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Abstract 

This report details the progress made on the SDVS project's FY 94 tasks funded by the 
United States Department of Defense through Air Force Space and Missile Systems Center 
contract number F04701-93-C-0094. 
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1     Introduction 

The purpose of the State Delta Verification System (SDVS) project is to address some of 
the inadequacies of the currently popular certification and analysis methods (e.g. testing, 
simulation, and design walkthroughs) for assuring the correctness of computer systems. 

This ongoing effort has primarily focused on developing a theoretical framework and software 
tools for the formal verification of computer systems. SDVS is an automated system to 
help write and check proofs of the correctness of computer systems with respect to formal 
specifications ( [1], [2] or [3]). 

The current version of SDVS (SDVS 13) includes capabilities in three main areas: 

1. High level software (Ada) verification; see [4]. 

2. Microcode level (ISPS) verification; see [5]. 

3. Hardware (VHDL) verification; see [6]. 

SDVS 13 differs from SDVS 12 primarily in its enhanced VHDL verification capabilities. 
SDVS 13 runs on the Sparc architecture. 

The main focus of the body of this report will be on the progress of this year's tasks that 
were funded by the United States Department of Defense through Air Force Space and 
Missile Systems Center contract number F04701-93-C-0094. 

We begin this report with brief background material about SDVS in Section 2, in which 
we give information about the three main modules of SDVS: the proof environment, the 
translators, and the user interface. 

The remaining sections in this report discuss progress in Fiscal Year 1994. In particular, 
Section 3 contains a discussion of a significant appbcation of SDVS, the verification of a 
real DoD Ada program, and SDVS enhancements implemented for this application. Sec- 
tion 4 discusses the adaptation and demonstrations of SDVS to handle increasingly complex 
subsets of VHDL, including progress on the formal verification of a real NSA application. 

General system development, upgrades to the user documention, and user support are 
summarized in Section 5. Section 6 reports on some of the work done under this contract 
on formal specification languages. The conclusions are presented in Section 7. 

Aerospace distributes all versions of SDVS, although the distribution must have prior ap- 
proval by the government sponsor. The current distribution policy is that SDVS can be 
distributed to universities and companies in the United States. It is still under export 
control, and organizations requesting SDVS outside the United States must use a separate 
request procedure. 

The SDVS project is one aspect of a larger push to bring formal methods for assurance of 
computer system correctness to the level where their potential benefits can be realized on 
real computer systems applications ("technology transition"). 



Thus, in addition to SDVS, we have recently turned to the so-called industrial strength 
formal specification languages (or FDTs: formal description techniques, such as Z, LOTOS, 
or VDM), both as assurance tools in their own right, and also for their potential use in 

formal verification and testing. 

A parallel effort, though not funded under this contract, involves exploring the possibilities 
of obtaining rigorous probabilistic results when a full proof is not feasible [7]. 

Technology transition has seen some isolated successes, primarily in the field of the formal 
specification languages mentioned above, where it is generally agreed that the pay-off is 
more immediate, more easily achieved, and more beneficial to the design process. Looking 
to the near future, it is natural to expect that verification systems will be able to prove the 
correspondence between a specification written in an FDT and a system written in some 
standard programming language. Currently, as mentioned above, SDVS accepts programs 
written in standard programming languages verbatim and performs the translation into logic 
in a traceable manner within the system operation. Extending this translation capability 
to an FDT is a project we hope to undertake at some point in the near future. Another 
effort is reported on in [8]. 

The current SDVS effort has yielded several lessons. 

The accepted wisdom is that verification is difficult, if not impossible. This statement 
has sociological and technical aspects. Certainly someone about to undertake a verification 
project will probably have to learn some new skills, depending on his or her previous knowl- 
edge, but it is reasonable to assume that there is nothing superhuman about the ability of 
logicians, mathematicians, or developers of verification systems that would preclude a mo- 
tivated software engineer from acquiring the necessary skills. Of course, the final verdict 
should be based on scientific sociological studies of this phenomenon. 

Two dimensions of any verification system are what the system can do and how easy it is 
to do that. Each of these dimensions naturally breaks down into many components. The 
study of the interrelationships of these components with respect to the success of technology 
transition is another interesting and important topic which has not been addressed, as far 
as we know. 

The Ada MSX verification experiment reported on here was in fact very difficult. It was 
difficult to write the specifications in a formal logical manner (in the state delta language) 
and it was difficult to carry out the proof. An added difficulty was that SDVS was being 
developed as the proof was being carried out. It is likely that a similar verification exercise 
could be carried out on the new SDVS much more easily because of the new capabilities of 
SDVS, and if the same people were to do the new verification, their experience would make 
a similar job much simpler the second time around. 

Another lesson is that simply the act of preparing the patient for the operation (the com- 
puter system for formal analysis) can yield important benefits, e.g. bug discoveries, as was 
the case for the MSX project. And at the end of the operation, something was in fact 
proved, thereby further increasing the confidence in the correctness of the system. 

Two final thoughts: (1) Formal verification is most suited for critical (life, safety, or security- 



critical) systems or modules of systems. Thus, "design for verification" must imply isolating 
the critical functions in their own modules. (2) A system implementor writing critical code 
should have a very clear idea about why the code conforms to the specification. If that idea 
is not formalizable and provable, then perhaps in fact the implementor's intuition is flawed. 



2     SDVS Background 

As mentioned above, the primary emphasis of this project has been the development of the 
State Delta Verification System. SDVS is one of a class of automated verification systems 
that have been developed over the last decade or so at various academic and industrial 
institutions across the US and abroad. The various systems embody differing approaches 
with regard to their theoretical foundations, their modes of operation, and their intended 
applications. 

There are several features that characterize SDVS (a more detailed discussion is given 
in [2]). SDVS has a theorem prover/proof checker that can run in interactive or batch 
modes; the user supplies high-level proof commands, while many low-level proof deductions 
are executed automatically. One of the more distinctive features of SDVS is its potential to 
incorporate widely used application languages (e.g. subsets of VHDL, Ada, and ISPS) and 
use descriptions in the application languages as either implementations or, in some cases, 
specifications in the verification hierarchy. Translators are used to translate application 
languages automatically to the internal logical language of SDVS, the state delta logic. The 
state delta logic is equivalent to a part of classical temporal logic; it can express the "always," 
"eventually," and a version of the "until" operators [9,10]. The "mod-list" feature and 
"covering" algorithm present a unique method for keeping track of facts that are preserved 
through state transitions. SDVS has a generous amount of built-in domain knowledge, 
including for example, integer and bitstring arithmetic. A solver (EKL [11]) for a fragment 
of full first order logic has been incorporated into the quantification deduction mechanism. 
The SDVS simplifier is being used in other verification systems, e.g. Penelope [12]. 

2.1     SDVS Proof 

Proofs in SDVS are technically proofs of state delta formulas (or simply, "state deltas"). 
Without giving the full definition, we can say that a state delta is essentially a compact 
description of a conditional state transition, with "handles" for stating, among other things, 
which variables are held constant and which formulas are invariant over the transition. State 
deltas can be used to represent programs, hardware descriptions, specifications, and cor- 
rectness theorems. The semantics of state deltas is defined with respect to "computational 
models;" in brief, a computational model is a sequence of states. A state delta is valid if 
and only if it holds in all computational models. 

Proofs of programs are based on "symbolic execution," a generalization of simulation that 
allows the user to prove the validity of a formula in all temporal models. Proof rules fall 
into two main types: dynamic and static. The dynamic proof rules cause the execution to 
advance to future states by direct execution, branching, or looping, for example. The static 
proof rules are used to prove facts about a given state or set of states. The domains that 
the theory of a state may concern include many that are useful in computer applications, 
for example, integers, bitstrings, and arrays. Facts to be proved about a given state are 
first-order formulas (sometimes involving quantification). The static deduction capability 
includes, among others, decision procedures where feasible (for example, for boolean ex- 



pressions and equality), the simplex algorithm for linear arithmetic, user-invocable axioms 
for the various domains, and rules for manipulating quantifiers (including internal access 
to the EKL quantification solver [11]). The various partial decision procedures are linked 
via the Nelson-Oppen cooperating decision-procedure paradigm [13]. Of course, the user 
does not explicitly see the internal workings whereby the decision procedures "cooperate," 
but for the system builder, it makes adding proof capabilities about new domains relatively 
easy. In addition to the invocable axiom capability, SDVS has a number of system flags 
that can be set and reset during a proof in order to help regulate the trade-off of system 
and user effort. For example, certain flags are turned on in cases where the user does not 
want to give explicit proof commands, but simply to have the system "try harder." 

Typically, a proof is developed in an interactive session with SDVS and saved for future 
reexecution in SDVS or for minor alteration in an editor. In an SDVS session, a proof may 

be manipulated by "popping" back to a previous proof step, which restores the correct state 
of affairs at that time. In this way, different proof strategies can be tried in an efficient 

manner. A batch proof may be created by saving a proof developed interactively or by 
writing it directly using an editor. 

2.2 SDVS Translators 

As mentioned above, SDVS is able to handle proofs of correctness for programming and 
hardware description languages by translating such programs and descriptions into state 
deltas. The translators are constructed from formal specifications of the languages' seman- 
tics in terms of the state delta logic using a tool called DENOTE (Denotational Semantics 
Translation Environment) [14]. As part of this effort we defined a language called DL 
(DENOTE Language) for writing equations specifying a language's semantics. DENOTE 
translates specifications written in DL and outputs either formatted equations or a Com- 
mon Lisp implementation of the translator. DENOTE was used this year to generate all of 
our translator implementations. 

In addition to increasing our productivity, this method of implementing translators from 
their formal specifications has led to more reliable, better structured translators. The 
method also permits us to define incrementally the semantics of an application language 
to accommodate increasingly larger, more complex subsets of the language. Incremental 
development also enables us to define and achieve identifiable milestones. 

2.3 SDVS User Interface 

In addition to the proof commands, there are query commands that can be used to inform 
the user about various aspects of the current state of the symbolic execution (for example, 
values of variables or quantified statements considered true) and input-output commands 
for reading/writing proofs or lemmas from/to files. The user-to-system channel currently 
is restricted to type-in commands (no icons or menus), and the system-to-user channel 
consists of English and mathematical notation. However, we are cognizant of the value 
of a more graphical and flexible interface in making information about the proof more 



readily accessible and understandable to the user. Furthermore, to gain acceptance by the 
targeted user community, it is important to conform to the industry standard "user-friendly" 
technology. 

As an example of a more advanced user interface capability, we have implemented a pro- 
totype of windows for tracing the flow of control in an Ada program or VHDL hardware 
description corresponding to an ongoing symbolic execution proof of correctness for that 
program. This prototype interface was implemented for another project and supported by 
the Air Force. It is not included in SDVS 12. However, we plan to add a general X-window 
interface to SDVS. 

2.4    Accomplishments 

To date, the main visible accomplishment of the SDVS project has been the creation of a 
system within which machine-checked verifications of real applications are possible. The 
largest are the proof of a real microcode verification example written in ISPS (completed in 
1986 [15]) and a real Ada program (completed this year [4,16,17]). Additionally, we have 
verified many Ada programs and VHDL descriptions taken from books and libraries with 
respect to liveness and safety specifications [3,18-27]. 

We are currently in the midst of the effort to verify VHDL description of the AMD TAXIchip 
[28], [29]. 



3     Software Verification Progress - Ada 

3.1     Language Extensions 

From 1988 to 1993 we adapted SDVS to handle increasingly larger subsets of Ada. In 1994 
we completed work on the MSX verification example; no changes in Ada capability are 
represented in SDVS 13. 

The features of the six Ada subsets that represent stages in the increasing capability of 
SDVS were as follows: 

Core Ada: scalar assignment statements and simple expression evaluation; straight-line 

program flow; branching (IF, CASE), and iteration (WHILE) statements; simple input 
and output (via the GET and PUT procedures); block structure, scoping and variable 
declarations; packages with restricted object declarations; USE clauses; basic data 
types (integer, boolean, array). 

Stage 1 Ada: the features of Core Ada, plus nonscalar assignment, subprogram declara- 
tions and subprogram calls, package bodies, record types, and enumeration types. 

Stage 2 Ada: the features of Stage 1 Ada, plus user-defined exception handling and the 
character data type. 

Stage 3 Ada: the features of Stage 2 Ada, plus context clause declarations (for certain 
I/O subpackages of the STANDARD package), rudimentary overload resolution for 
subprogram arguments, the string data type, and a preliminary version of floating- 
point types. 

SDVS 11 Ada: the features of Stage 3 Ada, plus FOR loops and the elimination of exis- 
tential quantification of declared variables. 

SDVS 12 Ada: the features of SDVS 11 Ada, plus integer subtypes and integer definition 
types, and for these types: explicit type conversions, length representation clauses 
(representation clauses specifying an amount of storage associated with a type), and 
instances of the generic function UNCHECKED_CONVERSION; "execution marks" (in the 
form of interpreted comments) for statements, permitting the user to specify beginning 
and end points for symbolic execution. 

The SDVS 12 additions were required by the Ada application verified last year and com- 
pleted this year. 

The adaptation of SDVS to handle subsets of Ada included writing the formal specifications 
and implementations of Ada-to-state-delta translators. The items involved in this task 
included defining the grammar of the Ada subsets, formally specifying the two Ada-to- 
state-delta translator phases for each subset, building the lexical analyzer and parser for 
each subset, completing Common Lisp implementations of the two phases of each translator 
specification, testing the translator implementations, and implementing enhancements to 



SDVS that aDow correctness proofs of Ada programs. We have experimented with the Ada 
translators and SDVS system modifications by proving the correctness of numerous small 
Ada programs. This involved constructing the Ada programs and their specifications, as 
well as the proofs that the programs satisfy the specifications. 

More specifically, for each subset we defined both the concrete syntax and the abstract 
syntax. The parser, using the concrete syntax, generates the abstract syntax for the back 
end (phases 1 and 2) of the translation. We used the abstract syntax to specify formally 
the back end of the Ada translator. This specification gives the denotational semantics of 
the Ada subset in terms of the state delta logic. The entire specification is written in our 
language DL so that it can be input to DENOTE. The Common Lisp implementation of 
the translator is automatically generated by DENOTE. 

3.2     SDVS/Ada Applications 

A "critical mass" of theory and system development had to be established before portions 
of "real" Ada applications could be verified. As indicated above, the initial Ada capabilities 
were demonstrated by the verification of Ada programs taken primarily from books and Ada 
libraries. With a substantial capability implemented, this year's emphasis was on verifying 
portions of a DoD Ada application. More work is needed to enhance SDVS for sizable 
applications, and such verification experiments on large programs must be performed to 
drive further research and development. 

At the end of fiscal year 1992, we devised a plan for coordinating efforts at The Aerospace 
Corporation and the Johns Hopkins University Applied Physics Laboratory (APL) to verify 
portions of the Midcourse Space Experiment (MSX) software using SDVS. This effort was a 
"shadow project" (i.e., it did not affect the MSX deliverables schedule), and it was directed 
toward stressing SDVS and formulating further research strategies. 

The software for the MSX Program satisfied many of the requirements that Aerospace had 
originally defined for an Ada application. The most important reasons for selecting the 
MSX software were as follows: 

• Complete, accurate documentation was available. 

• Access to the developers was provided. 

• The correct functioning of the software is critical to the mission's success. 

• The software is not classified or restricted from access. 

• There is the potential of verifying a combination of Ada software and embedded 1750A 
programs. 

Aerospace and APL discussed how portions of the MSX software could be verified, given 
the current capabilities of SDVS. This work was intended to verify some properties of the 
programs, while providing data to drive further work on SDVS. The following were the main 
objectives of the MSX application: 

10 



• stress-test SDVS and gain more experience in using SDVS to verify systems; 

• identify weak and missing features in the tools and underlying theory; 

• prioritize tasks for further research and development, and start to investigate the 
higher priority tasks; 

• provide results of the verification effort to the MSX Program Office; 

• provide another example for demonstration and publication; 

• evaluate the value added from applying formal methods; and 

• acquire more information about what designers need in order to apply formal methods. 

In a one-year project we achieved some results for each of these objectives, particularly for 
the first five objectives. Our main accomplishments include the verification of a substantial, 
real Ada appbcation program and the enhancements made to SDVS in the course of the 
project. 

The first steps of the project consisted of selecting and analyzing a portion of the MSX 
Ada code to be verified; examining the documentation pertaining to that portion; and 
delineating the Ada constructs appearing in that portion but that were not implemented 
in the SDVS Ada translator at that time. The MSX program had a large amount of code 
from which to choose our example. We factored out those portions of code that performed 
significant floating-point calculations because we have only started to study how to reason 
about floating-point numbers in SDVS [30]. Nevertheless, we still had to deal with Ada 
software that included tasks, numerous interfaces to 1750A assembly routines, and various 
Ada constructs that were not then implemented in the SDVS Ada translator. We were 
able to deal, mostly satisfactorily, with the latter two, but tasks were a major problem; 
we had to rewrite tasks as procedures and provide an Ada scheduler for them. Because of 
time constraints on this experiment, the scheduler did not encompass a great number of 
complicated situations that might arise in the execution of the original software. 

The portion of MSX software selected for this experiment consisted of (1) two packages 
containing three tasks and an interrupt-driven procedure, (2) three packages containing type 
definitions, (3) one package containing Tartan1 supplied functions for bit manipulations, and 
(4) four packages only marginally related to our selected software. Portions of software from 
these packages constituted our target software and consisted of approximately 900 lines of 
Ada code. 

As part of the verification process, a formal specification of the software was created from 
the informal documentation supplied by the software developers. Stripped of detail and 
roughly stated in English, the correctness assertion that we proved for this program is "the 
Ada program correctly partitions and reformats an error-free infinite input stream of bytes 
into its constituent data-structure messages." 

'Tartan is the compiler used by APL to compile the MSX software. 

11 



In 1993 we attempted two different approaches to the proof: (1) symbolic execution of the 
Ada portions of the program, including symbolic execution through all invocations of the 
Ada subprograms and the use of (prototype implementations of) meta-level proof commands 
(tacticals) to develop subproofs of similar cases; and (2) abstract characterization and proof 
of properties for major Ada subprograms of the main program, and then the use of these 
abstract characterizations upon invocation of the subprograms. The first approach was 
attempted because we thought that the second approach would not be feasible within the 
time constraints for this experiment. Although the first approach was conceptually easier 
and the newly implemented meta-proof commands greatly assisted the proof construction, it 
took too much time to execute the proof. In spite of the long execution time, we completed 

most of the correctness proof; we proved that 57 of the 61 types of data-structure messages 
were processed correctly by the software. At the end of 1993, the second approach was 

attempted, and was not as difficult as first imagined. The characterization and proof for 
two major subprograms were completed and a third was partially completed. This approach 
greatly reduces a time/space explosion and will permit the verification of more general 
schedulers and input. 

This project only lasted a year, and because (1) this was the first large Ada application 
verified and (2) SDVS development occurred concurrently with the program verification, 
we were restricted in the complexity of the specification and amount of code that could be 
tackled. However, we found this experience very important for identifying weak and missing 
features in the tools and underlying theory, and it is helping us to prioritize future research 
and development tasks. Apart from stress-testing SDVS, the verification project allowed us 
to enhance the SDVS Ada translator and to prototype three new meta-proof commands to 
the system that should facilitate lengthy proofs. 

Viewed in a larger context, the exercise reported on here, the formal proof of correctness 
of a part of a real Ada system (with respect to a specification written in the logic of state 
deltas), is a smaD preliminary step in the long-term effort of technology transition of formal 
methods to "industrial" software engineering use, illustrating some of the problems, benefits, 
and trade-offs of formal verification. 

3.3     Technical Reports 

The report [4] is the summation paper of the MSX project in publishable format. 

12 



4    Hardware Verification Progress - VHDL 

Prior to 1987 we adapted SDVS to handle a subset of the hardware description language 
ISPS. However, ISPS has serious limitations regarding the specification of hardware at levels 
other than the register transfer level. In 1988 we studied some of the hardware verification 
research being done outside Aerospace and investigated VHDL, a DoD and IEEE standard 
hardware description language that was released in December 1987. We selected VHDL as 
a medium for hardware description within SDVS. 

4.1     Language Extensions 

From 1989 to 1994 we adapted SDVS to handle increasingly larger subsets of VHDL, in 
which both combinational and sequential circuits can be described. The features of the five 
VHDL subsets are as follows: 

Core VHDL: ENTITY declarations; ARCHITECTURE bodies; CONSTANT, VARIABLE, SIGNAL, 
and PORT declarations; BOOLEAN, BIT, INTEGER, and BIT-VECTOR data types; variable 
and signal assignment statements; IF, CASE, and NULL statements; restricted WAIT 
statements with inertial delay; and concurrent PROCESS statements. 

Stage 1 VHDL: the features of Core VHDL, plus WAIT statements in arbitrary contexts; 
LOOP, WHILE, and EXIT statements; TRANSPORT delay; aggregate signal assignments; 
and a revised translator structure. 

Stage 2 VHDL: the features of Stage 1 VHDL, plus (restricted) design files, declarative 
parts in entity declarations, package STANDARD (containing predefined types BOOLEAN, 
BIT, INTEGER, TIME, CHARACTER, REAL, STRING, and BIT.VECTOR), user-defined pack- 
ages, USE clauses, array type declarations, enumeration types, subprograms (proce- 
dures and functions, excluding parameters of object class SIGNAL), concurrent signal 
assignment statements, FOR loops, octal and hexadecimal representations of bitstrings, 
ports of default object class SIGNAL, and general expressions of type TIME in AFTER 
clauses. 

Stage 3 VHDL: the features of Stage 2 VHDL, plus subtypes of scalar types, integer type 
definitions, and type conversions between integer types; "execution marks" (in the 
form of interpreted comments) for sequential statements permitting the user to specify 
beginning and end points for symbolic execution; "VHDL offline characterization" — 
a facility for specifying, proving, and invoking the behavior of a VHDL subprogram. 

Stage 4 VHDL: the features of Stage 3 VHDL, plus design units, context items, compo- 
nent declarations, component instantiation statements, BLOCK statements, generics, 
generic maps, port maps, and configuration declarations. 

Implemented this year, Stage 4 VHDL comprises a significantly more powerful subset of 
VHDL than the previous stages, in that Stage 4 VHDL admits the structural description 
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of hardware in terms of its hierarchical decomposition into connected subcomponents as 
outlined in [31]. The earlier VHDL subsets supported only behavioral (e.g., algorithmic or 
dataflow) hardware descriptions. 

The primary VHDL abstraction for modeling a digital device is the design entity. A design 
entity consists of two parts: an entity declaration and an architecture body. The entity 
declaration provides the "external view" of the device: it defines the interface between 
the design entity and its environment, including the number, direction, and type of ports, 
and corresponds to a symbol in a traditional CAE (Computer-Aided Engineering) design 
methodology. The architecture body provides the "internal view" of the device, describing 
its behavior or structure, and thereby expressing the relationship between its inputs and 

outputs. A given entity declaration may be shared by several design entities, each with a 
different architecture body. 

The special case of a structural architecture, in particular, corresponds to the CAE notion of 
a schematic. A structural architecture for a design entity is described by declaring internal 
signals and connecting these, as well as the ports of the entity declaration, to the ports 
of various subcomponents declared in component declarations and created by component 
instantiation statements in the architecture body. 

Component declarations provide a "template" mechanism, whereby an architecture body 
containing component instantiations can be analyzed — checked for syntactic and semantic 
correctness — independently of prior analysis of entity declarations for those components. 

A component instantiation statement specifies an instance of a child component occurring 
inside a parent component. At the point of instantiation, only the external view of the 
child component — the names, types, and directions of its ports — is visible; the child 
component's internal signals are not visible. The component instantiation statement iden- 
tifies the child component and specifies which ports or signals in the parent component 
are connected to which ports in the child component. Component instantiation statements 
are transformed, in a manner prescribed by the VHDL LRM [32], to pairs of nested BLOCK 
statements during the elaboration of a VHDL design entity prior to its execution. A BLOCK 
statement provides a block-structured scope with local declarations and a body consisting 
of concurrent statements. Elaboration of a design entity recursively transforms component 
instantiation statements occurring in BLOCK statements until the innermost blocks contain 
only PROCESS and concurrent signal assignment statements. 

The configuration declaration provides the mechanism whereby architecture bodies are 
paired with entity declarations to configure specific design entities. A configuration decla- 
ration is analogous to a "parts list," describing which part to use for each component of a 
hardware design. 

Prerequisites to adapting SDVS to handle VHDL are to define VHDL semantics formally 
in terms of SDVS's underlying logic and to implement a translator from VHDL to the state 
delta logic. The translator implementation technique for VHDL is analogous to that for 
Ada (Section 3.1). We have defined both the concrete syntax and the abstract syntax for 
each VHDL subset, and have implemented a parser for the language. The back end of the 
translator has two phases. The first phase does static semantic analysis. It performs various 
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kinds of error checking (e.g. type checking) and collects an environment that associates all 
names declared in the subject VHDL description with their attributes. The second phase 
generates the state delta formulas. This phase receives the environment from the first 
phase, then uses it to translate the VHDL description incrementally into state deltas as 
the description is symbolically executed in the course of its correctness proof. Most of the 
back end is specified in a denotational manner; the sequential constructs in our subsets of 
VHDL are given a formal denotational semantics, while the operational semantics of the 
concurrent VHDL PROCESS construct is defined in terms of the translator's algorithm for 
defining the next set of valid state deltas during symbolic execution. The denotational part 
of the translator specification is written in the language DL so that it can function as input 
to DENOTE; the part of the translator specified in DL was automatically generated by 
DENOTE. 

4.2     SDVS/VHDL Application 

In fiscal year 1993, Aerospace investigated potential hardware verification applications in co- 
ordination with NSA/R2. Target VHDL descriptions for an SDVS/VHDL Application were 
identified at the onset of fiscal year 1994, consisting of VHDL descriptions — developed in- 
house at NSA — for a set of commercial standard parts, the Am7968/Am7969 TAXIchip™ 
(Transparent Asynchronous Xmitter-Receiver Interface) Integrated Circuits designed by Ad- 
vanced Micro Devices, Inc. (AMD). NSA proposed this VHDL code as a good choice for an 
SDVS application by virtue of its being representative and relevant: the bit manipulations 
are typical of those found in digital devices of interest to NSA, and the particular chipset 
is likely to be retained in the final production unit of the cryptographic device. We want 
to thank Steve Lobeck of NSA for helping to identify and supply the code. 

The TAXIchip Am7968 Transmitter/Am7969 Receiver chipset constitutes a general-purpose 
interface for high-speed serial communication between two parallel-data hosts, and is used 
in a prototype cryptographic device currently being built by NSA. In normal operational 
mode, each Transmitter/Receiver pair is connected over a private serial link, which can be 
a fiber-optic or copper medium. The Transmitter latches a parallel 12-bit message from 
the sending host on its input pins, encodes it in two stages, serializes it, and shifts the 
bitstream out to the serial link. The Receiver continuously deserializes the arriving serial 
bitstream, decodes the resulting parallel bit patterns, and routes the decoded 12-bit message 
to the receiving host via its output pins. The encoding scheme is based on the ANSI X3T9.5 
Committee's 4B/5B ("4-bit/5-bit") code, in combination with NRZI (Non-Return-to-Zero- 
invert-ones) encoding. 

The SDVS/VHDL Application was directed towards demonstrating the suitability of SDVS 
to the verification of realistic VHDL hardware descriptions, stress-testing SDVS, and for- 

mulating strategies for further research and development in formal verification generally, 
and particularly in VHDL verification. 

To facilitate our work on the SDVS/VHDL Application, we determined that it would be 
useful to be able to exercise the Application VHDL models with a commercial VHDL sim- 
ulator.  Such simulations would provide important reference points, both for the behavior 
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of the models and the semantics of the new VHDL constructs being implemented in SDVS 
(see Section 4.1 above). Consequently, we evaluated two well-regarded tools — the Van- 
tage Spreadsheet and the Model Technology V-System — and concluded that the Vantage 
simulator would serve our purposes best. This evaluation took into account compatibility 
issues with the VHDL tool suites being used by NSA. Accordingly, we obtained the Vantage 
Spreadsheet from NSA as GFE (Government Furnished Equipment). 

In order to better understand the problems involved with specifying and proving properties 
of the TAXIchip VHDL descriptions, we first created simplified versions of those descrip- 
tions. We then wrote specifications for these descriptions, and a specification for a system 
in which the output of the transmitter was input to the receiver (the VHDL description of 
this system, as well as those of the transmitter and receiver, employ the newly added SDVS 
features allowing structural descriptions). 

In fiscal year 1995, we intend to proceed by incrementally incorporating additional features 
of the original TAXIchip descriptions into the simplified descriptions we have produced, and 

by attempting to prove successively more interesting properties of the latter. Regarding the 
TAXIchip VHDL as originally given, our goal in principle is to prove (at least) suitable 
versions of the specifications presented in Sections 4.2.1, 4.2.2, and 4.2.3. This will entail a 
few, relatively minor, enhancements to the VHDL translator, principally the implementation 
of a subset of the IEEE STD_LOGIC_1164 multivalue logic system. 

4.2.1     Specification for the Combined System 

So far, we have done the most work with a structural VHDL description which combines 
the simplified transmitter and receiver into a single system. Included in this description 
is an internal driver connected to the XI lines of both chips to run the internal clocks on 
both chips. This system accepts four bits in parallel on its input lines, which are sent to 
the transmitter. The transmitter's output is input via a serial line to the receiver, where 
the NRZI encoded bits on the serial line are decoded back into the original input, which is 
then output on the system's output lines. We will go into more detail on how the simplified 
transmitter and receiver work in the sections devoted to them below. 

The state delta system.sd below serves as a specification for the system. It states that if 
the input to the system (represented by variable systemJn) is acceptable (i.e., it consists of 
four bits), it will eventually appear as output. The formula input.ok states that the input 
is acceptable, and the formula input-equals-output states that the eventual value of the 
variable system-out (which represents the output of the system) equals the original value 
of system.in. 

[sd pre:   vhdl(system) 
mod:   all 

post:   vhdl_model_elaboration_complete(system), 
[sd pre 

comod 
mod 

formula(input_ok) 
all 
all 
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post:  formula(input_equals_output)]] 

(The above method for writing such a specification is dictated by the fact that variables do 
not exist until they are elaborated, so we have to wait until a point when systemJn exists 
before stating that the input it represents is acceptable.) 

The proof of system.sd is straightforward. After using the command go to reach a point at 
which all of the variables are elaborated, a proof of the nested state delta in the postcondition 
is opened. A case split is done on each of the possible values of the input, and in each case 
we again use the command go to reach a state where the output equals the input. Actually, 
from the VHDL description of the simplified transmitter, we know that the output becomes 
equal to the input exactly 30.5 nanoseconds after the system starts executing. The above 
state delta can be modified to reflect this, and the same proof should work for the modified 
state delta. 

In the future, we hope to examine a more general specification: rather than simply stating 
that the inputs at the time the execution starts are eventually output, we would Uke to 
state that (under certain stability assumptions on the input) the inputs at any time will 
eventually appear on the output. This is a safety property, and although we have a facility 
for proving safety properties which has been successfully used on Ada programs [33], we 
have not had occasion to use this facility on VHDL descriptions. 

4.2.2     Specification for the Transmitter 

We first give a high-level functional description of the simplified transmitter. It is driven by 
an external line XI. An external driver on this line serves as input to a internal clock which 
produces two internal clock signals, one slow and one fast. On the edge of each slow clock 
cycle, the transmitter accepts four bits in parallel, and outputs the five bit NRZI-encoded 
form of the input in order, most significant digit first, on a serial line on the rising edge 
of each fast clock cycle. The main differences between the original transmitter and the 
simplified version are that the control part of the transmitter has been simplified, there is 
no buffering of inputs inside the transmitter, and there are no SYNC bytes generated. 

We now examine how the components of the transmitter interact. On each edge of a slow 
clock cycle, the encoder component accepts four parallel bits of input, and puts the NRZI 
encoding onto a five bit wide bus connected to the shifter component. A one-shot control 
circuit enables the shifter to latch in the values from the bus on the first rising edge of the 
fast clock after each slow clock cycle. The shifter shifts out the values from the bus in order 
onto a serial line on each rising fast clock edge. 

It seems clear that a specification of this description should express that each digit of the 
NRZI encoding of the input appears in order on the serial line at some later time. Due to the 
nature of the simplified description, we actually know the times at which these values are 
first asserted on the line and how long they are asserted, so we can use the SDVS variable 
vhdltime (which represents the time elapsed since the beginning of the execution of the 
VHDL description) in the specification.  The usual way of describing a sequence of events 
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in time in the state delta language is to use nested state deltas. By a nested state delta, we 
mean a state delta formula that has another state delta formula in its postcondition (the 
state delta system.sd earlier in this section is such a state delta). 

Having made these remarks, we now give the state delta specification for the transmitter, 

transmitter.sd: 

[sd pre:  vhdl(transmitter) 
comod:   all 

mod:   all 
post:  vhdl_model_elaboration_complete(transmitter) , 

formula(nrzi.sd)] 

where nrzi.sd is a nested state delta describing the sequence of values which appear on the 

output. 

We have begun the proof of this state delta and expect to have it finished in the near 
future. As mentioned earlier, we will also attempt enhance the simplified transmitter by 
incrementally adding features of the original transmitter and attempting to prove more 

interesting properties. 

4.2.3     Specification for the Receiver 

As in the preceding section, we begin with a high-level functional description of the simplified 
receiver. Like the transmitter, it is driven by an external line XI, and an external driver on 
this line serves as input to a internal clock which produces two internal clock signals, one 
slow and one fast. On each falling fast clock edge, the receiver accepts input on its input 
serial line. After accepting five such inputs, the receiver outputs the NRZI decoded form 
at the end of a slow clock cycle. The differences between the simplified description of the 
receiver and the original are similar to the differences between the simplified transmitter 
and the original. 

The components of the receiver interact as follows. The shift_and_count component shifts in 
input from the serial input line, outputs the shifted form onto a bus, and keeps count of how 
many bits of the NRZI encoding have been accepted. When five bits have been accepted, 
the shift_and_count component enables the decode component to latch in the values on the 

bus, and then decode them and output the decoded version. 

Since the receiver is intended to work in conjunction with the transmitter, the informal 
specification is that the output of the receiver must be the NRZI decoding of the values 
which appear at the on the serial input line at first five falling edges of the fast clock. Again, 
as with the transmitter, we know the times at which these falling edges occur, so we can 
use the variable vhdltime in our specification. 

The state delta specification for the receiver, receiver.sd is given below: 

[sd pre:   vhdl(receiver), 
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input_sequence(bl,b2,b3,b4,b5), 
nrzi_ok(bl,b2,b3,b4,b5) 

comod:   all 
mod:   all 

post:  #receiver_out = nrzi_decoding(bl ,b2,b3,b4,b5)] 

The variable receiver_out corresponds to the four-bit parallel output lines. The macro 
input.sequence states that the sequence of bits accepted by the receiver on the first five 
falling edges of the fast clock are bl, b2, b3, b4, and b5. The macro nrzLok states that 
these five bits are a legitimate nrzi encoding. The macro nrzLdecoding decodes the bit 
sequence M,b2,b3,b4,b5. Thus the above state delta states that if the receiver receives 
on its serial input line a legitimate NRZI encoded byte, it eventually outputs the decoded 
version of that byte. 

As mentioned earlier, using a state delta which characterizes input (such as inpuLsequence) 
in a proof presents problems, and thus proving a state delta such as receiver.sd is not 
straightforward. Nevertheless, we have mapped out a plan that, if successful, will allow us 
to demonstrate that the description of the receiver meets its specification. We intend to 
carry out this plan in the near future. 

4.3    Technical Reports 

Reference [29] specifies our plan for accomplishing the SDVS/VHDL Application task, in- 
cluding background, objectives, and expected results. 

Reference [34] documents a formal semantic specification of Stage 4 VHDL. Now imple- 
mented in SDVS, the Stage 4 VHDL translator represents the latest phase of our research 
on proving properties of VHDL descriptions. The semantics is primarily specified denota- 
tionally, although the second-phase semantics of the VHDL simulation cycle has a direct 
operational implementation in the VHDL translator code. 

In addition, we made a presentation entitled "VHDL Verification Using SDVS" at the 
Fourth Space INFOSEC Symposium, jointly sponsored by the National Security Agency 
and Aerospace and held April 5-7 at The Aerospace Corporation. After providing a general 
introduction to formal methods and computer verification, we described the components 
of SDVS, the underlying model of computation, the proof procedure, the current VHDL 
capability, and completed and anticipated applications. 
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5     General System Development 

5.1     Development 

In 1994 we completed the latest version of SDVS, referred to as SDVS 13, along with a 
description of the installation procedure and an enlarged (and reorganized) suite of proofs 
used for validating SDVS installations. 

SDVS 13 currently runs under Franz Allegro Common Lisp (FACL) 4.2 on either Sparc 
2 or Sparc 10 processors. Aerospace has a "runtime generator" license agreement from 
Franz, Inc., which allows Aerospace to deliver SDVS to end users without requiring them 
to purchase a Common Lisp system (the runtime version removes some features from the 
development version of Common Lisp). 

The SDVS 13 Users' Mariual [35] has been updated to reflect the new subsets of VHDL, 
and all examples in the manual have been executed using SDVS 13. 

SDVS has been approved for the following organizations: Cambridge University, George 
Mason University, Johns Hopkins University Applied Physics Laboratory, MITRE Corpo- 
ration, National Security Agency (NSA), Naval Research Laboratory, Rome Laboratory, 
Trusted Information Systems, and University of California at Santa Barbara. 

Last year Aerospace developed a (short) SDVS Software Request Form in order to sim- 
plify and expedite the approval process; online versions can now be sent via e-mail (sdvs- 
requests@aero.org). We continued to distribute technical reports and publications to those 
individuals who have expressed an interest in this work. 

In 1994, SDVS was presented at several fora, including 

1. the NSA, 

2. the Launch Range Management Conference IV, 

3. the 1994 Space INFOSEC Symposium and 

4. the Aerospace Ada Interest Group. 

A facility is available that permits "remote demonstrations" of SDVS. This facility allows 
Aerospace to give a demonstration of the capabilities of SDVS to users running the X- 
windows system at any site on the Internet. When the remote demonstration facility is 
invoked, a window appears on a remote display containing a trace of the local activity of an 
SDVS session. Control of the SDVS session remains solely with the local Aerospace user; 
i.e., the remote user has no input capability to the SDVS session. 

Under an Air Force sponsored project, we are continuing to explore the potential for expand- 
ing the SDVS user interface to make use of bitmapped displays and windowing technologies. 
Specifically, we are using X-windows as our windowing platform. X-windows is quickly be- 
coming a portable standard windowing system. Previously, we started to build the interface 
using Common Windows, but found this effort too time-consuming and difficult. 
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5.2    Technical Reports 

Reference [35] is the users' manual for SDVS 13. Although it is primarily a reference manual, 
it has tutorial aspects as well. The manual contains descriptions of the following: 

• underlying logic (state delta logic) 

• proof language 

• user interface 

• ISPS verification capability 

• Ada verification capability 

• VHDL verification capability 

• domains defined in the SDVS Simplifier and capabilities of static solvers 

All facets of the system are illustrated with example SDVS sessions. 

Reference [36] is a tutorial for SDVS, containing numerous examples of proofs in SDVS. In 
particular, it contains descriptions and examples of the following: 

• state delta logic 

• dynamic and static proof commands 

• some SDVS data types 

• quantification 

• techniques for verifying hardware descriptions and programs written in VHDL, Ada, 
or ISPS 
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6     Formal Specification Languages 

The early phase of this year's contract provided for an examination of standard formal spec- 
ification languages. In this effort we conducted a preliminary examination of the languages 
Z [37], VDM [38], LOTOS [39], Larch [40], and Estelle [41]. The goal was to gain some 
familiarity with the languages, their uses in applications, and their potential for incorpo- 
ration into a formal verification methodology. Unfortunately, this effort was cut off before 
any specific conclusions could be drawn or any report written. 

However, we did continue related work under an Aerospace Sponsored Research program. 
This work primarily focussed on Z and its tools FuZZ and ProofPower. 
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7    Conclusion 

The progress in FY 94 was primarily in the SDVS capability to handle VHDL descriptions, 
both in the translation and proof areas. 

The translator implementation technique that we developed in 1987 has continued to be 
very successful, and it has been used this year for the translator implementations of VHDL. 

This year's VHDL work, with its projected completion next year, has added the third leg, 
the hardware leg, in the triad of real applications of SDVS: to software, firmware, and 
hardware verification. 

In addition we wrapped up the MSX Ada verification example, and made a preliminary 
study of formal specification languages. 

Next year the emphasis will be on applying formal specification techniques to the Synergy 
project [42]. In addition we will complete the TAXIchip VHDL verification example, and 
will continue to push and work for technology transfer of formal specification and verification 
methods to real users. 
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