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Lip Tracking for Audio-Visual Speech Recognition 

Abstract 

Human speech is conveyed through both acoustic and visual channels and is therefore 
inherently multi-modal. Further, the two channels are largely complementary in that the 
acoustic signal typically contains information about the manner of articulation while the 
visual signal embodies knowledge of the place of articulation. This orthogonal nature of 
the audio and visual components has enticed researchers to develop audio-visual speech 
recognition systems that have been shown to be robust to acoustic noise. A fundamental 
requirement of automatic audio-visual speech recognition is the need for real-time tracking; 
however, this necessity has been largely ignored by the lipreading1 community. This work 
presents a new approach for tracking unadorned lips in real time (50 fields/sec). The 
tracking framework presented combines comprehensive shape and motion models learnt 
from continuous speech sequences with focused image feature detection methods. Statistical 
models of the grey-level appearance of the mouth are shown to enable identification of the 
lip boundary in poorly contrasted grey-level images. The combined armoury of the these 
modelling approaches permits robust, real-time tracking of unadorned lips. 

Isolated-word recognition experiments using dynamic time warping and Hidden Markov 
Model-based recognisers demonstrate that real-time, contour-based, lip tracking can be used 
to provide robust recognition of degraded speech. In noisy acoustic conditions, the perfor- 
mance of recognisers incorporating visual shape parameters are superior to the acoustic-only 
solutions, providing for error rate reductions up to 44%. Further experiments using indi- 
vidual shape components suggest that the recognition information in the outer lip contour 
is concentrated in three shape parameters, approximately corresponding to 'ah', 'ee', and 
'oh'. 

In order to capture the linguistic information carried by the teeth and tongue, more 
capable trackers are also introduced which exploit information-rich colour images. Feature 
detectors, which employ Bayesian discriminant analysis techniques on colour images, provide 
for fast, accurate, identification of the boundary between the lips and their surround. The 
result is a robust tracker capable of tracking both the inner and outer lip contours. This 
tracker permits more detailed measurements to be made about the teeth and tongue, and 
serves as a foundation for further exploration of the benefits of lipreading. 

JThe term "speechreading" more accurately describes the process of using visual information to under- 
stand speech; however, "lipreading" is the more commonly accepted term. 
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modelling approaches permits robust, real-time tracking of unadorned lips. 

Isolated-word recognition experiments using dynamic time warping and Hidden Markov 
Model-based recognisers demonstrate that real-time, contour-based, lip tracking can be used 
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solutions, providing for error rate reductions up to 44%. Further experiments using indi- 
vidual shape components suggest that the recognition information in the outer lip contour 
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In order to capture the linguistic information carried by the teeth and tongue, more 
capable trackers are also introduced which exploit information-rich colour images. Feature 
detectors, which employ Bayesian discriminant analysis techniques on colour images, provide 
for fast, accurate, identification of the boundary between the lips and their surround. The 
result is a robust tracker capable of tracking both the inner and outer lip contours. This 
tracker permits more detailed measurements to be made about the teeth and tongue, and 
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Introduction 

Since verbal communication is the principal method of conveying information between hu- 

mans, the possibility of communicating with computers through simple verbal interaction 

presents an opportunity to profoundly change the way humans interact with machines. 

Voice interactive systems will relieve users of the burden of entering commands via com- 

puter keyboards and mice, and could prove indispensable in situations where the operator's 

hands are occupied, such as when driving a car or operating machinery. Much research has 

focused on the development of spoken language systems, and rapid advances in the field 

of automatic speech recognition have been made in recent years [32, 96, 147]. Although 

progress has been impressive, researchers have yet to overcome the inherent limitations of 

purely acoustic-based systems, particularly their susceptibility to environmental noise. Such 

systems readily degrade when exposed to time-varying or unpredictable noise as might be 

encountered in a typical office environment with ringing telephones, background radio mu- 

sic, and disruptive conversations. Their performance also drops in more benign situations, 

such as inside moving automobiles or when the signal is transmitted across telephone lines. 

In tests conducted by the Advanced Research Projects Agency (ARPA), error rates on state- 

of-the-art acoustic recognisers more than doubled when presented with speech distorted by 

telephone channels [96]. 

If speech recognition systems can be made to function effectively in noisy environments, 

then voice-interactive technology can be extended to a wide range of application domains. 

For instance, an application of current commercial interest is the ability to operate and 
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control a car-phone by voice, enabling, for example, hands-free dialing. Similarly, speaker 

identification/verification techniques can be used in security applications, such as access 

control. Eventually, security systems may even combine visual face recognition with the 

voice pattern matching. Interfaces to standard office equipment such as computers, pho- 

tocopiers, and fax machines could also be improved by the employment of user-friendly, 

voice-interactive front ends. The principal obstacle to the utilisation of current speech 

recognisers in these environments is their poor performance in the presence of interfering 

noise. 

To enable operation in adverse environments, acoustic solutions typically use noise com- 

pensation methods during pre-processing or recognition. The pre-processing approaches 

often use noise masking, noise cancellation, spectral subtraction, or adaptive filtering tech- 

niques to remove the additive noise power from the signal [80, 21, 103]. Hidden Markov 

Model (HMM) decomposition, where separate models are used for the clean speech and 

noise, is a common method used to provide compensation during recognition [135, 51, 52]. 

While these approaches have proven to be effective, they ignore a basic truth, that is, the 

multi-modal nature of human communication. This research attempts to exploit this real- 

ity by using visual information, in the form of parameters describing the shape of the lips, 

to improve upon acoustic speech recognition performance. Further, although only limited 

attention is given to noise compensation methods in this work, it should be noted that the 

employment of noise compensation techniques and the inclusion of visual information are 

not mutually exclusive. Rather, the beauty of the visual signal is that it can be utilised in 

conjunction with any of these acoustic compensation strategies. 

It is well known that human speech perception is enhanced by seeing the speaker's face 

and lips — even in normal-hearing adults [43, 116]. Sumby and Pollack [129] have shown 

that visual information enhances speech understanding, especially in noisy environments. 

Further, several researchers [108, 130] have demonstrated that the primary visible artic- 

ulators (teeth, tongue, and lips) provide useful information with regard to the place of 

articulation and Summerfield [130, 131] concluded that such information conveyed knowl- 

edge of the mid- to high-frequency part of the speech spectrum — a range readily masked 

by noise. 

Motivated by this complementary nature of the visual information, researchers have re- 

cently developed audio-visual speech recognisers which have proven to be robust to acoustic 

noise [105, 128, 16, 26, 1]. Although the field of audio-visual speech recognition shows great 

promise, it is still in its infancy, even in comparison with acoustic speech recognition which 

after fifty years of research has only recently resulted in commercially available systems 
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like DragonDictate from Dragon Systems and VoiceType Dictation from IBM. There are 

many hurdles that must be overcome before audio-visual speech recognition systems become 

commercially viable. 

If audio-visual recognition systems are to be effective, they must be capable of tracking 

the lips (inner or outer contour, or both) and be robust to head movements and variations 

in lighting and pose. The tracker must be able to follow the lips for an extended period of 

time, at a minimum the length of one interactive session, which in the case of car-phone 

applications may be several hours. In addition, real-time tracking is essential as applications 

dealing with man-machine interfaces do not afford an opportunity for off-line processing. 

The need for accurate tracking of the lips, however, is only one step in the larger problem 

of extracting linguistically relevant information from the visual channel. In order to provide 

accurate recognition, the tracking must yield information that can be used to discriminate 

between the various recognition units (words, phonemes, tri-phones). Although it is known 

that humans supplement their understanding of speech using visual cues — which include 

visual movements contributing directly to production of speech, such as the positioning 

of the lips, teeth, and tongue, as well as more peripheral movements like head nods and 

eyebrow movements [99, 94, 9, 23] — it is not known which visual recognition features1 are 

the most beneficial from a machine recognition perspective. 

Lastly, a problem that has proved to be far more challenging than may have been 

anticipated is the intelligent integration of the audio and visual channels. On the surface, 

integration of the two modalities appears to be a straightforward data fusion problem. 

However, complications arise because the relative importance of the channels varies as a 

function of the spoken word. For example, "me" and "knee" are more easily distinguished 

visually than aurally, while discriminating between "me" and "pea" is principally an acoustic 

charge. Further, the integrity of the acoustic channel is strongly influenced by the presence 

of interfering noise. Accordingly, audio-visual integration strategies should be able to adapt 

to changing noise conditions and appropriately weight the two information sources according 

to their linguistic relevance. 

The many challenges associated with the audio-visual speech recognition problem pro- 

JIt is unfortunate that the word "feature" is used to describe markedly different entities by the speech 
recognition and vision communities. In recognition parlance, a feature is a representation of a signal which 
compactly captures its information content (typically spectral representations in the case of acoustic signals 
and often via geometrical measures like height, width, area, or shape parameterisations, for the visual 
signals). In the vision community, a feature is a distinguishable point in an image, such as an edge, valley, 
corner, or even a boundary between two regions, like the lips and skin. When the intended meaning is 
ambiguous, recognition features will be used to indicate the compact representation of information, while 
■image features will designate distinguishing points in images. 
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vide a rich source of interesting areas for research. This thesis addresses several of these 

problem areas with the primary emphasis being on providing solutions to the difficult lip- 

tracking problem. 

The problem of accurately tracking rapidly moving, articulating lips is a formidable one. 

The task is compounded by the real-time constraints imposed by the target application. 

Currently, other than the work presented here, Petajan et al. [106, 107] possess the only 

tracker capable of tracking unadorned lips in real time. Their tracker, as well as the work of 

many others, is detailed in chapter 2. In contrast with other tracking work, the lip trackers 

described in this thesis use a dynamic contour tracking framework [12, 15] to attain real- 

time performance. An overview of these lip trackers and the dynamic contour framework is 

given in chapter 3. In chapter 4, it is shown that the dynamic contour tracking framework 

is well suited for tracking rapidly moving, articulating lips from profile views. It is further 

demonstrated that highly accurate frontal lip tracking is attainable if lipstick is used to 

enhance the contrast of the lips. However, when applied to unadorned lips, the computation- 

efficient, edge-based feature detectors used in the trackers are shown to be ill-suited for 

tracking the weakly contrasted lips. Statistical models of the grey-level appearance around 

the lips are employed which capture the salient information for identifying the lip boundary. 

When incorporated into the tracking framework, the result is accurate tracking of unadorned 

lips. Although the use of statistically-based feature detectors is itself not new [34, 122], this 

is the first reported use of their employment in real-time tracking problems. 

In order to evaluate the extent to which lip contour information can be used to aid 

speech recognition, two audio-visual speech recognisers are developed. The two recognisers, 

one which uses a dynamic time warping (DTW) pattern matching algorithm and the other 

which uses continuous density Hidden Markov Models (HMMs), are explained in chapter 5. 

Visual shape parameters are obtained from the tracked lip contour by projecting the lip 

outline onto recognition bases. Several recognition experiments which were conducted on 

isolated-word vocabularies with and without added Gaussian acoustic noise are presented in 

chapter 6. These experiments demonstrate that shape parameters obtained from accurately 

tracked lip contours can be used to provide robust speech recognition in the presence of 

high levels of interfering noise. Further experiments using individual shape components 

suggest that the recognition information in the outer lip contour is concentrated in three 

shape parameters, approximately corresponding to 'ah', 'ee', and 'oh'. When the acoustic 

channel is degraded, the visual information significantly enhances recognition performance 

— reducing error rate up to 44%. Improvements occur even when the acoustic recogniser 

is trained and tested at the known noise level.  However, in clean acoustic conditions, the 
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shape parameters provide only a slight reduction in error rates (< 8%). Additional visual 

information in the form of knowledge of the inner mouth region, to include the teeth and 

tongue, may be needed to increase performance in these environments. 

Towards this end, more capable trackers are developed in chapter 7 which make use of the 

increased discriminating potential of colour images of the face. First, a novel application of 

Fisher's Linear Discriminant Analysis [46] is presented which enables accurate identification 

of the lip-skin boundary and is shown to be robust to environmental variations. Further, 

since the learning of the Fisher discriminant is done off-line, outer lip contour tracking 

can still be accomplished in real time on general-purpose workstations (Silicon Graphics 

Indy R4400 200 MHz). Next, accurate demarcation of the inner mouth contour is attained 

despite considerable variations in the appearance of the mouth due to movements of the 

teeth and tongue. Mixtures of multi-variate Gaussians enable precise modelling of the 

colour intensities inside the mouth. The resultant inner-outer lip contour tracker permits 

extraction of information from the image data inside the mouth, thus enabling more detailed 

judgements to be made about the presence and position of the teeth and tongue. 



Background 

2.1    Human Lipreading and Speech Perception 

In developing systems that attempt to mimic human capabilities, such as hearing and seeing, 

it is often helpful to study those who do it best — humans. It is not surprising that deaf 

and hearing-impaired individuals use lipreading as their primary source of information for 

speech communication [42]. Nor is it surprising that visual cues improve speech perception 

in acoustically noisy environments [129]. What may be surprising is the extent to which 

seeing a speaker's face and lips affects speech perception for normal-hearing people in clean 

acoustic environments. It is widely accepted that sound is the primary instrument for human 

speech recognition (and one need only turn down the volume on the nightly newscast to 

verify this). Despite the temptation to relegate lipreading to a "back-up" system when 

the audio system fails or is degraded, researchers have shown that visual cues enhance 

speech perception even in clean acoustic environments [130, 93, 116]. Reisberg et al. [116], 

convinced that lipreading was more than a back-up system, devised tests where the audio 

signal was easy to hear, but hard to understand. They exposed subjects with normal 

hearing and no lipreading training to foreign languages, a speaker with a foreign accent, 

and a semantically complex message. In all experiments, despite noise-free audio signals, 

those who saw the speaker's face recognised a greater percentage of the words [116]. 

In a classic study, McGurk and MacDonald [95] demonstrated that when presented 

with conflicting aural and visual stimuli, listeners often reported hearing neither the aural 
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or visual stimulus, but a blend of the two. In their experiments, subjects were shown a video 

with a speaker mouthing "ga" which had been dubbed with audio corresponding to "ba". 

When asked to report what they heard, subjects reported hearing "da". This audio-visual 

blend, now commonly referred to as the "McGurk effect", indicates that visual information 

affects speech interpretation even when the acoustic signal is clear and unambiguous. 

Given that the visual cues can complement acoustic ones, it is important to determine 

what information they provide and assess situations where they can be of most benefit. 

Sumby and Pollack [129] found that the contribution of visual information to speech intelli- 

gibility increased as the signal-to-noise ratio (SNR) of the audio signal decreased, primarily 

due to the poor intelligibility of speech at low SNRs. Campbell [27], extrapolating from 

the work of Sumby and Pollack, deduced that seeing the talker's face was equivalent to a 

15 dB increase in the acoustic signal-to-noise ratio. Summerfield et al. [130, 131] provide 

an explanation. They assert that movements of the visible articulators (teeth, tongue, and 

lips) convey information on the place of articulation. This indicates spectral detail in the 

mid- to high-frequency region of the speech spectrum — a region readily masked by noise. 

Conversely, the acoustic signal, which denotes movements of the hidden articulators (larynx 

and velum), conveys the manner (voicing and nasality) of the speech. These movements are 

typically associated with the intense low-frequency part of the speech spectrum and are less 

susceptible to noise. Thus, the audio and visual signals are complementary, with the visual 

signal being most beneficial in the region where the acoustic signal is most vulnerable to 

the deleterious effects of the noise. 

In related experiments, Brooke, McGrath, and Summerfield [25, 94, 131] investigated 

the comparative recognition rates of individuals presented with differing amounts of visual 

stimuli. Subjects were shown images of the speaker's entire face, the lips and teeth only, 

and the lips only, and asked to identify the vowel present in a /b/-Vowel-/b/ context. As 

was expected, the best performance (78% recognition rate) was achieved when the observers 

saw the entire face. Recognition rates dropped to 56% using the lips and teeth and 50% for 

the lips only. Their results suggested that, although visual information from the lips alone 

contains reliable recognition information, it may be necessary to incorporate additional 

cues, such as the teeth and tongue, to approach the recognition potential of the entire face. 

In similar studies using French nonsense words, Benoit et al. [9, 84] confirmed the above 

findings, further concluding that the "lips alone carry on average two-thirds of the speech 

intelligibility carried out by the whole natural face." 

The findings of these psychological studies highlight the multi-modal nature of human 

communication and demonstrate the importance of lipreading in speech perception. They 
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also serve as the impetus for the incorporation of lipreading information into automatic 

speech recognisers. As Summerfield says, "The potential improvements to be gained from 

automatic lipreading are sufficiently large for speech technologists to be exploring image- 

processing algorithms to bolster the performance of acoustical recognisers." [131] 

2.2    Computer Lipreading Systems 

Although it has been known for sometime that human speech perception is a multi-modal 

process, it is only recently that researchers have begun to explore the potential benefit of 

incorporating visual information into acoustic speech recognisers. The first serious work 

in the area was performed by Petajan and Brooke [104, 24, 105] (and later [106, 26, 133]) 

followed shortly by Finn and Montgomery [47], but recently many others have entered the 

field, including Bregler et al. [16, 17, 18, 19], Stork et al. [128], and Benoit et al. [9, 1]. 

As in acoustic recognition systems, there are many different ways in which to classify the 

various lipreading systems. Such systems can be classified according to the method used 

to track the lips, the visual recognition features extracted, the recognition method (DTW, 

HMM, NN, etc.) used, or the audio-visual integration strategy employed. Furthermore, they 

may be speaker-dependent or speaker-independent (both with regard to tracking as well as 

recognition) and may operate on isolated-word or continuous speech databases. Despite the 

large variability among the many systems, there are several fundamental issues that each 

system must address. Foremost among them are the method used to track the lips and the 

type of visual information extracted. 

If audio-visual recognition systems are to be effective, they must be capable of tracking 

the lips (inner or outer contour, or both) and reasoning about the presence/absence and 

position of the teeth and tongue. Ultimately, they should adequately handle unconstrained 

speakers who may be moving around freely, nodding or rotating their heads. They should 

also be robust to variations in lighting and shadowing. Furthermore, in order to provide 

accurate recognition, the tracking must yield information that can be used to discriminate 

among the various recognition units (words, phonemes, tri-phones). This extracted visual 

information must also be intelligently integrated with the acoustic features, presumably in 

proportion to the information content of each channel. Finally, all of this should, of course, 

be accomplished in real-time or near real-time in order that practical use may be made of 

such systems. 

Although there is currently no consensus in the speechreading community for what the 

best strategy is for tackling these issues, it is instructive to look at the methods used by 
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various researchers in addressing these fundamental problems. Since there are no standard 

or commercial audio-visual databases against which the various systems can be measured, it 

is difficult to make meaningful comparisons between them. However, it is nonetheless useful 

to take a detailed look at some of the more representative systems, noting their strengths 

and weaknesses. 

2.3    Lip Tracking and Visual Feature Extraction 

The problem of accurately tracking rapidly moving, articulating lips is a formidable one. 

The task becomes even more difficult if the computational time constraints required by the 

intended applications — audio-visual speech recognition, lip synchronisation for animation, 

expression recognition, etc. — are considered. Currently, other than the work presented 

here, Petajan et al. [106, 107] possess the only tracker capable of tracking unadorned lips 

in real time on general-purpose hardware. The need for the tracking of the lips, however, 

is only one step in the larger problem of extracting linguistically relevant information from 

the visual channel. In essence, feature extraction is the process of reducing the high- 

dimensional image data down to compact sets of features that adequately represent the 

information content of the visual signal. Choosing the most suitable representation of the 

visual information remains an open research question. In general, there are three main 

feature extraction approaches, those that use the pixel intensity information, those that use 

image flow or motion, and those that use lip contour information. Naturally, the feature 

extraction method employed greatly influences how lip tracking is accomplished. 

2.3.1    Pixel-based systems 

Owing to the difficulty of accurately tracking the lips, and the belief that it is the recognition 

engine that should determine the informative visual features, many researchers [142, 26, 

101, 124] extract their features directly, or indirectly, from the grey-level pixel data. Vector 

quantisation [125] or principal components analysis [26] are typically used to reduce the high- 

dimensional image data down to a more manageable size. A major strength of this approach 

is that most of the information about the primary visible articulators — the teeth, tongue, 

and lips — is retained. The downside to this approach is that these systems tend to be 

highly susceptible to changes in lighting, viewing angle, and speaker head movements. Such 

systems may be optimal in certain settings where there is limited head movement relative 

to the camera and where the lighting can be carefully controlled. Indeed, impressive audio- 

visual recognition results have been achieved in controlled lighting conditions by several 
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researchers [17, 133] using the pixel intensities directly. Such an approach may still prove 

effective in more natural settings, although recognition performance will likely depend on 

the ability of the recognition engine to generalise over lighting changes and compensate for 

tracking errors. 

Petajan and Brooke [104, 105] were the first to demonstrate that visual information 

from lipreading could be used to improve the performance of acoustic speech recognisers. 

They conducted speaker-dependent, isolated-word experiments on four separate speakers. 

Their system consisted of a commercial acoustic recogniser and an image processing system. 

Images of speakers' faces were thresholded with a manually set value to produce binary 

images. The threshold was chosen so that no dark mouth regions were present when the 

mouth was shut. They measured the distance between each speaker's nostrils and their 

mouth. The location of the speaker's nostrils was identified using region matching against 

a stored nostril template. They assumed that the distance between the mouth and the 

nostrils remained relatively constant and thus the region around the mouth was located 

using this known distance. Vector quantisation (VQ) was used to represent these binary 

mouth images as a 256-symbol codebook. 

Recognition was performed in two separate stages. Features (mouth images) were ex- 

tracted from unknown vision sequences as described above. They were then represented as 

a series of codebook symbols and matched against two representative samples of each word. 

The unknown word was then determined using dynamic time warping with a Euclidean dis- 

tance measure. For the combined audio-visual system, the commercial acoustic recogniser 

identified the top two most likely candidates for the unknown and then the visual recogniser 

decided between the two. 

Separate tests were conducted on two "clean" (no artificially added noise) databases — 

the 10 digits and the 26 English letters. Recognition error rates on the alphabet ranged from 

28-45% for acoustic-only, 20-28% on vision-only, and 11-29% for the combined audio-visual 

system. Their key finding was that the visual information did indeed contain important 

recognition information that could supplement acoustic-only systems. Results for both 

databases and for all four speakers confirmed this. 

Similarly, Silsbee et al. [126, 124] used VQ codebooks to represent the pixel data; how- 

ever, rather than using binary images of the face, they used smoothed grey-levels. Visual 

features were acquired by extracting an 80 x 80 pixel array from a predefined region of 

interest in the image which bounded the speaker's mouth. Histogram flattening and left- 

to-right balancing were used to reduce some of the effects of the variations in lighting. VQ 

was used to represent these 6400-dimensional pixel intensity vectors as a 32-symbol code- 
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book. Codebook entries were assigned to the test images by choosing the codebook image 

with the minimum squared pixel-intensity difference between it and the test image. They 

conducted isolated-word recognition experiments on two different databases. In one series 

of experiments [126], they used 22 English consonants in /a/-Consonant-/a/ context and 

in another [125], a 500-word database. Their audio-visual recognition system was driven 

by the fact that their hardware could not support real-time acquisition of both audio and 

visual data. As a result, the data were acquired on separate machines without any means of 

synchronising the audio and visual sequences. Twelve audio features were extracted using 

Hermansky's Perceptual Linear Prediction (PLP) [65]. As with the visual data, these too 

were represented as three 32-symbol codebooks. Actual recognition was accomplished us- 

ing discrete-density, left-to-right HMMs. The audio and visual sub-systems were phoneme 

based, but completely independent (because of the synchronisation problem) which permit- 

ted different state paths through the HMMs for the audio and visual sequences. In order to 

combine the two sub-systems, the class-conditional probabilities were weighted by a user- 

defined constant A, that is, Pr(Word|i4, V) = Pr(Word|A)A x Pr(Word|F)(1_A). Average 

error rates on the 22 consonants using clean speech were 4% for audio only, 52% visual only, 

and 4% for the audio-visual system. Average error rates on the 500-word database using 

clean speech were 40% for audio only, 78% visual only, and 22% for the audio-visual system. 

Using noisy speech (10 dB SNR), error rates were 50% for audio only, 78% for visual only, 

and 40% for the audio-visual system. 

2.3.2    Flow-based tracking 

A second method of extracting features from images of speakers is based on the premise 

that humans are more sensitive to motion than to static scenery. It is therefore believed [92] 

that the motion of the lips contains more useful recognition information than the physical 

outline or the grey-level intensities of the mouth region. In particular, lip velocity is be- 

lieved to aid in locating word and/or syllable boundaries. A limitation of this approach 

is that computationally expensive procedures like optical flow analysis and morphological 

operations are used to extract the lip velocities which restricts their use to applications 

that do not require real-time performance. Further, typically only coarse measurements of 

mouth motion are obtained, whereas more precise estimation of the motion is desired. 

Mase and Pentland [92] used Horn and Schunk's gradient method [69] to estimate the 

optical flow around the mouth. Specifically, they computed the horizontal and vertical 

velocity of the mouth in four rectangular regions around the mouth. They obtained two 

features from these velocities — a measure of mouth opening/closing movements and a 



CHAPTER 2.   BACKGROUND 12 

measure of the elongating/contracting of the sides of the mouth. 

Visual only, multi-speaker (3-speaker) recognition experiments were performed using 

connected words (digits). Recognition was accomplished using a weighted Euclidean dis- 

tance measure between sequences of the two features. All of the utterances (digit sequences) 

were linearly time-warped to a standard length of sixteen samples. The "distance" between 

two sequences was computed by weighting the squared difference between each feature in 

the sequence by the ratio of the eigenvalues of the two features (determined through prin- 

cipal component analysis) and summing over the entire sequence. Average error rate for 

the three speakers was 24%, although the test set consisted of only four word sequences (21 

total words). 

No special equipment was used to fix the position of the speakers' heads, although speak- 

ers were asked to rest their heads against a wall to limit extraneous movements. The authors 

recognised that global head movements not related to speech production could contaminate 

their data, although they felt that this deficiency could be overcome by compensating the 

local optical flow with information about global movements. 

Mak and Allen [89] investigated the use of lip motion to improve segmentation of noisy 

speech along syllabic boundaries. They noted that in images of faces, the gap between 

the upper and lower lips (inner mouth region) is often the darkest part of the image. 

Through the use of morphological erosion, image subtraction, binary thresholding, and 

cluster analysis, they were able to locate the centre of the lips. They extracted velocity 

measures similar to the opening/closing and elongation/de-elongation used by Mase and 

Pentland [92] using an exhaustive block matching algorithm. For each vision frame, a 

single resultant velocity, Vr, was computed using the two velocity measures, Vx and Vy, 

by Vr = yVx
2 + Vy2. The peaks and troughs of Vr{t) were then used to identify syllable 

boundaries in continuous speech. The authors claim that using a combination of Vr(t) and 

the acoustic signal resulted in a 10% reduction in segmentation errors; however, a notable 

limitation of this system is that it uses only local image motion and hence global head 

movement can be erroneously detected as lip motion. 

Despite recent findings [55, 17, 57] that motion does indeed carry important linguistic 

information, flow-based tracking has fallen out of favour in the speech reading community. 

Rather than using flow-based methods for obtaining the lip velocity, tracking is used to 

determine the time-varying lip position, and delta positions are used as velocity [17, 55]. 
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2.3.3    Dot tracking 

Since human lipreaders rely heavily on the positioning of the lips [25, 131], extraction of 

shape parameters from the lip outline presents a third alternative to feature extraction. In 

the simplest case, reflective dots on the face can be tracked over time to obtain geometric 

measures like height, width, area, and circumference of the mouth opening. However, more 

advanced model-based tracking can be used to acquire lip deformations corresponding to 

particular actions, or sounds, such as the lip rounding of 'oo' or the curling of the lip 

corners in 'ee' (section 6.1). One obvious limitation of this approach is that information on 

the positioning of the tongue and teeth is lost unless additional steps are taken to retain 

it. Furthermore, since there is not a prominent edge at the boundary between the lips 

and face [145, 100], accurate tracking of the lip outline is itself a formidable problem. To 

overcome this, early researchers [47, 22, 128] placed reflective dots around the speakers' 

mouths in order to obtain accurate measurements of lip shape parameters. The principal 

advantage of using shape parameters as inputs to the recognition engine is that they are 

inherently invariant to changes in illumination and can be made robust to head movements. 

Finn and Montgomery [47] were the first to investigate the use of shape features in 

automatic speech reading. They conducted speaker-dependent, isolated-word recognition 

experiments on 23 English consonants in /a/-Consonant-/a/ environment. Tracking of the 

mouth outline was accomplished by recording the positions of twelve highly reflective dots 

placed around the speakers' mouths. Fourteen distance measurements were computed using 

the recorded positions. Each consonant in the database was said twice, once for use as a 

reference template and once for testing. All utterances were truncated by hand to 29 frames 

(with duration 29/30 sec) and aligned such that the temporal centre was at the maximum 

vertical opening of the mouth. 

Recognition was accomplished using direct (no time warping) calculation of a weighted 

Euclidean distance between the test utterance and the 23 reference templates. The token 

yielding the smallest total distance was identified as the recognised token. With equal 

weighting for all 14 distance measurements, recognition error rates of 60% were achieved 

using only the visual data . Allowing for the fact that it may be impossible to distinguish 

consonants in the same viseme group (ie. 'b' and 'p', 'd' and 't', etc.) using vision alone, 

and thus counting "apa" correct for both "aba" and "apa", the error rate dropped to 22%. 

When experimentally-determined "optimal" weighting was used in the Euclidean distance 

measure, the error rates dropped to 13% on the consonants and 5% on the viseme groups. 

The authors mentioned the use of a commercial acoustic speech recogniser on utterances 
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at eight different SNR ratios and discussed ways of incorporating their visual features into 

the acoustic recogniser, but no results of either were presented. 

2.3.4    Model-based tracking 

The success of Finn and Montgomery's work using geometric features and recent advances 

in model-based tracking have led many researchers to explore model-based techniques for 

lip tracking. Most "lip trackers" build upon the pioneering "snake" approach of Kass and 

Terzopoulos [75] or the "deformable template" methods of Yuille et al. [146, 144]. The 

essence of the model-based tracking approach is the incorporation of prior shape knowledge 

about the object to be tracked. Identification of the outline of an object is formulated as 

an energy minimisation problem: internal energy terms are used to impose continuity and 

smoothness constraints on the deforming contour, while external energy terms serve to guide 

the contour to salient features in the image, such as edges and valleys. Kass' snake approach 

provides only general, or soft, constraints on the allowable shapes, encouraging the contour 

to be elastic, or biasing it towards long, thin shapes, while Yuille's deformable template 

approach imposes hard constraints on permissible shapes by explicitly parameterising the 

contour. 

The audio-visual speech recognition systems developed by Bregler and his colleagues [16, 

17, 20], which are some of the most comprehensive systems developed to date, use Kass's 

snake approach with shape constraints imposed on possible contour deformations. They 

track only the outer lip contour while restricting the allowable lip shapes to lie on a manifold 

which is learnt from training sequences of lip shapes. Early versions employed linear shape 

spaces [16]; however, a more recent tracker [18, 19] permits the lip contour to lie along 

a non-linear manifold. The latter approach also enables non-linear interpolation between 

successive images of the mouth to permit synchronisation of information from the audio 

and visual channels, which run at different rates. Within this framework, the lip outline is 

represented by 40 evenly spaced points along the contour; however, rather than using the 

tracked lip position as input to their recognition engine, it serves only to provide an image 

location about which a 24 x 16 matrix of pixel intensities is extracted. Visual processing 

consists of reducing dimensionality of the pixel data from 384 (24 x 16) to 10, using principal 

component analysis. Acoustic parameters consist of 8 cepstral coefficients plus a ninth 

feature corresponding to the average acoustic energy in each frame. 

They investigated multi-speaker (6-speaker) audio-visual recognition of connected words 

(German letters). They used a multi-state Time Delay Neural Network recogniser which 

was trained using the concatenation of the 9 audio features, the 10 principal components 
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from the grey-level intensities, and an additional 10 "delta" features from the change in 

grey-level intensities. They tested their system using clean audio data, audio data with 

additive noise recorded inside a moving car, and additive crosstalk data simulating the 

"cocktail party" effect. On the clean data their acoustic-only system yielded an error rate 

of 11% and their combined audio-visual system 10%. For the audio data with additive 

car noise at a SNR of 20 dB, the error rates were 56% and 48%. There was a similar 

improvement for the 15 dB SNR crosstalk-corrupted audio, where the combined system 

resulted in an improvement from an error rate of 67% to 46%. In addition, they also 

attempted recognition using features extracted from the lip contour. They provided no 

specific numbers, but concluded that the outline of the lip alone was not distinctive enough 

to give reliable recognition performance. This is most likely due to their use of image forces 

consisting of only grey-level gradients, which are known to be inadequate for identifying the 

outer lip contour [144, 86, 76]. 

One aim of this thesis was to test the claim that the lip contour was "not distinctive 

enough to give reasonable recognition performance" [19]. It is our belief that accurately 

tracked lip contours are a rich source of information for audio-visual speech recognition 

— a belief supported by recognition experiments presented in chapter 6. Moreover, we 

demonstrate that tracking can be accomplished at real-time rates (50 Hz) — addressing a 

compelling requirement of audio-visual speech recognition. 

Several researches, Stork et al. [63, 62, 64], Rao et al. [115], and Silsbee et al. [29], 

employ pared-down versions of Yuille's iterative gradient descent minimisation deformable 

templates to track both the inner and outer lip contours. In the interest of computational 

efficiency rather than using the full complement of image potential fields and heuristic 

constraints (penalty terms) as proposed by Yuille [144], an abbreviated set is typically 

used [63, 115]. The result of foregoing special energy terms to account for the appearance 

and disappearance of the teeth and to compensate for the lack of identifying edges along 

the lower lip is a reduction in processing time from 5 minutes per frame [144] to around 

1 second per frame. However, the computational savings come at the cost of decreased 

tracking accuracy. 

Recently, Luettin et al. [86, 87] have achieved some success using the Point Distribution 

Models (PDMs), also referred to as Active Shape Models (ASMs), of Cootes and Taylor [33, 

83] to identify the inner and outer lip contours. These models allow objects to be represented 

as a connected series of image points — polygons. The principal modes of shape variation 

of objects are learnt from hand-labelled training images. Deformations of the object model 

(template) are restricted to lie in a shape space derived from principal components analysis 
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on the training data. An iterative refinement (gradient descent) algorithm is used to deform 

the template to best fit the feature support found in the image. 

In order to overcome the lack of consistent identifying edges along the lip contours, 

Luettin et al. [86, 87] use models of the grey-level intensities along the inner and outer 

lip contours to identify image features corresponding to the lip boundary. However, the 

intermittent presence of the teeth results in template profiles for the inner mouth contour 

with large variances that, at times, are not sufficient to accurately pinpoint the lip contour, 

resulting in tracking errors. 

2.3.5    Real-time tracking 

Despite the success achieved using model-based tracking, it is surprising that researchers 

have failed to consider the real-time tracking requirement of the audio-visual speech recog- 

nition application. It is our view that the real-time constraint is more than just a call for 

efficient algorithms. Indeed, computational power doubles approximately every eighteen 

months permitting more and more systems to fall under the real-time umbrella in only 

a few years. However, in some cases the computational requirements of the lip trackers 

employed are hundreds or even thousands of times slower than real time, meaning that 

it will probably be at least a decade before such techniques can be employed in practical 

systems. Furthermore, there is still a great deal of ongoing research as to which features 

most efficiently capture the relevant linguistic information, and it is likely that as more 

is learned about this, additional processing will be necessary to capture the informative 

parts of the visual signal, making it even more unlikely that systems that completely ignore 

time considerations will ever be realised in practice. Our approach has been to start with 

a real-time framework, and then add additional, focused processing where needed. With 

this approach, even when the processing requirements exceed the current hardware capabil- 

ities, resulting in slower than real-time performance, real-time performance can be regained 

in short order with the inevitable hardware advances. It is our belief that developing re- 

search platforms using this design approach enforces consideration of issues that are easily 

otherwise overlooked. 

A second, possibly more compelling, reason for operating within real-time constraints 

is that it imposes a more rigorous standard of acceptability. For example, one group of 

researchers [86] accessed the performance of their lip tracker by classifying the contour fit 

to the lips as good, adequate, or a miss. Although the 6% miss rate that they reported 

might be considered quite successful, had the tracker been evaluated on even a 30-second 

sequence of continuous speech (1500 fields), it is likely that tracking performance would 
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be re-assessed as unacceptable. The ability to track in real time permits evaluation of 

tracking performance over an extended period of time, which frequently reveals problems 

not observed in short tracked sequences. In contrast, trackers which are unable to operate in 

real time, typically must run off images stored on disk. In such cases, the shear magnitude 

of disk space required (over 60 MB per 10 second sequence) often precludes evaluation on 

anything other than very short sequences. In this thesis, all of the dynamic contour trackers 

presented have been tested on "live" speech, principally, hours of video recordings. 

Currently, other than the work presented in this thesis, the only tracker capable of 

tracking unadorned lips in real time is the inner contour tracker of Petajan et al. [106, 107, 

56]. Instead of relying on prior models of deforming lips, they cleverly utilise the fact that 

human nostrils represent two dark spots on the face. If the nostrils can be seen, anatomical 

constraints can be used to concentrate image processing on the eye region (to determine 

head tilt angle) and on a rectangular window around the mouth. Colour thresholds are used 

to identify the black area in the inner mouth region and neighbouring pixels are compared 

against "teeth coloured" templates. A contour is then grown around the area identified as 

the inner mouth. Tracking has been shown to be robust to head tilt and speaker facial hair. 

The only drawback of this system is that it relies on having a clear view of the nostrils, which 

is available in applications where the camera can be mounted to look up at the speaker, 

but which may not be satisfied in general viewing conditions of the face, or even typical 

fronto-parallel views. 

2.4    Recognition and Integration Strategies 

The recognition algorithms used for audio-visual speech recognition are essentially the same 

as the pattern matching approaches — dynamic time warping, neural networks, and Hidden 

Markov Models — used for acoustic speech recognition. A problem that has proved to be far 

more challenging than may have been anticipated is the intelligent integration of the acoustic 

and visual channels. Ideally, the information from the two channels should be integrated 

in proportion to their information content. For instance, when the acoustic channel is 

degraded, one would expect to rely more heavily on the visual channel. However, even 

in clean acoustic conditions, words that are better distinguished by place of articulation, 

such as "mow" and "no", should naturally make optimal use of the visual channel, while 

those better distinguished by manner of articulation, such as "me" and "pea", might rely 

more heavily on the acoustic channel. The challenge of audio-visual integration is how 

best to combine the two channels making optimum use of the informative aspects of each 
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channel. The problem is further complicated when one expects human-like performance of 

the audio-visual system; ideally the recogniser should seamlessly adapt to variations in the 

level and type of interfering noise, and provide audio-visual recognition rates that exceed 

those obtained using audio-only or visual-only data over a broad range of noise conditions. 

2.4.1    Early/Late Integration 

There has been a fair amount of debate as to the most appropriate time to integrate the au- 

dio and visual channels within the various recognition frameworks. The two most prominent 

integration strategies lie at opposite ends of the spectrum and are typically termed early and 

late integration, although hybrid strategies are rapidly growing in acceptance [142, 118, 133]. 

In early integration, the audio and visual feature vectors are concatenated to form one large 

vector, which is then used for training and recognition. In late integration, individual 

probabilities, or scores, are computed for each channel independently, and then the resul- 

tant probabilities are combined using some weighted, heuristic approach. In principle, if 

sufficient training data and an optimal learning algorithm are used, then the hybrid and 

late integration strategies are merely special cases of the more general early integration 

approach. However, practical considerations have continued to fuel the debate over the 

relative merits of the early and late integration approaches. These considerations include 

hardware that might not be capable of simultaneously acquiring the audio and visual data, 

and the difficulty of obtaining enough training data to adequately estimate the increased 

number of parameters required by early-integration architectures. 

Stork et al. [128] compared the early and late integration strategies on a multi-speaker 

(5-speaker) recognition task of 10 consonants using time-delay neural networks. Visual 

data was acquired by tracking 10 reflective markers placed on the speakers' faces. Five fea- 

tures were extracted from the 10 pairs of (x,y) coordinates — nose-chin separation, mouth 

opening, mouth width, and the horizontal and vertical separation of sub-portions of the 

mouth. The acoustic recogniser used 14 mel-scale filter bank coefficients. They conducted 

audio-only, visual-only, and audio-visual recognition experiments. They termed their two 

audio-visual systems, "AxV" and "full AV". In their AxV system (late integration), the 

audio and visual recognition probabilities were computed independently and the resultant 

audio-visual probability was the (normalised) equally-weighted product of the two (similar 

to [125]). In their full AV system (early integration), the 14 audio features and 5 visual 

features were concatenated into a single feature vector and the neural net trained on the 

combined audio-visual data. Since the full AV net can learn associations between the audio 

and visual data at an earlier level than the AxV net, which merely treats the audio-visual 
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data as independent channels, it was surprising that the AxV net produced better results 

(error rates of 9% compared to 13%) than the full AV recogniser. The authors felt that 

they may not have had enough training data for the full AV net, or that it may have learnt 

low-level correlations between the data that were present in the training data, but not the 

test data. 

Benoit et al. [1] also obtained superior recognition results using the late integration 

strategy when compared to the early integration approach, although the reasons for their 

findings are more clear. They investigated speaker-dependent, isolated-word experiments 

on a database of 54 nonsensical French words. Special blue chromatic lipstick was worn 

by the speaker in order to facilitate extraction of geometric measures of the lips, such as 

the internal and external lip width and height, inter-labial lip area, and total lip area. 

The acoustic signal was degraded by adding varying levels of artificial Gaussian noise. 

HMM word models were learnt by training on clean audio and clean visual signals. When 

presented with noisy acoustic data (signal-to-noise ratios of 6 dB and less) they found that 

the combined audio-visual recogniser performed worse than the visual-only recogniser (error 

rates of 32% compared to 22% at 6 dB SNR) when the early integration strategy was used. 

However, when a late integration strategy was used and the channel specific probabilities, 

Pr(Word|^4) and Pr(Word|V), were combined using a weighting factor obtained from the 

dispersion of the four best candidates for each channel, the error rate dropped from 22% 

for the visual-only recogniser (82% for audio-only) to 18% for the audio-visual recogniser. 

Further, this late integration strategy using the weighted probabilities resulted in audio- 

visual recognition performance that exceeded the audio-only and visual-only performance 

at all noise levels. It is likely that the late integration strategy performed better than the 

early method primarily because the late method provided for a means of accounting for the 

variable level of noise in the acoustic channel, whereas the early method possessed no such 

capability. However, the results of their experiments do shed some light on the complexity 

of the audio-visual integration problem, particularly in situations where the noise level is 

unknown and potentially time-varying. Recognition experiments in chapter 6 shed further 

light on the difficulty of intelligently integrating the two channels. 

2.4.2    Hybrid Integration 

The difficulty of effectively integrating the audio and visual channels has led to the proposal 

of hybrid strategies, where clever methods are used to integrate the two channels at an 

intermediate stage. Sejnowski and Yuhas [123, 142, 143] proposed using a neural network 

to estimate the acoustic spectral envelope from static images of a talker.   Audio-visual 
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recognition was accomplished by combining the spectral envelope computed directly from 

the (noisy) acoustic signal and the spectral envelope obtained from the neural network 

mapping of the image data. A weighting factor, which was empirically determined and 

varies linearly with the SNR of the acoustic channel, is used to optimally combine the two 

spectral envelopes. The resultant spectral envelope then serves as an input to a second 

neural network which is used for recognition. The combined audio-visual features resulted 

in improved recognition performance across a range of signal-to-noise ratios on a speaker- 

dependent, 9-vowel discrimination task. 

In [118], Robert-Ribes et al. propose a similar hybrid approach, but rather than assum- 

ing that the auditory channel is dominant, they advocate projecting the audio and visual 

channels into an amodal motor space and then fusing the two information streams in that 

space. The amodal space consists of three parameters corresponding to the horizontal and 

vertical components of the highest point of the tongue, and the inner lip width, although 

it is not clear how the raw acoustic and visual data are mapped into this space. Fusion 

of the two channels in the motor space uses a weighted average approach similar to [142]. 

The authors were unable to achieve any increase in audio-visual recognition performance 

using this hybrid integration approach as compared to the simple late integration strategy; 

however, the idea of using the audio and visual channels to estimate parameters in a space 

representative of the complete articulatory process holds promise for further research into 

audio-visual integration. 

Brooke and Tomlinson [133] have recently proposed an integration strategy which per- 

mits asynchrony between the audio and visual channels. Audio-visual features are obtained 

by concatenating the audio and visual features (the traditional early integration approach). 

However, for recognition, they utilise a cross-product HMM, where each audio-visual phone 

model employs a two-dimensional state transition matrix. The matrix implementation en- 

tertains the possibility of separate state transitions for the audio and visual data streams, 

while still providing for standard synchronised movement. In recognition experiments on 

connected digit triples, they have found the cross-product architecture to be superior to the 

more conventional left-to-right topologies across a range of signal-to-noise ratios. 

The search for effective methods of integrating the audio and visual channels remains 

an active area of research. It is likely that further work with hybrid strategies will lead to 

additional insight into methods for optimally integrating the two channels. Experimental 

comparison of the various integration strategies was not investigated in this thesis. Rather, 

the early integration approach was adopted and used throughout, as it represents the most 

general architecture. 
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2.5    Discussion 

It is apparent from the literature that the field of audio-visual speech recognition provides 

vast opportunities for research. The speechreading community has clearly demonstrated 

that the visual channel contains linguistically pertinent information that can be used to 

provide robust speech recognition of noisy speech. However, despite the successes achieved 

thus far, many issues remained unresolved — from how to achieve accurate lip tracking 

within the time constraints of this application to determining effective methods for capturing 

the maximal information from the two channels. Further challenges await as well, such as 

such as how to address the inter-speaker variability inherent in visual speech and how to 

extract pose-invariant visual features. Such challenges make automatic speechreading an 

exciting and active area of research. 

This thesis focuses primarily on the real-time tracking and feature extraction problems. 

The lip trackers described in this thesis use a dynamic contour tracking framework which 

employs motion models that exploit the temporal coherence of articulating lips. Although 

potentially important recognition information is lost, particularly knowledge of teeth and 

tongue position, recognition experiments demonstrate that shape features extracted from 

tracking the outer lip contour are a rich source of information for audio-visual speech recog- 

nition. Further, the comprehensive shape and motion models inherent in the dynamic 

contour tracking framework permit the use of focused image feature detection methods. 

The use of more advanced feature detectors, which employ Bayesian discriminant analy- 

sis classification techniques on colour images, enables real-time tracking of unadorned lips. 

Further, it is shown how the dynamic contour tracking framework can be extended to the 

task of tracking both the inner and outer lip contours, which should enable additional rea- 

soning to be made about the presence/absence of the teeth and tongue, and permit further 

benefits to be obtained from the visual channel. 



Dynamic Contour Tracking 

In order to achieve real-time tracking of the lips without resorting to expensive custom 

hardware, it is necessary to reduce the enormous amount of data present in images of human 

faces. Petajan et al. [106] attain real-time performance by using the size and position of 

the nostrils and the known distance between the nose and mouth to limit their search to a 

small window in the mouth region. In this thesis, real-time performance is achieved by using 

the dynamic contour tracking framework originated by Blake et al. [12, 15]. Here, Blake's 

tracker, which was developed to track the occluding contour of rigid, planar objects in 

clutter-free environments, is extended to the tracking of non-rigidly deforming, articulating 

lips in natural images of the face. 

The power of the dynamic contour tracker framework lies in its employment of shape 

models, learnt dynamical motion models, and focused image feature detectors. These three 

components are blended together using a Kaiman filter [58]. Data reduction is achieved 

by representing the outline of the lips as quadratic B-splines which allow smooth curvature 

to be modelled explicitly. Motion of the lips is assumed to be describable by a B-Spline 

curve parameter-set (control points) varying over time. The motion of the control points 

is modelled as a second order process with dynamics that imitate typical lip movements 

found in speech. The dynamics are used by a predictor in the tracker's Kaiman filter. 

Measurements of the lip from the image are then combined with the predicted control point 

positions via the Kaiman filter to provide estimates of the lip outline given by the tracker. 
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This chapter introduces the notation for, and gives a brief overview of, the Kaiman 

filter-based trackers developed in this thesis. A more thorough handling of the underlying 

mathematics and a more detailed explanation of the intricacies of the framework can be 

found in [38, 37, 11, 12]. 

3.1    Notation 

The tracker is an estimator for a moving, piecewise-smooth image-plane curve: 

r(s,t) = (x{s,t),y(s,t)). 

The curve is represented sparsely in terms of B-splines [5], similar to the tracking work of 

others [97, 30]. The lip outline is parameterised by Quadratic splines (d = 3) of length L 

with multiple knots for the vertices (lip corners) 

x{s)=B(s)X   and   y(s)=B(s)Y,   0<s<L (3.1) 

where X = (Xi, ..,XVX)
T
 and similarly for Y with Nx = L for closed curves and Nx = 

L + d — 1 for open ones (with appropriate variations where multiple knots are used to 

vary curve continuity). The elements of X and Y are simply the x and y coordinates 

corresponding to the control points (Xm,Ym) of the B-spline. The vector B(s) maps the 

control point vector X to its associated curve x(s). 

For work using parametric spline curves, it is useful to define a norm in order to measure 

how closely one curve approximates another. In this work, the L2-norm ||X|| in spline space 

is equivalent to the root mean square distance in the image plane where 

,-L 
||X||2 = /     x{sfds 

Js=0 

which can be written as 

||X||2 = XT^0X (3.2) 

with 
,-L 

H0 = /    BT(s)B{s)ds. (3.3) 
Jo 

Given this norm, the inner product can be similarly defined as 

(X,X')=XT^0X', (3.4) 

which enables extraction of individual shape parameters from splines. 
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3.2    Tracking 

The tracking problem is to estimate the lip motion which is assumed to be describable 

by a B-spline of predefined form with control points (X(i), Y(i)) varying over time. The 

tracker generates estimates of these control points, denoted (X(i), Y(i)), and the aim is that 

these estimates should represent a curve that, at each time-step, matches the lip outline as 

closely as possible. The tracker consists, in accordance with standard practice in temporal 

filtering [54, 4], of two parts: a system model and a measurement model. Broadly speaking, 

the system model specifies the likely dynamics of the curve over time, relative to an average 

shape or "template" [49] whose control points are given by (X, Y), and which is generated 

by an interactive drawing tool, while the measurement model specifies the positions along 

the curve at which measurements are made and how reliable they are. 

The lip template was created by fitting a spline to a set of closed lips.  Its outline is 

similar to the one shown in figure 3.1. 

B-spline control points 

Resulting 

B-spline curve 

Figure 3.1: Lip template, (X, Y), showing control points (boxes) and B-spline fit to a set of closed 
lips. 

3.3    Reduced Tracking Space 

The tracker could conceivably be designed to allow arbitrary variations in control point 

positions over time. This would allow maximum flexibility in deforming to the various 

lip shapes; however, this is known to lead to instability in tracking [12] when following 

complex shapes which require many control points. Thus, the number of degrees of freedom 

was limited by imposing shape constraints on the deforming contour. Deformations of the 

contour, represented as a control point vector (X,Y) in spline space Sx, are restricted 

to lie in a shape space SQ represented by a shape-vector Q.   Transformations between 
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control point vectors (X, Y) and shape-vectors Q are made by projecting the spline onto 

the shape-matrix W using a least-squares fit 

Q = wf( Y_Y '    and X 
Y WQ+I Y 

where W^ is a pseudo-inverse defined by 

W^ = {WTUW)~lWTU 

with T-L consisting of the sub-matrices, U0, defined in (3.3) 

n = u0   o 
0     -Ho 

(3.5) 

(3.6) 

(3.7) 

and W defined below. 

Blake and Curwen [12] showed the need for accurate shape models in contour tracking 

to provide stability to the tracker. Their application was the tracking of hands which were 

treated as rigid, planar objects. Since it is known that under orthographic projection a 

rigid, planar shape has only 6 degrees of freedom — the parameters of an affine transforma- 

tion [134, 81] — they successfully tracked rigid hand motion by limiting the deformations 

to a 6-dimensional affine space. While the lips are neither rigid nor planar, it turns out 

that the general symmetry of the lips results in motions that can be roughly approximated 

by affine deformations of a 2D lip template. A basis, W, for this affine space is 

(3.8) W = 

where TV^-vectors 0 and 1 are defined by: 

0 = (0,0,.., of 

1 
0 ) 

0 
1 5 

X 
0 ) 

0 
Y 5 

0 
X 5 

Y 
0 

1 = (1,1,..,1)Q (3.9) 

These affine deformations which represent lip movements in terms of horizontal and vertical 

translation, scaling, and shearing of the lip template are shown in figure 3.2. 

In tracking tests it was found that the affine deformations accounted for 91% of the 

overall lip motion variance; however, in order to track the more subtle lip movements, it 

was necessary to permit non-affine motion. These additional lip motions were incorporated 

into the model by choosing a shape space capable of representing both affine and non-affine 

deformations. The shape-matrix W was extended by one vector for each permitted non- 

affine degree of freedom. These additional lip motions were derived from "key-frames" — 

representative non-rigid deformations of the template formed by fitting splines to expressions 
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x translation x scale y shear 

y translation y scale x shear 

Figure 3.2: Lip movements corresponding to affine deformations of the mouth template plotted 
a normalised displacement either side of their mean. The first two components represent horizontal 
and vertical displacement/translation. The third and fourth, horizontal and vertical scaling, and the 
fifth and sixth, vertical and horizontal shearing. 

such as 'ah', 'ee', and 'oo'.   Figure 3.3 shows typical key-frames used in tracking the lips 

from the frontal view. 

The complete tracking space is thus spanned by the six affine deformations plus the 

additional key-frame deformations. The resulting basis expressed in terms of the original 

template (X, Y) and the key-frames (Xi, Yi), • • • (X^, Yjvfc) is 

W f ' 1 ' 0 X ' 0 0 " Y 'Xi " Xjvfc 

\ 0 1 1 1 0 1 Y 1 X 1 0 1 _ Yi _ 5               1 LY** J (3.10) 

affine basis key-frames 

Although the construction of shape spaces using the key-frame building approach results 

in basis vectors corresponding directly to known lip deformations, often times the resultant 

tracking spaces are unnecessarily large. Tracking spaces possessing more degrees of freedom 

than are necessary are undesirable for two reasons. First, the computational cost of the 

tracking algorithm is ö(NQ), where NQ is the dimension of the shape space, so the compu- 

tational penalty for employing unnecessarily large spaces can be severe. The second reason 

is that additional, non-essential degrees of freedom can lead to tracking instabilities. 

The most natural method for constructing shape spaces is to learn the space of lip 

deformations from training data of sample motions. The strength of this approach is that 

tracking spaces can be customised to the visual speech patterns of individual talkers. Having 

obtained training data consisting of prototypical lip movements linked to speech production 

for a particular speaker, principal components analysis (PCA)  [31] provides an efficient 
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(a) Template 

(b) 'ah' (c) W 

Figure 3.3:   Additional degrees of freedom are permitted by adding key-frame deformations such 
as these to the tracking space. 

means for capturing the principal modes of lip variation. Further, the shape deformations 

resulting from the PCA can be ordered according to the percentage of overall lip motion 

that they can describe. This provides a convenient method for determining the size of 

the shape space to use for tracking, which can be expressed in terms of the percentage of 

variance accounted for by the basis vectors chosen. 

3.4    Predictive Dynamics 

The motion of the lips was modelled as a second order process driven by noise, which is 

widely used in control theory [2]. The choice of a second order model permitted constant 

velocity motion, decay, and damped oscillation. A state-space representation is used with 

the state vector Xn defined in terms of the shape vector Q 

Xn 
Qn 

(3.11) 
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The system can be described in discrete time by the difference equation 

Xn+l -X = A(Xn -X)+(     °      ) . (3.12) 
Bvr. n 

Here A is a 2NQ X 2NQ matrix defining the deterministic part of the dynamics and 

*"(§ 
The driving noise wn is white with shaping matrix B. Without loss of generality, the matrix 

A can be expressed as 

\ M   Ar 

permitting the equations of motion to be simplified to the standard linear predictor form: 

Qn+2 = A0Qn + AiQn+i + {I-A0-A1)Q + Bw„. (3.13) 

A's eigenvectors represent modes of oscillatory motion, and the corresponding eigenvalues 

give natural frequencies and damping constants for those modes. Default dynamics for A are 

initially set manually, but are ultimately learnt using tracked sequences of lip deformations 

as described in [14, 15]. 

3.5    Measurement Model 

Measurements of the lip contour position are made by searching along normals, n(s,t), to 

the predicted lip position, r(s,t) = A(Xn - X), in the image for features. These features 

correspond to the boundary of the object being tracked, eg. the lips. In the simplest case, 

features are obtained by applying one-dimensional image operators, such as edge detectors, 

to the grey-level intensities along the normals. However, more advanced feature detectors, 

which are required when tracking poorly contrasted boundaries such as between the lips and 

facial skin, permit the matching of statistical templates, or alternately, employ Bayesian 

classification techniques to colour image data, in order to identify the object boundary. 

This can be described more formally by 

u{s, t) = [r(s, t) - f (s, t)].h(s, t) + v(s, t) (3.14) 

where u(s, t) represents the displacement of the image feature relative to the predicted curve 

r(s,t), and v(s,t) is the spatial measurement noise, assumed Gaussian with zero mean and 

covariance Rs that varies with position, s, but is taken to be temporally constant. The 

innovations, v(s,t), are defined only along normals to the curve as the tangential motion 
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is unobservable locally — the well known aperture problem [68]. The spatial measurement 

covariance Rs is a function of several variables including the electrical noise involved in 

image formation, spatial camera noise, and the detection of erroneous features obtained via 

the feature detection process. If heavy background clutter is present, then the resultant 

false features often lead to non-Gaussian measurement probability densities which require 

more sophisticated modelling [71]; however, in practice, if only moderate clutter is present 

and prudent feature detection methods are used, it is often possible to approximate the 

measurement densities as Gaussians. 

The feature measurements, or innovations, v(s,t) are related to the state vector X by 

the observation matrix H(s,t) given by 

i/(s,t) =H(s,t)(X-X)+v(s,t) (3.15) 

where from (3.1), (3.5), and (3.14), 

H(s,t) = [ ( nx(s,t)B(s)    hy(s,t)B(s) ) W   0 ] . (3.16) 

In theory H(s,t) is a continuous function of s, although in practice the curve is not 

observed in its entirety but rather at sampled points, Sj, along the contour. The normals to 

the contour at these sampled points are referred to as search lines and are shown in figure 

3.4 for the frontal lip tracker. 

As the next chapter provides methods for identifying the boundary between the lips 

and skin along the various search lines, it is appropriate to introduce some extra notation 

here. The grey-level or colour (red-green-blue) intensity of a pixel a signed-distance r along 

a normal to the contour n(s;,t) will be denoted as Ii(r), where i represents the number of 

the search line. For example, the grey-level intensity profile along the normal to the middle 

of the bottom lip (search line 23 in figure 3.4) is shown in figure 3.5. Thus the intensity 

Ii(r) can be thought of as the intensity of the pixel at location r(si,t) + rh(si,t). Various 

operators, or feature detectors, are applied to the intensity profiles h{r), with the goal being 

identification of a "feature" at the lip-skin boundary. 

3.6    Kaiman Filter 

Tracking is accomplished using a standard Kaiman filter [54, 58] consisting of prediction 

and measurement assimilation steps. Since the distribution of the state estimates Xn is 

assumed to be Gaussian, all of the information about the lip position is carried by the 1st 

order (mean) and 2nd order (covariance) moments.   For each time step, from t — A to t, 
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Figure 3.4: Measurements are taken along normals at sampled positions of the lip contour. These 
search lines are labelled clockwise from 0-29. Image features are identified through image processing 
operations on the search line data and the resultant innovations are incorporated into the Kaiman 
filter. 

Grey Level Profile for Search Line 23 

Position (r) 

Figure 3.5:  Grey-level intensity profile along the lower lip.  The lip-skin boundary occurs at r = 0, 
while, r < 0 represents the intensity distribution of the skin, and r > 0 corresponds to the lips. 

prediction consists of the deterministic drift due to the system dynamics 

Xn = AXn^ + (J - A)X (3.17) 

and diffusion due to the driving noise 

/ 0       0 
Pn = APn-XA

T + (3.18) 
\ 0   BB1 
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where Pn is the covariance of the estimate X at time t = nA. 

The state uncertainty, Pn, has been found to be valuable not only for calculation of the 

Kaiman gain K, but also in limiting the extent of the feature search along the search lines 

in the form of a validation gate [4]. For a given search line i, the correct image feature 

should fall within a range determined by the uncertainty in the state estimate and the 

measurement uncertainty, RSi. The covariance associated with the positional uncertainty 

of the ith feature, ^l(si), is given by 

fi(Si) = H{Sl)PHT{Sl) + RSi. (3.19) 

In general the covariance of the sensor error RSi represents a two dimensional uncer- 

tainty ellipse; however, owing to the nature of the feature search mechanism, that is, image 

feature measurements are made only along normals to the curve, tangential displacement 

is unobservable. Thus, if the one-dimensional measurement covariance for the feature de- 

tection process is denoted as a2., then the covariance will be a2, along the normal and 

infinite tangential to the normal. The resultant 2D measurement covariance, RSi, is no 

longer defined, although its inverse can be found using the ID measurement error, 

A"1 = a-2h(Sl)h
T(Sl). (3.20) 

At each search position Si along the curve, the image feature will fall within 7 standard 

deviations of the predicted position with the associated degree of certainty 

vT{Si)tt-l{Sl)v{si)<l2- (3-21) 

This innovation uncertainty can then be used to determine the validation gate, or required 

search scale, along the search line normal. That is, the search scale for the ith feature, pi, 

along its normal, h(s{), can be found from (3.21) by 

72 

hT(sl)Q,-1{si)h(sl)' 

Following the prediction step, measurements are made in the image as previously de- 

scribed. If the measurements along each of the search lines are assumed to be mutually 

independent, then the measured image features can be iteratively assimilated into the curve 

estimate at each sampled position 

Xn = Xn + KsM{Sl) (3.23) 

where v{si) is the innovation along the normal at s; as before, and the Kaiman gain, KSi, 

for each measurement is given by 

KSi = PnH
T (HPnH

T + Rs)'1. (3.24) 
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The reactive effect of the measurements then decreases the uncertainty in the estimated 

state which is updated accordingly 

Pn = Pn- KSiHPn. (3.25) 

3.7    Learning Model Dynamics 

As is the case with any control system, it is important to know the actual parameters of 

the plant or process to be modelled. Typically the plant dynamics are determined from the 

underlying physics of the process [44, 73]. Several researchers [132, 85, 59] have developed 

detailed physiological models of the facial muscles that have been useful for describing 

facial expressions and lip movement. However, there exists an alternative to such detailed 

modelling, which is to learn the dynamics of moving lips from actual sequences of connected 

speech. Naturally there is the chicken and the egg problem, where in order to learn lip 

motions from a tracked sequence, it is first necessary to be able to track the lips. To 

combat this, default dynamics are set by hand which permit lip tracking of slow-speech. 

The output of this default tracker is then used, via a learning algorithm [15], to generate a 

new tracker with improved dynamics. This new tracker, which is considerably more stable 

than the default tracker, as it has been tuned to follow only speech-like lip movements, is 

then used to track normal speech from which newer dynamics can be learnt. This bootstrap 

tracking-learning process can be iteratively repeated until a desired level of tracker tuning is 

achieved; however, in practice, two iterations of this training procedure have been sufficient. 

The principal strength of this approach is that the motion models can be finely tuned 

to the visual articulatory patterns of the speaker. There is, however, a disadvantage to this 

learning method in that the tuned tracker is best suited for motions seen in the training 

sequence and may have difficulty tracking movements not yet observed. For instance, if 

during training the speaker makes head-nodding movements but little or no horizontal 

head movements, the tuned tracker will learn that horizontal movements are to be damped 

out and may not be able to track in the presence of horizontal head movements. In an 

attempt to deal with such problems, investigation into the coupling of head and lip trackers 

is currently in progress [117, 78]. In this thesis, which focuses primarily on movements 

associated with articulating lips rather than on global head movements, the speakers spoke 

naturally, limiting unnecessary head movements. Training sequences typically consisted of 

phonetically balanced Central Institute for the Deaf (CID) Everyday Speech sentences [66] 

or similar continuous speech containing all of the phonemes. 
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3.8     Summary 

This chapter has provided an overview of the dynamic contour tracking framework. This 

framework serves as the foundation for many of the ideas developed and presented in this 

thesis. The key to the success of the tracking framework lies in its utilisation and integration 

of three powerful techniques: 

• Prior shape models 

• Learnt motion dynamics 

• Focused image feature detectors 

The combination of these techniques, in conjunction with the sparse representation of the lip 

outline using a B-Spline parameterisation, enables efficient utilisation of the computational 

resources. This results in Kaiman filter-based trackers capable of operating at real-time 

rates without recourse to special hardware. 

In the next chapter we will see that, due to the poor contrast in the mouth region, 

it is difficult to obtain reliable image feature measurements which accurately identify the 

boundary between the lips and facial skin. Consequently, several different feature detection 

methods are investigated and presented. 



Lip Tracking 

Depth discontinuities between the occluding contours of objects and their surroundings 

often result in readily identifiable boundaries or edges. This reality has led to the de- 

velopment of fast and reliable edge detection algorithms [28, 41, 61]. Consequently, edge 

detection methods are widely used in tracking applications [75, 38, 60]. However, when 

tracking objects in natural scenes or smooth objects with little depth discontinuity, such 

as the articulatory movements of deforming lips, edge detection schemes have proven to 

be inadequate [34, 120, 122]. The primary reason for this is that the lips are set against 

flesh-tones with consequently weak contrast [144]. In addition, spurious edges (clutter) are 

often present that are not due to the boundary between the lips and the surrounding skin, 

but rather the texture of the face and lips. This dual problem of a lack of features on one 

hand and an over abundance of false features on the other is particularly troublesome for 

contour-based trackers where only one measurement for each search line can be integrated 

into the Kaiman filter (section 3.6). Methods exist for combining multiple observed features 

using a probabilistic data association filter (PDAF) [4, 114] by weighting each observation 

with the probability that it originated from the target. However, the PDAF assumes that 

the target detection probability distributions and the probabilities of obtaining false mea- 

surements are known, which is often not the case. Further, the PDAF does not solve the 

more fundamental problem which is that there simply are not edges along the lower lip 

boundary. This point is clearly demonstrated in figure 4.1 where there is both an absence 
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of edges along the lower lip and distracting edges along the upper lip. 
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Figure 4.1: There is little contrast between the boundary of the lower lip and the surrounding 
skin. The white crosses represent the edges found on the search normals (thin black lines). Note the 
absence of edges around the lower lip and the presence of distracting edges along the top lip due its 
texture. The graph on the right shows typical intensity profiles for ID search lines along the lower 
lip. The absence of a sharp jump or sudden change in the intensity profiles similarly demonstrates 
the difficulty in delineating the lip boundary. Note also that the total variation in intensity along the 
profile is less than 20 grey-levels. The actual location of the lower lip boundary corresponds to the 
position r = 0. 

As discussed in section 3.5, accurate and reliable feature measurements are a necessary 

ingredient in the dynamic contour tracking framework. Thus, in addition to developing 

precise shape and motion models, there remains the difficult problem of how best to extract 

image features which can accurately delineate the lip outline. 

This chapter explores various solutions to the problem of tracking unadorned lips within 

the real-time constraints imposed by the audio-visual speech recognition application. A 

disciplined approach to the lip tracking problem is taken. First, the tracking of the lips from 

the profile view is considered, where the sharply silhouetted mouth and limited articulatory 

movements simplify the problem. Next, tracking from frontal views is investigated with 

the assistance of lipstick to enhance the contrast of the lips. This tracker enables the 

development of customised shape and motion models which are then utilised in unadorned- 

lip trackers which employ advanced feature detection techniques to identify the lip boundary. 

Several different methods for identifying the boundary between the lips and surrounding 

skin are devised and their discriminating potential assessed. A data-driven approach, that 

is, the use of statistical models of the grey-level appearance of the mouth region, is shown 

to be the most successful. 
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4.1 Profile Lip Tracking 

When viewed from the profile, the mouth appears sharply silhouetted against its back- 

ground, resulting in easily identifiable features. Further, the articulatory movements of the 

lips appear less complex in profile viewing. For these reasons tracking the lip profile is 

favourable to tracking from the frontal view. Thus, in order to test the feasibility of using 

the dynamic contour framework for tracking the non-rigidly deforming lips, initial tracking 

used the profile view. 

The tracking space was constructed using the key-frame building approach (section 3.3) 

and consisted of three affine components (X and Y translation and isotropic scaling) plus 

two non-rigid deformations corresponding to lip puckering and curling of the lower lip. 

The system dynamics and driving noise were learnt using the bootstrap learning procedure 

discussed in section 3.7 and [15]. Following the learning process, lip tracking was stable 

and sufficiently agile to follow normal speech, including plosives which can be particularly 

rapid. This can be seen in figure 4.2 where a tracked sequence of the word "four" is shown 

from this view. 

The profile lip tracker proved to be accurate and stable, and simple speech recognition 

experiments were conducted using it (section 6.2.1) which demonstrated the benefit of 

incorporating visual information into acoustic-only speech recognisers. However, it is known 

that human lipreaders rely on information about the presence/absence of the teeth and the 

tongue [25, 94, 131]. Thus, from a speech recognition standpoint there is a potential loss 

of information in profile viewing in that the tongue and teeth are no longer visible. There 

may also be a loss of shape information in the lip contour itself, since its width is no 

longer directly observable in profile. Our experiments (chapter 6 and [39, 77]) and those 

of others [9] suggest that lip width is important for discriminating words in audio-visual 

speech recognition. In addition, Benoit et al. [9] evaluated recognition performance on 

nonsensical French words using parameters extracted from frontal and profile views. In 

their experiments, error rates for profile views were twice that attained using frontal views 

(40% versus 20%). For these reasons subsequent efforts address the frontal lip tracking 

problem. 

4.2 Inner Lip Contour Tracking 

Experience had shown that there were insufficient edge features around the outer lip contour 

to accurately define the lip boundary, so tracking of the inner lip contour (inner mouth) 

was investigated as an alternative. Promising work by Moses et al. [100] showed that there 
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Figure 4.2: Tracking the word "four". Snapshots taken approximately every 40ms. The tracker 
accurately follows the lower lip during the f-tuck (curling of the lip to form the 'f sound) in tracked 
frames 3 and 4 and continues tracking through the lowering of the jaw necessary for the 'our' sound. 
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existed a grey-level intensity valley between the lips which was invariant to illumination, 

viewpoint, identity, and expression. Using this fact, Reynard et al. [117, 100] developed a 

prototype inner-lip contour tracker where this intensity valley was used to locate the corners 

of the mouth and the inside of the upper lip. Standard edge features (pixel gradients) were 

used to identify the inside of the lower lip. 
__ 

Figure 4.3: Inner contour tracking of the word "five". Snapshots taken approximately every 60ms. 
Whilst tracking is stable and the outline closely approximates the inner mouth region, the upper lip 
contour becomes confused by the presence of the teeth mistaking them for the inner lip and continues 
to track them throughout the sequence. 

Some success was achieved using this tracker, although several problems surfaced, some 

due to distracting features within the mouth and others due to degenerate conditions caused 

by closed mouth conditions. This can be seen in figure 4.3 where a tracked sequence of the 

word "five" is shown. Whilst the tracker reliably approximates the inner mouth region, 

some problems are evident. First, the upper tracked contour has an affinity both for the 

inside lip and for the teeth when visible, whereas clear differentiation of lips and teeth is 

a requirement for reliable speech recognition. Secondly, whilst tracking is stable during 

speech, lateral head-motions can cause errors when lock is lost on the mouth corners. This 

is amplified by the fact that measurements yield only one dimensional information normal 

to the curve when the mouth is nearly closed (flat contour). Thus, no information is 

available about the horizontal positioning of the mouth which often leads to instabilities 

during tracking. However, even in the absence of lateral motion, it is difficult to pinpoint 

the mouth corners accurately — the dark visual feature (valley) tends to extend beyond the 
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mouth, resulting in the slightly elongated contour. This is particularly troublesome because 

it is known from visual speech recognition experiments [9, 77] that the width of the mouth 

(oral cavity) contains important recognition information for word discrimination tasks. In 

addition, although the term "corner" might suggest the use of a classic corner detector [61], 

the expression is misleading as the mouth corner is not a "corner" in the conventional sense, 

but rather the end of the valley, which is notoriously difficult to accurately pinpoint. Lastly, 

avoiding and/or recovering from degenerate conditions such as a closed mouth remains a 

problem, because as the oral cavity closes, the feature search mechanism permits edges from 

the top lip to become confused with those from the bottom, and vice versa, which can result 

in the tracker inverting. 

These problems can be overcome. For example, Petajan et al. [107] use the intensity val- 

ley along with colour thresholding to find the inner mouth region. However, they overcome 

the aperture problem by using the location of the nostrils to locate the mouth region and 

they avoid the contour degeneracy problem by using a region-growing approach as opposed 

to actually tracking the inner lip contour. The tracker could be customised to the task of 

tracking the inner lip contour by building special purpose detectors to accurately identify 

the end of the valley at the lip corners. Additional customising could be used to limit the 

search range along the inner lip contour to prevent the top lip from becoming confused with 

the bottom lip and also to avoid degenerate conditions. However, it was decided to develop 

more general feature search mechanisms with applicability beyond lip tracking. So, despite 

the promising aspects of tracking the valley and the inner lip contour, tracking of the outer 

lip contour is preferable to the inner lip contour. 

4.3    Cosmetically-Assisted Outer Lip Contour Tracking 

The complex motions of the non-rigidly deforming lips necessitates the use of shape and 

motion models tuned to the articulatory patterns of the speaker. In order to obtain these 

models it was first necessary to be able to track the outer lip contour, and therefore lipstick 

was used to enhance the contrast around the lips. This resulted in clearly identifiable 

edges at the lip boundary which enabled tracking using large (> 10 dimensional) shape 

spaces and default dynamics set by hand. This tracker was then used to gather sequences 

of lip deformations from which the motion dynamics were learnt. A tracker employing 

the learnt dynamics was then used to gather additional sequences. Principal components 

analysis (described later in section 6.1.2) was then performed on the tracked sequence in 

order to obtain a computationally tractable six-dimensional shape space which accounted 



CHAPTER, 4.   LIP TRACKING 40 

for 99% of the overall variance of the lip motion. The resultant tracker possessed a shape 

space learnt from actual deformations of the speaker's lips, and, in addition, motion models 

which captured the temporal coherence of the speaker's lip movements. This tracker was 

stable, robust, and very accurate. This is corroborated by figure 4.4, where the contour 

follows the rapidly moving lip outline throughout an utterance of the word "previous". 

Figure 4.4: Tracking the word "previous". Snapshots taken approximately every 80ms. The 
white line represents the position of the contour after the measurements have been assimilated. The 
fully trained tracker accurately follows the deforming lips during the entire sequence including the 
protrusion (frame 2) and the horizontal spreading of the 'e' (frame 4)- It also tracks the rapidly 
moving plosive 'p' and the labio-dental V without difficultly. 

Further, tracking is also robust to changes in head position and pose. For example, 

in figure 4.5 the speaker simultaneously nods his head while saying "six". The tracker 

accurately follows the lips throughout the entire sequence, including when the lips and 

head move concurrently. 



CHAPTER 4.   LIP TRACKING 41 

Figure 4.5: Tracking is robust and accurate even when speech is accompanied by head motion. 
The speaker nods his head while saying "six". The tracker accurately follows the lips during the nod, 

including when the mouth opens in concert with the nod as seen in the V (frames l>-6). Note that 

the nod represents approximately a 45° rotation perpendicular to the image plane (compare frames 

6 and 12). 
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4.3.1    Feature Detection 

The example tracking sequences demonstrate the accuracy achieved using the cosmetically- 

assisted lip tracker. Qualitatively, one can say that the tracking is very accurate; however, 

it is also possible to make more quantifiable judgements about its performance. If identical 

tracking spaces and learnt model dynamics are used, then the quality/accuracy of a tracker is 

correlated directly with the ability of the feature detection method used to correctly identify 

and accurately pinpoint features within the image that correspond to the boundary of the 

tracked object, in this case, the outer lip contour. Specifically, when feature measurements 

are obtained by searching along one dimensional normals to the contour, the accuracy of 

the tracker is directly related to the squared spatial measurement error (covariance) of the 

measurement process. 

The one dimensional image measurements at sampled positions s;, along the contour, 

where i represents the search line number (section 3.5), are given by zSi. Suppose the 

measurement error is normally distributed with zero mean 

E[zSi -Hx] = 0 (4.1) 

and covariance 

E[(zs,-Hx)2] = al, (4.2) 

where H is an observation matrix (3.16) that relates the state x to the measurements z. 

Then the measurement probability density function, p(zSi\x), for each of the one dimen- 

sional search lines is completely specified by its spatial measurement covariance a2.. This 

measurement covariance can be used as a metric for comparing various feature detection 

methods, where smaller covariances correspond to more accurate tracking. This metric is 

closely related to the inverse of the localisation criterion described by Canny [28] in his 

development of an optimal step edge detector. 

In general, measurement errors may result from any number of factors including optical 

and electrical shot noise, the image intensity profile along the normal (foreground texture), 

background clutter, the intensity variations due to changing illumination and shadows, and 

the image operator used. In lieu of attempting to model all of the factors contributing 

to errors in the feature detection process, the measurement covariances for each of the 

feature detection methods used were determined empirically using simulations on actual, 

or appropriately modelled, image data. 
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4.3.2    Edge Detection 

The intended effect of the lipstick was to create a dominant edge at the boundary between 

the outer lip contour and the surrounding skin. This was indeed the case as is evident in 

figure 4.6 where several intensity profiles for a typical search line are displayed as a function 

of distance from the predicted contour. 

Grey Level Profiles for Search Line 22 
180 

-5 0 
Position (r) 

Figure 4.6: Intensity profiles for a typical search line from the cosmetically-enhanced lips displayed 
as a function of distance from the predicted contour. Note that application of the lipstick has resulted 
in a clearly defined edge at the outer lip boundary. 

Accordingly, the image features at the boundary of the cosmetically-enhanced lips are 

identified by using a Canny edge detector [28] along normals to the predicted contour. 

As suggested by Canny, the optimal ID step edge detector was approximated by the first 

derivative of a Gaussian 

f(x) = ~-^l°2 (4.3) 

which is shown graphically in figure 4.7. 

Consistent with standard practice, edges are located by convolving the edge operator, 

f(x), in this case the first derivative of a Gaussian of width 2W + 1, with the intensity 

profile for the given search line, I(r), 

w 
H(r)=   £   I(x-r)f(x). (4.4) 

x=-W 
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Figure 4.7:   The first derivative of a Gaussian with a = 1 (the "Canny" edge detector [28]), which 
was used to locate the lip boundary of the cosmetically-enhanced lips. 

The centre of the edge, zn, is identified by the maximum of the output of the convolution 

zo = arg max H(r). (4-5) 
r 

By modelling the intensity profile I(r) along a given search line as a function G(r), plus 

zero mean Gaussian noise, r\ with variance no, that is 

I(r) = G{r) + r), (4.6) 

Canny [28] showed that the covariance of the measurement error, E[z%], for points ZQ near 

the centre of the edge is given by 

w 

£ /'( 
E[z 

x=-W 

W 

£  G'(-x)f'{x) 
— -W 

(4.7) 

However, as Canny was careful to note, E[z$] was derived from the response at only one 

point (the centre of the edge) and hence failed to take into account the interaction of the 

responses of the nearby points. A more direct way of computing the measurement covariance 

a2 is to compute it directly using (4.4) and (4.5). 
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Typically, edge profiles are modelled as step edges, although it is evident from figure 4.6 

that these edges look more like error functions [82], where 

erf(a:) = -|= /" ^ dt- (4-8) 

Accordingly, the edge profiles for the lip boundary were modelled as scaled and shifted erf 

functions 

G{x) = G0-Aeif(x/ae). (4.9) 

4.3.3 Feature Measurement Error 

After fitting the search line (figure 4.6) to the model (4.9), the measurement process was 

simulated using equations (4.4) and (4.5). The result of one simulation is shown in figure 4.8. 

It is seen that the image noise has resulted in the marked edge centre (r = 1) being one pixel 

in error from the true edge centre (r = 0), although the sharply peaked convolution sum 

(bottom figure) illustrates the good localisation of the Canny edge detector. The accuracy of 

this detector is verified by simulating the edge detection measurement process one thousand 

times. The resultant mean and covariance of the measurement error were found to be 

/i = -0.02 pixels   and   a2 = 0.3270 pixels2 (4.10) 

which is consistent with the assumed zero mean Gaussian. This extremely low measure- 

ment error (less than one pixel2) confirms the qualitative observation that the cosmetically- 

assisted lip tracker was extremely accurate and robust. 

4.3.4 Summary 

This tracker demonstrates that the dynamic contour framework is well suited for developing 

shape and motion models which permit accurate, real-time lip tracking. Furthermore, the 

tracker is agile enough to follow the complex deformations of rapidly moving lips, and later 

audio-visual recognition experiments (chapter 6) confirm that the outline of the lips is a rich 

source of information. The high accuracy of this tracker also permitted detailed analysis of 

the lip motions present in natural speech which is discussed in section 6.1. 

While this tracker proved to be extremely useful for developing shape and motion models, 

it would be undesirable to require users to wear lipstick in a commercial speech recognition 

setting. However, one can think of many instances where this limitation would not be 

unreasonable, such as, actor-driven facial animation [6] and using trained speakers for the 

deaf. 
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Figure 4.8: Simulation of the edge detection measurement process. The top graph shows the noise 

free edge (dashed line) along with the noisy edge (solid line). The bottom graph is the result of the 

edge detection convolution where the dashed line is the noise free edge, the dash-dot line is the output 

of the convolution with the Gaussian noise only, and the solid line is the simulated noisy edge. The 

'0' marks the location of the identified edge (r = 1). Note that the image noise has caused the output 

peak to be smoother, and that the marked edge centre is one pixel in error. 

Having established that real-time tracking of the lips from the frontal view was indeed 

possible within the dynamic contour framework, additional trackers were developed which 

used advanced feature detection mechanisms to address the lack of image features around 
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the lip contour in unadorned lips. 

4.4    Correlation Matching 

In order to identify the lip boundary in poorly contrasted facial images (figure 4.1) alterna- 

tive approaches to edge detection were investigated. The first method examined was corre- 

lation matching. Correlation matching is a widely used feature detection scheme [3, 90, 7], 

because of its simplicity and its similarity to the matched filter from communication the- 

ory [35]. It is rooted in straightforward Euclidean distance template matching. 

For a ID line segment, the squared Euclidean distance between a search line I(x) and 

a reference template T(x) is 

w 
D{r)=   ]T  {I(x + r)-T{x))2 (4.11) 

x--W 

which when expanded gives 

w 
D{r)=   Y,   I2(x + r)-2I{x + r)T(x)+T2{x). (4.12) 

x--W 

Closer inspection of (4.12) reveals that the T2(x) term is independent of the position r 

along the line segment and that Y,I2(X + r) is merely the image energy in the window 

about the region I(r). If the variation in image energy can be assumed to be small as 

a function of position r, then it too can be assumed to be a constant and hence ignored 

in the total distance calculations. Thus the total squared distance, D(r), is a minimum 

when Y. Hx + r)T(x) is a maximum. Accordingly, finding the minimum squared Euclidean 

distance is equivalent to finding the maximum cross-correlation C(r), where 

w 
C(r)=   Y,   I(x + r)T(x). (4.13) 

x--W 

However, when the correlation region is small, which is often the case in the dynamic contour 

lip trackers, the assumption that the image energy is independent of position is invalid. To 

compensate for this, normalised intensities can be used by dividing (4.11) by the image 

energy 

w 
£   I2(x + r). 

x=-W 

There are, however, drawbacks when using normalised intensities; specifically, there is 

a loss of information in that the raw intensity values are no longer available. This can, and 
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often does in practice, lead to false matches within the image that do not correspond to 

the lip boundary. In addition, even when the normalisation process results in only minor 

degradation of the pertinent information, the use of finite length sequences can result in 

maxima of the correlation sum that do not correspond to the best alignment of the template 

with the image data. This phenomenon is evident in figure 4.9. 
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Figure 4.9: The maximum of the normalised cross correlation does not coincide with the best 
alignment. The normalised template (a) and the image data (b) are identical in the range —8 < r < 8. 
Thus, the best alignment (maximum of the correlation sum (c)) should occur at r = 0; however, 
because finite length sequences are used, the maximum of the output correlation (denoted by 'O', 
r = —8) does not correspond to this best alignment. 

Another limitation of correlation matching is its inability to incorporate known varia- 

tions in intensities resulting from the tracking process into the reference templates. Due to 

these limitations of correlation matching, further study on it was discontinued in favour of 

a feature detection approach based on a more general statistical analysis of the intensity 
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profiles using a weighted Euclidean (or Mahalanobis [46]) distance measure. 

4.5    Tracking using Statistical Modelling 

A more general approach to the correlation matching technique discussed in the previous 

section is to use a data-driven approach. That is, the information content of the region 

surrounding the contour boundary can be captured using statistical models of the grey- 

level appearance along each of the search line normals. During tracking, the statistical 

templates, T, can be compared to the image profiles, I(r), using a squared Mahalanobis 

distance metric, M(r), which weights the distance between the template profiles and the 

image data by their uncertainty 

M{r) = (I(r) - T)TP~l{I(r) - T). (4.14) 

Here, T is the template, an L-vector of pixel intensities, and r is the signed distance from 

the lip boundary along the outward pointing normal. I(r) is an L-vector of pixel intensities 

along the normal, centred at r. It can be shown [46] that M(r) is proportional, up to 

an additive constant, to the log-probability of a multi-variate normal distribution centred 

at T with covariance P, and hence that the minimum Mahalanobis distance represents 

the maximum likelihood location of the image feature. Such feature search techniques 

have been used previously in non-real-time applications by Cootes et al. [34, 83] and by 

Rowe [121, 122]. However, since the computational burden associated with the learning of 

the statistical models is accomplished off-line, they can be effectively used to locate image 

features within a real-time framework. 

4.5.1     Learning the Statistical Templates 

The grey-level intensities along a search line profile in a particular region about the mouth, 

in general, will be a function of the illumination and the texture of the underlying lips and 

skin. However, other sources of variations will also be present due to shadowing, image 

noise, and imperfections of the B-spline fit to the lip contour. Statistical models can be 

used to represent and capture all of these uncertainties and variations. These templates and 

their corresponding uncertainties (P in 4.14) can in turn be incorporated into the distance 

measure. A separate intensity template, Tj, can be created for each search line at sampled 

positions, si} along the contour (see figure 4.10). This data-driven approach allows the 

salient aspects particular to each intensity profile to be captured by the statistical models. 

The search line templates are learned from training image sequences using a bootstrap 

procedure. An initial set of intensity profiles Ij>4 is obtained by hand-fitting splines to the 
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Figure 4.10: A separate statistical intensity template is created at each of the sampled positions 
along the lip contour. These search lines are labelled clockwise from 0 — 29. Both the mean intensities 
and the covariances are learnt from training image sequences. 

outer lip contour in several images and then extracting the grey-level intensities centred at 

the contour. Initial estimates for the template means and covariances are computed using 

an unbiased estimator, 

1   N 

iV 
i=l 

Pi N T£(Ii,t-Ti)(lM-Ti)
a 

(4.15) 

(4.16) 

These templates are used in the measurement process via (4.14) in a simple tracker to locate 

and identify image features along the search lines. This permits the acquisition of additional 

intensities profiles which can be obtained from tracking conditions representative of those 

likely to be encountered in future tracking sessions. These new profiles are then used to 

update the means and covariances accordingly. 

A point to be made is that the use of a full covariance matrix P requires the estimation 

of Ö(L2) parameters and, more importantly from a real-time tracking perspective, Ö(L2) 

multiplications and additions (4.14) for each distance calculation. A simpler model can 

be utilised if the pixels along the search line are assumed to be statistically independent, 

which results in a diagonal P and reduces both the number of parameters to be estimated 

and the number of required arithmetic operations to O(L). The results of the template 

learning process, using this simplifying assumption, for a prototypical search line are shown 
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in figure 4.11. 

Grey Level Profiles for Search Line 24 
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Figure 4.11: Prototypical grey-level intensity profiles along an image search line and the learnt 

statistical template plotted as a function of distance from the lip contour. The solid line represents 

the m,ea,n intensity and the dashed lines ±1 standard deviation change in intensity. The absence of 

a sharp jump or sudden change in the intensity profiles also clearly demonstrates why standard edge 

detection methods are inappropriate for identifying the lip boundary which corresponds to r = 0 and 

is not distinguished by an appreciable edge. 

In this work, only ID intensity profiles were used, although this framework can be easily 
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extended to regions of arbitrary shape near the sampled contour positions. Similarly, it is not 

necessary that raw intensities be used; experiments were done using normalised intensities, 

as well as the gradient of the intensities, and the normalised gradient. Some success was 

achieved using normalised intensities, although the loss of information due to normalisation 

led to excessive false matches, degrading the overall performance of the tracker. Somewhat 

less success was achieved using gradient and normalised gradient templates, because in 

regions with relatively constant gradient, differentiating the intensity profile resulted in the 

loss of the salient information. Such regions exist along the lower lip which is illustrated in 

figure 4.12. 

Grey Level Profiles for Search Line 23 

-15 -10 -5 0 5 
Position (r) 

Figure 4.12: Representative intensity profiles along the lower lip. Since the profiles have relatively 
constant gradient, differentiating them results in the loss of the salient information, which degrades 
tracking performance when they are used in the feature search routines. 

Rowe et al. [121, 122] have recently proposed a more general statistical modelling tech- 

nique than the one described here. They make no assumptions about the form of the distri- 

bution of the grey-level intensities along the template (other than statistical independence 

between adjoining pixels) and instead learn the intensity probability distributions directly 

from the image data. They also permit non-linear warps between the intensity templates 

and the image search line data, as opposed to only translational shifts. However, their 

added generality results in an enormous increase in computational complexity, precluding 

their use in real-time tracking applications. The modest assumptions made here concerning 
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the nature and form of the data strike a more appropriate balance between generality and 

computational complexity. 

4.5.2    Feature Measurement Error 

As discussed in section 4.3.1, the accuracy of a tracker is directly related to the quality 

of the feature detection method used. More specifically, the degree to which the feature 

detection method results in a unimodal, sharply peaked, measurement probability density 

function determines the tracker's ability to correctly identify and precisely locate the lip 

boundary. 

In section 4.3.3 it was shown how to determine the measurement probability density 

function p(zSi\x), where x is the true position of the image feature and zSi represents the 

observed location, ie. the detected feature. A similar analysis is given here where the mea- 

surement densities, p(zSi \x), are obtained empirically by simulating the Mahalanobis feature 

detection process. 

The measured ID position, z, of a feature is given by the minimum squared Mahalanobis 

distance 

z = arg min Mir), (4-17) 
r 

where M(r) is given by (4.14). 

By modelling the variations in the grey-level intensities, I, in the surrounding region of 

the template profiles, T, the measurement densities can be estimated directly from equa- 

tions 4.14 and 4.17. The statistical variations, Pg, in the surrounding regions can be learned 

in the same manner as was used for learning the covariances of the intensity template (sec- 

tion 4.5.1). Artificial image data can then be generated using these learnt distributions 

I(r) = I(r) + »7 (4.18) 

where I are the mean profile intensities and 77 is a normally distributed L-vector with 

zero mean, and covariance Pg. The measurement densities can then be estimated from 

equations 4.14 and 4.17 using this simulated data. One such simulation for a sample search 

line is shown in figure 4.13. 

The most prominent observation from these graphs is that the output squared Maha- 

lanobis distance (graph (c)) is flat over a fairly large region, indicating that errors in local- 

ising the position of the image feature are likely. This is in contrast to the sharply peaked 

output of the cosmetically-assisted lip tracker (figure 4.8) where the lipstick resulted in 

dominant edge features that were robust to image noise. 
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Figure 4.13: Simulation of the Mahalanobis feature detection process. The first graph (a) shows 

the statistical template along with ±1 standard deviation from the mean intensities, where r = 0 

denotes the position of the contour. The second graph (b) shows the search line image data in the 

vicinity f±20 pixels) of the lip contour along with the variations in the neighbouring pixels (dashed 

line). The last graph (c) shows the squared Mahalanobis distance between the template and the noise- 

free image search line (dashed line) and between the template and the simulated noise corrupted image 

profile (solid line). Note that for this search line the output distances (dotted line) are relatively flat 

for —10 < r < — 2 demonstrating its susceptibility to image noise. Contrast this curve to the sharply 

peaked output of the cosmetically-assisted lip tracker (figure 4-8). Addition of the noise (solid line) 

results in misidentification of the lip boundary (marked as '0', r = -4) which is 4 pixels in error. 
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Figure 4.14: The measurement probability distribution from simulation of the Mahalanobis mea- 
surement process. The distribution is roughly Gaussian with mean fj, = —0.387 pixels and covariance 
a2 = 7.865 pixels2. 

The measurement probability distribution, p(z\x), for the search line shown in figure 4.13 

was determined empirically by simulating the feature detection measurement process one 

thousand times. The resultant measurement density is shown in figure 4.14 as a function 

of offset from the true position. The measurement distribution is roughly Gaussian with 

mean and covariance 

H = -0.387 pixels   and   a2 = 7.865 pixels2. 

Not surprisingly, the covariance of the measurement noise is much higher than the 

sub-pixel accuracy of the cosmetically-assisted lip tracker, where a2 = 0.327 pixels2 (4.10). 

When compared to this sub-pixel accuracy, the 7.865 pixels2 measurement covariance of this 

detector may appear large; however, when translated into image coordinates, the measure- 

ment error is relatively small. This is illustrated in figure 4.15 where some of the detected 

features around the lips are several pixels in error from the true lip outline, although the 

resultant least-squares fitted spline approximates the lip contour well. 

4.5.3    Tracking 

The statistical templates can now be used as feature detectors in the dynamic contour track- 

ing framework. A short excerpt from a tracked sequence of the word "seven" (figure 4.16) 
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Figure 4.15: Using statistical template matching results in the detection of features along the lower 
lip, despite the poorly contrasted lip-skin boundary. As discussed in the text, the measurement error 
of the feature detector results in several of the detected features being displaced from the actual lip 
outline, especially along the lower lip. However, many of the features have been precisely identified, 
and the resultant least-squares fit approximates the lip outline well. For reference: each of the search 
lines (thin black lines) are 25 pixels in length. 

demonstrates the tracking accuracy achieved using the statistical models in conjunction 

with the Mahalanobis distance measure. 

The resultant accuracy of the tracker suggests that the statistical models have captured 

attributes of the intensity profiles necessary for identifying the lip boundary. In addition, a 

strength of the modelling approach is that variations due to lighting changes can be directly 

incorporated into the statistical templates by training on intensity profiles obtained from 

images under various illumination conditions. In applications where there are not gross 

changes in lighting, such as speech recognition in an office environment with fluorescent 

lighting, the statistical detectors adequately handle this variability. This is illustrated in 

figure 4.17. 

Although the statistical template matching feature detection method has been presented 

in reference to lip tracking, there are many other tracking domains where this modelling ap- 

proach could be used effectively. For instance, the tracking of the human heart in ultrasound 

imagery is receiving increased attention as a method for detecting heart abnormalities [72]. 

However, there is poor contrast along the boundary of the heart due to the low signal-to- 

noise ratio of the ultrasound images. The employment of statistical feature detectors should 

adequately capture the salient information of the heart boundary. 
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Figure 4.16: Tracking the word "seven" using the statistical modelling feature detection method. 

Snapshots taken approximately every 60 ms. The white line represents the position of the contour 

after the measurements have been assimilated. The tracker accurately follows the lips throughout the 

entire sequence; however, in frames 3 and 4, it can be seen that the contour has not fully deformed 

to the curled upper lip as the speaker is transitioning from 's' to 'e'. 
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Figure 4.17: Tracking is robust to small lighting changes as typically encountered in an office 
environment. Snapshots taken approximately every 80ms. "Five" is accurately tracked throughout 
the sequence, although there are slight misalignments along the upper lip in frames 3-5. 
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Another application is the tracking of objects in natural scenes against varying back- 

grounds. The grey-level appearance of the tracked object could be represented using sta- 

tistical templates with relatively small variances, so-called foreground modelling, while the 

portion of the template representing the background clutter would have large variances 

indicating the uncertainty associated with the background. During tracking, foreground 

features should reliably match the foreground portion of the profile templates, while the 

background clutter is absorbed by large variances in the background portion of the tem- 

plates. 

4.6    Conclusion 

The accurate lip tracking performance attained in this chapter demonstrates the power of 

the real-time dynamic contour tracking framework. The difficult task of tracking rapidly 

deforming, articulating lips was tackled by first developing appropriate shape and motion 

models which were learnt from continuous speech sequences. Next, methods for identifying 

the lip boundary in grey-level images were investigated. It was found that the distracting 

effects of the teeth, in conjunction with the difficulty of accurately locating the corner of the 

mouth, made tracking the outer lip contour preferable to tracking the inner one. Correlation 

matching was shown to be ill-suited for identifying the weakly contrasted lip boundary. 

It was then demonstrated that statistical models could successfully capture the salient 

information of the intensity profiles along the search lines of the lip contour. This enabled 

reliable identification of the lip-skin boundary. When the statistical feature detectors were 

used in conjunction with the shape and motion models, the result was accurate, real-time 

tracking of unadorned lips. 



Audio-Visual Recognition Systems 

This chapter provides an overview of the various sub-systems comprising two audio-visual 

speech recognisers. These recognisers were developed in order to assess the ability of vi- 

sual information extracted from the lip contour to provide robust speech recognition. The 

recognition experiments conducted using these recognisers are presented in the next chapter. 

The first recogniser uses a dynamic time warping (DTW) matching algorithm to account 

for the non-linear temporal variations inherent in speech, while the second uses stochastic 

modelling in the form of continuous density Hidden Markov Models (HMMs). Both sys- 

tems utilise the dynamic contour trackers presented in the previous chapter. The DTW 

system was designed for isolated-word recognition tasks only, while the HMM system was 

implemented as a continuous-word recogniser in order to permit investigation into some of 

the practical problems facing commercial audio-visual speech recognisers. 

Much of the pre-processing and feature extraction steps are identical for the .two systems. 

As such, an explanation of the sub-systems common to both recognisers is given only in the 

Dynamic Time Warping section. 

5.1    Dynamic Time Warping Recogniser 

Dynamic Time Warping is a dynamic programming technique that finds the minimum 

distance between two sequences given a local distance measure and global path weight- 

ings [111].   Using local optimisation, DTW finds the optimal warping that results in the 
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minimum cumulative distance between the two sequences. All possible paths, subject to 

the global constraints, are considered. When matching different repetitions of the same 

recognition unit (phoneme, syllable, or word), DTW should compensate exactly for the 

speaking rate variations. There is no such correspondence when comparing different words 

— the DTW algorithm merely finds the shortest distance between the sequences. However, 

in theory, the distance between dissimilar words should be greater than that between like 

ones. 

The DTW recogniser consists of two parts. The first is the "training" system where 

reference templates are created from known and labelled utterances and the second is the 

"recognition" or evaluation system where unknown words are processed and then matched 

against the stored reference templates. Block diagrams of the training and recognition sub- 

systems are shown in figures 5.1 and 5.2, respectively. The subsequent sections detail the 

different portions of the DTW system. 

5.1.1     Segmentation 

The first task in any isolated-word recognition problem is identification of the word bound- 

aries within the sample utterance, that is, endpoint detection or word segmentation. In 

situations where the word is spoken in isolation in a quiet environment, voice activated 

detection (VAD) methods seem to work well [67]. However, even in quiet environments, the 

problem is more difficult than might first appear, for it is common for speakers to precede 

(or follow) words with lip smacks and/or spurious noises which make accurate endpoint 

detection difficult. Some words (such as eight and contemplate) have periods of silence 

within them that can be easily mistaken for word boundaries. Furthermore, VAD schemes 

are often unreliable in endpointing words beginning or ending with weak sounds, such as 

/f/, /s/, and /k/, where the level of the noise may be greater than that of such sounds. 

Complicating matters further, speakers occasionally omit the stop consonant burst on words 

ending in unvoiced stops (/p/, /t/, and /k/) [67]. 

In this work, since the acoustic signal was recorded in noise free conditions (artificial 

noise was added later), segmentation was accomplished using only the acoustic channel (see 

figure 5.1). The endpoint detector calculated the average power in a sliding window and 

compared it to a pre-set threshold. The beginning (ending) of the utterance was identified 

as the point where the average power first exceeded (dropped below) the threshold. To 

ensure that no leading or trailing sounds were omitted by the detector, the endpoints were 

extended by 100 ms (800 samples), forward and backward. The identified endpoints were 

then used to segment the visual features to ensure good synchronisation between the two 
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Figure 5.1: Block diagram of the DTW training sub-system. The raw audio and visual data are 

processed and relevant recognition features are extracted and combined into reference templates which 

are then used for pattern matching. 
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Figure 5.2: Block diagram of the DTW recognition sub-system. Unknown words are processed and 

then compared against stored reference templates using the DTW algorithm. The closest match is 

as the "recognised" word.  Component weightings can be varied to give greater significance 

to different features. For example, experiments were conducted where the weightings were varied 

between the sound and vision components to compensate for the reduced information content of 

noise-degraded sound. 
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modalities. This method of segmentation also ensured the capture of any pre-positioning 

of the visual articulators prior to speech generation. 

Ideally, information from both the audio and visual channels should be used to aid 

in identification of word boundaries. Indeed, as it is known that even small errors in 

endpoint detection (« 60 ms) result in degraded recognition of isolated digits [111], word 

segmentation represents a natural domain for the fusion of audio-visual data, particularly 

in noisy environments. Surprisingly, this area has received only limited attention [89]. This 

is most likely due to the difficulty of separating and decoupling global head motion from 

local lip motion and of distinguishing non-speech facial movements, like smiling, from those 

due to speech. However, acoustic cues should certainly help solve the latter problem, and 

recent work in the decoupling of pose and expression [78, 6] holds promise for the former. 

5.1.2    Audio Feature Extraction 

An essential part of any recognition system is the extraction of features that reliably rep- 

resent the objects in the data set. The features must compactly represent the data in a 

form suitable for recognition. For speech signals, the features typically result from spectral 

processing of the acoustic waveform [113, 111]. 

Consistent with standard practice in computer speech recognition, the speech signal 

was assumed to be piecewise stationary; that is, it is assumed that over a short time 

interval the spectral characteristics of the speech signal do not change. This allows the 

speech waveform to be broken into short segments (called analysis windows) which can be 

analysed independently. Typically, overlapping windows are used, resulting in a new feature 

vector every frame interval. It is important that the windowing interval be sufficiently short 

(10-40 ms) that only minor shape variations occur in the vocal tract. 

In order to minimise signal discontinuities at the beginning and ending portion of each 

frame, the speech signal was multiplied by a Hamming window, h(n), of length N = 256 

(32 ms) where 
27T7Z 

h{n) = 0.54 - 0.46 cos (——-), 0 < n < N. (5.1) 

The Hamming window provides adequate resolution in the frequency domain as well as 

sufficient attenuation in the side lobes. A 37.5% overlap of the windows was used (96 

time samples) resulting in a 20 ms frame interval. This frame rate was chosen to coincide 

with the 50 Hz video rate to facilitate integration of the two modalities without additional 

sub-sampling or linear interpolation. 

The processed speech signal was then passed through a bank of bandpass filters. The 
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centre frequencies and bandwidth for each of the filters was determined using the mel scale, 

which results in bands containing equivalent amounts of linguistic information [111]. The 

spacing of the mel scale is based on perceptual studies and is given by 

Mel(/) = 1127m (1 + ^), 

which encapsulates the reality that humans are better at distinguishing sounds at lower 

frequencies than at higher ones. A measure of the spectral energy in each of the frequency 

bands was obtained by computing the fast fourier transform (FFT) on the windowed signal. 

The resultant 128 frequency sample points were then partitioned into 8 bands, leaving 8 

mel-scale filter-bank coefficients occurring at a rate of 50 Hz (one feature vector per frame). 

5.1.3 Visual Feature Extraction 

There is currently no consensus among the speechreading community as to which features 

most efficiently capture the linguistically informative attributes of the visual signal. It 

is generally accepted that the lips, teeth, and tongue all contain linguistically relevant 

information, with the lips being the most informative [25, 131, 84]. Some researchers have 

demonstrated that the lips alone can carry up to two-thirds of the speech intelligibility 

conveyed in images of the face [94, 9]. Typically, the lip attributes deemed most informative 

are the height and width of the oral cavity, and the degree of lip rounding (puckering) [99, 

48, 55, 56]. Shape parameters corresponding to these measures can be readily obtained by 

tracking the lip contour and projecting the lip outline onto a recognition basis consisting 

of the desired lip deformations or attributes. (These steps are referred to as "Track Lips" 

and "Extract Recognition Features" in figure 5.1.) 

In the recognition experiments presented in chapter 6, shape parameters are used as the 

visual recognition features; however, having tracked the outer and/or inner lip contours, 

it is straightforward to grab the pixel intensity region bounded by the tracked contours. 

These pixel values can be used directly as recognition features using principal component 

encoding [26, 17], or more advanced operators can be applied to make particular judge- 

ments about the presence and positioning of the teeth and tongue. Thus, this framework 

extends naturally to the use of visual features containing both shape and region intensity 

information. 

5.1.4 Audio-Visual Integration 

There is some debate within the speechreading community as to the most appropriate time 

to integrate the audio and visual channels.  Early integration, where the audio and visual 
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feature vectors are concatenated to form one large vector, represents the most natural 

architecture. Further, since the early integration approach enforces the synchrony of the 

audio and visual channels, it is well-suited for exploiting bi-modal aspects of the audio- 

visual speech signal such as voice-onset-time. In addition, the early integration approach 

is the most general. Indeed, if late integration proved to be the optimal time to integrate, 

an appropriate learning algorithm should, in theory, learn to treat the channels separately. 

Accordingly, an early integration approach was adopted here, although during recognition it 

was possible to vary the weight (importance) of the individual audio and visual components 

(figure 5.2). 

5.1.5 Training 

Training for DTW systems reduces to finding which template or templates to use as reference 

templates for the recognition pattern matching. Several solutions exist for this problem. 

One approach is to arbitrarily choose one sequence of the concatenated audio and visual 

features for each word in the vocabulary. Another is to perform clustering analysis on the 

sequences to generate prototypical reference patterns. The first approach is a little too 

simplistic and may result in poor reference patterns that do not adequately reflect the data, 

and the second approach is computationally expensive. A compromise was chosen. 

Two exemplar sequences were selected for each word in the database after additional 

processing. To account for the disparate scales between the audio and visual features and to 

ensure equal contributions to the Euclidean distance measure used in the recognition stage, 

the recognition features were normalised to zero mean and unity variance. However, in order 

to compensate for the fact that the acoustic data contained an unknown and variable amount 

of noise, the 8 mel-scale acoustic coefficients were normalised over each frame sequence 

rather than over the training set. This had the undesirable effect of amplifying the noise 

in clean conditions, although several benefits resulted. Firstly, amplitude normalisation 

permitted the use of only one set of reference templates for all acoustic noise levels. Secondly, 

since it is the overall shape of the frequency spectrum that identifies the phonemes within 

the word, not the actual magnitude, normalised data is inherently more robust to changes 

in volume and noise levels than non-normalised data. 

5.1.6 Recognition 

Unknown words were recognised by comparing them to the stored reference patterns created 

in the pre-processing and training phases. (A block diagram of this is shown in figure 5.2 on 

page 63.) The distance, or dissimilarity, between the unknown utterance and each exemplar 
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template was calculated using the dynamic time warping algorithm. The template resulting 

in the minimum cumulative distance was identified as the recognised word. 

The DTW algorithm chooses the "best" alignment between two sequences by minimising 

their cumulative distance. Finding the best alignment between two sequences is function- 

ally equivalent to finding the best path through a grid mapping one sequence to another. 

Consider two sequences, X = (xi,x2,x3,... ,xM) and Y = (yi,y2,y3, • - • ,YM), where xt 

and yt are L-dimensional feature vectors. Let d(xti,ytj) denote the local distance between 

x at time ti and y and time tj, and D{Xti,Ytj) denote the minimum accumulated distance 

from (X\,Y\) to (Xtj ,Yt). The local distance, or dissimilarity measure, between individual 

frames of the sequences need not be distance in the mathematical sense [111]; it merely 

needs to possess the property that similar sounds result in small distances, while dissimilar 

sounds produce large distances. In this research a spectral weighted Euclidean distance 

metric was used, 

d(xtl,yu) = 
N 

L 

Y^ wk(xk{ti) - Vk(tj))2 (5.2) 
fc=i 

where Wk is a weighting function used to give greater or lessor importance to the different 

features. 

For recognition using only a single channel Wk was unity for all k resulting in a simple 

Euclidean distance measure. For recognition using the combined audio-visual data Wk was 

varied in order to alter the relative weighting between the audio and visual channels. 

The total dissimilarity D(X,Y) was computed by finding the minimum cumulative 

distance over all possible paths from (Xi,Yi) to (XM, YN), subject to the warping function 

pair ((f)x(k), (j)y(k)), and the slope weighting function m(k). Specifically, 

T 

D(XM, YN) = Y, d(<l>x(k), 4>y{k))m{k), (5.3) 

where T is an artificial time reference. The functions <f>x{k) and (f)y(k) are monotonically 

non-decreasing as they must preserve the temporal ordering of the speech signal. In this 

work, only horizontal, vertical, and diagonal movements were permitted with corresponding 

slope weights, mio, moi, and m\\. 

f DiXti^Yt;)  + m10d(xu,ytj)       ) 
D(Xu,Yt]) = mm I   DiX^Yt^)  + moid(xti,ytj)      \ (5.4) 

[ £>(**;_,,VJ  + mnd(xu,ytj)  J 

Values for mio, moi, and mn were chosen to favour the diagonal path (minimal temporal 

distortion), while still permitting the horizontal and vertical movements needed to compen- 

sate for the simple endpoint detection method employed. The cumulative distance D(X, Y) 
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was normalised by the total path distance \/M2 + N2 to enable comparison of unequal 

length words. 

5.2    Hidden Markov Model Recogniser 

The second audio-visual recogniser developed used Hidden Markov Models to represent the 

words in the vocabulary. Good reviews of basic HMM techniques as applied to speech 

recognition can be found in [112, 110, 70, 111]. The salient feature of the HMM paradigm 

is its modelling of the temporal variations in speech signals using statistical methods. As 

discussed earlier, the speech signal is assumed to be stationary over a short time interval, 

called the frame interval. The time varying nature of the signal is represented as a concate- 

nation of many short-time stationary segments. The overall speech signal is thus modelled 

as a synchronous sequence of symbols. These symbols correspond to the audio and visual 

recognition features (mel-scale filter-bank coefficients and visual shape parameters). 

In HMM-based recognition, the symbols are assumed to be generated by a first order 

Markov process. A first order Markov process is a finite state machine that changes state 

every time-unit equal to the frame interval, where transition from one state qt to the next 

qt+\ depends only on the current state. Specifically, transition from state i to state j is 

probabilistic and governed by the state transition matrix A = {a,ij}. At each time instance 

t, statistically independent observation vectors ot are generated with probability density 

bj(ot). (Technically, for speech signals this is an invalid assumption, as speech observation 

vectors are inherently dependent; however, much success has been achieved using HMMs on 

speech recognition problems.) The speech signal is considered to be the feature vector se- 

quence O = (oi, o2, o3,..., or), generated by a given state sequence q = (qi,q2, <73> ■ ■ •, <tr)- 

In practice, only the observation sequence O is known, while the underlying state sequence q 

remains unknown or hidden. Since the stochastic state sequence is only observable through 

the probabilistic output symbols (O), HMMs are typically referred to as doubly stochastic 

processes. 

Creating a recognition system based on HMMs can be broken into several steps: 

• Choose the desired recognition unit (phoneme, tri-phone, syllable, or word).  Words 

were used in the research presented here. 

• Train an HMM for each recognition unit (word) in the vocabulary using a set of 

labelled (known) reference utterances. 

• Given an unknown observation sequence, calculate the probability that the sequence 
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was generated by each of the word models. 

• Identify the unknown as the model yielding the highest probability. 

Not listed above, but implied are the standard tasks of endpoint detection and feature 

extraction necessary for representing the audio-visual speech signal as sequences of output 

symbols. This processing was identical to that accomplished in the DTW system and was 

presented in sections 5.1.1, 5.1.2 and 5.1.3. 

A block diagram of the training and recognition sub-systems are shown in figures 5.3 

and 5.4, respectively. These two sub-systems are described next. 

5.2.1     Training 

The most difficult task in HMM-based recognition is training, that is, estimating the param- 

eters for each model given a set of labelled, reference tokens. It is desirable that the trained 

model be a generalisation of all of the occurrences of the given word. For this research, a 

commercial software toolkit, The Hidden Markov Model Toolkit (HTK) by Entropie Re- 

search Laboratory, Inc., was used to facilitate the building, training, and the manipulation 

of the continuous density models. An overview of the toolkit can be found in [141]. 

The HMMs used were characterised by 5 parameters, N, A, B, IT, M: 

• TV, the number of states in the models 

• A = {a,ij}, the state transition matrix, the probability of moving from state i to state 

• B — {bj(ot)}, the emission probability vector, the probability of observing o at time 

t, when in state j 

• II = {fti}, the initial state distribution, the probability of starting in state i 

• M, the observation symbols, a continuous quantity represented as a mixture of Gaus- 

sians. 

In this work, six-state word models were used (TV = 6). This is consistent with other 

isolated word recognisers [111] where 5-state models were used for recognition on the digits 

and [88] where error rates where essentially constant for TV > 6. An example model is shown 

in figure 5.5. Note that the model actually contains 8 states as opposed to 6. This is a 

result of the manner in which the HMMs are represented in HTK. All entry and exit states 

are non-emitting (no observation symbol is generated) with an automatic (Pr(ajj) = 1) 
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Figure 5.3: Block diagram of the EMM training sub-system. The raw audio and visual data are 
processed and relevant recognition features are extracted and used to train continuous density HMMs. 
A separate model is used for each word (including a "silence" model.) 
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Figure 5.4: Block diagram of the HMM recognition sub-system. Unknown words are processed 

and the posterior probability of the unknown sequence, given each of the trained models, is evaluated 

using the Viterbi algorithm. The "silence-word-silence" grammar forces the recogniser to determine 

the word endpoints. The word model yielding the highest probability is identified as the "recognised" 

word. 
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Figure 5.5: ^4 typical word 'model used in this research. The transition probability from state i 
to state j is denoted a,ij. The emission probability of observing o in state j is represented as bj(o). 
Note that the model contains 8 states, although the first and last are non-emitting resulting in only 6 
emitting states.  This left-to-right m,odel encapsulates the temporal ordering of the audio-visual data. 

transition from state 1 to state 2 and from state N — 1 to state N. Note further, that 

the model is a left-to-right model. This encapsulates the temporal ordering of the slowly 

time-varying nature of speech. In theory, each of the states represents a different portion 

of the speech signal where the vocal tract is essentially static and the transitions from one 

state to the next represents changes in voicing or repositioning of the articulators. 

The model for the "silence" token used N = 1. This follows from the belief that during 

periods of the silence the energy in the signal is a result of background, microphone, or tape 

noise, which is random in nature and not representative of any words in the vocabulary. 

Rather than using codebooks, where M is the number of observation symbols and the 

emission probabilities, discrete entities, continuous observation densities were used. To ac- 

complish this, the emission probability density function (pdf) was represented as a mixtures 

of Gaussians. Specifically, 

M 
bj(°) = J2 cjkN{o,Vjk, Sjfc),    1 < j < N (5.5) 

fc=i 

where M is the number of mixtures, Cjk is the mixture coefficient for the &th mixture in 

state j, and M is a standard multi-variate Gaussian with mean vector ßjf. and covariance 

matrix E^, 

Äf(o,ßjk,Vjk) =    ,      1  _      e-*(°-^)TE7>-"**> (5.6) 
(2n)n\Sjk\ 

with n the dimensionality of o. The mixture gains Cjk satisfy the stochastic constraint 

M 

Y,Cjk = h    0<cjk<l,    l<j<N 
fe=i 

such that the pdf is properly normalised 
/•oo 

bj{o)do = l,    l<j<N. 
-oo 
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Because of the availability of only a limited number of training tokens, the observations in 

o were assumed to be uncorrelated resulting in a diagonal Y,jk and substantially reducing 

the number of free parameters in the model. The audio-only recogniser used a single multi- 

variate Gaussian to represent the emission densities, while the visual-only and combined 

audio-visual recognisers used multiple mixture densities. 

Having chosen model parameters N and M, the only remaining parameters to estimate 

were the probability measures A, B, and II. For ease of notation, let A=(A,5,II) denote 

the parameter set of the model. Training thus reduces to finding the most likely A's, in a 

probabilistic sense, for each of the words in the vocabulary. In essence, for an observation 

sequence O = (01,02,03,..., OT), one wishes to find values for A such that the Pr(0|A) is 

maximised. Unfortunately, an analytic solution to this problem does not exist. There does, 

however, exist an iterative procedure for choosing the maximum likelihood (ML) estimate 

for the model parameters using an Expectation Maximisation (EM) algorithm. This method 

is known as the Baum-Welch algorithm [8], and was the method used to estimate the model 

parameters. A thorough explanation of Baum-Welch estimation using the computationally 

efficient forward-backward algorithm is given in [70, 111]. 

5.2.2    Recognition 

Recognition of an unknown word represented by a sequence of output symbols O was ac- 

complished by evaluating Pr(0|AJ) (where A* represents the model of the ith word in the 

vocabulary) for each word in the vocabulary and identifying the model yielding the highest 

probability as the spoken word. These output probabilities can be efficiently calculated 

using the forward-backward algorithm used in Baum-Welch estimation and is typically the 

method of choice for isolated-word recognisers. However, despite recognising only single 

word utterances, a connected-word recogniser was used in this research treating each ut- 

terance as a three "word" sequence (silence-word-silence). This was done to compensate 

for inexact endpoint detection due to the "noisy" speech data and also to serve as a bridge 

to the more complicated task of continuous-speech recognition. A block diagram of this is 

shown in figure 5.4. 

Thus, instead of computing Pr(0|A) by summing Pr(0,q|A) over all possible state 

sequences q, the maximum of Pr(0,q|A) (P*) was computed over the most likely state 

sequence (q*) using a dynamic programming technique referred to in the literature as the 

Viterbi algorithm [138]. The Viterbi algorithm is very similar to dynamic time warping 

algorithm discussed in section 5.1.6. P*(0,q|A) and g*(0|A) were computed using the 

Viterbi algorithm with the model yielding the highest probability being identified as the 
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recognised word. 

5.3    Summary 

This chapter has provided an overview of the various sub-systems comprising two audio- 

visual speech recognisers. These recognisers were developed in order to assess the ability of 

visual information extracted from the lip contour to provide robust speech recognition. The 

first recogniser is a dynamic time warping-based isolated word recogniser and the second a 

connected-word, Hidden Markov Model-based recogniser. Both systems utilise the dynamic 

contour trackers presented in the previous chapter. Various recognition experiments were 

conducted using these recognisers and are presented in the next chapter. 



Audio-Visual Speech Recognition 

In order to achieve real-time tracking performance, it is often necessary to reduce the 

dimensionality of the image data, such as through parameterisation of the lip outline (or 

outlines) as was done here. Unfortunately, such parameterisation may result in the loss 

of important recognition information, such as the position of tongue and teeth. This loss 

of information is of special concern as some researchers [17, 19] have concluded that the 

outline of the lip is not sufficiently distinctive to give reliable recognition performance. One 

aim of this thesis is to demonstrate that even partial visual information, in the form of 

shape parameters describing the lip outline, can enhance speech recognition. This chapter 

presents experiments to test if this is indeed the case. Particular emphasis is placed on 

the incremental vision rate, which is the increase in recognition performance due to the 

incorporation of visual information into the acoustic speech recognisers. Essentially, it is a 

measure of the additional recognition information provided by the visual data. 

The DTW and HMM recognisers described earlier (sections 5.1 and 5.2) are used for 

these experiments. Recognition performance is assessed using isolated-word vocabularies 

with and without added Gaussian noise. Tests are accomplished using audio-only, visual- 

only, and combined audio-visual data. The visual information is represented as projections 

of the lip outline onto three different recognition bases. The bases examined are the affine 

basis and two bases learnt from principal components analysis. First, the method used to 

determine these recognition bases is presented, followed by the results of the recognition 
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experiments. 

6.1    Lip Motion and Visual Feature Extraction 

Prior to presenting the results of the recognition experiments, a detailed analysis of the 

characteristic lip motions found in natural speech is given. This analysis serves two purposes. 

First, it provides insight into the dominant lip movements present in visual speech. Second, 

it permits compact representation of lip shape in terms of basis vectors characteristic of 

natural lip movements, which were then used in the recognition experiments. 

6.1.1    Shape Models for Lip Deformations 

In order to do justice to the complex articulatory movements of the lips in natural speech, it 

is necessary to parameterise their outline with many control points (eg. 11 (x, y) coordinate 

pairs or Nx = 22 degrees of freedom). However, as discussed in section 3.3, it is desirable to 

limit the number of degrees of freedom of deforming lips during tracking, both for stability 

and for computational reasons. This can be accomplished by imposing shape constraints on 

the allowable lip deformations. Such restrictions on the possible space of lip shapes seem 

natural as lip movement can be largely accounted for by just a few independent modes of 

motion. The question becomes how to best choose this shape space. 

One possible method is to hand-fit contours to a representative set of lip deformations, 

the so-called "key-frame basis". However, such construction is largely an art and there is 

no guarantee that the basis vectors chosen will be optimal or even that they will span a 

majority of the lip deformations found in natural speech. A second alternative is to hand-fit 

splines to a large number of lip configurations and then perform a data reduction technique 

such as principal components analysis [31] to the hand-fit sequence. Such an approach can 

be quite effective and is precisely the method employed by researchers using Active Shape 

Models [83, 86, 87]. A third, somewhat preferable, method is to learn the space of lip 

deformations automatically from tracked sequences of articulating lips. Naturally, it is first 

necessary to be able to track the lips. 

The cosmetically-assisted lip tracker, discussed in section 4.3, permitted tracking of the 

lips in high-dimensional spaces with a high degree of accuracy. In order to capture the full 

range of mouth shapes present in natural speech, a single speaker uttering a continuous 

sequence of words containing the 40 American English phonemes was recorded onto video 

tape (60 seconds = 3000 fields). The speaker's lips were then tracked throughout this 

sequence and the lip deformations corresponding to this speech were stored in control point 
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form. Principal components analysis was then performed on the extracted data. 

6.1.2    Principal Components Analysis using the Z^-norni 

Principal components analysis (PCA) is a proven method for determining the principal 

axes of variation in a data set. Thus, it can be used to determine the main modes of lip 

deformation in natural speech, as well as the degree to which each component contributes to 

the variation in the entire space of lip deformations. The results of the principal components 

analysis can also be used to provide possible bases for recognition. 

The training data were recorded in control point space, when actually it is the lip 

deformations in spline space that are of interest. Therefore, PCA was done using the L2- 

norm and inner product as defined in equations 3.2 and 3.4. Using this norm, it can be 

shown [31] that the principal components in spline space are given by the eigenvectors Vj 

of 

£(X,-X')(Xfc-X')rK (6.1) 
k 

with corresponding eigenvalues Aj, where the X& are the sequences of control point vectors 

and X is the mean of the sequences. The proportion of lip motion variance accounted for 

by a particular eigenvector VJ is given by 

A,; 
Trace A' 

(6.2) 

where A is a diagonal matrix of the eigenvalues. 

Essentially the PCA problem is, given a training sequence Xi,..., XM, find a template 

vector Qo and shape matrix W' = (vi,..., v^ ) such that the reconstructed sequence 

X'I, ..., X'M most closely approximates the training sequence in a least-squares sense: 

min     (y||Xfc-Xi||2|, (6.3) 

where 

X'k = W'Q'k + Q'0. 

The resultant shape space SQ
1
 = £(W, Q'0) is then spanned by the basis vectors Vj 

which are the columns of the shape matrix W plus an offset template QQ. The complete 

algorithm is described in figure 6.1. 

When the training sequence is obtained by hand-fitting splines to the lip contours or 

running a tracker which utilises the maximum number of degrees of freedom available (Nx 

= twice the number of control points), S has rank Nx (provided M > Nx)-   However, 
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Principal Components Analysis 

Given: Training control point data Xi,..., XM in spline space S 

Find: A sub-space SQ = C(W, Q'0) of dimension N'Q to minimise 

M 

k=l 

where 
X'k = W'Q'k + Q'0. 

Algorithm 

1. Construct the training-set mean 

,     M x'4rxt. M f^    k 
k=\ 

2. Construct the training-set covariance 

1    M _ _ 
S = -^(Xt-X')(Xfc-X')^. 

3. Find eigenvectors vi,..., \Ni  of E, in descending order of eigenvalue. 

4. The principal components parameters Q'0,  W of the shape sub-space 
are then 

Qo   =  x' 

Figure 6.1: Algorithm for Li PC A in spline space. 
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when the training data are obtained automatically by tracking real lip sequences, it is often 

necessary to track in a reduced shape space, SQ = C(W, Qo), with NQ < Nx degrees 

of freedom, to prevent tracker instability. In such cases, the tracking shape matrix W 

can be built using key-frames as discussed in section 3.3 with the only stipulation being 

that the resultant tracking space SQ adequately span the lip deformations found in natural 

speech. The principal components analysis algorithm (figure 6.1) is equally suitable for 

data gathered in this manner, although the control point sequence Xi,... ,XM is replaced 

by Xi,..., X.M where 

Xfc = WQk + Qo 

to indicate the reduced degrees of freedom of the training data. For the analysis presented 

here, a 10 degree of freedom shape matrix was used to track the 3000 field sequence of 

continuous speech. 

The percentage of lip deformations explained by the most significant principal compo- 

nent is shown in table 6.1, where it is seen that the first principal component accounts for 

over half of all lip movements, the first three 94%, and the first six 99%. 

Component 1 2 3 4 5 6 7 8 9 
Mean Square 

Lip Movement 
52.3% 23.4% 18.4% 3.1% 1.6% 0.4% 0.3% 0.2% 0.2% 

Cumulative Sum 52.3% 75.7% 94.1% 97.2% 98.8% 99.2% 99.5% 99.7% 99.9% 

Table 6.1: The percentage of lip deformation variance explained by each of the first 9 principal 
components. Note that the first component accounts for over half of all lip movement variance and 
that 94% of all lip motion can be expressed with only the first 3 principal components, and 99% with 
the first 6. 

An attractive feature of the dynamic contour tracking framework is that the actual lip 

motion represented by a given basis vector can be observed by converting the dominant 

eigenvector into vibration modes of the control points of the lip template. Table 6.2 and 

figure 6.2 show the direction and relative magnitude of the first principal component and 

its motion superimposed on the lip template. 

Control Point Number 
1 2 3 4 5 6 7 8 9 10 11 

Angle -84° -120° -136° -138° -94° -64° -108° -79° -90° -106° -109° 
Size 13.7 5.3 4.4 0.7 2.6 2.6 11.0 18.3 23.5 24.9 15.8 

Table 6.2: The dominant mode of vibration generated by the dominant eigenvector for each control 
point in terms of magnitude and direction. Figure 6.2 shows these motions superimposed on the lip 
template. 
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Directions of Main Eigenvector 
Size Indicates Relative Strength 

Figure 6.2:   The dominant lip motion present in normal speech.  This is clearly vertical displace- 
ment of the lower lip caused by opening of the mouth. 
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Figure 6.3: Multiple traces of the lip tracker superimposed on a static image of a speaker demon- 
strating that most lip deformation can be explained by vertical displacement of the lower lip. (Figure 
courtesy of Barney Dalton.) 

By observing the dominant mode of vibration, it is clear that vertical displacement of the 

lower lip (caused by opening of the mouth) is the prominent lip movement in spoken English. 

This observation is also evident in figure 6.3 where multiple traces of the lip tracker are 

superimposed on the speaker. This finding should not be surprising as the primary motion 

of speech is the lowering of the jaw, which moves concurrently with the lower lip. 

It is also instructive to look at the remaining principal components expressed as defor- 

mations of the basic lip template — that is, the lip movements they represent. Figure 6.4 

shows the deformations along each of the first six principal components axes in terms of 

their shape and significance. As seen earlier, the first component represents the degree of 

"lip opening" due to vertical displacement of the lower lip and accounts for the majority of 

the variance in lip movements. The second component appears to represent a combination 

of global movement and a slight bit of vertical scale (ie. lip opening). This highlights one 

of the classic problems faced by all automatic speech readers, that is, the coupling of the 

"local" lip/mouth movements and the "global" head or body movements. This is especially 

important given that the vertical displacement of the lower lip could be the result of a 

speaker opening his/her mouth, nodding his/her head, or standing up/squatting down. It 

is true that each of these movements represents a slightly different deformation (ie. opening 

of the mouth is vertical displacement of the lower lip only, nodding of the head is vertical 

displacement of the lower lip and vertical shrinkage of the template, and squatting down 
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Figure 6.4: The lip deformations corresponding to the principal components plotted two stan- 
dard deviations either side of their mean. The first component represents the degree of lip opening 
resulting from movement of the lower jaw. The second component is a combination of horizontal 
and vertical movement of the template and a small amount of vertical scaling. The third component 
is curling of the upper lip with some global displacement. The fourth, fifth, and sixth components 
account for such as a small percentage of lip movement that it is difficult to see what motion they 
represent. 

is vertical displacement of both the upper and lower lip) but, accomplished in concert, it 

would be nearly impossible to separate the individual movements using only a single tracker. 

However, simple global head motion can be decoupled from the articulatory movements of 

the lip by simultaneously tracking a fixed position on the head such as the nostrils [106], or 

tracking the entire head [78], and then subtracting these global displacements from the lip 

control point positions. The decoupling of head pose from lip movement/facial expression 

for more general head orientations remains an open research area, although results from 

recent work [10, 6] are promising. 

The third component also appears to be a composite of global head movement and local 

lip deformation with the lip movement being the rounding of the upper lip similar to that 

seen in a 'pr' sound. The fourth, fifth, and sixth components account for such a small 

percentage of overall mean square lip movement (less than 6% in total) that it is difficult 

to see what motion they represent when plotted commensurate with their significance. It 

is easier to visualise their deformations in figure 6.5 where they are plotted a normalised 

distance either side of their mean. 

The fourth component represents a curling of the lip corners similar to that required 

to produce the 'ee' sound. The fifth and sixth are harder to classify as they account for 

only two percent of the lip movements and may not be representative of any particular lip 
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Figure 6.5: The lip deformations corresponding to principal components four, five, and six 
plotted a normalised displacement either side of their mean. The fourth component represents curling 
of the lip corners; the fifth, horizontal scaling and curling of the lip corners, and the sixth, an 
asymmetrical deformation. 

movement involved in speech production. 

The speaker used in this research spoke naturally, limiting unnecessary head movement. 

However, the above analysis shows that incidental movements were still present — an un- 

avoidable characteristic of human communication patterns. Since it is believed that global 

horizontal motion is not necessary for speech production and only a by-product of spurious 

head movements (global vertical displacement is present as a result of the asymmetrical 

movement of the upper and lower lips), additional analysis was performed on the control 

points with horizontal displacement (X translation) removed. For each set of control points, 

the mean horizontal translation component was removed using 

**=x* - %T¥^XT (6-4) 

where X^ is the horizontal displacement (the first vector in the affine basis) and the norm 

and inner product are defined in (3.2) and (3.4). 

Principal component analysis was then performed on the resultant data (X&) yielding 

the deformations of figure 6.6. These deformations are subsequently referred to as the "PCA 

no X" basis. The first four deformations can be broadly classified as 

• lower lip movement - 'ah' sound 

• rounding of upper lip - 'pr' sound 

• curling of lip corners - 'ee' sound 

• scaling of lip corners - 'wa' sound 

Components five and six are again difficult to classify. Looking at their contribution to 

the total space of lip deformations (table 6.3) we see that they account for only 1.6% and 
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Figure 6.6: The lip deformations corresponding to the first 6 principal components produced 
after subtracting X translation plotted a normalised displacement either side of their mean. The 
first four deformations can be broadly classified as lower lip movement, rounding of the upper lip, 
curling of the lip corners, and horizontal scaling. 

Component 1 2 3 4 5 6 7 8 9 
Mean Square 

Lip Movement 
65.8% 24.9% 4.2% 2.4% 1.6% 0.4% 0.3% 0.2% 0.1% 

Cumulative Sum 65.8% 90.7% 94.9% 97.3% 98.9% 99.3% 99.6% 99.8% 99.9% 

Table 6.3: The percentage of lip deformations explained by each of the first 9 principal components 
computed after subtracting horizontal displacement from the control points. The first component 
accounts for over 65% of all lip movements; the first three, 95%, and the first six, 99%. 

0.4% percent of all lip movements and hence may not be representative of any particular 

lip movement involved in speech production. 

Principal components analysis has provided a means for analysing the space of lip de- 

formations present in normal speech and suggests that 99% of these deformations can be 

represented with as few as 6 free parameters. In addition to providing insight into the pri- 

mary deformations of articulating lips, the two sets of PCA basis vectors (PCA and PCA 

no X) also provide a natural means for compactly representing lip shape information for 

subsequent recognition experiments. 

6.1.3    Affine Basis 

Although the space of lip motions can be expressed in descending order of power content 

using the PCA bases, such visual feature representation may not yield the optimum recog- 

nition results. For good recognition it is desired to find feature representations which are 

the most discriminating, as opposed to those that account for the largest percentage of 
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variance. Thus, while representation of the lip deformations using the PCA bases may be 

optimal for reconstruction, they may not be optimal for discrimination. Ideally, one would 

like to identify those lip movements most beneficial for speech recognition, possibly using 

some form of discriminant analysis. However, the non-linear temporal variations inherent 

in speech recognition differ from the classic static classification problem [46, 111]. In addi- 

tion, such deformations represent movements of the control points within the lip template 

and hence are specific to the speaker and the template parameterisation. In order to de- 

velop a visual recognition system capable of adapting to various speakers with different 

mouth shapes and corresponding lip templates, it is necessary to describe lip movements in 

more universal terms. Thus, in addition to using visual features obtained by projecting the 

tracked lip outline onto the two PCA bases, a third basis, the affine basis, was also used. 

The affine basis, which was discussed earlier as a means of applying shape constraints 

to the lip deformations, represents a potential speaker-independent basis. Lip deformations 

are expressed in the affine basis in terms of translation, scaling, rotation, and shearing 

of the lip template. These deformations, which were initially described in figure 3.2, are 

reproduced in figure 6.7 for reference. 

x trans x scale y shear 

y trans y scale x shear 

Figure 6.7: Lip movements corresponding to affine deformations of the mouth template. The first 
two components represent horizontal and vertical displacement/translation. The third and fourth, 
horizontal and vertical scaling, and the fifth and sixth, vertical and horizontal shearing. 

On a sample data set, it was found that the affine basis could account for only 91% of 

the lip motions as opposed to the 99% accounted for by the PCA bases. Thus, during the 

recognition experiments it will be important to compare the error rates achieved using the 

affine basis with those obtained using the more specialised PCA bases and determine to 
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what extent its generality impairs recognition performance. 

6.1.4    Visual Feature Extraction 

In order for the visual recognition features to be useful for discrimination, they should (i) 

be similar across multiple repetitions of the same word, (ii) be sufficiently different between 

repetitions of different words to provide for linguistic discrimination, and (iii) be indicative 

of motions characteristic of natural speech. Having decided to represent the lip outline as 

linear combinations of recognition bases, it is instructive to examine the resultant visual 

features. It is particularly important to see whether or not the features chosen are repeatable 

across multiple repetitions of the same word, yet sufficiently different between repetitions 

of different words, in order to complement the acoustic features. 

Traces of the six affine features for multiple repetitions of the words "previous" and 

"more" are shown in figures 6.8 and 6.9. In both figures we see that components 2 (vertical 

translation), 3 (horizontal scale), 4 (vertical scale) and 5 (vertical shear) are consistent 

across all four repetitions. It is not surprising that the X scale and Y scale components are 

repeatable across repetitions as they represent the crudest indication of overall mouth shape. 

The repeatability evident in the Y translation component is encouraging. This suggests 

that the vertical translational component due to incidental head movements was small in 

magnitude when compared to the translational component resulting from the opening of 

the mouth. While this may not be true for the entire data set, or for all data sets in general, 

the preliminary indication is that for this data set the Y translational component was not 

significantly corrupted by incidental head movements. The consistency in the Y shear 

component was unexpected (although the recognition experiments confirm that it does in 

fact contain useful recognition information). The lack of consistency in the X translation 

and X shear components was expected as neither appears to play a role in the production of 

speech. In particular, as discussed earlier, it is believed that the X translation component 

merely reflects spurious head movements of the speaker. 

An additional point, not immediately obvious from the graphs but worthy of mention, 

concerns the lip positioning at the beginning and ending of the words. The speaker started 

from the rest position (closed mouth) for each utterance. The vision signal begins 100 ms 

prior to the onset of the audio signal to account for the pre-positioning of the lips, hopefully 

resulting in an identifiable start for each word. However, it can be seen from the graphs 

that the starting lip position varied from one repetition to the next, implying that the 

anticipatory effects of the articulators are not as predictable as was hoped. Furthermore, 

post articulatory movements (at the end of a word/sentence) are even more variable, as 
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Previous: Component 1 Previous : Component 2 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Time {normalised) 

Previous: Component 3 Previous: Component 4 

Time (normalise 

Previous: Component 5 Previous : Component 6 

Time (normalised) 

Figure 6.8: Affine components 1 through 6 for four repetitions of the word "previous". The visual 
signals for components 2 (Y translation), 3 (X scale), 4 (Y scale) and 5 (Y shear) are similar across 
all four repetitions which suggests that they may be useful for recognition purposes. 
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Figure 6.9: Affine components 1 through 6 for four repetitions of the word "more". Once again, 
the visual signals for components 2 (Y translation), 3 (X scale), 4 (Y scale) and 5 (Y shear) are 
consistent across all four repetitions which suggests that they may contain useful recognition infor- 
mation. Furthermore, since they are also significantly different from like features in "previous", they 
may contain discriminatory information as well. 
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with no requirement to pre-position the articulators for the next utterance, the speaker is 

free to move his lips to any comfortable position. Thus, these graphs serve to illustrate just 

some of the difficulties in accurately segmenting speech using the visual signal alone. 
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Figure 6.10: PCA no X components 1 through 6 for four repetitions of the word "five". The 
visual signals for components 1,2,3,4,6 are similar across all four repetitions. The 1st component, 
which indicates the degree of mouth opening, reveals "five" as a simple open mouth then close mouth 
movement. 

Traces of the visual signals for the PCA no X basis, similar to those shown for the affine 
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Figure 6.11: PC A no X components 1 through 6 {or four repetitions of the word "seven". The 
visual signals for components 1,2,3,4,6 are similar across all four repetitions. The rapid motion of 
the fricative V in the middle of "seven" is clearly seen in the first principal component (degree of 
mouth opening).  This articulatory movement should represent a distinctive characteristic of "seven". 
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basis (figures 6.8 and 6.9) are shown in figures 6.10 and 6.11. Once again, several of the 

visual components are similar across the four repetitions. Furthermore, when comparing 

the feature traces between different words (eg. "previous" and "more", "seven" and "five"), 

one sees that the visual signals are substantially different, which is not surprising as their 

respective articulatory lip movements are markedly different. However, this shows that 

the shape parameters chosen may encapsulate enough of the linguistically discriminant 

information to be able to differentiate among words. This would allow features extracted 

in real time to be used in lipreading applications, paving the way for useable automatic 

lipreaders. 

6.1.5    Summary 

Analysis of natural, continuous speech for a single speaker has shown that over 50% of the 

lip movement present in normal speech is due to the vertical displacement of the lower lip 

caused by opening of the mouth. The analysis also suggests that it may be possible to 

express the information content of the lip outline with only a few (< 6) free parameters. 

Visual recognition features can be obtained by representing the lip contour as a linear 

combination of basis vectors. Three different bases — PCA basis, PCA no X basis, and the 

affine basis — have been presented and will be used in subsequent recognition experiments. 

6.2    Dynamic Time Warping Recognition 

6.2.1     Recognition using the Profile View 

Although the main experiments were conducted using a frontal view of the face, it seemed 

important to run at least a pilot experiment using the side-view, given that profile track- 

ing is robust and markedly easier than tracking from frontal views. This experiment was 

performed to demonstrate that real-time (50Hz), unaided visual tracking could be useful 

in audio-visual speech recognition applications, even if only on a modest scale. In place of 

the 40-word database used for the main experiments, a 10-word digit database was used, 

containing 20 repetitions of each digit. Rather than exploring alternative representations 

of the visual information, four simple visual features were used — two affine components 

and two non-rigid displacements derived from key frames which were believed to convey 

linguistically pertinent information (lip protrusion and lower jaw movement). 

In order to provide an opportunity for the visual signal to contribute to the audio- 

visual recognition performance, the audio signal was degraded in two ways. Firstly, the 

speaker varied his distance from the microphone — behaving as if he were speaking into an 
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automated teller machine, where it is unlikely that all speakers would address the machine 

from the same distance. Secondly, varying levels of artificial Gaussian noise were added to 

the acoustic signal corresponding to different signal-to-noise ratios (SNRs). 

Audio-only, visual-only, and combined audio-visual experiments were conducted at 4 

separate SNRs (clean, 0 dB, -3 dB, and -6 dB). The audio and visual features were combined 

using an early integration strategy. For audio-visual recognition, the relative importance of 

the two channels was altered by varying the weight of the audio and visual components in the 

distance metric of the dynamic time warping algorithm (5.2). The resultant error rates for 

the recognition experiments conducted at the various SNRs with different sound-to-vision 

weightings are shown in figure 6.12. 

Side View: Combination of sound and vision 
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Figure 6.12: Side View: Error rate variation on the test set as sound-to-vision weighting is 
varied. Addition of the visual information in the noise-free environment (solid line) does not provide 
any improvement in recognition performance. However, the incorporation of visual features does 
improve recognition performance in all three acoustically-degraded scenarios. Further, the combined 
audio-visual performance exceeds both the audio-only and visual-only performance in all cases. For 
example, at 0dB (dashed-dotted line), the error rate using only the acoustic data is 15.5% (far left). 
The error rate using only the visual data is 13.6% (far right), while combined audio-visual recognition 
results in an error rate of 5.5%. 

Addition of the visual information does not provide any improvement in recognition 
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performance in the noise-free environment. However, the incorporation of visual features 

does improve recognition performance in all three acoustically-degraded scenarios. Not 

surprisingly, the contribution of the visual information increases with the level of acoustic 

degradation. 

The results of this pilot experiment using the profile lip tracker are encouraging, as they 

have demonstrated that real-time lip tracking can be used to enhance speech recognition 

in adverse acoustic environments. However, from a speech recognition standpoint, frontal 

(or at least partially frontal) viewing is preferable to profile viewing [9], because in profile 

viewing, the tongue and teeth are often not visible. Furthermore, there may also be a 

loss of shape information in the lip contour itself, since its width is not directly observable 

in profile. For these reasons, additional experiments were conducted on a larger 40-word 

database using the frontal lip tracker (with lipstick). 

6.2.2    Recognition using the Frontal View 

Isolated-word recognition experiments using the DTW recognisers were conducted on a 40- 

word database consisting of numbers and commands that might be found in an interactive 

voice system controlling a car-phone, fax machine, computer, or other office equipment. 

The words, listed in table 6.4, were carefully chosen to ensure at least one example of each 

phoneme. Further, numerous similar-sounding words, such as "yes" and "less", "more" and 

"four", "no" and "show", "two" and "goto", were included to provide a challenging recog- 

nition environment.   Twenty repetitions of each word were recorded onto video tape and 

Forty Word Database 
Zero One Two Three Four Five Six Seven Eight Nine 

Faster Slower Up Down Right Left Little Big More Less 
On Off Start Stop Clear Reset Yes No Dial Hang-Up 
Ring- Cancel Next Previous Jump Goto Change Switch Show Void 

Table 6.4: A 40 word command-oriented database containing at least one example of each phoneme. 
Twenty repetitions of each word were recorded. 

partitioned into three sets. Two repetitions were used as exemplar patterns for matching, 

seven were used as a training set, and eleven as a test set. This resulted in a training set of 

280 words and a test set of 440 words. 

Raw visual and audio data were gathered simultaneously and in real-time (50 Hz) on a 

Sun IPX workstation with a Datacell S2200 framestore. The visual data consisted of the 

mouth outline represented as 13 (x, y) control points and the audio data 8-bit /i-law sampled 
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at 8 KHz. Acoustic recognition features consisted of 8 mel-scale filter-bank coefficients ac- 

quired at 50 frames/sec. Several different visual processing methods were examined in order 

to gain insight into which lip deformations were the most beneficial for speech recognition. 

All visual features resulted from the projection of the lip outline represented as a sequence 

of control points onto a sub-space spanned by a recognition basis. The three recognition 

bases investigated were the affine basis and two bases obtained from principal components 

analysis. 

6.2.3    Affine Basis 

The first recognition experiments were conducted with the visual features expressed in terms 

of affine deformations of the lip template. Artificial Gaussian noise was added to the audio 

signal, post-segmentation, until a desired signal-to-noise ratio (SNR) was reached. In these 

experiments SNRs of OdB (noise power = signal power), -3 dB and -6 dB were used. Addi- 

tion of the noise post-segmentation facilitated the audio-only recognition problem as word 

endpoint detection was accomplished without the need for complex thresholding algorithms. 

However, the HMM recognisers discussed in the next section attempted recognition without 

this knowledge of the word boundaries. 

The exemplar templates were created from the clean audio and visual data, so no explicit 

knowledge or assumptions were made about the noise. Although as a practical matter, 

the normalisation done during audio feature extraction partially compensated for some of 

the effects of the spectrally flat Gaussian noise and would probably not have a similar 

compensatory effect on other types of noise. 

Error rates using the affine basis for audio signals at various SNRs with different sound- 

to-vision weightings are shown in figure 6.13. Several points are evident from this graph. 

The first is the remarkable robustness to noise of the audio-only recogniser. This is most 

likely the result of the way the noise was added (post-segmentation) and the normalisation 

step done during feature extraction. Secondly, the audio-only recogniser performs better 

than the visual-only recogniser particularly at high signal-to-noise ratios (6% error rate ver- 

sus 52%). This merely reflects the higher information content in audio data with respect to 

speech recognition. Thirdly, incorporation of the vision information improved performance 

at all noise levels — providing the most benefit at high levels of degradation — a key finding 

of this research. It is this increase in recognition performance due to the incorporation of 

visual information, or incremental vision rate, that is a true measure of the added benefit 

of lip reading. 

A chart summarising the recognition performance, including the incremental vision rate, 
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Combination of sound and vision for the affine basis 
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Figure 6.13: Frontal View: Error rate variation on the test set as sound-to-vision weighting is 

varied. With a clean audio signal, vision is only marginally beneficial — improving the error rate by 

0.5%. However as the signal becomes more noisy, the contribution of vision is noticeably improved 

with a reduction in error rate from 12% to 7% for the 0 dB signal and from 11% to 9% for -3 dB. 

With the audio quality further degraded to -6 dB, the error rate drops from 27% to 16%. 
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for the audio-only, visual-only, and audio-visual systems with the acoustic data at various 

SNRs is shown in table 6.5.   It is evident that further degradation of the audio signal 

Error Rates using Affine Basis 
Audio 
test 

Visual 
test 

A-V 
test 

Inc Vision 
Rate 

Error Rate 
Reduction 

clean 6.0% 52.0% 5.5% 0.5% 8.3% 
OdB SNR 12.0% 52.0% 7.0% 5.0% 41.7% 
-3 dB SNR 16.6% 52.0% 9.3% 7.3% 44.0% 
-6 dB SNR 27.0% 52.0% 16.0% 11.0% 40.1% 

Table 6.5: Recognition performance of the 3 DTW recognisers at various acoustic noise levels. 
Incorporation of the visual information improves performance at all noise levels — providing the 
most benefit the further the degradation. 

would lead to a decrease in audio-only recognition performance and a further increase in 

the incremental vision rate, but the -3 dB signal-to-noise ratio will be used as a standard 

comparison point. 

6.2.4    Principal Component Bases 

Similar experiments to those conducted using the affine basis were accomplished using the 

bases derived from principal components analysis — the PC A basis and the PC A no X basis 

(section 6.1.2). The PCA basis comprised the first six principal axes of lip motion, while 

the PCA no X basis used the first six principal axes after removing the global horizontal 

motion. Only the first six components were used as they accounted for over 99% of the 

lip motion. The lip contour expressed as a set of control points was projected onto the 

sub-spaces spanned by these bases and the resultant vectors used as visual feature vectors. 

Representative lip deformations for these bases are shown in figures 6.4 and 6.6. 

The best error rates achieved using visual data expressed in each of the PCA bases 

are shown in table 6.6 on sound at -3 dB SNR. (The results from the recognition experi- 

ments with the affine basis are included as well for comparison.) All three bases provide a 

similar increase in recognition performance with the error rate of the acoustic-only recog- 

niser (16.6%) being nearly twice that of the audio-visual recognisers (9.3%-9.8%). These 

results demonstrate that there is useful recognition information contained in the lip outline, 

contrary to Bregler et al. [17, 19] who found the outline of the lip too coarse for accurate 

recognition. Furthermore, the comparable performance of the affine basis with respect to the 

derived bases suggests the possibility of developing a multi-speaker or speaker-independent 

recognition system with the visual features represented as affine transformations of the lip 
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Best Error Rates for each basis (Sound at -3 dB) 
Basis Audio 

train       test 
Visual 

train     test 
A-V 

train     test 
Inc Vision 

Rate 
Error Rate 
Reduction 

affine 13.9%    16.6% 44%     52% 8.2%    9.3% 7.3% 44.0% 
PCA 13.9%    16.6% 42%     51% 9.6%    9.3% 7.3% 44.0% 

PCA no X 13.9%    16.6% 41%     49% 9.6%    9.8% 6.8% 41.0% 

Table 6.6: Best error rates for the three recognition bases on sound at -3 dB SNR. The error rate of 
the acoustic-only recogniser (16.6%) is nearly twice that of the audio-visual recognisers (9.3%~9.8%) 
— that is, incorporation of the visual shape parameters results in a 44% reduction in error rate. 
Further, all three bases provide a similar increase in recognition performance. This is encouraging 
as the geometrically derived affine basis presents an opportunity for speaker-independent recognition, 
while the PCA bases are particular to a given speaker. 

template. 

6.2.5    Evaluating Visual Shape Components 

Having determined the utility of lip information, the potential recognition benefit from 

only a single vision component was examined. It was hoped that a coherent picture would 

result yielding the lip movements most beneficial for speech recognition. Table 6.7 shows 

the recognition performance achieved using only a single vision component from each of the 

bases. Error rates are shown for the components used individually and in concert with the 

acoustic features. The tests, which were conducted on speech at a SNR of -3 dB, present 

several messages. 

One can see that the first component of the PCA and PCA no X bases, which represents 

movement of the lower jaw, contributes substantially to recognition performance. This 

movement is expressed in the affine basis as a combination of Y scale and Y translation, 

and it was expected that the Y scale component would afford the better results as the Y 

translation component can be corrupted by head movements. Surprisingly, it was the Y 

translation component that yielded the higher incremental vision rate. This may merely 

reflect the fact that the opening and closing of the mouth can be thought of as a change 

in the displacement of the lip centroid (Y translation). PCA component 4 and PCA no X 

component 3, which represent the degree of curling of the lip corners, similarly contribute 

to recognition performance. This movement represents a non-affine deformation and hence 

there is not a corresponding affine deformation against which to compare it; however, the Y 

shear (rotation) deformation exhibits a degree of lip curling, potentially accounting for its 

surprisingly good performance. The last movements contributing appreciably to recognition 

performance are the affine X scale and PCA component 5.  While it would be premature 
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Best Error Rates using only a single vision component 
Basis 

component 
Vision only 

training     test 
A-V (Sound at -3 dB) 
training           test 

Inc Vision 
Rate 

Full affine 44%       52% 8.2%            9.3% 7.3% 

X Trans 93%       93% 14%              17% 0.0% 
Y Trans 76%       81% 13%              14% 3.0% 

X Scale 59%       63% 9%               12% 5.0% 

Y Scale 75%       79% 14%              16% 0.7% 

Y Shear 77%       86% 14%             13% 3.2% 

X Shear 86%       90% 14%             17% 0.0% 

Full PCA 42%       51% 9.6% 9.3% 7.3% 

70%        74% 11% 12% 1.6% 

91%       91% 14% 17% 0.0% 

82%       88% 14% 17% 0.0% 

70%       75% 9% 11% 5.2% 

73%       82% 12% 12% 4.6% 

}%       94% 14% 17% 0.0% 

PCA no X 41%       49% 9.6% 6.8% 

69%       73% 11% 12% 4.6% 

82%       89% 14% 17% 0.0% 

67%       71% 9% 12% 5.0% 

76%       84% 14% 17% 0.0% 

84%       82% 14% 15% 1.3% 

82% 90% 14% 17% 0.0% 

Table 6.7: Results of recognition performance using only one vision component from each of the 
3 bases. Recognition using sound alone at -3 dB was 13.9% for the training set and 16.6% for the 
test set. Full affine, Full PCA, and PCA no X refer to overall recognition performance using all 
six components of each basis. The lip deformations represented by PCA components 1,4,5, PCA no 
X components 1,3, and affine components Y Trans, X Scale, and Y Shear appear to contribute the 
most to recognition performance implying that the recognition information of the lip outline can be 
expressed with just a few shape parameters. 
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to draw any strong conclusions concerning their potential use in recognition, since they 

account for less than 2% of the variance present in lip movements, we saw in section 6.1.4 

that the X scale component (horizontal elongation of the mouth) was repeatable across 

multiple repetitions of the same word, and it is possible that such subtle lip movements 

may possess important recognition information. 

6.2.6    Conclusions 

Speaker-dependent, isolated-word recognition experiments have demonstrated that shape 

parameters obtained from accurately tracked lip contours provide a rich source of informa- 

tion for audio-visual speech recognition. The incorporation of this visual data into acoustic 

recognisers enables robust speech recognition in the presence of high levels of interfering 

noise. In addition, the comparable performance of the affine basis with respect to the 

PCA bases suggests the possibility of developing a multi-speaker or speaker-independent 

recognition system with the visual features represented as affine transformations of the lip 

template. Further, an interesting finding of the recognition experiments using individual 

shape components was that, although typically 6-8 components are necessary for accurate 

tracking, the recognition information tends to be concentrated in only three shape parame- 

ters. These deformations correspond to the degree of mouth opening, the amount of curling 

of the lip corners, and the horizontal elongation of the mouth, and can be roughly equated 

to 'ah', 'ee', and (vaguely) 'oh'. 

The experiments reported thus far have used dynamic time warping as the recognition 

algorithm; however, given the state of the art in speech analysis [111], it is natural to try 

Hidden Markov Model recognition. The next section details experiments using the HMM- 

based recognisers. 

6.3    Hidden Markov Model Recognition 

The purpose of the HMM recognition experiments were three-fold. First, it was hoped to 

confirm the findings of the DTW experiments, that is, that real-time lip tracking can pro- 

vide valuable information to audio-visual speech recognisers, using state-of-the-art speech 

recognition methods. Secondly, the HMM-based recognisers serve as a bridge to the more 

complex task of multi-speaker, continuous speech recognition, which could naturally follow 

from this research. Lastly, the recognition experiments provide insight into some of the 

practical problems facing commercial audio-visual recognition systems, where unknown, 

varying levels of noise may be present, and where the word boundaries are not known a 
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priori and must be determined by the recogniser. Surprisingly, since much of the audio- 

visual recognition work uses artificially added noise (including the work presented here), as 

opposed to noisy speech gathered in a natural setting, like a rowdy pub or a noisy office, it 

is common for researchers to segment the speech by hand or use the clean acoustic data for 

segmentation, and hence the endpoint detection problem is often not addressed. 

Towards these ends, the HMM recognisers were developed and operated as connected- 

word recognisers, looking for "sequences" of words in the following form: silence-word- 

silence. This enabled investigation of the difficult endpoint detection problem, while still 

maintaining consistency with current state-of-the art continuous-speech recognisers, where 

continuous speech is recognised as a connected sequence of phonemes or tri-phones. In this 

research, whole words were used as the recognition unit instead of phonemes or tri-phones 

which is the more common practice. This was done primarily for practical reasons (a lack 

of facilities for, and expertise in, segmenting and labelling audio-visual data). However, 

the use of whole words had a practical advantage in that feature sequences were about 30 

frames long, instead of the 7 or 8 that would have resulted with phoneme/viseme decom- 

position. This permitted easy capture of distinctive coarticulation effects. Prom a recogni- 

tion standpoint, the theory and implementation of connected-word and connected-phoneme 

recognition are identical, and thus, the system is directly extensible to continuous-speech 

applications. 

The recognition experiments conducted using the HMM recognisers were intended to 

investigate the potential problem areas of connected-speech audio-visual recognition. Thus, 

it was known beforehand that direct comparison of the HMM and DTW systems would 

be difficult. Specifically, although both recognition systems were intended to illustrate the 

benefit of incorporating lip shape information into acoustic speech recognisers, the HMM 

system was forced to determine word boundaries (end points), whereas the DTW was 

provided that information. 

6.3.1    Ten Word Database 

As a starting point, audio-only (AO), visual-only (VO), and combined audio-visual (AV) 

recognition experiments were conducted on a 10 word database consisting of people's names 

(table 6.8). Thirteen repetitions of each word were recorded with 9 used for training and 

4 for testing, making the training set 90 words and the test set 40 words. It was known 

that the small size of this database might preclude making any broad conclusions about 

vision's contribution to speech recognition; nevertheless, the database serves as a vehicle 

for efficiently testing the HMM recognition platform and identifying areas requiring further 
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Ten Word Database 
Alexis    Barney    Charlie    David    Edward    Frederick    Gerald    Harriet    Ian    John 

Table 6.8: A 10 word database consisting of people's names used for preliminary tests into the 
recognition potential of lip contours in speech recognition applications. Thirteen repetitions of each 
word were recorded. 

study. 

6.3.2    Affine Basis 

The HMM model set consisted of 11 models — one for each of the 10 words in the database 

and an eleventh model corresponding to the no-speech condition (silence). Six-state, left-to- 

right HMMs, which allowed transitions only to successive states or back to the same state, 

were used for each of the word models. A single-state HMM was used for the silence model. 

Observation densities for each of the states in the models were represented by multivariate 

Gaussians with diagonal covariance matrices. Trials were conducted using multinomial 

distributions (mixtures of Gaussians) and a single Gaussian with a full covariance matrix, 

although it was determined that the increased number of free parameters resulted in the 

over learning of the training data. Eight mel-scale filter bank coefficients were used as audio 

features, while the visual feature vectors corresponded to affine deformations of the outer 

lip contour. Composite audio-visual feature vectors were obtained by concatenating the 8 

audio and 6 visual features. 

Recognition results for the audio-only, visual-only, and audio-visual systems on clean and 

noisy (10 dB SNR) speech using the affine basis are shown in table 6.9. In clean conditions, 

Error Rates using Affine Basis 
Audio 

training      test 
Visual 

training      test 
A-V 

training      test 
Inc Vision 

Rate 
clean 0.0%        0.0% 2.2%       15.0% 0.0%        0.0% — 

10 dB SNR 40.0% 2.2%       15.0% 23.1% 16.9% 

Table 6.9: Overall results for the audio-only, visual-only, and audio-visual HMM recognisers on 
clean and noisy speech using the affine basis. The models were trained using clean audio and visual 
data and thus assumed no explicit or implicit knowledge of the noise. The error-free performance 
on the clean acoustic data can be attributed to the small size of the database. The 23.1% error 
rate attained on the noisy audio-visual data, despite being an improvement on the acoustic-only 
recognition (40.0%), was higher than was expected and warranted further investigation. 

the error-free performance of the audio-only and audio-visual recognisers was not surprising 

given the small size of the database; however, the relatively poor recognition performance 
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of the audio-only recogniser (40.0% error rate) and the combined audio-visual recogniser 

(23.1% error rate) on the noisy speech data was higher than expected. In particular, the 

error rate of the combined audio-visual recogniser, although better than that attained using 

only the audio data, was worse than that achieved using the visual data alone (15.0%). 

A possible explanation of these results can be found in the Viterbi state alignments for 

correctly and incorrectly identified utterances. Figures 6.14 and 6.15 show the Viterbi state 

Figure 6.14: Viterbi state alignment for audio waveform of "Alexis" recognised using audio- 
only models. The first and eighth states (dotted lines) represent the transitions from silence to the 
word and from the word back to silence. Note that the state transition boundaries correspond to 
acoustically identifiable phases of the utterance. 

alignment on the speech waveform and mel-scale filter banks using the audio-only trained 

models for a correctly identified "Alexis". One can see that the recogniser has successfully 

partitioned the utterance into 'silence' (state 1), 'A-le' (states 2-4), 'x' (state 5), 'i' (state 

6), 's' (state 7), and 'silence' (state 8). Similar plots of the affine data using the visual-only 

trained models are shown in figure 6.16. It is difficult to identify any specific transition 

regions in the vision signal other than noting that that the phonemes /K/S/IH/S/ 

representing 'xis' have been grouped into a single state (6) corresponding to frames 21-41. 

This was initially unexpected, but upon further inspection deemed entirely appropriate. 

After positioning the lips for the 'x', the 'is' is produced primarily by modulating the air 

flow with subtle movements of the tongue. The bottom lip moves slightly downward in the 

transition from 'x' to 'i' (frames 26-30), but essentially the lips remain stationary during the 

'xis' articulation. As should have been anticipated, the Baum-Welch training has correctly 

grouped the lip movements corresponding to the four phonemes into a single long-duration 

state. From a word recognition viewpoint, this should represent a distinctive characteristic 

of the "Alexis" word model. However, potentially strong visual coarticulation effects, such as 

observed here, may pose a problem for sub-word (phoneme/viseme) recognition. A recent 
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Figure 6.15: Viterbi state alignment of the mel-scale filter banks for clean speech "Alexis" recog- 
nised using audio-only models. The first and eighth states (dotted lines) represent the transitions 
from, silence to the word and from the word back to silence. Note how the sequence has been par- 
titioned into regions of relatively constant frequency magnitude. For instance, the low energy 'x' 
(frames 20-26) is readily identifiable. 
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Figure 6.16: Viterbi state alignment of the Affine components for "Alexis" recognised using 

visual-only models. The first and eighth states (dotted lines) represent the transitions from si- 

lence to the word and from the word back to silence. Note that the phonemes /K/S/IH/S 

/ representing 'xis' have been grouped into a single state (6) corresponding to frames 21-41- This 

was initially unexpected, but after further analysis deemed entirely appropriate, as after the initial 

forming of the 'x', the lips remain relatively stationary throughout the 'is'. 
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audio-visual integration strategy proposed by Tomlinson et al. [133] using cross-product 

HMMs, which allows for asynchrony between the audio and visual components, may be 

able to compensate for these effects. 

Returning to the audio-only recognition results of table 6.9, the high (40%) error-rate 

on the 10 dB SNR speech using only the audio-only models was not unexpected as the 

HMMs were trained with clean speech and then tested on noisy speech; that is, there was 

a mismatch between the training and testing conditions. In effect, the word models were 

repetitively trained with filter-bank coefficients clustered about a mean corresponding to 

clean speech, which resulted in models with corresponding mean vectors JJL and small vari- 

ances S. They were then presented a noisy signal with a different mean and a large variance 

to recognise. Not surprisingly, the result is poor recognition performance. One method for 

dealing with these mismatched conditions is to adjust the word models at recognition time 

by incorporating noise models appropriate to the perceived level of noise [52, 53]. 

A more disturbing result was the relatively poor performance (23.1% error rate) of 

the combined audio-visual recognition system, especially in light of the 15.0% error rate 

achieved using only the visual data. Examination of the Viterbi state alignment obtained 

using the learnt audio-only, visual-only, and audio-visual models overlayed on the audio and 

visual signals provides one explanation. This is illustrated in figures 6.17 and 6.18. 

In figure 6.17, note how the state alignment is identical for the audio-only and audio- 

visual trained models. This suggests that the audio-visual models may be tuned more to 

the acoustic data than the visual data, which results in a Viterbi alignment that closely 

follows the acoustic transitions in the speech. When both the acoustic and visual signals are 

noise-free, the higher linguistic information content of the acoustic channel should naturally 

result in models which reflect this reality; however, when the acoustic channel is potentially 

noisy and the visual signal essentially noise-free, training on clean audio-visual data and 

then testing on noisy audio and clean visual data results in less than optimal performance. 

Figure 6.18 illustrates this using clean and noisy (10dB SNR) renditions of "Edward". Ed- 

ward was correctly identified using the AO, VO, and AV models when no artificial noise was 

added. However, when the audio signal was corrupted by additive noise, it was incorrectly 

recognised as "David" with state alignment shown in figure 6.18c. Note how the unmodelled 

acoustic noise has rendered the audio-only recogniser ineffective at even locating the start 

of the word (frame 5). When the clean visual signals are appended to the noisy acoustic 

features, the combined audio-visual recogniser is still unable to provide correct boundary 

identification (figure 6.18d), despite having been correctly recognised as "Edward" using 

only the visual data.   Essentially, the poor match between the noisy audio data and the 
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Figure 6.17: Viterbi state alignment for clean speech waveforms of Alexis recognised using audio- 

only, visual-only, and combined audio-visual data. Note how the audio-only (a) and combined audio- 
visual (c) segmentations are identical. This suggests that the audio-visual models may be tuned more 

to the acoustic data than the visual data. When the acoustic signal is noise-free, such learning is 

appropriate; however, when noisy audio-visual speech is to be recognised using HMMs trained on 

clean speech, the performance is less than optimal (see figure 6.18). 
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(a) Audio-Visual (clean) 
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(c) Audio-Only (noisy) 
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Figure 6.18: Unmodelled noise in the acoustic signal can result in misidentification of the audio- 

visual boundaries despite the presence of the visual signal. Shown are the Viterbi state alignments 

for correctly recognised clean speech, (a) and (b), and incorrectly recognised noisy speech, (c) and 

(d), of "Edward". The audio-only and audio-visual models were trained using noise-free acoustic 
conditions. The presence of unmodelled acoustic noise results in misidentification of "Edward" 

using the acoustic models (c). Note how even the start of the word (frame 5) is incorrectly detected 

as frame 1. Compare with (a) where the start of the speech is correctly identified. Incorporation of 

the visual signal is insufficient to overcome the effects of the unmodelled noise (d), for once again 

the start of the word is inaccurately identified and the result is incorrect audio-visual recognition. 
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learnt audio models has pulled down the visual-only recognition. 

A simple partial fix to this problem was found by observing that many of the recognition 

errors of the AO and AV recognisers were due to their inability to correctly identify the 

start of the words (state 1, frames 0-5 in figure 6.18). This was due to the recognisers 

being unable to recognise the (noisy) period of "silence" prior to the start of the word. To 

compensate for these segmentation errors, a new model, representing "noisy silence", which 

was trained on the background noise, was introduced into the model set. The result was a 

reduction in the number of segmentation errors, and an increase in the overall audio-only 

and audio-visual recognition rates. 

The benefit provided by the addition of the noisy-silence model can be seen in figure 6.19 

where the sequences of figure 6.18 are recognised using the increased model set. Although 

recognition of "Edward" using the audio-only models was still incorrect (figure 6.19c), the 

start of the word was correctly identified. The improved boundary detection provided by 

the noisy-silence model enables the incorporation of the visual signal to provide the sought 

after increase in recognition performance. This is illustrated in figure 6.19d where the 

audio-visual models result in correct recognition and an appropriate state segmentation. 

6.3.3    Noise Compensation 

While the use of the noisy-silence model reduced the number of segmentation errors due to 

misidentification of the word boundaries and resulted in improved audio-visual recognition, 

it represents only the first step in tackling the more fundamental problem of how to appro- 

priately deal with the presence of an unknown level of noise in the acoustic channel. The 

most straightforward approach, which does not assume any explicit knowledge of the noise, 

is to train the combined audio-visual models with speech utterances at various signal-to- 

noise ratios to represent the uncertain nature of the noise level in the audio signal. This 

should lead to relatively large variances in the speech feature vectors compared to those 

of the clean visual signal. For some applications, there may not be any a priori knowl- 

edge of the noise type or level, and hence this strategy may more closely approximate the 

real-world speech recognition problem; however, this approach ultimately begs the ques- 

tion "How many different types of noise (artificial Gaussian, crosstalk, ringing telephones, 

...) and noise levels (clean, 10dB, OdB, ...) should be included in the training set?" 

The answer to that question depends primarily on the expected environment of the given 

application and, in any case, requires a large amount of training data. 

Recently, several strategies for dealing with the effects of degraded speech have been 

proposed [21, 74, 53]. These noise compensation approaches vary in the degree of assumed 



CHAPTER 6.   AUDIO-VISUAL SPEECH RECOGNITION 109 

sdward   -4- wsivöf c 

O 

(a) Audio-Visual (clean) 

edw sard   -*   «affi -ie   cjon r>P oner it   ^ 

T /""''     ^S*s^                                     =    0 -* S e "7" ■S 

1 . s ~ 
-1 " 

o.s " 
o " 

o.s " 
„_ -1 _ 

T   -S ~ 

(b) Visual-Only (clean) 

adward   -4-    1 Od 

(c) Audio-Only (noisy silence) 

ad\A/ard   -*    i odB   r» 

(d) Audio-Visual (noisy silence) 

Figure 6.19: Use of a "noisy-silence" model to limit boundary detection errors enables the in- 
corporation of the visual data to provide correct audio-visual recognition. "Edward" was incorrectly 
recognised using the audio-only models (c), although the start of the word was correctly identified 
(frame 5). Compare this with the correctly segmented clean signal (a). Incorporation of the vi- 
sual signal results in the desired effect as the noisy "Edward" (d) is correctly recognised with an 
appropriate state segmentation. 
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knowledge of the noise level and type, and the stage (model building or recognition) at 

which this knowledge is utilised. The three primary compensation strategies are briefly 

explained below and more detailed reviews can be found in [103, 137]. The first approach 

uses filtering or noise masking or cancellation techniques on the noisy speech prior to feature 

extraction [80, 21] . Essentially noise tracking is used to determine the level of the noise and 

then an estimate of the speech spectra is obtained by subtracting the estimate of the noise 

spectra from that of the noisy speech. The second approach attempts to use novel speech 

features which are robust in the presence of noise [65, 137]. One technique, based on the 

premise that recognition features which explicitly encode the temporal dynamics of speech 

are inherently more robust to noise, utilises 2-dimensional (cepstral-time) feature matrices 

to encode the short-time variations of the speech cepstral coefficients [136, 137]. The third 

main noise compensation strategy dynamically adapts the speech models during recognition 

based on the estimated level of noise. This parallel model combination approach [135, 52, 53] 

uses separately trained speech and noise models which are married at recognition time under 

the assumption that the speech and noise are additive in the linear power domain. 

Another strategy for dealing with the complicating effects of noise-degraded speech, 

while not a noise compensation technique per se, is to use a noise tracker to estimate the 

level of the noise and then use audio-visual models for recognition that were trained at the 

appropriate noise level. However, it may be impractical to require training of the HMMs at 

every possible noise level for all of the likely noise sources. Further, acoustic noise in natural 

environments, such as an office or laboratory, is likely to be non-stationary and occur in short 

bursts, such as a co-worker initiating a conversation or a telephone that occasionally rings. 

Accordingly, the recogniser would need to be able to dynamically switch recognition models 

with the perceived changes in noise level. Despite these practical problems, training directly 

on the noisy speech does have several distinct theoretical advantages. First, it enables the 

learning algorithm to generalise over the linguistically relevant audio-visual information, 

resulting in optimal information extraction at a given noise level. Secondly, it eliminates 

the difficulties associated with a mismatch in the training and testing conditions which may 

lead to unexpected or less than optimal results, as was illustrated earlier. Lastly, acoustic 

recognition performance attained from training and testing in like conditions represents 

an upper bound for acoustic recognition performance, that might be attainable with a 

highly tuned, noise-compensated, acoustic speech recogniser. Thus, any gains provided by 

incorporation of the visual information into a noise-trained acoustic recogniser, represents 

the minimum contribution that can be attributed to the visual data. 

A final recognition experiment was conducted on the 10 dB SNR speech where the 
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audio-only and audio-visual speech were trained using the noisy speech. The results of this 

experiment, as well as the other two recognition experiments where no noise compensation 

was used (table 6.9) and where a noisy-silence model was used (figure 6.19) are shown in 

table 6.10. Although the type of noise compensation method employed resulted in a fairly 

substantial change in the final audio-visual recognition error rates (0.0%-23.1% for this 

database) and the corresponding incremental vision rates (2.5%-16.9%), in all cases, the 

incorporation of visual shape information resulted in improved recognition performance. 

Error Rates using various noise compensation techniques 
noise 

compensation 
Audio 

training      test 
Visual 

training      test 
A-V 

training      test 
Inc Vision 

Rate 

none 40.0% 2.2%       15.0% 23.1% 16.9% 

noisy silence 23.1% 2.2%       15.0% 10.0% 13.1% 
known noise level 0.0%        2.5% 2.2%       15.0% 0.0%        0.0% 2.5% 

Table 6.10: Error Rates using various noise compensation techniques. The type of noise compen- 
sation method employed can result in a fairly substantial change in the final audio-visual recognition 
error rate and the corresponding incremental vision rate. In the first experiment, no noise compen- 
sation was employed. Although the visual information substantially decreases the error rate from 
40.0% down to 23.1%, the lack of noise compensation results in an unacceptably high error rate. 
At the opposite end of the spectrum,, when the noise level is assumed known, the visual information 
reduces the error rate by 2.5% down to error-free performance. An intermediate approach, which 
utilises models at several different noise levels to represent the period of "silence" separating words, 
but no noise compensation for the word models themselves, results in slightly more than a halving of 
the error rate (23.1% to 10.0%). Despite differences in the absolute error rates, the incorporation 
of the visual information has resulted in improved recognition accuracy in all situations. 

The acoustic recognition of speech in adverse environments and the development of 

novel noise compensation strategies remains an active area of research, which is receiving 

increased attention [96, 53, 137]. As demonstrated above, precise quantification of the 

contribution afforded by the visual channel can be difficult as error rates are affected by the 

noise compensation strategy used. Thus, since training and testing on speech at the same 

noise level represents an upper bound on the acoustic recognition performance, subsequent 

recognition experiments were conducted under these conditions. Recognition results on the 

10-word names database using matched training and testing conditions at various acoustic 

noise levels are shown in table 6.11. Although the resultant audio-visual error rates are 

better than one might expect to achieve using a more natural noise setting, the added 

benefit afforded by the visual signal is clear. 
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Error Rat es using known noise level 
Audio 

training     test 
Visual 

training      test 
A-V 

training     test 
Inc Vision 

Rate 

10 dB SNR 0.0%       2.5% 2.2%       15.0% 0.0%       0.0% 2.5% 

-3 dB SNR 0.0%       5.0% 2.2%       15.0% 0.0%       2.5% 2.5% 

-6 dB SNR 2.2%       7.5% 2.2%       15.0% 0.0%       5.0% 2.5% 

Table 6.11: Matched training and testing conditions results in low error rates for severely degraded 

speech. Despite the high acoustic recognition rates, incorporation of the visual information provides 

improved performance. 

6.3.4    Forty Word Database 

The recognition experiments using the 10-word database validated the HMM recognition 

platform and illustrated the consequences which could be attributed to the use (or lack 

of use) of noise compensation techniques on the Viterbi state alignment. However, it still 

remains to confirm the findings of the DTW recognition experiments on a larger database 

using the more advanced, connected-word, HMM recognisers. 

Error Rates using Affine Basis 
Audio 

train       test 
Visual 

train       test 
A-V 

train      test 
Inc Vision 

Rate 
Error Rate 
Reduction 

clean 0.0%       1.3% 13.0%    33.7% 0.0%     1.3% 0.0% 0.0% 
-3 dB SNR 8.4%     11.7% 13.0%    33.7% 3.2%     8.7% 3.0% 25.6% 

-6 dB SNR 16.2%    24.6% 13.0%    33.7% 5.0%    10.0% 14.6% 59.4% 

Table 6.12: Recognition results for the HMM recognisers on clean and noisy speech using the affine 

basis. Incorporation of the visual information enables robust recognition of degraded speech. Further, 

the utilisation of parameter uncertainty inherent in HMM recognition provides increased recognition 

accuracy when compared to the recognition using DTW (cf. table 6.5). 

Error Rates using PCA Basis 
Audio 

train       test 
Visual 

train       test 
A-V 

train      test 
Inc Vision 

Rate 
Error Rate 
Reduction 

clean 0.0%      1.3% 10.5%    25.0% 0.0%     1.3% 0.0% 0.0% 

-3 dB SNR 8.4%     11.7% 10.5%    25.0% 3.2%     7.9% 3.8% 32.5% 

-6 dB SNR 16.2%    24.6% 10.5%    25.0% 4.6%    10.8% 13.8% 56.1% 

Table 6.13: Recognition results for the HMM recognisers on clean and noisy speech using the PCA 

basis. Again, incorporation of the visual information enables robust recognition of degraded speech. 

The error rates using the PCA recognition basis are very similar to those attained using the affine 

basis (table 6.12). 

Recognition experiments were conducted on the 40-word database (table 6.4) used in 
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the DTW recognition experiments (section 6.2). Fourteen repetitions of each word were 

used for training, and 6 for testing, resulting in a training set of 560 words and a test set 

of 240 words. Error rates attained using the affine and PCA recognition bases are shown 

in tables 6.12 and 6.13, respectively. The results re-affirm the DTW findings that visual 

shape parameters can supplement acoustic speech recognisers, enabling robust recognition 

in degraded acoustic environments. Additionally, the error rates achieved using the HMM 

recognisers were better, across the board, when compared to results attained using the DTW 

recognisers (tables 6.5 and 6.6). The most substantial gain was evident in the visual-only 

recognition (52% vs. 34% for the affine basis and 51% vs. 25% for the PCA basis). The 

principal advantage that the HMM recogniser has over its DTW counterpart is that the 

variability, and hence uncertainty, in the visual components is modelled and then utilised 

in the pattern matching. The result is a recogniser that is better able to capture the 

linguistically informative traits of the visual features. 

6.4    Conclusions 

Analysis of natural, continuous speech acquired using a dynamic contour lip tracker suggests 

that half of the lip movement present in speech is due to the opening of the mouth. Recogni- 

tion experiments confirm that this motion does indeed serve as a rich source of information 

for audio-visual speech recognition. Further experiments suggest that the width of the lip 

and the degree of curling of the lip corners also provide useful linguistic information. These 

three deformations roughly correspond to 'ah', 'ee', and 'oh'. 

Despite doubts expressed by other researchers [17, 19], recognition experiments using 

dynamic time warping and Hidden Markov Model-based recognisers demonstrate that shape 

parameters obtained from accurately tracked lip contours can be used to make speech recog- 

nition robust to high levels of interfering noise. In noisy acoustic conditions, error rate reduc- 

tions up to 44% are realised. Further, although the experiments have been conducted on only 

a single speaker, the comparative performance of the affine basis with the more specialised 

PCA bases suggests the possibility of developing a multi-speaker or speaker-independent 

recognition system with the visual features represented as affine transformations of the lip 

template. 



Colour Lip Tracking 

In chapter 4 it was shown that the dynamic contour tracking framework permits accurate, 

real-time tracking of the outer lip contour. The recognition experiments of chapter 6 verified 

that shape information extracted from the outer lip contour provides a rich source of infor- 

mation for audio-visual speech recognition. Further tracking experiments on unadorned lips 

showed that more powerful feature detection methods could be employed to attain accurate 

tracking of unadorned lips. In particular, it was shown that a data-driven approach based 

on statistical models of the grey-level intensity profiles, together with a Mahalanobis dis- 

tance measure, could be used to successfully identify the lip boundary in grey-level images 

(section 4.5). Lip tracking was stable and accurate, although the analysis suggested that 

tracking performance was bounded by the limited information content in grey-level images 

of the mouth region. Here alternate feature detection methods are presented which take 

advantage of the differing pigmentation of the skin and lips. Discriminant analysis and 

Bayesian classification on colour images of the face are used to identify features that corre- 

spond to the boundary between the lips and the surrounding skin and mouth. Utilisation 

of these feature detectors results in accurate, outer lip contour tracking which is robust to 

variations in lighting as experienced in an uncontrolled office environment. Further, mod- 

elling of the inner mouth colour intensities enables tracking of both the inner and outer lip 

contours. 
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7.1 Facial Colour 

The perceived colour of an object is a linear combination of the colour of the light reflected 

from its surface (specular reflection) and the colour of the light reflected from its body 

(diffuse reflection). In the case of facial skin, the colour is primarily determined by the 

amount of melanin in the skin and the blood beneath the epidermal layer. As such, it is 

usually found in a restricted range of hues [119]. In fact, the variation in skin colour between 

members of a given race is small enough that it has been effectively used to identify people in 

a wide variety of images [50, 79]. Colour imagery has also proven effective for locating faces 

and initialising face trackers [45, 127]. Typically the colour information is used to provide 

coarse identification of regions of the face and then more sophisticated image processing 

is used to fine tune the positioning of facial features. Here a different approach is taken. 

Pattern classification techniques are applied to colour images of the face to accurately 

pinpoint the lip boundaries, overcoming the limitations inherent in greyscale images. 

7.2 Hue Discrimination 

Perceptually, when we humans think of the colour of objects, we typically think in terms of 

hue, saturation, and value (or intensity). The hue of an object is a polar angle corresponding 

to the nearest "pure" colour, where red, green, and blue are traditionally given values 0°, 

120°, and 240°, respectively. The perceptual notion of hue can be thought of as the dominant 

wavelength present in the observed light. Saturation refers to how tinted a colour is, that is, 

the ratio of pure colour to white light. For example, red is highly saturated, pink relatively 

unsaturated, and grey completely unsaturated. Finally, value corresponds to the achromatic 

notion of intensity and represents the largest of the red, green, and blue channels. Since 

skin colour typically takes on only a restricted range of hues, representing colour images of 

the face in HSV (hue, saturation, value) space has a certain appeal. Indeed, Fleck et al. [50] 

use hue-based discrimination for identifying skin coloured regions within images. Despite 

its intuitive appeal, problems exist with the HSV representation. Specifically, at low values 

of saturation, the hue can vary widely for seemingly similarly coloured regions. Further, 

when the saturation falls to zero (white or gray), the hue is undefined. Finally, there is 

an additional problem in that being angular, hue is discontinuous at 360° (0°). For these 

reasons, when using the HSV representation, it is not uncommon for researchers to use 

hand-set heuristics to deal with these limitations. For instance, Fleck et al. [50] adjust the 

range of acceptable hue values in their skin classifier as a (presumably non-linear) function 

of saturation. Similarly, Vogt [139] uses an empirically determined non-linear 2D LUT (look 
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up table) as a function of hue and saturation to segment lip regions within colour images 

of the face. 

Although there may be specific problems with the HSV representation, the successful use 

of colour to provide coarse localisation of people and faces in images suggests that there is 

sufficient information in colour images of the face to identify the lip-skin boundary. Rather 

than devising methods for overcoming the inherent limitations of the HSV representation, 

it was hoped that a more automatic method for identifying the lip boundary in colour 

images could be found. Fortunately, as was illustrated in earlier chapters, because of the 

shape and motion modelling inherent in the Kaiman filter framework, it is not necessary 

to achieve error-free classification or segmentation in order to achieve accurate tracking, 

rather it is only necessary to find features that mostly correspond to the boundary. It was 

hoped that these shape and motion models could replace the hand-tuning needed by the 

other researchers. 

7.3    Colour Image Feature Detection 

Surprisingly, despite our intuitive feel for a colour "edge", the concept is not well defined. 

Edge detection in grey-level images has been much researched [91, 28, 41]; however, little 

formal work has been done on colour edge detection. Nevatia [102] proposed a method 

where separate ID edge detectors were run over each of the three colour channels. Colour 

edges were then identified as areas producing responses in multiple channels. 

An alternate approach is to formulate the identification of the boundary between objects, 

or within an object, as a pattern classification problem [36]. When the object to be tracked 

is significantly different in colour from its surround, such as identifying oranges for robotic 

harvesting [109] or distinguishing cabbages from soil for autonomous robot guidance [140], 

fast, simple, discrimination methods can be employed. For example, Wildenberg [140] used 

the fact that cabbages always appear green, while soil tends to have a reddish brown tint 

in nearly all lighting conditions, to formulate a simple red versus green test to separate 

cabbages from their surrounding soil. 

Accurate demarcation of the lip-skin boundary is a significantly harder problem, princi- 

pally because the lips and skin, although different, are very similar in colour. Further, there 

is rarely an abrupt change in colour from facial skin to lips; rather, the transition is often 

more gradual and it is quite common for individuals to possess a ragged outer lip boundary 

as opposed to a nice smooth one. The challenge is how best to make efficient use of the 

additional discriminating potential of colour. 
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7.4    Feature Identification via Bayesian Classification 

Identification of the boundary between the lips and their surround can be formulated as a 

pattern classification problem. Specifically, it is desired to classify colour pixels as to whether 

it is more likely that they came from the lips or the neighbouring regions (eg. surrounding 

facial skin, inner mouth region). In a Bayesian framework, a colour pixel, x = (r,g,b)T, 

represented as a vector of red, green, and blue intensities, is classified as belonging to the 

lips if its a posteriori probability P(lips|x) is greater than the corresponding a posteriori 

probability for the surrounding skin, P(skin|x), and vice versa if 

P(skin|x) > P(lips|x). 

If the class-conditional probability densities p(x|wj), where LOJ represents the class from 

which the pixel originated (eg. wi = skin, w2 = lips), are known, or can be learnt from 

training images, then Bayes Rule 

= p(x|^)P(o^ (7_1} 
J-   ■ p[x 

where p(x.) is given by 
2 

can be used to compute the a posteriori probabilities. 

Standard parametric or non-parametric techniques can be used to learn the underlying 

class-conditional densities p(x|cjj). However, one must bear in mind that the a posteriori 

probabilities P(u)j\x) are evaluated for each pixel, along each search line, at each time step. 

Thus, in order for this approach to be usable in practical (real-time) systems, a premium is 

placed on the time required to discriminate between the classes. Towards this end, Fisher's 

linear discriminant analysis [46] is used to determine the boundary between the lips and 

facial skin, that is, identify the outer lip contour. 

7.5    Fisher's Linear Discriminant 

It was desired to develop a feature detection method that could utilise the full discriminating 

power of the colour images while providing robustness to changes in illumination without 

incurring excessive computational overhead. Instead of using hue directly and devising 

methods for overcoming its inherent limitations, a more general approach was sought. A 

novel application of Fisher's linear discriminant analysis was used for this purpose. 
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Rather than assuming a particular form for the underlying class-conditional densities and 

estimating the distribution parameters from training images, Fisher's linear discriminant 

analysis is used to project the colour vector data down to a scalar quantity. A major 

advantage of this approach is that the discriminating power of the colour data can be 

exploited, while still providing a degree of invariance to changes in illumination. Further, 

since the learning of the Fisher discriminant is done off-line, there is minimal additional 

computational load incurred during tracking as scalar feature detectors can be used on the 

resultant Fisher projection. 

Fisher's linear discriminant analysis is traditionally used to reduce the dimensionality 

of high dimensional data down to a more computationally manageable number. In the 

simplest case, such as the two class discrimination problem of lips and skin, it can be used 

to determine an axis, w, onto which vector colour data can be projected which preserves 

as much of the discriminating capability of the colour information as possible. The result, 

referred to as the Fisher linear discriminant, maximises the separability of the two classes 

by maximising the ratio of the between-class scatter to the within-class scatter. 

More formally, following [46], let X denote the set of n rgb-colour pixels {xi, x2,..., x„} 

in the mouth region, where the subset X\ = {xi,x2,... ,xni} represents those pixels cor- 

responding to the skin, and similarly the subset X2 of n2 pixels {xni+i, xni+2,..., x„1+„2} 

corresponds to the lips. It is desired to find a discriminant axis, w, such that the projection 

of the samples Xj onto it, given by 

y, = wTXi (7.2) 

resulting in y = {2/1,2/2, • • • ,2/n}, maximises the separability between 3^i = {2/1,2/2, • ■ ■ ,2/m} 

and y2 = {yni+i,yni+2,--- ,2Mi+n2}- 

A suitable measure of between-class scatter of the projected points is the difference of 

their means \rh\ — rri21 where 
1    ^     x 

mk = —  >    w  x. 

Within-class scatter is found in the traditional manner 

2 = Yl (wTx ~ ™k) 
xeA-fc 

The total within-class scatter sfu is then just the sum of the scatter for each of the classes 

;2    _ ~2   ,   52 
SW _sl + A2- 

The Fisher linear discriminant is defined as the linear function wrx for which the 
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criterion-function 
|mi -m2|

2 ,7„v 

sl + s2 

is a maximum. 

Explicit dependence of J on w is seen by expanding out (7.3) and defining a few addi- 

tional terms. Let m^ denote the mean for each of the classes, 

mk = — V x. 

Similarly, let Sk denote the within-class scatter matrices for the rgb-colour points, where 

Sk =   YJ (X ~ m*:)(X - mk)T- 
x£Xk 

The total within-class scatter Sw is given by 

Sw = Si + S<2- 

As above, the between-class scatter of the rgb-colour points is given by the difference of 

their means 

SB = (mi - m2)(mi - m2)
T. 

The between-class scatter of the projected points can now be expressed in terms of the 

scatter matrix SB, 

'   \mi - rn,2\     =    (wmi — w  m2) 

=   wT(mi — m2)(mi — m2)  w 

=   wTSBw. (7.4) 

Similarly, the within-class scatter of the projected points can be represented in terms of Sk, 

52 =  Yl wT(x ~ mfc)(x ~ mfc)Tw 

xexk 

=   wTSkw (7.5) 

from which it follows that 

sw = wTSVw. (7.6) 

Substituting (7.4) and (7.6) into (7.3) results in the desired dependence 

wTSBw (77, 
w1 614/w 
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The vector w that maximises the criterion function J, must also satisfy 

which is a conventional eigenvalue problem. Thus the eigenvector of S^SB corresponding 

to the non-zero eigenvalue (SB is rank 1) solves for w. A simplification results in that 5#w 

is in the direction of (mi - m2) and hence w can be found directly from 

w = 5M;(m1-m2). (7.8) 

1. Calculate the mean pixel values in each class, k=l,2 

n*xt^ 

2. Determine the within-class scatter, k=l,2 

Sk    =     J2 (x-mfc)(x-mfc)
T 

xe*fc 

3. Find the Fisher discriminant vector 

w   =    S,^1(m1-m2) 

where Sw = S\ + 52 ■ 

Figure 7.1: Learning the Fisher linear discriminant axis. A discriminant vector w can be learnt 
from, sample colour image data from, the two classes, lips (X\) and facial skin (X2), which maximises 
the separability of the two classes by maximising the ratio of the between-class scatter to the within- 
class scatter. 

The steps for learning the Fisher discriminant axis are shown in figure 7.1 using this 

simplification. Training images, with the colour pixel data either side of the lip boundary 

grouped into their respective classes, are used to calculate the discriminant axis by com- 

puting class means and within-class scatter using the above algorithm. The ability of the 

Fisher discriminant to maintain the separability of the classes after projection is illustrated 

in figure 7.2. 

It is also instructive to look at the learnt Fisher axes for different parts of the mouth. 

For instance, for the middle of the lower lip (figure 7.2) 

w = [-0.0032,0.6759, -0.7370]T, (7.9) 
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Figure 7.2: Discrimination of the lower lip and skin. Colour data from the middle of the lower 
lip (dashed lines) and surrounding skin (solid bars) are projected onto the learnt Fisher axis. The 
separability of the data demonstrates the discriminating capacity of the colour information, since the 
data is drawn from an area of minimal grey-level contrast (cf. figure 7.6). 
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which suggests that the classification information for that section of the lip is carried in the 

green and blue channels. Alternately, for a similar section along the upper lip, the Fisher 

axis was found to be 

w = [-0.3352,0.8903, -0.3083]T, (7.10) 

which implies that in this region all three channels carry information needed for classifi- 

cation. Once again, the projection of the colour data onto the Fisher axis results in well 

separated classes (figure 7.3). 
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Figure 7.3: Discrimination of the upper lip and skin. Colour data from the upper lip (dashed 
lines) and surrounding skin (solid bars) are projected onto the learnt Fisher axis. As with the lower 
lip, the separability of the data demonstrates the discerning capability of the colour information. 

In contrast to the well separated classes resulting from projection onto the Fisher axes, 

the two classes are thoroughly intermixed when only intensity information is used. This is 

illustrated in figure 7.4 where the limited amount of discriminating information in grey-level 

images is seen by projecting the colour data onto the r = g = b axis, that is 

w = [0.3333,0.3333, 0.3333]T. 

In the most general case a separate Fisher axis can be computed for each search line 

normal; however, in practice, because of the biological consistency of lips and skin, it is 

only necessary to compute separate discriminants for areas along the mouth that are likely 

to differ. For instance, if variations in the source lighting are expected and known, such 

as the primary light source being from the left, then that knowledge and any associated 
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Figure 7.4: Grey-level intensity data is inadequate for discriminating the lower lip and skin. 

Colour data from the lower lip (dashed bars) and surrounding skin (solid bars) are projected onto 

the R=G=B line resulting in their corresponding grey-level value. Note that the two classes are 

thoroughly intermixed indicating the difficulty in identifying the lip boundary using only grey-level 

information. 
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shadowing can be seamlessly integrated into the discriminant framework by training in 

like conditions. Similar arguments hold for situations where the principal light source is 

relatively fixed, such as in a typical office with overhead lighting; however, variations in 

these cases are more likely associated with changes in environmental conditions such as 

the relative position of the speaker, camera, and dominant light source. However, in the 

absence of any specific knowledge of lighting variations, the most straightforward approach 

is to use a sufficiently large number of training images, where it is hoped that the colour 

information pertinent to discrimination will be learnt. The result is that data with little 

discerning information is ignored. 

Having computed the Fisher axes, there still remains the question of how best to utilise 

the resultant scalar projections. One method is to use the statistical template approach 

described earlier, that is, to learn statistics for the profiles along each of the search lines. 

However, instead of using the intensities, normalised intensities, or intensity gradients, the 

Fisher projections can be used. The potential benefit is that the statistical templates 

might capture additional spatial information along each of the search lines. An alternative 

method is to continue in the Bayesian classification framework and to make use of the 

known class-conditional distributions (figures 7.2 and 7.3). If the a priori probabilities 

P{u)i) corresponding to the proportion of lip-coloured and skin-coloured pixels are known, 

or can be estimated from training images, then Bayes Rule (7.1) can be used to compute 

the a posteriori probabilities. Moreover, if it is assumed that the prior probability for a 

pixel along a given search line is equally likely to be lips as it is to be skin, then the decision 

boundaries of the density plots obtained from the training images (eg. figure 7.2) can be 

used directly for classification. In addition, the number of misclassifications can be reduced 

by post-processing with a median filter. This Bayesian classification approach is illustrated 

in figure 7.5. 

Since hue is often used to locate humans in scenes [50, 79, 127], it is instructive to see if 

the use of the Fisher discriminant provides any additional benefit over hue-filtered images. 

Figure 7.6 shows an example image, the colour hue of the image, and the resultant image 

after projection onto a Fisher axis. Although the hue channel shows high contrast, the 

localisation of the lip boundary is poor. The Fisher discriminant, on the other hand, results 

in an image with good contrast and good localisation of the lip boundary. 

7.5.1     Environmental Variations 

One of the principal advantages of colour images over greyscale images is the added infor- 

mation provided by the three channels as compared to one. Indeed, the previous discussion 
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Figure 7.5: Classification of the lower lip-skin boundary using Fisher's linear discriminant. Colour 

pixel intensities along a search line are projected onto a learnt Fisher axis. (Three instances of a 
search line along the lower lip are shown here to demonstrate the variability over time.) The actual 

lip boundary corresponds to r = 0. Classification is accomplished using the learnt decision boundary 

(dotted line). The few spurious m,isclassifications (r = 4,12, 20,) are removed by applying a median 

filter. 

has shown how Fisher's discriminant analysis can be used to capture much of the informa- 

tion in colour images of the face. However, another important aspect of the discriminant 

analysis approach is what is not captured, that is, are uninformative variations ignored? 

One of the compelling reasons for operating within a real-time framework is that it im- 

poses a more rigorous standard of acceptability. For instance, having developed a tracker, 

that is, having created an appropriate shape space, having learnt appropriate motion dy- 

namics, and having learnt Fisher axes for feature detection, it is relatively easy to set up a 

camera, position the speaker, and track his lips. There will naturally be differences between 

that particular set up and the conditions present when the motion and image feature models 

were learnt. Depending on the intended application domain, the variability might be minor 

or quite substantial. For instance, if one were designing an audio-visual speech recogniser 

for an outdoor Automated Teller Machine (ATM), the system would have to work on sunny 

days, cloudy days, rainy days, at night, and so forth. Further, if the system were multi- 

speaker, in addition to handling inter-speaker visual speech variability, it would have to 

compensate for the differing heights of the speakers which results in differing viewpoints for 

the camera. However, even for a speaker-dependent system where the speaker is directed 

to place his mouth within a particular window, one should expect slight variations in pose 
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(a) Greyscale Image 
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(b) Hue Image (c) Fisher Discriminant Image 

Figure 7.6: Fisher's discriminant analysis can be used to enhance the contrast between the face 
and lips. In greyscale images (a) there is little contrast between the face and lips — particularly 
along the lower lip. The differing hue of the lips and skin can be used to provide additional contrast 
(b); however, only a coarse identification of the lip-skin boundary is available. Projection onto a 
Fisher axis (c) enhances the contrast and enables identification of the lip-skin boundary. 
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and/or viewpoint angle (say 5°-10°). Audio-visual speech researchers traditionally ignore 

even these minor variations. For instance, in [17] the database was acquired in a sound-proof 

booth with controlled lighting to minimise grey-level variations, and presumably to improve 

tracking performance. It is also not uncommon for researchers to demonstrate tracking on 

only very short sequences, for instance, a test database of 40 utterances representing less 

than a minute of speech [62, 64]. 

It is constructive to look at some of the variation in the training images used in this 

work, which were acquired in an uncontrolled office environment. An examination of the 

principal modes of variations, that is, the eigenvectors, of the within-class scatter matrices 

illustrates the variation in the training images. The eigenvalues and their corresponding 

eigenvectors for the area of skin along the middle of the upper mouth are 

/ 0.7488 \ / -0.3567 \ /    0.5586 \ 
vi    =        0.5099     ,   v2    =        -0.2284     ,    v3    =        -0.8293 

\ 0.4234 j \    0.9059 j \    0.0109 j 

Ai    = 894.7, A2    = 26.8, A3    = 13.7. 

It is interesting to note that the principal mode of intensity variation (v{) accounts for 

over 95% of the variance in the skin data. Closer examination of v\ reveals that it roughly 

corresponds to the "pinkness" of the skin. (If the eigenvector were r = g = b then one 

could say that it corresponded to the variation in grey-level intensity; however, since the 

eigenvector is tilted towards the red-green sector, one can say that it roughly corresponds to 

pink variations.) This seems intuitive as the skin represents a roughly homogeneous region, 

and variations are likely due to changes in the shading of the skin and/or the relative 

position of the dominant light source (overhead fluorescent lighting in these examples), the 

camera, and the speaker. 

A similar situation exists for the upper lip, where the principal modes of variation and 

their corresponding eigenvalues given by 

/ 0.7694 \ / -0.5119 \ /    0.3820 
ui =   0.5107  , v2    = 0.1340  , vs    =   -0.8492 

\ 0.3836 ) \    0.8485 J \    0.3645 

Ai =   792.6,   A2 =    31.9,    A3 =    11.4. 

Once again the principal mode of intensity variation (vi) accounts for over 90% of the 

variance. As was the case with the skin data, vx roughly corresponds to the degree of 

"pinkness" of the lips. The point to be made is that although there are significant colour 

intensity variations due to changes in lighting and other environmental variations, the learnt 
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Fisher axis is not sensitive to these prominent, but un-informative, variations. Indeed, the 

Fisher axis is nearly orthogonal to the principal mode of within class variation for the lips 

and skin. 

To illustrate the insensitivity of the Fisher technique to environmental variations, addi- 

tional image sequences were gathered several weeks later with no attempt to replicate the 

lighting conditions of the original training session. As the intended application is speaker- 

dependent recognition in a noisy office environment, intensity variations in the images are 

due to changes in overall lighting, as well as other environmental factors, such as varying 

camera angles. For instance, in figure 7.7 it can be seen that the two images, (a) and (d), 

differ both in their overall intensity patterns (in (a) there are significant highlights on the 

mouth, nose, and chin) and on the degree of self-shadowing (in (a) the shadowing of the 

upper lip by the nose is more pronounced). However, as such variations are uninforma- 

tive for identifying the outer lip boundary, projection of the colour intensity data onto the 

Fisher axis preserves the separability (figures 7.7b and 7.7e). Thus, the strength of the 

Fisher analysis lies in its ability to capture the most informative aspects of the colour data 

without being susceptible to variations that have little to do with discrimination, such as 

changes in illumination. 

7.5.2     Outer Contour Tracking 

Lastly, when integrated into the dynamic contour framework, use of the Fisher discrim- 

ination feature detection method results in robust, accurate, lip tracking which can be 

accomplished in real-time (50 Hz) on a standard workstation (Silicon Graphics Indy R4400 

200MHz). Accurate tracking was achieved on more than twenty minutes of continuous 

speech gathered in an office setting without recourse to special lighting. Two example 

tracked sequences which were recorded on separate days are shown in figures 7.8 and 7.9. 

In both cases, tracking is accurate through a wide range of lip deformations despite the 

changes in lighting and camera angle. 

7.6    Inner and Outer Lip Contour Tracking 

The visual recognition features used thus far contain information only on the positioning of 

the outer lip contour. As it is known from perceptual studies [131] that human lip-readers 

rely on information about the presence/absence of the teeth and the tongue inside the 

mouth, it is natural to try to extract this information from the visual images. In the sim- 

plest case, the entire region bounded by the outer lip contour (ie. the whole mouth) can be 
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(a) Image 1 
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(d) Image 2 
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Figure 7.7: The Fisher axis is robust to environmental variations present in a typical office 

environment. Since the principal light source is usually fixed in a standard office (eg. overhead 

fluorescent lighting) intensity variations can result from changes in illumination as well as changes 

in the relative position and orientation of the speaker and camera. Shown are two images, (a) 

and (d), acquired on different days and taken from slightly different camera angles. Note that (a) 

represents a more fronto-parallel view, while in (d) the camera is pointing slightly down at the face 

(the nostrils are not visible). This results in minor variations in shading as evidenced by the upper lip 

region beneath the nose, and the highlights along the lower lip (a). However, projection of the upper 

lip region onto the learnt Fisher axis (7.10) results in well-separated data, (b) and (e). Lastly, (c) 

and (f) show that the Fisher features correspond nicely to the lip outline as the resultant least-squares 

fitted contours demonstrate. 
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Figure 7.8: Tracking the word "twelve" on a colour sequence using the Fisher discrimination 

feature detection method. Snapshots taken approximately every 80 ms. Accurate tracking is attained 

throughout the sequence, and recognition information, such as the degree of mouth opening (graph), 

is easily extracted from the tracker. 
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Figure 7.9: Tracking the word "nineteen" on a colour sequence using the Fisher discrimination 
feature detection method. Despite the change in camera angle, the tracker accurately follows the lips 
through the entire sequence with only minor deviations along the upper lip. 
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extracted during tracking, and the pixels intensities used as inputs to the audio-visual recog- 

nition engine. Others [17, 133] have achieved good audio-visual recognition performance 

using the pixel intensities directly, although their applications are in controlled lighting 

conditions. Such an approach may still prove effective in more natural settings, although 

recognition performance will likely depend on the ability of the classifier to generalise over 

lighting changes and compensate for tracking errors. A more interesting approach is to at- 

tempt to extend the dynamic contour tracking framework to the task of tracking both the 

inner and outer lip contours. This would permit extraction of the region inside the mouth 

to more accurately reason about the proportion of teeth visible (both upper and lower), if 

any, as well as the position of the tongue, if visible. A hybrid system utilising both the 

contour information, and the mouth region data, would likely provide the best recognition 

results. 

The dynamic contour framework can be extended to the task of tracking two contours, 

such as both the outer and inner lips, in one of two ways. One approach, after Reynard et 

al. [117, 78], is to treat the contours as separate objects and explicitly model the dynamical 

coupling between them. When the coupling between the two objects is causal, such as in 

their case where the outline of the head was tracked in order to pre-position a mouth-valley 

tracker, the computational saving of their approach is appealing; however, in a more general 

setting, such as the bi-directional coupling of the inner and outer lip contours, it is not clear 

that any computational savings could be achieved. The second approach involves using 

the constraints provided by the use of restricted shape spaces (section 3.3) to provide the 

coupling between the inner and outer contours. Since the shape matrix W is learnt from 

principal component analysis on sample lip shapes, the coupling between the inner and 

outer contours is directly encoded in the shape matrix (3.5). 

7.6.1    Identification of Inner Mouth Region 

The principal difficulty in tracking the inner mouth contour is the erratic appearance and 

disappearance of the teeth. When the teeth are obscured by the lips, there is both an 

edge and an intensity valley along the inner lip contour [144, 100], but when the teeth 

are visible, there are numerous edges inside the mouth which serve to distract the tracker 

(figure 7.10). One method of overcoming this problem is to extend the statistical profile 

modelling discussed in section 4.5 to handle multi-modal distributions to account for the 

intermittent presence of the teeth and tongue. An alternate solution is to use the Bayesian 

classification approach for feature detection as was done using Fisher's linear discriminant. 

Modelling of the distribution of colour pixel intensities was facilitated by the observa- 
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Figure 7.10: Tftere are numerous distracting edges (white crosses) inside the mouth when the 

teeth appear. 

tion that there are 3 prominent components inside the mouth, corresponding to a dark 

region, teeth (upper and/or lower), and tongue (figure 7.11). In any given image, all three 

components need not be present; however, the entire distribution can be suitably modelled 

as a mixture of the three components. This suggested a straightforward method for mod- 

elling the distribution of colour intensities inside the mouth as a mixture of multi-variate 

Gaussians, 

M 
p(x|inner mouth) — ^ CkN(nk-, ^fc) 

k-\ 

where 

A%,£) g-Kx-rf^-'M 

(7.11) 

(7.12) 
'(27r)rf|S| 

and M is the number of mixtures, ck is the mixture coefficient for the fcth mixture and 

N is a standard multi-variate Gaussian with mean vector /i and covariance matrix £ of 

dimension d = 3 for colour vector data. 

7.6.2    Expectation Maximisation 

The Expectation-Maximisation (EM) algorithm [40, 70] was used to provide maximum- 

likelihood (ML) estimates of both the mixture weights and the underlying Gaussian param- 

eters. Approximately 50 training images, some with the teeth and tongue present, others 

with only the teeth present, and still others with only the dark portion of the inner mouth 



CHAPTER 7.   COLOUR LIP TRACKING 134 

(b) Teeth and dark region c) Teeth, Tongue, and dark region 

Figure 7.11: There are 3 prominent components inside the mouth, corresponding to a dark re- 
gion, teeth (upper and/or lower), and tongue. This suggested modelling the distribution of colour 
intensities inside the mouth as a mixture of multi-variate Gaussians. Three common situations are 
illustrated showing various combinations of the components. 

present, were gathered under various lighting conditions similar to those expected to be 

encountered during tracking. K-means clustering was used to provide initial estimates of 

the parameters and the EM algorithm was run until convergence. Figure 7.12 gives an 

overview of the parameter estimation algorithm. 

Let X denote the set of N rgb-colour pixels {xi, x2,..., x;v} of the inner mouth extracted 

from the training images by hand fitting contours to the inner lip outline. The initial cluster 

centres, mi... niM, for the K-means clustering were chosen to correspond to each of the 

three physically significant components inside the mouth, teeth, tongue, and dark region 

(step 1). In the most general case, the cluster centres can be chosen randomly from X, 

however, convergence of the EM algorithm is improved when initialised more appropriately. 

Initial estimates of the mixture weights and Gaussian parameters are computed using the 
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Figure 7.12: Expectation-Maximisation learning of the mixture parameters representing the colour 
intensity distribution inside the mouth. 

cluster centres (step 2). Pixels are grouped into clusters X\...Xu based on Euclidean 

distance to the nearest centre, mfc. The EM algorithm (step 3) is then iterated, where 

superscript j represents the iteration number, until the proportional change in the means 

/j,k falls below a set threshold or the maximum number of iterations is reached. 

A similar procedure was used to learn the distribution of colour intensities for the upper 

and lower lips; however, instead of modelling the distributions as mixtures of Gaussians 

they were modelled as a single 3D Gaussian.  Though a single Gaussian may not be sum- 
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cient to capture all of the subtle intensity variations within the lip regions, only a coarse 

representation was needed to adequately discriminate lip coloured pixels from those inside 

the mouth. 

Although the EM algorithm can be computationally expensive, it is run off-line from 

training images, and thus, during tracking, pixels can be rapidly classified as either inner 

mouth or surrounding lip using the straightforward Bayesian classifier described earlier (sec- 

tion 7.4). Furthermore, since features are only sought along normals at discretely sampled 

points along the contour, it is not necessary to classify each pixel in the mouth region — 

only those along the image normals. The temporal coherence provided by the Kaiman filter 

ensures that only pixels in the mouth region are inspected, permitting use of the two class 

discrimination solution as opposed to more complicated solutions that might include skin 

regions, facial hair, scene background, and such. A prototypical example of the classification 

of the inner mouth region and the resultant fitted contour is shown in figure 7.13. 

Although identification of the inner mouth region in the example shown is particularly 

good, it is important to note that error-free classification, while desired, is certainly not 

necessary. The feature curve representing the measured position of the lips in the image 

is the result of a least-squares fit to the image features detected along the normals. This 

provides a robust measure of the inner lip contour in cases where no features are found 

along a given normal, or alternately, where misclassification results in incorrectly identified 

features. Further, the number of misclassifications is minimised by post-processing with a 

median filter. Lastly, the assimilation of the measured contour with the predicted position 

in the Kaiman filter also smoothes out errors in the measured position. 

7.6.3    Tracking 

The use of Fisher discriminant axes along the outer lip contour to identify the lip-skin 

boundary, and colour mixture models to locate the inner contour boundary, when inte- 

grated into the dynamic contour tracking framework enables robust tracking (figure 7.14) 

of continuous speech. Further the tracker is able to run at a near real-time rate of 25 Hz 

on a standard workstation (Silicon Graphics Indy R4400 200 MHz). An obvious advantage 

of tracking both the inner and outer lip contours is that additional shape information is 

available for input to the recognition engine. However, a more substantial benefit is that 

demarcation of the inner lip contour facilitates reasoning about the visibility of articula- 

tors inside the mouth. In the simplest case, a crude estimate of the presence/absence of 

the teeth can be obtained by computing the average grey-level inside the mouth as shown 

in figure 7.14.   Although, having identified the inner mouth region, it would be natural 
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(b) Classified inner mouth 

(c) Fitted contour 

Figure 7.13: Classification of the inner mouth and the resultant fitted contour. By modelling the 
distributions of the colour intensities inside the mouth and of the lips, the inner mouth region can 
be successfully segmented from its surround (b). Although identification of the inner mouth region 
for this image is particularly good, the tracking framework effectively handles misclassifications (see 
text). 

to employ more focused image processing, possibly utilising Gaussian mixture models, as 

discussed previously, in conjunction with a spatially-dependent pattern classifier, to make 

more detailed judgements about the position of the teeth and tongue. However, as shown 

in figure 7.15, even the average intensity inside the mouth provides additional information 

over shape information alone. 

Tracking of both the inner and outer lip contours has been accomplished on more than 

four minutes of connected speech and in all cases tracking was stable — reliably following 

the lip outlines. However, the same level of accuracy attained for the outer lip contour over a 

long sequence has not yet been achieved using the inner-outer contour tracker. The principal 

difficulty is that, at times, the tracker is slow in responding to some of the more rapid lip 
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fourteen: average grey level 
T r 

Figure 7.14: Tracking the word "fourteen" on a colour sequence. Snapshots taken approximately 

every 120 ms. Both the inner and outer contour trackers follow their respective lips throughout the 

sequence. Minor tracking errors are visible at the mouth corners and along the upper right portion 

of the outer lip contour, but the tracker successfully handles both the nearly closed mouth in '/' and 
the appearance of teeth in the 'V. The underlying plot shows the average grey-level intensity inside 

the mouth. Naturally, for audio-visual speech recognition, information more beneficial to speech 

recognition, such as the fact thai only the lower teeth are visible and that the tongue is completely 

obscured, would need to be extracted; however, even the average intensity is informative as the onset 

of the 't' is clearly evident by the rapid increase in intensity. 
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fourteen: component 1 
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Figure 7.15: The average grey-level intensity inside the mouth complements the shape informa- 
tion. Shape information corresponding to the degree of mouth opening (top) and inner mouth region 
information (bottom) for the tracked sequence of "fourteen" (figure 7.14) is shown. The opening of 
the mouth is clearly captured by the shape signal, while the average grey-level intensity identifies the 

onset of the 't'. 

movements. This is illustrated in figure 7.16 where the tracker lags slightly during the rapid 

'e' to V transition in "seventeen". The articulatory movements of the V sound (frame 4 

in the figure) consist of a rapid closing of the mouth in concert with an inward curling of 

the lower lip. During this movement, the outer contour begins to contract, although the 

inner contour becomes momentarily situated over the lower lip rather than the inner mouth. 

However, as evidenced by the subsequent frames, the tracker quickly recovers during the 

completion of the fricative V and tracks accurately to the end of the word. 

A plot of the mouth height (figure 7.17) illustrates that the tracker has adequately 

captured the principal articulatory movements of "seventeen". For instance, the initial 

opening of the mouth for 'e' and the rapid closure of V are readily identifiable. One can 

also see the characteristically slow opening of the mouth in 'teen'. However, the tracking 

error in the 'e' to V transition manifests itself in a plot of the "inner-mouth" intensity. 

The sharp increase in intensity around the V is due to the inner mouth tracker being 

positioned over the lower lip rather than the inner mouth (recall frame 4 of figure 7.16). A 

more informative measure of the inner-mouth articulators using a tongue/teeth/lips/dark- 

region classifier could be used to cure the symptoms of the problem; however, this example 
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Figure 7.16: Tracking the word "seventeen" on a colour sequence. Both the inner and outer 

trackers follow the general pattern of the deforming lips. However, the tracker lags slightly during 

the rapid 'e 'to V transition (frame 4) — the outer contour begins to contract, but the inner contour 

becomes momentarily situated over the lower lip rather than the inner mouth. The tracker quickly 

recovers in the next two frames during the completion of the fricative V and tracks accurately to the 

end of the word. 



CHAPTER. 7.   COLOUR LIP TRACKING 141 

illustrates that when using intensity information the recognition engine must be able to 

generalise over illumination changes as well as compensate for tracking errors. 

seventeen: component 1 

s      e v en t ee 

seventeen: average grey level 

s      e v en t ee 

Figure 7.17: A momentary tracking error can result in the extraction of the intensity data of 
the lower lip rather than the inner mouth. Shape information corresponding to the degree of mouth 
opening (top) and inner mouth region information (bottom) for the tracked sequence of "seventeen" 
(figure 7.16) is shown. Although the overall motion of the lips has been captured (top), the momentary 
tracking error surrounding the V (frames 4 and 5 in figure 7.16) results in misidentification of the 
inner mouth region and the extraction of lip intensity data which produces the hump in the bottom 
graph. 

Further work remains to be accomplished on this tracker in order to achieve the same de- 

gree of accurate, long term performance as was attained with the outer lip contour tracker. 

One area where improvements could be made concerns the shape and motion models em- 

ployed. Presently a nine-dimensional shape-space learnt from principal components analysis 

is used. Potentially, expanding to a larger shape-space would enable tracking of some of the 

more subtle lip movements. Further, the sluggishness of the tracker in following some of 

the more rapid lip movements suggests that the dynamical models learnt were too rigid. In- 

creasing the number of rapid movements in the training sequences might result in dynamics 

capable of following the quick, agile movements. There also is room for improvement in the 

measurement models used. Currently, image features are searched for only along normals 

to the contour. Potentially, measurement routines that make use of the information in the 

entire region surrounding the lips would lead to increased tracking accuracy. 
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7.7    Conclusions 

The trackers presented in this chapter represent an advancement in state-of-the-art lip 

tracking. Previously, only Petajan et al. [106, 107] could successfully track unadorned lips 

within a real-time framework; however, their system relies on having a clear view of the 

nostrils, whereas the system presented here needs no such assistance. The approach taken 

here relies on the combination of several powerful techniques to permit accurate, real-time 

tracking. Comprehensive shape and motion models, which provide global structure and 

motion coherence, enable the use of focused image feature detection methods. These feature 

detectors, which employ Bayesian discriminant analysis techniques to colour images, provide 

for fast, accurate, identification of the boundary between the lips and their surround. The 

result is a robust, outer lip contour tracker. Further, the successful tracking of both the inner 

and outer lip contours presents a gateway to further exploration of the benefits of lipreading. 

Tracking of the inner lip contour provides supplementary shape information and enables 

detailed judgements to be made about the positioning of the teeth and tongue. These 

additional information sources permit more effective capture of the linguistic information 

inherent in visual speech and should lead to more effective audio-visual speech recognisers. 



Conclusions and Future Work 

This thesis has addressed several of the outstanding problems associated with the develop- 

ment of practical audio-visual speech recognition systems. A central aim of this work has 

been the providing of solutions to the difficult real-time lip tracking problem. A disciplined 

approach to this problem was taken. First, it was shown that the use of learnt shape and 

motion models enabled the tracking of rapidly moving, articulating lips when lipstick was 

used to enhance the contrast of the lips. It was then shown that the principal obstacle to 

accurate identification of the lips in unadorned situations is the poor contrast between the 

lips and facial skin. It was in these settings that the comprehensive modelling central to the 

dynamic contour tracking framework could be exploited to its fullest. Firstly, shape models 

were used to provide global structure to the lip contour and restrict its deformations to 

shape spaces characteristic of the speaker. Secondly, motion models were used which cap- 

tured the temporal coherence of articulating lips. Lastly, statistical models of the grey-level 

appearance around the lips were employed which captured the information necessary for 

identifying the lip boundary. It was then shown that the fusion of these three modelling 

approaches resulted in accurate tracking of unadorned lips. 

Having successfully tracked the lips, it was next essential to demonstrate that the 

tracked contours did indeed capture some of the linguistically informative aspects of the 

visual speech signal. Two audio-visual recognition systems, one which used a dynamic time 

warping pattern matching algorithm and the other which used continuous density Hidden 

Markov Models, were constructed for this purpose. The visual recognition features consisted 
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of shape parameters which were obtained from the outer lip contour. Experiments using 

the two recognisers were conducted on isolated-word vocabularies over a range of acous- 

tic signal-to-noise ratios using additive Gaussian noise. The results of the experiments 

demonstrated that shape parameters obtained from accurately tracked lip contours could 

be used to provide robust speech recognition in the presence of high levels of interfering 

noise. Further, depending on the severity of the degradation of the acoustic channel, incor- 

poration of the visual speech components resulted in error-rate reductions on the order of 

44%. In other experiments, it was shown that the visual signal provided benefit even when 

the acoustic recogniser was trained and tested on speech at known noise levels. The results 

obtained establish dynamic contour tracking and computer lipreading as effective methods 

for improving the accuracy and robustness of automatic speech recognition systems. 

Despite the generous improvement afforded by the visual shape parameters in adverse 

acoustic conditions, there was only a slight increase in recognition performance when the 

acoustic signal was clean. It was reasoned that additional visual information in the form 

of knowledge of the inner mouth region, to include the teeth and tongue, may be needed 

to increase performance in these environments. With this in mind, new trackers were de- 

veloped which made use of the increased discriminating potential inherent in colour images 

of the face. A novel application of Fisher's Linear Discriminant Analysis was presented 

which enabled accurate identification of the lip-skin boundary and was shown to be robust 

to environmental variations. Further, since the learning of the Fisher discriminant was done 

off-line, the real-time performance of the outer lip contour tracker was not compromised. 

Accurate demarcation of the inner mouth contour was also attained despite considerable 

variations in the appearance of the mouth due to the varying presence of the teeth and 

tongue. Mixtures of multi-variate Gaussians enabled precise modelling of the colour inten- 

sities inside the mouth. The resultant inner-outer lip contour tracker permitted extraction 

of the region inside the mouth, thus enabling more detailed judgements to be made about 

the presence and position of the teeth and tongue. Although no recognition experiments 

were accomplished using these trackers, they provide a gateway to further exploration of 

the benefits attainable by augmenting acoustic speech recognisers with visual speech cues. 

8.1    Future Work 

Despite the successes achieved, the challenges provided by the audio-visual speech recogni- 

tion problem afford many opportunities for further research. 
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8.1.1 Model Transfer 

One area of research that has relevance to lip tracking, as well as many other motion capture 

problems, such as hand tracking, face and gesture recognition, and performance driven 

animation, concerns the shape and motion models inherent in the dynamic contour tracking 

framework. In this thesis, accurate lip tracking was demonstrated on several different 

speakers; however, the tracking was speaker dependent, that is, each lip tracker employed 

shape and motion models that were particular to the given speaker. Although a basic tenet 

of modelling is to incorporate as much prior knowledge as possible, from a commercial 

perspective it may be impractical to require that new models be developed from scratch 

every time a new user is to be tracked. This is particularly applicable in the lip tracking case 

where often the models are learnt from tracked sequences obtained using lipstick. It would 

be far preferable to devise a method where the shape and motion models could somehow 

be transferred from one speaker to another or derived from generic models. 

One possible solution to this might be to develop a library of lip templates, shape spaces, 

and motion models from people with a wide range of lip shapes and visual articulatory 

patterns. During initialisation some method would be needed to determine the most ap- 

propriate models for the given speaker (in the simplest case, possibly the user himself could 

select the models). A more elegant approach might be to employ a variation of the speaker 

adaptation methods used by commercial speech recognisers. In speech recognition, speaker 

adaptation is accomplished by first learning speaker-independent models from training on 

a large number of speakers. Training utterances are then acquired from a new speaker by 

having him read from a pre-set list of sentences. Typically, the speaker-independent mod- 

els are then customised by adapting the general models using a learnt mapping from the 

speaker-specific spectral data to that in the speaker-independent models [111]. A similar 

strategy might prove useful for customising generic lip-shape and motion models to an in- 

dividual talker. The difficulty will be how best to incorporate the results of the tracking 

adaptation step, where the generic models are used to track the new user. This will likely 

be complicated by the fact that initially the lip tracking will be less than perfect and man- 

ual intervention may be required in order to provide ground-truth to the model adaption 

algorithm. 

8.1.2 Region-based Measurement Routines 

Another interesting area for potential research, particularly applicable to the tracking of 

both the inner and outer lip contours, concerns the use of improved feature measurement 
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models. Since the Kaiman filter requires that both the dynamical process and the mea- 

surement densities be described analytically by Gaussian densities, the observation (mea- 

surement) densities for all of the feature detection methods presented in this thesis were 

necessarily modelled as Gaussians. In particular, mutually independent ID observations 

were made along normals to the lip contours to obtain features corresponding to the mea- 

sured lip position. Potentially, the employment of more powerful feature detection methods 

which exploit the spatial dependencies between the search lines or utilise region information 

surrounding the contour would lead to enhanced tracking performance. 

A tracking framework capable of handling such measurement densities has recently been 

developed by Blake and Isard [13, 71]. Their algorithm, termed CONDENSATION (for Condi- 

tional Density Propagation, since it propagates the entire probability distribution of object 

position and shape over time, rather than just estimates for the mean and covariance, as 

is the case in Kalman-filter trackers), effectively handles observation densities of arbitrary 

form. One of the strengths of the CONDENSATION tracker is that it tracks objects by gener- 

ating curve configurations and then scoring the hypothesised curve according to the amount 

of image support. As currently implemented [71], feature measurements are taken along ID 

normals to the hypothesised curve as is done in the Kalman-filter trackers employed here; 

however, the CONDENSATION framework can be extended to handle arbitrary measurement 

densities including those using region information. For example, rather than using only 

edge information, the measurements could be obtained from the entire region bounded by 

the contours, for instance the upper lip or inner mouth. One such measure might consist of 

image "moments" for a given region Ri, 

1 
At 13 \ i    9{x,y)l{x,y)dA 
A[Ri) JR% 

where the measurements Zj are normalised by the area of the region A(Ri). Here g(x,y) is a 

(spatially varying) weighting function corresponding to the different moments, eg. g(x, y) = 

1 gives the mean intensity of the region. Further, it may also be possible to exploit the 

spatial texture information in and around the lips using Markov Random Fields. 

One can also imagine a situation where it would be desirable to use a combination of 

normal-based and region measurements. For example, in the case of tracking both the inner 

and outer lip contours, Fisher detectors could be used to identify the outer lip contour, while 

region measurements might be used to accurately identify the inner lip contour. Further, 

with this approach, judgements of the positioning of the teeth and tongue might be a natural 

by-product of tracking. 
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8.1.3 Shape and Mouth Region Recognition Features 

Although it has been established that parameters representing the lip shape are a rich 

source of information for audio-visual speech recognition, further work is needed to extract 

additional information from the facial images and to assess the information content of 

these additional visual features. The dual inner-outer lip contour tracker of chapter 7 

represents a first step in achieving this goal. As a first attempt, recognition experiments 

could be accomplished to assess the increase in recognition performance obtained via the 

incorporation of shape parameters from the tracked inner lip contour. Further experiments 

could focus on the added contribution provided by utilising colour intensity information 

from inside the mouth. It may also be possible to develop teeth and tongue detectors which 

can provide supplemental recognition information without being susceptible to variations 

in illumination, as is often the case when using the pixel data directly. The Gaussian 

mixture modelling used in the inner-outer lip contour tracker could be used to provide 

initial estimates of the teeth and tongue location, although it is likely that additional spatial 

modelling of the inner mouth region will be required to provide robust estimates. 

8.1.4 High-level Knowledge Sources 

This thesis has focused on the integration of the audio and visual information at the lowest 

level in the speech recognition process, that is, during feature extraction, although it is 

important not to ignore the role that cognitive skill or "intelligence" plays in natural- 

language understanding. As humans, often it is our intimate familiarity with the English 

language, its rules, grammar, and the content of the message, that permits us to "fill 

in" words or pieces of words that may have been obscured aurally and/or visually in a 

sentence [43, 98]. This capability, coupled with our innate ability to blend incoming sensory 

information, may account for our unmatched capacity to recognise spoken language. The 

research presented here does not incorporate any of these higher level knowledge sources; 

it is certainly possible, and even likely, that the full benefit provided by visual information 

will only be realised in systems utilising these higher level knowledge sources. 
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