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ABSTRACT 

Multi-sensor tracking potentially has many advantages over single sensor 
tracking. This report evaluates the performance of a multi-sensor tracking 
algorithm, the asynchronous fused Kaiman filter, using both simulated and real 
data from two dissimilar sensors. The real data was collected using a sensor- 
fusion test-bed consisting of two sensors, a pulse Doppler radar and an optical 
video tracker. The performance of the algorithm has been evaluated under 
various conditions including clear sky, clutter, multiple targets and intermittent 
sensor operation. The effect of sensor fusion on the system's robustness to 
model mismatch has also been investigated. 
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ASYNCHRONOUS SINGLE PLATFORM SENSOR 
FUSION 

EXECUTIVE SUMMARY 

Recent trends indicate that multi-sensor fusion will become an essential component of 
military platforms, particularly in the presence of electronic counter measures. A sound 
knowledge and understanding of sensor fusion techniques is essential for evaluating future 
developments and acquisitions. 

A multi-sensor tracking filter, the asynchronous fused Kaiman filter (AFKF), has been 
developed to analyse the operation and performance of asynchronous multi-sensor trackers. 
This algorithm uses a variable update rate Kaiman filter, with a common target process 
model to represent the target dynamics, and an augmented measurement model to take 
account of multiple sensor inputs. 

A sensor fusion test-bed has been developed using the generic pulse Doppler radar 
(GPDR) developed by the Microwave Radar Division of the Defence Science and Tech- 
nology Organisation, Australia. An optical tracking system has been added to the radar, 
and a separate computing platform installed to fuse the radar and optical measurements. 

The AFKF algorithm has been evaluated using both simulated and real data. The 
simulated data demonstrated the domination of the optical measurements on the angle 
trackers. Under ideal conditions, almost identical tracking errors are achieved by a Kaiman 
filter using angle measurements from the optical sensor, and range and Doppler measure- 
ments from the radar. 

Radar and optical data collected using the sensor fusion test-bed was used for further 
evaluation of the tracking algorithm. Discrepancies between the filter models and the 
actual data prevented the AFKF from achieving the results obtained with the simulated 
data. The data revealed that the optical measurement noise increased at close target 
ranges. The subsequent model mismatch could be overcome by using multiple model 
techniques. 

The AFKF performed well with intermittent measurements, easily switching between 
single sensor and dual sensor operation. However its performance in clutter and in the 
presence of other targets was poor. The optical tracker was easily seduced from the 
target of interest by other targets and background objects. The domination of the optical 
measurements on the operation of the AFKF caused the system to follow the seducing 
target, subsequently losing track. Some form of data association is required to overcome 
this problem. 

The effect of sensor fusion on the sensitivity of a tracking filter to model errors has 
been investigated. Generally it was found that the addition of another sensor only affected 
the sensitivity when the noise covariance of its measurement model was less than that of 
the original sensor. Under these conditions, the additional sensor dominated the tracking 
filter, and the system became more sensitive to model errors. 
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1    Introduction 

Data fusion has generated significant interest in recent times. Although it has only 
recently gained popularity, its underlying fundamental technologies are well established. 
It is more accurately described as a new application of existing technologies, rather than 
a new technology. One particular application of common interest to both civilian and 
military users is multi-sensor tracking. 

A multi-sensor tracking algorithm has been developed to fuse measurements from mul- 
tiple collocated dissimilar sensors (eg radar, and infrared). This algorithm was designed 
to operate using measurements of different types, eg angle only, angle and range, etc, from 
unsynchronised sensors. The measurements arrive from different sensors at different times, 
at different rates, and possibly intermittently. 

A test-bed has been developed for multi-sensor data collection and algorithm testing. 
It contains two sensors, a pulse Doppler radar and an optical video tracker. Further 
sensors, such as an ESM receiver, may be added. 

A data fusion technology base has been established through collaboration between 
various divisions of the Defence Science and Technology Organisation, Australia (DSTO), 
the Cooperative Research Centre for Sensor Signal and Information Processing (CSSIP), 
and various Australian universities. This technology base will provide the Australian 
Defence Force (ADF) with local support for the effective evaluation of future developments 
and acquisitions. 

2    Defence Significance 

Many ADF platforms already contain multiple sensors with varying degrees of sensor 
integration and fusion. Others are being upgraded with additional sensors and processing 
capability. Sensor fusion has the potential to enhance the performance of locating and 
identifying targets in real, hostile and cluttered environments. 

The utilisation of sensors is heavily mission dependent, making the ADF's requirement 
unique. It may therefore be necessary to develop or modify sensor systems specifically 
for the Australian environment using local resources, requiring a sound knowledge and 
understanding of data fusion techniques. 

3    Sensor Fusion 

3.1    Overview 

Data fusion is the combination of information from multiple sources to obtain a more 
accurate and complete picture of the environment than is possible from a single source. 
Sensor fusion is the combination of data from multiple sensors, and is used in a variety 
of applications including tracking, identification, command and control, manufacture and 
assembly, surveillance and robotics. This variety of applications leads to the use of a range 
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of technologies, including filtering, artificial intelligence, knowledge-based systems, neural 
networks, estimation theory and wavelet transforms. 

Fusing sensors of similar types improves accuracy and reliability through redundancy. 
Fusing sensors of different types provides additional information, giving a more complete 
picture of the environment. For example, when fusing radar and optical data, the higher 
angular resolution of the optical sensor is combined with the range information from 
the radar. Fusion also provides a mechanism for sensor management tasks, such as sensor 
queuing and system optimisation. Combining sensor information at a higher level presents 
an overall picture and assists decision making. In the future this may lead to automated 
decision and control. 

Data fusion can be viewed as a hierarchical structure, as illustrated in the proposal 
by the Data Fusion Sub-panel (DFS) for the Joint Directors of Laboratories (JDL), Tech- 
nical Panel for C3 in the United States Department of Defense (figure 1). This proposal 
introduces three successively higher levels of fusion, with sensor management providing 
feedback for sensor control. 

sors     ► 
Sensor Level 

Fusion 

Situation 

Assessment 
— 

Threat 

Assessment 

Figure 1: US-JDL data fusion levels. 

Sensor level fusion (level 1) refers to directly processing the measurements or informa- 
tion from the sensors. This level includes tasks such as detection, parameter estimation, 
tracking and identification. 

Situation assessment (level 2) processes the outputs from level 1, eg target tracks, and 
determines the relationship and interaction between individual objects. These relation- 
ships and interactions, together with the positional information from level 1, create an 
overall picture or model of the environment, in particular what the objects are doing and 
how they are doing it. 

Threat assessment (level 3) analyses information from level 2, determining the ex- 
pected outcomes and possible events arising from the situation. It considers why objects 
are behaving in a particular way, and what is the significance of this behaviour. This 
information is used to make decisions and initiate responses. 

Sensor management uses the outputs from the above levels to control and configure 
the individual sensors from a system point of view. This optimisation is dependent on the 
particular application and operating environment. 

This report addresses the level 1 function of target tracking, or more specifically, the 
fusion of measurements from multiple collocated sensors into a single track. This task, as 
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with most level 1 fusion tasks, may be separated into three separate sub-tasks, namely 
positional fusion or registration, data association and data combination (figure 2). 

Sensor 1 

Data 

Sensor 2 

Data 

Positional 

Fusion 

Data 

Association 

Combination 

Positional 

Fusion 

Data 

Association 

Fused 

Data 

Figure 2: Fusing data from two sensors. 

Positional fusion aligns the data both spatially and temporally. This guarantees that 
all sensors are looking at the same point in space and time. This task is generally simpler 
for single platform configurations, because the relative positions of all sensors are known, 
and reliable temporal synchronisation of the sensors is easily implemented. 

Data association determines which measurements originate from a target, and there- 
fore may be used for tracking. Nearest neighbour, Probabilistic Data Association (PDAF), 
Fuzzy Logic and Dempster-Schafer are examples of techniques that have been used in at- 
tempts to solve this problem. This is perhaps the most difficult part of the fusion process, 
and research is far from exhausted. 

Data combination is the combination of the data into a single entity. This is often a 
weighted sum, with the weights based on some optimisation criteria, such as least squares 
or maximum likelihood. In some cases the combination may be rule based, or simply a 
case of selecting the data which is best in some sense. 

Multi-sensor tracking provides a number of advantages over single sensor tracking. 
These may include: 

1. improved track accuracy through availability of additional and possibly more accu- 
rate measurements, 

2. greater reliability through sensor redundancy, 

3. increased robustness to noise, clutter and countermeasures, and 

4. stealth operation through reduced active emissions (ie active sensors only transmit 
when absolutely necessary). 

However these advantages must be balanced against greater system complexity and cost. 
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4    Previous Work 

The majority of work on multi-sensor tracking has centred on fusing simultaneous 
measurements from two or more sensors. This work has been well documented in the 
open literature, with [1, 2, 3] providing useful reading on the subject. Little emphasis has 
been placed on the specific problem of asynchronous fusion. One exception is the work of 
Blair, Rice, Alouani and Xia [4, 5], who addressed the problem of asynchronous fusion for 
target tracking. They extrapolated the measurements to a common time before combining 
the data. Extrapolating reduces the computational complexity, but also reduces the track 
accuracy. In many applications, the availability of increased computing power has removed 
the need for extrapolation. 

The problem of sensor registration, often ignored in the past, has been receiving in- 
creased attention. In particular, techniques for solving this problem automatically are 
being pursued at the CSSIP [6]. 

The use of a Kaiman filter with augmented measurements and a common dynamic 
model, has proven a useful tool for combining measurements from different sensors. How- 
ever, the most difficult problem is data association. This problem is common to single 
sensor multi-target tracking, and has attracted considerable interest in the scientific com- 
munity. 

Nearest neighbour, ie using the measurement located closest to the predicted target 
position, is the simplest form of data association. Alouani, Rice and Auger [7] developed 
a generalised nearest neighbour algorithm that uses a weighted sum of all measurements 
within a validation gate. These weights are determined by the distance between the 
measurement and the predicted target position. 

Bar-Shalom and his team at the University of Connecticut have developed the Prob- 
abilistic Data Association Filter (PDAF) [2]. This filter probabilistically weights all mea- 
surements within a validation gate according to their distance from the predicted target 
position. The resulting composite measurement is used to correct the tracking filter. The 
equivalent multi-target tracker is known as the Joint PDAF, but is computationally very 
expensive. Various sub-optimal alternatives have been developed. PDAF methods are 
particularly suited to tracking targets in clutter. 

Houles and Bar-Shalom [8] developed a multi-sensor tracker to track manoeuvring 
targets with a radar and infrared sensor. This algorithm combines the PDAF with an 
interacting multiple model (IMM) tracker. The PDAF handles the uncertainty in mea- 
surement origin, and the IMM gives the algorithm its manoeuvre handling capability. 

Evans and others [9] at the University of Melbourne have developed new variations on 
the PDAF. One such variation is the Integrated PDAF [10], which treats track existence 
as an event with a certain probability. 

Deb and others [11, 12] partition the problem into a set of feasible measurement-to- 
target associations. They choose the most likely partition by maximising the ratio of the 
likelihood of all measurements, given the partition, to the likelihood of all measurements 
being false alarms. 

Blackman's extensive experience in association and fusion of multiple sensor data in- 
cludes multi-hypothesis tracking (MHT) [13, 14]. This algorithm considers every possible 
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measurement to target assignment, and therefore grows exponentially. To overcome this 
impracticality, least likely hypotheses are removed. Blackman has developed a variation, 
called most probable hypotheses tracking, where all significant hypotheses are considered. 

Avitzour [15] used a maximum likelihood technique to solve the data association prob- 
lem. He treats the problem as one of missing data, where the measurement to target 
associations are the missing data. Streit and Luginbuhl [16] have combined probabilistic 
and maximum likelihood techniques in their Probabilistic Multi-hypothesis Tracking Al- 
gorithm (PMHT). This algorithm operates in a single sensor multi-target environment, 
estimating the assignment probabilities and the target states simultaneously. This work 
has been extended to multi-sensor tracking [17, 18, 19]. 

Hong [20, 21] has worked on adaptive sensor fusion. He assumes unknown noise co- 
variances, and uses the tracking filter innovations to determine the optimal gains. 

Xie and Evans [22] have used hidden Markov model tracking for multiple targets. They 
use the concept of a mixed track. The individual tracks are easily identified in the mixed 
track. Martinerie and Forster [23, 24] have developed a two stage fusion algorithm. The 
first stage determines a distribution of likelihoods over a discrete space. The second stage 
uses hidden Markov model techniques to discern the most likely track. 

5    Algorithm Development 

5.1 Requirement 

In a real sensor suite containing multiple sensors of different types (eg radar and in- 
frared), it is unlikely that the measurements from all sensors will arrive at exactly the 
same instant in time. Different sensors are likely to have different and unsynchronised 
measurement update (sample) rates. Non-uniform rates may arise from missed measure- 
ments, caused by either faint targets or deliberate emission control. Dissimilar sensors may 
also produce different types of measurements, eg bearing and range from a radar, and just 
bearing from an infrared device. I will refer to sensor fusion under these conditions as 
asynchronous sensor fusion, or more simply, as asynchronous fusion. 

The sensors are assumed to be collocated on the same mount. As the spatial relation- 
ship between the sensors is fixed and known, the sensor registration problem (positional 
fusion) is trivial and will not be addressed in this report. 

5.2 Tracking Algorithm 

5.2.1    Kaiman Filter 

One of the most popular tracking filters is the Kaiman filter [1]. It uses two linear- 
Gaussian models, a process or dynamic model to represent the target dynamics, and a 
measurement model to represent the measurements received from the sensor. The dynamic 
model describes how the target state changes between measurements, and is expressed as 

xti+i = Fuxu+wti (1) 
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where at time U, xtl is the target state, Fti is the transition matrix describing the target 
dynamics from time U to U+i, and w^ is a zero mean uncorrelated Gaussian process noise 
with covariance Qti. The process noise models deviations of the target from the expected 
dynamics, eg manoeuvres, ti denotes a particular time instant, where £j > tj for i > j. 

At each filter update time, t{, the measurement model is defined as 

zti = HtiXtt + vu (2) 

where zti is the measurement, Hti is the measurement matrix, and vti is a zero mean 
uncorrelated Gaussian measurement noise with covariance Rtt ■ The measurement matrix 
represents the relationship between the measurement and the target state. The measure- 
ment noise includes environmental and sensor noise in addition to any mismatch between 
the measurement model and the sensor. 

The filter produces an estimate of the target state at each measurement or sample 
time. The state estimate obtained at time ti using all the measurements up to time tj is 
denoted as xt.\t., and is obtained using a two step process. The first step is the prediction 
step, where the previous state estimate and the dynamic model are used to predict the new 
state of the target, xt \t.. This estimate and its error covariance, Pti+1\tv 

are determined 
using the following equations. 

xti+l\t = Fuxt\t 

Pti+l\t = FtiPt\tFZ + Qu (3) 

The second step is the correction step, where the measurement received at time ti+i is 
used to correct the predicted state estimate. This new estimate, xti+l\ti+l, and covariance, 
R.,,1,.,,, are determined as follows. 

xtl+y\ti+1 =xu+1\u +Ku+1(zti+1 - Hti+lxti+1\t.) 
ptx+l\tl+l = (1 - Ktl+1Hti+1)Pti+1\tt (4) 

In many applications measurements arrive at equally spaced time intervals, and the 
Kaiman filter is implemented with a fixed update rate. When its update interval, or 
time between measurements, is not constant, it is known as a variable update rate Kaiman 
filter, and in this form is particularly suited to asynchronous sensor fusion. An in depth 
discussion of the derivation of the Kaiman filter for both fixed and variable update rates 
can be found in [25]. 

5.2.2    Asynchronous Fused Kaiman Filter 

The Asynchronous Fused Kaiman Filter (AFKF) is a multi-sensor variable update 
rate Kaiman filter with a single state space dynamic target model, and a time variant 
augmented measurement equation. At any measurement time, the augmented equation 
consists of a stack containing the individual measurement equations for each sensor pro- 
viding measurements at that time. 
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The radar and optical systems measure target position in azimuth, elevation and range, 
ie radar coordinates. The resulting dynamic model is non-linear, with complex depen- 
dencies between these positional coordinates and their derivatives. For non-manoeuvring 
targets or targets at long range, the non-linearities and inter-relationships can be modelled 
as additional process noise. Therefore the dynamic model becomes linear, with a state 
vector denoted (77, 77, 77, e, e, e, R, R, R, )T, where 77 represents azimuth or bearing, 
e represents elevation, and R represents range, (ä, and ö indicate the first and second 
derivative of a respectively.) 

The AFKF uses measurements from either the radar, optical sensor or, if the mea- 
surements happen to arrive simultaneously, both together. It does this by allowing the 
measurement model (2) to vary over time. If the measurements arrive from the radar, 
the values of Ht, and Rt{ represent the measurement function and noise covariance of the 
radar, and likewise if the measurements originate from the optical sensor. 

If measurements arrive from both sensors simultaneously, the measurements and their 
models can be stacked, ie 

zu = 
>)' 
ZU 

(o) 
zt- 

■(»■)■ 

U 
(o) Xti + 

(r)" 

„(°) 

Rt,= 
Rir)     ( 

0     R 

where the superscripts (r) and (o) denote the appropriate radar and optical variables 
respectively. If simultaneous measurements are rare, as is the case for the radar and 
optical tracker, it is simpler to process them using a zero update interval in the Kaiman 
filter. 

5.3    Adaptive Tracking 

The Kaiman filter requires the covariance of the measurement noise for each sensor, 
and the covariance of the process noise. Generally the values of these parameters are 
assumed to be known, and they must match the data for optimal tracking. The sensor 
noise covariance depends on the sensor characteristics and the environmental conditions. 
The process noise covariance is determined by the mismatch between the actual target 
dynamics and the assumed model. As the actual covariances all vary over time and the 
selected covariances are constant, matched conditions cannot be maintained. (The effect 
of model mismatch is discussed in section 8.2.) 

An alternative is to estimate these parameters from the data. This is known as adaptive 
filtering, and a number of techniques have been investigated. The simplest, explained 
by Gelb [26] and Mehra [27], estimates the actual measurement noise and state error 
covariance from the autocorrelation functions of the measurement innovations (the errors 
between the measurements and the predicted target state). This method is invoked after 
filter initialisation, ie when the Kaiman filter has reached its steady state condition. Mehra 
outlines this technique in detail for a constant update rate Kaiman filter. 
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This technique becomes significantly more complex when applied to asynchronous sen- 
sor fusion. The system becomes time varying, requiring the storage of previous filter 
parameters such as gains, covariances, etc, and the autocorrelation estimates for sensors 
with low measurement rates may be poor. 

In practice, not all elements of the state can be directly measured. This coupled 
with small measurement update intervals (order of tens of milliseconds) may cause over 
estimation of the process noise covariance. This introduces additional noise into the output 
track and therefore reduces tracking performance. 

Adaptive systems are inherently less stable than fixed systems, increasing the likelihood 
of the filter becoming unstable and losing track. The above mentioned over estimation 
of the process noise covariance is a likely cause of filter instability in applications with 
high measurement rates. Therefore the process noise covariance is allocated an assumed 
value chosen from the expected target dynamics. During steady steady state operation, 
the measurement noise covariance is usually much greater than the state estimate covari- 
ance. Therefore the measurement noise covariance can be approximated by the innovation 
covariance. This provides reasonably accurate estimates, and hence good filter stability 
over a wide range of operating conditions. 

6    Testbed 

6.1     Overview 

A single platform sensor fusion test-bed was developed to collect multi-sensor data, 
and to test sensor fusion algorithms in real time with real targets. It contains two sensors, 
a pulse Doppler radar and an optical tracker, both physically attached to the same mount. 
Additional sensors, such as infrared and ESM, may be added at a later date. 

A functional diagram of the testbed is shown in figure 3. R, rj and e denote the range, 
azimuth and elevation respectively, and errors are indicated by a preceding A. A dot 
above the parameter symbol indicates a rate or derivative, and estimated parameters are 
denoted by a caret. 

6.2    Hardware 

The generic pulse Doppler radar (GPDR) is an experimental pulse Doppler radar, 
operating in the 9-10 GHz region of the electro-magnetic spectrum (see specification, Ap- 
pendix A). It was developed by the Microwave Radar Division of the Defence Science 
and Technology Organisation, Australia for radar evaluation and development. The radar 
is housed in a self contained trailer, and is capable of operating from a portable 3-phase 
generator (figure 4). The trailer is large enough to house the optical signal processing 
equipment and the fusion processor. 

The radar is almost completely software controlled, allowing most radar parameters 
and the operator interface to be configured by software. All the radar parameters can be 
recorded using an inbuilt data logging facility. 
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A colour CCD video camera, mounted directly above the radar antenna (see specifica- 
tion, Appendix B), is used as the optical sensor. It is housed in a weather proof housing 
and utilises an automatic iris control to prevent damage by the sun. It is fitted with a 
75 mm lens through a focal length doubler, giving an effective focal length of 150 mm. 
This gives a field of view of approximately 3.4° in azimuth by 1.8° in elevation. This is 
comparable with the radar's 3 dB beam-with of approximately 1.6°. The two sensors are 
aligned to maximise their overlap. 

The video output from the camera is fed to an automatic video tracker (AVT) housed 
inside the GPDR trailer. The ADEPT 20 Automatic Video Tracker (see specification, 
Appendix C) was chosen for its flexibility and level of control. It has been specially mod- 
ified to provide a confidence measure for its position outputs. The video tracker extracts 
the target from the video image, and outputs its position relative to boresight. These 
measurements are available on a frame by frame basis. Access to these measurements, 
and control of the tracker, is achieved through either a serial link or a VME interface. 

A personal computer (PC) is used to control the AVT and display its output. The PC 
is connected to the AVT through a PC/VME interface obtained from the BitS Corporation. 
The VME interface provides greater access to, and control of, the AVT than is possible 
through the serial port. 

A separate PC is dedicated as the fusion centre. In addition to performing the fusion 
function, the fusion centre provides an operator interface, and controls the GPDR antenna 
mount and range and velocity gates. This control is achieved by inserting the fusion centre 
into the GPDR's control loop. A 16 bit parallel data bus provides the connection between 
the sensors and the fusion centre. 

Coarse alignment of the camera to the radar antenna is performed as part of the radar 
calibration procedure. Fine alignment is achieved through the operator interface. 

M 
> 

' ' ' 
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Control 

Radar Signal 
Processing 

 ► 
Data 

Logging 
i  
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Figure 3: Testbed block diagram. 
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Figure 4: Sensor fusion testbed on location. 

6.3    Software 

A software library has been developed for the fusion centre. This library provides an 
interactive environment that allows the operator to control the system and view its status. 
In particular it allows the operator to: 

1. create a new or load a previously saved system configuration; 

2. add new sensors to a system configuration; 

3. modify the parameters of existing sensors (to match the hardware); 

4. connect or disconnect individual sensors; 

5. initiate and terminate tracking; and 

6. record system and tracking parameters. 

The operator display consists of a pull-down menu bar across the top, and a status bar 
displaying relevant help information along the bottom. The remainder of the screen is 
split horizontally, the upper section reserved for sensor windows, and the lower containing 
a parameter display window. Each sensor in the system is identified by a sensor window in 
the upper display region. This window contains the name of the sensor, its configuration 
and its current connection status. The lower parameter display window contains the status 
of various system and track parameters, allowing the operator to observe the system's 
operation. The operator controls the system using keyboard commands and pull-down 

menus. 

10 
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The library also performs a number of background tasks such as: 

1. transferring measurements from the sensors to internal queues ready for processing; 

2. pulling measurements from the queues in time sequence for processing; 

3. transmitting control information to the sensors; and 

4. extrapolating the tracking filter in the absence of measurements. 

The library does not include the fusion algorithm. This is the responsibility of the 
system developer, which is incorporated into the system by overloading (or overwriting) 
various generic functions in the library. Obviously one such function must perform the 
actual fusion or tracking, but other functions are available for: 

1. initialising track and fusion parameters; 

2. terminating tracking; 

3. drawing the display window; 

4. placing parameters into and drawing the display window; 

5. sending control parameters to the sensors; 

6. selecting parameters to be recorded; 

7. selecting a header for the file containing the recorded data; and 

8. specifying a system name or identifier. 

Other functions, such as those for pulling sensor measurements from the queues and read- 
ing the status of system parameters, are available for use by the system developer. 

The GPDR software has been modified to include a software interface library. The 
radar has been configured to operate in either stand alone or fusion mode, the mode of 
operation being selected by the operator. When used in fusion mode, the radar sends 
its measurements to the fusion centre. Its servo drives and range and velocity gates are 
controlled by data received from the fusion centre through the interface bus. 

An operator interface to the AVT has been developed. It displays the current tracker 
outputs and status, and provides a means for the operator to control and configure the 
AVT through a series of menus and keyboard commands. The operator display is similar 
to that described for the fusion centre but without the sensor windows. The outputs from 
the video tracker and its status are displayed in real time. The operator has control over 
a number of AVT functions including: 

1. automatic or manual tracking and detection; 

2. choice of tracking algorithm; 

3. choice of preprocessing algorithm; 

11 
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4. tracking window position, size and mode of operation; 

5. conditions that must be met before a detection is recognised (eg target speed, direc- 
tion, size, etc); 

6. break-lock and coast operation (in the event of track loss); and 

7. tracking filter parameters for filtered outputs if used. 

This interface also transmits the measurements received from the AVT to the fusion centre. 

7    Algorithm Evaluation 

7.1    Overview 

The AFKF algorithm has been evaluated using both simulated and real data. The 
simulated data allowed the algorithm to be tested under tightly controlled conditions, 
and provided ground truth or true target position. Each track consisted of measurements 
from two simulated sensors. The real data was collected from various light aircraft and 
commercial carriers, and contains both radar and optical measurements [28]. 

The performance of the AFKF was compared to the performance of two single sensor 
Kaiman filters, each using only the measurements from one sensor. Performance com- 
parisons were based on the covariance of the track errors, obtained from the target state 
estimates and the ground truth. 

7.2     Simulated Data 

The results from the simulations verified that improved tracking performance, ie lower 
track error covariance, is obtained by fusing measurements from an additional sensor. The 
greatest improvement occurs when the measurement noise covariance of both sensors are 
equal, and the measurements arrive simultaneously from both sensors. When the sensor 
covariances are unequal, the tracking performance approaches that of single sensor tracking 
using the sensor with the least noise. In the case of the radar and optical sensor, the optical 
sensor has a lower noise covariance than the radar. The angular tracking performance of 
this system is therefore only marginally better than that of the optical system alone. This 
suggests that only the range and Doppler velocity measurements are required from the 
radar. 

In practice, the radar has a lower measurement update rate than the optical tracker. 
Simulations under this condition showed a decrease in performance of the radar only 
Kaiman filter. The AFKF's observed performance did not alter because of the much lower 
noise covariance of the optical sensor. Theoretically, the AFKF's performance would have 
deteriorated marginally. 

The AFKF's performance with manoeuvring targets was investigated. Large errors 
were encountered during the manoeuvres, caused by significant mismatch between the 
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data and the algorithm's dynamic model during the manoeuvre. Increasing the process 
noise covariance of the AFKF reduced these errors, but also decreased the straight line 
tracking performance. Large errors may result in track loss in real systems, so the tracker 
design is a compromise between straight line and manoeuvring targets. 

The adaptive algorithm (section 5.3) displayed similar results to those obtained from 
the AFKF. The major difference was an increased track error when targets manoeuvred, 
caused by an overestimation of the measurement noise covariance during the manoeuvre. 

7.3    Real Data 

7.3.1    Data Collection 

The data used in this study was obtained by locating the test-bed at an elevated site 
approximately 3km from, and 140 metres above, a light aircraft airfield situated in the 
northern suburbs of Adelaide, South Australia. This site also provided a clear view of the 
airspace above the Adelaide International Airport, some 25 km away. 

The collected data was arranged into data sets containing radar and optical mea- 
surements corresponding to single target tracks. These data sets include aircraft crossing, 
aircraft landing and taking off, and background optical and radar clutter (buildings, roads, 
etc). The video tracker was not available during data collection, so the optical measure- 
ments were obtained by processing the recorded imagery through the video tracker. 

The true target position is required to determine the tracking errors. This ground truth 
was not available, so the target position was estimated using polynomial fitting techniques 
on the data. This smoothes the measurements and will remove any short time constant 
variations, such as those produced by air turbulence. This will artificially increase the 
measured track error covariance. 

During data collection, the absence of the video tracker meant that the sensor mount 
was controlled solely by the radar. This provided the opportunity for the optical system 
to re-acquire lost tracks. However if the radar lost track, the optical sensor also lost track. 

7.3.2    Results 

The AFKF was first evaluated under near ideal, or clear sky, conditions in which clutter 
was insignificant, and no other targets were present. 

The AFKF and both single sensor Kaiman filters, ie the radar Kaiman filter and the 
optical Kaiman filter, successfully maintained track on the target (aircraft) of interest. 
The state estimate error covariance, ie track error covariance, was used as a measure of 
tracking performance. This was estimated by subtracting the estimated ground truth from 
the measured covariance of the state estimate error. 

Tables 1 and 2 show typical values of measured track error covariance obtained from 
the AFKF, and the two single sensor Kaiman filters, for both light and commercial aircraft. 
The measured results do not achieve the expected theoretical values [29], probably due to 

13 



DSTO-TN-0084 

Table 1: Track error covariance of a light aircraft. 
Tracker Azimuth (mrad2) Elevation (mrad2) 
Radar 
Optical 
Fused 

0.083 
0.037 
0.037 

0.18 
0.083 
0.072 

Table 2: Track error covariance of a commercial aircraft. 
Tracker Azimuth (mrad2) Elevation (mrad2) 
Radar 
Optical 
Fused 

0.082 
0.053 
0.050 

0.050 
0.019 
0.017 

a combination of mismatch between the data and the tracking filter models, and errors in 
the estimated ground truth. 

In the case of the light aircraft, the azimuth track errors from the optical Kaiman 
filter and the AFKF are consistent with the dimensions of the target. The greater than 
expected errors result from the optical tracker algorithm's inability to locate a consistent 
centroid position on the aircraft body. This problem is particularly evident at close range, 
where the aircraft occupies a significant number of pixels within the image. This addi- 
tional measurement noise was not included in the filter models, causing a severe mismatch 
between the data and the filter models. This mismatch degrades the performance of the 
optical Kaiman filter and the AFKF to a point where their performance is inferior to that 
of the radar Kaiman filter (Table 3). This is caused by the AFKF virtually ignoring the 
radar measurements, and relying upon the now much noisier optical measurements. 

Table 3: Track error covariance of light aircraft at close range. 
Tracker Azimuth (mrad2) Elevation (mrad2) 
Radar 
Optical 
Fused 

0.10 
0.34 
0.31 

0.021 
0.044 
0.040 

The commercial aircraft provides an excellent example of one sensor losing the target. 
In this case, the target moves out of the optical sensor's range of operation, and the 
AFKF automatically reverts to single sensor tracking using the radar measurements. This 
is illustrated by the increase in azimuth track error shown in figure 5, where the optical 
measurements ceased after 125 seconds. 

The elevated site provided a good opportunity to evaluate tracking in clutter, as the 
sensors often operated against an urban background. The optical tracker had difficulty 
under these conditions, frequently acquiring various objects in the background. To a lesser 
extent, the radar suffered a similar fate in the presence of large reflectors, eg industrial 
sheds. 
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Figure 5: Azimuth tracking error increase due to loss of optical measurements. 

Figure 6 shows the azimuth tracking errors obtained from a target which was tracked 
in clutter. The dotted line represents the tracking errors obtained from the optical Kaiman 
filter, the dashed line the radar Kaiman filter, and the solid line the AFKF. 

Figure 6: Azimuth tracking errors in clutter. 

Initially, all trackers were following the target in a relatively clutter free environment. 
At 'A' radar clutter was introduced, severely degrading the performance of the radar 
Kaiman filter. The AFKF was not significantly affected because of the dominance of the 
optical measurements. At 'B' the optical sensor loses the target, and the AFKF only 
receives radar clutter measurements. At this point the target has been lost. Optical 
clutter seduces the AFKF between 'C and 'D'. After a few spurious false alarms from 
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both sensors, radar measurements recommence at 'E'. However these are not from the 
target, and cease at 'F'. 

A second example is illustrated by the azimuth and elevation tracks in figure 7. In 
this scenario, radar clutter first appears at 'A'. As in the previous example, the AFKF 
maintains track using the optical measurements. At 'B' the radar is seduced by clutter, 
believed to originate from a large iron building near the bottom edge of the main beam. 
The AFKF continues tracking the target until 'C\ when all measurements cease because 
the mount has moved the sensors away from the target. At 'D' a few spurious radar 
measurements influence the AFKF and radar Kaiman filter until, at 'E', the target fortu- 
itously re-enters the field of view, and is re-acquired by the optical tracker. The AFKF 
and optical Kaiman filter then continue to track the target. 
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Figure 7: Tracking in clutter. 

In general, it was more common for the optical tracker to be effected by clutter and 
subsequently cause system track loss. This is because the optical sensor is two-dimensional, 
and therefore has no range or depth information. Therefore it receives measurements 
from both the target and clutter. As a result, the AFKF performed poorly in clutter 
because of the strong influence of the optical measurements on its operation. When optical 
measurements were available, radar clutter had little effect on the AFKF's performance 
because the radar measurements contributed little to the fused track. 

Other targets passing in front of the target of interest, and large targets in general, 
often seduced the optical tracker and the AFKF from the target of interest. An example 
demonstrating this effect is illustrated by the measurements and fused track (dashed line) 
shown in figure 8. The track commences at 'A' and proceeds in a clockwise direction. The 
AFKF is seduced from the target by clutter at 'B', and other targets at 'C and 'D'. These 
other targets are lost when they leave the optical field of view. After losing the target at 
'D', the optical tracker is seduced by several interferences near the top of the field of view 
('E') before re-acquiring the target. Normal dual sensor tracking continues until the radar 
loses the target ('F'), at which point the AFKF tracks the target using only the optical 
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Figure 8: Azimuth-elevation track with interfering targets. 

The radar only (dotted line), and fused (solid line) plots from a second example are 
shown in figure 9. Commencing from the right, both sensors track the target until the 
optical sensor is seduced by another optical target at 'A'. The AFKF track follows this 
target until it is lost by the optical sensor. The AFKF track attempts to re-align itself 
with the radar measurements, but is prevented by several short term optical interferences 
at 'B', 'C and 'D'. Although they only exist for a short period, the dominance of the 
optical measurements is sufficient for them to have a significant effect on the AFKF track. 
Therefore once a track is seduced, it may take only relatively minor interferences to prevent 
re-establishment of the correct track. 
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Figure 9: Azimuth-elevation track with interfering targets. 

In real time operation, track loss will occur once the optical tracker has been seduced. 
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This will occur because the optical measurements force the AFKF to move the mount 
away from the target. 

To simulate an offset, or registration, error between the radar and optical sensor, a 5 
milli-radian azimuth offset was added to the optical measurements. The plot in figure 10 
shows the effect on the track azimuth, where the dashed line represents the radar Kaiman 
filter track, the dotted the optical Kaiman filter track, and the solid the AFKF track. The 
AFKF track falls between the two sets of measurements, its actual position determined 
by the relationship between the noise covariance of the two sensors. The AFKF track will 
be closer to the sensor with the lowest noise covariance; therefore if the optical sensor is 
correctly aligned, the error is relatively small. However if the radar is correctly aligned, 
and the optical sensor is misaligned, the error is much larger. Therefore it is important to 
align the higher resolution sensors accurately. 

Figure 10:  Azimuth tracking error with        Figure  11: 
optical misalignment. vapour trail. 

Track error caused by jet 

The test-bed attempted to track a Boeing 737 commercial aircraft producing a distinct 
vapour trail. The radar maintained track on the body of the aircraft. However the optical 
tracker could not maintain a steady centroid position on the target, preferring to move 
randomly along the aircraft body and the vapour trail. As the optical measurements 
dominate the AFKF, the fused track also moved along the vapour trail, creating large 
track errors. Figure 11 shows the error between the AFKF and the radar Kaiman filter 
tracks. The fused track lags an average of 30 metres behind the radar, reaching distances 
of up to 80 metres at times. In particular, the last half of the track shows large excursions 
along the vapour trail. 

Two aircraft were observed flying elliptical circuits in formation. While tracking, the 
radar frequently switched between targets. This is particularly likely when targets are 
separated in azimuth but not range, because the radar's angular discrimination is relatively 
poor. The higher angular resolution of the optical system enabled it to maintain track on 
a single aircraft, but it often changed targets as they crossed in the field of view. Although 
this caused all three trackers to produce noisy tracks, they all maintained track on the 
formation. Therefore although the optical tracker may be able to discriminate between 
individual targets in a formation, it may not be able to maintain track on a particular 
target if the formation is manoeuvring. 
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The adaptive algorithm (section 5.3) was also evaluated using the real data. In general 
its performance was similar to that of the AFKF. However it showed a lower tendency to 
be seduced by interfering targets. Under certain conditions, the predicted target position 
does not immediately follow the interfering target. This causes the estimate of optical 
measurement noise covariance to increase and reduce the contribution of the optical sen- 
sor. This allows the AFKF to follow the radar measurements and continue tracking the 
target. However the number of lost tracks due to seduction of the optical sensor was still 
unacceptable. 

8    Model Mismatch 

8.1    Overview 

Successful tracking requires a number of assumptions, particularly with regard to the 
expected dynamics of the target and the characteristics of the measuring sensors. This 
knowledge is expressed using dynamic and measurement models respectively. Of particular 
interest to the tracking filter designer is the effect of mismatch between the assumed models 
and the actual scenario. This is often referred to as sensitivity analysis. Sensitivity analysis 
has been covered extensively for single sensor systems, and in particular for the state space 
based Kaiman filter [26]. 

This section evaluates the effect of adding an additional sensor on the robustness of 
the tracking filter to model mismatch, or alternatively, on the sensitivity of the tracking 
filter to model errors. 

8.2    Sources of Model Mismatch 

Model mismatch may occur in either the state transition matrix or the measurement 
matrix [26]. For linear-Gaussian filtering, the dynamic model mismatch may occur in the 
state transition matrix (F). However, any mismatch here is generally approximated by 
additional process noise. The assumption of Gaussian noise preserves the linearity of the 
filter, and the effect of non-Gaussian noise is not considered. Also the effect of bias on 
this noise is ignored. The process noise covariance is a critical design parameter of the 
Kaiman filter, and the effect of errors in its value is considered. If the assumed value is 
too high, the filtered state estimate will contain excessive noise. A value which is too low 
will ultimately cause divergence from the true track. 

The measurement function (H) is another potential source of model mismatch. This 
model may be a linear approximation of a non-linear coordinate transformation. Again 
this may be approximated by additional measurement noise. As for the process noise, 
the effect of non-Gaussian noise is not considered, and it is assumed that any bias can be 
effectively removed through correct sensor registration. The measurement noise covariance 
is also a critical design parameter. An excessive design value will reduce the Kaiman gain, 
increasing the possibility of track divergence. A smaller value will increase the gain, 
introducing additional sensor noise into the state estimate. 
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8.3 Evaluation 

8.3.1     Performance measures 

To evaluate the effect of the measurements from the additional sensor, it is first nec- 
essary to remove the effect of fusion from the track error covariance. Assuming that the 
average or mean tracking error is zero, a useful measure of tracking performance is the 
covariance of the tracker's position errors, or track error covariance. 1 The lower the track 
error covariance, the better the tracking performance. The improvement in tracking due 
to sensor fusion can then be defined as the ratio of the track error covariance of a single 
sensor tracker to the track error covariance of the dual sensor tracker, referred to here 
as the fusion gain (FG). If the FG is determined when both the single and dual sensor 
trackers are operating under matched conditions, it is referred to as the matched FG. A 
FG greater than unity implies an improvement in tracking performance, and a value below 
unity, a degradation of tracking performance. 

The mismatched FG provides a measure of the change in tracking performance of a 
mismatched tracker caused by the addition of another sensor. Of particular interest is 
the comparison between this and the corresponding change under matched conditions. A 
mismatch factor (MF) is introduced as the ratio of mismatched FG to matched FG. The 
MF is a measure of the improvement obtained in the tracking performance of a mismatched 
tracker by adding a second sensor, ignoring the expected improvement due to the fusion 
process alone. This is effectively a measure of the improvement in the tracker's sensitivity 
to model mismatch, with values greater than unity indicating reduced sensitivity to model 
mismatch, and values below unity indicating increased sensitivity. 

8.4 Results 

8.4.1 Simulations 

A selection of single sensor and dual sensor Kaiman filters with various design values of 
process noise covariance and measurement noise covariance were applied to two hundred 
sets of statistically equivalent data. The average steady state track error covariance was 
determined for each filter. 

The effect of process model mismatch was evaluated by varying the design value of the 
filter process noise covariance while matching the measurement noise covariance to the 
data. Similarly, the effect of measurement noise mismatch was evaluated by varying the 
filter design value of the measurement noises while maintaining matched process noise. 

8.4.2 Process Noise Mismatch 

The results in figure 12 show that the MF is approximately unity for design process 
noise covariances over the range from 0.001 to 1000 times that of the data. This indicates 

'Under zero average track error conditions, the track error covariance is defined as the average squared 

track error. 
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that the contribution of the additional sensor to the sensitivity of the system to process 
noise covariance mismatch is insignificant. 

Log Process Noise Mismatch 

Figure 12: Mismatch factor for process noise mismatch 

8.4.3    Measurement Noise Mismatch 

This section considers various levels of model mismatch in both sensors. The sensor 
used in the single sensor system is referred to as the original sensor, and the sensor added 
to it to form the dual sensor system is referred to as the additional sensor. The results are 
displayed as three dimensional meshes with an underlying contour plot for clarity. The 
vertical axis indicates the value of either the logarithm of the matched FG, or the MF. 
The other two axes indicate the level of model mismatch in each sensor, where the scale 
represents the logarithm of the ratio of the filter design measurement noise covariance to 
the actual measurement noise covariance of the data, eg 2 denotes a design covariance of 
100 times that of the data, and zero denotes the matched condition. A detailed discussion 
of these results may be found in [29]. 

The mismatch factor for equal measurement noise covariance in both sensors is shown 
in figure 13. These results show that fusing the measurements from an additional sensor 
whose design measurement noise covariance is greater than or equal to the original sensor 
(ie towards the right of the plot), does not alter the system's robustness to measurement 
model mismatch. However, if the design noise covariance of the additional sensor is less 
than that of the original (ie towards the left of the plot), the fused system's performance 
is poorer than that expected from the filter design equations. Under these conditions the 
system becomes more sensitive to modelling errors. 

Figure 14 illustrates the results when the data received from the additional sensor has 
a noise covariance ten times that of the original. It can be seen that these results are 
similar to those obtained when the measurement noise covariances are equal. 

The results obtained when the noise covariance of the data from the additional sensor 
is ten times smaller than that of the original sensor are shown in figure 15. The MF is 
again similar to those obtained from the equal measurement noise covariances, with the 
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original sensor mismatch additional sensor mismatch 

Figure 13: Mismatch factor for sensors with equal noise covariance. 

original sensor mismatch -3     -3 
additional sensor mismatch 

Figure 14: Mismatch factor when the additional sensor is noisier than the original. 

exception of a peak of approximately 1.7 when the design measurement covariances are 
equal. These above unity values of MF indicate that, under these conditions, the system's 
sensitivity to model errors decreases. 

9    Conclusions 

An asynchronous fusion algorithm, the asynchronous fused Kaiman filter (AFKF), has 
been developed using a variable update rate Kaiman filter with an augmented measurement 
model. This algorithm has been evaluated using both simulated and real data. An adaptive 
version has also been evaluated. 

A sensor fusion test-bed has been developed for multi-sensor data collection and al- 
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original sensor mismatch ■3    -3 
additional sensor mismatch 

Figure 15: Mismatch Factor when the original sensor is noisier than the additional. 

gorithm evaluation.   It currently consists of two sensors, a pulse Doppler radar and an 
optical video tracker. 

The asynchronous fused Kaiman filter (AFKF) performed well under clear sky condi- 
tions. Its performance deteriorated at close range because of increased optical noise. 

The AFKF performed well with intermittent sensor operation. When the measure- 
ments from one sensor ceased, the AFKF reverted to single sensor tracking, using the 
measurements from the remaining sensor. 

The AFKF performed poorly in clutter and in the presence of interfering targets, often 
losing track. The optical sensor's susceptibility to clutter and other interfering targets was 
caused by its lack of range discrimination. To overcome this problem, some form of data 
association is required to determine which measurements should be used for tracking (eg 
Multi-Sensor Probabilistic Multi-Hypothesis Tracking [17, 18]). 

When tracking in clutter or at close range, the ability to change the tracking filter 
models to suit the conditions, ie adaptive or multiple model techniques, would be advan- 
tageous. 

The AFKF successfully tracked a formation of two aircraft. However, although the 
optical sensor was able to discriminate between the two aircraft, it frequently switched 
targets during manoeuvres. 

The addition of another sensor does not affect the sensitivity of the tracking filter to 
errors in the noise covariance in the process or dynamic models. In general, the addition 
of another sensor only affects the sensitivity of the tracking filter to errors in measurement 
noise covariance when the tracking filter measurement noise covariance for the additional 
sensor is less than that for the original sensor. In this case, the system becomes more 
sensitive to errors in the measurement models. 
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Appendix A 

Generic Pulse Doppler Radar Specification 

Antenna 

Prime focus fed amplitude monopulse 
Diameter 
Gain 
3 dB sum beamwidth 

1500mm 
39 dB 
1.6° 

Antenna Mount 

Analogue rate loops in Azimuth and Elevation 
Small signal rate rise time 

Angle resolution 

10 ms (az) 
15 ms (el) 
0.383 mrad (14 bit) 

Transmitter 

Peak power 
Max duty cycle 

Receivers 

Three matched channels 
Operating frequency 
Noise figure 
Analogue to digital converter resolution 
Max sample rate (I and Q data) 
AGO range 
AGC resolution 

Timing and Control 

Pulse repetition interval (PRI) 
Pulse length 
Block length (coherent interval) 
Range gate resolution 

Tracking parameters 

Target range cells 
Noise range cells 
Doppler filters per range cell 
Pulse repetition frequency (PRF) 
Filter cycle time 

200 W 
30% 

9.0- 10.0 GHz 
<5dB 
12 bits 
8xl06samples/s 
78 dB 
2 dB 

5 - 255 /is 
1/iS 
1.4 - 65 ms 
62.5 ns 

2 per channel 
4 in sum channel 
128 
13.157-26.315 kHz 
33.3 ms 
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Appendix B 

Video Camera Specification 

Configuration 

Colour CCD video camera with 75 mm automatic iris lens and 2 x extender 
Field of view (FOV) 2.48° x 1.87° 

Camera 

Pick-up device 
Picture element 
Scanning area 
Scanning system 
Scanning frequency 

Resolution 

Signal to noise ratio (SNR) 
Output 

^   colour, interline-transfer CCD 
681 (H) x 582 (V) 
6.5 mm (H) x 4.9 mm (V) 
2:1 interlaced 
15.625 kHz (H) 
50 Hz (V) 
> 430 TV lines (H) 
> 420 TV lines (V) 
> 48 dB 
VBS 1.0Vp-p PAL compatible 

27 



DSTO-TN-0084 

Appendix C 

Adept20 Automatic Video Tracker Specification 

Video Input 

Format 

Level 
Standards 
Type 
Impedance 

Composite Video 
635/525 line 
l.OVp-p 
CCIR or RS170 
Differential 
75 n 

Video Output 

Normal video 
Format 
Level 
Impedance 

with symbolc »gy overlay 
Composite Video 
l.OVp-p (into 750) 
7b n 

Video Preprocessing 

Spatial enhancement 
Statistical enhancement 
Threshold (positive, negative contrast) 

Track Algorithms 

Centroid 
Correlation 

Track Window Position 

Manual 
Automatic (follows target) 

Track Window Size 

Manual 
Adaptive (automatically encloses target) 

Breaklock/Coast 

Automatic breaklock algorithm 
Automatic target re-acquisition after breaklock 
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Performance 

Typical for target size > 6 x 6 TV lines 
Min target contrast 
Min signal to noise ratio 
Noise on target position output 
Error update rate 
Error latency 

<5% 
<4 
< 1 TV line (3 a) 
50 Hz 
< 15 ms 

VMEbus Interface 

Capability 
Board select 

Slave, A24, D08(O) 
single input 
2 boards hosted on a backplane 

Serial Interface 

Electrical 
Format 
Baud rate 

RS232 or RS422 
asynchronous 
9600 
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