
r

ftß.-oio-as4

&c5pscOTed tea e&büc teieasK

Software System Visualisation:
Netmap Investigations

Peter Duffett and Rudi Vernik

DSTO-TR-0558

19971007 202

r> APPROVED FOR PUBLIC RELEASE

© Commonwealth of Australia

D EPARTMEN TOF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

TECHNICAL INFORMATION SERVICE j

iS AUTHORISED TO
REPRODUCE AND SELL THIS REPORT

Software System Visualisation:
Netmap Investigations

Peter Duffett and Rudi Vernik

Information Technology Division
Electronics and Surveillance Research Laboratory

DSTO-TR-0558

ABSTRACT

Defence systems have become increasingly reliant on software. The intangible and
complex nature of software makes it difficult to manage and understand. Computer
based visualisations of software have shown promise for providing the necessary
visibility to acquire, develop, and maintain software systems. In this report we
investigate a generic visualisation tool, Netmap, as a means of addressing these
visualisation problems. Issues of using generic visualisation tools to support software
tasks are discussed.

RELEASE LIMITATION

Approved for public release

DEPARTMENT OF DEFENCE
 ♦

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DSTO-TR-0558

Published by

DSTO Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury South Australia 5108

Telephone: (08) 8259 5555
Fax: (08)8259 6567
© Commonwealth of Australia 1997
AR No. AR-010-284
July 1997

APPROVED FOR PUBLIC RELEASE

DSTO-TR-0558

Software System Visualisation:
Netmap Investigations

Executive Summary

Defence systems have become increasingly reliant on software. The intangible and
complex nature of software makes it difficult to manage and understand. Computer
based visualisations of software have shown promise for providing the necessary
visibility to acquire, develop, and maintain software systems.

This report provides results of investigations undertaken to assess the ability of a
generic computer based visualisation tool, Netmap, to support software visualisation.
Although focussing on visualisations to support software related tasks, the
information presented would also be useful for those seeking to set up and use
Netmap in other domains. Netmap usually requires additional tools (for example,
parsers or metrics gathering tools) to extract data from the underlying source of
information. The effort required to convert this data into a form suitable for using in
Netmap can be considerable.

The results of these investigations show that Netmap's novel representations are
useful for providing an overview or 'footprint' of a software system. An appreciation
of a system's general characteristics, such as size and structural complexity, can be
gained from a Netmap system footprint. Netmap is less useful for detailed analyses
where access to a range of information types, such as found in CASE tools and many
forms of software documentation, is required.

A discussion of the issues associated with using a generic visualisation tool for specific
software tasks is presented. This report argues that beyond exploratory activities,
Netmap would require additional features to effectively support task-based facilitation
including guidance and attention direction.

DSTO-TR-0558

Authors

Peter Duf f ett
Information Technology Division

Peter is currently working on the Advanced Visualisation and
Description of Software (AViDeS) task which aims to research and
transition visualisation and description techniques for software.
He has a B.E. (Comp. Sys.) (Hons) from the University of
Adelaide. He has been employed in the Software Engineering
Group of the Information Technology Division of the DSTO since
graduating in 1994.

Rudi Vernik
Information Technology Division

Rudi Vernik is a Senior Research scientist employed in Software
Engineering Group, Information Technology Division. He
currently leads the Advanced Visualisation and Description of
Software (AViDeS) task. His research focuses on software
systems visualisation, large-scale software engineering, and
information logistics. Rudi has a Bachelor of Electronic
Engineering (with Distinction) and a Diploma of
Communications Engineering from the Royal Melbourne Institute
of Technology and a PhD in Computer and Information Science
from the University of South Australia.

DSTO-TR-0558

Contents

1. INTRODUCTION 1

1.1 Background 1

1.2 Purpose 1

1.3 Scope and Context 1

1.4 Presentation 2

2. OVERVIEW OF NETMAP 2

2.1 Netmap Display Formats 3

2.2 Grouping Strategy 4

3. APPROACH 4

3.1 Overview 4

3.2 Software Engineering Data Used 5

3.2.1 The Entities 5

3.2.2 The Relationships 6

3.2.3 Software Systems Studied 7

3.3 Setup Procedures 7

3.3.1 Netmap Data Requirements 9

3.3.2 General Setup Procedure 9

3.3.3 The Netmap Scripts 10

3.3.4 Additional Setup Considerations 10

3.3.5 Summary of Problems encountered 11

4. RESULTS 12

4.1 Viewing Overall Code Structure 12

DSTO-TR-0558

4.1.1 Overview of the Ada Composer system 12

4.1.2 Overview of LIU 13

4.1.3 Overview of DGU 14

4.1.4 Overview of Ada SAGE 14

4.2 Viewing Subsystem Structure 14

4.2.1 Displaying SEE-Ada Subsystems with Netmap 15

4.2.2 Identifying Subsystems with Netmap 15

4.3 Viewing Compilation Unit With Dependencies 16

4.4 Viewing Encapsulation Relationships 16

5. DISCUSSION 16

5.1 Usefulness of Netmap Visualisations 17

5.1.1 The Netmap Display Format 17

5.1.2 Other Display Formats 17

5.1.3 Integration of Displays and Sources of Information 18

5.1.4 Applicability of Netmap for viewing software characteristics 18

5.2 Setup Considerations 19

5.2.1 Defining requirements 19

5.2.2 Accessing, Filtering and Integrating Information 19

5.2.3 Tailoring the Netmap Environment 19

5.3 Providing Task Support 20

5.3.1 Usage Guidelines 20

5.3.2 Recording Tool Usage 20

5.3.3 Facilitating Tool Use 20

6. CONCLUSIONS 21

PREFERENCES 22

DSTO-TR-0558

APPENDIX A - GENERATING DATA FILES 23

APPENDIX B - NETMAP.SCRIPT 25

APPENDIX C - MISCELLANEOUS SETUP FILES 27

APPENDIX D - NETMAP PLOTS 37

APPENDIX E - OVERVIEW OF SEE-ADA VERSION 3 48

E.l Introduction 49

E.2 System Framework 49

E.3 SEE-Ada Views 50

E.4 Viewing Attribute Information 51

E.5 Viewing Relationships 52

E.6 Usage Monitoring 54

E.7 Script Mode 55

DSTO-TR-0558

1. Introduction

1.1 Background
There are major barriers to viewing large software products. This is largely due to
the fact that software is an intangible, synthetic and usually complex product.
Moreover, software projects typically produce vast amounts of information. The
sheer volume of this information makes it difficult to use. These factors can make
acquiring, developing or maintaining software a complicated task.

This document reports on research conducted as part of the Advanced Visualisation
and Description of Software (AViDeS) task (ALO 94/081) which is sponsored by the
First Assistant Secretary Defence Materiel. The main objective of the AViDeS
research is to address problems and difficulties being experienced in the acquisition,
development and maintenance of large Defence software systems due to :

• poor project and product visibility; and

• the ineffectiveness of, and high costs associated with, the provision and use of
many forms of project and product information (e.g. documentation, metrics).

The AViDeS work focuses on defining and exploring techniques which provide
enhanced software product and project visibility through more effective use of
underlying project information (eg as captured by integrated project support
environments and tools). It is based on presenting information by way of computer-
based visualisation techniques rather than through the production of vast amounts of
software paperwork and metrics as is current practice for many large software
projects.

1.2 Purpose
The purpose of this report is to document the results of a study which investigated
the use of Netmap (release 3.54s3) (Davidson 1993), a commercially available
database visualisation tool, as a basis for software visualisation. The report provides
a detailed account of how Netmap was used to visualise the structural characteristics
of several software systems.

1.3 Scope and Context

The data and information used in these investigations was obtained from SEE-Ada, a
tool developed by DSTO's Information Technology Division (ITD). SEE-Ada is an
integrated visualisation tool for Ada software which allows the access, filtering,
customisation and display of software engineering information. SEE-Ada maintains
its own database of this information which comprises data on software product
structure as well as sets of related product, process and resource attributes (e.g.
module size, complexity, configuration status and test results). The investigations
discussed in this report used the structural information as a data source. The

DSTO-TR-0558

SEE-Ada data was used since it provides a comprehensive and integrated source of
software product information for a range of systems. More information about SEE-
Ada is contained in Appendix E.

Readers of this report would benefit from a knowledge of the basics of the Ada
programming language. Some basic software engineering knowledge would also
aid understanding.

1.4 Presentation

The report is structured as follows:

• Section 2 provides an overview of the Netmap tool. It provides definitions for the
terms that will be used when discussing Netmap characteristics.

• Section 3 discusses the approach used for the investigations. It describes the data
used and the rationale for selecting the systems to be investigated. The section
finishes with a record of how Netmap was set up to display SEE-Ada data and
the problems encountered while doing this.

• Section 4 presents the results of the investigations on the four software systems
studied.

• Section 5 provides a discussion of the findings of the study.

• Section 6 draws conclusions on the investigations and summarises the issues
involved when using a generic visualisation tool such as Netmap for software
visualisation.

• Appendix A,B and C contain useful scripts and data files for extracting SEE-Ada
structural information and importing it into Netmap.

• Appendix D contains all of the Netmap plots which are discussed in this report.

• Appendix E provides a brief overview of SEE-Ada.

2. Overview of Netmap

Netmap is a commercial database visualisation and analysis tool that has found
applications in many areas including fraud analysis, marketing, and
communications (Davidson 1993). It can provide assistance in situations where
there is a need to understand the inter-relationships between different classes of
entities. Netmap can be used to view a variety of entities such as people,
organisations, products, accounts, concepts, and requirements.

Netmap uses information sourced from one or more databases where common
relationships exist, and presents the information through a variety of different
views. It represents the database information as nodes (entities) and links
(relationships).

DSTO-TR-0558

• Nodes. A node is a logical entity. Nodes are characterised by the attributes that
describe them. Each node attribute can have a value associated with it. For
example, there might be a 'people' node that has the attribute 'hair colour' which
in turn has the value 'brunette'.

• Links. Links are relationships between nodes. They are described by the
qualifiers associated with them. For example, a link may exist between two
'people' nodes representing the telephone calls between the two individuals. The
link qualifier might be the actual number of calls made between the two.

2.1 Netmap Display Formats

Netmap presents information by means of five different display layouts (or views).
No examples of the Row/Column or the Bullseye view are provided in this report
since they did not figure in the investigations presented. Further information on
Netmap display layouts is available in the Netmap User's Manual (1994). The five
display layouts are:

1. Netmap Display. This display is the predominant view used when displaying
Netmap relationships. An example of a Netmap display is shown in Appendix D
- Plot 1. Nodes are arranged in a circular fashion similar to spokes on a wheel.
Node grouping is shown by adjoining nodes of the same group and having a
space between node groups (Node grouping is discussed in Section 2.2). Links
between nodes of different groups are drawn across the hub of the circle.

Links between nodes of the same group are shown differently. To make their
presence more obvious, satellites are employed. Satellites are the smaller circles
which lie on the rim of the main node circle. Each satellite consists of all of the
nodes in the corresponding group of nodes. Large groups therefore have
correspondingly large satellites. Links between members of the group are shown
within the circular satellites.

2. Column Display. A Column display arranges groups of nodes in columns from
left to right. Satellites may be displayed above each of the columns to show intra-
group links. No ordering is made within the group to simplify link connections
across groups (i.e. the order of the nodes in a particular column is not optimised
to reduce the number of link cross-overs). An example of a column view is
shown in Plot 5.

3. Row Display. A Row display organises groups of nodes vertically from top to
bottom, and group members horizontally left to right. Satellites may be
displayed to the right of each of the rows to show intra-group links. An example
of a row view with satellites displayed is shown in Plot 6.

4. Row/Column Display. The Row/Column display arranges groups horizontally
in a row initially, then in a column at the second and subsequent levels.

5. Bullseye Display. The Bullseye display shows the first groups near the center of
the figure, with each of the node's links radiating outward to the next group of
nodes.

DSTO-TR-0558

2.2 Grouping Strategy

The way nodes are arranged on a particular display is determined by the strategy
employed for grouping nodes together. There are three grouping strategies used by
Netmap:

1. Pre-defined. When the Pre-defined grouping strategy is selected, the nodes are
grouped by a chosen attribute. Plot 1 provides an example of pre-defined
grouping where nodes have been grouped by file.

2. Emergent. When the Emergent grouping strategy is selected, the nodes are
grouped solely on the links present on the displayed map. Nodes are grouped if:

• there are three or more nodes in a group,

• each node has links to two or more nodes within the group, and

• each node has at least half of its links to others within the group

An example of an emergent grouping of package specifications and bodies based
on with links is shown in Plot 8.

3. Step Link. When the Step Link grouping strategy is selected, nodes are grouped
according to the minimum number of link traversals required to link back to a
specified initial group, i.e. grouping all nodes that are the same number of links
away from the initial group. Plot 9 shows step links from the node 'TEXT_IO'.

3. Approach

This section outlines the approach taken for the investigations discussed in this
report. It begins by discussing the purpose and aims behind the investigations. The
data used for the study is discussed and characterised in Section 3.2. Section 3.3
records how Netmap was setup to display SEE-Ada data and the problems
encountered.

3.1 Overview

The purpose of this work was to explore the ways in which Netmap could be used
to support Software Engineering (SE) tasks. The investigations presented in this
report focus on visualising software structure.

The approach used for these investigations was to:

1. Define and select a subset of the available SEE-Ada information for analysis.

2. Import this information into Netmap.

3. Explore various Netmap visualisation approaches for viewing this information.

DSTO-TR-0558

4. Consider how the visualisations may be used to support particular SE tasks.

5. Comment on the perceived general usefulness of Netmap for other types of SE
information and tasks.

The specific aims of this study were to use Netmap to view the following software
characteristics:

• overall code structure

• subsystem structure

• compilation unit dependencies

• encapsulation relationships

These characteristics are discussed in Section 3.2.

3.2 Software Engineering Data Used

3.2.1 The Entities

The data used in the Netmap investigations were sourced from the SEE-Ada
database. In particular, the information extracted related to Ada source code and
design structure (both entities and relationships). For an overview of these and
other types of information available in the SEE-Ada database refer to the SEE-Ada
Technical Reference (1996) Section 2.1.2.

Table 3-1 provides a list of the entities that are the focus of this study. These include
Ada compilation units and subprogram units as well as the subsystem objects. The
entities are represented as nodes within Netmap. These entities were chosen as they
represent important items of interest to a software engineer and exercise Netmap
with a range of node types.

Table 3-1: Entities Used

Procedure Specification Procedure Body Procedure Subunit
Specification

Procedure Subunit
Body

Function Specification Function Body Function Subunit
Specification

Function Subunit Body

Package Specification Package Body Package Body Subunit
Specification

Package Body Subunit
Body

Task Specification Task Body Task Body Subunit
Specification

Task Body Subunit
Body

Generic Package Null Object Physical Subsystem Logical Subsystem

DSTO-TR-0558

All but three of the objects are Ada units and are defined in The Reference Manual
for the Ada Programming Language (1983). The following objects are SEE-Ada
specific:

• Null Objects A Null Object is a compilation unit that has been referenced by
other objects in the system, but whose source code has not been parsed. For
example, an Ada library unit such as TEXT_IO would be classed as a null object.

• Subsystem Objects Subsystems are used within SEE-Ada as a mechanism for
supporting abstraction at a higher level than the package. There are two types of
subsystems:

1. A Physical Subsystem represents groupings of Ada library units.

2. A Logical Subsystem is a conceptual entity which can be used to encapsulate
physical subsystems and other logical subsystems. This type of subsystem
can be used to represent design abstractions.

The colours used for the entities in Table 3-1 can be found on the legend of the plots
in Appendix D.

3.2.2 The Relationships

Table 3-2 shows the SEE-Ada relationships that were used in these investigations
and represented in Netmap as links. These relationships constitute a range of
important links between the chosen entities.

Table 3-2 : Relationships Used

Relationship Types Description

Withs The with relationship is a compilation dependency relationship
defined within the Ada programming language. Relationships of this
type connect units that depend on other units by virtue of them
explicitly withing the other unit.

Spec Of The relationship that exists between a compilation unit specification
and the corresponding body.

Parent The relationship between an encapsulating unit and the encapsulated
unit.

Child Of The relationship between a subunit and its parent unit.

Has Specification Unit This relationship exists between a subunit and its specification unit.

Child Subsystem The relationship of a logical subsystem to its child subsystems.

Library Unit The relationship a physical subsystem has to its encapsulated library
units.

Not all entities or relationships are shown on a particular plot, but rather a subset of
each. The plots are discussed in detail in Section 4.

DSTO-TR-0558

The colours used for the various relationships can be found on the legend of the
plots in Appendix D.

3.2.3 Software Systems Studied

Four software systems provided the basis of the investigations discussed in this
report. They were:

1. Ada Composer. Ada Composer is a graphical, object-oriented software design
tool developed by Intermetrics Inc. It supports the interactive creation of Object
Oriented Design Diagrams (OODD) and translates OODDs into compilable Ada
Program Design Language.

2. Launcher Interface Unit. The LIU is a component of the Nulka system, a decoy
system developed for use by naval ships against anti-ship missiles. The LIU
software programs decoy rockets and initiates the launching process.

3. Display Generator Unit. The DGU is the embedded software system developed
to provide navigation, weapons systems and surveillance functions for a military
helicopter.

4. Ada SAGE. Ada SAGE is a Management Information System application
development tool written at the Idaho National Engineering Laboratory. It is
implemented as a set of Ada packages and a set of executable programs which
are used as support utilities during application development and operation.

These four systems were chosen because they represent a cross section of various
types of software systems. Each of the systems was written by a different
organisation. The systems range from medium to large in size, providing a basis for
assessing the scalability of Netmap.

Figure 3-1 shows some of the size characteristics of each of the four systems studied.
For example, graph b) shows that the DGU and Ada SAGE systems are much larger
(more Ada source lines of code (SLOQ) than the other two systems. Comparing a)
and b) it can be seen that the average length of file is much smaller for the LIU than
it is for the other systems. This characteristic is discussed more fully in section 4.1.2.

3.3 Setup Procedures
This section provides details of how Netmap was configured for analysis of SEE-
Ada data. It first discusses the Netmap data requirements. This is followed by the
setup procedure that was used to extract the SEE-Ada data and place it in a form
suitable for use by Netmap. Scripts were developed to semi-automate the setup
process. These are discussed in Section 3.3.3. The section concludes with a
discussion of additional setup considerations and a summary of problems
encountered during the setup process.

DSTO-TR-0558

Files

1200
1000
800
600
400
200

0

a)

Ada
SLOC

JI_3
b)

Netmap
Nodes

8000

6000'

4000'
fL

2000 H=

I Ada Composer DLIU DDGU D Ada SAGE

Figure 3-1 System Size Properties

Spec
Of

500

400

r
f==i

300 •
200

100

0 *

Withs Parent

a)

Child
Of

200

150-

100

50

0

8000r

6000-

4000-

2000-

0-

7000
6000
5000
4000
3000
2000
1000

0 ■w

ZffiL |

\
I
i

P

b) c)

m Ada Composer DLIU DDGU DAda SAGE

d)

Figure 3-2: System Relationship Statistics

DSTO-TR-0558

3.3.1 Netmap Data Requirements

Netmap provides visualisation of data captured and imported into its database. A
Netmap database comprises the following user supplied files:

• Netmap Data Files. These files contain the data on nodes, attributes, links and
link qualifiers used by Netmap. The data must be in the form of ASCII text. The
format must be of fixed width columns, comma delimited, or tab delimited text.

• Data Layout Files. For each Netmap data file, there needs to be (at least) one
data layout file. This file describes the format of the data within the
corresponding Netmap data file. (Refer to the Netmap Technical Manual (1994)
Appendix C-16 for an explanation of layout commands and formats).

• Code List Files. Sometimes it is desirable to translate attribute and qualifier
values appearing in the data into some other value, e.g. converting 1, 2,.., 7 into
Sunday, Monday, .., Saturday. These files specify the translation. (Refer to the
Netmap Technical Manual (1994) Appendix C-13 for additional information on
code list files).

• Database Definition File. The DDF defines the label and the data type of each
field of the new formatted database. This file is also used to specify the names of
Code List Files to translate node attribute or link qualifier values. (Refer to the
Netmap Technical Manual (1994) Appendix C-10 for more information).

3.3.2 General Setup Procedure

The following steps were performed to set up Netmap to display a SEE-Ada
software system:

1. Define the Data Requirements. Decide what data is needed and identify the
SEE-Ada database tables that hold this information. (The SEE-Ada database is
implemented using the Oracle Relational Database Management System).

2. Generate the Netmap data files from the SEE-Ada database. Netmap data files
can be generated by interfacing directly to the Oracle database using SQL*Plus.
SQL*Plus establishes an Oracle connection and allows the user to interface to the
SEE-Ada database tables through a SQL prompt (SQL Reference Manual 1990).
The user then "spools' the appropriate database tables as ASCII text to a file. To
do this efficiently the page size has to be set to 0, and the line size must be large
enough so that no carriage returns are inserted. Appendix A contains
instructions for this process.

3. Generate the Data Layout Files. These files provide Netmap with a definition of
the format of the files generated in step 2. For the SEE-Ada data, which is stored
in fixed width columns, this involves calculating the first and last columns for the
specific data field required within the data file.

DSTO-TR-0558

4. Produce a Single Data File. Netmap uses only one data file. This file is
constructed by first appending each layout to its corresponding data file and then
concatenating all of the data-layout pairs together.

5. Create the Database Definition File and Code List Files. In this step, the
Database Definition File is created as well as any code list files that may be
needed. For SEE-Ada data it is desirable to have a number of code list files. This
is because some of the required information (e.g. the compilation unit type) is
stored in the Oracle database as a numeric identifier. The generation of the code
list files removes the need to search through reference guides to decipher a node's
attributes. Instructions on how to produce these files can be found in the Netmap
Technical Manual (1994) Appendix C.

6. Create a Formatted Netmap Database. Once all of the necessary files are in
place, the Netmap database can be created. Netmap comes with a utility
program called 'CRDB' which performs this task. CRDB can be called from the
directory containing the data files as follows:

>crdb -projdir ../ <system_name>

3.3.3 The Netmap Scripts

Performing the procedure described in Section 3.3.2 is quite tedious and repetitive
when configuring several systems. It is also possible that the Netmap menus will be
slightly different across systems due to such things as concatenating the data files
together in a different order. Two scripts were developed to speed up the process
and remove menu irregularities. Both of these scripts can be found in the
appendices of this document together with a general description of each.

The first script, which can be found in Appendix A, uses a mixture of Unix and SQL
commands to help generate the ASCII output files from the SEE-Ada database. The
second script (Appendix B) is a Unix script. This script generates a Netmap
database from the ASCII database dump and the standard configuration files for
SEE-Ada data. Other files and filters were also used. These were the standard
layout files discussed in Section 3.3.2 and a filter 'sqlfilter' used to cut superfluous
text from the data files exported through SQL*Plus. All of these files can be found in
Appendix C.

3.3.4 Additional Setup Considerations

The previous steps provided a general method for data extraction and formatting.
The following additional setup considerations also needed to be taken into account:

• Colour Setup The default Netmap colour setting included only 8 colours. This
was inappropriate for the data being examined which consisted of over 30
different node types. The Netmap documentation , (Netmap Technical Manual
1994) page 6-8, states that a maximum of 128 colours may be specified. The
actual number may be less than this depending on hardware limitations. The
supported colours were identified and a selection chosen to represent different
node types.

10

DSTO-TR-0558

Netmap reads the colour setting from the colours. set file and associates each
colour with a node type. The colour given to a node type depends on its position
in the declaration, i.e. the first node type declared is given the first colour in the
list and so on. This is limiting in that if the colours for one attribute are specified
through ordering of the colours in the colour settings file, the colours of all of the
other attributes are determined. The colour settings file used for these
investigations can be found in Appendix C.

The same problem does not exist for link colours since they can be individually
assigned to link types through the linkmenu definition file (.lmf). (Refer to the
Netmap Technical Manual (1994) Page 6-28).

• Providing a Legend Legends, such as the one shown on the bottom of Plot 1, are
only available on printed output. There is no facility for displaying a legend of
colour mappings on the screen. The file specifying the legend for printed output
can be created and added to plots as desired. (Refer to the Netmap User's
Manual (1994) Appendix C-2 for information on how to provide a legend). The
legend file, 'Legend.key', used for our investigations can be found in Appendix
C.

3.3.5 Summary of Problems encountered

A number of problems were encountered when setting up and using Netmap
version 3.54s2. The problems listed here refer only to features that didn't work as
specified, not to problems associated with trying to view software product structure.

• When creating a Netmap database, the code list files are read and used to create
the attribute definition file (.adf) and the node menu file (.ran). It was found that
should a '0' be entered as an attribute value, Netmap would increment this value
and subsequent values. This had the effect of misaligning a value and its
translated name from the code list file.

This problem was avoided by correcting the '.adf and the '.nm' files after they
were generated by the CRDB utility. The correction was easier to perform if the
attribute value '0' was positioned on the last line of the code list file so that only
one attribute value needed to be corrected in each case.

• The first line of data in the data file was never correctly parsed. In our case this
meant that the first compilation unit was always incorrectly interpreted. This
cause the first node to have an incorrect ID and name. No workaround was
found for this problem.

• Netmap could not deal with too many spaces occurring before a node ID.

For example, " 5" could not be read in properly whereas " 5" could.

If a node ID had too many preceding spaces, Netmap would assign its own node
ID. To avoid this occurring the range of columns in the layout file needed to be
reduced. This solution constrains the length of node names, and hence the
number of nodes able to be included.

11

DSTO-TR-0558

When printing a postscript file containing plot information, the first colour
defined in the file color.set was ignored. In its place the second colour
defined in color, set would be assigned. All of the other colours printed
correctly. This problem appears to be a problem of the postscript generator.

Our solution to this problem was to manually change the postscript file
generated by Netmap. Where it referenced the first colour (dark blue) in
color.set, the reference was changed to the third colour, which was also dark
blue.

4. Results

The results of these investigations focus on the visualisation of the structural
characteristics of software engineering information. The results are organised in
terms of the aim of the investigation as described in Section 3.1.

All of the plots referred to in this section can be found in Appendix D. Markers, e.g.
(1), are used to indicate a position of interest on a plot.

4.1 Viewing Overall Code Structure

Our first goal in using Netmap was to get an overview of code structure, or
structural 'footprint', for each of the four systems under investigation. This was
considered important as it would provide a basis for comparison of the systems and
provide a starting point for further investigations.

After experimenting with various Netmap layouts and groupings we decided upon
a standard set of Netmap node and link settings which could be used across all of
the systems. This standard setting displays all of the nodes defined in Table 3-1
except the two subsystem types. The nodes are grouped according to the files to
which they belong and shown using the Netmap display. Links shown are Withs,
Parent, and Child Of. Plots 1 through 4 all use the standard setting.

4.1.1 Overview of the Ada Composer system.

Plot 1 shows the Ada Composer system. The main circle shows all subprogram
units (e.g. procedures, functions and tasks) and Ada compilation units (e.g.
subunits, packages, generics, and main procedures) in the system grouped
according to their encapsulating source file. It can be seen from the colouring of the
node groups that some files contain specifications only, others contain bodies only,
and a few contain specifications and bodies. Files in general contain a single
compilation unit (e.g. (1) contains one package body and a number of subprograms)
but there are some exceptions to this (e.g. (2) contains three package specifications).
The practice of placing multiple compilation units within one source file is
discouraged by many project coding standards, including the Software Productivity
Consortium guidelines (SPC Guidelines 1991) which are generally accepted by the
software industry.

12

DSTO-TR-0558

Each satellite shows the units that are contained within a file. Links within satellites
show subprogram unit encapsulation within a compilation unit. In most cases the
software exhibits a simple encapsulation structure within a compilation unit.

Some files contain packages which encapsulate a large number of subprograms
(those with large satellites containing many subprograms), while others encapsulate
none. The plot also shows that there are package specifications which do not have
any subprograms (these are type definition packages). The main procedure is
identified (3) as a single procedure body. This plot highlights the fact that little use
is made of generic packages, with only one being used (4). Null objects (5) are
grouped together as they are all given the same default file ID.

The Netmap zoom feature can be used to get more detail on part of a Netmap view.
Plot 10 shows the results of zooming in on the bottom right section of Plot 1. Plot 10
- (1) shows a more complex package structure where subprograms encapsulate other
subprograms. Netmap plots of this kind can provide good insights into the
structural complexity within compilation units.

The green links within the main circle show uni-directional with dependencies
between units. The units which depend on large numbers of other units are easily
identified by large numbers of converging lines. Incidences of high with
concentrations could be further investigated if desired by either zooming in or
profiling the nodes in question. Refer to the Netmap User's Manual (1994) pages 3-
13 and 3-21 for more information about zooming and profiling.

The magenta links (child of) shows the connection between a subunit and its parent.
There are only three such links in the Ada Composer system.

4.1.2 Overview of LIU

As Figure 3-1 shows, the LIU system is a similar size in terms of lines of code and
number of nodes to the Ada Composer system. However, it has a different
structure or 'footprint' as can be seen from Plot 2. Comparing Plot 1 with Plot 2
highlights some major differences between the two systems. Figure 3-lprovides an
indication as to why the plots look so different. Even though the LIU has almost the
same number of nodes as the Ada Composer system, it has three times as many
files, more with dependencies, and a large number of subunits. The high number of
subunits is responsible for the large number of magenta links in the main circle.
These structural characteristics can prove detrimental to system understanding and
hence maintainability (Vernik and Landherr 1993).

It can be seen that the satellites of the LIU system are generally smaller than those
for the Ada Composer system. This indicates that each file typically contains less
subprogram units which infers that there is less structural design complexity within
compilation units. Although there is less structural complexity within compilation
units, there is a high degree of inter-unit complexity as evidenced by the large
number of links between compilation units. This may make understanding
unnecessarily difficult since an analyst may need to reference several files and
maintain a mental map of dependencies to gain an understanding of software
functionality. There are also implications for configuration management since the

13

DSTO-TR-0558

system comprises a larger number of inter-related parts than may have been
necessary.

The magenta (child of) links are much more apparent on Plot 2 and reflect the large
number of subunits that are present in the LIU system.

Once again, only minor use has been made of generic packages, three being used.

4.1.3 Overview of DGU

Plot 3 shows a footprint of the DGU system. This system is significantly larger than
the previous two systems examined (refer to Figure 3-1 for comparison). The
Netmap for this system highlights this fact. It immediately indicates that the system
comprises a large number of files containing compilations units with vast numbers
of 'with' linkages.

There are few sizeable satellites. This could indicate that there is little design
abstraction in compilation units. Further investigation, such as gaining an insight
into the subprogram encapsulation structure, can be undertaken by zooming into
satellites of interest.

Little use has been made of advanced Ada features such as generics and subunits.

4.1.4 Overview of Ada SAGE

The Ada SAGE system, as shown in Plot 4, has a similar number of nodes as the
DGU, however their footprints are quite different. For example, the Ada SAGE
system has significantly fewer with links. This would be expected given that the
Ada SAGE system is a set of packages used as reusable components, not a single
piece of application software. Moreover, there is significantly more encapsulation
within the files.

A feature that becomes immediately apparent with the Ada SAGE system is the
distinct grouping of the compilation units, with bodies appearing around the top of
the main circle and specifications on the lower semi-circle. Although this feature
captures the analyst's attention it is in reality a relatively insignificant one related to
the way in which the information was captured by SEE-Ada. What has happened
here is that all of the files containing bodies have been parsed into SEE-Ada after
those containing specifications. This emphasises the fact that additional knowledge
is required by the analyst to interpret features which Netmap highlights.

Marker (1) is next to a group of package specifications with one generic package.
This is the file which was used to provide abstract data types. Unique features like
this are difficult to quickly identify through direct viewing of the source code.

4.2 Viewing Subsystem Structure

Subsystems are used in SEE-Ada to represent design entities which support
abstraction at a higher level than is provided by an Ada package. They are used to

14

DSTO-TR-0558

capture and aid understanding of high level system structure. The subsystem
objects used by SEE-Ada are described in Section 3.2.1.

4.2.1 Displaying SEE-Ada Subsystems with Netmap

Plot 5 shows the Ada Composer Subsystem using a Column Display. The column
view was found to be the most appropriate representation for displaying tree-like
structures such as the subsystem view. (Plot 5 can be compared to the SEE-Ada
subsystem view which is shown at the top of Figure 7-2 in Appendix E). The plot
was generated by using a step-link grouping strategy starting at the root of the tree.
The root of the subsystem tree has to be determined before beginning this process.

A limitation of this representation is that a user cannot reorder the nodes within a
group so that the links don't cross. Also, users cannot set the colours for subsystem
types as these are determined from the colour settings chosen for compilation units.

4.2.2 Identifying Subsystems with Netmap

If the only available information about a software system is source code then the
grouping of compilation units into logical subsystems is generally done via a
predominantly manual reverse engineering process. SEE-Ada provides features
which support this process. The use of the emergent grouping approach as used by
Netmap showed promise as a means of supporting the reverse engineering process.
The theory behind this was that there would be a large number of intra subsystem
links and a low number of inter subsystem links. It was conjectured that logical
subsystems could be identified through the emergent grouping algorithm grouping
together those nodes which were tightly coupled. Plots 7 and 8 were developed to
test this.

Plot 7 is a Netmap plot of the Ada Composer package specifications employing an
emergent grouping strategy. Two major groups were identified ((1) and (2)).
However, most package specifications did not with each other and therefore were
grouped. Those package specifications not withing any of the packages in the main
Netmap circle are shown in four columns at the bottom of the plot. Nodes which
have no displayed links in a plot are called isolates.

The subsystems identified by Netmap bear only a slight resemblance to the
manually identified subsystems in SEE-Ada. The units making up the group
labelled (2) all came from the subsystem identified by a user of SEE-Ada as
'Components', however not all package specifications from the 'Components' SEE-
Ada subsystem were identified by Netmap. The units making up the group labelled
(1) came from three different subsystems and did not comprise the total of any of the
SEE-Ada subsystems.

Plot 8 is a second attempt at identifying subsystems. It again shows an emergent
grouping of the Ada Composer system, but this time package bodies are shown as
well as package specifications. With the bodies included, the two main groups of
Plot 7 ((1) and (2)) have expanded to include more units and are represented in Plot
8 as (2) and (3) respectively. A new group (1) has also been discovered. Most
package specifications still remained ungrouped.

15

DSTO-TR-0558

These results do not mean that the subsystems identified by Netmap are invalid but
it suggests that the algorithm is different from that used by a software engineer.
Netmap bases its grouping on connectivity while a software engineer bases bis/her
decisions on the functionality of the various packages (amongst other things).

The current version of Netmap (release 3.54s3) does not allow the user to change the
algorithm on which the emergent grouping is based. The algorithm used for
grouping was discussed in Section 2.2. The emergent grouping algorithm may
have proved to be more useful for extracting design information had it been able to
be changed or at least have its parameters adjusted.

4.3 Viewing Compilation Unit With Dependencies

Netmap was also used as a means of viewing compilation unit with dependencies.
For example, Netmap could be used to identify units which (could) use a package's
subprograms, types or variables. Plot 9 was produced as an example of how
Netmap could be used for this purpose. It shows a Netmap arrangement based on
the step-links algorithm commencing at the 3 o'clock position with TEXTJO. The
gap at one end of every green with, relationship represents an arrow head indicating
the direction of the relationship

Moving anti-clockwise, the first group encountered is made up of units which with
the TEXTJO package. The subsequent group consists of units which with units in
the first group (unless they are already included in the first group). The links have
been filtered (via the Link menu) so that links going in the other direction have been
removed. This ensures that only units dependent on TEXTJO (either directly or
indirectly) are displayed.

4.4 Viewing Encapsulation Relationships

Netmap can be used to view encapsulation relationships using any one of the five
possible display formats. Plot 10 - (1) marks a zoomed in view of a satellite of the
Ada Composer system shown in Plot 1. The encapsulation relationships are
represented as orange lines within the satellite.

Plot 6 shows a better view of the encapsulation of subprograms within the satellite
displayed in Plot 10 - (1). This view is the Netmap row view with the root node at
the top of the plot representing the package body. The lower down a subprogram
body appears, the more highly nested (encapsulated) it is. The column view was
found to be a more effective view for displaying information of this type due to its
relative compactness.

5. Discussion

This section begins with a discussion of the usefulness of Netmap visualisations for
viewing software characteristics, particularly software system structure. Setup
issues that need to be taken into account when considering whether or not to use
Netmap are presented. The section concludes with a discussion of how a general

16

DSTO-TR-0558

visualisation tool such as Netmap can be used to support specific tasks. This is an
important aspect to software visualisation systems that is often neglected.

5.1 Usefulness of Netmap Visualisations
Netmap provides a number of methods for visualising information. This section
discusses the use of display formats and grouping strategies, as used for software
system visualisation.

5.1.1 The Netmap Display Format

The key visualisation provided by Netmap is the Netmap display. This novel
representation provides a comprehensible display with high information density.
These properties make it ideal for gaining a quick overview of a system under
investigation. A software system can be characterised with a one page plot such as
Plot 1 which shows the system 'footprint' of the Ada Composer system. Plots such
as this can be used to gain an appreciation of the different structural language
constructs used within a system as well as the relationships between them. This
means that effective comparisons can be quickly made between systems of a similar
size.

Although useful for medium-sized systems, the approach used to produce a system
footprint does not scale for larger systems. As Plot 3 shows, many of the features of
the DGU are not discernible from the one page plot. Although Netmap provides
features that allow a user to zoom-in on a section of a Netmap, as discussed in
Section 5.1.2, this may result in a loss of context.

The Netmap display may have been used to support a greater range of tasks, such
as design recovery, if the number of available grouping algorithms could have been
extended. One algorithm that is present is the emergent grouping algorithm, which
was introduced in Section 2.2 and further discussed in Section 4.2.2. This algorithm
showed promise as a means of supporting the design recovery process but its full
potential could not be realised, because of its inflexibility. For example, if the
algorithm could be changed to group nodes that had 70% of their links within a
group, instead of the enforced 50%, subsystems may have been more accurately
identified.

While the Netmap display was useful for gaining an overview of a software system,
more detailed analysis requires additional displays. Even though the Netmap
display can be used to view a subset of the total system, often alternate displays can
present the information in a better way. This issue is discussed in Section 5.1.2.

5.1.2 Other Display Formats

Netmap provides four display formats besides the Netmap display. The complete
list together with a description of each can be found in Section 2.1. Of these, the
column display was found to be the most useful for looking at design encapsulation
and subprogram nesting within compilation units. The remaining display formats
were either not novel or not found to be applicable for visualising software systems.

17

DSTO-TR-0558

A problem common to all of the displays was that it was easy to lose context when
zooming in and then panning around a display. No on-screen cues are given as to
where the displayed screen fits into the entire display. This creates difficulties for
the analyst as they would be likely to zoom-out of a display to check the context.
Investigations may take longer and analysis errors could be introduced.

Netmap is limited to its five display formats. Analysts often require information to
be presented in other ways. For example, the available display formats do not have
charting or statistical capability of the type used in Figure 3-1 and Figure 3-2. Other
graph layouts, textual representations and tabular data representation methods
might also be useful. The five displays are also unable to display certain types of
information as found in requirements and design documentation, test reports, and
version control information. This means that for a complete analysis of a software
system additional tools would be required.

5.1.3 Integration of Displays and Sources of Information

Software analysis often requires different perspectives of the available information
depending on the task and the user. Netmap has features which can be used to
quickly move between different displays of the same information. This is a
particularly useful property of Netmap. For example, if a set of interesting nodes
and links has been identified using a Netmap display, the user can then change to a
Column display without having to re-identify the node and link set.

Due to the complex nature of large software systems there is a need to hide
irrelevant information so as not to overload or distract the analyst. Netmap can hide
information through its filtering and zooming functions. Nodes can be filtered
based on an attribute of the node or whether it is highlighted or not.

Section 5.1.2 discussed the need for additional tools to completely analyse a software
system. Ideally, Netmap would seamlessly integrate with these additional tools.
This would allow an analyst to choose the best representation for information
without losing context when moving across tool boundaries. To do this effectively,
Netmap would require an API (Application Programming Interface) or scripting
interface so that tools could communicate their state to each other.

5.1.4 Applicability of Netmap for viewing software characteristics

Besides Netmap's application in viewing code structure, as was reported in Section
4, Netmap could find use in the viewing of other types of software information.
Due to its ability to represent code and design relationships and attributes
succinctly, Netmap would lend itself to viewing other code characteristics such as
call profiling and the relationship between test cases and corresponding application
code.

Netmap would not be as useful for viewing attribute values associated with a set of
structural entities. This is due to Netmap's inability to simultaneously represent
multiple attributes graphically. Information of this type includes version control
information and software product measures such as size and complexity. The lack
of statistical visualisation features was discussed in Section 5.1.2.

18

DSTO-TR-0558

Netmap can, however, represent all of the attributes of a single node through its
Node Profile function. A node profile shows a node's ID number, name, attributes
and the currently displayed links. Links can be similarly profiled. A useful feature
of the Node Profile function is the ability to place information directly onto a node
during analysis. This allows a user to, for example, record analysis results about a
node for later reference. Refer to the Netmap User's Guide (1994) Section 3-21..25 for
a more detailed description of Node Profiling.

5.2 Setup Considerations
The initial overhead when configuring Netmap to a new source of information can
be significant. The following section outlines the setup issues which need to be
considered when using Netmap.

5.2.1 Defining requirements

The first step in carrying out a particular task (for example, software evaluation) is
to define the requirements of the task. Requirements can be specified in terms of a
set of goals to be achieved. Several approaches have been suggested for identifying
information needs for specific goals (Rombach 1991), (Vernik 1996). These
approaches help identify information needs by defining a set of questions that need
to be answered for each goal. Only once these questions and information needs
have been identified can the most appropriate Netmap visualisation be selected for
the individual performing the task.

5.2.2 Accessing, Filtering and Integrating Information

All of the information used by Netmap has to be derived from other sources, be it in
a database, text file or some other form. Netmap cannot directly access this
information. Information filters or parsers are required to extract the information
from its source and convert it into a form suitable for Netmap. No parsers or filters
are provided with Netmap.

To correctly import the information, a detailed knowledge of the Netmap tool and
various text processing tools is required. The import process is a non-trivial, time
consuming exercise. Batch files or scripts would need to be developed for cost
effective application of Netmap in a particular domain. The files and scripts which
were developed for this report can be found in Appendices A, B and C.

5.2.3 Tailoring the Netmap Environment

Netmap is a general tool and it can present information in a multitude of ways. The
features that are prominent are very dependent on the configuration of the Netmap
environment. To use Netmap effectively requires a detailed knowledge of Netmap
and an understanding of the domain of investigation. Netmap needs to be tailored
so as to emphasise only those features which will assist in satisfying the
investigation requirements.

Although Netmap provides some features for customising displays, it does not
allow itself to be tailored as might be required for particular user tasks. Colour

19

DSTO-TR-0558

legends and the ability to change the shape of nodes are available on Netmap
printed plots through the Netmap Presentation Tool, but not interactively on the
screen. It was also impractical to tailor the colour scheme depending on the
attribute being used in the investigation as discussed in Section 3.3.4. Customising
displays based on specific task definitions is discussed in Section 5.3.3.

5.3 Providing Task Support

Netmap is an example of a generic visualisation tool which has proved useful for
exploratory activities. There are a number of issues that need to be considered if a
tool such as this is to provide direct task support. This section identifies some of
these issues.

5.3.1 Usage Guidelines

The most asked question when using Netmap was 'What is this telling me?'. There
was no guidance to suggest which combinations of displays and node groupings
would be appropriate for different types of situations. Effective use in a particular
domain would require a set of guidelines for the use and interpretation of the
Netmap views. There would ideally be a catalogue of domain specific tasks which
would guide the user through a series of visualisations with features to look for and
give the rationale behind each task.

5.3.2 Recording Tool Usage

Netmap would benefit from the addition of an automated recording tool which
would record a user's interactions with Netmap. The tool could record, for example,
the type of task the user was performing, the display formats and grouping
strategies employed, zooming and panning operations, and the results found. Such
a tool would help ensure that investigations were repeatable, a necessary condition
for auditing work.

Recording tool usage provides other benefits such as a means of process and tool
improvement (Phillips and Vernik, 1997) (Recker, 1994). The output logs produced
could also be used to facilitate tool usage through the generation of tool automation
scripts as discussed in Section 5.3.3.

5.3.3 Facilitating Tool Use

An important aspect of the usability of a visualisation tool is its external control
mechanisms (Price, Baecker et al. 1993). Scripting control is one means for providing
consistent and stable representations for well defined tasks such as software
evaluations (Vernik 1996). This approach may also increase productivity. Currently
Netmap does not have scripting facilities, which makes it best suited to exploratory
tasks. With scripting facilities and a set of standard evaluation scripts, the Netmap
tool could better support software engineering activities such as software product
evaluations.

Visualisations such as those provided by Netmap can be used to direct the attention
of the operator to particular features through the separation, colour and grouping of

20

DSTO-TR-0558

nodes. The key is to make sure that the features which stand out are the features
which are relevant to the task at hand. During the investigations discussed in this
report, unimportant features often became prominent when using Netmap. This is
to be expected given the generality of the tool. Netmap would benefit from an
attention direction assistant which would automatically configure the display to
support the current task. Prototypes of this kind of tool have been developed to
support diagnostic radiology (Rogers 1995). Once again, scripting features could
help facilitate this aspect of visualisation.

6. Conclusions

This report provides examples of how Netmap can be set up and used to view
software product structure. The use of Netmap's novel visualisation techniques was
investigated as a means of viewing software code and design structure. Their
usefulness in gaining visibility of software products and support of software-related
tasks has been discussed.

Netmap provides visualisations which are suitable for generating system footprints.
These high-level views are suitable for gaining a understanding of the structural
characteristics of a system. The generic nature of the tool together with the high
information density of the Netmap view means that a wide range of systems can be
quickly compared and contrasted at a high level.

There are significant setup issues which need to be considered when configuring
Netmap to a new source of information. A mechanism is required for getting the
underlying information into a form that can be best used by Netmap. This will
usually involve using additional tools (for example, parsers or metrics gathering
tools). Substantial effort may be required to develop tools to convert and integrate
the data from the underlying source of information into a form suitable for analysis
through Netmap.

Netmap may not be as useful as other tools (for example, SEE-Ada) for supporting
software related tasks such as analysis and evaluation of software products. This is
because Netmap is a general tool, not tailored to the software domain. However,
certain Netmap visualisations are helpful in the initial exploratory work of software
analysis. The way nodes and links are represented and laid out highlights areas of
potential interest thereby reducing analysis time. Care has to be taken as prominent
features may be unimportant.

The Netmap visualisations can trigger hypotheses about a particular system but
these often have to be investigated outside of the Netmap environment due to the
limited number of visualisations that Netmap supports. The lack of integration with
other tools and absence of a powerful scripting interface means that Netmap is
unable to provide customised software descriptions.

Netmap is a partial solution to problems of software system visibility and may be
considered as a supplement to other evaluation tools.

21

DSTO-TR-0558

7. References

Davidson, C. (1993). "What your Database Hides Away." New Scientist Jan 1993.

Netmap User's Guide (1994). "The User's Guide for The NETMAP System."
Netmap Solutions Pty Ltd, North Sydney NSW. 1994

Netmap Technical Manual (1994). "The Technical Manual for The NETMAP
System." Netmap Solutions Pty Ltd, North Sydney NSW. 1994

SQL Reference Manual (1990). "SQL Reference Manual, Oracle V6", Oracle
Corporation.

Phillips and Vernik (1997). "Capturing and Analysing Usage of Computer-Based
Tools". Defence Science Technology Organisation 1997. Yet to be published.

Price, B. A., R. M. Baecker, et al. (1993). "A Principled Taxonomy of Software
Visualisation." Journal of Visual Languages and Computing 4(3): 211-266.

Recker, M.M. (1994). "A methodology for analyzing students' interactions within
educational hypertext." Educational Multimedia and Hypermedia, 1994

Rogers, E. (1995). "Cognitive Cooperation through Visual Interaction." Knowledge-
Based Systems 8(2): 117-125.

Rombach, H. D. (1991). "Practical Benefits of Goal-Oriented Measurement." in
Software Reliability and Metrics (eds. Fenton N, Littlewood B.) Elsevier Applied
Science: Chap 14.

SEE-Ada Technical Reference (1996). "SEE-Ada version 3 Technical Reference
Manual." Defence Science Technology Organisation 1996.

SPC Guidelines (1991). "Ada Quality and Style: Guidelines for Professional
Programmers." Software Productivity Consortium, 2214 Rock Hill Road, Herndon,
Va.

Reference Manual for the Ada Programming Language (1983). "Reference Manual
for the Ada Programming Language." American National Standards Institute.

Vernik, R. J. (1996). PhD Thesis "Visualisation and Description in Software
Engineering." Computer and Information Science. Adelaide, University of South
Australia 1996

Vernik, R. J. and S. F. Landherr (1993). "Lessons Learned from Quality Evaluations
of Nulka Software." Defence Science and Technology Organisation 1993. ERL-0761-
RE.

22

DSTO-TR-0558

Appendix A - Generating Data Files

This appendix contains a generic method for extracting SEE-Ada database
information and producing it in a form suitable for Netmap. Text enclosed within
brackets <>, are arguments that need to be substituted with appropriate
information. It is assumed that a directory called Netmap exists and that all systems
are generated within subdirectories of the Netmap directory. Within the Netmap
directory the file netmap.script must be present. The contents of this file are
described in Appendix B.

 UNIX COMMANDS

cd <Netmap system directory^
sqlplus «Dracle user name>/<Oracle user password>

set pagesize 0;
set FEEDBACK OFF

-ORACLE COMMANDS-

spool <system_name>_COMP_UNIT.dat
set linesize 153
select
IDENT,ADANAME,FILE_IDENT,TYPE,LINE,IS_LIBRARY_UNIT,HAS_SUBUNI
TS from <system_name>_COMP_UNIT;

spool <system_name>_COMP_UNIT_BODY.dat
set linesize 21
select IDENT,BODY_IDENT from <system_name>_COMP_UNIT where
BODY_IDENT is not NULL;

spool <system__name>_DEP.dat
set linesize 25
select * from <system_name>_DEP;

spool <system_name>_ENCAPS.dat
set linesize 124
select IDENT,ADANAME,FILE_IDENT,TYPE,LINE from
<system_name>_ENCAPS;

spool <system_name>_ENCAPS_PARENT.dat
set linesize 23
select IDENT,PARENT_IDENT from <system_name>_ENCAPS where
PARENT_IDENT <> 0;

spool <system_name>_SS_COMP.dat
set linesize 104
select SUBSYS_IDENT,SUBSYS_NAME,IS_LOGICAL from
<system_name>_SS_COMP;

spool <system_name>_SS_DESC.dat
set linesize 175
select * from <system_name>_SS_DESC;

spool <system_name>_SS_LOGI_CONT.dat
set linesize 26
select * from <system_name>_SS_LOGI_CONT;

23

DSTO-TR-0558

spool <system_name>_SS_PHYS_CONT.dat
set linesize 27
select * from <system_name>_SS_PHYS_CONT;

spool <system_name>_SUBUNlTS.dat
set linesize 139
select IDENT,ADANAME,FILE_IDENT,TYPE,LINE,HAS_DEPENDENCY from
<system_name>_SUBUNITS;

spool <system_name>_SUBUNITS_PARENT.dat
set linesize 23
select IDENT,PARENT_IDENT from <system_name>_SUBUNITS;

spool <system_name>_SUBUNITS_SPEC.dat
set linesize 21
select IDENT,SPEC_IDENT from <system_name>_SUBUNITS;
spool off;

 UNIX COMMANDS

cd Netmap
netmap.script <system_name>

24

DSTO-TR-0558

Appendix B - netmap.script

This Unix script automates the process of setting up a Netmap database given the
set of data files produced as described in Appendix A. It also uses a number of
standard files which can be found in Appendix C.

#!/bin/csh
Script to generate a .dat file from the ORACLE files
generated
P. Duffett

if ($#argv != 1) then
echo 'Usage : netmap.script <system_name>'
exit 1

end if

set SYSTEM_NAME = $argv[l]
Cd $SYSTEM_NAME

foreach I (_COMP_UNIT _COMP_UNIT_BODY _DEP _ENCAPS
_ENCAPS_PARENT _SS_COMP _SS_DESC _SS_LOGI_CONT _SS_PHYS_CONT
_SUBUNITS _SUBUNITS_PARENT _SUBUNITS_SPEC)

set FILE_NAME = {$SYSTEM_NAME}{$1}'.dat'
set TEMP_FILE_NAME = {$SYSTEM_NAME}{$1}'.tmp'
/users/pld/Utilities/sqlfilter $FILE_NAME $TEMP_FILE_NAME
rm $FILE_NAME
cat '../'{$i}'.layout' $TEMP_FILE_NAME > $FILE_NAME
rm $TEMP_FILE_NAME

end

cat {$SYSTEM_NAME}_COMP_UNIT.dat {$SYSTEM_NAME}_ENCAPS.dat
{$SYSTEM_NAME}_SS_COMP.dat {$SYSTEM_NAME}_SUBUNITS.dat
{$SYSTEM_NAME}_COMP_UNIT_BODY.dat {$SYSTEM_NAME}_DEP.dat
{$SYSTEM_NAME}_ENCAPS_PARENT.dat {$SYSTEM_NAME}_SS_DESC.dat
{$SYSTEM_NAME}_SS_LOGI_CONT.dat
{$ SYSTEM_NAME}_SS_PHYS_CONT.da t
{$SYSTEM_NAME}_SUBUNITS_PARENT.dat
{$SYSTEM_NAME}_SUBUNITS_SPEC.dat > {$SYSTEM_NAME}.dat

cp ../STANDARD.ddf {$SYSTEM_NAME}.ddf
cp . . /*.cl .
crdb -projdir ../ $SYSTEM_NAME
cp ../STANDARD.adf {$SYSTEM_NAME}.adf
cp ../STANDARD.nm {$ SYSTEM_NAME}.nm
cp ../STANDARD.lmf {$SYSTEM_NAME}.lmf
cp ../Legend.key .

25

DSTO-TR-0558

26

DSTO-TR-0558

Appendix C - Miscellaneous Setup Files

This appendix contains the standard files and script used for configuring SEE-Ada
data for use in Netmap. The script utility, called 'sqlfilter', filters out the SQL
commands still contained in the data files. The standard files consist of the legend

^f^S ÜI? C?°Ur Setting me (colours.set), the attribute definition file
(SrANDARD.adf), the node definition file (STANDARD, ddf), the link menu
definition file (STANDARD, lmf), the node menu file (STANDARD, nm), the layout
files (.layout) and the code list files (*cl). These files can be re-used for all Netmap
systems displaying SEE-Ada data. Descriptions of these file types can be found in
the Netmap Technical Reference (1994).

sqlfilter
#include <stdio.h>
♦include <string.h>

idefine MAXSTRING 200

main(arge, argv)
int arge;
char *argv[];
{
FILE *ifp, *ofp;
Char s[MAXSTRING];
int done;

}

if (arge != 3) exit(l);

ifp = fopen(argv [1], "r");
ofp = fopen(argv[2], "w");

for(;feof(ifp)==0;) {
fgets(s,MAXSTRING,ifp);
if ((feof(ifp)==0) && (s[0]!='S'

[s[2]!='L')) fputs(s,ofp);
&& (s[l]!='Q') &&

Legend.key

%x
Legend

Types
Unit Types Link

%00b
%01b
%02b
%03b

Subsyst
%06b

Unit
%07b
%08b

Specifi
%09b

Procedure Specification
Procedure Body
Procedure Subunit Specification
Procedure Subunit Body
em
Function Specification

Function Body
Function Subunit Specification
cation Unit
Function Subunit Body

%12b Spec Of
%28b Withs
%16b Parent
%03b Child

%05b Library

%18b Child Of
%02b Has

27

DSTO-TR-0558

%12b Package Spec
%13b Package Body
%16b Package Body Subunit Specification
%17b Package Body Subunit Body
%18b Task Specification
%19b Task Body
%20b Task Body Subunit Specification
%21b Task Body Subunit Body
%28b Generic Package
%29b Null Object

%x

colours.set
!white
black
white

{ background }
{ foreground }

blue
cyan
blue
violet
yellow
yellow
blue
cyan
blue
violet
yellow
yellow
red
pink
yellow
yellow
orange
tan
magenta
plum
magenta
plum
yellow
yellow
yellow
yellow
yellow
yellow
green
maroon

STANDARD.adf
1 0 999 Subsystem Type
2 0 999 Description
3 0 999 File ID
4 0 999 Unit Type
5 0 999 Start Line
6 0 999 Library Unit
7 0 999 Subunits
8 0 999 Dependency
0
1 0 Physical Subsystem

28

DSTO-TR-0558

1 1 Logical Subsystem
4 0 Procedure Specification
4 1 Procedure Body
4 2 Procedure Subunit Specification
4 3 Procedure Subunit Body
4 4 Procedure Instantiation
4 5 Procedure Rename
4 6 Function Specification
4 7 Function Body
4 8 Function Subunit Specification
4 9 Function Subunit Body
4 10 Function Instantation
4 11 Function Rename
4 12 Package Spec
4 13 Package Body
4 14 Package Instantiation
4 15 Package Rename
4 16 Package Body Subunit Specification
4 17 Package Body Subunit Body
4 18 Task Specification
4 19 Task Body
4 20 Task Body Subunit Specification
4 21 Task Body Subunit Body
4 22 Task Type
4 23 Task Object
4 24 Generic Procedure Specification
4 25 Generic Procedure Body
4 26 Generic Function Specification
4 27 Generic Function Body
4 28 Generic Package
4 29 Null Object
6 0 Isn't Library Unit
6 1 Is Library Unit
7 0 No Subunits
7 1 Has Subunits
8 0 No Dependency
8 1 Has Dependency
0

STANDARD.ddf
%NODE_DEFINITION

%NODE_ID
%NODE_NAME
%attribute subsystem_type %label "Subsystem Type"

%data_type int %code_list subsystem_type.cl
%attribute description %label "Description" %data_type

str
%attribute file_id %label "File ID" %data_type int
%attribute unit_type %label "Unit Type" %data_type int

%code_list unit_types.cl
%attribute start_line %label "Start Line" %data_type int
%attribute library_unit %label "Library Unit" %data_type

int %code_list library_unit.cl
%attribute has_subunits %label "Subunits" %data_type int

%code_list subunits.cl
%attribute has_dependency %label "Dependency" %data_type

int %code_list dependency.c1

%LINK DEFINITION

29

DSTO-TR-0558

%QUALIFIER relationship %label "Relationship" %data_type
str

STANDARD.lmf
%PROFILE : Profile
NODE_HIGHLIGHT : Highlighted Nodes
NODE_NAME IN [?] : Node Name
NODE_ID IN [?]: Node ID

%LINK2 Q2 : flags = c default_colour = sequential :
Relationship

color = red : Spec Of
color = green : Withs
color = orange : Parent
Child Subsystem
Library Unit
color = magenta : Child Of
Has Specification Unit

%OUTPUT_FORMAT QDF
Ql : INT : LINK_DIRECTION
Q2 : STR : Relationship
%WIDTH
1 : $1 : Number of Links

add further options in the format:
Data Source : Variable name & calculations : Label
eg
1 | Q2 : $2/$l : Average Value
refer to Technical Guide for further details.

%DRAW_IF : Draw if Total
1 : $1 : Number of Links
! Add further options as per the Width section

%LINK_FILTER : Filter Links on
Add options in the same way to use Link Filtering,
(uncomment the %LINK_FILTER line).

STANDARD.nm
%GROUP_MENU : Group nodes by

%ENTRY : Subsystem Type
NODE_GROUP = Al

%ENTRY : Description
NODE_GROUP = A2

%ENTRY : File ID
NODE_GROUP = A3

%ENTRY : Unit Type
NODE_GROUP = A4

%ENTRY : Start Line
NODE_GROUP = A5

%ENTRY : Library Unit
NODE_GROUP = A6

%ENTRY : Subunits
NODE_GROUP = A7

%ENTRY : Dependency
NODE GROUP = A8

30

DSTO-TR-0558

%COLOUR_MENU : Colour nodes by
%ENTRY : Subsystem Type
NODE_COLOUR = Al

%ENTRY : Description
NODE_COLOUR = A2

%ENTRY : File ID
NODE_COLOUR = A3

%ENTRY : Unit Type
NODE_COLOUR = A4

%ENTRY : Start Line
NODE_COLOUR = A5

%ENTRY : Library Unit
NODE_COLOUR = A6

%ENTRY : Subunits
NODE_COLOUR = A7

%ENTRY : Dependency
NODE_COLOUR = A8

%ORDER_MENU : Order nodes by
%ENTRY : None
%ENTRY : Subsystem Type
NODE_ORDER = Al

%ENTRY : Description
NODE_ORDER = A2

%ENTRY : File ID
NODE_ORDER = A3

%ENTRY : Unit Type
NODE_ORDER = A4

%ENTRY : Start Line
NODE_ORDER = A5

%ENTRY : Library Unit
NODE_ORDER = A6

%ENTRY : Subunits
NODE_ORDER = A7

%ENTRY : Dependency
NODE_ORDER = A8

%ENTRY : Number of links
NODE_ORDER = NODE_NLINKS

%WIDTH_MENU : Base width on
%ENTRY : None
%ENTRY : Subsystem Type
NODE_WIDTH = Al

%ENTRY : Description
NODE_WIDTH = A2

%ENTRY : File ID
NODE_WIDTH = A3

%ENTRY : Unit Type
NODE_WIDTH = A4

%ENTRY : Start Line
NODE_WIDTH = A5

%ENTRY : Library Unit
NODE_WIDTH = A6

%ENTRY : Subunits
NODE_WIDTH = A7

%ENTRY : Dependency
NODEJWIDTH = A8

%ENTRY : Number of links
NODE WIDTH = NODE_NLINKS

31

DSTO-TR-0558

%EXCLUDE_MENU : Exclusions
A1=0 : Physical Subsystem
Al=l : Logical Subsystem
A4=0 : Procedure Specification
A4=l : Procedure Body
A4=2 : Procedure Subunit Specification
A4=3 : Procedure Subunit Body
A4=4 : Procedure Instantiation
A4=5 : Procedure Rename
A4=6 : Function Specification
A4=7 : Function Body
A4=8 : Function Subunit Specification
A4=9 : Function Subunit Body
A4=10 : Function Instantation
A4=ll : Function Rename
A4=12 : Package Spec
A4=13 : Package Body
A4=14 : Package Instantiation
A4=15 : Package Rename
A4=16 : Package Body Subunit Specification
A4=17 : Package Body Subunit Body
A4=18 : Task Specification
A4=19 : Task Body
A4=20 : Task Body Subunit Specification
A4=21 : Task Body Subunit Body
A4=22 : Task Type
A4=23 : Task Object
A4=24 : Generic Procedure Specification
A4=25 : Generic Procedure Body
A4=26 : Generic Function Specification
A4=27 : Generic Function Body
A4=28 : Generic Package
A4=29 : Null Object
A6=0 : Isn't Library Unit
A6=l : Is Library Unit
A7=0 : No Subunits
A7=l : Has Subunits
A8=0 : No Dependency
A8=l : Has Dependency

node_id in [?] : ID Code
node_name in [?] : Node name

%CC_TARGETS : Display all
: nodes

A1=0 : Physical Subsystem
Al=l : Logical Subsystem

node_highlight : highlighted nodes

%CC_NODES : linked to
: nodes

Al=0 : Physical Subsystem
Al=l : Logical Subsystem

node_highlight : highlighted nodes

%STEP_LINKS : Step Links
A1=0 : Physical Subsystem
Al=l : Logical Subsystem

node_highlight : highlighted nodes
node_name in [?] : Node Names

32

DSTO-TR-0558

_COMP_UNIT.layout
%BEGIN_LAYOUT COLUMN
%BEGIN_NODE

%NODE_ID 7:10
%NODE_NAME 12:91
%file_id 96:102 %DEFAULT -1
%unit_type 112:113
%start_line 120:124 %DEFAULT -1
%library_unit 140:140
%has_subunits 153:153
%subsystem_type 0 %DEFAULT -1

%END_NODE
%END_LAYOUT

_COMP_UNIT_BODY.layout
%BEGIN_LAYOUT COLUMN

%BEGIN_LINK
%NODE_ID 7:10
%NODE_ID 18:21
%relationship 0 %DEFAULT "Spec Of"

%END_LINK
%END_LAYOUT

_DEP.layout
%BEGIN_LAYOUT COLUMN

%BEGIN_LINK
%NODE_ID 9:12
%NODE_ID 22:25
%relationship 0 %DEFAULT "Withs"

%END_LINK
%END_LAYOUT

_ENCAPS.layout
%BEGIN_LAYOUT COLUMN
%BEGIN_NODE

%NODE_ID 7:10
%NODE_NAME 12:91
%file_id 96:102 %DEFAULT -1
%unit_type 112:113
%start_line 12 0:124 %DEFAULT -1
%subsystem_type 0 %DEFAULT -1

%END_NODE
%END_LAYOUT

_ENCAPS_PARENT.layout
%BEGIN_LAYOUT COLUMN

%BEGIN_LINK
%NODE_ID 7:10
%NODE_ID 20:23
%relationship 0 %DEFAULT "Parent"

%END_LINK
%END_LAYOUT

_SS_COMP.layout
%BEGIN_LAYOUT COLUMN
%BEGIN_NODE

%NODE_ID 9:12
%NODE_NAME 14:93
%unit_type 0 %DEFAULT -1

33

DSTO-TR-0558

%subsystem_type 104:104
%END_NODE
%END LAYOUT

_SS_DESC.layout
%BEGIN_LAYOUT COLUMN
%BEGIN_NODE

%NODE_ID 9:12
%description 14:80

%END_NODE
%END LAYOUT

%DEFAULT "None"

_SS_LOGI_CONT.layout
%BEGIN_LAYOUT COLUMN

%BEGIN_LINK
%NODE_ID 10:13
%NODE_ID 23:26
%relationship 0 %DEFAULT "Child Subsystem"

%END_LINK
%END LAYOUT

_SS_PHYS_CONT.layout
%BEGIN_LAYOUT COLUMN

%BEGIN_LINK
%NODE_ID 9:12
%NODE_ID 24:27
%relationship 0

%END_LINK
%END LAYOUT

%DEFAULT "Library Unit"

_SUBUNITS.layout
%BEGIN_LAYOUT COLUMN
%BEGIN_NODE

%NODE_ID 7:10
%NODE_NAME 12:91
%file_id 96:102 %DEFAULT -1
%unit_type 112:113
%start_line 120:124
%has_dependency 139:139
%subsystem_type 0 %DEFAULT -1

%END_NODE
%END LAYOUT

_SUBUNITS_PARENT.layout
%BEGIN_LAYOUT COLUMN
%BEGIN_LINK

%NODE_ID 7:10
%NODE_ID 20:23
%relationship 0 %DEFAULT

%END_LINK
%END LAYOUT

'Child Of"

_SUBUNITS_SPEC.layout
%BEGIN_LAYOUT COLUMN
%BEGIN_LINK

%NODE_ID 7:10
%NODE_ID 18:21
%relationship 0 %DEFAULT "Has Specification Unit"

%END LINK

34

DSTO-TR-0558

%END_LAYOUT

depend ency.cl
1 : Has Dependency-
0 : No Dependency

library. unitcl
1 : Is Library Unit
0 : Isn't Library Unit

subsyst em_tye.cl
1 : Logical Subsystem
0 : Physical Subsystem

subunits.cl
1 : Has Subunits
0 : No Subunits

unit_types.cl
1 : Procedure Body
2 : Procedure Subunit Specification
3 : Procedure Subunit Body
4 : Procedure Instantiation
5 : Procedure Rename
6 : Function Specification
7 : Function Body
8 : Function Subunit Specification
9 : Function Subunit Body
10 : Function Instantation
11 : Function Rename
12 : Package Spec
13 : Package Body
14 : Package Instantiation
15 : Package Rename
16 : Package Body Subunit Specification
17 : Package Body Subunit Body
18 : Task Specification
19 : Task Body
2 0 : Task Body Subunit Specification
21 : Task Body Subunit Body
22 : Task Type
23 : Task Object
24 : Generic Procedure Specification
25 : Generic Procedure Body
26 : Generic Function Specification
27 : Generic Function Body
28 : Generic Package
29 : Null Object
0 : Procedure Specification

35

DSTO-TR-0558

36

DSTO-TR-0558

Appendix D - Netmap Plots

This appendix contains the Netmap plots together with a brief description of each.

PLOT 1. The Ada Composer system showing the unit types specified in the
legend. The units are grouped according to the files to which they
belong and arranged using the Netmap view. Links shown are Withs,
Parent, and Child Of.

PLOT 2. The LIU system with the same configuration as Plot 1.

PLOT 3. The DGU system with the same configuration as Plot 1.

PLOT 4. The Ada SAGE system with the same configuration as Plot 1.

PLOT 5. A column view of the Ada Composer subsystem structure.

PLOT 6. A plot of step links from an Ada Composer package body shown in row
view. The plot shows the package body at the top with differing levels
of encapsulation of the procedure and function bodies below.

PLOT 7. A plot of the Ada Composer package specifications and the with links
between them. The package specifications are grouped according to the
emergent grouping algorithm.

PLOT 8. Similar to Plot 7, but this plot also shows Ada Composer package bodies.

PLOT 9. This plot shows the step links from a library unit (TEXT_IO) with all of
the units that are directly or indirectly dependent on it. (Ada Composer
System, Netmap view)

PLOT 10. A zoomed in view on the bottom right portion of Plot 1.

37

DSTO-TR-0558

dirtMMM
.. .Ki:,'*;-.\\\Vi*- ... ,-;;-;r

■%'>/
S

(2)

1&-
y ". X

■ -%.=«■:-■ - (5)

\:
X.

i-rAÄf-
~~.fci.

^,

■■&,.

Legend

Unit Types

Procedure Specification

Link Types

iääfe] tvaiii-i Spec Of
f Procedure Body zrz~ Wi ths
HBKi Procedure Subunit Specification si" ""1 Parent
tHv^^ri Procedure Subunit Body £"SÜ Child Subsystem
OBI! Function Specification Library Unit
r. Function Body EEET:! Child Of
■OK Function Subunit Specification HUB Has Specification Unit
BIS Function Subunit Body

Package Spec KW"! 1
Package Body

;■.;':;.';-.:

Package Body Subunit Specification
Package Body Subunit Body

tafewi Task Specification
tllHipü! Task Body
teisüi Task Body Subunit Specification
"', ^ ~ Task Body Subunit Body
c^z:: Generic Package
Kssg Null Object

Plot 1 Ada Composer - Netmap Layout

38

DSTO-TR-0558

-Vfc

(1)

Legend

Unit Types

Procedure Specification
Procedure Body
Procedure Subunit Specification
Procedure Subunit Body
Function Specification
Function Body
Function Subunit Specification
Function Subunit Body
Package Spec
Package Body
Package Body Subunit Specification
Package Body Subunit Body
Task Specification
Task Body
Task Body Subunit Specification
Task Body Subunit Body
Generic Package
Null Object

Link Types

Spec Of
Withs
Parent
Child Subsystem
Library Unit
Child Of
Has Specification Unit

Plot 2 LIU - Netmap Layout

39

DSTO-TR-0558

W*

Leaend

Unit Types

iLajttfej Procedure Specification
L~':" Procedure Body
Süffig Procedure Subunit Specification

Procedure Subunit Body
Function Specification
Function Body
Function Subunit Specification
Function Subunit Body

fr?»s«M Package Spec
Package Body

tl~ Package Body Subunit Specification
s5;i:.3 Package Body Subunit Body
E13 Task Specification

ffiSH Task Body Subunit Specification
llltlll Task Body Subunit Body
» ■-■■'• ■ i Generic Package
MB Null Object

Link Types

Spec Of
Withs
Parent
Child Subsystem
Library Unit
Child Of
Has Specification Unit

Plot 3 DGU - Netmap Layout

40

DSTO-TR-0558

SäÜ-Cäi

äarfflEHW

Unit Types

Procedure Specification
Procedure Body
Procedure Subunit Specification
Procedure Subunit Body
Function Specification
Function Body
Function Subunit Specification
Function Subunit Body
Package Spec
Package Body
Package Body Subunit Specification
Package Body Subunit Body
Task Specification
Task Body
Task Body Subunit Specification

^^^ Task Body Subunit Body
Generic Package
Null Object

Link Types

Spec Of
^Sääj Withs
SHääxüJ Parent
^^■ä Child Subsystem

Library Unit
Child Of
Has Specification Unit

Plot 4 Ada SAGE - Netmap Layout

41

DSTO-TR-0558

C V i/i
o er ^
<Q>< u

01 H-O)
0 H- s
»1 0
h-J Q)

M
w d
e CA
ffd

>< 01
01 K (I)
(T 01
CD rr
3 CD

3

ffiopnwsoi si er p-er ID H-i3
01 H-tr H-hj rr CD

w t-i M n> er n
c/i a SJ a p oi

CD OK en
n HI p a tr

rr
Hi

Hi

a
es

ei
H-K
rr 0)

rr
CD
3

a

■C: !<i Cl Ul |3 !o !0
K if; 3 S S il. E 5'' S

Plot 5 Ada Composer Subsystem - Column Layout

42

DSTO-TR-0558

A h.

Plot 6 Ada Composer - Row Layout - Step Link Grouping

43

DSTO-TR-0558

4*
;V

%-3 ,-*■

(i)

v 0

%' |0

Legend

& >:&'■ I

irft'i^lV'-in'ljV-l

Unit Types

Procedure Specification
Procedure Body
Procedure Subunit Specification
Procedure Subunit Body
Function Specification
Function Body
Function Subunit Specification
Function Subunit Body
Package Spec
Package Body
Package Body Subunit Specification
Package Body Subunit Body
Task Specification
Task Body
Task Body Subunit Specification
Task Body Subunit Body
Generic Package
Null Object

Link Types

ST^r

Spec Of
Withs
Parent
Child Subsystem
Library Unit
Child Of
Has Specification Unit

Plot 7 Ada Composer - Emergent Grouping

44

DSTO-TR-0558

"ty

(3)

';:^ss-'

1 ^Si-

(2) <^>

i

js#
1 ^«'afe*;

M

(l)

J*.

T» -
\ \ \

-*

Legend

£35ßü

Unit Types

Procedure Specification
Procedure Body
Procedure Subunit Specification
Procedure Subunit Body
Function Specification
Function Body
Function Subunit Specification
Function Subunit Body
Package Spec
Package Body
Package Body Subunit Specification
Package Body Subunit Body
Task Specification
Task Body
Task Body Subunit Specification
Task Body Subunit Body
Generic Package
Null Object

Link Types

Spec Of
Withs
Parent
Child Subsystem
Library Unit
Child Of
Has Specification Unit

Plot 8 Ada Composer - Emergent Grouping

45

DSTO-TR-0558

ST«tm WCG

1020 TEKDRtVER

1132 TERMINAL^ACCESS

162 t»»08-
PKG

?«9

üS?*-

<**"

>^ ^

«O*'

<?'

\

; -U"53 9 TEXT_IO

8 8^
§ a. t» L,N

\s a *

\ t v*

(1)

(3)

Legend

E^S

Unit Types

Procedure Specification
Procedure Body
Procedure Subunit Specification
Procedure Subunit Body
Function Specification
Function Body
Function Subunit Specification
Function Subunit Body
Package Spec
Package Body
Package Body Subunit Specification
Package Body Subunit Body
Task Specification
Task Body
Task Body Subunit Specification
Task Body Subunit Body
Generic Package
Null Object

r:~rr:

is>v:^--i

Link Types

Spec Of
Withs
Parent
Child Subsystem
Library Unit
Child Of
Has Specification Unit

Plot 9 Ada Composer - Netmap Layout - Dependent Step Links from TEXT JO

46

DSTO-TR-0558

V.,?, »^i;*»f» **%*,

^
am >■ ITMOJ:

w
;1350 ._;- -r{555".

£»*'

.4?' /7 p R § %

id U

1399

■J MOO

(1)

Legend

Ui

mM:-£--fl

Unit Types

Procedure Specification
Procedure Body-
Procedure Subunit Specification
Procedure Subunit Body
Function Specification
Function Body
Function Subunit Specification
Function Subunit Body
Package Spec
Package Body
Package Body Subunit Specification
Package Body Subunit Body
Task Specification
Task Body
Task Body Subunit Specification
Task Body Subunit Body
Generic Package
Null Object

Link Types

tessa Spec Of
ISZZj Withs
EIüFi '■ Parent
IR3SSJ Child Subsystem

Library Unit
Child Of
Has Specification Unit

Plot 10 Ada Composer - Netmap Layout - Zoomed View

47

DSTO-TR-0558

48

DSTO-TR-0558

Appendix E - Overview of SEE-Ada Version 3

E.l Introduction

SEE-Ada is a tool for the visualisation of large, complex Ada software systems. It
uses computer graphics to provide meaningful, scaleable views of the total software
system, including design and code entities, their attributes and relationships. SEE-
Ada can assist in a wide range of software engineering tasks including management,
development, independent verification and validation, quality assessment, and
software maintenance.

Key features of SEE-Ada are:

• Software System Visualisation environment based on the use of an underlying
Software Product Model to support multiple-perspective views and information
integration.

• Open environment which allows the import and integration of a wide range of
information from a variety of project sources.

• Allows the display of project information integrated with structural
representations of the software system.

• Provides the ability to customise and adapt information to specific needs.

E.2 System Framework

Figure 7-1 shows the structure of the SEE-Ada environment.

A range of information can be extracted from software project sources and imported
into SEE-Ada. Structural information about the system (eg entities and their
structural relationships) can be extracted from the Ada source code or obtained
directly from an Ada compilation system via a standard ASIS interface using the
filter tools provided. Structural design-level detail can also be imported by way of
the Structure I/O feature. Data representing software/project attributes is imported
into the SEE-Ada environment from external, commercial or locally developed tools.
Many types of information can be imported including requirements, configuration
management information, product measures, test results and so forth. Structural
information provides the structural element of the Software Product Model (SPM).
Other information is integrated into the model as attributes of the structural entities.

Architectural views of the software are generated from the structural model and
displayed in graphical form. Attribute information can be integrated into the views
and used to describe and provide insights into software characteristics.

SEE-Ada is an open system: design information, development history, and other
data from CASE tools, development environments, and other sources can be
imported into SEE-Ada and displayed in a consistent, and integrated manner.

49

DSTO-TR-0558

GRAPHICAL USER INTERFACE

Information
Overlay

Script Mode
Interface

INFORMATION I/O

Parser
—x—

Structure I/O
 A

Attribute I/O
A

Filters and Utilities

PROJECT INFORMATION RESOURCE

Figure 7-1 The SEE-Ada System Framework

E.3 SEE-Ada Views

Figure 7-2 shows a set of integrated views of a software system as presented by the
SEE-Ada product. These views are generated from information captured in the
Software Product Model.

The Subsystem View shows 'design-level' information. In this case, the view shows
the relationship between logical design entities (class categories filtered from the
Rational Rose design tool) and physical design entities (Rational Subsystems from
the Rational Apex environment).

The Layers View shows the Ada compilation units which implement the highlighted
section of the design shown in the Subsystem View. These Ada units are arranged
based on compilation dependencies to provide a compact, spatial representation of
the code modules. This view can be customised and tailored to support user needs.
The compact representation allows other information to be superimposed. For
example, in Figure 7-2, information on the degree of commenting is superimposed
via a colour mapping mechanism. The entities shaded red show those source code
modules that have no comments. Other colours have been used as threshold values
to indicate the degree of commenting.

The Graph View is a view which can be generated from an arbitrary selection of
entities. The directed graph representation can display any one of the relationships
stored in the Software Product Model. The Graph View shown in Figure 7-2 shows
the with structure between a selection of packages.

50

DSTO-TR-0558

The Contains View shows those subprograms encapsulated in an Ada compilation
unit. For example, the TREE_BUILDER package body encapsulates both functions
and procedures as shown in Figure 7-2.

The user has selected the "STRING_ASSIGN" procedure and requested a text view
to show the related source code. Link attributes associated with the Software
Product Model provide the basis for displaying this information.

Si;t:--Aila V3 ■ Ada,0>mptistir

Vtww* - Cn«'-Memes. -

■ ; SultsyMmii Vitiw: Conipnser

EST

Äl ES

Contains View

/nnjwl^

i_m-|
laiscmpj^]

'■>■ {■;■:■;;■:■:■!■■:.■;; ;;_: ;C«tyH VtaW/; SlMWl^WTM _:;.

. FiJe .r::;: Sdlt' s" :> :' '-'Select :T: ':!; äfisäi &£t :r: '■:" 2öCitt: in }-: - ; jöSJtt'iwUt;'%

£ GE «>
^v--

~:j Scarce-/crt^drfvc^pi/tfroJects/AOA^^

Srir; : Jt-irdi ■■ ■ ■

DEST.STRIWC : in out STRIHG;
SOURCE-STRING : in STRING);

--| Overview

— I This procedure assigns as many characters from the source-String
— I to the dast_string Ci f source.stri nq is larger than dest_string)
— I or assigns all of source_string to dest_stnng and pads with
— I blanks any remaining unassigned characters in dest_string.

■ External Subprogram Bodies

procedure INITIALIZE
begin

utultlvejtrln

S
GEEÜE).,,

--.,GEE)

i'-""^"v* / TW 1.1 ItMl

SÜS}
-^

7^
GS5

GEESHESf
'im

■■tr*ki»| \ •&' ..

— a<|)£

Figure 7-2: Main Representations Used within SEE-Ada

As can be seen from this figure, a set of integrated views of the software product
allows the user to quickly traverse from high-level design concepts to individual
lines of code in a consistent way whilst maintaining context.

E.4 Viewing Attribute Information

The integration of information is a key concept that has been explored as part of the
AViDeS research. Figure 7-3 shows a Subsystem View and a Layers View with
attribute information superimposed.

In this case, attributes were used to identify those entities which declare global
variables. The use of global variables can result in highly coupled software which is
difficult to maintain. In Ada, the use of global variables in sections of the software
which use concurrent threads can result in race conditions. These conditions can

51

DSTO-TR-0558

induce serious timing problems and intermittent failures which are difficult to
rectify.

Attributes can be overlaid onto any of the Subsystem, Layers, Worksheet, Graph
and Contains view via the use of the Attributes Tool as shown in Figure 7-3. The
Attributes Tool specifies the mapping of threshold values to up to 5 different
colours. This allows both numeric and symbolic data to be overlaid as colours onto
the 5 aforementioned views. Individual values can be viewed in a Show Values
window if desired.

SwbWvtHin vipw:t3Cl_t)tSlC\

.P553.

-^' I "■'-:■--.

"•'"■'■'»■■■'■■"'

lililffii'jiW-H-'h'i m E
[E53l IIES

AltrihutWS Tool

CCM:äIJOH :

■>» <)'■■■ 'r.".C*'C<' .-

-* &

."'. layers view

L-OMHitllli

(T«ü>üiajt.'"'> *S^i£:^j^"aSl i'CTJJwicja-"';- ■ 'wm^MUMiT') four-IüJLL >;

/.c***Ma-M ,*mw^, /OWBIC„B- ■

i,vrn.mt* > (-«tia«_K-,1

.'*£y**?:A
..;.<' ■■■ V$hoW Values Wiiwfow

■fin* , S: '-;; V .^ s;'e«: eiKei'^'; ■ ■.Seisi*. ' - .L'-.:?l^ "

<&

GK'llV: [»D! .nU'DLl AUKIIiUIi:: GL'lI^f^V^Kl J.i:i L_Ul-:i/tkl

NMi» l«pi- :.l ,irv;-

figwre 7-3 Viewing Attributes in SEE-Ada

The approach of integrating information on SEE-Ada views can support a wide
range of needs. For example, configuration management information can be used to
identify those units that have undergone most change. This information can also be
superimposed to show which programmers have authored or changed particular
units. Test information can be superimposed to show which units have undergone
test, the extent of that testing and the results of particular tests.

E.5 Viewing Relationships

Figure 7-4 shows how SEE-Ada views can be customised to provide required
information. Relationships between code entities are typically provided in terms of
a directed graph of the complete system (eg the Graph View shows the compilation

52

DSTO-TR-0558

dependency 'with' relationship between a subset of units selected in the Layers
View). This approach does not scale well and the superfluous information often
confuses the user.

I'I.I ■■it*- ■ *-»! i: -- j-i.

Soixt r otnha : »«"> o i t«m out i

LwcrsVlow

^tutaintMH) 4 -^ cgw ram-)

(TK£E_PVi*l.-'y .

<snaKs_wi->
/smMJUT-\

KmnrjE-

— _ J
— , nmn-

— ——-J ■*■
UHCTW

,- >

.3

onipii vi»w - smpum»

lurrs llll.pl l> «i«

l-fu - : mitt! 5rt««--: ü*w!na_- (2MI ry Toomciut,'

nfi i« tfwil of eiKMrtuMBm

«Kit, ewW'im«!!;' In i ■

yf S»lM»iii;ll<iiH. , , ,
J .AirVtstttt? I3HÜ* , , ' '"

..;,; „.'...»-».-.•...•-.■.-....*-~ .;♦,-*"«•^-..T'.- „*:,-.» .«,;,*.;.,. >„—v. ~,.~ ..-„..—...v,...-—..—

Figure 7-4 Viewing Relationships in SEE-Ada

The integrated visualisation approach as used in SEE-Ada allows the user to query
for and superimpose only that information which is necessary for the task at hand.
For example, the first level of a call tree from a subprogram has been superimposed
in "Red" and the "Green" trace line shows usage of the
"COMPONENT_MANAGER" library. Any relationship can be loaded into SEE-
Ada. An example of the types of relationships that may be loaded is shown in the
Relationships window of Figure 7-4.

A benefit of the integrated visualisation approach is that the information can be
customised and adapted for a particular need and the information can be presented
in terms of a familiar context (ie the general shape and layout of the compilation unit
lattice). The detail level of individual compilation units can be set so as to remove
clutter caused by irrelevant information. In Figure 7-4, the detail level of the
"TREEJO" package has been increased to show subprograms. The detail level of
other packages has been reduced so that they appear only as points.

Other "secondary views" (eg graph view) can be used to provide supplementary
information or present information in a more meaningful way.

53

DSTO-TR-0558

E.6 Usage Monitoring

Figure 7-5 shows an example of a SEE-Ada session which has been recorded using
the SEE-Ada Usage Monitor. The Usage Monitor captures information about tasks
performed with SEE-Ada. When the Usage Monitor is enabled, the 'SEE-Ada Usage
Monitor' window is displayed in the top-right corner of the screen. This window
shows the current state of the Usage Monitor and also acts as a control panel.

Before using SEE-Ada the user registers the task to be performed in the Setup
Window by selecting a task name (usually from a list) and entering a description of
the task objective. Other information, such as the current user, is entered
automatically, based on the currently logged on user, but may be changed if
required. When the OK button is pressed, the Usage Monitor goes into recording
mode and the user begins the task.

usaijf! Möiiimf'id's

oeuip;

SEE-rtda Usage■MdWfto'r; STOPPED

:».'«:. '1:..-ü :■ v::;,^ Log-' Options

»name : Evaluate.Code.Coding-Practices (1)
»objective : To identify non-compliance with standards
»user : mpp
»started : 09/12/96 09:39:14
»continued : FROM-SCRATCH
»windows : 0
»input : FALSE
09/12/96 09:39:14 USAGE.RECORDING
09/12/96 09:39:18 FILE-MENU.OPEN ("Example")
09/12/96 09:39:19 VIEWS-MENU.SU8SYSTEH ("CSCI-DESIGN")
09/12/96 09:39:22 SUBSYSTEM.SELECTION.MOUSE C"Source_Instrumenter"l
09/12/96 09:39:39 SUBSYSTEM.VIEWS.LAYERS
09/12/96 09:39:51 LAYERS.SELECTION.SELECT-LIBRARY-UNITS

— PROCESS-STEP: Describe use of global variables

09/12/96 09:40:39 LAYERS.OVERLAY.ATTRIBUTES ("INT", "CODE.AUDIT"
09/12/96 09:40:44 LAYERS.SELECTION .VALUES-WINDOW C'SOURCE-INSTRUli
09/12/96 09:40:51 LAYERS.VIEWS.SOURCE ("/nount/se27_home2/se_user

— RESULTS: This unit has 7 global variable declarations

09/12/96 09:42:30 LAYERS.SELECTION.VALUES-WINDOW ("SOURCE-INSTRUN
09/12/96 09:42:30 LAYERS.OVERLAY.RELATIONSHIPS.SIMPLE-WITH ("BACK

US Currentlask: Evaluate,Cade.Coding-Practicas (I)

Started; 09/12/96 05:39:14 User: mpp

Select TüK •

Usage Monitor Setup

Ev=. usce Cods CcciraJTaciice;,

Objective: !o deruify -^r -cariphan« •- 'h sranrir:!:

User: msa

Continued fioni: *> £uatüt

.crn.L'Tzi siilu^L':

OK. Modify task names
— DECISION: This unit and the 7 units that use it will need to b

09/12/96 09:43:38 LAYERS.SELECTION.SELECT-ALL-UNITS

-- PROCESS-STEP: Describe use of GOTO's

09/12/96 09:45:40 LAYERS.OVERLAY.ATTRIBUTES ("INT", "CODE.PROFILE", "STMT-GOTO",

— RESULTS: No GOTO's found

09/12/96 09:46:23 USAGE.STOPPED
»stopped : 09/12/96 09:46:23
»total time : 00:07:09
»actual time : 00:07:09

Figure 7-5 SEE-Ada Usage Mode

The Log Window shows the log generated by the Usage Monitor for the current
task. The information entered in the Setup Window is recorded in a series of header
lines marked by stars. Following the header are the commands executed by the user
each marked with the time they were executed. For consistency and readability the
commands are represented in the same format used by the SEE-Ada script processor
as discussed in Section E.7. Comments can be entered by the user and are preceded
by a double dash'—'.

The user completes the task by pressing the stop button on the 'SEE-Ada Usage
Monitor' window. This causes the log to be terminated with a footer indicating the
total time spent on the task.

54

DSTO-TR-0558

E.7 Script Mode

SEE-Ada supports task facilitation by providing a Script Mode Interface. This
interface can support the setup of the environment. It also supports the preparation
of custom descriptions for particular tasks.

S iiBsyslani View: CSC1. DES1CN

liayers ViflW

^^"LS1 ®}S*°JL~' .Over'ayv '"l^Hl^

S*is:t~_t Case Sect •; iV-mln: -TfwnOuf.

; xorfhuw^Tsoi :

J - :
!1>T

J:: l Nu» Attribute:: :.:ft:lUitl*sy

* t-'ti.-stiijlntrtrflinifs rj . :_r..«ipt:

;iFfod:.:i:uS^rt-;.ir Jfti:fcfaüftiji«&

GROUP: CODF..AWJIt AHftlRUTt:

l-:Mr_AiTRIcllTES

i]Tn._r'^_"i!!.i.
i:'i5=.IH5EriSIT:VE.5TRIr

STf'vEiT'v:'-:
,;;,!■■ ;P'-r>_^|-|F_!NTE!;rVf

UTILITIES
-. ^:;_[i:'E,vr:Mf!i_['i:'Kr.n_'

■„=>:ii:'\L_ERR0F;_l':£S5,'.GE

[■"■U^PhiWETtCS

PESETAS _ES
I::<VL-. iFi_MAHA";F:i-:

G?»^H:C__E'FI-.'Er.

'A PA"'X

PA«:;--:.

■;AI_A'

Scrirt Hte KvaJu^,«:ad».Cndif*3~l'ractic*s: Oeiay<Sncs): 0

■Slopping erterw : Vftw i«i; .'-lyrt _\

-- EVALUATE.CODE.COOINC PRACTICES SCRIPT

■ Description:
■ This script facilitates thB provision of descriptions for the
■ Evaluate.Code.Cod1ng_Practices task

— STEP 1. "Open and display thB system to be evaluated",

— Open thB System which is the focus of the evaluation
FILE_MENU.0PEH("C0W>0SER"):

— Stop the script for soie user interaction.
SCRIPT._COMMAND.STOP;

- STEP 2. "Select and view the Subsystems to be evaluated".

— Select the Subsystems to be evaluated Cuser Interaction required)
— « SELECT THE SUBSYSTEMS TO EVALUATE »

— Display the Layers View for the "selected" Subsystem.
SUBSYSTEM.VIEWS.LAYERS;

— tailor the view to best support the evaluation task.
LAYERS.ZOOrLOUT;
LAYERS.Z00M_0UT;

— STEP 3. "Identify and evaluatB use of anonymous types".

— Clean up and arrange VIBWS for next evaluation step.
LAYERS.DESELECT.DESELECT_CLEAR_ALL;

— STEP 4. "Identify and evaluate IJSB of unchecked deallocation".

- Describe use of unchecked deallocation

Figure 7-6. SEE-Ada Script Mode

Figure 7-6 provides an example of a script that can be used to support the evaluation
of coding practices. The user can either step through each script action or 'Run' the
script in which case the script will automatically execute each action until it reaches
a 'stop' command. The script begins by opening the system to be evaluated and
then automatically displays the Subsystem View called "CSCIJDESIGN". The user
then interacts with the environment to select which sections of the system will be
evaluated. A Layers View showing the Ada Compilation units for this section of the
system is then displayed. The view is then tailored to provide a compact
representation onto which other information can be superimposed. The script then
supports various evaluation activities. The first phase of the evaluation (at Step 3) is
to check for usage of anonymous types. The script selects an attribute that will
indicate the use of anonymous types and overlays this information on the Layers
View. The user gets an immediate visual indication of whether the code complies
with this criterion. The user can then interact with the environment to conduct a
further analysis. For example, the user may wish to see how the feature is used in
the actual source code or may wish to change the colour mappings to highlight units
with the highest proportion of non-compliances.

55

DSTO-TR-0558

The user then moves on to the next stage of the evaluation by running or stepping
through the script. The script automatically 'cleans up' the views and then produces
a visual description which will support the next stage of the evaluation.

By using scripts in this manner, the set of actions that need to be undertaken for
these types of evaluation tasks can be recorded and enacted. Relevant descriptions
are provided to support the analyst. Although custom descriptions are produced,
these can be adapted by users to help support their specific information needs.

56

DSTO-TR-0558

Software System Visualisation: Netmap Investigations

Peter Diiffett and Rudi Vernik

DISTRIBUTION LIST

AUSTRALIA

DEFENCE ORGANISATION

Task sponsor:

Head, Systems Acquisition(ES)

Number of Copies

S&T Program

Chief Defence Scientist
FAS Science Policy
AS Science Corporate Management
Director General Science Policy Development
Counsellor, Defence Science, London
Counsellor, Defence Science, Washington
Scientific Adviser to MRDC Thailand
Director General Scientific Advisers and Trials
Scientific Adviser - Policy and Command
Navy Scientific Adviser

Scientific Adviser - Army

1 shared copy

1
Doc Control sheet
Doc Control sheet
Doc Control sheet

1 shared copy

1 copy of Doc Control sheet
and 1 distribution list

Doc Control sheet
and 1 distribution list

Air Force Scientific Adviser
Director Trials

Aeronautical & Maritime Research Laboratory
Director

Electronics and Surveillance Research Laboratory
Director
Chief Information Technology Division
Research Leader Command & Control and Intelligence Systems
Research Leader Military Computing Systems
Research Leader Command, Control and Communications
Executive Officer, Information Technology Division
Head, Information Architectures Group

1
1
1
1
1

Doc Control sheet
Doc Control sheet

57

DSTO-TR-0558

Head, Information Warfare Studies Group
Head, Software Systems Engineering Group
Head, Trusted Computer Systems Group
Head, Advanced Computer Capabilities Group
Head, Computer Systems Architecture Group
Head, Systems Simulation and Assessment Group
Head, Intelligence Systems Group
Head, CCIS Interoperbility Lab
Head Command Support Systems Group
Head, C3I Operational Analysis Group
Head Information Management and Fusion Group
Head, Human Systems Integration Group
Task Manager
Author
Publications and Publicity Officer, ITD

Doc Control sheet
1

Doc Control sheet
Doc Control sheet
Doc Control sheet
Doc Control sheet
Doc Control sheet
Doc Control sheet
Doc Control sheet
Doc Control sheet
Doc Control sheet
Doc Control sheet

1
4
1

DSTO Library and Archives
Library Fishermens Bend
Library Maribyrnong
Library Salisbury
Australian Archives
Library, MOD, Pyrmont

Capability Development Division
Director General Maritime Development
Director General Land Development
Director General C3I Development

Intelligence Program
Defence Intelligence Organisation
Library, Defence Signals Directorate

Acquisition and Logistics Program
Head, Industry and Procurement Infrastructure
Head, Systems Acquisition (Aerospace)
Head, Systems Acquisition (Maritime and Ground)

Corporate Support Program (libraries)
OIC TRS Defence Regional Library, Canberra
Officer in Charge, Document Exchange Centre (DEC),
US Defence Technical Information Center,
UK Defence Research Information Centre,
Canada Defence Scientific Information Service,
NZ Defence Information Centre,
National Library of Australia,

Universities and Colleges
Australian Defence Force Academy Library

Head of Aerospace and Mechanical Engineering

1
1
2
1

Doc Control sheet

Doc Control sheet
Doc Control sheet
Doc Control sheet

Doc Control sheet

Doc Control sheet
Doc Control sheet
Doc Control sheet

1
1
2
2
1
1
1

58

DSTO-TR-0558

OUTSIDE AUSTRALIA

Abstracting and Information Organisations
INSPEC: Acquisitions Section Institution of Electrical Engineers
Documents Librarian, The Center for Research Libraries, US

1

1

Information Exchange Agreement Partners
Acquisitions Unit, Science Reference and Information Service, UK
Library - Exchange Desk, National Institute of Standards and

Technology, US

1

1

SPARES 5

Total number of copies: 45

59

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF

DOCUMENT)

2. TITLE

Software System Visualisation: Netmap Investigations

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
CLASSIFICATION)

Document (U)
Title (U)
Abstract (U)

4. AUTHOR(S)

Peter Duffett and Rudi Vernik

5. CORPORATE AUTHOR

Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury SA 5108

6a. DSTO NUMBER
DSTO-TR-0558

6b. AR NUMBER
AR-010-284

6c. TYPE OF REPORT
Technical Report

7. DOCUMENT DATE
July 1997

8. FILE NUMBER
9505-13-47

9. TASK NUMBER
840741

10. TASK SPONSOR
FASDM

11. NO. OF PAGES
65

12. NO. OF
REFERENCES
14

13. DOWNGRADING/DELIMITING INSTRUCTIONS

To be reviewed three years after date of publication

14. RELEASE AUTHORITY

Chief, Information Technology Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE CENTRE, DIS NETWORK OFFICE,
DEPT OF DEFENCE, CAMPBELL PARK OFFICES, CANBERRA ACT 2600
16. DELIBERATE ANNOUNCEMENT

No limitations

17. CASUAL ANNOUNCEMENT Yes
18. DEFTEST DESCRIPTORS

Visualization, Software Tools, Systems Engineering

19. ABSTRACT
Defence systems have become increasingly reliant on software. The intangible and complex nature of
software makes it difficult to manage and understand. Computer based visualisations of software have
shown promise for providing the necessary visibility to acquire, develop, and maintain software
systems. In this report we investigate a generic visualisation tool, Netmap, as a means of addressing
these visualisation problems. Issues of using generic visualisation tools to support software tasks are
discussed.

Page classification: UNCLASSIFIED

