- 
tion, although this has not been tested. SDVS should port easily to other Common Lisp 
implementations on other architectures, although, again, this has not been done. 



Table 1: Disk Space Requirements for SDVS 12, in MB 

To Load From Tape Installed 

Source (.lisp) 2.4 N/A 

Lucid Object (.sbin) 2.7 31.5 
Franz Object (.fasl) 3.7 48.1 

Franz Runtime 8.9 38.9 

DISK SPACE REQUIREMENTS 

Table 1 gives the disk space requirements for SDVS 12. "Installed" represents the disk 

requirements of the system after SDVS has been installed, and assumes that the tar file 
from the tape has been recompressed. The size of your installed executable image, if you 
are building SDVS from the source or either binary version, will depend on the size of your 
(vanilla) Common Lisp image. These numbers are therefore approximate. All numbers are 

in megabytes (MB). 

READING THE SYSTEM FILES 

First, you should create a top-level directory to contain all of the files and subdirectories 
associated with SDVS. On our system, this directory is called versys (for VERification 
SYStem) and resides as a subdirectory under /u giving /u/versys. Although you can give 
your directory any name, we suggest you use the same name for compatibility; yours can 
be located anywhere, however. For example, you might put it as a subdirectory of /usr/lib, 
giving /usr/lib/versys. For the examples below, we assume you have /usr/lib/versys as your 

top-level directory. 

Next, you will want to load the SDVS system tar file from the tape. To do this, create a 
tmp directory in your top-level versys directory, connect (cd) to it, and extract (tar) the 

system tar file as follows ([unix] is the system prompt): 

[unix] tar xfmv xxx 

where xxx is the device name for your tape drive, e.g. /dev/rstO. This will create a file 
named sdvsnn-zararx.tar .Z where nn is the current release number (e.g. 12) and xxxx is 
lisp (for source files), sbin (for LCL object), fasl (for FACL object), or runtime (for 
FACL runtime). The file is compressed, so it must be uncompressed: 

[unix] uncompress sdvsnn-xxxx.tar 

replacing 7in and xxxx appropriately. 

Now, the system directories must be extracted from the tar file: 

[unix] tar xfmv sdvsnn-xxxx.tar 

This process creates a file structure containing the individual files from which the SDVS 
system can be used or built. Once this process is complete, you may delete sdvs mi-xxxx. t&r 



if you feel you have no further need for it. An alternative is to recompress the file: 

[unix] compress sdvsnn-xxxx.tar 

Both will save disk space. 

Before you can build and use an SDVS executable image or use the FACL Runtime exe- 
cutable, you must define a UNIX environment variable as follows. This can be done directly 
in the shell in which you plan to build or use SDVS or by adding the command to your 

. cshrc file. 

[unix] setenv SD VS-DIR "/usr/lib/versys/" 

Of course, you will need to supply the correct path you have chosen for your top-level 
directory. Please note the slash (/) character at the end; it is required. 

BUILDING AN SDVS EXECUTABLE IMAGE 

Once you have all of the system files available, you can build an executable SDVS image. 
To do this, you must start up a (vanilla) Common Lisp session (either LCL or FACL) and 
load the init-sdvs.lisp file found in your top-level directory. (If you don't know how to start 
up a Common Lisp session, see your system administrator.) For example, to load the file, 
type 

> (load "/usr/lib/versys/init-sdvs") 

After the init-sdvs.lisp file has been loaded, you are ready to teU Lisp to build your SDVS 
executable. Two functions will do this: make-sdvs builds from the object files; make-new- 
sdvs builds from the source files and compiles the entire system. Each function takes one 
argument, the name you wish to give the executable; the executable will automatically 
reside in your top-level directory. You may give the executable any name you want; in the 
following examples, we use the name sdvsl2 for our executable. Each of these functions will 
produce a trace of what is happening. (NOTE: For these operations, you must have write 
privileges to the appropriate directories.) 

For creating an SDVS executable from source: 

> (make-new-sdvs "sdvsl2") 

For creating an SDVS executable from binary: 

> (make-sdvs "sdvsl2") 

You may safely ignore any warning messages printed by the system. When you return to 
the Lisp prompt, you can exit Lisp by 

> (quit) 

USING THE SDVS RUNTIME EXECUTABLE 

If you have extracted the SDVS system files from a tape containing the "runtime" format, 
the file /usr/lib/versys/sdvsl2 (assuming the appropriate top-level directory) contains 
the executable image. This can be used to run SDVS directly, as noted below. 



RUNNING SDVS 

You have gone through this procedure and have created your executable. How do you run 

SDVS? At the Unix shell, just type, for example 

[unix] /usr/lib/versys/sdvs 12 

or just sdvsl2 if you are connected (cd) to the top-level directory (/usr/lib/versys in our 
example) or if your $PATH environment variable contains the path to the top-level directory. 

RUNNING THE TEST SUITE 

Included in the SDVS release is a set of tests that exercise the system. To run these tests, 

you must first start up SDVS. (After building your SDVS executable, you should restart 

SDVS so that the system is initialized properly.) When you get to the SDVS prompt, invoke 

the tests as follows: 

<sdvs.l>    run-test-proofs 

A very long trace will appear. If the tests run successfully (this may take over two hours on 
a Sun 4), you will return to the SDVS prompt. If something goes wrong, Lisp will "break," 
allowing you to examine the system; Lisp will print out some diagnostic information and 
put you at a prompt. If this should happen, you may exit Lisp by typing (quit). 

You may restart SDVS by first returning to the top level of Lisp and invoking the function 

sdvs as follows: 

> (sdvs) 

From the SDVS prompt, you can return to Lisp by typing the SDVS command bye. 

1.4    STATE DELTAS 

In this section we gradually lead up to the full definition of (standard) state deltas, which 
appears on page 11. State deltas with invariants are defined in Chapter 8. We adopt an 
outlook that sees a duality between programs and certain kinds of theories (collections of 
facts), in the sense that a program (a set of computations) can be seen as the set of all 
(temporal) facts that hold in all its computations, and a computational theory can be seen 
as the set of all possible computations the theory allows. For a fuller discussion, see [37] or 

[38]. 

1.4.1     Expressing a Computation as a State Delta 

A state delta is a description of a transition from one state to another. For example, 

[sd pre:   (.a =  1)  post:   (#b = 2)] 



where sd indicates that this is a state delta formula, pre: is the precondition field, post: is 
the postcondition field, a and b are places, the dot (.) is the function symbol for "contents 
of" before the transition, and the pound (#) is the function symbol for "contents of" after 
the transition. We have temporarily left out two more fields, the comodificationMst (comod:) 
and modification list (mod:) fields. This incomplete state delta represents the transition 
from the precondition, a state in which the contents of a are 1, to the postcondition, a 
state in which the contents of b are 2; that is, if at any time .a=l, then there will be a 
later time when #b=2. (Note that there is no specification as to when this later time is.) 
The modification field (mod:) will list those places that are allowed to change between the 
precondition and postcondition times. One possibility is that a given place does not change, 
or that such a change is irrelevant. However, it could be that the system described has some 
interrelationships that imply that when b gets the value 2 as indicated above, b or some 
other places may in fact change, or have to change, but the user is either unaware of or 
uninterested in what those changes are. A mechanism is needed that allows the expression 
of the fact that during a transition, certain places may have changed their contents, i.e., 
that the contents of those places cannot be assumed to remain the same. More generally, 
any sentence dependent on those places that change cannot be assumed to be preserved 
during such a transition. 

The problem is solved by including in a state delta an explicit list of the places that are not 
guaranteed to preserve their contents, or that may have their contents modified. Thus the 
above state delta could become 

[sd pre:   (.a =  1)  mod:   (a,b,c) post:   (#b = 2)] 

This means that from a state in which the contents of a are 1, we will get to a state in 
which the contents of b are 2, and in this transition all places, except perhaps a, b, and c, 
preserve their contents. Thus, a state delta with an empty mod list encodes a static claim, 
i.e., a claim about a transition in which nothing changes, and thus, if first-order, a claim 

about the current state. 

If one wanted to encode the assignment statement a := a + 1 as a state delta, it would be, 
to first approximation, 

[sd pre:   (true) 
mod:   (a) 

post:   (#a =   .a +  1)] 

If a were not in the mod list above, the resulting state delta would be inconsistent, that 
is, it could never be realized by a real computation, since a could not be replaced by a -f 1 
without a being allowed to change value. We currently do not allow pounds (#) to appear 
in the precondition.1 A dotted place in the postcondition refers to the contents of that 
place at the time the precondition is checked. 

'Although this change is not planned, we could interpret pounds in the precondition to refer to precon- 
dition time, as dots do now, and then interpret dots to refer to the time at which the state delta became 
true. 



The last ingredient of basic (i.e., without invariant list) state deltas, the comodification list, 
is used to regulate how long a usable state delta remains usable. It helps to consider the 
following intuition behind state deltas: state deltas describe various computations, and the 
validity or accessibility of those descriptions changes (possibly) as a function of time. For 
example, one may think of state deltas as processes that may be "activated" at one time 
and "deactivated" at other times. So in order to specify that the assignment statement 
a := a+ 1 will be applied only once (not repeatedly as in a loop), and then will be no longer 

accessible, the state delta will have to be 

[sd pre: (true) 
comod: (a) 

mod: (a) 
post: (#a =  .a +  1)] 

or possibly 

[sd pre: (true) 
comod: (pc) 

mod: (a,pc) 
post: (#a =   .a +  1)] 

where pc (program counter) is some new place. As long as the places in the comodification 
list do not change values, a usable state delta will remain usable and thus applicable at 
any time its precondition is true. So for the above state deltas, once either is applied it 
may not be reapplied, since the mod list and the comod list intersect. Note that this result 
holds simply because of the intersection, not because any places actually change value, a 
fact that, in some cases, we may never know. SDVS, for the sake of soundness, must take 
the conservative position that established facts will go away, unless we can prove that they 
remain. This is to be contrasted with the "default reasoning" position that established facts 
will stick around, unless we have good reason to believe that they should go away. 

To continue with the intuition behind the comod list, consider a supply of state deltas, 
each of which is introduced at a certain time, and each of which must have its precondition 
become true in order to "execute" (or be "applied") and bring about its postcondition. 
It could be the case that for a certain state delta to be applicable, most of the state at 
the time of its introduction must be unchanged except for one condition that is stated in 
the precondition. In order not to have to list all state characteristics that must remain 
in force, one can list those places that must remain unchanged since the time of the state 
delta's introduction in order for that state delta to be applicable. This is the comodification 
list. If one of those places changes before the precondition becomes true, the state delta 
cannot become applicable and is removed from the supply. (Of course, it can be explicitly 

introduced again in the future.) So, the following state delta 

[sd pre:   (.a gt  0) 
mod:   (a) 

post:   (#a «   .a +  D] 
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is true at a certain time ("now"), if at any time in the future (from then) when the contents 
of a are greater than 0, there is a (not necessarily strictly) later time at which the contents 
of a will be incremented by 1, and nothing else would have changed. However, at this later 
time the contents of a are still greater than 0, and so the state delta is "reapplicable." In 
other words, there is a still later time at which the contents of a are further incremented, 

and the process can be continued ad infinitum. 

The state delta 

[sd pre: (.a gt 0) 
comod: (a) 

mod: (a) 
post: (#a =   .a +  1)] 

is true "now" if at any later time at which the contents of a are greater than 0, and 
in the interval between now and that time the contents of a have not changed (a is in the 
comodification list), then there is a (not necessarily strictly) later time at which the contents 
of a are incremented by 1 and nothing has changed except the contents of a (only a is in the 
modification list). The truth of this state delta now does not imply that it will still be true 
at the time when the contents of a are actually incremented, because the comodification 
list will have changed. Note that a true state delta with an empty comodification list will 

be true at any time in the future. 

The general definition follows. 

Definition: Let p and q be lists of first-order sentences or previously defined state deltas (an 
implicit conjunction), where the first-order sentences in p and in the preconditions of any 
state deltas embedded within p and q are #-free, and let c and m be lists of places. The 

state delta 

[sd pre:   (p)  comod:   (c) mod:   (m)  post:   (q)] 

is true at time to in a given computation if at any later <i > tQ at which p is true and the 
contents of the places in c have not changed between t0 and U, then there is some still later 
time t2 > t-[ in the computation at which q is true and only the contents of the places in m 

may have changed between t\ and t2. 

The extra invariant (inv:) field is discussed in Chapter 8. 

1.4.2     Expressing a Claim about a Computation as a State Delta 

Much added expressive power comes from allowing the precondition and postcondition 
themselves to contain state deltas in addition to first-order sentences. This is well-defined, 
since all one must do is evaluate the truth of the precondition and postcondition at certain 
times, and this evaluation can be done for state deltas as well as for "static" sentences. 

Thus the following is a true state delta: 
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[sd pre: (.a =  1, 
[sd pre:   (.a gt  0) 

mod:   (a) 
post:   (#a -   .a + 

■od: (a) 
post: (#a »  1000)] 

1)]) 

This state delta can be interpreted as a claim about the computation represented by the 
state delta (call it S) embedded in the precondition; i.e., if the contents of a are 1 and S is 
constantly active, then definitely at some future time the contents of a will be 1000. Note 
that the above does not determine anything else about the values of a (for example, that 
a increases monotonically). Intermingled between the times when a takes on the values 1, 

2, ..., 1000, ..., a can take on arbitrary values. Also, nothing is specified about the length 
of the time interval between these increasing values, nor about how long these values are 

maintained once they are achieved. 

1.4.3    Assuming and Proving a State Delta 

First, we want to clarify several terms relating to state deltas that have been found to 
be confusing to users of SDVS. They are: "true state delta," "usable state delta," and 
"applicable state delta." A true, or valid, state delta is one that holds in every computation 
according to the semantics given on page 11. Every state delta theorem proved in SDVS, 
i.e., proved at the top level, is (we hope) a true state delta. A usable state delta is one 
that is known by SDVS to be true at the current time in the current context, i.e., is in 
the list of usablesds. An applicable state delta is a usable state delta that can be applied 
in the current context, i.e., whose precondition is true. After it is applied, it may remain 

applicable, usable, or neither in the new state. 

In order to prove the above state delta, i.e., that it is true "now," SDVS assumes there is 
a later time at which the precondition is true and the contents of the places in the comodi- 
fication list (there are no such places in this example) have not changed. The precondition 
consisting of the first-order sentence about a and the state delta S is stored in a database 
representation of the "current state" of the computation. Then one shows, in this case by 
direct execution or induction, that there exists a state in which the postcondition becomes 

true. 

For the sake of simplicity, we now describe a step of the symbolic execution proof. (Induction 
will be discussed in Section 2.5.) The fact that S is in the current state (i.e., true) allows 
a state transition to take place. The precondition of S, .a gt 0, is also true in the current 
state, so one may advance the state to the time of S's postcondition, #G = .a + 1. Now 
one must update the current state. It contains the fact that the contents of a are now 2. 
How about S? S has an empty comodification list also, so it will be true at any time after 
the original "now." Thus S also belongs to the new current state. Since the precondition 
of S is still true, S may be reapplied, which brings about the state where the contents of a 
are 3. This process can obviously be continued until the contents of a become 1000. One 
final check is needed to prove the state delta:  it must be verified that the postcondition 
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was achieved within the constraints of the modification list. Indeed this is so: since the 
modification list of S contained only a, the whole computation involved only changes in a. 

1.5    THE MODEL OF STORAGE 

There is one additional element of the state delta paradigm that we have not yet considered, 
the dependence relations among the places. The covering predicate represents architectural 
information about the "overlap" of places, and is needed in processing the comod and mod 

lists in order to update the state. Without an explicit covering statement mentioning all 
places in a given state delta, SDVS may behave too conservatively. If there is no overlap 

among places, that has to be explicitly stated. 

For example, if b is in the modification list of a state delta, then b is allowed to change when 
that state delta is applied, and thus we cannot know a priori (i.e., based on the previous 
value of b) what its new value will be. The contents of b must be explicitly updated at 
postcondition time (either in accordance with the information in the postcondition about 
b, or simply to "don't know"). If a happens to be defined as the concatenation of b with 
c, say, then a must also be similarly updated at postcondition time. In this case, or in the 
more general case of a being the disjoint union of b and c, one would write COVERING(A, 
B, C). If the user has knowledge that is more explicit (e.g. that a is the concatenation of 
b and c), those details would have to be specified separately, and then of course further 
information about the relation among the values of a, b, and c could be deduced. 

Think of 
covering(place, subplacel, subplace2,. • ■, subplacen) 

as representing the condition that place is the disjoint union of {subplace1, subplace2, ..., subplacen}. 

[Note to advanced SDVS users: to model more general situations, think of 

covering(place, subplacex, subplace2,.. ■, subplacen) 

as representing the condition that {subplace^, subplace2,.. ■, subplacen} is a minimal inde- 
pendent set such that the value of p/ace is a function of (.subplace^, .subplace2,..., .subplacen). 
But we will not get into the technical details here.] In particular, if place is actually the dis- 
joint union of the mentioned subplaces, and the contents are calculated by concatenating the 
contents of the subplaces, then certainly the above covering relation holds. Thus, a change in 
.place means that there was a change in at least one of .subplacex, .subplace2,..., .subplacen; 
therefore, unless we know more specifics, we must assume all have potentially changed value. 
Similarly, unless we know otherwise, a change in the value of one of the subplaces means 
we must assume that .place changed. Note that we do not insist that the value of place 
be a one-one function of (.subplacex, .subplace2,..., .subplacen); thus, the value of a sub- 
place may change without the value of place actually changing. However, in cases where 
we do want to enforce that the function be one-one, we have the strongcoverings flag (see 

Section 2.9.1). 

Thus, under the hypothesis that covering(all, a, b) (all represents the set of all places) and 

covering(a, c, d) hold, the following state delta is inconsistent: 
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SI: 

[sd pre (true) 
mod (d) 

post (#c = c + l)] 

while the followir g are con sistent 

S2: 

[sd pre (true) 
mod (c) 

post (#c = c -t- l,#a -   -a)] 

S3: 

[sd pre:   (true) 
mod:   (b,c) 

post:   (#a =   .a,#b =  1)] 

S4: 

[sd pre 
mod 

post 

(true) 
(c) 
(#a =   .a +  1)] 

(To see how the system responds to the hypothesis of an inconsistent state delta, see Section 
2.6.) To see why S2 is consistent, we must use the abstract dependency interpretation of 
coverings. For example, assuming that covering(a, c, d) means that a depends on c and d, 
but c and d are independent, we can consider the situation in which .a = .c + .d if .c < 5, 
and .a = 5 + .d otherwise. Then .c can go from 5 to 6 without changing the value of a. S3 
is similar: in S3 the contents of d are not allowed to change during the computation, since 
d does not appear in the mod list, a does not have to appear in the mod list, even though 
its contents may have changed during the computation (as a result of the fact that c is in 
the mod list). If c had been omitted in the mod list and #6=1 had been omitted in the 
postcondition, then the resulting state delta would have been true (and provable in SDVS). 

S4 is seen to be consistent by making the part of a that changes be c. 

The covering language actually represents a fragment of set theory. The other symbols in 
the covering language are pcovering("partial" covering, with pcovering(x, a, b, ...) meaning 
that the place x contains, but is not necessarily equal to, the disjoint union of a, 6, ...), 
union (with union(a, b, ...) meaning the list of the places a, b, ...), alldisjoint (with 
alldisjoint(a, b, ...) meaning that the places a, 6, ..., have no locations in common, i.e., 
they are independent), diff (with diff(A, B), where A and B are lists of places, meaning 
those places in the list A but not in 5), everyplace (the universal place, pcovering all other 
places), and emptyplace (meaning the unique place that has no contents, that is pcovered 
by all other places). The name all is used as an abbreviation for everyplace. 
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Figure 1: Basic Structure of SDVS 

1.6    THE STRUCTURE OF SDVS 

Figure 1 illustrates the various modules of SDVS. SDVS is organized around the kernel, 
which is the manager for the state delta logic and thus performs dynamic reasoning within 
SDVS. Access to the kernel is gained through the command interface, which is in turn 
accessed by users of the system through the user interface. The kernel uses the place table, 
which stores the associations between places (variables) and their values, and both the kernel 
and the place table use the simplifier for static reasoning and value simplification. Also 
available with SDVS are translators for translating from software and hardware languages 
(currently parts of ISPS, Ada, and VHDL) into the state delta logic. Finally, some general- 
purpose modules of SDVS are the utilities, parsers, and printers. 

The simplifier module processes static expressions (i.e., those not involving state changes) 
by maintaining a database of equivalence classes of expressions, which is kept closed under 
congruences [39] (see Figure 2). The entry to the simplifier is through two modules that deal 
with normalizing expressions into standard form and analyzing the propositional (boolean) 
nature of any expression. E is the part of the simplifier that performs deductions that are 
based solely on equality reasoning. The other "solvers" deal with special theories, such as 
Z: the integers, C: coverings, B: bitstrings, and A: arrays. 

The simplifier has two properties that facilitate its use. First, it is incremental; that is, 
the simplifier can accept atomic formulas one by one, maintain a representation of their 
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Figure 2: Simplifier Structure 

conjunction, and detect an unsatisfiability as soon as it occurs. Second, it is resettable; that 
is, the simplifier can mark its state, accept further formulas, and then return to the marked 

state by removing the formulas received after the mark. 

1.7    INPUTTING THEOREMS 

The user is able to input descriptions of target and host machines in ISPS (see Chapter 3), 
as well as a mapping between states in the host and target, which gives the "interpretation" 
of one machine in the other. These are the ingredients of the state delta representing the 
statement of the theorem that the host implements the target via the given mapping. 

The implementation command prompts the user to supply these components and automat- 
ically creates the theorem expressing the implementation relation (see page 121). 

Theorems representing the input-output correctness or safety of Ada programs must be writ- 
ten as state deltas by the user: the Ada program in its adatr form (written as ada<program- 
name> along with any other necessary input conditions in the precondition, and the output 
condition appearing in the postcondition along with the predicate terminated<prograrn- 
name> (see Chapter 4.) A similar procedure employing the predicate vhdl<desc-name> must 

be followed for theorems representing the correctness of VHDL descriptions (see Chapter 5.) 
The terminated predicate is made true when the translator arrives at the end statement of 
an Ada program or VHDL description. Note that ada<program-name> or vhdl<desc-name> 
can occur only as implicit conjuncts separated by a comma; use of the word and or the 
symbol &, as allowed with all other predicates, is not allowed, and will result in an error. 
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1.8    GETTING AROUND IN SDVS 

Throughout this manual, italic type indicates user input and 

this kind of type 

indicates system type-back. All arguments input to SDVS must be followed with a carriage 

return <CR>. 

To run SDVS, just type the name of the executable load module given when the system 
was created, e.g. sdvsl2.2 (This assumes that the correct path has been put into the Unix 
$PATH variable. Otherwise, you will have to type in the entire pathname.) When SDVS 
starts up, you will see a system header message followed by the SDVS command prompt, 

which looks like this: 

<sdvs.1> 

Suffixes other than "1" indicate proof depth. 

SDVS is now ready to accept your commands to create state deltas, parse ISPS, Ada, or 
VHDL files, and build proofs. Most of SDVS's commands require further information from 
the user. A short prompt message followed by : will describe the type of information that 
SDVS is expecting. The user should then supply the requested information. SDVS expects 
all of the requested information on one line; therefore, the user should press the "return" 
key only after typing in all of the information. Occasionally, the prompt will contain a 
default value to be used. The default value for any prompt is displayed within enclosing 
brackets "[]" before the ":". To use the default value, one need only press the "return" 
key. (In the examples in the manual, you will see <CR> indicating this.) 

Certain commands prompt the user to supply file (or path) names. In these instances, the 
full pathname for a file may be supplied (e.g. /usr/jones/sdvs/proof s/ada.proof) or a 
partial (relative) pathname (e.g. testproof s/mult.ada). If a partial pathname is supplied, 
it is relative to the current working directory. InitiaDy, it is the sdvs subdirectory of the 
top-level directory created to hold the SDVS system when it was loaded from the release 
tape by the system administrator. 

A useful feature of SDVS is its ability to return to a previous step in the proof by means 
of the pop command. The proof structure is kept as a stack so that the intermediate proof 
steps are lost. It is a good idea to do a proofstate first, showing the proof steps executed 
so far, in order to see how many steps you need to pop. Several query commands come in 
handy: whynotgoal can help direct the proof by showing the user which goals are not yet 
verified; whynotapply will give the reasons why a state delta cannot be applied (e.g. because 
part of the precondition is not known to be true; it will also inform the user if the mod 
list is too large, and therefore the proof can be closed only by reaching a contradiction; see 

Section 2.6). 

2See your system administrator for the name you should use. 
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When the proof is either partially or totally written, it may be saved by the command dump- 
proof. Saved variables (e.g. state deltas, proofs, lemmas, formulas) may be written to a file 
by the command write, and read by the command read. See Section 2.9.14. Incorporating 
into the current SDVS environment a state delta or proof that has a denning form in the 
editor is accomplished by evaluating that form at the Lisp prompt: simply type bye in 
SDVS to get the Lisp prompt, and (sdvs) to return. Alternatively, eval can be used at the 

SDVS prompt. 

1.9    SOME PRACTICE ON THE SYSTEM 

In this section we want to give the user interactive experience with SDVS. This section uses 

the following commands: 

• createsd: define a state delta 

• ppsd <sd>: prettyprint the state delta <sd> 

• init: initialize the system before beginning a new proof 

• prove <sd> <proof>: prove (check the proof of) the state delta <sd> by <proof> 

• *: execute (apply usable state deltas as long as possible) 

• ps: prints the current proof state 

• isps <file>: translates the ISPS program on <file> into a state delta. 

• quit: terminates a proof session 

The following simple example illustrates the creation and proof of the state delta claim- 
ing that if a starts out at 1, and, if nonnegative, a is repeatedly incremented by 1, then 

eventually a gets to be 3. 

<sdvs.l>    createsd 
name: s2 

[SD pre: .a ge 0 
comod[]: <CR> 

mod[] : a 
post: #a = .a + 1 

] 

<sdvs.l>    ppsd 
state delta:    s2 

[sd pre:   (.a ge 0) 
mod:   (a) 

post:   (#a =   .a +  1)] 
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One way to insert a state delta in the precondition or postcondition of another state delta 
is by means of the formula command. The internal state delta can also be typed in directly 
(see Section 2.1). 

<sdvs.l>    createsd 
name: s3 

[SD pre: .a - 1, formula(s2) 
comod[]: <CR> 

mod[] : a 
post: #a = 3 

] 

<sdvs.l>   ppsd 
state delta:    s3 

[sd pre:   (.a = l,formula(s2)) 
mod:   (a) 

post:   (#a = 3)] 

<sdvs.l>    mit 
proof name[]:    <CR> 

State Delta Verification System,  Version 12 

Restricted to authorized users only. 

<sdvs.l>    prove 
state delta[]:    s3 
proof [] :    < CR> 

open —   [sd pre:   (.a = l,formula(s2)) 
mod:   (a) 

post:   (#a =3)] 

inserting — pcovering(all,a) 

Complete the proof. 

The message about pcovering announces that SDVS has discovered an undeclared place, a. 
SDVS discovers places either because they appear in mod or comod lists, or because they 
appear with dots or pounds. It is recommended that all places be declared explicitly by 
means of a covering statement. To continue the proof (make sure the autoclose flag is on by 
typing flags; it should be, unless you have explicitly turned it off by the setflagcom.ma.nd): 

<sdvs.l.l>    * 

apply — [sd pre: (.a ge 0) 
mod: (a) 
post: (#a = .a + 1)] 

apply — [sd pre: (.a ge 0) 
mod: (a) 
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post: (#a -   .a + 1)] 

close — 2 steps/applications 

<sdvs.2> quit 

Q.E.D.  The proof for this session is in 'sdvsproof . 

State Delta Verification System, Version 12 

Restricted to authorized users only. 

The next little example deals with the ISPS program aaa.isp. See Chapter 3 for detailed 
information about the translation from ISPS descriptions to state deltas. 

MACHINE:=( 

♦»Registers** 

A<1:0> 

**Process** 

CYCLE{MAIN}:= 

BEGIN 

A_l 

END 

) 

Now we wish to access this program. It resides in testproofs/manual/isps/aaa.isp. When 
a path name or a file name is required as an argument to an SDVS command, the user 
is prompted with an expression of the proper form as a default. Sometimes SDVS will 
guess correctly; if so, hitting <CR> instructs SDVS to use the default. Otherwise, a new 
expression may be typed in. After initing, the session continues: 

<sdvs.l>    tsps 
path name [f oo. isp] :    testproofs/manual/isps/aaa.isp 

unique name level [1] :    <CR> 

Parsing ISPS file —  "testproofs/manual/isps/aaa.isp" 

Translating ISPS file — "testproofs/manual/isps/aaa.isp" 

In translating from ISPS to state deltas, the control point is considered as a place <machine- 
name>\upc (for microprogram counter, u being the poor man's /i) that takes label names 
for values, thereby allowing execution from one label to the next or to any other. The labels 
machine\started and machine\halted are generated automatically. 

We create and prove the state delta theorem claiming that if we start executing the program 
aaa.isp at its start point, we will eventually get to a state in which a has the bitstring value 
1(2), that is, value 1 and length 2 (as specified in the semantics of ISPS). 
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<sdvs.2>   ppsd 
state delta:    isps 

file name:    aaa.isp 

covering(machine,a,machine\upc) 
declare(a,type(bitstring,2)) 
[tr «MACHINE\STARTED {in MACHINE} A ;] 

<sdvs.2>    createsd 
name: isps.sd 

[SD pre: isps(aaa.isp), .machine\upc — machine\started 
comodD: <CR> 

mod[] : all 
post: #a = 1(2) 

] 

<sdvs.2>   ppsd 
state delta:    isps.sd 

[sd pre:   (isps(aaa.isp),.machine\upc = machine\started) 
mod:   (all) 

post:   (#a =  1(2))] 

<sdvs.2>    setflag 
flag variable:    autoclose 
on or off[off]:    on 

setflag autoclose — on 

<sdvs.3>    init 
proof name[] :    <CR> 

State Delta Verification System,  Version 12 

Restricted to authorized users only. 

<sdvs.l>   prove 
state delta[]:    isps.sd 
proof [] :     * 

open —   [sd pre:   (isps(aaa.isp),.machine\upc = machine\started) 
mod:   (all) 

post:   (#a =  1(2))] 

apply —  [sd pre:   (.machine\upc = machine\started) 
mod:   (machine\upc,a) 

post:   (#a = 1(2), 
[tr OMACHINE\halted])] 

close —  1 steps/applications 

<sdvs.2>    quit 

Q.E.D.    The proof for this session is in  'sdvsproof. 
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State Delta Verification System, Version 12 

Restricted to authorized users only. 

<sdvs.l>    pp 
object:    sdvsproof 

proof sdvsproof: 

prove  isps.sd 
proof:   execute 

Consider these examples showing the use of the help command. (Note that the system 
output has been suppressed.) The first example shows that the user wishes to accept the 
default value (all) supplied by the system by just pressing the "return" key. In the second 

example, the user wishes to supply a value different from the default and so types it in. 

<sdvs.l>    help 

with [all]:      <CR> 

<sdvs.l>    help 
with [all] :      help 

1.10    SYSTEM HELP 

All possible user input has on-line documentation.  The help command may be typed in. 
The total output for system help is listed below. 

<sdvs.l> help 
with [all]: all 

<<<SDVS Help>>>  Proof Commands  <<<SDVS Help>>> 

Commands — * activate adatr apply apply! applydecls applydeclsandstats 
automatedatatype cases cleardate close comment consider createadalemma 

createvhdllemma date deactivate defer execute finduct go 

hidepropagations induct interpret invokeadalemma invokevhdllemma isps 

ispstr let letsd linearize meases mpisps mptr natinduct negate notice 

noticeconcurrentsd noticeinvariant omegainduct parse prove proveadalemma 

provebyaxiom provebylemma provelemma provevhdllemma quantification read 

readaxioms readlemmas restorepropagations rewritebyaxiom rewritebylemma 

selecti setflag stop subcases tr until vhdltr 

* 
Symbolically executes state deltas until either no more state deltas can be 

applied or the current goal is satisfied.  If the 'autoclose' flag is on, the goal 
is checked after each state delta application; otherwise, the goal is never 

checked. 
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activate <solver-name> 
Activates one of the simplifier's solvers,  when <solver-name>  is one of a,  b,   c, 
d,   e,   1,  m,  p,  q,  or z.    Use the   'solvers'  command to see what the single 
character <solver-name> designations denote. 

adatr <pathname> 
Initiates the  incremental translation of the  <file>  identified by <pathname>  into 
the language of the state delta logic,  assuming <file> contains a Stage 4 Ada 
program.    The  <file>  is not re-parsed if  it has already been parsed,  and is not 
re-translated if  it has previously been translated.    The resulting translation is 
associated with <file>'s name,  and becomes available via the predicate 
ada(<file>) . 

apply {<n>} 
Symbolically execute, if possible, the next <n> highest applicable state deltas, 

executing only once if <n> is omitted. If the invariance flag is ON, the 

application is preceded by the opening of a proof that the invariant of the state 

delta to be proved is implied by the invariant of the state delta to be applied. 

apply <sdspec> 
Symbolically execute the state delta specified by <sdspec> if applicable. If the 

invariance flag is ON, the application is preceded by the opening of a proof that 

the invariant of the state delta to be proved is implied by the invariant of the 

state delta to be applied. 

apply! {<n>} 
Symbolically execute, if possible, highest applicable state deltas until the nth 

markpoint is reached, executing only to the first markpoint if <n> is omitted. 

applydecls 
Performs symbolic execution of Ada declarations. 

applydeclsandstats 

See the command 'go'. 

automatedatatype <datatype-name> 

Automates the axioms for an untyped user-defined datatype created via the 

'createdatatype' command, by defining a simplifier solver which implements the 
axioms. This command must be performed at the top level, because it causes 

additional simplifier initialization and must be invoked in a guaranteed 

consistent state. Use the 'deautomatedatatype' command to eliminate the 

automation. 

cases <preterm> {<then-proof >} {<else-proof >} 

Starts a proof by cases of the current goal, the two cases being conditional on 

<preterm> and its negation. Unless omitted, the proof commands in <then-proof> 

are used for the proof of the first case and those in <else-proof> for the proof 

of the second case. 

cleardate 
Zeros out the elapsed proof time since previous 'date' command, so the next 'date' 

command will display new elapsed time. 

close 
Tries to close the current proof, which is possible only if the current goal has 

23 



been satisfied.  When the 'autoclose' flag is on, SDVS attempts to close the proof 

after each proof command, and explicit 'close' commands are unnecessary. 

comment <text> 
Comments a portion of the proof. Anything may be embedded within a comment, but 

only text may be typed in from command level. 

consider <preterm> 
Adds <preterm> to the simplifier's database. 

createadalemma <lemma-name> <file-name> <subprogram-name> <qualified-name> 

<preformulas> <mod-places> <postformulas> 

Create and name a lemma about an Ada subprogram contained in the indicated file. 

One must provide the fully qualified name of the subprogram, the optional 

precondition formulas for executing the subprogram, the optional list of places 

(variables) modified by the subprogram, and the desired postcondition formulas 

resulting from the execution of the subprogram. The lemma is represented by a 

state delta with appropriate precondition, modlist, and postcondition. The lemma 

may be printed via the 'pp adalemma'command, may be proved via the 'proveadalemma' 

command, and may be invoked by the 'invokeadalemma' command. 

createvhdllemma <lemma-name> <file-name> <subprogram-name> <qualified-name> 

<preformulas> <mod-places> <postformulas> 
Create and name a lemma about a VHDL subprogram contained in the indicated file. 

One must provide the fully qualified name of the subprogram, the optional 

precondition formulas for executing the subprogram, the optional list of places 

(variables, signals) modified by the subprogram, and the desired postcondition 

formulas resulting from the execution of the subprogram. The lemma is represented 

by a state delta with appropriate precondition, modlist, and postcondition. The 

lemma may be printed via the 'pp vhdllemma'command, may be proved via the 

'provevhdllemma' command, and may be invoked by the 'invokevhdllemma' command. 

date 
Displays the time of day and the elapsed proof time since previous 'date' command, 

displaying only the time of day if no 'date' command since the last SDVS 

initialization. 

deactivate <solver-name> 
Deactivates one of the simplifier's solvers, when <solver-name> is one of a, b, c, 

d, e, 1, m, p, q, or z. Use the 'solvers' command to see what the single 

character <solver-name> designations denote. 

defer {<ns>} 
Defers either all goals if not provided an argument, or defers the goals whose 

goal numbers appear in <ns>. 

execute 
Symbolically executes state deltas until either no more state deltas can be 

applied or the current goal is satisfied. If the 'autoclose' flag is ON, the goal 

is checked after each state delta application; otherwise, the goal is never 

checked. 

finduct <tr-goal> <invariant-preformulas> {<base-proof>} {<step-proof>} 

CURRENTLY NOT IMPLEHEMTED. Opens a fixed point inductive proof of the specified 

goal, which must be a TR-generated continuation. The invariant, base proof, and 
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step proof are as in the 'induct' command. 

go {<postf ormula>} 
Is similar to the 'until' command, except that 'go' sill instantiate existentially 

qualified state deltas and apply them if a state is reached where no more state 

deltas are applicable. This command is especially useful for symbolically 

executing Ada programs and VHDL descriptions. 

hidepropagations 
Hides propagated facts, essentially making the system forget about the current set 

of propagated disjunctions. Turning on the 'reportpropagations' flag forces the 

system to print propagated disjunctions after they appear during the course of a 

proof. The 'restorepropagations' command restores any hidden propagated 

disjunctions. 

induct <induct-preterm> <from-preterm> <to-preterm> <invariant-preformulas> 

<comod-places> <mod-places> {<base-proof>} {<step-proof >} 

Initiates an inductive proof on the expression <induct-preterm> in the range 

<f rom-preterm> to <to-preterm>. The loop invariant is the conjunction of 

< in variant-pref ormulas> , and <comod-places> and <mod-places> are lists of places 

for the comodification and modification lists of the inductive step proof. Unless 

omitted, the base and step proofs are taken from <base-proof> and <step-proof>, 

respectively. Currently, induction expressions must be integer-valued, and the 

induction counter is either incremented or decremented by exactly one during the 

inductive step. 

interpret <proof-name> 

Interprets the proof commands in <proof>. 

invokeadalemma <lemma-name> 
<lemma-name> must be the name of a valid Ada lemma, previously created via the 

'createadalemma' command. This lemma characterizes the execution of some 

subprogram P.  If the current proof is symbolically executing an Ada program, and 

the symbolic execution point indicates that we are "at P," then the lemma is 

invoked to replace the execution of the body of P by its state delta 

characterization. After the state delta resulting from the lemma is applied, 

symbolic execution can resume. 

invokevhdllemma <lemma-name> 

<lemma-name> must be the name of a valid VHDL lemma, previously created via the 

'createvhdllemma' command. This lemma characterizes the execution of some 

subprogram P.  If the current proof is symbolically executing a VHDL hardware 

description,and the symbolic execution point indicates that we are "at P," then 

the lemma is invoked to replace the execution of the body of P by its state delta 

characterization. After the state delta resulting from the lemma is applied, 

symbolic execution can resume. 

isps <file> {<unique-name-level>} 
Parses the ISPS file <file>, generating a parse tree file, and produces the state 

delta semantics of <file>, associating these semantics with <file>'s name. 

ispstr <pathname> 
Initiates the incremental translation of the <file> identified by <pathname> into 
the language of the state delta logic, assuming <file> contains an ISPS program. 

The <file> is not re-parsed if it has already been parsed, and is not 
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re-translated if  it has previously been translated.     The resulting translation is 
associated with <iile>'s name,  and available via the predicate isps(<f ile>) . 

let  <name> <preterm> 
Instantiates <name> to the current value of  <pretera> if name is not  already in 
use by the simplifier. 

letsd <name>  <sdspec> 
Generates a new <name> for the state delta referenced by <sdspec>,  if  <name>  is 
not  in use by the current proof. 

linearize <sdspecl>  <sdspec2> <namel> <name2>  {<name3>} 
Linearizes the two applicable state deltas specified by creating and asserting the 
disjunction of two resultant state deltas  (three,  if the invariance flag is ON). 
The name of  each disjunct is supplied by the user. 

ncases <n> <first-preformula> {<f irst-proof >}  ...  <nth-prefonnula> {<nth-proof>} 
Starts a proof of the current goal by multiple cases predicated on the n 
<preformula>s, using the associated proof commands if provided. 

mpisps <file>  <starting-markpoint-name> <ending-markpoint-names>  <dotformulas> 
{<unique-name-level > } 

Produces the markpoint-to-markpoint state delta semantics of  <file>,  after parsing 
it,  generating state deltas only for those paths which start at 
<starting-markpoint-name> and go no further than any markpoint in 
<ending-markpoint-names>,  where  <dotf ormulas> must hold at the beginning of  each 
such path. 

mptr <file>  <starting-markpoint-na»e> <ending-markpoint-names> <dotformulas> 
{<unique-name-level >} 

Produces the markpoint-to-markpoint state delta semantics of the already  'isps'ed 
<file>,  generating state deltas only for those paths which start at 
<starting-markpoint-name> and go no further than any markpoint in 
<ending-markpoint-names>,  where <dotformulas> must hold at the beginning of each 
such path. 

natinduct <induction-variable>  <formulas>  {<base-proof>}  {<step-proof>} 
Performs natural induction on n for the specified formulas, where n is the new 
induction variable. 

negate <sdspec>  <namel>  {<name2> <name3>} 
If the specified state delta is known to be FALSE,  SDVS creates and asserts an 
equivalent state delta.    The postcondition of the asserted state delta contains 
the disjunction of three formulas  (one formula,   if the invariance flag is OFF), 
whose names are given by the user. 

notice <preformula> 
Inserts <preformula> into the state if  it  is known to be TRUE. 

noticeconcurrentsd <n>  <sdspecl>   ...   <sdspecn> 
Creates and asserts the concurrent state delta obtained from the n specified 
applicable state deltas. 

noticeinvariant <sdspec> 
Asserts the  invariant of  the state delta specified,  if  the state delta is  known to 
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be applicable. 

omegainduct <on> {<auxiliary-formulas>} <places> {<base-proof>} {<step-proof >} 

Initiates an inductive proof on the <on> formulas which must be of precondition 

type. The optional <auxiliary-formulas>, which must also be of precondition type, 

will usually be loop state deltas. <Places> is a set of places one of which will 

change infinitely often in the induction. The <base-proof> and <step-proof> are 

optional. 

parse <file> <language-name> 
Parses <file> and creates a parse tree file.tree, according to the grammar and 

semantic actions associated with <language-name>. 

prove <sdspec> {<proof>} 
Opens a proof of the state delta specified by <sdspec>, using <proof> if supplied. 

Then, if the invariance flag is ON, a proof of the invariant of the specified 

state delta is opened. 

proveadalemma <lemma-name> {<proof>} 
Starts a proof of the Ada lemma named <lemma-name>, using the proof commands in 
<proof> if provided. This command, like the 'provelemma' command, is available 

only as a top level command. 

provebyaxiom <preformula> {<axiom-name>} [<freevar-symbol> <matching-preterm>]* 

Attempts to prove the truth of <preformula> using a single instantiation of a 

single axiom whose consequent matches <formula>, using the axiom whose name is 

<axiom-name> and matching free variables appearing in the antecedent but not the 

consequent if matching terms are provided. 

provebylemma <preformula> {<lemma-name>} [<freevar-symbol> <matching-preterm>]* 

Attempts to prove the truth of <preformula> using a single instantiation of a 

single lemma whose consequent matches <formula>, using the lemma whose name is 
<lemma-name> and matching free variables appearing in the antecedent but not the 

consequent if matching terms are provided. 

provelemma <lemma-name> {<proof>} 
Starts a proof of the lemma named <lemma-najne>, using the proof commands in 

<proof> if provided. 

provevhdllemma < lemma-name > {<proof>} 
Starts a proof of the VHDL lemma named <lemma-name>, using the proof commands in 

<proof> if provided. This command, like the 'provelemma' command, is available 

only as a top level command. 

quantification {<on/off>} 
Turns the quantification solver on or off, unless the arguments are omitted, in 

which case the state of the solver is toggled. This command is not accepted if 

any proofs have been started since initialization, since it causes system 

re-initialization. 

read <file> 
Reads state deltas, proofs, axioms, lemmas, formulas, formula lists, datatypes, 

macros, adalemmas, and vhdllemmas from <file>, indicating which definitions were 

read. Use the 'write' command to place definitions in a file. 
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readaxioms <file> 
Reads axioms from <file>, inserting them into the current set of axioms. 

readlemmas <file> 
Reads lemmas from <file>, inserting them into the current set of lemmas. 

rest orepropagat ions 
Restores all hidden propagated disjunctions.  See the 'hidepropagations' command. 

rewritebyaxiom <preterm> {<axiom-name>} 
Attempts to rewrite <preterm> by finding some axiom whose consequent is of the 

form tl=t2, where either tl or t2 matches <preterm>, and if the antecedent of the 

axiom is satisfied, then the equality assertion is made, instantiating tl and t2 

using subterms of <preterm>. The axiom whose name is <axiom-name> is used if 

<axiom-name> is provided. 

rewritebylemma <preterm> {<lemma-name>} 

Attempts to rewrite <preterm> by finding some lemma whose consequent is of the 

form tl=t2, where either tl or t2 matches <preterm>, and if the antecedent of the 

lemma is satisfied, then the equality assertion is made, instantiating tl and t2 

using subterms of <preterm>. The lemma whose name is <lemma-name> is used if 

<lemma-name> is provided. 

selecti <preterm> <n> <first-selecti-clause> {<first-proof>} ... <nth-selecti-clause> 

<nth-proof> 
Permits proof selection based on the value of the integer-valued expression 
<preterm>.  The <selecti-clause>s are checked against the value of <preterm> one 

at a time, and if a clause matches, then its proof is executed. A final clause of 

"t" matches any value for <preterm>. 

setflag <flag-name> {<on/off/n>} 
Sets the flag denoted by <flag-name> to the indicated value, toggling the flag if 

the value is omitted. 

stop {<string/symbol>} 
Halts the current batch proof, printing out the <string/symbol> unless it is 

omitted. This command has no effect in interactive mode. 

subcases <preterm> <mod-places> <postformulas> {<then-proof >} {<else-proof>} 

Starts a proof by cases of the goals indicated by <postf ormulas>, the two cases 

being conditional on <preterm> and its negation. Only the places in <mod-places> 
are permitted to be modified during the course of the proof. Unless omitted, the 

proof commands in <then-proof> are used for the proof of the first case and those 

in <else-proof> for the proof of the second case. 

tr <file> {<unique-name-level>} 
Produces the state delta semantics of already parsed <file> from its parse tree, 

associating these semantics with <file>'s name. 

until <postformula> 
Symbolically executes highest applicable state deltas until <postformula> is TRUE, 

there are no more applicable state deltas, or the 'autoclose' flag is on and the 

current goal is satisfied. 

vhdltr <pathname> 
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Initiates the incremental translation of the <file> identified by <pathname> into 

the language of the state delta logic, assuming <file> contains a Stage 3 VHDL 

hardware description. The <file> is not re-parsed if it has already been parsed, 

and is not re-translated if it has previously been translated. The resulting 

translation is associated with <file>'s name, and becomes available via the 

predicate vhdl(<file>) . 

<<<SDVS Help>>>  Quantification Commands  <<<SDVS Help>>> 

Commands — enotice instantiate provebyeklariom provebygeneralization 

provebyinstantiation provebymakeboundedquantifier 

enotice <postformula> 
Informs EKL of the non-quantified formula <postformula>, which is already known to 

be true by the simplifier. 

instantiate <goal> [<existential-symbol> <substitute-symbol>]* 

The goal must be an existential formula. Replaces the goal with the formula 

obtained by substituting names for the existentially quantified variables in the 

original goal. The substitutions must be specified in order of appearance if more 

than one variable is to be substituted. 

instantiate <quant> [<existential-symbol> <substitute-symbol>]* 

Substitutes names for existentially quantified variables in the usable quantified 

formula <quant>. The variable names are used as the subsitution names if no 

substitutions are specified. 

instantiate <postformula> [<existential-symbol> <substitute-symbol>]* 

Substitutes names for existentially quantified variables in the true existential 

formula <postf ormula>. The variable names are used as the subsitution names if no 

substitutions are specified. 

provebyeklaxiom <postf ormula> {<axiomname>} 
Attempts to prove the truth of the quantifiers formula <postformula> using a 

single instantiation of a single axiom whose consequent matches <postformula>, 

returning either the name of the axiom used, or NIL if no axiom proves 

<postf ormula>. The axiom whose name is <axiomname> is used if <axiomname> is 

specified. 

provebygeneralization <universal-formula> <universal-formulas> 
Attempts to prove <universal-f ormula> by using the already known to be true 
statements <universal-f ormulas>.    It checks that the conjunction of the first 
levels of <universal-formulas>  implies the first level of <universal-f ormula>. 
The first level of  a quantified formula is obtained by removing the first 
quantifier and variable. 

provebyinstantiation {<postformula>} <universal-postformula> <universal-varl>  <terml> 
. . .   <universal-vark> <termk> 

Attempts to prove <postformula> by using the already known to be true universal 
statement <universal-postformula> with specified terms substituted for universal 
variables.    This commands checks to see that the non-quantified part of 
<universal-postformula> with the terms substituted implies <postformula>.    If 
<postformula> is omitted,  the result of the substitution is inserted as a true 
fact into the current state. 
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provebymakeboundedquantif ier <universal-formula> <universal-formulas> 

Attempts to prove <universal-formula> by using the already known to be true 

universal statements <universal-formulas>.  Checks to see that the prefixes are 

all the sue and that the bound in <universal-formula> implies the disjunction of 

the bounds of the sentences in <universal-f ormulas>. 

<<<SDVS Help>>>  Query/Printing Commands  <<<SDVS Help>>> 

Commands — adasubprogenv applicable axiomnames datatypes decls eval flags goals help 

lasterror lemmanames next nsd placevalue pp ppeq ppl ppsd proofcommands 

proofstate ps range simp solvers usable usablequantifiers usablesds 

usabletrs values vhdl-processes vhdl-signals vhdlsubprogenv vhdltime 

whynotapply whynotgoal 

adasubprogenv <file-name> <subprogram-name> <qualified-name> 

Displays the mapping between fully and uniquely qualified names constituting the 

environment of the Ada subprogram in the indicated file. In addition to the file 

name, both the (textual) name and the fully qualified name of the subprogram must 

be provided. 

applicable 
Prints the indexed set of currently applicable state deltas. 

axiomnames {<function/predicate-names>} 
Prints the names of the axioms having each function or predicate symbol in 
<function/predicate-names> in their consequents, unless <f unction/predicate-names> 

is omitted, in which case the names of all axioms are printed. 

datatypes 
Prints the names of all known datatypes. 

decls 
Prints all declarations currently in effect. 

eval  <s-expression> 
Prints the result of  evaluating <s-expression>. 

flags 
Prints the values of all SDVS flag variables. 

goals 
Prints the current set of goals. 

help {<names>} 
Prints help information about <names>, unless <names> is omitted, in which case 
all SDVS help information is printed.  The name "commands" produces help for all 

SDVS commands; the name "args" produces help for all SDVS command arguments; the 

name "flags" prints help for all SDVS flag variables; the name "proofcommands" 

prints help for all SDVS proof commands; the name "quantcommands" prints help for 

all SDVS quantification commands; the name "querycommands" prints help for all 

SDVS query commands; the name "interactivecommands" prints help for all SDVS 

solely interactive commands; the name "batchcommands" prints help for all SDVS 

commands which can appear in a batch proof. For other names, such as the names of 

flags and commands, the help for that particular name is printed. 
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lasterror 
Prints the last command error, if SDVS is in an erroneous state. 

lemmanames {<function/predicate-names>} 

Prints the names of the lemmas having each function or predicate symbol in 
<function/predicate-names> in their consequents, unless <function/predicate-names> 

is omitted, in which case the names of all lemmas are printed. 

next {<n>} 
Prints the next <n> batch proof commands, or just the next command if <n> is 

omitted. 

nsd 
Prints the highest applicable state delta. 

placevalue <place> 

Prints the current value of <place>. 

pp <name> 
Prettyprints objects associated with <name>.    The objects currently recognized are 
state deltas, proofs,  axioms,  usable quantifier formulas, goals,  lemmas, formulas, 
formula lists,  and s-expressions. 

pp ada <file-name> 
Prettyprints the state delta translation of the Ada file identified by 
<file-name>. 

pp vhdl <file-name> 
Prettyprints the state delta translation of  the VHDL file identified by 
<file-name>. 

pp axiom <name> 
Prettyprints the axiom named <name>. 

pp axioms {<axiom-names>} {<function/predicate-names>} 
Prettyprints all axioms if the optional arguments are omitted, prints those axioms 
with names in <axiom-names>  if provided,  and prints those axioms whose consequents 
contain all of the function and predicate symbols in <function/predicate-names> if 
<axiom-names> is omitted but  <function/predicate-names> is not. 

pp datatype <name> 
Prettyprints the datatype named <name>. 

pp formula <name> 
Prettyprints the formula named <name>. 

pp formulas <name> 
Prettyprints the list of formulas named <name>. 

PP g <n> 
Prettyprints the nth current goal. 

pp isps <file-name> 
Prettyprints the state delta translation of the ISPS file identified by 
<file-name>. 
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pp lemma <name> 
Prettyprints the lemma named <name>. 

pp lemiiaproof  <name> 
Prettyprints the lemma proof named <name>. 

pp lemmas {<lemma-names>}  {<function/predicate-names>} 
Prettyprints all lemmas if the optional arguments are omitted, prints those lemmas 
with names in <lemma-names> if provided,  and prints those lemmas whose consequents 
contain all of the function and predicate symbols in <function/predicate-names>  if 
<lemma-names>  is omitted but  <function/predicate-names>  is not. 

pp mpisps <file-name>  {<starting-markpoint-name>}  {<ending-markpoint-names>} 
{<pref ormulas>} 

Prettyprints the markpoint-to-markpoint state delta translation of the ISPS file 
identified by <file-name>, translated according to the remaining optional 
arguments. 

pp proof  <name> 
Prettyprints the proof named <name>. 

pp q <n> 
Prettyprints the nth usable quantifier formula. 

pp <sdspec> 
Prettyprints the state delta specified by <sdspec>. 

ppeq <preterm> 
Prints all of  the terms that are  in the same equivalence class as <preterm>. 

ppl  {<places>} 
Prints, for each place in <places>,  the current value of the place and any 
declarations associated with place.    If  <places>  is omitted,  this information is 
printed for all places. 

ppsd ada <file-name> 
Prettyprints the state delta translation of  the Ada file identified by 
<file-name>. 

ppsd vhdl <file-name> 
Prettyprints the state delta translation of  the VHDL file  identified by 
<file-name>. 

ppsd isps <file-name> 
Prettyprints the state delta translation of the ISPS file identified by 
<file-name>. 

ppsd mpisps <file-name>  {<starting-markpoint-name>}  {<ending-markpoint-names>} 
{<pref ormulas>} 

Prettyprints the markpoint-to-markpoint state delta translation of the ISPS file 
identified by  <file-name>,  translated according to the remaining optional 
arguments. 

ppsd <sdspec> 
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Prettyprints the state delta specified by <sdspec>. 

proof commands  <proof-name> 
Prints a list of the proof commands which were used in the proof denoted by 
<proof-name>. 

proofstate 

Prints a trace of the current proof. 

ps 

Synonymous with proofstate. 

range <preterm> 

Prints the numeric range of <preterm>. 

simp <preterm> 

Prints the result of simplifying <preterm>. 

solvers 
Indicates which solvers are available and which are active. 

usable 
Prints the indexed set of currently usable state deltas and quantified formulas. 

usablequantifiers 
Prints the list of currently usable quantified statements. 

usablesds 
Prints the indexed set of currently usable state deltas. 

usabletrs 
Prints the indexed set of currently usable TRs. 

values 

Prints the values of all declared variables. 

vhdl-processes {<process-names>} 

Prints information about current state of indicated VHDL processes. 

vhdl-signals {<signal-names>} {<simplify?>} 
Prints information about the current state of the indicated VHDL signals. Any 
input other than a carriage return for <simplify?> causes simplifications to be 

performed, usually slowing the response time. 

vhdlsubprogenv <file-name> <subprogram-name> <qualified-name> 

Displays the mapping between fully and uniquely qualified names constituting the 

environment of the VHDL subprogram in the indicated file. In addition to the file 

name, both the (textual) name and the fully qualified name of the subprogram must 

be provided. 

vhdltime 
Prints the current VHDL simulation time (a <global,delta> pair). 

whynotapply <sdspec> 
Indicates why the state delta specified by <sdspec> is not applicable. 
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whynotgoal {<simplify?>} 
Shows which goals are not yet satisfied, simplifying the unsatisfied goals unless 

<simplify?> is omitted. 

<<<SDVS Help>>>  Solely Interactive Commands  <<<SDVS Help>>> 

Commands — bye cd compose continue createaxiom createdatatype createeklaxiom 

ereateformula createformulas createlemma createmacro createproof 

createsd datatypeaxiom deautomatedatatype delete deleteaxioms 

deletelemmas dump-proof exit implementation init Is pop pwd quit 

run-test-proofs shell skip step write writeaxioms writelemmas 

bye 

Returns the user to the LISP read-eval-print-loop. 

cd <file> 

Changes the current working directory. 

compose {n} 

Composes the last n state deltas applied. The third field determines what type of 

proof commands to compose through. The default is :applications which includes 

all applications of state deltas including apply, until, apply!, and *. 

continue 

Continues interpretation of suspended batch proof commands. 

createaxiom <axiom-name>  <term> <free-variable-names> <constant-najnes> 
<function-names> <predicate-names> 

Creates an axiom identified by <axiom-name>,  with the axiom pattern <term>,  free 
variables <f ree-variable-names>, new constant symbols <constant-names> , new 
function symbols <function-names>,  and new predicate symbols <predicate-names>. 
If  <axiom-name> already names an axiom,  the user is prompted for overwrite 
permission. 

createdatatype <datatype-name>  <constructor-name> <constructor-arity> <accessor>* 
{<base-name>} 

Permits the user to define a  (possibly recursive)  abstract datatype.    The user 
chooses a new name for the abstract datatype,  chooses a name for its constructor 
function,  tells the arity (n)  of the constructor function,  and then goes on to 
describe the n accessor functions.    For each accessor function,  its name is given, 
its output type  (which may be a list representing a union of previously defined 
types,  including the type currently being defined,  or may be arbitrary)  is given, 
and a default access value is given.     If the new type is recursive,  the user must 
specify the name of  the base constant for the type. 

createeklaxiom <axiom-name>  <term>  <free-variable-names>  <constant-names> 
<function-names> <predicate-names> 

Creates a quantifier axiom identified by <axiom-name>,  with the axiom pattern 
<term>,  free variables <free-variable-names>, new constant symbols 
<constant-names>, new function symbols <function-names>,  and new predicate symbols 
<predicate-names>.     If  <axiom-name> already names an axiom,  the user is prompted 
for overwrite permission. 

createformula <postformula-name>  <postformula> 
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Associates the typed-in <postformula> with <postf ormula-name>,  unless 
<postformula-name> already names a formula and the user does not wish to overwrite 
it. 

createformulas <postf ormulas-name> <postformulas> 
Associates the typed-in <postf ormulas> with <postformulas-name>, unless 
<postformulas-name> already names a list of formulas and the user does not wish to 
overwrite it. 

createlemma <lemma-name> <term> <free-variable-names> < const ant-name s> 
<function-names> <predicate-names> 

Creates a lemma identified by <lemma-name>, with the lemma pattern <term>,  free 
variables <free-variable-names>, new constant symbols < const ant-names >, new 
function symbols <function-names>, and new predicate symbols <predicate-names>. 
If  <lemma-name> already names an lemma, the user is prompted for overwrite 
permission. 

createmacro <macro-name>  <preterm> <free-variable-names>  <quantifier-names> 
Creates a macro identified by <macro-name>, with the macro definition <preterm>, 
free variables <free-variable-names> ,  and quantified variables < quant if ier-names> . 
If  <macro-name> already names a macro,  the user is prompted for overwrite 
permission.    All free variables must occur free in the definition, quantified 
variables appearing in the definition must be listed in their order  (inorder)  of 
appearance,  the definition may not be recursive or contain references to other 
macros,  and it may not contain state deltas. 

createproof <proof-name>  <proof> 
Associates the typed-in <proof> with <proof-name>, unless <proof-name> already 
names a proof and the user does not wish to overwrite it. 

createsd <sd-name> <preformulas> <comod-places> <mod-places>  {<inv-postformulas>} 
<postformulas> 

Prompts the user for the precondition,  comodification list, modification list, 
invariant  (when the invariance flag is ON),  and postcondition,  of a state delta to 
be named <sd-name>.    If  <sd-name> already names a state delta, the user is 
prompted for overwrite permission. 

datatypeaxiom <datatype-name>  <axiom-name> <term>  <free-variable-names> 
<constant-names>  <function-names> <predicate-names> 

Adds a new axiom to the set currently associated with a user-defined datatype 
created via the  'createdatatype'  command.    Use the   'pp'  command applied to 
datatype name to display the axioms currently associated with a datatype. 

deautomatedatatype <datatype-name> 
Removes a datatype axiom automation initiated by the   'automatedatatype'  command. 

delete <type-name> <object-name> 
If  <type-name> is the name of a recognized type and <object-name> is associated 
with an object of this type,  then the name/object association is deleted. 

deleteaxioms {<axiom-names>} 
Deletes those axioms with names in <axiom-names> from the current set  of  axioms, 
indicating which axioms were deleted.    If  <axiom-names> is omitted,  all axioms are 
deleted. 
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deletelemnas  {< lemma-names >} 
Deletes those  lemmas with names  in <lemma-names>  from the current set  of  lemmas, 
indicating which lemmas were deleted.     If  <lemma-names> is omitted,  all lemmas are 
deleted. 

dump-proof <proof-name> 
Associates the current  (possibly partial) proof with <proof-name>, unless 
<proof-name>  already names a proof and the user does not wish to overwrite it. 

exit 
Exits the SDVS system AND the Lisp environment. 

implementation <thm-name>  <upper-spec-postformulas>  <lower-spec-postformulas> 
<mapping-preformulas> <constant-preformulas> <invariant-preformulas> 

Create a theorem (state delta) named <thm-name> which when proved verifies the 
implementation of the upper-level specification <upper-spec-postformulas> by the 
lower-level specification <lower-spec-postformulas>.    Both the upper and 
lower-level specifications must have a certain format, which permits them to be 
composed only of predicates headed by covering,  alldisjoint,  declaration,  and 
distinct, plus state deltas, TR statements and "formula" or "formulas" predicates 
made up of only the proceeding types of statements.     <mapping-preformulas>  is a 
list of mappings from upper-level to lower-level places,  <constant-preformulas>  is 
a list of constant-specifying formulas involving lower-level places,   and 
<invariant-preformulas> is a list of lower-level invariants. 

init  {<proof-name>} 
Initializes the proof system,   optionally starting the interpretation of the proof 
associated with < proof-name >. 

Is 
Prints the contents of the current working directory. 

pop {<n>} 
Pops the proof step to level <n> in the proof, popping one level if <n> is 

omitted. Use the 'ps' command to see the proof state and the proof levels, which 

are bracketed numerals, e.g.  <3>, following each proof step. 

pwd 
Prints the current working directory. 

quit 
Terminates the proof session if no proofs are in progress. The proof steps 

executed before termination are made into a proof which is associated with the 

name 'sdvsproof'. 

run-test-proofs <test proof suite> 
Runs the desired test proof suite. Valid options are: all, »original-tests*, 
»strongcoverings-tests», «negation-tests*, *inv-tests*, *new-inv-omega-tr-tests*, 

»quant-tests*, »isps-tests», »ada-tests», and »vhdl-tests*. 

shell <command> 

Execute the given string in a UNIX shell. 

skip {<n>} 
Skips the next <n> batch proof commands, skipping one command if <n> is omitted. 
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step {<n>} 
Steps through <n> batch proof commands, stepping only once if <n> is omitted. 

write <file> {<sd-names>} {<proof-names>} {<axiom-names>} {<lemma-names>} 

{<formula-names>} {<formulas-names>} {<macro-names>} {<datatype-names>} 

{ < adalemma-names> } { < vhdl 1 emma-names > } 
Writes the state deltas, proofs, axioms, lemmas, formulas, formula lists, macros, 

datatypes, adalemmas, and vhdllemmas corresponding to the appropriate names onto 

either a new version of <file> or onto the end of <file>. If the file previously 

existed, the user is asked if the object definitions are to be appended to the 

file. Use the 'read' command to retrieve definitions from a file. 

writeaxioms <file> {<axiom-names>} 
Writes the axioms whose names appear in <axiom-names> onto a new version of 

<file>.  If <axiom-names> is omitted, all axioms are written. Use the 

'readaxioms' command to retrieve axioms from a file. 

writelemmas <file> {<lemma-names>} 
Writes the lemmas whose names appear in <lemma-names> onto a new version of 

<file>. If <lemma-names> is omitted, all lemmas are written. Use the 

'readlemmas' command to retrieve lemmas from a file. 

Type 'help help' for more help. 

<<<SDVS Help>>>  Command Arguments  <<<SDVS Help>>> 

{} Encloses optional command arguments. 

<> Encloses command argument names. 

<x/y> A command argument of type <x> or of type <y>. 

<y-x> A command argument of type <x> qualified by the symbol y. The purpose of the 

qualification is usually to disambiguate multiple occurrences of <x> in a 

command (quote s) arguments or to provide some additional contextual 

information about the particular <x>. 

<xs> A command argument which is a list of objects of type <x>, separated by commas. 

<x>* Zero or more command arguments of type <x>. 

<x>+ One or more command arguments of type <x>. 

[] Encloses of group arguments to which the * and + operators may be applied. 

Are used as ellipses. 

<file> A file name in string quotes. 

<formula> A formula which may involve neither DOTs nor POUNDs. 

<g> The identifier reserved to indicate the current list of goals, always followed 

by a nonzero natural number which chooses one from the list. 
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<goal> A goal <g> <n>. 

<n>  A natural number. 

<name> An identifier used to name an object, such as a state delta. 

<pathname> A string which completely identifies a file name, by including its 
directory path and possible a host designator. 

<place> The name of a variable to which the DDT and POUND operators may be applied. 

<postfommla> A formula which may involve both DOTs and POUNDs. 

<postterm> A term which may involve both DOTs and POUNDs. 

<preformula> A formula which may involve DOTs but not POUNDs. 

<preterm> A term which may involve DDTs but not POUNDs. 

<proof> A list of SDVS batch proof commands. 

<q> The identifier reserved to indicate the current list of quantified formulas, 
always followed by a nonzero natural number which chooses one from the list. 

<quant> A quantified formula <q> <n>. 

<s-expression> An s-eipresion, that is, either a symbol or a list. 

<selecti-clause> An integer selection clause which is either an integer, a list of 
integers, an integer range n...m, or the symbol t. 

<sdspec> A state delta specification, which is either a state delta <name>, a state 
delta goal <g> <n>, a usable state delta <u> <n>, or a usable TR state 

delta <tr> <n>. 

<string> A single line of text. 

<symbol> Same as <name>. 

<term> A term which may involve neither DOTs nor POUNDs. 

<tr> The identifier reserved to indicate the stack of usable TR state deltas, always 
followed by a nonzero natural number which chooses one from the stack. 

<u> The identifier reserved to indicate the stack of usable state deltas, always 
followed by a nonzero natural number which chooses one from the stack. 

<usablesd> Some usable state delta <u> <n>. 

<unique-name-level> A positive integer specifying the level of qualification given 
to variable and procedure names in ISPS files. Level 0 
specifies no qualification. The value of the 'uniquenamelevel' 
flag will be used whenever <unique-name-level> is omitted. 

<<<SDVS Help>>>  Flags  <<<SDVS Help>>> 
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abbreviationlevel 
This flag controls the printing level (during proof traces) of state deltas and 

Ada, VHDL, or ISPS program fragments appearing inside translator continuations in 

state deltas. It takes on the values NONE, SOME, and MAX, indicating that these 

objects are never to be abbreviated, should be somewhat abbreviated, or should be 

maximally abbreviated, respectively. 

acceptfileproofs 
While this flag is ON the system will accept proofs it reads from files as valid, 

otherwise such proofs will be ignored. 

autoclose 
While this flag is ON the system will attempt to close the proof after each proof 

command, otherwise the user must explicitly close the proof. 

checkexistence 
When this flag is on existential quantifiers of type place are automatically 

instantiated in all possible combinations. 

checksyntax 
While this flag is ON all commands will be checked for proper syntax, and errors 

will be generated if an improper command is found. This flag should only be 

turned OFF for an efficient run of a proof that ran successfully with the flag ON. 

displaympsds 
When this flag is ON, the state deltas created during the 'mpisps' and 'mptr' 

commands will be displayed. 

ekltraceflag 
When this flag is ON, EKL internal messages will be printed. 

enumerate 
When this flag is on bounded universally quantified variables are enumerated. 

invariance 
While this flag is ON the use of invariants is permitted in SDVS. 

opt imizeass ignments 

While this flag is anything but OFF the values assigned to changing places are 

optimized to create fewer simplifier database entries.  This may result in 

decreased proof execution speed. 

ppdottednames 
When this flag is ON, any symbolic value which is the current value of a place is 

pretty-printed by printing the dotted place name. 

pplinewidth 
The value of this flag controls the right margin for pretty-printing. 

reportpropagat ions 
While this flag is ON propagated disjunctions are traced between proof commands. 

shosstats 

Flag not currently implemented. 
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showstep# 
When this flag is ON and traceflag is ON the sequential number of the current 

proof step will be traced during proof execution. 

strongcoverings 
When this flag is ON coverings are interpreted as real set partitions so that a 

real change in a subplace implies a real change in every superplace. 

stronglytyped 

While this flag is ON, the 'createdatatype' command will construct strongly typed 

datatype definitions; i.e., a type recognizer predicate will be associated with 

each datatype and be present in each of the datatype's axioms. This flag is 

initially OFF. 

traceflag 
This flag can be be turned OFF to inhibit printing of proof trace information. 

uniquenamelevel 
A non-negative integer, this flag controls the degree of qualification of variable 

and procedure names during the translation (into the state delta logic) of ISPS 

descriptions. The default value is 1, which is adequate if all names unique.  If 

the value is not high enough to prevent name clashes, an error will be signalled 

during translation. 

usedots 
When this flag is ON, true-quantifiers? will automatically check the effect of 

dots in trying to prove a universal tautology. 

weaknext.tr 
When this flag is ON the state deltas generated by the translators have the 

nontrivial invariant (#all=.all). The invariance flag must be ON for the 

application of these state deltas. 
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2    THE PROOF LANGUAGE 

The proof language is the formal vehicle for writing proofs of state deltas. Thus, the proof 
language allows the user to describe segments of computations and to describe logical deriva- 

tions within a given state. Another way to view the proof language is as a programming 
language: if the proof language "program" is accepted by SDVS, then the proof is "correct." 

Some actions of proof commands are determined by the settings of system flags or by 
whether or not various solvers are activated. The solvers (see Section 2.7.6) can be acti- 
vated by the command activate <s>, where <s> is the first initial of a solver (e.g. m for 
multiplication). Brief descriptions of all the commands are listed in Section 1.10. 

2.1    A DYNAMIC EXAMPLE 

The following example illustrates some of the dynamic proof commands used in an inter- 
active session, although it is not expected that the reader understand thoroughly all the 
details at this point. For example, the subtleties of the induct command are dealt with 
only in Section 2.5. In interactive mode with createsd, all field entries (e.g. pre:) must 
be typed on a continuous line with wrap-around (no <CR>). Note that the precondition 
and postcondition each should be a list of sentences, separated by commas. Within each 
sentence that is an element of the list, no commas can appear. The word and or the symbol 
& can be used interchangeably for conjunction. The translator predicates ada, vhdl, and 
isps can appear only as top-level elements in the list. 

The interactive input is identical to the prettyprinted output. Note also that there is no 
"graceful" way to abort an interactive command in the middle. The user must persevere 
to the end of the argument list, as SDVS 12 has no interrupt command. Thus, if for some 
reason you wish to halt the action of SDVS before SDVS gives you a command prompt, 
you simply must kill the process and start again. 

The state delta sinduct represents the theorem that if a is continually incremented, then its 
value will eventually be greater than 1000. It should be noted that the default data type 
for the predicate gt is integer, so that the value increases by at least 1. 

<sdvs.l>    createsd 
name: sinduct 

[SD pre: covering(all, a, b), [sd (true) () (a) (#a gt .a)] 
comodG: <CR> 

mod[] : a 
post: #a gt 1000 

] 

Notice that here we input the interior state delta directly "by hand," without using the 
formula command applied to an extant state delta. We could also have typed the internal 

sd as 
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[sd pre: (true) comod: () mod: (a) post: (#a gt .a)] 

or 

[sd pre: (true) mod: (a) post: (#a gt .a)] 

instead of 

[sd   (true) ()   (a) (#a gt .a)] 

<sdvs.1> PP 
object sinduct 

[sd pre: (covering (all a,b) f 

[sd pre: (true) 

mod: (a) 
post: (#a gt   .. »)]) 

mod: (a) 
post: (#a gt  1000)] 

<sdvs.l>    init 
proof name[]:    <CR> 

State Delta Verification System,  Version 12 

Restricted to authorized users only. 

Let us prove this. The SDVS proof follows the "natural" proof quite closely: it will be done 
by induction on the value of a, taking into account the two cases that either a is or is not 

already greater than 1000. 

<sdvs 1> prove 

state delta[] : sinduct 

proof [] :    <CR> 

open --   [ sd pre: (covering (all a,b) , 
[sd pre: (true) 

mod: (a) 

post: (#a gt   • a)]) 

mod: (a) 
post: (#a gt  1000)] 

Complete the proof. 

We will do a proof by cases based on the current value of a. Let us assign the name aa to 

the current contents of a. 
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<sdvs.l.l>    let 
new variable:    aa 

value:    .a 

let — aa =   .a 

<sdvs.l.2>    cases 
case predicate:    aa gt 1000 

cases — aa gt  1000 

open —   [sd pre: (aa gt  1000) 

comod: (all) 

mod: (a) 
post: (#a gt  1000)] 

close — 0 steps/applications 

open —   [sd pre: (~(aa gt  1000)) 
comod: (all) 

mod: (a) 
post: (#a gt  1000)] 

Complete the proof. 

<sdvs.l.2.2.1>   ps 

<< initial state >> 
proof in progress of sinduct <3> 

let aa = .a <2> 
case analysis in progress on: aa gt 1000 or "(aa gt 1000) <1> 

1st case: complete 
2nd case: in progress 
— > you are here <— 

Note that the bracketed numbers < 1 >, etc., in the listing of the proofstate are proof step 
numbers that can be revisited by pop. 

If the contents of a are not greater than 1000, we will do an induction on a new variable, 
called counter.3 

We know that the value of a must increase by at least 1 every time through the loop. 
Therefore, we have to execute the loop at most 1001 - aa times. Notice we are not assuming 
aa ge 0. 

<sdvs.l.2.2.1>    induct 
induction expression: counter 

from: 0 
to: 1001 - aa 

invariant list[] : counter le .a - aa 

3 Any new name can be used here. 
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comodification list[] 

modification list[] 

base proof [] 

step proof [] 

<CR> 
a 
<CR> 
<CR> 

induction — counter from 0 to 1001 - aa 

open — [sd pre: (counter =0) 
comod: (all) 

post: (counter le .a - aa)] 

close — 0 steps/applications 

open — [sd pre: (counter ge 0,counter It 1001 - aa, 

counter le .a - aa) 

mod: (a) 

post: (counter + 1 le #a - aa)] 

Complete the proof. 

Now let us check where we are in the proof. 

<sdvs. 1.2.2.1.2.1> ps 

<< initial state >> 
proof in progress of sinduct <4> 

let aa = .a <3> 
case analysis in progress on: aa gt 1000 or "(aa gt 1000) <2> 

1st case: complete 

2nd case: in progress 

induction in progress on counter from 0 to 1001 - aa <1> 

base case: complete 

step case: in progress 

— > you are here < — 

Let us see why the open state delta is not true. 

<sdvs.1.2.2.1.2.1>    whynotgoal 
simplify? [no] :    < CR> 

g(l)   counter +  1  le la - aa 

Let us check which state deltas are known to be true at this point in the proof. 

<sdvs.l.2.2.1.2.1>    usablesds 

u(l)   [sd pre:   (true) mod:   (a)  post:   (#a gt   .a)] 

If we apply this state delta, the remaining goal will be achieved. 
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<sdvs.l.2.2.1.2.1> apply 
sd/number[highest applicable/once]: <CR> 

apply — [sd pre: (true) 

mod: (a) 

post: (#a gt .a)] 

close — 1 steps/applications 

join induction cases — [sd pre: (0 le 1001 - aa) 

comod: (all) 

mod: (a) 
post: (1001 - aa le #a - aa)] 

close — 1 steps/applications 

join — [sd pre: (true) 

comod: (all) 

mod: (a) 

post: (#a gt 1000)] 

close — 2 steps/applications 

<sdvs.2>    dump-proof 
name:    sinductproof 

Current proof dumped to sinductproof. 

<sdvs.2> pp 
object: sinductproof 

proof sinductproof: 

prove sinduct 

proof: 

(let aa = .a, 

cases aa gt 1000 

then proof: 

else proof: 

induct on:    counter 

from:      0 
to: 1001 - aa 

invariants:  (counter le .a - aa) 

comodlist: 

modlist:    (a) 

base proof: 

step proof: apply u(D) 

<sdvs.2> quit 

Q.E.D. The proof for this session is in 'sdvsproof. 

State Delta Verification System, Version 12 

Restricted to authorized users only. 
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We could store this proof and rerun it using the interpret command. We could also input 
this proof directly into SDVS at the proof level. In the latter case it must be typed in 

verbatim with all the fields (e.g. then proof:) given explicitly. 

2.2    STARTING AND ENDING A PROOF 

The command im* must be typed before typing any one or any combination of the "top-level 
commands": activate, deactivate, provelemma, and quantification. All other commands 
may be typed at any time. Init opens up a new proof context, and makes the state "clean" 
and free of any contextual information. Of course, the names of previously defined state 

deltas, proofs, and so on are preserved. Init may be followed by a proof name, whose 

associated proof will then be executed. 

The primary proof command is 

<sdvs.l>   prove 
state delta:      <sd> 

proof []:      <proof> 

where <sd> is the name of a state delta and <proof> is either empty (<CR>), in which case 
SDVS will prompt with "complete the proof" and the user can interactively input either 
the proof commands, or an atom that evaluates to a list of proof commands. 

The prove command takes a state delta as an argument: this state delta may be specified 
either by name or by typing <CR> and having SDVS prompt for state delta fields to be 
input explicitly. The command causes a proof to be "opened," or started, and ensuing 
proof commands have as their goal the current theorem corresponding to the most recently 
opened proof in a stack discipline. The precondition of the state delta that is the argument 
to prove is added to the current state (also in the case that the state has not been initialized 
by the init command) and a new proof context is opened. When the proof is "closed," i.e., 
when the current theorem or subtheorem has been proved, the proved state delta is added 
to the usable state delta list and is preserved until the enclosing context is popped or the 

comodification list of the proved state delta is violated. 

In the normal case (when the autoclose flag is on), the goal is checked after each proof 
command to see if the proof can be closed. If autoclose is off, the proof will have to be 
closed explicitly with the close command. This may be advantageous when the simplifier 
spends a noticeable amount of time trying to prove that the goal is reached in a state the 

user knows does not satisfy the goal. 

When the proof is complete, the proven state delta is inserted into the database as "usable." 

To exit the proof session, type quit. This is the time when any messages about pending 
proof steps will appear, for example if an unproved lemma is used. However, if it is desired 

to save the proof, this must be done before quitting. 
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2.3    STRAIGHT-LINE SYMBOLIC EXECUTION 

The basic proof step is apply. The system searches through the stack of usable state deltas, 
the most recently added state delta first, and finds the first one with the precondition true 
in the current state. That state delta is then applied; that is, a new state is stored consisting 
of 

• the postcondition of the applied state delta, 

• those facts from the previous state that are not dependent on places in the applied 
state delta's modification list, and 

• those state deltas true in the previous state whose comodification lists do not contain 
places dependent on places in the applied state delta's modification list. 

The common case is that at most one state delta is applicable at one time, so apply is 
sufficient. If more than one state delta is applicable, the specific one we are interested in 
applying can be designated. Instead of having to type a sequence of apply's, we can specify 
how many times to apply; to indicate "as many applications as possible," use the command 
* (or go or execute). This causes apply to be performed until the goal is reached or until 
there is no applicable state delta. Notice that the flag autoclose must be on for this to work. 
The command apply! causes application until the next mark point (see Section 3.2). The 
integer n following apply or apply! means to use that command n times. A state delta <sd> 
or name of a state delta may be used as an argument to apply. The name of a usable state 
delta may be found by the command usablesds. 

<sdvs. 1> ppsd 
state ielta:    s5 

[sd pre: (covering(all,a),.a = 1, 

[sd pre: (covering(all.a), .a = 1) 
mod: (all) 

post: (#a = 2)], 
[sd pre: (covering(all,a), .a = 2) 

mod: (all) 
post: (#a = 3)], 

[sd pre: (covering(all,a), .a = 3) 
mod: (all) 

post: (#a = 4)]) 
mod: (all) 

post: (#a = 4)] 

<sdvs.1> prove 

state delta[]:    . }5 

proof [] :    < CR> 

open —   [sdpre:   (covering(all,a),.a =  1, 
[sd pre:   (covering(all.a),.a =  1) 
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mod (all) 
post (#a = 2)], 

"sd pre (covering(all.a) , a = 2) 
mod (all) 

post (»a - 3)], 
sd pre (covering(all.a), a » 3) 

mod (all) 
post (#a = 4)]) 

mod: (all) 
post: (#a = 4). 

Complete the proof 

<sdvs.1.1> # 

apply — [sd pre (covering(all,a),.a = 1) 

mod (all) 
post (#a ■ 2)] 

apply — [sd pre (covering(all,a),.a = 2) 
mod (all) 
post (#a = 3)] 

apply — [sd pre (covering(all,a),.a -  3) 
mod (all) 
post (#a = 4)] 

close — 3 steps/applications 

If no state delta is applicable in the given state, it may be that the goal cannot be achieved 
from the given state; that is, the current state contradicts the precondition of any currently 
true state deltas, or it could be that although the current state does in fact satisfy the 
preconditions of some true state deltas, not enough information is known by SDVS to 
be able to decide this. In this case SDVS may need some hints, by way of static proof 
commands, to establish that the precondition of the applicable state delta is true. 

Another variation of apply is until. The proof command "until P," where P is some predicate, 
causes state deltas to be applied until P is known. P may contain both DOTs and POUNDs, 
where DOT refers to the contents of a place at the time the until command is given, and 
POUND refers to the contents at the time P is subsequently evaluated. This command is 
useful (or essential) in cases where the user wants to stop, even though execute may be able 
to continue (for example, where the system needs input about static assertions from the 
user in order to verify that the postcondition state has been reached). Recall that if the 
system cannot prove the postcondition, it will continue to apply state deltas; but then the 
correct postcondition time may be passed. So, for example, if the postcondition is P k Q, 
and P is automatically provable at the right time (i.e., when P and Q are in fact both true) 
but Q requires assistance, then "until P" would bring the system to the required state, at 
which time the user gives the necessary assistance to allow Q to be proved also. If P is true 
also at states before Q is true, then the above strategy will have to be modified, for example 
by using some other "marker" for the until, or jumping from true P state to true P state, 

each time using one apply followed by the "until P." 
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Another use for until is the case where the state delta the user wants to apply, say Si, has a 
precondition that the simplifier cannot prove automatically, and thus another (lower) state 
delta, say S2, whose precondition is provable is applied instead. In this case the user would 
make the condition P in "until P" the postcondition of the last proved state delta, and then 
insert hints to prove the precondition of SI. 

2.4    PROOF BY CASES 

A typical instance of proof by cases occurs at a branch point of a program. In order to 
proceed symbolically to the goal, the current state before the branch must be split into 
two (or into as many branches as there are), and each branch must be pursued separately. 
When a split into two is desired, the cases command may be used. When a case proof is 
desired to achieve a goal other than the current goal, the subcases command is used. 

The command syntax is 

cases  <cond> <thenproof> <elseprool> 

where <cond> is some predicate such that the assumption of <cond> allows the choice of 
branch to be determined, <thenproof> is the proof for that branch, and <elseproof> is the 
proof for the rest of the computation, which assumes that <cond> is not true. If one or 
both of <thenproof> and <elseproof> are empty, then SDVS will try to close with no proof. 
If it is not able to close, it will respond with "complete the proof," and then the user may 
interactively submit proof commands. The predicate <cond> can be first order or a state 
delta; see the example in Section 2.9.7. Consider the following example: 

<sdvs.2>    ppsd 
state delta:    casessd 

[sd pre:   (lormula(casesl),iormula(cases2)) 
mod:   (a) 

post:   (#a gt  0)] 

<sdvs.2>    ppsd 
state delta:    casesl 

[sd pre:   (.a It  0)  mod:   (a)  post:   (#a =  1)] 

<sdvs.2>   ppsd 
state delta:    casesS 

[sd pre:   (.a ge  0)  mod:   (a)  post:   (#a = 2)] 

<sdvs.2>    init 
proof name[] :    <CR> 
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State Delta Verification System,  Version 12 

Restricted to authorized users only. 

<sdvs.l>    prove 
state delta[]:    casessd 
proof [] :    < CR> 

open —   [sd pre 
nod 

post 

(fommla(casesl) ,formula(cases2)) 
(a) 
(#a gt  0)] 

Complete the proof. 

<sdvs.l.l> cases 
case predicate: .a It 0 

cases — .a It 0 

open — [sd pre 
comod 

mod 

post 

(.a It 0) 

(all) 

(a) 

(#a gt 0)] 

<sdvs.l.l.l.l> * 

inserting — pcovering(all.a) 

apply — [sd pre 

mod 

post 

(.a It 0) 

(a) 

(#a - 1)] 

inserting — pcovering(all,a) 

close — 1 steps/applications 

open — [sd pre 

comod 
■od 

post 

(~(.a It 0)) 

(all) 

(a) 

(#a gt 0)] 

Complete the proof. 

<sdvs.l.l.2.1> * 

inserting — pcovering(all.a) 

apply — [sd pre 

mod 

post 

(.a ge 0) 

(a) 

(#a = 2)] 

inserting — pcovering(all,a) 

close — 1 steps/applications 
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join — [sd pre: (true) 

comod: (all) 

mod: (a) 

post: (#a gt 0)] 

inserting — pcovering(all,a) 

inserting — pcovering(all,a) 

close — 1 steps/applications 

In this example both cases were proved by the execute command (*). Note that the two 
subcases were opened, closed, and joined, and the joined state delta was applied to complete 

the proof of the top level. 

When there are more than two cases to consider, and the user wants to describe each 
explicitly rather than translate the problem into a nested cases, there is the command 
meases (m for multiple): 

meases  (<condl>. <proofl>)   (<cond2>.<proof2>)   ...   (<condn>.<proofn>) 

SDVS must be able to prove that the disjunction of the <cond> clauses is true. 

For example, consider the following proof: 

<sdvs.2>   pp 
object:    casesproof 

proof casesproof: 

prove  [sd pre:   ([sd pre: (pi ft p2) 
mod: (all) 

post: (ql)], 
[sd pre: (pi ft  ~p2) 

mod: (all) 
post: (q2)], 

[sd pre: ("pi ft p2) 
mod: (all) 

post: (q2)] , 
[sd pre: (~pl ft ~p2) 

mod: (all) 

post: (ql)]) 
mod:   (all) 

post:   (ql  or q2)] 

proof: 
meases 

(case:  pi ft p2 

proof:  * 
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case: pi ft ~p2 

proof: * 
case: "pi ft p2 

proof: * 

case: ~pl ft ~p2 
proof: *) 

<sdvs.2>    init 
proof naie[] :    casesproof 

State Delta Verification System,  Version 12 

Restricted to authorized users only. 

open — [sd pre: ([sd pre (pi t p2) 

■od (all) 

post (ql)], 
[sd pre (pi ft -p2) 

nod (all) 

post (q2)], 

[sd pre ("pi ft p2) 

■od (all) 

post (q2)], 
[sd pre ("pi ft ~p2) 

mod (all) 

post (ql)]) 
■od: (all) 

post: (ql or q5 )] 

ncases — 4 

open — [sd pre: (pi ft p2) 

coaod: (all) 

nod: (all) 

post: (ql or q2)] 

apply — [sd pre: (pi ft p2) 

■od: (all) 

post: (ql)] 

close — 1 steps/applications 

open — [sd pre: (pi ft "p2) 

comod: (all) 
mod: (all) 

post: (ql or q2)] 

apply — [sd pre: (pi ft "p2) 

»od: (all) 

post: (q2)] 

close — 1 steps/applications 

open — [sd pre: ("pi ft p2) 

comod: (all) 
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mod: (all) 

post: (ql or q2)] 

apply — [sd pre: ("pi ft p2) 

mod: (all) 

post: (q2)] 

close — 1 steps/applications 

open — [sd pre: ("pi ft ~p2) 

comod: (all) 

mod: (all) 

post: (ql or q2)] 

apply — [sd pre: ("pi ft "p2) 

mod: (all) 

post: (ql)] 

close — 1 steps/applications 

join — [sd pre: (pi ft p2 or pi ft "p2 or "pi ft p2 or 

"pi ft "p2) 

comod: (all) 

mod: (all) 

post: (ql or q2)] 

close — 1 steps/applications 

Another variety of cases is subcases. This is used for proving a statement other than the 
current goal by cases. Of course, there is no essential need for subcases, since starting a new 
subproof of a state delta with the subcases goal as the postcondition, followed by applying 
that state delta, will suffice. 

The format is 

subcases <cond> <mod> <subgoal> <thenproof> <elseproof>. 

This is similar to the cases command, but the cases are joined at <subgoal> instead of at 
the goal of the current proof. The field <mod> is the mod list for each execution path to 
the subgoal. 

<sdvs.l>    subcases 
subcase predicate: p 

modification list[] : <CR> 
subgoal: p or q 

then proof [] : < CR> 
else proof [] : < CR> 

subcases — p 
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open — [sd pre: (p) comod: (all) post: (p or q)] 

close — 0 steps/applications 

open — [sd pre 

comod 

post 

<-p> 
(all) 

(p or q)] 

Complete the proof. 

Of course, the proof is not closed, because the above state delta is not valid. 

2.5    PROOF BY INDUCTION 

Induction arguments are in general more complex than straight-line symbolic execution or 
branching. Several useful forms of induction that are applicable in many naturally occurring 
proofs are identified and incorporated into SDVS 12. SDVS 12 is able to prove claims about 
terminating loops by induction on the natural numbers using the induct command. A fixed- 
point induction command for proving claims about TR-generated continuations has been 
implemented on an experimental basis, but does not appear in robust form in SDVS 12. In 
addition, there are experimental commands for general mathematical induction (natinduct: 
see Section 2.9.8) and for proving properties of Ada recursive procedures (recurse) [40]. The 
omegainduct command (Section 8.5) is primarily intended for proving safety properties of 

Ada programs. 

The induct command allows for proofs of theorems about programs containing certain kinds 
of loops. Note: the restrictions on the kind of loops make the current implementation unable 
to handle some cases. However, probably any proof involving induction over a set essentially 
ordered like the natural numbers is verifiable in this implementation. 

Sometimes a proof by induct is a short version of another proof by symbolic execution, if 
the loop is of known length. For loops with data-dependent length, induction may be the 

only way to take the proof over the loop. 

The typical use of the induct command is when you are at a place in the proof where you 

want to prove the following state delta (call it SI): 

[SD pre: (TRUE) 

comod: (ALL) 

mod: (M) 

post: (Q)] 

and then apply it, bringing the symbolic computation to a state in the future at which Q 
is true, and during which interval only the places in M have changed. 

Proving SI by induction involves finding a predicate Inv(.X) (the invariant) that depends 
on some number-valued place X such that Inv(n) implies Q for some n, and such that 
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Inv(O) is true now, i.e., 

(1) [SD pre:  (TRUE) 

comod:  (ALL) 

mod:  () 

post: (Inv(O))] 

and 

(2)[SD pre: (Inv(i)) 

comod: () 

mod: (M) 

post: (Inv(i+1))] 

If these two state deltas are true, then it is true that for all n, 

[SD    pre: (TRUE) 
comod: (ALL) 

mod: (M) 
post: (Inv(n))] 

Thus, we can apply this state delta, obtaining Inv(n), and thus Q. 

[Note for the advanced SDVS user: the above conclusion is valid if we use any comod list 
C instead of the empty comod list in (2), as long as C and M are disjoint. However, we 
strongly suggest (and this may be enforced in later versions of SDVS) that the induct comod 
list be always chosen to be empty. Similarly we suggest that there be no dots in the induct 
mod list, for example a[.i] where a is an array place. Instead, use a in the mod list and 
make the invariant strong enough to imply that part of the array is held constant in the 
transition represented by the step-case state delta. 

However, when using induction to characterize iterations of a loop involving arrays, more 
care on the user's part might be needed. For example, if one iteration of the loop changes 
only the slice a[.i : 10], where A has a different value depending on which iteration you are 
doing, you really would need to give a[.i : 10] as the induct command modlist. Then the 
state delta representing the net result of all the iterations (the "join state delta" constructed 
at the successful completion of the induct command) will have simply a in its modlist: there 
is no simple way to restrict the part of a that may have changed. If in fact a is actually 
of length 20, say, and you need to preserve the values of a[ll : 20] over the course of the 
induction, do a 

<sdvs.l>    let 
new variable:    aa 

value:    a[l:10] 

55 



and give aa[.i : 10] as the induct modlist. Then the step-case state delta will preserve the 
first part of aa, and thus of a, and the join-case state delta will have only aa as its modlist, 
so that a[\\ : 20] will be preserved. End of Note for the advanced SDVS user.] 

Actually, SDVS makes the user choose initial ("from") and final ("to") values for .X, instead 
of using 0 and some arbitrary n. Also, Inv must be a predicate without top-level pounds. 
It may, and often does, contain state deltas. Inv(./#) is the result of substituting pounds 

for dots in Inv. 

Therefore, SDVS sets up proofs of 

(1)   [SD    pre 

comod 

mod 

post 

(TRUE) 

(ALL) 

0 
(Inv(from))] 

and 

(2)   [SD    pre:     (Inv(i),   i ge from,   i It to) 
comod:     (C) 

mod:     (M) 
post: (Inv(i+l)(./#))] 

If the system can prove these two, then it creates and automatically applies the state delta: 

[SD pre: (TRUE) 

comod: (ALL) 

mod: (M) 

post: (Inv(to)(./#))] 

If Inv was chosen shrewdly (for example, if Inv(to) implies Q), then Q will be true in the 

resulting new state, thus essentially proving and applying SI. 

The induct command has eight parameters, 

induct  <indexp> <lrom> <to> <invariant> <comod> <mod> <baseproof> <stepproof> 

and means "Do an induction proof (of the current goal) using the expression <indexp> in 

the range <from> to <to>" (both of type integer, with one provably less than or equal to 
the other); <indexp> can be any expression of type integer that contains only one variable 
of type place and no pounds.  A new (previously undeclared) place may be introduced as 
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the only place in <indexp>. <invariant> (a list of predicates) is the loop invariant. The 
invariant can also contain state deltas, but cannot contain pounds at the top level. Do not 
leave the invariant field blank; if you really do not need an invariant, type "true." <comod> 

and <mod> are the lists for the induction step; they must be disjoint. 

In the above typical case, <indexp> is .X, <from> is Initial, <to> is Final, <invariant> is Inv, 
<comod> is C, <mod> is M, and <baseproof> and <stepproof> would be proofs of the two 
claims (1) and (2) above. If either <baseproof> or <stepproof> is empty, SDVS tries to close 
the current proof automatically. If it cannot, it responds with "complete the proof," and 

then the user may submit interactive proof commands. 

The step modification list gives the places that change in executing the loop once, and the 

step comodification list gives those places that must be preserved for the loop to execute 
again. These lists must be disjoint. Indeed, the comodification list of the induct command 

may always be taken to be empty, if the invariant is chosen to be strong enough. Also, the 
mod list of the induct command must be contained in the mod list of the state delta being 
proved. However, there need not be any connection between the comodification lists of the 
two state deltas. 

Here is a typical proof. Note that the comodification list is empty, as is the base proof; 
under certain circumstances related to the pretty-printer, these fields may not show up in 

the prettyprinted form. 

(prove [sd pre: (.a = l,.b = 1,covering(all,a,b), 
[sd pre: (.a = l,.b ge 1,covering(all,a,b)) 

mod: (b) 

post: (#b = .b + 1)]) 

mod: (b) 

post: (#b = 100,#a ge 0)] 

proof: 

induct on:    .b 

from:       1 

to:        100 
invariants:  (.a = 1) 

comodlist: 

modlist:    (b) 

base proof: 

step proof: 

apply [sd pre: (.a = l,.b ge l,covering(all,a,b)) 

mod: (b) 

post: (#b = .b + 1)]) 

And here is a transcript of the proof: 

<sdvs.l.2.1>    init 
proof name[]:    pr.eg28proof 

State Delta Verification System,  Version 12 
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Restricted to authorized users only. 

open — [sd pre: (.a - l,.b « 1,covering(all,a,b), 
[sd pre 

mod 
post 

mod: (b) 
post: (#b = 100,#a ge 0)] 

(.a = l,.b ge l,covering(all,a,b)) 
(b) 
(#b « .b + 1)]) 

induction .b from 1 to 100 

open — [sd pre: (true) 
comod: (all) 
post: (.a = 1,.b = 1)] 

close — 0 steps/applications 

open — [sd pre 
mod 

post 

(.b ge 1,.b It 100,.a = 1) 
(b) 
(#a = l,#b * .b + 1)] 

apply — [sd pre 
mod 

post 

(.a -  l,.b ge 1,covering(all,a,b)) 
(b) 
(#b = .b + 1)] 

close — 1 steps/applications 

join induction cases — [sd pre 
comod 
mod 

post 

close — 1 steps/applications 

(1 le 100) 
(all) 
(b) 
(#b - 100,#a = 1)] 

If the invariant is left out, then the proof will not go through. However, if the comodification 
list is made to contain a, the proof will go through with trivial invariant. 

A minor change in the state delta will allow both the comodification list and the invariant 
to be "true:" 

[sd pre: (.a= l,.b« l,covering(all,a,b), 
[sd pre 

mod 
post 

mod: (b) 
post: (#b = 100,#a ge 0)] 

(.b ge 1,covering(all,a,b)) 

(b) 
(«b = .b + 1)]) 

Another option is to use a new name as an induction variable, for example counter. This 
variable is automatically incremented by 1 every time around the loop, i.e., from the precon- 
dition to the postcondition of the step-case state delta. See Section 2.1 for another example 

involving counter. 
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If the induction argument is over a larger well-ordered set, then a more complicated proof 
will have to be used. For example, we could be faced with the situation of a loop within a 
loop, where the inner loop bounds are possibly different each time. 

For an abstract illustration, consider the pairs of natural numbers ordered lexicographically 
(the order is u2). If a loop takes a pair into a lower pair, then there is no finite bound on the 
number of times around the loop, even in terms of the initial pair. However, the loop does 
terminate with the value (0,0). Thus, the following state delta ind.sd is true and provable 
in SDVS: 

[sd pre: (covering(all,a,b),.a ge 0,.b ge 0, 

[sd pre: (.a gt 0,.b gt 0) 

mod: (a,b) 

post: (#a It .a or #a = .aft #b It .b,#a ge 0,#b ge 0)], 

[sd pre: (.a = 0,.b gt 0) 

mod: (a,b) 
post: (#a = .a,#b It .b,#b ge 0)] , 

[sd pre: (.a gt 0,.b = 0) 

mod: (a,b) 

post: (#a It .a,#a ge 0,#b ge 0)]) 

mod: (a,b) 

post: (#a = 0,#b = 0)] 

Here is the proof4: 

(prove ind.sd 
proof: 

(prove si 

proof: 

(prove si.1 

proof: 

(let aa = .a, 

let bb = .b, 

induct on:    k 

from:      0 
to:        bb 

invariants:  (.a It aa or 
.a = aa ft .b le bb - k, 

.a ge 0,.b ge 0) 

comodlist: 

modlist:    (a,b) 

base proof: 

step proof: 

cases .b = 0 
then proof: 

else proof: 

cases .a gt 0 
then proof: apply il 

else proof : ), 

let aa = .a, 

4The proof is due to John Doner. 
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apply si. 1, 

cases . a = aa 

then proof: apply i3 

else proof: ), 
prove s2 

proof: 

(let aa s .a, 

induct on: i 
from: 0 
to: aa 
invariants: (.a le aa - i 

comodlist: 

modlist: (a,b) 

base proof: 

step proof: 

cases .a = 0 
then proof: 

else pro of : apply si), 

prove s3 

proof: 
(let bb = .b, 

induct on: j 
from: 0 
to: bb 
invariants: (.b le bb - j 

comodlist: 

modlist: (a,b) 

base proof: 

step proof: 

cases .b = 0 
then proof: 

else proof: apply i2), 

cases .a = 0 

then proof: apply s3 

else proof: 

(apply s2, 

apply s3))) 

where si is 

.a ge 0,.b ge 0) 

.a =  0,.b ge  0) 

[sd pre: (.a gt 0,.b ge 0) 
mod: (a,b) 

post: (#a It   .a,#a ge  0,#b ge  0)] 

sl.l is 

[sd pre 
mod 

post 

(.a gt 0,.b ge 0) 

(a,b) 
(#a It   .a or fa =   .a k #b ' 0,#a ge 0,#b ge 0)] 

s2 is 
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[sd pre:   (.a gt  0,.b ge 0) 
mod:   (a,b) 

post:   (#a = 0,#b ge 0)] 

and s3 is 

[sd pre:   (.a = 0,.b ge  0) 
mod:   (a,b) 

post:   (#a = 0,#b = 0)3 

2.6    PROOF BY CONTRADICTION 

In SDVS, if the symbolic execution proof brings about an inconsistent state (e.g. one 
containing 0 = 1 or x ^ x), then the most recently begun proof is closed, and that state 
delta that was being proved is proclaimed usable. The explanation is that in opening the 
proof of that state delta, we assumed that there was a state (subject to the comod list 
restrictions) that satisfied its precondition, and on the basis of that state we were able to 
execute forward. If we arrive at an inconsistent state, that must mean that our previous 
assumption was false. Thus, there was in fact no state satisfying those conditions, and thus 

the state delta is "vacuously" true. 

When trying to achieve the postcondition of the goal state delta, a usable state delta 
can (only) be applied if its mod list is contained in that of the goal, since that is part 
of the satisfaction condition. However, if reaching a contradiction is the intended proof 
strategy, one need not worry about this restriction; in that case we are not executing to 
the state fulfilling the postcondition, but are simply trying to get to a state manifesting the 
contradiction in the precondition. 

Another way to put this is that if the mod list of an applied state delta is not contained in 
the mod list of the state delta to be proven, then the only way the proof can be closed is 
by reaching a contradiction. The user is suitably warned by an SDVS message. 

First, we show how proof by contradiction can be exploited to eliminate false cases. The 
state delta eqdotx below essentially says that if we can execute to a state, allowing x to 
change along the way, in which we learn that the original value of x was 1, then in fact, the 
current value of x is 1. Note that we cannot prove this fact by simply executing to a future 
state, because the mod list x of the applied state delta is not included in the mod list of the 
state delta to be proven, which is empty, and thus we would have to reach a contradiction 
in order to close the proof. But since .z is 1, there is no contradiction. The way to reach a 
contradiction is first to assume that the current value of x is not 1. This calls for a proof 

by cases. 

<sdvs.l>    pp 
object:    dotx 

[sd pre:   (true) mod:   (x)  post:   (.x =  D] 
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<sdvs.l>    pp 
object:    eqdotx 

[sd pre:   (formula(dotx)) 
coinod:   (all) 
post:   (.Xs  1)] 

<sdvs.l>    prove 
state delta[]:    eqdotx 
proof [] :    < CR> 

open —   [sd pre:   (formula(dotx)) 
comod:   (all) 
post:   (.x ■  1)] 

Complete the proof. 

<sdvs.l.l>    cases 
case predicate:    .x — 1 

cases —   .x =  1 

open — [sd pre: (.x » 1) 
comod: (all) 
post: (x\863 = 1)] 

close — 0 steps/applications 

open — [sd pre 
comod 
post 

(-(.x = 1)) 
(all) 
(x\863 - 1)] 

Complete the proof. 

<sdvs. 1.1.2.1> usable 

u(l) [sd pre 
comod 
post 

(.x = 1) 
(all) 
(x\863 = 1)] 

u(2) [sd pre: (true) mod: (x) post: (.x » 1)] 

No usable quantified formulas. 

<sdvs.1.1.2.1> apply 
sd/number[highest applicable/once]: <CR> 

inserting — pcovering(all.x) 

apply — [sd pre: (true) 
mod: (x) 

post: (.x = 1)] 

Warning: the modlist of the last applied state delta mentions places 
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(x) outside of the modlist of the state delta to be proven. The 

current proof can only be closed by contradiction. 

The postcondition of the last applied state delta is inconsistent 

with the current state. 

close — 0 steps/applications 

join — [sd pre: (true) 

comod: (all) 

post: (x\863 = 1)] 

close — 1 steps/applications 

Now here is the example from Section 1.5.   This shows how we may sometimes want to 
execute to achieve a false state in order to prove the inconsistency of a precondition. 

<sdvs.l>    ppsd 
state delta:    covsd 

[sdpre:   (covering(a,c,d)) 
mod:   (d) 

post:   (#c =   .c + 1)] 

<sdvs.l>   ppsd 
state delta:    contrasd 

[sd pre:   (formula(covsd),covering(a,c,d)) 
mod:   (all) 

post:   (false)] 

<sdvs.l>   prove 
state delta []:    contrasd 
proof [] :    < CR> 

open —   [sd pre:   (formula(covsd),covering(a,c,d)) 
mod:   (all) 

post:   (false)] 

Complete the proof. 

<sdvs.l.l>    usablesds 

u(l)   [sd pre:   (covering(a,c,d)) 
mod:   (d) 

post:   (#c =  .c + 1)] 

<sdvs.l.l>    apply 
sd/number[highest applicable/once]:    <CR> 

apply —   [sd pre:   (covering(a,c,d)) 
mod:   (d) 

post:   (#c =  .c + 1)] 
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The postcondition of the last applied state delta is inconsistent with 

the current state. 

close — 0 steps/applications 

The final example shows how to prove that if p can bring about false, then   p holds in the 

current state. 

<sdvs.l>    prove 
state deltaD:    negate3.sd 
proof [] :    < CR> 

open —   [sd pre:   ([sd pre (P) 
comod (all) 

mod (all) 
post (false)]) 

post:   (~p)] 

Complete the proof. 

<sdvs.l.l>    cases 
case predicate:    p 

cases — p 

open — [sd pre: (p) comod: (all) post: (~p)] 

<sdvs. 1.1.1.1> usable 

u(l) [ad pre: (p) comod: (all) mod: (all) post: (false)] 

No usable quantified formulas. 

Now we would like to apply u(l) to bring about false and thereby negate the precondition. 

<sdvs.l.l.l.l>    apply 
sd/number[highest applicable/once]:    u 

number:    / 

apply - -   [sd pre (p) 
comod (all) 

mod (all) 
post (false)] 

Warning:  the modlist of the last applied state delta mentions places 

(all) outside of the modlist of the state delta to be proven. The 

current proof can only be closed by contradiction. 
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The postcondition of the last applied state delta is inconsistent 

with the current state. 

close — 0 steps/applications 

open — [sd pre: (~p) 

comod: (all) 

post: (~p)] 

close — 0 steps/applications 

join — [sd pre: (true) comod: (all) post: (~p)] 

close — 1 steps/applications 

2.7    STATIC PROOF 

Now we describe the static proof language. These commands relate only to deductions 
within a given state. They do not open or apply state deltas, though they certainly can 

cause state deltas to close. 

There are essentially three different ways in which the system can prove static assertions, 
i.e., that a static assertion A follows from the database D: 

1. Automatically: The assertion follows from the database without any user interaction; 

the system "knows" it to be true. 

2. Proof by "axiom" or "lemma" invocation: The assertion A follows by axiom or lemma 
invocation from database D if there is an axiom or lemma of the form "if C then P," 
where A is of the pattern P and C follows from D automatically. This is implemented 
so that the user need not, but may, specify the axiom or lemma to be used to verify 
A. If no name is specified, SDVS checks all the axioms or lemmas with the required 
pattern until it finds one with the provable precondition C. (Note that the appropriate 
list of axioms must be read before being used. The command help axioms gives the 
names of the files of axioms.) The database is then updated by adding A. The choice 
of the word "axiom" simply indicates that these rules are useful and basic enough 
to be built into SDVS. Of course, they are not independent or necessarily elegant. 
"Lemmas" are rules that the user may create and prove from the axioms and already 

proven lemmas. 

3. Proof "by notice": In the case that A does not follow automatically from the database 
D or by axiom or lemma, one must construct a sequence A\,...,An such that A\ 
follows automatically from D, At follows automatically from D,A\,..., /4,-_i, and A 
is An. This is implemented by the notice command. Thus, notice A{ checks to see 
whether A{ follows (automatically) from the current database, and if so, updates the 
database by adding Ai explicitly. 

Chapter 9, on the simplifier, specifies how much about a given domain is fully automated 
knowledge (decision procedures) and how much is partially automated. 
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2.7.1     Axioms 

The provebyaxiom command causes the system to try to prove the subsequent statement by 
invoking an axiom. An axiom is represented as a pattern of the form (implies q p), or just p 
[equivalent to (implies true p)}, where q and p are predicate patterns that may contain free 
variables. A single instantiation of an axiom can be used to prove the truth of a formula that 
"matches" the consequent of the axiom "at the top level." By "matches at the top level" 
we mean that the axiom consequent (p) has the same syntactic form as the formula, except 
for free variables, which match arbitrary terms. If a free variable is duplicated, then the 
formula must have identical terms that match the multiple occurrences of the free variable. 

Consider a formula F and an axiom A of the form (implies q p). We say that "A proves F" 

if and only if p matches F at the top level, and q, when instantiated, simplifies (in SDVS) 

to TRUE. An axiom pattern is instantiated by the replacement of all of its free variables 

with matched terms taken from the formula. In mathematical notation, if p and q are of the 

form p(xi,...,xn) and q(xu...,xn), then F has to be of the form p{tu...,tn) for terms 

t{, and q(t],.. .,tn) must simplify to TRUE. 

The syntax of the command is provebyaxiom <expr> <axiom-name>. If <axiom-name> is 
omitted, the system will search the list of all currently loaded axioms to try to find one 
with the right pattern. The system prompts for instantiations of variables that appear on 

the left side but not on the right side. 

This next little example only illustrates what would happen if test.ax really were an axiom. 
You cannot duplicate this without using the createaxiom command, which we like to dis- 

courage. 

<sdvs.l>    pp 
object:    axiom 
axiom name:    test.ax 

axiom test.ax  (x,y,z): 
p(x,y)  —> q(x,z) 

<sdvs.l>    prove 
state deltaD :     test.sd 
proof [] :    < CR> 

open —   [sd pre:   (p(l,2))  post:   (q(l,3))] 

Complete the proof. 

<sdvs.l.l>   provebyaxiom 
formula to prove:    q(l, 3) 

axiom name[]:    test.ax 
match for y:    2 

provebyaxiom test.ax —  q(l,3) 

close —  1  steps/applications 
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The following is a list of the commands related to axioms that are illustrated in the example 
below: 

<sdvs.l>    read 
path name [testproofs/manual/ada/exchangetest.proofs] :    axioms/arraycoverings.axioms 

Definitions read from file "aiioms/arraycoverings.axioms" 
—  (disjoint\adjacent\slices,disjoint\slices,disjoint\elements, 

pcovering\slice,pcovering\element,pcovering\slice\slice, 
pcovering\slice\element,disjoint\slice\element) 

<sdvs.2>    axiomnames 
symbol list [] :    < CR> 

Axiom names —   (pcovering\slice\element,pcovering\slice\slice, 
pcovering\element,pcovering\slice,disjoint\slice\element, 
disjoint\elements,disjoint\slices, 
disj oint\adjacent\slices,test.ax.test.3,test.2,test.1, 
stack.6,stack.5,stack.4,stack.3,stack.2,stack.1) 

<sdvs.2>    pp 
object:    axioms 
axiom names[]:    <CR> 
with symbols [] :    < CR> 

axiom pcovering\slice\element  (a,i,m,n):     (disjointarray(a) ft m le i)  ft i le n 
— > pcovering(a[m:n] ,a[i] ) 

axiom pcovering\slice\slice (a,i,j,m,n):     ((disjointarray(a)  ft m le  i)  ft i le j)  ft 
j  le n —> pcovering(a[m:n],a[i:j]) 

axiom pcovering\element  (a,i):    disjointarray(a)  —> pcovering(a,a[i]) 

axiom pcovering\slice  (a,i,j):    disjointarray(a)  —> pcovering(a,a[i:j]) 

axiom disjoint\slice\element  (a,i,m,n):    disjointarray(a) ft 
(m gt  i or i gt n) 
— > alldisjoint(a[m:n] ,a[i]) 

axiom disjoint\elements  (a,i,j):    disjointarray(a) ft i ~= j 
—> alldisjoint(a[i] ,a[j]) 

axiom disjoint\slices  (a,i,j,k,l):    disjointarray(a) ft  (j  It k or 1 It  i) 
— >  alldisjoint(a[i: j] ,a[k:l]) 

axiom disjoint\adjacent\slices  (a,i,j,k,l):     ((disjointarray(a) ft j ge i)  ft 
j  +  1 = k)  ft 

1 ge k —>  covering(a[i:l],a[i:j], 
a[k:l]) 

axiom test.ax  (x,y,z):    p(x,y)  —> q(x,z) 

axiom test.3  (xl,x2):    unscrunch2(scrunch(xl,x2)) = x2 
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axiom test.2  (xl,x2):    unscrunchl(scrunch(xl,x2))  » xl 

axiom test.1  (t):     t - scrunch(unscrunchl(t),unscrunch2(t)) 

axiom stack.6  (i,s):     stacksize(push(i,s))  -  1 + stacksize(s) 

axiom stack.5  ():     stacksize(O)  - 0 

axiom stack.4  (i,s):    pop(push(i,s))  - s 

axiom stack.3  (i,s):    top(push(i,s)) - i 

axiom stack.2  (s) :     0   ~= s —>  s - push(top(s) ,pop(s)) 

axiom stack.1   (i,s):     0   ~- push(i,s) 

<sdvs.2>   pp 
object:    axioms 
axiom names[]:    <CR> 
with symbols []:    pcovering 

axiom pcovering\slice\element   (a,i,m,n):     (disjointarray(a)  t i li i)   ft  i le n 
— > pcovering(a[m:n] ,a[i]) 

axiom pcovering\slice\slice  (a,i,j.».n):     ((disjointarray(a)  ft m le  i)  ft  i le  j)   ft 
j   le n —> pcovering(a[m:n],a[i:j]) 

axiom pcovering\element  (a,i):     disjointarray(a)  —> pcovering(a,a[i]) 

axiom pcovering\slice  (a.i.j):     disjointarray(a)   —> pcovering(a,a[i:j]) 

<sdvs.2>    axionmames 
symbol list[]:    pcovering 

Axiom names with symbol pcovering —   (pcovering\slice\element, 
pcovering\slice\slice, 
pcovering\element,pcovering\slice) 

<sdvs.2>    pp 
object:    axioms 
axiom names G:    di$joint\elements 

axiom disjoint\elements  (a.i.j):    disjointarray(a) ft i ~- j 
— >  alldisjoint(a[i] ,a[j]) 

Now assume that we know that a is a disjoint array. Then SDVS automatically knows (if 
the array solver is active) that a[i] and a[j] are alldisjoint for any two distinct integers i, j, 

whether or not they are in range (real indices). 

<sdvs.2>    simp 
expression:    disjointarray(a) -> alldisjoint(a[l], a[2]) 

true 
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Also, 

<sdvs.2>    simp 
expression:    (disjointarray(a) and i '= j) ~> alldisjoint(a[l], a[2]) 

true 

The axiom disjoint\elements is used in the case that a[i] and a[j] are introduced before the 
system knows that i ^ j. For example: 

<sdvs.3>   prove 
state delta[]:    disjoint3.sd 
proof [] :    < CR> 

open—   [sd pre:   (declare(a,type(array,1,2,type(bitstring,8))), 
• a[i]  =  .a[j]) 

post:   (false)] 

Complete the proof. 

<sdvs.3.1>    cases 
case predicate:    i = j 

cases — i = j 

open —  [sd pre:   (i = j) 
comod:   (all) 
post:   (false)] 

<sdvs.3.1.1.1> defer 
numbers of goals [all] : < CR> 

deferring all current goals 

close — 1 steps/applications 

open — [sd pre: (~(i = j)) 

comod: (all) 

post: (false)] 

Complete the proof. 

<sdvs.3.1.2.1>    simp 
expression:    alldisjoint(a[i], a[j]) 

alldisjoint(a[i] ,a[j]) 

<sdvs.3.1.2.1>   provebyaxiom 
formula to prove:    alldisjoint(a[i], a[jj) 

axiom name[] :    disjoint\elements 

provebyaxiom disjoint\elements — alldisjoint(a[i],a[j]) 
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<sdvs.3.1.2.2>    simp 
expression:    alldisjoint(a[i], a[j]) 

true 

2.7.2     Rewriting 

The rewrite command is based on the mechanism for invoking axioms and applies to equality 
assertions that are provable by existing axioms. When the user wants to cause an equality 
between two terms to be asserted, but does not want (or need) to write the "simpler" term, 

he or she may simply type rewritebyaxiom x. The system then scans the axioms to find an 
equality axiom based on the pattern of x (on either side of the equality) and causes the 

equality to be asserted. Again, the name of the axiom desired to do the rewriting may be 

added to the end of the command. 

Another method has been implemented for rewriting when not all the variables appear on 
one side of the equality to be rewritten. However, the general mechanism whereby SDVS 
prompts for unmatched variables (appearing on the left side of the implication but not the 
right side), as in the case of provebyaxiom, has not been implemented for rewritebyaxiom. 

For example, consider the axiom 

ussub\ussub  (x,h,i,j,k,l,m):    h = min(i,k ♦ max(j.O))  ft 
m = max(j,0)  + max(l,0)  —> x<i:j><k:l> « x<h:m> 

As a matter of convenience, the user may want to say rewritebyaxiom x <i: j><k:n>. This is 
possible only if the precondition is true. However, since some variables in the precondition 
do not have matches in the input term, there is nothing to check. In this case, the system 

will substitute the correct values for h and m. 

<sdvs.l>    prove 
state delta[] :    rewrite.sd 
proof []:    <CR> 

open —   [sd pre:   (h = min(i,k + max(j.O)) ft 
m = max(j,0) + max(n,0)) 

post:   (x<i:j><k:n> = x<h:m>)] 

Complete the proof. 

<sdvs.l.l>    rewritebyaxiom 
term to rewrite:    x<i:j><k:n> 

axiom name[]:    ussub\ussub 

rewritebyaxiom ussub\ussub — x<i:j><k:n> 
= x<min(i,k + max(j,0)) 
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:max(j,0)  + max(n,0)> 

close —  1  steps/applications 

Note that if the bitstring solver were activated at level 3 or 4, then the above proof would 
have closed because the simplifier would know the truth of the implication to be proved 

(remember that solvers must be activated before init): 

<sdvs.l>    activate 
solver:    65 

Bitstring solver (level 3)  activated. 

<sdvs.3>    prove 
state delta[] :    rewrite.sd 
proof [] :    < CR> 

open —   [sd pre:   (h = min(i,k + max(j,0)) ft 
m = mai(j,0) + max(n,0)) 

post:   (x<i:jxk:n> = x<h:m>)] 

close — 0 steps/applications 

2.7.3     Current Axiom List 

The axioms are grouped according to the domain to which they apply. The intent is that 
each group be complete for its domain; i.e., every (universal) true statement about that 
domain can be proved from the axioms. In addition, there is a supply of less "basic" 
axioms that have been found to be useful in actual proofs. For example, in the bitstring 
domain there are axioms for distributing substring over concatenation, for compressing 

concatenation, and so on. 

The user may peruse the list of axioms of the domain of interest to see if there is an axiom 
that will exactly solve a given problem, or one may use the command axiomnames or pp 
< CR > axioms with the symbol or symbols of interest. The "symbol" refers to the actual 
symbol in the axiom, and not in the name of the axiom. Also note that it is the alphabetic 
name, not the mathematical symbol, e.g. "mult" not "*". The simplifier names of the 
symbols used in the axioms can be obtained by the help symbols query, which responds: 

<«SDVS Help>»       Symbols used  in Axioms  and Lemmas       <<<SDVS Help>» 

constants    false,   true,   emptyarray,   0,   1,   emptyplace,   everyplace,  nullqueue 

functions    mkarray,  val,   inertial.update, transport.update, transaction, 
waveform,  frontqueue,  dequeue,  enqueue,  cdr,   car,  cons,  diff, 
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union,  slice,  range,  origin,  element,  aconc,  lh,  usval,  bs, 
bcons,  ussub,  usconc   (©),  useql   (==),   usneq  ("==),  uslss 
(uslt),  usleq  (usle),  usgtr  (usgt),  usgeq  (usge),  usplus   (++), 
usdifference  (--),  ustimes   (**),  usquotient   (//),  usremainder 
(usmod) ,  usnot   (""),  usand  (Mt), usor,  usxor,  usnand, usnor, 
useqv,  zeros,   ones,   lastone,  parity,   idiv,   irem,   icons,  plus 
(+), minus  (-),  mult  (*),  expt  (~) , max,  min,  div  (/),  rem, 
mod,  abs,  vhdltime,  timeglobal, timedelta,  timeplus,  tcval 

predicates    timege,  timegt,  timele,  timelt,  vhdltimep,  sd-value,  distinct, 
neq ("=),  eq  (=), not   ("),   implies  (-->),  xor,  or,  and  (ft), 
cond,   epred,  esucc,  ege,  egt,  ele,   elt,  usvalp,  lhp, 
disjointarray,  covering, pcovering,  alldisjoint, ge, gt,  le, 
It,  emptyqueue,  preemption,  waveformp 

If a particular claim proven by a sequence of steps involving axioms is to be used more than 
once, it may be advisable to make a lemma by createlemma, which then may be reused. 

Below we list all SDVS axioms, grouped by filename. The following list is given as response 
to the help axioms query: 

<sdvs.l> help 
with [all] : axioms 

<<<SDVS Help>>>  Axioms  <<<SDVS Help>>> 

axiojns/abs. axioms integer absolute value 

axioms/arraycoverings.axioms arrays and coverings 

axioms/arrays. axioms 0-origin arrays (obsolete) 

axioms/bitstring.axioms bitstrings 

axioms/div.axioms integer division 

axioms/exp.axioms integer exponentiation 

axioms/idiv.axioms unsigned integer division 

axioms/lastone.axioms the LAST.ONE bitstring function 

axioms/log2.axioms integer log base 2 

axioms/minmax.axioms integer min and max 
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axioms/mod.axioms integer modulus 

axioms/mult.axioms integer multiplication 

axioms/origin-arrays.axioms arbitrary-origin arrays 

axioms/quant.axioms quantification 

axioms/rem.axioms integer remainder 

axioms/sqrt.axioms integer square root 

Axioms for Integer Absolute value (contained in file axioms/abs.axioms): 

abs\pos abs\pos (x) :  x ge 0 —> abs(x) = x 

abs\neg abs\neg (x): x It 0 —> abs(x) = -x 

Axioms for Bitstrings (contained in file axioms/bitstring.axioms): 

usval\lt\lh    usval\lt\lh (b):    2  "  1Mb)  gt  |b| 

ussub\ltO    ussub\ltO  (x,i,j):    0 ge j  —> x<i:j> = x<i:0> 

ussub\usdifierence    ussub\usdifference  (u,v,x,y,m,n):    u = |x| ft 
(v = |y| ft 

(u ge v ft 
(n = 0 ft 

2  *   (m +  1)  gt u - v))) 
— >  |(x — y)<m:n>| = u - v 

ussub\ustimes    ussub\ustimes  (x,y,i,j):     j  = 0 ft 2  "   i gt  |x|  *  |y| 
— >  |(x ** y)<i:j>| = |x ** y| 

ussub\ustimes\0    ussub\ustimes\0  (x,y,i,j):    2  *  j  gt  |x| *  |y| —>  |(x ** y)<i:j>| = 0 

usval\ussub\0    usval\ussub\0  (x.i.j):     |x| = 0 —>  |x<i:j>| = 0 

usor\usplus    usor\usplus  (x,y,z):    lh(x)  = 1 ft  (lh(y)  = 1 ft z = 1(1)) 
— > x usor y =  (z ++  (x ++ y))<l:l> 

usorO    usorO  (x,y):     |x| = 0 ft lh(y) ge lh(x)  —> x usor y = y 

equsvals    equsvals  (x,y,i,j):    |x| = |y|  ~>  |x<i:j>| = |y<i:j>| 

usandl    usandl   (x,y) :    x =  1(1)  ft lh(y)  = 1  —> x ftft y = y 

ussub\usand    ussub\usand (x,y,i,j):     (* ftft y)<i:j> = x<i:j> ftft y<i:j> 

ussub\usxor    ussub\usxor (x,y,i,j):     (x usxor y)<i:j> = x<i:j> usxor y<i:j> 
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ussub\usor    ussub\usor  (x,y,i,j):     (x usor y)<i:j> » x<i:j> usor y<i:j> 

ussub\usplus\ussub    ussub\usplus\ussub  (x,y,i,j,k,l,M,n):     j  » 0 ft  (1 » 0 ft  (i ge m & k ge ■)) 
— >   (x<i:j> ♦+ y<k:l>)<n:n> =  (x ++ y)<m:n> 

usxorO usxorO (x,y):  lh(x) « 1 ft x = y —> x usxor y » 0(1) 

usxorl usxorl (x,y):  lh(x) - 1 ft (lh(y) » 1 ft x "- y) —> x usxor y = 1(1) 

usorl usorl (x,y):  lh(x) = 1 ft (lh(y) = 1 ft (x = 1(1) or y - 1(1))) 

— > x usor y = 1(1) 

usandO usandO (x,y): lh(x) = 1 ft 

(lh(y) = 1 ft (x = 0(1) or y = 0(D)) —> x && y = 0(1) 

restrict\ussub    restrict\ussub  (x,y ,i, j ,k,l,B,n) :    m ge 0 ft  (n ge 0 ft  |x<i:j>| » |y<k:l>|) 
—> |x<i - «:j + n>| = |y<k - n:l + n>| 

ussub\ussub   ussub\ussub (x,h,i,j,k,l,m):    h = min(i,k + max(j,0)) ft 
m = max(j,0)  + max(l,0)  —> x<i:j><k:l> - x<h:m> 

usval\usconc    usval\usconc  (x,y,l):     1 = lh(y)  —>  |x « y| =  |x|  * 2  -  1 + |y| 

chop    chop  (x,y,l):     lh(x)  ge lh(y)  ft 
(2  "  lh(x)  -  1 ge  |x| +  |y| ft 1 = lh(x)  -  1) 
— >  |x ++ y| = |(x ++ y)<l:0>| 

usval\ussub2    usval\ussub2  (x.y.i.j):     i = lh(x)  -  1 ft  (j  = 0 ft |x| =  |y|)  —>  |x| = |y<i:j>| 

usval\ussub    usval\ussub  (x,i,j):     |x<i:j>| 
= idiv(irem(|x|, 

2  *   (min(i,lh(x)  -  1)  + D), 
2  _  max(j,0)) 

squash    squash  (x,i,j,k,l):    j  = k + 1 ft 
((k ge 1  or 0 ge 1)  ft 

(i ge j  or i ge lh(x)  -  D)  —> x<i:j> « x<k:l> = x<i:l> 

ussub\usconc    ussub\usconc  (x,y,i,j,il,jl):     il = i -  lh(y)  ft jl = j  - lh(y) 
— >   (x 0 y)<i:j> = x<il:jl> « y<i:j> 

usval\usconc\0    usval\usconc\0  (x,y):     |x| = 0 —>  |x § y| =  |y| 

ussub\usplus    ussub\usplus  (x,y ,B,n,u,v):    2  " n gt  |x<n -  1:0> ++ y<n -  1:0>| ft 
(2  *   (m +  1)  gt  |x<m:0> ++ y<m:0>| ft 

(u =  |x<m:n>| ft v = |y<m:n>|)) 
— >  |(x ++ y)<m:n>| = u + v 

chop\general    chop\general  (x,i,j):     j  = 0 ft 2  -   (i +  1)  gt  |x|  —>  |x<i:j>| - |x| 

usxor\usplus    usxor\usplus  (x,y):     lh(x) = 1 ft lh(y)  «■ 1  —> x usxor y '  (x ++ y) 
<0:0> 

usand\usplus usand\usplus (x,y): lh(x) = 1 ft lh(y) - 1 —> x ftft y = (x ++ y)<l:l> 
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notO notO (x) :  lh(x) = 1 ft x "= 0(1) —> x = 1(1) 

notl notl (x):  lh(x) = 1 ft x ~= 1(1) —> x = 0(1) 

usor\commute usor\commute (x,y): x usor y = y usor x 

conunuteusand    commuteusand (x,y):     x tft y = y ftft x 

lh\ussub    lh\ussub  (b,i,j):    lh(b<i:j>) 
= max(0, 

1 +  (min(lh(b) -  l,i)  - max(0,j))) 

lh\ones lh\ones (n): lh(ones(n)) = max(n,0) 

lh\zeros lh\zeros (n):  lh(zeros(n)) = max(n,0) 

lh\usdiiierence lh\usdifierence (ll,12,x,y): 11 = lh(x) ft 12 = lh(y) 

— > lh(x ~ y) = max(ll,12) + 1 

usval\usdiiference\2    usval\usdifierence\2  (u,v,x,y,l):    u = |x| ft 
(v = |y| ft 

(v gt u ft 
1 = max(lh(x),lh(y)) + D) 

— >  |x ~ y| = 2  "  1 +  (u - v) 

usval\usdifference\l    usval\usdifierence\l  (x,y,u,v):    u =  |x| ft  (v = |y| ft u ge v) 
—> |x ~ y| = u - v 

ussub\total    ussub\total  (j,k,b):     j  ge lh(b)  -  1 ft 0 ge k ~> b = b<j:k> 

ussub\gt\lh    ussub\gt\lh (j,k,b):     j  ge lh(b)  -  1 —> b<j:k> = b<lh(b)  -  l:k> 

ussub\empty    ussub\empty (x,i,j):     i It  j  —> x<i:j> = 0(0) 

usval\ge\0    usval\ge\0  (b):     |b| ge 0 

usval\le    usval\le  (x,i,j»k,l):    i ge k ft 1 ge j  —>  |x<i:j>| ge |x<k:l>| 

ge\usval\usor    ge\usval\usor  (bl,b2):     |bl usor b2| ge  |bl| 

Axioms for Integer Multiplication (contained in file axioms/mult.axioms): 

multgt multgt (x,y,z): x gt 0 ft y gt z or 0 gt x ft z gt y 

—> x * y gt x * z 

multltO multltO (x,y): 0 gt x ft y gt 0 or x gt 0 ft 0 gt y —> 0 gt x * y 

multgtO multgtO (x,y): 0 gt x ft 0 gt y or x gt 0 ft y gt 0 —> x * y gt 0 

multge multge (x,y,z): x ge 0 ft y ge z or 0 ge x ft z ge y 

—> x * y ge x * z 

multleO multleO (x,y): 0 ge x ft y ge 0 or x ge 0 ft 0 ge y —> 0 ge x * y 
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multgeO    nultgeO  (x,y):     0 ge x ft 0 ge y or x ge 0 ft y ge 0 —> x * y ge 0 

multsquaregeO    multsquaregeO  (x) :     x * x ge 0 

■ult»inus    raultninus  (x,y):     (-x)  * y " -(x * y) 

multdistributeminus    «ultdistributeminus  (x,y,z):    x*(y-z)=x»y-x*z 

multdistributeplus    multdistributeplus  (x,y,z):    x*(y+z)=x*y+x*z 

multassoc    multassoc  (x,y,z):    x *   (y * z)  =  (x * y)  * z 

multcommute    multcommute  (x,y):    x * y = y » x 

multl    multl  (x,y):    y = 1 —> x * y = x 

multO    multO (x,y):    y = 0 —> x * y ■ 0 

Axioms for Integer Exponentiation (contained in file axioms/exp.axioms): 

multeqsquare multeqsquare (a):  a * a = a ~ 2 

expdiv expdiv (a,k) :  k ge 1 —> a" (k-l)=a"k/a 

expmult expmult (a,k):  k ge 1 —> a"k*a*a" (k-1) 

e5  e5 (x,a) :  a = 0 ft x ~= 0 —> a " x = 0 

e4 e4 (a,x) :  a » 0 &  x "■ 0 —> x " a = 1 

e3 e3 (a,b,c,x): c = a + b —> x-a»x"b»x"c 

expabsval    expabsval  (a,b,c):     ((b ge  a ft a ge -b)  ft b ge 0)  & c ge  1 

—> b  "   c ge a "  c 

ell     ell   (a.b.c):     (c gt  0 ft b ge 0)   ft a ge b —> a  "  c ge b  *  c 

e8     e8   (a,x,y):     (a ge  1  ft x ge  1)  ft x ge y —>  x  "   a ge y 

e2    e2  (b,x,y):    b ge 0 ft y ge x —> b  "  y ge b " x 

elO     elO   (a,b,c):     (c gt  0 ft b ge 0)   ft a gt b —> a  "  c gt b  "  c 

e9     e9   (a,x,y):     (a ge 2 ft x ge 2)  ft x ge y —>  x  "   a gt  y 

e7    e7   (b,x,y):    b gt  1 ft y gt x —> b  "  y gt b  *  x 

e6    e6  (a,x):     a gt  1 ft 0 gt x —>  1  gt  a "  x 

el    el   (b,x):    b gt 0 ft x ge 0 —> b  "  x gt 0 

Axioms for Min-Max Functions (contained in file axioms/minmax.axioms): 
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maxge marge (x,y):  max(x,y) ge x 

minie minle (x,y): x ge min(x,y) 

lemin lemin (x,y,z): y ge x ft z ge x —> min(y.z) ge x 

gemax gemax (x,y,z): x ge y ft x ge z —> x ge max(y,z) 

gemin gemin (x,y,z): x ge y or x ge z —> x ge min(y,z) 

lemax lemax (x,y,z): y ge x or z ge x —> max(y.z) ge x 

mineq mineq (x,y): min(x.y) "= x —> min(x,y) = y 

maxeq maxeq (x,y): max(x,y) "= x —> max(x,y) = y 

commutemax commutemax (x,y): max(x.y) = max(y,x) 

commutemin commutemin (x,y): min(x,y) = min(y,x) 

Axioms for Coverings of Arrays (contained in file axioms/arraycoverings.axioms): 

pcovering\slice\element pcovering\slice\element (a,i,m,n):  (disjointarray(a) ft m le i) ft i le n 

— > pcovering(a[m:n] ,a[i]) 

pcovering\slice\slice pcovering\slice\slice (a,i,j,m,n):  ((disjointarray(a) ft m le i) ft i le j) ft 

j le n —> pcovering(a[m:n],a[i:j]) 

pcovering\element pcovering\element (a,i): disjointarray(a) —> pcovering(a,a[i]) 

pcovering\slice pcovering\slice (a.i.j): disjointarray(a) —> pcovering(a,a[i:j]) 

disjoint\slice\element disjoint\slice\element (a,i,m,n): disjointarray(a) ft (m gt i or i gt n) 

— > alldisjoint(a[m:n],a[i]) 

disjoint\elements disjoint\elements (a,i,j): disjointarray(a) ft i ~= j —> alldisjoint(a[i], 

a[j]) 

disjoint\slices disjoint\slices (a,i,j»k.D: disjointarray(a) ft (j It k or 1 It i) 

— > alldisjoint(a[i: j] ,a[k:l]) 

disjoint\adjacent\slices disjoint\adjacent\slices (a,i,j,k,l):  ((disjointarray(a) ft j ge i) ft 

j + 1 = k) ft 
1 ge k —> covering(a[i:l],a[i:j],a[k:l]) 

Axioms for Arrays with Arbitrary Origin (contained in file axioms/origin-arrays.axioms) 

emptyslice emptyslice (v,i,j):  i gt j —> v[i:j] = emptyarray 

lowerslice lowerslice (v.i.j.lb): lb = origin(v) ft origin(v) gt i —> v[i:j] = v[lb:j] 

upperslice upperslice (v,i,j»ub): ub = (origin(v) + range(v)) - 1 ft j ge ub 
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— > v[i:j]  « v[i:ub] 

totalslice    totalslice  (v,i,j):     origin(v)  ge i & 
j  ge   (origin(v) + range(v))  -  1  —>  v[i:j]  » r 

slicerange    slicerange  (v.i.j.r):     ((i ge origin(v)  ft j  ge  i)  & 
origin(v) + range(v)  gt j)  ft 

r =   (j  -  i)  +  1  --> range(v[i:j])  ■ r 

sliceorigin    sliceorigin (v,i,j):     (i ge origin(v)  ft j  ge  i)  ft 
origin(v)  + range(v)  gt j  —>  origin(v[i: j]) = i 

adjacentslices    adjacentslices  (T,i,j,k,l):     (j ge  i ft j = k +  1)  ft 1 ge k 
—> aconc(v[i:j] ,v[k:l]) - v[i:l] 

elementofslice    elementofslice  (v.i,j,k,m):     (j ge  i ft i ge origin(v))  ft 
m = (i + k) - origin(T) --> v[i:j][k] = v[m] 

elenentofaconcl    elementofaconcl   (vl,v2,j):    origin(vl) + range(vl) gt  j 
— >  aconc(vl,v2)[j]  » vl[j] 

eleaentofaconc2    elementofaconc2  (vl,v2,j,k):     j ge origin(vl) + range(vl) ft 
k    s origin(v2)  + 

(j  -  (origin(vl) + range(vl))) 
— >  aconc(vl,v2)[j]  - v2[k] 

sliceofaconc    sliceofaconc  (vl,v2,i,j,i2,j2):     i2 •= origin(v2)  + 
(i -   (origin(vl) + range(vl))) ft 

j2 = origin(v2)  + 
(j  -   (origin(vl) ♦ range(vl))) 

~> aconc(vl,v2)[i:j]  = aconc(vl[i: j] ,v2[i2: j2]) 

Axioms for Log Base 2 (contained in file axioms/log2.axioms): 

log2eipgt log2expgt (x,y): x ge 1 ft y = log2(x) —> 2 " (y + 1) gt x 

log2exple log2exple (x,y):  x ge 1 ft y - log2(x) —> 2 " y le x 

log2def log2def (x.y):  (x ge 1 ft 2 " y le x) ft 2 " (y + 1) gt x —> y = log2(x) 

Axioms for Integer Division (contained in file axioms/div.axioms): 

divgtO    divgtO  (a,b):     (a ge 0 ft b gt  0)  ft a ge b or 
(0 ge a ft 0 gt b)  ft b ge a —>  a / b gt  0 

divltO    divltO  (a,b):     (a ge 0 ft 0 gt b)  ft b gt a or 
(0 ge a ft b gt  0)  ft a gt b —> 0 gt a / b 

divlt divlt (a,b):  a gt 0 ft b gt 1 —> a gt a / b 

diveqO diveqO (a,b):  (a = 0 ft b ~= 0 or a ge 0 ft b gt a) or 

0 ge a ft a gt b —> a / b = 0 

78 



diveql diveql (a,b) :  a = b & b ~= 0 —> a / b = 1 

divnegl divnegl (a,b):  (-a) / b = -(a / b) 

divneg2 divneg2 (a,b) :  a / (-b) = -(a / b) 

divmulteq divmulteq (a,b): a ge 1 —> (a * b) / a = b 

divdistl divdistl (a,b,n):  ((n gt 0 ft a ge 0) ft b It n) ft 0 le b 

— > (n*a + b)/n = a 

divby2repeat divby2repeat (a,j): j ge 0 
— > (a / 2 * j) / 2 = a / 2 " (j + 1) 

divgeO divgeO (a,b): a ge 0 ft b gt 0 or 0 ge a ft 0 gt b —> a / b ge 0 

divleO divleO (a,b): a ge 0 ft 0 gt b or 0 ge a ft b gt 0 —> 0 ge a / b 

divgemult divgemult (a,b): a ge 0 ft b "= 0 — > a ge (a / b) * b 

divlemult divlemult (a,b): 0 ge a ft b ~= 0 —> (a / b) * b ge a 

divposlemax divposlemax (a,b):  a ge 0 ft b gt 0 

— > (a / b) * b ge max(0,(a - b) + 1) 

divposorder divposorder (a,b,c): a ge 1 ft c ge b —> c / a ge b / a 

Axioms for Modulo Arithmetic (contained in file axioms/mod.axioms): 

modpos modpos (x,y): y gt 0 —> x mod y ge 0 

modneg modneg (x,y): 0 gt y —> 0 ge x mod y 

modO modO (x,y):  x = 0 —> x mod y = 0 

modmult modmult (x,y,k): x mod y = (x + k * y) mod y 

modreml modreml (x,y):  (y "= 0 ft (x / y) * y = x or 0 gt x ft 0 gt y) or 

x gt 0 ft y gt 0 —> x mod y = x rem y 

modrem2 modrem2 (x,y) :  (y "= 0 ft (x / y) * y "= x) ft 
(0 gt x ft y gt 0 or x gt 0 ft 0 gt y) 

— > abs(x rem y) = abs(y) - abs(x mod y) 

Axioms for Remainder Function (contained in file axioms/rem.axioms): 

remdef remdei (x,y): y ~= 0 —> x=(x/y)*y+x rem y 

remO remO (x,y): x = 0 —> x rem y = 0 

rempos rempos (x,y): x gt 0 ft y "= 0 —> abs(x rem y) = x rem y 
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remneg    remneg   (x,y):     i It  0 » y  "« 0  —>  abs(x rein y)   « -(x re» y) 

remnegl    remnegl   (x,y):     (-x)  rein y = -(x rem y) 

reimeg2    remneg2  (x,y):    x rem  (-y)  - x rem y 

reiilb    remlb  (x,y):    abs(x rem y)  ge 0 

remub    remub (x,y):    abs(x rem y)  It  abs(y) 

Axioms for Square Root (contained in file axioms/sqrt.axioms): 

sqrt3 sqrt3 (y) : y ge 0 —> y ge sqrt(y) * sqrt(y) 

sqrt2 sqrt2 (y) : y = 0 —> sqrt(y) = 0 

sqrt4 sqrt4 (y): y ge 0 —> (sqrt(y) + 1) * (sqrt(y) + 1) gt y 

sqrtl sqrtl (y) : y gt 0 —> sqrt(y) gt 0 

Axioms for "Last One" Function (contained on the file axioms/lastone.axioms): 

lastl\value2    lastl\value2  (x):     |x| gt  0 —>  lh(x)  gt  |lastone(x)| 

lastl\value    lastl\value  (x):     lh(x)  ge  |lastone(x)| 

lastl\usval\ge    lastl\usval\ge  (x,i):     x<i:i> =  1(1)  —>  i ge  |lastone(x)| 

lastl\valuedei    lastl\valuedei  (x,m):    x<m:m> =  1(1)  ft |x<m -  1:0>| = 0 —>  |lastone(x)| 

lastl\lhdei    lastl\lhdei  (x,k):     lh(x)  ge 2  "  k ft 2  "   (k + 1)  gt lh(x) 
— > lh(lastoned))  = k ♦ 2 

lastl\def    lastl\def  (l,x):     |x|  gt 0 ft  (x<0:0> = 0(1)  ft lh(x)  -1 = 1) 
— >  |lastone(x)| = |lastone(x<l: 1>)| +  1 

lastl\usor    lastl\usor  (x,y):     |laston«(x usor y)| « min(|lastone(x)|, |lastone(y)|) 

lastl\firstone    lastl\firstone  (ux,x):     |x| gt 0 ft ux =  |lastone(x)| -->  x<ux:ux> =  1(1) 

lastl\usconc    lastl\usconc  (x,y):     |x|  gt 0 —>  |lastone(y C x)| = |lastone(x)| 

lastl\zeros    lastl\zeros  (x,l):     1 ge 0 ft |lastone(x)| gt  1 —> x<l:l> = 0(1) 

lastl\zerosO    lastl\zerosO  (x,k):     |lastone(x)| = k + 1  —>  |x<k:0>| = 0 

lastl\ussub    lastl\ussub  (ux,x,l,n):     ux =  |lastone(x)| ft 
(1 = lh(x)  -  1ft  (n ge 0 ft ux ge n)) 
— >  |lastone(x<l:n>)| = ux - n 
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Axioms for Experimental ("Unsigned") Integer Division (contained in file axioms/idiv.axioms) 

idivdef idivdef (a,x) :  a gt 0 —> x  = idiv(x,a) * a + irem(x,a) 

idivO idivO (a,b): a ge 0 ft b gt a —> idiv(a.b) = 0 

iremdef iremdef (q,r,y): r ge 0 ft y gt r —> r = iremCq * y + r,y) 

idiv\order2 idiv\order2 (al,a2,b): al ge 0 ft (a2 ge al ft b gt 0) 

— > idiv(a2,b) ge idiv(al,b) 

irem\order2 irem\order2 (a,b) : a ge 0 ft b gt 0 —> b ge irem(a,b) 

irem\orderl irem\orderl (a,b) : a ge 0 ft b gt 0 —> a ge irem(a,b) 

idiv\order idiv\order (a,b): a ge 0 ft b gt 0 —> a ge idiv(a,b) 

The axioms for quantification are discussed in Chapter 6. 

2.7.4    Lemmas 

The following commands are covered in this section: 

read 
writelemmas (or write lemmas) 

createlemma 

provelemma 

provebylemma 

Lemmas enable the user to extend the static derivation capability of SDVS. A lemma is 
written in the same format as the system-supplied axioms. Note that quantifiers cannot 

appear in the statement of the lemma. 

The command createlemma prompts the user for the various components. The resulting 
lemma may be stored through the command writelemmas or just the write command. A 
previously written lemma can be read in by the read command. A proof of the lemma (from 
axioms and previous lemmas) is initiated in the context of a larger proof by the command 
provelemma <lemma-name>. The lemma is used in the same way as an axiom is used (for 
pattern matching, prompting for unmatched variables, and so on) through the command 
provebylemma. Note that the provebylemma command only proves sentences that match 

the lemma's conclusion, not the whole implication. 

If an unproved lemma is used during a proof, a message to that effect, similar to the 
statement about deferred goals, will appear at the end of the proof (after quitting). All 
unexplained bitstring notation used below is described in Section 9.4. 
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<sdvs.l>    createlemma 
name:     carrylemma 

pattern:     (lh(x) = 1 & lh(y) = 1 & lh(z) = 1) -> (x && y usor x && z usor y && z) 
(x ++ y ++ z)<l:l> 

free variables [] 
constant symbols 0 
function symbols[] 

predicate symbols [] 

x, y, z 
<CR> 
<CR> 
<CR> 

Lemma 'carrylemma' created. 

The prompts for constant, function, and predicate symbols relate to only those (uninter- 
preted) symbols that SDVS does not already recognize. 

<sdvs.l>    pp 
object:    lemmas 
lemma names []:    carrylemma 

improved lemma carrylemma (x,y,z):     (lh(x) «  1 fc lh(y)  = 1)  4 lh(z)  =  1 
— >   (x kk y usor x tft z)  usor y ft* z 

=   ((x ++ y)  ++ z)<l:l> 

<sdvs.l>   provelemma 
lemma name:    carrylemma 

proof [] :    < CR> 

open —   [sd pre:   (Uh(x)  =  1 & lh(y)  =  1)  ft lh(z)  »  1) 
post:   ((x ftft y usor x ftft z)  usor y ftft z 

=  ((x ++ y)  ++ z)<l:l>)] 

<sdvs.l.l>    meases 
number of cases:    8 

1st  case:    x = 0(1) & y = 0(1) & z = 0(1) 
proof [] :    < CR> 

2nd case:    x = 0(1) & y = 0(1) & z = 1(1) 
proof [] :    < CR> 

3rd case:    x = 0(1) & y = 1(1) & z = 0(1) 
proof []:    <CR> 

4th case:    x = 0(1) & y = 1(1) & z = 1(1) 
proof []:    <CR> 

5th case:    x = 1(1) & y = 0(1) & z = 0(1) 
proof [] :    < CR> 

6th case:    x = 1(1) & y = 0(1) & z = 1(1) 
proof [] :    < CR> 

7th case:    x = 1(1) & y = 1(1) & z = 0(1) 
proof [] :    < CR> 

8th case:    x = 1(1) & y = 1(1) & z = 1(1) 
proof [] :    < CR> 

meases — 8 

open —   [sd pre:   ((x = 0(1)  ft y = 0(1))  ft z = 0(1)) 
comod:   (all) 
post:   ((x && y usor x ftft z) usor y ftft z 
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= ((x ++ y) ++ z)<l:l>)] 

close — 0 steps/applications 

open — [sd pre: ((x = 0(1) ft y = 0(1)) ft z = 1(1)) 

comod: (all) 
post: ((x ftft y usor x ftft z) usor y ftft z 

= ((x ++ y) ++ z)<l:l>)] 

close — 0 steps/applications 

open — [sd pre: ((x = 0(1) ft y = 1(1)) ft z = 0(1)) 

comod: (all) 

post: ((x ftft y usor x ftft z) usor y ftft z 

= ((x ++ y) ++ z)<l:l>)] 

close — 0 steps/applications 

open -- [sd pre: ((x = 0(1) ft y = 1(D) ft z = 1(1)) 

comod: (all) 
post: ((x ftft y usor x ftft z) usor y ftft z 

= ((x ++ y) ++ z)<l:l>)] 

close — 0 steps/applications 

open — [sd pre: ((x = 1(1) ft y = 0(D) ft z = 0(D) 

comod: (all) 
post: ((x ftft y usor x ftft z) usor y ftft z 

= ((x ++ y) ++ z)<l:l>)] 

close — 0 steps/applications 

open — [sd pre: ((x = 1(1) ft y = 0(D) ft z = 1(D) 

comod: (all) 
post: ((x ftft y usor x ftft z) usor y ftft z 

= ((x ++ y) ++ z)<l:l>)] 

close — 0 steps/applications 

open — [sd pre: ((x = 1(1) ft y = 1(D) ft z = 0(D) 

comod: (all) 
post: ((x ftft y usor x ftft z) usor y ftft z 

= ((x ++ y) ++ z)<l:l>)] 

close — 0 steps/applications 

open — [sd pre: ((x = 1(1) ft y = 1(D) ft z = 1(D) 

comod: (all) 
post: ((x ftft y usor x ftft z) usor y ftft z 

= ((x ++ y) ++ z)<l:l>)3 

close — 0 steps/applications 

join — [sd pre: ((x = 0(1) ft y = 0(D) ft z = 0(1) or 

(x = 0(1) ft y = 0(D) ft z = 1(1) or 
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(x - 0(1)  ft y =  1(D)  ft z 
(x - 0(1)  ft y -  1(D) ft z 
(x - 1(1)  ft y = 0(D)  ft z 
(x = 1(1) ft y " 
(x = 1(1) ft y 

comod: 
post: 

(x -  1(1)  ft y 
(all) 

0(1) or 
KD or 
0(1) or 

0(D)  ft z »  1(1) or 
1(D) * z = 0(1) or 

((x ftft y usor x ftft z)  usor y 
=  ((x ++ y)  ++ z)<l:l>)] 

1(D) ft z - KD) 

)  usor y ftft z 

close —  1  steps/applications 

<sdvs.l>    dump-proof 
name:    carryproof 

Current proof dumped to carryproof. 

<sdvs.l>    write 
path name[axioms/arraycoverings.axioms] 

state delta names [] 
proof names [] 
axiom names [] 
lemma names [] 

formula names [] 
formulas names [] 

macro names [] 
datatype names [] 
adalemma names [] 

vhdllemma names [] 

lemmas/lemmas .lemmas 
<CR> 
carryproof 
<CR> 
carrylemma 
<CR> 
<CR> 
<CR> 
<CR> 
<CR> 
<CR> 

Do you wish to append to the already existing file? y 

Append to file "lemmas/lemmas.lemmas" — (carryproof.carrylemma) 

<sdvs.l> read 
path name [lemmas/lemmas, lemmas] : lemmas/lemmas.lemmas 

Definitions read 

— (carryproof 

carryproof 

carryproof 

carryproof 

carryproof 

carryproof 

carryproof 

carryproof 

from file "lemmas/lemmas.lemmas" 

.carrylemma,carryproof,carrylemma,carryproof,carrylemma 

,carrylemma,carryproof,carrylemma,carryproof,carrylemma 

,carrylemma,carryproof,carrylemma,carryproof,carrylemma 

,carrylemma,carryproof,carrylemma,carryproof,carrylemma 

,carrylemma.carryproof,carrylemma,carryproof,carrylemma 

,carrylemma,carryproof,carrylemma,carryproof.carrylemma 

,carrylemma,carryproof,carrylemma,carryproof,carrylemma 

.carrylemma) 

<sdvs.2>   pp 
object:    lemmas 
lemma names [] :    carrylemma 

lemma carrylemma (x,y,z):     (lh(x) »1ft lh(y)  = 1)  ft lh(z)  =  1 
— >   (x ftft y usor x ftft z)  usor y ftft z 

=   ((x ++ y)  ++ z)<l:l> 
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Actually, one does not have to store the proof explicitly; it is stored automatically with the 
proven lemma. It can be viewed as follows: 

<sdvs.2>   pp 
object:    lemmaproof 
lemma name:    carrylemma 

(provelemma carrylemma 
proof: 

meases 
(case:   (x = 0(1 

proof: 
case:   (x = 0(1 
proof: 

case:   (x = 0(1 
proof: 

case:   (x = 0(1 
proof: 

case:   (x =  1(1 
proof: 

case:   (x =  1(1 
proof: 
case: (x = 1(1 
proof: 
case: (x = 1(1 
proof: )) 

ft y = 0(1) 

ft y = 0(1) 

ft y = 1(1) 

ft y = 1(1) 

ft y = 0(1) 

ft y = 0(1) 

ft y = 1(1) 

ft y = 1(1) 

ft z = 0(1 

ft z = 1(1 

ft z = 0(1 

ft z = 1(1 

ft z = 0(1 

ft z = 1(1 

ft z = 0(1 

ft z = 1(1 

Now we shall use carrylemma in proving carrysd: 

<sdvs.l>   ppsd 
state delta:    carrysd 

[sd pre:   (declared,type(bitstring, 1)) ,declare(y,type(bitstring,l)) , 
declare(z.type(bitstring,1)),covering(all,a,b,x,y,z), 
[sd pre:   (true) 

mod:   (a) 
post:   (#a =  (.x ftft  .y usor  .x ftft  .z)  usor  .y ftft  .z)], 

[sd pre:   (true) 
mod:   (b) 

post:   (#b =  ((.x ++   .y)  ++  .z)<l:l>)]) 
mod:   (a,b) 

post:   (#a = #b)] 

<sdvs.l>    init 
proof name [] :    < CR> 

State Delta Verification System,  Version 12 

Restricted to authorized users only. 

<sdvs.l>   prove 
state delta[]:    carrysd 
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proof []:    <CR> 

open— [sd pre: (declare(x,type(bitstring,D) , 
declare(y ,type(bitstring,D), 
declare(z,type(bitstring,D) .covering(all,a,b,x,y,z) , 
[sd pre (true) 

mod (a) 
post (#a = (.x kk  .y usor 

.y kk  . z)], 
.x kk  . z) usor 

[sd pre (true) 
mod (b) 

post (#b = ((.x ++ .y) ++ .z)<l:l>)]) 

mod: (a,b) 
post: (#a - #b) ] 

Complete the proof. 

<sdvs.l.l>    whynotgoal 
simplify? [no] :    < CR> 

g(l)  #a « #b 

<sdvs.l.l>    usablesds 

u(l)   [sd pre 
■od 

post 

(true) 
(b) 
(#b «   ((.x ++   .y)  ++   .z)<l:l>)] 

u(2)   [sd pre 
mod 

post 

(true) 
(a) 
(#a =  (.x kk  .y usor   .x kk  .z)  usor  .y kk  .z)] 

<sdvs. 1. 1>    apply 
sd/number[highest applicable/once]:    u 

number:    / 

apply —   [sd pre:   (true) 
mod:   (b) 

post:   (#b »  ((.x ++   .y)  ++  .z)<l:l>)] 

<sdvs.l.2>    apply 
sd/number[highest applicable/once]:    u 

number:    2 

apply —   [sd pre 
mod 

post 

(true) 
(a) 
(#a = (.x kk  .y usor  .x kk  .z) usor .y kk  .z)3 

<sdvs.l.3>    whynotgoal 
simplify? [no]:    <CR> 

g(l)  #a » #b 

<sdvs.l.3>    provebylemma 
formula to prove:     .1 && .y usor .x && .z usor .y && .z = (.x ++ .y ++ .z)<l:l> 
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lemma name[] :    carrylemma 

provebylemma carrylemma —   (.1 kk  .y usor  . x ftft  . z)  usor 
.y ftft  .z =  ((.i ++  .y)  ++   .z) 

<1:1> 

close — 3 steps/applications 

2.7.5     Notice 

The user may need to create a sequence of notices to lead the system from its perception of 
the current state to the realization of the truth of some other facts about the current state. 
The system must be able to verify automatically the current fact being noticed on the basis 

of the facts that were previously noticed or proved by axiom or lemma. 

A command similar to notice is consider. An essential role in the automatic deduction 
mechanism of SDVS is played by the demons, that is, by rules triggered by patterns of 
terms that cause certain statements to be inserted into the database. Consider allows 
the user the possibility of supplying the system with those key terms that will cause the 
appropriate demons to "fire" and thus automatically carry out part of the proof. Note that 

"consider t" has the same effect as "notice t = t". 

As an example of the use of consider, suppose the user knows that for some 0 < i < 8, 
a<9 : i>-b<9 - i : 0> and wants to prove that a<9 : 8> = 6<9 - i : 8 - i>. The system 
knows that a<9 : 8> = a<9 : i><9 - i : 8 - i> when the solver b3 is in force (see Section 

2.7.6), because of the equation 

a<i : j><k : m> = a<min(i,k+ max(j,0)) : max(j,Q) + max(m,0)> 

However, this demon will not fire unless the term a<9 : i><9 - i : 8 - i>. is introduced 
explicitly. This is accomplished by consider. Then a<9 : 8> = a<9 : z><9 - i : 8 - i> = 
b<9 _ i : o><9 - i : 8 - i> and the demon fires again, giving 6<9 - i : 8 - i>. 

Below is a transcript illustrating the above argument: 

<sdvs.l>    prove 
state delta[] :    notice.sd 
proof [] :    < CR> 

open —   [sd pre:   ((0 le i ft i le 8)  ft a<9:i> = b<9 -  i:0>) 
post:   (a<9:8> = b<9 - i:8 -  i>)] 

Complete the proof. 

<sdvs.l.l>    consider 
term:    a<9:i><9 - i:8 - i> 

consider — a<9:i><9 -  i:8  -  i> 

close —  1  steps/applications 
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One could have also used notice: 

<sdvs.l>    prove 
state delta[] :     notice.sd 
proof []:    <CR> 

open —   [sd pre:   ((0 le  i ft i le 8)  ft a<9:i> = b<9 - i:0>) 
post:   (a<9:8> » b<9 -  i:8 -  i>)] 

Complete the proof. 

<sdvs.l.l>    notice 
term:    a<9:8> = a<9:i><9 - i:8 - i> 

notice — a<9:8> = a<9:i><9 - i:8 - i> 

close —  1  steps/applications 

2.7.6     Solvers 

The commands activate and deactivate control the solvers described in the simplifier. If a 
given solver is activated, the embedded knowledge for that domain in the simplifier is used. 
The system must be reinitialized after a solver is activated. If a given solver is deactivated, 
all function symbols in its domain will be treated as uninterpreted. The solvers e and p 

cannot be deactivated. 

The solvers can be tested by typing eval (test-simp-solvers). 

Below is the current list of solvers with their default settings: 

<sdvs.l.4>    solvers 

Quantification solver inactive. 

Simplifier Solvers: 
a arrays 
b bitstrings 

c coverings 

d integer division 

e equality 

enum enumerations 

k extra boolean operators 

1 lists 
B associative/commutative multiplication 

p propositional logic 

q queues 

t vhdl time 

¥ vhdl waveforms 

z integer arithmetic 

(activated) 

(activated, 

(activated 

(deactivated 

(activated! 
(activated 

(activated 

(deactivated 

(deactivated 

(activated 

(deactivated 

(activated 

(activated 

(activated 

level 3) 
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The query solvers will produce the above table with the settings in force at the time of the 
query. 

There are four varieties of bitstring solver: b, b2, b3, and b4. For more information about 
bitstring arithmetic, see Section 9.4. The solver b is the basic bitstring solver. When the 
query solvers shows b activated, it means that only the basic bitstring solver is activated. 
The other bitstring solvers are activated and displayed as follows: 

The solver b2 contains the capability to do some derivations involving bitstrings with non- 
constant substring selectors. 

The solver b3 incorporates six capabilities not included in b: 

1. (x@y)<i:j> = x<i - lh(y): j - lh(y)> @ y<i:j> 

2. x<i:j><k:l> is simplified to x<m:n> under certain conditions 

3. |0(k)<i:j>| = 0 

4. x<i:j>@x<k:l> is simplified to x<m:n> under certain conditions 

5. I(x ++ y)<i:j>l is simplified to |x<m:n> ++ y<m:n>| under certain conditions 

6. |(x ** y)<i:j>l is simplified to 0 under certain conditions 

The solver b4 combines b2 and b3. 

For example, 

<sdvs.l>    activate 
solver:    b4 

Bitstring solver  (level 4)   activated. 

<sdvs.3>    simp 
expression:    i It j -> b<i:j> = 0(0) 

true 

If the high substring selector is lh(b) - 1 and the low selector is 0, then the whole expression 
just simps to b: 

<sdvs.3>    simp 
expression:    i = 0 & j = lh(b) - 1 -> b<j:i> = b 

true 

89 



2.8    MANIPULATING THE PROOF 

This section describes the two means currently available for interactively manipulating the 
proof structure: deferring and popping. A goal for some future version of SDVS is to 
allow the user to edit the proof essentially at will, moving around the proof tree, proving, 
deferring, and so on. Of course, these actions would be checked in such a way that the 
finished proof structure would indeed be a correct proof, or at least that the holes in the 

proof would be correctly identified. 

Defer is used to postpone proving the current goal or goals and move on to the next. Pop 
is used to back up to some previous proof step. Currently, the "popped" proof steps are 

not saved. 

2.8.1     Defer 

The purpose of the defer command is to allow the user to postpone proving a given goal or 
state delta. The deferred goal or state delta is asserted or added to usablesds, as if it had 
been proved, and the proof may be continued interactively or in batch mode by the continue 
command. After deferring a certain goal, the user may continue with proving and deferring 
until the opened state delta is proved. He may quit, thus storing the (partial) proof. Now 
when the stored proof is rerun, there will be stop commands in the proof in place of defer. 
The user will be able to complete the deferred sections, either by typing interactively, or by 
using interpret. Then the proof will continue as stored. The final proof will be updated (or 
completed) when the goal is reached. The user can also step through a proof, any number 
of steps at a time. If the proof is stopped, either because of a defer or an explicit stop, the 
user may simply type step. In order to step through a whole proof, the user must insert a 

"stop" at the beginning and then "step." 

We illustrate this with a reproof of the induct example from Section 2.1. 

<sdvs. 1> ppsd 

state delta:    sin duct 

[sd pre: (covering (all.a.b) » 
[sd pre: (true) 

mod: (a) 

post: (fa gt   . a)]) 
mod: (a) 

post: (#a gt  1000)] 

<sdvs.l>    init 
prooi nameö:    <CR> 

State Delta Verification System,  Version 12 

Restricted to authorized users only. 

90 



<sdvs.l>    prove 
state delta[] :    smduct 
proof []:    <CR> 

open—   [sdpre:   (covering(all,a,b), 
[sd pre:   (true) 

mod:   (a) 

post:   (#a gt   .a)]) 

mod:   (a) 

post:   (#a gt  1000)] 

Complete the proof. 

<sdvs.l.l>    let 
new variable:    aa 

value:    .a 

let  — aa =   .a 

<sdvs.l.2>    cases 
case predicate:    aa le WOO 

cases — aa le  1000 

open —  [sd pre: (aa le  1000) 
comod: (all) 

mod: (a) 

post: (#a gt  1000)] 

<sdvs.l.2.1.1> defer 
numbers of goals [all]: <CR> 

deferring all current goals 

close — 1 steps/applications 

open — [sd pre: ("(aa le 1000)) 

comod: (all) 

mod: (a) 

post: (#a gt 1000)] 

close — 0 steps/applications 

join — [sd pre: (true) 

comod: (all) 

mod: (a) 

post: (#a gt 1000)] 

close — 2 steps/applications 

<sdvs.2> quit 

Proof session closed with one deferred goal. 

The proof for this session is in 'sdvsproof. 
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State Delta Verification System, Version 12 

Restricted to authorized users only. 

<sdvs.l>   pp 
object:    sdvsproof 

proof  sdvsproof: 

prove sinduct 
proof: 

(let aa -  .a, 
cases aa le  1000 

then proof:  stop All current goals Bust be proved here, 
else proof:   ) 

<sdvs.l>    init 
proof name[]:    <CR> 

State Delta Verification System,  Version 12 

Restricted to authorized users only. 

<sdvs.l>    interpret 
proof name:    sdvsproof 

open —   [sd pre:   (covering(all,a,b), 
[sd pre 

mod 
post 

mod:   (a) 
post:   (#a gt  1000)] 

(true) 
(a) 
(#a gt .a)]) 

let — aa = .a 

cases — aa le 1000 

open — [sd pre: (aa le 1000) 
comod: (all) 
mod: (a) 

post: (#a gt 1000)] 

All current goals must be proved here. 

<sdvs. 1.2.1. 1> induct 
induction expression: counter 

from 
to 

invariant list[] 
comodif ication list[] 

modification list[] 
base proof [] 
step proof [] 

0 
1001 - aa 
counter le .a - aa 
<CR> 
a 
<CR> 
<CR> 

induction — counter from 0 to  1001 - aa 
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open — [sd pre: (counter = 0) 

comod: (all) 

post: (counter le .a - aa)] 

close — 0 steps/applications 

open — [sd pre: (counter ge 0,counter It 1001 - aa, 

counter le .a - aa) 

mod: (a) 

post: (counter + 1 le #a - aa)] 

Complete the proof. 

<sdvs.l.2.1.1.2.1> apply 
sd/number[highest applicable/once]: <CR> 

apply — [sd pre: (true) 

mod: (a) 

post: (#a gt .a)] 

close — 1 steps/applications 

join induction cases — [sd pre: (0 le 1001 - aa) 

comod: (all) 

mod: (a) 
post: (1001 - aa le #a - aa)] 

close — 1 steps/applications 

open — [sd pre: ("(aa le 1000)) 
comod: (all) 

mod: (a) 

post: (#a gt 1000)] 

close — 0 steps/applications 

join — [sd pre: (true) 

comod: (all) 

mod: (a) 

post: (#a gt 1000)] 

close — 2 steps/applications 

2.8.2     Pop 

Pop returns the user to a previous proof state. Let us re-examine the sinduct example. This 
time pretend we forgot to do the let before the induction. 

<sdvs.l>   prove 
state delta[]:    sinduct 
proof [] :    < CR> 
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open — [sd pre: (covering(all,a,b). 
[sd pre 

mod 
post 

mod: (a) 
post: (#a gt 1000)] 

(true) 
(a) 
(#a gt   .a)]) 

Complete the proof. 

<sdvs.l.l>    cases 
case predicate:    .a gt 1000 

cases —   .a gt  1000 

open — [sd pre: (.a gt 1000) 
comod: (all) 
mod: (a) 

post: (#a gt 1000)] 

close — 0 steps/applications 

("(.a gt 1000)) 
(all) 
(a) 
(#a gt 1000)] 

open — [sd pre 
comod 
mod 

post 

Complete the proof. 

<sdvs.1.1.2.1> ps 

<< initial state >> 
proof in progress of sinduct <2> 

case analysis in progress on: .a gt 1000 or "(.a gt 1000) <1> 
1st case: complete 
2nd case: in progress 
— > you are here < — 

<sdvs.1.1.2.1>   pop 
number of  levels[1]:    <CR> 

One level popped. 

<sdvs.l.l>    ps 

<<  initial state >> 
proof  in progress of  sinduct <1> 

— > you are here < — 

<sdvs.l.l>    let 
new variable:    aa 

value:    .a 

let  —  aa «   .a 
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<sdvs.l.2> cases 
case predicate: aa gt 1000 

cases — aa gt 1000 

open — [sd pre: (aa gt 1000) 

comod: (all) 

mod: (a) 

post: (#a gt 1000)] 

close — 0 steps/applications 

open — [sd pre: (~(aa gt 1000)) 

comod: (all) 

mod: (a) 

post: (#a gt 1000)] 

Complete the proof. 

<sdvs.l.2.2.1> ps 

<< initial state >> 

proof in progress of sinduct <3> 

let aa = .a <2> 
case analysis in progress on: aa gt 1000 or "(aa gt 1000) <1> 

1st case: complete 

2nd case: in progress 

— > you are here < — 

2.8.3     Stop and Continue 

The stop command is a batch command that causes the batch proof to halt gracefully. It is 
inserted automatically into the SDVS-constructed proof (sdvsproof) by the (fe/er command. 
It may also be inserted "by hand." 

Continue causes the execution of the proof to continue from the next batch proof command. 
Note that if a subproof of a state delta within a larger proof closes before the end of the 
list of proof commands for that subproof (appearing on the batch proof being run), then 
SDVS will skip the remaining proof commands for that closed state delta, and go on to the 
next proof command at the higher level. 

2.9    MISCELLANEOUS 

2.9.1     Flags 

There are currently twenty-one flags that allow the user to "fine-tune" the operation of 
SDVS, in accordance with the needs of the specific verification problem at hand. The 
default settings are as follows: 
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<sdvs. 1> flags 

abbreviationlevel = none 

acceptfileproofs » on 

autoclose » on 

checkexistence = off 

checksyntax = on 

displaympsds = on 

ekltraceflag = off 

enumerate -  off 

invariance = off 

optimizeassignments = simp 

ppdottednames = off 

pplinewidth = 75 

reportpropagat ions m  on 

showstats = off 

showstep# = off 

strongcoverings = off 

stronglytyped = off 

traceflag = on 

uniquenamelevel = 1 

usedots - off 

¥eakneit_tr = off 

Type 'help flags' for a description. 

Flag settings are changed with the command setflag. 

In addition to the information that can be obtained from the help flags command (see 
Section 1.10), we highlight several of the more common flags and their uses. 

We have provided a flag acceptfileproofs, which, when off, essentially causes previous proofs 
stored in files to be ignored, and requires any proof to proceed "from scratch." This way 
the user is protected, if so desired, from his or her own editing mistakes. 

The autoclose flag determines whether SDVS will try to "close" the current proof after every 
user command. It is handy sometimes to have autoclose on if the user is in user-interaction 
mode and building a proof on-line. However, it is more time-consuming than simply waiting 
until you think the proof should close, and then simply typing close. 

The invariance flag determines whether state deltas will have an inv field or not. This flag 

is described in detail in Chapter 8. 

The flag optimizeassignments regulates the method by which new values for contents of 
places are stored. There are three settings: OFF, ON, and SIMP, with SIMP being the 
system default. When this flag is in any state but OFF, the values assigned to changing 
places are optimized to create fewer simplifier database entries. This may result in decreased 
proof execution speed. Consider the statement 

#x =   .x +  1 
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where initially .x = xl. We wiD consider the situation where #x = .x + 1 is twice evaluated 
under the three settings of optimizeassignments. First, if the flag is OFF, a new value x2 will 

be created, .x will be associated with x2, and the equality x2 = xl + 1 will be generated. 
Then a value x3 will be created, .x will be associated with x3, and the equality x3 = x2 + 

1 will be generated. 

Next, under the setting ON, xl + 1 will be associated with .x, then (xl + 1) + 1 will be 

associated with .x. 

Finally, under the setting SIMP, xl + 1 will be associated with .x (as in the ON case), then 

xl + 2 will be associated with .x. 

The strongcoveringsflag strengthens the semantics of coveringsso that an actual (as opposed 
to potential) change in a subplace impbes an actual change in a superplace. Without 
strongcoverings on, an actual (as well as potential) change in a subplace implies only a 

potential change in a superplace. 

The usedots flag is new in SDVS 12. It is concerned with proving universal tautologies 
automatically without the quantification solver being on. Previously, occurrences of dotted 
subformulas inside of the formula matrix (the "body" of the formula) were evaluated and 
taken into account in trying to prove the formula. However, often evaluating these dotted 
terms is unnecessary for the proof to succeed, and even more usually, SDVS attempts to 
simplify formulas with dotted subformulas at inopportune times. Now the default (usedots 
NIL) causes the dotted terms essentially to be substituted away and the proof of that 
universal sentence stands or falls on more general grounds. If the user does want dotted 
terms to be taken into account, setting usedots to T causes the previous (longer) method 

of proof to be used. 

Much time is saved with the usedots flag turned off. For example, the testproof of mergesort 
has two places where dots are needed. With the flag off except surrounding those two places, 
the execution time is reduced from 7 minutes to 3 minutes. One such fragment is the given 

in the following trace: 

open —   [sd pre:   (n =  1) 
comod:   (all) 
post:   (forall k forall j   (((0 It j & j  le k)  & 0 It k)  & 

k le n —>   .b[j]  le   .b[k]))] 

setflag usedots — on 

close — 1 steps/applications 

open — [sd pre: (n ge l,n It range(b), 
forall k forall j (((0 It j & j le k) ft 0 It k) & 

k le n —> .b[j] le .b[k])) 

comod: (all) 
post: (forall k forall j (((0 It j ft j le k) ft 0 It k) ft 
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k le n ♦  1  — > #b[j]   le #b[k]))] 

setflag usedots  — off 

which expands the following part of the proof: 

induct on: n 
from: 1 
to: range(a) 
invariants:     (forall k forall j   (((0 It j  k j  le k)  k 0 It k)  I 

k le n —>   .a[j]  le  .a[k])) 

comodlist:   (all) 

modlist: 
base proof:     (setflag usedots on,  close) 

step proof: 
(setflag usedots off, 

provebyaxiom alldisjoint(a[n],a[(n +  1)]) 

The weaknext.tr flag causes the Ada and VHDL language translators to create state deltas 
with #a// = .all as an invariant. This means that execution essentially takes place in 
discrete steps, thus guaranteeing that no actual changes take place during state transitions, 

but only at their termination. 

2.9.2     Queries 

Queries are proof commands that do not change the current state, but only give answers 
to users' questions. Most of these commands have been described in detail and illustrated 
with examples in other sections (for example, in the section on axioms). In this section we 

discuss the following queries: 

date, lastappliedsd, next, nsd, placevalue, ppeq, ppl, proof commands, range, sdtobeproven, 

whynotapply, and whynotgoal. 

Example: 

<sdvs.l.2.2.1>    date 

date —  9/16/93  13:36:57    Elapsed tine  is  1  seconds. 

When put at the beginning and end of a batch proof, date serves as a timer. 

Next gives the next (n) proof steps. This is useful if a batch proof has halted either because 
of a command error or an explicit stop. 
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<sdvs.l>   pp 
object:    proof2 

proof proof2: 

(notice x = x, 
stop, 
notice y = y) 

<sdvs.l>    init 
proof name[]:    <CR> 

State Delta Verification System,  Version 12 

Restricted to authorized users only. 

<sdvs.l>    interpret 
proof name:    proo}2 

notice — x = x 

Proof stopped by  'stop'  command. 

<sdvs.2>    next 
number of steps[l]:    <CR> 

(notice y = y) 

Ppl with an argument (place) prints three things: the place, its value (contents), if known, 
and any declarations. Ppl without an argument prints the values and declarations of all 
places. Placevalue just prints the contents. 

<sdvs.l>   ppsd 
state delta:    carrysd 

[sd pre:   (declared,type(bitstring, 1)) ,declare(y,type(bitstring, 1)) ; 

declare(z.type(bitstring,1)),covering(all,a,b,x,y,z), 
[sd pre:   (true) 

mod:   (a) 
post:   (#a =  (.x ftft  .y usor  .x &ft  .z)  usor  .y kk  .z)], 

[sd pre:   (true) 
mod:   (b) 

post:   (#b =  ((.x ++   .y)  ++  .z)<l:l>)]) 
mod:   (a,b) 

post:   (#a = #b)] 

<sdvs.l>   ppl 
places [all]:    <CR> 

<sdvs.l>    prove 
state deltaü:    carrysd 
proof [] :    < CR> 
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open— [sd pre: (declare(x,type(bitstring,l)), 
declare(y,type(bitstring,1)), 
declare (z, type (bitstring,!)), covering (all, a ,b,x,y,z) , 
[sd pre (true) 

mod (a) 
post (#a -  ( .x kk   .y usor 

.y »ft .z)], 

.x kk  .z) usor 

[sd pre (true) 

mod (b) 
post (#b = ((.x ++ .y) ++ .z)<l:l>)]) 

mod: 

>ost: 

(a,b) 

(#a = #b! ] 

Complete the proof. 

<sdvs.l.l>    ppl 
places [all]:    <CR> 

b b\950 
a a\949 
z    UNDEFINED    declare(z,type(bitstring,1)) 

lh(*)  =  1 
y    UNDEFINED    declare(y,type(bitstring,1)) 

lh(*)  -  1 
x    UNDEFINED    declare(x,type(bitstring,1)) 

lh(»)  =  1 

<sdvs.l.l>    apply 
sd/number[highest applicable/once]:    <CR> 

apply —   [sd pre:   (true) 
mod:   (b) 

post:   (#b =  ((.x ++   .y)  ++   .z)<l:l>)] 

<sdvs.l.2>    ppl 
places [all]:    <CR> 

everyplace    UNDEFINED 
b     ((x\951 ++ y\952)  ++ z\953)<l:l> 
a    a\949 
z    z\953    declare(z,type(bitstring,D) 

lh(*)  =  1 
y    y\952     declare(y,type(bitstring, D) 

lh(»)  =  1 
x    x\951    declare (x, type (bitstring.D) 

lh(»)  =  1 

Notice above that when the value is unknown, a new name is generated, e.g.   b\22.   (In 
certain cases the words "value unknown" will appear.) 

Proofcommands gives the list of proof commands appearing in a given proof.  It is useful, 
for example, in determining whether there is a defer in a proof. 
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<sdvs.l>    pp 
object:    mproof 

proof mproof: 

prove  [sd pre:   ([sd pre:   (pi ft p2) 
mod:   (all) 

post:   (ql)], 
[sd pre:   (pi ft ~p2) 

mod:   (all) 
post:   (q2)], 

[sd pre:   ("pi ft p2) 
mod:   (all) 

post:   (q2)], 
[sd pre:   ('pi ft ~p2) 

mod:   (all) 
post:   (ql)]) 

mod:   (all) 
post:   (ql or q2)] 

proof: 
incases 

(case:  pi ft p2 
proof:  * 

case:  pi ft  ~p2 
proof:  * 

case:   "pi ft p2 
proof:  * 

case:   "pi ft "p2 
proof:  *) 

<sdvs.l>    proofcommands 
proof name:    mproof 

proof commands:   (*,meases,prove) 

Example: 

<sdvs.l>    ppsd 
state delta:    casesl.sd 

[sd pre:   (.a = 0)  mod:   (a)  post:   (#a =  1)] 

<sdvs.l>   ppsd 
state delta:    cases2.sd 

[sd pre:   (.a gt 0)  mod:   (a)  post:   (#a = 2)] 

<sdvs.l>   ppsd 
state delta:    cases.sd 

[sd pre:   (.a ge 0,formula(casesl.sd),formula(cases2.sd)) 
mod:   (a) 

post:   (#a =  1 or #a = 2)] 
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<sdvs.l>    init 
proof name [] :    <CR> 

State Delta Verification System,  Version 12 

Restricted to  authorized users only. 

<sdvs. 1>    prove 
state deltaD:    cases.sd 
proof [] :    < CR> 

open —   [sd pre:   (.a ge 0,formula(casesl.sd),formula(cases2.sd)) 
■od:   (a) 

post:   (#a ■ 1 or ta ■ 2)] 

inserting — pcovering(all,a) 

Complete the proof. 

<sdvs.l.l>    cases 
case predicate:    .a = 0 

cases —   .a — 0 

open —   [sd pre: (.a =  0) 
conod: (all) 

mod: (a) 
post: (#a =  1  or #a = 2)] 

<sdvs.1.1.1.1>   placevalue 
place:    a 

value - a\958 

<sdvs.l.l.l.l> ppeg 
expression: .a 

eqclass = a\958 
range(emptyarray) 

0 

<sdvs.1.1.1.1> nsd 

[sd pre: (.a = 0) mod: (a) post: (#a » 1)] 

<sdvs.l.l.l.l> whynotapply 
state delta[ highest usable]: <CR> 

Because the following is not known to be true — .a gt 0 

<sdvs.l.l.l.l> usablesds 

u(l) [sd pre: (.a gt 0) mod: (a) post: (#a - 2)] 

u(2) [sd pre: (.a = 0) mod: (a) post: (#a = 1)] 
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<sdvs. 1.1.1.1> whynotapply 
state delta[ highest usable]: u 

number: 2 

Quite applicable. 

<sdvs.l. 1.1.1> apply 
sd/number[highest applicable/once]: <CR> 

apply — [sd pre: (.a = 0) 
mod: (a) 

post: (#a = 1)] 

close — 1 steps/applications 

open — [sd pre: ('(.a = 0)) 
comod: (all) 

mod: (a) 
post: (#a = 1 or #a = 2)] 

Complete the proof. 

<sdvs.l.l.2.1> ppsd 
state delta: sdtobeproven 

[sd pre: ("(.a = 0)) 
comod: (all) 

mod: (a) 
post: (#a = 1 or #a = 2)] 

<sdvs.l.l.2.1> nsd 

[sd pre: (.a gt 0) mod: (a) post: (#a = 2)] 

<sdvs. 1.1.2.1>   placevalue 
place:    a 

value = a\958 

<sdvs. 1.1.2.1>   ppeq 
expression:    .a 

eqclass = a\958 

<sdvs. 1.1.2.1>    usablesds 

u(l)   [sd pre: (.a = 0) 
comod: (all) 

mod: (a) 
post: (#a =  1  or #a = 2)] 

u(2)   [sd pre:   (.a gt 0)  mod:   (a)  post:   (#a = 2)] 

u(3)   [sd pre:   (.a = 0)  mod:   (a)  post:   (#a = 1)] 

103 



<sdvs. 1.1.2.1> whynotapply 
state delta[ highest usable]: <CR> 

Because the following is not known to be true — .a » 0 

<sdvs. 1.1.2.1> whynotapply 
state delta[ highest usable] : ti 

number: 2 

Quite applicable. 

<sdvs. 1.1.2.1> apply 
sd/number[highest applicable/once]: <CR> 

apply — [sd pre 
nod 

post 

(.a gt 0) 
(a) 
(#a - 2)] 

close — 1 steps/applications 

join — [sd pre 
comod 
mod 

post 

(true) 
(all) 
(a) 
(#a = 1 or #a « 2)] 

close — 1 steps/applications 

Whynotgoal can be used with two options: default (return = no simp of the goal) or "yes" 
(or anything at all = simp the goal). For example, 

<sdvs.l>    prove 
state delta[] :    why.sd 
proof []:    <CR> 

open —   [sd pre 
mod 

post 

(.i -  1) 
(all) 
(#x =   .x +  .y)] 

inserting — pcovering(all.x) 

Complete the proof. 

<sdvs.l.l>    whynotgoal 
simplify?[no] :    <CR> 

g(l)  #x - x\965 + y\966 

<sdvs.l.l>    whynotgoal 
simplify? [no] :    yes 

g(l)   1=1+ y\966 
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2.9.3     Introduction of Constants 

The let command allows a new alphanumeric variable to be equated to any expression.5 

Thus, for example, the contents of a place at a certain time can be "stored" and will not 
be lost when the state changes. If a variable already in use has been let, SDVS will complain: 

<sdvs.l.l>   let 
new variable:    a 

value:    .x 

let  — a =   .i 

<sdvs.l.2>    let 
new variable: X 

value: ■y 

let error: the variable is already in use x 

<sdvs.l.3>    let 
new variable:    b 

value:    .x 

let  — b =  .x 

<sdvs.l.4>    simp 
expression:    a = b 

true 

A similar command for naming state deltas is letsd. The use of letsd \s primarily in situations 
where a state delta is usable (and thus has a "u" usable number attached to it), but one 
wants to rename it in order to refer to it later when it may not be usable anymore. For 
example, this happens when you want to name the state delta(s) designating the top of a 
loop, in order to refer to them in an induction invariant. 

It is also possible to name a goal state delta (with a "g" number), or simply to type in a 
state delta, as with createsd. However, letsd can only be used within a proof context, and 
the connection between a state delta and its letsd name is preserved only within a proof 

context. 

2.9.4     Declarations 

Declarations are statements that are true over all state changes. They may be thought of 
as describing the "architecture" of the machine or the type of program variables. There are 
several forms of declarations: 

5 Although SDVS does not check to see that the variable is in fact alphanumeric, it is strongly recom- 

mended that the user adhere to this guideline. 
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1. In ISPS programs, declarations of type and dimension appear (automatically) in de- 
clare statements. Covering statements are also generated. 

2. In state delta translations of Ada programs, variables are declared (automatically) in 
the declare statement. Covering statements are also generated. 

3. As components to preconditions or postconditions to state deltas, the user can write 
covering and pcoverings, as well as explicit declare statements. 

The primary use of declarations is in the translation from ISPS, Ada, and VHDL to state 
deltas, but they also may be inserted directly into state deltas. 

The syntax for the declare statement is 

(declare var type) 

where the possible types are (obtained by the help types query): 

<sdvs.3> help 
with [all] : types 

<<<SDVS Help>>>  Types  <<<SDVS Help>>> 

type(boolean) Boolean 

type(character) Ada characters 

type(bitstring.n) bitstring of length n 

type(polymorphic) polymorphic (any type) 

type(fn.exp)  a function defined by the expression exp 

type (float) floating point 

type(integer)  integer 

type(integer,lb,ub) bounded integer, that is, lb<=i<=ub 

type(array,lb,ub,type) array with lower bound lb, upper bound ub, and 

specified element type 

type(record,fieldl(typel),...,fieldj(typej)) record with field names of 
specified types 

type(time) VHDL time 

type(waveform) VHDL waveform 

type(integerwaveform) VHDL integer waveform 

type(bitwaveform) VHDL bit waveform 
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type(bitstringwaveform,n) VHDL bitstring (length n) waveform 

The following example illustrates some of these rules (for examples of bitstring declarations, 
see Section 2.9.9): 

<sdvs.l>   ppsd 
state delta:    sll 

[sd pre:   (covering(all,a), 
declare(a,type(array,1,128,type(bitstring,16)))) 

mod:   (a) 
post:   (#a[l]  = 5(16))] 

<sdvs.l>   ppsd 
state delta:    sl2 

[sd pre:   (formula(sll),covering(all,a), 
declare(a,type(array,1,128,type(bitstring,16))), 
covering(a[l],b),declare(b,type(in,.a[l]))) 

mod:   (a) 
post:   (#b = 5(16))] 

<sdvs.l>    prove 
state deltaG:    $12 
proof [] :    < CR> 

open —  [sd pre:   (formula(sll).covering(all,a), 
declare(a,type(array,1,128,type(bitstring,16))), 
covering(a[l] ,b) ,declare(b,type(fn, .a[l]))) 

mod:   (a) 
post:   (#b = 5(16))] 

Complete the proof. 

<sdvs.l.l>    * 

apply — [sd pre: (covering(all,a), 
declare(a,type(array,1,128,type(bitstring,16)))) 

mod: (a) 

post: (#a[l] = 5(16))] 

close — 1 steps/applications 

Note that without the covering relationship between a[l] and b, the declaration of b as 
a function of a[l] is still invalid; that declaration just expresses the fact that there is a 
functional dependency between the two, without there being an architectural one>.. 

<sdvs.l>   ppsd 
state delta:    sl4 
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[sd pre:   (formula(sll),covering(all,a), 
declare(a,type(array,1,128,type(bitstring,16))), 
declare(b,type(fn, .a[l]))) 

mod:   (a) 
post:   (#b = 5(16))] 

<sdvs. 1>    prove 
state delta[]:    sl4 
proof [] :    < CR> 

open —   [sd pre:   (formula(sll).covering(all,a), 
declare(a,type(array,1,128,type(bitstring,16))), 
declare(b,type(fn, .a[l]))) 

mod:   (a) 
post:   (#b = 5(16))] 

inserting — pcovering(all.b) 

Complete the proof. 

<sdvs.l.l>    * 

apply — [sd pre: (covering(all,a), 
declare(a,type(array,1,128,type(bitstring,16)))) 

mod: (a) 

post: (#a[l] = 5(16))] 

close — 1 steps/applications 

2.9.5     Data and Array Allocation 

One must activate the array solver (see Section 2.7.6) to use the data and array allocation 

statements. The array initialization construct has the form 

(DATA <slice><file-name> <starting-value>) 

where <slice> is a slice of a previously declared array, <file-name> is the name of the file from 
which the data are to be read, and <starting-value> is the ordinal value of the "s-expression" 
(sequence; for example, (BS 7 3), in the case of bitstrings) from which the data are to be 
read, up to the required size of <slice>. This is the preferred way to specify the contents of 
the ROM (read-only memory) for a microcoded machine. Of course, it could be specified 
by a (typically long) list of .mem[0] = 3(7), .memfl] = 10(7), and so on. 

The ALLOCATE <slice> DENSE statement associates a Lisp array of the appropriate size 
with the designated slice in the symbol table. One may also ALLOCATE <slice> SPARSE, 
which associates an "association list" with the slice. The ALLOCATE assertion will be 
allowed only if no value has previously been stored for any element of the slice and if no 
previous allocation has been made for any slice intersecting it. Allocation should be used 
only for read-only memory, since the occurrence of any element of the slice in a mod list will 
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cause the Lisp storage array or alist to be wiped clean. To assign initial values to memory 
that will be written into later, one must use ISPS assignment statements, or their equivalent 

in state deltas. 

Below is an example of a state delta that uses the "DATA" declaration and array allocation: 

<sdvs.l>    createsd 
name:    s22 

[SD pre:    declare(a, type(array, 0, 128, type(bitstring, 3))), allocate(a[0:7],dense), 
data(a[0:7], "testproofs/manual/data/array2.data",0) 

comodG 
mod[] 
post 

] 

<CR> 
<CR> 
#a[2] = 2(3) 

<sdvs.l>   ppsd 
state delta:    s22 

[sd pre:   (declare(a,type(array,0,128,type(bitstring,3))), 
allocate(a[0:7].dense), 
data(a[0:7],"testproofs/manual/data/array2.data",0)) 

post:   (#a[2]  = 2(3))] 

The file array2.data looks like this: 

(bs 0 3)(bs  1 3)(bs 2 3)(bs 3 3)(bs 4 3)(bs 5 3)(bs 6 3)(bs 7 3) 

With the flag autoclose on, the proof will close automatically: 

<sdvs.l>    prove 
state deltaü:    $22 
proof [] :    < CR> 

open—   [sd pre:   (declare(a,type(array,0,128,type(bitstring,3))), 
allocate(a[0:7].dense), 
data(a[0:7],"testproofs/manual/data/array2.data",0)) 

post:   (#a[2]  = 2(3))] 

close — 0 steps/applications 

However, if we turn off those flags, the proof will not close and we can examine the decla- 

rations: 

<sdvs.2>    setflag 
flag variable:    autoclose 
on or off[off]:    off 

setflag autoclose — off 
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<sdvs.3>   flags 

abbreviat ionlevel « none 

acceptfileproofs « on 

autoclose = off 

checkexistence » off 

checksyntax = on 

displaympsds » on 

ekltraceflag »■ off 

enumerate ■ off 

invariance = off 

optimizeassignments -  simp 

ppdottednaaes - off 

pplinewidth = 75 

reportpropagations = on 

shosstats - off 

showstept = off 

strongcoverings = off 

stronglytyped = off 

traceflag = on 

uniquenamelevel » 1 

usedots = off 

weaknert.tr = off 

Type   'help flags'  for a description. 

<sdvs.3>    init 
proof name [] :    < CR> 

State Delta Verification System,  Version 12 

Restricted to  authorized users only. 

<sdvs.l>    prove 
state delta[] :    s22 
proof [] :    < CR> 

open—   [sd pre:   (declare(a,type(array,0,128)type(bitstring,3))), 
allocate(a[0:7].dense), 
data(a[0:7]."testproofs/manual/data/array2.data",0)) 

post:   (fa[2]  » 2(3))] 

Complete the proof. 

<sdvs.l.l>    decls 

a[2]     type(bitstring,3) 

a    type(array,0,128,type(bitstring,3)) 

<sdvs.l.l>    simp 
expression:    -a[2] = 2(3) 

true 
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<sdvs. 1.1>    close 

close — 0 steps/applications 

2.9.6     Negate 

The proofs involving negation can be run by typing run-test-proofs *negation-tests*. They 

include proofs of negations of state deltas by contradiction and also proofs that use the 

negate command. 

The negate command asserts the negation of a specified state delta, through the equivalence 
(in the case where Q does not have any top-level dots or quantifiers) between 

"   [sd    pre: P 
comod: C 

mod: M 
post: Q] 

and 

[sd    pre:     true 
comod:   all 

mod:   all - C 
post:  P(#/.)  & 

[sd    pre:  true 
comod:   all  - M 

mod:   () 
post:   -Q]] 

if the state delta is known to be false (see [33]). (For the case where the state delta has 

invariants, see Section 8.4.) 

For example, consider the state delta negateö.sd: 

[sd pre: ("(([sdpre: (p) comod: (c) mod: (m) post: (q)]))) 
post: ("(([sd pre: (true) comod: (c) mod: (m) post: (q)])))] 

Below is a transcript of the proof session: 

<sdvs.l>    prove 
state delta[]:    negateß.sd 
proof [] :    < CR> 

open —  [sd pre:   ("(([sd pre:   (p)  comod:   (c)  mod:   (m) post:   (q)]))) 
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post:   ('(([sd pre: (true) 
comod: (c) 

mod: (■) 

post: (q)])))] 

Complete the proof. 

<sdvs.l.l>    usable 

No usable state deltas. 

No usable quantified formulas. 

<sdvs.l.l>    cases 
case predicate:     ~([sd pre: (true) comod: (c) mod: (m) post: (q)]) 

cases —  "(([sd pre:   (true)  comod:   (c) mod:   (m)  post:   (q)])) 

open - - [sd pre: (~(([sd pre (true) 
comod (c) 
mod (m) 

post (q)]))) 
comod: (all) 
post: (~(([sd pre (true) 

comod (c) 
mod (m) 

post (q)])))] 

close —  0 steps/applications 

open — [sd pre: ("(("(([sd pre: (true) 
comod: (c) 

mod: (m) 
post: (q)]))))) 

comod: (all) 
post: ("(([sd pre: (true) 

comod: (c) 
mod: (m) 

post: (q)])))] 

Complete the proof. 

<sdvs. 1.1.2.1> usable 

u(l) [sd pre: (true) comod: (c) mod: (m) post: (q)] 

u(2) [sd pre 
comod 
post 

("(([sd pre: (true) comod: (c) mod: (m) post: (q)]))) 
(all) 
("(([sd pre: (true) comod: (c) mod: (m) post: (q)])))] 

No usable quantified formulas. 

<sdvs. 1.1.2.1> negate 
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State delta: [sd  pre: (p) comod: (c) mod: (mj post: (q)] 
formula name #1: fmll 

negated result — [sd pre: (true) 

comod: (all) 
mod: (diff(all.c)) 

post: (p, 

[sd pre: (true) 

comod: (diff(all.m)) 

post: (~q)])] 

<sdvs.l.l.2.2> pp 
object: fmll 

formula fmll: [sd pre: (true) 
comod: (diff(all,m)) 

post: (~q)] 

<sdvs.l. 1.2.2> usable 

u(l) [sd pre: (true) 

comod: (all) 
mod: (diff(all.c)) 

post: (p, 
[sd pre: (true) 

comod: (diff(all.m)) 

post: (~q)])] 

u(2) [sd pre: (true) comod: (c) mod: (m) post: (q)] 

u(3) [sd pre: C(([sd pre: (true) comod: (c) mod: (m) post: (q)]))) 

comod: (all) 
post: ("(([sd pre: (true) comod: (c) mod: (m) post: (q)])))] 

No usable quantified formulas. 

<sdvs.l.l.2.2>    apply 
sd/number[highest applicable/once]:    u 

number:    1 

apply — [sd pre: (true) 

comod: (all) 
mod: (diff(all.c)) 

post: (p, 
[sd pre: (true) 

comod: (diff(all,m)) 

post: ("q)])] 

Warning: the modlist of the last applied state delta mentions places 

(diff(all,c)) outside of the modlist of the state delta to be 

proven. The current proof can only be closed by contradiction. 

<sdvs.l.l.2.3> usable 
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u(l) [sd pre 

comod 

post 

(true) 

(diff(all,«)) 

(~q)] 

u(2) [sd pre: (true) comod: (c) nod: (m) post: (q)] 

No usable quantified formulas. 

<sdvs. 1.1.2.3>    apply 
sd/number[highest applicable/once]:    u 

number:    2 

inserting — pcovering(all,m) 

apply — [sd pre: (true) comod: (c) mod: (m) post: (q)] 

Warning: the modlist of the last applied state delta mentions places 

(m) outside of the modlist of the state delta to be proven. The 

current proof can only be closed by contradiction. 

inserting — pcovering(all,m) 

<sdvs . 1.1.2.4> usable 

u(l) [sd pre: (true) 
comod: (diff(all.m)) 

post: (~q)] 

No usable quantified formulas. 

<sdvs. 1.1.2.4> apply 
sd/number[highest applicable/once]: u 

number: / 

apply — [sd pre: (true) 

comod: (diff(all,m)) 

post: (~q)] 

The postcondition of the last applied state delta is inconsistent 

with the current state. 

close — 3 steps/applications 

join - - [sd pre: (true) 

comod: (all) 

post: ("(([sd pre (true) 

comod (c) 
mod (m) 

post (q)])))] 

close —  1  steps/applications 

Here is another example, also illustrating that formulas can be negated: 
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<sdvs.l>   pp 
object:    tobeneg 

formula tobeneg:   [sd pre:   (true) 
comod:   (all) 
post:   (p)] 

<sdvs.l>   pp 
object:    negged.sd 

[sd pre:   (~(fonnula(tobeneg))) 
comod:   (all) 
post:   (~p)] 

<sdvs.l>   prove 
state delta[]:    negged.sd 
proof [] :    < CR> 

open —   [sd pre:   ("(formula(tobeneg))) 
comod:   (all) 
post:   (~p)] 

Complete the proof. 

<sdvs.l.l>    usable 

No usable state deltas. 

No usable quantified formulas. 

<sdvs.l.l>    negate 
state delta:    [sd pre: (true) comod: (all) post: (p)] 
formula name #1:    jml2 

negated result —  [sd pre:   (true) 
comod:   (all) 

mod:   (diff(all,all)) 
post:   (true, 

[sd pre:   (true) 
comod:   (all) 
post:   (~p)])] 

<sdvs.l.2>    usable 

u(l)   [sd pre:   (true) 
comod:   (all) 

mod:   (diff(all,all)) 
post:   (true, 

[sd pre:   (true) 
comod:   (all) 
post:   (~p)])] 
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No usable quantified formulas. 

<sdvs.l.2>    apply 
sd/number[highest applicable/once]:    <CR> 

apply —   [sd pre:   (true) 
comod:   (all) 

mod:   (diff(all,all)) 
post:   (true, 

[sd pre:   (true) 
comod:   (all) 
post:   (~p)])] 

<sdvs.l.3>    usable 

u(l)   [sd pre:   (true)  comod:   (all)  post:   (~p)] 

u(2) [sd pre (true) 
comod (all) 
mod (diff(all .all)) 

post (true, 
[sd pre: (true) 
comod: (all) 
post: (~p)])] 

No usable quantified formulas. 

<sdvs.l.3>    apply 
sd/number [highest applicable/once]:    <CR> 

apply —   [sd pre 
comod 
post 

(true) 
(all) 
<-p)] 

close — 3 steps/applications 

2.9.7    Linearize 

Linearize is the command intended to take two usable state deltas S\ and S2 having true 
preconditions and form the disjunction of two state deltas: the first claiming that S\ : post 
occurs first in the future and then 5*2 : post, and the second claiming that S2 : post occurs 
first and then S\ : post. In both cases the modlist in force until the first postcondition is 
achieved is the intersection of Si : mod and S2 : mod. The possible simultaneous occur- 
rence of both postconditions is allowed in either case. This situation corresponds to the 
interleaving of two parallel program fragments. For a discussion of linearize in the presence 

of invariants, see Section 8.2. 

For example, consider the state delta incboth: 
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[sd pre: (covering(all x,y), .x = 0, •y = = 0 formula(incx) ,formula( incy)) 

comod: (all) 
mod: (all) 

post: (false)] 

where incx and incy are as follows: 

[sd pre:   (true) mod:   (x) post:   (#x = 1)] 

[sd pre:   (true) mod:   (y) post:   (#y = 1)] 

This state delta is true because the two interior state deltas in the precondition are contra- 
dictory with the covering statement. The linearize command gives us the means to force 
the system to recognize this contradiction by making one of the postconditions true, with 
a mod list equal to the intersection of the mod lists of the linearized state deltas. This 
intersection is empty, and thus neither x nor y can change value. 

<sdvs.l>   prove 
state delta[]:    incboth 

proof [] :    < CR> 

open —   [sd pre:   (covering(all,x,y),.x = 0,.y = 0,formula(incx), 
formula(incy)) 

comod:   (all) 
mod:   (all) 

post:   (false)] 

Complete the proof. 

<sdvs.l.l>    usable 

u(l)   [sd pre:   (true) mod:   (y) post:   (#y = 1)] 

u(2)   [sd pre:   (true) mod:   (x)  post:   (#x =  1)] 

No usable quantified formulas. 

<sdvs.l.l>   linearize 
täte delta #1 u 

number / 
täte delta #2 u 

number 2 

formula name #1 incy 
formula name t \2 incx 

linearize — formula(incy)  or formula(incx) 

non-trivial propagations —  ([sd pre:   (true) 
comod:   (all) 

117 



mod:   (inter(y,x)) 

post:   (#y "  1, 
[sd pre: (true) 

comod: (all) 

mod: (x) 
post: (#x -  1)])])  or 

([sd pre (true) 

comod (all) 
mod (inter(y.x)) 

post (#x -  1, 

[sd pre :   (true) 

comod :   (all) 

mod :   (y) 
post :   (#y =  1)])]) 

<sdvs.l.2>    cases 
case predicate:    [sd (true) (all) (inter (y, x)) (#y = 1, [sd (true) (all) (x) (#x = I)})} 

cases —   [sd pre:   (true) 

comod:   (all) 
mod:   (inter(y.x)) 

post:   (#y =  1, 
[sd pre: (true) 

comod: (all) 

mod: (x) 

post: (#x   -   1)])] 

open —   [sd pre:   ([sd pre :   (true) 

comod :   (all) 
mod :   (inter(y,x)) 

post :   (#y = 1, 
[sd pre:   (true) 

comod:   (all) 
mod:   (i) 

post:   (#i = 1)])]) 

comod:   (all) 
mod:   (all) 

post:   (false)] 

<sdvs. 1.2.1.1>    usable 

u(l)   [sd pre (true) 

comod (all) 

mod (inter(y.x)) 

post (#y -  1. 
[sd pre:   (true) 

comod:   (all) 
mod:   (x) 

post:   (#x =  1)])] 

u(2)   [sd pre:   (true) mod:   (y)  post:   (#y =  1)] 

u(3)   [sd pre:   (true) mod:   (x) post:   (#x =  1)] 
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No usable quantified formulas. 

<sdvs. 1.2.1.1> apply 
sd/number[highest applicable/once]: <CR> 

apply - — [sd pre: 

comod: 

(true) 

(all) 

mod: (inter(y, x)) 
post: (#y = 1, 

[sd pre: 

comod: 

mod: 

(true) 

(all) 

(x) 

post: (#x = 1)])] 

The postcondition of the last appliec state delta is inconsistent 

with the current state. 

close — 0 steps/applications 

open — !sd pre: (~ (([sd pre: 

comod: 

(true) 

(all) 

mod: (inter(y, x)) 
post: (#y = 1, 

[sd pre: 

comod: 

mod: 

(true] 

(all) 

(x) 
post: (#x = 1)])]))) 

comod: (a 11) 
mod: (a 11) 

post: (false)] 

Complete the proof. 

<sdvs.1.2.2.1> usable 

u(l) [sd pre (true) 

comod (all) 

mod (inter(y, x)) 
post (#x = 1, 

[sd pre: 

comod: 

mod: 

(true) 

(all) 

(y) 
post: (#y = l)])] 

u(2) [sd pre ([sd pre: 

comod: 

(true) 

(all) 

mod: (inter(y, x)) 
post: (#y = 1, 

[sd pre: 

comod: 

mod: 

(true) 

(all) 

(x) 

post: (#x = 1)])]) 
comod (all) 

mod (all) 

post (false)] 
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u(3) [sd pre: (true) mod: (y) post: (#y » 1)] 

u(4) [sd pre: (true) mod: (x) post: (#x » 1)] 

No usable quantified formulas. 

<sdvs.1.2.2.1> apply 
sd/number[highest applicable/once]: <CR> 

— [sd pre (true) 

comod (all) 

nod (inter(y x)) 
post (#x = 1, 

[sd pre (true) 

comod (all) 

nod (y) 
post (#y = 1)])] 

The postcondition of the last applied state delta is inconsistent 

with the current state. 

close — 0 steps/applications 

join — [sd pre: (true) comod: (all) mod: (all) post: (false)] 

close — 2 steps/applications 

The postcondition of the last applied state delta is inconsistent with the 

current state. 

2.9.8     Natural Number Induction 

Natural number induction, or what is commonly referred to as "mathematical induction," 
was incorporated into SDVS 10 specifically to help overcome a hurdle in the proof of a 

sorting program; see [41]. 

The command can be used to prove claims of the form Vna(n), where n is assumed to 
range over the natural numbers. The command simply requests the user for the induction 
expression (n above), the formula (a(n)), the base proof, and the step proof. The proofs, 
as in other similar commands, can be left empty at the time of the command invocation, 
and supplied interactively during the continuation of the proof. The base-case state delta 
claims that the formula is true for n - 0, i.e., a(0), and the step-case state delta claims 

that if the formula is true for n, then it is true for n + 1. 

As a simple example, we prove that Vn(n + 1 > n). The proof closes automatically. 

<sdvs.l>    natinduct 
induction expression: n 

formulas: n-l-1 gt n 
base proof [] : < CR> 
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step proof [] :    <CR> 

natural induction on n —  (n + 1  gt n) 

open —   [sd pre:   (n = 0) 
comod:   (all) 
post:   (n +  1  gt n)] 

close — 0 steps/applications 

open —   [sd pre:   (n ge 0,n + 1 gt n) 
comod:   (all) 
post:   ((n +  1)  + 1  gt n +  1)] 

close — 0 steps/applications 

join natural induction cases 
— forall n  (n ge 0 —> n +  1 gt n) 

2.9.9    Mapping 

The proof language must allow the user to specify the mapping (correspondence) between 
the places of one state delta and another state delta that implements it, or, more generally, 
between the states of one computation and another that implements it. For a more detailed 

treatment of mapping, see [42]. 

A mapping is an assignment for each target (upper level) place of a set of host (lower level) 
places such that the value of the target place is a function of the values of the associated 
host places. A technicality forces the requirement that this function must be one-to-one 
if the target place appears in the comodification list of a target state delta. However, the 
user does not have to worry about this, since the implementation command does not allow 
nonempty comodification lists in the upper level at all. Three types of statements must be 
proved about the mapping: 

1. Disjointness among a set of target places must be reflected in the disjointness of the 
associated sets of host places. 

2. Declarations of the target places (length of bitstrings, or range of arrays) must be 
proved from the declarations associated with the corresponding host places. 

3. The translations of the target state deltas into the host language induced by the 
mappings must be proved from the host description. 

The command implementation fills the role of "theorem constructor." It takes (or prompts 
the user for) a theorem name, the upper-level specification, the lower-level specification, the 
formula containing the mapping functions, the places in the host that must be constant for 
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the implementation to be valid, and the invariants for host state changes that must hold 

for the implementation to be valid. 

The result is a theorem (state delta) that denotes the implementation of the upper level by 
the lower level. The precondition of the theorem contains the lower-level specification, the 
constant formulas, and some equalities that provide names for certain sets of places in the 

lower level, specifically, 

1. names for the set of all lower-level places, 

2. the set of all mapped lower-level places, 

3. the set of all unmapped lower-level places, and 

4. the set of all constant lower-level places. 

The comod and mod of the theorem are empty. The postcondition of the theorem contains 
n+2 items, where there are n state deltas in the upper-level specification. The first item is 
an alldisjoint predicate stating the disjointness of the sets of mapped-onto lower-level places. 
The second item is a state delta representing the validity of the upper-level declarations and 
the one-to-oneness of certain mapping functions. The next n items are upper-level state 
deltas that have been transformed into lower-level theorems. 

The mapping construct can take either the form 

1. mapping(.tplace, ^.hplacej, ..., .hplacen)), where f is some explicit function, e.g. 

mapping(.tplace, .hplace); or 

2. mapping(.tplace, f(.hplace1? ..., .hplacen),values(tval1,f(hval1 ^ ..., hvaln1), ... tval^, 

f(hvali^, ..., hvalmk))), where the tvals are possible values of tplace and the hvals are 

possible values of the hplaces. 

The constant field can take four kinds of statements: 

1. constant(.p), expressing the fact that .p is constant, but we do not know or care what 

that value is; 

2. .p = c, the actual value that does not change; 

3. data(.p[i:j], file, offset), for values of arrays (here is where the ROMs for microprograms 

could be initialized); or 

4. allocate statements to accompany the data statements. 
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The invariants field takes a formula or list of formulas. The invariants field, if needed, is 
used to specify the significant states in the lower-level machine. In other words, sometimes 
the mapping of places to places as specified by the mapping formula is not sufficiently rich to 
induce the state-to-state mapping required by the implementation theorem. Invariants must 
hold for every lower-level state, including the initial state. They are usually implications 
of the following form: if certain mapped places have certain values, then other conditions 
must hold. 

As an example, consider the following simple case: 

First, the lower-level machine, the host machine alO.isp: 

machinea:=( 
»»Registers** 

a<l:0> 

»»Process** 

cycleajmain}:= 

begin 
a_l next a_0 

end 

) 

<sdvs.l>   ppsd 
state delta:    isps 

file name:    alO.isp 

covering (machinea,a,machinea\upc) 

declare(a,type(bitstring,2)) 
[tr CMACHINEA\STARTED {in MACHINEA} A ;  A ;] 

Now, the upper-level machine, the target machine bO.isp: 

machineb:=( 
»»Registers** 

b<l:0> 

♦»Process** 

cycleb{main}:= 

begin 
b.O 
end 

) 
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You need to mpisps the file and then you may look at the result (although it is not necessary 

to ppsd it): 

<sdvs.2>    ppsd 
state delta:    mpisps 

file name 
starting mark point[] 
ending mark points [] 

preconditions [] 

bO.isp 
<CR> 
<CR> 
<CR> 

covering(machineb.b,machineb\upc) 

declare(b,type(bitstring,2)) 

[sd pre 

■od 
post 

(.machineb\upc = machineb\started) 

(b,machineb\upc) 

(#nachineb\upc = machineb\halted,#b = 0(2))] 

Here is the mapping specification from target places to host places: 

<sdvs.2> pp 
object: bOa 10. mapping 

formulas bOalO.mapping: mapping(.b,.a) 
mapping(.machineb\upc,map\upc(.machinea\upc), 

values(machineb\started, 

map\upc(machinea\started), 

machineb\halted, 

map\upc(machinea\halted))) 

Next, we invoke the implementation command (after having mpispsed bO.isp and ispsed 

alO.isp; for more information about mpisps, see page 147): 

<sdvs.2>    implementation 
theorem name:    bOalO.thm 

upper-level spec:     mpisps 
file name:    bO.isp 

starting mark point[]:    <CR> 
ending mark pointsD:    <CR> 

preconditions[] :    <CR> 
lower-level spec 

file name 
mappings 

constantsG 
invariants [] 

tsps 

alO.isp 
formulasfbOa 10.mapping) 
<CR> 
<CR> 

Implementation theorem 'bOalO.thm' created. 

Here is the theorem (formula) that was created: 
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<sdvs.2> pp 
object: bOalO.thm 

[sd pre: (isps(alO.isp),bOalO.thm.places = union(a,machinea\upc), 

bOalO.thm.mapped.places = union(a,machinea\upc), 

bOalO.thm.unmapped.places 
= diff(bOalO.thm.places.bOalO.thm.mapped.places)) 

post: (alldisjoint(a,machinea\upc), 

[sd pre: (true) 

comod: (all) 

post: (forall al (lh(al) = 2 —> lh(al) = 2))], 

[sd pre: (.machinea\upc = machinea\started) 

mod: (a,machinea\upc,bOalO.thm.unmapped.places) 

post: (#machinea\upc = machinea\halted,#a = 0(2))])] 

Make sure to use the formulas construct around the mapping name (the mappings have 
already been defined). Note that the three clauses in the postcondition correspond to the 
three types of statements above. Now let us prove it. 

<sdvs.2>    prove 
state deltaG:    bOalO.thm 
proof [] :    < CR> 

open —   [sd pre:   (isps(al0.isp), 
bOalO.thm.places = union(a,machinea\upc), 
bOalO.thm.mapped.places = union(a,machinea\upc), 
bOalO.thm.unmapped.places 

= diff(bOalO.thm.places,bOalO.thm.mapped.places)) 
post:   (alldisjoint(a,machinea\upc), 

[sd pre:   (true) 
comod:   (all) 
post:   (forall al  (lh(al) = 2 —> lh(al)  = 2))], 

[sd pre:   (.machinea\upc = machinea\started) 
mod:   (a,machinea\upc,bOalO.thm.unmapped.places) 

post:   (#machinea\upc = machinea\halted,#a = 0(2))])] 

Complete the proof. 

<sdvs.2.1>    whynotgoal 
simplify? [no] :    < CR> 

g(2)   [sd pre: (true) 
comod: (all) 
post: (forall al  (lh(al) = 2 —> lh(al)  = 2))] 

g(3)   [sd pre: (.machinea\upc = machinea\started) 
mod: (a,machinea\upc,bOalO.thm.unmapped.places) 

post: (#machinea\upc = machinea\halted,#a = 0(2))] 

<sdvs.2.1>    prove 
state delta[] :    g 

number:    3 
proof [] :    < CR> 
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open — [sd pre: (.machinea\upc = nachinea\started) 
mod: (a,machinea\upc,bOalO.thm.unmapped.places) 

post: (#machinea\upc = machinea\halted,#a = 0(2))] 

Complete the proof. 

<sdvs.2.1.1>    until 
formula:    #machine\upc = machine\halted 

apply —   [sd pre:   (.machinea\upc = machinea\started) 
mod:   (machinea\upc,a) 

post:   (#a »  1(2), 
[tr {in MACHIMEA} A ;])] 

apply — [sd pre: (true) 

comod: (machinea\upc) 

■od: (machinea\upc,a) 

post: (#a = 0(2), 

[tr 8MACHIMEA\halted])] 

apply —   [sd pre: (true) 
comod: (machinea\upc) 

mod: (machinea\upc) 
post: (#machinea\upc = machinea\halted)] 

close —  3 steps/applications 

Complete the proof. 

<sdvs.2.2>    whynotgoal 
simplify? [no] :    < CR> 

g(2)   [sd pre 
comod 
post 

(true) 
(all) 
(forall al   (lh(al)  = 2 —> lh(al)  - 2))] 

<sdvs.2.2>    prove 
state delta[] :    g 

number:    2 
proof [] :    < CR> 

open —   [sd pre 
comod 
post 

(true) 
(all) 
(forall al  (lh(al)  = 2 —>  lh(al)  = 2))] 

close — 0 steps/applications 

close — 2 steps/applications 

<sdvs.3>   ps 

<<  initial state >> 
mpisps testproofs/manual/isps/bO. isp <2> 
proved bOalO.thm <1> 
—> you are here  <— 
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2.9.10     Formulas 

The command formulas (<name-of-list-of-exprs>) will insert the list of formulas associated 
with the name. It is useful when a long hypothesis occurs in more than one state delta. 

The command formula(<expr-name>) inserts the single formula associated with the <expr- 
name>. One may also insert state deltas by using formula(<sd-name>). 

<sdvs.l>    createformula 
name:    hyp2 

formula:    .a — 5 

<sdvs.l>    createsd 
name: flO.sd 

[SD pre: .a = 5 
comod[]: <CR> 

mod[] : all 
post: #a = 10 

] 

<sdvs.l>    createsd 
name: jH.sd 

[SD pre: formula(JlO.sd), formula(hyp2) 
comod[]: < CR> 

mod[] : all 
post: #a = 10 

] 

<sdvs.l>   prove 
state delta[]:    jl^.sd 
proof [] :    < CR> 

open —  [sd pre:   (formula(f10.sd),formula(hyp2)) 
mod:   (all) 

post:   (#a =  10)] 

inserting — pcovering(all,a) 

Complete the proof. 

<sdvs.l.l>    usablesds 

u(l)   [sd pre:   (.a = 5) 
mod:   (all) 

post:   (#a =  10)] 

< sdvs. 1.1 >    apply 
sd/number[highest applicable/once]:    <CR> 

apply — [sd pre: (.a = 5) 
mod: (all) 

post: (#a = 10)] 
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close —  1  steps/applications 

<sdvs.2>    createformulas 
name:    hyp3 

formula list:    .a = 1, .a = & 

<sdvs.2>    pp 
object:    hyp3 

formulas hyp3:   . a = 1 
.a = 2 

<sdvs.2>    createsd 
name: fl5.sd 

[SD pre: formulas(hyp3) 
comod[]: <CR> 

mod[] : all 
post: false 

] 

<sdvs.2>    init 
proof name[] :    <CR> 

State Delta Verification System,  Version 12 

Restricted to  authorized users only. 

<sdvs.l>    prove 
state delta[]:    fl5.sd 
proof []:    <CR> 

open —   [sd pre:   (formulas(hyp3)) 
mod:   (all) 

post:   (false)] 

The state delta is vacuously TRUE because its precondition is FALSE. 

close — 0 steps/applications 

Here is another example illustrating the disjunction of formulas and using a state delta as 
a case predicate. 

<sdvs.l>   pp 
object:    queue 

formula queue:  q 

<sdvs.l>    pp 
object:    disj.formula.sd 

[sd pre:   (formula(tobeneg)   or formula(queue)) 
mod:   (all) 

post:   (p or q)] 
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<sdvs.l>   prove 
state delta [] :    disj.formula.sd 
proof [] :    < CR> 

open —   [sd pre:   (formula(tobeneg)  or formula(queue)) 
mod:   (all) 

post:   (p or q)] 

non-trivial propagations —  ([sd pre:   (true) 
comod:   (all) 
post:   (p)])  or 

q 

Complete the proof. 

<sdvs.l.l>    usable 

No usable state deltas. 

No usable quantified formulas. 

<sdvs.l.l>    cases 
case predicate:    [sd pre: (true) comod: (all) post: (p)] 

cases —   [sd pre:   (true)  comod:   (all) post:   (p)] 

open —  [sd pre:   ([sd pre:   (true) 
comod:   (all) 
post:   (p)]) 

comod:   (all) 
mod:   (all) 

post:   (p or q)] 

<sdvs. 1.1.1.1>    usable 

u(l)   [sd pre:   (true) comod:   (all) post:   (p)] 

No usable quantified formulas. 

<sdvs. 1.1.1.1>    apply 
sd/number[highest applicable/once]:    <CR> 

apply —   [sd pre:   (true)  comod:   (all) post:   (p)] 

close —  1  steps/applications 

open —  [sd pre:   ("(([sd pre:   (true) 
comod:   (all) 
post:   (p)]))) 

comod:   (all) 
mod:   (all) 

post:   (p or q)] 
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close — 0 steps/applications 

join — [sd pre (true) 
comod (all) 
nod (all) 

post (p or q)] 

close —   1  steps/applications 

2.9.11     Macros 

The macro facility is essentially a parametrized formula of the preceding section. This 

capability was initially developed to aid in the quicksort proof (see [41]). A macro is a 

named formula (possibly quantified) with designated lists of free and quantified variables 
(possibly NIL). It is defined by the command createmacro(name)(free variables)(quantified 

variables). It is invoked by the term name(subs), where subs is a list of terms corresponding 
to the declared variables, both free and quantified, in one contiguous sequence separated 
by commas. The characteristic distinguishing between the substitutions corresponding to 
the free variables and those corresponding to the quantified variables is that the latter can 
be only names (atoms), not arbitrary terms. When invoked, the correct substitutions are 
performed and the resulting formula is inserted in place of the macro. 

As an example, consider the macro sorted and the state delta sorted.sd, exhibited below. 

sorted 
jorall i (1 le i and i It range(a) -> .a[i:ij le .a[i+l:i+l]) 
a 
i 

<sdvs.l>    createmacro 
name 

pattern 
free variables [] 

quantifier symbols[] 

<sdvs.l>    pp 
object:    macro 
macro name:    sorted 

macro sorted  (a),(i):  forall i  (1  le  i ft i It range(a) 
-->   .a[i:i]  le   .a[(i +  l):(i +  1)]) 

<sdvs.l>   pp 
object:    sorted.sd 

[sd pre:   (sorted(x.i)) 
post:   (sorted(x[j :k] ,i))] 

<sdvs.l>    prove 
state deltaD:    sorted.sd 
proof [] :    usable 

open —   [sd pre:   (sortedd, i) ) 
post:   (sorted(i[j :k] ,i))] 

No usable state deltas. 
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q(l)  forall i   (1 le i ft i It ranged) 
-->   .x[i:i]  le   .i[(i +  l):(i +  1)]) 

Complete the proof. 

<sdvs.l.l>   goals 

g(l)  forall i   (1 le i ft i It range(x[j:k]) 
— >   .x[j:k][i:i]  le   .x[j:k][(i + l):(i + 1)]) 

At this point, the macro has been invoked and the problem is reduced to a simple question 
of proving a state delta (which we do not bother to do here). 

2.9.12     Composition of State Deltas 

Composition is the method for combining the effect of the sequential execution of several 
state deltas into one state delta. The command is called compose. Composition is used 
internally in processing mpisps and vhdltr, and it can also be called explicitly by the user 
in interactive mode. Here is an example illustrating an arithmetic swap. 

<sdvs.l>    compose 
composed sd name:    swapcompose.sd 

Do you sish to compose sds from the proof stack?  (y or n)   [n]:    n 
sd [] 
sd [] 
sd [] 
sd [] 

declar at ions [] 

[sd   (true) (all) (x) (#x = .x + .y)] 
[sd   (true) (all) (y) (#y = .x - .y)] 
[sd   (true) (all) (x) (#x = .x - .y)[ 
<CR> 
coveringfall, x, y) 

Experimental Composer 

Composed 

[sd pre:   (true) 
mod:   (y,x) 

post:   (#x =  .y,#y =  .x)] 

For a more detailed look at composition, see [42]. 

The following example illustrates the use of composition in a proof of the state delta c5.sd: 

<sdvs.l>   pp 
object:    c.5.sd 

[sd pre:   (covering(all,x,y,upc,tmp),formulas(machine),.upc =  1) 
mod:   (all) 

post:   (#x =   .x + l,#y =   .y)] 
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where 

(defformulas Machine "cl.sd"  "c2.sd"  "c3.sd"  "c4.sd") 

Of course, c5.sd could be proved by direct execution: 

<sdvs.l>   prove 
state delta[]: c5.sd 
proof []:     * 

open —  [sd pre: (covering(all,x,y,upc,tmp).formulas(machine),.upc ■ 1) 
mod: (all) 

post: (#x =  .1 + l,#y =  .y)] 

apply —   [sd pre 
mod 

post 

apply —   [sd pre 
mod 

post 

apply —   [sd pre 
mod 

post 

apply —   [sd pre 
mod 

post 

apply —   [sd pre 
mod 

post 

apply —   [sd pre 
mod 

post 

apply —   [sd pre 
mod 

post 

.upc =1) 
upc,tmp) 
ttmp =  .x,#upc =   .upc +  1)] 

.upc = 2) 
i,upc) 
#x =   .y,#upc -   .upc +  1)] 

.upc = 3) 
y.upc) 
#y »  .tmp.tupc =  .upc +  1)] 

.upc = 4) 
y.upc) 
#y =  .y +  l,#upc *  1)] 

.upc =1) 
upc,tmp) 
#tmp =   .i,#upc ■  .upc +  1)] 

.upc = 2) 
i,upc) 
#x •»  .y,#upc =   .upc + 1)] 

.upc - 3) 
y.upc) 
#y «  .tmp,#upc =   .upc +  1)] 

close — 7 steps/applications 

However, we are really only interested in applying cl.sd, c2.sd, and c3.sd in succession. So 
let us make a state delta that will have the same effect as that successive application. 

<sdvs.l>    compose 
composed sd name:    composedsd 

Do you wish to compose sds from the proof stack?  (y or n)   [n]:    n 
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sd   [] cl.sd 

sd   [] c2.sd 

sd [] c3.sd 

sd [] <CR> 
declarations [] covering(all, x, y, tmp, upc) 

Experimental Composer 

Composed 

[sd pre: (.upc =1) 

mod: (x,tmp,y,upc) 

post: (#upc = 4,#y = .x,#x = .y,#tmp = .x)] 

Now we can use the following as a proof: 

(defproof example "(prove c5.sd 

proof: (prove composedsd 

proof: (apply cl.sd, 

apply c2.sd, 

apply c3.sd, 

close) , 

apply composedsd, 

apply c4.sd, 

apply composedsd, 

close))") 

Notice that composedsd will have to be proved before it can be applied. Every state delta 
resulting from the compose command should be provable by *. The <declarations> field can 
be only a covering or declaration statement. 

<sdvs.l> init 
proof name[]: example 

State Delta Verification System, Version 12 

Restricted to authorized users only. 

open — [sd pre: (covering(all,x,y,upc,tmp),formulas(machine),.upc = 1) 

mod: (all) 

post: (#x = .x + l,#y = .y)] 

open — [sd pre: (.upc =1) 
mod: (x,tmp,y,upc) 

post: (#upc = 4,#y = .x,#x = .y,#tmp = .x)] 

apply — [sd pre: (.upc =1) 

mod: (upc,tmp) 

post: (#tmp = .x,#upc = .upc + 1)] 

133 



apply — [sd pre 

mod 

post 

apply — [sd pre 
mod 

post 

(.upc = 2) 

(x.upc) 

(#r -  .y,#upc = .upc + 1)] 

(.upc = 3) 

(y.upc) 

(#y - .tmp,#upc = .upc + 1)] 

close — 3 steps/applications 

apply — [sd pre 
mod 

post 

(.upc = 1) 

(x,tmp,y,upc) 

(#upc -  4,#y = .x,*x = .y,#tap .x)] 

apply — [sd pre: (.upc = 4) 
mod: (y.upc) 

post: (#y = .y + l,#upc = 1)] 

apply — [sd pre: (.upc =1) 

■od: (x,tmp,y,upc) 
post: (#upc = 4,#y ■ . x,#x = .y,#tmp = 

close — 4 steps/applications 

.x)] 

2.9.13     The SDVS Language Parser 

Internally, SDVS deals with expressions in prefix notation, e.g. (USSUB X 7 0). The 
prettyprinter will print this expression in infix notation as X<7:0>. Those operators that 
have different infix and prefix symbols (such as "plus" and "+") may be input interactively 
either in infix or in mathematical (not Lisp) prefix notation, in any combination. Some 
operators have only one symbol for both the infix and the prefix notation (such as "It," 
since the character < is reserved for substring selection). Some operators have only a 
mathematical prefix form, such as the enumeration type relations and queueing operations. 

SDVS is not case sensitive. 

For example, 

<sdvs.l>    cre.atesd 
name sdo 

[SD pre covering(all, a), eq(plus(x, y), 1) 
comod[] <CR> 

mod[] <CR> 
post 

] 
pound(a) = .a -f 1 

<sdvs.l>   ppsd 
state d« ilta:    sd5 

[sd pre:   (covering(all,a),x + y =  1) 
post:   (#a =   .a +  1)] 
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It is essential to parenthesize expressions that may be ambiguous, for example p -> q or r. 

Otherwise, they may be interpreted differently than intended, with unpredictable results. 

Some symbols may be typed in at the terminal in their prettyprinted format, some must 

be typed in in their non-prettyprinted format, and some may be typed in either way. For 

example, 

<sdvs.l>    simp 
expression:    a or b 

a or b 

<sdvs.l>    simp 
expression:    a and b 

a & b 

<sdvs.l>    simp 
expression:    a & b 

a & b 

The infix-prefix correspondence (for those operators with both forms) is as follows: 

prefix infix 

aconc aconc 
abs abs 
and & 
div / 
dot 
eq = 
exists 3 
expt 

Ä 

forall V 

ge ge 

gt gt 
implies —>  (input),  —►   (prettyprinted) 
invert *"■ 

le le 
lh lh 
It It 
minus - 

mult * 

neq "=  (input),  ^   (prettyprinted) 
not 

135 



ones ones 

or or (input), V (prettyprinted) 

plus + 

pound * 

rein rem 
us and && 

usconc C 
usdifference — 

useql == 

usgeq usge 

usgtr usgt 

usleq usle 

uslss uslt 

usneq "== 

usnot " ■"* 

usor usor (input), VV (prettyprinted) 

usplus ++ 

usquotient // 
usremainder usmod 

ustimes ** 

usxor usxor 

zeros zeros 

Nonstandard transformations: 

(usval X) 

(cond ABC) 

(bs X Y) 
(ussub A X Y) 

(element A X) 

(slice A X Y) 

IX1 
(if A then B  else C) 
X(Y) 
A<X:Y> 
A[X] 
A[X:Y] 

The following is a list of reserved words, other than commands and the standard interpreted 
function symbols, that have special meaning in SDVS and should not be used in other than 

their official capacity. 

all 
constant 
covering 
declaration 

diff 
inter 
map 
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pcovering 

sd 

sdtobeproven 

tr 

union 

2.9.14    Reading, Writing, and Editing 

The commands read and write are the SDVS input-output commands for user-created files. 
Write prompts the user for the names of all objects that can possibly be stored (e.g. state 
deltas and proofs). SDVS converts all the objects into the def form, e.g. defproof, which 
can then be edited as desired. Readgoes to the designated file and processes all the dej'forms. 

<sdvs.l> write 
path name[lemmas/lemmas.lemmas] 

state delta names [] 
proof names [] 

axiom names [] 

lemma namesG 

formula names [] 

formulas names [] 

macro names [] 

datatype names [] 

adalemma names [] 

vhdllemma names [] 

junk 
<CR> 
<CR> 
<CR> 
<CR> 
<CR> 
<CR> 
<CR> 
<CR> 
<CR> 
<CR> 

Do you wish to append to the already existing file? n 

No objects written. 

The primary method for creating proofs interactively is simply to type in proof commands in 
an SDVS proof session. The proof can then be named by the dump-proof command (see be- 
low) and written to a file. Another method is to use the command createproof. For example, 

< sdvs. 1 >    createproof 
name:    testproof 

proof:     (prove [sd pre: (p) comod: () mod: () post: (true)] proof: ()) 

<sdvs.1>    pp 
object:    testproof 

proof testproof: 

prove  [sd pre:   (p)  post:   (true)] 
proof: 

The proper constructors for use in the editor, corresponding to the interactive create con- 
structs, are defproof, defsd, and defformulas. 

137 



The form in which these definitions can be evaluated in the editor is 

(defitem <itemname> ''<itembody>'') 

A common situation arises when the user has finished an interactive proof, SDVS has 
collected this into sdvsproof, and the user would like to change the name. The easiest way 
to do this is to use the dump-proof command. Another way, which might be useful under 
certain circumstances, is to write the proof to a file using the write command, change the 

name in the editor, and then evaluate the defsd. 

For example, 

(defproof casesproof  "(prove  [sd pre:   ([sd pre:   (pi ft p2) 
mod (all) 

post (ql)], 
[sd pre (pi ft •P2) 

nod (all) 

post (q2)], 

[sd pre ("pi ft p2) 
mod (all) 

post (q2)], 

[sd pre (~pl t 
_p2) 

mod (all) 

post (ql)]) 
mod: (all) 

post: (ql or ql 

oof: 

)] 

meases 

(case: pi ft p2 

proof: * 

case: pi ft ~p2 

proof: * 

case: "pi ft p2 

proof: * 

case: ~pl ft ~p2 

proof: *))") 

If the state delta exists in unparsed (input) notation in the editor, say as 

[sd   ...] 

it may be input into SDVS by typing in the editor 

(defsd sdname  "[sd  . . .]") 

and then evaluating. 

If defproof does not work on some proof, putproof may be used.   The differences are that 
in putproof, the name of the proof and the proof itself must be single quoted, and with 
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defproof the proof must be string quoted. Also, in putproof, the proof itself is given in Lisp 

notation, whereas defproof takes the unparsed prettyprint version. 

Also note that in using the defproof method, quotation marks around path names must be 

preceded by backslashes to appear as follows: 

(defproof proof 1 
"(prove s22 

proof:  readaxioms \"axioms/bitstring.axioms\")") 

For example, in case you wish to change the name of a proof, and the above defsd method 

does not work, do the following: 

(putproof   '<new-proofname>  (proofp  'sdvsproof)) 

and then evaluate. 

To summarize, the two methods of obtaining a proof are evaluating in Lisp 

1. (proofp 'proofname) and 

2. (get 'proofname 'proof). 

Similarly, the two methods of obtaining a state delta named sdname are 

1. (sdp 'sdname) and 

2. (get 'sdname 'sd). 

2.9.15     Batch Proofs 

The user may write a batch proof in the editor by using the commands of the previous 

section, or may write it interactively by using the command createproof. 

< sdvs. 1 >    createproof 
name:    tproof 

proof :    prove test3 proof: (*, close) 

Of course, the user may also type in the actual state delta in place of just giving its name, 
and may type in an arbitrarily long proof. However, given the complexity of the syntax and 
the probability of making an error, it is strongly recommended that the user modularize 

the work, or use the editor. 

A batch proof may be run by typing its name at the prompt after the init command (if a 
clean system is needed), or after the interpret command (if it is desired to continue from 

the current context). 
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2.9.16     Disjunctions of State Deltas 

Disjunctions of state deltas in preconditions are treated just like disjunctions of any other 
sentences. (Be sure that when typing in disjunctions of state deltas the state delta square 
brackets are enclosed by parentheses: ([sd ....]) or ([sd ....]).) To use a disjunction of state 

deltas, a proof by cases must be done: 

<sdvs.l>    ppsd 
state delta:    intl.sd 

[sd pre:   (true) post:   (q)] 

<sdvs.l>   ppsd 
state delta:    int2.sd 

[sd pre:   (true) post:   (r)] 

<sdvs.l>    ppsd 
state delta:    s8 

[sd pre:   (formula(intl.sd)   or formula(int2.sd)) 
post:   (q or r)] 

<sdvs.l>    prove 
state delta[] :    s8 
proof []:    <CR> 

open —   [sd pre:   (formula(intl.sd)  or formula(int2.sd)) 
post:   (q or r)] 

non-trivial propagations —  ([sd pre:   (true) 
post:   (q)])  or 

([sd pre:   (true) 
post:   (r)]) 

Complete the proof. 

<sdvs.l.l>    cases 
case predicate:    jormula(intl.sd) 

cases — formula(intl.sd) 

open —   [sd pre 
comod 
post 

(f ormuladntl .sd)) 
(all) 
(q or r)] 

<sdvs. 1.1.1.1>    usable 

u(l)   [sd pre:   (true)  post:   (q)] 

No usable quantified formulas. 
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<sdvs. 1.1.1. 1> apply 
sd/number[highest applicable/once]: <CR> 

apply — [sd pre: (true) post: (q)] 

close — 1 steps/applications 

open — [sd pre: (~(formula(intl.sd))) 

comod: (all) 

post: (q or r)] 

Complete the proof. 

<sdvs.l.l.2.1> usable 

u(l) [sd pre: (true) post: (r)] 

u(2) [sd pre: (formula(intl.sd)) 

comod: (all) 

post: (q or r)] 

No usable quantified formulas. 

<sdvs.l. 1.2.1> apply 
sd/number [highest applicable/once]: <CR> 

apply — [sd pre: (true) post: (r)] 

close — 1 steps/applications 

join — [sd pre: (true) 
comod: (all) 

post: (q or r)] 

close — 1 steps/applications 

2.9.17 System Commands 

The two commands cd and pwd, when typed at the SDVS prompt, do the same as the 
Unix commands of the same name, i.e., connect to a directory and print the name of the 
working directory. The command shell allows the user to enter Unix commands at the 
prompt, and the command exit kills the currently running SDVS job. Exit is the same as 

doing bye in SDVS followed by (quit) in Lisp. 

2.9.18 Errors 

When the user (interactively) types a proof command that cannot be executed, an explana- 
tory message is generated. When this same error occurs in a batch proof, a "command 
error" is generated and the proof halts.    The command lasterror returns the current error 

141 



message. 

2.9.19     Breaks in SDVS 

Although we are confident that SDVS will usually not "crash" under normal operation, 
there are still some instances where a determined (or unlucky) user can break the system. 
One example is given here: 

<sdvs.l>    createsd 
name decsdS 

[SD pre declare (x, type(fn, 
■*)) 

COBOd[] <CR> 
mod[] <CR> 
post 

] 
false. 

<sdvs.l>   prove 
state delta[] :    decsdS 
proof [] <CR> 

open —   [sd pre:   (declared,type(fn, .x))) 
post:   (false)] 

inserting — pcovering(all,x) 

Complete the proof. 

If at this point you were to simp x = .x, the control stack would overflow. 

Some of the reading and writing commands still react ungracefully if you type in a partic- 
ularly nonsensical path name, for example. 

There are surely more examples. 

2.9.20    Bugs in SDVS 

In addition to errors and breaks, there are, unfortunately, still bugs. This means that 
there are still some instances where a determined (or unlucky) user can prove false. It is 
reassuring when an automated proof succeeds, but the user should understand that success 
as an increase in confidence in the correctness of the theorem, not a fool-proof guarantee. 

Here is an example of using self-reference to prove false: 

<sdvs.l>    ppsd 
state delta:    self 

[sd pre:   (formula(self))  post:   (false)] 
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<sdvs.l>    ppsd 
state delta:    Joo 

[sd pre:   (true) post:   (false)] 

<sdvs.l>   prove 
state delta[]:    joo 
proof [] :    < CR> 

open —   [sd pre:   (true) post:   (false)] 

Complete the proof. 

<sdvs.l.l>   prove 
state delta[]:    self 
proof []:    <CR> 

open —   [sd pre:   (formula(self)) 
post:   (false)] 

The state delta to be proven is already known to be TRUE. 

close — 0 steps/applications 

Complete the proof. 

<sdvs.l.2>    apply 
sd/nuaber[highest applicable/once]:    <CR> 

apply —   [sd pre:   (formula(self)) 
post:   (false)] 

The postcondition of the last applied state delta is inconsistent with 
the current state. 

close —  1  steps/applications 

<sdvs.2>    ps 

<<  initial state >> 
proved foo <1> 
—> you are here <— 

An algorithm to detect the unsoundness of circular state delta definitions (see [36]) has been 
implemented, but is not yet part of the distributed SDVS. 
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3    INTERACTION WITH ISPS 

3.1    TR: TRANSLATOR FROM ISPS TO STATE DELTAS 

In SDVS the internal language for expressing computations is the state delta language; 
thus the programs and specifications must be written in, or converted to, state deltas for 
processing by SDVS. For programs that already exist in other, more common, languages, 
or for programs that are more easily written in other languages, the problem of how to 
translate accurately into the state delta language must be overcome. In the simplest cases 
this may be done manually. However, for "real" programs, and in order to eliminate possible 
inaccuracies in the translation, the task is too difficult to be left to the user; the slightest 
error in the translation could invalidate the connection between the proof (about state 
deltas) and the original claim (about a program in some other language). 

This section describes the action of the translator TR on the machine description language 
ISPS. Subsequent chapters discuss the translation of Ada and VHDL. 

In fact, there are two different versions of the translator from ISPS to state deltas. The 
more recent translator will be discussed only in the last section of this chapter. It is still 
to be considered experimental, although it will eventually replace the old translator. It has 
been generated by the same uniform method as the translators for Ada and VHDL, and 
recognizes a slightly larger piece of ISPS (it allows "don't care" digits, and bit order in 

bitstrings can be low to high). 

The version of ISPS that the (old) translator (TR) recognizes differs from the version 
described in the ISPS Manual ([12]) in several respects. The first category of differences 
contains those aspects of the "official" ISPS that TR does not support (see Figure 3): these 

include parallelism and two's-complement arithmetic. 

The second category of differences consists of extra features that SDVS needs for the im- 
plementation proof paradigm. For example, when one is not interested in implementing 
the action of all target places, some of the machine variables ("place" names) must be 
designated as significant and the others as auxibary. The mapping is defined only on the 
designated significant places. Another useful feature is the capability to intersperse stan- 
dard ISPS code with state deltas. This can be used when one is not interested in the details 
of how a certain postcondition was brought about, but only in its effect, or in case that 

effect is not expressible in ISPS. 

A complete description of Aerospace ISPS is given in the report ISPS for SDVS ([43]); the 
semantics of TR are described in [65], [13], and [44]; tests for static semantic errors are 
described in [44]; and problems with ISPS are described in [45]. 
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Bit declarations must be from high to low and have zero as the rightmost bit. 

Word declarations must be from low to high and have zero as the leftmost word. 

One-bit scalars must be declared with brackets, e.g. A<> (or A<0>), not A. 

The right-hand side of a mapping must have been declared prior to the mapping. 

In our implementation only scalar entities may be on the right-hand side of a mapping 
declaration. The left-hand entity may be either a scalar or an entire element of an 

array. 

The REQUIRE and DEFINE declarations are unsupported. 

Function formals and return value cannot be arrays. 

";" is interpreted as if it were "NEXT," i.e., parallel action is unsupported. 

Except for arithmetic transfer, unsigned is the only arithmetic mode implemented, 
and is required at the ISPS-Declaration level for compatibility with C-MU ISPS. The 
TC qualifier is required on arithmetic transfer. 

"?" is not allowed as a constant digit. 

The RESUME and TERMINATE statements are not allowed. 

UNPREDICTABLE, STOP, NO.OP, LAST.ONE, and UNDEFINED are the only 
implemented predeclared entities. UNDEFINED is allowed only on the right-hand 

side of a transfer operation. 

The arithmetic relation TST is unimplemented. 

MAIN, US, and TC are the only allowable qualifiers, with TC allowable only in the 

context of transfer operations. 

The user definition of qualifers is unimplemented. 

Quoted strings after BEGIN/END are not allowed. 

There is no call by reference. 

Side-effect-causing operations on the left-hand side of any transfer operation are not 

permitted. 

Nonfunction, nonassignment expressions, e.g. A+B, cannot be statements. 

The right operand in shifts cannot be longer than the left operand. 

The array index out of bounds may cause errors. 

Figure 3: ISPS Features not Implemented in TR 
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3.2    MARKING 

SDVS does the processing necessary to turn an ISPS program into an equivalent state 
delta or set of state deltas. Thus, ISPS programs can be used in, or as, preconditions or 
postconditions of state deltas. 

A very simple example was given in Section 1.9. A more complicated example illustrating 
the capability to execute from an ISPS mark point is shown next. One can run a set of 
example ISPS proofs by typing run-test-proofs *isps-tests*. 

When dealing with a proof based on state deltas created by TR from an ISPS program, the 
user does not have a convenient method of handling the specific state deltas representing 
the "continuation" of the program from each control point. To solve that problem, the 
system allows the user to label the location of control points in the ISPS program. 

The initial and final control points are named by the system <machine-name>\STARTED 
and <machine-name>\HALTED, respectively. The exit point for an internal subroutine, 
<subroutine>, is <subroutine>\exited. 

Consider the following ISPS program: 

gcd.machine {US} := BEGIN ! gcd algorithm computes gcd(x.y) 

! for inputs x and y 

** local.variables ** 

x<15:0>, ! input variable x 

y<15:0>, ! input variable y 
twos<5:0>, ! indicates common factor of twos between x and y 

gcdresult<15:0> ! result of gcd(x.y) 

** algorithm ** 

store common factor of twos 

strip low-order zeros from y 

strip low-order zeros from x 

gcd {MAIN} := BEGIN 

twos . LAST.ONE(x OR y) NEXT 

y _ y SRO LAST.ONE(y) NEXT 

x . x SRO LAST.ONE(x) NEXT 

REPEAT ! main loop 

BEGIN 
ml:= IF x LSS y => xCy . y«x NEXT     ! swap x,y if x<y 

x _ x - y NEXT ! assign x-y to x 

m2:= IF x EQL 0 => ! if x=0 (finished) then 

(m4 := gcdresult _ y NEXT !  assign y to gcdxy, 

gcdresult _ gcdresult SLO twos NEXT !  remember common twos, 

LEAVE gcd)  NEXT !  and exit 
m3:= x _ x SRO LAST.ONE(x) ! strip low-order zeros from x 

END 

END 

END 

The command mpisps generates state deltas corresponding to the state changes between 
mark points, instead of every state change represented in the unmarked ISPS program. If 
mpisps is used on an ISPS program with a potentially infinite loop in which the loop does 
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not have a mark point at the top, mpisps will not terminate. Gcd.isp has five mark points, 

including the initial state, which is a default mark point. 

Mpisps prompts for starting mark point, stopping mark point, and preconditions. 

<sdvs.l>    mpisps 
path name[testproofs/manual/isps/alias.isp] 

starting mark point[] 
ending mark points[] 

preconditions[] 
unique name level [1] 

testproof s/manual/isps/gcd. isp 
<CR> 
<CR> 
<CR> 
<CR> 

Parsing ISPS file — "testproofs/manual/isps/gcd.isp" 

Markpoint-to-markpoint translating ISPS file 

— "testproofs/manual/isps/gcd.isp" 

[sd pre 

■od 
post 

[sd pre: 
mod: 

post: 

[sd pre 

mod 

post 

[sd pre: 

mod: 

post: 

[sd pre: 

mod: 

post: 

[sd pre 

mod 

post 

[sd pre 

■od 
post 

(.gcd.machine\upc = gcd.machine\started) 

(x,twos,y,gcd.machine\upc) 

(#gcd.machine\upc = ml, 

#x = (z@ros(|lastone(.x)|) C .x) 
<15 + |lastone(.x)|:|lastone(.x)|>, 

#y = (zeros(|lastone(.y)|) « .y) 
<15 +  |lastone(.y)| :|lastone(.y)|>, 

ttwos = lastone(.r usor   .y))] 

(|.y| gt  |.x|, .gcd.machine\upc - ml) 
(x,y,gcd.machine\upc) 
(#gcd.machine\upc =• m2,#x = (.y ~ .x)<15:0>,#y 

(|.y| le | .x|, .gcd.machine\upc = ml) 

(x,gcd.machine\upc) 
(#gcd.machine\upc = m2,#x = (.x — .y)<15:0>)] 

(|.x| = 0, .gcd.machine\upc = m2) 

(gcd.machine\upc) 

(#gcd.machine\upc = m4)] 

(|.x| ~= 0, .gcd.machine\upc = m2) 

(gcd.machine\upc) 

(#gcd.machine\upc = m3)] 

(.gcd.machine\upc » m4) 

(gcdresult,gcd.machine\upc) 
(#gcd.machine\upc = gcd.machine\halted, 

«gcdresult = (.y « zeros(|.twos|))<15:0>)] 

(.gcd.machine\upc -  m3) 
(x,gcd.machine\upc) 

(#gcd.machine\upc » ml, 
#x = (zeros(|lastone(.x)|) C .x) 

<15 + |lastone(.x)|:|lastone(.x)|>)] 

= .x)] 

The flag displaympsds was on. If it were off, the above state deltas would not be displayed. 
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<sdvs.2>    ppsd 
state delta:    mpisps 

file name: gcd.isp 
starting mark point [] : <CR> 
ending mark points[]: <CR> 

preconditions [] : <CR> 

covering(gcd.machine,x,y,twos.gcdresult,gcd.machine\upc) 
declared, type (bitstring, 16)) 
declare(y,type(bitstring,16)) 
declare(twos,type(bitstring,6)) 
declare(gcdresult.type(bitstring,16)) 
[sd pre:   (.gcd.machine\upc = gcd.machine\started) 

mod:   (x,twos,y,gcd.machine\upc) 
post:   (#gcd.machine\upc = ml, 

#x =  (zeros(|lastone(.x)|)  0   .x) 
<15 + |lastone(.x)|:|lastone(.x)|>, 

#y =  (zeros(|lastone(.y)|)  0   .y) 
<15 + |lastone(.y)|:|lastone(.y)|>, 

#twos = lastone(.x usor .y))] 

[sd pre: (|.y| gt | .x|, .gcd.machine\upc = ml) 

mod: (x,y,gcd.machine\upc) 
post: (#gcd.machine\upc = m2,#x = (.y — .x)<15:0>,#y 

[sd pre: (|.y| le | .x|, .gcd.machine\upc = ml) 

mod: (x,gcd.machine\upc) 

post: (#gcd.machine\upc = m2,#x = (.x — .y)<15:0>)] 

[sd pre: (|.x| = 0, .gcd.machine\upc = m2) 

mod: (gcd.machine\upc) 

post: (#gcd.machine\upc = m4)] 

[sd pre: (|.x| ~= 0, .gcd.machine\upc = m2) 

mod: (gcd.machine\upc) 

post: (#gcd.machine\upc = m3)] 

[sd pre: (.gcd.machine\upc = m4) 

mod: (gcdresult,gcd.machine\upc) 

post: (#gcd.machine\upc = gcd.machine\halted, 

«gcdresult = (.y 0 zeros(|.twos|))<15:0>)] 

[sd pre: (.gcd.machine\upc = m3) 

mod: (x,gcd.machine\upc) 
post: (#gcd.machine\upc = ml, 

#x = (zeros(|lastone(.x)|) C .x) 
<15 + |lastone(.x)|:|lastone(.x)|>)] 

• x)] 

Now we will use mpisps with mark points chosen. 

<sdvs.2>    mpisps 
path name[testproofs/manual/isps/gcd.isp] : 

starting mark point []: 
ending mark points []: 

preconditions[] : 
unique name  level [1]: 

testproofs/manual/isps/gcd.isp 
m2 
m3 
<CR> 
<CR> 

Parsing ISPS file —  "testproofs/manual/isps/gcd.isp" 

Markpoint-to-markpoint translating ISPS file 
—  "testproofs/manual/isps/gcd.isp" 
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[sd pre 
nod 

post 

[sd pre 
Mod 

post 

[sd pre 
mod 

post 

(|.x| - 0, .gcd.machine\upc = m2) 
(gcd.machine\upc) 
(#gcd.machine\upc s m4)] 

(|.x| ~» 0,.gcd.machine\upc » m2) 
(gcd.machine\upc) 
(#gcd.machine\upc = m3)] 

(.gcd.machine\upc = m4) 
(gcdresult,gcd.nachine\upc) 
(#gcd.machine\upc - gcd.machine\halted, 
«gcdresult «  (.y « zeros(|.twos|))<15:0>)] 

<sdvs.3>    mpisps 
path name[testproofs/manual/isps/gcd.isp] 

starting mark point [] 
ending mark points[] 

preconditions [] 
unique name level [1] 

<CR> 
m2 
<CR> 
<CR> 
<CR> 

Parsing ISPS file —  "testproofs/manual/isps/gcd.isp' 

Markpoint-to-markpoint translating ISPS file 
—  "testproofs/manual/isps/gcd.isp" 

[sd pre 
mod 

post 

[sd pre 
mod 

post 

(|.i| =  0, .gcd.machine\upc « m2) 
(gcd.machine\upc) 
(#gcd.»achine\upc - m4)] 

(|.I|  ~= 0, .gcd.machine\upc = m2) 
(gcd.machine\upc) 
(#gcd.machine\upc = m3)] 

[sd pre:   (.gcd.machine\upc = m3) 
mod:   (x,gcd.machine\upc) 

post:   (tgcd.machine\upc * ml, 
#x =  (zeros(|lastone(.x)|)  «   .x) 

<15 +  |lastone(.x)|:|lastone(.x)|>)] 

[sd pre: (.gcd.machine\upc = m4) 
mod: (gcdresult,gcd.machine\upc) 

post: (#gcd.machine\upc * gcd.machine\halted, 
«gcdresult = (.y « zeros(|.twos|))<15:0>)] 

[sd pre 

mod 

post 

[sd pre 
mod 

post 

(|.y| le |.x|, .gcd.machine\upc = ml) 

(x,gcd.machine\upc) 
(#gcd.machine\upc = m2,#x = (.x ~ .y)<15:0>)] 

(|.y| gt |.x|, .gcd.machine\upc = ml) 

(x,y,gcd.machine\upc) 
(#gcd.machine\upc = m2,#x - (.y ~ .x)<15:0>,#y = • x)] 

<sdvs.4>    mpisps 
path name [testproofs/manual/isps/gcd. isp] :    < CR> 
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starting mark point[]: m2 
ending mark points[]: <CR> 

preconditions!!] : |.i| ge \.y\ 
unique name level[1]: <CR> 

Parsing ISPS file —  "testproofs/manual/isps/gcd.isp" 

Markpoint-to-markpoint translating ISPS file 
— "testproofs/manual/isps/gcd.isp" 

[sd pre: (|.x| ge |.y|,|.x| = 0, .gcd.machine\upc = m2) 

mod: (gcd.machine\upc) 

post: (#gcd.machine\upc = m4)] 

[sd pre: (|.x| ge |.y|,|.x| "= 0, .gcd.machine\upc = m2) 

mod: (gcd.machine\upc) 

post: (#gcd.machine\upc = m3)] 

[sd pre: (.gcd.machine\upc = m3) 

mod: (x,gcd.machine\upc) 
post: (#gcd.machine\upc = ml, 

#x = (zeros(|lastone(.x)|) 0 .x) 
<15 + |lastone(.x)|:|lastone(.x)|>)] 

[sd pre: (.gcd.machine\upc = m4) 

mod: (gcdresult,gcd.machine\upc) 

post: (#gcd.machine\upc = gcd.machine\halted, 

«gcdresult = (.y C zeros(|.twos|))<15:0>)] 

[sd pre:   (|.y| le  | .x|, .gcd.machine\upc = ml) 
mod:   (x,gcd.machine\upc) 

post:   (#gcd.machine\upc = m2,#x =  (.x —   .y)<15:0>)] 

[sd pre:   (|.y| gt  | .x|, .gcd.machine\upc = ml) 
mod:   (x,y,gcd.machine\upc) 

post:   (#gcd.machine\upc = m2,#x =  (.y —   .x)<15:0>,#y =  .x)] 

<sdvs.5>    mpisps 
path name[testproofs/manual/isps/gcd.isp] : <CR> 

starting mark point []: tn2 
ending mark points []: <CR> 

preconditions[] : |.x| = 0 
unique name level[1]: <CR> 

Parsing ISPS file —  "testproofs/manual/isps/gcd.isp" 

Markpoint-to-markpoint translating ISPS file 
— "testproofs/manual/isps/gcd.isp" 

[sd pre: (|.x| = 0, .gcd.machine\upc = m2) 

mod: (gcd.machine\upc) 

post: (#gcd.machine\upc = m4)] 

[sd pre: (.gcd.machine\upc = m4) 

mod: (gcdresult,gcd.machine\upc) 
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post: (#gcd.«achine\upc = gcd.Bachine\halted, 

tgcdresult « (.y 6 zeros(|. twos|) )<15:0>)] 

The differences between isps and mpisps are as follows: 

1. isps gives an incremental translation (with TRs in the postcondition); mpisps gives a 

set of state deltas; 

2. isps translates every ISPS state change; mpisps accumulates effects from mark point 

to mark point; 

3. mpisps takes account of extensions of ISPS by state deltas, assumptions, and external 

and auxiliary variables; and 

4. isps(file.isp) should be used only in the precondition of a state delta (as a host de- 

scription). 

3.3    EXTENSIONS OF ISPS 

The user may extend ISPS code in two main ways: 

1. by interspersing assumptions or state deltas between ISPS statements, and 

2. by declaring some ISPS variables to be external or auxiliary. 

These extensions were found to be useful in specifying real machines in the context of setting 
up implementation proofs. They were found to be necessary, for example, in the work on 

the C30 machine [11]. 

3.3.1     Extending ISPS by Assumptions and State Deltas 

The two methods for extending ISPS that are discussed in this section are 

1. the assumptions .'.'[ASSUME: (expr)], and 

2. inserting state deltas HfEXTSD () (pre) (comod) (mod) (post)]. 

The expr field in assumption is any state delta formula (note that a statement such as "#x 
= 1" is not a legal state delta formula); it is interpreted to be a precondition to the rest of 
the ISPS routine. In other words, if the assumption is not true, execution cannot continue 

from that point. 
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The extended state delta has room for a markpoint field which is currently unimplemented 
and must be left empty. Other than that, it is interpreted with the same internal semantics 
as any state delta, and with the same control as if it had been a regular ISPS statement. 
It is useful for expressing state changes that cannot be expressed in ISPS. Notice that one 
may make a static assertion by using an extended state delta with (nil markpoint field and) 
nil precondition and nil mod list. 

As an example, consider the foDowing extended ISPS program (extest2.isp): 

sd.machine {US}   := 
BEGIN 
♦♦Registers** 

x<15:0>,  y<15:0> 

♦♦Algorithm** 

exec {MAIN}:= 

BEGIN 

!![EXTSD: () (|.x| ge |.y|) () (x, y) (#x = 0(16) or #y = 0(16))] NEXT 

POINT:= 

if x eql 0 => y . 1 NEXT 
if y eql 0 => x . 0 

END 

END 

Let us mpisps it and look at the resulting state deltas. 

<sdvs.l>    mpisps 
path name[testproofs/manual/isps/gcd.isp] 

starting mark point [] 
ending mark points [] 

preconditions[] 
unique name level [1] 

testproofs/manual/isps/extest2.isp 
<CR> 
<CR> 
<CR> 
<CR> 

Parsing ISPS file — "testproofs/manual/isps/extest2.isp" 

Markpoint-to-markpoint translating ISPS file 
— "testproofs/manual/isps/extest2.isp" 

[sd pre: (|.x| ge | .y|, .sd.machine\upc = sd.machine\started) 

mod: (y,x,sd.machine\upc) 

post: (#x = 0(16) or #y = 0(16),#sd.machine\upc = point)] 

[sd pre: (|.x| It | .y|, .sd.machine\upc = sd.machine\started) 

mod: (sd.machine\upc) 

post: (#sd.machine\upc = point)] 

[sd pre: (|.x| = 0, .sd.machine\upc = point) 

mod: (y,sd.machine\upc) 

post: (#sd.machine\upc = sd.machine\halted,#y = 0(14) t  1(2))] 

[sd pre: (|.x| ~= 0 ft . sd.machine\upc = point,|.y| = 0) 
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mod:   (x,sd.machine\upc) 
post:   (#sd.machine\upc = sd.machine\halted,#x • 0(16))] 

[sd pre 
Mod 

post 

(|.x| ~- 0 &   . sd. machine\upc » point, |.y|  "» 0) 

(sd.machine\upc) 
(#sd.machine\upc » sd.machine\halted)] 

<sdvs.2>    ppsd 
state delta:    mpisps 

file name: extest2.isp 

starting mark point []: <CR> 
ending mark points[]: <CR> 

preconditions [] : <CR> 

covering(sd.machine,x,y,sd.machine\upc) 

declared, type (bit string, 16)) 

declare(y,type(bitstring,16)) 

[sd pre 

mod 

post 

[sd pre 
mod 

post 
[sd pre 

mod 
post 

[sd pre 
mod 

post 
[sd pre 

mod 
post 

(|.x| ge  |.y|, .sd.machine\upc = sd.machine\started) 

(y,x,sd.machine\upc) 
(•x = 0(16)  or #y ■ 0(16),#sd.machine\upc = point)] 
(|.x| It  |.y|, .sd.machine\upc = sd.machine\started) 

(sd.machine\upc) 
(#sd.machine\upc = point)] 
(|.x[ » 0, .sd.machine\upc = point) 
(y,sd.machine\upc) 
(#sd.machine\upc = sd.machine\halted,#y = 0(14)  8  1(2))] 
(|.x|  ~= 0 ft   .sd.machine\upc = point,|.y| » 0) 
(x,sd.machine\upc) 
(#sd.machine\upc « sd.machine\halted,#x = 0(16))] 

(|.x| ~= 0 ft .sd.machine\upc = point,|.y| "■ 0) 
(sd.machine\upc) 

(#sd.machine\upc = sd.machine\halted)] 

Let extest.isp be the above without POINT: 

sd.machine {US} := 

BEGIN 
»»Registers** 

x<15:0>, y<15:0> 

»»Algorithm** 

exec {MAIN}:= 

BEGIN 

!![EXTSD: 0 (|.x| ge |.y|) () (x, y) (#x = 0(16) or #y = 0(16))] NEXT 

if x eql 0 «> y - 1 NEXT 

if y eql 0 => x . 0 

END 

END 

<sdvs.l>    mpisps 
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path name[testproofs/manual/isps/extest2.isp] 
starting mark point[] 
ending mark points [] 

preconditions [] 
unique name level [1] 

testproofs/manual/isps/extest.isp 
<CR> 
<CR> 
<CR> 
<CR> 

Parsing ISPS file — "testproofs/manual/isps/extest.isp" 

Harkpoint-to-markpoint translating ISPS file 

— "testproofs/manual/isps/extest.isp" 

[sd pre: (|.x| ge | .y|, .sd.machine\upc = sd.machine\started) 

mod: (x,y,sd.machine\upc) 

post: (exists gv-y-2935 exists gv-x-2934 (((gv-x-2934 = 0(16) or 
gv-y-2935 = 0(16)) ft 

lh(gv-x-2934) = 16 ft 

lh(gv-y-2935) = 16) ft 

(|gv-x-2934| = 0 

— > #sd.machine\upc 

= sd.machine\halted ft 

#y = 0(14) C 

1(2) ft 

#x = 0(16))))] 

[sd pre: (|.x| ge | .y|, .sd.machine\upc = sd.machine\started) 

mod: (x,y,sd.machine\upc) 
post: (exists gv-y-2935 exists gv-x-2934 (((gv-x-2934 = 0(16) or 

gv-y-2935 = 0(16)) ft 

lh(gv-x-2934) = 16 ft 

lh(gv-y-2935) = 16) ft 

(|gv-x-2934| "= 0 

— > #sd.machine\upc 
= sd.machine\halted ft 

#x = 0(16)  ft 
#y = 0(16))))] 

[sd pre:   (|.x| It  |.y| ft   .sd.machine\upc = sd.machine\started,|.x| = 0) 
mod:   (y,sd.machine\upc) 

post:   (#sd.machine\upc = sd.machine\halted,#y = 0(14)  C  1(2))] 

[sd pre:   (|.x| It  |.y| ft   .sd.machine\upc = sd.machine\started, 
|.x|  -= 0) 

mod:   (sd.machine\upc) 
post:   (#sd.machine\upc = sd.machine\halted)] 

<sdvs.2>   ppsd 
state delta:    mpisps 

file name: extest.isp 
starting mark point[]: <CR> 
ending mark points[]: <CR> 

preconditions [] : <CR> 

covering(sd.machine,x,y,sd.machine\upc) 
declared, type (bit string, 16)) 
declare(y,type(bitstring,16)) 
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[sd pre: (|.x| ge | .y|, . sd. machine\upc » sd.machine\started) 

■od: (x,y,sd.machine\upc) 
post: (exists gv-y-2935 exists gv-x-2934 (((gv-x-2934 » 0(16) or 

gv-y-2935 = 0(16)) ft 

lh(gv-x-2934) = 16 ft 

lh(gv-y-2935) -  16) ft 

(|gv-x-2934| - 0 

— > #sd.machine\upc 

« sd.machine\halted k 

#y - 0(14) • 

1(2) k 
#x = 0(16))))] 

[sd pre: (|.x| ge | .y|,. sd. machine \upc = sd.machine\started) 

mod: (x,y,sd.machine\upc) 

post: (exists gv-y-2935 exists gv-x-2934 (((gv-x-2934 «■ 0(16) or 
gv-y-2935 = 0(16)) ft 

lh(gv-x-2934) = 16 ft 

lh(gv-y-2935) = 16) ft 

(|gv-x-2934| "= 0 

— > #sd.machine\upc 

- sd.machine\halted ft 

#x = 0(16) ft 

#y = 0(16))))] 

[sd pre: (|.x| It |.y| ft .sd.machine\upc = sd.machine\started,| .x| = 0) 

mod: (y,sd.machine\upc) 
post: (#sd.machine\upc = sd.machine\halted,#y = 0(14) t 1(2))] 

[sd pre: (|.x| It |.y| ft .sd.machine\upc = sd.machine\started, 

|.x| -- 0) 
mod: (sd.machine\upc) 

post: (#sd.machine\upc = sd.machine\halted)] 

It is clear that the following state delta (call it extsdl) is true: 

[sd pre 

mod 

post 

(mpisps(extest2.isp),.sd.machine\upc = sd.machine\started) 

(all) 
(|#x| le  |#y|,#sd.machine\upc = sd.machine\halted)] 

and the following proof works: 

(prove extsdl 

proof: 

cases |.x| ge |.y| 
then proof: 

(apply, 

cases | .x| - 0 
then proof: 

(apply, 

close) 

else proof: 

(notice |.y| = 0, 

apply, 
close)) 

else proof: 

(apply, 
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cases I .x| = 0 

then proof: 

(apply, 

close) 

else proof: 

cases |.y| = 0 

then proof: 

else proof: 

(apply, 

close))) 

As a good exercise, try to input the above state delta and proof in the editor, using the 
defsd and defproof functions. See Section 2.9.14. Remember to use two backslashes "\\" 
in the editor to get one real backslash. 

We cannot currently prove the corresponding state delta involving extest.isp; any state 
deltas resulting from mpisps that contain existential quantifiers should be suspect. The 
user should eliminate these quantifiers by adding mark points in suitable places in the 
original ISPS code. 

Now let us examine the state delta formed by making .xge.y an assumption. Call the fol- 
lowing extended ISPS program extest3.isp: 

sd.machine {US}   := 
BEGIN 
»♦Registers** 

x<15:0>,  y<15:0> 

»»Algorithm** 

exec  {MAI1J}: = 
BEGIN 

!! [ASSUME:   (|.x| ge  |.y|)]  NEXT 
if  x eql 0 =>  y _ 1  NEXT 
if  y eql 0 =>  x _ 0 
END 
END 

<sdvs.l>    mpisps 
path name [testproofs/manual/isps/extest. isp] : testproofs/manual/isps/extest3.isp 

starting mark point[]: <CR> 
ending mark points[]: <CR> 

preconditions [] : < CR> 
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unique name level [1] :    <CR> 

Parsing ISPS file —  "testproofs/manual/isps/extest3.isp" 

Markpoint-to-markpoint translating ISPS file 
—  "testproofs/manual/isps/extest3.isp" 

[sd pre:   (|.x| ge  |.y| ft   .sd.nachine\upc « sd.machine\started,| .x| = 0) 
mod:   (y,sd.machine\upc) 

post:   (#sd.machine\upc = sd.machine\halted,#y = 0(14)  fi  1(2))] 

[sd pre:   (|.x| ge  |.y| ft   .sd.machine\upc = sd.machine\started, 

|.x| "- 0,|.y| = 0) 
mod:   (x,sd.machine\upc) 

post:   (#sd.machine\upc = sd.machine\halted,#x = 0(16))] 

[sd pre:   (|.x| ge |.y| &  .sd.nachine\upc = sd.machine\started, 
|.x| -- 0,|.y| -- 0) 

mod:   (sd.machine\upc) 
post:   (#sd.machine\upc = sd.machine\halted)] 

<sdvs.2>   ppsd 
state delta:    mpisps 

file name: extest3.isp 
starting «ark point[]: <CR> 
ending mark points[]: <CR> 

preconditions[] : <CR> 

covering(sd.machine,x,y,sd.machine\upc) 
declare(x,type(bitstring,16)) 
declare (y, type (bitstring, 16)) 
[sd pre:   (|.x| ge  |.y| ft   .sd.machine\upc - sd.machine\started,| .x| = 0) 

mod:   (y,sd.machine\upc) 
post:   (#sd.machine\upc - sd.machine\halted,#y = 0(14)  •  1(2))] 

[sd pre:   (|.x| ge  |.y| ft   .sd.machine\upc = sd.machine\started, 
|.x| "= 0,|.y| = 0) 

mod:   (x,sd.machine\upc) 
post:   (#sd.machine\upc = sd.machine\halted,#x = 0(16))] 

[sd pre:   (|.x| ge  |.y| ft   .sd.machine\upc » sd.machine\started, 
|.x| "- 0,|.y| -- 0) 

mod:   (sd.machine\upc) 
post:   (#sd.machine\upc = sd.machine\halted)] 

3.3.2     External and Auxiliary Variables 

External and auxiliary variables are introduced into ISPS descriptions in order to extend 
the possibilities of expression, not just to facilitate expression. These extended possibilities 
are reflected in the translation of the description into state deltas and the methods of proof 
needed to verify claims of implementation between two levels of description. 

Both external and auxiliary variables satisfy specification needs arising from real problems. 
External variables have their intuitive motivation in "input variables," that is, in variables 
whose value may change at random, upon receipt of a signal from some external source 
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(external with respect to the level of description in which they appear designated as "ex- 

ternal"), in addition to any changes explicitly required by that description. 

The idea for auxiliary variables is found in the concept of temporary variables. Generally 
speaking, the designation "auxiliary" is used for any variable whose contents are not to 
be relied on, or even considered, by any "outside" observer (although, of course, they may 
be essential to the internal workings of the description). When viewed from the outside, 
auxiliarly variables are not considered to be part of the state of the system. 

3.3.3     External Variables 

The suffix Hext may be appended to any ISPS declaration, e.g. 

X<15:0>!!ext. 

This indicates that the variable may change value during any state change explicitly allowed 
by the ISPS program. There is no need to change the syntax or semantics of state deltas to 
account for the external variables. An ISPS program with ext is translated into state deltas 
just as before, with the addition that the external variables appear in every mod list. 

In the case of markpoint-to-markpoint translation, care must be taken, for example, when 
there is a case split on an external variable between the starting and ending markpoint. 
However, when we take the view that markpoint-to-markpoint translation equals the com- 
position of the state deltas representing the translation of the fine-grained state changes, 
the problem of external variables is just a subcase of the general problem (remember that 
the only special handling that external variables need is to be placed in every mod list). 

For example, consider the machine (assumed below to be in file extest4.isp): 

sd.machine {US}   := 
BEGIN 
»♦Registers** 

x<15:0>, 
y<15:0>! !ext 

♦»Algorithm** 

exec {MAIN}:= 
BEGIN 

if x eql 0 =>  y . 1  NEXT 
if y eql 0 =>  x _ 0 
END 
END 

and consider the state delta 

<sdvs.l>   ppsd 
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state delta:    extsd 

[sd pre:   (|.x| »  1, isps(extest4. isp), 
.sd.machine\upc = sd.machine\started) 

mod:   (all) 
post:   (#sd.machine\upc = sd.machine\halted,|#x|  » 0  or  |#x| =  1)] 

The following proof works: 

<sdvs.l>    pp 
object:    extproof 

proof  extproof: 

prove extsd 
proof: 

(apply, 
cases |.y|  = 0 

then proof: 
(apply 3, 
close) 

else proof: 
(apply 2, 
close)) 

<sdvs.l>    interpret 
proof name:    extproof 

open —   [sd pre:   (|.x| - l,isps(extest4.isp), 
.sd.machine\upc = sd.machine\started) 

mod:   (all) 
post:   (#sd.machine\upc = sd.machine\halted, 

|#x| = 0  or  |#x| -  1)] 

apply — [sd pre: (.sd.nachine\upc « sd.machine\started, 

.x — 0(2) "= 1(1)) 
mod: (sd.machine\upc,y) 

post: ([tr {in SD.MACHINE} IF;])] 

cases — |.y| = 0 

open —  [sd pre:   (|.y| - 0) 
comod:   (all) 
■od:   (all) 

post:   (#sd.machine\upc ■ sd.machine\halted, 
|#x| = 0 or |#x| = 1)] 

apply —   [sd pre 
comod 

mod 
post 

(.y == 0(2)  =  1(D) 
(sd.machine\upc) 
(sd.machine\upc,y) 
([tr {in SD.MACHINE} X ;])] 

apply — [sd pre: (true) 
comod: (sd.machine\upc) 
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mod: (sd.machine\upc,x,y) 

post: (#i = 0(14) C 0(2), 

[tr «SD.MACHINE\halted])] 

apply — [sd pre: (true) 

comod: (sd.machine\upc) 

mod: (sd.machine\upc,y) 

post: (#sd.machine\upc = sd.machine\halted)] 

close — 3 steps/applications 

open — [sd pre: (~(|.y| = 0)) 

comod: (all) 

mod: (all) 
post: (#sd.machine\upc = sd.machine\halted, 

|#x| = 0 or |#x| = 1)] 

apply — [sd pre: (.y == 0(2) ~= 1(D) 

comod: (sd.machine\upc) 
mod: (sd.machine\upc,y) 

post: ([tr «SD.MACHIKE\halted])3 

apply — [sd pre: (true) 
comod: (sd.machine\upc) 

mod: (sd.machine\upc,y) 
post: (#sd.machine\upc = sd.machine\halted)] 

close — 2 steps/applications 

join — [sd pre: (true) 

comod: (all) 

mod: (all) 
post: (#sd.machine\upc = sd.machine\halted, 

|*x| = 0 or |#x| = 1)] 

close — 2 steps/applications 

3.3.4    Auxiliary Variables 

The suffix Haux may be appended to any ISPS declaration, e.g. 

X<15:0>!!aux. 

The difference between the semantics of such an annotated ISPS program and the semantics 
of an unannotated one becomes apparent only when one considers the interaction of the 
programs with another level. Auxiliary variables in target or host cannot play a role in 
the mapping. Thus, target auxiliary variables are not mapped from, and host auxiliary 
variables are not mapped to. Auxiliary variables do not appear in state deltas that are the 

result of mpisps. 

Consider the machine 

aux. machine {US}   : = 
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BEGIN 
»»Registers** 

x<15:0>, 

y<15:0>, 
temp<15:0> ! !aux 

»»Algorithm** 

exec  {MAIN}:= 

BEGIN 
temp _ x next 

x _ y next 

y _ temp 

END 

END 

<sdvs.l>   ppsd 
state delta:    mpisps 

file name 
starting mark point [] 
ending mark points [] 

preconditions [] 

auxtest.isp 

<CR> 
<CR> 
<CR> 

covering(aux.machine,x,y,aux.machine\upc) 
declare(x,type(bitstring,16)) 
declare(y.type(bitstring,16)) 

[sd pre 
mod 

post 

(.aux.machine\upc = aux.machine\started) 

(y,x,aux.machine\upc) 
(#aux.machine\upc = aux.machine\halted,#y =   .x,#x =   .y)] 

Now we construct a theorem saying that auxtest implements itself. 

<sdvs.l>    implementation 
theorem name:    aux.thm 

upper-level spec:    mpisps 
file name 

starting mark point [] 
ending mark points [] 

preconditions Q 

lower-level spec 
file name 
mappings 

constants [] 
invariants [] 

auxtest.isp 

<CR> 
<CR> 
<CR> 

isps 
auxtest.isp 
mapping(.x, .x), mapping(.y, .y), mapping(.aux.machine\upc,.aux.machine\upc) 

<CR> 
<CR> 

Implementation theorem  'aux.thm'  created. 

<sdvs.l>    ppsd 
state delta:    aux.thm 

[sdpre:   (isps(auxtest.isp), 
aux.thm.places = union(x,y,aux.machine\upc,aux.machine\aux), 

aux.thm.mapped.places = union(x,y,aux.machine\upc), 
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aux.thm.unmapped.places 
= dif f(aux.thm.places,aux.thm.mapped.places)) 

post:   (alldisjoint(x,y,aux.machine\upc), 

[sd pre:   (true) 
comod:   (all) 
post:   (forall al  (lh(al)  =  16 —>  lh(al)  =  16), 

forall al  (lh(al) =  16 — > lh(al)  =  16))], 
[sd pre:   (.aux.machine\upc = aux.machine\started) 

mod:   (y,x,aux.machine\upc,aux.thm.unmapped.places) 

post:   (#aux.machine\upc = aux.machine\halted,#y =  .x, 

#x =  -y)])] 

<sdvs.l>    prove 

state delta[]:    aux.thm 
proof [] :    < CR> 

open —   [sd pre:   (isps(auxtest.isp), 
aux.thm.places 

= union(x,y,aux.machine\upc,aux.machine\aux), 
aux.thm.mapped.places = union(x,y,aux.machine\upc), 

aux.thm.unmapped.places 
= dif f(aux.thm.places,aux.thm.mapped.places)) 

post:   (alldisjoint(x,y,aux.machine\upc), 

[sd pre:   (true) 

comod:   (all) 
post:   (iorall al  (lh(al) =  16 —>  lh(al) =  16), 

iorall al   (lh(al) = 16 —>  lh(al) =  16))], 
[sd pre:   (.aux.machine\upc = aux.machine\started) 

mod:   (y,x,aux.machine\upc,aux.thm.unmapped.places) 
post:   (#aux.machine\upc = aux.machine\halted, 

#y =   .x,#x =  .y)])] 

Complete the proof. 

<sdvs.l.l>    whynotgoal 
simplify? [no] :    < CR> 

g(2)   [sd pre: (true) 
comod: (all) 
post: (forall al   (lh(al) =  16 —>  lh(al) =  16), 

forall al  (lh(al) =  16 — > lh(al) =  16))] 
g(3)   [sd pre: (.aux.machine\upc = aux.machine\started) 

mod: (y,x,aux.machine\upc,aux.thm.unmapped.places) 
post: (#aux.machine\upc = aux.machine\halted,#y =   .x,#x =  .y>] 

<sdvs.l.l>   prove 
state delta[] :    g 

number:    2 
proof [] :    < CR> 

open —   [sd pre:   (true) 
comod:   (all) 
post:   (forall al  (lh(al) =  16 

forall al  (lh(al) =  16 
->  lh(al) =  16), 
->  lh(al) =  16))] 
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close — 0 steps/applications 

Complete the proof. 

<sdvs.l.2> prove 
state delta[] : g 

number: 3 

proof [] : < CR> 

open — [sd pre 

mod 

post 

(.aux.machine\upc ■ aux.machine\started) 
(y, i, aux. machine\upc, aux. thm. unmapped. places) 

(#aux.machine\upc = aux.machine\halted,#y » .x, 

#x = .y)] 

Complete the proof. 

<sdvs.l.2.1> * 

apply — [sd pre: (.aux.machine\upc = aux.machine\started) 

mod: (aux.machine\upc,temp) 

post: (ttemp = .x, 

[tr {in AUX.MACHINE} X ; Y ;])] 

apply — [sd pre 
comod 
mod 

post 

apply — [sd pre 

comod 

mod 

post 

(true) 

(aux.machine \upc) 

(aux.machine\upc,x) 

(#x = .y, 
[tr {in AUX.«ACHIME} Y ;])] 

(true) 
(aux.machine\upc) 
(aux.machine\upc,y) 
(#y =   .temp, 
[tr flAUX.MACHINE\halted])] 

apply — [sd pre: (true) 

comod: (aux.machine\upc) 

mod: (aux.machine\upc) 
post: (#aux.machine\upc = aux.machine\halted)] 

close — 4 steps/applications 

close — 2 steps/applications 

3.4    THE NEW ISPS TRANSLATOR 

The new translator can be accessed by the command ispstr. The associated predicate is 
newisps. We present an example comparing the new with the old translator on the ISPS 
program incl.isp: 

!   incl.ISP 

incl  {US}   :=  ( 
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»»Registers** 

x<7:0> 

♦»Processes** 

incl  {MAIN}   := BEGIN 

REPEAT    BEGIN 
loopl:= I - I +  1 

END 

END 

) 

First, using the new translator: 

<sdvs.l>   pp 
object:    netvincO.sd 

[sd pre:   (newisps(incl.isp)) 
post:   (newisps(incl.isp))] 

We would expect this to be true and trivially provable, and it is with the new translator: 

<sdvs.l>    setflag 
flag variable:    autoclose 

on or off [off]:    off 

setflag autoclose — off 

<sdvs.2>   prove 
state delta[] :    newincO.sd 

proof [] :    < CR> 

open —   [sd pre:   (newisps(incl.isp)) 
post:   (newisps(incl.isp))] 

Complete the proof. 

<sdvs.2.1>   goals 

g(l)  covering(incl,incl\upc,i) 
g(2)  declared,type(bitstring,8)) 

g(3)   [sd pre:   (.incl\upc = incl\started) 

comod:   (all) 
mod:   (incl\upc) 

post:   ([ispstr t(incl)  incl   ...])] 

<sdvs.2.1>    whynotgoal 
simplify? [no] :    < CR> 
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The goal  is TRUE.     Type   'close'. 

<sdvs.2.1>    close 

close — 0  steps/applications 

<sdvs.3>    setflag 
flag variable:    avtoclose 
on or off[on]:    on 

setflag autoclose —  on 

With the old translator, things are not so trivial: 

<sdvs.l>   pp 
object:    newincl.sd 

[sd pre:   (isps(incl.isp)) 
post:   (isps(incl.isp))] 

<sdvs.l>    prove 
state delta[]:    newincl.sd 
proof []:    <CR> 

open —   [sd pre:   (isps(incl.isp)) 
post:   (isps(incl.isp))] 

Complete the proof. 

<sdvs.l.l>    whynotgoal 
simplify? [no] :    < CR> 

g(3)   [tr «INC1\STARTED {in INCl} REPEAT;] 
g(4)   [tr «L00P1 {in INCl} X ;  REPEAT;] 

In fact, it appears that this is improvable in SDVS 12. 
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4    INTERACTION WITH ADA 

This chapter describes the ability of SDVS 12 to deal with Ada programs and their proofs 
of correctness with respect to specifications written in state deltas. We first describe the 
subset of the Ada language that SDVS can currently handle: "SDVS 12 Ada." Then we give 
the proof rules that have been added to SDVS in order to reason about programs written 

in that language. Finally, we give some example proofs using those commands. 

The additional implemented translational capability for Ada that SDVS 12 has over SDVS 
11 spans the following Ada language features: subtypes of scalar types, integer type defini- 
tions, explicit type conversions, the generic function UNCHECKED-CONVERSION, and 
length clauses (representation clauses specifying an amount of storage associated with a 
type). In other words, what we caD SDVS 12 Ada here is really what used to be called 
Stage 3 Ada, plus for loops and the elimination of existential quantification of declared 
variables (which formed SDVS 11 Ada or "Stage 4 Ada"), plus the above-mentioned fea- 

tures. 

In addition, research has been performed on translating (and proving claims about) pro- 
grams with real (floating) types ([46]), access types ([47]), and recursive programs ([48] and 

[40]), but these capabilities are not part of SDVS yet. 

We are often interested in translating an Ada program in such a way that the resulting 
state deltas have invariants equivalent to (#all = .all), which essentially means that the 
execution happens in discrete steps. This is because in order to prove even simple safety 
properties of a program, the symbolic execution of that program in SDVS must contain 
only those states that are necessitated by the program. When weaknext-tr flag is on, the 
language translators of SDVS behave in this manner. 

The user interface has been enhanced by the addition of a prototype X-Window capability 
for viewing the Ada code as it is being symbolicaUy executed in the SDVS window. This 
feature is not part of the distributed SDVS 12 system, but at this time must be requested 
separately. The user types load-xpp at the Lisp prompt in order to turn on the Ada window. 
Then the specific line of Ada code that is being reasoned about or translated is highlighted. 
The Ada window cannot be resized or scrolled when SDVS is writing to it, although you 
may do this when SDVS is passive. If you intend to use this feature, all translation and 
Adalemma creation must be done while the Ada window is on. 

More details and examples can be found in [14], [41], and [49] - [51]. 

4.1    TR: TRANSLATOR FROM ADA TO STATE DELTAS 

As mentioned above, the current Ada capability of SDVS includes Stage 3 Ada, plus for 
loops and the elimination of existential quantification of declared variables, plus subtypes 
of scalar types, integer type definitions, explicit type conversions, the generic function 
UNCHECKED.CONVERSION, and length clauses. 

SDVS 12 Ada is a nontrivial subset of Ada. It is the sixth (after Core Ada, Stage 1 Ada, 
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Stage 2 Ada, Stage 3 Ada, and SDVS 11 Ada) of a series of Ada language subsets of 
increasing semantic complexity whose translators have been implemented in SDVS. Core 
Ada was intended to be the basis of a rapid initial adaptation of SDVS to Ada, providing 
early confirmation of technically sound but untested techniques: formal (Ada) translator 
specification and specification-directed translator implementation. 

4.1.1 Ada Language Subsets 

The features of the six Ada subsets are as follows: 

Core Ada: scalar assignment statements and simple expression evaluation; straight-line 

program flow; branching (if, case), and iteration (loop) statements; simple input and 

output (through the GET and PUT procedures); block structure, scoping and variable 
declarations; simple packages containing only variable declarations and other simple 

packages; use clauses; basic data types (integer, boolean, array). 

Stage 1 Ada: the features of Core Ada, plus nonscalar assignment, subprogram declara- 
tions and subprogram calls, package bodies, record types, and enumeration types. 

Stage 2 Ada: the features of Stage 1 Ada, plus user-defined exceptions and the character 

data type. 

Stage 3 Ada: the features of Stage 2 Ada, plus context clause declarations (for certain 
I/O subpackages of the STANDARD package), rudimentary overload resolution for 
subprogram arguments, the string data type, and a preliminary version of floating- 

point types and operations. 

SDVS 11 Ada: the features of Stage 3 Ada, plus for loops. 

SDVS 12 Ada: the features of SDVS 11 Ada, plus subtypes of scalar types, integer type 
definitions, explicit type conversions, instances of the generic function 
UNCHECKEDXONVERSION, and length clauses (representation clauses specifying 

an amount of storage associated with a type). 

Core Ada posed no fundamental technical obstacles to interfacing it to SDVS, and the 
technical challenges inherent in the adaptation of successive Ada stages to SDVS have been 
successfully overcome. On the other hand, it is presently not clear how to interface certain 
advanced Ada language features, such as generics, real-time features, and tasking. 

4.1.2 SDVS 12 Ada Language Features 

A more detailed description of SDVS 12 Ada language features now follows. 

These features are partitioned into four groups: statements, expressions, declarations, and 

data types. More details and examples can be found in [50]. 
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Statements 
The kinds of statements included in SDVS 12 Ada are null, assignment, conditional (if), 
case, loop (while loops with and without a condition and for loops over integer or enumer- 

ation type ranges), block, exit, simple input (GET), simple output (PUT), subprogram 

call and return, and raise statements. 

Expressions 
A representative class of Ada expressions is included in SDVS 12 Ada. These expressions 
contain simple names (identifiers), and dotted names (e.g. pkg.subp.blk.id, where pkg 
is the name of a package, subp the name of a subprogram, blk the name of a block, and 
id is a simple name). Other forms of names in SDVS 12 Ada denote array and record 
components, and function calls. Also included in expressions are numeric and boolean 
constants, short-circuit boolean operators (and then, or else), relational operators (=, 

/=, <, <=, >, >=), binary boolean and arithmetic operators (and, or, xor, +,-, *, /, 
mod, rem, **), and unary arithmetic and boolean operators (-, abs, not). SDVS 12 
Ada expressions can contain aggregates. These aggregates must consist only of positional 
component associations (an array aggregate) or named component associations (a record 

aggregate). 

Declarations 
SDVS 12 Ada includes declarations of objects that can be constants and variables of scalar, 
one-dimensional array, string, record, and enumeration types. Also included are package 
specifications, package bodies, "with" clauses (the only packages recognized in such clauses 
are the STANDARD packages TEXT.IO, TEXT_IO.INTEGER_IO, and TEXTJO.FLOATJO; 
the only subprograms made available through these subpackages are GET and PUT), 
"use" clauses, subprogram (i.e., procedure and function) specifications and bodies, and 
user-defined exceptions and exception handlers. 

Data Types 
SDVS 12 Ada includes the following basic data types: integer, boolean, character (see 
Section 9.9 for details), string, and float. Arrays in SDVS 12 Ada are limited to be one- 
dimensional; the elements of these arrays can have any SDVS 12 Ada type. Thus multi- 
dimensional arrays are synthesized in a "curried" way from one-dimensional ones. SDVS 
12 Ada has record and enumeration types, where record fields can have any SDVS 12 Ada 
type. SDVS 12 Ada also encompasses subtypes of scalar types, and integer type definitions. 
Furthermore, explicit type conversions between integer types are allowed. 

Miscellaneous 
SDVS 12 Ada includes instances of the generic function UNCHECKED-CONVERSION, 
as well as length clauses (representation clauses specifying an amount of storage associated 

with a type). 
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4.2    COMMANDS DEALING WITH ADA 

SDVS 12 has the ability to prove theorems of input-output total correctness6 or safety 
for SDVS 12 Ada programs. This section demonstrates the construction of theorems to 
be proved, describes the contents of these theorems, and then gives some hints on proof 

strategy. 

The user can run some example proofs by typing run-test-proofs *ada-tests*. 

4.2.1     Theorems 

Theorems stating total correctness properties for SDVS 12 Ada programs are essentially 
input/output assertions. The notations for the input and output of SDVS 12 Ada programs 

are described in the next section. Theorems about SDVS 12 Ada programs are always 
written in the state delta language, which currently provides the only specification language 
for Ada in SDVS. The formats of typical state deltas specifying total correctness and safety 

properties for an SDVS 12 Ada program are shown below. 

First, the total correctness case: 

[sd pre: (ada(adaprog.ada),<initial correctness requirements>) 

comod: (all) 
mod: (all) 

post: (<final correctness requirements>,  terminated(mainprog))] 

Two predicates are introduced in the state delta shown above. The formula ada(adaprog.ada) 
represents the translation of the SDVS 12 Ada program in the file adaprog.ada into the 
language of the state delta logic.  The formula terminated(mainprog) is asserted when 
SDVS symbolically executes to the end of the SDVS 12 Ada procedure mainprog, providing 

explicit representation of program termination. 

Now we consider the nonterminating safety case. We want to show that there exists a time 
when some triggering condition holds, and thereafter a safety requirement is true. The 

safety state delta is 

[sd pre 
comod 

mod 
post 

(true) 

0 
0 
(<safety requirement^] 

and the safety claim about the Ada program is 

6The phrase "total correctness" means correct and terminating. 
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[sd pre: (ada(adaprog ada) ,<init] Lai correctness requirements>) 

comod: (all) 

mod: (all) 

post: ^triggering condition>, <safety state delta>)] 

We put off an example until Section 8.5, since knowledge of state deltas with invariants is 
necessary first. 

The ada predicate is given meaning only by the proof command adatr, which takes as its 
only argument the name of a file to be translated. The execution of this command causes the 
translation of the file (assuming the file contains a syntactically valid SDVS 12 Ada program) 
into the state delta logic, which yields formulas describing the predefined environment of 
the SDVS 12 Ada program, in addition to a single state delta for the symbolic execution of 
the program. The remaining SDVS 12 Ada proof command, applydecls, is discussed below. 

4.2.2     Input and Output 

Input and output buffers (arrays) are part of the predefined environment for all SDVS 12 
Ada programs. Translating a file containing an Ada program prog by the adatr proof 
command yields SDVS 12 declare formulas for four objects, described below. 

stdin is an arbitrary size, 1-origin array of polymorphic type that holds input values for 
prog. 

stdin\ctr is an integer counter, initialized to 1, that indexes stdin for the get statement. 

stdout is an arbitrary size, 1-origin array of polymorphic type that holds output values 
for prog. 

stdout\ctr is an integer counter, initialized to 1, that indexes stdout for the put state- 
ment. 

Conditions on the sizes of the input and output buffers and the contents of the input buffer 
are typical correctness requirements held in the preconditions of state deltas representing 
SDVS 12 Ada theorems. Conditions relating the contents of the output buffer to those of 
the input buffer are typical correctness requirements held in the postconditions of those 
theorems. For example, the state delta shown below claims the total correctness property 
that the example program adaprog.ada has two elements in its input and output buffers, 
and terminates with the values in its input buffer written into its output buffer. 

[sd pre:   (ada(adaprog.ada),range(stdin)  = 2,range(stdout) = 2) 
comod:   (all) 

mod:   (all) 
post:   (#stdout[l]  =  .stdin[l],#stdout[2]  =   .stdin[2], 

terminated(adaprog))] 
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4.2.3     Proof Strategy 

Now that Ada theorems and their contents have been introduced, a strategy for developing 
their proofs may be discussed. Proofs in SDVS that involve dynamic properties7 of Ada 
programs proceed by symbolic execution. The user develops proofs by integrating symbolic 
execution commands with commands that prove properties about the current state. Thus, 
at any point in an Ada proof, there is an analogous execution point in the corresponding 

Ada program. 

A typical step the prover wishes to make (in fact, the first step) is to elaborate Ada decla- 
rations. Elaborating a declaration consists of asserting and symbolically executing a state 
delta with those declarations in the postcondition. This involved multiple proof commands 

in SDVS 6 for each declaration. For this reason, the proof command applydecls was in- 

troduced to SDVS 7 (and retained in all later versions). This command elaborates the 

declarations; it generates an error if the current symbolic execution point does not immedi- 
ately precede an SDVS 12 Ada declaration. The command go does the work of applydecls 

and then continues to execute state deltas until symbolic execution cannot proceed for some 
reason (for example, the declaration had a conditional initialization). 

Subprogram calls are handled by the following sequence of actions: 

1. declare formal parameters 

2. assign input values to IN parameters 

3. assert .pc=at(fully.qualified.subprogram.name) 

4. execute body 

5. assert .pc=exited(fully.qualified.subprogram.name) 

6. assign output values to OUT parameters 

7. undeclare formal parameters 

The symbolic execution of straight-line code can be accomplished by one of the proof com- 
mands available for that purpose, such as until, execute, and apply. The symbolic execution 
of conditionals (if-then-else statements) may be accomplished by the cases or subcases 

proof commands, which split the proof into two cases, the then case and the else case. 
The symbolic execution of SDVS 12 Ada case statements (multi-way conditionals) may be 
accomplished by the meases proof command. The only dynamic SDVS 12 Ada constructs 
remaining are the (while and for) loop statements, discussed below. 

The symbolic execution of SDVS 12 Ada loops is performed by induction, through the proof 
command induct.  A basic recurse command for the symbolic execution of Ada programs 

7The static properties of Ada programs are fairly uninteresting.  They involve only the predefined envi- 
ronment discussed in the previous section. 
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with recursive procedures has been implemented in an experimental fashion, but is not yet 

available in SDVS 12. 

As one can see, the structure of an SDVS 12 Ada proof roughly assumes the structure of 
the program it proves. In fact, the dynamic structure of the proof will usually have a one- 
to-one correspondence with the structure of the Ada program being considered. However, 
writing the dynamic portion of the proof is usuaDy not the difficult part of the proof. The 

difficult part is proving static claims about the state without full decision procedures for 

the domains in question. 

Finally, we have implemented a "statement marking" capability for SDVS 12 Ada. One 
sets a mark in a comment line just before the statement being marked, using the notation 

"—Q" (no spaces), e.g. 

--S foo 
x   := 1; 

During symbobc execution, this will yield ".pc = at(foo)" at the point where the state 
delta(s) representing the marked statement become usable, so that a go ... until .pc = 
at (foo) command can be given to execute symbolically to the particular point in the Ada 
program just before the marked statement. 

Any statement can be so marked, and the program remains acceptable to an Ada compiler. 
A mark can be turned into a regular (uninterpreted in SDVS) comment simply by inserting 
a space between the "—" and the "©", or by beginning the whole line with an extra pair of 
hyphens (even one extra will do, so long as it's not followed by a space). 

4.3    EASY EXAMPLE OF AN ADA PROOF 

First we give the proof of correctness of a very trivial Ada program. Consider the program 

triv: 

with text_io; use text_io; 

with integer_io; use integer_io; 

procedure triv is 
x : integer; — inputs 

begin 

get(x); 

x := x + 1; 

put(x); 

end triv; 

We translate it to state deltas by the adatr command: 

<sdvs.l>    adatr 
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path name [testproofs/foo. ada] :    testproofs/manual/ada/triv.ada 

Reading parse tree file for Stage 4 Ada file —  "triv.ada" 

Translating Stage 4 Ada file —  "testproofs/manual/ada/triv.ada" 

<sdvs.2>   pp 
object:    ada 
file name[triv.ada] :    triv.ada 

alldisjoint(triv,.triv) 
covering(.triv,triv\pc,stdin,stdin\ctr.stdout.stdout\ctr) 
declare(stdiii, type (array ,1,range (stdin), type (polymorphic))) 

declare(stdin\ctr,type(integer)) 

.stdin\ctr « 1 
declare(stdout,type(array,1,range(stdout),type(polymorphic))) 

declare(stdout\ctr,type(integer)) 

.stdout\ctr =  1 

Now we create a state delta that claims that the value of x (the standard input) will go 

from 2 to 3, and be recorded in the standard output: 

<sdvs.2>    createsd 

name triu. sd 

[SD pre ada(triv.ada), ,stdin[l]=2 

comodD all 
mod[] all 
post #stdout[l] = 3, terminated (triv) 

We now prove triv.sd by repeated application: 

<sdvs.2>    prove 
state deltaD:    triv.sd 
proof [] :    < CR> 

open —  [sd pre: (ada(triv.ada),.stdin[l]  « 2) 

comod: (all) 
mod: (all) 

post: («stdout[1]  = 3,terminated(triv))] 

Complete the proof. 

<sdvs.2.1>    usable 

u(l)   [sd pre (true) 
comod (all) 

mod (triv\pc) 

post (<adatr procedure triv is 
I   :   integer 

begin 
get  (i); 
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end triv;>)] 

No usable quantified formulas. 

<sdvs.2.1> apply 
sd/number[highest applicable/once]: <CR> 

apply — [sd pre: (true) 

comod: (all) 

mod: (triv\pc) 

post: (<adatr procedure triv is 

x : integer 

begin 

get (x); 

end triv; >)] 

<sdvs.2.2>    usable 

u(l)   [sd pre:   (true) 
comod:   (all) 

mod:   (triv\pc,triv) 
post:   (alldisjoint(triv,.triv.x),covering(#triv,.triv.x), 

declared, type (integer)) , 
<adatr x   :   integer>)] 

No usable quantified formulas. 

<sdvs.2.2>    applydecls 

apply —   [sd pre:   (true) 
comod:   (all) 

mod:   (triv\pc,triv) 
post:   (alldisjoint(triv,.triv.x),covering(#triv,.triv.x), 

declared, type (integer)) , 
<adatr x   :   integer>)] 

apply —   [sd pre:   (true) 
comod:   (all) 

mod:   (triv\pc,triv) 
post:   (alldisjoint(triv,.triv,get\item), 

covering(#triv,.triv,get\item), 
declare(get\item,type(polymorphic)), 
<adatr get   d)>)] 

applydecls — declaration elaboration complete. 

<sdvs.2.4>    usable 

u(l)   [sd pre:   (true) 
comod:   (all) 

mod:   (triv\pc) 
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post:   (#triv\pc =  at(standard.text_io .get) , 
<adatr get   (x)>)] 

No usable quantified formulas. 

<sdvs.2.4>    apply 
sd/nunber[highest applicable/once]:    <CR> 

apply —   [sd pre:   (true) 
comod:   (all) 

mod:   (triv\pc) 
post:   (#triv\pc = at(standard.text-io.get), 

<adatr get   (x)>)] 

<sdvs.2.5>    usable 

u(l)   [sd pre:   (.triv\pc = at (standard.tertjo.get)) 
comod:   (all) 

mod:   (triv\pc,stdin\ctr,get\item) 
post:   (#get\item =  .stdin[.stdin\ctr], 

#stdin\ctr =  .stdin\ctr + 1, 
#triv\pc » exited(standard.text-io.get) , 
<adatr null; >)] 

No usable quantified formulas. 

<sdvs.2.5>    apply 
sd/number[highest applicable/once]:    <CR> 

apply —   [sd pre:   (.triv\pc = at (standard, text-io. get)) 
comod:   (all) 

mod:   (triv\pc,stdin\ctr,get\item) 
post:   (#get\item -  .stdin[.stdin\ctr], 

#stdin\ctr «  .stdin\ctr + 1, 
#triv\pc - exited(standard.text_io.get) , 
<adatr null;>)] 

<sdvs.2.6>    usable 

u(l)   [sd pre 
comod 

mod 
post 

(true) 
(all) 
(triv\pc,x) 
(#x *  .get\item, 
<adatr get   (x)>)] 

No usable quantified formulas. 

<sdvs.2.6>    apply 
sd/number [highest applicable/once]:    <CR> 

apply —   [sd pre:   (true) 
comod:   (all) 
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mod:   (triv\pc,x) 
post:   (#i =   .get\item, 

Odatr get   (x)>)] 

<sdvs.2.7>    usable 

u(l)   [sd pre:   (true) 
comod:   (all) 

mod:   (triv\pc,triv,get\item) 
post:   (covering(.triv,#triv,get\item),undeclare(get\item), 

Odatr get  (i)>)] 

No usable quantified formulas. 

<sdvs.2.7>    apply 
sd/number[highest applicable/once]:    <CR> 

apply —   [sd pre:   (true) 
comod:   (all) 

mod:   (triv\pc,triv,get\item) 
post:   (covering(.triv,#triv,get\item),undeclare(get\item), 

<adatr get   (x)>)] 

<sdvs.2.8>    usable 

u(l)   [sd pre:   (true) 
comod:   (all) 

mod:   (triv\pc,x) 
post:   (#i =  .1 +  1, 

Odatr x   := i +  1;>)] 

No usable quantified formulas. 

<sdvs.2.8>    apply 
sd/number [highest applicable/once]:    <CR> 

apply —   [sd pre:   (true) 
comod:   (all) 

mod:   (triv\pc,x) 
post:   (#x =  .x +  1, 

Odatr x   := x +  1;>)] 

We could continue typing applys until the proof (and program) terminates, but the same 
effect can also be achieved by the one proof command go: 

<sdvs.l>    prove 
state deltaG:    trtv.sd 
proof [] :    go 

open —   [sd pre:   (ada(triv.ada),.stdin[l]  = 2) 
comod:   (all) 

mod:   (all) 
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post: (#stdout[l] » 3,ter»iiiated(triv))] 

apply — sd pre (true) 

comod (all) 

mod (triv\pc) 

post (<adatr procedure triv is 

x : integer 

begin 

get (x); 

end triv; >)] 

apply — [sd pre 

comod 

mod 

post 

(true) 

(all) 

(triv\pc,triv) 

(alldisjoint(triv,.triv,r),covering(ttriv,.triv,x), 

declared, type (integer)) , 

<adatr i : integer>)] 

apply — [sd pre 
comod 

mod 

post 

(true) 

(all) 

(triv\pc,triv) 
(alldisjoint(triv,.triv,get\item), 
covering(ttriv,.triv,get\item), 
declare(get\item,type(polymorphic)), 

<adatr get (x)>)] 

apply — [sd pre: (true) 

comod: (all) 

mod: (triv\pc) 
post: (#triv\pc *  at(standard.text-io.get), 

<adatr get (x)>)] 

apply — [sd pre: '(.triv\pc ■ at (standard, text S.o. get)) 

comod: (all) 
mod: (triv\pc,stdin\ctr,get\item) 

post: (#get\item = .stdin[.stdin\ctr], 

#stdin\ctr = .stdin\ctr + 1, 
#triv\pc = exited(standard.text_io.get) , 

<adatr null; >)] 

apply — [sd pre: (true) 

comod: (all) 
mod: (triv\pc,x) 

post: (#x = .get\item, 

<adatr get (x)>)] 

apply —   [sd pre:   (true) 
comod:   (all) 

mod:   (triv\pc,triv,get\item) 
post:   (covering(.triv,«triv,get\item),undeclare(get\item), 

<adatr get   (x)>)] 

apply — [sd pre:   (true) 
comod:   (all) 
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mod:   (triv\pc,x) 
post:   (#x =  . x + 1, 

<adatr x   := x + 1; »] 

apply —   [sd pre:   (true) 
comod:   (all) 

mod:   (triv\pc,triv) 
post:   (alldisjoint(triv,.triv,put\item), 

covering(#triv,.triv,put\item), 
declare(put\item,type(polymorphic)), 
<adatr put   (x)>)] 

apply ~ [sd pre: (true) 
comod: (all) 

mod: (triv\pc,put\item) 
post: (#put\item =   .x, 

<adatr put   (x)>)] 

apply — [sd pre: (true) 

comod: (all) 

mod: (triv\pc) 

post: (#triv\pc = at(standard.text-io.put), 

<adatr put (x)>)] 

apply — [sd pre: (.triv\pc = at(standard.text_io.put)) 

comod: (all) 
mod: (triv\pc,stdout[.stdout\ctr],stdout\ctr) 

post: (#stdout[.stdout\ctr] = .put\item, 

#stdout\ctr = .stdout\ctr + 1, 

#triv\pc = exited(standard.textj.o.put), 

<adatr null;>)] 

apply — [sd pre: (true) 

comod: (all) 
mod: (triv\pc,triv,put\item) 

post: (covering(.triv,#triv,put\item),undeclare(put\item) , 

<adatr put (x)>)] 

apply — [sd pre: (true) 

comod: (all) 

mod: (triv\pc,triv,x) 

post: (covering(.triv,#triv,x) .undeclared) , 

<adatr x : integer>)3 

apply [sd pre: (true) 
comod: (all) 

mod: (triv\pc) 
post: (terminated(triv))] 

close —  15 steps/applications 
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4.4 NONTRIVIAL EXAMPLE OF AN ADA PROOF 

We give here an example of a proof of an Ada program containing enumeration types, 
records, in-out parameters, a procedure called within a loop, and a function. In the next 
section we consider offline characterization and proving lemmas about Ada procedures. In 
the final section we present another example proof, that of an SDVS 12 Ada program with 
packages and the "use" clause. 

The program discussed in this section is called WorkWeek, and it calculates the number of 
hours worked and rested in one week. See Figures 4 and 5. 

The state delta to be proven is workweek.sd: 

[sd pre 
mod 

post 

(ada(workweek.ada).range(stdout) *  1) 
(all) 
(#stdout[l] = l,terminated(workweek))] 

The proof workweek.proof (see Figures 6 and 7) is by induction, with two extra complica- 
tions: First, the universe of declared places changes inside the loop when the procedure is 
called. This necessitates the line let loop.universe = .workweek in the proof. Second, there 
must be a proof by enumerating subcases that for i le 5, (elt(.week[.i],.days.Saturday)). 

4.5     OFFLINE CHARACTERIZATION 

The Ada offline characterization facility comprises three commands: 

• the createadalemma command, which defines a lemma about an Ada subprogram 

(procedure or function), and which collects other necessary descriptive information 

from the user; 

• the proveadalemma command, which sets up an environment within which the state 
delta of the lemma can be proved — this must be at the top level of symbolic execution, 
and we do not allow lemmas dependent on an existing context; and 

• the invokeadalemma command, which uses a previously created lemma to construct 
a usable state delta, including the substitution of an actual program continuation for 
the unspecified (null) continuation, and the application of the resulting state delta. 

A fourth command adasubprogenv (a query command newly implemented in SDVS 12) is 
quite useful in connection with Ada offline characterization. It displays the mapping of fully 
qualified program names to uniquely qualified place names for all places constituting the 
environment for the proof of an adalemma about a subprogram. This assists the user to 
specify correctly these places in the statement and proof of the adalemma. In the absence 
of such a mapping, for a large program it can be difficult for the user to predict, simply by 
manual inspection of the Ada source code, the unique place names that will be automatically 

generated by the translator for the adalemma proof. 
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with text_io; use text_io; 

with integer-io; use integer_io; 

PROCEDURE WorkWeek IS 

TYPE days IS 

(monday, tuesday, Wednesday, thursday, friday, 

Saturday, Sunday); 

TYPE time IS 

RECORD 

work : integer; 

rest : integer; 

END record; 

week : ARRAY(1..7) OF days; 

divlabor : time; 

PROCEDURE Assign-Time Cday : IN days; 

work, rest : IN OUT integer) IS 

BEGIN 

IF day < Saturday 

THEN BEGIN 

work := work + 8; 

rest := rest + 16; 

END; 

ELSE rest := rest + 24; 

END IF; 
END Assign-Time; 

FUNCTION Check-Divlabor (work, rest : integer) 

RETURN integer IS 

BEGIN 

IF work = 40 AND rest = 128 

THEN RETURN 1; 

ELSE RETURN 0; 

END IF; 

END Check .Divlabor; 

i : integer; 

timecheck : integer; 

Figure 4: The Program WorkWeek, Part 1 
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BEGIN 

week(l) 

week(2) 

week(3) 

week(4) 

week(5) 

week(6) 

week(7) 

= monday; 

■ tuesday; 
= Wednesday; 
s thursday; 

= friday; 

= Saturday; 

= Sunday; 

divlabor.work := 0; 

divlabor.rest := 0; 

i := 1; 
WHILE i < 8 LOOP 

Assign-Time(week(i), divlabor.work, divlabor.rest); 

i :- i + 1; 

END LOOP; 

timecheck  := Check-Divlabor(divlabor.work,  divlabor.rest); 

put(tinecheck); 

END VorkWeek; 

Figure 5: The Program WorkWeek, Part 2 
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(adatr "testproofs/manual/ada/workweek.ada", 

prove workweek.sd 

proof: 

(applydecls, 

until #i = 1, 

letsd ul = u(l), 

letsd u2 = u(2), 

let loop.universe = .workweek, 

induct on:    . i 

from:      1 

to:        8 
invariants:  (formula(ul),fonnula(u2), 

covering(.workweek,loop.universe), 

.record(divlabor,work) 

= (if .i le 5 

then (.i - 1) * 8 

else 40), 
.record(divlabor.rest) 

= (if .i le 5 

then (.i - 1) * 16 

else 80 + (.i - 6) * 24)) 

(stdout\ctr,week) 

(diff(all,union(stdout\ctr,week))) 

close 

le 5 

comodlist: 

modlist: 

base proof: 

step proof: 

cases .i le 5 
then proof: 

(subcases .i 

modlist: 

subgoal: 

then proof: 

meases 

(case: 1 le .i 

proof: close 

case: 2 le .i 
proof: close 

case: 3 le .i 

proof: close 

case: 4 le .i 

proof: close 

case: 5 le .i 

proof: close) 

(elt(.week[.i],Saturday)) 

ft .i It 2 

ft .i It 3 

ft .i It 4 

ft .i It 5 

Figure 6: The Proof Work Week. Proof, Part 1 
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else proof: , 

go #i -  .i + 1, 

close) 

else proof: 

(subcases .i le 5 

modiist: 

subgoal:   (" (elt(.week[.i].Saturday))) 

then proof: 

else proof: 

meases 

(case: 6 le .i ft .i It 7 

proof: close 

case: 7 le .i 

proof: close), 

go #i = .i + 1, 

close) , 

go terminated(workweek), 

close)) 

Figure 7: The Proof Work Week. Proof, Part 2 

Perhaps the best way to discuss these commands is through an example. Below, we give 
an annotated SDVS session in which a lemma is created, proved, and invoked. The target 
program xtest (Figure 8) is very simple, but adequate for this ülustration. It includes a 
two-parameter procedure that exchanges the values of its two integer parameters, and a 

main program that invokes the procedure. 

The lemma will simply assert, in the form of a state delta, the fact that the procedure 
exchanges its parameters. It will be invoked twice in the proof of a state delta describing 
the effect of the program as a whole, which is simply this: if the input stream consists of 

three integers i, j, k, then the output stream will be j, k, i. 

First, we input a file that contains the predefined state delta describing the action of the 

test program: 

<sdvs.4>    pp 
object:    xtest.sd 

[sd pre:   (adadtest .ada) ) 
comod:   (all) 

mod:   (all) 
post:   (#stdout[l]  *  .stdin[2] ,#stdout[2]  »  .stdin[3] , 

#stdout[3]  ■   .stdin[l])] 

Next, we use the adatr command to parse and translate the program file: 
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with text_io; use text_io; 

with integer_io; use integer_io; 

PROCEDURE xtest IS 

x, y, z : integer := 1; 
PROCEDURE exchange(a, b : IN OUT integer) IS 

c : integer; 

BEGIN 

c := a; 

a := b; 

b := c; 

END exchange; 

BEGIN 

get(x); 

get(y); 

get(z); 

exchanged, y); 

exchange(y, z); 

put(x); 
put(y); 

put(z); 

END xtest; 

Figure 8: The Program Xtest 
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<sdvs.4>    adatr 
path name [testproof s/manual/ada/xtest .ada] :    testproofs/manual/ada/xtest.ada 

Previously translated Stage 4 Ada file 
—  "testproofs/manual/ada/xtest.ada" 

We can use the adasubprogenv query command to establish the correspondence between 
fully qualified Ada program names for objects constituting the execution environment of 
procedure exchange and the uniquely qualified place names that will be selected by the 
SDVS Ada translator to represent these objects: 

<sdvs.5>    adasubprogenv 
file name 

subprogram name 
qualified name 

testproof s/manual/ada/xtest.ada 
exchange 
xtest. exchange 

fully qualified name —> uniquely qualified name (= place name) 

XTEST — > XTEST 

XTEST.X —> X 

XTEST.Y —> Y 

XTEST.Z —> Z 

XTEST.EXCHANGE.A —>  A 

XTEST.EXCHANGE.B —> B 

XTEST.EXCHANGE.C —> C 

STANDARD. TEXT-ID. STDIN — > STDIN 

STANDARD.TEXT_IO.STDIN\CTR —> STDIN\CTR 

STANDARD.TEXTJEO.STDOUT —> STDOUT 

STANDARD. TEXT_IO.STDOUT\CTR —> STDOUT\CTR 

The createadalemma command is used to create the lemma, which will be a certain state 

delta: 

<sdvs.5>    createadalemma 
lemma name 
file name 

subprogram name 
qualified name 

precondit ions [] 
■od list[] 

postconditions 

exchange.lemma 
testproof s/manual/ada/xtest.ada 
exchange 
xtest.exchange 
<CR> 
a,b 
#a=.b,#b=.a 
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createadalenuna - - [sd pre: (.xtest\pc = at(xtest.exchange)) 

comod: (all) 

mod: (xtest\pc,a,b) 

post: (#a = .b,#b = .a, 

#xtest\pc = exited(xtest.exchange))] 

Notice that the system supplies additional entries for the state delta besides those given 
by the user. To explain these, and indeed the requirements for the usage of the other 
commands as well, we need to understand a little more about the symbolic execution of 
procedure calls. 

In general, the main steps in the symbolic execution of a call to procedure exchange are as 
follows: 

1. Declarations of the formal parameters of exchange are processed:   The universe of 
places is expanded to include new places a and b. 

2. The actual parameters are evaluated, and the resulting values are bound to the places 
a and b. 

3. The declarations of the local variables of exchange are processed:   The universe of 
places is expanded to include a new place c. 

4. The body of procedure exchange is executed symbolically. 

5. Undoing 3: The local variables are undeclared, so c is no longer among the places. 

6. in out and  out formal parameter values are assigned to the corresponding actual 
parameters: These values are determined and bound to the appropriate places. 

7. Undoing step 1: The formal parameters are undeclared, so a and b are deleted from 
the universe of places. 

Now we can explain the parts of the state delta of exchange.lemma. The condition .xtest\pc 
= at(xtest.exchange) becomes true exactly when the symbolic execution of a call to proce- 
dure exchange has completed step 2. Similarly, the condition #xtest\pc = exited(xtest.exchange) 
will be true when the symbolic execution of a call has completed step 5. Also, xtest\pc should 
always be part of the mod list for a state delta about any part of the program xtest. To iden- 
tify fully the code to which the lemma refers, one must supply a full path name to the file, 
and a fully qualified procedure name. The fully qualified name in this case is xtest.exchange; 
in general, it is a Ust in order of the containing procedure or block names, ending with the 
given procedure, all separated by periods. (If a containing block is unnamed, the parser 
supplies an internal name, which in principle could be used in this context; however, it is 
recommended that the user name the containing block explicitly.) 

The proveadalemma command causes SDVS to set up the environment for proving the 
lemma. 
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<sdvs.6>    proveadalemma 
Ada lemiia name:     exchange.lemma 

proof []:    <CR> 

open —   [sd pre:   (alldisjoint(itest,.itest), 
covering(.itest,itest\pc,i,y,z,stdin,stdin\ctr,stdout, 

stdout\ctr), 
declared .type(integer)) .declare (y,type (integer) ) , 
declare(z,type(integer)), 
declare(stdin,type(polymorphic)), 
declare(stdin\ctr.type(integer)), 
declare(stdout.type(polymorphic)), 
declare(stdout\ctr,type(integer)), 
<adatr null;;>) 

comod:   (all) 
mod:   (all) 

post:   ([sd pre:   (.itest\pc = at(itest.eichange)) 
comod:   (all) 

(diff(all, 
diff(uniondtest\pc,i,y,z, stdin, 

stdin\ctr,stdout,stdout\ctr,a, 
b), 

union(itest\pc,a,b)))) 
(#a =   .b,#b =   .a, 
«itest\pc = eiiteddtest .eichange))])] 

mod: 

post: 

apply — [sd pre: (true) 

comod: (all) 
mod: (itest\pc,itest) 

post: (alldisjoint(itest,.itest,a,b), 

covering(Sitest,.itest,a,b) , 

declared,type(integer)) ,declare(b.type(integer)) , 

<adatr null;>)] 

apply — [sd pre: (true) 

comod: (all) 
mod: (itest\pc,a,b) 

post: (#a = .a,#b = .b, 

<adatr null;>)] 

apply — [sd pre: (true) 
comod: (all) 

mod: (itest\pc) 
post: (#itest\pc = at(itest.eichange), 

<adatr null; >)] 

go — breakpoint reached 

open — [sd pre 

comod 

mod 

(.itest\pc = at(itest.eichange)) 

(all) 
(diff(all, 

diff(union (itest\pc,i,y,z,stdin,stdin\ctr,stdout, 

stdout\ctr,a,b), 

union(itest\pc,a,b)))) 

post: (#a = .b,#b «■ .a. 
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#xtest\pc = exited(xtest.exchange))] 

The environment at this point is like what would exist after the completion of steps 1 
and 2 of the symbolic execution of a call to the procedure. Examining the output above, 
we see that this environment was created by opening the proof of a state delta having a 
precondition establishing the necessary environment, and a postcondition consisting of the 
state delta of the lemma. The last step above is opening the proof of the latter state delta. 
The system's response to each intermediate apply command (these are internally generated) 
shows the state delta being applied, and the adatr fields show the particular Ada program 
statement with which the currently applied state delta is associated. 

The reader will notice that the last state delta opened for proof is not exactly the same 
as that of the lemma: the mod list is apparently more complex. This is done to allow 
for modification, during the proof, of new places created by declarations arising during the 
symbolic execution of the procedure body. The evaluation of the expression for the mod 
list will show that in the current context it describes no more than the places named in the 
original mod list. However, the value of this expression will change appropriately as other 
places are created through declaration, or deleted by undeclaration. 

The usable command will help us ascertain the current position in symbolic execution. 

<sdvs.6.4.1> usable 

u(l) [sd pre: (true) 
comod: (all) 

mod: (xtest\pc,xtest) 

post: (alldisjoint(xtest,.xtest,c),covering(#xtest,.xtest,c), 

declare(c,type(integer)), 

<adatr c : integer>)] 

No usable quantified formulas. 

This shows that symbolic execution is just at the point of the declaration of the local variable 
in the exchange procedure—i.e., just before step 3 of processing a procedure call. The next 
step will be an application of the state delta that is usable at this point. 

<sdvs.6.4.1> apply 
sd/number[highest applicable/once]: <CR> 

apply — [sd pre: (true) 

comod: (all) 

mod: (xtest\pc,xtest) 

post: (alldisjoint(xtest,.xtest,c), 

covering(#xtest,.xtest,c), 

declare(c,type(integer)), 

<adatr c : integer>)] 

<sdvs.6.4.2> usable 
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(1)   [sd pre (true) 

comod (all) 
■od (xtest\pc,c) 

post (#c =   .a, 
<adatr c   := a; >)] 

No usable quantified formulas. 

The application of the state delta to effect the necessary declaration brings us to the first 
executable statement in the body of the procedure. From here, we need only continue until 
the end of the procedure. 

<sdvs.6.4.2>    go 
until []:    #test\pc = exited(xtest.exchange) 

apply —   [sd pre 

comod 
mod 

post 

(true) 

(all) 
(itest\pc,c) 

(#c =   .a, 
<adatr c   := a;>)] 

apply —   [sd pre 
comod 

mod 
post 

(true) 
(all) 
(xtest\pc,a) 
(#a »   .b, 
<adatr a   := b; >)] 

apply —   [sd pre 
comod 

mod 

post 

(true) 

(all) 
(xtest\pc,b) 

(#b »  .c, 
<adatr b   := c;>)] 

apply —   [sd pre 
comod 

mod 
post 

(true) 

(all) 
(xtest\pc,itest,c) 
(covering(.xtest,#xtest,c).undeclare(c), 

<adatr c   :   integer>)] 

apply —   [sd pre 
comod 

mod 
post 

(true) 

(all) 
(xtest\pc) 
(#xtest\pc ■ exited(xtest.exchange), 

<adatr null;>)] 

close —  6 steps/applications 

close — 4 steps/applications 

proveadalemma —   [sd pre: (.rtest\pc =  at(xtest.exchange)) 

comod: (all) 
mod: (xtest\pc,a,b) 

post: (#a =   .b,#b =   .a, 
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#xtest\pc = exited(xtest.exchange))] 

The facts to be proved here are sufficiently simple that the proof of the lemma closes 
automatically. Having proved the lemma, the next step is to reinitialize SDVS and prove 
the overall state delta, xtest.sd. 

<sdvs.6>    init 
proof name[]:    <CR> 

State Delta Verification System,  Version 12 

Restricted to authorized users only. 

<sdvs.l>   prove 
state deltaQ:    xtest.sd 
proof [] :    < CR> 

open —   [sd pre:   (ada(xtest.ada)) 
comod:   (all) 

mod:   (all) 
post:   (#stdout[l]  =   .stdin[2] ,#stdout[2]  =  .stdin[3], 

#stdout[3]  =   .stdin[l])] 

Complete the proof. 

<sdvs.l.l> usable 

u(l) [sd pre: (true) 

comod: (all) 

mod: (xtest\pc) 

post: (<adatr procedure xtest is 

x, ... : integer := 1 

begin 

get (x); 

end xtest; >)] 

No usable quantified formulas. 

The go command can be used to cause the system to apply state deltas and perform in- 
stantiations until a specified condition holds. 

<sdvs.l.l>    go 
until [] :    #xtest\pc = at(xtest.exchange) 

apply —   [sd pre:   (true) 
comod:   (all) 

mod:   (xtest\pc) 
post:   (<adatr procedure xtest  is 

x,   ...   :   integer  :=  1 
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begin 

get (x); 

end xtest; >)] 

apply [sd pre 

comod 

mod 

post 

(true) 

(all) 
(xtest\pc,xtest) 

(alldisjoint(itest,.xtest,x), 

covering(#xtest,.xtest,x),declare(x,type(integer)), 

<adatr x, ... : integer := 1>)] 

apply — [sd pre 

comod 

mod 

post 

(true) 

(all) 

(xtest\pc,x) 

(#x - 1, 
<adatr x, . : integer := 1>)] 

apply — [sd pre 

comod 

mod 

post 

(true) 

(all) 
(xtest\pc,xtest) 

(alldisjoint(xtest,.xtest,y), 
covering(txtest,.xtest,y),declare(y,type(integer)) , 

<adatr x, ... : integer := 1>)] 

apply [sd pre: (true) 

comod: (all) 
mod: (xtest\pc,y) 

post: (#y =  1, 
<adatr x,   ... :   integer  : - 1»] 

apply — [sd pre: (true) 

comod: (all) 
mod: (xtest\pc,xtest) 

post: (alldisjoint(xtest,.xtest,z), 
covering («xtest,.xtest,z),declare(z,type(integer)), 

<adatr x, ... : integer :■ 1>)] 

apply — [sd pre: (true) 

comod: (all) 
mod: (xtest\pc,z) 

post: (#z = 1, 

<adatr x, . : integer 1»] 

apply — [sd pre: (true) 

comod: (all) 
mod: (xtest\pc,xtest) 

post: (alldisjoint(xtest,.xtest,get\item), 

covering(txtest,.xtest,get\item), 
declare(get\item,type(polymorphic)). 

<adatr get (x)>)] 

apply — [sd pre: (true) 
comod: (all) 
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mod:   (xtest\pc) 
post:   (#itest\pc = at (standard, textjo .get) , 

<adatr get   (x)>)] 

apply —   [sd pre:   (.xtest\pc = at(standard.text_io .get)) 
comod:   (all) 

mod:   (xtest\pc,stdin\ctr,get\item) 
post:   (#get\item =  .stdin[.stdin\ctr], 

#stdin\ctr =  .stdin\ctr +  1, 
#xtest\pc = exited(standard.text-io.get), 
<adatr null;>)] 

apply 

apply — 

apply 

apply 

apply 

[sd pre: (true) 

comod: (all) 

mod: (xtest\pc,x) 

post: (#x = .get\item, 

<adatr get (x)>)] 

[sd pre: (true) 

comod: (all) 

mod: (xtest\pc,xtest,get\item) 

post: (covering(.xtest,#xtest,get\item), 

undeclare(get\item), 

<adatr get (x)>)] 

[sd pre: (true) 

comod: (all) 

mod: (xtest\pc,xtest) 

post: (alldisjoint(xtest,.xtest,get\item 

covering(#xtest,.xtest,get\item!2), 

declare(get\item!2,type(polymorphic)), 

<adatr get (y)>)] 

[sd pre: (true) 

comod: (all) 

mod: (xtest\pc) 

post: (#xtest\pc = at(standard.text-io.get) , 

<adatr get (y)>)] 

[sd pre: (.xtest\pc = at(standard.text_io.get)) 

comod: (all) 
mod: (xtest\pc,stdin\ctr,get\item!2) 

post: (#get\item!2 = .stdin[.stdin\ctr], 

#stdin\ctr = .stdin\ctr + 1, 

#xtest\pc = exited(standard.text_io.get) , 

<adatr null;>)] 

apply — 

apply — 

[sd pre: (true) 

comod: (all) 

mod: (xtest\pc,y) 

post: (#y = .get\item!2, 

<adatr get (y)>)] 

[sd pre: (true) 

comod: (all) 
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■od: (xtest\pc,xtest,get\itea!2) 
post: (covering(.xtest,#xtest,get\item!2), 

undeclare(get\item!2) , 

<adatr get (y)>)] 

apply [sd pre 

coiiod 

mod 

post 

(true) 

(all) 
(itest\pc,xtest) 
(alldisjoint(xtest,.xtest,get\item!3), 

covering(#xtest,.xtest,get\item(3), 

declare(get\item!3,type(polymorphic)), 

<adatr get (z)>)] 

apply [sd pre 

comod 

mod 

post 

(true) 

(all) 

(xtest\pc) 

(#xtest\pc = at(standard.text. 

<adatr get (z)>)] 

.o.get), 

apply [sd pre 
COHOd 

mod 

post 

(.xtest\pc ~  at(standard.text_io.get)) 

(all) 
(xtest\pc,stdin\ctr,get\item!3) 

(#get\item!3 = .stdin[. stdin\ctr] , 

#stdin\ctr = .stdin\ctr + 1, 
#xtest\pc = exited(standard.text-io.get), 

<adatr null;>)] 

apply —   [sd pre:   (true) 
coinod:   (all) 

mod:   (xtest\pc,z) 
post:   (#z =  .get\item!3, 

<adatr get   (z)>)] 

apply — [sd pre: (true) 

comod: (all) 

mod: 

post: 

(xtest\pc,xtest,get\item!3) 

(covering(.xtest,#xtest,get\item!3), 

undeclare(get\item!3), 

<adatr get (z)>)] 

apply — [sd pre: (true) 

comod: (all) 

mod: 

post: 

(xtest\pc,xtest) 

(alldisjoint(xtest,.xtest,a,b), 

covering(fxtest,.xtest,a,b), 

declare(a,type(integer)),declare(b,type(integer)), 

<adatr exchange (x, ...)>)] 

apply — [sd pre: (true) 

comod: (all) 
mod: (xtest\pc,a,b) 

post: (#a = .x,#b - .y, 

<adatr exchange  (x, ,.)»] 

apply —   [sd pre:   (true) 
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comod: (all) 

mod: (xtest\pc) 

post: (#xtest\pc 

<adatr ex 

= at(xtest 

change (x, 

exchange), 

...)»] 

g° ~ breakpoint reached 

<sdvs 1 26> usable 

u(l)   [sd pre:   (true) 
comod:   (all) 

mod:   (xtest\pc,xtest) 
post:   (alldisjoint(xtest,.xtest,c),covering(#xtest,.xtest,c), 

declare(c,type(integer)), 
<adatr c   :   integer>)] 

No usable quantified formulas. 

Symbolic execution is now at precisely the point where steps 1 and 2 of the first call to the 
exchange procedure have been completed, where the next step would be the instantiation for 
the declaration of the local variable. Instead, we can invoke the lemma to bypass symbolic 
execution of the procedure body. 

<sdvs.l.26>    invokeadalemma 
Ada lemma name:    exchange.lemma 

invokeadalemma —   [sd pre:   (.xtest\pc = at(xtest.exchange)) 
comod:   (all) 

mod:   (xtest\pc,a,b) 
post:   (#a =   .b,#b =   .a, 

#xtest\pc = exiteddtest .exchange), 
<adatr return;>)] 

<sdvs.l.27>    usable 

u(l)   [sd pre: (.xtest\pc = exited(xtest.exchange)) 
comod: (all) 

mod: (xtest\pc) 
post: (<adatr exchange  (x,   ...)>)] 

u(2)   [sd pre:   (true) 
comod:   (all) 

mod:   (xtest\pc) 
post:   (#xtest\pc = exiteddtest .exchange) , 

<adatr exchange  (x,   ...)>)] 

No usable quantified formulas. 

<sdvs.l.27>    apply 
sd/number[highest applicable/once]:    <CR> 

apply —   [sd pre:   (.xtest\pc = exiteddtest .exchange)) 
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COMOd 

mod 

post 

<sdvs.l.28>    usable 

(all) 

(xtest\pc) 

(<adatr exchange (x, ...)>)] 

u(l) [sd pre 
comod 

mod 

post 

(true) 

(all) 
(xtest\pc,x,y) 

(#x = .a,#y - .b, 

<adatr exchange (x, ...)>)] 

No usable quantified formulas. 

This point immediately follows the completion of step 5. Two more state deltas are applied 

to complete steps 6 and 7. 

< sdvs. 1.28 >    apply 
sd/number[highest applicable/once]:    2 

apply —   [sd pre:   (true) 
comod:   (all) 

mod:   (xtest\pc,x,y) 
post:   (#x =   .a,#y =   .b, 

<adatr exchange  (x,   ...)>)] 

apply —   [sd pre 
comod 

mod 
post 

<sdvs.l.30>    usable 

(true) 

(all) 

(xtest\pc,xtest,a,b) 
(covering(.xtest,#xtest,a,b),undeclare(a,b), 

<adatr exchange (x, ...)>)] 

u(l) [sd pre 
comod 

mod 

post 

(true) 

(all) 
(xtest\pc,xtest) 
(alldisjoint(xtest,.xtest,a!2,b!2), 

covering(#xtest,.xtest,a!2,b!2), 
declare(a!2,type(integer)).declare(b!2.type(integer)), 

<adatr exchange (y, ...)>)] 

No usable quantified formulas. 

This is the beginning of the next Ada statement. 

We go on to the point where the lemma can be invoked again, invoke it, and then apply 
the state deltas to complete the return from the call. 

<sdvs.l.30>    go 
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until []: #xtest\pc = at(xtest.exchange) 

apply — [sd pre: (true) 

comod: (all) 

mod: (xtest\pc,xtest) 

post: (alldisjoint(xtest, .xtest,a!2,b!2), 

covering(#xtest,.xtest,a!2,b!2), 

declare(a!2,type(integer)), 

declare(b!2,type(integer)), 

<adatr exchange (y, ...)>)] 

apply — [sd pre: (true) 

comod: (all) 

mod: (xtest\pc,a!2,b!2) 

post: (#a!2 = .y,#b!2 = .z, 

<adatr exchange (y, ..)»] 

apply —   [sd pre:   (true) 
comod:   (all) 

mod:   (xtest\pc) 
post:   (#xtest\pc = at(xtest.exchange), 

<adatr exchange  (y,   ...)>)] 

go — breakpoint reached 

<sdvs.l.33>    invokeadalemma 
Ada lemma name:    exchange.lemma 

invokeadalemma —   [sd pre:   (.xtest\pc = at(xtest.exchange)) 
comod:   (all) 

mod:   (xtest\pc,a!2,b!2) 
post:   (#a!2 =   .b!2,#b!2 =   .a!2, 

#xtest\pc = exited(xtest.exchange), 

<adatr return;>)] 

<sdvs.l.34> apply 
sd/number[highest applicable/once]: 3 

apply — [sd pre: (.xtest\pc = exited(xtest.exchange)) 

comod: (all) 

mod: (xtest\pc) 

post: (<adatr exchange (y, ...)>)] 

apply — [sd pre: (true) 
comod: (all) 

mod: (xtest\pc,y,z) 

post: (#y = .a!2,#z = .b!2, 
<adatr exchange (y, ..)»] 

apply — [sd pre: (true) 

comod: (all) 
mod: (xtest\pc,xtest,a!2,b!2) 

post: (covering(.xtest,#xtest,a!2,b!2),undeclare(a!2,b!2), 

<adatr exchange (y, ...)>)] 
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<sdvs.l.37>    usable 

u(l) [sd pre 
comod 

mod 
post 

(true) 
(all) 
(xtest\pc,xtest) 
(alldisjoint(xtest,.xtest,put\item), 
covering(#xtest,.xtest,put\item), 
declare(put\item,type(polymorphic)), 
<adatr put   (i)>)] 

No usable quantified formulas. 

We now simply go on through the rest of the test program. 

<sdvs.l.37>   go 
until []:    terminated(xtest) 

apply —   [sd pre:   (true) 
comod:   (all) 

mod:   (xtest\pc,xtest) 
post:   (alldisjoint(xtest,.xtest,put\item), 

covering(#xtest,.xtest,put\item), 
declare(put\item,type(polymorphic)), 
<adatr put   (x)>)] 

apply —   [sd pre:   (true) 
comod:   (all) 

mod:   (xtest\pc,put\item) 
post:   (#put\item =  .x, 

<adatr put   (x)>)] 

apply — [sd pre: (true) 

comod: (all) 
mod: (xtest\pc) 

post: (#xtest\pc = at(standard.text_io.put) , 

<adatr put (x)>)] 

apply — 

apply — 

apply — 

[sd pre: (.xtest\pc = at (standard. text_io .put)) 

comod: (all) 
mod: (xtest\pc,stdout[.stdout\ctr],stdout\ctr) 

post: (#stdout[.stdout\ctr] = .put\item, 

#stdout\ctr = .stdout\ctr + 1, 
#xtest\pc «■ exited(standard.text_io. put), 

<adatr null;>)] 

[sd pre:   (true) 
comod:   (all) 
■od:   (xtest\pc,xtest,put\item) 

post:   (covering(.xtest,#xtest,put\item), 
undeclare(put\ite«), 
<adatr put   (x)>)] 

[sd pre:   (true) 
comod:   (all) 
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mod: (itest\pc,itest) 

post: (alldisjoint(itest,.xtest,put\item!2), 

covering(#xtest,.xtest,put\item!2), 

declare(put\item!2,type(polymorphic)), 

<adatr put (y)>)] 

apply — [sd pre: (true) 

comod: (all) 
mod: (xtest\pc,put\item!2) 

post: (#put\item!2 = .y, 

<adatr put (y)>)] 

apply — [sd pre: (true) 

comod: (all) 

mod: (xtest\pc) 

post: (#xtest\pc = at(standard.textjio.put), 

<adatr put (y)>)] 

apply — [sd pre: (. xtest \pc = at (standard, text J.o. put)) 

comod: (all) 
mod: (xtest\pc,stdout[.stdout\ctr],stdout\ctr) 

post: (#stdout[.stdout\ctr] = .put\item!2, 

#stdout\ctr = .stdout\ctr + 1, 
#xtest\pc = exited(standard.text-io.put), 

<adatr null;>)] 

apply — [sd pre: (true) 

comod: (all) 
mod: (xtest\pc,xtest,put\item!2) 

post: (covering(.xtest,#xtest,put\item!2), 

undeclare(put\item!2), 

<adatr put (y)>)] 

apply — [sd pre: (true) 

comod: (all) 
mod: (xtest\pc,xtest) 

post: (alldisjoint(xtest,.xtest,put\item!3), 

covering(#xtest,.xtest,put\item!3), 

declare(put\item!3,type(polymorphic)), 

<adatr put (z)>)] 

apply — [sd pre: (true) 

comod: (all) 
mod: (xtest\pc,put\item!3) 

post: (#put\item!3 = . z, 

<adatr put (z)>)] 

apply — [sd pre: (true) 

comod: (all) 

mod: (xtest\pc) 
post: (#xtest\pc = at(standard.text_io.put), 

<adatr put (z)>)] 

apply — [sd pre: (.xtest\pc = at (standard, text J.O. put)) 

comod: (all) 
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■od: (xtest\pc,stdout[.stdout\ctr],stdout\ctr) 
post: (#stdout[.stdout\ctr] ■ .put\item!3, 

#stdout\ctr = .stdout\ctr + 1, 

#xtest\pc = exited(standard.text-io.put) , 

<adatr null;>)] 

close — 50 steps/applications 

<sdvs.2> ps 

<<  initial state >> 
proved xtest.sd <1> 
—>  you are here  <— 

The postcondition of xtest.sd is sufficiently simple that the system can verify it without 

assistance, and the proof closes automatically. 

The reader may well wonder why the Ada lemma can be invoked only after a caD to the 
procedure has been partly processed and why afterwards we still have to apply two more 
state deltas to complete the call. Why shouldn't the system be programmed to perform these 
instantiations and state delta applications automatically? In fact, there is no reason why 
this wouldn't have worked in our example. But here, all the conditions to be proven were 
simple enough that they could be verified by the simpbfier and propagated automatically. 
With conditions that are more complex, perhaps involving quantifiers, this would not be the 
case, and the user would need to assist the system in propagating these conditions through 

the steps at the beginning and end of the procedure call. 

4.6    AN EXAMPLE PROOF WITH ADALEMMA 

In this final section we give one more example of an SDVS 12 Ada proof for the program 
packages (Figures 9, 10, and 11). This rather complex program has a rau//body, but contains 
functions testl through test4, and as procedures test5 and exceptions. The adalemma that 
we state and prove characterizes the behavior of the procedure exceptions; ah the other 
subprograms are irrelevant (but it is comforting to see that SDVS knows this.) This proof 
illustrates the SDVS capability for packages and exceptions. It essentially claims that the 
two values 5 and 23 are output, and then the procedure exceptions is exited. The label 

#packages\pc = at(@!ll) 

is generated internally. 

We create an adalemma and proof as follows: 

<sdvs.2>    adatr 
path name [testproofs/manual/ada/xtest. ada] :    testproojs/manual/ada/packages.a 

Reading parse tree file for Stage 4 Ada file — "packages.a" 
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with text_io; use text_io; 

with integer_io; use integer.io; 

procedure packages is 

function testl return integer is 

package p is 

x: integer := 10; 

end p; 

use p; 

begin 

return x; 

end testl; 

function test2 return boolean is 

x : boolean := true; 

package p is 

x: integer := 10; 

end p; 

use p; 

begin 

return x; 

end test2; 

function test3 return integer is 

package pi is 

x : integer; 

end pi; 

package p2 is 

x : boolean; 

end p2; 

use pi, pi; 

begin 

return x; 

end test3; 

Figure 9: Program Packages, Part 1 
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function test4 return integer is 

package pi is 

x : integer; 

end pi; 

package p2 is 

x : boolean; 

end p2; 

use pi, p2; 

begin 
return pi.x; 

end test4; 

procedure test5 is 

package pO is 

v: integer; 

end pO; 

package pi is 

x: integer; 

function i  return integer; 

use pO; 

package p is 

z: integer := v; 

u: integer := x; 

use pi; 
package q is 

w: integer; 

end q; 

end p; 

end pi; 
package p2 is 

x: boolean; 

end p2; 

use pi.p; 

use p2; 

use q; 

package body pi is 

function f return integer is 

begin 

return 5; 

end f; 

end pi; 

begin 

null; 

= 2; 
= true; 

- l; 
end test5; 

Figure 10: Program Packages, Part 2 
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procedure exceptions is 

foo: exception; 

x: integer; 
function f (z: integer) return integer is 

begin 

raise foo; 

exception 

when foo => return 1; 

end f; 

package p2 is 

x: integer; 

procedure p(z: integer); 

package p3 is 

x: integer; 

end p3; 

end p2; 

package body p2 is 

w: integer := f(0); 

procedure p(z: integer) is 

begin 

w := z; 

put(w); 

raise foo; 

end p; 

begin 

x := 5; 

put(5); 

raise foo; 

exception 

«hen foo => x := 23; 

put(x); 

raise; 

end p2; 

begin 

p2.p(86); 

exception 

when foo => put(100); 

end exceptions; 

begin 

null; 

end packages; 

Figure 11: Program Packages, Part 3 (conclusion) 
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Translating Stage 4 Ada file —  "testproofs/manual/ada/packages.a" 

<sdvs.3>    createadalemma 
lemma name 
file name 

subprogram name 
qualified name 

preconditions [] 
mod list[] 

postconditions 

packages.exceptions.lemma 
testproofs/manual/ada/packages.a 
exceptions 
packages.exceptions 
alldisjoint(stdout[l], stdout[2j), .stdout\ctr = 1 
all 
#stdout[l]=5, #stdout[2]=23 

createadalemma ~   [sd pre:   (.packages\pc = at(packages.exceptions), 
alldisjoint(stdout[l] ,stdout[2]) , 
.stdout\ctr -  1) 

comod:   (all) 
mod:   (packages\pc,all) 

post:   (#stdout[l]  = 5,#stdout[2]  = 23, 
»packages\pc - exited(packages.exceptions))] 

<sdvs.4>    proveadalemma 
Ada lemma name:    packages.exceptions.lemma 

proof [] :    < CR> 

open—   [sd pre:   (alldisjoint(packages,.packages), 
covering(.packages,packages\pc,stdin,stdin\ctr,stdout, 

stdout\ctr), 
declare(stdin,type(polymorphic)), 
declare(stdin\ctr,type(integer)), 
declare(stdout,type(polymorphic)), 
declare(stdout\ctr,type(integer)), 
<adatr null; ;>) 

comod:   (all) 
mod:   (all) 

post:   ([sd pre:   (.packages\pc - at(packages.exceptions), 
alldisjoint(stdout[1],stdout[2]), 
.stdout\ctr = 1) 

comod:   (all) 
mod:   (diff(all, 

diff(union(packages\pc,stdin,stdin\ctr, 
stdout,stdout\ctr), 

union(packages\pc,all)))) 
post:   (#stdout[l]  = 5,#stdout[2]  = 23, 

#packages\pc - exited(packages.exceptions))])] 

apply —   [sd pre 
comod 

mod 
post 

(true) 
(all) 
(packages\pc) 
(#packages\pc s at(packages.exceptions), 
<adatr null; >)] 

go — breakpoint reached 

open —   [sd pre:   (.packages\pc - at(packages.exceptions), 
alldisjoint(stdout[l],stdout[2]) ,.stdout\ctr =  1) 

comod:   (all) 
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mod: (diif(all, 
diff(union(packages\pc,stdin,stdin\ctr,stdout, 

stdout\ctr), 

union(packages\pc,all)))) 

post: («stdout[1] = 5,«stdout[2] = 23, 
#packages\pc = exited(packages.exceptions))] 

<sdvs.4.2.1> go 
until[] : #packages\pc exited(packages.exceptions) 

apply — [sd pre: (true) 

comod: (all) 
mod: (packages\pc,packages) 

post: (alldisjoint(packages,.packages,except ions.x), 

covering(«packages,.packages,exceptions.!), 

declare(exceptions.!,type(integer)), 

<adatr x : integer>)] 

apply — [sd pre: (true) 

comod: (all) 
mod: (packages\pc,packages) 

post: (alldisjoint(packages,.packages,exceptions.p2.x), 

covering(«packages,.packages,exceptions.p2.x), 

declare(exceptions.p2.x,type(integer)), 

<adatr x : integer>)] 

apply — [sd pre: (true) 

comod: (all) 

mod: (packages\pc,packages) 
post: (alldisjoint(packages,.packages,p3.x), 

covering(«packages,.packages,p3.x), 

declare(p3.x,type(integer)), 

<adatr x : integer>)] 

apply — [sd pre: (true) 

comod: (all) 

mod: (packages\pc,packages) 

post: (alldisjoint(packages,.packages,exceptions.f), 

covering(«packages,.packages,exceptions.f), 

declare(exceptions.I,type(integer)), 

<adatr null;>)3 

apply — [sd pre: 

comod: 

mod: 

post: 

(true) 

(all) 
(packages\pc,packages) 

(alldisjoint(packages,.packages,f.z), 

covering(«packages,.packages,f.z), 

declare(f.z,type(integer)), 

<adatr f (0)>)] 

apply — [sd pre: (true) 

comod: (all) 

mod: (packages\pc,f.z) 

post: («f.z = 0, 

<adatr f (0)>)] 
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apply [sd pre 

comod 

mod 

post 

(true) 

(all) 

(packages\pc) 
(»packages\pc » at(packages.exceptions.i), 

<adatr f (0)>)] 

apply — [sd pre: (true) 

comod: (all) 

mod: (packages\pc) 
post: (#packages\pc at(e!ll), 

[sd pre 

comod 

mod 

post 

(true) 

(all) 
(packages\pc,exceptions.!) 

(»exceptions.! -  1, 

<adatr return 1 ;>)])] 

apply — [sd pre: (true) 

comod: (all) 
mod: (packages\pc,exceptions.!) 

post: (»exceptions.f = 1, 

<adatr return 1;>)] 

apply [sd pre 

comod 

mod 
post 

(true) 

(all) 
(packages\pc) 
(»packages\pc exited(packages.exceptions.f), 

[sd pre 

comod 

mod 

post 

(true) 

(all) 
(packages\pc.packages ,x.z) 

(covering(.packages,«packages,i.z), 

undeclared .z) , 
<adatr i (0)>)])] 

apply — [sd pre: (true) 
comod: (all) 

mod: (packages\pc,packages,f.z) 
post: (covering(.packages.»packages,I.z).undeclare(f.z), 

<adatr I (0)>)] 

apply — [sd pre: (true) 
comod: (all) 

mod: (packages\pc,packages) 

post: (alldis joint (packages, . packages, p2. tr), 
covering(»packages,.packages,p2.w), 

declare(p2.w,type(integer)), 

<adatr w : integer := i (0)>)] 

apply — [sd pre: (true) 

comod: (all) 
mod: (packages\pc,p2.w) 

post: (#p2.w = .exceptions.f, 

<adatr w : integer := f (0)>)] 

apply — [sd pre: (true) 
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comod: (all) 
mod: (packages\pc,except ions.p2.x) 

post: («exceptions.p2.x = 5, 

<adatr x := 5;>)] 

apply — [sd pre: (true) 

comod: (all) 
mod: (packages\pc,packages) 

post: (alldisjoint(packages,.packages,put\item), 

covering(«packages,.packages,put\item), 

declare(put\item,type(polymorphic)), 

<adatr put (5)>)] 

apply — [sd pre: (true) 

comod: (all) 

mod: (packages\pc,put\item) 

post: (#put\item = 5, 

<adatr put (5)>)] 

apply — [sd pre: (true) 
comod: (all) 

mod: (packages\pc) 

post: (#packages\pc = at(standard.text_io.put) , 

<adatr put (5)>)] 

apply — [sd pre: (.packages\pc = at (standard, text J.o. put)) 

comod: (all) 
mod: (packages\pc,stdout[.stdout\ctr],stdout\ctr) 

post: (#stdout[.stdout\ctr] = .put\item, 

#stdout\ctr = .stdout\ctr + 1, 

#packages\pc = exited (standard, text JLO .put) , 

<adatr null; >)] 

apply — [sd pre: (true) 

comod: (all) 
mod: (packages\pc,packages,put\item) 

post: (covering(.packages,»packages,put\item), 

undeclare(put\item), 

<adatr put (5)>)] 

apply — [sd pre: (true) 

comod: (all) 

mod: (packages\pc) 

post: (#packages\pc = at(C!18), 

[sd pre: (true) 

comod: (all) 
mod: (packages\pc,except ions.p2.x) 

post: («exceptions.p2.x = 23, 

<adatr x := 23;>)])] 

apply — [sd pre: (true) 

comod: (all) 
mod: (packages\pc,except ions.p2.x) 

post: («exceptions.p2.x = 23, 

<adatr x := 23;>)] 
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apply — [sd pre: (true) 
comod: (all) 

mod: (packages\pc,packages) 

post: (alldisjoint(packages,.packages,put\item!2), 
covering(»packages,.packages,put\item!2), 

declare(put\item!2,type(polymorphic)), 

<adatr put (x)>)] 

apply — [sd pre: (true) 

comod: (all) 
mod: (packages\pc,put\iteni!2) 

post: (#put\item!2 ■ .exceptions.p2.x, 
<adatr put (x)>)] 

apply — [sd pre: (true) 

comod: (all) 
mod: (packages\pc) 

post: (#packages\pc = at(standard.text-io.put) , 

<adatr put (x)>)] 

apply ~ [sd pre: (.packages\pc >■ at(standard.text_io.put)) 
comod: (all) 

mod: (packages\pc,stdout[.stdout\ctr],stdout\ctr) 

post: (#stdout[.stdout\ctr] = .put\item!2, 

#stdout\ctr = .stdout\ctr + 1, 
#packages\pc = exited(standard.text_io.put), 

<adatr null; >)] 

apply — [sd pre: (true) 

comod: (all) 

mod: 
post: 

(packages\pc.packages,put\item!2) 

(covering(.packages,«packages,put\item!2), 

undeclare(put\ite«!2), 

<adatr put (x)>)] 

apply — [sd pre: 

comod: 

mod: 

post: 

(true) 

(all) 
(packages\pc) 

( [sd pre 

comod 

mod 

post 

(true) 

(all) 
(packages\pc.packages, p2. w) 

(covering(.packages,«packages,p2.w), 

undeclare(p2.w), 

<adatr w : integer := i (0)>)])] 

apply [sd pre 

comod 

mod 

post 

(true) 

(all) 
(packages\pc,packages,p2.w) 
(covering(.packages,«packages,p2.w), 

undeclare(p2.w), 

<adatr w : integer := t  (0)>)] 

apply — [sd pre: (true) 
comod: (all) 
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mod: (packages\pc.packages,p3.x) 

post: (coveringC.packages,«packages,p3.x), 

undeclare(p3.i), 

<adatr x : integer>)] 

apply — [sd pre: (true) 

comod: (all) 

mod: (packages\pc,packages,exceptions.p2.x) 

post: (covering(.packages,»packages,except ions.p2.x), 

undeclare(exceptions.p2.x), 

<adatr x : integer>)] 

apply — [sd pre: (true) 

comod: (all) 

mod: (packages\pc,packages,exceptions.!) 

post: (covering(.packages,»packages,exceptions.!), 

undeclare(exceptions.!), 

<adatr x : integer>)] 

apply — [sd pre: (true) 

comod: (all) 

mod: (packages\pc) 

post: (#packages\pc = exited(packages.exceptions), 

[sd pre: (true) 

comod: (all) 

mod: (packages\pc) 

post: (<adatr null;>)])] 

close — 32 steps/applications 

close — 2 steps/appl ications 

proveadalemma — [sd pre: (.packages\pc = at(packages.exceptions), 

alldisjoint(stdout [1] , stdout [2]) , 

.stdout\ctr = 1) 

comod: (all) 

mod: (packages\pc,all) 

post: (#stdout[l] = 5,#stdout[2] = 23, 
#packages\pc = exited(packages.exceptions))] 
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5    INTERACTION WITH VHDL 

VHDL (VHSIC Hardware Description Language) is an IEEE standard hardware description 
language, for which [24] is the definitive reference. SDVS 12 has the capability to translate 
from a subset of the language — Stage 3 VHDL — into state deltas, and to prove claims 
about the resulting hardware description representations. To run the VHDL test proofs, 

type run-test-proofs *vhdl-tests*. 

We present a brief description of the Stage 3 VHDL language subset and an example proof 
of a property of a VHDL hardware description. The Stage 3 VHDL translator itself is 

documented in detail in [66], on which the next section is based. 

Our projections for the partition of VHDL into language subsets are set forth in [29] (though 
the features actually included in the subsets have deviated somewhat from this plan). Ex- 
ample correctness proofs for hardware descriptions written in the initial subset, Core VHDL, 
are discussed in [54]. The translator for the second subset, Stage 1 VHDL, is described in 
[53], and that for the third subset, Stage 2 VHDL, is described in [52]. For further infor- 
mation on the evolution of the state delta semantics for VHDL, refer to [25], [26], [30], and 
[27]. The VHDL translator is invoked with the command vhdltr, which operates like adatr, 
but takes as argument the name of a file containing the VHDL description to be translated. 

5.1    INTRODUCTION 

Prior to 1987, we adapted SDVS to handle a subset of the hardware description language 
ISPS. However, ISPS has serious limitations regarding the specification of hardware at 
levels other than the register transfer level. In 1988 we documented a study of some of the 
hardware verification research being performed outside Aerospace and investigated VHDL, 
an IEEE and DoD standard hardware description language released in December 1987. We 
selected VHDL as a possible medium for hardware description within SDVS. 

Prerequisites for adapting SDVS to VHDL are (1) to define VHDL semantics formally in 
terms of SDVS's underlying logic (the state delta logic) and (2) to implement a translator 
from VHDL to the state delta logic. As with the incorporation of Ada into SDVS, the 
approach taken with VHDL has been to implement increasingly complex language subsets; 
this enables a graded, structured approach to hardware verification. 

In 1989 we defined an initial subset of VHDL, called Core VHDL, that captured the essen- 
tial behavioral features of VHDL. We defined both the concrete syntax and abstract syntax 
for Core VHDL, formally specified its semantics and, on the basis of this semantic defini- 
tion, implemented a Core-VHDL-to-state-delta translator. In 1990, SDVS was enhanced to 
provide the capability of verifying hardware descriptions written in Core VHDL. In 1991 
and 1992, the translator underwent extensive revisions to accommodate Stage 1 VHDL and 
Stage 2 VHDL, respectively. The translator for the SDVS 12 VHDL language subset, Stage 
3 VHDL, was implemented in 1993. 

The VHDL translator essentially functions as a simulator kernel, maintaining a clock and a 

211 



list of future events that are defined as state deltas. For Core VHDL, however, the translator 
transformed possibly multiple Core VHDL statements: sequential statements between WAIT 
statements within a process were all translated and then composed into a single state delta. 
The translator updated the clock to the next time at which a signal driver became active 
or a process resumed. As the clock advanced, the translator merged the composite state 
deltas into a single state delta that specified the behavior of all processes at that point in 

the execution. 

For Stage 1 VHDL, we reevaluated the feasibility of using composition in the translation 

of VHDL to state deltas, and concluded that although composition had initially seemed 
viable in the case of Core VHDL, it is impossible in principle to apply the technique to 

more complex VHDL subsets, as the attempt would require the ability to compose over 
sections of VHDL code that would necessitate static proof in SDVS. More generally, the 

ability to compose over arbitrary WAIT-bracketed code in PROCESS statements would be 
tantamount to the automatic construction of correctness proofs without user intervention 

— a theoretically undecidable problem. 

Therefore, we decided to abandon composition for Stage 1 VHDL and succeeding SDVS 
VHDL subsets. Instead, within a given execution (simulation) cycle, processes are translated 
sequentially, in the order in which they appear in the VHDL description, and the user has 
control over stepping through the sequential statements within each process. Thus, rather 
than trying to have the VHDL translator model the concurrency of the processes, we chose 
to take for granted a certain "metatheorem" about VHDL: that any two sequentializations 
of the processes are equivalent. A brief justification for this point of view is that the problem 

of mutual exclusion is not a concern in VHDL, since 

• all variables are local to the process in which they are declared; and 

• distinct processes modify distinct drivers of a given signal (known as a resolved signal), 
and the ultimate signal value is obtained by the application of a user-defined resolution 

function.8 

A gratifying benefit of the revised translation strategy is that the understandability of the 
resulting proofs has been remarkably improved — the dynamic flow of process execution 
precisely reflects the simulation semantics of VHDL (as defined in the VHDL Language 
Reference Manual [24]), but with the crucial aspect of symbolic execution (the use of ab- 
stract values rather than concrete) thrown in. The current VHDL translator thus function: 
as a "symbolic simulator," and is a considerably more intuitive proof engine than was its 

incarnation for Core VHDL. 

5.2    STAGE 3 VHDL 

Stage 3 VHDL comprises a relatively powerful behavioral subset of VHDL. That is to say, 
Stage 3 VHDL descriptions are confined to the specification of hardware behavior or data 

8 As of Stage 3 VHDL, however, resolved signals are still disallowed. 
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flow, rather than structure. More-comprehensive VHDL subsets for SDVS (anticipated for 
Stage 4 VHDL) will include constructs for the structural description of hardware in terms 
of its hierarchical decomposition into connected subcomponents. The Stage 3 VHDL data 
types are BOOLEAN, BIT, INTEGER, REAL (preliminary version), TIME (a predefined physical 
type of INTEGER range), CHARACTER, STRING (arrays of characters), BIT_VECTOR (arrays of 
bits), user-defined enumeration types, user-defined array types, subtypes of scalar types, 
and integer type definitions. Furthermore, explicit type conversions between integer types 
are allowed. 

The primary VHDL abstraction for modeling a digital device is the design entity. A design 
entity consists of two parts: an entity declaration, providing an external view of the compo- 
nent by declaring the input and output ports, and an architecture body, giving an internal 
view in terms of component behavior or structure. 

In Stage 3 VHDL, each architecture body is constrained to be behavioral, consisting of a 
set of declarations and concurrent statements defining the functional interpretation of the 
device being modeled. The allowable concurrent statements are of two kinds: PROCESS 
statements and concurrent signal assignment statements, to be discussed below. 

A PROCESS statement, the most fundamental kind of behavioral concurrent statement in 
VHDL, is a block of sequential zero-time statements that execute sequentially but "in- 
stantaneously" in zero time [30], and some (possibly none) distinguished sequential WAIT 
statements whose purpose is to suspend process execution and allow time to elapse. 

A process typically schedules future values to appear on data holders called signals, by 
means of sequential signal assignment statements. The execution of a signal assignment 
statement does not immediately update the value of the target signal (the signal assigned 
to); rather, it updates the driver associated with the signal by placing (at least one) new 
transaction, or time-value pair, on the waveform that is the list of such transactions con- 
tained in the driver. Each transaction projects that the signal will assume the indicated 
value at the indicated time; the time is computed as the sum of the current clock time of the 
model and the delay specified (explicitly or implicitly) by the signal assignment statement. 

Two types of time delay can be specified by a sequential signal assignment statement, and 
Stage 3 VHDL encompasses both. Inertial delay, the default, models a target signal's inertia 
that must be overcome in order for the signal to change value; that is, the scheduled new 
value must persist for at least the time period specified by the delay in order actually to 
be attained by the target signal. Transport delay, on the other hand, must be explicitly 
indicated in the signal assignment statement with the reserved word TRANSPORT, and models 
a "wire delay" wherein any pulse of whatever duration is propagated to the target signal 
after the specified delay. 

In lieu of explicit WAITs, a process may have a sensitivity list of signals that activate process 
resumption upon receiving a distinct new value (an event). The sensitivity list implicitly 
inserts a WAIT statement as the last statement of the process body. 

The other class of concurrent statement in Stage 3 VHDL is that of concurrent signal 
assignment statements. These always represent equivalent PROCESS statements, and come 
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in two varieties: conditional signal assignment and selected signal assignment. A conditional 
signal assignment is equivalent to a process with an embedded IF statement whose branches 
are sequential signal assignments; similarly, a selected signal assignment is equivalent to 
a process with an embedded (possibly degenerate) CASE statement whose branches are 
sequential signal assignments. The VHDL translator syntactically transforms concurrent 
signal assignment statements to their corresponding PROCESS statements before translating 

them into state deltas. 

Signals act as data pathways between processes. Each process applies operations to values 
being passed through the design entity. We may regard a process as a program implementing 
an algorithm, and a Stage 3 VHDL description as a collection of independent programs 

running in parallel. 

In full VHDL, a target signal can be assigned to in multiple processes, in which case it 

possesses correspondingly many drivers for updating by the different processes; the value 
taken on by the signal at any particular time is then computed by a user-defined resolution 

function of these drivers. 

Currently Stage 3 VHDL disallows such resolved signals: a signal is not permitted to appear 
as the target of a sequential signal assignment statement in more than one process body; 

equivalently, every signal has a unique driver. 

Concrete and abstract syntaxes for Stage 3 VHDL have been defined [66] — as required, 
of course, for the implementation of the Stage 3 VHDL translator. Perhaps the following 
summary provides the best way of seeing the Stage 3 VHDL language subset and translator 

at a glance. 

• VHDL design files 

- user-defined packages (optional), USE clauses (optional), entity declaration, ar- 

chitecture body 

- restriction: unique entity and architecture per file 

• package STANDARD 

- predefined types: BOOLEAN, BIT, INTEGER, TIME, CHARACTER, REAL, STRING, BIT-VECTOR 

- various units of type TIME: FS, PS, NS, US, MS, SEC, MIN, HR 

- restriction: implementation of type REAL is preliminary 

• user-defined packages 

- package declarations 

- package bodies 

• USE clauses for accessing packages 

• entity declarations 

- entity header: port declarations 
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- entity declarative part: other declarations 

• architecture bodies 

• object declarations 

- CONSTANT, VARIABLE,SIGNAL 

- octal and hexadecimal representations of bitstrings 

- entity ports of default object class SIGNAL 

• array type declarations 

- arrays (bidirectional; constrained or not) of arbitrary element type 

- attributes 'low and 'high for lower and upper bounds of an array type (restric- 

tion: but not of an object of type array) 

• user-defined enumeration types 

• subtypes of scalar types 

• integer type definitions 

• type conversion 

• signals of arbitrary types 

• subprograms 

- procedures and functions: declarations and bodies 

- restriction: excluding parameters of object class SIGNAL 

• concurrent statements 

- PROCESS statements 

- conditional signal assignments 

- selected signal assignments 

• sequential statements 

- null statement: NULL 

- variable assignments (scalar and composite) 

- signal assignments (scalar and composite, inertial or TRANSPORT delay) 

- conditionals: IF, CASE 

- loops: LOOP, WHILE, FOR 

- loop exits: EXIT 

- subprogram calls 

- subprogram return: RETURN 
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- process suspension: WAIT 

• operators 

- numeric unary operators: ABS, +, - 

- numeric binary operators: +, -, *, /, ** (exponentiation), HDD (modulus), 

REM (remainder) 

- boolean and bit operators: NOT, AND, NAND, OR, NOR, XOR 

- relational operators: =, /=, <, <=, >, and >= 

- array concatenation operator: t 

- restriction: =, /=, and k are the only Stage 3 VHDL operators defined for user- 

defined array types 

5.3    TRANSLATION OF STAGE 3 VHDL 

A Stage 3 VHDL hardware description is first parsed according to the Stage 3 VHDL 
grammar, producing an abstract syntax tree that serves as the input to Phase 1 of the 

translation. 

Phase 1 of the translation accomplishes the following. 

• Performs static semantic checks to verify that certain conditions are met, for example: 

Objects, subprograms, packages, and process and loop labels must be declared 

prior to use. 

Identifiers with the same name cannot be declared in the same local context. 

References to objects and labels must be proper, e.g. scalar objects must not be 
indexed, array references must have the correct number of indices, and EXIT state- 

ments must reference a loop label. 

All components of statements and expressions must have the proper type, e.g. 
expressions used as conditions must be boolean, array indices must be of the proper 
type, operators must receive operands of the correct type, procedure and function 
calls must receive actual parameters of the proper type, function calls must return a 

result of a type appropriate for their use in an expression. 

Sensitivity lists in PROCESS and WAIT statements must contain signal identifiers. 

The collection of discrete ranges defining a CASE statement alternative must be 

exhaustive and mutually exclusive. 

The time delays in the AFTER clause of a signal assignment statement must be 

increasing. 

• Creates a new abstract syntax tree — a transformed version of the original abstract 
syntax tree (used by Phase 1) — that will be more conveniently utilized by Phase 2 

of the translation. 

216 



• Creates and manipulates a tree-structured environment (TSE) that, in the absence of 

errors, is provided to Phase 2 of the translation. 

If the VHDL translator completes Phase 1 without error, then it can proceed with Phase 2, 
state delta generation. Phase 2 requires two inputs: the transformed abstract syntax tree 
and the tree-structured environment (TSE) for the hardware description, both constructed 
by Phase 1. The TSE contains a complete record of the name/attribute associations cor- 
responding to the hardware description's declarations, and its structure reflects that of the 

description. Referring to the TSE, Phase 2 incrementally generates and (per user proof 
commands) applies state deltas via symbolic execution and the theories built into the Sim- 

plifier. 

To understand Phase 2 of the VHDL translator, it is important to recognize that in defin- 
ing the semantics of concurrent processes within a given architecture body, the translator 
involves a significant operational component. This is to be distinguished from the seman- 
tics of sequential statements within processes, which the translator defines in a primarily 

denotational manner. 

We are referring here to our strategy of designing aspects of a simulator kernel into the 
VHDL translator. After the application of the state deltas specifying the behavior of one 
execution cycle for the active processes, the translator is responsible for 

• determining the next VHDL clock time at which a driver becomes active or a process 

resumes, 

• advancing the SDVS state to this new time, and 

• generating the state delta that specifies the next sequential statement in the first 
resuming process for the new execution cycle. 

After a given resuming process suspends, its continuation is the textually next-resuming pro- 
cess, or "end of execution cycle" when none such remain. The internal translator machinery 
to perform these tasks is operationally defined, much of it embodied in the translator's im- 
plementation rather than described by semantic equations. 

Finally, we have implemented a "sequential statement marking" capability for Stage 3 
VHDL. One sets a mark in a comment line just before the sequential statement being 

marked, using the notation "—Q" (no spaces), e.g. 

--Q foo 
x   :=  1; 

During symbolic execution, this will yield ".pc = at(foo)" at the point where the state 
delta(s) representing the marked statement become usable, so that a go ... until .pc = 
at (foo) command can be given to execute symbolically to the particular point in the 
VHDL hardware description just before the marked statement. 
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Any sequential statement can be so marked, and the hardware description remains accept- 
able to a VHDL simulator. A mark can be turned into a regular (uninterpreted in SDVS) 
comment simply by inserting a space between the "—" and the "€", or by beginning the 
whole line with an extra pair of hyphens (even one extra will do, so long as it's not followed 

by a space). 

Note that marking concurrent statements would actually not be meaningful, since execution 
is never really "at" a concurrent PROCESS statement, but rather somewhere inside of one 
(conceptually, inside several at once). Another way to view this is to notice that the 
simulation cycle semantics of concurrent statements is determined by that of the sequential 

WAIT statement. 

5.4    AN EXAMPLE 

Here we present a very simple example, illustrating the translation of a Stage 3 VHDL 
hardware description and the manner in which SDVS keeps track of signals and the clock 
during symbolic execution. The example is a version of one appearing in [54], but modified 
somewhat to reflect a few of the new language features available in Stage 3 VHDL. 
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DESIGN-FILE switch IS 

PACKAGE switch-package IS 

CONSTANT halfJelay : TIKE := 500 FS; 

END switch-package; 

USE switch-package.ALL; 

ENTITY switch IS 

PORT ( x, y : INOUT INTEGER ); 

END switch; 

ARCHITECTURE behavior OF switch IS 

BEGIN 

x_gets_y : 

x <= y AFTER (2 * halfjdelay) ; 

y_gets_x : 

y <= x AFTER (2 * half .delay); 

END behavior; 

The Stage 3 VHDL hardware description in file switch, vhdl begins with a line that repre- 
sents our device for giving a name to the whole description; the tag DESIGN-FILE is not part 
of official VHDL syntax. This device will disappear once the VHDL design library facility 
is incorporated into SDVS. 

The first interesting section of code is the package declaration of switch-package, which it- 
self declares the constant half-delay of type TIME (predefined as part of package STANDARD) 
that will be referenced in the architecture body. The TIME unit FS represents femtoseconds 
(1 femtosecond = 10~15 second). 
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The USE clause is necessary to make the declaration(s) in switch_package accessible to the 

rest of the description. 

The entity declaration, or interface, of the description declares two ports x and y; these are 
signals connecting the hardware device being modeled to other (unspecified) devices in the 
design environment. The ports are of mode inout, meaning that they may be both read 

from and written to by the accompanying architecture body. 

The architecture body consists of two labeled concurrent signal assignment statements (de- 
generate selected signal assignments, actually), each of which schedules the current value of 
a "source" port to become the future value of the other "target" port after 1000 femtosec- 

onds, or 1 picosecond. 

As indicated in Section 5.2, each of the concurrent signal assignments is equivalent to a 
process that (1) has a similar, but unlabeled, sequential signal assignment statement as its 

body, and (2) waits for an event — an actual change in the value of the source port — in 
order to resume execution. We simply continue to refer to these processes in the sequel. 

The net effect is to describe a device that switches the values of x and y every picosecond, 
provided their original values are different, and only a single time during an initialization 

phase provided their original values are the same. 

We wish to formulate and prove the following claim about the VHDL description switch: 

At any time at which the translation of switch.vhdl holds, there will be 
a time when the declarations of switch.vhdl have been elaborated, and such 
that (1) if the input values of x and y are the same, then they will be switched 1 
picosecond later and the VHDL model will have completed execution, whereas 
(2) if the input values are different, the values of x and y will be switched 1 
picosecond later, and then in 1 more picosecond they will be switched again. 

This English-language specification is formulated as the state delta switch2.sd, which we 

read from a file: 

<sdvs.l>    read 
path name[axioms/quant.axioms] :    testproofs/manual/vhdl/switch.spec 

Definitions read fron file "testproofs/manual/vhdl/sHitch.spec" 
—   (switchl.sd,switch2.sd,switch2.badsd,switch2.sd2) 

<sdvs.2>   ppsd 
state delta:    switchS.sd 

[sd pre 
mod 

post 

(vhdl(switch.vhdl)) 
(all) 
(vhdljoodel-elaborationjcomplete(switch) , 
[sd pre 

coraod 

mod 

post 

(.x = .y) 
(all) 

(all) 
(«vhdltime « vhdltime(1000,0) ,#x = .y,#y - -x. 
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vhdl.model.jexecution_complete(switch))] , 

[sd pre: (.x "= .y) 

comod: (all) 

mod: (all) 
post: («vhdltime = vhdltime(1000,0),#x = -y,#y = x, 

[sd pre: (true) 

comod: (all) 

mod: (all) 
post: («vhdltime = vhdltiae(2000,0),#x = .y, 

#y - .x)])])] 

Our first essential order of business is to translate the VHDL description in switch.vhdl 
into its state delta representation, vhdl (switch, vhdl), so that we may prove our claim 
about it. This is done by invoking the VHDL translator with the command vhdltr, giving 

it the source VHDL file as its argument. 

<sdvs.2>    vhdltr 
path name [testproofs/vhdl3/f oo. vhdl] :    testproofs/manual/vhdl/switch.vhdl 

Reading parse tree file for Stage 3 VHDL file —  "switch.vhdl" 

Translating Stage 3 VHDL file —  "testproofs/manual/vhdl/switch.vhdl" 

<sdvs.3>   pp 
object:    vhdl 
file name [switch, vhdl] :    switch.vhdl 

alldisjoint(switch,.switch) 
covering(.switch,switch\pc,vhdltime,vhdltime-previous) 
declare(vhdltime.type(vhdltime)) 
declare(vhdltime_previous,type(vhdltime)) 
.vhdltijne = vhdltime(O.O) 
. vhdltime-previous = vhdltime (0,0) 
<> 

We have just exhibited the "initial segment" of the translation of the switch description, 
consisting of the declaration and initialization of the places vhdltime and vhdltime_previous, 
as well as a state delta whose postcondition contains a representation of (a state delta for) 

the incremental continuation of the translation. 

In general, each state delta generated by the VHDL translator will contain, as part of 
its postcondition, a continuation label enclosed in angle brackets; this continuation label 
simply stands for the next state delta to be incrementally generated by the translator — 
the continuation. The generic label <VHDLTR> appears most frequently, but occasionally 
labels attempt to be more descriptive of the next increment of translation. 

Sometimes, as in the initial segment of translation, the translator generates a state delta 
with precondition (true), comodlist (all), a (\pc) modlist, and only a continuation in 
the postcondition. Such a state delta corresponds to an action, to be unconditionally 
performed by the translator, resulting in no change in the state (contents of places) except 
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for the program counter. When such a state delta is applied, for brevity it is not printed 
out in its entirety in the proof trace; rather, the tag action is printed, followed by the 
continuation label. 

<sdvs.3>    setflag 
flag variable:    autoclose 
on or off[off]:    off 

setflag autoclose —  off 

The autoclose flag has been turned off to allow the proof to be developed without SDVS 
closing it automatically. 

We now open the proof of switch2.sd: 

<sdvs.4>   prove 
state delta[]:    switch2.$d 
proof []:    <CR> 

open —  [sd pre:   (vhdl(switch.vhdl)) 
mod:   (all) 

post:   (vhdl_jnodel_elaboration_complete(switch) , 
[sd pre:   (.x =  .y) 

comod:   (all) 
mod:   (all) 

post:   («vhdltime = vhdltime(1000,0),#r »  .y, 
#y =  .x, 
vhdljBodeljexecutionjcomplete(switch))] , 

[sd pre:   (.1 ~=  .y) 
comod:   (all) 

mod: (all) 

post: (fvhdltime = vhdltime(1000,0),#x » .y, 

#y = .i, 

[sd pre (true) 

comod (all) 

mod (all) 

post (»vhdltime = vhdltime(2000,0), 

#i = .y,#y - .i)])])] 

Complete the proof. 

The automatic elaboration of the VHDL description is accomplished by issuing the SDVS 
command go with the predicate vhdl_model_elaboration_complete(switch) as the until 
argument. This elaborates the declarations of the constant half-delay and the entity ports 
x and y, applying state deltas until the elaboration is complete. Any declarations internal 
to the architecture body or the processes are also elaborated (in the present example, there 

are none 

<sdvs.4.1>   go 
until[] :    vhdLmodeLclaborationjcompletc(stuitch) 
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action <VHDLTR> 

apply —   [sd pre:   (true) 

comod:   (all) 
mod:   (switch\pc,switch) 

post:   (alldisjoint(switch,.switch,half jdelay), 
covering (»switch, .switch,half jdelay) , 
declare(half jdelay,type(integer)), 

<VHDLTR>)] 

apply —   [sd pre:   (true) 

comod:   (all) 
mod:   (swit ch\pc,halfjdelay) 

post:   («halfjdelay = 500, 

<VHDLTR>)] 

apply —   [sd pre:   (true) 
comod:   (all) 

mod:   (switch\pc,switch) 
post:   (alldisjoint(switch,.switch,x,y,driver\x,driver\y), 

covering«switch,.switch,i,y,driver\x,driver\y), 
declared,sigtype(integer)) , 
declare(driver\i,type(waveform,type(integer))), 

declare(y,sigtype(integer)), 
declare(driver\y,type(waveform,type(integer))), 

<VHDLTR>)] 

apply — [sd pre: (true) 

comod: (all) 

mod: (switch\pc,i,y,driver\x,driver\y) 

post: (#driver\x 
= waveformd,transaction(vhdltime(0,0) ,I\1486)) , 

#driver\y 
= waveform(y,transaction(vhdltime(0,0),y\1488)), 

<VHDLTR>)] 

action ~ <ELAB0RATE PROCESS: X_GETS_Y> 

action — <ELAB0RATE PROCESS: Y_GETS_X> 

go — breakpoint reached 

The evaluation of the three SDVS commands vhdltime, vhdl-signals, and vhdl-processes 
is a convenient means of querying SDVS about aspects of the state of the Stage 3 VHDL 
proof. Particularly in the case of signals, this query method provides information in a much 
more intelligible form than that returned by, say, the query command ppl . 

<sdvs.4.8>    vhdltime 

global time    =    0 

delta    time    =    0 
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<sdvs.4.8>    vhdl-signals 
signal-names [all] :    <CR> 

simplify? [no] :    < CR> 

signal X 

current value - x\l486 

previous value = x\l486 

projected output waveform = 0 

driver history « (transaction(vhdltime(0,0),I\1486)) 

signal Y 

current value = y\l488 

previous value = y\l488 

projected output waveform =  () 

driver history = (transaction(vhdltime(0,0),y\l488)) 

The declarations have been symbolically elaborated. For example, places x and driver\x 
have been created to represent the signal (of the same name) and its driver, respectively, and 
the contents of driver\x have been initialized with a waveform (indexed by x) consisting of 
a single transaction, waveform(x,transaction(vhdltime(0,0) ,x\20)). This transaction 

stipulates that at vhdltime(0,0), x acquires the symbolic bit value x\20. 

In the display generated by the command vhdl-signals, the driver is split conceptually 

into two disjoint parts, each represented as a list: 

• A projected output waveform, consisting of future transactions scheduled to occur 
on the signal (some of which might be preempted, or deleted from the waveform, 
during subsequent execution of the description). The time components of projected 
transactions are all greater than the placevalue .vhdltime. For ease of reference, the 
projected transactions are displayed in chronological order according to their time 
components, so that the next scheduled transaction occurs first in the list. 

• A driver history, consisting of those transactions that have already been "actualized," 
i.e., whose time component is at most the placevalue .vhdltime. For ease of refer- 
ence once again, but in contradistinction to the projected output waveform, these 
transactions are displayed in reverse chronological order: the most recent actualized 
transaction for the signal appears at the head of the driver history, and its value 

component is always the current value of the signal driver. 

224 



Thus, the entire signal driver itself is the concatenation of the reverse of the driver history 
with the projected output waveform. 

<sdvs.4.8>    vhdi-processes 
process-names [all] :    <CR> 

process X.GETS.Y   : 

current state = SUSPENDED 

scheduled time = VHDLTIME(0,0) 

scheduled reason = INITIALIZATION 

process Y.GETSJC : 

current state = SUSPENDED 

scheduled time = VHDLTIME(O.O) 

scheduled reason = INITIALIZATION 

All processes are shown as currently suspended, because we have not yet begun executing the 
model, but they are scheduled to "resume" execution at vhdltime(0,0), by reason of the 
initialization phase of the simulation semantics informally defined in the VHDL Language 
Reference Manual [24]. In the initialization phase, each process is executed until it suspends. 
As the next applicable state delta indicates, the translation is ready to commence model 
execution. 

<sdvs.4.8>    nsd 

[sd pre: (true) 
comod: (all) 

mod: (switch\pc) 
post: (<BEGIN VHDL MODEL EXECUTIONS] 

<sdvs.4.8>    whynotgoal 
simplify? [no] :    < CR> 

g(2)   [sd pre:   (.x =  .y) 
comod:   (all) 

mod:   (all) 
post:   («vhdltime = vhdltime(1000,0),#x =  .y,#y =    x, 

vhdl-model-jexecution_complete (switch))] 

g(3)   [sd pre:   (.x "=  .y) 
comod:   (all) 

mod:   (all) 
post:   (#vhdltime = vhdltime(1000,0),#x =   .y,#y =  .x, 

[sd pre:   (true) 
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comod 

■od 
post 

(all) 

(all) 
(«vhdltime » vhdltime(2000,0),#x = -y,#y = -x)])] 

This is an appropriate point at which to open a proof of the goal g(2).   Later, after this 
goal has been proved, we will also need to prove the goal g(3). 

<sdvs.4.8>    prove 
state delta[] :    g 

number:    2 
proof [] :    < CR> 

open —   [sd pre 
comod 

mod 
post 

(.x -  .y) 
(all) 
(all) 
(«vhdltime = vhdltime(1000,0),#x »   .y,#y =    x, 
vhdl .model jexecutionjcomplete (switch))] 

Complete the proof. 

<sdvs.4.8.1> go 
until [] : vhdLmodeLexecution-complete(switch) 

action — <BEGIN VHDL MODEL EXECUTION 

action — <BEGIN INITIALIZATION PHASE> 

action — <... INITIALIZATION PHASE: EACH PROCESS EXECUTES UNTIL SUSPENSION> 

action — <EXECUTE PROCESS: X_GETS.Y> 

apply — [sd pre: (~(preemption(.driver\x, 
transaction(timeplus(.vhdltime, 

vhdltime(2 » 
.half jdelay, 

0)), 

.y)))) 
comod 

mod 

post 

(all) 
(switch\pc,driver\x) 

(#driver\x 
= inertialjipdate( .driver\x, 

transaction(timeplus(.vhdltime, 
vhdltime(2 * 

.half jdelay, 

0)), 

.y». 

<VHDLTR>)] 

action — <SUSPEND PROCESS: X_GETS.Y> 

action — <... INITIALIZATION PHASE: EACH PROCESS EXECUTES UNTIL SUSPENSI0N> 

action — <EXECUTE PROCESS: Y_GETSJC> 
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apply — [sd pre: ("(preemption(.driver\y, 
transact ion(t imeplus(.vhdlt ime, 

vhdltime(2 * 

.half -delay, 

0)), 

.1)))) 

comod: (all) 

mod: (sHitch\pc,driver\y) 

post: (#driver\y 
= inert ialjipdate(.driver\y, 

transaction(timeplus(.vhdltime, 
vhdltime(2 * 

.half jdelay, 

0)), 

• x)), 
<VHDLTR>)] 

action — <SUSPEND PROCESS:  Y.GETSJO 

action — <END INITIALIZATION PHASE> 

action — <BEGIN EXECUTION CYCLE: 
1. ADVANCE EXECUTION TIME, 

2. UPDATE SIGNALS, 
3. RESUME PR0CESSES> 

apply — [sd pre: (true) 

comod: (all) 
mod: (switch\pc, vhdlt ime, vhdlt ime-previous,x,y) 

post: («vhdltime = vhdltijne(1000,0) , 

#vhdltime_previous = .vhdltime, 

<UPDATE SIGNALS>)] 

action — <RESUME (?) NEXT SCHEDULED PROCESS: X.GETS.Y> 

apply — [sd pre: (.y = val(.driver\y,.vhdltime-previous)) 

comod: (all) 

mod: (switch\pc) 

post: (<RESUME (?) NEXT SCHEDULED PROCESS: Y.GETSJO)] 

apply — [sd pre: (.x = val(.driver\x,.vhdltime_previous)) 

comod: (all) 

mod: (switch\pc) 

post: «END EXECUTION CYCLE>)] 

action — <BEGIN EXECUTION CYCLE: 

1. ADVANCE EXECUTION TIME, 

2. UPDATE SIGNALS, 

3. RESUME PR0CESSES> 

action ~ <END VHDL MODEL EXECUTI0N> 

apply — [sd pre: (true) 

comod: (all) 

mod: (snitch\pc) 
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post:   (vhdl-model_erecution_coiiplete(switch))] 

go — breakpoint reached 

<sdvs.4.8.20>    vhdltime 

global time    =     1000 

delta    time    »    0 

<sdvs.4.8.20>    vhdl-signals 
signal-names [all] :    <CR> 

simplify?[no] :    yes 

signal X 

current value   = y\1488 

previous value  ■ y\1488 

projected output waveform =  () 

driver history  - (transaction(vhdltime(2 * 500,0),y\l488), 

transaction(vhdltime(0,0),y\1488)) 

signal Y 

current value   » y\1488 

previous value  = y\l488 

projected output waveform =  () 

driver history  - (transaction(vhdltime(2 * 500,0),y\l488), 

transaction(vhdltime(0,0),y\l488)) 

<sdvs.4.8.20> goals 

g(l) #vhdltime = vhdltime(1000,0) 
g(2) #x - y\1495 
g(3) #y = I\1494 
g(4) vhdljiiodeljexecution_complete(switch) 

<sdvs.4.8.20>    whynotgoal 
simplify? [no] :    < CR> 

The goal  is TRUE.     Type   'close'. 

<sdvs.4.8.20>    close 
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close —  19  steps/applications 

Complete the proof. 

<sdvs.4.9>    goals 

g(l)  vhdl-model_filaboration-complete(switch) 
g(2)  true 
g(3)   [sd pre:   (.x "=   .y) 

comod:   (all) 
mod:   (all) 

post:   («vhdltime = vhdltime(1000,0),«x =  .y,#y =  .x, 
[sd pre:   (true) 

comod:   (all) 
mod:   (all) 

post:   («vhdltime = vhdltime(2000,0),«x =   .y,#y =  .x)])] 

<sdvs.4.9>    whynotgoal 
simplify? [no] :    < CR> 

g(3)   [sd pre:   (.x ~=  .y) 
comod:   (all) 

mod:   (all) 
post:   («vhdltime = vhdltime(1000,0),#x =  .y,#y =  .x, 

[sd pre:   (true) 
comod:   (all) 

mod:   (all) 
post:   («vhdltime = vhdltime(2000,0),#x =   .y,#y =  .x)])] 

<sdvs.4.9>   prove 
state delta[] :    g 

number:    3 
proof [] :    < CR> 

open —   [sd pre:   (.x "=   .y) 
comod:   (all) 

mod:   (all) 
post:   («vhdltime = vhdltime(1000,0),#x =  .y,#y =  .x, 

[sd pre:   (true) 
comod:   (all) 

mod:   (all) 
post:   («vhdltime = vhdltime(2000,0),«x =  .y, 

«y =   .i)])] 

Complete the proof. 

<sdvs.4.9.1> go 
until [] : #vhdltime = vhdltime(1000,0) 

action — <BEGIN VHDL MODEL EXECUTI0N> 

action ~ <BEGIN INITIALIZATION PHASE> 

action — <... INITIALIZATION PHASE: EACH PROCESS EXECUTES UNTIL SUSPENSI0N> 
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action — <EXECUTE PROCESS: X.GETS_Y> 

apply — [sdpre: ("(preemption(.driver\x, 
transaction(timeplus(.vhdltime, 

vhdltime(2 * 
.half-delay, 

0)), 

■y)))) 

comod: (all) 

mod: (switch\pc,driver\x) 

post: (#driver\x 
= inertialjipdate( .driver\x, 

transact ion(t imeplus(.vhdlt ime, 

vhdltime(2 * 
.halfjdelay, 

0)), 

• y)), 
<VHDLTR>)] 

action —  <SUSPEND PROCESS:  X_GETS_Y> 

action —  <...   INITIALIZATION PHASE:  EACH PROCESS EXECUTES UNTIL SUSPENSION> 

action —  <EXECUTE PROCESS:  Y_GETS_X> 

apply —   [sd pre:   (~(preemption(.driver\y, 
transaction(timeplus(.vhdltime, 

vhdltime(2 * 
.halfjdelay, 

0)), 
.x)))) 

comod:   (all) 
mod:   (switch\pc,driver\y) 

post:   (#driver\y 
= inertialjupdate(.driver\y, 

transaction(timeplus(.vhdltime, 
vhdltime(2 * 

.half -delay, 
0)), 

.x)), 
<VHDLTR>)] 

action —  <SUSPEND PROCESS:  Y_GETS_X> 

action —  <END INITIALIZATION PHASE> 

action —  <BEGIN EXECUTION CYCLE: 
1. ADVANCE EXECUTION TIME, 

2. UPDATE SIGMALS, 
3. RESUME PROCESSES> 

apply — [sd pre: (true) 

comod: (all) 
mod: (switch\pc,vhdltime,vhdltime-previous.x.y) 

post: (fvhdltime ■ vhdltime(1000,0), 
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#vhdltime-previous =   .vhdltime, 
<UPDATE SIGNALS>)] 

go — breakpoint reached 

<sdvs.4.9.14>    vhdltime 

global time    =    1000 

delta    time    =    0 

<sdvs.4.9.14>    vhdl-signals 
signal-names [all] :    <CR> 

simplify?[no] :    yes 

signal X 

current value = y\1488 

previous value = x\1486 

projected output waveform = () 

driver history = (transaction(vhdltime(1000,0),y\l488),transaction(vhdltime(0,0),I\1486)) 

signal Y 

current value = x\l486 

previous value = y\l488 

projected output waveform =  () 

driver history = (transaction(vhdltime(1000,0),x\l486),transaction(vhdltime(0,0),y\l488)) 

<sdvs.4.9.14> goals 

g(l)  «vhdltime = vhdltime(1000,0) 
g(2)  #x = y\l526 
g(3)  #y = x\1525 
g(4)   [sd pre:   (true) 

comod:   (all) 
mod:   (all) 

post:   (»vhdltime = vhdltime(2000,0),#x =  .y,#y =  .x)] 

<sdvs.4.9.14>    whynotgoal 
simplify? [no] :    < CR> 

g(4)   [sd pre:   (true) 
comod:   (all) 
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mod: (all) 
post: («vhdltime - vhdltime (2000 ,0) ,#x » .y,«y = -x)] 

<sdvs.4. 9. 14> prove 
state delta[] : g 

number: 4 
proof []: <CR> 

open — [sd pre 
comod 

mod 

post 

Complete the proof. 

(true) 
(all) 
(all) 
(fvhdltime = vhdltime(2000,0),#x = .y,#y =  .x)] 

<sdTS.4.9.14.1>    go 
until [] :    #vhdltime = vhdltime(2000,0) 

action —  <RESUME (?)  NEXT SCHEDULED PROCESS:  X_GETS_Y> 

apply —   [sd pre 
comod 

mod 
post 

(.y "» val( .driver\y, .vhdltime-previous)) 

(all) 
(switch\pc) 
([sd pre 

comod 
mod 

post 

(true) 
(all) 
(switch\pc) 
(<EXECUTE PROCESS:  X.GETS.Y>)])] 

action ~  <EXECOTE PROCESS:  X_GETS.Y> 

apply —   [sd pre:   ("(preemption(.driver\x, 
transact ion(timeplus(.vhdlt ime, 

vhdltime(2 * 
.half .delay, 

0)), 
.y)))) 

comod:   (all) 
mod:   (switch\pc,driver\x) 

post:   (#driver\x 
=  inertialjupdate( .driver\x, 

transaction(timeplus(.vhdltime, 
vhdltime(2 * 

.half jdelay, 

0)), 

• y)), 

<VHDLTR>)] 

action — <SUSPEND PROCESS: X_GETS_Y> 

action — <RESUHE (?) NEXT SCHEDULED PROCESS: Y_GETS_X> 

apply — [sd pre 
comod 

mod 

post 

(.x ~= val(.driver\x,. vhdltime-previous)) 

(all) 
(switch\pc) 

( [sd pre: (true) 
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comod:   (all) 
mod:   (switch\pc) 

post:   «EXECUTE PROCESS:  Y.GETS_X>)])] 

action —  <EXECUTE PROCESS:  Y_GETSJC> 

apply—   [sdpre:   (~(preemption(.driver\y, 
transaction(timeplus(.vhdltime, 

vhdltime(2 * 
.half .delay, 

0)), 
.x)))) 

comod:   (all) 
mod:   (switch\pc,driver\y) 

post:   (#driver\y 
= inertial_update(.driver\y, 

transaction(timeplus(.vhdltime, 
vhdltime(2 * 

.half jdelay, 

0)), 

.1)), 

<VHDLTR>)] 

action —  <SUSPEND PROCESS:  Y.GETSJO 

action —  <END EXECUTION CYCLE> 

action —  <BEGIN EXECUTION CYCLE: 
1. ADVANCE EXECUTION TIME, 
2. UPDATE SIGNALS, 
3. RESUME PR0CESSES> 

apply —   [sd pre:   (true) 
comod:   (all) 

mod:   (switch\pc,vhdltime,vhdltime_previous,x,y) 
post:   («vhdltime = vhdltime(2000,0), 

#vhdltime_previous =   .vhdltime, 
<UPDATE SIGNALS>)] 

go — breakpoint reached 

<sdvs.4.9.14.14>    vhdltime 

global time    =    2000 

delta    time    =    0 

<sdvs.4.9.14.14>    vhdl-signals 
signal-names [all] :    <CR> 

simplify? [no] :    yes 

signal X 
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current value   -    x\l486 

previous value  - y\l488 

projected output waveform "  0 

driver history  = (transaction(vhdltime(2000,0),x\l486), 

transaction(vhdltime(1000,0) ,y\1488) ,transaction(vhdltime(0,0) ,x\1486)) 

signal Y 

current value « y\l488 

previous value = x\l486 

projected output waveform = 0 

driver history  = (transaction(vhdltime(2000,0),y\l488), 
transaction(vhdltime(1000,0),i\l486)>transaction(vhdltijne(0,0)>y\l488)) 

<sdvs.4.9.14.14> goals 

g(l)  «vhdltime = vhdltirae(2000,0) 
g(2)  #x = y\l544 
g(3)  #y = x\l545 

<sdvs.4.9.14.14>    whynotgoal 
simplify?[no] :    <CR> 

The goal  is TRUE.     Type  'close'. 

<sdvs.4.9.14.14>    close 

close —  13 steps/applications 

Complete the proof. 

<sdvs.4.9.15>    goals 

g(l)  «vhdltime = vhdltime(1000,0) 
g(2)  #x = y\l526 
g(3)  #y = x\1525 
g(4)  true 

<sdvs.4.9. 15>    whynotgoal 
simplify? [no]:    <CR> 

The goal is TRUE.    Type  'close'. 

<sdvs.4.9.15>    close 

close —  14 steps/applications 
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Complete the proof. 

<sdvs.4.10>    goals 

g(l)  vhdl-model_elaboration-complete(switch) 
g(2)  true 
g(3)  true 

<sdvs.4.10>    whynotgoal 
simplify? [no] :    < CR> 

The goal is TRUE.    Type  'close'. 

<sdvs.4.10>    close 

close — 9 steps/applications 

<sdvs.5>    usablesds 

u(l)   [sd pre:   (vhdHswitch. vhdl)) 
mod:   (all) 

post:   (vhdl-modeljelaborationjcomplete(switch) , 
[sd pre:   (.x =   .y) 

comod:   (all) 
mod:   (all) 

post:   («vhdltime = vhdltime(lOOO.O),#x =  .y,#y =  .x, 
vhdljaodeljexecutioiucomplete(switch))] , 

[sd pre:   (.x ~=   .y) 
comod:   (all) 

mod:   (all) 
post:   («vhdltime = vhdltime(1000,0),#x =  .y,#y =  .x, 

[sd pre:   (true) 
comod:   (all) 

mod:   (all) 
post:   (»vhdltime = vhdltime(2000,0), 

#x =   .y,#y =  .i)])])] 

5.5    OFFLINE CHARACTERIZATION 

The offline characterization facility for VHDL is similar to that for Ada (see Section 4.5), 
comprising three commands: 

• the createvhdllemma command, which defines a lemma about a VHDL subprogram 
(procedure or function), and which collects other necessary descriptive information 
from the user; 

• the provevhdllemma command, which sets up an environment within which the state 
delta of the lemma can be proved — this must be at the top level of symbolic execution, 
and we do not allow lemmas dependent on an existing context; and 
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• the invokevhdllemma command, which uses a previously created lemma as a template 
to construct a usable state delta, including the substitution of an actual program con- 
tinuation for the unspecified (null) continuation in the template, and the application 

of the resulting state delta. 

In addition, a fourth command vhdlsubprogenv (a query command) is quite useful in connec- 
tion with VHDL offline characterization. It displays the mapping of fully qualified program 
names to uniquely qualified place names for all places constituting the environment for the 
proof of a vhdllemma about a subprogram. This assists the user to specify correctly these 
places in the statement and proof of the vhdllemma. In the absence of such a mapping, 

for a large program it can be difficult for the user to predict, simply by manual inspection 

of the VHDL source code, the unique place names that will be automatically generated by 

the translator for the vhdllemma proof. 
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6     QUANTIFICATION 

This chapter describes the way SDVS handles quantification. The universal quantifier V has 
the intuitive meaning "for all," and the existential quantifier 3 means "there exists." So, for 
example, the sentence Vx (3y(x<y)) would be true in a set in which < was an order with 
no last element. In SDVS syntax the parentheses must be used as shown, and, of course, < 
must be written as It. 

While it is true that the domains over which quantifiers may range in SDVS are (usually 
considered to be) finite, and therefore quantification is just an abbreviation for disjunction 
or conjunction (we shall call the operations disjunction and conjunction "junctions"), there 
are two obvious reasons for pursuing an independent quantification-reasoning mechanism: 

1. The potentially large size of the junction can be neatly captured in a much smaller 
quantification statement. 

2. The quantification represents a very structured kind of junction, and therefore is 
amenable to more powerful reasoning than the corresponding junction would be. 

SDVS uses quantification in two main ways: in existential quantification over "places" (for 
example, in the declaration of procedure variables in Ada; see page 172) and in general 
untyped first-order predicate logic inferences. The former type of reasoning relies on ex- 
amining the actual list of places in the proof context. We do not currently allow universal 
quantification over places, and an error message will be produced if places occur in the scope 
of a universal quantifier. The latter uses some special SDVS proof rules supplemented with 
a part of EKL ([55]), an interactive predicate logic solver developed at Stanford University. 

In evaluating a nontautological claim of the form "there exists a place R such that ..." 
one must find such a place explicitly, instantiate that place in "...", and verify the result. 
Likewise, "for all places R ..." would require that "..." be checked for all places (whatever 
that might mean); however, as stated above, this is not allowed in SDVS 12. 

The quantification solver uses the same style and repertoire of command types as the other 
solvers do, namely, a mix of automatic deduction, user-invoked proof rules, and an axiom 
capability. 

Quantification is an independent module of SDVS that may be turned on or off with the 
quantification command. A large part of the quantification commands will work even 
if quantification is not turned on; for example, trivial deductions are done automatically, 
such as the truth or falsity of a quantified statement whose matrix is a tautology or a 
contradiction, respectively, and most of the quantification-specific user-invoked commands. 

There is a set of quantifier test proofs that one can run by typing run-test-proofs *quant- 
tests *. 

Trying to access a quantification command that uses EKL when the quantification solver is 
not activated will cause an error message to be printed. 
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It should be borne in mind that the quantification solver does have an experimental and 
rudimentary status, and does not enjoy the same degree of robustness or confidence as the 
rest of SDVS. This limitation manifests itself in two aspects: applicability and reliability. For 
example, sentences not in prenex normal form (all quantifiers first, followed by a quantifier- 
free sentence) may not be handled. Simply, we have decided that most sentences arising 
naturally in the context of program verification are already in prenex normal form (for 
example, the order property), and the quantified sentences generated internally by SDVS 
(for example, in the implementation command) are all prenex universal sentences. 

Besides the fact that EKL and SDVS use a somewhat different syntax, another difference 
between the EKL and SDVS interface is that the EKL user must keep track of the line 

number of proof steps and occasionally give these as hints to the system. SDVS does not 
have the concept of fine number, so SDVS functions implementing the EKL interface must 

do the bookkeeping for the user. 

Warning: EKL is strongly typed while SDVS is untyped. The result is that SDVS input 
to EKL is considered to be of type "arbitrary." This works well for the most part, but 
occasionally it causes problems. For example, in the context of quantification, the user 
should use only the letters i through n for integer variables. Other letters may be implicitly 
declared by EKL to be of type "predicate," for example. Type mismatch could cause SDVS 

to break. 

6.1    QUANTIFICATION PROOF COMMANDS 

Most of the quantification commands will accept the designators "g <goal-number>" and 
"q <usable-quant-number>" as arguments. This is a welcome alternative to typing the 
quantified sentences by hand. However, it should be remembered that this makes for added 
difficulty in reading and understanding the proofs, in addition to the problem that a change 
in an earlier part of the proof may affect the labeling of the usable quantifiers. 

6.1.1     Quantification 

The command quantification turns the quantification solver on or off, unless the arguments 
are omitted, in which case the state of the solver is toggled. This command is not accepted 
if any proofs have been started since initialization, since it causes system re-initialization. 

The command solvers will show whether quantification is on or off. 

6.1.2     Usablequantifiers 

The command usablequantifiers returns the list of currently true quantified statements. This 

information is also included in a usable query. 
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6.1.3     Enotice 

The enotice command is used to notify EKL of some true nonqualified statement that may 
be needed for the deduction of a quantified statement. For example, 

<sdvs.l>    quantification 
on or off[on]:    on 

Quantification solver activated. 

<sdvs.3> pp 
object: enoticeproof 

proof enoticeproof: 

prove [sd pre: (([sdpre: (true) post: (true)]) 
— > forall i ([sd pre: (p) 

comod: (a) 
mod: (b) 

post: (q)])) 
post: (forall x ([sd pre: (p) 

comod: (a) 
mod: (b) 

post: (q)]))] 
proof: 

(prove [sd pre: (true) post: (true)] 
proof: , 

enotice 
[sd pre: (true) post: (true)]) 

<sdvs.3> init 
proof name[]: enoticeproof 

State Delta Verification System, Version 12 

Restricted to authorized users only. 

open — [sd pre: (([sd pre: (true) 
post: (true)]) 
— > forall i ([sd pre: (p) 

comod: (a) 
mod: (b) 

post: (q)])) 
post: (forall x ([sd pre: (p) 

comod: (a) 
mod: (b) 

post: (q)]))] 

open — [sd pre: (true) post: (true)] 

Complete the proof. 

<sdvs.l.l.l>    usable 

No usable state deltas. 
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q(l)   ([sd pre:   (true)  post:   (true)]) 
— >  forall x   ([sd pre:   (p) 

comod:   (a) 
mod:   (b) 

post:   (q)]) 

<sdTs.l.l.l>    goals 

g(l)  true 

<sdvs.l.l.l>    close 

close — 0 steps/applications 

enotice —   [sd pre:   (true) post:   (true)] 

Complete the proof. 

<sdvs.l.3>    goals 

g(l)  forall x   ([sd pre:   (p)  comod:   (a)  mod:   (b)  post:   (q)]) 

<sdvs.l.3>    usable 

u(l)   [sd pre:   (true) post:   (true)] 

q(l)   [sd pre:   (true) post:   (true)] 

q(2)   ([sd pre:   (true)  post:   (true)]) 
— > forall i  ([sd pre:   (p) 

comod:   (a) 
mod:   (b) 

post:   (q)]) 

<sdvs.l.3>    close 

close — 2 steps/applications 

Sometimes enotice of a state delta will not work if the "timestamp" of the enoticed state 
delta does not correspond to other incarnations of that state delta that exist in other parts 
of the system. Unfortunately, enotice does not currently take a "u" argument. 

6.1.4     Instantiate 

The command instantiate is the existential instantiation command. It can be applied to 
existential formulas in the usable quantifier stack or in the goal stack. When instantiating 
usable formulas the system checks to see that all instantiations are with new symbols. This 
is needed for soundness, because we are not allowed to assume extra information about 
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these symbols. This check is not needed when instantiating an existential formula in the 
goal stack; there it is sufficient to find any symbols that will work, i.e., make the goal true. 

If more than one quantifier, e.g. 3z 3y A, is to be instantiated, then all the instantiations 
must be specified at the same time and in the right order, <<x c>, <y d>, ...>. When 
instantiating in a usable existentially quantified statement, the resulting instantiated state- 
ment is simply made true. When instantiating in an existentially quantified goal, that goal 
specified by <goal-number> is replaced by the resulting instantiated sentence. 

First consider an example where the goal is an existentially quantified sentence. 

<sdvs.l>   prove 
state delta[]:    qsd}2 
proof [] :    < CR> 

open —   [sd pre:   ([sd pre:   (true) 
mod:   (a) 

post:   (#a =  .a +  1)], 
.a =  l,.b = 3) 

mod:   (a) 
post:   (exists x exists y  (#x =  .y -  1))] 

inserting — pcovering(all,b) 

inserting — pcovering(all,a) 

Complete the proof. 

<sdvs.l.l>    whynotgoal 
simplify? [no] :    < CR> 

g(l)  exists x exists y  (#x =  .y -  1) 

<sdvs.l.l>    instantiate 
existential formula: g 

number: / 
existential variable[]: x 

instantiated by: a 
existential variablen : y 

instantiated by: 6 
existential variable[] : <CR> 

instantiate  in goal  1  — a for x,  b for y. 

<sdvs.l.2>    whynotgoal 
simplify? [no] :    < CR> 

g(l)  #a = b\1110 -  1 

<sdvs.l.2>    usablesds 

u(l)   [sd pre:   (true) 
mod:   (a) 

post:   (#a =   .a + 1)] 
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<sdvs.l.2>    apply 
sd/number[highest applicable/once]:    <CR> 

apply —   [sd pre 
mod 

post 

(true) 
(a) 
(#a = .a + 1)] 

close — 2 steps/applications 

<sdvs.2> quit 

Q.E.D. The proof for this session is in 'sdvsproof. 

State Delta Verification System, Version 12 

Restricted to authorized users only. 

<sdvs.l>   pp 
object:    sdvsproof 

proof  sdvsproof: 

prove qsdf2 
proof: 

(instantiate  (x=a,y=b)  in g(l), 

apply u(D) 

<sdvs.l>    init 
proof nameG:    sdvsproof 

State Delta Verification System,  Version 12 

Restricted to authorized users only. 

(true) 
(a) 
(#a -  .a + 1)], 

open —   [sd pre:   ([sd pre: 
mod: 

post: 
.a »  l,.b « 3) 

mod:   (a) 
post:   (exists i exists y  (#x ■  .y -  1))] 

inserting — pcovering(all,b) 

inserting — pcovering(all,a) 

instantiate in goal  1  — a for x,  b for y. 

apply —   [sd pre:   (true) 
mod:   (a) 

post:   (#a «   .a +  1)] 

close — 2 steps/applications 

As an example where we must instantiate in a true existential sentence, consider the fol- 
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lowing situation. Assume that we have an integer array a initialized to 0, about which it is 
known that there is some index j such that a[j] will be continually incremented by 1 (this 
is the existentially quantified fact), and we wish to show that there exists an array element 
that will eventually have the value 3 (this is the existentially quantified goal). 

The state delta we want to prove is (assuming for simplicity's sake that the array has range 
of 2) 

[sd pre:   (declare(a,type(array,l,2,type(ititeger))) , 
exists j   ((1 le j  & j  le 2)  ft formula(inc.sd)),.a[l]  = 0, 
.a[2]  = 0) 
comod:   (all) 

mod:   (all) 
post:   (exists k   (#a[k]  =3))] 

where inc.sd is 

[sd pre:   (true) 
mod:   (all) 

post:   (#a[j]  =   .a[j]  +  1)] 

A similar example is discussed on page 246. 

6.1.5     Provebygeneralization 

The command provebygeneralization <exprl> <expr2> attempts to prove exprl by using the 
statement (already known to be true) expr2. It checks that the nonqualified part of expr2 
implies the nonqualified part of exprl. 

<sdvs.l>    prove 
state delta[]:    gensd 
proof [] :    < CR> 

open —   [sd pre:   (forall x  (p(x)  —> x gt  1)) 
post:   (forall x  (p(x)  —> x gt 0))] 

Complete the proof. 

< sdvs. 1.1 >    whynotgoal 
simplify? [no] :    < CR> 

gU)  forall x  (p(x) —> x gt 0) 

<sdvs. 1.1>   provebygeneralization 
prove universal formula: g 

number: / 
number of universal formulas: 1 

using universal formula: forall x (p(x) -> x gt 1) 
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provebygeneralization — forall x (p(x) —> x gt 0) 

close — 1 steps/applications 

<sdvs.2> quit 

Q.E.D. The proof for this session is in 'sdvsproof. 

State Delta Verification System, Version 12 

Restricted to authorized users only. 

<sdvs.l>   pp 
object:    sdvsproof 

proof sdvsproof: 

prove gensd 

proof: provebygeneralization g(l) 

using: (forall I (p(x) —> x gt 1)) 

<sdvs.l> init 
proof nameG: sdvsproof 

State Delta Verification System, Version 12 

Restricted to authorized users only. 

open — [sd pre: (forall x (p(x) —> x gt 1)) 

post: (forall x (p(x) —> x gt 0))] 

provebygeneralization — forall x (p(x) —> x gt 0) 

close — 1 steps/applications 

6.1.6     Provebyinstantiation 

The command provebyinstantiation <exprl> <expr2> <termlist> is the universal instantia- 
tion command of SDVS. It attempts to prove exprl by using the already known to be true 
universal statement expr2 with terms <termlist> substituted. SDVS checks to see that the 
nonqualified part of expr2 with the terms substituted implies exprl. 

If exprl is not given (default NIL), SDVS just proves the instantiated form of expr2. 

Some future implementation of this command will contain a positional identification scheme 
for the variables to be instantiated, instead of simply their names. This will make the 
command repeatable even if the names of those variables are randomly generated by some 
other command in SDVS. 

<sdvs.l>    ppsd 
state delta:    instan.sd 
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[sd pre:   (forall i p(r))  post:   (p(j))] 

<sdvs.l>   prove 
state delta[]:    instan.sd 
proof []:    <CR> 

open —   [sd pre:   (forall x p(x)) 
post:   (p(j))] 

Complete the proof. 

<sdvs.l.l>    usable 

No usable state deltas. 

q(l)  forall x p(x) 

<sdvs. 1. 1>    provebyinstantiation 
prove formula[] : p(j) 

using universal formula: q 
number: 7 

universal variable []: x 
instantiated by: j 

universal variable[]: <CR> 

provebyinstantiation — p(j) 

close — 1 steps/applications 

Below is another example relying on some automatic arithmetic reasoning: 

<sdvs.l>   prove 
state delta[] :    intsd 
proof [] :    < CR> 

open —   [sd pre:   (forall k  ((i gt 0 ft 0 le k)  ft 
k It   (n -  i)  +  1 
-->   |.a[k]| le  |.a[(n -  i)  +  1]|), 

j   le n -  i,i gt 0,0 le j) 
post:   (|#a[j]| le  |#a[(n -  i) +  1]|)] 

inserting — pcovering(all,a[(n -  i)  +  1]) 

Complete the proof. 

<sdvs. 1. 1>    whynotgoal 
simplify? [no] :    < CR> 

g(l)   |#a[j]| le  |#a[(n -  i)  +  1]| 

<sdvs.l.l>    usable 

No usable state deltas. 
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q(l)  forall k   ((i gt  0 ft 0  le k)  ft k It   (n -  i)  +  1  —>  |.a[k]| le  |a\U25|) 

<sdvs. 1. 1>   provebyinstantiation 
prove formula[] l-ofi/l le .a[((n - i) + 1)]\ 

using universal formula 9 
number / 

universal variable [] k 
instantiated by ] 

universal variable [] <CR> 

provebyinstantiation —  |a\1127| le  |a\H25| 

close —  1  steps/applications 

<sdvs.2>    quit 

Q.E.D.    The proof for this session is in  'sdvsproof. 

State Delta Verification System,  Version 12 

Restricted to authorized users only. 

Here is an example combining both instantiate and provebyinstantiation. 

Note that if the internal state delta is changed to have a comod list of all, then it will 
still not be usable after having been applied once and the state delta will not be true (nor 

provable). 

<sdvs.l>    ppsd 
state delta:    array quant l.sd 

[sd pre: (covering(all,a,b), 
declare(a.type(array,1,10,type(bitstring,8))), 

forall j (.a[j] » 1) , 
exists k ([sd pre: (true) 

comod 
mod 

post 

mod: (all) 
post: (exists i (#a[i] » 3))] 

(all) 
(all) 
(#a[k]  =  -a[k]  +  1)])) 

<sdvs.l>    prove 
state deltaG :    arrayquantl.sd 
proof [] :    < CR> 

open — [sd pre: (covering(all,a,b), 
declare(a,type(array,1,10,type(bitstring,8))), 

forall j (.a[j] = 1), 
exists k ([sd pre 

comod 
mod 

post 

(true) 
(all) 
(all) 
(#a[k] = .a[k] + 1)])) 
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mod:   (all) 
post:   (exists i   (#a[i]  = 3))] 

Complete the proof. 

<sdvs.l.l>    usable 

No usable state deltas. 

q(l)  exists k   ([sd pre: (true) 
comod: (all) 

mod: (all) 
post: (#a[k]  =  .a[k]  + 1)]) 

q(2)  forall j   <.a[j]  = 1) 

<sdvs.l.l>    instantiate 

existential formula: q 
number: 1 

existential variable!!]: k 
instantiated by: k 

existential variablen: <CR> 

instantiate in q(l)  — k for k. 

<sdvs. 1. 2>    provebyinstantiation 
prove f ormula[] : .a[k] = 1 

using universal formula: q 
number: 2 

universal variable []: j 
instantiated by: k 

universal variable [] : < CR> 

provebyinstantiation — a\H39 =  1 

<sdvs.l.3>    usable 

u(l)   [sd pre: (true) 
comod: (all) 

mod: (all) 
post: (#a[k]  =  .a[k]  + 1)] 

q(l)  exists k  ([sd pre: (true) 
comod: (all) 

mod: (all) 
post: (#a[k]  =  .a[k]  + 1)]) 

q(2)  forall j   (.a[j]  =  1) 

<sdvs.l.3>    simp 
expression:    .a[k] 
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<sdvs.l.3>    apply 
sd/number[highest applicable/once]:    <CR> 

apply —   [sd pre 
coood 

mod 
post 

(true) 
(all) 
(all) 
(#a[k]  =   .a[k]  +  1)] 

<sdv8.1.4>    usable 

No usable state deltas. 

No usable quantified formulas. 

6.1.7     Makeboundedquantifier 

The command provebymakeboundedquantifier<expTl> <explist> attempts to prove exprl by 
using the already known to be true universal statements in explist. It checks to see that the 
prefixes are all the same and that the bound in exprl implies the disjunction of the bounds 
of the sentences in explist. 

<sdvs.l>    prove 
state delta[]:    quantsd 
proof []:    <CR> 

open —   [sd pre:   (forall k   ((|. i| gt  0 ft 0 le k)  ft k It jO 
--> |.a[k]| le |.a[(|.n| - |.i|) + 1] 

forall k   ((|.i| gt  0 ft JO le k)  ft k It JO +  1 
— > |.a[k]| le |.a[(|.n| - |.i|) + 1] 

forall k   ((|.i| gt  0 ft jO +  1  le k)  ft 
k It   (jO + 1)  +  1 
--> |.a[k]| le |.a[(|.n| - |.i|) + 1] 

forall k   ((|.i| gt  0 ft  (jO +  1)  +  1  le k)  ft 
k It   (|.n| -  |.i|)  +  1 
--> |.a[k]| le |.a[(|.n| - |.i|) + 1] 

post:   (forall k   ((|#i| gt  0 ft 0 le k)  ft 
k It   (|#n| -  |#i|) +  1 
-->   |#a[k]| le  |#a[(|#n| -  |#i|)  +  1] 

inserting — pcovering(all,a[(|n\H46| -  |i\H45|)  + 1]) 

inserting — pcovering(all,n) 

inserting — pcovering(all,i) 

Complete the proof. 

<sdvs.l.l>    whynotgoal 
simplify? [no] :    < CR> 

g(l)  forall k   ((|#i| gt  0 ft 0 le k)  ft k  It   (|#n| -  |#i|) +  1 

)) 

))] 
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— >  |#a[k]| le  |#a[(|#n| -  |#i|)  +  1]|) 

<sdvs.l.l>    usable 

No usable state deltas. 

q(l)  forall k   ((|i\1145| gt 0 ft  (jO + 1)  + 1 le k)  ft 
k It   (|n\H46| -  |i\H45|) +  1  —>  |.a[k]| le |a\U47|) 

q(2)  forall k  ((|i\ll45| gt 0 ft jO + 1  le k)  ft 
k It   (JO + 1)  +  1  -->  |.a[k]| le |a\1147|) 

q(3)  forall k  ((|i\1145| gt 0 ft jO le k)  ft k It jO + 1 
— >  |.a[k]| le |a\H47|) 

q(4)  forall k   ((|i\H45| gt 0 ft 0 le k)  ft k It  JO —>  |.a[k]| le  |a\1147|) 

<sdvs. 1. 1>   provebymakeboundedquantifier 
prove bounded universal formula: g 

number: / 
number of universal formulas: 4 

using universal formula: q 
number: / 

using universal formula: q 
number: 2 

using universal formula: q 
number: 3 

using universal formula: q 
number: 4 

provebymakeboundedquantifier — forall k  ((|i\U45| gt 0 ft 0 le k)  ft 
k    It   (|n\H46| -  |i\H45|) + 

1 
-->  |.a[k]| le  |a\ll47|) 

close —  1 steps/applications 

<sdvs.2>    quit 

Q.E.D.    The proof for this session is in  'sdvsproof. 

State Delta Verification System,  Version 12 

Restricted to authorized users only. 

Of course, instead of naming the formulas by "g" or "q," one could have typed them out. 

Here is the way the proof looks: 

(prove quantsd 
proof: provebymakeboundedquantifier g(l) 

using: (q(l),q(2),q(3),q(4))) 
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6.1.8     Quantification Axioms 

Another manifestation of the experimental nature of the quantification solver is that the 
quantification axioms are not completely connected to the SDVS axiom mechanism. There- 
fore, some strange things may occasionally happen. For example, if even after having read 
in the quantification axiom(s) SDVS does not recognize that fact, execute deleteaxioms and 
try reading the quantification axiom again via readaxioms. 

There are now only two user-invokable quantification axioms in SDVS, quant2 and quant3, 
located on axioms/quant.axioms. The content of quant2 was needed in an induction proof 
involving properties of numbers, and instead of proving the result in EKL by using a more 
basic axiomatization of natural numbers, we decided to "cheat" and just make quant'2 an 
axiom. 

<sdvs.l> pp 
object: quanta 

aiioB quant2 (j,l,k): 
forall predtomatch forall j forall 1 (forall k (1 le k & 

k le j 
— > predtomatch(k)) ft 

predtomatchCj +  1) 
—> forall k  (1 le k ft 

k    le j + 
1 

—> predtomatch(k))) 

<sdvs.l>    pp 
object: quantS 

axiom quant3 (k,i,l,j): 
forall predtomatch forall k forall 1 (exists j ((1 le j ft 

j It k) ft 
~(predtomatch(j))) 

—> exists j (((1 le j ft 
j It k) ft 

"(predtomatch(j))) ft 

forall i(l le i ft 

i It j 
— > predtomatch(i)))) 

To print an EKL axiom use the pp command, not pp axioms. 

<sdvs.l>    pp 
object:    axiomproof 

proof  axiomproof: 

provebyeklaxio«  (forall k   (0 le k ft k le JO -   1  —>  |.a[k]|  le  |.a[jl]|)  ft 
|.a[(j0 -  1)  +  1]|  le  |.a[jl]| 
— >  forall k   (0 le k ft k le   (jO -  1)   +  1 
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-->   |.a[k]|  le  |.a[jl]|» 
using:  quant2 

<sdvs.l.l>    interpret 
proof name:    axiomproof 

provebyeklaxiom quant2 — forall k  (0 le k ft k IG JO -  1 
-->  |.a[k]| le  |.a[jl]|) ft 

|.a[(j0 -  1)  +  1]|  le |.a[jl]| 
— > forall k  (0 le k ft 

k le  (jO -  1)  +  1 
-->  |.a[k]| le |.a[jl]|) 

Notice that we had to use interpret instead of init, since the first proof command cannot 
be provebyeklaxiom. Note that to create the above axiomproof it is necessary to do the 
following in the editor: 

(putproof 'axiomproof 
'((provebyeklaxiom 

(implies 
(and (forall k 

(implies (and (le 0 k) (le k (minus jO 1))) 
(le (usval (dot (element a k))) 
(usval (dot (element a jl)))))) 

(le (usval (dot (element a (plus (minus jO 1) 1)))) 
(usval (dot (element a jl))))) 

(forall k 
(implies (and (le 0 k) (le k (plus (minus jO 1) 1))) 
(le (usval (dot (element a k))) 
(usval (dot (element a jl))))))) 

quant2))) 

Here is an example of a proof involving quantS: Let the following state delta be called 
test.sd: 

[sd pre:   ("(forall j   (.k le j  ft j  It   .1 —>   .x[j]  le  .x[l]))) 
post:   (exists j   (((.k le j  ft j   It   .1)  ft ~(.x[j]  le   .x[l]))  ft 

forall i   (.k le i ft i It j  —>   .x[i]  le   .x[lj)))] 

and let the following proof be called quant-good.proof: 

(prove testl.sd 
proof: 

(provebyeklaxiom (exists j   ((.k le j ft j  It   .1)  ft 
.x[j]  gt   .x[l]) 

— > exists j   (((.k le j  ft j  It   .1)  ft 
.x[j]  gt   .x[l]) ft 

forall i  (.k le i ft i It  j 
-->   .x[i]  le  .x[l]))) 

using:  quant3, 
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notice 
exists j   (((.k le  j  ft j   It   .1)   ft  ~(.x[j]   le   .x[l]))  ft 

i or all i  (.k le i ft  i It j  —>   .x[i]  le   .: 
close)) 

The transcript of the proof session follows: 

<sdvs.l.2>    mit 
proof name [] :    quant-good.proof 

State Delta Verification System,  Version 12 

Restricted to authorized users only. 

open —   [sd pre:   ("(forall j   (.k le j ft j  It   .1 —>   .x[j]  le   .x[l]))) 
post:   (exists j   (((.k le j  ft j  It   .1)  ft 

-(.x[j]   le  .x[l])) ft 
forall i   (.k le  i ft  i It  j  —>   .x[i]   le   .x[l])))] 

inserting — pcovering(all,l) 

inserting — pcovering(all,k) 

provebyeklaxiom quant3 — exists j   ((.k le j  ft j  It   .1)  ft 
~(.x[j]  le   .x[l])) 

—>  exists j   (((.k le j  ft j  It   .1)  ft 
~(.x[j]  le   .x[l])) ft 

forall i  (.1 le i t 
i It j 
— >   .x[i]  le  .x[l])) 

close —  1  steps/applications 

Note that care has to be taken to save the proof in its Lisp form, so that the internal form 
of the predtomatch part of the axiom will really be a predicate and its negation, and not in 

terms of le and It; thus 

(defproof quant-good.proof 
((prove testl.sd 
(provebyeklaxiom 
(implies 
(exists j 
(and (and (le (dot k) j) (It j (dot 1))) 

(not (le (dot (element x j)) (dot (element x 1)))))) 
(exists j 
(and (and (and (le (dot k) j) (It j (dot 1))) 

(not (le (dot (element x j)) (dot (element x 1))))) 

(forall i 
(implies (and (le (dot k) i) (It i j)) 
(le (dot (element x i)) (dot (element x 1)))))))) 

quant3) 
(notice 
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(exists j 

(and (and (and (le (dot k) j) (It j (dot 1))) 

(not (le (dot (element x j)) (dot (element x 1))))) 

(forall i 

(implies (and (le (dot k) i) (It i j)) 

(le (dot (element x i)) (dot (element x 1)))))))) 

(close)))) 

6.1.9     Quantification Flags 

checkexistence When this flag is on, existential quantifiers of type place are automatically 
instantiated in all possible combinations. 

ekltraceflag When this flag is on, EKL internal messages will be printed. 

enumerate When this flag is on, bounded universally quantified variables are enumerated. 

6.2    PROOF OF A SORT PROGRAM 

Now we present an example proof of a standard bubble-sort algorithm stated in ISPS. The 
SDVS proof of a "quicksort" Ada program is given in [41]. 

ISPS.SORT {US}   := BEGIN 

** Declaration.Section ** 

I<15:0>, 
J<15:0>, 
N<15:0>, 
TMP<15:0>, 
A[0:99]<15:0>, 

** Interpretation.Section ** 

SORT {main} := BEGIN 

1.0 NEXT 
Lll := REPEAT 

LI := BEGIN 

IF I EQL N => LEAVE Lll NEXT 

J_0 NEXT 

L22 := REPEAT 

L2 := BEGIN 

IF J EQL N => LEAVE L22 NEXT 

IF A[J] GTR A[J+1] => BEGIN 

TMP_A[J] NEXT 

A[J]_A[J+1] NEXT 

A[J+1].TMP 

END NEXT 

J.J+1 

END NEXT 

I-I+l 
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END 

END 

END 

The theorem, as given in sort.sd, expresses the order property of the array a upon termi- 
nation of sort.isp. 

[sd pre: (isps(sort.isp),.isps.sort\upc = isps.sort\started, 

|.n| It range (a)) 

Hod: (all) 
post: (#isps.sort\upc = isps.sort\halted, 

forall k (0 le k & k It |.n| —> |#a[k]| le |#a[k + 1]|))] 

The proof of sort.sd is given in sort.proof. 

<sdvs.l> pp 
object: sort.proof 

proof sort.proof: 

(setflag enumerate off, 
setflag ekltraceflag off, 

setflag autoclose off, 

date, 
prove sort.sd 

proof: 

cases |.n| =0 
then proof: 

(until #isps.sort\upc = isps.sort\halted, 

close) 

else proof: 

(until #isps.sort\upc « 12, 

induct on:    |. j | 

fro«:       0 

to:        |.n| 

invariants:  (.isps.sort\upc = 12, 
forall k (0 le k ft k It |.j| 

— > |.a[k]| le |.a[|.j|]|)) 

comodlist:  (n,i) 
modiist:    (j,isps.sort\upc,a,tmp) 

base proof:  close 

step proof: 
(comment Let jO, jl, notice jl=j0+l bistring-wise., 

let jO = |.j|, 

let jl = jO + 1, 

notice jl = |(.j ++ 1(2))<15:0>|, 
comment Notice initial inner invariants in terms of jO. , 

provebygeneralization forall k (0 le k ft k It jO 
--> |.a[k]| le |.a[j0]|) 

using: (forall k (0 le k ft k It |.j| —> |.a[k]| le |.a[|. j|]|)), 

comment Apply to inner greater-than test. , 
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apply, 

cases |.a[|.jPI le |.a[|.j ++ 1(2)|]| 
then proof: 

(interpret sortinnerOl.proof, 

close) 

else proof: 

(interpret sortinner02.proof, 

close), 

close), 

until #isps.sort\upc =11, 

notice 
forall k (0 le k ft k It |.j| —> |.a[k]| le |.a[|.j|]|), 

provebygeneralization forall k ((| .i| gt 0 ft 0 le k) ft 

k It (|.n| - |.i|) + 1 

--> |.a[k]| 

le  |.a[(|.n| -  |.i|)  + 
1]|) 

using:   (forall k  (0 le k ft k It  |.j| —>  |.a[k]| le | .a[|. j|]|)) , 
notice 
forall k  ((|.n| -  |.i|) +  1  le k ft k It  |.n| 

-->  |.a[k]| le  |.a[k +  1]|), 
induct on: |.i| 

from: 1 
to: |.n| 
invariants:     (.isps.sort\upc = 11, 

forall k  ((|.n| -  |.i|)  +  1  le k ft 
k It  |.n| 
--> |.a[k]| le |.a[k + 1]|), 

forall k ((|.i| gt 0 ft 0 le k) ft 

k It (|.n| - |.i|) + 1 

--> |.a[k]| 

le |.a[(|.n| - |.i|) + 1]|)) 

comodlist:  (n) 

modlist:    (a,i,j,tmp,isps.sort\upc) 

base proof: close 

step proof: 

(comment Let iO, il, notice il=i0+l bitstring-sise., 

let iO = |.i|, 
let il = iO + 1, 

notice il = |(.i ++ 1(2))<15:0>|, 

until #isps.sort\upc = 12, 

induct on:    |. j | 

from:      0 

to: |.n| - |.i| 
invariants:  (.isps.sort\upc = 12, 

forall k (0 le k ft k It |.j| 

->  |.a[k]| le  |.a[|.j|]|), 
forall k  ((|.n| -  |.i|)  + 1 le k ft 

k It  |.n| 
-->  |.a[k]| le  |.a[k +  1]|), 

forall k  ((|.i| gt 0 ft 0 le k)  ft 
k It   (|.n| - |.i|)  + 1 
-->  |.a[k]| 

le  |.a[(|.n| -  |.i|) + 
1]|)) 
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comodlist:   (n,i) 

modlist:    (j,a[0:(|.n| - |. i|)] ,isps. sort \upc, tap) 

base proof:  close 

step proof: 
(comment Let jO, jl, notice jl=jO+l bistring-wise. , 

let JO = |.j|. 
let jl = jO + 1, 

notice jl = |(.j ++ 1 (2))<15:0>|, 
comment Notice initial inner invariants in terms of jO., 

provebygeneralization forall k (0 le k ft k It jO 
--> |.a[k]| le |.a[j0]|) 

using: (forall k (0 le k & k It |.j| ~> l-aW| le | .a[|. j|]|)) , 

comment Apply to inner greater-than test. , 

apply, 
cases |.a[|.j|]| le |.a[|.j ++ 1(2)|]| 

then proof: 

(interpret sortinnerll.proof, 

close) 

else proof: 

(interpret sortinner12.proof, 

close), 

close), 

notice 
forall k (0 le k & k It |.j| --> |.a[k]| le |.a[|.j|]|), 

provebygeneralization forall k (0 le k ft 
k It l.nl - l.il 

— >  |.a[k]| 
le  |.a[|.n| -  |.i|]|) 

using:   (forall k  (0 le k ft k It  |.j| —>  |.a[k]|  le |.a[|. j|]|)) , 
induct on: l-j| 

from: |.n| -  |.i| 
to: |.n| 
invariants: (.isps.sort\upc = 12, 

forall k  ((|.n| -  |.i|) + 1  le k ft 
k It  |.n| 
-->  |.a[k]| le |.a[k +  1]|), 

forall k  ((|.i| gt 0 ft 0 le k)  ft 
k It   (|.n| - |.i|)  +  1 
— >  |.a[k]| 

le |.a[(|.n| -  |.i|) + 
1]|)) 

comodlist: (n,i,a) 
modiist: (j,isps.sort\upc) 
base proof: close 
step proof: 

(comment Let jO, jl, notice jl=j0+l bistring-wise., 

let jO » |.j|, 

let jl » jO + 1, 
notice jl = |(.j ++ 1(2))<15:0>[, 

comment The next notice was inserted by leo., 

notice 
forall k <(|.n| - |.i|) + 1 le k ft k It |.n| 

--> |.a[k]| le |.a[k + 1]|), 

comment Apply to inner greater-than test. , 

apply, 
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comment Prove that a[.j] <= a[.j+l], 

comment The next notice was inserted by leo., 

notice 

forall k ((|.n| - |.i|) + 1 le k ft k It |.n| 

--> |.a[k]| le |.a[k + 1]|), 

subcases |.j| le |.n| - |.i| 

modlist: 

subgoal:  (|.a[|.j|]| le |.a[|.j ++ 1(2)|]|) 

then proof: 

(provebyinstantiation |-a[|.j|]| 

le |.a[(|.n| - |.i|) + 

1]| 
using:  forall k  ((|.i| gt 0 ft 0 le k)  ft 

k It  (|.n| - |.i|) + 1 
— >  |.a[k]| 

le  |.a[(|.n| -  |.i|)  +  1]|) 
substitutions:   (k=|.j|), 

close) 
else proof: 

(provebyinstantiation |.a[|.j|]| 
le  |.a[|.j| +  1]| 

using:  forall k  ((| .n| -  | .i|) +  1 le k ft 
k It  |.n| 
— >  |.a[k]| le  |.a[k +  1]|) 

substitutions:   (k=|.j|), 
close), 

comment The next notice was inserted by leo., 
notice 
forall k  ((|.n| -  |. i|) +  1 le k ft k It  | .n| 

-->  |.a[k]|  le  |.a[k +  1]|), 
until #isps.sort\upc = 12, 
close), 

notice 
forall k  ((|.i| gt 0 ft 0 le k)  ft 

k It  |.n| -  |.i| 
->  |.a[k]| le l-aCj-nl -  |.i|]|), 

provebygeneralization forall k  ((iO gt  0 ft 0 le k)  ft 
k It  |.n| - iO 
-->  |.a[k]| 

le  |.a[|.n| -  i0]|) 
using:   (forall k   ((|.i| gt 0 ft 0 le k)  ft 

k It  |.n| -  |.i| 
-->  |.a[k]| le |.a[|.n| -  |.i|]|)), 

notice 
forall k  ((|.n| -  |.i|) +  1 le k ft k It  |.n| 

— >  |.a[k]| le |.a[k + 1]|), 
provebygeneralization forall k  ((|.n| -  iO)  + 1 le k ft 

k It  |.n| 
— >  |.a[k]| 

le  |.a[k +  1]|) 
using:   (forall k   ((|.n| - |.i|)  + 1  le k ft k It  |.n| 

— >  |.a[k]|  le  |.a[k +  1]|)), 
notice 
forall k  ((|.i| gt 0 ft 0 le k)  ft 

k It  (|.n| -  |.i|)  +  1 
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— >   |.a[k]|  le  |.a[(|.n|  -   |.i|)  +  1]|). 
provebygeneralization forall k  ((iO gt  0 ft 0 le k)  ft 

k    It  (|.n|  - iO)  +  1 
-->   |.a[k]| 

le |.a[(|.n| - iO) + 

1]|) 

using: (forall k ((|.i| gt 0 ft 0 le k) ft 

k It (|.n| - |.i|) + 1 
--> |.a[k]| le |.a[(|.n| - |.i|) + 1]|)). 

until #isps.sort\upc = 11, 

notice |.n| - iO = (| .n| - |. i|) + 1, 
provebygeneralization forall k ((|.i| gt 0 ft 0 le k) ft 

k It (|.n| - |.i|) + 

1 

--> |.a[k]| 

le |.a[(|.n| - |.i|) + 

1]|) 
using:   (forall k  ((iO gt 0 ft 0 le k)  ft k It |.n| - iO 

— >  |.a[k]| le  |.a[|.n| -  i0]|)), 
provebyinstantiation |.a[|.n| -  i0]| 

le |.a[(|.n| -  iO)  +  1] | 
using:  forall k   ((iO gt  0 ft 0  le k)   ft 

k It   (|.n|  -  iO)  +  1 
— >   |.a[k]|  le |.a[(|.n|  -  iO)  +  1]|) 

substitutions:   (k»|.n| -  iO), 
notice 
forall k  (|.a[|.n| -  i0]| le |.a[(|.n| -  iO)  +  1]|), 

provebygeneralization forall k  (|.n| -  iO le k ft 
k    It   (|.n| - iO)  +  1 
-->  |.a[k]| 

le |.a[k +  1]|) 
using:   (forall k  (|.a[|.n| - iO] | le  |.a[(|.n| -  iO) *  1]|)), 

provebymakeboundedquantifier forall k  ((|.n| -  |.i|)  + 
1  le k ft 

k It  |.n| 
-->  |.a[k]| 

le  |.a[k + 

HD 
using:   (forall k   (|.n| -  iO le k ft 

k It  (|.n| -  iO)  +  1 
— >  |.a[k]| le  |.a[k +  1]|), 

forall k  ((|.n| - iO)  + 1  le k ft k It  |.n| 
— >  |.a[k]| le  |.a[k +  1]|)), 

close), 
notice 
forall k   ((|.n| -  |.i|)  +  1  le k ft k It  |.n| 

— >  |.a[k]| le  |.a[k +  1]|), 
notice 
forall k  <(|.i| gt  0 ft 0 le k)  ft 

k It   (|.n| -  |.i|)  +  1 
—>  |.a[k]| le  |.a[(|.n| -  |.i|)  + 1]|), 

provebygeneralization forall k  ((|.i| gt 0 ft 0 le k)  ft 
k It  (|.n| - |.i|) ♦ 1 
-->  |.a[k]| le  |.a[k +  1]|) 

using:   (forall k  ((|.i| gt 0 ft 0 le k)  ft 
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k It   (|.n| -  |.i|)  +  1 
— >  |.a[k]| le  |.a[(|.n| -  |.i|)  +  1]|)), 

provebymakeboundedquantifier forall k  (0 le k ft k It  |.n| 
-> |.a[k]| 

le  |.a[k +  1]|) 
using:   (forall k  ((|. i| gt 0 ft 0 le k)  ft 

k It  (|.n| -  |.i|)  +  1 
-->  |.a[k]| le |.a[k + 1]|), 

forall k  ((|.n| - |.i|) + 1 le k ft k It |.n| 
— >  |.a[k]| le |.a[k +  1]|)), 

until #isps.sort\upc = isps.sort\halted, 
close), 

date) 

<sdvs.l>   pp 
object:    sortinnerOl.proof 

proof sortinnerOl.proof: 

(until #isps.sort\upc = 12, 
comment Generalize from a[j0]<=a[jl]  and k<j0—>k<=j0-l., 
provebygeneralization forall k  (0 le k ft k le jO -  1 

->  |.a[k]| le |.a[jl]|) 
using:   (forall k  (0 le k ft k It  jO —>  |.a[k]| le  |.a[j0]|)), 

provebyeklaxiom (forall k  (0 le k ft k le jO -  1  —>  |.a[k]| le  |.a[jl]|)  ft 
|.a[(j0 -  1)  +  1]|  le |.a[jl]| 
— > forall k  (0 le k ft k le  (jO -  1)  + 1 

-->  |.a[k]|  le  |.a[jl]|)) 
using:  quant2, 

notice 
forall k  (0 le k ft k le jO -  1  —>  |.a[k]| le |.a[jl]|)  ft 

|.a[(j0 -  1)  +  1]|  le |.a[jl]|, 
notice 
forall k  (0 le k ft k le  (jO -  1)  + 1  —>  |.a[k]| le  |.a[jl]|), 

comment Generalize from k<=j0-l+l — >k<j0+l and j0+l=jl and jl=usval(. j) ., 
provebygeneralization forall k  (0 le k ft k It |.j|  —>  |.a[k]| le  |.a[|.j|]|) 

using:   (forall k  (0 le k ft k le   (jO -  1)  + 1 —>  |.a[k]| le |.a[jl]|))) 

<sdvs.l>    pp 
object:    sortinnerOSZ.proof 

proof sortinner02.proof: 

(provebyaxiom alldisjoint(a[|. j|] ,a[|. j ++  1(2)|]) 
using:  disjoint\elements, 

apply 2, 
provebygeneralization forall k  (0 le k ft k It jO —>  |.a[k]| le  |.tmp|) 

using:   (forall k  (0 le k ft k It jO —>  |.a[k]| le  |.a[j0]|)), 
until #isps.sort\upc = 12, 
comment Generalize from a[j0]<=a[jl]  and k<j0—>k<=j0-l., 
provebygeneralization forall k  (0 le k ft k le jO -  1 

-->  |.a[k]| le  |.a[jl]|) 
using:   (forall k  (0 le k ft k It jO —>  |.a[k]| le |.tmp|)), 

provebyeklaxiom (forall k  (0 le k ft k le jO -  1  —>  |.a[k]| le  |.a[jl]|)  ft 
|.a[(j0 -  1)   +  1]|  le  |.a[jl]| 
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— >  forall k   (0  le k ft k  le   (JO  -  1)  +  1 
— >  |.a[k]|  le  |.a[jl]|)) 

using:  quant2, 
notice 
forall k   (0 le k & k le j0 -  1  — >  |.a[k]|  le  |.a[jl]|)  ft 

|.a[(j0 -  1)  + 1]|  le  |.a[jl]|, 
notice 
forall k   (0 le k ft k le  (j0 -  1)  +  1  —>  |.a[k]| le  |.a[jl]|), 

comrnent Generalize fron kOjO-1+1—>k<j0+l and j0+l=jl and jl^usvaK. j) . , 
provebygeneralization forall k  (0 le k ft k lt  |.j| —>  |.a[k]| le  |.a[|.jP|) 

using:   (forall k  (0 le k ft k le  (j0 -  1)  +  1  — >  |.a[k]| le  |.a[jl]|))) 

<sdvs.l>   pp 
object:    sortinnerll.proof 

proof sortinnerll.proof: 

(until #isps.sort\upc = 12, 
comment Generalize fro« a[j0]<=a[jl]  and k<j0—>k<=j0-l., 
provebygeneralization forall k  (0 le k ft k le j0 -  1 

-->  |.a[k]| le  |.a[jl]|) 
using:   (forall k  (0 le k & k lt j0 —>  |.a[k]|  le  |.a[j0]|)), 

provebyeklaxiom (forall k  (0 le k ft k le j0 -  1  —>  |.a[k]| le  |.a[jl]|)  ft 
|.a[(j0 -  1)  +  1]|  le  |.a[jl]| 
— > forall k  (0 le k fc k le  (j0 -  1)  +  1 

-->  |.a[k]| le  |.a[jl]|)) 
using:  quant2, 

notice 
forall k  (0 le k ft k le j0 -  1 —>  |.a[k]| le |.a[jl]|)  ft 

|.a[(j0 -  1)  +  1]|  le  |.a[jl]|. 
notice 
forall k  (0 le k ft k le  (j0 -  1)  +  1  —>  |.a[k]| le  |.a[jl]|), 

comment Generalize from k<=j0-l+l—>k<j0+l and j0+l=jl and jl=usval(. j) . , 
provebygeneralization forall k  (0 le k & k lt  |.j|  —>  |.a[k]| le  |.a[|.j|]|) 

using:   (forall k  (0 le k ft k le  (j0 -  1)  + 1 —>  |.a[k]| le  |.a[jl]|))) 

<sdvs.l>   pp 
object:    sortinnerlS.proof 

proof sortinner12.proof: 

(comment Start the proof of the third invariant,  by breaking it  into pieces., 
provebyinstantiation |.a[|.j|]| le  |.a[(|.n| -  |.i|) +  1]| 

using:  forall k  ((|.i| gt 0 ft 0 le k)  ft k lt   (|.n| - |.i|)  +  1 
-->  |.a[k]| le  |.a[(|.n| -  |.i|)  + 1]|) 

substitutions:   (k=|.j|), 
provebyinstantiation |.a[|.j| + 1] |  le |.a[(|.n| -  |.i|) +  1]| 

using:  forall k  ((|.i| gt 0 ft 0 le k)  ft k lt   (|.n| -  |.i|)  +  1 
-->   |.a[k]| le  |.a[(|.n|  -  |.i|)  +  1]|) 

substitutions:   (k=|.j|), 
provebygeneralization forall k   ((|. i| gt  0 ft 0 le k)  ft k lt  JO 

— >  |.a[k]| 
le  |.a[(|.n|  -  |.i|)  +  1]|) 

using:   (forall k  ((|.i| gt  0 ft 0 le k)  ft k lt   (|.n| -  |.i|)  ♦  1 
— >  |.a[k]| le |.a[(|.n| -  |.i|)  +  1]|)), 
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provebygeneralization forall k  ((|.i| gt 0 ft jl + 1  le k)  ft 
k It   (|.n| -  |.i|)  + 1 
-->  |.a[k]| 

le  |.a[(|.n| - |.i|)  +  1] |) 
using:   (forall k  ((|.i| gt 0 ft 0 le k)  ft k It   (|.n| -  |.i|)  + 1 

->  |.a[k]| le |.a[(|.n| -  |.i|)  +  1]|)), 
provebyaiiom pcovering(a[0: (|.n| -  |. i|)] ,a[|. j|]) 

using: pcovering\slice\element, 
provebyaiiom pcovering(a[0: (|.n| -  |.i|)],a[|.j ++ 1(2)|]) 

using: pcovering\slice\element, 
provebyaiiom alldisjoint(a[|. jP ,a[(|.n| -  |.i|)  + 1]) 

using:  disjoint\elements, 
provebyaiiom alldisjoint(a[|. j ++  1(2)|] ,a[(|.n| -  |.i|)  + 1]) 

using:  disjoint\elements, 
provebyaiiom alldisjoint(a[|. j|] , a[| .n|]) 

using:  disjoint\elements, 
provebyaiiom alldisjoint(a[|.j ++  1(2)|] ,a[|.n|] ) 

using:  disjoint\elements, 
comment Here is where the equivalent proof for the  i=0 case starts., 
provebyaiiom alldisjoint(a[|. j|] ,a[|. j ++  1(2)|]) 

using:  disjoint\elements, 
apply 2, 
provebygeneralization forall k (0 le k ft k It jO —>  |.a[k]| le |.tmp|) 

using:   (forall k  (0 le k ft k It jO —>  |.a[k]| le  |.a[j0]|)), 
until #isps.sort\upc = 12, 
comment Generalize from a[j0]<=a[jl]  and k<j0—>k<=j0-l., 
provebygeneralization forall k  (0 le k ft k le jO -  1 

— >  |.a[k]| le  |.a[jl]|) 
using:   (forall k  (0 le k ft k It jO -->  |.a[k]| le  |.tmp|)), 

provebyeklaiiom (forall k  (0 le k ft k le jO -  1  —>  |.a[k]| le  |.a[jl]|)  ft 
|.a[(j0 -  1)  +  1]|  le  |.a[jl]| 
— > forall k  (0 le k ft k le  (jO -  1)  + 1 

-->  |.a[k]| le  |.a[jl]|)) 
using:  quant2, 

notice 
forall k  (0 le k ft k le jO -  1  —>  |.a[k]| le |.a[jl]|)  ft 

|.a[(j0 -  1)  +  1]|  le  |.a[jl]|, 
notice 
forall k  (0 le k ft k le  (jO -  1)  + 1  —>  |.a[k]| le |.a[jl]|), 

comment Generalize from k<=j0-l+l~>k<j0+l and j0+l=jl and jl=usval(. j) ., 
provebygeneralization forall k (0 le k ft k It |.j| ~> |-a[k]| le |.a[|.j|]|) 

using:   (forall k  (0 le k ft k le  (jO -  1)  +  1  —>  |.a[k]| le  |.a[jl]|)), 
comment Finish the proof of the third invariant., 
notice forall k  (|.a[j0]| le  |.a[(|.n| -  |.i|) +  1]|), 
provebygeneralization forall k  ((| .i| gt 0 ft jO le k)  ft 

k It jO + 1 
-->  |.a[k]| 

le |.a[(|.n| - |.i|) + 1]|) 

using: (forall k (|.a[j0]| le |.a[(|.n| - |.i|) + 1]|)), 

notice forall k (|.a[jl]| le |.a[(|.n| - |.i|) + 1]|), 

provebygeneralization forall k ((|.i| gt 0 ft jl le k) ft 

k It jl + 1 

--> |.a[k]| 

le |.a[(|.n| - |.i|) + 1]|) 

using: (forall k (|.a[jl]| le |.a[(|.n| - |.i|) + 1]|)), 
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provebymakeboundedquaiitifier forall k   ((|.i| gt  0 ft 0  le k)  ft 
k It   (|.n| -  |.i|)  +  1 
-->  |.a[k]| 

le  |.a[(|.n| -  |.i|)  + 

using:   (forall k  ((|. i| gt  0 ft 0 le k)  ft k It jO 
-->  |.a[k]| le  |.a[(|.n|  -  |.i|)  +  1]|), 

forall k   ((|.i| gt  0 ft  JO le k)   ft k It JO +  1 
— >  |.a[k]| le  |.a[(|.n|  -  |.i|)  +  1]|), 

forall k   ((|.i| gt  0 ft  jl  le k)   ft k It j 1 +  1 
— >  |.a[k]| le  |.a[(|.n| -  |.i|)  +  1]|), 

forall k  ((|.i| gt  0 ft jl +  1 le k)  ft 
k It   (|.n| -  |.i|)  +  1 
-->  |.a[k]| le  |.a[(|.n| -  |.i|)  +  1]|))) 
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7    USER-DEFINED DATA TYPES 

7.1    INTRODUCTION 

In this section we give some background on user-defined data types in general, and in the 
next section we give the specifics of the experimental SDVS capability. This capability is 
modeled on the Boyer-Moore system [56]. This chapter is largely taken from [57]. 

Boyer and Moore, in their program for Computational Logic, introduced a formal method 
for the introduction of new data types, called the shell principle. This specifies what func- 
tions are introduced for the definition of a new data type, and introduces an automatically 

generated set of associated axioms. This is the pattern of the shell principle: 

• There is a constructor function const, of n arguments, 

• an optional base constant base, 

• a recognizer function r, 

• accessor functions ac\, ac2, ■ ■ ■, acn, 

• type restrictions tr\, tr<i, ■ ■ ■, trn, and 

• de jault values dv\, dv2, ■ ■ ■, dvn. 

For example, a binary tree could be considered to be a data type with constructor buildTree, 
a function of two arguments, where the base is emptyTree, the recognizer would be a pred- 
icate isTree(...), and the accessors are leftSubTree, data, and rightSubTree. The type 
restrictions, which give the types of the results of the accessor functions, are binaryTree, 
int, binaryTree, respectively, and thus imply 

• leftSubTree: [binaryTree —>• binaryTree] 

• data:[binaryTree —► int] 

• rightSubTree:[binaryTree —► binaryTree] 

Finally, the default values are emptyTree, 0, emptyTree for leftSubTree, data, and 

rightSubTree, respectively. 

Just as before, models of structures introduced by the shell principle are obtained in either 

of two ways: 

1. by n-tuples in which the i-th term satisfies the type restriction tr±, or 

2. by all terms being built up from base using the constructor const. 

Axioms for the new data type are automatically generated; a few of these are 
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• r(x) = T V r(x) = F 

• r(const(xj,. ..,xn)) = T 

• r(base) = T 

• base 7^ 00051(0;!,..., xn) 

• r(x)—> x / base —► x = const(ac](x),.. .,ac„(x)) 

Note: The use of r in some of these axioms is needed for a language in which variables can 

range over other objects as well as stack s; it could be omitted in a typed situation where 

x can be declared to be of type stack. 

The type restrictions in the shell principle may take either of two forms; a union of types— 
"one of"—or a complement of a union of types— "none of." So the const function may 

be polymorphic. When const is applied to objects that do not meet the appropriate type 
restrictions, the appropriate default value is used instead. Likewise, the accessor functions 
return default values when applied to arguments not of the defined type. 

The shell principle does not cover all conceivable abstract data type definitions. In partic- 
ular, it does not allow for mutually recursive definitions; this would be a situation in which 
two new data types are being defined, with the constructor for each taking one or more 
arguments to be of the other type. We do not know of any concrete examples where this 
actually needs to be done, so it would seem that the shell principle is adequate for practical 
cases. However, it would not be particularly difficult to extend the shell principle to allow 
for multiple constructors. 

Because the shell principle suffices for the known cases of interest, we have chosen it for 

SDVS's preliminary paradigm for data type introduction. 

We now describe the user interface by means of an example—defining the stack type—and 

discuss the other requirements placed upon SDVS to support this new facility. 

<sdvs.l> createdatatype 
datatype name: stack 

constructor: push 
arity: 2 

accessor#i: top 
accessor#l type is stack —> [arbitrary] : integer 

accessor#l default value: 0 
accessor#2: pop 

accessor#2 type is stack —> [arbitrary] : stack 
accessor#2 default value: emptystack 

Datatype 'stack' created with the following axioms: 

axiom stack.1 (i,s) :  () ~-  push(i,s) 

axiom stack.2 (s):  () "» s —> s = push(topCs),pop(s)) 
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axiom stack.3 (i,s): top(push(i,s)) = i 

axiom stack.4 (i,s): pop(push(i,s)) = s 

axiom stack.5 (): stacksize(O) = 0 

axiom stack.6 (i,s): stacksize(push(i,s)) = 1 + stacksize(s) 

Writing 'stack' datatype definition to file 
/u/versys/sdvs/datatypes/stack.datatype 

If more than the standard axioms are required, use the 'datatypeaxioms' 

command. 

This is a stack of objects of type int, i.e., integers. We could have stacks of other data types 
as well, but these stacks would likewise be of different type than the stack of integers. This 
is the reason for polymorphic types, as in the Boyer-Moore system and some programming 
languages. So top could be declared to have type stack -» int U string, for example; 
then the stacks would contain either integers or strings. There could even be a built-in 
polymorphic data type ground, which matches any type so that stacks could be defined to 
hold any sort of objects. 

7.2    SDVS COMMANDS 

The command createdatatype prompts the user for the datatype name, the constructor 
function name, the number of arguments of the constructor ("arity"), and accessors for 
each argument position. 

<sdvs. 1> createdatatype 
datatype name: test 

constructor: scrunch 
arity: 2 

accessor*!.: unscrunchl 
accessor#l type is test —> [arbitrary]: <CR> 

accessor#l default value: empty 1 
accessor#2: unscrunch2 

accessor#2 type is test —> [arbitrary]: <CR> 
accessor#2 default value: empty2 

Datatype 'test' created with the following axioms: 

axiom test. 1 (t) : t = scrunch(unscrunchKt) ,unscrunch2(t)) 

axiom test.2 (xl,x2): unscrunchl(scrunch(xl,x2)) = xl 

axiom test.3 (xl,x2): unscrunch2(scrunch(xl,x2)) = x2 

Writing 'test' datatype definition to file 
/u/versys/sdvs/datatypes/test.datatype 
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If more than the standard axioms are required, use the 'datatypeaxioms ' 

coMM and. 
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8     INVARIANTS IN SDVS 

This chapter describes the capabilities of SDVS with regard to state deltas with invariants. 

For more details, the reader is referred to [32], [58], [59], and [60]. 

The motivation for adding invariants to state deltas comes from the desire to specify how 

places change in the time between the precondition and the postcondition, not only whether 
they change, for which the mod list suffices. For example, in a standard state delta, we may 

say that a place x will be incremented by 1, but we cannot say that along the way x will 
have only its previous value until it jumps discretely to x+1. For this we need to say that 

#x = .x is an invariant. Note that since x does in fact change value, it must appear in the 
mod list. This also shows why we interpret the invariant as holding from the time of the 
precondition up to, but not including, the time of the postcondition (left-closed, right-open 

interval). 

The invariance capability is regulated by the flag invariance. When invariance is off, SDVS 
essentially assumes that the invariants of all state deltas are "TRUE," and thus the user 
need not think about invariants. However, when invariance is on, there is a new "inv" 
field in state deltas. (Make sure not to confuse this with the induction invariant.) Two new 
commands have been introduced specifically for state deltas with invariants: noticeinvariant 

and noticeconcurrentsd; but all the other commands {apply, cases, induct, linearize, meases, 
prove, and especially negate) have been altered to handle the invariant case. If a command 
is called on a state delta that has an invariant when the invariance flag is off, an error 

message will be generated. 

<sdvs.l>    createsd 
name invl.sd 

[SD pre true 

comodG <CR> 
mod[] X 

inv[] #X=  .X 

post #X =  .X  +   1 

The dot in the invariant refers to the precondition time, and the pound in the invariant 
refers to any time between the precondition and postcondition time (including the former 

but not the latter). 

The modification list of the standard state delta is a restricted kind of invariant. Of course, 
there is a connection between the mod list and the invariant. Note that the following are 

equivalent state deltas: 

mod.sd 

[sd pre:   (.y =  1)   comod:   (all)  mod:   (y) post:   (#y = 5)] 

and invxy.sd 
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[sd pre: (. y  »   1) 
comod: (all) 

mod: (x,y) 
inv: (#x »   . x) 

post: (#x »   -x,#y = 5)] 

However, SDVS can prove only one direction, namely that the first implies the second. See 
[35] for more details. 

<sdvs.l>    prove 
state delta[]:    equiv.sd 
proof []:    <CR> 

open —   [sd pre 
comod 
post 

(formula(mod.sd)) 
(all) 
(formula(inv.sd))] 

Complete the proof. 

<sdvs.l.l>    goals 

g(l)   [sd pre: (.y = 1) 
comod: (all) 

mod: (x,y) 
inv: (#x =  .x) 

post: (#x =  .x,#y » 5)] 

<sdvs.l.l>   prove 
state delta[] :    g 

number:    / 
proof [] :    usable 

open —   [sd pre 
comod 

mod 
inv 

post 

(.y = 1) 
(all) 
(x,y) 
(#x »   .x) 
(#x =   .x,#y - 5)] 

inserting — pcovering(all.y) 

comment — prove the invariant of the state delta to be proven 

open —  [sd pre:   (true) 
comod:   (all) 
post:   (#x « x\676)] 

close — 0 steps/applications 

Complete the proof. 

<sdvs.l.l.2>    apply 
sd/number[highest applicable/once]:    u 

number:    2 
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comment — prove the invariant prior to the application 

open — [sd pre: (true) 

comod: (all) 

post: (#x = x\676)] 

close — 1 steps/applications 

apply — [sd pre: (.y = 1) 

comod: (all) 

mod: (y) 

post: (#y = 5)] 

close — 1 steps/applications 

close — 1 steps/applications 

8.1    NOTICEINVARIANT 

Now consider the state deltas inv8.sd: 

[sd pre: (.y =  1) 

mod: (i) 
inv: (#i gt 2) 

post: (#y = 5)] 

inv9.sd: 

[sd pre: (.y =  1) 
mod: (x) 

inv: (#x gt  1) 
post: (#y = 5)] 

and invlO.sd: 

[sd pre:   (formula(inv8.sd)) 
post:   (iormula(inv9.sd))] 

Clearly invlO.sd is true. The proof will involve showing that one invariant implies the other, 
using the noticeinvariant command. 

<sdvs.l>    prove 
state deltaü:    invlO.sd 
proof [] :    < CR> 

open —   [sd pre:   (formula(inv8.sd)) 
post:   (iormula(inv9.sd))] 

Complete the proof. 
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<sdvs.l.l>    goals 

g(l)   [sd pre: (.y «  1) 
nod: (x) 
inv: (#i gt  1) 

post: (#y » 5)] 

<sdvs.l.l>   prove 
state delta[]:    g 

number:    1 
proof [] :    < CR> 

open —   [sd pre 
mod 
inv 

post 

(.y = 1) 
(x) 
(#x gt 1) 
(#y = 5)] 

inserting — pcovering(all,y) 

comment — prove the invariant of the state delta to be proven 

open —   [sd pre:   (true) 
comod:   (all) 
post:   (#x gt   1)] 

Complete the proof. 

Of course, #x gt 1 follows from #x gt 2, and that, being the invariant of an applicable 
state delta, is true. We simply notice it, via noticeinvariant, which prompts for the state 
delta whose invariant we wish to notice. 

<sdvs. 1.1.1.1>    noticeinvariant 
state delta[highest applicable]:    <CR> 

inserting — pcovering(all.x) 

noticeinvariant —  [sd pre 
mod 
inv 

post 

(.y - l) 
(x) 
(#x gt 2) 
(#y - 5)] 

close — 1 steps/applications 

Complete the proof. 

<sdvs.l.l.2> usable 

u(l) [sd pre: (true) comod: (all) post: (#x gt 1)] 

u(2) [sd pre (.y = 1) 
mod (x) 
inv (#x gt 2) 

post (#y - 5)] 
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No usable quantified formulas. 

<sdvs.l.l.2> goals 

g(l) #y = 5 

<sdvs.l.l.2> nsd 

[sd pre: (true) comod: (all) post: (#x gt 1)] 

<sdvs.l.l.2> simp 
expression: .y = 1 

true 

After the foUowing apply, SDVS requires the proof of the invariant in the transition state. 

<sdvs.l.l.2>    apply 
sd/number[highest applicable/once]:    u 

number:    2 

inserting — pcovering(all,x) 

comment — prove the invariant prior to the application 

open — [sd pre: (.x gt 2) 

comod: (all) 
post: (#x gt 1)] 

inserting — pcovering(all,x) 

close — 1 steps/applications 

apply — [sd pre: (.y = 1) 

mod: (x) 

inv: (#x gt 2) 

post: (#y = 5)] 

inserting — pcovering(all,x) 

close — 1 steps/applications 

close — 1 steps/applications 

8.2    LINEARIZE 

To remind the reader (see Section 2.9.7), the general situation we are dealing with is where 
two state deltas are applicable (they are true and their preconditions are true). Thus, 
both of the postconditions must become true according the restrictions inherent in the 
modification lists. However, either state delta may be the first to achieve its postcondition. 
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The linearization command makes true the disjunction that says either the first achieves its 

precondition and the other is still "pending," or vice versa. 

When we linearize state deltas in the presence of invariants, we must of course account for 
the intervals over which the respective invariants hold. We must also account for another 
possibility: that the two postconditions become true simultaneously with the conjunction 
of their invariants as invariant. This is a new case not included in either of the above two 

disjuncts. 

Now consider the following example: 

<sdvs.l>   pp 
object:    linl.sd 

[sd pre: (true) 
comod: (all) 

mod: (all) 
inv: (#y =  .y) 

post: (#x ■ #y)] 

<sdvs.l>   pp 
object:    Un2.sd 

[sd pre: (true) 
comod: (all) 

mod: (all) 
inv: (#x »  .x) 

post: (#y s 6)] 

<sdvs.1>   pp 
object:    HnS.sd 

[sd pre: (true) 
comod: (all) 

mod: (all) 
inv: (#x =  .x,#y ■  .y) 

post: (#x = 5,#y - 5)] 

<sdvs.l>   pp 
object:    Hn4-sd 

[sd pre: (true) 
comod: (all) 

mod: (all) 
inv: (#x =  .x,fy -  .y) 

post: (#x = 6,#y = 6)] 

We want to prove that if x starts out at 5 and y starts out at 4, and linl.sd and lin'2.sd are 

true, then either lin3.sd or lin4.sd will hold: 

[sd pre:   (.x = 5,.y = 4,formula(linl.sd),formula(lin2.sd)) 

comod:   (all) 
post:   (formula(lin3.sd)  or formula(liri4.sd))] 
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Here is the proof. 

<sdvs.l>   prove 
state deltaD:    lin.sd 
proof [] :    < CR> 

open —   [sd pre:   (.x = 5,.y = 4,formula(linl.sd),formula(lin2.sd)) 
comod:   (all) 
post:   (formula(lin3.sd)  or formula(lin4.sd))] 

inserting — pcovering(all,y) 

inserting — pcovering(all,i) 

Complete the proof. 

<sdvs.l.l>    linearize 
state delta #1:    linl.sd 
state delta #2:    Hn2.sd 
formula name #1 
formula name #2 
formula name #3 

orl 
or2 
or3 

linearize — formula(orl) or formula(or2) or formula(or3) 

non-trivial propagations — ([sd pre: 

comod: 

mod: 

inv: 

post: 

(.x = xll29) 

(all) 

(inter(all,all)) 

(#y = .y,#x = .x) 

(#x = #y, 

[sd pre: (true) 

comod: (all) 

mod: (all) 

inv: (#x = xll29) 

post: (#y = 6)])]) or 

(([sd pre: (.y = yll28) 

comod: (all) 

mod: (inter(all,all)) 

inv: (#y = .y,#x = .x) 
post: (#y = 6, 

[sd pre: (true) 

comod: (all) 

mod: (all) 
inv: (#y = yll28) 

post: (#x = #y)])]) 

([sd pre: (true) 

comod: (all) 

mod: (inter(all,all)) 

inv: (#y = .y,#x = .x) 

post: (#x = #y,#y = 6)])) 

or 

<sdvs.l.2>    meases 
number of cases:    3 

1st case:    formula(orl) 
proof [] :    < CR> 
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2nd case: formula(or2) 

proof []:    <CR> 
3rd case: jormula(or3) 

proof []:    <CR> 

meases — 3 

open —   [sd pre 
comod 

post 

(formula(orl)) 

(all) 
(([sd pre:   (true) 

comod:   (all) 
mod:   (all) 

inv:   (#x »  -x,#y =  -y) 

post:   (#i = 5,#y = 5)]) or 

([sd pre:   (true) 

comod:   (all) 

mod:   (all) 
inv:   (#x =  .x,#y =  .y) 

post:   (#x = 6,#y « 6)]))] 

<sdvs. 1.2.1.1>    prove 
state deltaD:    UnS.sd 

proof []:    <CR> 

open —   [sd pre: (true) 
comod: (all) 

mod: (all) 

inv: (#x ■   .x,#y =   .y) 
post: (#x = 5,#y - 5)] 

comment — prove the invariant of the state delta to be proven 

open — [sd pre: (true) 

comod: (all) 
post: (#x = x\688,#y » y\689)] 

close — 0 steps/applications 

Complete the proof. 

<sdvs.l.2.1.1.2> usable 

u(l) [sd pre 

comod 

post 

(true) 

(all) 
(#x = x\688,#y « y\689)] 

u(2) [sd pre: (.x = xll29) 

comod: (all) 

mod: (inter(all,all)) 

inv: (#y ■ .y,#x = -x) 

post: (#x = #y, 

[sd pre: (true) 

comod: (all) 

mod: (all) 

inv: (#x » xll29) 
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post: (#y = 6)])] 

u(3) [sd pre: (true) 
comod: (all) 

mod: (all) 
inv: (#x = .x) 

post: (#y = 6)] 

u(4) [sd pre: (true) 
comod: (all) 

mod: (all) 
inv: (#y = .y) 

post: (#x = #y)] 

No usable quantified formulas. 

<sdvs. 1.2.1.1. 2> whynotapply 
state delta[ highest usable]: u 

number: 2 

Quite applicable. 

<sdvs.l.2.1.1.2>    apply 
sd/number[highest applicable/once]:    u 

number:    2 

comment — prove the invariant prior to the application 

open — [sd pre: (.y = y\689,.x = x\688) 
comod: (all) 
post: (#x = x\688,#y = y\689)] 

close — 1 steps/applications 

apply — [sd pre: (.x = xll29) 
comod: (all) 
mod: (inter(all,all)) 
inv: (#y = .y,#x = .x) 

post: (#x = #y, 
[sd pre:   (true) 

comod:   (all) 
mod:   (all) 
inv:   (#x = xll29) 

post:   (#y = 6)])] 

Complete the proof. 

<sdvs.l.2.1.1.2>    usable 

u(l) [sd pre: (true) 
comod: (all) 

mod: (all) 
inv: (#x = xll29) 

post: (#y = 6)] 
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No usable quantified formulas. 

<sdvs. 1.2.1.1.2> noticeinvariant 
state delta[highest applicable]: <CR> 

noticeinvariant [sd pre (true) 
comod (all) 
mod (all) 
inv (#x = xll29) 

post (#y = 6)] 

close — 2 steps/applications 

close — 1 steps/applications 

open — [sd pre 
comod 
post 

(iormula(or2)) 
(all) 
(([sd pre: (true) 

comod: (all) 
mod: (all) 
inv: (#x = .x,#y » -y) 

post: (#x = 5,#y = 5)]) or 
([sd pre: (true) 

comod: (all) 
mod: (all) 
inv: (#x = .x,ty = .y) 

post: (#x = 6,#y = 6)]))] 

Complete the proof. 

<sdvs. 1.2.2.1> usable 

u(l) [sd pre: (.y - yll28) 
comod: (all) 

mod: (inter(all,all)) 
inv: (#y = .y,#x = ■ *) 

post: (#y - 6, 
[sd pre: (true) 
comod: (all) 

mod: (all) 
inv: (#y - yll28) 

post: (#x « #y)])] 

u(2) [sd pre: (formula(orl)) 

comod: (all) 
post: (([sd pre: (true) 

comod (all) 
mod (all) 
inv (#x ■ .x,#y = .y) 

post (#x = 5,#y = 5)]) or 

([sd pre: (true) 
comod: (all) 

mot i: (all) 
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inv: (#x = •x,#y = .y) 

post: (#x = 6,#y = 6)]))] 

u(3) [sd pre: (true) 

comod: (all) 

mod: (all) 

inv: (#x = .x) 

post: (#y = 6)] 

u(4) [sd pre: (true) 

comod: (all) 

mod: (all) 

inv: (#y = .y) 

post: (#x = #y)] 

No usable quantified formulas. 

<sdvs.l.2.2.1> nsd 

[sd pre: (.y = yll28) 

comod: (all) 

mod: (inter(all,all)) 

inv: (#y = .y,#x = .x) 

post: (#y = 6, 

[sd pre:   (true) 
comod:   (all) 

mod:   (all) 
inv:   (#y = yll28) 

post:   (#x = #y)])] 

<sdvs.1.2.2.1>    apply 
sd/number[highest applicable/once]:    <CR> 

apply —   [sd pre:   (.y = yll28) 
comod:   (all) 

mod:   (inter(all,all)) 
inv:   (#y =  .y,#x =   .x) 

post:   (#y = 6, 
[sd pre: (true) 

comod: (all) 
mod: (all) 

inv: (#y = yll28) 

post: (#x = #y)])] 

Warning: the modlist of the last applied state delta mentions places 

(inter(all,all)) outside of the modlist of the state delta to be 

proven. The current proof can only be closed by contradiction. 

<sdvs.l.2.2.2> usable 

u(l) [sd pre: (true) 

comod: (all) 

mod: (all) 

inv: (#y = yll28) 

277 



post: (#x » #y)] 

No usable quantified formulas. 

<sdvs . 1.2.2.2> noticeinvariant 
state delta[highest applicable]: <CR> 

noticeinvariant — [sd pre 

comod 

mod 

inv 

post 

(true) 

(all) 

(all) 
(#y = yll28) 

(#i = #y)] 

The invariant of the last applied state delta is inconsistent with 

the current state. 

close — 1 steps/applications 

open — [sd pre: (formula(or3)) 

comod: (all) 
post: (([sd pre: (true) 

comod: (all) 
mod: (all) 

inv: (#i » .x,#y = .y) 

post: (#x ■ 5,#y >• 5)]) or 

([sd pre: (true) 

comod: (all) 
mod: (all) 

inv: (#x = .x,#y = .y) 
post: (#x - 6,#y » 6)]))] 

Complete the proof . 

<sdvs. 1.2.3.1>   prove 
state delta[]:    lin4-sd 

proof [] :    < CR> 

open —   [sd pre: (true) 
comod: (all) 

mod: (all) 
inv: (#x =   .x,ty "   -y) 

post: (#x = 6,#y » 6)] 

comment — prove the invariant of the state delta to be proven 

open — [sd pre: (true) 

comod: (all) 
post: (#x = x\688,#y » y\689)] 

close — 0 steps/applications 

Complete the proof. 

<sdvs.l.2.3.1.2> usable 
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u(l) [sd pre: (true) 
comod: (all) 
post: (#x = x\688,#y = y\689)] 

u(2) [sd pre: (true) 
comod: (all) 

mod: (inter(all,all)) 
inv: (#y = .y,#x = .x) 

post: (#x = #y,#y = 6)] 

u(3) [sd pre: (formula(or2)) 
comod: (all) 
post: (([sd pre: (true) 

comod: (all) 
mod: (all) 
inv: (#x = . x,#y = -y) 

post: (#x = 5,#y = 5)]) or 
([sd pre: (true) 

comod: (all) 
mod: (all) 
inv: (#x = .x,#y = .y) 

post: (#x = 6,#y = 6)]))] 

u(4) [sd pre: (formula(orl)) 
comod: (all) 
post: (([sd pre: (true) 

comod: (all) 
mod: (all) 
inv: (#x = .x,#y = .y) 

post: (#x = 5,#y = 5)]) or 
([sd pre: (true) 

comod: (all) 
mod: (all) 
inv: (#x = .x,#y = .y) 

post: (#x = 6,#y = 6)]))] 

u(5) [sd pre: (true) 
comod: (all) 

mod: (all) 
inv: (#x = .x) 

post: (#y = 6)] 

u(6) [sd pre: (true) 
comod: (all) 

mod: (all) 
inv: (#y = .y) 

post: (#x = #y)] 

No usable quantified formulas. 

<sdvs.l.2.3.1.2> whynotapply 
state delta[ highest usable]: u 

number: 2 
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Quite  applicable. 

<sdvs. 1.2.3.1.2>    apply 
sd/number[highest applicable/once]:    u 

number:    2 

comment — prove the invariant prior to the application 

open — [sd pre 
comod 

post 

(.y - y\689,.x = x\688) 

(all) 

(#x = x\688,#y = y\689)] 

close — 1 steps/applications 

apply — [sd pre 

comod 

mod 

inv 

post 

(true) 

(all) 
(inter(all,all)) 

(#y = .y,#x » .x) 

(#x = #y,#y = 6)] 

close — 1 steps/applications 

close — 1 steps/applications 

join — [sd pre 
comod 

post 

(iormula(orl) or iormula(or2) or iormula(or3)) 

(all) 
(([sd pre: (true) 

comod: (all) 

mod: (all) 

inv: (tx = .x,#y = .y) 

post: («x = 5,#y = 5)]) or 

([sd pre: (true) 

comod: (all) 

mod: (all) 

inv: (#x = .x,#y = .y) 

post: (#x = 6,#y = 6)]))] 

close — 2 steps/applications 

8.3    NOTICECONCURRENTSD 

The noticeconcurrentsd command is actually a special case of the linearize command, dis- 
cussed in the previous section. It is definitely more convenient to use than linearize, and 
often sufficient. Again we deal with the situation where two state deltas are applicable, 
and we do not know which will achieve its postcondition first. The noticeconcurrentsd com- 
mand makes true the state delta whose postcondition is essentially the disjunction of the 
postconditions of the two applicable state deltas (without worrying about when the other's 
postcondition wiU become true), and whose invariant is the conjunction of the invariants of 
the two applicable state deltas. 

Consider the following state deltas: 
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<sdvs.l>   ppsd 
state delta:    concl.sd 

[sd pre: (0 It   .x,.x It  10) 
comod: (all) 

mod: (all) 
inv: (0 It #x) 

post: (#x =  10)] 

<sdvs.l>   ppsd 
state delta:    conc2.sd 

[sd pre: (true) 
comod: (all) 

mod: (all) 
inv: (#i It  10) 

post: (#x = 10)] 

<sdvs.l>   ppsd 
state delta:    conc3.sd 

[sd pre: (true) 
comod: (all) 

mod: (all) 
inv: (0 It #x,#x It 10) 

post: (#x = 10)] 

<sdvs.l>   ppsd 
state delta:    conc^-sd 

[sd pre:   (0 It   .x,formula(concl.sd),formula(conc2.sd)) 
comod:   (all) 
post:   (formula(conc3.sd))] 

<sdvs.l>    prove 
state delta[]:    conc4-sd 
proof [] :    < CR> 

open—   [sd pre:   (0 It   .x,formula(concl.sd),formula(conc2.sd)) 
comod:   (all) 
post:   (formula(conc3.sd))] 

inserting — pcovering(all,x) 

Complete the proof. 

<sdvs.l.l>    usable 

u(l) [sd pre: (true) 
comod: (all) 

mod: (all) 
inv: (#x It 10) 

post: (#x = 10)] 

u(2) [sd pre: (0 It .x,.x It 10) 
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coaod: (all) 
■od: (all) 
inv: (0 It #x) 

post: (#x »  10)] 

No usable quantified formulas. 

<sdvs.l.l>    whynotapply 
state delta[ highest usable]:    u 

number:    2 

Because the following is not known to be true —   .x It  10 

Because its mod list  is not contained in the proof mod list, 

sd mod list:   (all) 

proof mod list:   () 
list difference:   (all) 

<sdvs.l.l>    noticeinvariant 
state delta[highest applicable]:    conc2.sd 

noticeinvariant —   [sd pre: (true) 
comod: (all) 

mod: (all) 
inv: (#r It  10) 

post: (#i «  10)] 

<sdvs.l.2>    simp 
expression:    .x It 10 

true 

<sdvs.l.2>    simp 
expression:    0 It .x 

true 

<sdvs.l.2>    goals 

g(D [sd pre: (true) 
comod: (all) 

mod: (all) 
inv: (0 It #x,#x It 10) 

post: (#x » 10)] 

<sdvs.l.2>    prove 

state delta[] :    g 
number:    / 

proof [] :    < CR> 

open —   [sd pre: (true) 
comod: (all) 

mod: (all) 
inv: (0 It #x,#x It  10) 

post: (#x =  10)] 
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comment — prove the invariant of the state delta to be proven 

open — [sd pre: (true) 
comod: (all) 
post: (0 It #x,#x It 10)] 

close — 0 steps/applications 

Complete the proof. 

<sdvs.l.2.2> noticeconcurrentsd 
number of state deltas: 2 

1st state delta: concl.sd 
2nd state delta: conc2.sd 

noticeconcurrentsd (concl.sd,conc2.sd) — [sd pre: (true) 
comod: (all) 

mod: (inter(all,all)) 
inv: (0 It #x, 

#i It 10) 
post: (#x = 10 or 

#i = 10)] 

<sdvs.l.2.3> usable 

u(l) [sd pre: (true) 
comod: (all) 

mod: (inter(all,all)) 
inv: (0 It #x,#x It 10) 

post: (#x = 10 or #x = 10)] 

u(2) [sd pre: (true) 
comod: (all) 
post: (0 It #x,#x It 10)] 

u(3) [sd pre: (true) 
comod: (all) 

mod: (all) 
inv: (#x It 10) 

post: (#x = 10)] 

u(4) [sd pre: (0 It .x,.x It 10) 
comod: (all) 

mod: (all) 
inv: (0 It #x) 

post: (#x = 10)] 

No usable quantified formulas. 

<sdvs.l.2.3> apply 
sd/number[highest applicable/once]: <CR> 

comment — prove the invariant prior to the application 
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open — [sd pre 
comod 

post 

(0 It .x,.x It 10) 

(all) 
(0 It #x,#l It 10)] 

close — 1 steps/applications 

apply — [sd pre 
comod 

mod 

in? 

post 

(true) 

(all) 
(inter(all,all)) 

(0 It #x,#x It 10) 

(#x ■ 10 or #x » 10)] 

close — 2 steps/applications 

close — 2 steps/applications 

8.4    NEGATE 

Suppose that "inv.sd is known to be true by the system, where inv.sd is the state delta 

[sd pre: (.y -  1) 
comod: (all) 

mod: (x,y) 
inv: (#x =   .x) 

post: (#x -  .x,#y s 5)] 

Then upon the user's invocation of the negate command, SDVS prompts the user for the 
names of the three formulas that it will create and insert in the postcondition of the negated 
state delta. We show how SDVS treats the above state delta. The effect of the negation 
command is clear from the following transcript. However, note that use of the negate 
command on a state delta with invariants implies that the timeline is well-ordered (see 
[60]). For the use of negate when the state delta does not have invariants, see Section 2.9.6. 
Following this example, we shall show how SDVS treats a case of negation where there are 
dots and pounds in the state delta to be negated. 

<sdvs.2>    pp 
object:    invneg.sd 

[sd pre:   (~(iormula(inv.sd))) 
post:   (false)] 

We set up a dummy context in which to illustrate the negate command. 

<sdvs.2>   prove 
state delta[]:    invneg.sd 
proof []:    <CR> 

op en —   [sd pre:   ("(formula(inv.sd))) 
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post: (false)] 

Complete the proof. 

<sdvs.2.1>    negate 
state delta:    inv.sd 

formula name #1 
formula name #2 
formula name #3 

negated result — 

invl.sd 
inv2.sd 
inv3.sd 

[sd pre: (true) 

comod: (all) 

mod: (diff(all,all)) 

post: (#x = il212,#y = 1, 

([sd pre: (true) 

comod: (diff(all,union(x.y))) 

post: C(#x = 11212 ft #y = 5))]) or 

"(#x = #x) or 

([sd pre: (true) 

comod: (all) 
mod: (x,y) 
inv: C(#x = .x ft #y = 5)) 

post: (~(#x = .x), 
~(#x = .x ft #y = 5))]))] 

<sdvs.2.2>   pp 
object:    invl.sd 

formula invl.sd: [sd pre: (true) 
comod: (diff(all,union(x.y))) 

post: C(#x = xl212 ft #y = 5))] 

[sd pre: (true) 

mod: (x) 

inv: (#x = .x) 

post: (#x = .x + 1)] 

<sdvs.2.2>   pp 
object:    invZ.sd 

formula inv2.sd:  ~(.x =   .x) 

[sd pre:   ([sd pre: (p) 
mod: (x) 
inv: (#x =   .x) 

post: (#x =   .x,q)]) 
post:   ([sd pre: (p) post:   (q)])] 

<sdvs.2.2>   pp 
object:    inv3.sd 

formula inv3.sd:   [sd pre: (true) 
comod: (all) 

mod: (x,y) 
inv: (~(#x =  .x ft #y = 5)) 
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[sd pre:   ([sd pre 
post:   ([sd pre 

mod 
inv 

post 

post:   (~(#x =   .x),~(*x »   .x ft *y = 5))] 

(p)  post:   (q)]) 

(P) 
(x) 
(#x -   .x) 
(#x =   .x,q)])] 

<sdvs.2.2>    pp 
object:     invdots.sd 

[sd pre: (.x = 5) 

comod: (y) 

mod: (x) 

inv: (#x s  .y) 
post: (#x =  .x +  1)] 

<sdvs.2.2>   pp 
object:    invdotsneg.sd 

[sd pre:   (~(formula(invdots.sd))) 

post:   (false)] 

<sdvs.2.2>    prove 
state delta[]:    invdotsneg.sd 

proof [] :    < CR> 

open —   [sd pre:   (~(formula(invdots.sd))) 

post:   (false)] 

Complete the proof. 

<sdvs.2.2.1>    usable 

No usable state deltas. 

No usable quantified formulas. 

<sdvs.2.2.1> negate 
state delta: invdots.sd 
formula name #1 
formula name #2 
formula name #3 

invdotsl.sd 
invdotsS.sd 
invdotsS.sd 

negated result — [sd pre: (true) 
comod: (all) 

mod: (diff(all.y)) 
post: (#x - xl224,fx = 5, 

([sd pre: (true) 
comod: (diff(all,x)) 
post: ("(#i - xl224 + 1))]) or 

~(#x = #y) or 
([sd pre: (true) 

comod: (all) 
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mod: (i) 

inv: (-(#x =   .1 +  D) 
post: C(#x =   .y), 

~(#x =  .x + 1))]))] 

8.5    OMEGAINDUCT 

This section describes the omegainduct command. A more detailed description can be found 

in [51]. 

For a proof of a safety property of a nonterminating program, it is often not enough to 
require that each state change in its execution be discrete. We must also disallow possible 
states in its execution that are limits of an infinite sequence of other states. This restriction 

is inherent in the use of the omegainduct command. 

The omegainduct command is based on the principle that if 

[sd pre: (true) 
comod: (all) 

mod: () 
inv: () 

post: (A & B) 

and 

[sd pre: (true) 
comod: () 
mod: () 

post: ([sd pre: (A & B) 
comod: (all) 

mod: (all) 
inv: (A(#/.)) 

post: (A(#/.) & B(#/.) & (#xl '= .xl or or #xn .xn)) 

are true now, then also the following is true now: 

[sd pre: (true) 
comod: () 

mod: () 
inv: () 

post: (A)] 
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In the above, A and B are any formulas not containing top-level pounds. A is the safety 
formula we are interested in proving, B is the "auxiliary formula," n is an integer greater 
than 0, and the I'S are places. A(#/.) is the result of substituting pounds for all occurrences 

of dots in A. 

Intuitively, the reasoning is that if A and B are true now, and if for any time in the future 
at which A and B are true, there is a later time when A and B are true, A is preserved true 
over the interval, and something has actually changed at that later time, then A is true 

always in the future. 

This formula is true on precisely those timelines in which u> + 1 (the order of the natural 

numbers with a limit point at infinity) is not embeddable. 

The first conjunct in the antecedent above is the base-case state delta and the second 
is the step-case state delta. If omegainduct is used in the course of a proof, the user 

must enter as parameters the formula A on which the induction will proceed, the optional 
"auxiliary formula" B, and a nonempty set of places xl,x2,...,xn. Both formulas must be 

of precondition type. 

The induction formula A is the formula that will be asserted to be true henceforth. 

The purpose of the auxiliary formula is to allow the induction to proceed over loop bodies 
that are generated by the SDVS program translators. In these cases, the auxiliary formula 
is intended to be the state delta that asserts that execution is at the top of the loop. If the 
user does not enter an auxiliary formula, the system assumes that the formula is "true." 

The list of places must have the property that, in the induction step of the proof, at least 

one of the places will change its value. 

After the parameters to the omegainduct have been given, SDVS opens the proof of the 
base case of the induction. Once the base-case state delta is proved, SDVS will open the 
proof of the step-case state delta. After the step-case state delta has been proved, SDVS 
will assert the goal state delta at the state at which the omegainduct command was given. 

Consider the following example. We want to show that i is always greater than or equal to 

zero for the Ada program infloop.ada. 

with text_io; use text.io; 

with integer.io; use integer.io; 

procedure infloop is 

i,s : integer; 

begin 

i:= 0; 

s := 3; 
while true loop 

i:= i+1; 

s:= s+1; 
end loop; 

end infloop; 
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That claim is represented by the state delta loopsd: 

[sdpre: (adadnfloop.ada)) 

comod: (all) 
mod: (all) 

post: (#i = 0 ft formula(loopevent))] 

where loopevent is 

[sd pre:   (true) post:   (#i ge 0)3 

The proof proceeds as follows: 

<sdvs.l>    adatr 
path name[testproofs/manual/ada/packages.a] :    testproofs/manual/'ada/infloop.ada 

Reading parse tree file for Stage 4 Ada file — "infloop.ada" 

Translating Stage 4 Ada file —  "testproofs/manual/ada/infloop.ada" 

<sdvs.2>   prove 
state delta[] :    loopsd 
proof []:    <CR> 

open —   [sdpre: (ada(infloop.ada)) 
comod: (all) 

mod: (all) 
post: (#i = 0 & formula(loopevent))] 

Complete the proof. 

<sdvs.2.1>    until 
formula:    #i=0 

apply —   [sd pre:   (true) 

comod:   (all) 
mod:   (infloop\pc) 
inv:   (#all =   .all) 

post:   (<adatr procedure infloop is 
i,   ...   :   integer 

begin 

i   := 0; 

end infloop; >)] 

apply — [sd pre: (true) 

comod: (all) 

mod: (infloop\pc,infloop) 

inv: (#all = .all) 
post: (alldisjoint(infloop,.infloop,i,s), 

covering(#infloop,.infloop,i,s), 

declare(i,type(integer)),declare(s,type(integer)), 
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apply —   [sd pre 

comod 

mod 
inv 

post 

<adatr i,   ...   :   integer>)] 

(true) 

(all) 
(infloop\pc,i) 
(tall «   .all) 

(»i - 0, 
<adatr i   :- 0;>)] 

until break point reached — #i ■ 0 

<sdvs.2.4>    apply 
sd/number[highest applicable/once]:    u 

number:    1 

apply — [sd pre: (true) 
comod: (all) 

mod: (infloop\pc,s) 
inv: (#all - .all) 

post: (#s » 3, 
<adatr s := 3; >)] 

<sdvs.2.5>    letsd 
name:    loopuZ 
state delta[] :    u 

number:    2 

letsd —  loopu2 = u(2) 

<sdvs.2.6>    omegainduct 
on: .i ge 0 

auxiliary f ormulas[] : formula(loopuS) 
places: i 

base proof []: <CR> 
step proof []: <CR> 

omegainduction on — (.i ge 0) 

open — [sd pre: (true) 
comod: (all) 
post: (.i ge 0, 

[sd pre 
comod 
mod 
inv 

post 

(true) 
(all) 
(infloop\pc) 
(«all = .all) 
(<adatr while true 

i := i + 1; 

end loop;>)])] 

close — 0 steps/applications 

open — [sd pre: (true) 
post: ([sd pre: (.i ge 0, 
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[sd pre: (true) 
comod: (all) 
mod: (infloop\pc) 
inv: (»all = .all) 

post: (<adatr while true 

i + 1; 

end loop; >)]) 

comod: (all) 
mod: (all) 
inv: (»i ge 0) 

post: (#i ~= .i ,#i ge 0, 
[sd pre: (true) 
comod: (all) 
mod: (infloop\pc) 
inv: (»all = .all) 

post: (<adatr while true 

i + 1; 

end loop; >)])])] 

Complete the proof. 

<sdvs.2.6.2.1> prove 
state delta[] : g 

number: / 
proof [] : < CR> 

open — [sd pre: (.i ge 0, 
[sd pre: (true) 
comod: (all) 
mod: (infloop\pc) 
inv: (»all = .all) 

post: (<adatr while true 

i := i + 1; 

end loop; >)]) 
comod: (all) 
mod: (all) 
inv: (»i ge 0) 

post: (#i "= ,i,#i ge 0, 
[sd pre: (true) 
comod: (all) 

mod: (infloop\pc) 
inv: (»all = .all) 

post: (<adatr while true 

i := i + 1; 

end loop; >)])] 

comment — prove the invariant of the state delta to be proven 
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open — [sd pre: (true) 

coMod: (all) 

post: (#i ge 0)] 

close — 0 steps/applications 

Complete the proof. 

<sdvs.2.6.2.1.2>    apply 
sd/number[highest applicable/once]:    u 

number:    2 

comment — prove the invariant prior to the application 

open — [sd pre: (.all - all\741) 

comod: (all) 

post: (#i ge 0)] 

close — 1 steps/applications 

apply — [sd pre 

comod 

mod 

inv 

post 

(true) 

(all) 
(infloop\pc) 

(»all = .all) 
(<adatr while true 

i :- i + 1; 

end loop;>)] 

Complete the proof. 

<sdvs.2.6.2.1.2> apply 
sd/number[highest applicable/once]: 2 

comment — prove the invariant prior to the application 

open — [sd pre 

comod 

post 

(.all - all\744) 

(all) 

(#i ge 0)] 

close — 1 steps/applications 

apply — [sd pre: (true) 

comod: (all) 
mod: (infloop\pc,i) 

inv: (Sail = .all) 

post: (#i = .i + 1, 
<adatr i := i + 1;>)] 

comment — prove the invariant prior to the application 

open — [sd pre: (.all ■ all\747) 
comod: (all) 
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post: (#i ge 0)] 

close — 1 steps/applications 

apply — [sd pre: (true) 

comod: (all) 
mod: (infloop\pc,s) 

inv: (»all = .all) 

post: (#s = .s + 1, 

<adatr s := s + 1;>)] 

close — 1 steps/applications 

close — 1 steps/applications 

assert always formula 

— [sd pre: (true) post: (#i ge 0)] 

close — 6 steps/applications 
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9    THE SIMPLIFIER 

This chapter describes the simplifier for static deductions at a level of detail necessary for 
the user to have a good idea of the relative strengths of the various solvers, i.e., how much 
is done automatically vs. how much must be done by the user. The actual proof commands 
and axioms for static proofs are described in Section 2.7. The simplifier is based on the 
technique of "cooperating decision procedures" of [61] and [62]. The structure of the SDVS 
version is described in [63]. 

The simplifier is not "typed," so the same variable may be used in different theories and an 
operator may be used on variables that originated in different domains. 

The simplifier recognizes the languages of the following domains (see Section 2.9.13 for the 
infix-prefix correspondences): 

• propositional calculus 

true, false, ", k, V, ->, if-then-else 

• equality 

= , ^, distinct 

• integer arithmetic 

0, 1, -1, 2, -2, ...  (all integer constants), It, le, gt, ge, +, - *, ", /, abs, rem, mod, 
min, max 

• bitstrings 

lh, zeros, ones, @, ", = = , usxor, kk, VV, ", ++, - -, **, //, usgt, uslt, usge, usle, 
H,v(l),<: > 

• arrays 

emptyarray, aconc, [],[:], range, origin 

• coverings 

emptyplace, covering, pcovering, alldisjoint, everyplace, diff, union 

• queues 

nullqueue, emptyqueue, enqueue, dequeue, frontqueue 

• lists 

cons, car, cdr 

• enumeration types 

elt, ele, egt, ege, epred, esucc 
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• VHDL time 

vhdltime, timeglobal, timedelta, timeplus, timelt, timele, timegt, timege 

• VHDL waveforms 

waveform, transaction, inertiaLupdate, transport.update, val, preemption 

We now proceed to discuss the semantics and deductive capabilities for each domain. 

In discussions of the semantics of a symbol in the language of a theory, the type of the 

interpretation of that symbol is indicated in terms of the basic domains with which it is 
concerned. For example, if P denotes the domain of propositional (boolean) values, then 

the constant symbol true has type P, and the predicate symbol implies has type [P x P -+ 

P]- 

A domain name superscripted with a plus symbol (for example, P+) denotes the cross 
product of one or more objects in the domain. A superscripted asterisk symbol (for example, 

P*) denotes the cross product of zero or more objects in the domain. For example, the 
predicate and may be applied to one or more arguments; the type of and is [P+ -»■ P]. 

9.1     PROPOSITIONS 

The solver for the theory of propositional logic is a permanent part of the simplifier, and thus 
cannot be deactivated (it is always active). The language of the theory of propositional 
logic includes the constant symbols true and false and the logical (predicate) symbols not, 
and, or, implies, and if-then-else. The standard interpretation for propositions is assumed. 
Each simplifier theory that follows subsumes the theory of propositional logic; that is, each 
theory includes the logical connectives as logical symbols. Some examples of formulas in 

this language (in system output format) are 

' (P V q) 

(p & q) -f p 

t/p then q else false 

P denotes the domain of propositional (boolean) values. U denotes the universal domain; 
any arbitrary object is in U. Table 2 presents a description of the propositional symbols. 
Two syntactic representations are given for each symbol. The first representation is the user- 
input format. If there is a discrepancy between that format and the prettyprinted version 
the system returns, that latter is placed in parentheses. The second shows the prefix form, 
which is the internal representation and should be used when one submits batch proofs. For 
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Table 2: Prepositional Symbols 

constant symbol simp symbol description type 

true TRUE truth P 
false FALSE falsity P 
predicate symbol simp symbol description type 
- NOT logical negation P - P 
& AND conjunction P+ -» P 
or OR disjunction P+ -► P 
--> IMPLIES implication PxP-^P 
if-then-else COND conditional P x U x U - + U 

each symbol, Table 2 also gives an English description of the interpretation of that symbol, 
as well as the type of the constant, function, or predicate that provides that interpretation. 

Note that if-then-else is not treated as a pure predicate, since the then and else parts 
may accept objects in any arbitrary domain. This is because expressions of the form 
if p then t-i else t2, where p is a predicate and t\ and i2 are terms, may be used in place 
of a term in an expression. Expressions with embedded if-then-else's are normalized by 
the simplifier before simplification takes place; for example, f(x) = (if p(x) then t-[ else t2 

normalizes to if p(x) then f(x) = tx else f(x) = t2 before being processed by the simplifier. 

Semantics    The semantics of propositions are standard.  A complete decision procedure 
for propositions is implemented. Some examples are given in Figure 12. 

9.2    EQUALITY 

The solver for the theory of equality is a central and basic component of the simplifier, and 
thus cannot be deactivated (it is always active). The language of the theory of equality 
contains three predicate symbols, =, /, and distinct, representing equality, disequality, and 
pairwise disequality, respectively. Note that including ^ and distinct adds no expressive 
power and is only for convenience, since any formula using ^ can be rewritten as an equiv- 
alent formula using only not and =, and any formula using distinct can be rewritten as an 
equivalent formula using only and, not, and =. Some examples of formulas in this language 

are 

and 

a=b 

f(f(f(a)))=f(a) 

distinct(u,v,x,y,z) 
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<sdvs.l>    stmp 
expression:     'true 

false 

<sdvs.l>    «imp 
expression:    (a -> b) or (a ->  ~b) 

true 

<sdvs.l>    simp 
expression:    if false -> a then a or b else ~b 

a or b 

<sdvs.l>    simp 
expression:     a or b & b 

a or b 

<sdvs.l>    simp 
expression:     (a or b) & b 

<sdvs.l>    simp 
expression:    if p then true else false 

Figure 12: Simplification of Propositions 
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Table 3: Equality Symbols 

predicate symbol simp symbol description type 

distinct 

Eq 
NEq 
DISTINCT 

equality 
disequality 
pairwise disequality 

UxU^P 
UxU^P 
U+ — P 

U denotes the universal domain, that is, any arbitrary object is in U. The equality and 
disequality predicates operate on objects in the domain U. Table 3 presents a description 
of the equality and disequality predicate symbols. 

Semantics The nonlogical symbols in the theory of equality are all uninterpreted con- 
stant, function, and predicate symbols. The theory of equality obeys symmetry, reflexivity, 
transitivity, and substitutivity. Some examples of theorems in this theory are 

and 

(a=b & b=c) —► a=c 

f(a,b)=a —>■ f(f(a,b),b)=a 

f(f(f(a)))=a & f(f(f(f(f(a)))))=a - f(a)=a 

distinct(x,y,z) —► x^y & x^z k y^z 

The simplifier has a complete automatic solver for universal equalities. Some examples are 
given in Figure 13. 

9.3    ARITHMETIC 

The theory of integer arithmetic comes in various levels. SDVS has symbols for integer 
addition, subtraction, comparison, multiplication, division, absolute value, remainder, ex- 
ponentiation, min, and max. The theory of integer arithmetic under addition, subtraction, 
and comparison is decidable, but adding either multiplication, division, or remainder makes 
the theory undecidable. Thus, a decision procedure for basic linear integer arithmetic is 
provided, and partial decision procedures are provided for the rest of integer arithmetic. 
See Section 2.7.1 for the user-invokable axioms pertaining to integer arithmetic. 
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<sdvs.l>    simp 
expression:    a = b&b = c->a = c 

true 

<sdvs.l>    simp 
expression:    f(f(f(a))) = a & f(f(f(fff(a))))) = a -> f(a) = a 

true 

<sdvs.l>    simp 
expression:    g(a)  ~= a & g(a) = a 

false 

<sdvs.l>    simp 
expression:    if a then a = false else a = true 

false 

<sdvs.l>    simp 
expression:    distinct(x, y, z) -> x '= y & x '= z & y '= z 

true 

Figure 13: Simplification of Formulas with Equality and Disequality 
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9.3.1     Linear Integer Arithmetic 

The character "z" is used to denote the theory of linear integer arithmetic. The command 
"activate z" activates the solver for linear integer arithmetic; the command "deactivate z" 
deactivates this solver. 

The language of the theory of linear integer arithmetic includes the predicate symbol le, 
the function symbols + and -, and the constant symbols 0 and 1. The numerals and the 
remaining arithmetic relations (It, ge, and gt9) are allowed, but are formally regarded as 
abbreviations: 2 abbreviates 1 + 1 and x gt y abbreviates -i(x le y). Multiplication by integer 
constants is also allowed; 3*x abbreviates x+x+x. Some examples of expressions in this 
language are 

x+y 

x-1 It x 

and 

2 * x+1 le 5 

Also included in linear integer arithmetic are the function symbols max and min, for which 
full deductive capabilities are obtained only for constants. 

Z denotes the domain of integers. The arithmetic functions and predicates operate on 
objects in the domain Z. The standard interpretation is assumed for integer arithmetic. 
Table 4 presents a description of the arithmetic symbols. 

Semantics The theory of integer arithmetic under +, -, and < is the standard Presburger 
theory for the integers. 

The theory of integer arithmetic under +, -, and < is decidable, admitting a full decision 
procedure. However, the decision procedure implemented in the simplifier is based on the 
Simplex algorithm and is in fact a solver for rationals, not integers. Thus, the simplifier 
does not presently have full deductive capabilities for dealing with integers. Statements that 
are valid over the integers but not over the rationals, such as x+x^5, are not consequences 
of the above axioms and will not be simplified to true by the simplifier. 

The following simple rules, where => denotes "rewrites to," have been added to the decision 
procedure for rationals to facilitate proving statements about integers: 

1. (x <y) => (y >x) 

2. (x < y) => (y > x) 

3The reason that "<" and ">" are not used is that they are reserved for bitstring substring selection. 
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Table 4: Linear Integer Arithmetic Symbols 

constant symbol simp symbol description type 

... -2 -10 12 ... ... -2-1012 ... the integers Z 
function symbol simp symbol description type 

+ PLUS addition ZxZ-Z 

MINUS subtraction Z x Z -► Z 

. MINUS arithmetic negation z - z 
* MULT multiplication by constant ZxZ^Z 

max MAX maximum Z x Z -+ Z 

min MIN minimum ZxZ-Z 

predicate symbol simp symbol description type 

le LE less than or equal Z x Z - P 

It LT less than ZxZ-^P 

ge GE greater than or equal ZxZ->P 

gt GT greater than ZxZ^P 

3. (x > y) => (x > y+1), and 

4. -i (x > y) =>• (y> x+1) 

These rules allow us to prove the validity of statements over the integers by performing case 
splitting. For example, one can prove that x+x^5 is valid by case splitting on x<2. The 
two cases are x<2 and ->(x<2) (or x<2 and x>2 or x<2 and x>3). Since x+x<5 for x<2, 
and x+x>5 for x>3, we can deduce that x+x^5 is valid over the integers (for all x). Some 

examples of simplification are given in Figure 14. 

The interaction between the integer and rational semantics of the above arithmetic operators 
can lead to some complicated phenomena that cause SDVS not to recognize the truth 
of certain statements. We do not have the space to go into an example here, but will 
mention the following heuristic that we have found to help in getting the strongest possible 
deductions: In any complex expression or sequence of expressions, terms containing strict 
inequalities (It, gt) should appear wherever possible before terms with the corresponding 

weak inequalities (le, ge). 

Note that the axiomatization of linear integer arithmetic fails to deal with the function 
symbols max and min. See page 76 for a list of the user-invokable axioms concerning the 

operation of max and min. 

9.3.2     Integer Multiplication 

The character "m" is used to denote the theory of integer multiplication, which subsumes 
the theory of linear integer arithmetic.   The command "activate m" activates the solver 
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<sdvs.l>    simp 
expression:    4 + 5 

<sdvs.l>    simp 
expression:    x It y and z gt y ->  ~(x ge z) 

true 

<sdvs.l>    simp 
expression:    x k 4 * V - 1 and x gt 3 -> y le 1 

x le 4 * y -  1 —> x le 3 

Figure 14: Simplification of Linear Integer Arithmetic Expressions 

Table 5: Integer Multiplication Symbols 

function symbol simp symbol description type 
* MULT integer multiplication Z x z -+ z 

for integer multiplication; the command "deactivate m" deactivates this solver, without 
deactivating the solver for linear integer arithmetic. 

The language of the theory of integer multiplication contains the function symbol *, rep- 
resenting the multiplication operation, and includes all symbols from the theory of linear 
integer arithmetic, a subtheory of integer multiplication. Some examples of expressions in 
this language are 

x*y-l 

and 

(x*y)*z=x*(y*z) 

Z denotes the domain of integers. Table 5 presents a description of the symbols in the 
language of the theory of integer multiplication, excluding those symbols common to the 
theory of linear integer arithmetic. 

Semantics The theory of integer multiplication (integer arithmetic under <, +, -, and 
*) is undecidable, because of the presence of multiplication [64]. The following axioms 
characterize the associative/commutative subtheory of integer multiplication that has been 
implemented within the simplifier: 
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<sdvs.l>    activate 
solver:    m 

Associative/commutative Multiplication solver activated. 

<sdvs.3>    mit 
proof name[] : <CR> 

State Delta Verification System, Version 12 

Restricted to authorized users only. 

<sdvs.l> simp 
expression: / *x*y=y*x 

true 

<sdvs.l>    simp 
expression:    0 * (x -f 2) = 0 

true 

<sdvs.l>    simp 
expression:    0 * x = x 

0 = x 

<sdvs.l>    simp 
expression: x*y*z*w=w*z*y*x 

true 

Figure 15: Simplification of Integer Multiplication Expressions 

Vx x*l=x 

Vx . x*0=0 

VxVy x*y=y*x 
VxVyVz x*(y*z)=(x*y)*z 

The deductive capability of the simplifier, with respect to the theory of integer multipli- 
cation, is limited to those facts that are consequences of the above axioms. See page 75 
for a list of the user-invokable axioms concerning integer multiplication. Some examples of 
simplification are given in Figure 15. 

9.3.3     Integer Division, Remainder, Modulus, and Absolute Value 

The language consists of the symbols "/", abs, mod, and rem. Table 6 presents a description 
of these symbols. 

With relation to these symbols, the simplifier knows only about operations with constants. 
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Table 6: Integer Division, Absolute Value, and Remainder 

function symbol simp symbol description type 

/ DIV integer division Z x Z -»• Z 
rem REM remainder Z x Z -► z 
mod MOD modulus Z x Z -► z 
abs ABS absolute value Z ->N 

Table 7: Integer Exponentiation Symbol 

function symbol simp symbol description type 

A EXPT integer exponentiation Z x Z -► Z 

The operations rem and mod (though not integer division) are defined in accordance with 
the Ada and Common Lisp semantics (they are the same). See page 78 for the user-invokable 

axioms. 

Figure 16 illustrates the simplification of integer division, absolute value, and remainder 

expressions. 

9.3.4     Integer Exponentiation 

The solver for the theory of integer exponentiation is concerned only with the exponentiation 
of integer constants. This solver is active as long as the solver for linear integer arithmetic 
is active, because the rules for exponentiation of integer constants are built into the solver 

for linear integer arithmetic. 

The language of the theory of integer exponentiation contains the function symbol " (carat), 
representing the exponentiation operation, and includes all symbols from the theory of lin- 
ear integer arithmetic. Some examples of expressions in this language are 

x / 0-+ x~0 = 1 

(2"y)-l 

Z denotes the domain of integers. Table 7 presents a description of the symbols in the 
language of the theory of integer exponentiation, excluding those symbols common to the 

theory of linear integer arithmetic. 
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<sdvs.l>    simp 
expression:    x / y 

x / y 

<sdvs.l>    simp 
expression:    x / 1 

<sdvs.l>    simp 
expression:    0/1 

<sdvs.l>    simp 
expression:    x / 0 

x / 0 

<sdvs.l>    simp 
expression:    0/0 

0/0 

<sdvs.l>    simp 
expression: abs(-2) 

<sdvs.l>    simp 
expression:    5 rem 2 

Figure 16: Simplification of Integer Division, Absolute Value, and Remainder (Part 1) 
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<sdvs.l>    simp 
expression:    6 rem 2 

<sdvs.l>    simp 
expression:    -7 rem 2 

<sdvs.l>    simp 
expression:    -7 mod 2 

-1 

<sdvs.l>    simp 
expression:    3 rem (-2) 

1 

<sdvs.l>    simp 
expression:    3 mod (-2) 

Figure 17: Simplification of Integer Division, Absolute Value, and Remainder (Part 2) 
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Semantics The deductive capabilities of the simplifier with respect to the theory of integer 
exponentiation are limited to facts about the exponentiation of constants. See page 76 for 
a list of the user-invokable axioms concerning integer exponentiation. 

See Figure 18 for examples of the simplification of integer exponentiation expressions. 

9.4    BITSTRINGS 

The character "b" is used to denote the theory of bitstrings. The command "activate b" 
activates the solver for the theory of bitstrings; "deactivate b" deactivates this solver. 

The language of the theory of bitstrings contains numerous function symbols. Many of them 

have the prefix "us." This stands for "unsigned" and is a throwback to the version where 

"tc" (two's complement) also existed. Two basic function symbols are Ih and usval, used 

for representing the nonnegative length and nonnegative value of a bitstring, respectively. 
The expression usval(b) is prettyprinted |b|. The function symbols for substring and 
concatenation are ussub and usconc, respectively. The expression ussu6(b,i,j) is written 
b<i:j>; usconc(b1,b2) is written &i@62- The symbols for the bitstring value comparison 
functions are useql, usneq, uslss, usleq, usgtr, and usgeq. Note that these comparators are 
not predicates that return true or false, but return the bitstrings 1(1) (for true) and 0(1) 
(for false). The bitstring arithmetic function symbols are usplus, usdifference, ustimes, 
usquotient, and usremainder. The symbols for the bitstring logical operation functions are 
usnot, usand, usor, usxor, and useqv. When the integer arithmetic operator is represented 
as a symbol rather than a word (e.g. as + instead of "plus"), the bitstring counterpart is 
represented by two of the symbols in juxtaposition (e.g. + + ). In order to distinguish the 
cases where "" is to be interpreted as two propositional ~ symbols or - - as two integer 
arithmetic unary minuses, parentheses must be used. 

In addition, we have the function symbols zeros, ones, and lastone. 

The language of the theory of bitstrings also contains a countably infinite set of constant 
symbols that syntactically resemble function symbols applied to terms. These constant 
symbols have the form i(j), which denotes the constant bitstring whose integer value is i 

and whose integer length is j, where j > 0 and 0 < i < 2J - 1. 

Some examples of expressions in this language are 

x<3:2> = 2(2) 

x ++ 1(1) usgt x 

x usor 0(5) 

(a® b)<lh(a)-l: j> 
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<sdvs.l>    readaxioms 
path name [axioms/arraycoverings. axioms] :    axioms/exp.axioms 

readaxioms "axioms/exp.axioms" 
—   (multeqsquare,expabsval,el1,elO,e9,e8,expdiv,expmult,e7,e6,e5,e4,e3, 

e2,el) 

<sdvs.2>    simp 
expression:    2 ' 0 

1 

<sdvs.2>    simp 
expression:    0 " 2 

0 

<sdvs.2>    simp 
expression:    3 " 2 

<sdvs.2>    simp 
expression:    x " 0 = 1 

x  "  0 = 1 

<sdvs.2>    simp 
expression:    0 " x 

0  "  x 

<sdvs.2>   ppsd 
state delta:    expt.sd 

[sd pre:   (x ~= 0) 
post:   (x  "  0 =  1)] 

<sdvs.2>   prove 
state delta[]:    expt.sd 
proof [] :    < CR> 

open —  [sd pre:   (x  ~= 0) 
post:   (x  "   0 =  1)] 

Complete the proof. 

<sdvs.2.1>    provebyaxiom 
formula to prove:    x ' 0 = 1 

axiom name[] :    e4 

provebyaxiom e4 — x  "  0 =  1 

close —  1 steps/applications 

Figure 18: Simplification of Integer Exponentiation Expressions 
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1(3)== 1(2) 

B denotes the domain of bitstrings, Z the domain of all integers, and N the domain of 
nonnegative integers. Table 8 presents a description of the symbols in the language of the 
theory of bitstrings. 

Semantics    The following axioms characterize the theory of bitstrings that has been im- 
plemented within the simplifier: 

VbVc 
Vb 

Vb 

b=c «-|b| = |c| A lh{b)=lh{c) 
lh{b)>0 

0<|b|<2//l(b)-l 

ViVj 
ViVj 

VbViVj 

VbViVj 
Vb 
VbViVj 
VbViVj 
VbViVj 

VbVc 

VbVc. 
f    VbVcViVj 

j> - tf»0(j))=j 
j> A 0<i<2J - 1 l(i(j))l = 

Ih(b<i:}>) = rnax(0,min(i,lh(b)-l) + l-max(i,0)) 

|b<i:j>|=(|b|-((|b|/2moa<0'i+1))*2maa<0'i+1)))/2moa<0'J) 
b=b</A(b)-l:0) 
i>/A(b) —►b<i:j>=b<IÄ(b)-l:j> 
j<0 -» b<i:j>=b<i:0> 
i<j -> b<i:j>=0(0) 

lh(b@c)=lh(b)+lh(c) 

|b@c|=(|b|*2//l(b))+|c| 
(b@c)<i:j>=b<i-/A(b):j-Z/j(b)>« )c<i:j> 

Vb 
Vb 

VbVc 

VbVc 

VbVc 

VbVc 

VbVc 

VbVc 

VbVc 

VbVc 

VbVc 

VbVc 

VbVc 

VbVc 

b^O(l) / \ lh(b)= = 1 - b=l(l) 
b#l(l)/ \ lh(b)= = 1 - b = 0(l) 

b==c = 1(1)" Ib| = ld 
b==c = 0(1) <-+ |b|/|c| 
b" ==c = = 1(1) <- \b\? Id 
b~ ==c = = 0(1) «- Ibl = |c| 
b uslt c = 1(1) ~ IbKId 
b uslt c = 0(1) M-    |b|>|d 

b usle c = 1(1) «- lb|<|c| 

b usle c = 0(1) <- lb|>|c| 

b usgt c = KD «- lb|>|c| 

b usgt c = 0(1) ~ IbKId 
b usge c = 1(1) <- Ib|>|c| 

b usge c = 0(1) «- IbKId 
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Table 8: Bitstring Symbols 

constant symbol simp symbol description type 

0(0) (BS 0 0) constant bitstring of value 0, length 0 B 

0(1) (BS 0  1) constant bitstring of value 0, length 1 B 

1(1) (BS  1   1) constant bitstring of value 1, length 1 B 
0(2) (BS 0  2) constant bitstring of value 0, length 2 B 
1(2) (BS  1  2) constant bitstring of value 1, length 2 B 
2(2) (BS 2  2) constant bitstring of value 2, length 2 B 
3(2) (BS 3  2) constant bitstring of value 3, length 2 B 
0(3) (BS 0  3) constant bitstring of value 0, length 3 B 

function symbol simp symbol description type 
lh LH bitstring length B -+ N 

1  1 USVAL bitstring value B -+ N 
< : > USSUB bitstring substring B x Z x Z -> B 
@ USC0NC bitstring concatenation BxB^B 
= = USEQL bitstring equality B x B -> B 
"== USNEQ bitstring nonequality BxB-^B 

uslt USLSS bitstring less than B x B -f B 
usle USLEQ bitstring less than or equal BxB^B 

usgt USGTR bitstring greater than BxB-*B 
usge USGEQ bitstring greater than or equal B x B -> B 

++ USPLUS bitstring addition B x B -f B 
- - USDIFFERENCE bitstring subtraction BxB-»B 
** USTIMES bitstring multiplication BxB-»B 

II USQU0TIENT bitstring quotient BxB-^B 
usremainder USREMAINDER bitstring remainder BxB^B 
-- USN0T bitstring logical negation B -► B 
kk USAND bitstring logical conjunction BxB^B 
usor USOR bitstring logical disjunction BxB^B 
usxor USXOR bitstring logical exclusive disjunction BxB-^B 
zeros ZEROS bitstring of all 0's Z -+ B 
ones ONES bitstring of all 1 's Z -»■ B 
lastone LASTONE bitstring low-order 1 index B -> B 
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VbVc lh(b++c)=max(lh(b),lh{c))+\ 
VbVc |b++c| = |b| + |c| 
VbVc lh(b- -c)-max(lh(b),lh(c))+l 
VbVc lb- -c| = i/|b|<|c| 

i/len2//l(b--c)+|b|-|c| 
else | b | -1 c | 

VbVc lh(b**c) = lh{b)+lh{c) 
VbVc |b**c|=|b|*|c| 
VbVc /A(b//c)=ZA(b) 
VbVc lh(b usmod c)=lh(c) 

Vb lh{--b)=lh{b) 
VbVc lh(bkkc)=max(lh(b),lh(c)) 
VbVc lh(b usor c)=max(lh(b),lh(c)) 
VbVc lh(b usxor c)=max(lh(b),lh(c)) 

Vi //i(zeros(i))=mai(0,i) 
Vi |zeros(i) 1=0 
Vi //i(ones(i))=maar(0,i) 

Vi i>0 -> |ones(i)|=2i-l 

The deductive capability of the simplifier, with respect to the theory of bitstrings, is ap- 
proximately limited to those facts that are consequences of the above axioms. The rules 
preceded by "j" are implemented automatically only when the bitstrings involved have 
constant lengths and all of the substring selectors are constant-valued. For variable-length 

bitstrings and variable-substring selectors, user-invokable axioms have been provided. See 
page 73 for a list of the user-invokable axioms for the bitstring function symbols. User- 

invokable axioms are also provided for defining the values of the bitstring logical operators 
usnot, usand, usor, usxor, and useqv, and for defining the length and value of the lastone 

operator. 

Note that usplus is not associative: for example, (1(8) ++ 1(2)) ++ 1(2) = 3(10), while 
1(8) ++ (1(2) ++ 1(2)) = 3(9). Of course, it is true that |(a ++ b) ++ c| = la ++ (b 

++ c)|. 

9.5    ARRAYS 

The character "a" is used to denote the theory of arrays. The command "activate a" 
activates the solver for the theory of arrays; "deactivate a" deactivates this solver. 

The language of the theory of arrays contains the function symbols origin, range, element, 

slice, and aconc, as well as the constant symbol emptyarray, denoting the empty array. The 
expression origin(v) denotes the integer origin (initial index) of the array v. The expression 
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<sdvs.l>    simp 
expression:    x = 9(5) -> x<3:2> = 2(2) 

true 

<sdvs.l>    simp 
expression:    0(1) @ 3(5) = 3(6) 

true 

<sdvs.l>    simp 
expression:    x ++ 1(1) usgt x 

1(1) 

<sdvs.l>    simp 
expression:    x ++ y = y ++ x 

true 

<sdvs.l>    simp 
expression:    i usor 0(5) = x 

x usor 0(5)  = x 

<sdvs.l>    simp 
expression:    lh(x) — 5 -> x usor 0(5) = x 

true 

<sdvs.l>    simp 
expression:    lh(x) ge 5 -> x usor 0(5) = x 

lh(x)  ge 5 —> x usor 0(5)  = x 

Figure 19: Simplification of Bitstring Expressions (Part 1) 
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<sdvs.l>    simp 
expression:    lh(b) = 8 -> b<8:8> = 0(0) 

true 

<sdvs. 1>    simp 
expression:    lh(b) = 8 -> b<100:-l> = b 

true 

<sdv».l>    simp 
expression:    lh(b) = 8 -> b<5:-l> = b<5:0> 

true 

<sdvs.l>    simp 
expression:    lh(b) = 8   > b<10:4> = b<7:4> 

true 

<sdvs.l>    simp 
expression:    b @ 0(0) 

<sdvs.l>    simp 
expression:    |6| = 1 -> b usgt 0(8) = 1(1) 

true 

<sdvs.l>    simp 
expression:    1(8) ++ 10(9) 

11(10) 

<sdvs.l>    simp 
expression:     1(8) ~ 10(8) 

503(9) 

<sdvs.l>    simp 
expression:    lh(b) = 8 -> lh(b usor b) = 8 

true 

<sdvs.l>    simp 
expression:    \zeros(n)\ = 0 

true 

Figure 20: Simplification of Bitstring Expressions (Part 2) 
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Table 9: Array Symbols 

constant symbol simp symbol description type 
emptyarray EMPTYARRAY the empty array V 
function symbol simp symbol description type 
origin 
range 

[] 
[:] 

ORIGIN 
RANGE 
ELEMENT 
SLICE 

array origin 
array length 
array element 
subarray 

V -+ N 
V -> N 
VxZ^U 
V x Z x Z -4 V 

aconc ACONC array concatenation VxV^V 

range(v) denotes the nonnegative range of the array v. The expression element(v,i), written 
v[i], denotes the element of the array v with the name i. The expression s/ice(v,i,j), written 
v[i:j], denotes the subarray of the array v extending from elements named i to j, inclusively. 
The expression aconc(vl,v2) denotes the concatenation of the arrays vl and v2. Some ex- 
amples of expressions in this language are 

origin(v)=0 —»■ range(v[0:0]) = 1 

range(emptyarray) = 0 

range(aconc(v, emptyarray)) 

v[origin(v): origin(v)+range(v)-l] = v 

aconc(v[0:5], v[6:9]) 

range(vl) = 3 and range(v2) = 3 —► v2[0] = aconc(vl, v2)[3] 

V denotes the domain of arrays, Z the domain of all integers, N the domain of nonnegative 
integers, and U the universal domain. Table 9 presents a description of the symbols in the 
language of the theory of arrays. 

Axiomatization    The theory of arrays obeys the following axioms: 

Vv range(v)> 0 
Vv range(v)=0 <-» v=emptyarray 
Vv 1 Vv2 range( aconc(v 1 ,v2)) = range( vl)+range(v2) 
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Vv v = aconc(v,emptyarray) = aconc(emptyarray,v) 

VvViVj origin(v)<i<j>origin(v+range(v) -+ range(v[i:j])=yi+l 
Vv v=v[origin(v):origin(v) + range(v)-l] 

VvViVj i>j -> v[i:j] = emptyarray 
VvViVj i<origin(v) -> v[i:j]=v[on'grm(v):j] 
VvViVj j>on'$fin(v)+range(v) -> v[i:j]=v[i:on>'n(v)+ran#e(v)-l] 

VvViVjVk i<j<k -> aconc(v[i:j],v[j+l:k])==v[i:k] 

The deductive capability of the simphfier with respect to the theory of arrays is limited 
to those facts that are consequences of the above axioms. The rules preceded by "f" are 

implemented automatically only when the arrays involved have constant origins and ranges 
and all of the index selectors are constant-valued. See page 77 for a list of the user-invokable 
axioms dealing with variable-length arrays and variable array selectors. Some examples of 

simplification are given in Figure 21. 

9.6    COVERINGS 

The character "c" is used to denote the theory of coverings (set partitions). The command 
"activate c" activates the solver for the theory of coverings; "deactivate c" deactivates this 

solver. 

The language of the theory of coverings includes the predicate symbols alldisjoint, covering, 
and pcovering; the constant symbols emptyplace, representing the empty place; everyplace, 

representing the universal place; and the function symbols diff, inter, and union. The 
symbol all is an abbreviation for everyplace, i.e., all = everyplace "simps" to true. The 
predicate alldisjoint(xu . ..,xn), n > 1, is satisfied when the places xt are pairwise disjoint. 
The predicate covering{x, yu ..., yk), k> 1, is satisfied when the places yt are pairwise dis- 
joint, and their union is exactly the place x. The predicate pcovering(x,yu.. .,yk), k > I, 
is satisfied when the places yt are pairwise disjoint and their union is a subplace of the 
place x. It is always true (and the simphfier knows) that pcovering (all, x) and pcovering (x, 
emptyplace) for any place x, declared or not. Some examples of formulas in this language are 

covering(a, b, c, d) 

alldisjoint(a, emptyplace) 

pcovering(all, a, b) 

S denotes the domain of places. The constant emptyplace is in the domain S, and the 
alldisjoint, covering, and pcovering predicates operate on objects in the domain S. Table 
10 presents a description of the symbols in the language of the theory of coverings. 
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<sdvs.l>    simp 
expression:    origin(v) = 0 and range(v) ge 1 -> range(v[0:0j) = 1 

origin(v)  = 0 ft range(v) ge  1  —> range(v[0:0]) =  1 

(Though true, simp does not know this automatically.) 

<sdvs.l>    simp 
expression:    origin(v) = 0 and range(v) = 1 -> range(v[0:0]) = 1 

true 

<sdvs.l>    simp 
expression:    origin(v) = 0 and range(v) = 1 -> range(v[3:3]) = 0 

true 

<sdvs.l>    simp 
expression:    range(emptyarray) = 0 

true 

<sdvs.l>    simp 
expression:    range(aconc(v, emptyarray)) = range(v) 

true 

<sdvs.l>    simp 
expression:    origin(v) = -10 and range(v) = 3 -> v = v[-10:-8] 

true 

<sdvs.l>    simp 
expression:    range(v) ge 0 

true 

<sdvs.l>    simp 
expression:    origin(v) = 0 and range(v) = 10 -> v = aconc(v[0:5j, v[6:9]) 

true 

Figure 21: Simplification of Array Expressions 
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Table 10: Covering Symbols 

constant symbol simp symbol description type 

emptyplace EMPTYPLACE the empty place S 
predicate symbol simp symbol description type 

alldisjoint 

covering 
pcovering 

ALLDISJOINT 

COVERING 

PCOVERING 

pairwise disjointness predicate 

set partition predicate 
partial set partition predicate 

S+ — P 
S+ -> P 
S+ - P 

function symbol simp symbol description type 

diff 

inter 

union 

DIFF 
INTER 

UNION 

set difference 

set intersection 

set union 

SxS^S 
s+ ^S 
s+ - s 

Semantics A place is a structure on a set. This is incorrectly, though easily, confused 
with the contents of a place, which is a specific instance of that structure, e.g. a specific 
bitstring. However, the contents of a place may be objects of other types, such as integers, 

arrays, sets, or even other places. 

For descriptive and intuitive purposes, consider each place p to be associated with an 
(unstructured) set loc(p) of locations. For example, if the contents of p were bitstrings, 
then loc(p) would be the set of individual bit locations. Two or more places may have the 
same set of locations yet still be unequal as places (because their contents, or values, may 
be different, for example, because of their component bits being ordered differently.) 

The theory of coverings satisfies the following axioms: 

Vp alldisjoint{y) 

VPl...pk alldisjointiv!,...,^) <-► A»#jloc(Pi)nloc(Pj) = 0 

VsVp^.-Vpk cot?en'nff(s,pi,...,pic) +-♦ loc(s)=loc(p1)U...Uloc(pk) A a/Wisiomi(p1,...,pk) 

VsVpj...Vpk pcovering(s,pi,...,Pk) ~ loc(s)Dloc(p1)U...Uloc(pk) A a/Wt's;'om«(p1,...,pk) 

The simplifier has full deductive capabilities for dealing with the theory of coverings. See 
Figure 22 for examples of simplification of covering expressions. 

The following is an example illustrating the use of alldisjoint. (The machine isps description 

of alias.machine is called alias.isp.) 

alias.machine{US}   := 
BEGIN 

»♦variables** 

me«[0:10]<15:0>, 
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<sdvs.l>    simp 
expression:    pcoveringfa, x, y) -> alldisjoint(x, y) 

true 

<sdvs.l>    simp 
expression:    covering(a, b) -> covering(b, a) 

true 

<sdvs.l>    simp 
expression:    coveringfa, b, c) & covering(a, b) -> c = emptyplace 

covering(a,b,c)  ft covering(a.b)  —> c = emptyplace 

<sdvs.l>    simp 
expression:    covering(a, b, c) & covering(a, b) -> covering(c, emptyplace) 

true 

<sdvs.l>    simp 
expression:    alldisjoint(a, b, c, d) -> alldisjoint(a, b) 

true 

<sdvs.l>    simp 
expression:    alldisjoint(a) 

true 

<sdvs.l>    simp 
expression:    covering(emptyplace, diff(a, a)) 

true 

<sdvs.l>    simp 
expression:    covering(everyplace, a, diff(everyplace, a)) 

true 

<sdvs.l>    simp 
expression:    alldtsjoint(a, diff(b, a)) 

true 

<sdvs.l>    simp 
expression:    pcovering(a, b, c) -> alldisjoint(a, b) 

pcovering(a,b,c)  —> alldisjoint(a.b) 

Figure 22: Simplification of Covering Expressions 
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ir<15:0>, 
pc<15:0>   :- mem[0] <15: 0> , 
k<3:0>   :=  ir<10:7> 

♦♦code** 

mpl{MAIN} :=■ BEGIN 
ir _ mem[pc] NEXT 

pc . pc + 1 HEXT 

men[k] _ mem[pc] 

END 

END 

<sdvs.l>    ppsd 
state delta:    alias.sd 

[sd pre:   (isps(alias.isp),.alias.machine\upc * alias.machine\started, 
|.pc| ge 0,|.pc| le 9,|.mem[|.pc|]<10:7>| le  10) 

nod:   (all) 
post:   (#mem[|.mem[|.mem[0]p<10:7>|]  =   .mem[| .mem[0] | +  1])] 

<sdvs.l> pp 
object: alias.proof 

proof alias.proof: 

prove alias.sd 

proof: 
cases |.mem[0]| le 0 

then proof: 
(provebyaxiom alldisjoint(mem[0] ,mem[| .pc| + 1]) 

using: disjoint\elements, 

*) 
else proof: 

(apply, 
provebyaxiom alldisjoint(mem[0] ,mem[| ,pc| + 1]) 

using: disjoint\elements, 

apply, 
cases |.k| = |.pc| 

then proof: 
else proof: 

(provebyaxiom alldis joint (mem [| .k|] ,mem[| .pc|]) 

using: disjoint\elements, 

*)) 

This proof was actually input to the editor as follows: 

((prove alias.sd 
(cases (le (usval (dot (element mem 0))) 0) 

((provebyaxiom (alldisjoint (element mem 0) 
(element mem (plus (usval (dot pc)) 1))) 

|disjoint\\elements|) 
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*) 
((apply nil) 

(provebyaxiom (alldisjoint (element mem 0) 

(element mem (plus (usval (dot pc)) 1))) 

|disjoint\\elements|) 

(apply nil) 

(cases (eq (usval (dot k)) (usval (dot pc))) nil 

((provebyaxiom (alldisjoint (element mem (usval (dot k))) 

(element mem (usval (dot pc)))) 

|disjoint\\elements|) 

*)))))) 

<sdvs. 1> readaxioms 
path name [axioms/arraycoverings. axioms] : axioms/array coverings, axioms 

readaxioms (redundant) — "axioms/arraycoverings.axioms" 

<sdvs.2> interpret 
proof name: alias.proof 

open —  [sd pre:   (isps(alias.isp), 
.alias.machine\upc = alias.machine\started,|.pc| ge 0, 

|.pc| le 9,|.mem[|.pc|]<10:7>| le  10) 

mod:   (all) 
post:   (#mem[|.mem[|.mem[0]|]<10:7>|]  =  .mem[| .mem[0]| +  1])] 

cases —  |.mem[0]| le 0 

open —  [sd pre: (|.mem[0]| le 0) 
comod: (all) 

mod: (all) 
post: (#mem[|mem\ll84<10:7>|]  = mem\1187)] 

provebyaxiom disjoint\elements — alldisjoint(mem[0], 
mem[|.pc| +1]) 

apply — [sd pre: (.alias.machine\upc = alias.machine\started) 

mod: (alias.machine\upc,ir) 

post: (#ir = .mem[|.pc|], 

[tr {in ALIAS.MACHINE} PC ; MEM ;])] 

apply — [sd pre: (true) 

comod: (alias.machine\upc) 
mod: (alias.machine\upc,pc) 

post: (#pc = (.pc ++ 1(2))<15:0>, 

[tr {in ALIAS.MACHINE} MEM ;])] 

apply — [sd pre: (|.k| le 10) 
comod: (alias.machine\upc) 

mod: (alias.machine\upc,mem[| .k|]) 

post: (#mem[|.k|] = .mem[|.pc|], 

[tr «ALIAS.MACHINE\halt ed])] 

close — 4 steps/applications 
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open —   [sd pre 
comod 

mod 
post 

C(|.mem[0]| le  0)) 

(all) 
(all) 
(#mem[|mem\ll84<10:7>|]  - mem\H87)] 

apply —   [sd pre 
mod 

post 

(.alias.machine\upc ■ alias.machine\started) 

(alias.machine\upc,ir) 

(#ir =  .memC| .pc|] , 
[tr {in ALIAS. MACHME} PC ;  MEM ;])] 

provebyaxiom disjoint\elements — alldisjoint(mem[0], 
mem[| .pc| +1]) 

apply —   [sd pre 
comod 

mod 

post 

(true) 
(alias.machine\upc) 

(alias.machine\upc,pc) 

(#pc =  (.pc ++ 1(2))<15:0>, 
[tr {in ALIAS. MACHME} MEM ;])] 

cases —  |.k| =  |.pc| 

open —   [sd pre 
comod 

mod 

post 

(|.k| = |.pc|) 

(all) 
(all) 
(#mem[|mem\ll84<10:7>|]  » mem\H87)] 

close — 0  steps/applications 

open —   [sd pre: (~(|.k| =  |.pc|)) 

comod: (all) 
mod: (all) 

post: (#mem[|mem\ll84<10:7>|]  » mem\H87)] 

provebyaxiom disjoint\elements — alldisjoint(mem[| .k|] , 
mem[| .pc|]) 

apply —   [sd pre 
comod 

mod 
post 

(|.k|  le  10) 
(alias.machine\upc) 
(alias.machine\upc,mem[| .k|]) 

(#mem[|.k|]  »  .mem[|.pc|], 
[tr «ALIAS.MACHIHE\halted])] 

close — 2 steps/applications 

join —   [sd pre: (true) 

comod: (all) 
mod: (all) 

post: (#mem[|mem\H84<10:7>|]  = mem\1187)] 

close — 4 steps/applications 

join —   [sd pre 
comod 

mod 
post 

(true) 
(all) 
(all) 
(#mem[|mem\1184<10:7>|]  » mem\H87)] 

322 



Table 11: List Symbols 

function symbol simp symbol description type 

cons 
car 
cdr 

CONS 
CAR 
CDR 

list construction 
list head selection 
list tail selection 

UxU^L 
L-> U 
L -► U 

close — 1 steps/applications 

9.7    LISTS 

The character "1" is used to denote the theory of lists. The command "activate 1" activates 
the solver for the theory of lists; "deactivate 1" deactivates this solver. 

The language of the theory of lists contains the function symbols cons, car, and cdr. The 
expression cons(x,y) denotes a list whose head is x and whose tail is y. The expression 
car(x) denotes the head of the list x, and cdr[x) denotes the tail of the list x. 

L denotes the domain of list structures. U denotes the universal domain. The list construc- 
tion and selection operators represented by cons, car, and cdr operate on objects in the 
domains L and U. Table 11 presents a description of the symbols in the language of the 
theory of lists. Note that the atom nil is not in the language. If fact, if you try to simp an 
expression containing an occurrence of nil, SDVS will break. 

Semantics    Within the simplifier, only a subtheory of the theory of lists has been imple- 
mented. This subtheory is that which satisfies the following axioms: 

Vx 
VxVy 
VxVy 

cons(car[x),cdr{x))=x 
car(cons(x,y))=x 
cdr[cons(x,y))=y 

The simplifier has full deductive capabilities for dealing with the subtheory of lists charac- 
terized above. See Figure 23 for examples. 

9.8     QUEUES 

The character "q" is used to denote the theory of queues.   The command "activate q" 
activates the solver for the theory of queues; "deactivate q" deactivates this solver. 
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<sdvs. 1>    simp 
expression:    car(cons(x, y)) 

<sdvs.l>    simp 
expression:    cons(car(x), cdr(x)) 

<sdvs.l>    simp 
expression:    a = cons(b, c) and d - cons(e, b) -> car(a) = cdr(d) 

true 

Figure 23: Simplification of List Expressions 

The language of the theory of queues includes the constant symbol nullqueue, the predi- 
cate symbol emptyqueue, and the function symbols enqueue, dequeue, and frontqueue. The 
symbol nullqueue denotes the empty queue. The predicate emptyqueue is true when applied 
to the empty queue. The expression enqueue(q,u) denotes the queue formed by appending 
u to the back of q. The expression dequeue(q) denotes the queue formed by removing the 
front element from q. The expression frontqueue(q) denotes the front element of q. Some 

examples of expressions in this language are 

frontqueue(enqueue(nullqueue, u)) 

dequeue(enqueue(q, u)) 

Q denotes the domain of queues. U denotes the universal domain. The constant nullqueue 
is in the domain Q, and the emptyqueue predicate operates on objects in the domain Q. 
The functions enqueue, dequeue, and frontqueue operate on objects in the domains Q and 
U, i.e., on queues and elements of queues. Table 12 presents a description of the symbols 

in the language of the theory of queues. 

Semantics    The theory of queues satisfies the following axioms: 

Vq emptyqueue(q) <-► q=nullqueue 
VqVu nullqueue^ enqueue(q,\i) 
VqVu dequeue(enqueue(q,u)) = ifq=nullqueue then nullqueue 

else enqueue(dequeue(q),u) 

VqVu frontqueue(enqueue(q,u)) = if q=nullqueue then u 
else frontqueue(q) 
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Table 12: Queue Symbols 

constant symbol simp symbol description type 

nullqueue NULLQUEUE the empty queue Q 
predicate symbol simp symbol description type 

emptyqueue EMPTYQUEUE empty queue predicate Q-> P 
function symbol simp symbol description type 

enqueue 

dequeue 
frontqueue 

ENQUEUE 
DEQUEUE 
FRONTQUEUE 

append to back of queue 

remove front from queue 
front of queue 

Qxü^Q 
Q-Q 
Q^ U 

The simplifier has full deductive capabilities for dealing with queues.   See Figure 24 for 
examples. 

9.9    ENUMERATION TYPES 

The symbol "enum" is used to denote the theory of enumeration types. The command 
"activate enum" activates the solver for the theory of enumeration types; "deactivate enum" 
deactivates this solver. 

The language of the theory of enumeration types includes ele, ege, elt, egt, epred, and esucc. 
All expressions must be written in prefix notation. 

Some examples of expressions in this language are 

elt(a, b) - -> ele(a, b) 

elt(a, b) or a = b or egt(a, b) 

epred(a, b) - -> esucc(b, a) 

The domain of enumeration types is simply U, the universal domain.   Table 13 presents a 
description of the symbols in the language of the theory of enumeration types. 

Semantics The theory of enumeration type order satisfies the axioms of total ordering 
with predicates for successor and predecessor relations. The primary use of enumeration 
types is when order is defined on some non-numeric quantities, such as is possible in Ada. 
The range of the Ada character function "char" is ordered by (char m) elt (char n) for 
0 < m < n < 127. The translation from characters in Ada programs to char forms in SDVS 
is made via the lisp char-code, e.g. (char-code (char "a" 0))=97. Thus, the Ada character 
'a' would be translated to char(97). Similary esucc and epred also apply for n = m+1. 
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<sdvs.3>    simp 
expression:    emptyqueue(q) -> q = nullqueue 

true 

<sdvs.3>    simp 
expression:    frontqueue(enqueue(nullqueue, u)) = u 

true 

<sdvs.3>    simp 
expression:    dequeue (enqueue(q, u)) = enqueue (dequeue (q), u) 

dequeue(enqueue(q,u))  = enqueue(dequeue(q),u) 

<sdvs.3>    simp 
expression:    frontqueue(enqueue(nullqueue, u)) 

<sdvs.3>    simp 
expression:    dequeue(enqueue(nullqueue, u)) 

nullqueue 

<sdvs.3>    simp 
expression:    q '= nullqueue -> frontqueue(q) = frontqueue(enqueue(q, u)) 

true 

<sdvs.3>    simp 
expression:      em 

true 

ptyqueue(q) -> dequeue(enqueue(q, u)) = enqueue(dequeue(q), u) 

Figure 24: Simplification of Queue Expressions 

Table 13: Enumeration Type Symbols 

predicate symbol simp symbol description type 

ele ELE less than or equal U x U — P 

elt ELT less than U x U -+ P 

ege EGE greater than or equal UxU^P 

egt EGT greater than UxU^P 

epred EPRED predecessor UxU^P 

esucc ESUCC successor Uxü^P 
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<sdvs.4>    simp 
expression:    ele(a, b) or ele(b, a) 

true 

<sdvs.4>    simp 
expression:    ele(a, b) & ele(b, c) & ele(c, d) & ele(d, a) -> a = b 

true 

<sdvs.4>    simp 
expression:    elt(a, b) & ele(b, c) -> a = c 

egt(b.a)  —> "(ege(c.b)) 

<sdvs.4>    simp 
expression:    elt(a, b) & ele(b, c) & (egt(b, a) ->  ~ege(c, b)) -> a = c 

true 

<sdvs.4>    simp 
expression: elt(char(97), char(98)) 

true 

Figure 25: Simplification of Enumeration Type Expressions 

The simplifier has full deductive capabilities for dealing with enumeration types. See Figure 
25 for examples. 

9.10    VHDL TIME 

The character "t" is used to denote the theory of VHDL time. The command "activate t" 
activates the solver for the theory of VHDL time; "deactivate t" deactivates this solver. 

The language of the theory of VHDL time contains the function and predicate symbols 
described by Table 14, in which T denotes the domain of VHDL time objects, N the domain 
of nonnegative integers, and P the domain of propositional (boolean) values. 

The interpretations of the VHDL time symbols are fairly self-explanatory. 

Function vhdltime takes two nonnegative integers, m and n, and constructs vhdltime(m,n), 
a VHDL time object. 

Function timeglobal takes a VHDL time object vhdltime(m,n) and returns m, the global 
time component. 

Function timedelta takes a VHDL time object vhdltime(m,n) and returns n, the delta time 
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Table 14: VHDL Time Symbols 

function symbol simp symbol description type 

vhdltime VHDLTIME time constructor N x N -> 1 
timeglobal TIMEGLOBAL global time selector T — N 

timedelta TIMEDELTA delta time selector T -► N 

timeplus TIMEPLUS time addition TxT^ T 

predicate symbol simp symbol description type 

timelt TIMELT time less than TxT- P 

timele TIMELE time less than or equal T x T -* P 

timegt TIMEGT time greater than T x T -> P 

timege TIMEGE time greater than or equal T x T -> P 

component. 

Function timeplus takes two VHDL time objects, vhdltime(mj,nj) and vhdltime(m2,noy), 
and returns a VHDL time object that is their sum, according to the following (idiosyncratic) 

definition: 

• if ni9 = 0, then 

timeplus(vhdltime(mj, nj), vhdltime(m2, «#)) = vhdltime(mj, n 1 + ng) 

• if me> d 0, then 

timeplus(vhdltime(m}, nj), vhdltime{m2, ng)) = vhdltime(m} + m2, 0) 

Predicates timelt, timele, timegt and timege compare two VHDL time objects according to 

the lexicographic order in their components. 

9.11    VHDL WAVEFORMS 

The character "w" is used to denote the theory of VHDL waveforms. The command "acti- 
vate w" activates the solver for the theory of VHDL waveforms; "deactivate w" deactivates 

this solver. 

The language of the theory of VHDL waveforms contains the function and predicate symbols 
described by Table 15 in which W denotes the domain of waveform objects, TR the domain 
of transaction objects, T the domain of time objects, N the domain of nonnegative integers, 

P the domain of propositional (boolean) values, and U the universal domain (any arbitrary 

object is in U). 

We describe the interpretations of the VHDL waveforms symbols. 
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Table 15: VHDL Waveforms Symbols 

function symbol simp symbol description type 

waveform 
transaction 
inertiaLupdate 

transport-update 
val 

WAVEFORM 

TRANSACTION 

INERTIAL-UPDATE 

TRANSPORT-UPDATE 

VAL 

waveform constructor 

transaction constructor 
waveform "inertial" update 
waveform "transport" update 
driver value 

TR+ -► W 
T x U -► TR 
W x TR+ -► W 
W x TR+ -► W 
WxT^U 

predicate symbol simp symbol description type 

preemption PREEMPTION preemption test for update WxTR^P 

Function waveform takes a sequence of transaction objects, transaction!, transaction 2, ..., 

and constructs waveform (transaction ^transaction 2, ••■), a waveform object. 

Function transaction takes a VHDL time object vhdltime(m,n) and a value v, and constructs 
a transaction object transaction(vhdltime(m,n),v). 

Function inertiaLupdate (respectively transport-update) takes a waveform object and a se- 
quence of transaction objects, and returns the updated waveform according to the VHDL 
Language Reference Manual's algorithm for updating projected output waveforms, assuming 
inertial (respectively transport) delays (Section 8.3.1 of [24]). 

Function val takes a waveform object and a VHDL time object, and returns the value of 
that transaction in the waveform whose time is nearest to but not greater than the time 
object. 

Predicate preemption takes a waveform and a transaction, and determines whether that 
transaction will preempt (replace) prior transactions on the waveform as a result of the 
VHDL algorithm for inertial driver update. 
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10    SDVS EXERCISES 

Exercise 1. Create a state delta expressing the computation 

x := x + 1 

Create a state delta expressing the claim that if x has initial value 1, then after the above 
computation x will have the value 2. Prove it. 

Exercise 2. Create a state delta expressing the computation 

x :— x + 1; 

x :— x + x 

Create a state delta expressing the claim that if x has initial value 1, then after the above 
computation x will have the value 4. Prove it. 

Exercise 3. Create a state delta expressing the computation 

x := x + 1; 

y :=x + y 

Create a state delta expressing the claim that if x and y are disjoint places having initial 
value 1, then after the above computation, y will have the value 3. Prove it. 

Exercise 4. Go into the editor and look at testproof s/manual/isps/chost. isp. Go 
back to SDVS and isps it (giving the argument testproof s/manual/isps/chost .isp). 
ppsd isps it. Create the following state delta (calling it slO): 

[sd pre: isps(chost.isp), \.x\ = 1, .machinex\upc = machinex\started 
comod: () 
mod: all 
post: |#x| = 4] 

Type prove <CR> slO. Type "*" after SDVS responds with "proof]]:". 

Now let's do it again in slow motion. Type init <CR>. Hit <CR> after SDVS responds 
with "proof[]". Now type prove <Cß>, slO <CR>, and again <CR> after SDVS responds 
with "proofj]". 

1. Type usable <CR> 

2. Type ppeq <CR> .machinex\upc 

3. Type simp <CR> .x 

4. Type simp <CR> \.x\ 
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5. Type apply <CR><CR> 

6. Repeat steps 1 through 4 

7. Type whynotapply <CR> u <CR> 2 <CR> 

8. Type apply <CÄ> <CR> 

9. Type usable <Cfi> 

Exercise 5. Go over the Ada example on page 173 of this manual. 

Exercise 6. Write a state delta expressing the computation 

x := x + 1; 

if x — 2 then x :- x - 1 else x := 1 

Write a state delta expressing the claim that if the above fragment is executed, then x will 

eventually get the value 1. 

Exercise 7. Prove 

[sd pre: .x = 1 
[sd pre:  TRUE 

comod: () 
mod: x 
post: #z = .x + 1] 

comod: () 
mod: x 
post: #£ = 5] 

by execution and by induction. 

Exercise 8. Prove 

[sd pre: .x = 1 
[sd pre:  TRUE 

comod: () 
mod: x 
post: #£ > .x] 

comod: () 
mod: x 
post: #x > 1000] 

Exercise 9. Show that the following simp to true: 
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1. a = 6&6 = c—>a = c 

2. /(/(/(a))) = a k /(/(/(/(/(a))))) = a - /(a) = a 

3. (x It 4 * ?/ & x gt 3 -> y le 1) -> (x It 4 + y -> x le 3) 

4. i = 9(5)-»i < 3:2>=2(2) 

Exercise 10. Type readaxioms <CR> axioms/bitstring.axioms 

simp (x{7 : 0) + +y(5 : 0))(4 : 1) = {x + +y)(4 : 1) 

Create a static state delta representing the truth of the above equality. 

Prove it using the axiom ussub\usplus\ussub. 

Exercise 11. Type read <CR> lemmas/lemmas.lemmas 

Prettyprint (pp) the lemma carrylemma and its lemmaproof carrylemma 

Prove the state delta carry.sd: 

[sd pre: covering(all,a,b,c),.a = 1(1),lh(.b) = l,.c= 1(1) 
comod: () 
mod: () 

post: ((.a + +.6) + +.c)(l:l> = 1(1)] 

by using rewritebylemma on the term ((.a ++.6) + + .c)(l : 1) and the lemma carrylemma. 

Exercise 12. Write a state delta representing the static claim that 

0 le i & i le 8 & a(9 : t) = 6(9 - i : 0) -> a(9 : 8) = 6(9 - i : 8 - i) 

Activate b3 and use notice a(9 : 8) = a(9 : t')(9 - i : 8 - i) to prove the above state delta. 

Exercise 13. Write the state delta equivalent to the program fragment 

if x = 0 then y := 1 else z := 1 

Write the state delta representing the claim (and prove) that after execution of the above 
program fragment some place will have the value 1. (Use quantification.) 

Using the following Ada program (on the file testproofs/manual/ada/distribute.ada): 

with textJo; use textJo; 
with integerJo; use integerJo; 
procedure dist is 

x,y,z : integer; 
begin 
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get(x); 
get(y); 
get(z); 
put((y+z)*x); 

end; 

prove the following state deltas: 

Exercise 14. distO.thm 

[sd pre: (ada(distribute.ada)) mod: (all) post: (terminated(dist))] 

Exercise 15. distl.thm 

[sd pre: (ada(distribute.ada)) 
mod: (all) 
post: (#stdout[l] 

= .stdin[l] * .stdin[2] + .stdin[l) * .stdin[3], 
terminated(dist))} 

Exercise 16. dist2.thm 

[sd pre: (ada(distribute.ada)) 
mod: (all) 
post: (3a(3b(3c(#stdout[l] = (.b + .c) * .a))))] 
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