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BACKGROUND 

The research performed is in the context of computational modelling of turbulent combustion. In 
the design of combustion chambers for propulsion devices, turbulent combustion models are used in 
combination with CFD to predict the performance of proposed designs. Such models are required, 
at a minimum, to calculate the mean flow and temperature fields. It is also desirable that more 
details be calculated, such as NOx and CO. Existing models are far from perfect, but they have 
proved their worth, in reducing design time and the cost of extensive testing. 

One of the challenges in constructing models for turbulent combustion is to take due account 
of the so-called turbulent-combustion interactions. Prime among these is the effect of turbulent 
temperature and species concentration fluctuations on the chemical reaction rates. In the simplest 
mean-flow model, the mean reaction rate is evaluated from the mean species concentrations and 
the mean temperature—with no account of fluctuations. Such an approach is grossly in error (see, 
e.g., Pope 1990). In contrast, in PDF methods (Pope 1985)—on which this research is focused—all 
fluctuations are fully represented and their effects accounted for. 

In PDF methods a Lagrangian viewpoint is adopted. The flow is represented by a large number 
N of particles (e.g., N = 105), each with its own set of properties, namely: mass, m^; position 
X(n)(i); velocity U(n)(t); composition (f>{n)(t); and turbulence frequency o>(n)(i). Because of mass 
conservation, the particle mass m(n) does not vary. The particle moves with its own velocity, 
X(n) = IJ(n). The turbulence modelling aspect of the approach consists of stochastic models for 
the behavior of the velocity U(n) and turbulence frequency u/n). The composition 4>^{t)—which 
consists of the species mass fractions and enthalpy—evolves according to two processes: reaction 
(which is treated exactly), and mixing (by molecular transport processes). 

As described in the following sections, the research performed is primarily directed towards 
improving these stochastic models. 

EMST MIXING MODEL 

The composition field in a turbulent reacting flow changes due to convection, reaction and molecular 
transport. In the PDF approach, the first two processes are treated exactly (without turbulence 
modeling approximations) so that the. modelling of molecular transport—by a mixing model—is 
critical. . 

The simplest mixing model is IEM (Interaction by Exchange with the Mean) proposed by Viller- 
maux &; Devillon (1972), which is the same as the LMSE model (Linear Mean Square Estimation) 
of Dopazo (1976). According to these models, the particle composition (f>(n\t) relaxes to the local 
mean (</>) at a given turbulent rate C^{u), i.e., 

^- = -C,<ü,)(*<»> - <0». 

In previous AFOSR research we pin-pointed a severe weakness of all existing models including IEM 
(Norris k Pope 1990), which is that they are "non-local". This means that the composition of 
the nth particle <p^ is affected by the compositions of other particles <£(m) that have significantly 
different compositions. Ideally, a mixing model is "local" in composition space, so that its evolution 
is affected only by particles of a similar composition. It was shown by Norris h Pope (1990) 
that existing models' violation of localness results in their predicting, incorrectly, "distributed" 
combustion in the "flamelet" regime. 
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For a single composition, the mapping closure (see e.g., Pope 1991b) provides a local model with 
many attractive properties. We attempted a direct extension of this closure to many compositions— 
as is necessary for combustion calculations—but, unfortunately, a tractable model was not obtained. 

Inspired by the mapping closure ideas, we developed a local model (Subramaniam k, Pope 
1997) called the EMST mixing model (Euclidean Minimum Spanning Tree). The central idea is 
illustrated in Fig. 1. For ease of exposition we consider two compositions, so that the composition 
space is two-dimensional, i.e., a plane. Each point on Fig. 1 represents the composition of a particle 
in the two-dimensional composition space. The solid points are connected by lines, and the lines 
are selected so that their total length is minimized. (This is the definition of an EMST.) For each 
particle, the EMST identifies one or more near neighbor with which the particle interacts (i.e., 
mixes). Asymptotically, as the number of particles N tends to infinity, the distance between the 
identified neighbors tends to zero, so that the model becomes local. 

The details of the EMST mixing model, and its testing in simple flows is described by Subra- 
maniam &; Pope (1997a). 

To test and demonstrate the capabilities of the model, it has been applied to a piloted jet 
diffusion flame (Masri, Subramaniam and Pope 1996). In this test case the chemistry is fast so 
that the composition is everywhere close to equilibrium. Figure 2 shows scatter plots of reaction 
progress variable b and mixture fraction £ according to the EMST and IEM mixing models. The 
correct, equilibrium, behavior corresponds to all points lying on the upper two sides of the triangle 
that is evident in the Figure. Clearly in the EMST model calculations, nearly all of the samples 
do lie on these lines: but, because of the non-local mixing it involves, the IEM model incorrectly 
yields a significant fraction of partially burnt fluid. 

MODEL FOR TURBULENCE FREQUENCY 
3 

In the k-E turbulence model, the dependent variables can be used to define a lengthscale L = k^/e, 
a timescale r = k/e and a rate (or turbulence frequency) (w) = e/k. In Wilcox's k-e model (Wilcox 
1993), the turbulence frequency (to) is represented directly. Information about (u) is essential for 
modelling mixing rates and the rates of other turbulent processes. In the PDF method employed 
in this research, each particle has a value of w(n) which allows the mean (w) to be calculated. 
Furthermore, the particle values represent the distribution of turbulent frequencies. 

A stochastic model for u was developed by Pope &; Chen (1990) and used by Pope (1991a). 
Though physically accurate, this model proved to have several undesirable features in practice: it 
is computationally expensive to implement; the underlying PDF u> is lognormal, whose long tails 
lead to substantial statistical errors; and an ad hoc additional term is needed to effect entrainment 
of non-turbulent fluid. 

A different, simpler, model for u has been developed (Jayesh k Pope 1995) that has favorable 
properties, and has been found to be robust. The basic model consists of the stochastic differential 
equation 

dü, = -(u>-(u>))-+[       V dW, 

where T_1 = C3(tu), and C3 and a2 are model constants. This results in u having an exponential 
autocorrelation, and a gamma-distribution PDF. 

In application to inhomogeneous flows, a further important innovation is the definition of the 
conditional mean frequency 

n = cQ(u\{uj)>o), 



where CQ is a constant. At the free-stream edge of a free shear flows, there is a turbulent/non- 
turbulent intermittent region, in which the intermittency factor decreases from 1 in the fully- 
turbulent fluid to 0 in the irrotational free stream. In these regions, the PDF of u> consists of a 
turbulent distribution of weight 7, and a non-turbulent delta-function distribution (u = 0) of weight 
(1 - 7). The conditional mean Ü conditionally samples from the turbulent fluid, and consequently 
provides a turbulent frequency that is considerably larger than (w), and that better represents the 
rates of turbulent processes. 

Figure 3 shows calculations using this model for a constant-density temporal shear layer. It may 
be seen that the profile of ft is quite different from that of (u), and provides the required higher 
value of turbulence frequency at the edge of the flow. It has been used successfully at Allison 
Engine Company to make calculations of a step-swirl combustor (Anand, Hsu and Pope 1997). 

WAVEVECTOR MODEL 

In practical combustors, complex mean velocity fields are the norm. Examples are swirling jets and 
jets into a cross flow. It is well-known that models such as k-e provide a poor representation of 
such flows. In Reynolds-stress and PDF methods, the modelling of the "rapid pressure" is crucial 
for such flows; and a limiting test of rapid-pressure models is rapid distortions. 

Recently work of Reynolds k Kassinos (1995) has shown that Reynolds-stress closures are 
incapable of correctly accounting for rapid distortions with rotation. However, based on their 
suggestions, we have developed a PDF closure that is exact for homogeneous rapid distortions. In 
this closure, a unit vector—called the wavevector—is introduced. For the nth particle it is e(n)(i), 
and it evolves by 

d(n) _      d(Um)   M(5    _ >)>K 

while the fluctuating component of velocity evolves by 

*     =-<;^f(^-2e ei 

These equations determine the evolution of the Reynolds stresses exactly, for arbitrary rapid dis- 
tortions of homogeneous turbulence. 

The above equations apply to the rapid-distortion limit. They have been extended to be appli- 
cable to general flows through the addition of "slow pressure" terms (Van Slooten k, Pope 1997). 
The resulting model has been tested for against the available experimental and DNS data. For 
example, Fig. 4 .shows the predicted evolution of the Reynolds-stress anisotropies in homogeneous 
shear flow. 

NUMERICAL ERRORS IN THE SOLUTION OF PDF EQUA- 
TIONS 

In conventional numerical methods, truncation errors arise that depend on the grid spacing Ax and 
on the timestep At. In particle methods—such as that used to solve the PDF equations—additional 
errors arise that depend on the number of particles, N. 

Focusing just on these latter errors, let QN denote the numerical estimate of a quantity Q based 
on a particle method calculation with N particles. We assume that the method is convergent so 



that 
lim QN = Q- 

N—>oo 

But for finite N there are two errors. First there is a deterministic error, bias, defined by 

BQ = (QN) -Q. 

Second there is a random, statistical error, EQ, with zero mean and variance 

(eq) = vax(Qjv). 

Simple arguments, confirmed by numerical tests, show that these errors scale as BQ ~ iV-1 

and EQ ~ AT", so that the statistical error is dominant for large N. Nevertheless, in the particle 
method used to solve the PDF equations it is found that bias is larger than desirable. The reasons 
for this have been studied (Xu k Pope 1997), and remedies sought. 

PDF METHODOLOGY IN LARGE EDDY SIMULATIONS 

In large eddy simulations (LES) models are required for the subgrid scale motions. For reactive 
flows, the straightforward LES approach of solving equations for the filtered composition fields leads 
to the same formidable closure problem that is encountered in mean flow closures. However, this 
subgrid closure problem can be circumvented by using PDF methodology. The PI has collaborated 
with Professor Givi's group at SUNY Buffalo to develop and implement this methodology (Colucci 
et al. 1997). 

The appropriate quantity to consider is the filtered density function (FDF) that was introduced 
by Pope (1990) and developed by Gao & O'Brien (1993). At any point and time, the FDF gives 
the density in composition space of fluid around the point, weighted by the filter. Just as reaction 
is in closed form in the PDF equations, so also reaction is in closed form in the FDF equations. 

The first implementation of an LES/FDF methodology is reported by Colucci et al. (1997). 
For two test flows they compare results from DNS, from LES/FDF and from LES with the neglect 
of composition fluctuations. The results confirm that the neglect of composition fluctuations can 
lead to huge errors, and that the LES/PDF approach is both tractable and accurate. Further work 
is needed to apply the LES/FDF approach to turbulent flames so that direct comparison with 
experimental data can be made. 
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FIGURES 

Fig. 1 Sketch of points representing particle compositions in a two-dimensional composition space. 
The solid points are connected by a Euclidean minimum spanning tree (EMST). 
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Figure 2: Scatter plots of reaction progress variable b against mixture fraction f in a piloted 
jet diffusion flame according to IEM and EMST mixing models. Each plot covers an axial 
range of x/D, where D is the jet diameter. The known correct result is for all points to lie 
on the two upper sides of the triangle. (From Masri et al. 1996.) 
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Fig. 3 : Profiles in the self-similar temporal mixing layer obtained from the U - w joint PDF method, 
showing that in the intermittent region the conditional mean £2 remains appreciable, while the unconditional 
mean i\J) asymptotes to zero. (As the intermittency factor tends to zero, there are large statistical errors in 
Q: but there is negligible impact on the calculation in the turbulent region.) 
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Figure 4 : Velocity-wavenumber joint PDF model applied to homogeneous shear flow. 
Reynolds-stress anisotropies (^ = {muj)/(ueue) - fa) as a function of the total shear 
(St). Comparison with DNS (symbols) of Rogers (1986). 
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A model for inhomogeneous turbulence is constructed that provides an exact representation of 
rapidly distorted homogeneous turbulence (RDT). The fundamental quantity modeled is the joint 
PDF of the velocity and wave vector which is related to the unit wavenumber vector. This joint PDF 
provides a model equation for the evolution of the directional spectrum, the integral over the 
wavenumber magnitude of the velocity spectrum. At this level the rapid pressure-rate-of-strain 
correlation is closed yielding exact equations in RDT. For decaying turbulence, the 
return-to-isotropy terms are modeled by stochastic diffusion equations for the velocity and wave 
vector. A general model of this type is constructed along with four simplified versions. The decay 
models are combined with the RDT model to give complete models for homogeneous turbulence, 
which are tested for several flows. The homogeneous models are then extended in a general manner 
to inhomogeneous turbulence.   © 1997 American Institute of Physics. [S1070-6631(97)01404-9] 

I. INTRODUCTION 

A fundamental goal in turbulence modeling is the cre- 
ation of robust and accurate models for the Reynolds stress 
equation. Although the present work is in the context of PDF 
methods, modeled Reynolds stress equations are still de- 
rived. The background for PDF methods is then best under- 
stood in the context of Reynolds stress models (RSM's). 

For a wide range of inhomogeneous and homogeneous 
turbulent flows the rapid pressure-rate-of-strain correlation 
is a dominant term, which makes its modeling crucial to all 
RSM's. The standard modeling approach is based on the 
exact integral expressions derived by Chou1 for the case of 
homogeneous turbulence. The integrals are not closed for 
RSM's, but are instead modeled as functions of the Reynolds 
stress anisotropy tensor. The slow or turbulent-turbulent in- 
teraction term requires the modeling of a second-order ten- 
sor, B, while for the rapid term a model of a fourth-order 
tensor, M, is required. Rotta2 created the first model of this 
form by approximating the slow tensor as a linear function of 
the anisotropies. Other researchers have since formulated 
models for both tensors with varying levels of complexity. 
Some of the rapid models created are presented in the 
following references: Launder, Reece, and Rodi;3 Shih and 
Lumley;4 Haworth and Pope;5 Fu, Launder, and Tsele- 
pidakis;6 Speziale, Sarkar, and Gatski;7 Johansson and 
Halfback;8 and Ristorcelli, Lumley, and Abid;9 while other 
slow models are presented in: Lumley and Newman;10 

Sarkar and Speziale;11 and Chung and Kim.12 

The general results of the rapid models have been mixed. 
For simple irrotational flows with small anisotropies, the lat- 
est models work very well, but for arbitrarily complex inho- 
mogeneous flows RSM's have not performed up to expecta- 
tions. This is particularly true for flows that contain 
rotational effects. In fact, recent analysis indicates that all 
RSM's are fundamentally flawed in certain rotational flows. 
Reynolds13 demonstrated that the rapid rotation of aniso- 
tropic turbulence in RSM's has no effect on the invariants of 
the Reynolds stress anisotropy tensor, while the exact results 

from RDT (Cambon and Jacquin14 and Mansour, Shih, and 
Reynolds15) indicate that the invariants decay. Reynolds and 
Kassinos16 conclude that the Reynolds stress tensor forms an 
insufficient basis for modeling the rapid pressure-rate-of- 
strain correlation. In addition, Speziale, Abid, and Blaisdell17 

have shown that RSM's behave poorly when compared to 
linear stability analysis for complex rotational cases such as 
in elliptical flows. For homogeneous turbulence, linear sta- 
bility theory is equivalent to RDT, so again the Reynolds 
stress closures fail for rapidly distorted rotating flows. 

The study of RDT has a long history dating back to the 
original work of Prandtl18 and Taylor.19 Batchelor and 
Proudman20 continued this work by deriving an exact expres- 
sion for the Reynolds stresses in axisymmetric contraction 
and plane strain. Other references of note include: 
Townsend;21 Lee and Reynolds;22 Lee;23 Lee, Kim, and 
Moin;24 and Hunt and Carruthers.25 Although the Reynolds 
stress equation for RDT includes the unclosed rapid 
pressure-rate-of-strain correlation, a closed and linear repre- 
sentation exists in Fourier space from which the exact solu- 
tions for the Reynolds stresses are derived. RSM's are often 
constructed to yield the correct initial response when Isotro- 
pie turbulence is subjected to a particular rapid distortion, 
but the results for general flows in the RDT limit are typi- 
cally unsatisfactory. 

As a means to introduce improved modeling of the RDT 
limit Reynolds and Kassinos16 and Kassinos and Reynolds26 

have gone beyond standard RSM approaches by including 
structural information of the turbulence. For RDT, they have 
added evolution equations for another second-order tensor, 
which they call the structure dimensionality. This allows in- 
creased functionality of the model for M, but introduces new 
closure problems in the equation for the dimensionality ten- 
sor. Additionally, a new model formulation for RDT based 
on an eddy axis tensor is presented. The results for this RDT 
model are very good, and an extension to non-RDT flows is 
presented in Kassinos and Reynolds.27 Improving the ex- 
tended model is a topic of their current research.28 

The contribution of the present work is the development 
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of a general PDF model for inhomogeneous turbulence that 
maintains the exact solution for rapid distortions of homoge- 
neous turbulence. Standard PDF methods for inert flows con- 
sist of models for the PDF of velocity (Pope29 and Haworth 
and Pope5) or joint PDF of velocity and turbulent frequency 
(Pope and Chen30 and Pope31), while in reacting flows com- 
position is also included (Pope29). PDF methods have several 
advantages over traditional moment closures (Pope29,32). In 
particular, realizability is assured by construction so that a 
RSM is expressible by a PDF model only if it maintains 
realizability (Pope;33 Durbin and Speziale;34 and Wouters, 
Peeters, and Roekaerts35). Also, convection and reaction are 
treated exactly which are very important issues for inhomo- 
geneous turbulence and reacting flows, respectively (Pope29). 
To achieve exact representation for rapid distortions, the 
standard velocity PDF models are extended by the inclusion 
of a stochastic vector, e*, called the wave vector. The added 
directional information results in a model for physical space 
variables that corresponds to the directional spectrum in 
Fourier (wavenumber) space. Thus, the model forms a bridge 
between Reynolds stress modeling and spectral modeling. 

This work begins in Sec. IIA with a brief introduction to 
the issues at the RSM level. Definitions and properties of 
spectral variables are presented in Sec. IIB. A further intro- 
duction to the general theory of rapid distortions is presented 
in Sec. Ill A, while a wave space PDF formulation for RDT 
is constructed in Sec. Ill B. An equivalent PDF formulation 
for RDT in physical space is described in Sec. Ill C with a 
further examination of the correspondences between the sto- 
chastic and physical systems given in Sec. Ill D. The ap- 
proaches utilized in Sees. Ill B, III C, and III D are an adap- 
tation of the particle representation model for RDT presented 
by Kassinos and Reynolds26 and are a Monte Carlo integra- 
tion of the RDT governing equations. The new construction 
is designed to contain the formulation used in PDF methods 
which allows the extension of the method to non-RDT flows. 

In Sec. IV A, the approach and motivations for the ex- 
tension to general (i.e., non-RDT) homogeneous turbulence 
are examined. The idea is to construct a model for decaying 
turbulence which is then combined with the RDT model to 
yield a model for general homogeneous turbulence. In Sec. 
IV B, a general model for decaying turbulence along with 
four simplified models are derived and presented. The com- 
bined models are tested for several types of flows and the 
results discussed in Sec. IV C. The further extension of the 
homogeneous model to inhomogeneous turbulence is intro- 
duced in Sec. V, while a brief summary of the results and 
conclusions are given in Sec. VI. 

II. BACKGROUND 

A. Reynolds stress closures 

The primary issues in turbulence modeling are addressed 
in homogeneous turbulent flows of Newtonian fluids with 
constant density, p, and kinematic viscosity, v. The incom- 
pressible Navier-Stokes equations govern the evolution of 
the Eulerian velocity, U(x,t), which is also expressed in 
terms of its mean, (U(x,f)), and fluctuation, u(x,t): 

U(x,0 = (U(x,f)) + u(x,f). 

For homogeneous turbulence the mean velocity is specified 
by a spatially uniform mean velocity gradient. The fluctuat- 
ing velocity is described by continuity and conservation of 
momentum equations which are derived from the Navier- 
Stokes equations: 

du i 

OX; 
(2a) 

and 

du i du i d(U;) 

dxl dXi dt 

du i dP' d2Ui 
 1- v . 
dxt        dx{dxi 

(2b) 

The Reynolds stresses, (W,MJ), are the primary variable 
of interest in turbulence modeling. Their evolution is derived 
from Eq. (2b) with the condition of statistical homogeneity 
applied: 

d(ujUj) 

dt        ^>J^Llv (3a) 

where the symbolic terms are: production, ^; pressure- 
rate-of-strain correlation, II,;; and dissipation, e^. These 
terms are defined by 

i^u- - {UjUi) — {uiUj} - 
dx, dXi 

n„-2<p'sy>, 

and 

/ du i dUj 

\ dxk dxk 

(3b) 

(3c) 

(3d) 

where the fluctuating pressure, P', and the fluctuating rate- 
of-strain, Sij=\{dUildXj+dUjldxi), are used. 

The Reynolds stresses are split into isotropic and aniso- 
tropic parts through the use of the turbulent kinetic energy, 
k^\{utui), and the anisotropy of the Reynolds stresses: 

_ {UjUj) 

2k ~ 3 £.•;• • (4) 

For incompressible, homogeneous turbulence the Reynolds 
stress anisotropy equation is 

dt l>      2k    ,J -Mij-bij), 

where 

gp{b)-= 
2k 

and 

6ii    2e 

[Pij-Pnibij+foj)], 

■ 3 Öij ■ 

(5a) 

(5b) 

(5c) 

In terms of a RSM, the production of anisotropy, S^f^, is in 
closed form, while models are required for the pressure-rate- 
of-strain correlation and the dissipation tensor from which 
both the dissipation, E={EU, and the deviatoric dissipation, 

(1) etj, are derived. 
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Chou derived integral expressions for the pressure - 
rate-of-strain correlation in homogeneous turbulence from 
the exact solution of the Poisson equation for the fluctuating 
pressure: 

fiP' 
= -2 

d{Ul) düm      dui dum 

dxm    dxi      dxm dXi 
(6) 

rapid slow 

Corresponding to the two source terms, the pressure-rate-of- 
strain correlation is split into rapid and slow parts, II tj 
^Il-j' + n'j'. The rapid correlation is expressed as a func- 
tion of a fourth-order tensor, M: 

n (r). 4k 
d{Ui) 

3XL 
(Mikji + Mjkii)' (7) 

which is closed at the level of the two-point velocity corre- 
lation, Rik(r)^(ui(x)uk(x + r)): 

Mikji= ■ 
1 

8mt 

1   d2Rik{r) 

|r|   drjdrl 
dr. (8) 

The slow correlation is expressed as a function of a second- 
order tensor, B: 

\(s) U^eiBij + Bj,), (9a) 

which is closed at the level of the two-point triple velocity 
correlation, Ciki(r) = (ui(x)uk(x+r)ui(x+r)): 

1   d3Cik,(r) 
-dr. (9b) 

1 

\r\ drjdrkdrl 

The assumption of local isotropy at high Reynolds num- 
bers yields an isotropic dissipation tensor. For lower Rey- 
nolds numbers, the slow pressure-rate-of-strain correlation 
and the deviatoric dissipation are combined to give the 
return-to-isotropy tensor, <£,- •: 

1 
■n|;)+2«y. (10) 

For the stress anisotropy equation, dissipation effects from 
the kinetic energy equation scale in a similar manner as the 
return-to-isotropy tensor, and they are both labeled as slow 
terms. The resulting Reynolds stress anisotropy equation is 

dbii       ,.,     1     , ,     8 —l±=g?ib)+ —n r) (<h —2b-) (ID 

in which there are three terms that require modeling: the 
rapid pressure-rate-of-strain correlation; the dissipation; and 
the return-to-isotropy tensor. 

For a rotating reference frame, the Reynolds stress equa- 
tions are altered in two ways: 

(i)       the Coriolis force adds kinematic terms similar to the 
production; 

(ii)      the rapid pressure-rate-of-strain correlation includes 
the frame rotation rate tensor. 

The frame rotation is expressed through either the frame 
rotation rate tensor, Of, or the angular velocity of the frame, 

iif, which are related via il{j = i)fmeimj. 
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B. Wavenumber space variables 

In the later development of stochastic PDF models it is 
crucial to demonstrate the level of correspondence between 
the stochastic and the physical systems. This correspondence 
occurs in wavenumber space, and certain spectral variables 
are required to relate the results to the Reynolds stresses. The 
velocity spectrum is defined as the Fourier transform of the 
two-point velocity correlation: 

*ii(K) 
1 

2TT 
Ru{r)e-'KIdr. (12) 

The integral of the symmetric part of this tensor, $^=5 
(<£>ij + <l>jj), over the magnitude of the wavenumber vector, 
K=|/C|, defines the directional spectrum: 

r„(e) ./V*l :(Ke)dK, (13) 

where e= K/K is the unit wavenumber vector. The directional 
spectrum is symmetric by definition and real due to conju- 
gate symmetry. Related to the directional spectrum is the 
directional energy spectrum: 

T(e)^r„(e). (14) 

The spectral variables are related to the Reynolds 
stresses and the turbulent kinetic energy through the inverse 
Fourier transform: 

(uiUj)= J ®u{K)dK= j ry(e)dS(e), (15a) 

and 

■/ 

T(e)dS(e) (15b) 

where ^^(e) is the differential element on the surface of the 
unit sphere. These relationships provide valuable physical 
interpretations of the spectral variables. The velocity spec- 
trum is the Reynolds stress density in wavenumber space, 
while the directional spectrum and the directional energy 
spectrum are the densities on the unit sphere in wavenumber 
space of the Reynolds stresses and turbulent kinetic energy, 
respectively. 

The form of the spectral variables in isotropic turbulence 
is a useful property. For the velocity spectrum the isotropic 
form is well known (Batchelor36): 

*/,•(*) = 
E(K) 

4-7T/C2 (16) 

where E{ K) is the energy spectrum, 

E(K)^j^<S>u(Ke)K2dS(e). (17) 
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The isotropic form of the directional spectrum is independent 
of the energy spectrum: 

For a single Fourier mode a general solution of Eq. (22) 
exists of the form: 

r,7(e)=T-('5,7-e,-ei), 4TT 
(18) 

while the directional energy spectrum is uniform over the 
unit sphere: 

u(x,t) = u(t)e lK(t)-X (24) 

where u(t) is the Fourier velocity mode and ie(t) is a time 
varying wavenumber. These variables evolve via 

r^=4^' 
(19) 

The spectral variables are also related to the fourth-order 
tensor in the rapid pressure-rate-of-strain correlation: 

1    f K;Kl 1    f 
Mikjl=2kJ i^®ik{K)dK=2k]  ejeiTtk(*)tlS(e), 

(20) 

so that knowledge of either the velocity or directional spec- 
trum is sufficient to close the rapid pressure-rate-of-strain 
correlation for all homogeneous turbulent flows. Therefore, 
modeling approaches that are based on either spectrum can 
provide improved results over RSM's. 

III. RAPID DISTORTION THEORY 

A. General theory 

In turbulence modeling the quantities of interest (i.e., 
Reynolds stresses) are dominated by the large, energy con- 
taining scales of the flow. For these scales, RDT applies 
when the mean distortion imposes a time scale, 
S'1 —1|V(U)II"1, on the flow that is much smaller than that 
of the large scales, r=k/e. This condition is expressed 
through a constraint on the normalized shear- (strain- or 
rotation-) rate parameter: 

(21) 

The continuity equation, Eq. (2a), is unchanged by this scal- 
ing, but the turbulent convection and the viscous terms in Eq. 
(2b) and the slow pressure term in Eq. (6) are negligible. The 
momentum and Poisson pressure equations are then linear in 
the fluctuating velocity: 

du, <?([/,) du, 
- + u,^L + (U,)- 

dt dxi dxi 

dP' 

OX; 

and 

d2P' 

dXidXi dxm    dx. 

(22a) 

(22b) 

The Reynolds stress equation, Eq. (3a), and the anisotropy 
equation, Eq. (5a), are simplified by the elimination of the 
slow pressure-rate-of-strain correlation and the dissipation 
tensor: 

d(ujUj) 

dt -Pn 11iy   ■ 

and 

dt     li   2k y • 

(23a) 

(23b) 

dü[ 

dt 

dKt 

dt 

d{Un 

dx„ ~un\"im      ^eiem)> 

3{Um). 
OX; 

and 

de i 

dt 
d{Um) 

dx„ ^m\ ®in     "i"n)•> 

(25a) 

(25b) 

(25c) 

where the evolution of the time varying unit wavenumber 

vector, e(t)^K(t)/\K(t)\, is also given. The solution main- 
tains continuity through 

u(t) ■ K(t) = u(t) ■ e(t) = 0. (26) 

The time varying wavenumbers are commonly viewed as a 
deforming space (Rogallo37), but interpreting them as a La- 
grangian system of particles evolving in a fixed wave space 
is equivalent. This viewpoint provides a clearer picture of the 
modeling in this work. 

The velocity spectrum is defined in a fixed wave space 
and is related to Fourier velocity modes in this fixed wave 
space. These modes, a, are defined in the standard manner by 
a Fourier series expansion of an assumed periodic velocity 
field with period L, which results in discrete wavenumbers, 
/'. The definitions of the two-point velocity correlation and 
the velocity spectrum are then used to give: 

L-,<X\ZTTI   s 
(27) 

where the complex conjugate operator, ()*, is used, and a 
delta operator is defined to give a relationship between the 
discrete and continuous wavenumbers: 

s(K-n= 
i «•=/, 

0    otherwise. 
(28) 

From Eqs. (25) and (27), the RDT equation for the ve- 
locity spectrum is derived through the use of the standard 
Lagrangian to Eulerian transformation (see also Townsend21 

and Craya38 for alternative derivations): 

M>ij _       d{Um) d^jj      d(Uj) 
dt m    dxn      dKn dx,„ 

d(Un)\><iKn 

$, 
9_m 

$ mj 

+ 2 
dx„ 

K ;Kn 

(29) 
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Integrating the symmetric part over the wavenumber magni- 
tude yields the RDT equation for the directional spectrum: 

dt 
-e  (S   - 

dxm 

p p 

r,„ 

AU„) dTt 

dxr 

d{U) 

v    _        d{Um) 
 IP     P      I    ■ 
de„ "' r   dx •j 

dx„ jm 

+ 2 \ee V    +ee T   1 
dx 

(30) 

Both the velocity and directional spectra evolve via closed 
equations in the RDT limit under consideration. Also, the 
directional spectrum is a compact description of the flow in 
that no further simplification from it maintains a closed gov- 
erning equation for RDT. 

B. PDF formulation for RDT in Fourier space 

In this work, PDF methods are viewed as modeling the 
exact and generally unclosed one-point, one-time PDF equa- 
tions that are derived from the Navier-Stokes equations. The 
model PDF equation is constructed so that it is equivalent to 
the PDF equation for a simple stochastic system which is 
easily simulated via Monte Carlo techniques. In this section 
and the two following sections the particle representation 
model by Kassinos and Reynolds26 is adapted for PDF meth- 
ods. From this new construction the method is extendible to 
non-RDT flows. In addition, the construction illustrates dif- 
ferences between these PDF methods and standard PDF 
methods. 

From the previous section the solution for a single Fou- 
rier mode in the RDT limit consists of ordinary differential 

equations for K and u. The equations for RDT are closed at 
the directional spectrum level for which it is sufficient to 

consider the unit wavenumber vector, e, in place of the full 
vector. For general initial velocity fields, the PDF formula- 
tion of the problem is constructed by setting the unit wave- 

numbers and velocity modes to be the random variables, e* 

and «*, respectively. These stochastic variables evolve by 
the deterministic RDT equations, Eq. (25). The fundamental 
variable is then the joint PDF of unit wavenumber and ve- 

locity mode, f(rj,v), where (r/,v) are the state space vari- 

ables for (e*,u*). The joint PDF equation as derived via 
standard approaches: 

dt' 

d{Ur)   d 

dxs    dr)i 

,  d{Ur) 

8:- ViVs 
\f 

dxs    dvj 4,-2*?]/ (31) 

is an exact representation of the Navier-Stokes equations in 
the RDT limit. Therefore, a Monte Carlo simulation based on 

the stochastic variables, e* and «*, is an exact Monte Carlo 
integration of the RDT equations. 

The PDF approach for RDT in Fourier space is com- 

pleted by the specification of an initial distribution of e* and 

«*, while the velocity field requires the distribution of the 

stochastic wavenumber vector, K*. The velocity field that 

corresponds to N realizations of /c* and u* is equivalent to 
the sum of IN modes: 

(32a) H(JC)=   2    üMe^"hx, 
n=-N 

where conjugate symmetry is maintained by 

u(-") = (uM)*    and U~n)=-U-n\    for n=\,N. 
(32b) 

In Appendix A, a method is developed for specifying the 
stochastic variables in a manner that results in a random 
homogeneous vector field with a prescribed spectrum. By 
comparison of Eqs. (32a) and (Al 1), a proper initial velocity 
field is generated, if 

>) = 
1 

2N 
Z«, 

and 

Zn)=&\ 

(33a) 

(33b) 

where Z(n) is a zero-mean random vector whose covariance 
matrix is determined by the spectrum, Eq. (A12), and i^n) is 
a random vector with a distribution defined in Eq. (A4). 

C. PDF formulation for RDT in physical space 

The previous section constructed a PDF method for RDT 
using Fourier space variables. To extend this method for in- 
homogeneous turbulent flows, it is necessary to construct a 
method that is based on physical space variables. A stochas- 
tic system consisting of the velocity, u*, and a unit vector, 
e*, is written: 

du. 
d{Ur) 

dx. 
u*(8ir-2efe*)dt, 

and 

de* = 
d{Ur 

dx. e*(4 *)dt. 

(34a) 

(34b) 

These equations are identical to the evolution equations for 
the Fourier amplitude of velocity and the unit wavenumber, 
Eq. (25), which is the justification for labeling e* the wave 
vector. Therefore, the one-point, one-time joint PDF of ve- 
locity and wave vector, /*(V, rj), corresponds identically to 

f(v,rj) since they evolve by the same equation: 

df*     d(Ur) 

dt dxs    drji 

d(Ur)    d 

V, 

dxs    dVi 

<?, - 

v,\ st 

v2 f* 

2 
V 

f* (35) 

Again, the stochastic system is an exact Monte Carlo inte- 
gration for RDT, and is called the u-e RDT Model. The 
evolution of the stochastic system defined here, (u*,e*), is 
analogous to the system from Kassinos and Reynolds,26 

(v,n), where v is the velocity and n is the unit gradient 
vector. 
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The specification of a stochastic velocity evolution by 
the velocity Fourier mode equation requires justification 
which is demonstrated by the correspondence between the 
Reynolds stresses of the stochastic and physical systems. 
First, correspondence is established between the spectrum 
variables of RDT and the stochastic model through a sto- 
chastic tensor: 

A*(i/)-J  ViVjf*(V,r,)d\=(ufu*\z*=V)f*{V), 

(36) 

where the marginal PDF of the wave vector, f*(ij), and the 
stochastic Reynolds stresses conditional on the wave vector 
(Kassinos and Reynolds26) are introduced. The evolution 
equation for the new tensor is found by integrating the joint 
PDF equation: 

dAfj 

dt 

I               VrVn\ d{Vm) 

~Vm\rn     VtV,)    dxr 

dAfj 

dVn 

77,77,    dxr   
l ij      dxm     im 

Wt)             d{Un) 
dx       jm   " dx 

Vi Vn   .4.    ,    Vi Vn   ,  & 

. VtVt    J       VtVt       . 
(37) 

By comparison with Eq. (30) the new stochastic tensor is 
shown to evolve in the exact manner as the directional spec- 
trum. Thus, it is the stochastic model for the directional spec- 
trum (Kassinos and Reynolds26): 

A*.(i7)~r,7(e). (38) 

The spectral correspondence is combined with the rela- 
tionship between the Reynolds stresses and the directional 
spectrum, Eq. (15a), to demonstrate the correspondence be- 
tween the Reynolds stresses from the physical and stochastic 
systems: 

(uiUj)=j ry(e)dS(e)<-J" A?j(fj)dn=(u?uf).    (39) 

Therefore, the equation for the Fourier mode of the velocity 
is an appropriate model for the stochastic velocity. 

Both PDF methods based on this RDT approach and 
standard PDF methods provide a model for the rapid pres- 
sure term in the evolution equation for the PDF of velocity. 
However, standard PDF methods are constructed to corre- 
spond to the Reynolds stresses and RSM's, while the new 
methods correspond to the directional spectrum. 

D. Correspondence to Reynolds stress and structure 
based models 

With a PDF model based on the velocity and the wave 
vector, the evolution of the statistical quantities such as the 
Reynolds stresses are specified. The model Reynolds stress 
equation is derived from the stochastic evolution equation 
for the velocity: 

d{ufuf) 
dt dX[ 

+ 2 
d{Un) 

("*"*> dx, 

dx„ 
[(e*u*e*nu*m) + (e*u*e*nu*m)l 

(40) 

From a comparison with the physical Reynolds stress equa- 
tion for RDT, Eq. (23a), the production is of the same form, 
while M is represented by a fourth-order correlation of sto- 
chastic variables (Kassinos and Reynolds26): 

2kM ■   ■ = \ e e T imjn       j    c'7c-nJ- in (e)dS(e) 

VjVn 

VsVs 
kfm(v)dv 

Wfulefe*). (41) 

Reynolds13 and Reynolds and Kassinos16 have defined 
other tensors which give additional structural information 
about the turbulence. The structure dimensionality tensor, 
D, provides information on directions of dimensional inde- 
pendence, while the structure circulicity tensor, F, provides 
information on the structure of the large-scale vorticity field. 
These variables are defined through the use of a fluctuating 
vector stream function, *P': 

li    €iik dXj ' 
(42) 

where ei]k is the alternating tensor. The structure tensors are 
defined by 

(43a) 

and 

/ dVi dVj 

\ dXj   dxl 
-ilm^jnp ^&mp(K)dK,      (43b) 

where the integral relationships with the velocity spectrum 
apply for homogeneous turbulence. From the integral rela- 
tions, the structure tensors correspond to correlations of the 
stochastic variables (Kassinos and Reynolds26): 

Djj~(ufufefef), 

and 

P ij^> ei ■*u*e*e*n). 

(44a) 

(44b) 

The trace of these tensors is twice the turbulent kinetic en- 
ergy as is evidenced by the stochastic model. 

A geometric relation exists between the structure tensors 
and the Reynolds stress tensor which is shown by expressing 
the vector product of the alternating tensors in terms of Dirac 
delta functions: 

eilmeinp~ 8ij(SinSmp     St„8mn)+ 8in{8lpSm:     §ij8mp) 

+ 8ip{8lj8mn-8ln8mj). (45) 
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The relation which applies for homogeneous turbulence 
(Kassinos and Reynolds26) is 

Fij + Dij+(uiuj) = 2kSij (46) 

In summary, the inclusion of directional information 
from the evolution equation for the wave vector results in an 
exact PDF model for RDT, which is expressible as a model 
for the directional spectrum. With this model the rapid 
pressure-rate-of-strain correlation and the structure dimen- 
sionality and circulicity tensors are all exactly represented in 
the RDT limit. 

IV. PDF MODEL FOR HOMOGENEOUS TURBULENCE 

A. Motivation 

RDT governs the behavior of turbulence in the limiting 
case of very strong mean distortions and is exactly repre- 
sented by the u-e RDT Model. In the opposing limit, the 
energy containing scales of the turbulence have time to 
equilibrate with the slowly changing mean flows. This is 
again expressed as a condition on the normalized shear- 
(strain- or rotation-) rate parameter: 

'Sk 
<U. (47) 

The most basic flow of this type is decaying turbulence 
where there is no mean velocity gradient. Typical engineer- 
ing flows are neither rapidly nor slowly distorted, but have 
turbulent time scales that are of the same order as the mean 
distortion time scale: 

1. (48) 

In this section, u-e joint PDF models are first developed for 
decaying turbulence, which are combined with the u-e RDT 
Model to give general models for homogeneous turbulence. 

The Reynolds stress anisotropy equation, Eq. (11), is 
simplified for decaying turbulence by the elimination of the 
production and rapid pressure-rate-of-strain correlation: 

dbjj 

-df=~\2k){^ ■2bu). (49) 

The dissipation and return-to-isotropy are new terms over the 
RDT case and both require modeling. 

The behavior of e* is known for RDT, while in decaying 
turbulence experiments demonstrate that the return-to-isot- 
ropy tensor causes a reduction in the anisotropy of the Rey- 
nolds stresses (see Warhaft;39 Choi and Lumley;40 Chung 
and Kim12). A return to isotropy in the directional energy 
spectrum is a diffusion of the kinetic energy from some ar- 
bitrary distribution back to the isotropic, uniform distribu- 
tion. This motivates the modeling of the stochastic variables, 
e* and u*, by diffusional processes. When applied to the 
Reynolds stress equation, the diffusion of e* alters the rapid 
pressure-rate-of-strain correlation and may be involved in 
modeling the return-to-isotropy tensor. 

B. u-e PDF models for decaying turbulence 

A general model for u* and e* in decaying turbulence is 
created from which four simplified models are also con- 
structed. The general form for the two coupled vector-valued 
diffusion processes is expressed using two independent, iso- 
tropic Wiener processes, d\V and dW, which gives a sys- 
tem of Ito stochastic differential equations (SDE's): 

du) --ai(u*,e*)dt + Aij(u*,e*)dWj + Bij(u*,t*)dW'j, 

and 

def = gi(u*,e*)dt + Gu(u*,e*)dWj 

+ Hij(u*,e*)dW'j, 

(50a) 

(50b) 

where one of the diffusion tensors (A, B, G, or H) may be 
arbitrarily set to zero. 

Constraints on the general diffusion process are required 
to construct a model that is physically meaningful for decay- 
ing turbulence. Two constraints that apply for every realiza- 
tion of the stochastic system are required to maintain the 
analogy with the unit wavenumber and Fourier mode of ve- 
locity begun in the RDT model. These deterministic con- 
straints are: 

(1) e* remains of unit length (by definition); 
(2) e* and u* maintain orthogonality due to the continuity 

equation in Fourier space. 

In addition, two statistical constraints based on physical ar- 
guments for decaying turbulence are imposed as well. They 
are: 

(1) the PDF of velocity tends to an isotropic joint-normal 
distribution; 

(2) the evolution of the turbulent kinetic energy is known: 

dk 

dt 
s. (51) 

With these constraints the stochastic system provides realiz- 
able models for the directional spectrum and the Reynolds 
stresses. Also, the form of the directional spectrum model 
maintains continuity. 

The details of the derivation are given in Appendix B, 
and the resulting model is summarized here: 

dul 

and 

äiyjkef + ^uf + 2äf] -£-*"* + ä°Jk 
u'u' 

+AijdWj + BijdW'j, 

dt 

(52a) 

def = giet + gi^HSij-efel)?; dt 

+ GijdWj + HijdW'j, (52b) 

where the coefficients are defined in Eqs. (B13), (B14), and 
(B16), and one constraint remains on the anisotropic drift 
terms: 
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Jkäfe? + fiuf = 0. (53) 

This model is called the General u-e Decay Model, and its 
main purpose is to serve as a guide for the construction of 
simplified models that are based on assumptions into the 
evolution of either u* or e*. The simplified models that are 
tested in this paper are given below. 

,e*=_I^U ye 
T etdt-l-^Mj-efef^efdt 

a„e 1/2 

+ |—|    [8u-efe?]dW,. (57b) 

The return-to-isotropy tensor based on this model is again a 
function of e*: 

1. Isotropie Diffusion of e Model (Iso) 

In this model the evolution of e* is taken to be an iso- 
tropic diffusion which is equivalent to a random walk of 
e* on the unit sphere. The model has two parameters, au and 
ae, which govern the time scales of the decay for u* and 
e*, respectively. The stochastic equations are 

du) ü-)[l + lau + ae]ufdt+^aue)~ dt 

a.s 1/2 

efufdWt+ia.ey^Sa-efef^W, 

(54a) 

and 

de* 
a,s\   ,        laes\1'2 ,   , 

e?dt+\^-\    [Stl-efef]dW,.   (54b) 

The return-to-isotropy tensor based on this model is a func- 
tion of e*, 

(f>ij = (2 + 3au)bij+2ae(bij-dtj) 

+ a, \ei ej )      \ ,,*„* (55) 

where the anisotropy of the structure dimensionality tensor is 
defined as 

H'-Dij    « dV=2k~- 3<V 

2. Modified Isotropie Diffusion of e Model (Mlso) 

In an effort to improve the Isotropie Diffusion of e 
Model, anisotropic drift terms are introduced that are propor- 
tional to the Reynolds stress anisotropy through a constant 
parameter, y. The stochastic equations are 

du *_ _ I 
T\[l + lau + ae]ufdt 

+ \-r][bij-bmnbin„Su]ufdt 

+ l(aue)-^L
Tdt-\-jr}    efufdW, 

' aee 1/2 

+ {aue)m[Sil-efe*]dW'l (57a) 

and 

<j>i]={2 + 3au)bi] + 2at(birda
iJ) (efef)- 

ufu* 

ufu* 

-4y[(^-bmnbmn)bij+(bilblj-jbmnbm„Su)].      (58) 

3. Langevin Velocity Model (Lang) 

In this model the equation for the velocity is specified as 
the Langevin equation with an anisotropic drift term that is 
proportional to the Reynolds stress anisotropy. For this 
model, the velocity evolution is independent of e*. Again, 
there are three parameters: au, ae, and y; which are related 
to the decay time scales. The stochastic equations are 

du*=-\\T\[\ + \au\ufdt + 

Xlbij-b^b^S^fdt+ia^y^dW,,      (59a) 

and 

de* aP + a„ 
ye 

X[Sjj-efef]bjiefdt-(aue) 1/2 
uj e. 

u*u*i 
dW, 

+ 
a„e 1/2 

dW, (59b) 

The return-to-isotropy model takes the standard form found 
in Reynolds stress closures and matches any RSM with an 
appropriate specification of the model parameters: 

(56)       <£,..= (2+ 3a,>,. 

-4y[(j-bmr,bmn)bij + (bub,j-jbmnbmn8u)].      (60) 

The diffusion of e* affects only the rapid pressure-rate-of- 
strain correlation in non-decaying turbulence. 

4. Structure Langevin Velocity Model (SLang) 

In this model the basic Langevin equation is kept, but 
new anisotropic drift terms that are proportional to the aniso- 
tropic part of the structure dimensionality tensor are in- 
cluded. This model then has four parameters: au, ae, yx, 
and y2; and the stochastic equations are 

-1 [ 1 + 3jau]u*dt+ -H [bij-bmnbmnöi/\ufdt 

+ ^j[d^-bmnd
a

m„Sij]ufdt+(auB)mdWi,  (61a) 

and 
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def = -\\ a. + au efdt- 

XWj-erefibjrfdt- 

efef]d^efdt-(aue) 

y2e 

yxe 

\.Sti 

1/2 
ujej 

ufuf dW, 

aee 1/2 

ui-erer 
u- uj 

dW, . (61b) 

The return-to-isotropy tensor is then modeled as 

<{>ij = (2 + 3au)bij 

-4n[(3~ bmnbmn)bij+(,bilblj-\bmnbmn8ij)'\ 

-4y2tidij-bmnd
a

mn(bij + ^Sij)+^lblj + d]lbli)]. 

(62) 

WbybjkV*)" 

FIG. 1. Mapping of Reynolds stress anisotropy invariants in homogeneous 
shear with (Sk/e)0= 1.0 for models: —, Lang; SLang; -■-, Iso; 
MIso; compared to asymptotic states from experiments: X, Tavoularis and 
Karnik (Ref. 43); and DNS: +, Rogers et al. (Ref. 42). 

C. Model performance 

The models for homogeneous turbulence consist of one 
of the four simplified decay models combined with the RDT 
model. Additional closure information is also required, and it 
is provided by a simple dissipation model: 

de_e2 P 
(63) 

The parameters, CEl and Ce2, are set to 1.5625 and 1.9, 
respectively, which yield an asymptotic production-to-dis- 
sipation ratio that is representative of many flows: 

(P/e). 
C.,-1 

-el 
= 1.6. (64) 

This model does not take into account the decrease in dissi- 
pation that is known to occur in rotational flows, and the 
kinetic energy is expected to be underpredicted in these 
cases. Further information on modeling of the dissipation is 
contained in: Hanjalic and Launder41 and Launder, Reece, 
and Rodi.3 

The purpose of this work is to introduce a new method- 
ology in turbulence modeling, and not to formulate the ideal 
model of this type. For this reason, the specification of model 
parameters is governed by convenience rather than the desire 
for optimal values. The parameters are set to yield accurate 
asymptotic values for the Reynolds stress anisotropy invari- 
ants for homogeneous shear flows which are important in 
many common engineering applications. In fact, the set of 
model parameters given below is not unique in its level of 
accuracy. 

Where possible the anisotropy budgets from the models 
and DNS data are compared. These budgets are properly 
scaled and have several advantages over the unsealed Rey- 
nolds stress budgets: 

(i)       the anisotropy budgets for flows with different initial 
shear-rate parameters are directly comparable; 

(ii)      the asymptotic balances between terms are more ap- 
parent in the anisotropy budgets. 

The anisotropy budgets also provide more rigorous tests for 
turbulence models than the evolution of the anisotropy, be- 
cause the models for the slow and rapid terms are examined 
separately. 

1. Homogeneous shear 

Homogeneous shear flows are defined by the mean ve- 
locity gradient: 

0    1    0' 

dX; 
=s (65) 

In Fig. 1, the trajectories of the Reynolds stress anisotropy 
invariants from the four models: Lang, Slang, Iso, and MIso; 
are presented for homogeneous shear, and the asymptotic 
states are compared to the DNS data from Rogers et al. and 
the experimental data from Tavoularis and Karnik.43 The 
model parameters are specified to yield good results for the 
comparison and are: 

 B..e   „.„.,„„ = 2.1,7=2.0; 
(ii)      SLang: ae = 0.2, au = \ 
(iii)     Iso: ae = 03, au = 03; 

MIso: ae = 0.65, au=\.l, y=2.5 

(i)       Lang: ae = 0.03, au = 1   , , 
SLang: ae = 0.2, au = 2.1, yx = 2A, y2 = 0.2; 
Iso: a„ = 0.3, a„ = 0.3; 

(iv) 

The asymptotic states are further examined in Table I which 
summarizes the experimental and DNS data as well. The 
Lang, SLang, and MIso models are within the experimental 
range given, while the Iso model does not provide the proper 
distribution of energy between the 22 and 33 components. 

Further comparisons with the DNS data of Rogers 
et al.42 are made. In Fig. 2, the kinetic energy from the mod- 
els is shown to grow much faster than that of the DNS. This 
defect is due to the dissipation modeling. The evolution of 
the Reynolds stress anisotropies for the Lang model are 
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TABLE I. Asymptotic values for homogeneous shear flows from: Tavou- 
laris and Karnik (Ref. 43) (TK), Rogers, Moin, and Reynolds (Ref. 42) 
(RMR); Isotropie Diffusion of e Model (Iso); Modified Isotropie Diffusion 
of e Model (MIso); Langevin Velocity Model (Lang); Structure Langevin 
Velocity Model (SLang). 

TK RMR Iso MIso Lang SLang 

bn 0.18 ±0.04 0.215 0.223 0.195 0.194 0.185 
bn -0.16±0.01 -0.158 -0.156 -0.170 -0.165 -0.173 
b27 -0.11±0.02 -0.153 -0.203 -0.132 -0.131 -0.118 

bn -0.06 ±0.03 -0.062 -0.020 -0.063 -0.063 -0.067 
(P/e)„ 1.47 + 0.14 1.80 1.6 1.6 1.6 1.6 
(5fc/e). 4.60±0.14 5.7 5.12 4.72 4.83 4.62 

given in Fig. 3, while their complete budgets are presented in 
Fig. 4. The transient results for the evolution of the anisotro- 
pies are quite good, while the asymptotic values are very 
good. In the anisotropy budget comparisons, the results are 
also quite good, especially for the asymptotic balance of 
terms, which are not directly forced by the selection of 
model parameters. 

2. Homogeneous shear with frame rotation 

Adding frame rotation perpendicular to the plane of the 
shear is a common test of turbulence models. The angular 
velocity is: 

ftf=[0,0,n/]. (66) 

The effects of frame rotation are compared to the large-eddy 
simulations by Bardina, Ferziger, and Reynolds.44 From Spe- 
ziale and Mac Giolla Mhuiris,45 the solution depends on the 
initial shear-rate parameter and on the rotation-to-rate-of- 
strain ratio, Q,f/S. Linear stability analysis (i.e., RDT) shows 
that the flow is unstable with exponential growths in kinetic 
energy roughly in the range, 0^O,f/S^0.5. 

The evolution of the kinetic energy for the Lang model 
is representative of all four models and is shown in Fig. 5. 
The model gives the correct qualitative behavior with all 
three cases being unstable and the energy in the il^/S 

0.5 

o.o 
o.o 5.0 

St 
10.0 15.0 

FIG. 2. Evolution of kinetic energy in homogeneous shear flow with 
(Sk/e)0 = 236: • , DNS of Rogers et al. (Ref. 42); —, Lang; - - -, SLang; 
-•-, Iso; • ■ ■, MIso. 

0.3 

-0.2 
■?----A----a----«----n----" 

o.o 5.0 10.0 15.0 
St 

FIG. 3. Evolution of Reynolds stress anisotropy for homogeneous shear 
flows with (S£/e)0 = 2.36. Comparison between Langevin Velocity Model 
(lines) and DNS of Rogers et al. (Ref. 42) (symbols): (—,•), bn ; ( , 
V),fe12; (--,D),£22; (•■•,A),J.33. 

=0.25 case growing the fastest. However, the quantitative 
comparison is poor which is a problem common with many 
second-order closures. This problem is largely attributable to 
the dissipation modeling. 

3. Axisymmetric contraction and expansion 

Axisymmetric flows are specified by 

~ 1      0       0 

0    -\     0 

0      0      -\ 
dX: 

=s (67) 

with S>0 for contraction and 5<0 for expansion. From 
symmetry the Reynolds stress anisotropy produced by these 
flows remains in an axisymmetric form where the only non- 
zero components are related by b22=b3i= — \bn . In addi- 
tion only one component of the fourth-order tensor, M, is 
required to fully specify the rapid pressure-rate-of-strain 
correlation: 

n\y=12ifcSM, in • (68) 

With these simplifications axisymmetric contraction and ex- 
pansion form the two most basic irrotational flows. 

The results from the models are first compared to the 
experimental data from Tucker46 for axisymmetric contrac- 
tion. The evolution of the kinetic energy and Reynolds stress 
anisotropies are presented in Figs. 6 and 7. The kinetic en- 
ergy from all of the models compares with the experimental 
data quite well, while the anisotropies from the Lang, SLang, 
and MIso models yield better comparisons than the Iso 
model. 

The case of axisymmetric contraction is also examined 
through the use of DNS data. The evolution of the kinetic 
energy from all of the models and the Reynolds stress 
anisotropies from the Lang and Iso models for varying initial 
strain-rate parameters are compared to the DNS data of Lee 
and Reynolds22 in Figs. 8 and 9. The anisotropy budgets for 
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FIG. 4. Evolution of Reynolds stress anisotropy budget for homogeneous shear flows with (Sfc/e)0 = 2.36. Comparison between Langevin Velocity Model 
(lines) and DNS of Rogers et al. (Ref. 42) (symbols): (—,•), P^/5; (- - -,V), nJ;V(2*S); (--,D), -(e/Sk)k<f>ij-2blj); (• • -,A), dbu/Sdt; for: (a) 11 
component; (b) 12 component; (c) 22 component; (d) 33 component. 

k/ko 

10.0 

k/ko 

FIG. 5. Evolution of kinetic energy in homogeneous shear with a rotating 
frame and (S£/e)0 = 3.38. Comparison between Langevin Velocity Model FIG. 6.   Evolution of kinetic energy in axisymmetric contraction with 
(lines) and LES of Bardina, Ferziger, and Reynolds (Ref. 44) (symbols): (S*/e)0 = 2.1. Comparison between the experimental data of Tucker (Ref. 
(—,•), n'/S = 0.0; (- - -,0), n'/S = 0.25; (--,A), ilf/S = 0.5. 46): •, k/k0; and the models: —, Lang; - - -, SLang; -■-, Iso; • • •, MIso. 
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FIG. 7. Evolution of Reynolds stress anisotropy in axisymmetric contraction 
with (Syfc/e)0 = 2.1. Comparison between experimental data of Tucker (Ref. 
46): •, bn; D, b22; and models: —, Lang; , SLang; -•-, Iso; 
MIso. 

FIG. 9. Evolution of Reynolds stress anisotropies in axisymmetric contrac- 
tion. Comparison between DNS of Lee and Reynolds (Ref. 22) (symbols) 
and models (lines) for (Sk/e)0 = 0.557; •, bu ; Ü, b22 ', —. Lang; -■-, Iso; 
and (Sjfc/e)0 = 55.7: A, bu ; V, b22; , Lang; • • •, Iso. 

the Iso model and the DNS data are also presented for two 
strain-rates in Fig. 10. In Fig. 11, the rapid pressure-rate-of- 
strain correlation is examined more closely by comparisons 
between the Lang and Iso models and the DNS data of Lee.23 

The effects of the different decay models become negli- 
gible as the strain-rate increases toward the RDT limit. For 
this reason, all of the test results at the highest strain-rates 
compare with the DNS data very well. At the lower strain- 
rates the effects of the decay models become significant, and 
the models yield different results. Here, the Iso model pro- 
vides the best comparisons with the DNS data, because the 
other models deviate from the RDT values of the rapid 
pressure-rate-of-strain correlation more rapidly than the 
DNS data indicate (see Fig. 11). 

The comparisons between the models and the DNS data 
for axisymmetric expansion show some interesting effects. 
The evolution of the kinetic energy from all of the models 

k/ko 

FIG. 8. Evolution of kinetic energy in axisymmetric contraction. Compari- 
son between DNS of Lee and Reynolds (Ref. 22): •, (Sfc/e)0=0.557; D, 
(Sk/s)Q = 5.57; A, (Sk/s)0 = 55.7; and models: —, Lang; , SLang; 
-•-, Iso; • • •, MIso. 

and the Reynolds stress anisotropies from the Lang and Iso 
models for varying initial strain-rate parameters are com- 
pared to the DNS data of Lee and Reynolds22 in Figs. 12 and 
13. In the energy comparison the models do very well for 
SKl.O, but deviate even for the highest strain-rate for 
St> 1.0. This degradation of the solution is due to an insta- 
bility that exists for axisymmetric expansion in RDT which 
was described by Kassinos and Reynolds.27 

The models give anisotropies that decrease as the initial 
strain-rate parameter decreases, while DNS shows the non- 
intuitive tendency to have increased anisotropies for de- 
creased strain-rates. To understand the evolution of the 
anisotropies, their budgets for the Iso model and the DNS 
data are compared in Fig. 14. The modeled rapid pressure- 
rate-of-strain correlation and the closed production terms 
compare very well. This point is further emphasized in Fig. 
15 by comparing the rapid pressure-rate-of-strain correlation 
from the Lang and Iso models to the DNS data of Lee.23 

Although the Iso model performs better, the Lang model is 
still reasonable. It is actually the slow terms that cause the 
difference in the anisotropy evolutions. For the DNS data 
these terms increase the anisotropy; i.e., drive the system 
from isotropy. 

The slow terms include the return-to-isotropy tensor and 
the Reynolds stress anisotropy which is a scaling term due to 
the dissipation of the kinetic energy. In Fig. 16, the differ- 
ences between the Iso model and the DNS data are apparent. 
Since the anisotropy is a closed term, the source of the 
trouble is the modeling for the return-to-isotropy tensor. 

These results have significant implications for the mod- 
eling of the return-to-isotropy tensor. In Reynolds stress clo- 
sures, this tensor is modeled as a function of the anisotropy. 
Some of the latest models (Chung and Kim12) include model 
coefficients that depend on the Reynolds number and anisot- 
ropy invariants. However, the resulting parameters are speci- 
fied with comparisons to decaying turbulence and maintain 
slow terms that strictly reduce the anisotropy for all Rey- 
nolds numbers. The DNS results of Lee and Reynolds22 in- 
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FIG. 10. Evolution of Reynolds stress anisotropy budget in axisymmetric contraction. Comparison between Isotropie Diffusion of e Model (lines) and DNS 
of Lee and Reynolds  (Ref.  22)  (symbols):  (—,•),  Pff/5;  ( ,D),  Ilff/^JtS);  (--,A),   -(EISk)\{<j>u-2bu);  (■••,V), dbn/Sdt;  for:  (a) 
(S*/e)0 = 0.557; (b) (S*/e)0=55.7. 

dicate that this is not always the case for homogeneous tur- 
bulence. 

4. Elliptical flows 

Flows with elliptical streamlines are generated by the 
mean velocity gradient: 

0       S+o)    0" 

S-ü)       0       0 

0 0       0 

d{Ui) 
dXj 

(69) 

with |&)|>|S|, while |(u|<|5| generates hyperbolic stream- 
lines. The flow is a combination of plane strain and solid 
body rotation and is also parameterized through the aspect 
ratio of the elliptical streamlines, E= yJ(S+ci))/((i) — S), and 
the rotation frequency, Cl= ^(S + co)(w-S) (Blaisdell and 
Shariff47). Stability issues for the elliptical flows were ad- 
dressed in the following references: Cambon, Teissedre, and 

Jeandel;48 Pierrehumbert;49 Bayly;50 Landman and Saff- 
man;51 and Waleffe;52 and the results show that the flow is 
unstable with exponential growths in kinetic energy for all 
values of (w/S) = (£2 + 1 )/(£2 - 1) > 1. However, Speziale, 

Abid, and Blaisdell17 have shown that current second-order 

closures predict that the flows restabilize for (o/S^2 for any 

initial mean rotation-rate parameter, (flk/s)0. 
The models were tested in a case with nearly circular 

streamlines, £=1.1, and a high initial rotation-rate param- 
eter, (flfc/e)o = 270. In this case, the rotation-to-rate-of- 
strain ratio is large, (OJ/S)= 10.5, for which all second-order 
closures erroneously predict decaying kinetic energy. Figure 
17 does show growing kinetic energy in all four models, but 
the rates are far lower than the exponential growth found in 

the DNS data of Blaisdell and Shariff47 for (ftjfc/s)0 = 4.05 
(not shown). The poor quantitative results are at least par- 
tially due to the dissipation model which ignores the known 
decrease in dissipation due to rotation. 
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FIG. 11. Evolution of (a) normalized rapid pressure-rate-of-strain correlation; (b) Fourth-order correlation; in axisymmetric contraction. Comparison between 
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FIG. 12. Evolution of kinetic energy in axisymmetric expansion. Compari- 
son between DNS of Lee and Reynolds (Ref. 22): •, (Sfc/e)0 = 0.408; D, 
(Sk/s)0 = 4.08\ A, (S£/s)0 = 40.8; and models: —, Lang; , SLang; 
-•-, Iso; • • •, MIso. 

FIG. 13. Evolution of Reynolds stress anisotropies in axisymmetric expan- 
sion. Comparison between DNS of Lee and Reynolds (Ref. 22) (symbols) 
and models (lines) for (Sk/s)0 = 0.408: #,611! 0,b22;—, Lang;-•-, Iso; 
and (Sfc/e)0 = 40.8: A, bn ; V, b22; - - -, Lang; ■ • -, Iso. 

5. Model comparison 

In summary, the four models with their specified sets of 
parameters provide very good results in all test flows at the 
highest strain-rates where the flows are nearly in the RDT 
limit. At lower strain-rates, all the models provide quite good 
results in all of the test flows except axisymmetric expan- 
sion. It has been shown in this case that the problems are 
caused by poor modeling of the return-to-isotropy tensor and 
that RSM's which are based on decaying turbulence share 
these problems. Because the models directly impact the an- 
isotropy budgets, the differences between the models are 
more apparent in the anisotropies than in the kinetic ener- 
gies. 

The Lang, Slang, and MIso models yield similar results 
due to the comparable parameter values for the anisotropic 
drift terms that are proportional to the Reynolds stress an- 
isotropy. These models perform better in homogeneous shear 

and axisymmetric contraction when compared to experimen- 
tal data, while the Iso model performs better in axisymmetric 
expansion and contraction when compared to DNS data. The 
Iso model is better in these cases, because it matches the 
DNS data in deviating from RDT more slowly than the other 
three models. It is possible that the very low Reynolds num- 
bers of the DNS is a factor in this result. Because of its 
inferior performance for the important case of homogeneous 
shear, the Iso model is not recommended for future use. 

The modeled return-to-isotropy tensors are one way to 
differentiate between the four models. The modeled tensors 
from the Iso and MIso models contain expectations which do 
not have good physical interpretations, while the tensor from 
the Lang model takes the general form for RSM's if the 
parameters are allowed to be functions of the anisotropy in- 
variants and Reynolds number. The SLang model includes 
effects of the structure dimensionality anisotropy tensor, but 
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does not provide a general model of the form: </>,•,■= (/>,•,■(!), 
da). A general model of this form could be created and might 
provide improved modeling for the return-to-isotropy tensor. 
However, the SLang model in its current form does not sig- 
nificantly improve over the Lang model. For our future work 
in inhomogeneous turbulence, the Lang model will be used, 
because the evidence so far does not indicate an advantage in 
using the more complicated SLang or MIso models. 

V. PDF MODEL FOR INHOMOGENEOUS 
TURBULENCE 

In this section the u-e PDF model for rapidly distorted 
inhomogeneous turbulence is constructed based on the RDT 
model for the homogeneous case from Sec. Ill C. The gen- 
eral PDF models for non-rapid inhomogeneous turbulence 
are not presented but follow directly by adding a decay 
model from Sec. IV B. 

In PDF methods of inhomogeneous turbulence it is use- 
ful to view the stochastic equations as models for Lagrangian 
fluid particles. In a Lagrangian system, the particle position, 
X+(r,Y), evolves by the particle velocity, U+(f,Y) 
= U(X+[f,Y],f): 

~dt 
- = £/ (70) 

where Y is the particle position at a reference time. Also, the 
local Lagrangian excess velocity is defined by 

u+aY) = U+(r,Y)-<U(x,f))x=x+(,?Y) 

= u(X+[f,Y],f), (71) 

where u(x,f) is the Eulerian fluctuating velocity. 
From the Navier-Stokes equations expressed as 

DUi 

~~DT 
d(P) 

OX; 

dP'        d2Ui 
 h V E 

dxt        dxidxi 

d{P) 
dXj 

+ at,      (72) 

FIG. 16. Evolution of the slow terms in axisymmetric expansion. Compari- 
son between DNS of Lee and Reynolds (Ref. 22) (symbols) and Iso model 
(lines) with (S&/s)0 = 0.408: (—,•), \{4>n-2bu)\ (- - -,D), <£„/2; (-■-, 
A),fc„. 
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FIG. 17. Evolution of kinetic energy in an elliptical flow with co/S= 10.5: 
—, Lang model; , Slang model; -■ -, Iso model; • • ■, MIso model. 
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the equation for the Lagrangian velocity is 

dUt     [DU A (     d(P) 

= X+(r,Y)     l dt      [  Dt 

+ at(X
+[t,Y\,t). 

dx; 
X+(«,Y) 

(73) 

The effects of viscosity on the mean velocity is negligible at 
high Reynolds numbers which results in (a) = 0. The equa- 
tion for the Lagrangian excess velocity is then 

duj 

Dt > x=X+(r,Y) 

+ ai(X
+[t,Y],t), 

d(uiUi) d{U^) 

dx. dx. = X+(r,Y) 

(74) 

where the first two terms account for the changing velocity 
due to the particle's movement. 

The stochastic representation of (X+,U+,u+) is (X*, 
U*,u*) for which a model of a is required. The evolution of 
the stochastic position is simply 

dX* = U*dt. (75) 

The equations for U* are constructed in a manner that yields 
the RDT model for u* in homogeneous turbulence, Eq. 
(34a). The velocity model is 

dUf 
d(P) d(Um) 

dx. dx„ 
(76) 

where the corresponding model of u* is 

d(Un 
duf = 

-2 

dx 

d{Um) 

dx„ 

K(Sim-2efel)dt 

d(u:U;) 
{efe*mu$)dt+±^dt. 

dX; 
(77) 

This equation reduces to the velocity RDT equation, Eq. 
(34a), in homogeneous turbulence because the gradients of 
the Reynolds stress are zero and the triple correlation, 
(e*e*«*),is also zero by symmetry in the velocity distribu- 
tion. The triple correlation term was added to Eq. (76) to 
force the exact evolution equation for the mean Eulerian ve- 
locity, which is equivalent to forcing the mean of the mod- 
eled a to be zero. 

The evolution equation for the wave vector follows by 
maintaining a unit length and orthogonality with u*: 

de) 
d{Um) 

dx„ 

e*(8in-efe*)dt- 
d(utUj 

dx, 

(efetut) 
,*„* 

:dt. (78) 

The final term in this equation corresponds to the inhomoge- 
neous terms in Eq. (77) and has the purpose of maintaining 
the wave vector in the plane orthogonal to the excess veloc- 
ity. A direct calculation of this projection during the Monte 
Carlo simulation is equally valid and preferable numerically 
due to the high statistical error inherent in calculating the 
gradients of the Reynolds stresses. 

VI. CONCLUSIONS 

A new approach to PDF modeling of inhomogeneous 
turbulence has been developed that provides exact represen- 
tation of rapidly distorted homogeneous turbulence. The con- 
struction is based on the particle representation model by 
Kassinos and Reynolds.26 Their approach is adapted into a 
PDF formulation that begins with a model for the joint PDF 
of a velocity Fourier mode and unit wavenumber vector. 
This is an exact representation of RDT at the level of the 
directional spectrum. To provide an initial condition for the 
Monte Carlo solution of this PDF method, an algorithm is 
also presented that generates a stochastic system in Fourier 
space that corresponds to a homogeneous vector field with a 
prescribed spectrum. 

An equivalent formulation of the RDT model using 
physical space variables is required for the extension of the 
method to the inhomogeneous case. The result is a model for 
the joint PDF of the velocity and wave vector, the u-e RDT 
Model, which is based on the integral relationship between 
the directional spectrum and the Reynolds stresses (Kassinos 
and Reynolds26). A difference between PDF methods based 
on the u-e RDT Model and standard PDF methods is that the 
model for the rapid pressure term in the PDF of velocity 
equation corresponds to a model for the directional spectrum 
and not just the Reynolds stresses. Because the directional 
spectrum is a complete description for RDT, this limit is now 
treated exactly. 

Models for general homogeneous turbulence are con- 
structed by combining the u-e RDT Model with a u-e model 
for decaying turbulence. The decay models maintain the 
analogy with the directional spectrum through two determin- 
istic constraints: e is of unit length and u-e are orthogonal; 
and the analogy with the particle velocities through two sta- 
tistical constraints: the joint PDF of u tends to a joint normal 
distribution in isotropic turbulence and the kinetic energy 
evolves by the dissipation. By maintaining these analogies 
the PDF method can be viewed either as stochastic model for 
fluid particles in physical space or as a realizable spectral 
model at the level of the directional spectrum. 

Five models for decaying turbulence are constructed: 
General u-e Decay Model, Isotropic Diffusion of e Model 
(Iso), Modified Isotropic Diffusion of e Model (MIso), 
Langevin Velocity Model (Lang), and Structure-Langevin 
Velocity Model (SLang). The Lang, SLang, Iso, and MIso 
models perform quite well in the cases of homogeneous tur- 
bulence that are tested. The Lang, SLang, and MIso models 
provide very similar results in all cases and are better than 
the Iso model in the important case of homogeneous shear. 
The Lang model is currently preferable, because it yields the 
general form for the return-to-isotropy tensor used in RSM's. 
A future version of the SLang model may provide better 
modeling of this tensor. 

The extension of the homogeneous turbulence models to 
models for inhomogeneous turbulence is accomplished by 
adding a stochastic variable representing the particle location 
and through the use of the full particle velocity. The resulting 
models maintain the exact solution for RDT of homogeneous 
turbulence. 

While testing the homogeneous models, several general 
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observations were made about turbulence modeling. It was 
argued that the anisotropy budgets are important means of 
comparing turbulence models to DNS data, because they are 
properly scaled and allow separate comparisons for the slow 
and rapid models. Therefore, they form a more rigorous test 
than the anisotropy evolutions. From the anisotropy budgets 
of axisymmetric expansion, it is shown that the increase in 
anisotropy for lower initial strain-rates is caused by the slow 
terms. In particular, the scaling term from the dissipation of 
kinetic energy is larger than the return-to-isotropy tensor. 
This presents a problem for all models of the return-to- 
isotropy tensor that are based on decaying turbulence where 
this effect has not been observed. Also, the need for an im- 
proved dissipation model is apparent, especially in the cases 
where rotational effects are important. 
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APPENDIX A: SYNTHESIS OF HOMOGENEOUS 
RANDOM VECTOR FIELDS WITH A PRESCRIBED 
SPECTRUM 

The purpose of this appendix is to show how to synthe- 
size a random field as the sum of N conjugate pairs of inde- 
pendent modes such that its two-point correlation converges 
to a specified one as N tends to infinity. 

Let u(x) be a real, zero-mean, statistically-homogeneous 
random vector field with spectrum function, <&,•■(#*). The 
two-point correlation and the spectrum are related by Eq. 
(12) or its inverse 

Rij(r) = (ui(x)uj(x+r))= j <Pu(K)e'KrdK. (Al) 

From conjugate symmetry and an additional symmetry con- 
dition from homogeneity, the real and symmetric parts of the 
spectrum are equivalent: 

Re{$!7(K)} = ^.(K)-i[c&,..(K) + cDy,(K)], (A2a) 

while the imaginary and anti-symmetric part are related by 

i  Im{*y(K)}= *?.(K)^ i[*y(lf) - <*>;,•(«)]. (A2b) 

The terms in Eq. (A2a) are called the co-spectrum, while the 
terms in Eq. (A2b) are called the quadrature spectrum. These 
relations show that the spectrum tensor forms a Hermitian 
matrix. Further, because the spectrum is a representation of 
the energy at a particular location in Fourier space, the ma- 
trix is also positive semi-definite (Batchelor36). 

The energy of the random vector field is defined via 

J*„ (k)dK, (A3) 

with which a normalized spectrum is defined by 

f{K) = \<S>u{K)lk. (A4) 

The normalized spectrum is non-negative and integrates to 
unity; i.e., it has the properties of a joint PDF. Another nor- 
malized spectrum is also defined by 

¥y(K) = $>y( *)/*„(«). (A5) 

In terms of these the normalized spectra, Eq. (Al) is re- 
written: 

(A6) R,i(r) = 2k\ VJW-'fMdK. 

If K* is defined to be a random vector with a joint PDF of 
/( K) , then the integral in Eq. (A6) is equivalent to an expec- 
tation: 

Rij(r) = 2k(%j{,c*)e"*-r). (A7) 

The synthetic field, u(x), is defined for a given N by 

V2N «=-/v 
(A8) 

where K*n) are independent and identically distributed wave- 
number vectors with distribution f(k) and Z(n) are identi- 
cally distributed zero-mean random vectors, dependent on 
i^n\ whose covariance matrix is deduced below, Eq. (A12). 
In addition, conjugate symmetry is guaranteed by using con- 
jugate pairs: 

Z(-") = (Z(n))*    and K
(
-

,,)
=-K

(
"
)
,    forn=lJV. 

(A9) 

The complex conjugate of Eq. (A8) provides an alternate 
definition of the field: 

1 
«(*)=-=   E    (Z("))*e~'"'"'-x. 

J2N n=-N 
(A10) 

From Eqs. (A8) and (A10), the two-point correlation of the 
synthetic field is 

Rij(r) = (üi(x)üj{x+r)) 

1     N 

= ^2   <(ZJ"))*ZJ"V"(")'>. (All) 

By  comparing  Eqs.   (A7)   and  (All),  we  observe  that 
Ru(r ,t) equals A,7(r,0 (for all N> 1) providedZ{n) satisfies 

<(Z["))*ZJ"V")=K> = 2Jk*'y(if). (A12) 

The complex random vectors, Z("\ must have a covari- 
ance matrix given by Eq. (A 12), but their distribution is not 
determined. It is convenient to specify Z(n) as Gaussian ran- 
dom vectors, because the distribution is then determined 
from the covariance matrix. In practice, Z(n) can be con- 
structed from real, standard, isotropic Gaussian random vec- 
tors, gn\ by 

Z<">= (£,)*£"), (A13) 

where L is a complex triangular matrix with a real diagonal 
that is uniquely defined by 

((Z{n))*Z(n)T\^n)=K) = L(L)*T=2k^ij(K).        (A14) 
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This is simply the complex version of the Cholesky factor- 
ization for positive, semi-definite, Hermitian matrices. 

APPENDIX  B:  CONSTRUCTION  OF GENERAL u-e 
DECAY MODEL 

A general model for u* and e* in decaying turbulence is 
constructed based on the form for coupled stochastic diffu- 
sion processes: 

duf = ai(u*,e*)dt+Aij(u*,e*)dWj + Bij(u*,e*)dWj, 

(Bla) 

and 

de* = gi(u*,e*)dt+Gij(u*,e*)dWj + Hij(u*,e*)dW'j, 

(Bib) 

and the four constraints given in Sec. IV B. In applying these 
constraints to the diffusion process some simplifying as- 
sumptions are made in order to achieve a tractable model. As 
a result the General u-e Decay Model is not in the most 
general form, but maintains more than sufficient generality 
for our purposes. 

Before the constraints are applied to the diffusion pro- 
cess, its coefficients are re-expressed using the isotropic 
functions of u* and e*: 

a,(u*,e*) = a1ef + a2uf + a°, 

gi(u*,e*) = glef+g2uf + g1;, 

(B2a) 

(B2b) 

ufuf 
*„*-i-   ^ LJ-   JZ ^*„* A(7(u*,e*) = ^1^. + ^2efe* + ^3-^ + ^4e*„; 

+ ^5efuf+Alj, (B2c) 

B y( u*, e*) = JBX S,j + J$2e f e f + Jg>3 -^ + JSAe f u * 

+ J%5efuf + Ba
u, -j "i    -lj > (B2d) 

Gy(u*,e*) = ^Su+ S?2e?ef + ^ -^ + S?4efuf 

+ S?5efuf + G^ (B2e) 

ufuf 
Hij(u*,e*) = .ß¥lSij + ^2efef + ^3-^ + ^4efu] 

+ ^e*uf+Ha
tj, (B2f) 

where a y and g y for y = 1,2 and ^dy, J?y, &y, and S@y for 
7=1,2,3,4,5 are functions of ufuf and the time varying 
statistics of u* and e*. Also, a", g% Aa

tj, Ba
tj, Ga

i}, and 
H": are anisotropic functions of u* and e*. The deterministic 
constraints are expressed via Ito calculus which applies for 
the Ito SDE's: 

d(efe?) = 2efdef + de?def = 0, (B3a) 

and 

d(ufef) = ufdef + efduf + dufdef = 0. (B3b) 
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The unit length of e* constraint applied to the general diffu- 
sion process imposes conditions on the model: 

e*G  =e?H  =0 c< WIJ    c i 11ij   u> 

and 

ief ~ ~ 2[GijGij + H)jH)j], 

while the orthogonality constraint imposes 

efAu+ufG^efBij + ufH^O, 

(B4a) 

(B4b) 

(B5a) 

and 

aief + giu*=-[AljGij + BijHijl (B5b) 

In the above conditions the independence of the Wiener pro- 
cesses is used to set each of their coefficients to zero. 

The conditions in Eqs. (B4a) and (B5a) impose con- 
straints on the tensorial form of the diffusion coefficients. 
The results for the isotropic parts are 

Aij(n*,e*) = ^lSij + ^2efef + ^3'^ 
us us 

- (3?! + W3)efuf + ^5efuf +Aa
tj, 

(B6a) 

Bij(u*,e*) = ^lSiJ + ^2e*e* 
ufuf 

3 ufuf 

+ ß$,)efu* + ^e*uf + Ba
ij 

(B6b) 

ufuf 
Gy(u*,e*) = W, (Su-efef)+ S?3 — 

us us 

u?e* 
(B6c) 

Hij(u*,e*) = ß$l(öij-efef) + ßi 
ufuf 

'3ufuf 

u?e? 

ufuf        ,J (B6d) 

For the anisotropic diffusion coefficients, the unit length con- 
straint is applied without assumption, while in the orthogo- 
nality constraint each term is individually assumed to be 
zero. The results are conditions on the tensorial form of the 
anisotropic diffusion coefficients: 

Al^iSa-efef)^, 

B^iSu-efef)^, 

G^tftf^j, 

H^tftf^, 

(B7a) 

(B7b) 

(B7c) 

.y—i'/^y. (B7d) 

where a vector, t*, mutually orthogonal to u* and e* is used, 
and ^"j, J5y, ^, and J@}j are new anisotropic functions. 
From geometrical considerations a relationship between 
three orthogonal unit vectors exists: 
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t*t* = 8- — e*e* - 
ufu* 

(B8) 

With the functional form of the drift coefficients substi- 
tuted into Eqs. (B4b) and (B5b), expressions and conditions 
on the coefficients are found. Also, it is assumed that the 
terms consisting of the anisotropic drift coefficients are zero 
independent of the isotropic terms. The results are 

g^iSa-efef^ 

alef + gu? = 0. 

(B9a) 

(B9b) 

+ ( 2 J*! + j^3 ) Jg\ + ( Jgf, + JT3 )JS3 

+ (J8i + J&2) V5 + t*t*Sux^vuS, (B9c) 

and 

1 

2«r«, ?
[M1 + ^2)

2 + (^1+.J'2)
2] 

r2) 

-^z*(SW+J#iJB7i). (B9d) 

The constraint of a joint normal solution in isotropic, 
decaying turbulence is applied by comparison with the 
Langevin equation whose solution for the PDF is known to 

be joint normal. The actual comparison is made between the 
SDE's for speed from the different equations. The Langevin 
equation is 

dui=-auidtJrbd'Wi, (BIO) 

which when expressed for the speed, K —|u|, is 

du = \ au\dt + bdW. 
u (BID 

In isotropic turbulence the SDE for speed from the gen- 
eral model with the stochastic constraints applied is 

du = Eldt + E2dW, 

where 

ErWW+^ + ^iW 

(B12a) 

•^2) + l(^2 + ^)]- 

+ J^3)
2]u,       (B12b) 

£2 = [(^1+^3)
2+(^,

1+Jg,
3)

2 + (^ + j^)M
2] 1/2 

(B12c) 

This equation must be forced into the form of Eq. (Bll). A 
fully general model would consist of diffusion coefficients 
which are power or Laurent series in u, but to avoid this 
complexity the coefficients are assumed independent of u 
where possible. Thus, by scaling with e and k all the coef- 
ficients are re-expressed with non-dimensional parameters 
and the appropriate u dependencies where necessary: 

J 

U\fkj'     ai~ai\Jk 

n~a = "oa\ 

?1 —^rO\ 

-LI        „..,rO>li 

;i=si k ' 

a7 = a ■ 

;2=S2 

r(2) 

VF 3' 

U 11 

\ = J83Je,     J@5^.J®5—-,      J8?j = J%jJe, 

^i^iVr-    ^^Vj.    ^=^ lj--*u\lk 

,3-^3 Vp ^-^V? 

The joint normal condition is now applied giving an expression for one of the velocity drift coefficients: 

ä\  ~ i{-^3(2^i + ^3) - 5^2(2^1 + ^2) + 2.^5 + .^3(2.^ + Jg>3) - {JS2{2JSX + Jg*2) + 2.; (B13) 

The evolution of the kinetic energy constraint is applied by forcing the kinetic energy equation from the stochastic model 
into the same form as Eq. (51), which results in an expression for the remaining velocity drift coefficient: 
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4
1)=
-^1 + 4:<«**^> + (^I + ^3)

2
+(^I+^3)

2
+^ 4k 

+ ^2.A5 

efuf    _ 

ifuf^1'2    lj (ufufy ■^U )+h{{8ln-e*et)^a
lj^

a
nj)+\{^ + .^)2 + 3^l

5 + .M(8jl-e*er).^i}) 

+ . ?3   Ä*^', + V2Jg>< 
•s as \u*u*y ■M+min-efei)&M. (B14) 

The final form for the General u-e Model is now sum- 
marized: fi,-.-(u*,e*) = Ve <S;, + Jg>2e*e*-K >i"ij 

ufuf 
^-J-J- 3 ufuf 

du? äl^kef + äi
2
l)uf + 2äf)^-^u 

ufuf"' 

+ «?>/* dt+AijdWj+BijdW'j, 

and 

de? Tiet + 82-^HSirefe*)?, 

+ GijdWj + HijdW'j, 

dt 

(B15a) 

(B15b) 

where some of the coefficients were previously given in Eqs. 
(B13) and (B14), and the following coefficients are re- 
expressed in non-dimensional form: 

(J^ + J^efwf+VZj 
yfk 

+ (Sil-efef)Blj 

efuf 
'(ufufr 

(B16d) 

G,,-(u*,e*)= V- ^(8,-efep+S?^ 

-V^i+^2) 
ufef 
*„*+t?t?G?j 

(B16e) 

Hy(u*,e*) = \{Sirefe*)- 
_   ufuf 

3 ufuf 

a\=-gi- 
ufuf 

-{(2^l + ^M1 + (^i+^). -yJkiJ&i+J&i) 
ufef 

.   (B16f) 

+ (Ji+^2)J5 + ff»,*J1S
fJj+(2lfi + ig3)^ 

+ 5,
3 + (J»1 + ^,

2)Jg,
s + rfrf^1^/, 

£i = - 3^(3?! + 5?
3)-^1(^1 + J^3) - 

[(^1 + ^2)
2+(J§,

1 + ^>2)
2] 

3 + ^3 

(B16a) 

) 

lufuf 

A,7(u*,e*)=Ve 

(B16b) 

^y + ^ef^ + ^SA 

«>f -i(f1+^f„;+^5R^ 

+ (Sil-efef)Aa
lj (B16c) 

In addition, one constraint remains on the anisotropic drift 
terms: 

4k5a
lef + ga

luf = 0. (B17) 
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Abstract 

A spatially inhomogeneous model problem for studying turbulent nonpremixed reacting 
flow with reversible reaction is proposed that admits stationary solutions which are pe- 
riodic in physical space. The thermochemical state of the fluid is characterized by two 
composition variables: mixture fraction £(x,t) and reaction progress variable F(x, t). A 
linear gradient in the mean mixture fraction field is imposed such that, in a forced sta- 
tionary velocity field, the mixture fraction field also attains statistical stationarity. The 
solutions are parametrized by the Damköhler number and the reaction zone thickness 
parameter. At sufficiently high Damköhler number there is stable reaction, but as the 
Damköhler number is decreased below a critical value, global extinction occurs. The range 
of parameter values is chosen such that the model problem reproduces important phe- 
nomena such as stable near-equilibrium reaction, local extinction and global extinction. 
A self-similar model thermochemistry is proposed which allows access to the parameter 
range of interest at reasonable computational expense. Monte Carlo simulations are per- 
formed to solve for the joint probability density function of velocity, turbulent frequency 
and composition. The predictions for critical Damköhler number are compared for two 
different mixing models: the interaction by exchange with the mean (IEM) model, and 
the Euclidean Minimum Spanning Tree (EMST) model. The results obtained using the 
simpler conditional moment closure (CMC) model are also presented for comparison. 
The model problem is formulated to permit direct numerical simulations (DNS) using 
pseudo-spectral methods which require periodic boundary conditions. The DNS study 
of this model problem, which is currently underway, will provide validation for the model 
predictions and additional insight into the phenomenon of extinction in inhomogeneous 
turbulent reactive flows. 



1     Introduction 

Prediction of the extinction characteristics of turbulent nonpremixed flames is an impor- 
tant and challenging area of current research. An important parameter in nonpremixed 
flames is the Damköhler number: 

Da =T4>IT', (1) 

which is the ratio of the characteristic mixing timescale T^ to the characteristic chemical 
timescale r*. 

When the Damköhler number is very large, the fluid composition almost everywhere 
in the physical domain is very close to chemical equilibrium because reaction is rapid 
compared to the time taken to mix with neighboring fluid. In such situations models based 
on the equilibrium assumption or those based on small departures from equilibrium may 
be used with confidence. However, in most turbulent flames there is a range of turbulent 
timescales (or, in other words, mixing timescales) and there is a corresponding range of 
Damköhler numbers. As the Damköhler number decreases at any given physical location 
(as a result of an increase in the local scalar dissipation rate), departures from equilibrium 
become significant and may result in local extinction. If the Damköhler number is too 
small to sustain stable combustion in a sufficiently large fraction of the fluid volume, 
global extinction occurs. 

Experiments on piloted jet diffusion flames by Masri et al. [9] provide direct evidence 
of these phenomena. Clearly, modeling such jet diffusion flames based on equilibrium or 
near-equilibrium assumptions is questionable. Computations of piloted jet flames using 
PDF transport equations have been performed using finite-rate chemistry [4], [19], [11]. 
While the calculations of Norris k. Pope [11] are successful in predicting the jet velocity 
at which global extinction occurs, the details of local extinction are not well represented. 
These discrepancies were attributed to three factors; deficiencies in the mixing model; 
differential diffusion effects which were neglected; and, experimental error. In spite of 
establishing the overall success of the PDF approach in modeling turbulent nonpremixed 
flames, these calculations highlight the need for a better understanding of such reactive 
flows. 

While the comparison of model predictions with experimental data is the ultimate 
test of a model, it is difficult to pinpoint the model deficiencies in comparisons with 
experiment for several reasons. In real flows there are many complex coupled processes 
and it is difficult to isolate the effects of the physical process being modeled. The modeled 
terms, e.g. Lagrangian time series of composition or conditional scalar dissipation, are 
often not amenable to direct measurement. 

On the other hand direct numerical simulations (DNS) can be used to perform con- 
trolled numerical experiments on simple turbulent reactive flows and all flow properties of 
interest can be extracted. Since many features characteristic of turbulent flames can be 
represented in a simpler model problem, a satisfactory model for turbulent flames should 
perform comparably in a simpler turbulent reactive flow. Modeling deficiencies may be 
identified more easily in the model problem setting. Furthermore, the model behavior in 
the simpler flow problem can be used to gain valuable insight into the model performance 
in real turbulent flames. In fact, such computations of practical combusting flows are an 
ongoing part of this research effort and this work is intended as an important complement 
thereof. 



The present contribution constitutes a valuable intermediate step to the comparison 
of model predictions with DNS. The objectives of the present work are two-fold: the first 
is to construct a simple inhomogeneous, nonpremixed reactive flow model problem that 
is amenable to direct numerical simulation (DNS); the second is to study the effect of 
PDF models of molecular mixing on model predictions over a range of flow conditions 
including those close to extinction. In particular it is of interest to determine whether 
the new principle of localness [18] required of mixing models enables a more accurate 
representation of mixing in reactive flows. 

In general a constant-density, constant-diffusivity (equal for all species), nonpremixed 
turbulent reactive flow may be characterized by a Reynolds number (say the Taylor-scale 
Reynolds number R\ ), Damköhler number and a reaction zone thickness parameter 
defined as: 

ir  = A£r/£', (2) 

where A£r is the characteristic width of the reaction zone in mixture fraction space and 
£' is the r.m.s. mixture fraction. These parameters may be functions of space and time. 

In order to obtain a quantitative description of extinction in this (R\,Ba. ,£r ) param- 
eter space with finite computer resources, the model problem is necessarily very simple 
both in terms of flow and thermochemistry. The velocity field in this model problem 
is constant-density, statistically stationary, homogeneous isotropic turbulence. A simple 
thermochemical model for one-step reversible reaction is employed, with the thermo- 
chemical state of the fluid described by two variables: the mixture fraction and reaction 
progress variable. It is advantageous to consider a model problem which admits statisti- 
cally stationary solutions. This removes the temporal dependence of the parameters and 
also allows study of flow characteristics independent of the influence of initial conditions. 
Even with these simplifications a statistical description of extinction using numerical 
simulations is subject to statistical variability and is dependent on the duration of the 
simulation [8]. 

In previous studies of extinction by Lee &: Pope [8], stationarity was achieved by 
forcing the mixture fraction field, but in this model problem stationarity is achieved by 
imposing a linear mean gradient in the mixture fraction. The mean gradient in mixture 
fraction also results in a "flame brush" which is a more realistic case than that considered 
in Lee & Pope [8]. The flow under consideration has statistical inhomogeneity only in 
the reaction progress variable, and only in the spatial dimension along which the linear 
mean gradient is imposed. 

At high Reynolds number, the extinction characteristics are expected to become in- 
dependent of the Reynolds number. One of the goals of these simulations (both the 
PDF simulations presented here and the anticipated DNS) will be a characterization of 
global extinction by means of a stability diagram in Da -£r parameter space similar to 
that shown in Lee & Pope [8]. 

The following section describes the model problem and governing equations. This is 
followed by the definition of the parameter range of interest in (Da , £r) space and the 
associated flow regimes in Section 3. Following this is a description of the self-similar 
thermochemistry (SSTC) in Section 4. Section 5 describes the conditional moment closure 
(CMC) model and determination of the range of self-similarity of the SSTC. It concludes 
with estimates for the computational cost to perform PDF simulations of the periodic 
reaction zone model problem with the SSTC. Results for a range of parameters using 



the PDF approach with the IEM mixing model and the EMST mixing model are then 
presented. It is found that the models are in good agreement for large values of the 
reaction zone thickness parameter £r, but there are significant differences for small values 
of £r . These differences are discussed in the light of the modeling assumptions inherent 
in each model and summarized in the final section. 

2    Periodic reaction zones model problem 

The velocity field in this model problem is constant-density, statistically stationary, ho- 
mogeneous isotropic turbulence. At high Reynolds number the velocity field can be 
characterized by e, the mean dissipation rate and k, the kinetic energy of the turbulence. 
A mean turbulent frequency (u) ((u) = e/k), and a velocity scale u'(= ^2k/3) can be 
defined in terms of k and e. These quantities can then be used to define a characteristic 
lengthscale / = u'3/e and timescale r = k/e of the turbulence. 

The thermochemical state of the fluid is characterized by two composition variables: 
the mixture fraction £(x, t) and the reaction progress variable F(x, t). The mixture 
fraction is a conserved passive scalar and evolves by 

§ = rv!«' <3> 
where T is the molecular diffusivity. The fluctuating mixture fraction field is defined as 

|(x,t) = £(x,*)-<0(x,<). 

In Lee & Pope [8], the mean mixture fraction field is homogeneous, and a statistically 
homogeneous, periodic, statistically stationary fluctuating mixture fraction field is gen- 
erated by artificial forcing. In the present work a gradient in the mean mixture fraction 
field is imposed in the xi direction which results in a more realistic "flame brush". The 
simplest way to achieve this is to impose a linear gradient d(£)/dx2 = constant. This 
results in a periodic, statistically homogeneous fluctuating mixture fraction field, which 
attains statistical stationarity after sufficient time has evolved for the flow to equilibrate. 
The mixture fraction variance evolution is given by 

where the terms on the r.h.s. are production of mixture fraction variance due to the 
imposed mean mixture fraction gradient, and scalar dissipation 

<*> = *■<**< 
dxk dxk' 

In stationary isotropic turbulence, the fluctuating mixture fraction field decays in the 
absence of mean gradient production. The mixing timescale, which is the characteristic 
timescale for decay of mixture fraction variance £'2 = (£2), is given by 

r^e/(x). (5) 



For non-zero values of the imposed linear gradient, the mixture fraction variance attains 
a stationary value when there is a balance between production and scalar dissipation [12]. 
It is also found that the pdf of mixture fraction is close to a Gaussian. 

The reaction progress variable evolution is given by 

^ = rv2r + s(£,n (6) 

where S(f, Y) is the reaction rate and the molecular diffusivity F is taken to be equal to 
the mixture fraction diffusivity. 

A new thermochemical model is developed for a one-step reversible reaction (fuel + 
oxidant ^ product), which is similar to the one used in Lee and Pope [8]. For the sake of 
clarity, only the features of the thermochemistry pertinent to this section are presented 
here. A more complete description is given in Ref. [8]. The reaction progress variable Y 
is the mass fraction of product. At chemical equilibrium, Y adopts the value Ye(£) which 
is specified as an analytic expression in terms of £ and the stoichiometric value of the 
mixture fraction £s (0 < fs < 1). The reaction rate as a function of composition (£,F) is 
also given by an analytic expression. (The exact specification of these functions and the 
rationale for developing this thermochemical model is deferred until Sections 3 & 4.) For 
a stoichiometric mixture fraction of 0.5, Fig. 1 shows a sketch of the equilibrium function 
and the reaction rate contours. 

In combustion problems with two uniform reactant streams, £ is usually defined as 
a conserved scalar that goes from zero in one reactant stream (say the oxidant stream) 
to unity in the second reactant stream (fuel). For the purposes of numerical simulation 
(either for DNS or PDF) a linear gradient in (£) can be imposed in a computational 
box of length L in the x2 direction with d(£)/dx2 = A£L/L, with (Q(x2 = 0) = 0, 
and (£)(a?2 = L) = A£x, (if the mean mixture fraction is to range from 0 to 1 in the 
computational box, the jump in mean mixture fraction A£L over length L is unity). 
However, within the domain 0 < x2 < L, the mixture fraction takes on values £ < 0 and 
£ > A£i (if A£i, > 1, then £ can also be greater than unity). In DNS, periodic boundary 
conditions are applied which is equivalent to extending the solution domain periodically 
in all spatial directions. In particular, the periodic boundary condition on £ implies 

£(xi,X2+mL,X3,t) =j;(xi,X2,X3,t),    m integer. 

Consequently, for the general interval mL < x2 < (m + 1)L, the mean mixture fraction 
(£) ranges from mA^ to (m + l)A£i, and hence for any finite A£L, £ is an unbounded 
variable over the whole domain. Consequently for this model problem it is necessary to 
extend the definition of the thermochemistry for all values of £ such that 

(i) periodic boundary conditions may be applied to Y also, so that Y is periodic in £ 
space. 

(ii) within each interval [mL, (m + 1)L] there is a flame brush. 

(iii) at sufficiently high Da (far from extinction) Y becomes statistically stationary. 

One way to attempt to do this is to simply extend the thermochemistry by periodically 
repeating the thermochemistry in the [0,1] mixture fraction interval as depicted in Fig. 2, 



Figure 1: Sketch of the equilibrium function Ye(£) and reaction rate contours S(£,Y) for 
model thermochemistry. 



namely 

Ye(0   =   Ye(Z-lt\),ti[0,l], (7) 

S&Y)   =   S(S-[£],Y),St[0,i\, (8) 

where |_£j is the largest integer smaller than £. However, this simple periodic extension 

Figure 2: Symmetric extension of the thermochemistry: equilibrium function and reaction 
rate contours are shown. 

is unsuitable since it cannot result in a non-trivial stationary solution corresponding to 
stable reaction (cf. (iii)). Consider the volume average of the mean progress variable 

l(Y}}L(t) = ±£(Y)(x2,t)dx2. 

Since in this periodic extension the reaction rate function is always non-negative 
(S(£,Y) > 0), the volume average of (Y) must always increase (except for the case 
where the reaction rate is zero everywhere). This implies that there are only two trivial 
stationary solutions to the problem: either the flow is in chemical equilibrium everywhere 
(Y — Ye) or there is no product anywhere (Y = 0 everywhere). Clearly this extension 
procedure is not useful for studying the range of combustion phenomena which are of 
interest. 



The alternative extension procedure that is used here is to first extend the thermo- 
chemistry in the [0,1] mixture fraction interval "anti-symmetrically" to the [-1,0] inter- 
val, and then periodically repeat the structure in the mixture fraction interval [-1,1] as 
depicted in Fig. 3, specifically 

Ye(0 = re(£-L£J),£€[2m,2m + l], 
Ye(0 = -ye(ir£l-£!),£€ [2m-1,2m], 

S(t,Y) = S(£-t£|,y),£€[2m,2ro + l], 
S&Y) = -Sm-Z\,Y),te[2rn-l,2m], 

(9) 
(10) 

(11) 
(12) 

where [f] is the smallest integer larger than £. In order for the mean mixture fraction to 
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Figure 3: Antisymmetric extension of the thermochemistry: equilibrium function and 
reaction rate contours are shown. 

extend over one period of the antisymmetric extension of the thermochemistry ((£){x2 = 
0) = 0, (£)(x2 = L) = 2 ), the jump in the mean mixture fraction over the length L is 
given by 

A£L - 2. (13) 

This implies that the gradient in the mean mixture fraction is d(£)/dx2 = A(i/L = 2/L. 
Since each reaction zone period is statistically identical, it is sufficient to simulate only 
one such period. 



The alternating positive and negative equilibrium functions can be interpreted as 
zones corresponding to flames and "anti-flames". In the interval £ € [2m, 2m + 1], which 
is interpreted as a flame, reactants enter from either end of the interval and are converted 
to product which leaves the interval due to transport. In the interval £ € [2m - 1,2m], 
which is interpreted as an "anti-flame", "anti-reactants" (which are products leaving the 
adjacent flame zones) enter from either end of the interval and are converted to "anti- 
product" (which is reactant) which again leaves the interval due to transport. See Fig 3. 
Each interval in mixture fraction space £ G [2m, 2m + 1], is a statistically identical copy 
of the interval £ 6 [0,1] and similarly for the "anti-flame" intervals - each interval in 
mixture fraction space £ € [2m — 1,2m], is a statistically identical copy of the interval 
£ € [—1,0]. Furthermore, each fluid particle in the "anti-flame" interval with composition 
(£,Y) is statistically identical to a fluid particle in the mixture fraction interval [0,1] 
with composition (["£] — £, —Y). See Fig 3. As a consequence, even though in this model 
problem the mixture fraction and progress variable take on seemingly "unphysical" values 
outside the interval [0,1], they can be interpreted in physical terms by the mathematical 
relations in the preceding paragraph. 

Flames and anti-flames are separated by the constant-property surfaces, £(x, t) = 
integer. (These surfaces are time-dependent and each one is not necessarily connected.) 
In order to conform with the idea that £ = 0 and £ = 1 correspond to pure reactants (i.e., 
Y = 0), the boundary condition (Y = 0) is imposed on the surfaces £ = integer. 

3    Parameters determining the reacting flow regime 

In this section the accessible parameter range for performing PDF simulations of the 
periodic reaction zone problem is determined, and the development of the self-similar 
thermochemistry is motivated. These considerations are also central to determining the 
accessible range for the associated DNS study which is currently underway. 

At fixed Reynolds number, the extinction characteristics of a turbulent nonpremixed 
reactive flow are determined by the reaction zone thickness parameter £r (= A£r /£') and 
the Damköhler number. The reaction zone thickness A£r, is a measure of the width of 
the reaction rate function in mixture fraction space (details are provided in Section 4). 
For low values of £r the fluctuations in mixture fraction are large relative to the reaction 
zone thickness and the reaction is confined to thin reaction sheets in physical space. Large 
values of £r correspond to broad reaction zones where fluctuations in mixture fraction at 
a physical location with (£) = £s are contained entirely within the reaction zone. 

Direct numerical simulations of homogeneous nonpremixed combustion [8] indi- 
cate that the critical Damköhler number (the smallest Damköhler number, or range of 
Damköhler number values, below which stable combustion cannot be sustained) scales 
like C~2'3, while simpler models such as CMC (and simple scaling arguments) predict 
a scaling like £~2. It has been shown that the small difference in the exponents could 
be due to statistical variability [8]. In spite of the spatial inhomogeneity present in the 
current model problem, it is reasonable to expect similar scalings for the periodic reac- 
tion zones problem. In other words, higher critical Damköhler numbers may be expected 
for thin reaction sheets compared to broad reaction zones. It is also expected that the 
model for molecular mixing will have a significant effect on the prediction of critical 
Damköhler corresponding to extinction in the thin reaction sheet limit   [16]. 



The objective of this study is to perform simulations for reaction zone thickness values 
varying from a few tenths to as much as ten times the r.m.s. mixture fraction. Specifically, 
the aim is to access the range 0.3 < £r < 10. 

In order to gain a better understanding of the influence of the Damköhler number and 
£r on extinction in the model problem, it is necessary to perform spatio-temporally well- 
resolved simulations for a broad range of these parameters. The implication of the scaling 
Da ~ £~2 is that once a desired range of £r is chosen, the range of Damköhler numbers to 
be investigated for extinction is automatically determined by the physics of the problem. 
The rest of this section is devoted to determining the broadest parameter range in Da- 
£r space that is accessible to simulation at reasonable computational expense. 

The reaction zone thickness parameter £r may be varied by changing either the sta- 
tionary value of the r.m.s. mixture fraction £', or the reaction zone thickness in mixture 
fraction space A£r . If £r is varied by changing £', keeping A£r fixed, then it is legitimate 
to compare the results obtained for each £r value. This is the approach adopted by Lee 
k Pope [8]. However, for the periodic reaction zone model problem there are limits on 
both the maximum and minimum values of the r.m.s. mixture fraction £'. 

3.1    Upper limit on £' 

The limitation on maximum f arises from the requirement that flame brushes not overlap 
in physical space which is in accord with the physical picture of reacting flows. In mixture 
fraction space the flame brush (of £ « £s) is in the interval [£s - A£r /2,fs + A£r /2]. 
At any given xi location in physical space, there is a non-negligible probability of the 
instantaneous mixture fraction lying in this flame brush (i.e., £ € [£S-A£r /2, fs+Afr /2]) 
if 

<0(z2)±2e'€K--^L&+*|L], 

which may be restated as 

<0(*2) e % - ^ - 2£',6 + ^ + 2a 

See Fig. 4. In mixture fraction space the flame brushes are centered at the mixture 
fraction values £ = ... - £s, £s, 2 - £s, 2 + £s.... The requirement that the probability of 
adjacent flame brushes (located in mixture fraction space at say £s and 2 — £s) overlapping 
at the same physical location X2 be negligible, may be quantified as follows: 

2 - £s - ^A£r - 2£' > £s + ^A£r + 2£'. 

The largest possible £' corresponding to non-overlapping (distinct) flame brushes in phys- 
ical space is achieved by choosing £s = 0.5, and is determined by the inequality 

4£' < 1 - A£r . (14) 

For a given value of the reaction zone thickness A£r in mixture fraction space (corre- 
sponding to a particular fixed choice of parameters in the model thermochemistry), the 
limitation on maximum r.m.s. mixture fraction £' in Eq. 14 imposes a lower bound on 
the reaction zone thickness parameter £r . Choosing a representative value of A£r = 0.232 
(corresponding to that used in the simulations of Lee & Pope [8]) results in a minimum 
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Figure 4: Sketch showing the variation in the width of the flame brush for different values 
of the stationary r.m.s. mixture fraction £'. 
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Rvalue of 1.2 . Since the objective of this study is to perform simulations for reaction 
zone thickness values down to a few tenths of the r.m.s. mixture fraction, the only way 
to access this parameter range is by changing the reaction zone thickness A£r itself. 

3.2    Lower limit on £' 

The limitation on minimum £' arises from considerations of computational expense. In 
the periodic reaction zones problem the mixture fraction variance attains a stationary 
value when the production due to mean gradient balances the scalar dissipation in Eq. 4. 
The r.m.s. value of the stationary mixture fraction scales as: 

If the length of the computational domain in the x2 direction is L and A£L is the jump 
in mean mixture fraction across the domain, then substituting 

9(0 _ Aq 
dx2 L   ' 

the r.m.s. mixture fraction scaling can be written as 

£'~A£L{. (16) 

Since there is only a single reaction zone period in [0, L] (Eq. 13), the stationary r.m.s. 
mixture fraction can be varied only by changing l/L, the ratio of the turbulence length 
scale to the computational box-length. However, increasing the ratio l/L results in an 
increase in computational cost of the simulation. This becomes apparent on examining 
the evolution equation for (Y), which is obtained by taking the expectation of both sides 
of Eq. 6: 

The mean reaction progress variable evolves due to transport (first term on the r.h.s.) 
and mean reaction rate. Assuming simple gradient transport, one may write 

d(Y) 

where jt is a turbulent diffusivity. The transport term can now be written as 

«"»r»—*-*p <18> 

If YQ is the characteristic scale for (Y), and L is the box-length, then the transport term 
in the (Y) equation can be estimated as 

d(u2Y)      _    Yo_ 
dx2    ~    7tL2' 
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Following standard eddy-viscosity modeling assumptions, the turbulent diffusivity may 
be estimated by the relation 

Pr 

Pr e 
CM/3\3/2 

Pr \2)   r 

where Pr is the turbulent Prandtl number. The timescale for transport can be estimated 
to be: 

L2 fL\2 

where Ct is a constant, empirically determined to be 0.04 by fitting to data obtained 
from simulations of the inert flow (5 = 0) for different box-lengths L. For L = 9.34, this 
empirical relation yields Tt = 5.23. See Fig. 5. 

Using the relation in Eq. 16, the transport timescale can be shown to vary inversely 
with the mixture fraction variance: 

(?)' (21) 

In order to obtain stationary solutions to the periodic reaction zones problem the simu- 
lations must be run to a time Ts, which is larger than the largest physical timescale in 
the problem. In this problem, for the range of parameters being considered, the largest 
physical timescale is the transport timescale Tt. Therefore it is required that the sim- 
ulations be run for 3 to 4 times the tranport timescale (Ts ~ [3 - 4]Tt). Given finite 
computational resources, Eq. 21 imposes a limit on the minimum £' that can be achieved 
in the simulations. 

3.3    Variation of A£r 

These limits on the extreme values of £' imply that the variation in £r will have to be ac- 
complished in part by changing the reaction zone thickness A£r . Since the reaction zone 
thickness A£r is a derived thermochemical parameter (i.e., it is not one of the parameters 
used to define the thermochemistry, but is implied by the choice of defining parameters 
and the thermochemical functions), it can only be specified indirectly. However, even a 
simple two-variable thermochemistry such as the Lee-Pope thermochemistry [8] requires 
the specification of many such secondary parameters in order to define the thermochem- 
istry. 

The primary parameters are the reaction zone thickness (A£r) and the chemical 
timescale (r*), which in turn determine the non-dimensional reaction zone thickness 
£r and the Damköhler number (Da ) respectively. Since the solutions to the periodic re- 
action zones model problem are to be parametrized only by these two non-dimensional 
quantities (£rand Da ), the thermochemistry needs to be specified such that the solu- 
tions are the same for a given value of £r (= A£r /£'), for different values of A£r . This 
requires that the secondary parameters in the thermochemistry specification change with 
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Figure 5: Inert case (Y) decay test: —(Y)(L/4,t), - - -(y)(I/4,0)xexp(-*/4.3). The 
length of the domain L = 9.34 and the transport timescale estimated from the plot is 4.3. 
The characteristic timescale of the turbulence r is 1.5 time units. The empirical relation 
Tt = Ct(L/l)2T gives Tt = 5.23. 
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Afr such that indeed A£r and r* completely determine the thermochemistry. Thermo- 
chemistry specifications that do not possess this property will result in solutions that 
differ, depending on the choice of secondary thermochemical parameters, even for the 
same values of £r and r*. Since the Lee-Pope thermochemistry [8] does not possess the 
feature that A£r and r* completely determine the thermochemistry, a new thermochem- 
istry specification is developed. This self-similar thermochemistry, which possesses the 
desired features (to an extent), is now described in the next section. 

4    Self—similar thermochemistry 

The self-similar thermochemical model consists of a specification for the equilibrium 
function Ye(£), (0 < £ < 1) and the reaction rate function S(£, Y) (or equivalently, S(£, y), 
where y = Ye — Y). In any two-variable thermochemistry there are two important mixture 
fraction scales in the reaction zone in composition space. One of these is the reaction 
zone thickness A£r which measures the width of the reaction rate function. The other 
mixture fraction scale, denoted A£e , is associated with the curvature of the equilibrium 
function in mixture fraction space: 

*"«> - ^- 

The quantity Ye (£) plays a central role in the theory of turbulent diffusion flames and 
this is made clear when the evolution equation for the perturbation-from-equilibrium 
field y(x,t) = Ye(£[x,t]) — F(x, £), is considered. The perturbation field y(x.,t) is 
always non-negative in the "flame" intervals and is always non-positive in the "anti- 
flame" intervals. The equation for the perturbation in the progress variable reveals the 
influence of the thermochemistry on the evolution equations clearly, and is derived by 
substituting the definition of y in Eq. (6) and using Eq. (3) to arrive at: 

| = -^ + rv'y - rv*.vrc"(0 - s, (22) 

where Ye (£) is the second derivative of the equilibrium function with respect to £. Taking 
expectations of Eq. 22 results in the evolution equation of (y): 

9-W--dJ^- + rv2<y) -r<v*.voye"(0 - <*>• (23) 

The terms on the r.h.s. of Eq. 23 are turbulent transport in the x-i direction, molecular 
transport, the microscale mixing term 

z = -r(ve.von"(0, 
and mean reaction respectively. The molecular transport term is negligible at high Peclet 
number. The stability of combustion is determined by the relative magnitudes of the 
transport in the X2 direction, the microscale mixing term, and the reaction term. Confin- 
ing our attention to the "flame" zones, it is seen that the transport term d(u2y)/dx2 is 
always negative, such that it transports reacting fluid out of the reaction zones, forcing y 
toward positive values. The microscale mixing term is positive and also drives (y) away 
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from zero to positive values. Reaction restores (y) toward its equilibrium value of zero at 
stable combustion. 

In order to make sensible comparisons across different Rvalues (which correspond 
to combinations of different A£r values and £' values) it is important that the relative 
influence of the two mixture fraction scales A£e and A£r, as they manifest themselves 
in Eq. 23, be maintained across the range of £r values. This can be accomplished if the 
reaction zone thickness A£r can be varied while keeping the ratio A£r /A£e constant and 
also preserving the scaling of each of the terms in Eq. 23. The Lee-Pope thermochem- 
istry [8] does not permit such a variation of A£r through variation of its thermochemical 
parameters. 

In the self-similar thermochemistry it is required that these thermochemical functions 
[Ye(£), S(£, y)] be specified in such a way that they preserve the ratio of mixture fraction 
scales A£r /A£e and the relative magnitude of the terms in Eq. 23. With this objective in 
mind, first the scaled version of Eq. 23 is derived. Following this is a brief recapitulation of 
the important features of the Lee-Pope thermochemistry. This is done with two objectives 
in mind. First it elucidates the fact that the family of Lee-Pope thermochemical functions 
does not possess the desired scaling. Secondly, since the SSTC has several other features 
in common with the Lee-Pope thermochemistry, it facilitates understanding the new 
thermochemistry. Finally it is shown how the two thermochemistry specifications may 
be matched. 

The scale for the mixture fraction £ in the thermochemical functions is chosen to be 
A£e . The scaled mixture fraction £ is defined as follows: 

^   =   £-£ss (24) 

I   =   */A£e, (25) 

where £ss e [0,1] which is the origin of the similarity variable £ will be defined later 
in the section. The perturbation variable y is scaled with respect to yo (which is to be 
determined from the condition for similarity) such that 

y = -■ (26) 
2/0 

The thermochemical functions will be specified in terms of the similarity variables (£,#) 
such that for fixed parameters in the thermochemistry, Eq. 23 will become self-similar. 
Following this idea, the curvature of the equilibrium function Ye' (£) is scaled by its max- 
imum value, such that 

y:'(o = \Y:mjF(£). (27) 

The reaction rate function is written as 

S(£,y) = S(Z,y)/Te, (28) 

where rc is a chemical timescale which determines the magnitude of the reaction rate. 
Thus for a fixed shape of the reaction rate function 5(£, y), the magnitude of the reaction 
rate term in Eq. 23 can be changed by specifying rc. Thus different Damköhler numbers 
can be simulated easily by simply changing rc. The shape of the function 5(£, y) has an 
implicit dependence on the two thermochemical mixture fraction scales A£r and A£e : 

S(£,y) = S(£,y;A£r,A£e). 
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The ratio A£r/A£e is to be maintained constant. Then the thermochemistry is determined 
by one scale, say A£e, and variations in A£r are achieved by varying Afe. In short, it is 
required that 

S(£,j/;A£r/A&, A&) = S(£y; A£e). 

The microscale mixing term Z can be expressed as 

z = -r(V£.V£)Ye"(o 

[r(^)' +Iw}*-«, 
«     -\{x)Ye"(t) , 

the approximation being valid at high Peclet number. This approximate expression for 
the microscale mixing term may be scaled as 

z * -\^S\^^\ni) (29) 

l(x)F(i)-^ {^-)   A62|Fe"mJ, (30) 

where (x) is the scaled scalar dissipation. Again in the above equation, the ratio 
A£r /A£e is to be maintained constant. 

Substituting the relations in Eqs. 25-30 into the mean perturbation evolution equation 
Eq. 23 yields the evolution of the mean scaled perturbation y in terms of the similarity 
variables: 

dt dx2 y0 Tftr 2\MeJ rcy0 
y    ' 

The conditions for similarity implied by Eq. 31 are that the groups 

(^)2m,,„.i 
2/0 

and 
S(iy;A£e) 

yo 

be independent of A£e. First the appropriate scaling of |Ye"maJ with respect to A£ewill 
be determined based on the asymptotic behavior of the equilibrium function (and its 
curvature) as A£e —> 0. This will lead to the specification of the equilibrium function. 
From this scaling of \Ye max| and the similarity condition on the group (A£e)

2|Fe" | /yo, 
the appropriate scale yo will be determined. Finally the second similarity condition 
on the group S/yo will determine the scaling of S with respect to A£e. In order to 
explain the asymptotic behavior of the equilibrium function, some details of the Lee- 
Pope thermochemistry are reproduced from Ref. [8]. 
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4.1    Lee-Pope thermochemistry 

In the Lee-Pope thermochemistry, the value of the progress variable at equilibrium Ye is 
determined by the specified stoichiometric mixture fraction fs (0 < £s < 1) and by the 
specified equilibrium constant K of the one-step reversible reaction 

YF + T Y0-(l + r)YP, (32) 

where Yp, Yo and Y> represent the mass fraction of fuel, oxidizer and product respectively, 
r being the stoichiometric proportion of the oxidizer to fuel mass fraction. At chemical 
equilibrium Y> adopts the value Ye, and the reactant mass fractions can be written as: 

YF   =   Z-ZsYe (33) 

Yo   =   (l-0-(l-6)n. (34) 

Noting that the equilibrium constant is given by 

yields the relation that determines Ye(£): 

Ye 
K ~ tt-£.n}{(i-o-(i-wn}" (36) 

From Eq. 36 one can deduce that the maximum value of Ye, Fmax, is 

Ym" = 1 + 2/VK' (37) 

which occurs at £ = £max : 

= 6 + I/VK 
fc~       1 + 2/VK ■ (38) 

As K tends to infinity, YmBX approaches unity and fmax tends to ^s. 
The curvature of the equilibrium function Fe"(0 (and its maximum value |ye"maJ ) is 

determined by the values of K and £s. For a given value of £s, Ye(£;K) is a family of 
curves which asymptotes to straight fines in the limit of infinite K (which is the limiting 
case of irreversible reaction [1]). See Fig. 6. In this limit of irreversible reaction the 
curvature of the equilibrium function Ye' (f) is everywhere zero but for at £ = £s where 
\Y.      I is infinite. I     C   max I 

The reaction rate in the Lee-Pope thermochemistry, which is denoted Sx, is specified 
by 

SL^,y) = fL(y)gL(0/rc, (39) 

where y is again the perturbation from equilibrium, rc is a specified timescale, and the 
functions JL and gL are given by 

My)   =   BLyexv(l-BLy), (40) 

gL(0   =   exp{-BL(ymax - Ye(0)}, (41) 

where Bi is a thermochemical parameter. 
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Figure 6: Equilibrium function Ye(£) and its second derivative Ye (£) for different values 
of the parameter K in the Lee-Pope thermochemistry. The stoichiometric value of the 
mixture fraction is 0.5. 
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For fixed £s, the parameter K controls the scale A£e. For a given equilibrium function 
specification (fixed £s and K) the parameter Bi controls A£r . However, it is not possible 
to vary A£r using K, while maintaining a fixed ratio of A£r to A£e with a constant value of 
BL- A one-parameter family of thermochemical functions which enables such a variation 
of A£r is now described. 

4.2    Self-similar equilibrium function 

The self-similar family of equilibrium functions is constructed such that it satisfies the 
following conditions. The function Ye(£) is zero at £ = 0 and £ = 1. Let £max denote the 
value of £ where Ye reaches its maximum value Ymax. The equilibrium function increases 
monotonically from £ = 0 to £max and then decreases monotonically till it reaches zero at 
£ = 1. Consequently the second derivative Ye is always non-positive. Further it must 
be of the form given in Eq. 27. 

The nature of the function Ye (£) is revealed by considering its integral, dYe/d£, in the 
limit A£e —► 0. In this limit let the maximum value attained by Ye(£) be unity. Further 
let the slopes of the straight-line aymptotes to Fe(£) at £ = 0 and £ = 1 be mi and rri2 
respectively. Then 

\dYA      |   m,    =    lit. £<£s lim 
<% is)   £>£s 

Clearly in the limit A£e —► 0, dYe/d{, is a step function at £s. It follows then that in the 
same limit Ye (£) is proportional to a ^-function located at £s. First the specification of 
Ye(£) for £s = 0.5 is given since the expressions are simpler. The general unsymmetric 
case (£s # 0.5) is also documented, though the simulations are performed only for the 
symmetric case. The symmetric case is chosen for two reasons. As already noted in 
Section 3, the choice of £s = 0.5 maximizes the minimum distance between adjacent 
reaction zones in periodic extension of the thermochemistry. Secondly, for £s ^ 0.5 the 
magnitude of the slopes of the asymptotes to the equilibrium function at £ = 0 and £ = 1 
are not equal, whereas they are for the symmetric case. This inequality in the magnitude 
of the slopes results in a discontinuous Ye (£) at integer values of £. For the symmetric 
case, for sufficiently small A£e, the curvature of the equilibrium function goes to zero at 
the integer values of £. 

4.3    Equilibrium function Ye(£) for the symmetric case 

When the stoichiometric mixture fraction is £s = 0.5, the equilibrium function is sym- 
metric. For the symmetric case, £ss, the origin of the similarity variable, is £s. The 
equilibrium function Ye is specified as a function of z = £ — £ss = £ — £s. The zeros of 
the equilibrium function occur at z = ±1/2. The slopes of the straight-line aymptotes 
to Ye(z) at z = —1/2 and z = 1/2 must be m(= 2) and — m(= —2) respectively. In the 
limit of A£e —► 0, the slope of the equilibrium function is given by 

dY 
-£ = 1 - 2H(z), (43) 

where H(z) is the Heaviside unit step function: 

*(*) = (?   2<n   • v '      I   1    z > 0 
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This defines the integral of d2Ye/dz2 (which is proportional to a ^-function) to be -2. 
If the characteristic width of a 6-sequence function is e, then its magnitude scales like 

1/e. This means that one can express a family of <5-sequence functions (parametrized by 
e) which asymptote to a Dirac ^-function as 

Ye(z) e    V 

F(0, one Comparing this with the requirement for self-similarity that Ye (£) = \Ye 

can identify A£e = e and |ye"max| ~ 1/e ~ 1/A£e. 
We choose the Cauchy distribution for representing the ^-function since it is analyti- 

cally integrable twice. Thus the specification for Ye (z) is 

d2Ye 

dz2 

1 
7rA£e l + (z/AZeY 

The maximum value of the second derivative \Ye max|is 4/(7rA£e 

once with respect to z yields Ye (z) to be 

dz 
4 

- — arctan .  A , 
7T VA^e 

(44) 

Integrating Eq. (44) 

(45) 

In the limit 
lim   Ye(z) = l-2H(z), 

A^e-o 

the limiting value of the slopes (cf. 43) are recovered. 
Integrating Eq. (44) twice with respect to z we get Ye{z) to be 

Ye{z) = zarctan ( -?—] +——In   1 + (-£-) 
7T \A£e / 7T \A£e ) 

+ c, (46) 

where c is a constant of integration which is determined by the requirement that Ye go 
to zero at z = 1/2. This gives the value of c to be 

c= - —-^-dz — — arctan f —— )  In   1 + f ——— ) 
k      dz 7T V2A£e/ n [       \2AZJ 

This completes the specification of the equilibrium function for the symmetric case. Fig. 7 
shows the self-similar equilibrium function with £s = 0.5 for different values of A(e. 
Details of the equilibrium function for the general case are given in Appendix A. 

4.4    Reaction rate function 

Now that the scaling of \Ye maJ (~ 1/A£e) has been established, using the similarity 
condition on the group (A£,e)

2\Ye max|/yo yields 

(Aee)2in"maj 
V0 

-bAje
2 

7rA£e y0 
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Figure  7:    Equilibrium function Ye(£)  and its second derivative  Fe"(f)    for differ- 
ent values of the parameter A£ein the self-similar thermochemistry:      A£e = 

0.03183 (Ye"max    =    -40); ; - -A^e  = 1.27324 xlO-2   (n"max    =    -100);  
-A£e    =   4.244 x 10 3  (Ve"max   =   -300); The stoichiometric value of the mixture 
fraction is 0.5. 



22 

For this group to be independent of A£e, it is necessary that 

2/0 ~ A£e. 

Now the second similarity condition can be used to determine the scaling of S with 
respect to A£e , which results in 

S(|,y;A&)~A&. 

This is achieved by specifying the S to be of the form: 

S(i,y;Ate) = A£eS(i,y). (47) 

In a manner analogous to the Lee-Pope thermochemistry, the function S(£, y) is expressed 
as a product of two functions: 

S(£,y) = f(y)g(0. (48) 

These functions are chosen similar to those in the Lee-Pope thermochemistry. They are 

f(y)   =   Byexp(l-By) (49) 

g(i)   =   exp{-CG(0}, (50) 

where G(£), given by 

G(i) = Y-~Y^ = ±i arctan(0 - - In [l + f] , (51) 

is independent of A£e • A contour plot of the scaled reaction rate S(£, y) as a function of 
the similarity variables is shown in Fig. 8. The constants B and C are thermochemical 
parameters that determine the width of the reaction rate function in y and £ space, 
respectively. The variation of / with y for different values of the parameter B is shown in 
Fig. 9. The parameter B plays the role of activation energy. The reaction rate in a typical 
combustion process is significantly large close to equilibrium and rapidly decays far from 
equilibrium. This trend is captured by the shape of the function /(y) for suitable choices 
of the parameter B and A£e. The variation of g with £ for different values of the parameter 
C is shown in Fig. 10. The peak of the function g at stoichiometric mixture fraction is 
also characteristic of the variation of reaction rate in typical combustion systems. 

The characteristic reaction timescale r* associated with this reaction rate specification 
can be ascertained by considering the Taylor series expansion of S(f, y) in powers of y 
about the point (£,y = 0): 

S(Z,y) = S(t,o) + y dSfoy) 
dy 

+ ... 
j/=0 

Since S(£,0) is zero (the reaction rate is zero at equilibrium), for small y, the reaction 
rate is approximately y [dS(£,y)/dy]    0. Noting that 

dS(£,y) 
dy 

- g(OBe/rc, 
y=0 
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Figure 8: Contours of the reaction rate function S(f, y) in the self-similar thermochem- 
istry; B  = 0.0964, C = 0.055. 
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Figure 9: Plot of the function f(y) for different values of the parameter B in the self- 
similar thermochemistry; B = 0.477; B = 0.096. The value of the parameter 
A£eis chosen to be 0.03183 (Fe"max = -40). 
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g(S) 

Figure 10: Plot of the function g(£) for different values of the parameter C in the self- 
similar thermochemistry; C = 0.529; C = 0.055.  The value of the parameter 
A£eis chosen to be 0.03183 (ye"max = -40). The intersection of the horizontal line at 
height 0.1 with the function <?(£) defines the reaction zone thickness A£r. 
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the reaction rate for small y at £ = £max (note g(£max) = 1) is given by yBe/rc. From 
this relation the characteristic reaction timescale r* is deduced to be 

T* = rc/(Be). (52) 

It may be noted that the maximum reaction rate is 5max = l/rc = Be/r* . Since both 
/ and g are maximized by unity, rc can be used to adjust the actual magnitude of the 
reaction rate. This completes the specification of the self-similar thermochemistry. 

4.5    Reaction zone thickness A£r 

In the Lee-Pope thermochemistry, the reaction zone thickness in mixture fraction space 
was defined as 

A£r = & - &, (53) 

where the lean and rich limits of the reaction zone in mixture-fraction space (£; and £r 

respectively) are defined to be the lower and upper values of £ at which gx(£) equals 0.1. 
Here an alternative definition of the reaction zone thickness, denoted A£rss, is proposed, 
which bears a one-to-one relation with the Lee-Pope definition of A£r. In the next 
sub-section it is also shown how the Lee-Pope reaction zone thickness specification can 
be translated into a specification of parameters for the self-similar thermochemistry. The 
purpose of this alternative definition of the reaction zone thickness is to demonsrate the 
fact that in the self-similar thermochemistry, the ratio A£rss /A£e is unchanged (for fixed 
thermochemical constants B and C), even as A£e is varied. It is also shown that the ratio 
A£r /A£e changes by less than 1.5% over the range of A£e considered in this study. 

In order to define A£rss, the g function is expanded in a Taylor series about z = 0 ( 
which is where g attains its maximum value of 1 for the symmetric case; the definition is 
easily extended to the general case but not shown here) 

Since the first derivative of g is zero at z = 0, the second derivative at z = 0 is used 
to define a mixture-fraction scale based on the half-width of the g function. This scale, 
Mrss, is given by 

-1/2 /7T\V2 

=AHic)  • (55) ^rss   = 
d2g 
dz2 

z=0 

From the above it is clear that if the parameter C is maintained constant, then the ratio 
A£rss /A£e is also maintained constant. 

4.6    Matching the Lee-Pope thermochemistry 

The thermochemical parameters used by Lee & Pope in their simulations of homogeneous 
combustion were K = 400 and BL = 15. It is shown here that the parameters of the self- 
similar thermochemistry can be chosen to match the important derived parameters of the 
Lee-Pope thermochemistry, though the details of the two thermochemistry specifications 
may differ. 

The equilibrium function in the Lee-Pope thermochemistry is determined by £s and 
K. The self-similar thermochemistry equilibrium function is determined by £s and A£e • 
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The self-similar equilibrium function is matched to the Lee-Pope equilibrium function 
by specifying the same value of £s (which is 0.5) and by specifying the value of A£e such 
that it yields the same value of |Fe"maJ as that of the Lee-Pope equilibrium function. For 
£s = 0.5 and K = 400, the value of \Y"\ is 40. Using the relation between IK,"     I and 

'    c  max ■    „ ° I    e  max I 
A£em the self-similar thermochemistry (\Ye mJ = 4/(7rA£e)) gives the matching value 
of A£e to be 0.03183. The solid line curves in Fig. 7 show the self-similar equilibrium 
function and its second derivative for the choice of parameters (£s = 0.5, A£e = 0.03183) 
that match the Lee-Pope equilibrium function. 

In order to match the important derived parameters of the reaction rate function, the 
parameter C in the function g(£) (Eq. 50)is specified so as to match the reaction zone 
thickness A£r of the Lee-Pope thermochemistry. The value of A£r (=0.232) used in the 
Lee-Pope simulations corresponds to a lean reactive limit (&) in mixture-fraction space 
of 0.384. The corresponding value of C is computed using the relation (cf. Eq. 50) 

„     -In (0.1) c=^r- (56) 

where & = &/Afe and G(i) is given by Eq. 51. This yields a value of C = 0.529. The 
function g(£) for the choice of parameters (A£e = 0.03183, C = 0.529) that match the 
Lee-Pope reaction zone thickness is the solid line curve in Fig. 10. Comparing Eqs. 41 
and  49, it may be noted that 

B = BLA£e. (57) 

For the value of BL = 15 and A£e = 0.03183, this yields the matching value of B to be 
0.477. The solid line curve in Fig. 9 shows the function f(y) for this choice of parameters. 

In summary, the self-similar thermochemistry is a one-parameter family of 
(Ye(0>S(t,y) functions that preserves the scaling of the terms in Eq. 23 and maintains 
the ratio of reaction zone thickness to A£e. Thus even as the reaction zone thickness 
changes, the scaling underlying the thermochemistry remains unchanged. In the self- 
similar thermochemistry the maximum curvature of the equilibrium function |Ke"max| 
and the reaction zone thickness are controlled directly through the parameter A£e. 

5    The Conditional Moment Closure Model 

In Section 3 it was shown that in order to access the parameter range of interest in Da- 
£T space subject to the considerations discussed therein, a self-similar thermochemical 
model is needed. This model has been described in the previous section. With this in 
hand it now remains to specify the values of the physical parameters that are to be used 
in the PDF simulations over the range 0.3 < £r < 10. Prior to describing the results 
obtained by the PDF simulations (Section 6), solutions to the periodic reaction zone 
problem using the conditional moment closure (CMC) model of Bilger [2] are presented 
in this section. One of the advantages of the CMC model, which involves the solution 
of only one ordinary differential equation, is its simplicity. Apart from providing useful 
comparisons with the PDF simulation results, the CMC model is also used to test the self- 
similarity of the SSTC over a range of values of the thermochemical parameter A£e • The 
results of this test are necessary in order to decide the values of the physical parameters 
that are to be used in the PDF simulations.   It is found that the CMC solutions are 
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asymptotically self-similar in the limit A£e -> 0. Based on the CMC results, a threshold 
value of A£e is determined, below which the level of self-similarity is deemed acceptable. 
This acceptable level of self-similarity criterion is then used to determine the appropriate 
thermochemical and flow parameters that permit access to the Da -fr range of interest 
at minimum computational expense. 

In the CMC model, as applied in this context, the equation for the evolution of 
the mean progress variable conditioned on the mixture-fraction is derived and modeled. 
Introducing this conditioning variable adds to the dimensionality of the problem, but 
there is an overall advantage by reduction in the spatial dimesionality. 

A simple way to derive the CMC equation is based on the idea that if the fluctuations 
of the progress variable arise mainly from fluctuations in the mixture fraction field, then 
the difference between F(x, t) and its mean conditioned on the mixture fraction will be 
small. Consequently Y can be approximated by its mean conditioned on the mixture 
fraction. The important features of the CMC model are reproduced from Ref. [2] for 
clarity of exposition. Then the simplified equations for the periodic reaction zone problem 
are obtained from this closure. 

The starting point for the derivation of the CMC model equation is the evolution of 
the mixture-fraction and progress variable fields (Eqs. 3, 6) . In a turbulent flow, both 
Y(x,t) and £(x,i) are random fields. The sample space variable of f is denoted by 77. 
The expectation of V(x,<) conditional on £(x,t) = 77 is denoted Q(j?,x,t), i.e., 

Q(77,X,*) = (Y(x,i)U(x,*)=77). (58) 

For brevity (F(x,t)|£(x,i) = 77) is denoted by (F|T?). The deviation y(x,t) of the progress 
variable Y(x,t) from its conditional mean is defined as 

y(x,t) = Y(x,t)-Q(t[x,t],x,t). 

The evolution equation for Q(t], x, t) is 

dQ dQ d2Q 
■W + Mv) T£: = s(i> Q) + r<v£-v^>7df + eQ + ey> 

where 

and 

dx 

eQ = T 

dr\2 

d   /dQ\  |    d
2Q   Idtj 

dxi \dxiJ     drjdxi \dxi 

dy   Lr dy 
dt       l dxi 

d2 
y 

dxidxi 

(59) 

(60) 

(61) 

(62) 

Consistent with the basic assumption that the difference between F(x, t) and its mean 
conditioned on the mixture fraction is small, the terms in eg are assumed to be negligible 
compared to the other terms in the equation for Q. At sufficiently high Reynolds number, 
the terms in &Q are also negligible [2]. 

If fluctuations in Y arise from fluctuations in £ and if the fluctuating mixture fraction 
field is statistically 'homogeneous, then dQ/dxi must be negligible. Using these closure 
hypotheses Eq. (60) can be written as 

f-«*«*W (63) 
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where x = 2rV£.V£ is defined to be the scalar dissipation. The conditional mean scalar 
dissipation, (x | rf) is assumed to be equal to the unconditional mean scalar dissipation 
(x)- Furthermore for stationary solutions the temporal derivative must be zero and the 
resulting final form of the equation for Q is 

The boundary conditions on Q are Q(r] = 0) = 0 and Q(j] = 1) = 0. 
The reaction rate expression corresponding to the self-similar thermochemistry 

(Eqs. 28, 47,  48) can be substituted into Eq. 64 to obtain 

d2Q       2  A^ef(q)g(r)) 

W+bd rc 
= °' <65> 

where q = q/A(,e and q = Ye(rj) - Q{r)) . Substituting the expression for the mixing 
timescale in terms of the scalar dissipation (Eq. 5) and the expressions for the functions 
/ and g (Eqs. 49 and  50) in Eq. 65 results in 

0 + ^ASeqexp{[-Bq - CG{f,)\) ^ = 0. (66) 

The CMC equation (Eq. 66) can be rewritten in terms of the non-dimensional pa- 
rameters Da and £rss using the relations in Eqs. 55, 52 and 1 as 

^Q + J^qexp{[_Bq_CG(fj))}^iL(^-) =0, (67) 

where £rss = A£rss /£' . This equation admits stable solutions only for a limited range of 
parameter values Da and £rss. For given £rss, there is a critical value of Da , Dacrit (£rss), 
below which Eq. 67 admits no solutions, while for Da greater than Dacrit there are two 
solutions: one of which is stable and the other which is unstable. By solving for the crit- 
ical Damköhler number corresponding to the desired range of values in £~rss space (while 
keeping the thermochemical constants B and C fixed), the global extinction boundary as 
predicted by the CMC model can be determined in Da -£rss space. 

5.1     Self—similarity and the CMC model 

As noted in the previous section, in the self-similar thermochemistry the reaction rate 
function S(£,y) (and the associated reaction zone thickness A£rs5) is determined by a 
single parameter A£e (for fixed values of the thermochemical constants B and C) and 
is expressible as one member of a family of functions S(£,y; A£e) where (£ and y) are 
the similarity variables independent of A£e. This scaling of the composition variables 
was chosen so as to make the terms in Eq. 23 independent of A£e. It is of interest to 
determine whether solutions to the CMC equation (Eq. 67) can be expressed in terms 
of the same similarity variables, independent of A£e. In the range of parameters where 
such a scaling is valid, the reaction zone thickness may be varied by simply changing 
A£e without changing the underlying structure of the thermochemistry and this will be 
reflected in the self-similar nature of the solution. In this self-similar range, legitimate 
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comparisons can be made of solutions from models or DNS for different £r (or equivalently 
£rss) values generated using different reaction zone thickness from the same family of 
thermochemical functions. 

Since the same value of £rss may correspond to different choices of £' and A£rss, 
and since we are interested in generating different values of £r (or equivalently £rss) 
by changing A£e, it is of interest to determine whether the CMC model predictions 
for critical Damköhler at a given (rss are independent of A£e. Toward this end it is 
instructive to rewrite Eq. 67 in terms of the similarity variables, in the following form: 

A£e 0 + <?exp {[-Bq - CG(f})]} Da &, (^) = 0. (68) 

Since d2Q/drj2 scales like |ye"maJ (which in turn scales like 1/Afe), the first term is 
independent of A£e. Since the second term in Eq. 68 depends only on the similarity 
variables q and 77, it is also independent of A£e • The non-dimensional group (Da £j?sa) 
must be a constant, revealing the well-known scaling Dacrit ~ l/£rss > independent of 
A£e . However, the solutions to Eq. 68 will depend on the boundary conditions imposed 
on the similarity variables which, corresponding to Q(t] = 0) = 0 and Q(r) = 1) = 0, 
are 9(77 = -1/A£e) = 0 and q(f} = 1/Afe) = 0. Since the boundary conditions are 
not independent of the similarity parameter A£e , in general the solutions to Eq. 68 will 
not be self-similar. However, since the magnitude of the reaction rate function becomes 
negligibly small at £ = ±l/(2A£e ), and this value decreases with decreasing A£e , it turns 
out that for A£e below a limiting value, the critical Damköhler predicted by the CMC 
model does indeed become independent of A£e. The details of the numerical technique 
used to solve Eq. 68 are given in Appendix B. 

5.2    CMC results for the self-similar thermochemistry 

The baseline test case is chosen to be the SSTC specification that matches the Lee- 
Pope thermochemistry. The thermochemical constants for this case are B = 0.477 and 
C = 0.529. The baseline value of A£e is 0.03183 which corresponds to |Fe"maJ = 40. These 
values correspond to a reaction zone thickness A£rof 0.232 (£rss= 0.03878). Choosing 
the r.m.s mixture fraction to be 0.232 results in £r = 1 ( or £rss = 5.98 ). For this baseline 
test case the CMC model prediction for Dacrit is 30.41 which corresponds closely to the 
(f * = £'/A& = 1) predictions in Lee k Pope [8] where Dacrit ~ 30. 

Having established this baseline result for \Ye max| = 40 (A£e =0.03183), the maximum 
curvature of the equilibrium function was progressively increased in steps of 20 (corre- 
sponding to a decrease in A£e) to a value of |Fe'max| = 120 (A£e =0.0106), while keeping 
the parameter £rss fixed at the value of 5.98. As \Ye max| is increased, higher grid density 
in the neighborhood of 77 = £s is required to resolve the solution to the CMC equation 
accurately. Details of the non-uniform grid for this purpose are given in Appendix B. 

The principal features of the CMC model solution are captured by the critical 
Damköhler and 

9M = [n(k)-Q(6)]/A£e, 

namely, the scaled maximum departure of the conditional mean from equilibrium. The 
variation of these quantities with varying \Ye max|is shown in Fig. 11.   It is clear that 
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Figure 11: Variation of the CMC model prediction for Dacrjt(A) with l^'maxl f°r £rss — 
5.98 . The scaled maximum perturbation qM{a) is also shown with its corresponding scale 
on the right. 
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< 100 there is some variation in the CMC solution, but the val- 
ues tend to asymptote around \Y = 100.   From this result we conclude that for 
\Ye maxi ^ 100(A£e < 0.0127) the CMC model solutions are self-similar and independent 
of variations in \Ye maJ (or A£e). 

5.3    Choice of parameters for the simulation 

Given the range of A£e where the CMC model solutions exhibit self-similar behavior, the 
physical parameters can now be chosen to access the parameter range 0.3 < £r < 10. 
The requirement that the values of A£e lie in the self-similar range i.e. A£e < 0.0127 
(|ye maJ > 100.), is added to the list of considerations in Section 3. For each case the 
maximum value of £' allowed by Eq. 14 is chosen, thus minimizing the largest timescale 
Tt and the computational cost. All these constraints are summarized in the plot shown 
in Fig 12. The values of the physical and thermochemical parameters of the simulations 

2000 r 

1500 - 

> 1000 - 

500 - 

0.00 

Figure 12: Plot of the contours of £r in the f' — Ye max plane with f' limited by the 
relation £' < (1 — A£r )/4. The region above \Ye max| = 100 is deemed self-similar. The 
dash-dot (—• — •—) curve shows the estimated computational cost in arbitrary units 
(scale on the right vertical axis) based on estimated nominal resolution requirements. 
The self-similar thermochemistry is used with B = 0.096, C = 0.055. 

are given in Section 6. 
The thermochemical constant C determines the ratio between A£e and the reaction 
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zone thickness A£rss (or A£r). Its value is determined based on considerations at the 
thick reaction zone limit (fr = 10). In order to simulate this case at minimum com- 
putational cost it is desirable to use the maximum value of £' subject to the constraint 
expressed in Eq. 14 . This implies that the reaction zone thickness should be at its max- 
imum value for this case. The reaction zone thickness is in turn determined by A£e and 
the thermochemical constant C. The maximum value of A£e is determined by the self- 
similarity requirement which dictates that A£e < 0.0127. The thermochemical constant 
C is determined on the basis that for the broadest reaction zone (which corresponds to 
the largest value of A£e that is in the self-similar range) the function g(£) be negligibly 
small (arbitrarily chosen to be less than 2% of the maximum value of g which is unity) 
at f = 0 and £ = 1.   See Fig 13.   This results in a value of C = 0.055.   Ideally the 

g(S) 

Figure 13: Plot of the function g(£) in the self-similar thermochemistry specification, 
showing the reaction zone thickness for the three cases that are investigated in the simu- 
lations. For ir = 10 and |r = 1 the value of C is 0.055 , while for |r =0.27 it is 0.197. The 
values of the parameter A£e corresponding to the different reaction zone thickness are: 
 A£e = 1.27324 x lO-2 (ye"max = -100), A£r =0.6 ,£.=10; A£e   = 4.244 x 
10~3 (Ye max = -300), A£r =0.2, £ =1; A£e   4.244 x 10"3 (Fe"max =  -300), 
A£r =0.067, £r =0.27. The intersection of the horizontal line at height 0.1 with the func- 
tion g(£) defines the reaction zone thickness A£r . 

same value of C should be used for all the different values of £r . However, as previously 
noted the parameter C fixes the ratio between A£e and A£r. For the smallest value of 
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£r (=0.27), which corresponds to the thinnest reaction zone, the value of A£e implied by 
C = 0.055 is so small that the numerical resolution requirements are prohibitive. (The 
details of convergence and numerical resolution requirements are given in Appendix D). 
Consequently, for the £r =0.27 case, A£eis fixed at the same value as for the £r =1 and 
the value of C is chosen to be 0.197 . 

The thermochemical constant B is determined on the basis that for the largest value 
of Afe used in the simulation (A£e = 0.0127) the function f{y) be negligibly small (arbi- 
trarily chosen to be less than 2% of the maximum value of / which is unity) at y = Fmax . 
See Fig 14. This results in a value of B = 0.096 which is used for all values of £r . 

f(y) 

i i 1—:—r 

Figure 14:  Plot of the function f(y) showing the reaction zone thickness for the cases 
that are investigated in the simulations. The self-similar thermochemistry is used with 
B = 0.096.    The curves correspond to different values of the parameter A£e:     
A£e   =    1.27324 x 10-2(Fe"max    =    -100),for £. =10;  -   -   -A£e     =    4.244 x 

10~3 (ye"max  =  -30°)> for ir =1 and ir =0-27. 

6    Model predictions 

In this section the simulation results for three different reaction zone thickness parameter 
(|r) values using the CMC, IEM and EMST models are described. The section begins 
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with a description of the numerical solution procedure for the PDF models. The CMC 
model and the numerical procedure used to solve the CMC model equation have already 
been described in detail in Section 5. This is followed by a description of the three different 
cases that are to be investigated. Then a simulation strategy is outlined which permits 
rough estimation of the critical Damköhler number corresponding to global extinction. 
The results obtained using each model are then presented for each of the three cases. The 
section concludes with a discussion of the results. 

6.1    Numerical solution of PDF model equations 

In Monte Carlo simulations of inhomogeneous flows the solution domain in physical space 
is discretized into a number of cells for the purpose of extracting local mean quantities 
which appear in the particle evolution equations. Within each cell at any given time t, the 
joint pdf of velocity, composition and turbulent frequency is represented by an ensemble 
of N particles. The position, velocity and turbulent frequency of the ith particle are 
denoted by X^, U^ and a/1) respectively. If the number of compositions is D , then 
<f>ßi (ß = 1) • • • > D) represents the composition of the ith particle (i = 1, ..., N). Each 
particle is assigned an importance weight Wi (such that the particle weights sum to unity) 
which determines its relative contribution in estimates of the means and higher order 
moments of the particle properties. 

6.1.1     Physical sub—models 

The evolution equations of the particle properties are: 

dX®    =   V{i)dt (69) 

dU«   =   --C0(u) (uW(<) - (U)) dt + ^C0k(u) dW (70) 

dJ$   =   -(JV-{uj))C3(u;)dt-(uj) u®Sudt (71) 

+^{2a2(u)u^C3(uj)}dW* (72) 

*    =   ef + Sßm),      /3 = 1,2. (73) 

The position equation simply states that each particle moves with its own velocity. The 
velocity evolves by the simplified Langevin model for stationary isotropic turbulence with 
the constant-density simplification [14] [6]. The model constant Co is fixed at its standard 
value of 2.1. The term rfW represents an increment in the isotropic Wiener process W(i). 
The details of this model and its performance may be found in Pope [15]. The turbulent 
frequency evolves by the Jayesh & Pope [7] model with simplifications resulting from the 
homogeneity assumption incorporated in Eq. 73. In the equation for turbulent frequency 
(Eq. 73), the term dW* represents an increment in the Wiener process W*(t) which is 
independent of the Wiener process in the velocity equation. For stationary homogeneous 
turbulence the modeled source term Su is set to zero, thus ensuring that (u) is stationary. 
The values of the model constants in the turbulent frequency equation are C3 = 1 and 
C4 = 0.25. The pdf of the stationary and homogeneous turbulent frequency is a gamma 
distribution. Further details of the turbulent frequency model may be found in Ref. [7]. 
The composition variables are defined as (pi = £ and 02 = Y. In the composition evolution 



36 

equation (Eq. 73) eß represents the mixing model and Sß([cfo]) represents the reaction 
rate of the ßth scalar (which is non-zero only for ß = 2) and [<£,] represents the vector of 
compositions corresponding to the location of the ith particle in composition space. The 
self-similar model thermochemistry specification for the reaction rate is used. The two 
different mixing models used in this study, IEM and EMST, are now described. 

6.1.2    Mixing models 

In the IEM model [5], the ith particle's compositions evolve by 

^ = -&(<») ifo-Vß)), (74) 

where Cj, is a model constant chosen to be 2.0. While this model is attractive on account 
of its simplicity it is known to perform unsatisfactorily in certain reactive flows [10], [11]. 

The EMST mixing model is based on interactions between particles that are local in 
composition space. It is an extension of the mapping closure particle model to multiple 
scalars. Only the salient features of the model are presented here for completeness. A 
complete description of the EMST model and its validation in inert and reactive tests 
may be found in Subramaniam & Pope [18]. 

At any given time a subset of NT particles is chosen for mixing from the ensemble 
of N particles in the cell, based on an age property associated with each particle. A 
Euclidean minimum spanning tree is constructed on this subset of NT particles so that 
each particle is connected with at least one neighbor particle. See Fig. 15. The vector of 
particle compositions 0,^ = 4>ß(i)i i = 1,...NT evolves as: 

w. '«- 

d</>... NT-I 

dt = ~a £ B» {(4(0 - K )*»* + (4(0 - £J<W } • (75) 

where the vth edge connects the particle pair (m„,n„) and 6 represents the Kronecker 
delta. The specification of the model constants Bv and a is described in Ref. [18]. 

6.1.3    The PDF2DV program 

These physical sub-models are incorporated in a FORTRAN program called PDF2DV 
developed by Pope [13] to calculate the properties of statistically two-dimensional (plane 
or axi-symmetric) turbulent reactive flows. The problem under consideration has spatial 
structure in only the x% direction. Periodic boundary conditions are imposed at X2 — 0 
and X2 = L on the fluctuating velocity, turbulent frequency, fluctuating mixture fraction 
and progress variable. The flow parameters for the simulations are given in Tables 1, 2. 

The grid is chosen to be uniform in the computational domain 0 < x-i < L and the 
grid spacing is chosen such that there are at least 5 computational cells per integral scale 
I (See Table 3). Only the mean progress variable field (Y(x, £)} has a spatial variation in 
X2 that has to be resolved. This is guaranteed provided the fluctuating mixture fraction 
field (i.e. the flame brush) is resolved spatially. Using the relation between the r.m.s. 
mixture fraction £' and the integral scale / (Eq. 16), it is clear that resolving the integral 
scale / ensures that all the composition mean fields are spatially well resolved. 

The important flow timescales are the convective timescale Ax2/(2u') (where Ax2 is 
the length of a computational cell in the xi direction and u' is the r.m.s. velocity), the 
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Figure 15: Euclidean Minimum Spanning Tree constructed on the mixing subset of an 
ensemble of particles in 2-D composition space (open circles represent particles in the 
non-mixing state); N = 512 particles, joint-normal distribution. 

Table 1: Summary of velocity-field statistics which are common to all the cases in the 
PDF simulations. 

/—integral length scale 
k—turbulent kinetic energy 

1.0 
1.5 
1.0 
1.0 

u'—turbulence intensity (y/2k/3) 
e—mean dissipation rate 
(w) —mean turbulent frequency (e/k)    0.67 
T—turbulence timescale 1.5 
Tfj)—mixing timescale 0.75 
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Table 2: Summary of case-specific flow parameters in the PDF simulations. 

£r =10 £ =1 £r =0.27 

L—computational box-length              31.13 9.34 7.78 
£'—nominal r.m.s. mixture fraction      0.06        0.2 0.24 
Tt—transport timescale                         58.1 5.23 3.63 

Table 3: Summary of numerical parameters for each case in the PDF simulations. 

£r =10    £r =1    £r =0.27 

Nc—number of cells in [0, L] 
AX2/I—spatial resolution 
Npc—nominal number of particles per cell: 
CAtm—At < C^tmT<t> 
CAtu— Af < CAtuAx2/(2u') 
At—time step 0.036     0.036       0.038 

156 50 40 
0.2 0.19 0.19 
80 750 1120 
0.1 0.1 0.1 
0.4 0.4 0.4 
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mixing timescale r^, and the transport timescale Tt. Particle properties are advanced 
over a time step At, chosen such that all important flow timescales are resolved (see 
Table 3), using the method of fractional steps [14]. The time step restriction on At arises 
from the convective timescale which is the smallest of the flow timescales. The effects 
of mixing and reaction on the reactive scalar Y are implemented through a first-order 
splitting strategy [20]. The change in Y due to reaction over a time step At is computed 
analytically thus avoiding the need for expensive sub-stepping of the chemical timescale 
which would have made the high Damköhler calculations prohibitive. The details of 
the analytic integration of the reaction rate are provided in Appendix C. The particle 
number density is uniform in both physical space and in composition space (namely the 
£ — Y plane). For small values of (r , within a computational cell, the thermochemical 
composition scales (A£r and A£e) are a small fraction of the region accessed by the particle 
compositions (which is determined by the r.m.s. mixture fraction £'). For these cases, the 
number of particles per cell Npc has to be increased to ensure that the thermochemical 
scales are adequately resolved. The details of the convergence of important flow statistics 
with respect to Npc are provided in Appendix D. 

6.2    Description of test cases 

The turbulent velocity field parameters which are the same for all the cases are tabulated 
in Table 1. The different value of stationary mixture fraction standard deviation for 
each case is generated by changing L, the length of the computational domain. Since the 
jump in the mean mixture fraction over the computational box-length L is held fixed at 2, 
changing L effectively changes the imposed mean mixture fraction gradient. The different 
computational box-lengths, mixture fraction standard deviation and associated transport 
timescale are tabulated in Table 2. The fundamental and derived thermochemical pa- 
rameters for each case are given in Table 4. The case with £r =10 (£' « 0.06, A£r = 0.6) 

Table 4:   Summary of thermochemical parameters for each case.   The thermochemical 
constant B is 0.096 for all cases. 

ir =10 ir=l ir =0.27 

A|e 1.27 x 10-2 2.24 x 10-3 2.24 x 10~3 

l*e  maxl 

A£r 
100 
0.6 

300 
0.2 

300 
0.067 

A£r5s 0.048 0.016 8.46 x 10-3 

C 0.055 0.055 0.197 

corresponds to broad reaction zones. Consider fluid at a physical location where the mean 
mixture fraction is stoichiometric. The fluctuations in mixture fraction at this location 
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are small compared to Afr and are almost always confined within the reaction zone in 
composition space. The case with £r =1 (f' « 0.2, Afr = 0.2) corresponds to moderate 
reaction zone thickness parameter. The mixture fraction fluctuations are of the order 
of the reaction zone thickness A£r . The case with £r =0.27 (f' « 0.24, A£r = 0.067) 
corresponds to thin reaction zones. The mixture fraction fluctuations are large compared 
to the reaction zone thickness A£r. This is expected to be a severe test of the mixing 
models. 

6.3    Simulation strategy 

The objective is to perform simulations for each of the three cases (corresponding to fixed 
values of £r ) for a range of Damköhler numbers spanning the range of physical states from 
stable reaction to global extinction. One important outcome of these simulations will be 
an estimate of the critical Damköhler corresponding to global extinction. 

In order to obtain these estimates it is necessary to quantitatively characterize global 
extinction in a PDF simulation. In the DNS of homogeneous combustion Lee &: Pope [8] 
used an imbalance index, which is a non-dimensional measure of the imbalance between 
mixing and reaction terms in the evolution equation of the volume-averaged-perturbation 
[y(x,<)] [8], to characterize global extinction. In the present study an extinction index is 
defined based on the temporal evolution of the particle composition values in the PDF 
simulation. 

6.3.1    Extinction index 

All the simulations are evolved from the initial condition of chemical equilibrium. In 
composition space all the particles initially lie along the equilibrium line Ye(£). See 
Figure 16. After sufficient time has elapsed for the effect of initial conditions to be 
negligible, the particle properties reach statistical stationarity. 

At very high Da , reaction forces these particles to remain close to the equilibrium 
line, while mixing tends to draw them away from equilibrium. At the other extreme if 
there is no reaction (inert case), then mixing forces the particles to the Y = 0 line, which 
corresponds to global extinction. Intermediate values of the Da number result in particles 
populating the composition plane somewhere between these two extreme states. At any 
time t, one measure of the departure of particles from the equilibrium line in composition 
space is the expectation of the progress variable conditioned on mixture fraction (Y|£)(i). 
However, it is preferable to characterize extinction by a single variable rather than a 
function. An alternative measure could be the mean progress variable evaluated at the 
physical location where the mean mixture fraction is stoichiometric, [{Y)(x2,t)]u\fX2\=^s. 
This physical location is always at x^ = L/4 in the simulations and the mean progress 
variable at this location is denoted (Y)s(t) = (F)(L/4,t) = [(y)(ai2,£)](0(x2)=£.- Using 
the evolution equation of {Y}, the decay of the mean progress variable can be estimated 
for the inert case. Once stationarity is reached, the ratio of the change in (Y)s(t) from 
its value at t = Tt to the change in (Y)s(t) from its value at t = Tt for the decaying inert 
case can be used to quantify extinction. 

If the characteristic lengthscale of variation of (Y) in X2 is L, then the mean progress 
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Figure 16:   Initial condition for the PDF simulations:   mixture fraction £ is uniformly 
distributed in [0,2]; progress variable Y is initially at equilibrium Fe(£)- 
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variable evolution equation (Eq. 17) for the inert case can be written as 

d(Y)    =       d(u2Y) 

dt dx-i 
d2(Y) 

-It 
dx\ 

L2(Y) 

Tt ' 

The solution to the equation 
d{Y) _   <y) 

dt Tt ' 

is simple exponential decay with a timescale Tj. Consequently to a good first approxima- 
tion, for the inert case one may write 

(Y)(x2,t) = (Y)(x2,0)exp(-t/Tt). 

Numerical simulations confirm this behavior with Tt « 0.04 (L/l)  r. See Fig. 5. 
Using this relation the following quantity may be used to quantify global extinction: 

_vmä-jY),m ...   t>Tt 
[(y>,(r,)(exP(i-(/T,)-i)]' 

The denominator is the change in the mean progress variable at L/4 from t = Tt if the 
flow were inert, and the numerator is the corresponding change in mean progress variable 
for non-zero reaction at the Damköhler specified in the simulation. The changes in {Y)s 

are computed with respect to the t = Tt instant so as to ensure that the effect of initial 
conditions is negligible by t = Tt, the largest timescale in the flow. 

However, this measure suffers from two drawbacks. Firstly, it is subject to relatively 
large statistical variations (since only the particles in the cell located at x% = L/A con- 
tribute to this quantity, see Fig. 17) and secondly for the broad reaction zones case this 
quantity is not truly representative of the state of particles in the reaction zone. To 
alleviate both these difficulties, instead of using (Y)s it is preferable to use the reaction- 
zone-conditioned mean progress variable (Y|£#). For 0 < £ < 1 this is defined as 

(Y\U) = (Y®\ti<sV<tr). (77) 

This quantity is a direct measure of the state of particles in the reaction zone. 
Furthermore, noting that each fluid particle in the "anti-flame" interval with com- 

position (£, Y) is statistically identical to a fluid particle in the mixture fraction interval 
[0,1] with composition ([£] — £, —Y), the particle composition values (|FW|) in the "anti- 
reaction zone" may be used in computing (Y\£R), thereby reducing the statistical error. 
The temporal evolution of (Y\£R) is shown in Fig. 18. 

Using (F|£ä) the extinction index (E.I.(t)) is defined as 

EMt)=[(Y\UKTt)(eMl-t/Tt)-l)y    t>Tt- (78) 
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Figure   17:     Evolution   of   {Y)a(t)   (—)   and   the   quantity   [{Y)s(t)/{Y)s(Tt) - 1]/ 
[(exp(l - t/Tt) - 1)] ( ) for the £r =10 case: Da =5 (stable reaction). 
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Figure 18: Evolution of (F^ä) for the £r=10 case: Da =5 (stable reaction). 
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Given the statistical variability inherent in turbulent flows, global extinction can only 
be quantified probabilistically. In Lee & Pope [8] the authors suggest two possible ways 
to quantify global extinction: (i) the probability of extinction at a normalized time and 
(ii) the normalized mean time to extinction in the context of DNS. Both these quantities 
are beyond the scope of current computational capabilities for either PDF or DNS. In 
this light, an imprecise definition of extinction for practical purposes is used based on 
the extinction index. At any Da*, after the simulation has evolved for a time Ts (where 
Ts > Tt and is usually 2 to 4 times Tt) 

if   E.I.(TS)    >   0.25    : global extinction   VDa  < Da* 

else if   E.I.(TS)    <   0.25    : stable reaction    VDa > Da*. 

The evolution of the extinction index for representative cases showing stable reaction and 
extinction is presented in Fig. 19. By performing simulations for a range of Da , starting 
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Figure 19: Evolution of {Y\£R) and E.I. for the £r=10 case. Da =5 (stable reaction): 
 (Y\£R), E.I.; Da =0.35 (extinction): E.I., (Y\£R) 

from a very high value of Da which is evolved for Ts ~ [2 - 4]Tt and then progressively 
reducing the Da in steps by a fixed fraction (and evolving the flow for Ts at each Da ), 
a rough bracket of the critical Damköhler number [Da/, Dau ] corresponding to global 
extinction can be determined using the criterion expressed in Eq. 78. This then implies 
that for Da  > Da„ 'there is stable reaction with high probability and that for Da  < Da; 
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there is a high probability of global extinction.  A sketch of the variation of probability 
of stable reaction with Damköhler is shown in Fig. 20. 

Figure 20: Sketch of the probability of stable combustion showing plausible locations for 
the lower and upper brackets on the critical Damköhler number. 

6.3.2    Simulation algorithm 

The simulations and the prediction of global extinction based on E.I. are sensitive to 
the initial condition from which the run is started and are also subject to statistical vari- 
ability. The effect of statistical variability can be quantified, within the bounds of the 
computational expense-accuracy trade-off, by performing multiple independent simula- 
tions (MIS) at a given Damköhler number. Thus by performing say M MIS at Dau and 
Da;, the probability of extinction (or stable reaction) can be estimated at Da* and Dau . 

The sensitivity to initial conditions requires that the ratio by which the Damköhler is 
reduced in the search for [Da;, Dau ] not be so large as to cause extinction when a smaller 
ratio would have led to stable reaction. An acceptable value for this ratio is determined 
empirically to be 0.7. 

The considerations of statistical variability and sensitivity to initial conditions dic- 
tate the formulation of the following simulation algorithm, which enables extracting the 
[Da;, Dau ] estimates from the simulations accurately, at minimum computational cost. 
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Algorithm: 

0. Establish stable reaction at a high Damköhler denoted Da0 (estimated from the 
CMC predictions) by evolving the flow for Ts = 3Tt. 

1. Reduce the Damköhler by a pre-determined factor (0.5) in a series of steps, evolving 
each Da for Ts = 2.1Tt till global extinction is observed. Thus obtain preliminary 
estimates for [Da;, Dau ]. 

2. Perform multiple (M = 4) independent simulations1 starting at the preliminary 
estimate Da „, reducing the Da by a factor of 0.7, evolving the flow for Ts = 3Tt 

or to extinction, whichever is earlier. Thus obtain refined estimates of [Da;, Dau ] 
and estimates of the probability of extinction at these Damköhler numbers. 

6.4    Results 

The model predictions for the stability limits in Da-£r space are shown in Fig. 21.  See 
Table 5.   The CMC model predictions for the critical Damköhler corresponding to ex- 

Table 5: Global extinction predictions. 

£r =10 £r =1 £r =0.27 

Dacrit(CMC) 0.527 56.02 204.2 
[Da,, Dau ] (IEM)        [0.35, 0.5]     [1260,1500]     [8 x 105,1.6 x 106] 
[Da,,Dau] (EMST)    [0.35,0.5]    [122.5,175] [700,1000] 

tinction scale as f~2 for the £r =10 and £r =1 cases, as expected. The prediction for the 
thin reaction zone case (£r = 0.27) deviates from this scaling since the thermochemical 
constant C is different for this case. While there is reasonably good agreement among the 
models for broad reaction zones, it is found that the predictions diverge with decreasing 
reaction zone thickness parameter. The definition of global extinction used in this study 
is largely insensitive to the effect of statistical variability. For the cases where MIS were 
performed (the only exception being the IEM for £r =0.27 for reasons noted earlier), it is 
found that all 4 simulations exhibited stable combustion at Dau and global extinction at 
Da/. However, these results must be cautiously interpreted within the limited definition 
of global extinction used in this study. 

Quantitative comparisons of the model predictions are also made and the statistic 
that is compared is defined in terms of the mean perturbation from equilibrium of the 

1For the £r =0.27 case the IEM model prediction for critical Damköhler number differs from the CMC 
and EMST predictions by several orders of magnitude. Multiple independent simulations were not per- 
formed for this case since the IEM model is grossly in error. 
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Figure 21: Stability diagram in the Da -£r plane showing the different model predictions 
for the stability boundary: D CMC; open triangles IEM; solid triangles EMST. The line 
represents Da   = 56.02£^2. 
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progress variable conditioned on the reaction zone (J/|£R)(*)> which is defined as 

(y\U)(t) = ((Ye^
l)(t)) - Y^mSt < £«(t) < (T). (79) 

This quantity attains a stationary state after one transport timescale Tt has elapsed and 
time-averaging may be performed for t > Tt. The predictions of the PDF models for 
this time-averaged quantity, [(2/|£A)]T are compared with the average value of q{r)) in 
the reaction zone obtained from the CMC predictions in Table 6. The results are now 
discussed on a case-by-case basis. 

6.4.1     Broad reaction zone case: £r = 10 

For this case the numerical parameters used to obtain the CMC result are tabulated in 
Table 7. The CMC model prediction for the critical Damköhler number for £r =10 is 
0.527. The perturbation of the conditional mean progress variable from equilibrium (<?M) 

at Dacrit is shown in Fig. 22. The perturbation of the conditional mean progress variable 
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Figure 22:    Perturbation q(r})   =   Ye{r}) - Q(ri)  obtained from the CMC model at 
Dacrj^ =0.527 for the £r =10 case. 

from equilibrium (^M) at Da^t for the cases £r =10 and £r = 1 is presented in terms of the 
scaled similarity variables ( qM = qM/^e and rj = (£ — ^S)/A^e ) in Fig. 23. (The case 
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Figure 23: Scaled perturbation q(fj) = q(r)/&£,e )/A£e obtained from the CMC model at 
Dacrit for ir =10 (D) and |r =1 (A). 



51 

£r =0.27 is not shown because it is not expected to obey the same scaling, given that the 
value of the thermochemical constant C is different for that case). While the solutions are 
not exactly self-similar, they do show an approximate collapse under this scaling. The 
IEM prediction for this case is (Da/ = 0.35, Da„ =0.5). The scatter plots for Da =0.5 and 
Da = 0.35 are shown in Figs. 24 and 25 respectively.   The EMST prediction for this case 

1.0 r 

Y 

Figure 24: Scatter plot of progress variable Y vs. mixture fraction £ for the £r =10 
case at t = 163 (2.8Tt) using the IEM mixing model. The Damköhler number for this 
simulation (Da =0.5) corresponds to stable reaction. The solid line is the equilibrium line 
Ye(£). The grayscale intensity of each particle represents the magnitude of the reaction 
rate Sy whose scale is shown in the table on the right. 

is also (Da/ = 0.35, Da„ =0.5). The scatter plots for Dau =0.5 and Da/ = 0.35 are shown 
in Figs. 26 and 27 respectively. The IEM model result for Da =0.5 shows a slightly 
higher degree of scatter which may be attributed to the non-local nature of the model. 
However, apart from this the IEM and EMST results are very similar for this case, and 
the critical Damköhler number predictions are in good agreement with the CMC result. 

6.4.2    Moderate reaction zone case: £r = 1 

The CMC model prediction for the critical Damköhler number for £r =1 is 56.02 (numer- 
ical parameters used to obtain this solution are shown in Table 7). The perturbation of 
the conditional mean progress variable from equilibrium (qM) at Dacrit is shown in Fig. 28. 
The IEM prediction for this case is (Da/ = 1260 , Dau =1500), while the EMST prediction 
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Figure 25: Scatter plot of progress variable Y vs. mixture fraction £ for the |r =10 case at 
t = 116.3 (2Ti) using the IEM mixing model. The Damköhler number for this simulation 
(Da =0.35) corresponds to global extinction. The solid line is the equilibrium line Ye(£). 
The grayscale intensity of each particle represents the magnitude of the reaction rate Sy 
whose scale is shown in the table on the right. 
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Figure 26: Scatter plot of progress variable Y vs. mixture fraction £ for the £r =10 case 
at t = 115.2 (1.98Tt) using the EMST mixing model. The Damköhler number for this 
simulation (Da =0.5) corresponds to stable reaction. The solid line is the equilibrium line 
Fe(£). The grayscale intensity of each particle represents the magnitude of the reaction 
rate Sy whose scale is shown in the table on the right. 
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Figure 27: Scatter plot of progress variable Y vs. mixture fraction £ for the £r =10 
case at t = 115.4 (1.98Tt) using the EMST mixing model. The Damköhler number 
for this simulation (Da =0.35) corresponds to global extinction. The solid line is the 
equilibrium line Ye(£). The grayscale intensity of each particle represents the magnitude 
of the reaction rate Sy whose scale is shown in the table on the right. 
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Figure 28:    Perturbation q(r))   =   Ye{rj) - Q{r\) obtained from the CMC model at 
Dacrj^. =56.02 for the £r=l case. 
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for this case is (Da; = 122.5, Dau =175). Both PDF models predict significantly higher 
critical Damköhler numbers than the CMC model. This may be due to the fact that in 
the CMC model spatial homogeneity is assumed, whereas in the physical problem there 
is a "flame brush". The PDF models account for transport of progress variable flux in 
closed form and presumably constitute a better model of the physical problem. The dif- 
ference between the IEM and EMST predictions can be traced to the fact that the IEM 
model is non-local in composition space, whereas the EMST model is local in composition 
space. The scatter plots for Da =1500 and Da = 1260 using the IEM model are shown 
in Figs. 29 and 30 respectively.    For the stable reaction case (Fig. 29), the IEM model 

Y   o.o 

1.5 2.0 2.5 

Figure 29: Scatter plot of progress variable Y vs. mixture fraction £ for the £r =1 case at 
t = 15.7 (3Tt) using the IEM mixing model. The Damköhler number for this simulation 
(Da =1500) corresponds to stable reaction. The solid line is the equilibrium line Fe(£). 
The grayscale intensity of each particle represents the magnitude of the reaction rate Sy 
whose scale is shown in the table on the right. 

suggests that the pdf in composition space in the reaction zone is composed of 3 distinct 
regions: (i) a (5-function at equilibrium, (ii) relatively low probability density regions 
close to equilibrium corresponding to reaction terms being dominant, and (iii) region of 
high probability density corresponding to a dynamic balance between reaction, mixing 
and transport. For the case corresponding to global extinction (Fig. 30), the particles 
are found to be collapsing to the Y = 0 line. The scatter plots for Dau =175 and Da; = 
122.5 using the EMST model are shown in Figs. 31 and 32 respectively. In this case for 
stable reaction, there is considerably less scatter of particles away from the equilibrium 
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Figure 30: Scatter plot of progress variable Y vs. mixture fraction £ for the |r =1 case at 
t = 19.8 (3.78Ti) using the IEM mixing model. The Damköhler number for this simu- 
lation (Da =1260) corresponds to global extinction. The solid line is the equilibrium line 
Fe(£). The grayscale intensity of each particle represents the magnitude of the reaction 
rate Sy whose scale is shown in the table on the right. 
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Figure 31: Scatter plot of progress variable Y vs. mixture fraction £ for the £r =1 case 
at t = 15.67 (2.992t) using the EMST mixing model. The Damköhler number for this 
simulation (Da =500) corresponds to stable reaction. The solid line is the equilibrium line 
Fe(f )• The grayscale intensity of each particle represents the magnitude of the reaction 
rate Sy whose scale is shown in the table on the right. 
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Figure 32: Scatter plot of progress variable Y vs. mixture fraction £ for the £r =1 
case at t = 7.77(lA8Tt) using the EMST mixing model. The Damköhler number 
for this simulation (Da =122.5) corresponds to global extinction. The solid line is the 
equilibrium line Ye(£). The grayscale intensity of each particle represents the magnitude 
of the reaction rate Sy whose scale is shown in the table on the right. 
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line. The EMST model consistently predicts higher (Y\£,R) for stable reaction compared 
to IEM for all the cases. For the extinguishing case (cf. Figs. 32 and. 30 ), there is a 
signigicant difference between the EMST and IEM model behavior. As opposed to the 
uniform collapse from equilibrium seen in the IEM scatter plot, the EMST model shows 
distinctly different behavior depending on whether or not the particles are in the reac- 
tion zone in mixture fraction space. Within the reaction zone there is a balance between 
mixing and reaction, with transport moving reactive particles out of the reaction zone 
into cells where the mean composition ((f), (Y)) lies outside the reaction zone in com- 
position space (f e [6 - A£r/2,& + Afr/2],Y <E [Y,Ye(f)] (where Y, corresponds to 
f(y) = 0.1). In the IEM model these reactive particles are mixed toward the cell mean 
resulting in extinction at higher critical Damköhler numbers. In the EMST model, the 
reactive particles are mixed with their neighbors in composition space, and as a conse- 
quence they may remain in the reaction zone longer. This accounts for the lower critical 
Damköhler predictions which seem to be more consistent with the problem physics. 

6.4.3    Thin reaction zone case: fr = 0.27 

The CMC model prediction for the critical Damköhler number for |r =0.27 is 204.2 (see 
Fig. 33 and Table 7). This case constitutes a severe test for the PDF mixing models. 
The reaction zone in composition space is small and it is expected that reaction can be 
sustained only at Damköhler numbers higher than the CMC prediction. However, it is 
seen that while the EMST model prediction is within an order of magnitude of the CMC 
result, the IEM prediction is several orders of magnitude higher. For the IEM model, 
stable reaction could be sustained only at a Damköhler number of 1.6 x 106. The EMST 
prediction for this case is (Da; =700, Dau =1000). The scatter plot for stable reaction 
(Fig. 34) shows more particles departing from the equilibrium line compared to the stable 
reaction scatter plot for the moderate reaction zone thickness case (Fig 31). This may 
be attributed to the fact that while the Damköhler number in the thin reaction zone 
scatter plot is equal to the upper bracket of the critical Damköhler number for that case 
(Dau =1000), the Damköhler number in the moderate reaction zone scatter plot (Da =500 
in Fig 31) is higher than the upper bracket of the critical Damköhler number (Da„ = 175). 
The scatter plot corresponding to global extinction (Fig. 35) is not significantly different 
from the moderate reaction zone thickness case. 

7    Appendix A: Equilibrium function Ye(£) for the general 
case 

For the general case, given £., € [0,1], and the parameter Afe, the equilibrium function 
is defined as follows. As for the symmetric case the equilibrium function is specified as 
a function of z = f — (ss and Afe. However, in this case the origin of the similarity 
variable, fSJ, has to be determined from the solution to a transcendental equation. With 
this in mind two constants a and b are defined as follows: 

(80) 

b   =        T + ^T (81) 

1 "1          1    ' 
2 Us   i-d 

[i     ii i 
Us ' i-cJ 
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Figure 33:    Perturbation q(rj)   =   Ye(rj) — Q(rj)  obtained from the CMC model at 
Dacrit=204.2 for the £r=0.27 case. 
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Figure 34: Scatter plot of progress variable Y vs. mixture fraction £ for the £r =0.27 case 
at t = 10.87 (3Tt) using the EMST mixing model. The Damköhler number for this sim- 
ulation (Da =1000) corresponds to stable reaction. The solid line is the equilibrium line 
Ye(£). The grayscale intensity of each particle represents the magnitude of the reaction 
rate Sy whose scale is shown in the table on the right. 
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Figure 35: Scatter plot of progress variable Y vs. mixture fraction £ for the £r =0.27 case 
at t = 7.29 (2Tt) using the EMST mixing model. The Damköhler number for this sim- 
ulation (Da =700) corresponds to global extinction. The solid line is the equilibrium line 
ye(£). The grayscale intensity of each particle represents the magnitude of the reaction 
rate Sy whose scale is shown in the table on the right. 
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Noting £ = z/A£e, the quantity £ss is calculated as 

where £1 is the solution to the equation 

*<& + 2^>-*<&)—j^-, 

with the function /i(£) given by 

h(i) = ^ [ln(l + f) - 2| arctan(l) 

(82) 
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Figure 36: Equilibrium function Ye(£) and its second derivative Ye"(£) for different values 
of the stoichiometric mixture fraction £s, in the self-similar thermochemistry:  £s = 
0.25; £s  = 0.75. The value of the parameter A£e is 0.0127324. 

The second derivative of the equilibrium function is again of the Cauchy form (which 
will asymptote to a 6 function in the limit A£e —► 0): 

d2K 1 

dz"1 7rA£e [i + (2/A£e )2]' 
(84) 

The maximum value of the second derivative \Ye 

once with respect to z yields Ye(z): 

dY^ 

dz 
b (   z 

a arctan   -— 
7T VA£e 

is &/(7rA£e). Integrating Eq. (84) 

(85) 
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Integrating Eq. (84) twice with respect to z from z\ (which corresponds to £ = 0) to zi 
(which corresponds to £ = 1) results in Ye(z): 

Ye(z) = ymax - {a(z0 -z) + bAlie [h(io) - h(i)]} , (86) 

where 
^nax = a(z0 - zx) + bA£€ [h(io) - Ä(|i)] 

and 

z0 = A£e £0 = A£e tan ( — 

This completes the specification of the self-similar equilibrium function for the general 
case. Fig. 36 shows the self-similar equilibrium function for different values of £s. 

8    Appendix B: Numerical solution of the CMC equation 

In order to determine the critical Damköhler for a given value of £rss in Eq. 67, which 
is a differential equation with a nonlinear source term, a numerical approach is adopted. 
The domain 0 < 77 < 2 is discretized using N grid points such that 

Vt-   N _1   t-i,...,iv, 

and Arn+ = rji+i - rji and Arn- = rn - TJJ_I. The grid spacing may be non-uniform in 
order to resolve the reaction rate function accurately for cases with thin reaction zones in 
a computationally efficient manner. Function values at the ith grid point are represented 
by subscript i; e.g. the function Q(r}) at the ith grid point is denoted Qi. Using the 
three-point central-difference formula for the numerical approximation to d2Q/dr]2 we 
obtain 

~Qi+iAr)i- - Qi{Arji- + Aj/i+) + Qi-iArji+' 
(Arji+Arn-XArii- + A7?i+) 

-qt exp {[-Bqi - CG(rji)}} Da gss (^p) = 0. 
A£e 

(87) 
A numerical technique to compute simple turning points of nonlinear equations [3] based 
on a pseudo-arclength method is used to solve Eq. 87 for Dacrit (£rss). 

As \Ye maJ is increased, higher grid density in the neighborhood of 77 = £s is required 
to resolve the solution to the CMC equation accurately. For this purpose a non-uniform 
grid is generated in t\ space using the following transformation from a uniformly spaced 
grid in z space: 

7? = 0.5 + L-^(l-pA£e)arctanf^^jl,   -z0 < z < z0) (88) 

where ZQ is determined by the requirement that rj take the values 0 and 1 at z = —ZQ and 
z = ZQ respectively. This value is easily obtained by solving the transcendental equation 

2n 7={1 — pAte ) arctan   ——:—    = 0.5 

The parameters W and p can be used to control the width of the fine grid and the grid 
density respectively. For all the test cases the grid was generated with N = 180, p = 1. 
and W = 0.005. This ensured there were at least 45 points in the A£e neighborhood of 
£s for the most demanding case with \Ye maJ = 120. 
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9    Appendix C: Analytic Integration of the Reaction Rate 

In the simulations particle properties are advanced over a time step At which is chosen 
to be small compared to the the physical time scales of the problem. Changes in the 
reaction progress variable Y due to reaction occur on the order of the chemical timescale 
r*. In general, time-accurate solutions are obtained by advancing the change in Y over 
a series of fractional sub-steps AtT for each At, such that the chemical timescale is also 
resolved. This is a computational overhead characteristic of reactive flows which scales as 
the Damköhler number. In the present work, this expensive sub-stepping is avoided by 
noting that the self-similar thermochemistry reaction rate (and in fact, even the Lee-Pope 
thermochemistry reaction rate) admits an analytic solution. 

The evolution of the reaction progress variable Y due to reaction can be written as: 

dY 
— = SY(t,Y) = S&y) = f(y)g(0/rc. (89) 

In practice it is easier to solve for the perturbation from equilibrium y, which evolves by 

^ = -yexp(-B*y)g(0/T*, (90) 

where r* = rc/Be and B* = B/A^e. This equation can be integrated the beginning of 
the time—step (to) to the end of the time step (to + At) to yield 

Ei(B*y(t0 + At)) = -i^-At + Ei(B*y(t0)), (91) 

e« 
where 

fX      pi 

 v__, -dt,   x > 0, 
J—oo   * 

is the standard exponential integral which is easily evaluated numerically [17]. Since the 
perturbation y is non-negative in the flame zones and B* = B/A£e is always a positive 
quantity, Eq. 91 can be solved using a root-finder for all positive values of y (the special 
case of y = 0, in which case Y — Ye(£) and there is no change in the progress variable is 
handled by a conditional statement). For the "anti-flame" zones where the perturbation 
is negative, the same equation Eq. 91 holds for the absolute value of the perturbation. 

10    Appendix D:  Numerical resolution and convergence 
testing of the PDF simulations 

When using a Monte Carlo solution procedure for the pdf transport equation, it is impor- 
tant to ensure that the numerical estimates of flow statistics of interest are converged with 
respect to the number of particles per cell Npc used in the simulation. For the present 
problem, the statistic of interest is defined in terms of the mean perturbation from equi- 
librium of the progress variable conditioned on the reaction zone (y\R)(t), which is defined 
as 

(y\u)(t) = <(ye(e
(i)W) - y(i)(t))i& < ew(o < &.). (92) 

This quantity attains a stationary state after one transport timescale Tt has elapsed and 
time-averaging may be performed for t > Tt. This time-averaged quantity, [(2/|iJ)]r, is 
used to determine convergence of the simulations. 
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(stable reaction): (a) logarithmic plot showing the 1/Npc behavior, (b) plot vs. 1/Npc, 
with the origin corresponding to Npc = oo. 
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For the £r =1 case, simulations are performed at a Damköhler number corresponding 
to stable combustion for different Npc values and the variation of [{y\R)]T is shown in 
Fig. 37. It is clear that [(y\R)]T converges with respect to Npc and this convergence is 
reached around Npc = 640. Based on this result, the value of Npc for simulations of the 
£r =1 case is chosen to be 750. 

From this result, an empirical rule for the resolution (in terms of Npc) required in the 
£r =10 simulation may be deduced. If the particles in a cell are assumed to be uniformly 
distributed in mixture fraction space, then the average spacing between two particles in 
mixture fraction space may be estimated as 

where f is the r.m.s. mixture fraction. The resolution requirement may be expressed as 

A£ < constant min(A£e , A£r ). 

From the £r =1 convergence test this constant is determined to be 0.0625. Using this rule 
it is found that the minimum Npc for converged simulations for £r =10 is 76. Based on 
this the simulations for the £r =10 case are performed with Npc = 80. 

For the £r =0.27 case, since the value of the thermochemical constant C is different 
from the other two cases, a separate convergence test is performed. These results are 
shown in Fig. 38. For this case also it is clear from the results that [(y|i?)]r converges 
with respect to Npc and this convergence is reached around Npc = 960. Based on this 
result, the value of Npc for simulations of the £r =0.27 case is chosen to be 1120. 
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Table 6: Comparison of stationary values of (y\£,R) from the PDF simulations using IEM 
and EMST mc    - with the mean value of q(rj) in the reaction zone obtained from CMC. 

CMC EMST IEM 

(r = 10 
Da = 0.527 0.14 0.066 0.075 

ir=l 
Da = 2000 
Da = 175 

2.5 x 10"4 

3.98 x 10~3 1.03 x 10~2 
0.10 

ir = 0.27 
Da = 2000 2.42 x 10~3 9.98 x 10-' — 

Table 7: Summary of numerical parameters for each case in the CMC solution. 

£r=10 £r=l £r =0.27 

A"—number of grid points in 0 < 77 < 1 
Nr—number of grid points 

in[6-A?r/2,6 + A^/2] 
p—grid density parameter 
W—non-uniform grid width parameter 
Ar/mjn/A<^e —resolution 

in mixture fraction space 

240 240 240 

169 71 81 
1.0 1.0 0.2 

0.005 0.005 1 x IQ-5 

6.28 x 10~3    7.4 x IO-3    2.99 x 10~3 
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Abstract 

Numerical errors, in particular bias, in PDF-based particle-mesh methods for turbulence 

modeling have been explored. It is shown that bias decreases linearly with the increase of 

the number of particles, but increases with grid refinement. The fluctuations in mean fields 

which are fed back into the coefficients of stochastic differential equations are attributed to 

be the sources of bias. The Frozen Coefficient approach has been proposed and adopted to 

pinpoint the sources of bias in detail. These results provide guidelines for improving the 

numerical accuracy of PDF models for turbulent flows. 



INTRODUCTION 

For complex turbulent reactive flows, probability density function (PDF) methods have 

been well developed and offer great potential [4] [5]. In the application of these methods, a 

particle-mesh method is used to solve a modeled equation for the evolution of a PDF, e.g., 

the joint velocity-frequency-composition PDF. This is a Monte-Carlo method in which the 

PDF is represented by a large set of particles distributed in the physical space. This space is 

divided into a number of cells in order to estimate the mean fields such as the mean velocity 

as a function of position. Such a method has been implemented in the PDF2DV code [8] 

which is a Fortran code to calculate the properties of statistically two-dimensional (plane or 

axi-symmetric) turbulent reactive flows using the joint velocity-frequency-composition PDF 

model. In the present work, numerical errors, in particular bias, in PDF2DV are investigated. 

The numerical accuracy and convergence of PDF methods have been discussed by Pope [6] 

and Welton et.al. [9]. Usually, weak convergence, i.e., the convergence of expectations instead 

of the PDF, is sought for PDF methods. Four different types of numerical errors have been 

identified by considering estimating a mean quantity: statistical error, spatial discretization 

error, temporal discretization error and bias. The convergence of numerical solutions to the 

modeled equations, which are stochastic differential equations (SDE), requires that numerical 

errors vanish as the particle number per cell TV tends to infinity, and as the time step At and 

grid size h approach to zero. It has been shown that statistical error (SE) scales as l/iV1/2 

[6]. It is reasonable to postulate that temporal error and spatial error, behave as that in 

finite difference method, i.e., both vanish as At and h tend to zero for fixed TV. 

However, in early experiences with the PDF2DV code it has been observed that there 

appeared to be relatively large bias. The bias is the deterministic error resulting from using 

a finite number of particles. Its features in the PDF methods are not very clear yet. This 

study is devoted to understanding the behavior and the sources of bias in PDF2DV, which 

will provide one of the guidelines for improving the accuracy of the code. 

The description of bias in PDF2DV is presented in the next section, and then the strate- 

gies for pinpointing the sources of bias is described in the following section. Two test cases 

are used to search for the sources of bias: stationary homogeneous turbulence and Couette 

flow. Results for these cases are discussed. Conclusions are drawn in the final section. 



DESCRIPTION OF BIAS IN PDF2DV 

Before presenting the behavior of bias in PDF2DV, the model equations and some numerical 

techniques are introduced. A Lagrangian approach is taken both in the modeling and in the 

numerical method which is a Monte-Carlo particle-mesh method. The fluid-particle possesses 

properties: velocity u+(t) and turbulence relaxation rate (turbulence frequency) u>+(t) . 

These properties are then modelled by the corresponding stochastic processes u*(t) and 

u*(t) based on the idea of the stochastic Lagrangian modeling approach [7]. (If combustion 

is considered, the stochastic models for scalar fields are needed.) In PDF2DV, u*(t) evolves 

according to the simplified Langevin equation (SLM, [7]) 

du*(t) = -X7(p)dt - (g + 4Co) fi (u*(*) - (U>) dt + {C0kn)l/2 rfW, (1) 

where W is Wiener process, ui*(t) is solved by the Ito stochastic differential equation [2] 

dco* = -C3 (to* - (to)) Qdt - {u)u*Sudt + (2C3a
2nu*(u})f/2 d.W. (2) 

The non-dimensional source term Su is defined as: 

Su> = Ci — C\SijSij/(uS) , (3) 

where ,% is the mean rate of strain. For all other terms, model constants and the definition 

for conditional mean of turbulence frequency Q in (1) and (2), refer to [2] [7]. 

In PDF2DV, the expectation of a random variable, e.g. (U), is approximated by an 

ensemble mean estimated by the cloud-in-cell method. Because the number of samples, i.e., 

the number of particles per cell N is finite, the ensemble mean itself is a random variable. Of 

course, it also depends on time step At and grid size h. Several numerical techniques, e.g., 

variance reduction (VR) and time averaging (TAV), are adopted to reduce the statistical 

fluctuations in the mean fields [8]. 

The bias BQ of a statistics (Q), e.g. (U), is the deterministic error caused by N being 

finite. Using {Q)N,At,h to represent the ensemble-average of Q calculated by finite N, At and 

h, BQ can be written as, 

BQ = ((Q)NAt,h) ~ (Q)oo,At,h- (4) 
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Figure 1: Time-averaged mean values vs. N in Couette flow: (a) Mean Velocity; (b) Mean 

(u). Grids in y direction Ng = 21, both VR and TAV are off, y/H = 0.033. 

A simple analysis by Pope [6] suggests that bias BQ scales as TV-1, so BQ can be expressed 

as: 

BQ = A (5) 

where b may be a function of other factors affecting bias, e.g., grid size and other numerical 

techniques in the code. 

As an example, Couette flow (for flow descriptions refer to appendix A) is calculated 

using PDF2DV. With the same grid size, time step and numerical techniques, the time 

averages ((U)N)T and ((LU)N)T of one point, which are equivalent with the ensemble mean 

of (U)N and (LO)N respectively according to the ergodic assumption, are shown in Figure 1 

as a function of the number of particles per cell. Since temporal error and spatial error are 

independent of particle number, the linear relationship in the figure implies that bias scales 

as (5). This behavior of bias is common in PDF2DV. The scale of bias as (5) ensures that 

bias approaches zero as N goes to infinity and thus leads to convergence of the scheme with 

respect to particle number per cell. 

On the other hand, the slopes of the lines in Figure 1 provide the value of b in (5) which 

determines the magnitude of bias.  For specific At and h (and for all other aspects of the 
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Figure 2: Bias vs. grid size in Couette flow: (a) Mean Velocity, the slope is -0.55; (b) Mean 

(u), the slope is -0.80. Both VR and TAV are off, y/H = 0.033. 

numerical method fixed), we have 

(Q)NuAt,h ~ (Q)N2At,h = BQNI  - BQN2 = b {— - — J 

A formula for b is thus obtained 

NoN-, K&t,h) = Tr^-±r((Q)NlAt,h (Q) N2,At,h) 

(6) 

(7) N2-Nx 

Consequently, using two different particle numbers per cell, b and BQ can be calculated for 

a specific grid size. By fixing the time step and the numerical techniques, b for different 

grid sizes in Couette flow is obtained by (7) and is plotted against \/Ng in Figure 2, where 

Ng is the number of cells or grids in the domain. Since nonuniform grids are used in this 

calculation, \/Ng is used here to represent the averaged grid size. Figure 2 shows that b 

increases with grid size. This behavior is observed in homogeneous stationary turbulence 

(described in appendix A) as well. In this case, bias is the deviation of turbulence energy 

and turbulence frequency from the stationary solutions. As shown in Figure 3, increasing 

the number of cells results in larger bias. 

The fact that the bias increases with grid size is of great concern to PDF2DV. If b 

explodes faster with grid size than the convergence of bias due to increasing N, bias will not 
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Figure 3: Bias vs. grid size in Homogeneous Stationary Turbulence: (a) Turbulence Energy 

k; (b) Mean (to). Time step At = 0.1s, for 4000 steps. 

vanish as h approaches zero and N goes to infinity. In the view of numerical computations, 

to minimize the total numerical error, one might want to increase Ng to reduce the spatial 

discretization error, which unfortunately causes larger bias. Therefore, N must increase as 

Ng increases in order to prevent the bias from exploding and to get the total error converged, 

which thus leads to unacceptably high computational cost. 

STRATEGIES FOR EXPLORING BIAS 

Theoretically, the statistical fluctuations in the coefficients of the stochastic differential equa- 

tions, e.g., the Langevin equation, are the major sources of bias. The numerical solutions to 

(1) and (2) are essentially different from the following standard problem: given coefficients 

a(x,t) and b(x,t), an initial condition X(0) — XQ, and a stopping time T > 0, integrate the 

stochastic differential equation 

dX{t) = a(X{t), t)dt + b{X(t),t)dW(t), (8) 

which has been well studied [3]. This is because in (1) and (2), the coefficients depend on 

the mean of a function of the process, e.g., (U), which needs to be estimated in numerical 
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Figure 4: Strategies for exploring bias in PDF2DV 

computation and inevitably carries numerical fluctuations. The mean fields in PDF2DV are 

calculated by cloud-in-cell method and fed back into the coefficients. This feedback causes 

bias. The two questions to be addressed are: 

1. Which coefficients associated with mean fields yield bias ? 

2. Why does bias increase with finer grids ? 

For the PDF2DV code, all mean fields, terms in the SDE's and numerical techniques 

which may be related to the above two issues are sketched in Figure 4. 

If, instead, the coefficients were non-random, independent of particle properties, the 

computed particle properties at any time would be independent, identically distributed, 



and independent of TV. It follows then there would be no bias. Therefore, if the estimate 

of mean field is replaced by a non-random input (say fixed or frozen (U)), there is no 

corresponding statistical fluctuation in that mean field and related terms in the SDE's so that 

the contribution of statistical errors in the mean field to bias will be prevented. According 

to this Frozen Coefficient approach, a mean field or a term in the SDE's is justified as a 

source of bias if freezing it results in no bias. The things to be tested, which are possibly 

the sources of bias, and associated methods, are also shown in Figure 4. 

NUMERICAL TESTS AND RESULTS 

The approach of Frozen Coefficient is accomplished step by step through numerical tests. 

Because the fluctuations in the mean fields are suspected to be the major sources of bias, 

first of all the calculations are made by fixing mean fields in all coefficients of the SDE's to 

check the behavior of bias. If it disappears, then we can conclude that bias arises entirely 

from the fluctuations in the coefficients and no more calculations are needed to search for 

other sources of bias due to the numerical techniques. Several cases are calculated and 

compared to the base case; namely, the result from the original code without VR and TAV. 

The conditions for different cases are presented in Table I. 

1     Sources of Bias: General Views 

In the calculation of case 1, it is not the estimates from cloud-in-cell method that are used but 

constant values for mean fields. No bias is expected if bias is only related to the statistical 

fluctuations in the mean fields. The result compared to the base case (case 0) is shown 

in Table I. Obviously, bias of velocity and (u>) are much smaller than case 0 and almost 

zero after fixing mean fields globally. Therefore bias of these two variables is because of 

the fluctuations in the estimates of mean fields. However, because the ensemble mean of 

velocity is used to estimate second moments, bias of turbulent energy is increased instead, 

which implies that the fluctuations in the first moments are the source of bias for the second 

moments. This will be discussed further in other cases. 



2     Source of Bias for Velocity 

Fixing Mean Fields for Coefficients in Eq.(l) 

To clarify further that bias of velocity comes from Eq.(l), case 2 is calculated by fixing 

all mean fields in this equation. As in Table I, this case shows that the bias of the mean 

velocity is in the same order as case 1, which indicates that the bias of velocity is due to 

the fluctuations in the mean fields fed back into the coefficients of Eq.(l). This is consistent 

with the analysis in the previous section. To distinguish the influence on bias of drift term 

from diffusion term in Eq.(l), the following cases are designed. 

Fixing Mean Velocity for Drift Term 

The mean velocity is a critical variable in Eq.(l) because the particle velocity is forced to 

relax to it, and the particle velocity, in turn, is used to estimate the mean velocity. This 

means that there must be a very strong interaction between them. As shown in Table I 

(case 3), the bias of velocity resulting from fixing the mean velocity for the drift term in 

Eq.(l) is very small. Hence, the fluctuation in mean velocity is a major source for bias of 

velocity. One more interesting observation is that the bias of {ui) becomes very small in this 

case as well. It seems that the behavior of the bias of (w) is dominated by the mean velocity 

although Eq.(2) is the same in the form as Eq.(l). This will be further discussed later. 

It may be noticed that in case 3 there is a huge bias of k. However, this phenomenon 

should not be paid too much attention. When the drift term is frozen while the diffusion 

term is not, in the equation for k derived from Eq.(l), — |C0$l(u* — (XJ))dt in the drift term 

will not still balance with the diffusion term, which may cause a large bias of k. 

Fixing Q and k 

In order to determine the effect of fluctuations in the diffusion coefficients, a calculation was 

attempted in which f2 and k were fixed only in the diffusion term in Eq.(l). It turns out that 

the solution is not stable. The explanation could be that different values of $7 in the drift 

and diffusion terms give rise to an instability of numerical solutions to the equation. This 

case is then modified to let fl take fixed values both for the drift term and the diffusion term 



and k be fixed for the diffusion term so that a stationary solution is obtained. Thus, in this 

case 4, k and Q (but not ([/)) are fixed throughout Eq.(l). The bias of velocity is almost 

the same as in case 0. The bias of (u) is not much reduced either. This case demonstrates 

that the diffusion term of Eq.(l) is not the source of significant bias for the velocity or for 

(u). 

3 Source of Bias for (UJ) 

Fixing Mean Fields for Coefficients in Eq.(2) 

In case 5, the coefficients in Eq.(2) are fixed. The bias of (u) is very small (Table I). 

Therefore, the bias of (u>) stems from the fluctuations in the coefficients of Eq.(2). 

Fixing Mean Velocity Gradient for Turbulent Frequency Equation 

An analysis given in Appendix B shows that bias in the source term Su in the turbulent 

frequency model increases with grid refinement because of the fluctuations in the mean 

velocity. This may be the reason for the dependence of bias on grid size, which can be 

demonstrated by fixing the mean velocity gradient to calculate 5W. The results in this 

case (case 7) are compared with the results of original model. Figure 5 shows that the 

dependence of bias on grid size almost disappears when a fixed mean velocity gradient is 

used to calculate Su. Therefore, the reason that bias increases when grid size are decreased 

is that the fluctuations in the mean velocity bring about an additional source into the 

turbulent frequency model because of the square of velocity gradient in Su. In addition 

to this observation, it is shown in Figure 5 and Table I that bias of (u) is almost zero. 

Consequently, the bias of (u) is dominated by the fluctuations in the mean velocity. 

4 Source of Bias for Turbulent Energy k 

Homogeneous Flow: Fixing Mean Velocity for Estimate of Second Moments 

In this case (case H-l in Table II), the fixed no-random first moment (the mean velocity) 

is used to estimate second moments.   Table II shows that bias reduces by about half in 
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velocity gradient (case 7). Both VR and TAV are off, y/H = 0.033. 

comparison with case H-0. As pointed out before, the fluctuations carried by first moments 

are the sources of bias for k. 

Couette Flow: Fixing k for Diffusion Term 

This case is to test whether the fluctuation in k which is fed back into the diffusion term of 

Eq.(l) is the source of bias in k or not. The result is shown in Table I (case 6). Apparently, 

fixing k for the diffusion term does not reduce the bias of k. Case 4 shows, however, that by 

fixing both ft and k in diffusion term, bias of k is indeed reduced. Therefore, the diffusion 

term is a source of bias in k due to the fluctuations in both ft and k. 

Homogeneous Flow: Fixing Mean Velocity for Estimate of Second Moments and 

ft, k for Eq.(l) 

The case H-2 is calculated to clarify .further that the total bias of k is contributed by the 

above sources: the fluctuations in the first order moments which are used to estimate the 

second moments; the fluctuations in ft and k which are feeded back into Eq.(l) (Table II). 
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Table I: Bias in Couette Flow: Test Cases and Results 

Cases 0 1 2 3 4 5 6 7 8 

Drift Term in the 

Equation for u* 

(U) X X X 

n X X X X 

Diffusion Term in 

the Equation for u* 

n X X X X 

k X X X X 

Drift Term in the 

Equation for u* 

n X X 

(u) X X 

Diffusion Term in 

the Equation for UJ* 

n X X 

M X X 

Source Term 5W in 

the Equation for UJ* 

mi 
dy X X X 

(UJ) X X 

Evaluation of k (U) 

Measurement 

of Bias 

b(u) 8.42 0.14 0.23 0.37 7.70 3.94 21.53 3.95 5.58 
b(») 6.10 -0.23 1.26 -0.96 4.85 0.38 10.03 -0.20 4.66 

h 0.6 -1.96 -2.76 -12.0 0.14 0.81 1.03 -0.03 -0.39 

Note. All calculations are made on the conditions: Ng = 21, neither VR nor TAV, y/H 

0.033. 6's are normalized by mean fields at the wall. lx' denotes the parameter is fixed. 

Table II: Bias in Stationary Homogeneous Turbulence 

Case     Description Bias of k       Bias of (UJ) 

H-0       No any coefficients fixed 1.103 0.0051 

H-l        Fix (U) for estimate of second moments 0.54 0.0071 

H-2       Fix (U) for estimate of second moments 0.004 0.010 

and fix fi, k for Eq.(l) 

Note. All calculations are made on the conditions: iV9 = 3, neither VR nor TAV, time step 

At = 0.1s, for 4000 steps. 
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Figure 6: Comparison of the dependence of Bias on grid size in Couette flow: (a) Mean 

Velocity; (b) Mean (u); solid line, base case (case 0); dot-dashed line, calculation by fixing 

all mean fields for Eq.(l) (case 2); dotted line, calculation by fixing Q for Eq.(l) (case 8). 

5    Dependence of Bias on Grid Size 

In the case of fixing velocity gradients for the turbulent frequency model, it has been shown 

that the source term 5W in this model introduces the dependence of bias on grid refinement. 

Here two more cases are set up to confirm this further. 

Fixing All Mean Fields for Eq.  (1) 

It has been shown in Table I that the bias of velocity almost disappears in this case (case 2). 

Here, it can be seen further from Figure 6 that the bias of velocity is apparently independent 

of the grid size while the bias of (u) still increases as the grid is refined. 

Fixing Q for Eq.  (1) 

By fixing tt in Eq.(l), the contribution of the turbulent frequency model to the dependence 

of bias on grid refinement can be further clarified. In this case (case 8), the bias of (u) 

still increases with the grid refinement (Figure 6). In contrast, the bias of velocity does not 

exhibit such a behavior anymore. 
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From the above two cases and the case of fixing the velocity gradients for the turbulent 

frequency model, it can be concluded that the source term 5W causes the bias of (u>) to 

depend on the grid size and increase when the grid size is refined. Then, the bias of velocity 

is affected by (u>) or Q, through Eq.(l) so that it increases with the finer grids as well. 

6    Summarization 

The sources of bias in the PDF2DV code have been summarized in Figure (7) which provides 

a general picture of the sources of bias. 

CONCLUSIONS 

In PDF particle-mesh methods for turbulence modeling, three types of numerical errors are 

identified: statistical error, truncation error, and bias. The behavior and the sources of 

bias in the PDF2DV code applying such a method have been studied in detail by numerical 

experiments. 

It has been verified that bias is linearly proportional to TV-1 so that bias decreases with 

increasing particle number, which is consistent with analysis. Another observation is that 

bias increases when the grid size is decreased. This is significant because it could lead to 

unacceptably high computational cost. 

The Frozen Coefficient approach has been proposed to pinpoint the sources of bias in 

PDF2DV. According to this approach, the sources of bias are found through fixing or freezing 

the mean fields that appear in the stochastic differential equations, i.e. using non-random 

value instead of estimates by cloud-in-cell method. This procedure is implemented by isolat- 

ing each term in the stochastic differential equations. The source of bias in velocity is found 

to be associated with the fluctuations in the estimated mean of velocity. In other words, 

the drift term in the Langevin equation for velocity is the major source of bias for velocity. 

As for the turbulent frequency (w), the bias is mostly dominated by the mean velocity and 

its gradient. On the other hand, the bias of second moments (or turbulence energy k) has 

two sources: the diffusion term of the Langevin equations for velocity which is related to the 

fluctuations in (ui) and k, and the estimation of second moments based on the first moments 
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Figure 7: The chart describing the sources of bias 
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which of course carry fluctuations. Lastly, the dependence of bias on grid size has been 

attributed to the source term Sw in the turbulent frequency model. The analysis also shows 

that the bias of S^ increases with grid refinement. This leads to the dependence of bias of 

(u>) and thus Q, on grid size, which furthermore affect the mean velocity through Eq.(l) so 

that it also depends on the grid size. The fact that bias increases as the grid size is decreased 

implies the PDF2DV code is not unconditionally convergent and is not acceptable. 

Discovering the sources of bias provides a guideline for reducing bias and removing the 

dependence of bias on grid size. Partially time averaging, variance reduction techniques and 

modification of turbulent frequency model are possible approaches to improve the accuracy 

of this PDF particle method. This will be discussed in another report. 

Acknowledgements 

This work was suppported by the Air Force Office of Scientific Research, Grant F49620-94- 

1-0098. 



16 

APPENDIX A: TEST FLOWS 

The test flows used in this study are Couette flow and stationary homogeneous flow. Both 

of them have the following features 

(i) they are 0-D or 1-D problem, 

(ii) they exhibit easily understandable physics, and 

(iii) they are statistically stationary. 

Because of these features, many calculations are feasible during a reasonable time; the 

sources of bias are distinguishable from other issues in the code and some numerical tech- 

niques, e.g. time-averaging, can be tested. The two flows are described in this appendix. 

(1) Couette Flow 

Couette flow is defined as the flow between two flat plates which move in the opposite 

direction at velocity Uw (Figure 8) . The flow is one dimensional. No pressure gradient in x 

direction is needed to drive the flow. 

For such a flow, boundary conditions need to be defined on the wall. Since only the lower 

half of the domain is calculated, the boundary conditions are defined at the center line and at 

the lower wall. In the frame of a particle method, the physical condition is imposed through 

specifying the particle properties. The following boundary conditions for the particle may 

not give the exact solution to Couette flow. However, because we are mostly interested in 

the numerical features of PDF2DV, we can put aside the physical consistency of calculation 

with real world. The issues we are concerned with should be whether these conditions give 

a stable and stationary solution. 

(a) Center Line 

At the center line, the physical conditions are 

M = °.      ^-0. (9) 

and 

dy 

so that the particle conditions are imposed as 

(10) 

-u), (11) 
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Figure 8: Couette flow configuration 

VT>     = y/> 

LUR      =     LOj, 

(12) 

(13) 

where T denotes particles which are incident to the boundary and 'R' denotes particles 

which are "reflected" from the boundary. The mean conditions are obtained as the average 

of the condition before and after reflection. It can be shown readily that particle conditions 

are consistent with physical conditions. 

(b) Wall Conditions 

The boundary conditions at the wall are more difficult to define for particles than at the 

center line. A modified wall function proposed by Dreeben [1] is used in this study. 

The conditions for the mean velocities are 

(U) = Uw,      (V) = 0. 

The velocities of particles hitting the wall satisfy the following conditions: 

u*R   =   u*j + av], 

—v /> 

(14) 

(15) 

(16) 

where a can be calculated from the wall function. To be consistent with the mean conditions 
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at the wall, a must satisfy 

°-~w%r^ (17) 

where 'w' stands for values at the wall. Using the wall function, a formula for a can then be 

deduced, 
Cw(U)w/k^ 

KUw/ü-ln{E\ü/v)' [    j 

where the friction velocity ü is calculated by 

u = c;/4^1/2. (i9) 

All other model constants are chosen as 

C„ = 0.0841,      K = 0.4, (20) 

0^ = 0.76,       £ = 8.0, (21) 

A = 0.05. (22) 

As for conditions for turbulence frequency at the wall, a modified form of the model 

proposed by Dreeben et.al. [1] is adopted. The particle condition is 

uR = eßTir>ujI. (23) 

Dreeben et.al. deduce the following formula for ß [1] 

g=-2AMM 
{uiv2} 

Here a simplified form for ß, i.e. a constant, is used 

/? = -0.5. (25) 

The above boundary conditions indeed yield a stable and stationary solution to Couette 

flow. The profiles of the mean velocity and the mean turbulence frequency from the above 

boundary conditions are shown in Figure 9. 

(2) Stationary Homogeneous Turbulence 

The coefficient (| + f Co) in SLM (Eq. (1)) causes the turbulence energy to be dissipated 

at the rate (e) or k(co). If the | is omitted, the equation (1) will pertain to the hypothetical 



19 

Figure 9: Calculated profiles of Couette flow: (a) Mean Velocity; (b) Mean (UJ). Calculation 

conditions: Half width of channel H = 1, Wall velocity Uw = 1, Grids in y direction Ng = 41 

case of stationary (i.e. non-decaying) homogeneous (isotropic) turbulence. In this flow, as 

turbulence energy does not decay and there does not exist production either, theoretically 

the solutions to this flow are constant against time, i.e. stationary solutions are expected. To 

assure a stationary solution for (UJ) as well, in Eq.(3) constant C2 is set to be zero. Because 

the mean rate of strain SV, is zero (ideally), a stationary solution to (u) is expected. To 

see the effect of grid size on bias, we treat this flow as 1-D flow instead of 0-D, i.e. in one 

direction, say y direction, multiple grids instead of one grid are used. 

APPENDIX B: DEPENDENCE OF BIAS IN Su ON 

GRID SIZE 

As in Eq.(3), Sw is involved with the square of the strain rate. In Couette flow and stationary 

homogeneous turbulence it reduces to 

i    (d(u)V  l 
(26) 

In the numerical calculation, the differentiation is replaced by finite difference. According 
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Figure 10: Cell and Node Structure 

to Figure 10, 

And then, (£/} is approximated by the corresponding ensemble mean {U} estimated by 

cloud-in-cell method. The bias of (-Q   )   is defined as 

'{U}n-{U}.\2\ f(U)n-(U)s\
2 (2g) 

Bu'v ~\\ h I  I     \ h 
This can rewritten as 

{U)l + {U)l - 2{U}n{U}s \     (U)l + (U)l - 2{U)n(U)s B, «>y /i2 I h? 

=   p (({U}D - (U)l) + p {({U}2.) - (U)l) - y2 ({U}n{U}s - (U)n(U).), 
h2 

± [Var({U}n) + Var({U}.)] - ^Cov({U}n, {U}s), 

1   *y/Var({U}n) - yJVar({U}s)}2 + 1 [Var({U}n)Var({U}s)}1/2 (1 - p), 
/i2 

>    1 [yar({[/}„)yar({C/}s)]1/2 (1 - p), (29) 

where p is the correlation coefficient between {U}n and {£/}5. In most of the cases, p is less 

than one, so bias of ( £,   )   or Sw is not zero and determined by the variance of the estimate 
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of the mean velocity and the grid size. As far as there exists fluctuations in the estimate 

of the mean velocity, Bu>y increases with grid size refinement. Consequently, the bias of 5U, 

depends on the grid size. 
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A new mixing model based on Euclidean minimum spanning trees (EMST). which has been developed 
by Subramaniam and Pope, is used in the PDF simulation of pilot-stabilized turbulent non-premixed 
flames. A model equation is solved for the joint PDF of velocity composition and turbulence frequency 
using a particle mesh method. Simulations using the EMST mixing model and the IEM (interaction by 
exchange with the mean) mixing model are compared. A simple thermochemistry equivalent to one-step 
reaction is used in the calculations. Comparisons are made with experimental measurements in the up- 
stream regions of piloted HJ/NJ flames. This fuel is chosen because its chemistry is simple and may be 
adequately represented bv a single-step mechanism. It is found that the EMST model gives the correct 
mixing pattern for the reactive scalar, as well as the conserved scalar, especially in the early parts of the 
jet where mixing is most difficult to represent. This result is not achieved by the IEM model. The success 
of the EMST mixing model is attributable to its satisfying a "localness" condition that other models violate. 
This is a significant advance that will enable the PDF approach to simulate complex flows with finite rate 

chemical kinetics. 

Introduction 

The main advantage of using the joint PDF ap- 
proach in the simulation of turbulent combustion 
lies in its capability to represent chemical reaction 
exactly. However, the accuracy of the approach de- 
pends also on the modeling of molecular mixing. In 
reacting flows, mixing of both reactive and conserved 
scalars occurs and modeling such processes must be 
adequate, particularly if finite-rate chemistry effects 
are involved. This is especially important close to the 
exits of fuel and pilot jets, where the gradients are 
steep and the scalars are evolving in time under sig- 
nificant turbulent mixing rates. It is also important 
at the base of lifted flames. Some previous attempts 
to compute the structure of pilot-stabilized non-pre- 
mixed flames close to blow off have not been suc- 
cessful despite the use of realistic chemistry [1]. This 
is mainly due to the fact that just downstream of the 
pilot flame gases, mixing of reactive scalars is incor- 
rectly represented, leading to largely nonreactive 
fluid mixtures that prevent ignition further down- 
stream. 

Central to the development of mixing models are 
important questions about how multiscalar mixing 

occurs. The simple particle interaction model de- 
veloped by Curl [2] has undergone various modifi- 
cations [3,4] and has been used with limited success 
[5]. The IEM model developed by Dopazo [6] rep- 
resents a significant improvement in computing the 
structure of turbulent pilot-stabilized flames [4]. 
Both Curls model and the IEM model perform 
poorlv on the simple test case of a conserved scalar 
deca\ing to Caussian in homogeneous, isotropic tur- 
bulence [7]. But for inhomogeneous flows, the pro- 
duction of scalar fluctuations by mean gradients 
ameliorates this deficiency. More important in the 
present context is that neither model satisfies the 
"localness principle." namely that mixing occurs lo- 
cally in composition space [4].  Mapping closure 
methods [8] give excellent results for the simple test 
cases and satisfy the localness principle. Although 
there have been various efforts to extend this ap- 
proach to multiscalar mixing [9,10-12], significant 
problems are encountered, particularly in its nu- 
merical implementation. The linear eddy mixing ap- 
proach developed by Kerstein [13-15] shows prom- 
ising results and has the unique advantage of being 
capable of accounting for differential diffusion ef- 

49 
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fects. It has been used by Menon et al. [16] to com- 
pute the structure of jet flames. 

The issue of multiscalar mixing remains unre- 
solved and is the subject of intense research. Re- 
cently, a mixing model based on EMST has been 
developed bv Subramaniam and Pope [I ■ ,. The 
EMST is used to identify neighboring fluid i articles 
in composition space, and mixing then occurs only 
between these particles. The model satisfies Popes 
rules of bouniedness [lb! and localness [4]. A ver- 
sion of the model that satisfies Popes linearity prin- 
ciple [18] has also been developed but is not used m 
this paper. The model has been validated satisfac- 
torily with the simple test problems of multiple sca- 
lars deca\ing in homogeneous isotropic turbulence 
and the evolution of a scalar field in an imposed 
mean  scalar gradient.  Further details about the 
model, its performance, and its convergence and nu- 
merical characteristics may be found elsewhere [ 1.i J. 

The purpose of this paper is to demonstrate that 
the new EMST mixing model gives a realistic rep- 
resentation of mixing in the early region of pilot- 
stabilized flames. This is particularly important lor 
obtaining the correct flame structure further down- 
stream. The model is coupled to a new stand-alone 
PDF code developed for two-dimensional turbulent 
reacting flows [19]. The joint PDF of velocity com- 
position and frequency are solved using the particle- 
mesh method. The single-step chemistry used in 
these simulations is rather simple but is adequate to 
demonstrate the different performance of the mix- 
ing models. The reaction rate is a function of mixture 
fraction c. and a reaction progress variable, b. Com- 
putations" using both the EMST and IEM mixing 
models are compared with experimental measure- 
ments in a pilot-stabilized turbulent diffusion flame 
of H.VNo fuel mixture. 

Numerical Considerations 

The new code solves the PDF equations for two- 
dimensional flows and uses a particle-mesh numer- 
ical method [19]. A rectangular grid is used, and the 
mean properties are determined for each grid node. 
The instantaneous properties are carried by <■.;  ^lias- 
tic particles within each cell. The code can .,d has 
been implemented with parallel processing  ; his fa- 
cilitates accurate calculations with many particles in 
a reasonable amount of elapsed time. Although used 
here for parabolic flows, the main virtue of this new 
code is that it allows, for the first time, the use of 
full PDF approach to compute the structure of re- 
circulating flows. 

The Piloted Flame 

The pilot-stabilized burner has been used exten- 
sively as a model problem for simple parabolic flows 
with' small and extreme departures from chemical 
equilibrium. The burner consists of a central fuel 
tube 7.2 mm in diameter, surrounded by an 18-mm 
annulus for the premixed flame pilot. A large body 
of experimental data is available for piloted flames 
over a range of fuel mixtures [22]. The initial and 
boundary conditions for the flames are well-known 
and these are described elsewhere [5]. To validate 
the numerical simulations, pilot-stabilized flames of 
H.VN, (1/1 bv vol.) fuel are investigated experimen- 
tally, joint images of temperature and mixture frac- 
tion are collected in these flames just downstream 
from the jet exit plane. The Raman-Rayleigh tech- 
nique, which is fully described elsewhere [23], is 
used for these measurements. Hydrogen-nitrogen 
fuel is used because it has moderately fast chemistry 
and the dilution with nitrogen increases the stoi- 
chiometric mixture fraction to cs = 0.305 and forces 
the reactive zone into the shear layer. Measurements 
are taken in the region in which the pilot stream is 
still separating the fuel and airstream and further 
downstream in the region where fuel, air. and pilot 
gases are mixing together. 

The PDF Code 

The approach is based on the transport equation 
for the joint PDF of velocity, composition, and tur- 
bulent frequency. A Lagrangian method is used to 
solve the Eulerian PDF transport equation, and sto- 
chastic models are used for the velocity, dissipation, 
and molecular mixing terms. The evolution of the 
fluid particle velocity is renresented by the simplified 
Langevin model [7]', and a "-w stochastic model for 
turbulent frequency is employed [20]. Constants 
C„x), C„i, and C* in the turbulent frequency and 
composition equations are valued at 2.1, 0.04. and 
2.00, respectively. The sensitivity of the solution to 
these constants is yet to be investigated, but Norris 
and Pope [21] have found that a higher value of C„0 

is more appropriate for axisvmmetric jets. The scalar 
mixing models are addressed in the next subsection. 

The Thermochemistry 

Detailed chemical kinetics mav be implemented 
easilv in the PDF code and are not required here 
since onlv fast chemistry is considered. A very simple 
thermochemical   model   that   simulates   one-step 
chemical reaction is used in the simulatiov s. The re- 
action rate is given as a function of two v   iablesi (<J 
and b), where b is a reaction progress wr.^ble that 
varies from 0 for fullv frozen to 1 for fu;:   reacted 
fluid particles. Four parameters are needed to spec- 
ify the reaction rates: a stoichiometric mixture frac- 
tion 4, a chemical time scale, TC, the curvature of 
the progress variable in mixture fraction space, at 
equilibrium, J£P, and a rich mixture fraction limit, 
"   The thermochemistry is self-similar and may be 
applied over a range of c, values. Figure 1 shows 
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0.45    0.5    0.55 
Mixture fraction 

2.0 X 10"u and Ac,. = 1.0 X 10"'l This corre- 
sponds to a chemical timescale that is short enough 
to simulate the fast chemistry studied in this paper 
and represented by the H2/N2 fuel mixture. More 
details on this self-similar thermochemistry may be 
found elsewhere [24]. 

The EMST Mixing Model 

The EMST model has the unique advantage of 
adequately representing the mixing of reactive and 
conserved scalars. At a given time, and within a given 
grid cell, a new "tree" is formed to account for the 
mixing that occurs between the particles in the cell. 
With a being the number of compositions consid- 
ered and N the number of particles in the cell, the 
composition of the ith particle {i =  1 N) is 
denoted by <#',,, ß = 1 a. The particle com- 
positions evolve by interactions with "neighbor" par- 
ticles, which are defined by the EMST according to 
their proximitv in composition space. A "tree" is 
formed with a set of edges (unordered pair of points 
defining a particle and its neighbor) connecting all 
particles such that the total length of edges is mini- 
mized. If the number of edges incident on the ith 
particle is denoted Ef. then the scalar properties of 
particles, <#■,. evolve according to the following 
equation: 

0.2 0.25 0.3       0.35       0.4 
Mixture fraction 

0.45 

Fie. 1. Contours of normalized reaction rate plotted 
with respect to reaction progress variable /; and mixture 
fraction c for two fuels with stoichiometric mixture frac- 
tions cs = 0.305 and 0,5. 

'    dt 
= -«2ß,(^, - 4>U (l) 

where i, represents the ith particle's neighbor in the 
vth edge. This is illustrated in Fig. 2. which shows a 
typical EMST formed in two-dimensional composi- 
tion space using 800 stochastic particles. The model 
parameter a controls the rate of variance decay of 
the scalars. The numerical weight of the particle is 
denoted bv ttlf>. and the model coefficients Br as- 
sociated with the edges determine the evolution of 
the scalar PDF with time. One disadvantage of the 
EMST is that its computational cost scales as N2. 
Details about the model and its performance char- 
acteristics in a number of test conditions are given 
elsewhere [17]. 

contour plots of the rates obtained for two "fuels" 
with £„ = 0.305 and 0.5. respectively. The first stoi- 
chiometry (c, = 0.305) matches the H2/N2 fuel mix- 
ture for which experimental data are presented here. 
The case of c, = 0.5 is used because the chemistry 
is svmmetric. as shown in Fig. 1. The nonlinearity of 
the rates for all "fuels'" is obvious and the modeled 
rate function peaks closer to stoichiometric. which 
is consistent with actual chemical kinetic rates. The 
lean and rich reactive limits, QL, cR are set where the 
rate drops to 1% of the peak value, and the contours 
shown in Fig. 1 are limited to this range. The chem- 
ical parameters used here for both "fuels" are T(. = 

Results and Discussion 

All computations are performed for the following 
conditions: bulk jet velocity, ü} = 41 m/s, burned 
pilot velocity, üph = 24 m/s. co-flow air velocity, u„ 
= 15 m/s. The initial conditions for the velocity and 
turbulence profiles are identical to those specified 
earlier for similar jet flames [5]. The mixture fraction 
at the jet exit plane in the jet, pilot, and air streams 
is 1, C- ar»d 0. respectively. The solution grid covers 
the region from xlD = 0-25 and r/D = 0-10, where 
D is the fuel jet diameter (D = 7.2 mm). This is 
considered adequate since the region of interest is 
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FIG. 2. The EMST formed from 
8(K) particles in a two-dimensional 
composition space, showing the gen- 
eral particle i that in this case has two 
edges v = 1 and v = 2. 

TABLE 1 
Stoichiometric mixture fraction, <;,.. X-Y grid size, lean 
and rich reactive limits, i, and c,R. for the names for 

which PDF simulations are performed 

c, ^L 

0.055 
0.305 
0.5 

0.045 
0.225 
0.305 

0.185 
0.495 
0.695 

X-Y Nodes 

31 X 21 
31 X 21 
31 X 21 

centered just downstream of the pilot flame 
"shroud" that generally extends for a few jet diam- 
eters. (Before it is completely mixed, the pilot flame 
pro\ides a shroud in the sense that it physically sep- 
arates the fuel stream from the airstream.) 

Numerical tests were performed to determine the 
choice of numerical parameters that minimize the 
computational cost of obtaining converged solutions 
that are reasonably independent of the grid size and 
the number of stochastic particles. At each time step, 
computations are carried out for all the particles in 
the solution domain. The time step is chosen to be 
the shortest of the convective, mixing, and reactive 
timescales. This ensures that these processes are re- 
solved properlv. It should be noted that using the 
same time increment for velocity and scalar mixing 
is justified for this type of shear flows because of the 
multistream geometry with different velocities and 
compositions. The solution is carried out over a long 
enough time to ensure convergence. With the 
EMST model, both mixing and reaction are per- 
formed simultaneously. This is a considerable advan- 
tage over previous approaches where these pro- 
cesses are computed separately. 

Computations are performed for the same flame 

using three different grid sizes with X-Y nodes: 31 
X 21, 46 X 31, and 61 X 41. This corresponds to 
600. 1250. and 2400 cells, respectively, with 100 par- 
ticles in each cell. The computed mean axial velocity, 
i7. and mean mixture fraction, *, have been com- 
pared for the three grid sizes, and the 31X21 grid 
is found to be adequate. Computations with the 
EMST mixing model take about 2.5 times the CPU 
time required for a similar calculation using the IEM 
mixing model. Simulations performed with double 
the number of particles revealed little difference. 
The 31 X 21 grid with 100 particles per cell is, 
therefore, used in all further computations that are 
performed for diree different stoichiometries with 
the conditions shown in Table 1. 

Measurements of the velocity, turbulence, and 
mixing fields are available only for a piloted flame of 
methane fuel with cs = 0.055. Computations are 
performed for a flame with the same stoichiometry 
and the results are then compared with the mea- 
surements (not shown here). The agreement is 
found to be adequate, considering the difference be- 
tween the simple chemistry used here and that of 
methane fuel. 

Figures 3 and 4 show computed scatter plots of 
progress variable b versus mixture fraction for two 
flames with £, = 0.305 and 0.5, respectively. The 
computations are repeated using the IEM and 
EMST mixing models, and the results are shown in 
Figs. 3 and 4 for the ranges of x/D = 0-5,5-15, and 
15-25 of the solution domain. The first range from 
x/D = 0-5 corresponds to the region where the pilot 
shroud is still separating the fuel from the airstream 
and is shown in Figs. 3a and 4a. In this range, mixing 
mainlv occurs between the pilot gases and either air 
or pure fuel. Originally, fluid particles issuing from 
the pilot stream with composition (c = £,, b = 1), 
mix either with air (<f = 0. b = 0) or with fuel (<J 



MIXING MODEL FOR PDF SIMULATIONS 53 

1.0 

0.8 

0.5 

0.3 

0.0 
0.0 

IEM 

/\ 
x/D = 0-5 

^ 
(a) 

0.3 0.5 0.8 1.0 

1.0 

0.8 

0.5 

0.3 

0.0 *— 
0.0 

EMST 

x/D = 0-5 

0.3 0.5 0.8 

\ (a) 
1.0 

i.0r 

0.8 

0.5 

0.3 

x/D = 5-15 

0.0 
0 

n fc^C; 

0.3 
^ 

(b) 

0.5 0.8 1.0 

1.0r 

0.8 

b o 

A. x/D = 5-15 

/ 

/' 

o.o 
0 
\L 

•-Tx :-V 
\ 

(b) 

0.3 0.5 0.8 1.0 

1.0 

0.8 

0.5 

0.3 

0.0 
0.0 

/\ 

/ 

x/D = 15-25 

0^iy$m S^(c) 
0.3 0.5 0.8 1.0 

S 

x/D = 15-25 

FIG. 3. Computed scatter plots of progress variable b versus mixture fraction c for the flame with c, = 0.305 using 
the IEM and EMST mixing models. Each plot covers a specific axial range extending from (a) x/D = 0-5; (b) x/D = 5- 
15; (c) x/D = 15-25. 

= 1, b = 0). Resulting particles populate the com- 
position space that joins the following vertices: (c = 
C„ b = 1), (t = 0, b = 0), (c = 1. b = 0). Figures 
3 and 4 show that both the IEM and EMST models 
give comparable results in this region of the flow. 
This is expected considering that mixing is done 
mainly in one-dimensional scalar space where both 
models perform adequately. 

Further downstream of the pilot flame shroud, 
fluid particles that originated from the pilot, air. and 
fuel streams may coexist in the same cell and are 
therefore likely to mix. It is in these regions of the 
flows that the mixing models are put to the test since 
two-dimensional mixing is more likely between par- 
ticles with a range of conserved and reactive scalars. 

Figures 3b and 4b show a comparison between the 
IEM and EMST models for flame with <;., = 0.305 
and 0.5 in the range x/D = 5-15. It is clear that the 
compositions resulting from the IEM model deviate 
from the fullv burned compositions and start to pop- 
ulate the intermediate region. Fully bumed com- 
positions are those that lie on the line extending 
from (c = 0, b = 0) to (<f = 4, b = 1) to (<f = 1, 
b = 0). The EMST model results in compositions 
that remain on the fully burned line regardless of 
the axial location. It should be noted that identical 
conditions are used for both the IEM and EMST 
simulations. The same trend continues further 
downstream as is shown in Figs. 3c and 4c for the 
range x/D = 15-25. It is also clear that these results 
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FIG. 4. Computed scatter plots of progress variable h versus mixture fraction q for the flame with C, = 0.5 using the 

IEM and EMST mixing models. Each plot covers a specific axial range extending from: (a) x/D = 0-5; (b) x/D = 5-15; 
(c) x/D = 15-25. 

are independent of the stoichiometry of the fuel mix- 
ture. 

To validate these computations, joint imaging of 
temperature and mixture fraction has been per- 
formed in a pilot-stabilized flame of H2/N2 = 1/1 
(bv vol.). The fuel mixture has a stoichiometric mix- 
ture fraction of 0.305 and the chemistry is relatively 
fast. Temperature here may be thought of as a prog- 
ress variable (b) with a value o 1 when the temper- 
ature corresponds to that of fully reacted fluid and 
a value of 0 when the temperature is that of un- 
reacted fluid at 300 K. Contour plots representing 
the joint PDF of measured temperature and mixture 
fraction are shown in Fig. 5 for the a range of axial 
locations in the Ho/No flame. These measurements 

should be compared with simulations for the flame 
with QS = 0.305 shown in Figs. 3a and 3b for similar 
axial locations. It is e\ident from these plots that the 
EMST mixing model is showing the correct trend of 
mixing as opposed to the IEM model, which fills up 
the entire domain within the full) v-?active and fro- 
zen limits. Although measuremei: lo not extend 
further downstream, the trend is e . -cted to be the 
same since the flames studied here are very far from 
blow off. It should be noted here that the pilot in 
the H2/NT2 flame is shorter than that of the computed 
flame and extends for only about 3 jet diameters. 

The IEM model mixes particles that may be well 
apart in composition space as long as these particles 
are in the same cell. This implies that particles with 
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FIG. 5. Contours of the joint PDF of temperature and mixture fraction imaged at various axial locations in a jet flame 
of H.-/N2 fuel with c, = 0.305. Each image covers a range of 12 mm (1.6 diameters), and the axial location quoted on 
each plot corresponds to the center of the image. 

compositions, say (c = 0.75. b = 0.50) and (c = 
0.15, /; = 0.25) mav mix, leading to intermediate 
compositions that are well away from the fully 
burned line. With the EMST model, these particles 
will not mix together but will mix with others that 
are closer in composition space. It should be noted 
here that in the hypothetical case of very fast chem- 
istry and verv broad reactive limits, particles will be 
pushed immediately to the fully burned limit be- 
cause of the fast reactions and the results will be 
similar regardless of the mixing model. On the other 
extreme, when three-scalar mixing occurs without 
reaction, the IEM and EMST models will give dif- 
ferent results, especially in the region close to the 
jet exit plane. This forms an interesting test case that 
could be used to further validate these mixing mod- 
els. Imaging experiments applied to a nonreacting. 
three-stream/three-scalar mixing test case will be 
verv useful in revealing the mixing pattern and fur- 

ther validating the multiscalar mixing aspect of the 
model. 

(Previouslv. Norris and Pope [21] applied PDF 
methods using the IEM mixing model to pilot-sta- 
bilized jet flames close to extinction. In view of the 
current findings, it is somewhat surprising that their 
results compare favorably with the experimental 
data. Although thev used a different PDF model and 
different thermochemistry, it is not clear which spe- 
cific difference is responsible for the different be- 
havior observed.) 

Conclusions 

A new code that uses a particle-mesh method to 
solve the transport equation for the joint PDF of 
velocirv composition and turbulent frequency has 
been used with a new mixing model based on EMST 
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and simple, one-step thermochemistry. Comparison 
with experimental measurements in pilot-stabilized 
flames demonstrate that the EM ST successfully 
models multiscalar mixing, and. in particular, it over- 
comes serious defects in IEM and Curl's models 
arising from their violation of the localness principle. 

The success of the EMST model marks a signifi- 
cant advance in the modeling of turbulent combus- 
tion with PDF methods. It is well-known that the 
weak link in this approach lies in the modeling of 
mixing, and success in this regard brings us closer to 
the goal of the accurate simulation of complex tur- 
bulent reacting flows with detailed chemical kinetics. 
The extensive computational requirement, however, 
remains a drawback that is addressed elsewhere [25]. 
Bluff-bodv stabilized flames and lifted flames are 
two cases in which the PDF approach incorporating 
the EMST mixing model is likely to make a signifi- 
cant impact. 
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COMMENTS 

J.-Y. Chen. University of California-Berkeley. USA. 
Have the authors carried out PDF simulation using mod- 
ified Curl's mixing which is inexpensive relative to EMST? 

REFERENCE 

1. Norris and Pope. Combust. Flame 83:27-42 (1991) 

Author's Rqüy. Not in this work, but in an earlier study 
[1], both Curl's model and the modified Curl model were 
applied to a zero-dimensional nonpremixed test case. As 
here, in that srudv it was demonstrated that these non-local 
models yield qualitatively incorrect behavior in the fast- 
chemistrv limit. 

Norberto Fueyo. University ofZaragoza-LITEC, Spain. 
My impression is that you are using a rather coarse mesh. 
For the flames vou have simulated, our experience is that, 
for coarse meshes, the flame does tend to be extinguished, 
regardless of the mixing model (or even the chemistry 
model) that one uses. Once the mesh is adequately refined 
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and a grid-independent solution reached, the problem dis- 
appears and then the flame does bum. Have you tested 
vour computations for mesh independence? 

Your mixing model seems to do a good job at keeping 
the reaction going: how does it perform when it comes to 
predicting extinction? 

Author's Reply. We do not agree that extinction here is 
due to the coarse mesh rather than the mixing model. For 
the IEM mixing model, the grid was refined from 31 X 21 

to 91 X fil and the flame remained extinguished resulting 
in the same scatter plots as shown in Figs. 3 and 4 of the 
paper. 

The EMST does indeed give a good representation of 
the mixing and hence it sustains reaction as illustrated in 
the paper using relatively fast and simple thermochemistry. 
Predicting extinction requires the implementation of real- 
istic chemistry into the code. This is currently being done 
and. in conjunction with the EMST. it is expected to give 
good results. 
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