
mm io6
The Design and Implementation

of the TRAINS-96 System: A Prototype
Mixed-Initiative Planning Assistant

Goerge M. Ferguson, James F. Allen,
Brad W. Miller, and Eric K. Ringger

TRAINS Technical Note 96-5
October 1996

UNIVERSITY OF
ROCHESTER
COMPUTER SCIENCE

llg^tmoN A

Approve^ foi: public releas«
J&'i* 41

The Design and Implementation of the TRAINS-96 System:
A Prototype Mixed-Initiative Planning Assistant

George Ferguson
James F. Allen
Brad W. Miller
Eric K. Ringger

The University of Rochester
Computer Science Department
Rochester, New York 14627

TRAINS Technical Note 96-5

October 1996

Abstract

This document describes the design and implementation of TRAINS-96, a prototype mixed-
initiative planning assistant system. The TRAINS-96 system helps a human manager solve
routing problems in a simple transportation domain. It interacts with the human using
spoken, typed, and graphical input and generates spoken output and graphical map displays.
The key to TRAINS-96 is that it treats the interaction with the user as a dialogue in which
each participant can do what they do best. The TRAINS-96 system is intended as both
a demonstration of the feasibility of realistic mixed-initiative planning and as a platform
for future research. This document describes both the design of the system and such
features of its use as might be useful for further experimentation. Further references and a
comprehensive set of manual pages are also provided.

This material is based upon work supported by ARPA - Rome Laboratory under research contract
no. F30602-95-1-0025, by the Office of Naval Research under research grant no. N00014-95-1-1088, and by
the National Science Foundation under grant no. IRI-9623665. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the views
of the sponsors.

REPORT DOCUMENTATION PAGE Form Approved

| OMB No. 0704-0188
Public reporting burden for this collection of Information la oatlmatad to overage 1 hour par roaponaa. Including tha tlma tor ravlewlng Inatructlona, aaarchlng axlatlng data

aoureaa, gatharing and maintaining tha data naadad, and competing and ravlawlng tha collactJon of Information. Sand commanto regarding thla burdan aatJmata or any other

aapact of thla collactJon of Information, Including auggaatlona for reducing thla burdan, to Waahlngton Haadquartara Sarvlcaa, Dlractorata for Information Oparatlona and

Raporta, 1216 Jaffaraon Davla Highway, Sulta 1204, Arlington, VA 22202-4302, and to tha Office of Management and Budget, Paperwork Reduction Project (07O4-Q18B),
Waahlngton, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

October 1996
3. REPORT TYPE AND DATES COVERED

technical report
4. TITLE AND SUBTITLE

The Design and Implementation of the TRAINS-96 System

5. FUNDING NUMBERS

ARPA/Rome Lab F30602-95-1-0025

ONR N00014-95-1-1088 6. AUTHOR(S)

G.M. Ferguson, J.F. Allen, B.W. Miller, and E.K. Ringger

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES

Computer Science Dept.
734 Computer Studies Bldg.
University of Rochester
Rochester NY 14627-0226

8. PERFORMING ORGANIZATION

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESSES(ES)

Office of Naval Research ARPA
Information Systems 3701 N. Fairfax Drive
Arlington VA 22217 Arlington VA 22203

10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

TRAINS TN 96-5

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution of this document is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

(see title page)

14. SUBJECT TERMS

mixed-initiative planning; dialogue systems; interactive systems
15. NUMBER OF PAGES

164 pages
16. PRICE CODE

free to sponsors; else $7.00
17. SECURITY CLASSIFICATION

OF REPORT

unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Contents

1 Introduction 1

2 Overview 3

2.1 Comparison to TRAINS-95 3

2.2 TRAINS-96 Functional Overview 3

3 Intermodule Communication: KQML 6

3.1 KQML Basics 6

3.2 KQML Syntax 6

3.3 KQML Parameters 7

3.4 KQML Performatives 8

3.5 KQML in TRAINS-96 9

3.6 KQML Summary 10

4 Input Manager 11

4.1 Client Registration 11

4.2 Selective Broadcast 11

4.3 Non-selective Broadcast 13

4.4 Module Status 13

4.5 Module Classes 14

4.6 Input Manager Display 14

5 Process Manager 16

5.1 Starting Processes 16

5.2 Input Manager Connection 16

5.3 Remote Processes 17

5.4 Other Process Manager Functions 17

6 Audio Manager 18

7 Speech Recognition 19

7.1 Speech Recognizer Operation 19

7.2 Speech Recognizer Files 20

8 Speech Post-Processor 21

8.1 Description 21

8.2 Speech Post-Processor Models 21

8.3 Speech Post-Processor Operation 21

9 Speech Generation 24

10 Key board Manager 26

11 Display 27

11.1 Object Manipulation Messages 27

11.2 Object Highlighting Messages 31

11.3 Dialog Box Messages 31

11.4 Display Control Messages 31

11.5 Display Output Messages 31

12 Parser 33

12.1 Parser Implementation 33

12.2 Parser Input 33

12.3 Parser Operation 33

12.4 Parser Output 36

13 Discourse Manager 39

13.1 Discourse Manager Implementation 39

13.2 Discourse Manager Operation 40

14 Problem Solver 42

14.1 Problem Solver Principles . . . 42

14.2 Problem Solver Representation 43

14.3 Problem Solver Implementation and Operation 45

15 Other Modules 51

15.1 Speech Controller (SPEECH-X) 51

15.2 Startup Screen (SPLASH) 51

15.3 Transcript (TRANSCRIPT) 53

15.4 Scenario Chooser (SCENARIO) 53

15.5 Shortcuts Panel (SHORTCUT) 54

15.6 Sound Effects (SFX) 55

15.7 Parse Tree Viewer (PVIEW) 55

15.8 Replay 56

15.9 Input Manager Utilities 58

15.10Dialog Archiving Tools 59

A Running the TRAINS System 62

A.l Setup Environment 62

A.2 Start IM and PM 62

A.3 Start Other Modules 63

B Speech Lab Setup 64

B.l Introduction 64

B.2 Audio Rack Setup 64

B.3 Audio Rack Settings 66

C Travel System Instructions 67

C.l System Overview 67

C.2 Before You Go 67

C.3 Workstation Setup 68

C.4 Workstation Boot Procedure 68

C.5 Audio Setup 70

C.6 Troubleshooting 73

C.7 Shutdown 73

C.8 Shipping List 74

D Manual Pages 76

D.l dlg_check: Check TRAINS-96 dialogue contents 77

D.2 dlgjorg: Organize TRAINS-96 dialogue contents 78

D.3 dlg-play: Play TRAINS-96 dialogue utterances 80

D.4 taudio: TRAINS Audio Manager 81

D.5 tdisplay: TRAINS Display Module 84

D.6 tint: TRAINS Input Manager 91

D.7 tim_cat: Send KQML messages from stdin to TRAINS IM 96

D.8 tim_client: Send and receive KQML messages to/from TRAINS IM 97

D.9 tim_exec: Exec a program with stdin/stdout connected to TRAINS IM . . 98

D.lOtim-msg: Send a KQML message to TRAINS IM 99

D.lltkeyboard: TRAINS Keyboard Manager 101

D.12 tparser: TRAINS Parser module 105

D.13tpm: TRAINS Process Manager 108

D.14tpsm: TRAINS Problem Solving module Ill

D.15tpview: TRAINS Parse Tree Viewer 113

ill

D.16 trains: Run the TRAINS System 115

D.17 treplay: Replay a TRAINS System session 117

D.18 tscenario: TRAINS Scenario Chooser 119

D.19 tsfx: TRAINS Sound Effects module 121

D.20tshortcut: TRAINS Shortcut Panel 123

D.21tspeech: TRAINS version of Sphinx-II speech recognizer 125

D.22 tspeechpp: TRAINS Speech Post-Processor 129

D.23 tspeechx: TRAINS Speech Controller 133

D.24 tsplash: TRAINS Splash Screen module 137

D.25 ttc: TRAINS TrueTalk client using AudioFile server 141

D.26 ttcl: TRAINS Discourse Manager module 144

D.27 ttranscript: TRAINS Transcript module 148

D.28tts: Runs TrueTalk server 151

D.29 tttalk: TRAINS Speech Generation module 152

D.30 libKQML: TRAINS System KQML Library 154

D.31 libtrlib: TRAINS System Module Library 158

D.32 libutil: TRAINS System Utility Library 161

IV

List of Tables

1 Reserved KQML Parameters 7

2 Common KQML Performatives 8

3 TRAINS Standard Messages 9

4 TRAINS Error Performatives 9

5 Input Manager (IM) Messages 12

6 Input Manager Status Indicators 14

7 Process Manager (PM) Messages 17

8 Speech Recognizer (SPEECH-IN) Messages 20

9 Speech Post-Processor (SPEECH-PP) Messages 22

10 Speech Post-Processor Models 22

11 Speech Generator (SPEECH-OUT) Messages 25

12 Display (DISPLAY) Messages 29

13 Display Object Creation Attributes 30

14 Display Object-specific Creation Attributes 30

15 Display Output Messages 32

16 Parser Speech-Act Types 35

17 Possible constraints for action GO 44

18 Possible constraints for action STAY 44

19 Problem Solver (PS) Interpretation Requests 46

20 Problem Solver (PS) Update Requests 48

21 Problem Solver (PS) Knowledge Base Requests 49

22 Speech Controller (SPEECH-X) Messages 52

23 Transcript (TRANSCRIPT) Messages 53

List of Figures

1 TRAINS-96 Schematic Diagram 4

2 KQML BNF syntax 7

3 Input Manager Classes in TRAINS-96 15

4 Input Manager Display 15

5 SPEECH-OUT Functional Diagram 25

6 Sample DISPLAY module map display 28

7 Sample Parser Output 37

8 TRAINS-96 Speech Controller Display 52

9 • Sample Parse Tree Viewer Display 57

10 Speech lab audio rack front and back panels 65

11 Travel system connection diagram 69

12 Travel system audio connection diagram 71

13 Travel system packing diagram 75

vi

1 Introduction

The TRAINS Project at the University of Rochester is a long-term research effort to de-
velop intelligent planning assistants that interact with their human managers using natural
language. The guiding principle of our approach is that human-computer interaction should
be treated as a dialogue between the participants, each of whom brings different skills and
objectives to the conversation. The goal is to allow each participant to do what they do
best. For the human, this usually means providing fairly high-level strategic advice, making
important decisions, and delegating authority as needed. The computer assistant's strength
is usually in managing the low-level details, alerting the human to problems or possibilities,
and developing exploratory scenarios for human and joint evaluation. The result of this ap-
proach is truly mixed-initiative interaction—both participants can guide the conversation
as needed to accomplish their goals.

Some of the many research issues being pursued in this work are:

• Representation of complex, realistic domains

• Integration of spoken, written, and graphical (i.e., mouse- or pen-based) input within
a language-oriented framework

• Maintaining the context of the interaction, including shared background, focus of
attention, etc.

• Robust understanding, especially of spoken language in the presence of errors

• Use of speech generation and graphical displays, especially maps, for human-computer
interaction

•

•

Explicit representation of and reasoning about the problem solving process

Integration of multiple, independent specialized reasoners

Trade-offs between expensive "guaranteed" algorithms and faster "satisficing" meth-
ods in the context of a mixed-initiative system

• Distributed processing with expressive inter-module communication

• Evaluation of interactive systems using end-to-end task-based metrics

Considerably more detail regarding these and other aspects of the research can be found at
our WWW site:

http://www.cs.rochester.edu/research/trains/

Most papers related to the TRAINS Project are either available directly from this site or
are listed in a comprehensive bibliography.

For the past several years, we have periodically implemented our approaches to t lir*x-
problems as they then stand. The result has been a succession of interactive planning

assistants, dubbed the TRAINS Systems [Allen and Schubert, 1991; Allen et al, 1995;
Heeman and Allen, 1995; Ferguson et al, 1996]. The most recent incarnation of the system,
TRAINS-96, is described in this report. We believe strongly that this process of boot-
strapping our research using an actual running system, however limited, results in a deeper
understanding of the problems than would theorizing based on introspection. As well, some
of the issues, such as distributed systems and evaluation, really cannot be investigated with-
out a running system from which to start. And finally, the fact is that it's more fun to sit
down and talk to the system than to run thousands of experiments on simulated data and
sift through the answers. Both the successes and the shortcomings are readily apparent and
lead to refinement of the theories and improvements in the next generation of the system.

The plan for the remainder of this document is as follows. First, we give an overview of
the TRAINS-96 system, including some of the history of the project as it pertains to the
design goals for TRAINS-96. Next, we describe the intermodule communication language
used in TRAINS-96, which is based on KQML, the Knowledge Query and Manipulation
Language. Subsequent sections describe each of the modules of the TRAINS-96 system.
Appendices provide information about setting up and running the TRAINS-96 system, as
well as a comprehensive set of manual pages.

2 Overview

As in TRAINS-95, the TRAINS-96 System is an interactive planning assistant in a simplified
transportation domain. The user is presented with a map of, say, the northeast United
States, and is given a task of routing a set of engines to various cities on the map. During
the interaction, a variety of environmental problems can occur that neither the user nor
the system was aware of in advance. The user can communicate using either spoken or
typed text, as well as clicking on display objects. The system communicates using spoken
language, map displays, and dialog boxes.

2.1 Comparison to TRAINS-95

Compared to TRAINS-95, the TRAINS-96 system is better designed, more robust, and, we
believe, better at helping the user with the routing task. In terms of design, TRAINS-96
uses a communication infrastructure based on KQML, the Knowledge Query and Manipula-
tion Language (Section 3). This formalizes many aspects of the system that were previously
ad hoc, and simplifies the implementation of many of the modules and tools. As well, all
modules have been redesigned, generally resulting in smaller modules, each with a simpler
role. For example, the monolithic Lisp program at the heart of TRAINS-95 has been broken
into several separate modules, each of which can be implemented, tested, and used inde-
pendently. In terms of robustness, the system has run literally hundreds of sessions with
dozens of users. Both the internal robustness of the system (i.e., avoiding crashes) and its
external robustness (e.g., to user speech errors or system limitations) have been continually
improved. We have left the system running for hours unattended while in use. Unfortu-
nately, the task itself remains very simple, as it was in TRAINS-95. We will be conducting
a set of experiments on the efficacy of the system, as we did for TRAINS-95 [Sikorski and
Allen, 1996], and we believe that the improvements will be evident. Nonetheless, making
the task more complex is our top priority for the next phase of the TRAINS Project.

2.2 TRAINS-96 Functional Overview

The TRAINS-96 System is composed of a set of independent modules connected by a
message-passing communication infrastructure arranged in a star topology. In most cases,
each module is implemented as a separate Unix process, although there is nothing to prevent
a single process from embodying several modules, or a single module from using several
processes. Indeed, both possibilities are used in TRAINS-96 (the former by the Discourse
Manager, Section 13; the latter by modules that access external servers, such as Speech
Recognition and Generation, Sections 7 and 9). The processes making up the system are
connected by an Input Manager process (Section 4) and managed by a Process Manager
process (Section 5).

To illustrate the organization of a typical configuration of the TRAINS-96 system, con-
sider the schematic diagram shown in Figure 1. Note that neither the Input Manager nor the
Process Manager nor a variety of other supporting modules are shown in the figure. Arrows
in the figure illustrate the flow of information through the system (actual communication
takes place via the Input Manager).

Q*-r
^. X-Windows

Server

KQML Messages

External API

TrueTalk
Server

Figure 1: TRAINS-96 Schematic Diagram (Input Manager, Process Manager, etc., not

shown)

Starting at the top of the figure, the user might start their utterance by pressing the
"Click to Talk" button on the Speech controller, Speech-X (Section 15.1). This sends a mes-
sage to the Speech-In module (Section 7) requesting that it start recognition. Speech-In then
reads audio data from the AudioFile server1 and outputs a series of messages corresponding
to recognized words. These messages are received by both the Parser (Section 12) and the
Speech Post-Processor (Section 8), the latter of which also outputs words to the Parser.
Both speech modules' outputs are monitored and displayed by the Speech-X module.

When the user releases the "Talk" button (or otherwise indicates they are done talking),
the Parser outputs a logical form summarizing the content of the user's utterance, as well
as such factors as its confidence in the interpretation. This is picked up by the Discourse
Manager (Section 13), which uses a rule-based system to determine what the user meant and
what to do about it. It uses the Problem Solver (Section 14) to help interpret the utterance
in terms of the plan or plans currently under consideration. The Problem Solver manages
the resources of the specialized domain reasoners at the system's disposal—in TRAINS-96
this is simply a specialized route planner built into the Problem Solver.

Finally, once the Dialogue Manager has settled on an interpretation and decided what to
do in response, speech output is produced by sending messages to the Speech-Out module
(Section 9), which uses an external server to generate the audio and then passes it to the
AudioFile server for playback. Map displays are generated by sending messages to the
Display module (Section 11), which renders objects onto the X-Windows display.

As mentioned previously, this brief description omits many of the complexities of the
TRAINS-96 System. It does not describe the infrastructure that supports the modules
execution and communication. As well, there are facilities for logging, debugging, and
replay, all of which are essential to actual everyday use of the system. Many of these details
are described in subsequent sections of this report.

'The AudioFile server and API provide network-transparent access to and sharing of audio resources,
similar to what the X Window System does for graphical resources. See Section 6.

3 Intermodule Communication: KQML

Inter-module communication in the TRAINS System is accomplished by modules exchang-
ing messages expressed using KQML, the Knowledge Query and Manipulation Language.
The reasons we have chosen KQML for use in TRAINS are:

• Previously, TRAINS modules exchanged ASCII strings whose format was defined
on an ad hoc, module by module basis. KQML imposes a regular structure on the
messages (which are still sequences of ASCII characters), making it easier to write

sharable, reusable routines for manipulating them.

• KQML defines structure without restricting content. Aside from some very general
syntactic constraints, KQML is designed to be independent of the details of the mes-
sages being exchanged. Certain conventions are used to permit efficient communica-
tion, but the meanings of the messages are defined independently.

• KQML was designed to support knowledge-based systems such as TRAINS. While we
do not necessarily agree with all the KQML prescriptions, we believe that our use of
KQML makes future integration with other components more feasible.

The rest of this section describes KQML and its use in the TRAINS System. It is intended
as a complement to the KQML specification [Finin et al, 1993], which provides more details
regarding message formats. Subsequent sections will describe the messages understood by

the components of the TRAINS System.

3.1 KQML Basics

KQML defines messages in terms of "performatives," a term from the semantics of natural
language verbs. In natural language, a performative is an utterance that accomplishes
something by the very fact of its being uttered, for example greeting someone by saying
"hello." In KQML, the various message types are identified with such verbs, and the message
is referred to as a performative. We will use the terms "message" and "performative"
interchangeably, and also use the term "performative" to refer to the verb involved (as
opposed to its arguments). Examples of KQML performatives include "tell," "ask-one,"
"reply," etc. These will be described in more detail below.

3.2 KQML Syntax

The syntax of a KQML message is Lisp-like, based on parenthesized lists of tokens and
strings. A simple BNF grammar of KQML syntax is shown inFigure 2. Tokens are roughly
sequences of non-space characters; strings are roughly double-quoted sequences of charac-
ters. The class of tokens beginning with a colon (":") are called "keywords" and typically
have special meanings. A KQML performative is a list whose first token is the verb (name)
of the performative, followed by keyword-value pairs defining the "parameters" of the per-
formative. For example, the following is a tell performative with two arguments, the
receiver of the message and its content:

<performative> ::= (<word> {<white> :<word> <white> <expr>}*)

<expr> ::= <word> I <quotation> I <string> I

(<word> {<white> <expr>}*)

<word> ::= <char><char>*
<numeric> I <special>

+ |-|*l/l&|-|-|_l

: I . I ! I ?
'<comma-expr>
<quotation> I <string> I ,<comma-expr>

(<word> -C<white> <comma-expr>}*)

<string> ::= "<stringchar>" I #<digit><digit>*"<ascii>*

<stringchar> ::= \<ascii> I <ascii-not-\-or-">

<char> ::= <alphabetic>

<special> ::= < I > I =

« I $ I •/.
<quotation> ::= '<expr>

<comma-expr> ::= <word>

Figure 2: KQML BNF syntax

Parameter Type Meaning
: sender token Identifies sender of message
:receiver token Identifies recipient of message
:reply-with expr Tag for subsequent messages
:in-reply-to expr Tag from previous message
:content expr Content of message
:language expr Syntax of content
:ontology expr Semantics of content

Table 1: Reserved KQML Parameters

(tell :receiver KB :content (P ?x "123"))

Case is usually ignored outside of strings. The KQML specification, however, is quite
picky about whitespace.

3.3 KQML Parameters

To facilitate communication, the KQML specification defines seven parameters common to
all performatives. While a performative needn't specify them, if they are used they must
be used with the defined meanings. This makes it possible to formulate a response to a
message even if most of it, even the verb, isn't understood. The seven reserved parameters
are shown in Table 1.

The first four reserved parameters (: sender, : receiver, :reply-with, : in-reply-to)
make communication possible by identifying the participants and allowing them to connect

Performative Meaning
tell Sender believes content to be true
ask-if Sender is asking if receiver believes content to be true
ask-one Sender is asking for a true instance of the content
reply Sender is answering a previous message
error Sender did not understand a previous message ("your

fault")
sorry Sender understood but could not answer a previous

message ("my fault")
request Sender is asking receiver to perform an action

Table 2: Common KQML Performatives

messages in logical order. The other three reserved parameters specify the content of the
message, with : language specifying the syntax and : ontology the semantics. These last
two parameters are not used in TRAINS-96.

3.4 KQML Performatives

KQML then goes on to define an initial set of performatives, and the specification gives
an English gloss of their intended interpretation. More precise formal specification of the
semantics of KQML messages is the subject of debate and research. Some of the basic
performatives used in the TRAINS System are shown in Table 2, with a short description
of their intended meaning. Interestingly, the request performative is not part of the KQML
specification. Perhaps this is an artifact of KQML's focus on querying knowledge bases,
rather than controlling components of a system such as TRAINS. While it is true that
a request to perform action A can be expressed using the standard KQML performative
achieve that A be performed (or perhaps that the results of A be true), this seems awkward
at best. Compare:

(request :content (kill P))

(achieve :content (dead P))
(achieve :content (killed P))

In any case, we use request in TRAINS for the majority of the imperative commands that
control modules' behaviors.

Many other KQML performatives are defined, some of which deal with naming, routing,
and identification of distributed components and services. Our approach to these issues
will be described in the next section, where the TRAINS-96 Input Manager is described.
Suffice it to say that we have not adopted all of KQML's prescriptions in this area, which
in our opinion starts to get away from KQML's focus on exchange of knowledge between
knowledge-based systems.

Performative Content Arguments
request exit status
request chdir dirstring
request hide-window
request show-window
tell start-conversation :name :lang :sex
tell end-conversation

Table 3: TRAINS Standard Messages

Performative Parameters Meaning
error
sorry

:code : comment Your fault
:code :comment My fault

Table 4: TRAINS Error Performatives

3.5 KQML in TRAINS-96

In the rest of this report, the set of KQML messages understood by each module of the
TRAINS-96 system will be presented in an abbreviated, tabular form. As an example,
Table 3 presents the common messages understood by all modules of the system. The
exit message requests that the module terminate with exit status as specified by the op-
tional argument (default 0). The chdir message requests that the module begin using
the given directory for output and logging. The hide-window and show-window requests
are self-explanatory, and obviously only apply to modules with X Window displays. The
start-conversation and end-conversation messages are also self-explanatory, and are
typically used to initialize a module when the user starts a conversation, and to clean up
when they finish. Some modules may ignore some of these messages, but they should not
generate errors when received.

In addition, modules may generate a variety of messages, which will be described in the
following sessions. However, two KQML performatives are used to indicate errors and should
be used consistently by all modules. These are shown in Table 4. The error performative
is used to indicate that the module did not understand a previous message. This includes
ill-formed and unknown performatives, as well as those whose arguments are inappropriate.
The sorry performative is used more sparingly to indicate that a module was unable to act
on a previous message even though it understood the message and should have been able
to act on it. Both performatives can provide as parameters a numeric : code and a string
:comment describing the problem. Any reply-with parameter in the message causing the
error should be used as the : in-reply-to parameter of the reply.

3.6 KQML Summary

To summarize, the main features of KQML as used in TRAINS-96 are:

• Regular, Lisp-like, easily-parsable syntax

• Reserved, common parameters

• Well-defined, intuitive performatives

• Content-independence

We have used this basis to build up a communication infrastructure for the TRAINS System
that is simple to use and easy to extend.

10

4 Input Manager

Intermodule communication in TRAINS-96 is based on a star topology of modules exchang-
ing KQML messages using socket-based inter-process connections. The TRAINS-96 Input
Manager (IM) sits at the hub of this network, where it functions primarily as a router of
KQML messages between other modules. The Input Manager is implemented as a standard
Unix server process, listening for new connections on a "well-known" socket address and
creating a new client context for each accepted connection. It then reads KQML messages
from its client connections and either acts on them (if they were sent to the IM itself) or
arranges for their delivery to the specified recipients. Clients are free to enter and leave
the system at will. The Input Manager can arrange suitable notifications for modules that
depend on the presence or status of other modules. The Input Manager also accepts and
acts on messages addressed to it (IM). The complete set of these messages is shown in
Table 5, and will be described in the rest of this section.

4.1 Client Registration

Once a module has established the socket connection to the Input Manager,2 the first thing
it must do is identify itself using the KQML register performative:

(register :receiver im :name name)

Multiple register messages are allowed, and it is assumed that whatever process is at the
other end of the connection will sort out the recipients of messages sent down the pipe (if this
matters). Typically, however, there is a one-to-one mapping of Input Manager connections
to modules.

This registration is sufficient for the Input Manager to provide basic message routing
using the : receiver parameter. As a convenience, if the : sender parameter is not given,
and if the Input Manager knows the name of the sender (from a previous register), it
fills in the : sender parameter before delivering the message. Note that we deliberately
allow a module to specify another : sender in a message, since security is not an issue for
TRAINS-96 while the ability to "forge" a message is essential for debugging and replay. Of
course, this could be disabled if needed.

4.2 Selective Broadcast

Many modules in the TRAINS system act as broadcasters of information, for example a
speech recognizer might broadcast the detection of a word, or the display might broadcast
the occurrence of a mouse click. This is implemented as follows in TRAINS-96: if Hi«-
:receiver parameter of a message received by the Input Manager is not specified, it i-
treated as a broadcast from the sender. The message is, however, only copied to module
that have previously registered interest in the sender's broadcasts. We call this "select iw

2The manpage (Section D.6) provides details of how to do this, or see Section 5 concerning the F'nx < w
Manager.

11

Performative Content Arguments

register n/a :name :class

request listen name/class

request unlisten name/class

request define-class name : parent
request dump
request exit status

request chdir dirstring

request hide-window
request show-window
tell* start-conversation :name :lang :sex

tell* end-conversation

tell ready
evaluate status name/class

monitor status name/class

unmonitor status name/class

broadcast performative

Table 5: Input Manager (IM) Messages (* indicates message is ignored)

broadcast," as opposed to a broadcast that is sent to all other modules unilaterally (which
is also available, see the broadcast performative). The use of selective broadcast avoids
modules needing to "ignore" broadcasts that they would otherwise receive, and reduces the

amount of data transferred due to broadcast messages.

In order to register interest in a module M's broadcasts, a module S sends the following

request to the Input Manager:

(request :receiver IM :content (listen M))

There is a corresponding unlisten request to stop receiving broadcasts. After this message

has been received by the IM, if M sends a message like:

(tell :content (word "hello"))

then S (and any other listeners to M) will receive a message of the form:

(tell :content (word "hello") :sender M :receiver S)

The Input Manager fills in the :sender field (since it wasn't specified in the original mes-
sage) and also fills in the : receiver field before sending the message. Note that this makes
it impossible to distinguish between a broadcast and a direct send of a message if the con-
tents are the same. We adopted this approach because it makes life easier for modules
that manage connections for other modules, and in practice we have not had a need to

distinguish the two cases.

12

4.3 Non-selective Broadcast

The selective broadcast technique is most useful for modules viewed as data generators,
especially in conjunction with the use of module classes, described below. In other circum-
stances a true broadcast is necessary, where a message is sent to all connected modules. For
example, in TRAINS-96, the start-conversation message is broadcast to all modules so
that they can take appropriate action at the start of a session.

To send a non-selective broadcast, the sender must, send a broadcast message to the
Input Manager. The content of the message is the performative to send to all connected
modules. For example:

(broadcast :receiver im :content (tell :content (start-conversation)))

If the Input Manager receives such a message from client S, then all connected clients M
except for S will receive a message:

(tell -.content (start-conversation) :sender S :receiver M)

The message is also processed by the Input Manager itself.

The key difference between selective and non-selective broadcast is that a module only
receives selectively broadcast messages if it has asked for them (with a listen request).
This is not true for non-selective broadcasts, which can therefore result in error replies (or
worse!) if a module receives a message that it is not expecting and cannot understand. In
TRAINS-96, we try to ensure that all modules at least accept those messages broadcast
non-selectively, even if they don't do anything with them.

4.4 Module Status

The Input Manager also provides another important service as the hub of the TRAINS-
96 communication architecture. It accepts and coordinates indications of module status,
allowing modules to synchronize with each other.

To report that it is ready to receive messages, a module sends a message of the form:

(tell :receiver IM :content (ready))

Note that a module may receive messages before it has indicated that it is ready (indeed,
this may be essential if it needs to make various queries before it is itself ready).3 If a
module S is interested in the status of a module M, it sends a request to the Input Manager:

(monitor :receiver IH :content (status M))

Immediately, and thereafter whenever the module M's status changes, S will receive a message
of the form:

(reply :sender IM :receiver S :content (status MX))

13

DEAD Module has never connected
CONNECTED Module is connected (and registered) but not ready
READY Module has sent ready message
EOF Module has closed connection

Table 6: Input Manager Status Indicators

where X is one of the status indicators listed in Table 6. A more complicated status-
reporting scheme could be devised if needed, but this has proven sufficient for TRAINS-96.
The evaluate performative can be used if only a single status report is needed, rather than

continual monitoring.

4.5 Module Classes

An important improvement in TRAINS-96 is the addition of module classes to the Input
Manager. Using this facility, modules can be grouped into classes, and these classes can
be used as arguments in requests such as listen and monitor. This allows a module, for
example, to listen for selective broadcasts from a class of modules, without knowing which
modules exactly (by name) make up that class.

To specify the class to which a module belongs, an additional argument must be specified
in the register message, as in:

(register :receiver IM :name name :class class)

The value of the : class parameter must be a known class (created with the def ine-class
request), or a list of such classes. In TRAINS-96, we define the very simple hierarchy shown
in Figure 3. The main use of these classes is to allow modules interested in user input (for
example, the Parser, Section 12) to receive the selective broadcasts from that class.

4.6 Input Manager Display

The Input Manager also provides an X Window System display of module status and mes-
sage traffic. A sample Screenshot of the IM display is shown in Figure 4, showing the
modules making up the TRAINS-96 system, including several implemented within the Dis-
course Manager (Section 13) using multiple register messages. This display was originally
implemented as a separate module, which had the advantage of not cluttering the basic func-
tions of the Input Manager. Unfortunately, this required that every message be copied to
the display module, effectively doubling the message traffic. The Input Manager can be
compiled without the display, should the overhead prove significant (it hasn't so far).

3A module must be registered in order to receive messages, of course, but it needn't be ready.

14

ANY

USER-INPUT USER-OUTPUT

SPEECH-OUT SPEECH-IN
SPEECH-PP
KEYBOARD

PARSER
DM
PS

RUNTIME

PM
AUDIO

SPLASH
SHORTCUT
SCENARIO

DISPLAY

Figure 3: Input Manager Classes in TRAINS-96

Figure 4: Input Manager Display (module status is indicated using color)

15

5 Process Manager

The Input Manager looks after inter-module communication once modules are connected
to it. The other core requirement for a system like TRAINS-96 is therefore a means of
launching and managing the processes that implement the modules. In earlier versions of
the TRAINS system, both message passing and process management were provided by a
single, complicated program. In TRAINS-96, we have split this into two programs, with
the Process Manager handling the process management aspect, thereby simplifying both

modules.

The main role of the Process Manager is to launch new processes and provide a means
for signaling and killing them, based on KQML messages it receives via the Input Manager.
The complete list of Process Manager messages is shown in Table 7.

5.1 Starting Processes

The start message requests that the Process Manager launch and manage a new Unix
process. The :name parameter identifies the process for subsequent kill messages. The
process is run on the host given by the :host parameter, or on the current host (i.e., the
same host as the PM itself is running on) if no -.host is given. The executable file actually
launched is given by the :exec parameter, which should be a complete pathname (i.e.,
starting with a slash).

The argument list and environment of the newly-started process can be specified using
the :argv and :envp parameters. The argument list, if given, should be a KQML list of
tokens or strings. The first element of this list will be argv[0] (traditionally the name of
the program), the second will be argv[l], and so on. The environment list, if given, should
be a KQML list of tokens or strings of the form " var=value", meaning that environment
variable var has the given value. If no :envp is given, the process inherits the current
environment. If :envp is given, the process' environment contains only those variables.

5.2 Input Manager Connection

As described in the previous section, the first thing a module in the TRAINS-96 System
must do is connect to the Input Manager and send the register message to identify the
connection. To simplify this procedure, the Process Manager will, by default, open a socket
connection to the Input Manager and then launch the new process with its standard input
and standard output connected to the IM.4 It will use the :name parameter (and :class
if given) to send an appropriate register message to the Input Manager before starting
the process. The : connect parameter to the start request can be set to nil if this is not

desired.

This is an extremely useful piece of functionality. It allows modules to be developed as
simple Unix programs that read standard input and write standard output, without having
to worry about socket programming and communication. This speeds development, aids

"This is similar to the role of inetd(8) in a Unix system.

16

Performative Content Arguments
request start :name :class :host :exec

:argv :envp :connect
request kill name : signal
request dump
request exit status
request* chdir dirstring
request* hide-window
request* show-window
tell* start-conversation :name :lang :sex
tell* end-conversation

Table 7: Process Manager (PM) Messages (* indicates message is ignored)

debugging, and allows the modules to be used in novel ways by hooking their inputs and
outputs together, for example using Unix shell pipelines in place of the Input Manager.

5.3 Remote Processes

The TRAINS System is designed to run on any combination of machines that support
standard Unix networking (sockets, rsh, etc.). As noted above, the :host parameter can be
used to specify remote execution of a module. In the current implementation, this is achieved
by creating a small shell script named pm. start. module (in the PM's current directory)
that sets the environment appropriately and then launches the desired program (:exec
parameter). This script is then run remotely using the rsh(l) remote shell command.

There are two possible side-effects of this procedure. First, the Process Manager need
to be run in a directory that is visible (and similarly named) to all machines on which
modules will be run. For example, running it in /tmp will cause problems when the /tmp on
the remote machine doesn't contain the script to be run. The second effect is that signals
do not always propagate to remote processes, with the result that some remote processes
may be left running after a process is killed (for example, when the Process Manager shuts
down). We plan to solve both of these problems eventually, but for now at least you've
been warned.

5.4 Other Process Manager Functions

The other Process Manager functions are trivial. The kill request sends the given signal
(default SIGTERM, 15) to the named process. The dump request prints the Process Manager's
internal data structures to standard error for debugging.

17

6 Audio Manager

One of the most difficult technical issues during the development of both TRAINS-95 and
TRAINS-96 was the management of the workstation audio devices and resources for speech
input and output, as well as other needs. Among the many problems were: (1) the speech
recognizer (Section 7) and speech generator (Section 9) used different sampling rates, while
our Sun workstation hardware supported only a single rate at once; and (2) we needed a
reliable way to know when audio output was finished despite system buffering, in order to
synchronize speech generation with other actions.

The TRAINS-95 system used two workstations, one for audio input and one for audio
output, to work around these problems. This was clearly not the ultimate solution, so
for early versions of TRAINS-96, we implemented an Audio Manager that could manage
multiple client connections for both input and output at arbitrary sample rates. This
module was controlled with KQML messages received via the Input Manager, although it
then established "sideband" socket connections for the transfer of the audio data itself.
This had the advantage that audio connections were recorded as part of the Input Manager
KQML message traffic, which was useful during debugging of the audio clients. The Audio
Manager was eventually undone by point (2) above, when synchronization issues with the
Sun audio hardware became too difficult to do properly.

For the final version of the TRAINS-96 system, we are using the AudioFile network
audio system developed at DEC [Levergood et a/., 1993a; Levergood et a/., 1993b]. This
package is based on the X Window System sources and attempts to do for audio what X does
for graphics, namely provide a network-transparent audio model based on a client-server
architecture. The package has support for a variety of platforms, including Sun and DEC
workstations, and could be ported to many others by using the X ports as a guide. The
AudioFile server is started when TRAINS-96 is launched. Those modules that use audio
connect to the server and transfer audio data using AudioFile library (Alib) routines.

The final TRAINS-96 Audio Manager is therefore implemented as an AudioFile client,
and provides an X/Motif interface to audio input and output settings. It provides input and
output level controls, a "VU" meter for adjusting record levels, and menus for switching
between microphone and line inputs, and speaker, headphone and line outputs. The Audio
Manager understands the core set of messages shown in Table 3 (page 9), although it ignores
them all with the exception of exit and hide/show-window.

18

7 Speech Recognition

Speech recognition in TRAINS-96 is performed by the SPEECH-IN module, which is based
on the Sphinx-II system from Carnegie Mellon University [Huang et al, 1992]. We made as
few changes as possible to the Sphinx code, mostly adding KQML input and output, fixing
a few bugs, and adjusting the audio routines to use the AudioFile server as described in
the previous section. A more substantial change involved enhancing the program's "live"
mode to provide incremental ssegmentation and scoring. The result is a "faceless" speech
recognition engine controlled by KQML messages with incremental output also in the form
of KQML messages. The complete set of messages understood by the SPEECH-IN module
is shown in Table 8.

To keep the speech recognition module as simple and as flexible as possible, it has no
user interaction components (display, controls, etc.) of its own. Instead, once it receives a
start message, it will start processing audio and outputting recognized words until a stop
message is received. In TRAINS-96, the start and stop messages are generated by the
Speech Controller module (SPEECHX, Section 15.1), among others.

7.1 Speech Recognizer Operation

Recognition results are output incrementally as the Sphinx-II engine settles on a hypothesis.
All outputs are selective broadcasts (i.e., there is no :receiver specified), and are sent to
LISTENing modules by the Input Manager (see Section 4.2). Each utterance begins with a
message of the form

(tell :content (start :uttnum AO)

This is sent when SPEECH-IN receives a start message, and the utterance number N
is incremented for each utterance in a conversation. The utterance counter is reset when
SPEECH-IN receives a start-conversation message.

When the Sphinx-II engine indicates that its hypothesis has changed, the new hypothesis
is compared with what has already been broadcast and new messages are sent. In the normal
case, the hypothesis has been extended with a new word, and the following message is sent:

(tell :content (word "string" :uttnum TV :index / :frame F :score S))

The text of the word is formatted as a KQML string in double quotes. The index / refers
to "index positions," the gaps between words as understood by the Parser. Index position 1
precedes the first word of the utterance. When the recognized word is actually several words
(such as "I-WANT" or "LET'S"), the index / is a list consisting of the starting and ending
indices. The frame parameter F is a list of two numbers indicating the range of acoustic
frames in the Sphinx-II audio input spanned by the word. The score 5" is an estimate of the
accuracy of the recognition at that word, based on Sphinx-II's acoustic score normalized by
the number of frames.

In addition to generating new words that extend, the hypothesis, Sphinx-II can also
revise a previous part of the hypothesis in light of further recognition. For example, "SINCE

19

Performative Content Arguments

request start
request stop
request exit status
request chdir dirstring
request* hide-window
request* show-window
tell* start-conversation :name :lang :sex
tell* end-conversation

Table 8: Speech Recognizer (SPEECH-IN) Messages (* indicates message is ignored)

IN AT" may get revised to "CINCINNATI" when the final syllable is processed. In this case,
the SPEECH-IN module sends the following message:

(tell :content (backto :uttnum N : index i))

This message invalidates words at all indices greater than or equal to I. When J is 1, the
entire hypothesis is invalidated. Since Sphinx-II often changes its mind about words on the
frontier of the recognition, we have implemented a form of buffering to reduce the number of
backto messages generated by SPEECH-IN. With this, the last k words of the hypothesis
are not output (until the utterance is complete). The value of k is controllable using a
command-line argument, and defaults to 2.

Finally, when SPEECH-IN receives a stop message, it stops processing audio and causes
Sphinx-II to terminate its search and output a final hypothesis. Appropriate word and/or
backto messages are generated, and when Sphinx-II indicates that the search is complete,
the following message is sent:

(tell :content (end :uttnum AO)

It is at this point that further processing of the utterance, e.g., by the Parser, usually begins.

7.2 Speech Recognizer Files

The SPEECH-IN module also records information in files stored in the directory given by
the last chdir message it received (or the current directory if no chdir messages have
been received). These include a file "sphinx.log" containing initialization parameters and
messages from Sphinx-II and, for each utterance, files "utt.jV.au" and "utt. yV .out",
containing the audio data and Sphinx-II output, respectively, for utterance N. The audio
datafiles consist of signed 16-bit linear PCM-encoded samples at 16000 Hz with no audio
headers. The logs contain a summary of the search results and the final hypothesis.

20

8 Speech Post-Processor

8.1 Description

The TRAINS-96 system includes a Speech Post-Processor module (SPEECH-PP) for cor-
recting the word-by-word messages coming from SPEECH-IN, the speech recognition mod-
ule. The post-processor listens to the message stream from the speech recognizer and
provides its own parallel output for use by the parser. In short, the purpose of the post-
processor is to improve word recognition accuracy and to thereby increase the likelihood of
a successful interchange between the user and the system. Further discussion of the post-
processor's design can be found in [Ringger, 1995], and a detailed experimental analysis of
its performance can be found in [Ringger and Allen, 1996].

The complete set of messages understood by the SPEECH-PP module is shown in

Table 9.

8.2 Speech Post-Processor Models

The SPEECH-PP module requires two models to perform helpful corrections: a language
model and a channel model. It is necessary to train these models prior to operation. The
training process will be described in a future report. Briefly, the language model describes
the likelihood of word collocations in the language a typical user will employ during a session
with the TRAINS-96 system. The channel model, which consists of several components,
reflects common erroneous behavior of the SPEECH-IN module,5 in terms of word-level

confusions.

For TRAINS-96, two sets of models are available: one for ATIS (distributed with Sphinx-
II) and one for TDC-75 (developed from sessions with the TRAINS-95 system as well as the
TRAINS-93 Dialogue Corpus [Heeman and Allen, 1995]). Each set must only be used when
SPEECH-IN is using its language model with the corresponding name. Using the wrong
SPEECH-PP model will defeat the port-processor's purpose entirely. For TRAINS-96, the
TDC-75 models are the default for both SPEECH-IN and SPEECH-PP. Their components
are listed in Table 10.

These models are employed in the post-processor's Viterbi search. For a given input word
sequence, the search considers and scores all possible corrections licensed by these models
(within some score threshold, or "beam"). The scores for each correction hypothesis are
derived exclusively from the model files.

8.3 Speech Post-Processor Operation

As with the SPEECH-IN module, the speech post-processor has no user interface compo-
nents (display, controls, etc.) of its own. Instead, once it receives a start message from

5Although it has only been trained for and used with the Sphinx-II speech recognition system from
Carnegie Mellon University, this technique can be trained for and used with other continuous speech

recognizers.

21

Performative Content Arguments

tell word string : uttnum : index : frame

request
request
request

start
end
offline

:uttnum
:uttnum
tlnil

request
request

exit
chdir

status
dirstring

tell* start-conversation :name :lang :sex

tell* end-conversation

Table 9: Speech Post-Processor (SPEECH-PP) Messages (* indicates message is ignored)

File-name
tdc-75.arpabo

tdc-75.wbic

Description
ARPA-style Back-off language model
Word bigram count table (non back-off lang, model)

tdc-75.confusion 1

tdc-75.inserted 0

tdc-75.mergecand 1
tdc-75.splitcand 2

1 channel model
1 channel model (currently unused)
2 channel model
1 channel model

Table 10: Speech Post-Processor Models

SPEECH-IN, it will start processing the word messages from SPEECH-IN and sending cor-
rected words until an end message is received. Corrected words are sent incrementally as
the post-processor settles on the most likely correction hypothesis. All outputs are selective
broadcasts (i.e., there is no :receiver specified), and are thus sent to LISTENing modules
by the Input Manager. Each turn begins with a message of the form

(tell :content (start :uttnum N))

This is sent when SPEECH-PP receives a start message from SPEECH-IN, and the turn
(or utterance) number TV is copied from the SPEECH-IN message.

When the post-processor's hypothesis changes, the new hypothesis is compared with the
whole previously broadcast hypothesis, and new messages are sent. In the typical case, the
hypothesis has simply been extended with a new word, and the following message is sent

accordingly:

(tell :content (word "string" :uttnum TV :index/ :scoreS))

The text of the word is formatted as a KQML string in double quotes. The index I refers to
index positions, the gaps between words as understood by the parser.6 For a more detailed

6The next version of the post-processor will use acoustic frame numbers in place of index positions.

22

discussion of index positions, see Section 7 regarding Speech Recognition and the SPEECH-
IN module. The score 5 is a probability estimate of the accuracy of the correction for that
word, based on both models.

In addition to generating new words that extend the hypothesis, the post-processor can
also revise a part of the hypothesis already broadcast, in light of subsequent input messages.
For example, "TO" may be replaced by "TOLEDO" when "LEAVE" appears from the recognizer.
In this case, the SPEECH-PP module sends the following message:

(tell : content (backto :uttnum N : index/))

This message invalidates words at all indices greater than or equal to /. When / is 1,
the entire hypothesis is invalidated. Since the post-processor often changes its mind about
words on the frontier of the recognition, it reduces the number of necessary backto messages
by buffering one word position. Providing backto notification is complicated by the fact
that backto messages also appear on the input as they come from SPEECH-IN.

Finally, when SPEECH-PP receives an end message, it stops expecting incoming mes-
sages, terminates its search, and outputs its final hypothesis, including the contents of the
frontier buffer, by sending appropriate word and/or backto messages. Once the final word
messages have been sent, the following message is sent:

(tell :content (end :uttnumiV))

The SPEECH-PP module also records information in a log file called speechpp. log,
stored in the directory given by the last chdir message received (or the current directory if
no chdir messages have been received). The log file begins with a listing of configuration
parameters and contains a record of all incoming and outgoing message traffic along with a
record of the complete hypothesis at any stage in a given turn.

Lastly, the offline message is sent by the Speech Controller module (SPEECH-X, 15.1)
in response to user control. An argument oft causes the Post-Processor to go off-line. The
Parser then receives only the messages sent by SPEECH-IN. An offline message with an
argument of nil brings the Post-Processor back online.

23

9 Speech Generation

Speech generation in TRAINS-96 is performed by the SPEECH-OUT module, which acts
as an interface to the TrueTalk generation engine from Entropies, Inc. A diagram of the
relationship between SPEECH-OUT, the TrueTalk server, and the AudioFile audio server
is shown in Figure 5. At startup, connections are established to the two servers, and
generation is then controlled by KQML messages sent to SPEECH-OUT. The complete set
of messages understood by SPEECH-OUT is shown in Table 11.

As is obvious from the table, the SPEECH-OUT module has only one purpose. Upon
receipt of a say request, it passes the string to the TrueTalk engine for synthesis. The
resulting audio data is returned to SPEECH-OUT through the TrueTalk API, and is then
sent to the AudioFile server for output. When the audio server indicates the audio output
is complete, SPEECH-OUT generates the following reply:

(reply :content (done))

Of course, any reply-with in the original say request is used as the in-reply-to for the
reply. This reply can be used to synchronize speech generation with other activities, such
as displays.

One technical issue bears mentioning here. The TrueTalk server can synthesize speech
at either 8 kHz or 12 kHz (signed 16-bit linear PCM samples). Due to limitations of the
AudioFile server, and the fact that Sphinx-II requires 16 kHz samples for recognition, we use
the 8 kHz generation rate from TrueTalk and convert it to 16 kHz by linear interpolation.
The AudioFile server provides smooth playback and the important ability to determine
when audio playback has completed.

24

strings

TrueTalk API

audio

TrueTalk
(tts/daemon)

Figure 5: SPEECH-OUT Functional Diagram

Performative Content Arguments

request say string

request exit status

request* chdir dirstring

request* hide-window

request* show-window

tell* start-conversation :name :lang :sex

tell* end-conversation

Table 11: Speech Generator (SPEECH-OUT) Messages (* indicates message is ignored)

25

10 Keyboard Manager

The TRAINS-96 Keyboard Manager module, KEYBOARD, is responsible for typed input
and other keyboard-related issues. It understands the basic set of KQML messages shown
in Table 3 (page 9), although it ignores start- and end-conversation as well as chdir.

The Keyboard Manager presents a window into which the user can type and incremen-
tally outputs typed words as KQML messages of the form:

(tell :content (word "string" :index /))

The text of the word is formatted as a KQML string in double quotes. The index I refers to
index positions, the gaps between words as understood by the parser. For a more detailed
discussion of index positions, see Section 7 regarding Speech Recognition and the SPEECH-
IN module. The Keyboard Manager buffers a small number of words internally to allow the

user to make corrections.

When the user hits the Return key, the Keyboard Manager sends any buffered words
and then sends a message of the form:

(tell .-content (end))

When the user backspaces over a previously-output word, the Keyboard Manager sends a

message of the form

(tell :content (backto :index J))

to invalidate words at all indices greater than or equal to I. When / is 1, the entire
hypothesis is invalidated. These messages are identical to those generated by the speech
processing modules (SPEECH-IN, Section 7, and SPEECH-PP, Section 8) except that the
Keyboard Manager does not maintain any numbering of the user's utterances.

One technical issue is worth mentioning here. When the Keyboard Manager's window
is visible, it places an active grab on the user's keyboard in order to receive keyboard input
regardless of the location of the mouse pointer on the screen. A hotkey (currently the
left "Alt" key) allows the user to send start and stop messages to the speech recognizer,
allowing simultaneous use of the mouse with spoken input. The keyboard grab can be
enabled and disabled using a command-line option or using the Keyboard Manager menus.
For more details, see the manpage (Section D.ll, page 101).

26

11 Display

The TRAINS-96 Display module provides an object-oriented map display that forms the
main graphical interface of the TRAINS-96 system. A sample Screenshot is shown in Fig-
ure 6. Map objects can be created, modified, and destroyed dynamically using KQML
messages received via the Input Manager. In addition, KQML messages are generated by
the Display in response to user actions such as mouse clicks and drags. The Display module
is implemented as a standard X Window System client, which ensures portability across a
large range of platforms.

The interface language used by the Display module is among the most complicated of
any module in the TRAINS-96 System. The complete set of messages understood by the
Display module is shown in Table 12. Due to the complexity of this interface, the messages
will be described in several sections.

11.1 Object Manipulation Messages

The create message is the most important but also the most complicated message under-
stood by the Display. The possible attributes are shown in Table 13. The :name and :type
attributes are mandatory—most of the others have suitable defaults.

The :name attribute names the new object and can be used subsequently to refer to
it. The :type attribute sets the type of the object, currently one of city, track, engine,
route, or region. The : displayed attribute determines whether the object is visible (and
selectable) or not. The : depth attribute sets the depth of the object on the display-deeper
objects (greater : depth) are drawn under shallower ones. The :bg attribute indicates
whether the object is considered part of the "background" (i.e., is dynamic or not). See the
setbg request, below, for details. The : color and :f illcolor attributes are X color names
(or X RGB color specs). The :f ill attribute varies from 0 (unfilled) to 100 (completely
filled), and the :thickness attribute affects the borders of the object.

The shape of the object can be specified using the : shape attribute and one of the forms
listed in the table, although most object types also have default shapes. The default shape
for a track is a line connecting the endpoints, for an engine it is a simple schematic engine
thingo, and for a route it is a series of spline curves along the tracks in the route. The loc
attributes (locations), can be the names of objects, meaning their centers, or a list (X Y)
of coordinates in the Display window (the origin is the upper, left corner). For polygon
and multiline shapes, :points means the locations are absolute coordinates and :rpoints
means they are relative (after the first one, of course).

Finally, the create request can specify attributes specific to the type of object being
created. These additional attributes are shown in Table 14. The :orientation attribute
can be one of north, northeast, east, etc., describing the position of the label relative
to the object (for cities) and the position of the engine relative to the city it is :at (for
engines). The :outlined attribute for engines is an alternative for :fill 0 or :fill 100.

The other Display object manipulation messages are pretty much self-explanatory. The
destroy request destroys the named object, removing it from the Display. The display and

27

Milwaukee

Chicagj

Montreal!

fjjslndidhapol

Figure 6: Sample DISPLAY module map display, showing regions, cities, tracks, engines,
routes, and highlights

28

Performative Content Arguments
Object Manipulation
request create :name :type ... see Table 13
request destroy obj
request display obj
request undisplay obj
request set obj attr-value pairs
request default attr-value pairs
Object Highlighting
request highlight obj :color :type :flash
request unhighlight obj :color :type :flash
Dialog Boxes
request confirm tag str
request dialog type str
Display Control
request canvas :title :height :width
request translate X Y
request scale X Y
request setbg
request say str
request postscript str
request refresh
request restart
request map str
Common Messages
request exit status
request* chdir dirstring
request hide-window
request show-window
tell start-conversation :name :lang :sex
tell end-conversation

 ■—— .

Table 12: Display (DISPLAY) Messages (* indicates message is ignored)

29

Attribute Value

:name string
:type city, track, engine, route, or region

:displayed tlnil

:depth N
:bg t |nil

:color string
:fillcolor string

:fill N
:thickness N

: shape (circle :center loc :radius N)
(poylgon :center loc :points| :rpoints (.loci loc2 . ..))

(multiline :points|:rpoints (loci loc2 ...))

Table 13: Display Object Creation Attributes

Type Attribute Value

city :label sir
:orientation orientation
:ptsize N

track :start loc
rend loc

engine :at loc
:orientation orientation
: outlined tlnil

route :start city
:tracks (objl obj2 ...)

Table 14: Display Object-specific Creation Attributes

30

uiidisplay requests toggle whether an object is visible (and selectable). The set request
allows attributes of the object to be changed, and the default request allows the default
values of attributes for future creates to be set.

11.2 Object Highlighting Messages

The highlight request causes the given object to be highlighted. The Display supports
both object highlights, where the color of the object is changed, and circle or rectangle
highlights where the appropriate shape is drawn around the object. The : flash attribute
can be nil meaning don't flash (the default), t, meaning flash the highlight forever, or a
number, meaning that the highlight should flash that many times and then unhighlight.
Multiple highlights can be applied to an object and they are rendered in the order they
were applied. The unhighlight request removes the matching highlight from the given
object. If no attributes are given, all highlights are removed from the object.

11.3 Dialog Box Messages

The Display module supports two types of dialog box. A blocking confirmer is presented
in response to a confirm request. When the user selects either "OK" or "Cancel," the
Display sends a reply indicating the choice. The dialog request, on the other hand, puts
up a non-blocking dialog box containing some information, for example the goals of the
current scenario. This is obviously something that will need to be developed as we start
using more complicated multi-modal displays.

11.4 Display Control Messages

These messages either affect the internal operation of the Display module or perform some-
what auxiliary functions. The canvas request sets the title, height and width of the Display
window. The translate and scale requests set global translation and scaling factors that
are used for subsequent create requests. The setbg request sets the background pixmap of
the Display's window to include any objects whose :bg attribute is set to T. These objects
are then not redrawn during Display updates. This is typically used once per map after
the map objects have been created but before any engines, routes, etc., have been created.
It is necessary to minimize flashing during redraws of complicated displays. The say re-
quest adds text to the "system output" window above the map display, the postscript
request dumps a Postscript file describing the current display, the refresh request redraws
the display, and the restart request destroys all objects and rereads the initial mapfile.
Finally, as indicated previously, the mapfiles are simply files containing these very same
messages—the map request causes the Display Module to read the indicated mapfile.

11.5 Display Output Messages

The Display module also generates messages in response to user mouse and keyboard ac-
tions, although the latter function has now been taken over by the Keyboard Manager

31

Performative Content Arguments
tell
tell
tell
tell
tell

mouse :select objl obj2 ...
mouse :drag obj :from obj :to objl obj2
word word :index
backto :index
end

Table 15: Display Output Messages

(Section 10). These messages are summarized in Table 15. The mouse messages provide
a list of objects "close" to the location of the mouse click, relying on other modules to
do whatever context-dependent disambiguation might be necessary (e.g., the system might
be expecting a city). The other messages use the same protocol for buffered, incremental
output of the user's typed input as the speech recognition modules SPEECH-IN (Section 7)

and SPEECH-PP (Section 8).

32

12 Parser

One of the main intellectual claims embodied in TRAINS-96 (and in the TRAINS Project in
general) is that user actions and utterances should be interpreted as linguistic actions, that
is, as language. For this reason, all user input, including words from speech recognition,
typed input, and graphical gestures, are interpreted by the Parser module. From this
input, the Parser generates a logical form that serves as the first stage of interpretation of
the user's "utterance" (where the quotes emphasize that we are not concerned solely with
spoken language). This section provides a general introduction to the Parser and how it fits
into the System, followed by a detailed description of the messages it understands and of the
logical forms that it generates. The aim is to provide both an understanding of the current
state of the Parser as well as the issues involved in extending it beyond the TRAINS-96
domain and problems. Since the Parser is the first interpretive stage of the TRAINS-96
System, this will also amount to a description of the linguistic capabilities of the System as
a whole.

12.1 Parser Implementation

The Parser is implemented as a Common Lisp image. It reads KQML messages from
standard input (Lisp stream *standard-input*) and writes KQML messages to standard
output (Lisp stream *standard-output*).

12.2 Parser Input

The parser can receive words one at a time, or in groups. It is designed to receive messages
directly from the speech recognizer (sender SPEECH-IN) and the post-processor (sender
SPEECH-PP). If it receives post-processor messages for an utterance, it ignores the speech
recognition messages. This way, if the post-processor is disabled or offline, the system
still runs. The messages are the same format from either source, and are documented in
Sections 7 and 8.

Typed words from the Keyboard module (see Section 10) are interpreted identically
to words recognized by the speech modules. There is one difference worth noting: the
Keyboard module provides neither utterance numbers nor a start message. The Parser
handles the former by ignoring the utterance number and the latter by interpreting a word
following an end as an implicit start.

The Parser also understands messages indicating user mouse actions sent by the Display
module (see Section 11). The exact interpretation of these messages is still somewhat ad
hoc and better handling of them is the subject of current research.

12.3 Parser Operation

Given that errors are inevitable, robust parsing techniques are essential. The Parser mod-
ule uses a pure bottom-up parser based on that described in [Allen, 1995] to identify the

33

possible constituents at any point in the utterance based on syntactic and semantic re-
strictions. Every constituent in each grammar rule specifies both a syntactic category and
a semantic category, plus other features to encode co-occurance restrictions as found in
many grammars. The semantic features encode selectional restrictions, most of which are
domain-independent. For example, there is no general rule for PP attachment in the gram-
mar. Rather there are rules for temporal adverbial modification (e.g., "at eight o'clock"),
locational modification (e.g., "in Chicago"), and so on. Documentation on the form of the
grammar and the functions of the parser are found in [Allen, 1995].

The end result of parsing is a sequence of speech acts rather than a syntactic sentence.
Viewing the output as a sequence of speech acts has significant impact on the form and style
of the grammar. It forces an emphasis on encoding semantic and pragmatic features in the
grammar. There are, for instance, numerous rules that encode specific conventional speech
acts (e.g., "That's good" is a CONFIRM, "Okay" is a CONFIRM/ACKNOWLEDGE,
"Let's go to Chicago" is a SUGGEST, and so on). Simply classifying such utterances as
sentences would miss the point. Thus the parser computes a set of plausible speech act
interpretation based on the surface form, similar to the model described in [Hinkelman and
Allen, 1989].

We use a hierarchy of speech acts, shown in Table 16, that encode different levels of
vagueness, including an act (SPEECH-ACT) that indicates content without an identified
illocutionary force. This allows us to always have an illocutionary force identified, which
can be refined as more of the utterance is processed. The final interpretation of an utterance
is the sequence of speech acts that provides the "minimal covering" of the input, i.e., the
shortest sequence that accounts for the input. The speech act forms reflect the surface
form of the utterances, and fall into classes, organized along the lines of Searle's taxonomy
[Searle, 1969]. Note that there are some acts, such as WARN, that do not appear as output
from the parser but may be recognized by the system at later stages of processing. This
is because there are no surface indicators of warning that are relevant to this domain (in
another domain the utterance "Watch out!" might be relevant and be interpreted as a
warning). If an utterance were completely uninterpretable, the parser would still produce
an output - namely, a TELL act with no identified content! The full specification of the
output of the parser can be found in [Allen, 1996a].

For example, consider a garbled utterance from an actual TRAINS-96 session:

Okay now I take the last train in go from Albany to is

The best sequence of speech acts covering this input consists of three acts:

1. a CONFIRM ("Okay");

2. a TELL, with content to take the last train ("Now I take the last train");

3. a REQUEST to go from Albany ("go from Albany").

Note that the "to is" at the end of the utterance is simply ignored as it is uninterpretable.
While not present in the output, the presence of unaccounted words will lower the confidence
score assigned by the parser to the interpretation.

The actual utterance was:

34

Representative Acts
TELL

ID-GOAL

The most generic act, used for simple declarative sentences
and for speech acts that were constructed from fragments
with no clue as to the speech act.
A declarative utterance that explicitly introduces a goal, such
as "I want to go to Boston."

Directive Acts
REQUEST

SUGGEST

YN-QUESTION

WH-QUESTION

The generic directive act. Used for imperatives and for frag-
mented utterances with clue words such as "please."
For utterances that syntactically capture suggestions such as
"Let's do X," and "How about X?"
For interrogative sentences, and eventually for other utter-
ances with question clues (such as intonation).
For sentences involving WH queries, and fragments involving
WH terms.

Expressive Acts
EVALUATION

APOLOGIZE
NOLO-PROBLEMO

For utterances that express an evaluation such as "Good,"
"Bad," "That's good," etc.
Conventional utterances such as "I'm sorry."
Convention response to APOLOGIZE such as "No problem,"

Other Conventional Acts (Declaratives?)
GREET Conventional greetings such as "Hi," "Hello," ...
CLOSE Conventional closings such as "Bye," "See ya," ...

REJECT Utterances that reject a proposal such as "No," and utter-
ances with "instead," such as "Go through Avon instead of
Bath."

CONFIRM Utterances that confirm a proposal or answer a yes/no ques-
tion, such as "Yes."

ACKNOWLEDGE Utterances that may simply be acknowledging the interaction
or confirmed, such as "OK," "uh huh," ...

NOLO-COMPRENDEZ A small class of acts indicating non-comprehension, such as
"huh?" and "What?"

Table 16: Parser Speech-Act Types

35

Okay now let's take the last train and go from Albany to Milwaukee.

Note that while the parser is not able to reconstruct the complete intentions of the user,
it has extracted enough to continue the dialogue in a reasonable fashion by invoking a
clarification subdialogue. Specifically, it has correctly recognized the confirmation of the
previous exchange (1), and recognized a request to move a train from Albany (3). Act 2
is an incorrect analysis, and results in the system generating a clarification question that
the user in fact ended up ignoring (in the actual session). Thus, in terms of the goal of
furthering the conversation, the analysis produced by the robust Parser is fairly accurate.

12.4 Parser Output

For each user utterance, the Parser generates a tell performative (with no :receiver, i.e.,
selectively broadcast) whose : content is a logical form describing the utterance's content.
In this logical form, information about the sentence is captured in a set of slots. For
sentences that parse completely, this can be viewed merely as an implementation issue.
For ill-formed sentences, however, this representation allows the parser to produce partial
interpretations using the same format as for fully-parsed sentences. This makes it easier to
develop robust processing mechanisms in the later stages of processing.

Consider an example. The output for the sentence "Go from Avon to Bath, please" is
shown as Figure 7. As you can see, the output is a list consisting of the following:

• The speech act performed. In this case, SA-REQUEST.

•

•

•

•

Objects mentioned in the utterance. In this case, these are the logical forms for the
noun phrases "Avon" and "Bath".

Paths mentioned. In this case, this is the logical form of "from Avon to Bath".

Semantics, which captures the full propositional content of the utterance. In this case,
it is the action of going from Avon to Bath. Note the LSUBJ of the proposition is the
special form *Y0U* indicating the "understood" subject of the imperative.

Noise: words that were unknown to the parser (none in this example).

Social-context: indication of politeness and other factors. In this case, "please" is
represented by (POLITE PLEASE).

Reliability: a score between 0 and 100 indicating the confidence the parser has in
this result. This is most useful when the parser only partially parsed the utterance.
Generally, scores above 75 are pretty good, while scores below 25 should be taken
with a grain of salt.

Mode: whether the input was typed, spoken, or graphical (useful for generating re-
sponses).

Syntax: identifies parts of the logical form associated with important syntactic con-
structs, such as the subject, object, etc.

36

(SA-REQUEST
:OBJECTS ((DESCRIPTION (STATUS NAME) (VAR V2242)

(CLASS CITY) (LEX AVON) (SORT INDIVIDUAL))

(DESCRIPTION (STATUS NAME) (VAR V2253)

(CLASS CITY) (LEX BATH) (SORT INDIVIDUAL)))

:PATHS ((PATH (VAR V2238) (CONSTRAINT
(AND (FROM V2238 V2242)

(TO V2238 V2253)))))

:SEMANTICS (PROP (VAR V2231) (CLASS GO-BY-PATH)
(CONSTRAINT (AND (LSUBJ V2231 *YOU*)

(LCOMP V2231 V2238))))

:NOISE NIL
:SOCIAL-CONTEXT (POLITE PLEASE)

:RELIABILITY 100

:MODE TEXT
:SYNTAX ((SUBJECT . *YOU*) (OBJECT))

:SETTING NIL
:INPUT (GO FROM AVON TO BATH PLEASE))

Figure 7: Sample Parser Output

37

• Setting: identifies temporal and location information in the utterance.

• Input: the words associated with this particular interpretation (since in general the
input may be accounted for by several interpretations).

Further details of the Parser's logical form, including significantly more detail regarding the
representation of the semantics, can be found in [Allen, 1996a].

38

13 Discourse Manager

The Discourse Manager is responsible for interpreting the user's utterances, and figuring out
what to do about them. For problem-related utterances such as suggestions, this involves
passing them on to the Problem Solving module and integrating the results. Before doing
so, however, the Discourse Manager must first determine exactly what has been said by the
user, fill in any elided or presumed information, and use the discourse state to check the
salience of the current utterance (and response) to generate a preferred interpretation. The
Discourse Manager is also responsible for generating system output using the DISPLAY and
SPEECH-OUT components. The rest of this section provides a very high level overview of
the Discourse Manager's operation.

13.1 Discourse Manager Implementation

The TRAINS-96 Discourse Manager is implemented as a Common Lisp image. Rather than
using the standard input and standard output to exchange KQML messages via the Input
Manager, the DM opens its own socket connection to the IM and communicates via that
connection.7 This means that if the DM is started by the Process Manager (PM), the start
request should specify ": connect nil" to leave standard input and output attached to the
terminal.

The Discourse Manager for TRAINS-96 is made up of a number of components, most
of which are described further in this section:

Context Manager: Manages discourse contexts and performs operations such as pushing
a new context, etc.

Reference: Resolves indexical and anaphoric references using discourse context

User Model: Maintains system's view of what the user knows, intends, etc.

World Model: Maintains system's view of the external world

Prince: Main "verbal reasoner," responsible for disambiguating speech acts, communicat-
ing with Problem Solver, and coordinating output.

Actualization: Turns system output needs into explicit requests for Display and/or Spwh
Generator modules.

Self Model: Maintain's system's view of it's own beliefs and intentions

Display Model: Maintains system's view of what is on the display, suitable for iw
in generation and in resolving indexical references (e.g., "the red engine")

While the components are presented hierarchically, in fact the components are separat«"
(within the same Lisp image) and communicate by exchanging KQML messages (internall) j

7This was necessitated by a desire to run the DM using Allegro CL's Emacs interface during debusing
although in the main system the DM runs as a separate Lisp image.

39

The dependency relation above shows which modules are closely tied, e.g., that reference is
the heaviest user of the World Model, not that no other module will use it. For example,
Reference may access all of the Models and the Problem Solver. To resolve "the blue train"
it needs to query the Display Model to find which train is being presented as blue, to resolve
the "train in Cincinnati" it may need to ask the Problem Solver which train is involved in
a plan to go through or end up in Cincinnati, and so on.

13.2 Discourse Manager Operation

The input to the DM is the speech act output by the Parser (see Section 12).

Discourse Context and Reference

This set of speech acts is first looked over by the Context Manager to store any lexical
information that may influence later anaphor resolution and generation (e.g., the utterance
subject and object).

It is then passed to the Reference component, which has two duties. First, it resolves any
noun references to their ground representations (that is, representations maintained by the
World Model) if possible. Then, it does illocutionary remapping of the speech acts assigned
by the parser as needed to fit discourse and reference cues. For instance, an utterance that
consists of a naked REJECT "no" followed by a REQUEST "go via Syracuse" will have the
latter REQUEST remapped into the REJECT; it is essentially the content of the REJECT,
not a separate REQUEST. After this processing, Reference returns the speech act(s), now
in an internal format, to the Discourse Manager for further disposition.

Generally, these speech acts are forwarded to the Prince8 component, which also has
two roles in this architecture: determining what was said and determining what to say. Of
course, it does this in conjunction with the Reference component, but Reference has no
further say regarding the content of the speech acts once the acts have been handed off to
Prince.9

Determining What Was Said

Prince determines what was said using a rule-based subsumption architecture. This allows
partial parses and those with misrecognized words to still be dealt with efficaciously, with-
out needing an explicit rule that deals with the specific utterance we are processing. For
instance, the lowest priority rule matches anything, and returns a speech act that is usually
realized as "Huh?" More specific rules might deal with anything that has a reference to an

8So in the next version it can be called "the module formerly known as Prince," but also indicative of its
status as the homonculus of the system.

9Except indirectly: referents whose resolution are dependent on the discourse context may be (directly or
indirectly) represented as lambda expressions that return the resolution given a discourse state as parameter.
This allows Prince to try different discourse states should the current one be deemed non-fluent without
having to go through another pass with Reference.

40

engine, a city, or a path (that is, specifies an apparent change of state: "from x to y" would
be a simple example, though this might also represent a range, of course).

Once the most appropriate rule has been determined (or time to search has run out, and
the most appropriate rule found so far is selected), Prince produces a set of strategies to deal
with the input. These may range from a set of problem solving strategies (e.g., introduce
a new plan involving the mentioned agent), to discourse strategies (e.g., acknowledge the
user's greeting). Discourse strategies are dealt with directly by Prince. Problem solving
strategies involve a series of requests to the Problem Solving module (see Section 14).
Generally, a range of strategies with respect to problem solving is suggested, in priority
order. Each is tried in turn, until one is deemed to be adequately coherent by problem
solving, and Prince then commits to that strategy.

Determining What To Say

At this point, Prince deals with it's second mission: determining what to say. Given
the implementation of the discourse strategy, the results (or problems reported) from the
Problem Solver, and the discourse state, Prince generates a series of speech acts that may
need to be actualized. These are grouped and marked as being part of a particular problem
solver state (that is, the new state of the problem solver if we commit to an update), and a
plan. Prince collects these for each speech act in its input incrementally, and then outputs
the collection for actualization. While Prince can and should do non-incremental processing,
currently the system relies on the illocutionary remapping of the Reference component to
make sure adjacent speech acts that should be part of the same "update" are treated as a
package.

The Discourse Manager again updates the discourse context based on Prince's output
and hands the speech acts on to the Actualization component for final disposition. Ac-
tualization is again implemented as a subsumption architecture (for ease of programming
this time), partly to mirror our understanding of the speech act implementation in Prince.
Rules turn speech acts into display actions, text to be spoken, or both. Each speech act
is actualized in turn. Redundant speech acts are (generally) suppressed, as they are an
artifact of Prince's current incremental, short memory structure. Actualization keeps track
of what we now believe the user to know (i.e., presuming she will recognize the illocutionary
force of our utterances) by updating the User Model, which influences further generation
and reference.

Finally, Actualization's output is either sent to the SPEECH-OUT module (in the case
of generated speech) or applied to the Display Model (in the case of display updates) which
translates them into a series of commands for the DISPLAY Module (see Section 11). At
this point, a "turn" has been processed (though it may involve several utterances and display
actions), and we await further input from the user (that is, another set of speech acts from
the Parser).

41

14 Problem Solver

The Parser described in Section 12 interprets user input and generates logical forms repre-
senting the content of what was said (or typed, or clicked, etc.). These are interpreted by
the Discourse Manager (Section 13) using the context of the conversation to resolve vari-
ous unspecified or ambiguous elements. As part of this understanding process, the current
utterance must be evaluated in the context of the plan or plans under development, and
various possible ways of interpreting the utterance examined and compared. This process
involves two important research issues being examined in the TRAINS Project, both of
which are aspects of intelligent problem solving.

First, as noted above, the interpretation process in a natural mixed-initiative system
involves reasoning hypothetically about various alternatives before committing to an inter-
pretation. In addition to this "internal" form of hypothetical reasoning, one of the main
goals of mixed-initiative interactive assistants is that they support people doing a similar

kind of "external" hypothetical reasoning. That is, they want to examine scenarios, com-
pare them, revise them, undo the changes, refer to previous scenarios, and so on. Both of
these forms of hypothetical reasoning require an explicit representation of both the problem
solving context and the history of the interactions thus far. One might characterize this
functionality as "human-agent" mixed-initiative planning.

The second aspect of problem-solving that we are investigating in the TRAINS Project
involves the other end of the problem solving process, which might be termed "agent-agent"
mixed-initiative planning. We believe that a robust, realistic planning assistant will need to
draw on a variety of knowledge sources and reasoning engines to provide information about
aspects of the task. These specialized reasoners can provide fast solutions to hard problems,
but must be invoked in an appropriate context, which may differ between reasoners. Their
results must then be integrated with respect to the plan and communicated back to the rest
of the system.

To address these two issues, we have implemented a Problem Solving module (PS) with
the following features:

• Explicit hierarchical representation of plans

• Explicit linear history of the planning process

• Support for hypothetical reasoning with explicit commitment of results

• Integration of separate underlying domain reasoners

• KQML input and output (of course)

The rest of this section describes the main conceptual basis of the current Problem Solver
and lists the various requests and responses in detail.

14.1 Problem Solver Principles

In traditional hierarchical planning systems, goals are often simply the undeveloped actions
in the hierarchy. Once a plan is fully developed, it is hard to distinguish the actions that

42

are present because they are the goals from the actions that were introduced because they
seemed a reasonable solution to a goal. In the TRAINS-96 Problem Solving model, the
analog of the hierarchical plan is a goal hierarchy. It records the goals and decompositions
into subgoals that have been explicitly developed through the interaction with the user.
Particular solutions to the goals, on the other hand, are not in the hierarchy explicitly
except via the goals that they address. The goals provide an organization of the solution
that is useful for many purposes—for revising parts of the plan, for summarizing the plan,
and for identifying the focus of the plan for a particular interaction. The goal hierarchy
plays a crucial role in managing the focus of attention during the interaction. In general, a
user will move up and down the goal hierarchy in fairly predictable ways as they work on

one problem and then move to the next.

In general, two distinct aspects must be provided for any plan reasoning operation. The
first is an "interpretation" or "hypothetical" mode, where the Problem Solver is asked to
evaluate whether an operation makes sense with respect to a proposed focus node. The other
aspect is a "update" or "commitment" mode, and involves performing the actual operation
at a plan node in order to update the problem solving state. The first capability is not found
in most planning systems, but a correlate can be found in the plan recognition literature.
In most previous plan recognition systems, however, this distinction was collapsed, and the
way that the system checked if a goal was a reasonable interpretation involved building a
plan to solve the goal. In our new model, these functions are distinct, and the response to
each type of request must address both, returning two separate indicators of success:

• The recognition score, which indicates whether the proposed operation is a reasonable
thing to request for the focus node; and

• The answer score, which indicates whether the system can satisfy the request to
perform the operation (e.g., say to find a plan to achieve a new goal).

In the TRAINS-96 system, the recognition score is determined by reasoning about the
constraints, and uses information such as constraint consistency to determine the appro-
priateness of interpretations. The answer score is determined by calling a specialized route
planner with the goal statement and checking whether it can find a reasonable solution.
There could be other ways of implementing this depending on the domain. The critical
issue, however, is that the distinction between these two different capabilities must be sup-
ported so that we can identify the right focus node even when we could not perform the

requested action.

14.2 Problem Solver Representation

Most Problem Solver requests use action specifications of the form:

(act-type act-instance-id constraints*)

Constraints within an action are of the form:

(constraint-name value)

43

(FROM loc) Go from indicated location

(TO loc) Go to indicated location

(VIA loci loc2 .. Aocn) Go via indicated locations in order specified

(AVOID loc) Same as (:NOT (:VIA loc))

(DIRECTLY loci loc2) Go directly from loci to loc2

(DIRECTLY from-or-to*) e.g., (:DIRECTLY (:T0 CHICAGO))

(USE object) Ensure that plan uses object in some way

(NOT constraint) Ensure that the constraint does not hold

(AND constraint constraint*)

(OR constraint constraint*)

Table 17: Possible constraints for action GO

(:L0C loc) Stay at location
(DURATION N) Stay for N hours

Table 18: Possible constraints for action STAY

A very simple example, representing going to Chicago, is:

(:G0 gl223 (:T0 CHICAGO))

The Problem Solver currently understands only two actions, GO and STAY. The possible
constraints on these actions are shown in Tables 17 and 18. The constraints relevant to a
particular request are usually specified as the : content argument of the request (not to be
confused with the : content of the performative, which specified the entire request).

Several Problem Solver requests also accept parameters specifying two different types
of function that can be applied to the operation being requested. Filter functions allow the
user to refine solutions based on global properties such as overall time, cost, or in route
planning, distance traveled. These functions are specified as:

((comparison-op value) scale)

where comparison-op is one of <, <=, =, =>, >, or =/=, and scale is currently one of DISTANCE,
DURATION, or COST. For example, "((< 24) DURATION)" is a filter that holds only of solu-

tions that are less than 24 hours in duration.

Preference functions determine the preferred ordering of solutions for a specific goal.
They allow the user to prefer plans with minimum or maximum cost, time, and so on. The

format of a preference function is:

(preference-op scale)

44

where where preference-op is one of <= or =>, and scale is as above. For example, the
preference function "(<= COST)" would indicate that solutions that minimize cost should
be preferred. In addition, regular constraints can be used as filters using the syntax:

(CONSTRAINT constraint)

Thus "(CONSTRAINT (:VIA Pittsburgh))" would restrict all solutions to go through Pitts-
burgh, even if "(:VIA Pittsburgh)" was not part of the goal statement. This capability is
especially useful for operating on solution sets to pursue alternate solutions without modi-
fying the goals.

14.3 Problem Solver Implementation and Operation

The Problem Solver is implemented as a Common Lisp image. It reads KQML messages
from standard input (Lisp stream *standard-input*) and writes KQML messages to stan-
dard output (Lisp stream *standard-output*). The Problem Solver accepts KQML mes-
sages of several types:

• Requests to perform interpretation actions

• Requests to perform update (commitment) actions

• Assertions and queries

• Generic messages shown in Table 3 (page 9)

The specific messages in each class will be described separately below. The Problem Solver
generates replies to all requests, using an error performative to indicate an improper input,
sorry to indicate inability to satisfy an otherwise reasonable request, and reply performa-
tives otherwise.

Interpretation Requests

The set of interpretation requests understood by the Problem Solver (module PS) is shown
in Table 19. In general, there are two relationships between goals, which correspond to
the refinement and decomposition relations defined in Kautz' model [Kautz, 1987; Kautz,
1991].

• A goal G' is a refinement of a goal G if any plan that satisfies G' also satisfies G.

• A set of goals G\,..., Gn with temporal constraints, is a decomposition of a goal G,
if any plan that satisfies G\ through Gn and the temporal constraints, also satisfies
G.

These relationships are used in the descriptions below.

45

Performative Content Arguments

request new-subplan

request split-plan

request refine
request do-what-you-can

request extend

request modify

request cancel

request confirm

request reject-solution

request select-solution

request confirm

:plan-id :content :filter preference
:plan-id :content
:plan-id :content :filter :preference
:plan-id :content :filter :preference
:content :plan-id
:plan-id :add :delete :filter preference
:plan-id :content
:plan-id

:plan-id

:plan-id :solution-set
:plan-id

Table 19: Problem Solver (PS) Interpretation Requests

NEW-SUBPLAN: Introduces a new plan as a subplan of the specified plan-id. If it can find
a solution to the goal it also returns a solution.

SPLIT-PLAN: Breaks a plan into two subplans with the first having the goal indicated by
the action specification. For example, given a plan with goal

the request

(GO gll (:FR0M Chicago) (:T0 Boston)),

(SPLIT-PLAN :CONTENT (GO gl2 (:T0 Pittsburgh)))

would break this plan into two subplans: going from Chicago to Pittsburgh (which is
not the focused plan), and going from Pittsburgh to Boston.

REFINE: Refine an existing plan with new constraints specified in the action specification.
The constraints must be consistent with the old constraints (but not the current

instantiation).

DO-WHAT-YOU-CAN: A variant of REFINE that finds the plan in the task tree that best fits
the new constraints specified in the action specification. It is useful for getting the
problem solver to search for previously introduced plans (say when discourse has lost
track of them, or never explicitly knew of them).

EXTEND: Extend an existing plan with new constraints that specify an additional goal. This
can be thought of as spawning a "sister" goal node to the current plan. EXTEND on
the root node is a special case and it spawns a subgoal.

MODIFY: Modifies an existing plan with new constraints specified in the action specification
or constraint list (allowed to handle cases where the action is not known). This differs

46

from extend in that it may remove old constraints to accommodate the new. For
example, consider a route from Chicago to Montreal. An EXTEND with constraint
(:T0 ALBANY) would extend the route to Albany from Montreal. A MODIFY would
remove Montreal as a destination altogether and construct a route from Chicago to
Albany.

CANCEL: Tries to modify the plan by removing the action/goal/object specified in the con-
tent. The content is of the form (GOAL action) or (OBJECT object). For example,
"Cancel the route from Avon to Bath" has content

(:OBJECT (:ROUTE rl (:FR0M Avon) (:T0 Bath)),

while "Cancel the goal of getting to Corning" would be

(:G0AL (:G0 gl (:T0 Corning)).

Actions are treated as objects, so "Cancel going from Avon to Bath" would have the
content

(:OBJECT (:G0 gl (:FR0M Avon) (:T0 Bath)).

When cancelling goals, the PLAN-ID gives a preference, but if the goal description
doesn't match the content, this will look for other plans that do. It returns a result
of form:

(DELETE-GOAL :PLAN (PLAN4597 :G0AL NIL :AGENT NIL :ACTIONS NIL))

(see below concerning replies).

CONFIRM: Interprets a confirmation by the user with respect to the problem solving state.
Returns an update code that can be used to accept this interpretation.

REJECT-SOLUTION: Interprets a rejection act by the user and attempts to find an alternate
solution. Returns an update code that can be used to accept this interpretation.

SELECT-SOLUTION: Installs a new solution set (and presumably a new solution) with the
indicated plan. This will succeed only if the solution actually satisfies the objective
of the plan.

All interpretation requests generate a reply whose content is as follows:

(answer :recognition-score Sr :answer-score Sa :ps-state ID
: result (.flag display-info)
:reason (reason :type type :info info :msg msg))

47

Performative Content Arguments
request update-pss :plan-id :ps-state
request clear
request new-scenario :content
request new-problem :content
request delete-plan :plan-id
request undo :ps-state

Table 20: Problem Solver (PS) Update Requests

As described above, the recognition score, Sr, is an indication of whether the speech act
was interpretable in the given context or not. Possible values are :good, :ok, :bad, or
impossible. The answer score, S„, uses the same values to indicate whether or not the
request could be satisfied. The :ps-state ID can be used to accept (commit to) this
interpretation later. The values of the : result argument depend on the particular request,
and the display-info contains information of use in generation (such as cities, engines, etc.).
The : reason argument is used to explain all scores except :good. For more details, see
[Allen, 1996b].

Update Requests

The set of update requests understood by the Problem Solver (module PS) is shown in
Table 20. Update requests actually change the Problem Solver's hierarchical plan represen-
tation, typically using a ps-state identifier that was returned by an interpretation action.
These requests also generate a reply whose : content is an answer list. The format of the
: result in the answer depends on the act. Generally, the answer also specifies the name
of the current ps-state and the plan node (plan-id) affected by the update.

UPDATE-PSS: Update the current problem solving state with the update returned in the
ps-state slot from a previous query. The result is "(PSS-UPDATE :SUCCESS)" if
successful. The plan-id slot in the answer specifies the node modified or created by
the update. Since update should always succeed, any other response will be an error
or sorry performative.

CLEAR: Reset the problem solving state, leaving the initial scenario unchanged. Typical
realization of "Let's start over." Result is of form:

(ANSWER :RESULT (:RESET :PLAN root :PS-STATE state))

NEW-SCENARIO: Reset the problem solving state and the scenario (i.e., the map informa-
tion). The scenario specification is an assertion as defined below. The result is the
same as for CLEAR.

NEW-PROBLEM: Keeps the current map information, but defines new engines and problems.
Result is the same as for CLEAR.

48

Performative Content Arguments
assert prop
ask-if prop :plan-id :ps-state
ask-one prop :plan-id :ps-state :aspect
ask-all prop :plan-id :ps-state :aspect
ask-about expr :plan-id :ps-state

Table 21: Problem Solver (PS) Knowledge Base Requests

DELETE-PLAN: Deletes the indicated plan from the problem solving tree.

UNDO: Backs up the problem solving state to the point where the given ps-state was
returned by UPDATE-PSS. If ps-state is not specified, this pops the Problem Solver
history one step.

Assertions and Queries

The Problem Solver manages queries about the problem solving state, and passes on queries
to the appropriate domain reasoners (currently integrated with the Problem Solver as one
module). The set of knowledge base messages understood by the Problem Solver is shown
in Table 21.

To assert information, you simply use a KQML assert performative with the : content
set to the information to be asserted. No variables are allowed in assertions. For example,
to assert where an engine is we would send:

(assert :content (:and (:type :engl :engine) (:at-loc :engl :Chicago)))

The response would be:

(reply :content (answer rresult :success))

An assert currently only fails if it is ill-formed, in which case an error performative is sent
in reply.

There are several different forms of queries. All queries may specify a :plan-id and a
:ps-state field, defining the plan context and temporal context of the query. If these are
not specified, default values are used making the query relative to the last plan updated and
the current time. Queries that involve the entire problem solving state or that are handled
by the domain reasoner(s) will ignore these values when they are not applicable. Variables
in queries are simply atoms starting with a question mark, e.g., "?ENG" is a variable that
will match any expression.

All queries result in a reply with : content of the form

(answer :result prop :vars (vl v2 .))

49

where the : result is particular to each type of query and :vars supplies information
about the variables used in the : result. If the query cannot be interpreted, then an error

message is generated.

ASK-IF: This performs a yes-no query on the database, which returns a : result of T if
true, NIL if false, and :unknown if it is undetermined. That is, a successful query

would return:

(reply :content (answer :result t))

ASK-DNE: This looks for an expression that makes the prop true. It returns a result con-
sisting of instantiations of the variable list for the variables of interest. For example,

the query

(ask-one :content (:problems ?type ?loc ?delay) :aspect (?loc ?delay))

asks for the location and delay of a problem and a plausible result would be

(reply :content (answer :result (chicago 5) :vars (?loc ?delay)))

That is, ?loc is Chicago and ?delay is 5. If the : aspect in the query is ALL, then
values for all variables in the query are returned. For example,

(ask-one :content (:problems ?type ?loc ?delay) :aspect all)

might return

(reply :content (answer :result (:wind Chicago 5)
:vars (?type ?loc ?delay)))

ASK-ALL: This looks for all expressions that make the prop true. It returns a result that is
a list of all possible bindings for the variables of interest. For example, the query

(ask-all :content (:problems ?type ?loc ?delay) :aspect (?loc ?delay))

asks for the location and delay of all problems. The result might be

(reply :content (answer :result ((chicago 5) (buffalo 4))))

If the : aspect is set to ALL, then values for all variables in the query are returned

(see example for ASK-ONE).

ASK-ABOUT: This will generate a reply whose content is a list of all propositions that contain

the expr as an argument.

Further details regarding the Problem Solver knowledge base functions and the set of pred-
icates understood by the current version of the module can be found in [Allen, 1996b].

50

15 Other Modules

This section describes a variety of other modules making up the TRAINS-96 System. Most
of them provide services involved in making TRAINS a useful experimental and demonstra-
tion system. Although they do not themselves address the research issues being explored
in TRAINS, they make such exploration possible and their presentation here illustrates
both the range of such services that are needed and the flexibility of the TRAINS System,
particularly the communication infrastructure, in supporting them.

15.1 Speech Controller (SPEECH-X)

The TRAINS-96 Speech Controller, module SPEECH-X, is responsible for starting and
stopping speech recognition and displaying its results. This allows the SPEECH-IN (Sec-
tion 7) and SPEECH-PP (Section 8) modules to be implemented as "faceless" modules that
do not have to worry about X-Windows displays and the like. A sample display from the
Speech Controller is shown in Figure 8. The complete set of messages understood by it is
shown in Table 22.

When the "Click to Talk" button is pressed, the Speech Controller sends a start request
to SPEECH-IN to initiate recognition. It then monitors the output of both SPEECH-IN
and SPEECH-PP (using listen requests to the Input Manager) and displays their results
(tell word and tell backto) in the top and bottom text windows, respectively. When
the Speech Controller button is released, it sends a stop message to SPEECH-IN to stop
further recognition. The Speech Controller can be operated in either click-and-hold mode,
as described above, or in a click-to-talk mode where the first click starts recognition and
the second one stops it. See the manpage (Section D.23, page 133) for details.

15.2 Startup Screen (SPLASH)

The TRAINS-96 Startup Screen module may seem somewhat silly at first glance. Its main
purpose is to display a fancy picture of a train and allow the user to start a conversation
by clicking the "Start" button. In fact, although it is quite simple, it serves two important
purposes: synchronizing all the other modules at the start of a conversation, and recording
user name, language, sex, and options.

The Startup Screen module understands the basic messages listed in Table 3 (page 9).
When the "Start" button is pressed, it broadcasts a start-conversation message con-
taining the user information. Note that this is one of the few true KQML broadcasts
(i.e., a broadcast performative) used in the system. It then hides its window until an
end-conversation is received, at which point it redisplays itself, allows the user to save
the session or send email to the maintainers. It then waits for the user to start the next
session by pressing the "Start" button again. The "Quit" button sends an exit request to
the Input Manager, which shuts down the entire system.

The Startup Screen module is also responsible for creating the log directory and sending
chdir messages to alert other modules. It also writes the file "user" in the log directory,
containing the user information.

51

control Font\
Utterance; 8
Speech-to: .■'..

COULD WE GO THROUGH
PITTSBURGH IN CHARLESTON

I

I GOOD WE GO THROUGH
PITTSBURGH AND
CHARLESTON INSTEAD

it

Click ami Hold to TaK

Figure 8: TRAINS-96 Speech Controller Display

Performative Content Arguments
tell start :uttnum
tell input-end :uttnum
tell end :uttnum
tell word word :uttnum :index
tell backto :uttnum :index
request set-button
request unset-button
request exit status
request* chdir dirstring
request hide-window
request show-window
tell start-conversation :name :lang :sex
tell end-conversation

Table 22: Speech Controller (SPEECH-X) Messages (* indicates message is ignored)

52

Performative Content Arguments
tell start :uttnum
tell input-end :uttnum
tell end :uttnum
tell word word :uttnum :index
tell backto :uttnum :index
tell mouse objects
tell confirm tag
request log text
request exit status
request chdir dirstring
request hide-window
request show-window
tell start-conversation :name :lang :sex
tell end-conversation

Table 23: Transcript (TRANSCRIPT) Messages

15.3 Transcript (TRANSCRIPT)

The TRAINS-96 Transcript module's role is to gather a somewhat human-readable tran-
script of a TRAINS session, such as might be useful for including in a paper or presentation.
It also provides an X-Window display of the transcript, which is especially useful during
debugging and replay.

The Transcript module understands the messages listed in Table 23. These are es-
sentially the messages broadcast (selectively) by the speech recognition modules, as well as
some messages broadcast by the Display in response to user mouse actions, and the common
messages from Table 3 (page 9).

The Transcript module monitors the speech recognition and Display modules (using
Input Manager listen requests) and transcribes the user's input from these messages. The
log request is provided for modules to add lines to the transcript directly. For example,
the Discourse Manager uses it to add indications about generated speech and map displays
in a more readable form.

The Transcript module writes the file "transcript" in the log directory, and opens a
new transcript file upon receipt of a chdir request.

15.4 Scenario Chooser (SCENARIO)

The TRAINS-96 Scenario Chooser is a simple module which presents a panel from which
the user can select various scenarios. This makes it simple to repeat a scenario, run a preset
(although not "scripted" scenario), or change the complexity of the random scenarios.

In addition to the common messages shown in Table 3 (page 9), the Scenario Chooser
also accepts a request of the form:

53

(request :content (define :label string :content expr))

This adds a new preset scenario whose label (button) is string and which, when selected,
causes the given expr to be sent as the : content of a request to the Discourse Manager.
Of course, this is highly-dependent on the fact that it is the DM that understands how to
set a scenario, but ...

In operation, clicking on an item in the Scenario Chooser causes the appropriate message
to be sent to the Discourse Manager. It is recommended that this only be done between
sessions (i.e., when the splash screen is displayed). As well, if a preset scenario is selected,
then upon receipt of an end-conversation message, the Scenario Chooser will automati-
cally move to the next scenario and send the appropriate message. This makes it easy to
preset a sequence of scenarios for an extended session.

The Scenario Chooser reads its initial set of presets from a file named scenario.re in
the etc directory of the TRAINS tree. See the manpage (Section D.18, page 119) for more
details.

15.5 Shortcuts Panel (SHORTCUT)

The TRAINS-96 Shortcuts Panel is similar to the Scenario Chooser described in the previ-
ous section. Rather then sending specific messages based on random and preset scenarios
however, the Shortcuts Panel allows arbitrary messages to be sent by clicking on them.

In addition to the common messages shown in Table 3 (page 9), the Shortcuts Panel
also accepts a request of the form:

(request :content (define :label string :content perf))

This adds a new item whose label (button) is string and which, when selected, causes the
given performative (perf) to be sent. One useful message is to send the performative

(request :receiver IM :content (exit 0))

and so shutdown the system. Another useful one is:

(broadcast :content (end-conversation))

to abort a session. The Shortcuts Panel allows new shortcuts to be created and edited, and
allows the shortcuts to be saved to a file.

The Shortcuts Panel reads its initial set of shortcuts from a file named shortcut, re in
the etc directory of the TRAINS tree. See the manpage (Section D.20, page 123) for more
details.

54

15.6 Sound Effects (SFX)

The TRAINS-96 Sound Effects module is actually even simpler than its name implies. In
response to a message of the form

(request :content (play "filename"))

it simply opens the named file and sends its contents to the AudioFile server for playback.
The file is assumed to contain data suitable for the AudioFile server (currently 16-bit,
16000 Hz, linear PCM-encoded data, such as recorded by the Speech recognition module).
When the audio has finished playing, a reply with content done is generated. The Sound
Effects module also understands the common messages shown in Table 3 (page 9) although
it ignores all of them aside from exit.

Originally this module was conceived as something of a joke, nominally to allow "mood
music" (or alert noises) to be played by the system during a conversation. It turned out to
be useful during replay to play the user's utterances, and could be more useful as we explore
multi-modal interaction in more detail. It could also be easily enhanced, for example to
understand different types of audio files, adjust volumes, etc.

15.7 Parse Tree Viewer (PVIEW)

The TRAINS-96 Parse Tree Viewer, module PVIEW, provides a simple X/Motif interface
with which the user can examine parse-trees during a dialogue. This viewer can help devel-
opers working on the parser as well as helping a user understand how the system understood
their utterances. The Parse Tree Viewer module understand the common messages from
Table 3 (page 9).

When the user presses the button on the Viewer's panel, a message of the form

(request :content (parse-tree) :receiver parser)

is sent to the TRAINS-96 Parser requesting the most recent parse tree. The Parser replies
with a parse-tree message containing a summary of the best syntactic analysis covering
the most recent turn in its entirety. If several hypotheses are equally rated, then the Parser
provides a set of equally qualified parse trees. The Parser uses its own notion of what makes
a best parse. If the turn consists of more than one utterance, one analysis/tree per turn will
be provided. The analysis is displayed in the Parse Tree Viewer window and is appended to
the display each time the user presses the button. The display is not automatically updated
after each turn, since we assume that user will decide when tree viewing is needed.

The expression returned in the parse-tree message consists of a parenthesized list of
non-terminal and terminal entries. Non-terminal entries have the form:

"NTX" NT 1 NTI 2 NTJ 3 NTK

where:

55

• "NTX" is a quoted node-name consisting of a concatenated node-type and number,

• NT is the node-type for the preceding node-name,

• NTI is the first daughter (also a node-name) of the preceding node-name,

• and the successors are the second, third, etc. daughters of the preceding node-name.

These daughter node-names are defined by subsequent entries in the parse tree. Terminal
entries have the form:

"NTX" NT LEX W

where "NTX" is a quoted node-name and NT is the node-type for the node-name (as for the
non-terminal entry), and W is the word for the terminal node.

Here is an example (the spacing and indentation shown are provided only to clarify and
are certainly not mandatory):

(tell :content (parse-tree
("UTT6869" UTT 1 PUNC6820 2 UTT6862 3 PUNC6864

"PUNC6820" PUNC LEX START-OF-UTTERANCE
"UTT6862" UTT 1 S6861

"S6861" S 1 VP6860
"VP6860" VP 1 V6832 2 PATH6858

"V6832" V LEX GO
"PATH6858" PATH 1 ADVBLS6857

"ADVBLS6857" ADVBLS 1 ADVBL6855

"ADVBL6855" ADVBL 1 ADV6841 2 NP6852

"ADV6841" ADV LEX TO

"NP6852" NP 1 NAME6849
"NAME6849" NAME LEX BOSTON

"PUNC6864" PUNC LEX END-OF-UTTERANCE)))

After receiving such a message from the Parser, the Viewer displays a tree like that shown
in Figure 9. The terminals (leaves of the tree) are shown in blue on the display.

15.8 Replay

The TRAINS-96 Replay Facility is one of the most useful aspects of the TRAINS-96 system.
It is not really a module itself—instead, it is a version of the system running in replay mode,
together with a REPLAY module that drives the other modules through a recorded session.
It provides real-time playback, as well as "tapedeck-style" buttons for stepping back and
forth through the dialogue.

The first part of the Replay Facility is a version of the system startup script that launches
only those modules needed for replay and provides the necessary arguments for replay mode.
For example, the Input Manager is started with the -nolog option to prevent it writing a

56

V ADVJBLS

GO ADVBL

ADV NP

TO NAME

BOSTON

PUNC

</S>

Figure 9: Sample Parse Tree Viewer Display

57

log (which would simply repeat the recorded log). And many modules, such as the Parser,
Discourse Manager, Speech Recognizer, and Speech Post-Processor are not needed during
replay. Rather, their functions are recreated from the recorded session.

The second part of the Replay Facility is a module that reads a previous Input Manager
log, extracts the messages, and replays them (most of them, anyway) in real-time. For
example, DISPLAY commands cause the display to be updated as in the original session, and
requests for Speech Generation are resent to the SPEECH-OUT module for regeneration.
The replay module also arranges to play the user's utterances (recorded by SPEECH-IN)
at the appropriate time using the Sound Effects module. The result is a recreation of
the screen displays (including the Speech Controller with its incremental display of speech
recognition) and audio for an entire session.

15.9 Input Manager Utilities

A collection of Input Manager utilities have proven to be very useful during the development
and operation of TRAINS-96. Since the TRAINS-96 Input Manager uses socket-based
communication, it can be tricky to connect a process to the Input Manager, and hence into
the running system. As described in Section 5, the Process Manager is designed to make
this simpler, by looking after connecting any processes that it launches. However, especially
during debugging, it can be helpful to be able to inject messages into the system without
starting an entire Process Manager process.

The following four utilities provide this functionality. They are further described in their
manpages (Sections D.7-D.10, pages 96-99).

tim_msg: Formats its arguments as a performative, then connects to the Input Manager
and sends it the performative. Exits, closing the IM connection, after sending the
message.

tim_cat: Connects to the Input Manager and then copies its standard input to the IM.
Exits, closing the IM connection, after end-of-file on standard input.

tim.client: Connects to the Input Manager and then sends input from its standard input
to the IM and messages from the IM to stdout. If a register message is sent, this
program can send and receive messages just like any other module in the system.
Exits, closing the IM connection, after end-of-file on standard input.

tim_exec: Connects to the Input Manager and then calls exec(2) with its arguments to
launch a new process with its standard input and standard output connected to the
IM. This is most of what the Process Manager does, as it turns out.

All four utilities connect to the Input Manager on the local host at the "well-known" port,
unless the environment variable TRAINS-SOCKET is set to specify a different "host:port". See
Section 4 regarding the Input Manager for more details.

58

15.10 Dialog Archiving Tools

We have mentioned how several of the TRAINS system modules log their activity in per-
session log files. These log files are saved in a directory created by the Splash Screen
module for each dialogue, as described in Section 15.2. Log directories are created in the
directory given by the TRAINS_L0GS environment variable, or in $TRAINS_BASE/logs by
default. Unique names for the log directories are constructed using the current date and
time.

This section briefly introduces available tools for organizing and summarizing the con-
tents of log directories. A few more details are available in their manpages (Sections D.l-
D.3, pages 77-80).

dlg_org: This is a Perl script that organizes the contents of the log directory given on the
command-line. It compresses large log files, such as the DM debugging logs, and it
categorizes the logs and data into several sub-directories:

data: All audio (* .au) and search results (* .out) files from Sphinx-II are placed here.

mf c: This sub-directory is initially empty, but MFC parameter files will be placed
here by subsequent speech experiments.

s2: This sub-directory is initially empty also, but Sphinx-II log files will be placed
here by subsequent speech experiments.

sent: This sub-directory is initially empty, but hand transcriptions of the dialogue
data will be placed here.

sys: All system module logs and the transcript are placed here.

dlg-check: Checks and summarizes the contents of the dialogue directory (given on the
command-line) that was recorded during a session with the TRAINS-96 system. Its
summary is based primarily on the contents of the session transcript, and provides
the user information and the number of utterances of various types. If necessary,
dlg.check first runs dlg_org to organize the contents of the dialogue into suitable
sub-directories.

dlg_play: Plays the utterances in the given dialogue directory one at a time. The user
is prompted before each utterance with several options: repeat, back-up, quit, or
continue. It is also possible to type n followed by a number to jump to the utterance
in that position. This should be thought of as a poor-man's Replay.

59

References

[Allen, 1995] James F. Allen, "The TRAINS-95 Parsing System: A User's Manual,"
TRAINS technical Note 95-1, Department of Computer Science, University of Rochester,

Rochester, NY, 14627, September 1995.

[Allen, 1996a] James F. Allen, "Logical Form in the TRAINS-96 System," Trains technical
note, Department of Computer Science, University of Rochester, Rochester, NY, 14627,

1996. To appear.

[Allen, 1996b] James F. Allen, "Problem Solving Manager Documentation". TRAINS

Project Online Documentation, 1996.

[Allen and Schubert, 1991] James F. Allen and Lenhart K. Schubert, "The TRAINS
Project," TRAINS Technical Note 91-1, Department of Computer Science, University of

Rochester, Rochester, NY, 14627, May 1991.

[Allen et a/., 1995] James F. Allen, Lenhart K. Schubert, George Ferguson, Peter Heeman,
Chung Hee Hwang, Tsuneaki Kato, Marc Light, Nathaniel G. Martin, Bradford W. Miller,
Massimo Poesio, and David R. Traum, "The TRAINS Project: A case study in defining
a conversational planning agent," Journal of Experimental and Theoretical AI, 7:7-48,
1995. Also available as TRAINS Technical Note 93-4, Department of Computer Science,

University of Rochester.

[Ferguson et al, 1996] George Ferguson, James Allen, and Brad Miller, "TRAINS-95: To-
wards a Mixed-Initiative Planning Assistant," in Proceedings of the Third International
Conference on Artificial Intelligence Planning Systems (AIPS-96), pages 70-77, Edin-

burgh, Scotland, 29-31 May 1996.

[Finin et al., 1993] Tim Finin, Jay Weber, Gio Wiederhold, Michael Genesereth, Richard
Fritzson, Donald McKay, James McGuire, Richard Pelavin, Stuart Shapiro, and Chris
Beck, "Specification of the KQML Agent-Communication Language". Draft, 15 June

1993.

[Heeman and Allen, 1995] Peter A. Heeman and James F. Allen, "The TRAINS-93 Di-
alogues," TRAINS Technical Note 94-2, Dept. of Computer Science, University of

Rochester, Rochester, NY, March 1995.

[Hinkelman and Allen, 1989] Elizabeth A. Hinkelman and James F. Allen, "Two con-
straints on speech act ambiguity," in Proceedings of the Twenty-Seventh Annual Meeting

of the Association for Computational Linguistics (ACL-89), pages 212-219, Vancouver,

BC, 25-27 June 1989.

[Huang et al, 1992] Xuedong Huang, Fileno Alleva, Hsiao-Wuen Hon, Mei-Yu Hwang, and
Ronald Rosenfeld, "The SPHINX-II Speech Recognition System: An Overview," Tech-
nical Report CS-92-112, Carnegie Mellon University, School of Computer Science, Pitts-

burgh, PA, January 1992.

60

[Kautz, 1987] Henry A. Kautz, A Formal Theory of Plan Recognition, PhD thesis, Depart-
ment of Computer Science, University of Rochester, Rochester, NY, May 1987. Available

as Technical Report 215.

[Kautz, 1991] Henry A. Kautz, "A Formal Theory of Plan Recognition and its Implemen-
tation," in Reasoning about Plans, pages 69-126. Morgan Kaufmann, San Mateo, CA,

1991.

[Levergood et al., 1993a] Thomas M. Levergood, Andrew C. Payne, James Gettys, G. Win-
field Treese, and Lawrence C. Stewart, "AudioFile: A network-transparent system for
distributed audio applications," Technical Report 93/8, Digital Equipment Corporation,
Cambridge Research Lab, Cambridge, MA, 11 June 1993.

[Levergood et al, 1993b] Thomas M. Levergood, Andrew C. Payne, James Gettys, G. Win-
field Treese, and Lawrence C. Stewart, "AudioFile: A network-transparent system for
distributed audio applications," in Proceedings of the USENIX Summer Conference, June

1993.

[Ringger, 1995] Eric K. Ringger, "A Robust Loose Coupling for Speech Recognition and
Natural Language Understanding," Technical Report 592, Department of Computer
Science, University of Rochester, Rochester, NY, 14627, September 1995.

[Ringger and Allen, 1996] Eric K. Ringger and James F. Allen, "A fertility channel model
for post-correction of continuous speech recognition," in Proceedings of the Fourth In-
ternational Conference on Spoken Language Processing (ICSLP'96), Philadelphia, PA,

October 1996.

[Searle, 1969] John R. Searle, Speech Acts: An essay in the philosophy of language, Cam-
bridge University Press, Cambridge, England, 1969.

[Sikorski and Allen, 1996] Teresa Sikorski and James F. Allen, "TRAINS-95 System Eval-
uation," TRAINS Technical Note 96-3, Dept. of Computer Science, University of

Rochester, Rochester, NY, July 1996.

61

A Running the TRAINS System

This section is intended as a very brief introduction to running the TRAINS-96 System on
our facilities at Rochester. Many other permutations and combinations are possible—see
the manpages that follow and the module descriptions themselves for further details.

The steps required to run the system are, basically:

•

•

Setup the environment

Start the Input Manager and Process Manager

• Start other modules by sending messages to the PM via the IM

These steps are considerably simplified by the trains script whose manpage is in Sec-
tion D.16 (page 115). You may want to refer to a copy ofthat script in order to understand

what follows.
All pathnames in the TRAINS system are interpreted relative to an environment variable

TRAINS-BASE. For the current (as of this writing) version of the TRAINS-96 system, the
default base of the TRAINS directory tree is:

/u/trains/96/2.0

That's where you want to look for executables (sub-directory bin) and manpages (sub-
directory man), among other things.

A.l Setup Environment

The trains script uses a set of environment variables to customize the execution of the
system. These are detailed in the manpage so I won't repeat them here, but they include
such things as finding a useful value for the DISPLAY variable if the user hasn't set one,
arranging for audio input and output on the appropriate machine, and so on.

As well, the trains script starts any servers required by the system but which function
outside the control of the system. In particular, it starts the AudioFile audio server, Asparc
or AsparclO, and arranges to kill it when it exits. This would not be necessary if everyone
ran an audio server the way they do an X server, but they don't so we do, if you follow me

A.2 Start IM and PM

The next thing to do is get the components of the TRAINS system running, but here we
are faced with a chicken-and-egg problem. So the trains script first launches the Input
Manager (tim), and arranges to kill it when the script exits. After a short delay to allow
the IM to initialize its socket connection, the trains script launches the Process Manager
(tpm), and also arranges to clean it up. The PM will establish a connection to the IM,
whereafter it is ready to receive messages.

62

A.3 Start Other Modules

To start the remaining modules, the trains script uses the tinucat program to "inject"
messages into the system. As described in its manpage (Section D.7, page 96), tim_cat
connects to the Input Manager and then copies its standard input to the IM. The trains
script provides a set of start messages for the Process Manager (i.e., with : receiver PM)
as standard input for the tim_cat process. As these are received, the specified modules are
launched and connected into the system.

With this setup, one can change the set of modules launched by the system by editing
the trains script and modifying the set of messages sent using tim_cat. This can be useful
if only a subset of the modules are needed, or if the parameters for a particular module need
to be changed. For example, a different executable can be specified for a module by changed
the :exec parameter in the start request that launches it, or a module's command-line
arguments can be specified using the : argv parameter.

It would be nice to have a more friendly way to do this, but for now that's how it
works. At least it's better than TRAINS-95, where the modules and their parameters were
hard-coded into the Process Manager!

63

B Speech Lab Setup

This section describes the care and feeding of the speech lab equipment for use with

TRAINS-96.

B.l Introduction

The current version of the TRAINS system uses a single SPARCStation for both audio
input and output, together with the speech lab audio rack. The main issues are:

1. Amplifying microphone input to line levels for speech recognition.

2. Amplifying and mixing SPARC audio output for speech generation.

3. Providing audio feedback in the user headset so they can hear both themselves and

the system.

4. Keeping system output out of the speech recognition input, to prevent the system

trying to understand itself.

The following setup addreses these issues.

B.2 Audio Rack Setup

Figure 10 shows the front and back panel configurations for the speech lab audio rack
equipment. I have labelled most of the cables with colored tags (indicated in the figure).

Starting from the headset, it is plugged into the Whirlwind "black box", which splits
the special six-pin headset cable into a balanced mic output and a phono plug headphone

input.

The mic output goes to the preamp In2 (either channel would do) via the green cable.
The preamp output for that channel (Out2) goes via an impedance splitter/matcher into

the mixer CH2-R (any channel would do).

The other audio input to the mixer is from the headphone jack of the SPARCStation
being used for audio. It goes to the mixer CH1-L via the yellow cable (any other mixer
channel would do, so long as it uses the other side of the stereo split from the microphone

input).

There are three outputs from the mixer:

1. The mixer Mono output goes to the black box headphone input, to provide the user
with both their own and the system's audio. I used the purple cable for this.

2. The mixer Stereo-R output goes to the Linein input of the SPARCStation being

used for audio via the red cable.

If you swapped the input channels from the mic and SPARC jack, of course you'd need to
swap the outputs accordingly. The SPARC Lineln should only get microphone audio.

Finally, the external speakers are driven directly from the SPARC LineOut jack, using
their permanently-attached cable. The right speaker plugs into the back of the left one.

64

To
Headset

Outputs SubOutSubln

-© o o oooo
Mono L • L R L R

CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1
r—i i—irnr-1 r-1 rn n rn
OOOOOOOOOOOOOOOO
LRLRLRLRLRLRLRLR

SPARC jacks

Phones

Line In

Line Out

Mic

Preamp (front)

□ □□J 0DDD aJ (j) □ J •••••»• 0 o
4SV Pad Mute 0

Input!

0 48V Pad Mute

Input2

••••••0
Monitor

Level

Mixer (front)

SPARC MIC , , , , .

07£i 6 6 ö 6 6 6
L R 0 0 0 0 0 0

Line Une
CH1 Ctg CH3 CH4 CH5 CH6 CH7 CH8

~2.

<b ©
Stereo Mono
Output Level

O

Adjust for
Recognition

"3 Adjust tor
Headset Phones

Figure 10: Speech lab audio rack front and back panels

65

B.3 Audio Rack Settings

With the rack cabled as shown in Figure 10, you now need to adjust the front panel settings
on the rack. The figure shows settings that I have found to work well, the details are in
what follows.

The preamp is easy. You need a decent amount of gain on the mic, but not so much
that the noise from the computer equipment is overwhelming. I have found 5 to be a decent
compromise (it makes the leds blink entertainingly without drowning you in hiss).

The mixer settings are a bit trickier, since they interact with the SPARC audio device
settings. These descriptions assume you used the cabling setup described in the previous
section.

The SPARC audio channel (CHI) should be panned completely to the Left. I have
found that with the audio output level set at 70% (via the Audio manager), this level needs
to be about 7. Watch the leds on the mixer and see.

The mic input channel (CH2) should be panned completely to the Right, and the level
adjusted to give decent flashing of the leds on the mixer. I have found that 4 seems about
right. You can trade-off between the preamp gain and this level setting if you like. You
want decent levels but not too much hiss. Watch the mixer leds.

The mixer outputs are the key to the whole thing. The Mono Level feeds the headset
both the SPARC and mic audio. The level should be adjusted to make the volume in the
headphones comfortable. The relative mix of SPARC and mic is determined by the two
input levels. They should be roughly equal as shown on the mixer output level meter when
both the human and the system are talking.

The Stereo Output feeds the SPARC audio input for speech recognition. The most
important thing is to get a reasonable level for speech recognition! I have found
that this means quite a low output level, like around 4 or 5, when the SPARC record level
is set to 70 (using the Audio manager). Presumably much more will cause the SPARC A/D
converter to clip. If you had a soft talker, you might need to turn this up. You could also
adjust the SPARC record level using the Audio Manager, or up the preamp or mixer gains
for the microphone input.

The volume at the external speakers should be adjusted using the separate volume
control on the speakers. In extreme cases the SPARC audio output level can be adjusted
using the Audio manager, but note that this affect the balance in the headset unless the
mixer CHI is also adjusted.

66

C Travel System Instructions

This section describes the care and feeding of the TRAINS travel system. It may be
somehwat obsolete in that it describes a two-machine travel system while the latest version
of TRAINS-96 can run on a single machine. With a suitable reinterpretation, most of the
comments still apply, although you will need to adjust the trains script for the different

setups.

C.l System Overview

The current incarnation of the TRAINS travel system involves a SparclO workstation
(larynx) with external 9G drive, an UltraSparc workstation (micro) with external 4G
drive, a 17-inch monitor, one Sparc audio box, two keyboards, a Sony DATman, and as-
sorted microphones, cables and cords.

The TRAINS system can run on any combination of the two workstations, both of
which boot from their external drives to run standalone. The workstations are connected
using a twisted-pair direct-connection (reversed) 10Base-T cable. The DATman is used as
a preamp for the microphone headset.

This document describes a configuration in which the monitor is connected to larynx
but the audio inputs are connected to micro. This has been found to provide the best
quality audio input and output. Should you want to run with audio on larynx (the original
standard configuration), simply make connections to the jacks on larynx's speakerbox
rather than micro's back panel (and adjust the trains script).

C.2 Before You Go

Here are some things to think about before packing and shipping the system:

1. You need a bootable disk for the standalone system. The staff can help you with this
if it isn't done already.

2. Obviously, the external drive needs to have all the relevant code for the system in
the appropiate place. The SparclO can be connected to the department network and
the external drive mounted separately, allowing files to be transferred back and forth
easily. To mount the /u parition temporarily, use the command

7, sux mount /dev/sd2g /mnt

You need superuser privileges to do this, naturally.

3. You need return airbills to put on the cases for shipping the equipment back. !\it
needs to fill these out in advance. Make sure to check that appropriate shippii £
options have been specified (e.g., next-day or slower shipping).

4. Keyboards should be wrapped in a plastic bag or something, to prevent their keycap
from falling off and getting lodged inside the cases.

5. Unless something changes, the cases cannot be locked.

67

C.3 Workstation Setup

This section describes how to get the two workstations and the external drive hooked up
and running. The next section describes how to hook up the audio components.

Figure 11 shows the back panel configuration for the various machines. The following is
a blow-by-blow description of how everything goes together. Don't turn anything on until
you've read all the instructions.

1. Make sure the powerbar is unplugged and turned off so that nothing starts until you're
ready.

2. Hook up larynx's power cord, keyboard, optical mouse, and speaker box. Note that
the speaker box connects to a small parallel port using the strange looking cable with
an adapter in the middle of it. For some reason, Sun decided to include an ethernet
input on that connector, so the icon next to the connector is funny and the adapter
splits the ethernet connection off. The mouse plugs into the keyboard, which itself
plugs into larynx with the obvious cable.

3. Hook the bottom SCSI port on the 9GB drive to larynx's bottom SCSI port using
the short 50/25 SCSI cable. Leave larynx's top SCSI port (with the status LED)
unconnected. Terminate the other (top) SCSI port on the 9GB drive with the large
(50-pin) terminator. Hook up the 9GB drive's power cable.

4. Hook up micro's power cord and keyboard. The keyboard's cable is permanently
attached to it, and the mechanical mouse is optional but not necessary.

5. Connect micro's SCSI port to the top port of the 4GB drive using the long 25/25
SCSI cable. Terminate the bottom port on the 4GB drive using the small (25-pin)
terminator. Connect the 4GB drive's power cord.

6. Connect the two workstations with the 10Base-T (twisted-pair) cable into the FU-11
(telephone-like) connectors labelled "TP".

7. Plug in the monitor and attach its cable to larynx's monitor port. Since you'll be
switching this shortly, don't bother screwing it in fully.

C.4 Workstation Boot Procedure

Now you're ready to start the machines. The following steps must be performed in the
order given.

1. Turn on the powerbar. Hopefully nothing will start yet.

2. Turn on the external drives and let them spin up.

3. Turn on the monitor.

4. Turn on larynx.

68

Larynx

1

0
AC

SCSI (do not use)

DDniüöiöi ra

to AC suppty

Micro

to Speaker Boxf toMonitorf loSGBDnve

to Keyboard (0 Mlcro, 0Base.T

to Monitor tt needed

AC

0 ra i isü IOOOO'

f to 4GB Drive \ See Audio Setup t
to AC supply to Keyboard to Larynx 10Base-T

9GB Drive (for larynx)

Larynx SCSI
(shod SCSI cable)

4GB Drive (for micro)

SCSI

to AC supply

Micro SCSI
(long SCSI cable)

to AC supply

Figure 11: Travel system connection diagram

69

5. Let it boot to the point where it starts complaining about lack on carrier on leO or

something like that, can't find its server on the network.

6. Interrupt with Ll-a (i.e., hold down the Stop key and type "a"), then type

boot disk2

at the PROM monitor prompt. Make sure you're using the right keyboard!

7. It should boot again, this time all the way to a login prompt. Note: You may get
one or two messages about "hub link test disabled." Ignore them (they're just saying

there's no one at the other end of the twisted-pair ethernet).

8. Now move the monitor connector to micro's monitor port, and turn micro on. At

some point (wherever it seems to be stuck), interrupt with Ll-a. Make sure you're

using the right keyboard! As before, do

boot disk2

at the PROM monitor prompt.

9. It should boot happily to a login prompt. At this point, I recommend having whoever
will be running the demo login on micro's console before switching the monitor back
to larynx. My suggestion would be user trains, with password trains96, and hitting
Control-c before X Windows starts. If you don't do this step now, or if another user
wants to run the system, you need to logout and have them login, either blind or

switching the monitor temporarily.

10. Move the monitor back to larynx, and you're ready to go. As noted above, I recom-
mend logging in as user trains with password trains96. If you let X Windows start,
it will launch the system automatically from an xterm window. You might want to
complete the audio setup described in the next section before logging into larynx and

starting the system.

This completes the setup of the workstations. It remains to setup the audio input and
output for the speech processing, as described in the next section.

C.5 Audio Setup

This section describes how to hook up the audio components to provide (1) speech input
and monitoring, and (2) audio output to both speaker and headphones. Note that I have
referred to either micro's back panel or larynx's speaker box. Depending on your choice
of audio host, you use one or the other consistently. The standard configuration (described

here) is to use micro as audio host.

Figure 12 shows a schematic layout of the various devices and connections. The following

steps needn't be performed in any particular order.

70

Headset

Blue Box

| (brown) DATMan

MANUAL

» 1 1
g/'TN 1 Lll
E () 1 1 LINE MIC Li Mic In

£•
(red) MicC)u1

w

1

(blue)
rnonesin H rnones in L

• •

Phones Out
•

' 1 1 '
PHU

(<

Nbb

w
3rL

L

ic
ar

INE OUT LIN

6 c
ro Back Pa
-ynx Speake

b IN MIU

b a
nel
srBox)

I Speakers

Figure 12: Travel system audio connection diagram

1. Connect the headset microphone to the blue box, using the large 3-pin plug into the
"Mic In" socket. Leave the small plug on the headset (the headset phones) uncon-
nected for now.

2. Connect the "Mic Out" on the blue box to the "Mic In" of the DATMan. This uses
the red cable.

3. Connect the "Phones" jack of the DATMan to the "Line In" on micro's back panel
(or larynx's speaker box) . "Line in" is the connector with the arrow pointing into
the circle. This uses the blue cable.

4. The external speakers consist of a "main" speaker, with the volume and power con-
trols, and a "slave" speaker without them. Plug the small grey cable connected to the
main external speaker into the "Line Out" jack from micro's back panel (or larynx's
speaker box). "Line out" is the connector with the arrow pointing out of the circle.

5. Connect the slave speaker to the back of the main speaker using the small grey cord
attahced to the slave. It plugs into the "R Out" (or something) connector, in the back
of the main speaker.

6. The DATMan and the external speaker need power through their adapters. I recom-
mend using the extra powerbar to accomodate the adapters.

7. Plug the headphone connector from the headset (small plug on the same cord as
the big 3-pin microphone plug) into the headphone jack on micro's back panel (or
larynx's speakerbox). There may a problem with the length ofthat cord.

8. Finally, as a hack to allow the Help movie to be played through the external speakers,
the "Line Out" from the other workstation (i.e., larynx in this setup, or micro if
you're using larynx as the audio host) needs to be connected to the "Input2" on the
front of the master external speaker. This should only be plugged into Input2
when you are playing the movie! Otherwise it should be left unplugged since it
disconnects the main speaker input (from the audio host). Since the Help movie is
played through the speaker anyway, this may not even be necessary.

Now you need to setup the DATMan properly. Several of these settings can be ex-
perimented with, perhaps in conjunction with changing the record level using the Audio
Manager on larynx.

1. A tape must be loaded, and the red "Rec" button must be pressed to enable the audio.
You can adjust record levels at this point.

2. Volume should be set to about 16 using the "+" button on the front edge of the
case (often hidden under the carrying case flap). Note that the volume is reset
whenever power is removed!

3. "Mic Sens" should be set to "High". At least, I think so. It seemed to be set to "Low"
at some point, "High" seems to work right.

72

4. "Rec Mode" set to "Manual" (I found it tended to cutoff and then be slow to readjust
when set to "Auto/Speech").

5. "Rec Level" set to about 7; your mileage may vary. It seems to be okay if it clips a
bit (on the DATMan VU meter).

Finally, I have set the defaults for the Audio Manager to work properly with DATMan
settings as given above. You may have to adjust them further (either while running, or in
the trains script for more permanent changes).

1. The Input Level is set to about 75, which gives good recognition when the DATMan
volume is at 16.

2. The Output Level is set to about 80, which gives plenty of signal for the external
speakers (which can always be turned down), but doesn't blast into the headphones
too much. In a noisy room, this could go perhaps up (although watch for hiss and
remember that the headphones and the line output are controlled together).

3. The Monitor Level should be set to give as much of the person's voice back into the
headphones without putting so much through the speakers that you get feedback. I
find it is very non-linear—it's barely noticeable and then suddenly feeds back. I guess
it's not crucial that the person hear themselves, if push came to shove, and you could
turn the Monitor Level to 0.

Note: The latest TRAINS-96 Audio manager has no provision for adjusting the Mon-
itor level. You could try using /usr/demo/SOUND/gaintool or something...

C.6 Troubleshooting

This section has a few tips about what can/might/will go wrong.

• Speech recognizer doesn't work: Make sure the DATMan is on and in "Rec" mode.
If it is, make sure its headphone jack is connected to "Line In" and that the volume
is cranked to about 16.

C.7 Shutdown

Shutdown is basically the reverse of setup. You need root privileges to do it nicely.

1. Rlogin to micro and do:

'/, sux /etc/halt

This will (obviously) close your remote login, and about 20 seconds later the system
will be halted.

2. On larynx, the same command works:

73

•/, sux /etc/halt

You can then turn off both workstations and the monitor.

3. Turn off the external drives last.

If you don't have root privileges, just do a sync and switch off the power, in the order
described above.

C.8 Shipping List

Figure 13 shows the packing of the cases. The following is a list of the components being
shipped. Items marked with an asterisk are being shipped separately since they wouldn't
fit in the cases.

1 Sun UltraSparc, serial no. 552F1388
1 Sun SparclO, serial no. 249F5001
1 Sun 17 inch color monitor
1 9GB drive (for use with SparclO)
1 4GB drive (for use with UltraSparc)
1 25—25 SCSI cable (for use with 4GB drive)
1 50—25 SCSI cable (for use with 9GB drive)
1 25-pin SCSI terminator (for use with 4GB drive)
1 50-pin SCSI terminator (for use with 9GB drive, two parts)
1 Sun audio/ethernet cable (for use with SparclO, two parts)
1 Sun speaker box (for use with SparclO)
2 Sun keyboards (one with cable for UltraSparc, one without for SparclO)
2 Sun mice (optical for SparclO, mechanical for UltraSparc)
1 Sun optical mouse pad
1 Sun keyboard cable (for SparclO)
1 10Base-T (twisted-pair) crossover cable
5 A/C power cords (UltraSparc, SparclO, 9GB drive, 4GB drive, monitor)
1 Large power bar
1 Small power bar

2 Locking security cables
2 External speakers (*)
1 DC adapter for speakers

1 Sony DATMan with carrying case (*)

1 DC adapter for DATMan

1 Magic blue box (tm)

1 Microphone headset (*)
5 Audio mini-jack patch cords (3 used, 2 spares)

2 Audio mini-jack splitters (spare)

74

Large case

ACcorüs
Small powerbar

Mouse pad
Ethernet cord

larynx keyboard
- y

^

i'
Security knob

Small case (bottom

Secuirty Cab.«
(in spaces between

foam and case)

(wilh thin piece of
foam on top to help fill

•pace)

Box on top of larynx:
blue box
audio cords
DC adapters
mice, etc.

(in spacci between
foam and case)

Small case (top)

9GB drive 4GB drive i
5

S _

a-"

It

Figure 13: Travel system packing diagram

75

D Manual Pages

The following manual pages are provided in this section (as well as online):

dlg_check Check TRAINS-96 dialogue contents
dlg_org Organize TRAINS-96 dialogue contents

dlg_play Play TRAINS-96 dialogue utterances
taudio TRAINS Audio Manager

tdisplay TRAINS Display Module
tim TRAINS Input Manager

tim_cat Send KQML messages from stdin to TRAINS IM
tim-client Send and receive KQML messages to/from TRAINS IM

tim.exec Exec a program with stdin/stdout connected to TRAINS IM
tim-msg Send a KQML message to the TRAINS IM

tkeyboard TRAINS Keyboard Manager
tparser TRAINS Parser module

tpm TRAINS Process Manager
tpsm TRAINS Problem Solving module

tpview TRAINS Parse Tree Viewer
trains Run the TRAINS System

treplay Replay a TRAINS System session
tscenario TRAINS Scenario Chooser

tsf x TRAINS Sound Effects module
tshortcut TRAINS Shortcut Panel

tspeech TRAINS version of Sphinx-II speech recognizer
tspeechpp TRAINS Speech Post-Processor
tspeechx TRAINS Speech Controller
tsplash TRAINS Splash Screen module

ttc TRAINS TrueTalk client using AudioFile server
ttcl TRAINS Discourse Manager module

ttranscript TRAINS Transcript module
tts Runs TrueTalk server

tttalk TRAINS Speech Generation module

76

DLG_CHECK(1) TRAINS SYSTEM COMMANDS DLG-CHECK(l)

NAME

dlg_check - Check TRAINS-96 dialogue contents

SYNOPSIS

dlg_check dir

DESCRIPTION

The dlg-check script checks the contents of the given dialogue

directory recorded during a session with the TRAINS-96 system. If

necessary, dlg-check first runs dlg-org(l) to organize the contents of

the dialogue into suitable sub-directories.

OPTIONS

None.

USAGE

To check the contents of a dialogue, simply provide the path to the

dialogue's log directory as an argument. For example:

•/. dlg-check /u/trains/96/2.0/logs/960821.1049

Relative paths work also.

ENVIRONMENT

TRAINS-BASE Used to find default startup file

FILES

TRAINS-BASE/bin/dlg_org is run if the dialogue directory needs to be

organized into subdirectories.

SEE ALSO

dlg_org(l)

BUGS

This program must be modified if new logs or data files are created in

the process of recording a TRAINS dialogue (i.e., if the contents of a

log directory is changed).

AUTHOR

Eric Ringger (ringger@cs.rochester.edu)

77

DLGJDRGÜ) TRAINS SYSTEM COMMANDS DLG-ORG(l)

NAME

dlg-org - Organize TRAINS-96 dialogue contents

SYNOPSIS

dlg_org dir

DESCRIPTION

The dlg_org script organizes the contents of the given dialogue

directory into suitable sub-directories. The dialogue directory must

have been recorded during a session with the TRAINS-96 system.

The following sub-directories are created:

data
All audio (*.au) files are placed here.

mfc This sub-directory is initially empty, but MFC parameter files

will be placed here.

s2 This sub-directory is initially empty, but Sphinx-II log files will

be placed here.

sent
This sub-directory is initially empty, but hand transcriptions of

the dialogue data will be placed here.

sys All system module logs and the transcript are placed here.

OPTIONS

None.

USAGE

To organise the contents of a dialogue, simply provide the path to the

dialogue's log directory as an argument. For example:

'/. dlg_org /u/trains/96/2.0/logs/960821.1049

Relative paths work also.

ENVIRONMENT

TRAINS_BASE Used to find default startup file

SEE ALSO

dlg_check(l)

78

DLG-ORG(l) TRAINS SYSTEM COMMANDS DLGJDRG(l)

BUGS

This program must be modified if new logs or data files are created in

the process of recording a TRAINS dialogue (i.e., if the contents of a

log directory is changed).

AUTHOR

Eric Ringger (ringgerQcs.rochester.edu)

79

DLG_PLAY(i) TRAINS SYSTEM COMMANDS DLG_PLAY(i)

NAME

dlg4>lay - Play TRAINS-96 dialogue utterances

SYNOPSIS

dlg_play dir [-silent]

DESCRIPTION

The dlg_play script plays the utterances in the given dialogue

directory one at a time. The dialogue must have been recorded during

a session with either the TRAINS-95 or the TRAINS-96 system.

The user is prompted before each utterance with several options:

repeat, backup, quit, or continue. It is also possible to type n

followed by a number to jump to the utterance in that position.

OPTIONS

-silent
Indicates that the utterance audio should not actually be played.

Used for testing.

USAGE

To play the utterances of a dialogue, simply provide the path to the

dialogue's log directory as an argument. For example:

*/. dlg.org /u/trains/96/2.0/logs/960821.1049

Relative paths work also.

FILES

/s7/esps/bin/sl6play from the ESPS software tool-set is used to play

each utterance.

This Perl program uses the Curses module from the Net. Check CPAN for

updates.

SEE ALSO

sl6play(l)

BUGS

None known.

AUTHOR

Eric Ringger (ringger6cs.rochester.edu)

80

TAUDIO(l) TRAINS SYSTEM COMMANDS TAUDIO(l)

NAME

taudio - TRAINS Audio Manager

SYNDPSIS

taudio [-audio server] [-input N] [-output N] [-mic BOOL]
[-linein BOOL] [-speaker BOOL] [-phones BOOL] [-lineout BOOL]
[-meterRunning BOOL] [-debug where] [X args]

DESCRIPTION

Taudio is the TRAINS Audio Manager. It provides an X/Motif display

for monitoring and adjusting audio input and output ports and levels.

OPTIONS

-audio host:device
Connect to the AudioFile server at the given address. The default

is the value of the environment variable AUDIOFILE, if set,

otherwise the current host.

-input N
Set initial input (record) level to N.

-output N
Set initial output (play) level to N.

-mic BOOL
Enable (True) or disable (False) the microphone input initially.

-linein BOOL
Enable (True) or disable (False) the line level input initially.

-speaker BOOL
Enable (True) or disable (False) the speaker output initially.

-phones BOOL
Enable (True) or disable (False) the headphone output initially.

-lineout BOOL
Enable (True) or disable (False) the line level output initially.

-meterRunning BOOL
If True, the input level "VU meter" is enabled initially. The

default is False, which reduces the amount of work the Audio

Manager has to do.

-debug where
Specify that copious debugging information should be written to

where. If where is a hyphen ("-"), output is to stderr, if it

starts with a pipe ("I") the rest of the argument is passed to

popen(3), otherwise it is taken to be a filename to which to

write. Be careful to escape pipes and spaces from the shell.

81

TAUDID(l) TRAINS SYSTEM COMMANDS TAUDIO(l)

X args
Taudio accepts all standard X Toolkit arguments; see X(l) for

details.

USAGE

Taudio first connects to the AudioFile server given by the -server

argument or the AUDIOFILE environment variable. If any of the level
options (e.g., -input) or port configuration options (e.g., -mic) were

given, taudio configures the server, otherwise the settings are left

unchanged.

Input and output levels can then be adjusted using the sliders, and

input and output ports can be selected using the menus. Note that

input ports are mutually exclusive, while output ports can all be on

at once. The "VU meter" input level display can be enabled and

disabled from the Input menu. It is recommended that it be left

disabled once levels are set to reduce the load on the audio server.

AUDIO MANAGER MESSAGES

The following KQML messages are understood by the Audio Manager. They
should be addressed with ":receiver AUDIO". Case is insignificant

outside of strings. Whitespace between messages is ignored (but
rigorously enforced within messages according to the KQML spec).

(request :content (exit :status N))
Requests that the Audio Manager exit with status N (default 0).

(request :content (hide-window))
Causes the Audio Manager display to iconify itself.

(request :content (show-window))
Causes the Audio Manager display to deiconify itself.

(request :content (start-conversation :name N :lang L :sex S))

Ignored,

(request :content (end-conversation)

Ignored,

(request :content (chdir DIR))

Ignored.

ENVIRONMENT

DISPLAY HOST:SCREEN for X server
AUDIOFILE HOST:DEVICE for AudioFile server

FILES

None.

82

TAUDICK 1) TRAINS SYSTEM COMMANDS TAUDIO(l)

DIAGNOSTICS

Some.

SEE ALSO

trains(1), tim(l)

BUGS

Not really a bug, but it would be nice to have some way to control the

"monitor" level provided by the Sun audio hardware.

AUTHOR

George Ferguson (fergusonQcs.rochester.edu).

83

TDISPLAY(l) TRAINS SYSTEM COMMANDS TDISPLAY(l)

NAME

tdisplay - TRAINS Display Module

SYNOPSIS

tdisplay [-map STR] [-showMenus BOOL] [-showTextln BOOL]
[-showTextOut BOOL] [-textlnHeight N] [-textOutHeight N]
[-debug where] [X args]

DESCRIPTION

Tdisplay is the TRAINS Display module. It provides an object-oriented

X window map display used by the generation component of the Discourse

Manager. Objects on the map can be selected using the mouse, result-

ing in messages interpreted by the TRAINS Parser. The current version

of the display also provides a "text out" window showing System utter-

ances and a "text in" window into which the user can type (although

the latter has been superseded by the Keyboard Manager, tkeyboard(l)).

OPTIONS

-map STR
Specify the initial map displayed by the Display. Maps are looked
for first in the current directory, then in TRAINSJJASE/etc/maps,

both with and without the extension ".map". The default map is of

the full-size Northeast U.S.

-showMenus BOOL
Enable (True) or disable (False) the display of the application

menubar. The default is True. Disabling it can be useful when

screen real estate is at a premium.

-showTextln BOOL
Enable (True) or disable (False) the user input area underneath

the map display.

-showTextOut BOOL
Enable (True) or disable (False) the system output area above the

map display.

-textlnHeight N
Specify the height of the user input area in pixels. The default

is 100 (about five lines).

-textOutHeight N
Specify the height of the system output area in pixels. The

default is 20 (about one line).

84

TDISPLAY(l) TRAINS SYSTEM COMMANDS TDISPLAY(l)

-debug where
Specify that copious debugging information should be written to

where. If where is a hyphen ("-"), output is to stderr, if it

starts with a pipe ("I") the rest of the argument is passed to
popen(3), otherwise it is taken to be a filename to which to

write. Be careful to escape pipes and spaces from the shell.

X args
Tdisplay accepts all standard X Toolkit arguments; see X(l) for

details.

USAGE

Tdisplay begins by reading its initial mapfile. Mapfiles are simply

files containing the same KQML messages understood by the Display

during normal operation. It then processes KQML messages on its

standard input and outputs messages corresponding to user mouse
actions to standard output (as selective broadcasts). The key to the

Display module is the large number of display operations it can

perform, as detailed in the next section.

DISPLAY MESSAGES

The following KQML messages are understood by the Display. They

should be addressed with ":receiver DISPLAY". Case is insignificant

outside of strings. Whitespace between messages is ignored (but

rigorously enforced within messages according to the KQML spec).

Object Manipulation Messages

The following messages create and otherwise manipulate Display

objects.

(request :content (create :name :type :displayed :depth :bg
rcolor :fill :fillcolor :thickness :shape

[type-specific attrs]))
This creates a new Display object and is by far the most

complicated request understood by the Display. That makes it as

good a place as any to start.

The :name attribute names the new object. The :type attribute is

one of city, track, route, engine, or region. The :displayed at-

tribute can be t or nil, indicating whether the object is visible

(and selectable) or not. The :depth attribute sets the depth of

the object on the display—deeper objects (greater :depth) are

drawn under less deep ones. The :bg attribute indicates whether

the object is considered part of the "background" (i.e., is

dynamic or not). See the SETBG request, below, for details. The

85

TDISPLAY(l) TRAINS SYSTEM COMMANDS TDISPLAY(i)

:color and :fillcolor attributes are X color names (or X RGB color

specs); see X(l) for details. The :fill attribute varies from 0

(unfilled) to 100 (completely filled), and the :thickness attribute

affects the borders of the object.

The shape of the object can be specified using the :shape

attribute using one of the following forms:

(line :start LOG :end LOC)

(circle :center LOC :radius N)

(poylgon :center LOC :points I:rpoints (LOCI L0C2 ...))

(multiline :points|:rpoints (LOCI L0C2 ...))

The LOC attributes (locations), can be the names of objects, mean-

ing their centers, or a list of (X Y) coordinates in the Display

window (the origin is the upper, left corner). For polygon and

multiline shapes, :points means the locations are absolute

coordinates and rrpoints means they are relative (after the first

one, of course). Note that most objects have a default shape.

Finally, the create request can specify attributes specific to the
type of object being created. These additional attributes are:

city :label STR :orientation 0 :ptsize N

track :start LOC :end LOC
engine :at LOC :orientation 0 :outlined t|nil

route :start CITY :tracks (0BJ1 0BJ2 ...)

The :orientation 0 is one of north, northeast, east, etc.,

describing the position of the label relative to the object (for

cities) and the position of the engine relative to the city it is

:at (for engines). The :outlined attribute for engines is an

alternative for ":fill 0" or ":fill 100". The default shape for a

track is a line connecting the endpoints, for an engine it is a

simple schematic engine thingo, and for a route it is a series of

spline curves along the tracks in the route.

(request :content (destroy OBJ))
Destroys the named object, removing it from the Display.

(request :content (display OBJ))

Causes OBJ to be displayed.

(request :content (undisplay OBJ))
Causes OBJ to be neither seen nor selectable.

(request :content (set OBJ attr-value pairs))
Sets attributes of the given OBJ. Not all attributes can be set in

this way, but most, like :displayed and :color can be. The shape

cannot be changed, however.

86

TDISPLAY(l) TRAINS SYSTEM COMMANDS TDISPLAY(l)

(request :content (default attr-value pairs))

Sets default values of some attributes for subsequent create

requests. Again, most of the useful attributes can be set in this

way, but not all of them.

Object Highlighting Messages

The following messages are used for the important job of highlighting

object during a conversation.

(request :content (highlight OBJ :color :type :flash))

Causes the given object to be highlighted. The :type attribute

can be object, circle, or rectangle, meaning that either the

object itself becomes colored (for an object highlight) or that

the appropriate colored shape is drawn around the object (actually

around its bounding box). The :flash attribute can be nil,

meaning don't flash (the default), t, meaning flash the highlight

forever, or a number, meaning that the highlight should flash that

many times and then unhighlight. Multiple highlights can be

applied to an object and they are rendered in the order they were

applied.

(request :content (unhighlight OBJ :color :type :flash))

Removes the matching highlight from the given object. If no

attributes are given, all highlights are removed from the object.

Dialog Box Messages

The following messages provide popup dialog boxes of two types.

(request :content (confirm TAG STR))

Displays a blocking confinner with STR as its text. When the user
selects either OK or CANCEL, the Display outputs a reply with

:content

(confirm TAG t|nil)

(request :content (dialog TYPE STR))
Displays a non-blocking dialog box of the given TYPE displaying

STR. Currently only the :goals type is supported, and the string

is displayed in a dialog box labelled "Goals for this TRAINS sce-

nario" . No output is generated if this dialog box is dismissed.

Display Control Messages

The following messages affect global properties of the Display.

(request -.content (canvas :title STR :width N :height N))
Sets the title, height and width of the Display window. Changing

87

TDISPLAY(l) TRAINS SYSTEM COMMANDS TDISPLAY(l)

this other than at the start of a map will cause unpredictable

results at best.

(request .-content (translate X Y))
Translates the coordinates of subsequent request by the given

amounts (in pixels). This affects primarily the interpretation of

(X Y) pairs in create requests.

(request :content (scale X Y))
Scales the coordinates of subsequent request by the given amounts

(floating point values). This affects primarily the

interpretation of (X Y) pairs in create requests.

(request :content (setbg))
Sets the background pixmap of the Display's window to include any

objects with the :bg attribute set to T. These objects are then

not redrawn during Display updates. This is typically used once

per map after the map objects have been created but before any

engines, routes, etc. have been created.

(request :content (say STR))
Adds STR to the system output window above the map display.

(request :content (postscript FILENAME))
Dumps a color encapsulated Postscript file describing the current

display to the given FILENAME,

(request :content (map FILENAME))

Causes the given mapfile to be read.

(request :content (refresh))
Causes the Display to redraw the map display (although see above

regarding the setbg request).

(request :content (restart))
Causes the Display to erase all objects and re-read its original

mapfile.

Module Control Messages

The following messages are the standard TRAINS System messages.

(request :content (exit :status N))
Requests that the Display exit with status N (default 0).

(request :content (hide-window))
Causes the Display to iconify itself.

(request :content (show-window))
Causes the Display to deiconify itself,

(request :content (start-conversation :name N :lang L :sex S))

Treated as a RESTART followed by SHOW-WINDOW.

88

TDISPLAY(l) TRAINS SYSTEM COMMANDS TDISPLAY(l)

(request :content (end-conversation)

Treated as a HIDE-WINDOW.

(request :content (chdir DIR))

Ignored.

Display Output Messages

The following messages are generated by tdisplay as selective

broadcasts in response to user keyboard and mouse actions.

(tell :content (mouse :select objl obj2 ...))

Sent when the user clicks on an object. The objects are all those

within a certain fuzz factor of the click, ordered by depth.

(tell :content (mouse :drag obj :from obj :to objl obj2 ...))

Sent when the user drags an object. The destination object list

is as described above for clicks.

(tell :content (confirm TAG t|nil))

Sent when the user answers a dialog box confirmer.

(tell :content (word W :index (II 12)))

Broadcast to announce a new word in the user's typed input. The

:index argument identifies the start and end position of the word,

which can in fact be several words as far as the parser is

concerned, as in the token ''COULDN'T'*. Index positions start at
1. A single number I can be given, implying ''(I 1+1)''.

(tell :content (backto :index I))
Broadcast to indicate that any words previously output at index I

or beyond (inclusive) were erased by the user.

(tell :content (end))

Broadcast to announce that the user hit Return.

ENVIRONMENT

DISPLAY HOST:SCREEN for X server

TRAINSJBASE Used to find mapfiles

FILES

TRAINS_BASE/etc/maps Default location of mapfiles

DIAGNOSTICS

Colormap complaints are possible, even common, if your colormap fills

up. They should break anything though...

SEE ALSO

trains(l), tparser(l), ttcl(l)

89

TDISPLAYÜ) TRAINS SYSTEM COMMANDS TDISPLAY(l)

BUGS

This code was due to be replaced long ago. Perhaps some day...

AUTHOR

George Ferguson (ferguson@cs.rochester.edu).

90

TIM(l) TRAINS SYSTEM COMMANDS TIM(l)

NAME

tim - TRAINS Input Manager

SYNOPSIS

tim [-port N] [-nolog] [-showlogo BOOL] [-debug where]

DESCRIPTION

Tim is the TRAINS Input Manager. It accepts connections on a

"well-known" socket (currently port 6200) and routes KQML messages

between connected clients. It supports both true and selective

broadcasts and provides full KQML syntax checking. The Input Manager

also provides an optional graphical display of connected clients and

the message traffic between them.

The Input Manager writes a log of all messages received and sent to

the file "im.log" in the current directory (unless -nolog is given,

see below). The chdir message (see below) causes the log to be closed

and reopened in a new directory.

OPTIONS

-port N
Listen on port N rather than the default (currently 6200 unless

the environment variable TRAINS-SOCKET is set). Clients should

connect to this port on the host running tim. If this port cannot

be allocated, tim will increment the port number and keep trying

until an available socket is found. Clients should follow the

same protocol, calling connect(3) with successively higher port

numbers.

-nolog
If given, causes the Input Manager to not create the "im.log" file

in the log directory.

-showlogo BOOL
If True, the Input Manager starts by displaying the TRAINS logo.

If False (the default), the clients and message traffic are

displayed (see USAGE, below).

-debug where
Specify that copious debugging information should be written to

where. If where is a hyphen ("-"), output is to stderr, if it

starts with a pipe ("I") the rest of the argument is passed to
popen(3), otherwise it is taken to be a filename to which to

write. Be careful to escape pipes and spaces from the shell.

91

TIM(l) TRAINS SYSTEM COMMANDS TIM(l)

USAGE

From the shell, usage is trivial: simply start tim and arrange for

clients to connect to it. Normally this will be done by a script that

launches the TRAINS system as a whole, and clients will be launched by

the TRAINS process manager, tpm(l).

The Input Manager provides two different X/Motif displays. The first

is a simple TRAINS Project logo, suitable for use in demos. The

other, more useful but potentially confusing, display shows connected

clients, their status, and message traffic between them. Clicking in

the Input Manager's window toggles between the two types of display

(the logo is obviously less work for the IM).

CLIENT USAGE

From a client application's perspective, using the Input Manager can

be broken down into three steps:

1. Connect to tim on the well-known socket. See the discussion of the
-port option, above, for details of this, and see any Unix IPC

description for how to connect to a socket in general.

2. Register the name of the client with the Input Manager. To do

this, the following KQML message must be sent (to the connected

socket):

(register :receiver im :name myname)

An optional :class argument can be given to specify to which class

a client belongs. Once this is done, messages sent to myname by

other clients will appear on the socket.

3. Use the socket for communication with the Input Manager and other

clients. A complete spec of the messages understood by the Input

Manager is in the following section.

Messages not addressed to the Input Manager (IM) itself are copied to
the receiver's connection (or an error is generated if the intended

receiver does not exist). Messages without an explicit :receiver are

considered broadcasts, and are sent to any module that has sent an
appropriate LISTEN request to the Input Manager (selective broadcast,

note the difference from the BROADCAST performative).

INPUT MANAGER MESSAGES

The following KQML messages are understood by the Input Manager. They

should be addressed with ":receiver IM". Case is insignificant

outside of strings. Whitespace between messages is ignored (but

rigorously enforced within messages according to the KQML spec) .

92

TIM(l) TRAINS SYSTEM COMMANDS TIM(l)

(request :content (define-class C :parent P))

Requests that the Input Manager define a new class named C whose

parent class is P (default is the pre-defined class Any).

(register :name M :class C)
Sender is asking to be identified as M from now on. This should

be the first message sent by any client. The client's status is

set to CONNECTED after receipt of this message. The class C is

optional and defaults to Any. Multiple REGISTER messages per

client are permitted, and will result in messages for any of the

registered names being sent to the client.

(tell :content (ready))
Sender is announcing that it is "ready," whatever exactly that

is taken to mean. The client's status is set to READY after

receipt of this message.

(request :content (listen M))
Sender is asking to receive broadcast messages from module or

class M. That is, messages sent by M (or by a module in class M)

without an explicit :receiver will be copied to the sender of this

message.

(request :content (unlisten M))
Sender is asking to stop receiving broadcast messages from module

or class M.

(evaluate :content (status M))
Sender is asking for the status of module or class M. If M is a

module, the response will be of the form:

(reply :sender IM :content (status M STATUS))

where the status is one of DEAD, CONNECTED, READY, or EOF. Any

:reply-with in the original message will be used in the reply. If
M is a class, one such reply will be sent for each module in the

class. There is currently no mechanism for indicating that the

replies are finished (we could do something smarter if this was

needed).

(monitor :content (status M))
Sender is asking to be informed whenever the status of module or

class M changes. This will result in REPLY messages as above, and

again any :reply_with in the original MONITOR will be used in the

REPLY. The Input Manager will send an initial REPLY with the

current status of the module(s) immediately.

(unmonitor :content (status M))
Sender is requesting to stop monitoring status.

93

TIM(l) TRAINS SYSTEM COMMANDS TIM(l)

(request :content (chdir DIR))
Request that the Input Manager close the current "im.log" and open

a new one in the given DIR.

(request :content (dump))
Request that the Input Manager dump its client table to stderr,

for debugging purposes.

(request :content (exit :status N))
Request that the Input Manager exit (with optional status N).

This closes all client connections, and so is an effective way to

halt the entire system.

(broadcast :content PERFORMATIVE)
Causes the given PERFORMATIVE to be sent to all connected modules.

Note that this is a true broadcast, as opposed to the selective

broadcast provided by the LISTEN and UNLISTEN requests.

(request :content (hide-window))
Causes the Input Manager display to iconify itself.

(request :content (show-window))
Causes the Input Manager display to deiconify itself.

(request :content (start-conversation :name N :lang L :sex S))

Ignored.

(request :content (end-conversation)

Ignored.

ENVIRONMENT

DISPLAY HOST:SCREEN for X server

TRAINS-SOCKET HOST:PORT for Input Manager connection

FILES

im.log Input Manager log

DIAGNOSTICS

Copious.

In particular, when non-KQML input is received from a client (as can
happen when it inadvertently prints an error message to its standard

output, for example), the Input Manager complains to stderr and logs
the bad input. This can be somewhat verbose due to the incremental

parsing of KQML messages. Sorry.

SEE ALSO

tpm(l), tim_client(l)

94

TIM(l) TRAINS SYSTEM COMMANDS TIM(l)

BUGS

Undoubtedly.

AUTHOR

George Ferguson (ferguson@cs.rochester.edu).

95

TIM_CAT(i) TRAINS SYSTEM COMMANDS TIM_CAT(1)

NAME

tim_cat - Send KQML messages from stdin to the TRAINS Input Manager

SYNOPSIS

tim.cat [-socket H0ST:P0RT]

DESCRIPTION

Tint-cat is a simple program that reads KQML messages from its standard

input and sends them to the TRAINS Input Manager.

OPTIONS

-socket HOST:PORT
Connect to Input Manager at the given HOST and PORT. The default

is to use port 6200 on the local host, or the value of the

environment variable TRAINS-SOCKET, if set. Tim.cat will scan
successive port numbers from that given trying to connect (see

tim(l) for details).

ENVIRONMENT

TRAINS-SOCKET HOST:PORT at which to contact IM

FILES

None.

DIAGNOSTICS

None.

SEE ALSO

tim(l), timjisg(l), tim_client(l)

BUGS

Probably not.

AUTHOR

George Ferguson (fergusontcs.rochester.edu).

96

TIMLCLIENT(l) TRAINS SYSTEM COMMANDS TIM_CLIENT(1)

NAME

tim_client - Send and receive KQML messages to/from TRAINS Input

Manager

SYNOPSIS

tim_client [-socket H0ST:P0RT]

DESCRIPTION

Tim-client is a fairly simple program that reads KQML messages from

its standard input and sends them to the TRAINS Input Manager, and

reads messages from the Input Manager and prints them to its standard

output.

OPTIONS

-socket HOST:PORT
Connect to Input Manager at the given HOST and PORT. The default

is to use port 6200 on the local host, or the value of the

environment variable TRAINS-SOCKET, if set. Tim_client will scan

successive port numbers from that given trying to connect (see

tim(l) for details).

ENVIRONMENT

TRAINS-SOCKET HOST:PORT at which to contact IM

FILES

None.

DIAGNOSTICS

None.

SEE ALSO

tim(l), tinunsg(l), tim.cat(l)

BUGS

Probably not.

AUTHOR

George Ferguson (fergusonQcs.rochester.edu).

97

TIM_EXEC(1) TRAINS SYSTEM COMMANDS TIMJEXEC(l)

NAME

tim_exec - Exec a program with stdin/stdout connected to TRAINS Input

Manager

SYNOPSIS

tim.exec [-socket H0ST:P0RT] cmd [args]

DESCRIPTION

tim-exec is a simple program that connects to the TRAINS Input

Manager, then uses the rest of its command-line arguments as a command

to launch with stdin and stdout connected to the IM.

OPTIONS

-socket HOST:PORT
Connect to Input Manager at the given HOST and PORT. The default

is to use port 6200 on the local host, or the value of the
environment variable TRAINS-SOCKET, if set. Tim_exec will scan

successive port numbers from that given trying to connect (see

tim(l) for details).

ENVIRONMENT

TRAINSJSOCKET HOST:PORT at which to contact IM

FILES

None.

DIAGNOSTICS

None.

SEE ALSO

tim(l), timjnsg(l), tim.cat(l), tim.client(l)

BUGS

Probably not.

AUTHOR

George Ferguson (ferguson®cs.rochester.edu).

98

TDLMSG(l) TRAINS SYSTEM COMMANDS TIM_MSG(1)

NAME

tiirunsg - Send a KQML message to the TRAINS Input Manager

SYNOPSIS

tim-msg [-socket H0ST:P0RT] verb [parameters]

DESCRIPTION

Tim_msg is a simple program that allows a single KQML message to be

sent to the TRAINS Input Manager. It first connects to the Input

Manager (see the -socket option, below). The arguments are then

formatted as a KQML performative and sent over the connection. Note

that the parameters are not checked for KQML syntactic correctness.

Be sure to escape parentheses, spaces, and the like from the shell.

OPTIONS

-socket HOST:PORT
Connect to Input Manager at the given HOST and PORT. The default

is to use port 6200 on the local host, or the value of the

environment variable TRAINS-SOCKET, if set. Tim-msg will scan

successive port numbers from that given trying to connect (see

tim(l) for details).

USAGE

This command tells the IM to terminate, thereby terminating all the

other modules:

tim_msg request :receiver im :content '(exit)'

This simple example simulates a word being recognized by Sphinx:

tim_msg tell :sender speech-in :content '(word "hello" :index 1)'

ENVIRONMENT

TRAINS-SOCKET HOST:PORT at which to contact IM

FILES

None.

DIAGNOSTICS

None.

99

TIM_MSG(1) TRAINS SYSTEM COMMANDS TIM_MSG(1)

SEE ALSO

tim(l), tim_cat(l), tim_client(l)

BUGS

Probably not.

AUTHOR

George Ferguson (ferguson@cs.rochester.edu).

100

TKEYBOARD(l) TRAINS SYSTEM COMMANDS TKEYBOARD(l)

NAME

tkeyboard - TRAINS Keyboard Manager

SYNOPSIS

tkeyboard [-rows N] [-columns N] [-bufnum N] [-grab BOOL]
[-hotkey STR] [-showMenus BOOL] [-fontpat STR] [-fontsize N]
[-debug where] [X args]

DESCRIPTION

Tkeyboard is the TRAINS Keyboard Manager. It provides an X/Motif win-

dow into which the user can type. Typed input is incrementally output

to standard output as KQML messages. It also provides a "hotkey" to

allow speech recognition to be stopped and started using the keyboard,

thereby freeing up the mouse for concurrent graphical gestures.

OPTIONS

-rows N
Number of rows for Keyboard Manager window (default 7).

-columns N
Number of columns for Keyboard Manager window (default 80).

-bufnum N
Specify that the last N words of the user's input should not be

output (until Return is typed). This allows the user to make
corrections locally without the need for a BACKTO message. The

default is 2.

-grab BOOL
Enable (True) or disable (False) the initial keyboard grab. The

default is True. See USAGE below for more details.

-hotkey STR
Set the "hotkey" used to control speech recognition. The STR

should be the name of an XI1 KeySym, such as "a" (not a good

choice, however) or "Alt_L" (the default). Be careful when

changing this since most keys are either used in typed input

and/or are auto-repeating.

-showMenus BOOL
Enable (True) or disable (False) the display of the application

menubar. The default is True. Disabling it can be useful when

screen real estate is at a premium.

-fontpat STR
Set the font pattern to the given STR, which should have a single

"default is a pattern representing Courier medium.

101

TKEYBOARD(l) TRAINS SYSTEM COMMANDS TKEYBOARD(l)

-fontsize N
Set the initial font size to N. The default is 14.

-debug where
Specify that copious debugging information should be written to

where. If where is a hyphen ("-"), output is to stderr, if it

starts with a pipe ("I") the rest of the argument is passed to

popen(3), otherwise it is taken to be a filename to which to

write. Be careful to escape pipes and spaces from the shell.

X args
Tkeyboard accepts all standard X Toolkit arguments; see X(l) for

details.

USAGE

Tkeyboard incrementally processes typed input and outputs words in a

format similar to the speech recognition modules tspeechin(l) and

tspeechpp(l).

Unless disabled with "-grab False", tkeyboard places an active grab on

the user's keyboard, thereby allowing it to receive keyboard events

regardless of the location of the mouse pointer. It automatically

releases the grab when iconified, and re-grabs when de-iconified. The

Control menu provides items to grab or ungrab the keyboard

unconditionally.

In conjunction with the keyboard grabbing, a "hotkey" is defined that,

when pressed, generates a START request to the SPEECH-IN module and

when released generates a STOP request. The default hotkey is the
left Alt key, which is convenient since it does not auto-repeat and is

not used for typed input. Use of the hotkey allows the mouse pointer

to be used simultaneously in another window, for example the DISPLAY.

KEYBOARD MANAGER MESSAGES

The following KQML messages are understood by the Keyboard Manager.
They should be addressed with ":receiver KEYBOARD". Case is insignif-

icant outside of strings. Whitespace between messages is ignored (but

rigorously enforced within messages according to the KQML spec).

(request :content (grab))
Causes the Keyboard Manager to grab the user's keyboard.

(request :content (ungrab))
Causes the Keyboard Manager to release its grab on the user's

keyboard.

(request :content (reset))
Clears the Keyboard Manager display and resets any word buffering.

102

TKEYBQARD(l) TRAINS SYSTEM COMMANDS TKEYBOARD(l)

(request :content (exit :status N))
Requests that the Keyboard Manager exit with status N (default 0).

(request :content (hide-window))
Causes the Keyboard Manager display to iconify itself.

(request :content (show-window))
Causes the Keyboard Manager display to deiconify itself.

(request :content (start-conversation :name N :lang L :sex S))

Treated as a RESET followed by SHOW-WINDOW.

(request :content (end-conversation)

Treated as a HIDE-WINDOW.

(request :content (chdir DIR))

Ignored.

The following messages are generated by tkeyboard as selective

broadcasts during recognition.

(tell :content (word W :index (II 12)))
Broadcast to announce a new word in the user's input. The :index

argument identifies the start and end position of the word, which

can in fact be several words as far as the parser is concerned, as

in the token "COULDN'T". Index positions start at 1. A single

number I can be given, implying "(I I+D".

(tell :content (backto :index I))
Broadcast to indicate that any words previously output at index I

or beyond (inclusive) were erased by the user.

(tell :content (end))
Broadcast to announce that the user hit Return.

ENVIRONMENT

DISPLAY HOST:SCREEN for X server

FILES

None.

DIAGNOSTICS

Sometimes complains that a grab couldn't be obtained if, for example,
another application already had a grab on the keyboard (e.g., menus).

The whole grab thing is complicated.

SEE ALSO

trains(l), tim(l)

103

TKEYBOARD(l) TRAINS SYSTEM COMMANDS TKEYBOARD(l)

BUGS

Grabs are annoying.

AUTHOR

George Ferguson (ferguson@cs.rochester.edu).

104

TPARSER(l) TRAINS SYSTEM COMMANDS TPARSER(l)

NAME

tparser - TRAINS Parser module

SYNOPSIS

tparser [lisp args]

DESCRIPTION

Tparser is a dumped Allegro Common Lisp image that implements the

TRAINS Parser module, a robust, bottom-up chart parser. It reads KQML

messages (describing input words) from standard input and writes KQML

messages (describing utterance interpretations) to standard output.

OPTIONS

You can pass any arguments suitable for dumped Lisp images. I don't

know why you would want to, however.

USAGE

Tparser asks the Input Manager to LISTEN to the USER-INPUT class of

modules. This class includes the speech recognition modules SPEECH-IN

and SPEECH-PP, the Keyboard Manager KEYBOARD, and the DISPLAY. As

these modules broadcast the user's spoken, typed, or graphical input,

the parser constructs a representation of the meaning of the

utterance. When the utterance is complete, it broadcasts a TELL

message whose content is the interpretation.

Currently, although the Parser listens to both SPEECH-IN and SPEECH-PP

messages, it only uses one of them. Its policy is to use all of

SPEECH-PP's output if that module output anything this utterance,

otherwise use SPEECH-IN's. This can cause problems if, for example,

SPEECH-IN completely finishes processing before SPEECH-PP even outputs

START.

PARSER MESSAGES

The following KQML messages are understood by the Parser. They should

be addressed with ":receiver PARSER". Case is insignificant outside

of strings. Whitespace between messages is ignored (but rigorously

enforced within messages according to the KQML spec).

(tell :content (start :uttnum N))

Causes the parser to start processing a new utterance.

(tell :content (word W :uttnum N :index I :frame F :score S))

Adds a word to the current utterance. The format is more fully

described in the manpages for tspeech(l), tspeechpp(l), and

tkeyboard(l).

105

TPARSER(l) TRAINS SYSTEM COMMANDS TPARSER(l)

(tell :content (backto :uttnum N :index I))
Invalidates words at index positions I and higher (inclusive).

(tell :content (end :uttnum N))
Causes the parser to stop processing the utterance and output its

interpretation.

(tell :content (mouse :select objl obj2 ...))
Sent by DISPLAY when the user clicks on an object.

(tell :content (mouse :drag obj :from obj :to objl obj2 ...))

Sent by DISPLAY when the user drags an object.

(tell :content (confirm TAG t|nil))
Sent by DISPLAY when the user answers a dialog box confirmer.

(request :content (restart))
Clears any internal state in the parser.

(request :content (parse-tree))
Causes the Parser to reply with a message containing the latest

parse tree. This is used by the Parse Tree Viewer, tpview(l)■

(request :content (exit :status N))
Requests that the Parser exit with status N (default 0).

(request :content (chdir DIR))
Causes the Parser to close its "parser.log" file and reopen it in

the given DIR.

(request :content (start-conversation :name N :lang L :sex S))

Logged but otherwise ignored.

(request :content (end-conversation)

Logged but otherwise ignored.

The following message is generated by tspeech as a selective broadcast

at the end of each utterance:

(tell :content (SPEECH-ACT PARMS))
PARMS include: :objects, :paths, semantics, :noise,
:social-context, :relaibility, :mode, :syntax, :setting, and

:input. A more complete description of the Parser output can be

found in its online documentation and various technical reports.

ENVIRONMENT

The dumped Allegro CL image depends on a shared library for execution.
You can specify the location of this library using the environment

variable ALLEGRO_CL-HOME if it is not in the same place as when the

image was dumped.

106

TPARSER(l) TRAINS SYSTEM COMMANDS TPARSER(l)

FILES

parser.log Parser log

DIAGNOSTICS

Complains about unknown words.

SEE ALSO

trains(1)

BUGS

Doesn't seem to crash too often anymore.

AUTHOR

James Allen (jamesScs.rochester.edu).

107

TPM(l) TRAINS SYSTEM COMMANDS TPM(l)

NAME

tpm - TRAINS Process Manager

SYNOPSIS

tpm [-socket host:port] [-debug where]

DESCRIPTION

Tpm is the TRAINS Process Manager. It provides process management

services in response to KQML messages. It can launch processes

(optionally connecting them to the TRAINS Input Manager), as well as

killing them. Note that process status reporting is now handled by

the Input Manager.

OPTIONS

-socket hostrport
Connect to the Input Manager on host at port rather than the

default (localhost:6200, unless the environment variable
TRAINS_SOCKET is set). If the Input Manager cannot be found,

processes can still be launched but will be unable to exchange

messages (which sort of limits their use, I would think). The

Process Manager will scan successive ports attempting to connect

to the Input Manager if the initial value is unconnectable.

-debug where
Specify that copious debugging information should be written to

where. If where is a hyphen ("-"), output is to stderr, if it

starts with a pipe ("I") the rest of the argument is passed to

popen(3), otherwise it is taken to be a filename to which to

write. Be careful to escape pipes and spaces from the shell.

USAGE

After starting tpm from the shell (which has to happen after the Input

Manager, tim(l) , is started), the TRAINS system is typically

bootstrapped by sending initial messages to the Process Manager using

one of the Input Manager utilities like tim_cat(l).

PROCESS MANAGER MESSAGES

The following KQML messages are understood by the Process Manager.

They should be addressed with ":receiver PM". Case is insignificant

outside of strings. Whitespace between messages is ignored (but

rigorously enforced within messages according to the KQML spec).

108

TPM(l) TRAINS SYSTEM COMMANDS TPM(l)

(request :content (start :name M :host HOST :exec FILE
:argv (args) :envp (envs) :connect t|nil))

Sender is asking to start a process named M executing FILE on HOST

(default is the local host). The argument list and environment of

the process can be set with the optional parameters. Note that

:argv, if used, must specify argv[0], typically the basename of

the executable, and :envp, if used, should be a list of strings of

the form "VAR=VALUE". The elements of :argv and :envp can be

tokens or strings (and must be strings is they include whitespace

and the like).

If the :connect parameter is non-nil (the default), the process is

started with stdin and stdout connected to the Input Manager (if

possible). Otherwise the process can find the address of the
Input Manager in its environment as the value of TRAINS-SOCKET in

the form "hostrport" (if the Process Manager knows the address at

connect time). It must then arrange to connect to the Input

Manager by itself using this information.

(request :content (kill M :signal N))
Sender is asking to terminate process M by sending signal N

(default 2, SIGTERM).

(request :content (dump))
Requests the Process Manager to dump a description of the current

set of processes to stderr.

(request :content (exit :status N))
Requests that the Process Manager itself exit with status N
(default 0). This terminates all processes managed by the Process

Manager.

(request :content (chdir DIR))

Ignored.

(request :content (show-window))

Ignored.

(request :content (hide-window))

Ignored,

(request :content (start-conversation :name N :lang L :sex S))

Ignored.

(request :content (end-conversation)

Ignored.

ENVIRONMENT

TRAINS-SOCKET HOST:PORT for Input Manager connection

109

TPM(l) TRAINS SYSTEM COMMANDS TPM(l)

FILES

None.

DIAGNOSTICS

Copious.

In particular, when a process managed by the Process Manager dies, the

PM will (usually) complain that "read was interrupted". This is

normal: the PM was asleep in read(2) when the SIGCHLD for the child's

death was received (and handled). I could specialcase the error

message, but it doesn't seem worth it. The TRAINS processes aren't

supposed to die anyway...

SEE ALSO

trains(l), tim(l), tim_client(l)

BUGS

Undoubtedly, although this program is now fairly simple.

AUTHOR

George Ferguson (fergusonScs.rochester.edu).

110

TPSM(l) TRAINS SYSTEM COMMANDS TPSM(l)

NAME

tpsm - TRAINS Problem Solving module

SYNOPSIS

tpsm [lisp args]

DESCRIPTION

Tpsm is a dumped Allegro Common Lisp image that implements the TRAINS

Problem Solving module. The PS module manages planning and plan

recognition services for the TRAINS System. It reads KQML messages

(requests) from standard input and writes KQML messages (replies) to

standard output.

OPTIONS

You can pass any arguments suitable for dumped Lisp images. I don't

know why you would want to, however.

USAGE

The Problem Solving module maintains a hierarchical goal tree as well

as a linear history of the problem solving state. Requests perform

operations on the goal tree and/or move back and forth through the

history. An important aspect of the PS module is that it supports two

different classes of requests:

1. Interpretation requests, which test the feasibility of an operation

without actually recording it; and

2. Update requests, which modify the problem solving state.

This allows other modules to pursue alternative interpretations prior

to committing to one.

PROBLEM SOLVING MESSAGES

I am not going to attempt to document the PS module here. Further
information is available in online documentation and various technical

reports.

ENVIRONMENT

The dumped Allegro CL image depends on a shared library for execution.

You can specify the location of this library using the environment

variable ALLEGRO_CL_HOME if it is not in the same place as when the

image was dumped.

FILES

ps.log Problem Solving log

111

TPSM(l) TRAINS SYSTEM COMMANDS TPSM(l)

DIAGNOSTICS

Not many. Uses ERROR and SORRY performatives to indicate problems.

SEE ALSO

trains(1)

BUGS

Crashes regularly. On the other hand, its behavior has increased the

robustness of the rest of the system that has to deal with it. At

least it (usually) doesn't drop into the Lisp debugger.

AUTHOR

James Allen (james@cs.rochester.edu).

112

TPVIEW(i) TRAINS SYSTEM COMMANDS TPVIEH(l)

NAME

tpview - TRAINS Parse Tree Viewer

SYNOPSIS

tpview

DESCRIPTION

Tpview is the TRAINS Parse Tree Viewer. It provides a button that,

when pressed, asks the TRAINS parser for a summary of the chart for

the previous user utterance. This chart summary is used to draw the

parse trees in an X/Tk display. Successive parse trees are appended

to the display each time the user presses the button.

The Parse Tree Viewer is implemented using Perl version 5 and the

Perl/Tk package.

OPTIONS

None.

PARSE TREE VIEWER MESSAGES

The following KQML messages are understood by the Parse Tree Viewer.

They should be addressed with ":receiver PVIEW". Case is insignifi-

cant outside of strings. Whitespace between messages is ignored.

(tell :content (parse-tree P))
Sent by the Parser in response to tpview's request when the user

presses the "Get Parse Tree" button. The parse tree P is a
parenthesized list of non-terminal and terminal entries.

Non-terminal entries have the form:

"NTX" NT 1 NTI 2 NTJ 3 NTK

where "NTX" is a quoted node-name consisting of a concatenated

node-type and number, NT is the node-type for the preceding

node-name, NTI is the first daughter (also a node-name) of the

preceding node-name, and the sucessors are the second, third, etc.

daughters of the preceding node-name. These daughter node-names

are defined by subsequent entries in P.

Terminal entries have the form:

"NTX" NT LEX W

where "NTX" is again a quoted node-name consisting of a

concatenated node-type and number, NT is again the node-type for

the preceding node-name, and W is the word for the terminal node.

113

TPVIEW(l) TRAINS SYSTEM COMMANDS TPVIEW(l)

(request :content (show-window))
Requests that tpview de-iconify itself.

(request :content (hide-window))

Requests that tpview iconify itself.

(tell :content (start-conversation))

Ignored.

(tell :content (end-conversation))

Ignored.

ENVIRONMENT

DISPLAY HOST:SCREEN for X server

TRAINS-BASE Used to find Perl libraries

FILES

TRAINS_BASE/etc/pview/kqml.perl KQML Parsing routines.

TRAINS_BASE/etc/pview/tree.perl Tree Drawing routines.

DIAGNOSTICS

A few warnings.

SEE ALSO

tparser(l)

BUGS

I expect so.

AUTHOR

Eric Ringger (ringger@cs.rochester.edu).

114

TRAINS(1) TRAINS SYSTEM COMMANDS TRAINS(1)

NAME

trains - Run the TRAINS System

SYNOPSIS

trains [version]

DESCRIPTION

The script trains runs the TRAINS system by performing the following

functions:

1. Examining environment variables;

2. Starting the AudioFile server;

3. Starting the Input Manager, tim(l), and the Process Manager,

tpm(l);

4. Starting other modules by sending START messages to the Process

Manager using tim-cat(l).

The trains script is the place to start if you want to customize some

aspect of the TRAINS System, such as running a different executable

for a particular module, or running a different set of modules

altogether.

OPTIONS

None.

USAGE

You simply run trains from your shell. It will even check that X is

running and, if it isn't, will start the X server with a configuration

suitable for demos. How great is that?

ENVIRONMENT

The following environment variables are checked by the trains script.

DISPLAY
X Windows display. The default is screen 0 on the local host.

TRAINS-BASE
Root of TRAINS directory tree. The default is currently

"/u/trains/96/2.0".

TRAINS_LOGS

Directory for session logs. The default is "TRAINS_BASE/logs".

TRAINS SPEECH JEN-HOST

Host to run speech recognition modules tspeech(l) and

tspeechpp(l). The default is "micro".

115

TRAINS(1) TRAINS SYSTEM COMMANDS TRAINS (1)

TRAINS-LISP-HOST
Host to run Lisp modules ttcl(l). tparser(l), and tpsm(l). The

default is "milli".

TRAINS-DM.HOST
Host to run ttcl(l) (overrides TRAINS J,ISP_H0ST).

AUDIOFILE
If set to H0ST:0, AudioFile audio server runs on HOST.

TRAINSJUJDIO_HOST
Host to run AudioFile audio server. The default is the same host

as used for DISPLAY.

TRAINS_USER-SEX
If set, for example to "f", this is passed as the -sex argument to

tspeech(l).

FILES

None.

DIAGNOSTICS

None of its own.

SEE ALSO

tim(l), tpm(l)

BUGS

Unlikely.

AUTHOR

George Ferguson (ferguson@cs.rochester.edu).

116

TREPLAY(l) TRAINS SYSTEM COMMANDS TREPLAY(l)

NAME

treplay - Replay a TRAINS System session

SYNOPSIS

treplay [-audio BOOL] logdir

DESCRIPTION

The script treplay is a variant of the basic trains script (see

trains(1)) that starts the TRAINS System in replay mode. This

involves running only the necessary interface components and none of

the back-end reasoners. It also runs an additional module, REPLAY,

that parses the "im.log" file in the given directory and plays back

the messages in real-time. An X/Tk interface provides a display of

the messages being replayed as well as "tapedeck-style" buttons for

controlling the playback.

OPTIONS

-audio BOOL
If True (the default), user and system audio is replayed. If

False, it isn't, and the audio modules and AudioFile server are

not started.

USAGE

You run treplay from your shell and tell it the name of the log

directory for the session you want to replay. User utterances are

replayed by playing the audio files recorded by the speech recognizer

tspeech(l). System utterances are recreated using tttalk(l) (i.e.,

The TrueTalk speech generator). System displays are recreated using

the Display module.

The Replay display provides a display of the messages parsed out of

the im.log, as well as several buttons for controlling playback. The

"Play" button starts real-time playback. The current dialogue time

(from time 0 at the start of the dialogue) is shown in the upper left

of the Replay display. During a delay between messages, the delay

time counts down above the dialogue time. The "Play" button changes
into a "Pause" button that, amazingly enough, will pause playback when

pressed. Other buttons allow you to skip forward or back one message,

one utterance, or to the start or end of the conversation.

Note: As I write this, stepping forward one message or utterance does

not reset the delay countdown timer. You should pause and play (i.e.,

double-click the Play/Pause button) in order to skip a lengthy delay.

117

TREPLAY(i) TRAINS SYSTEM COMMANDS TREPLAY(l)

ENVIRONMENT

The following environment variables are checked by the treplay script.

DISPLAY
X Windows display. The default is screen 0 on the local host.

TRAINS-BASE
Root of TRAINS directory tree. The default is currently
"/u/trains/96/2.0".

AUDIOFILE
If set to H0ST:0, AudioFile audio server runs on HOST.

TRAINSJUJDIO_HOST
Host to run AudioFile audio server. The default is the same host

as used for DISPLAY.

FILES

None.

DIAGNOSTICS

Probably not.

SEE ALSO

trains(1)

BUGS

The Perl script that implements the REPLAY module (i.e., that parses

the "im.log" and sends the messages) can get confused pretty easily.

For example, overlapping user speech utterances, where the user didn't

wait long eneough between utterances, will confuse audio playback.

AUTHOR

George Ferguson (ferguson@cs.rochester.edu).

118

TSCENARIOÜ) TRAINS SYSTEM COMMANDS TSCENARIQ(l)

NAME

tscenario - TRAINS Scenario Chooser

SYNOPSIS

tscenario [-f FILE] [-debug where] [X Options]

DESCRIPTION

Tscenario is the TRAINS Scenario Chooser. It provides buttons for

specifying either random or preset scenarios. It also arranges to

step through preset scenarios one conversation at a time.

OPTIONS

-f FILE

Specify startup file read to define the initial set of preset sce-

narios. The default is to read from TRAINS-BASE/etc/scenario.rc.

-debug where

Specify that copious debugging information should be written to

where. If where is a hyphen ("-"), output is to stderr, if it

starts with a pipe ("I") the rest of the argument is passed to
popen(3), otherwise it is taken to be a filename to which to

write. Be careful to escape pipes and spaces from the shell.

USAGE

Selecting a random scenario sends a message of the form

(request :receiver DM :content (config enum N))

to the Dialogue Manager, specifying N randomly-placed engines in the
scenario.

Selecting a preset scenario sends the corresponding config message (as

defined by the DEFINE message that defined the button, see below) to

the Discourse Manager.

If a preset scenario is selected, then when the Scenario Chooser

receives an END-CONVERSATION message, it automatically selects the

next preset scenario (wrapping around at the end) and sends the

appropriate message to the DM.

SCENARIO CHOOSER MESSAGES

The following KQML messages are understood by the Scenario Chooser.

They should be addressed with ":receiver SCENARIO". Case is insignif-

icant outside of strings. Whitespace between messages is ignored (but

rigorously enforced within messages according to the KQML spec).

119

TSCENARIOÜ) TRAINS SYSTEM COMMANDS TSCENARIO(l)

(request :content (define :label L :content C)
Creates a new preset scenario button labelled L which sends

content C (typically a CONFIG message) to the DM when selected.

(tell :content (chdir DIR))

Ignored.

(tell :content (start-conversation))

Ignored.

(tell :content (end-conversation))
If a preset scenario is selected, receipt of this message causes

the Scenario Chooser to switch to the next scenarion and send the

appropriate message to the DM.

(request :content (hide-window))

Request that the Scenario Chooser iconify its window.

(request :content (show-window))
Request that the Scenario Chooser deiconify its window.

(request :content (exit :status N))
Request that the Scenario Chooser exit (with optional status N

(default 0).

ENVIRONMENT

DISPLAY HOST:SCREEN for X server
TRAINS-BASE Used to find default startup file

FILES

TRAINS_BASE/etc/scenario.rc Default startup file

DIAGNOSTICS

Maybe.

SEE ALSO

trains(i), ttcl(l)

BUGS

Possibly.

AUTHOR

George Ferguson (ferguson©cs.rochester.edu).

120

TSFX(l) TRAINS SYSTEM COMMANDS TSFX(l)

NAME

tsfx - TRAINS Sound Effects module

SYNOPSIS

tsfx [-audio server] [-debug where]

DESCRIPTION

Tsfx is the TRAINS Sound Effects module. In fact, all it does is play

audio files using the AudioFile server in response to KQML requests.

This is very useful for replay, however.

OPTIONS

-audio host:device
Connect to the AudioFile server at the given address. The default

is the value of the environment variable AUDIOFILE, if set,

otherwise the current host.

-debug where
Specify that copious debugging information should be written to

where. If where is a hyphen ("-"), output is to stderr, if it

starts with a pipe ("I") the rest of the argument is passed to
popen(3), otherwise it is taken to be a filename to which to

write. Be careful to escape pipes and spaces from the shell.

USAGE

Tsfx first connects to the AudioFile server given by the -server

argument or the AUDIOFILE environment variable. Then, in response to

PLAY requests, it opens the specified audio file and sends it to the

AudioFile server. The file is assumed to contain appropriate data, in

this case 16 kHz, 16-bit, linear-encoded data with no headers. When

the audio finishes playing, a DONE reply is generated.

Note that tsfx currently processes only a single PLAY request at a

time. It would not be too hard to get it to play multiple files

simultaneously. It would also be possible to have it recognize other

audio file types and do the appropriate conversions.

SOUND EFFECTS MESSAGES

The following KQML messages are understood by the Audio Manager. They

should be addressed with ":receiver SFX". Case is insignificant

outside of strings. Whitespace between messages is ignored (but

rigorously enforced within messages according to the KQML spec).

121

TSFX(l) TRAINS SYSTEM COMMANDS TSFX(l)

(request :content (play STR))
Plays the audio file named by STR. When audio output is complete,

a DONE reply is generated.

(request :content (exit :status N))
Requests that the Audio Manager exit with status N (default 0).

(request :content (hide-window))

Ignored.

(request :content (show-window))

Ignored,

(request :content (start-conversation :name N :lang L :sex S))

Ignored,

(request :content (end-conversation)

Ignored.

(request :content (chdir DIR))

Ignored.

ENVIRONMENT

AUDIOFILE HOST:DEVICE for AudioFile server

FILES

None.

DIAGNOSTICS

Unlikely.

SEE ALSO

trains(i), taudio(l)

BUGS

Unlikely.

AUTHOR

George Ferguson (ferguson@cs.rochester.edu).

122

TSHORTCUT(l) TRAINS SYSTEM COMMANDS TSHORTCUT(l)

NAME

tshortcut - TRAINS Shortcut Panel

SYNOPSIS

tshortcut [-f FILE] [-debug where] [X Options]

DESCRIPTION

Tshortcut is the TRAINS Shortcut Panel. It allows arbitrary messages

to be sent to modules of the TRAINS System by clicking on buttons.

The set of buttons can be edited to add new buttons or modify existing

ones.

OPTIONS

-f FILE
Specify startup file read to define the initial set of shortcut

definitions. The default is to read from

TRAINS .BASE/etc/short cut. re.

-debug where
Specify that copious debugging information should be written to

where. If where is a hyphen ("-"), output is to stderr, if it

starts with a pipe ("I") the rest of the argument is passed to

popen(3), otherwise it is taken to be a filename to which to
write. Be careful to escape pipes and spaces from the shell.

USAGE

Double-clicking on a shortcut item sends the corresponding

performative into the system via the Input Manager.

The File menu provides the following items for manipulating shortcuts:

"New" allows the creation of a new shortcut, "Delete" deletes the

currently-selected shortcut, "Edit" edits it, and "Save As" allows the

current set of shortcuts to be saved to a file (for later use with the

-f option).

SHORTCUT PANEL MESSAGES

The following KQML messages are understood by the Shortcut Panel.

They should be addressed with "rreceiver SHORTCUT". Case is insignif-
icant outside of strings. Whitespace between messages is ignored (but

rigorously enforced within messages according to the KQML spec).

(request :content (define :label L :content C)
Creates a new shortcut labelled L which sends content C (a

performative) when selected.

123

TSHORTCUT(l) TRAINS SYSTEM COMMANDS TSHORTCUT(l)

(request -.content (hide-window))
Request that the Shortcut Panel iconify its window.

(request :content (show-window))
Request that the Shortcut Panel deiconify its window.

(request :content (exit :status N))
Request that the Shortcut Panel exit (with optional status N

(default 0).

(tell :content (start-conversation))

Ignored.

(tell :content (end-conversation))

Ignored.

(tell :content (chdir DIR))

Ignored.

ENVIRONMENT
DISPLAY HOST:SCREEN for X server
TRAINS-BASE Used to find default startup file

FILES

TRAINS-BASE/etc/shortcut.rc Default startup file

DIAGNOSTICS

Maybe.

SEE ALSO

trains(l), tim(l)

BUGS

Possibly.

AUTHOR

George Ferguson (ferguson@cs.rochester.edu).

124

TSPEECH(l) TRAINS SYSTEM COMMANDS TSPEECH(l)

NAME

tspeech - TRAINS version of Sphinx-II speech recognizer

SYNOPSIS

tspeech [-audio server] [-bufnum N] [-sex m|f] [-dictfn file]
[-lmfn file]

DESCRIPTION

Tspeech is a script that runs a version of the Sphinx-II speech

recognition system from Carnegie Mellon University, modified to work

as a component of the TRAINS system. This provides
speaker-independent, incremental speech recognition of words from

audio provided by an AudioFile server.

Tspeech is a "faceless" application, i.e., it has no display component

itself. It responds to KQML messages on stdin that start and stop

recognition, and broadcasts the results of the recognition to stdout.

When connected to the Input Manager, tim(l), these outputs are treated

as selective broadcasts and are sent to any client that has LISTENed

for them. Tspeech also records the input audio in files named

"utt.NNN.au", where NNN is an utterance counter, and records the

results of the recognition in files named "utt.NNN.out". The audio

files contain 16 kHz, 16-bit, linear-encoded data with no headers.

OPTIONS

-audio host:device
Connect to the AudioFile server at the given address. The default

is the value of the environment variable AUDIOFILE, if set,

otherwise the current host.

-bufnum N
Specify that the last N words of the current hypothesis should not.

be output (until the utterance is ended). This prevents constant

revision at the "frontier" of the recognition, at the cost of some

latency in the output. The default is 2.

-sex m|f
Specify the sex of speaker, used to select an appropriate acoustic

model. The default is 'm'.

-dictfn file
Specify the phonetic dictionary to be used. The default is the
TRAINS Dialogue Corpus dictionary, "tdc-75.dic". dictionary.

125

TSPEECH(l) TRAINS SYSTEM COMMANDS TSPEECH(l)

-lmfn file
Specify the language model to be used. The default is the TRAINS

Dialogue Corpus model, "tdc-75.Digram".

USAGE

Tspeech first loads its acoustic and language model files, then

connects to the AudioFile server. It is assumed that the server is

running using an audio format compatible with Sphinx-II, namely 16

kHz, 16-bit, linear-encoded samples.

Receipt of a START message initiates recognition, which includes

incrementing the utterance counter and broadcasting a START message.

Words are broadcast as they are recognized, with a BACKTO message

being used to indicate revision of a word previously output. The last

few words of the hypothesis are buffered to prevent excessive BACKTO's

(see the -bufnum argument). Receipt of a STOP message terminates the

utterance; tspeech then finishes processing the utterance, outputs any

remaining words, and finally outputs an END message.

Note that the START and STOP messages are usually generated (in the

TRAINS System, at least) by the tspeechx(l) Speech Controller. This

program also provides a display of speech recognition results from

both tspeech and the Speech Post-Processor, tspeechpp(l).

TSPEECH MESSAGES

The following KQML messages are understood by tspeech. They should be
addressed with ":receiver SPEECH-IN". Case is insignificant outside

of strings. Whitespace between messages is ignored (but rigorously

enforced within messages according to the KQML spec).

(request :content (chdir DIR))

Request that the Speech recognizer start writing its output files

("utt.NNN.au" and "utt.NNN.out") in the given DIR.

(request :content (start))

Start recognition. Initiates processing of audio and broadcast of

recognized words.

(request :content (stop))
Stop recognition. Stops processing audio and completes processing

of the current utterance.

(request :content (exit :status N))
Request that tspeech exit with optional status N.

(request :content (start-conversation :name N :lang L :sex S))
Resets utterance counter to 1.

126

TSPEECH(l) TRAINS SYSTEM COMMANDS TSPEECH(l)

(request :content (end-conversation)

Ignored.

(request :content (show-window))

Ignored.

(request :content (hide-window))

Ignored.

The following messages are generated by tspeech as selective

broadcasts during recognition.

(tell :content (start :uttnum N))
Broadcast to announce the start of a new utterance.

(tell :content (word W :uttnum N :index (II 12) :frame (Fl F2)))
Broadcast to announce a new word in the hypothesis. The :index

argument identifies the start and end position of the word, which

can in fact be several words as far as the parser is concerned, as

in the tokens "IJJANT", ' NEW_Y0RK' ', or "COULDN'T". Index

positions start at 1. A single number I can be given, implying

''(I I+D". The :frame argument identifes the frames of acoustic

data covered by the word.

(tell :content (backto :index I))
Broadcast to indicate that any words previously output at index I
or beyond (inclusive) are no longer valid parts of the hypothesis.

(tell :content (stop :uttnum N))
Broadcast to announce the end of the utterance.

ENVIRONMENT

TRAINS_BASE

AUDIOFILE

Used to find Sphinx-II model files

HOST:DEVICE for AudioFile server

FILES

$TRAINS_BASE/SpeechData

sphinx.log

utt.NNN. au

utt.NNN.out

Location of default Sphinx-II files

Stuff printed by sphinx if anyone cares

Audio for utterance NNN
Summary of recognition for utterance NNN

DIAGNOSTICS

Sometimes.

SEE ALSO

trains(l), tim(l), tspeechx(l), tspeechpp(l)

127

TSPEECH(l) TRAINS SYSTEM COMMANDS TSPEECH(l)

NOTES

Tspeech is actually a shell script that invokes the underlying

Sphinx-II-derived program, tsphinx, with many of its parameters set

appropriately. More subtle control can be had by changing this

script, if you know what you're doing. See the manpage for

fbs8J.ive(l) in /s7/sphinx-ii/man.

AUTHOR

George Ferguson (ferguson@cs.rochester.edu).

128

TSPEECHPP(l) TRAINS SYSTEM COMMANDS TSPEECHPP(l)

NAME

tspeechpp - TRAINS Speech Post-Processor

SYNOPSIS

tspeechpp C-s] C-v] [-t] [-nt] [-i] [-m] [-d] [-f2] [-fh] [-fi]

[-w file] [-2,3 file] [-c file] [-x file] [-in file] [-sc file]

[-mc file] [-1 log-dir] [-q N]

DESCRIPTION

Tspeechpp is an error-correcting Speech Post-Processor. Its sole pur-

pose is to boost the word recognition accuracy rates for a continuous

speech recognition (CSR) system. It requires training on the behavior

of the target CSR system in order to make appropriate corrections on

unseen data. It was designed and implemented at the University of

Rochester Department of Computer Science specifically for the TRAINS

project. Although it has only been trained for and used with the

Sphinx-II speech recognition system from Carnegie Mellon University,

it can be used with other continuous speech recognizers. It can run

standalone and interactively (when invoked with the -i argument) for

testing, or it can communicate with other components of the TRAINS sys-

tem via the TRAINS Input Manager. If desired, when running interactively

and invoked with the -s argument, tspeechpp provides diagnostic statis-

tics. These statistics can be made more verbose via the -v argument.

Tspeechpp is a "faceless" application, i.e., it has no display

component itself. It responds to KQML messages on stdin that start

and stop post-processing, and it broadcasts the results of the

incremental processing to stdout.

OPTIONS

-s Specify that tspeechpp should provide diagnostic statistics to

stdout. Off by default.

-v Specify that tspeechpp should provide verbose diagnostic output to

stdout. Off by default.

-t Specify that tspeechpp should expect KQML messages on stdin and

format its output as such messages on stdout. This is the

default.

-nt Specify that tspeechpp should expect raw words on stdin and
provide only raw words on stdout. This is off by default but can

be used for interactive testing of the internal search process or

for batch experiments. Off by default.

129

TSPEECHPP(l) TRAINS SYSTEM COMMANDS TSPEECHPP(l)

-i Specify that tspeechpp should provide a prompt to an interactive

user. Off by default.

-m Specify that tspeechpp should use a minimum log probability

threshold in its search among likeley corrections in order to

prune the search space. On by default in the installed version;

therefore this switch is actually redundant as installed.

-d Specify that tspeechpp should dump its internal state at the end of

an utterance. This is a more recent addition than the "-n" or

"-g" features and is probably more reliable.

-12 Specify that tspeechpp should use ä l->2 fertility model component

in its channel model.

-fh Specify that tspeechpp should use a 2->l (half) fertility model

component in its channel model.

-fi Specify that tspeechpp should use a 0->l (insertion) fertility

model component in its channel model.

-c file
Specify the confusion (1->1) channel model to be used. The

default is the "TDC-75" model.

-w file
Specify the wbic (word bigram count) file to be used. The default

is the "TDC-75M model.

-x file
Specify the deletion (l->0) file to be used. The default is the

"TDC-75" model. This is currently unused.

-sc file
Specify the split-candidates (l->2) file to be used. The default

is the "TDC-75" model.

-in file
Specify the insertion (0->1) file to be used. The default is the

"TDC-75" model.

-mc file
Specify the merge-candidates (2->l) file to be used. The default

is the "TDC-75" model.

-2|3 file
Specify the back-off language model file to be used, and specify

whether bigrams (-2) alone or trigrams (-3) also should be used.

The default is the "TDC-75" model.

-1 dir
Specify the log dir, where the initial log file should be written.

130

TSPEECHPP(l) TRAINS SYSTEM COMMANDS TSPEECHPP(l)

-q N
Specify the depth (as a small positive integer) of the priority

queue for maintaining top alternate hypotheses. For valid

"N-best" hypotheses, this number must be N.

USAGE

Tspeechpp first loads its channel and language model files.

Receipt of a START message initiates post-processing. Words are

broadcast as they are corrected, with a BACKTO message being used to

indicate revision of a word previously output. The last word of the

hypothesis is buffered to prevent excessive BACKTO's on the frontier

of the correction process. This process is complicated by the fact

that BACKTO's also appear on the input as they come from tsphinx.
Receipt of an END message terminates the utterance; tspeechpp finishes

processing the utterance, and outputs any remaining words, followed by

an END message.

TSPEECHPP MESSAGES

The following KQML messages are understood by tspeechpp. They should

be addressed with ":receiver SPEECH-PP". Case is insignificant

outside of strings. Whitespace between messages is ignored.

(request :content (start))
Start correction. Initiates broadcast of corrected words.

(request :content (end))
Completes processing of the current utterance.

(request :content (exit))

Request that tspeechpp exit.

(request :content (offline t))
Request that tspeechpp go offline and ignore all subsequent

messages except an EXIT.

(request :content (offline nil))
Request that tspeechpp come back online into full activity.

(request :content (chdir path-to-logdir))
Request that tspeechpp change its log directory and file as

specified by the given path.

The following messages are generated by tspeechpp:

(tell :receiver PM :content (ready))
Sent to the PM to indicate the module is ready for action.

131

TSPEECHPP(l) TRAINS SYSTEM COMMANDS TSPEECHPP(l)

(tell :content (word STRING :index (I J) :uttnum N))
Broadcast to announce a new word in the hypothesis. The index

identifies the start and end position of the word, which can in
fact be several words as far as the parser is concerned, as in the

token "I-WANT", *NEW_Y0RK" , or "COULDN'T". Index positions

start at 1. A single number I can be given, implying "(I 1+1) " .

(tell -.content (backto :index I))
Broadcast to indicate that any words previously output at index I

or beyond (inclusive) are no longer valid parts of the hypothesis.

ENVIRONMENT

TRAINS-BASE Root of TRAINS distribution

FILES

$TRAINS_BASE/SpeechPP/models Location of default Speech-PP files

DIAGNOSTICS

Sometimes.

SEE ALSO

trains(l), tim(l), tspeech(l)

NOTES

Tspeechpp is a Perl version 5 program. It was originally implemented

in Perl for prototyping. A port to C was never attempted as Perl

seemed to suffice, however, speed is now becoming an issue with the

complex channel models.

Tspeechpp has been documented in several papers, including:

Eric K. Ringger and James F. Allen. "A Fertility Channel Model for

Post-Correction of Continuous Speech Recognition." Proceedings of the
Fourth International Conference on Spoken Language Processing (ICSLP'96)

October, 1996.

AUTHOR

Eric Ringger (ringger®cs.rochester.edu).

132

TSPEECHX(l) TRAINS SYSTEM COMMANDS TSPEECHX(l)

NAME

tspeechx - TRAINS Speech Controller

SYNOPSIS

tspeechx [-rows N] [-columns N] [-stopdelay N] [-clickAndHold BOOL]
C-showMenus BOOL] [-showLabels BOOL] [-showSpeechln BOOL]
[-showSpeechPP BOOL] [-fontpat STR] [-fontsize N] [-debug where]
[X args]

DESCRIPTION

Tspeechx is the TRAINS Speech Controller. It provides an X/Motif

display that includes windows for viewing the results of speech

recognition (both SPEECH-IN and SPEECH-PP) and a button for starting

and stopping the recognition (which it does by sending messages to

SPEECH-IN).

OPTIONS

-rows N

Number of rows for each of the result windows (default 4).

-columns N

Number of columns for each of the result windows (default 25).

-stopdelay N
Number of microseconds between when the user releases the "Talk"

button and when the STOP message is sent. The default is 500000

(half a second). This is useful to prevent people cutting off the

end of their utterances.

-clickAndHold B00L
If True (the default), a START message is sent to SPEECH-IN when

the "Talk" button is pressed and a STOP message is sent when it is

released. If False, one click sends the START message and a

second click sends the STOP message. The label on the "Talk"

button is set accordingly.

-showMenus B00L
Enable (True) or disable (False) the display of the application

menubar.

-showLabels B00L
Enable (True) or disable (False) the display of the module names

and their status.

-showSpeechln B00L
Enable (True) or disable (False) the display of SPEECH-IN results.

Disabling the display makes the Speech Controller window smaller.

133

TSPEECHX(l) TRAINS SYSTEM COMMANDS TSPEECHX(i)

-showSpeechPP BOOL
Enable (True) or disable (False) the display of SPEECH-PP results.

Disabling the display makes the Speech Controller window smaller.

-fontpat STR
Set the font pattern to the given STR. which should have a single

"default is a pattern representing Helvetica bold.

-fontsize N
Set the initial font size to N. The default is 18.

-debug where
Specify that copious debugging information should be written to

where. If where is a hyphen ("-"), output is to stderr, if it

starts with a pipe ("I") the rest of the argument is passed to

popen(3), otherwise it is taken to be a filename to which to

write. Be careful to escape pipes and spaces from the shell.

X args
Tspeechx accepts all standard X Toolkit arguments; see X(l) for

details.

USAGE

Tspeechx sends messages to the Input Manager to LISTEN to the output

of SPEECH-IN and SPEECH-PP, as well as MONITORing their status. The

output words are processed and displayed in text windows; the status

is displayed using a colored button. Either display can be hidden us-

ing the menus, and in addition the Speech Post-Processor can be taken

offline, causing it to ignore messages until it is put back online.

The tspeechx "Talk" button can be operated in either of two modes,

depending on the -clickAndHold option value. If this is True (the

default) , a START message is sent to SPEECH-IN when the "Talk" button

is pressed and a STOP message is sent when it is released. If it is

False, one click sends the START message and a second click sends the
STOP message. The label on the "Talk" button is set accordingly. See

also tkeyboard(l) for a means of starting and stopping speech

recognition without using the mouse.

SPEECH CONTROLLER MESSAGES

The following KQML messages are understood by the Speech Controller.
They should be addressed with ":receiver SPEECH-X". Case is insignif-

icant outside of strings. Whitespace between messages is ignored (but
rigorously enforced within messages according to the KQML spec).

(tell :content (start :uttnum N))
Sent by speech recognition modules at the start of an utterance.

Clears the appropriate window and sets the utterance counter.

134

TSPEECHXÜ) TRAINS SYSTEM COMMANDS TSPEECHX(l)

(teil :content (word W :uttnum N :index I :frame F :score S))

Adds a word to the display for the appropriate module.

(tell rcontent (backto :uttnum N :index I))
Invalidates words at index positions I and higher (inclusive) for

the appropriate module.

(tell :content (input-end :uttnum N))
Sent by SPEECH-IN when it receives the STOP message. Ignored.

(tell :content (end -.uttnum N))
Sent by speech recognition modules at the end of an utterance.

(reply :content (status MS))
Sent by the Input Manager when the status of SPEECH-OUT or

SPEECH-PP changes. Used to change the color of the status

indicator on the Speech Controller panel.

(request :content (reset))
Clears the Speech Controller display and resets any internal

state.

(request :content (exit :status N))
Requests that the Keyboard Manager exit with status N (default 0).

(request :content (hide-window))
Causes the Speech Controller display to iconify itself.

(request :content (show-window))
Causes the Speech Controller display to deiconify itself.

(request :content (start-conversation :name N :lang L :sex S))

Treated as a RESET followed by SHOW-WINDOW.

(request :content (end-conversation)

Treated as a HIDE-WINDOW.

(request :content (set-button)
Causes the "Talk" button to be highlighted. Useful for replay.

(request :content (unset-button)
Causes the "Talk" button to not be highlighted. Useful for

replay.

(request :content (chdir DIR))

Ignored.

The following messages are generated by tspeechx to control speech

recognition.

(request :receiver SPEECH-IN :content (start))
Sent when the user first presses the "Talk" button.

135

TSPEECHX(l) TRAINS SYSTEM COMMANDS TSPEECHX(i)

(request :receiver SPEECH-IN :content (stop))
Sent when the user releases the "Talk" button (in click-and-hold

mode), or on the second click (in click-to-talk mode).

ENVIRONMENT

DISPLAY HOST:SCREEN for X server

FILES

None.

DIAGNOSTICS

Nope.

SEE ALSO

trains(l), tspeech(l), tspeechpp(l)

BUGS

I don't actually think so.

AUTHOR

George Ferguson (ferguson@cs.rochester.edu).

136

TSPLASH(l) TRAINS SYSTEM COMMANDS TSPLASH(l)

NAME

tsplash - TRAINS Splash Screen module

SYNOPSIS

tsplash [-pixmap STR] [-logdir STR] [-name STR] [-lang STR] [-sex m|f]
[-intro BOOL] [-scoring BOOL] [-asksave BOOL] [-debug where]
[X ares]

DESCRIPTION

Tsplash is the TRAINS Splash Screen module. It provides an X/Motif

window displaying the "splash screen"—a pretty picture with the
system logo and credits, suitable for leaving displayed on an idle

machine. It allows the user to specify their name, language, sex, and

session options, and then start a session by pressing the "Start"

button. At the end of a session, the user is allowed to save some or

all data generated by the session as well as sending email to the

maintainers. A "Help" button plays an introductory QuickTime tutorial

and a "Quit" button allows the system to be shut down.

Note: The male/female toggle buttons on the splash screen do NOT

currently affect the models used by the speech recognizer, tspeech(l).

You need to set the enviornment variable TRAINS_USER_SEX, as documented

in the tspeech manpage, prior to starting TRAINS. To change the models

online, you need to kill and restart tspeech, perhaps by using the

tshortcuts(l) module.

OPTIONS

-pixmap STR
Specify the name of the pixmap (XPM) file to display in the splash

screen. Changing the size from the default may or may not work

properly...

-logdir STR
Specify the directory into which logs from TRAINS sessions should

be stored. The default is the value of the environment variable

TRAINS-LOGS, or TRAINS.BASE/logs if the former is not defined.

-name STR
Specify the initial user name. The default is the user's login

name as extracted from the password file.

-lang STR
Specify the initial user language. The default is "US English".

137

TSPLASH(l) TRAINS SYSTEM COMMANDS TSPLASH(l)

-sex m|f
Specify the initial setting of the male/female toggle buttons.

The default is "m". See the note above regarding the irrelevance

of this setting.

-intro BOOL
Specify the initial value of the "Intro" checkbox. When True, the
system may play a tutorial introduction for new users. The

default is False.

-scoring BOOL

Specify the initial value of the "Scoring" checkbox. When True

(the default), the system will perform the scoring phase at the

end of a conversation.

-asksave BOOL

If True (the default), the user will be prompted at the end of a

conversation to save some or all of their session data and/or send
email. If False, all data is saved unconditionally. This is good

for demos.

-debug where
Specify that copious debugging information should be written to

where. If where is a hyphen ("-"), output is to stderr, if it
starts with a pipe ("I") the rest of the argument is passed to

popen(3), otherwise it is taken to be a filename to which to

write. Be careful to escape pipes and spaces from the shell.

X args
Tsplash accepts all standard X Toolkit arguments; see X(i) for

details.

USAGE

Tsplash starts by loading its splash screen pixmap and displaying it

with the user information panel. When the user hits Return or clicks

on the "Start" button, tsplash creates a new log directory and writes

the file "user" in it containing the user information entered on the
panel. It then broadcasts a CHDIR request to all modules in the sys-

tem via the Input Manager (using a broadcast performative), and then
broadcasts a START-CONVERSATION message to initiate the conversation.

Finally, it hides itself by iconifying its toplevel window.

Upon receipt of an END-CONVERSATION message, tsplash redisplays its

window and, unless -asksave was False, displays the panel that allows

the user to save some or all of their session and/or send email. Once

the user dismisses this panel, tsplash waits for the user to either

start a new conversation or quit.

138

TSPLASH(l) TRAINS SYSTEM COMMANDS TSPLASH(l)

Clicking the "Quit" button causes tsplash to send an EXIT request to

the Input Manager, effectively halting the session. Clicking the

"Help" button causes it to run the program TRAINS_BASE/bin/tintro. If

configured properly, this should play a tutorial QuickTime movie.

SPLASH SCREEN MESSAGES

The following KQML messages are understood by the Keyboard Manager.

They should be addressed with ":receiver SPLASH". Case is insignifi-

cant outside of strings. Whitespace between messages is ignored (but

rigorously enforced within messages according to the KQML spec).

(request :content (exit :status N))

Requests that the Splash Screen exit with status N (default 0).

(request :content (hide-window))
Causes the Splash Screen display to iconify itself.

(request :content (show-window))
Causes the Splash Screen display to deiconify itself.

(request :content (start-conversation :name N :lang L :sex S))

Causes the Splash Screen to act as if the user had pressed the

"Start" button (i.e., creates a new log directory, broadcasts

CHDIR and START-CONVERSATION, and hides itself).

(request :content (end-conversation)
Causes the Splash Screen to redisplay itself and, unless -asksave

was False, display the Save/Email panel.

(request :content (chdir DIR))

Ignored.

ENVIRONMENT

DISPLAY HOST:SCREEN for X server

TRAINS-LOGS Directory for log files

FILES

user User information logfile

DIAGNOSTICS

May complain about colormap allocations.

SEE ALSO

trains(i), tim(l)

BUGS

Not sure we got the intro movie thing working properly...

139

TSPLASH(l) TRAINS SYSTEM COMMANDS TSPLASH(l)

AUTHOR

George Ferguson (ferguson@cs.rochester.edu).

140

TTC(l) TRAINS SYSTEM COMMANDS TTC(l)

NAME

ttc - TRAINS TrueTalk client using AudioFile server

SYNOPSIS

ttc [-h host] [-audio server] [-debug where]

DESCRIPTION

Ttc is a TrueTalk (tm) client for use with the TRAINS system. That

is, it connects to a TrueTalk server to provide speech generation

services for TRAINS. This version of ttc uses the AudioFile server for

network audio facilities.

OPTIONS

-h host
Connect to the TrueTalk server running on host. The default is

find it on the current host. The server must be running and ready

to accept connections before ttc starts (see USAGE, below).

-audio server
Connect to the named AudioFile server. The default is the value
of the environment variable AUDIOFILE, if set, otherwise the local

machine.

-debug where
Specify that copious debugging information should be written to

where. If where is a hyphen ("-"), output is to stderr, if it

starts with a pipe ("I") the rest of the argument is passed to

popen(3), otherwise it is taken to be a filename to which to

write. Be careful to escape pipes and spaces from the shell.

USAGE

The TrueTalk server must be running before ttc starts. Within TRAINS,

this is usually accomplished by the tttalk(l) script. However, if you

wanted to do it yourself, you could run the following commands:

'/, setenv TTJ3ASE /s5/truetalk/tts.rl.'uname -s'.'uname -r'

*/. $TT_BASE/bin/tts -server -i

That is, you need to set the environment variable TT-BASE, then run

tts in server mode (-i sets incremental mode). The example above is

based on the TrueTalk installation at the time this manpage was

written.

For this version of ttc, you must also be running the AudioFile

server. Again, this will normally be taken care of when ttc is used

in the TRAINS system, however to run it by hand you can do:

141

TTC(l) TRAINS SYSTEM COMMANDS TTC(l)

*/, /u/trains/AF/bin/AsparclO -rate 16000 k

You might of course need to run a different AudioFile server,

depending on the platform. For example, Asparc (without the "10")

would be used for Suns that don't have speakerbox audio.

With both servers running, you can then run ttc, specifying the server

host using "-h" if necessary (if you ran the TrueTalk server on

another machine). Ttc listens for KQML messages on its standard

input, as described below, and outputs KQML error and reply messages

to its standard output.

TTC MESSAGES

The following KQML messages are understood by ttc. They should be

addressed with ":receiver SPEECH-OUT". Case is insignificant outside

of strings. Whitespace between messages is ignored (but rigorously

enforced within messages according to the KQML spec).

(request :content (say STRING))
Sender is requesting that STRING be passed to TrueTalk (i.e.,
"spoken"). When the speech has been generated and the audio has

finished playing, ttc will reply with a message of the form:

(reply :sender SPEECH-OUT :content (done))

Any :reply-with in the original message will be used in the reply.

(request :content (exit :status N))
Requests that ttc exit with status N (default 0). This usually

causes the TrueTalk server to exit also.

(request :content (chdir DIR))

Ignored,

(request :content (show-window))

Ignored.

(request :content (hide-window))

Ignored,

(request :content (start-conversation :name N :lang L :sex S))

Ignored,

(request :content (end-conversation)

Ignored.

ENVIRONMENT

AUDIOFILE HOST:DEVICE for AudioFile server

142

TTC(l) TRAINS SYSTEM COMMANDS TTC(l)

FILES

None.

DIAGNOSTICS

Perhaps.

SEE ALSO

trains(l), tttalk(l), tts(l)

BUGS

It seems that the AudioFile sometimes needs to re-sync it's clocks,

and I suspect that this may cause the client playback to get lost. It

shouldn't last more than one utterance, but I think I may have seen it

get more confused.

AUTHOR

George Ferguson (fergusonQcs.rochester.edu).

143

TTCL(l) TRAINS SYSTEM COMMANDS TTCL(l)

NAME

ttcl - TRAINS Discourse Manager module

SYNOPSIS

ttcl [lisp args] — [-socket HOST:PORT] [-debug tlnil]

[-debug-interactive tlnil] [-score-p tlnil] [-seed N]

DESCRIPTION

Ttcl is a dumped Allegro Common Lisp image that implements the TRAINS

Discourse Manager module. The DM module is responsible for taking the

output of the parser (an utterance interpretation), determining what

was really said, how it fits into the plan(s) under consideration, and

what to do in response. It uses the Problem Solving (PS) module to
perform the underlying reasoning, and generates requests to the
DISPLAY and SPEECH-OUT modules for its responses.

It should be noted that the Discourse Manager in fact consists of
several somewhat separate sub-modules that communicate using internal

KQML messages.

Unlike the other modules in the TRAINS System, the Discourse Manager

does not use standard input and standard output for KQML messages,

preferring to save those streams for debugging. Instead, it

establishes its own connection to the IM at initialization.

OPTIONS

-socket HOST:PORT

Connect to Input Manager at the given location. The default is

the value of the environment variable TRAINS-SOCKET.

-debug tlnil

Enable or disable incredibly verbose tracing to the file "Dm.log".

In fact, there are some intermediate, undocumented values for this

option.

-debug-interactive tlnil
Not sure what this is for.

-score-p t|nil

Enable or disable the "scoring" phase at the end of conversations.

-seed N
Initialize the seed of the random number generator which, in

principle, should cause sessions to be relatively repeatable.

144

TTCL(l) TRAINS SYSTEM COMMANDS TTCL(l)

lisp args
You can also pass any arguments suitable for dumped Lisp images,

before the double-hypen that indicates the start of user-defined

options. I don't know why you would want to, however.

USAGE

I certainly can't begin to describe the operation of the Discourse

Manager here. Some more details are in various technical reports.

DISCOURSE MANAGER MESSAGES

In this section I am only going to document the configuration messages

understood by the DM between conversations (and a few control

messages). It also understands the messages broadcast by the Parser,

as well as the messages it exchanges with the Problem Solving module.

(request :content (start-conversation :name N :lang L :sex S))

Starts a conversation. Upon receiving this message, the Discourse

Manager initializes the scenario, generates the initial greeting,

and prepares to receive input.

(request :content (end-conversation))
Causes the DM to abandon the current conversation and wait for the

next one to start.

(request :content (chdir DIR))
Request that the Discourse Manager close the current "Dm.log" and

open a new one in the given DIR.

(request :content (exit :status N))

Requests that the Discourse Manager exit with status N (default

0).

(request :content (config :speech-in tInil))

Informs the DM that speech input is or is not in use.

(request :content (config :speech-out tInil))

Informs the DM that speech output is or is not in use.

(request :content (config :speech-rate N))

Sets the speaking rate to N (a floating point value, default 1.0).

This is passed TrueTalk via SPEECH-OUT.

(request :content (config personality P))
Selects a personality. Possible values for P are: :casual.

:abusive, :humorous, :paranoid, :respectful, :dry, and :snide. I

believe that emotions must be enabled for personalities to have

any effect.

(request :content (config :emotions t|nil))
Enables or disables emotions.

145

TTCL(l) TRAINS SYSTEM COMMANDS TTCL(l)

(request :content (config :score t|nil))
Like the -score command line argument, this enables or disables

the "scoring" phase at the end of conversations. The default is

enabled,

(request :content (config :intro t|nil))
Enables or disables the demonstrative introduction given by the

system to new users. The default is enabled, I think,

(request :content (config :known-goals t|nil))

Determines whether the system "knows" the goals of the scenario in

advance. The default is nil.

(request rcontent (config :start (cityl city2 ...)))

Sets start locations for engines in scenario. The default is 2

randomly-located engines.

(request :content (config :enum N))
Specifies N randomly-located engines in the scenario. The default

is 2.

(request :content (config :goal (cityl city2 ...)))
Specifies destinations for scenario. The default is random

destinations.

(request :content (config :seed N))
Like the -seed command line option, this initializes the random

number generator.

(request :content (config :debug tlnil))
Like the -debug command line option, this detremines the level of

logging to the "Dm.log" file,

(request :content (config :xcitydelay N))
Delay per train if routes cross at a city,

(request rcontent (config :xtrackdelay N))
Delay per train if routes cross share a track,

(request :content (config :ccities (cityl city2 ...)))
Specify list of congested cities. Can also be a list of pairs of

the form "(CITY REASON)".

(request :content (config :ccnum N))
Specify that there should be N randomly-selected congested cities

(with random reasons).

(request rcontent (config rctracks (cityl city2 ...)))
Specify list of congested tracks. Can also be a list of pairs of

the form "(TRACK REASON)",

(request :content (config rctnum N))
Specify that there should be N randomly-selected congested tracks

(with random reasons).

146

TTCL(l) TRAINS SYSTEM COMMANDS TTCL(l)

ENVIRONMENT

The dumped Allegro CL image depends on a shared library for execution.

You can specify the location of this library using the environment

variable ALLEGR0_CL_H0ME if it is not in the same place as when the

image was dumped.

FILES

Dm.log Discourse Manager log

DIAGNOSTICS

Copious logging. In the event of a crash, tends to print Lisp

debugger information to stderr (or worse, stdout). You can

occasionally get into the Lisp debugger, if -debug was not nil.

SEE ALSO

trains(1)

BUGS

Nah... ;-)

AUTHOR

Brad Miller (millerScs.rochester.edu).

147

TTRANSCRIPT(l) TRAINS SYSTEM COMMANDS TTRANSCRIPT(l)

NAME

ttranscript - TRAINS Transcript module

SYNOPSIS

ttranscript [-nolog] [-debug where] [X args]

DESCRIPTION

Ttranscript is the TRAINS Transcript module. It provides an X/Motif

window with an ongoing transcript of the current session. It also

writes the file "transcript" in the log directory containing the same

transcript.

OPTIONS

-nolog
If given, prevents ttranscript from writing the "transcript" file.

This can be useful during replay.

-debug where
Specify that copious debugging information should be written to

where. If where is a hyphen ("-"), output is to stderr, if it

starts with a pipe ("I") the rest of the argument is passed to
popen(3), otherwise it is taken to be a filename to which to

write. Be careful to escape pipes and spaces from the shell.

X args
Ttranscript accepts all standard X Toolkit arguments; see X(l) for

details.

USAGE

Ttranscript sends messages to the Input Manager to LISTEN to the

USER-INPUT class of modules. This class includes the speech

recognition modules SPEECH-IN and SPEECH-PP, the Keyboard Manager
KEYBOARD, and the DISPLAY. As these modules broadcast the user's
spoken, typed, or graphical input, the Transcript module puts together

a transcript of the session. The system's utterances are recorded in

the transcript by the Discourse Manager using an explicit LOG request.

Note that having the transcript module monitor the speech recognizers

and put together "what the user said" is not really the right thing to

do (although it is the least intrusive). This is because in order to

do it right, the Transcript module has to know and duplicate the

approach taken by the Parser regarding the multiple input streams. A

better approach would be to have the parser decide "what was said",

and then log it to the Transcript.

148

TTRANSCRIPT(l) TRAINS SYSTEM COMMANDS TTRANSCRIPT(l)

TRANSCRIPT MESSAGES

The following KQML messages are understood by the Keyboard Manager.

They should be addressed with ":receiver TRANSCRIPT". Case is

insignificant outside of strings. Whitespace between messages is

ignored (but rigorously enforced within messages according to the KQML

spec).

(request :content (log STR))

Adds the given string to the transcript (file and display). By

convention, STR is of the form

WHO HOW text

where WHO is either SYS or USR, and HOW indicates how the

utterance was conveyed (e.g., "dsp" for display, "txt" for typed

input, etc.).

(tell .-content (start :uttnum N))

Sent by speech recognition modules at the start of an utterance.

(tell :content (input-end ruttnum N))

Ignored.

(tell :content (word W :uttnum N :index I :frame F :score S))

Adds a word to the current utterance. The format is more fully

described in the manpages for tspeech(l), tspeechpp(l), and

tkeyboard(l).

(tell :content (backto tuttnum N :index I))

Invalidates words at index positions I and higher (inclusive).

(tell :content (end :uttnum N))

Sent by speech recognition modules at the end of an utterance.

(tell :content (mouse :select obj1 obj2 ...))

Sent by DISPLAY when the user clicks on an object.

(tell :content (mouse :drag obj :from obj :to objl obj2 ...))

Sent by DISPLAY when the user drags an object.

(tell :content (confirm TAG t|nil))

Sent by DISPLAY when the user answers a dialog box confirmer.

(request :content (exit :status N))

Requests that the Transcript exit with status N (default 0).

(request :content (hide-window))

Causes the Transcript display to iconify itself.

(request :content (show-window))
Causes the Transcript display to deiconify itself.

149

TTRANSCRIPT(l) TRAINS SYSTEM COMMANDS TTRANSCRIPT(l)

(request :content (start-conversation :name N :lang L :sex S))

Like a SHOW-WINDOW but also rease the Transcript window.

(request :content (end-conversation)

Treated like HIDE-WINDOW.

(request :content (chdir DIR))
Causes the Transcript module to close its "transcript" file and

open a new one in the given DIR.

ENVIRONMENT

DISPLAY HOST:SCREEN for X server

FILES

transcript Transcript file

DIAGNOSTICS

Too simple for diagnostics.

SEE ALSO

trains(1)

BUGS

I sure hope not.

AUTHOR

George Ferguson (ferguson@cs.rochester.edu).

150

TTS(l) TRAINS SYSTEM COMMANDS TTS(l)

NAME

tts - Runs TrueTalk server

SYNOPSIS

tts [args]

DESCRIPTION

This script simply configures the environment as needed to run the

TrueTalk (tm) server, then invokes it with the -server argument (and

any other arguments given on the command line).

For details of the SPEECH-OUT module, see the „manpage for ttc(l).

ENVIRONMENT

Appropriate defaults for the following variables are used if they are

not set when tts is run. Their values may need to change if the

TrueTalk configuration changes, for example in a travel system.

ELM_H0ST Host running license daemon

TT-BASE Root of TrueTalk directory tree

FILES

None.

DIAGNOSTICS

Some messages when the server exits.

SEE ALSO

trains(l), tttalk(l), ttc(l)

BUGS

This is commercial software, not that that's a bug, but I thought I'd

mention it. It is only licensed for certain machines, which can be

difficult during road shows.

AUTHOR

George Ferguson (fergusonScs.rochester.edu).

151

TTTALK(l) TRAINS SYSTEM COMMANDS TTTALK(l)

NAME

tttalk - TRAINS Speech Generation module

SYNOPSIS

tttalk C-h host] [ttc args]

DESCRIPTION

Tttalk is a script that launches the TrueTalk server, tts(l), and

client, ttc(l). These two processes between them provide speech

generation services for the TRAINS System. Further details are

available in their manpages.

OPTIONS

-h host
Specifies the host on which to start the TrueTalk server tts(l).

This argument is also passed to ttc(l) so it can find the server.

ttc args
Any other arguments are passed to ttc(l).

USAGE

Running tttalk starts the TrueTalk server and client with standard

input and output are connected to the client. Tttalk then waits for

either process to exit, whereupon it kills the other and exits itself.

SPEECH-OUT MESSAGES

Messages understood by the SPEECH-OUT module are described in the

manpage for ttc(l).

ENVIRONMENT

None (but see ttc(l) and tts(D).

FILES

None.

DIAGNOSTICS

Not of its own.

SEE ALSO

trains(l), ttc(l), tts(l)

BUGS

Not of its own.

152

TTTALK(l) TRAINS SYSTEM COMMANDS TTTALK(l)

AUTHOR

George Ferguson (ferguson@cs.rochester.edu).

153

LIBKQHLC3) TRAINS SYSTEM LIBRARIES LIBKQML(3)

NAME

libKQML - TRAINS System KqML Library

SYNOPSIS

«include <KQML.h>

DESCRIPTION

KQML is the Knowledge Query and Manipulation Language, a communication

protocol for knowledge-based systems. The TRAINS KQML Library

provides C data structures and routines for manipulating the KQML

performatives exchanged between modules of the TRAINS System.

Basically, KQML performatives are parenthesized lists consisting of a

"verb" (e.g., "tell" or "ask") and a sequence of keyword-value

"parameters" (e.g., :sender, :content). KQML performatives are

transmitted as ASCII strings, and the libKQML routines are essentially

routines for parsing and managing these strings. For more details on

KqML, see the specification and/or the TRAINS-96 Technical Note.

KqML SYNTAX

The following is a brief BNF grammar for KQML:

<performative> ::= (<word> {<white> :<word> <white> <expr>>*)

<expr> ::= <word> I <quotation> I <string> I

(<word> {<white> <expr>}*)

<word> ::- <char><char>*
<char> ::= <alphabetic>

<special> ::s < I > I ■
o I $ I 7.

<quotation> ::= '<expr>

<comma-expr> ::= <word>

<numeric> I <special>

: I . I ! I ?
'<comma-expr>
<quotation> I <string> I ,<comma-expr> I

(<word> {<white> <comma-expr>}*)

<string> ::= "<stringchar>" I #<digit><digit>*"<ascii>*

<stringchar> ::= \<ascii> I <ascii-not-\-or-">

This grammar assumes definitions for <ascii>, <alphabetic>, <numeric>,

etc. A "*" means zero or more occurrences, and braces indicate

optional items. Note that <performative> is a specialization of

<expr> (requiring strict keyword-value alternation).

This specification is quite restrictive. It prohibits the empty list

"()", for example, as well as whitespace between the last element of a

list and any of its closing parentheses. It also prohibits lists of

strings (requiring a <word> at the start of any list). Some of these

restrictions have been relaxed in TRAINS.

154

LIBKQMLC3) TRAINS SYSTEM LIBRARIES LIBKQML(3)

MEMORY FUNCTIONS

The following functions allocate and manipulate performatives.

KQMLPerformative *KQMLNewPerformative(char *verb)

Allocates a new performative with the given verb and no

parameters.

void KQMLFreePerformative(KQMLPerformative *perf)

Frees the given performative and all its parameters.

char *KqMLGetParameter(KQMLPerformative *perf, char *key)

Returns the value of the requested parameter, i.e., the element

following KEY in the performative. Returns NULL is there is no

KEY parameter. Note that this function does NOT allocate a copy

of the string value.

KQMLParameter *KQMLSetParameter(KQMLPerformative *perf,
char *key, char *value)

Sets the value of the parameter KEY. This frees any previous value

for the parameter and allocates a copy of the given VALUE.

PARSING FUNCTIONS

These routines convert between normal C strings (char*), string arrays

(char **), and performatives.

char *KQMLParseString(char *in)
Parses the input as a KQML string, either double-quoted or
sharped, and returns a newly-allocated C string. Returns NULL if

the input is not a KqML string,

char *KQMLParsequotedString(char *in)

Like KqMLParseString but the input must be a quoted KqML string.

char *KqMLParseSharpedString(char *in)
Like KqMLParseString but the input must be a sharped KQML string.

char **KqMLParseList(char *in)
Parses the input as KQML list and returns a newly-allocated, NULL-

terminated array of C strings each of which is a newly-allocated

copy of an element of the list. These elements are not themselves

parsed, however. Returns NULL if the input is not a KQML list.

char **KQMLParseStringList(char *in)
Like KQMLParseList, but further parses each of the elements of the

list as KqML strings.

char *KqMLParseThing(char *in)
Parses the input as a string if it is in KqML string syntax,

otherwise simply returns a newly-allocated copy of the input

(assumed to be a token). Returns NULL only if malloc(3) fails.

155

LIBKQMLO) TRAINS SYSTEM LIBRARIES LIBKQML(3)

char **KQMLParseThingList(char *in)
Like KQMLParseList, but further parses each of the elements of the

list that are KQML strings.

KQMLPerformative *KQMLParsePerformative(char *in)

Parses the input as a KQML performative and returns a

newly-allocated KQMLPerformative structure containing the verb and

any parameters. Note that a KQML performative is simply a list

with an initial token followed by keyword-value pairs.

int KQMLParseKeywordList(char *in, char **keys, char ***vals)

For KEYS a NULL-terminated list of keywords, parses the input and

places the newly-allocated copies of the corresponding values into

corresponding elements of VALS. Returns the number of keywords

matched.

INPUT FUNCTIONS

These functions are used for input of KQML performatives from open
file descriptors. The enumerated type KQMLError is used to indicate

errors encountered during processing.

KQMLPerformative *KQMLRead(int fd, KQMLError *errorp, char **txtp)
This routine reads a performative from the given file descriptor.

It returns a newly-allocated performative and sets *ERR0RP to 0 if

successful. It returns NULL and sets *ERR0RP to 0 if end-of-file

is encountered. Otherwise it returns NULL and *ERR0RP will be

less than 0. If TEXTP is. non-null, a newly-allocated copy of the

text of the message (or text leading up to an error) is stored in

♦TXTP.

KQMLPerformative *KQMLReadNoHang(int fd, KQMLError *errorp, char **txtp)

This routine reads a performative from the given file descriptor

without blocking in read(2). It returns a newly-allocated perfor-
mative and sets *ERR0RP to 0 if successful. It returns NULL and

sets *ERR0RP to a value greater than 0 if the performative is not

yet complete. It returns NULL and sets *ERR0RP to 0 if end-of-

file is encountered. Otherwise it returns NULL and *ERR0RP will

be less than 0. If TEXTP is non-null, a newly-allocated copy of

the text of the message (or text leading up to an error) is stored

in *TXTP. Note that this is not only the text read this call—it

is the text read thus far on this message, or up to this error.

char *KQMLErrorString(KQMLError num)
Returns a string corresponding to the given KQML error number.

Note that this string is not freshly allocated.

156

LIBKQMLC3) TRAINS SYSTEM LIBRARIES LIBKQHL(3)

MISCELLANEOUS FUNCTIONS

char *KQMLPerformativeToString(KQMLPerformative *perf)

Returns a newly-allocated string containing the text form of the

given performative, suitable for printing.

KQMLPerformative *KQMLCopyPerformative(KQMLPerformative *perf)

Returns a newly-allocated copy of the given performative, with the

same verb and parameters, all also copied.

SEE ALSO

trains(l), libtrlib(3), libutil(3)

BUGS

Swat. Ow! Swat. Yikes!

AUTHOR

George Ferguson (ferguson@cs.rochester.edu).

157

LIBTRLIBC3) TRAINS SYSTEM LIBRARIES LIBTRLIB(3)

NAME

libtrlib - TRAINS System Module Library

SYNOPSIS

tinclude <debugarg.h>
tinclude <error.h>
tinclude <hostname.h>
tinclude <input.h>
tinclude <parse.h>
tinclude <send.h>

DESCRIPTION

The TRAINS System Module library, libtrlib. provides a collection of C

language routines used in most, if not all, of the TRAINS modules.

They generally provide functionality shared by all modules, such as

waiting for KQML input, parsing it into messages, and generating

responses.

DEBUG PROCESSING

The following function is used by all modules that understand the

-debug command-line argument.

tinclude <debugarg.h>

void trlibDebugArg(int arge, char **argv)

Given a process' ARGC and ARGV, this function extracts the -debug

option, if given, and sets up the FILE* debugfp used by the DEBUG*

and ERROR* macros from libutilQ) . If the argument is a hyphen

("-"), then debugging output is to stderr. If it starts with a

pipe symbol ("I"), then the rest of the argument is passed to

popen(3) and the resulting FILE* used for debugging output.

Otherwise the argument is treated as a filename, which is opened
for debugging output. Making this a library routine allows for

uniform treatment of the option.

KqML ERROR PROCESSING

The following function is used to generate a KQML error performative

in reply to a previous message,

tinclude <error.h>

void trlibErrorReply(KQMLPerformative *perf,
TrlibErrorCode code, char *comment)

Sends a KQML error performative with the given :code and :comment

to the :sender of PERF. Any :reply-with in the original PERF will

be used as the :in-reply-to of the reply.

158

LIBTRLIBC3) TRAINS SYSTEM LIBRARIES LIBTRLIB(3)

HOSTNAME FUNCTIONS

It can be tricky to get your own hostname, so this function does it

for you.

#include <hostname.h>

char *trlibGetHostname(void)

Returns the current hostname as a pointer to static storage.

KQML INPUT PROCESSING

All TRAINS modules need to process KQML messages, whether they block

waiting for them or not (for example, X apps can't block as that would

prevent the user from interacting with the display).

»include <input.h>

int trliblnput(int fd, int block, TrlibCallbackProc cbp)

Reads KQM1 input from fd. The block parameter should be one of

TRLIB-BLOCK or TRLIB.DONTBLOCK. Returns less than 0 on error, 0 on

end-of-file, and greater than 0 otherwise. In addition, if a
performative is successfully read and parsed, and if the callback

parameter cbp is non-NULL, it is called with the KQMLPerformative*

as argument.

KqML PERFORMATIVE PARSING

All TRAINS modules need to look at the KQML performatives they receive

and decide what to do, processing the ones they can and generating

errors for those they can't. This function simplifies the first

stages of that process.

»include <parse.h>

void trlibParsePerformative(KQMLPerformative *perf,
TrlibParseDef *defs)

The parameter DEFS describes the messages that the module expects

to receive using a array of the following structures:

typedef void (*TrlibParseCallbackProc)(KQMLPerformative *perf,
char **contents);

typedef struct .TrlibParseDef {

char *verb;

char *contentO;
TrlibParseCallbackProc cb;

} TrlibParseDef;

159

LIBTRLIBC3) TRAINS SYSTEM LIBRARIES LIBTRLIB(3)

The last element in the array should have a NULL verb. The

function then scans the array comparing first the verb of the

performative then the first element of its :content (a NULL

content0 in an entry means ignore the content). If a matching

entry is found, its callback is called (a NULL cb in the entry

means ignore the message completely). The callback can then

further parse the contents of the performative. If no entry

matches, an error is generated using trlibErrorReplyQ).

KQML OUTPUT FUNCTIONS

All TRAINS modules need to send KQML performatives. The following

function simplies this.

iinclude <send.h>

void trlibSendPerformative(FILE *fp, KQMLPerformative *perf)

Formats PERF to the given standard i/o file pointer. Note that

this may block, although it's pretty unlikely.

SEE ALSO

trains(l), libutil(3), libKQML(3)

BUGS

Could well be...

AUTHOR

George Ferguson (ferguson@cs.rochester.edu).

160

LIBUTIL(3) TRAINS SYSTEM LIBRARIES LIBUTIL(3)

NAME

libutil - TRAINS System Utility Library

SYNOPSIS

»include <bitops.h>

»include <buffer.h>

»include <debug.h>

»include <error.h>

»include <memory.h>

»include <nonblockio.h>

»include <streq.h>

DESCRIPTION

The TRAINS utility library, libutil, provides a collection of C

language routines I have found useful during development of many of

the modules.

BIT OPERATIONS

The following macors are useful for manipulating bitsets.

»include <bitops.h>

BITSETCB, N)
This macros sets the Nth bit in B.

BITCLR(B, N)
This macros clears the Nth bit in B.

BITSETCB, N)
This macros tests the Nth bit in B (that is, is non-zero if the

bit is non-zero).

BUFFER OPERATIONS

The following functions operate on a opaque datatype Buffer that

implements a dynamically-extensible circular character buffer.

»include <buffer.h>

Buffer *bufferCreate(void)
Allocates and returns a new empty Buffer.

void bufferDestroy(Buffer *this)

Frees up a previously allocated Buffer.

char *bufferData(Buffer *this)
Returns a pointer to the data stored in the Buffer. Note that the

data is NOT copied.

161

LIBUTILC3) TRAINS SYSTEM LIBRARIES LIBUTIL(3)

int bufferDatalen(Buffer *this)

Returns the number of bytes stored in the Buffer.

int bufferAvail(Buffer *this)

Returns the available space in the Buffer.

int bufferEmpty(Buffer *this)

Returns non-zero if the Buffer is empty.

int bufferAdd(Buffer *this, char *s, int len)

Adds LEN bytes from S to the Buffer.

int bufferAddString(Buffer *this, char *s)

Adds the contents of the NUL-terminated string S to the Buffer.

int bufferAddChar(Buffer *this, char c)

Adds a single character C to the Buffer.

int bufferDiscard(Buffer *this, int len)
Discards the first len characters from the Buffer.

int bufferGet(Buffer *this, char *s, int len)
Retrieves LEN characters from the buffer, stores them in S, and

discard them from the Buffer.

void bufferErase(Buffer *this)

Makes the Buffer empty.

int bufferlncRefCount(Buffer *this)

Increments the Buffer's reference count.

int bufferDecRefCount(Buffer *this)

Decrements the Buffer's reference count.

int bufferRefCount(Buffer *this)
Returns the Buffer's reference count.

DEBUGGING MACROS

The following macros are useful for debugging. They must be compiled
with the symbol DEBUG defined. Then, during execution, if the stream

debugfp is non-NULL, they print debugging messages to it using
fprintf(3). Use of these macros requires the definition of the FILE*

debugfp (which can be stderr), and of the char* program, which should

be the argv[0] of the process.

«include <debug.h>

DEBUGO(S)
Debugging message with no arguments.

DEBUGKS, Al)
Debugging message with one argument.

162

LIBUTILO) TRAINS SYSTEM LIBRARIES LIBUTIL(3)

DEBUG2(S, Al, A2)
Debugging message with two arguments.

DEBUG3(S, Al, A2, A3)
Debugging message with three arguments.

DEBUG4(S, Al, A2, A3, A4)
Debugging message with four arguments.

ERROR MACROS

The following macros are useful for printing error messages. They

must be compiled with the symbol DEBUG defined. They print error

messages to stderr using fprintf and, if DEBUG was define at

compile-time, they use the corresponding DEBUG macro to log the error

as well. Use of these macros requires the definition of the char*

program, which should be the argv[0] of the process.

«include <error.h>

ERRORO(S)
Error message with no arguments.

ERRORKS, Al)
Error message with one argument.

ERR0R2CS, Al, A2)
Error message with two arguments.

ERR0R3(S, Al, A2, A3)
Error message with three arguments.

SYSERRO(S)
System error message with no arguments. Includes output of

strerrorQ) .

SYSERRKS, Al)
System error message with one argument.

SYSERR2CS, Al, A2)
System error message with two arguments.

MEMORY OPERATIONS

These functions and macros are usful wrappers for the C library memory

allocation routines.

«include <memory.h>

gfree(P)
Free P if it is non-NULL by calling free(3).

char *gnewstr(char *s)
Allocates and returns a new copy of NUL-terminated string S.

163

LIBUTILC3) TRAINS SYSTEM LIBRARIES LIBUTIL(3)

void gfreealKchar **strs)
Frees all non-NULL elements of the NULL-terminated array strs,

then frees strs itself.

char **gcopyall(char **strs)
Allocates and returns a copy of the NULL-terminated array of

strings.

NONBLOCKING I/O MACROS

These macros provide a portable way to use non-blocking i/o.

«include <nonblockio.h>

MAKE_NONBLOCKING(FD)
Marks FD for POSIX-style nonblocking i/o. Under SunOS and

Solaris, this means setting the 0JJ0NBL0CK flag using fcntl(2).

ISWOULDBLOCK(E)
Tests if the given value (typically errno) is the "would block"
error code. Under SunOS and Solaris, this means tesing for

EAGAIN.

MAKEJBLOCKING(FD)
Very untested attempt at restoring blocking i/o status.

STRING COMPARISON MACRO

This macro is used by all components of the TRAINS system when doing

string comparisons.

«include <streq.h>

STREQ(S1, S2)
When this is defined to be strcasecmpO) , string comparisons are

case-insensitive.

SEE ALSO

trains(l), libtrlib(3), libKQML(3)

BUGS

Probably not.

AUTHOR

George Ferguson (fergusonQcs.rochester.edu).

164

