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1   Introduction 

Background 

Olmsted Locks and Dam is one of the largest civil works projects undertaken by the 
U.S. Army Corps of Engineers to modernize navigational facilities for the twenty-first 
century. Maintaining a robust navigational infrastructure to meet the demand for ever- 
increasing barge traffic through our nation's waterways is vital to our economy. 
Transportation of bulk commodities via our vast inland waterways not only provides the most 
economic mode of conveyance but also helps to conserve energy resources. In this regard, the 
Corps' continuing effort to improve the navigational facilities using the latest technology is 
essential. Several research and development phases were initiated and coordinated by the 
U.S. Army Engineer District, Louisville (ORL), to accomplish this monumental navigational 
upgrade on the Ohio river. 

The principal focus of this research scheme was to determine the most appropriate 
type of wicket for the new Olmsted Locks and Dam project. In January 1990, a wicket-gate 
model study was initiated to support the design of the prototype structure to be constructed at 
Smithland Dam. In a relentless effort to better understand the performance of these 
unprecedented hydraulically lifted wickets under variable operating conditions, a series of 
models was subsequently developed and tested by the U.S. Army Engineer Waterways 
Experiment Station (WES) (March and Elder 1992; Chowdhury, Hall, and Pesantes in 
preparation). In the final phase of this model program, a l:5-scale model was studied at 
WES. Experimental feedback from such physical models was provided to the designers at the 
Louisville District to improve the design of the hydraulically operated Olmsted wickets. 
Subsequently, after a series of interactive design changes, a final version of the prototype 
wicket was adapted for further data collection and verification at the Smithland facility. 
Because of the limitations of the prototype facility, the broad range of operating conditions 
necessary for determining the dynamic performance of the wickets was investigated in a 1:5- 
scale physical model at WES. 

This data report is in response to the WES proposal to the Louisville District to 
instrument, test, and analyze the prototype wicket gates at the Smithland, KY, test facility. 
Originally, it was intended to instrument and test the prototype wickets by an independent 
contractor outside the Corps of Engineers. Teledyne Brown Engineering of Marion, MA, was 
contracted by the ORL to develop the instrumentation specifications and drawings for 
component testing at the Olmsted Dam prototype. Two fully instrumented prototype gates 
with 160 sensors were planned in agreement with the instrumentation design for the l:5-scale 
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physical model (Teledyne Engineering Services 1993). Modification of the original design 
philosophy of the wickets from using hydraulically lifting mechanism prompted the ORL to 
scale down the number of sensors and reduce the scope of the test plan. In response to this 
new directive, WES prepared a revised instrumentation, test, and analysis plan for the 
prototype wickets. This plan called for a total of 40 sensors (28 in the steel gate and 12 in the 
composite gate) for measuring the flow-induced dynamic responses of the prototype wickets. 
The prototype dam is full scale but only five gates wide (approximately 50 ft). A composite 
wicket along with four traditionally coated different steel gates was installed in this facility. A 
complete geometric description of the steel and composite gates is reported in the literature 
(Chowdhury, Hall, and Davis in preparation; Chowdhury et al. 1997). 

All but the shear pins in the sensor inventory was instrumented and calibrated by 
WES. Teledyne Brown Engineering was contracted to instrument and calibrate the hinge pins 
and prop pin for the prototype wickets. Note that the pins supplied by the Teledyne were 
incorrectly instrumented such that the location of one of the grooves on each pin was 
misaligned with the bearing. An error occurred due to the use of wrong dimensions during the 
machining of the grooves by the contractor. As a result of such misalignment, each shear pin 
acted in single-shear rather than double-shear, even though the shear pins were configured to 
be sensitive to double-shear. Use of this shear pins, thus, acted with a new sensitivity lower 
than the original calibration. Recalibration of shear pins, except the left vertical one which 
was no longer functional during the recalibration process, with single-shear was conducted by 
Teledyne to correct this measurement error. This pin had been repaired once before by WES 
to correct the leakage through the protective coatings. These corrective measures, thus, must 
be considered during the evaluation of the shear pin results presented in this report. Data 
presented for the shear pins were rescaled by using the new recalibration factor. 

This report presents the experimental results of the prototype wickets for a number of 
available flow and operating configurations. Prototype and l:5-scale physical model results 
are compared to determine the effectiveness of the hydraulic and structural similitude 
relationships. It also contains data plots and comparisons which show the results of flow- 
induced vibration and shaker-excited modal experiments performed on the prototype steel and 
composite gates and the 1:5 model. An explanation of the key aspects of each plot is given. 

Objective 

The objective of this analysis is to correlate respective results between the prototype 
and 1:5-scale wicket model, to include: 

a. Prototype and model mode shape comparisons derived from laser vibrometer data. 

b. Time- and frequency-domain comparisons of structural and hydraulic 
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responses under corresponding gate and flow conditions. 

Effectiveness of the 1:5 model in predicting structural and hydraulic responses of 
the Olmsted wicket for various gate configurations and flow conditions. 

Scope 

Several sets of experiments were conducted to compare the responses of the prototype 
and model gates: 

a. Shaker-excited modal test on the prop-supported dry prototype wicket— 
Performed with a state-of-the-art Scanning Laser Doppler Vibrometer to extract the 
natural vibration characteristics of the prototype wicket for comparison to the 1:5 
model. 

b. Full operating range flow-induced vibration tests on the prototype-A. full 
range of experiments conducted at available pool conditions to identify the critical 
gate configurations. 

c. Fixed-gate flow-induced vibration experiment on the prototype—CondacXed to 
identify critical flow conditions at the fixed 65-deg position. 

d. Identical full operating range flow-induced vibration experiments on the 1:5 
modeZ-Conducted at corresponding prototype pool conditions to compare hinge 
forces, prop reaction, upstream/downstream pressures and accelerations at selected 
locations. 

e. Identical fixed-gate flow-induced vibration experiment on the model— 
Conducted to compare forces, pressures, and accelerations at 65 deg. 

Time- and frequency-domain comparisons of the respective responses between the 
systems will be performed to measure the adequacy of the 1:5 physical and numerical models 
for predicting the prototype response. 
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2   Modal Analysis 

Shaker-Excited Modal Analysis 

The Lazon laser data acquisition system was used to perform a shaker-excited 
modal analysis of the prototype steel, composite, and 1:5 model wicket gates. All gates 
were prop-supported in a dry configuration. I-DEAS Master Series CAE/CAM software 
was used to examine the Lazon data for determining the modal vibration characteristics of 
each gate. A schematic diagram for the laser setup is shown in Figure 1. The laser head 
was positioned 62 ft down from the prototype gate on a platform, and a MB Modal 50 A 
Exciter with two added inertia blocks (30 lb each) was used to excite the wicket using 

Figure 1. Experimental modal testing setup 
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a burst random signal. A detailed description of the analysis setup, laser operation, and 
information on modal analysis is reported in the literature (Chowdhury, Hall, and Davis 
in preparation; Zonic 1991; Structural Dynamic Research Corporation 1993; and Ewins 
1984). The first seven mode shapes for the prototype steel, composite, and 1:5 model 
wickets are shown in Figure 2. 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Composite gate 

Mode 6 Mode 7 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Steel gate 
Mode 6 Mode 7 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5       Mode 6 Mode 7 

1:5-Scale Model gate 

figure 2. Composite, steel, and model gate mode shapes 

Each of these representations of the mode shapes visually agrees, with the 
exception that modes 4 and 5 for the composite gate appear to be transposed. This is 
directly due to structural differences between the composite and steel gates. 
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In comparing the relative stiffness of the steel and composite gates, it was 
determined that the prototype steel gate had a higher bending and torsional stiffness in all 
corresponding modes. Since the natural frequency of both systems can be described by the 
square root of the spring constant divided by mass: 

(1) 

a relationship between the spring constants for the steel and composite gates was developed 
such that: 

it (am), 
(Q)2m)c 

(2) 

The steel gate weight (22.86 K lb) was determined by summing hinge and prop-rod forces 
obtained from a dry gate data taken at 65 deg. Substituting frequencies from Table 1 for 
modes 2 through 5 into the equation above, spring constant ratios were obtained for a range 
of possible composite gate weights, shown in Table 2. ks/kc > 1 for each bending and 
torsion mode at the approximate composite gate weight of 15 K lb. This indicates the steel 
gate provided a higher relative stiffness for both bending and torsional modes than 

Table 1 
Experime 
Steel, and 

ntally Determined Mode Frequencies for Prototype Composite, 
1:5 Model Gates 

Mode 
Number 

Composite 
Modes [Hz] 

Steel Modes 
[Hz] 

1:5 Model Modes 
[Hz] 

Scaled 1:5 Modes 
[AL=5] 

1 8.32 8.99 43.1 8.62 
2 14.11 15.14 58.0 11.60 
3 23.36 20.45 91.4 18.28 
4 30.84 32.80 141.2 28.24 
5 50.06 45.06 231.6 46.32 
6 61.15 64.02 291.9 58.40 
7 86.39 92.39 400.8 80.20 

the composite gate.  As shown in Table 2, if the composite weight was greater than 17.5 K 
lb, the composite gate would have exhibited a higher relative stiffness for mode 3 (torsion), 
and greater than 18.5 K lb the composite gate would have exhibited a higher relative 
stiffness for modes 3 and 5. 
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Table 2 
Calculation of Stiffness Ratio between the Steel and Composite 
Gates 
Composite 

Weight 
fKlb] 

Bending 
#2 

Ks/Kc 

Torsion 
#3 

Bending 
#4 

Torsion 
#5 

13.0 2.02 1.35 1.99 1.42 
13.5 1.95 1.30 1.92 1.37 
14.0 1.88 1.25 1.85 1.32 
14.5 1.82 1.21 1.78 1.28 
150 1-75 1.17 1.72 1v23 
15.5 1.70 1.13 1.67 1.19 
16.0 1.64 1.09 1.62 1.16 
16.5 1.60 1.06 1.57 1.12 
17.0 1.55 1.03 1.52 1.09 

1.50 1.48 1.06 
18.0 1.46 0.97 1.44 1.03 

v- ,:-,18.5:'v.- 1.42 0.95 1.40 :.     tW-( 

19.0 1.39 0.92 1.36 0.97 
19.5 1.35 0.90 1.33 0.95 
20.0 1.32 0.88 1.29 0.93 

The experimentally determined modal frequencies for the three gates are shown in 
Table 1. The first five modal frequencies for the 1:5 model gate compare well with the 
modal frequencies of the prototype steel and composite gates, which is substantiated later 
by modal correlation results. The slight deviations in frequency values between the 1:5 and 
prototype gates can be attributed to small variations in the nominal material sizes which 
were used to fabricate the gates, as well as the nonlinearity of the system. Figure 3 shows a 
graphic representation of me modal frequencies for the three gates. 

Chapter 2   Modal Analysis 



Mode Frequency Comparison 
100 

1.0 

-♦—♦— Prototype Steel 
-♦—♦•- 1:5 Model 
-♦- - -♦— Prototype Composite 

3 4 5 

Mode Number 

Figure 3.   Mode frequency comparison for prototype steel, composite, and 1:5 
model 

As mentioned, the slight deviations in frequency values between the 1:5 and 
prototype gates, shown in Table 2, are in part attributed to system nonlinearity. Since the 
gates are supported by the prop-rod while fixed at 65 deg, the prop-rod contributes to the 
gate vibration. A modal analysis was performed for the prop-rod, pin-connected at the gate 
and free at the lower end, and some of the vibration characteristics are shown in Figure 4. 
The tendency toward extreme movement at the lower end of the prop-rod is not linear and 
will cause an increase or decrease in the gate modal frequencies for in-phase or out-of- 
phase prop-rod vibration, respectively. Consideration of the effects of prop-rod vibration 
may explain some of the modal frequency variance in Table 1. 

Another cause of the shift in frequency values is the difference in inertial mass 
between the prototype steel and 1:5 model gates. The gate and prop-rod weight for the 
prototype is 22.86 K lb, while the model is 24.06 K lb (scaled by X3

L = 53). Using the 
stiffness relationship to relate the prototype to model stiffness: 

k  £ 

k„ 

(0)2m)t 

(co2m)m 
(3) 
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this represents a 5.3 percent increase in model stiffness. This increase in stiffness causes 
the modal frequencies for the model to be lower than those of the prototype, which is the 
case in Table 1. 

i 

-\                          *—i 

6- \                                                        ^ t                                                  1-                                         /           " 
^  \                        hi                        -i                   f       ^ 
^    \                     hi                        -.s-                    \      * 
i k          \ r-                               .-                           \   ^ 
i i              \ ■? r                                 . t                                 \^ 

i e           \ ■5 e 
*\ $ 

' 
fr 

*                                     ^       \ *     '                  u * 
Figure 4. Vibratory characteristics of prop-rod with gate at 65 deg 

As a measure of correlation between the prototype and model mode shapes, modal 
assurance criteria (MAC) plots were performed in I-DEAS (Structural Dynamic Research 
Corporation 1993). This analysis determines the percentage of correlation between all 
available mode shapes for two given experiments. Figure 5 shows correlation values above 
50 percent for the prototype steel versus 1:5 model gates. This figure shows that the first 
seven modes of dry operation correspond well, while correlation becomes less distinct for 
the higher modes. Table 3 shows the same information in matrix format. All torsional 
modes for the model relate partially with the corresponding prototype bending and torsional 
modes. This indicates an interaction of the prop-bending tendency with the gate torsion 
modes. Note that a scaling factor of XL (5) is used to predict the prototype frequency from 

the model results. For the flow-induced motion, this frequency scale factor became ^X^ 
based on the Froude scaling relationship. 
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Figure 5. MAC plot for modal comparison of prototype steel and 1:5 model 

Table 3 
Correlation Matrix for the First 9 Modes between the Model and 
Prototype Steel Gate 
Prototype                             Model 

1     1 2 3 4 5 6 7 8 9 
l 0.709 0.718 
2 0.955 
3 0.799 0.974 
4 0.931 

5 0.703 0.733 
6 0.721 0.935 
7 0.681 0.501 
8 

9 0.76 
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Figure 6 shows correlation values above 50 percent for the prototype steel versus 
composite gates. This figure shows that the first three modes of dry operation correspond 
well, while correlation becomes less distinct for higher modes. Modal correlation between 
the composite and steel prototype gates appears to break above the third mode, which is 
attributed to the localized effects of the geometry. A high degree of correlation between the 
lower order modes of composite and steel gates indicate that the two gates have a quite 
similar dynamic characteristics. The difference in higher order vibrational characteristics 
for these two gates is clearly evident in Figure 6. Table 4 shows the same information in 
matrix format. 

Figure 6. MAC plot for modal comparison of prototype composite and steel gates 
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Table 4 
Correlation Matrix between the Composite and Steel Mode Shapes 

Steel                                   Composite 
1 2 3 5 6 7 9 10 11 12 13 

1 0.943 0.514 0.366 
2 0.961 
3 0.891 
4 
5 0.491 0.42 
6 0.428 
7 0.52 0.73 0.473 
8 0.341 0.541 

Operating Deflected Shape - Frequency Domain 

Acceleration data obtained from the prototype and model gates were used to 
develop operating deflected shapes (ODS) in the frequency domain. An agreement of the 
corresponding ODS would indicate the similarity of the flow-induced vibrationai pattern of 
the operational wicket. A detailed discussion on the ODS extraction procedure using I- 
DEAS Master Series Test module is presented in the literature (Chowdhury, Hall, and 
Davis in preparation). Accelerometer data for the 1:5 model and prototype gates were 
imported into I-DEAS Test, and operating deflected shapes for cross-spectral peaks were 
determined. Modal frequencies determined from shaker excited modal analysis and Fast 
Fourier Transform analysis were taken into consideration for selecting these peaks, to 
improve accuracy of mode determination. 

Operating deflected shapes for the prototype steel and model gates are shown in 
Figure 7. Data from the bottom right accelerometer on the composite gate were not 
properly recorded, which prevented an accurate representation and analysis of the 
composite gate operating deflected shapes using this method. 

Although modes 2 through 5 appear to correlate, it was apparent that nine 
accelerometers were not enough to conclusively represent these vibrationai shapes, and thus 
a credible correlation was not possible. Comparing deflected shapes in Figure 7 to those 
obtained by shaker excited modal analysis in Figure 2, significant vibratory motion in 
portions of the gate not defined by accelerometers is evident. Motion of portions of the gate 
between the accelerometers had to therefore be interpolated, which led to an increase in 
deflected shape ambiguity for the more complex mode shapes. Correlation between 
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prototype and model operating deflected shapes by means of the MAC matrix was not as 
clearly defined as desired, due to the difficulty in defining these deflected shapes. 

Mode 1 
8.91 Hz 

Mode 2 
12.17Hz 

Mode 3 
15.77 Hz 

"i 

Mode 4 
17.65 Hz 

Mode 5 
23.31Hz 

Mode 6 
28.28 Hz 

Prototype steel gate 

^ ^1 ^ ^ 
Mode 1 Mode 2 Mode 3        Mode 4 
8.26 Hz 15.30 Hz 17.94 Hz      24.79 Hz 

l:5-scale model gate 

|j if 
Mode 5 
31.65 Hz 

Figure 7. Experimental acceleration-derived operating deflected shapes 

Driving-Point Mobility Function 

The driving-point mobility function for the composite and steel gates is shown in 
Figure 8. This figure also shows the coherence plot, which is an indicator of the quality 
of the measurement. The driving-point mobility plot for the prototype steel and 1:5 
model gates is shown in Figure 9. 

The peak shifts in the FRFs shown in Figures 8 and 9 indicate that the gate 
system response was sensitive to the direction of the driving force. Such changes in the 
peak frequencies resulted primarily due to the nonlinear behavior of the "no-tension" 
prop-rod supporting mechanisms during wicket excitation. The bottom end of the 
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prop-rod in its locked position provides restraint only along a direction away from the 
gate. Also the uncertain orientation of the clevis connection at the top end of the prop-rod 
introduced nonlinearity into the system. 

in 
D 
X 
Q. 

in 
X 
c 

X) 
o 
5 

steel gate 

! it J ~VCj*- 

i± _l I I l_ 

coherence 

i      i      i      i      i      i      I      t      i      I      i 

5 0 10 0 
Frequency       .(...Ü.Z   > 

'igure 8. Mobility and coherence plot for comparison of composite and steel 
prototype gates 

Modeling the uncertain orientation of the clevis connection at the top of the prop- 
rod, however, is beyond the scope of the present research. Such an intrinsic uncertain 
random behavior could be modeled using the stochastic FE method (Chang 1993). 

Analysis of experimental results indicated that the modal density for the 
prototype and model remained invariant. An investigation of the mode shapes also 
indicated that the corresponding mode shapes for the model and prototype were identical, 
although the modal frequencies shifted as shown in Figure 9. 
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Figure 9. Mobility plot for comparison of 1:5 model and steel prototype gates 
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3   Flow-Induced 1:5 and 
Prototype Comparison 

Gate Configurations, Flow Conditions 

Identical flow-induced experiments were conducted with the 1:5 model 
corresponding to pool elevations for experiments performed on the prototype steel and 
composite gates. Fifteen experiment groups were developed to include all critical gate 
configurations. These included dry and wet configurations fixed at 65 deg, as well as 
full-range runs to identify the critical gate configuration among the following: 

a. 1 -gate gap 
b. 2-gate gap (test gate as left gate, looking upstream) 
c. 2-gate gap (test gate as right gate, looking upstream) 
d. 3-gate gap (test gate as lone gate) 

The gate numbering scheme is shown in Figures 10 and 11. Figure 10 shows the 
prototype gates fixed at 65 deg, while Figure 11 shows the model in a 3-gate gap 
configuration, with the test gate as the lone gate. 

Figure 10. Prototype gates—downstream view 
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^igure 11. 1:5 Model gates—downstream view 

Experiment Setup 

The experiment log sheet for 15 test groups is presented in Table 5. This table 
includes the test group type (as explained in the remarks column), 1:5 model experiment 
numbers with corresponding prototype experiment numbers (experiments compared are 
circled), and the run date for each model experiment. Gate configuration is shown, as 
corresponding to Figures 10 and 11. Head- and tail-water levels for the prototype runs 
are shown, with those of the model in the next two columns. Head- and tail-water levels 
for the 1:5 runs were chosen to closely or exactly match those of corresponding prototype 
configurations. All model water levels were within 0.3 ft of corresponding prototype 
water levels, with most exactly matching. 

The data conversion table, used to scale 1:5 model data to prototype scale and 
units, is shown in Table 6. All applicable channels of data collected for the prototype 
steel and composite gates were associated with corresponding channels for the model. 
Appropriate conversion factors to convert model data to prototype scale are shown. The 
two CAD drawings in Figures 12 and 13 show the sensor locations for the prototype steel 
and composite gates. 
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The instrumented steel gate had 28 sensors and the composite gate had only 12 
sensors for recording the response history of the prototype wickets. More sensors were 
needed for the steel gate since the prototype steel gate response had been used to validate 
the similitude l:5-scale model results for identical flow-induced experiments. Although 
there were fewer prototype sensors than in the scale model, the sensor locations for the 
prototype gates were kept identical to those of the 1:5-scale model.   Selected composite 
gate responses were recorded to determine the typical response pattern due to available pool 
elevations. Each of the steel and composite gates had nine uniaxial accelerometers in three 
columns (two lines on both edges of the skin plate and another in the middle of the gate) to 
measure gate vibrations in the upstream (U/S)-downstream (D/S) directions. Each of the 
accelerometers was mounted on the skin plate such that three were installed in the top, three 
in the middle, and three in the bottom portion of the wickets. Type 4-202 strain gauge 
accelerometers were used, each with a rated range of ±25 g in the application (Consolidated 
Electrodynamics 1995b). 

The steel gate had six pressure cells at three locations: one pair at the midcenter, 
one at the bottom left, and another pair at the bottom center on the surface of the wicket. 
Three of these pressure cells measured upstream pressure while the remaining three 
measured downstream pressures on the back of the gate. Type 4-312 pressure transducers 
were used, each with ±13 psi to ±50 psi pressure ranges (Consolidated Electrodynamics 
1995a). The pins connecting the gate to the sill were instrumented to determine the 
reactions of the steel gate. The hinge pins were instrumented by Teledyne Brown 
Engineering. Two Type 4-312 pressure cells, one at the top surface and another mounted 
on the back of the gate, measured the pressure; a tiltmeter measured the inclination of the 
composite wicket gate. Detailed information on the instrumentation for the 1:5-scale 
physical model is available in the literature (Chowdhury, Hall, and Davis in preparation). 

An in-house custom-built data acquisition system consisted of two personal 
computers, an analog-to-digital converter, signal conditioning amplifiers, and a printer used 
for recording the wicket response. Signal conditioning included continuous variable gain 
amplifiers, tracking filters, and anti-alias filters. Custom software was written to automate 
calibration measurements, data recording during a test, and time-history plotting of the 
recorded data. Matlab matrix analysis software and IDEAS-Master series test module 
(Structural Dynamic Research Corporation 1993) were used for postprocessing of the 
recorded data.  More information regarding the measured response, including the 
transducer locations, calibrations, data acquisition and reduction system, and functional 
descriptions of the measured response are presented in the literature (Chowdhury, Hall, and 
Davis in preparation). 
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Table 6 
Data Conversion Table - Olmsted 1:5 Model to Prototype 
1:5 MODEL FACTOR 1:1 STEEL GATE 

CH.#     TYPE 

1 FORCE 
2 FORCE 
3 FORCE 
4 FORCE 
7 FORCE 

8 FORCE 
14 PRESSURE 
17 PRESSURE 
18 PRESSURE 
23 PRESSURE 
26 PRESSURE 
27 PRESSURE 
28 PRESSURE 
29 PRESSURE 
32 ACCELER 
33 ACCELER 
36 ACCELER 
37 ACCELER 
40 ACCELER 
41 ACCELER 
42 ACCELER 
43 ACCELER 
44 ACCELER 
47 TILTMETER 
50 POSITION 
51 ELEVATION 
52 ELEVATION 
53 PRESSURE 

MEASUREMENT 

RIGHT HINGE PIN VERT. (LB) 
RIGHT HINGE PIN HORZ. (LB) 
LEFT HINGE PIN VERT. (LB) 
LEFT HINGE PIN HORZ. (LB) 
RIGHT TRUNNION ® 65deg (LB) 

0.671(LT 
LEFT TRUNNION O 65deg (LB) 
5 U/S MIDDLE CENTER (IN. WC) 
8 U/S BOTTOM CENTER (IN. WC) 
9 U/S BOTTOM LEFT (IN. WC) 
14 D/S MIDDLE CENTER (IN. WC) 
17 D/S BOTTOM CENTER (IN. WC 
18 D/S BOTTOM LEFT (IN. WC) 
CYLINDER #6 (UPPER) (IN. WC) 
CYLINDER #6 (LOWER) (IN. WC) 
1Z TOP-RIGHT (g.) 
2 TOP-CENTER (g.) 
3Z TOP-LEFT (g.) 
4 MIDDLE-RIGHT (g.) 
5Z MIDDLE-CENTER (g.) 
6 MIDDLE-LEFT (g.) 
7 BOTTOM-RIGHT (g.) 
8 BOTTOM-CENTER (g.) 
9 BOTTOM-LEFT (g.) 
GATE ANGLE (DEG.) 
ACTUATOR #6 (IN.) 
HEADWATER (FT.) 
TAILWATER (FT.) 
BAROMETRIC (IN. WC) 

125/1000 
125/1000 
125/1000 
125/1000 

RTK125/1000) 

5/12 
5/12 
5/12 
5/12 
5/12 
5/12 
5/12 
5/12 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1/12 

:5 MODEL 
32 ACCELER 
33 ACCELER 
36 ACCELER 
37 ACCELER 
40 ACCELER 
41 ACCELER 
42 ACCELER 
43 ACCELER 
44 ACCELER 
18   PRESSURE 
27   PRESSURE 
47   TILTMETER 

1Z TOP-RIGHT (g.) 
2 TOP-CENTER (g.) 
3Z TOP-LEFT (g.) 
4 MIDDLE-RIGHT (g.) 
5Z MIDDLE-CENTER (g.) 
6 MIDDLE-LEFT (g.) 
7 BOTTOM-RIGHT (g.) 
8 BOTTOM-CENTER (g.) 
9 BOTTOM-LEFT (g.) 
U/S BOTTOM LEFT (IN. WC) 
D/S BOTTOM LEFT (IN. WC) 
GATE ANGLE (DEG.)  

CH.# TYPE 

16 FORCE 
17 FORCE 
18 FORCE 
19 FORCE 

20 FORCE 

10 PRESSURE 
11 PRESSURE 
12 PRESSURE 
13 PRESSURE 
14 PRESSURE 
15 PRESSURE 

1 ACCELER 
2 ACCELER 
3 ACCELER 
4 ACCELER 
5 ACCELER 
6 ACCELER 
7 ACCELER 
8 ACCELER 
9 ACCELER 

27 TILTMETER 

28 PRESSURE 

MEASUREMENT 

RIGHT HINGE PIN VERT. (K LB) 
RIGHT HINGE PIN HORZ. (K LB) 
LEFT HINGLE PIN VERT. (K LB) 
LEFT HINGLE PIN HORZ. (K LB) 

PROP ROD PIN 065d»g (K LB) 

U/S MIDDLE CENTER (FT WC) 
U/S BOTTOM CENTER (FT WC) 
U/S BOTTOM LEFT (FT WC) 
D/S MIDDLE CENTER (FT WC) 
D/S BOTTOM CENTER (FT WC) 
D/S BOTTOM LEFT (FT WC) 

TOP RIGHT (g.) 
TOP CENTER (g.) 
TOP LEFT (g.) 
MIDDLE RIGHT (g.) 
MIDDLE CENTER (g.) 
MIDDLE LEFT (g.) 
BOTTOM RIGHT (g.) 
BOTTOM CENTER (g.) 
BOTTOM LEFT (g.) 
GATE ANGLE, STEEL (DEG.) 

BAROMETRIC (FT WC) 

FACTOR 

5/12 
5/12 

1 

1:1 COMPOSITE GATE 
29 ACCELER 
30 ACCELER 
31 ACCELER 
32 ACCELER 
33 ACCELER 
34 ACCELER 
35 ACCELER 
36 ACCELER 
37 ACCELER 
38 PRESSURE 
39 PRESSURE 
40 TILTMETER 

1 TOP RIGHT (g.) 
2 TOP CENTER (g.) 
3 TOP LEFT (g.) 
4 MIDDLE RIGHT (g.) 
5 MIDDLE CENTER (g.) 
6 MIDDLE LEFT (g.) 
7 BOTTOM RIGHT (g.) 
8 BOTTOM CENTER (g.) 
9 BOTTOM LEFT (g.) 
U/S BOTTOM LEFT (FT WC) 
D/S BOTTOM LEFT (FT WC) 
GATE ANGLE, COMPOSIT (DEG. 

20 
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Time-Scaling Factor 

The Olmsted wicket gate lock and dam system may be characterized as an open- 
channel flow with varying surface levels. Thus, achieving complete similitude between the 
Olmsted prototype and 1:5 model requires both Reynolds number and Froude number 
similarity. The three desired types of similarity are: 

a. Geometric Similarity - length-scale ratio. 
b. Kinematic Similarity - length-scale ratio, time-scale ratio. 
c. Dynamic Similarity - length-scale ratio, time-scale ratio, force-scale ratio. 

The Olmsted prototype and 1:5 model will be geometrically similar if and only if 
all body dimensions in all three coordinates have the same linear-scale ratio (White 1986). 
Geometric similarity between the prototype and 1:5 model was fairly well achieved, since 
all physical model dimensions were accurately scaled by 5 to include the nominal material 
sizes used in the model construction, and all hinges and other fasteners were accurately 
scaled. The only factor not accurately modeled was surface roughness, since this was not 
deemed significant for the scope of this hydraulic analysis. Fabrication cost would have 
been significantly higher in attempting to achieve a surface smooth enough to satisfy the 
requirement for Manning's roughness constant (Lindeburg 1992): 

Hratio = V-LTatio) (4) 

The motions of the Olmsted prototype and 1:5 model will be kinematically similar 
if "homologous particles lie at homologous points at homologous times" (White 1986). To 
achieve kinematic similarity, all gate motion must be appropriately scaled. There are two 
significant areas where kinematic similarity is not achieved in the 1:5 model, both of which 
are due to variance in gate angular velocity between the prototype and model. 

Differences in the prototype and model hydraulic systems caused a slight deviance 
in gate angle during the course of the tests. The prototype used a constant pressure 
hydraulic system, while the model used a constant angular velocity hydraulic system. This 
meant that as the prototype gate was raised from -3 to 65 deg, its angular velocity 
decreased as the load increased, while the model gate maintained a constant angular velocity 
throughout the same range. Thus, the prototype gate angular velocity is inversely related to 
total gate load, while the model gate angular velocity and gate load are approximately 
independent. This phenomenon is illustrated in Figure 14: 
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Figure 14. Difference in prototype and model gate angular velocity 

Application of a correction factor for this phenomenon would involve determining a 
third- or fourth-order function to approximate the prototype curve, and then adjusting all 
time-dependent model data by this functional factor. After analysis of results for several 
comparison tests, it was decided that the deviance in gate angle versus time between the 
prototype and model would not significantly affect the data under consideration 

Because of differences in hydraulic system capabilities and other factors, the model 
gate was not raised at the appropriate angular velocity to permit correct scaling to the 
prototype. The correct time-scaling factor, derived from Froude similitude, takes the form: 

lp  —   -y/^i '    *m (5) 

where yA^ = v5 

Scaling of time (and hence angular velocity) by v5 was not appropriate for 
comparison of the 1:5 model and prototype gates, as shown in Figure 15. To permit proper 
correlation with the prototype angular velocity, an adjusted scaling factor was 
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Figure 15. Modified time-scaling factor for 821 vs. 614 

determined, which aligned the model gate angle curve to that of the prototype at two 
locations: 0 and 65 deg. This is essentially a scaling factor which equates gate travel time 
for the model and prototype and aligns the model gate to the prototype gate for any given 
position in (prototype) time. Use of this adjusted time-scale factor allows the model to meet 
the kinematic similarity requirement of "homologous particles located at homologous points 
at homologous times" (White 1986), even though it does not follow traditional Froude 
scaling requirements. Figure 15 also shows the closer correlation of model and prototype 
using the adjusted correction factor (1.225) for Experiment #821 versus Experiment #614. 

Determination of a unique time-scaling factor for each comparison was required for 
two reasons. The first and primary reason was due to the constant pressure hydraulic shaft 
installed on the prototype. The load-dependent hydraulic system made it impossible to 
achieve equal travel times from -3 to 65 deg for the various prototype gate configurations. 
Since each gate configuration produced a unique loading pattern throughout the range of 
motion due to varying water flow patterns, plots of angular velocity were different for each 
configuration. A second, and less important, reason requiring unique time-scaling factors 
was due to unavoidable variances in the testing procedures. Part way through prototype 
testing, the foot on the prototype gate was damaged, which limited its operational range to 0 
to 65 deg. Data collected from the model -3 to 65 deg range had to be shifted to align at 0 
deg with the prototype for these comparisons. Additionally, the data abscissa also had to be 
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shifted to align the gate rotation start times, since the start times for data sampling and gate 
rotation were never the same (to ensure the integrity of data during gate rotation). 
(Adjusting the abscissa does not distort the data in any way but merely aligns the start times 
for data acquisition to a known start point.) Thus, accurate correlation of prototype and 
model gate position versus time required a time-scaling factor unique to each comparison. 

Table 7 shows some of the adjusted time-scale factors that were determined for 
specific test comparisons from plots of gate angle versus time. Determining the required 
ordinate shift (scale factor) for time was critical to achieving proper correlation of gate 
acceleration data in the frequency domain and is the primary focus of this discussion. 

Table 7 
Time-Scale Factors Obtained from Gate Angle Correlation 

Test Type 
Tests 

Compared 
Similitude 

Scale Factor 

#7 

Modified 
Scale Factor 

Abscissa 
Shift 

[seconds] 

1-Gate Gap 
(up) 

804, 621 V5 1.265 -24.2 

3-Gate Gap 
(up) 

808, 630 ^ 1.395 -16.0 

3-Gate Gap 
(down) 

810,631 V5 1.860 -5.8 

2-Gate Gap 
(End Left) (up) 

815,649 V5 1.273 -24.89 

2-Gate Gap 
(End Right) 

(up) 

818,657 V5 1.236 -3.34 

1-Gate Gap 
(up-Composite) 

821,614 V5 1.225 0.0 

The primary reason for determining corrected time-scale factors was to perform 
accurate Fast Fourier Transform (FFT) comparisons on prototype and model acceleration 
data. Determination of appropriate time-scale factors was crucial to showing modal 
alignment between the prototype and model. As shown in Figures 16 and 17, use of the 
adjusted time-scaling factor provides a much better correlation of frequency data. The 
model data scaled by 1.395 in Figure 16 shows the clearly defined peak alignment at 
frequencies of 15, 37,43, 65,112, and 150 Hz, while the model data scaled by the Froude 
factor of V5 do not show as clear of a correlation to peaks in the prototype data. 
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Figure 16. Acceleration FFT scaled by modified time-scale factor 

If force, pressure, or acceleration measurements made on the prototype and model 
gates are compared as a function of time, this time-scale factor must be applied to achieve a 
valid comparisoa All time-domain comparisons, however, were made as a function of gate 
angle, which inherently produced kinematic similarity. Only the frequency-domain 
comparisons (FFTs of acceleration and pressure) required plotting versus time, and so these 
were the primary data to which the adjusted time-scale factor was applied 
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Figure 17. Acceleration FFT scaled by Froude scale factor of V5 

Dynamic similarity will exist between the Olmsted prototype and 1:5 model when 
their force and pressure coefficients are identical (White 1986). Since dynamic similarity 
requires the prototype and model to have the same length-scale, time-scale, and force-scale 
(mass-scale) ratios, its only difference from kinematic similarity is the addition of the force- 
scale ratio requirement. For free surface flow, this translates to the requirement that 
prototype and model Reynolds numbers, Weber numbers, Strouhl numbers, and Cavitation 
(Euler) numbers be correspondingly equal. For these flow conditions, the Weber and 
Cavitation numbers are not necessary, which leaves Reynolds number equality as the only 
additional requirement It has already been stated that surface friction was not a 
construction priority for the 1:5 model and that obtaining equal Reynolds numbers for the 
prototype and model was not of primary concern for the scope of the study (nor would it 
have been easily obtainable or economically feasible). 

Thus, with the determination of a modified time-scale factor, the inventory of 
required scaling relationships is complete. Model data can be scaled to prototype units for 
comparison, or the model may be used to predict behavior of the prototype under additional 
flow conditions. 
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Damping 

Table 8 shows a comparison of experimentally determined damping, natural 
frequency, and periods for several model and prototype flow configurations. This table 
shows an expected increase in damping factors from dry to wet operating conditions for 
both the prototype and model gates. 

Table 8 
Damping Comparison of Prototype Steel and 1:5 Model Gates 

Damping 
Experiment Experiment Accel Period Frequency Factor 

Type # Position [sec] [Hz] (Zeta) 

Dry Test 1:5 Model 803 lz (T.R.) 0.0179 351.0 0.0185 
2 (T.C.) 0.018 349.1 0.0162 
3z (T.L.) 0.0177 356.0 0.0188 

Prototype 601 lz (T.R.) 0.0674 93.2 0.0072 
Steel 2 (T.C.) 0.0674 93.2 0.0065 

3z (T.L.) 0.0677 92.9 0.00685 
1-GG 1:5 Model 804 lz (T.R.) 0.0194 323.7 0.025 

2 (T.C.) 0.0192 327.5 0.023 
3z (T-L.) 0.0195 321.7 0.0235 

Prototype 621 lz (T.R.) — — — 
Steel 2 (T.C.) — — ~ 

3z (T.L.) — — — 
3-GG 1:5 Model 808 lz (T.R.) 0.0187 336.0 0.0772 

2 (T-C.) 0.0186 337.8 0.0273 
3z (T.L.) 0.0184 341.5 0.0426 

Prototype 630 lz (T-R-) 0.080 78.54 0.0411 
Steel 2 (T.C.) 0.0812 77.38 0.0489 

3z (T.L.) 0.0812 77.38 0.043 
T.R. = top right 
T.C. = top center 
T.L. = top left 

Data were obtained by considering a portion of accelerometer data immediately 
after a significant driving force input caused a vibratory motion in the gate. One such force 
was caused when the prop-rod settled against its stop; the momentum of the gate induced a 
transient vibration which exhibited the damping effects shown in the plots. Figures 18 and 
19 identify the transient response of the gate as the prop-rod is placed on the hurter recess. 
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When feasible, the period and frequency were determined by the logarithmic 
decrement method (measuring the amplitudes of successive peaks): 

5 = In—— (6) 

with the damping factor, zeta, determined by: 

*J(2x)2+82 

In other instances it was necessary to perform a curve fit (illustrated in Figures 20 and 21) 
to obtain the best-matched decaying exponential curve, 

x(t) = Xe'^ (8) 

which permitted an accurate determination of the damping factor (Hutton 1981). The 
decaying exponential curve is the damped portion of the equation of motion: 

x(t) = Xe"?axsin(GV + 0) (9) 

0)d was determined from the period of the system, t, and the natural frequency, CO, with 
the following: 

2% 
Q) =  (10) 

T 

0>ä = Vl-C26> (ID 

Examples of decaying exponential curve fits, as well as plots of the natural vibratory decay 
for wet and dry gate operation, are shown in Appendix A, Figures Al through Al8. 
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Figure 18. Gate angle/acceleration vs. time (Experiment # 803) 
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Figure 19. Gate angle/acceleration vs. time (Experiment #601) 
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Frequency-Domain and FFT Plots 

In Appendix B, Figures B1 through B84 show Fast Fourier Transforms of pressure 
and acceleration, with corresponding plots versus time for three identical-flow comparisons 
between the prototype steel and 1:5 model gates. For proper correlation, the model data 
were scaled by time-scale factors discussed earlier. Since the prototype used strain-gauge 
accelerometers to record both static and dynamic accelerations and the model used 
piezoelectric accelerometers to record only dynamic accelerations, it was necessary to 
subtract the static portion of the prototype data. This was accomplished by subtracting the 
acceleration offset due to the gate rotation: 

Acceleration^yMmic) = Acceleration^) - Cosine(gate angle) (12) 

The static portion of acceleration is represented by the cosine of the gate angle, and in data 
collection the static acceleration was -1 at 8 = 0, and 0 at 6 = 90. Subtraction of static 
acceleration from prototype data is represented in Figure 22. 
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The time-domain plots of acceleration in Appendix B (Figures Bl through B84) 
show the dynamic acceleration for the prototype and model gates. Figures B81 through 
B84 show comparison plots before the static acceleration was subtracted from the prototype 
data. 

As seen in these plots, upstream and downstream power spectra agreed well for the 
prototype and the model. The frequency plots, particularly those generated from 
accelerations, show reasonable correspondence between modal peaks for the prototype and 
model. For example, Figure 23 shows the peak alignment at the top left accelerometer 
location. Peaks at 15, 39,62,110, and 155 Hz correlate well, while there is a slight 
deviance between the peaks for the prototype at 83 Hz and the model at 90 Hz. 

Resonant peaks below 15 Hz for the top accelerometers in the prototype wicket did 
not appear in the model. These low-frequency peaks were associated with the rigid body 
translational and rotational motion of the operating wicket. A difference in the 

Accel - 3Z Top Left 
0.001 

0.0008 

Prototype (630) ■ 
1:5 Model (808)- 

FFT 
FFT 

Figure 23. FFT of acceleration, 3Z top left for 1:5 model 808 to prototype 630 

frequency distribution is the result of satisfying the Froude model scaling relations for the 
first structural mode of vibrations as discussed in the 1:5-scale model report (Chowdhury, 
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Hall, and Davis in preparation).  Despite the difference in the frequency spectra, the 
dominating modes contributing the most to the vibration of the prototype wicket were well 
reproduced in the model. A companion analytical study of the model indicates that the first 
three modes excluding the rigid body contributed significantly to the dynamic response of 
the wet wicket (Chowdhury, Garner, Seda, and Hall 1997). Frequency plots were 
developed for all pressure and acceleration data, which included: 

1:5 Model Prototype 
Channel* Channel # Type Measurement 

1 16 Fore© Right hinge pin vert. 
2 17 Force Right hinge pin horz 
3 18 Force Left hinge pin vert. 
4 19 Force Left hinge pin horz. 
14 10 Pressure U/S middle center 
17 11 Pressure U/S bottom center 
18 12 Pressure U/S bottom left 
23 13 Pressure D/S middle center 
26 14 Pressure D/S bottom center 
27 15 Pressure D/S bottom left 
32 1 Acceleration 1z top right 
33 2 Acceleration 2 top center 
36 3 Acceleration 3z top left 
37 4 Acceleration 4 middle right 
40 5 Acceleration 5z middle center 
41 6 Acceleration 6 middle left 
42 7 Acceleration 7 bottom right 
43 8 Acceleration 8 bottom center 
44 9 Acceleration 9 bottom left 

Time-Domain Plots 

In Appendix C, Figures Cl through C54 show time-domain comparisons between 
the prototype and model gates for all appropriate data listed in the Data Conversion Table 
(Table 6). All plots are functions of gate angle in degrees, which eliminates the need to 
apply a time-scaling factor. 

A comparison of both hinge reactions for different flow configurations are presented in 
Figures 24 and 25. Total vertical and horizontal forces exerted on the hinges due to flow-induced 
motion for the indicated flow configurations are shown in Figure 26. Sensitive axes of the shear 
transducer were fixed with the local axes of the gate such that one axis was normal to the gate 
surface (vertical) and another was parallel to its longitudinal axis (horizontal). Thus, a positive 
horizontal force results due to the pulling of the gate away from the sill, and a positive vertical 
reaction resists the downward motion of the gate. A comparison of right and left reaction indicates 
that the reaction forces for both hinges are asymmetrically distributed and their directions are 
reversed as the gate is raised from down to the up position. This type of reverse loading at the 
bottom hinges may exhibit fatigue distress due to long-term loading. An observation of the test 
results indicates that the peak response is attained right at or about the moment when the 
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downstream air bubble (vacuum) beneath the gate pops up. The same phenomenon was observed 
during the l:5-scale tests which showed that a three-gate gap (lone condition) is the critical 
configuration regardless of head difference in the pool condition. This critical position for the 
3GG(L) case was at about 16 to 24 deg. 

Recalibration of the prototype gate hinge force transducers was necessary to 
account for incorrect strain gauge positioning during fabrication of the hinge pins by the 
Teledyne Brown Engineering. Initially, the hinge-force transducers were calibrated based 
on correct sensor and hinge pin groove alignment, which would have permitted a double- 
shear measurement effect Since one groove on each pin was offset from correct alignment, 
a new set of calibration tables was developed to account for this incorrect alignment. The 
hinge-force plots in Appendix C reflect these recalibration data. Recalibration of hinge 
force data was performed by adjusting the measured force, Fm, by the new y-intercept, an, 
and slope, ßn, values for each of the four transducers to obtain the actual force, Fa. The 
calibration equation for the sensor output can be obtained using the equation: 
Fn 

= ao + ßo V'in which V is the sensor analog output in mV/V. Sensor output based on 
the original calibration factor then becomes: 

Therefore, the actual force based on the correct recalibration factor is: 

( T7   _/v   ^ 

A+aH=aB+/5tV (14) 
F -a 

Ä 

Since Fa =a„+ ßnV , we have: 

Fa=an+j(Fm-a0) (15) 

Subscripts 'o' and 'n' correspond to old and new y-intercept and slope values, respectively. 

Values used to recalibrate the prototype steel gate hinge force data are shown in 
Table 9. The left vertical transducer was nonfunctional during recalibration, making it 
impossible to obtain new calibration factors. A drift effect during both prototype and model 
data acquisition caused a shift in magnitude recorded in the experiments. This offset in 
recorded data from actual values was a result of differences in sensor initialization between 
the prototype and model experimental environments. A wet-zero reference condition test 
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required sensor initialization under static zero head difference pool conditions, which could 
not be attained in the nature-dependent prototype facility. Thus, the experimental data 
presented in this report were measured with reference to the dry initial condition of the 
sensors instead of the preferred wet-zero reference condition. As a result of this dry 
initialization, the recorded data depended upon the uncertain thermal and mechanical 
drifting of the analog transducers during (he data acquisition. 

Two experiments were conducted in the 1:5-scale model to determine the effects of 
these different initialization methods. Flow-induced experimental results recorded from dry 
and wet initialization schemes indicated that the reaction forces based on the dry zero 
reference test could vary up to 37 percent from that of the wet-based result. Therefore, the 
results presented in this report may fall short of the absolute value of the operating 
response, caused by a linear shift produced by drift in the analog transducers. Base hinge 
reactions presented in Appendix C were corrected for such thermal linear drift by shifting 
the model data upward to match the starting points of the responses under comparison. 

Acceleration plots compared in Appendix B show such a linear drift between the 
prototype and model responses. Neglecting the drift in the acceleration record, both 
predicted and actual prototype maximum accelerometer responses were generally within 20 
percent of each other. Model data for the right horizontal hinge force were shifted up by 45 
kips to match the force trends to the prototype data and to ensure a conservative estimate of 
hinge force data were provided. Due to this drift effect, the magnitudes of the hinge force 
data may not reflect actual values for hinge forces, but the force trends accurately represent 
those of the operating conditions. 

Table 9 
Prototype Steel Gate Hinge-Force Recalibration Factors 

Old Intercept 
«0 

New Intercept Old Slope 
Ä 

New Slope 
A, 

Right Vertical -3.63 1.98 287 357 
Right Horizontal -3.27 1.88 295 359 
Left Vertical n/a n/a 300 n/a 
Left Horizontal 0.71 0.58 299 388 

The right hinge prototype reactions agreed very well (within 12 percent of each 
other) with the corresponding model predicted responses, with slightly higher differences in 
the turbulent flow region. Significant deviations were noted in the left horizontal force plots 
in Appendix C (C4, C13, C22, C31, C38, C44, and C50). Although this large deviation is 
attributed to thermal, mechanical, and electrical inconsistencies during experimentation, 
analysis of these data indicated that an ordinate scaling factor of 0.485 brings the prototype 
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data into very close alignment with the model data. During the time from initial placement 
of left vertical transducer to the time of experiment, the left vertical sensor was damaged 
and could not be recalibrated. Hie left pin had also been repaired prior to the experimental 
data acquisition by WES, which could affect the original calibration factor for the repaired 
pia Reassembling of the left pin was needed to correct the water leakage through the 
protective coatings of the strain-gauge bridges. Because of such multitudes of problems in 
the left pin, the data presented here can only be used to indicate trends which compare 
favorably with the l:5-scale physical response. 

Pressure data showed an excellent correlation, except for the model U/S bottom- 
center pressure (channel 17), which was nonoperational during the postexperiment 
inspection. The prototype vertical and horizontal right hinge sensors and the U/S middle- 
center and bottom-center pressure transducers provided bad data on 21 Dec 95 and were 
discarded Inaccurate pressure data for channel 17 were discarded and not compared in this 
report. In general, trie upstream prototype pressure deviation from that of the model 
prediction was less than 15 percent. The general trend in the downstream pressure envelop 
was identical for both prototype and model. Except at the most turbulent region, in most 
cases the downstream pressure for the prototype did not deviate more than 10 percent from 
that of the model prediction. Close agreement between the respective predicted and actual 
prototype response suggests the strength of the similitude model in reproducing the flow- 
induced dynamic behavior of the Olmsted dam. 

In Appendix D, Figures Dl through D62 show comparisons between the prototype 
composite and model gates. Two pressure sensors were placed on the composite gate: 
upstream (U/S) bottom left and downstream (D/S) bottom left. Additionally, nine 
accelerometers were placed on the gate, in locations shown in Figure 13. Composite 
accelerometer channel 35 (bottom right) did not record properly, and this comparison was 
discarded. The composite gate has a much greater vibratory response than the prototype 
steel gate under similar operating conditions. 

In general, model and prototype data corresponded very well, except for those cases 
noted above. Note the correlation of data throughout the gate rotational range in Figure 27. 
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Figure 27. D/S middle center pressure for prototype 649 vs. model 815 

Prop-Rod Force 

The prop-rod force had to be calculated for the 1:5 model based on total trunnion 
force, since the 1:5 model prop-rod sensor was damaged during operation. Table 10 shows 
a comparison of prototype prop-rod force to total model trunnion force for selected 
configurations. In Appendix E, Figure El shows the hinge-force comparisons between the 
prop-supported prototype and model gates. Apparent difference in the hinge reactions 
resulted due to thermal drift in the respective sensors, as discussed above, for dry-zero 
reference initialization during the experiments. Due to incorrect alignment of prop-rod 
hinge pin sensors, the full load along the direction of the prop-rod was used for comparison. 
The calculated model prop-rod force agrees well with the prototype prop-rod force 
operating under the same conditions. 

The weight of the prototype steel gate was not obtained prior to installation, thus its 
dry weight had to be determined from sensor data to be used in the calculation. Plots used 
to determine the required model trunnion force values for the above calculations are shown 
in Appendix F, Figures Fl through F3. The top plot shows the angular position of the gate 
as a function of time, permitting determination of the prop-rod force at the required gate 
angle. 
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Table 10 
Prototype Prop-Rod Force vs. Total Model Trunnion 
Force @ 65° 

Gate Condition Experiment # Force [K Ibf] 
1-GG 804 (Model)_ 149.8 

621 (Prototype) 147.2 

3-GG 808 (Model)_ 122.8 
630 (Prototype) 127.1 

Dry Test 803 (Model}. 12 
601 (Prototype) 14 

Stress/Strain 

In Appendix G, Figure Gl shows the strain-gauge orientation, while Figures G2 
through G31 show principal stresses, strains, and planes plots for the prototype steel gate in 
all operating configurations. These plots show ox, a2, £x, £2, and the principal planes 
through which these act versus prototype gate angle. These were determined from: 

°x ,(Sl =y ^li^-^2*2^-^2 (16) 

ti >Oo £a+ec±^2(£a-eb)
2+2(£b-ecy (17) 

tan 20 = 
l£b-£a-£c 

£„ -e. 
(18) 

when, 
£   + £ 

£b >-   a      e    and    0 -< & < + 90° (Beckwith and Marangoni 1990) 

The strain-gauge rosettes were located at the highest possible stress level in the gate 
as determined by finite element analyses of the Olmsted wicket. Maximum stress was 
approximately 7 ksi for Prototype Experiment # 630, 3-GG(L). Data obtained from axial 
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strain transducers mounted on the l:5-scale gate were used for comparison to confirm the 
validity of prototype stress and strain data. 

Flow-induced strain data were obtained from the l:5-scale wicket gate from four 
axial transducers mounted longitudinally 16 in. from the base of the gate. Two transducers 
were mounted on the top skin plate on the upstream side, and two were mounted on the 
bottom flanges on the downstream side. The axial strain for the 21-ft head difference, 3- 
gate gap configuration is shown in Figure 28. As indicated in the figure, the bottom 
transducers showed a reversal in strain level due to raising the gate, while the top locations 
showed a decrease in strain as the gate was lifted from the down to up position. This figure 
also shows the click marks which relate the time and the gate position during the 
experimentation. Maximum strain for the two U/S transducers is 60 to 70 ß. Multiplying 
by 3 by 107 psi (modulus of elasticity) and by 5 (stress scaling factor), a maximum 
longitudinal stress of 9 to 11.25 ksi is obtained. 
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igure 28. Flow-induced strain response for 1:5 wicket, 3-gate gap configuration 
(+ tension, - compression) 

This is in range with prototype data for maximum stress for the same gate 
configuration.  The D/S water level was lower for the model than for the prototype, and 
this added U/S water pressure on the model would increase the stress and strain measured 
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by the transducers. Additionally, strain-gauge rosettes were used on the prototype, while 
axial strain gauges were used on the model, causing both systems to provide data in slightly 
different formats. The axial transducers used in the model may not have been precisely 
oriented along the plane of principal strain, while the strain-gauge rosettes on the prototype 
permitted accurate determination of principal planes. Despite these differences, the primary 
reason for this comparison was to ensure the prototype data were within an acceptable 
range, which was validated. 

Analytical and experimental results of the Olmsted wicket indicate that the 
proposed flow and operating conditions do not pose any vibrational threat due to the flow- 
induced motion of the wicket (Chowdhury, Hall, and Davis in preparation and Chowdhury 
Garner, Seda, and Hall 1997). For the proposed reasonably low cycle of gate operation and 
a low anticipated strain level (an absolute maximum stress level of 11,250 psi is estimated 
from the model for the most critical flow configuration), such an applied stress does not 
pose a fatigue threat for the structural components unless environmental effects have 
harshly deteriorated the mechanical performance of the gate material. Moreover, the 
maximum strain level occurs only during the transitional phase of operation and lasts for a 
short duration. The strain level for the prop-supported gate, most active position during the 
course of operation, is significantly low compared to the maximum stress at the critical 
configuration. 
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4 Conclusion 

Comparison of experimental results for the prototype and l:5-scale physical model 
validates the effectiveness of the scaled similitude model in predicting the structural and 
hydraulic responses of the Olmsted wicket. A close agreement between the respective 
predicted and actual prototype response suggests the strength of the similitude model in 
reproducing the flow-induced dynamic behavior of the Olmsted dam. Results obtained 
from the comparison affirm: 

a. A very good correlation (MAC values over 70 percent for the respective first 
six modes) between the corresponding mode shapes for the prototype steel and 
1:5 model gates validates the structural similarity of the prototype and scaled 
model. Mode shapes 4 and 5 for the composite gate appeared to be transposed, 
which was attributed to differences in its internal support structure. 

b. The prototype steel gate provided a higher relative stiffness for both bending 
and torsional modes than the composite gate. If the composite gate weight 
were increased above 17.5 or 18.5 K lb, the composite gate would exhibit 
greater torsional stiffness than the steel gate in one or two modes, respectively. 

c. A time-scale factor was computed to adjust the kinematic dissimilarity of the 
prototype wicket. By adjusting the time scale in the flow-induced response 
spectra, the resonant peaks in the acceleration power spectra between the 
prototype and scaled model correlated well with each other, although peak 
alignment on some plots was difficult to observe. Low-frequency resonant 
peaks, below 15 Hz, associated with the forced motion of the wicket in the 
prototype did not appear in the model. A difference in the frequency 
distribution resulted due to the modeling distortion of the Froude model in not 
meeting the criteria of the elastic-mass similitude relationship. Despite the 
difference in the frequency spectra in the lower frequency range, the dominating 
modes contributing the most to the vibration of the prototype wicket were well 
reproduced in the model. As a result of the similarity of the first few elastic 
operating shapes, the model predicted dynamic response differed less than 20 
percent from that of the prototype response. 

d. Comparison of U/S and D/S power spectra agreed well for the prototype and 
the model. Time-domain pressure data showed an excellent correlation, except 
for the model U/S bottom center pressure (channel 17), which was found 
nonoperational during the postexperiment inspection. In general, the U/S 
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prototype pressure deviation from that of the model prediction was less than 15 
percent. The general (rend in the D/S pressure envelop was identical for both 
prototype and model. Except at the most turbulent region, the D/S pressure for 
the prototype did not deviate more than 10 percent than that of the model 
prediction for all cases except one. 

e.   Time-domain right hinge prototype and model reactions had less than 12 
percent difference for most cases. Inconsistencies were noted in left hinge- 
force data which resulted from improper calibration of the left shear pins. The 
left vertical transducer was nonfunctional during recalibration, thus making it 
impossible to obtain new calibration factors for correction. 

/    The composite gate has a much greater vibratory response than the prototype 
steel gate under similar operating conditions, as evinced in comparisons of 
time-domain plots of acceleration for each gate. 

g.   Analysis of the damping phenomenon noted in pressure and acceleration data 
demonstrated an expected increase in damping from dry to wet operating 
conditions. 

h.   Calculated model prop rod force had less than 5 percent difference from that of 
the prototype response operating under the same flow conditions. 

i.    Maximum stress was approximately 7 ksi for prototype critical flow 
configuration. Prototype stress was obtained from strain-gauge rosettes 
mounted on the prototype wicket Using a different type of removable 
externally mounted axial transducer, the model predicted a maximum stress of 
10.5 ksi for the identical critical flow-configuration. This difference is 
attributed to the variance in orientation of transducers, very low sensor output, 
and a slightly different D/S pool elevation during the prototype and model 
experiments. Despite the difference, this comparison ensures that the prototype 
stress was within an acceptable range of the predicted value. 
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Appendix A 
Natural Vibration Decay Plots 

Free-vibrational responses of the l:5-scale model and prototype gates for dry 
and wet conditions are plotted in this appendix. Top right corner of each plot 
shows the experimental conditions. Three accelerometer responses for each test 
condition were used to compute the damping factors, zeta. As an example, 
Figures Al to A3 show the transient response for the dry l:5-scale model. 
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Appendix B 
Time- and Frequency-Domain 
Comparisons of Pressure and 
Acceleration Data 

Selected flow-induced pressure and accelerometer responses for prototype 
(solid line) and l:5-scale model (dashed line) wickets are compared in this 
appendix (Figures Bl through B80). In these plots, model responses were con- 
verted to the prototype scale. Each page contains a time-and frequency-domain 
comparison of respective response for one of the three flow configurations used 
in this study. Flow-configurations include a one-gate gap (Test No. 804 vs 621), 
a two-gate gap (Test No. 808 vs 630), and a three-gate gap (Test No. 815 vs 649). 

Time-domain data show the variation of gate response as the wicket is raised 
from the down to the up position. A linear drift in the compared responses (see 
the acceleration plots) is the result of the mechanical and thermal drifting of the 
analog transducers during the data acquisition (see text for further explanation of 
the drifting problem). A difference in the data initializations also explains the 
reason for having this drift in the compared responses. Note that the prototype 
acceleration data compared in these figures were corrected to eliminate the static 
acceleration of the strain-gauge accelerometers as mentioned in the text. 
Prototype acceleration, even after correction, shows a static offset from the zero 
position. Thus, in the acceleration plots presented here, any shifted acceleration 
from the origin, if any, represent prototype response. Note that the acceleration 
reported here is the gate response normal to its surface. Figures B81 to B84 show 
comparison plots before the static acceleration was subtracted from the prototype 
raw data. A deviation in the measured prototype acceleration resulted due to the 
static motion of the wicket recorded by the prototype strain-gauge accelerometers. 

Peaks in the accelerometer PSDs correspond to the governing frequencies of 
the operating wicket. These are the major frequencies at which the gate is forced 
to vibrate during the flow conditions used for the experiment. An operating 
shape corresponding to each peaks may define the operating deflected shape of 
the wicket. 
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Appendix C 
Time-Domain Reaction and 
Pressure Plots— Prototype 
Steel vs 1:5 Model 

Selected time-domain reaction and pressure responses of prototype steel and 
l:5-scale model wickets, for all test configurations (test groups 1 to 7 in Table 5, 
main text) considered in this study, are compared in this appendix. These plots 
show the test numbers for which the results are presented. Sensitive axes of the 
shear transducer were fixed with the gate's local axes such that one axis was 
normal to the gate surface (vertical) and another was parallel to its longitudinal 
axis (horizontal). Thus, a positive horizontal force results due to the pulling of 
the gate away from the sill, and a positive vertical reaction resists the downward 
motion of the gate. A comparison of right and left reaction indicates that the 
reaction forces for both binges are asymmetrically distributed and their directions 
are reversed as the gate is raised from the down to up position. This type of 
reverse loading at the bottom hinges may exhibit fatigue distress due to long-term 
loading. An observation of the test results indicates that the peak response is 
attained right at or about the moment when the downstream air bubble (vacuum) 
beneath the gate pops up. The same phenomenon was observed during the 1:5- 
scale tests which showed that a three-gate gap (lone condition) is the critical 
configuration irrespective of head difference in the pool condition. This critical 
position for the 3GG(L) case was at about 16 to 24 deg. 
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Appendix D 
Time-Domain Pressure and 
Acceleration Plots— Prototype 
Composite vs 1:5 Model 

Selected time-domain pressure and acceleration history of the prototype 
composite and l:5-scale model wickets for seven different flow configurations 
(test groups 8 to 14 in Table 5, main text) are compared in this appendix. Each 
plot shows the test numbers for which the results are presented. Note that the 
composite gate acceleration always displays a higher fluctuation than the model. 
Unlike the steel gate geometry, the composite gate had a box-type transverse 
section (see Figure 10, main text). The composite gate was designed such that it 
is compatible and interchangeable in any of the five gate stations in the prototype 
facility. Thus, the supporting devices were independent of the wicket types. A 
detailed discussion of the design guidelines for the composite gate is presented 
elsewhere (Chowdhury et al. 1997). 
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Appendix E 
Fixed-Gate Response 

In this appendix, the wet gate response for the prop-supported wickets are 
compared for the prototype and the scale model. During this experiment, all 
gates were raised and the data were recorded for the fixed gate (see test group 15 
in Table 5, main text). No calibration factor was used in the prototype data. As 
mentioned in the text, the left-hinge vertical sensor was found inactive during the 
recalibration process. For design purpose, however, one should use the 
recalibration factor for estimating the design loads for the hinges. 
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Appendix F 
Prop-Rod Forces 

These plots show the responses of the supporting devices for a very small 
portion of the entire movement of a raising wicket. During a raising cycle, the 
primary cylinder is extended, thereby rotating the gate through an arc from -3 to 
68 deg, then stopped and retracted, and the load from the lifting cylinder was 
transferred to the prop rod at the 65-deg position where the prop rod locks in the 
hurter. Figure Fl shows the load transfer mechanisms on the prop rod when the 
cylinder is relieved from supporting the dry prototype wicket. During the raising 
cycle, the prop is being pulled along as it comes up the hurter and this dragging 
force causes the negative load reading in the prop rod sensor. Figure Fl shows 
the major transient response of the wicket at 65 deg when the prop falls into the 
notch in the hurter. The flat response of the prop rod continues to prevail for the 
stopped cylinder at 68 deg. As the cylinder is retracted from stopped position, the 
wicket load is transferred to the prop rod and the lifting cylinder is relieved from 
carrying the load of the wicket. Figure F2 shows the trunnion reactions (load 
carried by the hydraulic cylinder) of the model during the time-span when load is 
transferred from the cylinder to the prop rod. Figure F3 shows the load-transfer 
history of the trunnions for different flow configurations as indicated. The 
trunnion reaction at 65 deg, right before the disengagement of the cylinder, was 
used to estimate the equivalent prop rod reaction for the wickets. 
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Appendix G 
Principal Stress and Strain in 
the Prototype Steel Gate 

Prototype principal stresses, principal strains, and principal planes (for 
orientation see figure below) for different flow conditions of the steel gate are 
plotted in this appendix. Strain gauge locations are shown in Figure 12, main 
text, and all flow conditions shown in Table 5, main text, are used for studying 
the variation of flow-induced strain of the wicket. Strains are recorded as the gate 
is raised or lowered according to the condition shown in Table 5, main text. 
Principal parameters are plotted as a function of gate angle. 

Figure G1. Principal plane orientation from known axis 
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Figure G20. Prototype principal strain 2 vs gate angle for 3-GG down condition 
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TEST 0652 PRINCIPAL STRAINS 

20 40 
Gate Angle, degrees 

80 

Figure G29. Prototype principal strain 1 vs time for 2-GG (EL) down condition 

Appendix G Principal Stress and Strain in the Prototype Steel Gate G15 



Figure G30. Prototype principal strain 2 vs time for 2-GG (EL) down condition 
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Figure G31. Prototype principal planes vs time for 2-GG (EL) down condition 
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