-

.

٠

7

AF S&T→

· .

REPORT DOCUMENTATION PAGE		Гогт Арргочед ОМВ No. 0704-0188	
iblic reporting burden for this collection of in splaning and maintaining the data needed, an illection of information, including suggestion avis Highway, Suite 2004, Aclington, VA-2220	formation is estimated to interval. I have per re- el condition and reviewing the collection of inf- for reducing lub burden, to Wahington Leade 24302, and to the Office of Management and Hi	sponse, including the time for rear ormation. Send comments regard austres because. Directorate for la idget, Papenvick fusion frages	ewing instructions, searching existing data sources, ing this barden estimate or any other about of this formation foreistims, and levents, 1755 beforeis L(0704.0188), Washington, 197-70503
AGENCY USE ONLY (Leave blar	ak) 2. REPORT DATE	3. REPORT TYPE AND	DATES COVERED
TITLE AND CURTIFIE	Nov. 15, 1996	Final Repor	t March 15, 95 - May 30,
Biaxial Failure Ana	lysis of Graphite Rei	nforced	
olvimide Composites	5		G
5	•		F49620-95-1-0250
AUTHOR(S)	······································		
.S. Kumosa, K. Sear	les and V. Thirumalai	1 I I I I I I I I I I I I I I I I I I I	. I
		3	
PERFORMING ORGANIZATION N	AME(S) AND ADDRESS(ES)		AFOSR-TR-97
epartment of Materi	als Science and Engin	neering	
regon Graduate Inst	itute of Science & Te	chnology	A AA
.0. Box 91000, Port	land, OR		0010
			1
SPUNSORING/MONITORING AG	ENCY NAME(S) AND ADDRESS(ES)		ID. SPONSORING/MONITORING AGENCY REPORT NUMBER
r. W.F. Jones, AFOS	R/NA		. 1
10 Duncan Ave., Sui	te Bl15		
olling FAB, DC 203	32-0001		
I. SUPPLEMENTARY NOTES			
×.			
27. DISTRIBUTION / AVAILABILITY	STATEMENT	·	26 DISTRIBUTION CODE
DISTRIBUTIC	ON STATEMENT A		
Approved f	or public release;		
	tion Unlimited		
Distribu			
Distribu		L	
Distribu	st addressed in this	roport First	ly the biavial chear
Distribu 3. ABSTRACT (Maximum 200 word hree issues have be ominuted failure pr	en addressed in this	report. First	ly, the biaxial shear
Distribu 3. ABSTRACT (Maximum 200 word hree issues have be ominated failure pr pyestigated at room	en addressed in this operties of graphite/	report. First /polymid fabric	ly, the biaxial shear composites have been pescy method. Secondly.
Distribu ABSTRACT (Maximum 200 word hree issues have be ominated failure pr nvestigated at room new testing proced	en addressed in this operties of graphite/ temperature using the ure has been suggested	report. First /polymid fabric ne biaxial Iosi ed for evaluati	ly, the biaxial shear composites have been pescu method. Secondly, ng micro-damage in
Distribut ABSYRACT (Maximum 200 word hree issues have be ominated failure pr nvestigated at room new testing proced olvmer matrix compo	and addressed in this operties of graphite/ temperature using the ure has been suggester sites. Using this met	report. First /polymid fabric ne biaxial Iosi ed for evaluati thod. three-dim	ly, the biaxial shear composites have been pescu method. Secondly, ng micro-damage in ensional failure char-
Distribu ABSTRACT (Maximum 200 work hree issues have be ominated failure pr nvestigated at room new testing proced olymer matrix compo cteristics of damag	en addressed in this operties of graphite/ temperature using th ure has been suggeste sites. Using this met e generated in the gr	report. First /polymid fabric ne biaxial Iosi ed for evaluati thod, three-dim raphite/polyimi	ly, the biaxial shear composites have been pescu method. Secondly, ng micro-damage in ensional failure char- d Iosipescu specimens
Distribut ABSTRACT (Maximum 200 work hree issues have be ominated failure pr nvestigated at room new testing proced olymer matrix compo cteristics of damag an be determined fo	en addressed in this operties of graphite/ temperature using th ure has been suggeste sites. Using this met e generated in the gr r various loading cor	report. First /polymid fabric ne biaxial Iosi ed for evaluati thod, three-dim raphite/polyimi nditions. Fina	ly, the biaxial shear composites have been pescu method. Secondly, ng micro-damage in ensional failure char- d Iosipescu specimens 11y, non-linear finite
Distribut ABSTRACT (Maximum 200 word hree issues have be ominated failure pr nvestigated at room new testing proced olymer matrix compo cteristics of damag an be determined fo lement computations	en addressed in this operties of graphite/ temperature using th ure has been suggeste sites. Using this met e generated in the gr r various loading cor of internal stresses	report. First /polymid fabric he biaxial Iosi ed for evaluati thod, three-dim raphite/polyimi nditions. Fina s in the Iosipe	ly, the biaxial shear composites have been pescu method. Secondly, ng micro-damage in ensional failure char- d Iosipescu specimens lly, non-linear finite scu specimens have been
Distribut ABSYRACT (Maximum 200 work hree issues have be ominated failure pr nvestigated at room new testing proced olymer matrix compo cteristics of damag an be determined fo lement computations erformed taking int	and en addressed in this operties of graphite/ temperature using the ure has been suggeste sites. Using this met e generated in the gr r various loading cor of internal stresses o account the effect	report. First /polymid fabric ne biaxial Iosi ed for evaluati thod, three-dim raphite/polyimi nditions. Fina s in the Iosipe of specimen sl	ly, the biaxial shear composites have been pescu method. Secondly, ng micro-damage in ensional failure char- d Iosipescu specimens lly, non-linear finite scu specimens have been iding within the
Distribut ABSYRACT (Maximum 200 work hree issues have be ominated failure pr nvestigated at room new testing proced olymer matrix compo cteristics of damag an be determined fo lement computations erformed taking int osipescu fixture.	en addressed in this operties of graphite/ temperature using th ure has been suggeste sites. Using this met e generated in the gr r various loading cor of internal stresses o account the effect	report. First /polymid fabric ne biaxial Iosi ed for evaluati thod, three-dim raphite/polyimi nditions. Fina s in the Iosipe of specimen sl	ly, the biaxial shear composites have been pescu method. Secondly, ng micro-damage in ensional failure char- d Iosipescu specimens lly, non-linear finite scu specimens have been iding within the
Distribut ABSTRACT (Maximum 200 work hree issues have be ominated failure pr nvestigated at room new testing proced olymer matrix compo cteristics of damag an be determined fo lement computations erformed taking int osipescu fixture.	en addressed in this operties of graphite, temperature using th ure has been suggeste sites. Using this met e generated in the gr r various loading cor of internal stresses o account the effect	report. First /polymid fabric he biaxial Iosi ed for evaluati thod, three-dim raphite/polyimi nditions. Fina s in the Iosipe of specimen sl	ly, the biaxial shear composites have been pescu method. Secondly, ng micro-damage in ensional failure char- d Iosipescu specimens lly, non-linear finite scu specimens have been iding within the
Distribut ABSTRACT (Maximum 200 work hree issues have be ominated failure pr nvestigated at room new testing proced olymer matrix compo cteristics of damag an be determined fo lement computations erformed taking int osipescu fixture.	en addressed in this operties of graphite, temperature using th ure has been suggeste sites. Using this met e generated in the gr r various loading cor of internal stresses o account the effect	report. First /polymid fabric he biaxial Iosi ed for evaluati thod, three-dim raphite/polyimi nditions. Fina s in the Iosipe of specimen sl	ly, the biaxial shear composites have been pescu method. Secondly, ng micro-damage in ensional failure char- d Iosipescu specimens 11y, non-linear finite scu specimens have been iding within the
Distribut ABSTRACT (Maximum 200 work hree issues have be ominated failure pr nvestigated at room new testing proced olymer matrix compo cteristics of damag an be determined fo lement computations erformed taking int osipescu fixture.	en addressed in this operties of graphite, temperature using th ure has been suggeste sites. Using this met e generated in the gr r various loading cor of internal stresses o account the effect	report. First /polymid fabric ne biaxial Iosi ed for evaluati thod, three-dim raphite/polyimi nditions. Fina s in the Iosipe of specimen sl	ly, the biaxial shear composites have been pescu method. Secondly, ng micro-damage in ensional failure char- d Iosipescu specimens lly, non-linear finite scu specimens have been iding within the
Distribut ABSTRACT (Maximum 200 work hree issues have be ominated failure pr nvestigated at room new testing proced olymer matrix compo cteristics of damag an be determined fo lement computations erformed taking int osipescu fixture.	en addressed in this operties of graphite, temperature using th ure has been suggeste sites. Using this met e generated in the gr r various loading cor of internal stresses o account the effect	report. First /polymid fabric ne biaxial Iosi ed for evaluati thod, three-dim raphite/polyimi nditions. Fina s in the Iosipe of specimen sl	ly, the biaxial shear composites have been pescu method. Secondly, ng micro-damage in ensional failure char- d Iosipescu specimens 11y, non-linear finite scu specimens have been iding within the
Distribu ABSTRACT (Maximum 200 work hree issues have be ominated failure pr nvestigated at room new testing proced olymer matrix compo cteristics of damag an be determined fo lement computations erformed taking int osipescu fixture.	en addressed in this operties of graphite, temperature using th ure has been suggeste sites. Using this met e generated in the gr r various loading cor of internal stresses o account the effect	report. First /polymid fabric ne biaxial Iosi ed for evaluati thod, three-dim raphite/polyimi nditions. Fina s in the Iosipe of specimen sl	ly, the biaxial shear composites have been pescu method. Secondly, ng micro-damage in ensional failure char- d Iosipescu specimens 11y, non-linear finite scu specimens have been iding within the
Distribut ABSTRACT (Maximum 200 work hree issues have be ominated failure pr nvestigated at room new testing proced olymer matrix compo cteristics of damag an be determined fo lement computations erformed taking int osipescu fixture.	en addressed in this operties of graphite, temperature using th ure has been suggeste sites. Using this met e generated in the gr r various loading cor of internal stresses o account the effect	report. First /polymid fabric he biaxial Iosi ed for evaluati thod, three-dim raphite/polyimi nditions. Fina s in the Iosipe of specimen sl	ly, the biaxial shear composites have been pescu method. Secondly, ng micro-damage in ensional failure char- d Iosipescu specimens lly, non-linear finite scu specimens have been iding within the 15. MUMBER OF PAGES 115
Distribution ABSTRACT (Maximum 200 work hree issues have be ominated failure pr nvestigated at room new testing proced olymer matrix compo- cteristics of damag an be determined fo- lement computations erformed taking int osipescu fixture. 4. SUBJECT TERMS graphite/polymid com- bicro-damage	ten addressed in this operties of graphite, temperature using the ure has been suggeste sites. Using this met e generated in the gr r various loading cor of internal stresses o account the effect	report. First /polymid fabric ne biaxial Iosi ed for evaluati thod, three-dim raphite/polyimi nditions. Fina s in the Iosipe of specimen sl	ly, the biaxial shear composites have been pescu method. Secondly, ng micro-damage in ensional failure char- d Iosipescu specimens 11y, non-linear finite scu specimens have been iding within the 15. NUMBER OF PAGES 115 16. PRICE CODE
Distribu ABSTRACT (Maximum 200 work hree issues have be ominated failure pr nvestigated at room new testing proced olymer matrix compo- cteristics of damag an be determined fo lement computations erformed taking int osipescu fixture. 4. SUBJECT TERMS graphite/polymid com- ticro-damage	en addressed in this operties of graphite, temperature using th ure has been suggeste sites. Using this met e generated in the gr r various loading cor of internal stresses o account the effect	report. First /polymid fabric ne biaxial Iosi ed for evaluati thod, three-dim raphite/polyimi nditions. Fina s in the Iosipe of specimen sl	ly, the biaxial shear composites have been pescu method. Secondly, ng micro-damage in ensional failure char- d Iosipescu specimens 11y, non-linear finite scu specimens have been iding within the 15. MUMBER OF PAGES 115 16. PRICE CODE 2
 Distribu ABSYRACT (Maximum 200 work hree issues have be ominated failure pr nvestigated at room new testing proced olymer matrix compo cteristics of damag an be determined fo lement computations erformed taking int osipescu fixture. SUBJECT TERMS raphite/polymid com licro-damage SECURITY CLASSIFICATION 	tem addressed in this operties of graphite, temperature using th ure has been suggeste sites. Using this met e generated in the gr r various loading cor of internal stresses o account the effect posites, biaxial test	report. First /polymid fabric ne biaxial Iosi ed for evaluati thod, three-dim raphite/polyimi nditions. Fina s in the Iosipe of specimen sl	ly, the biaxial shear composites have been pescu method. Secondly, ng micro-damage in ensional failure char- d Iosipescu specimens lly, non-linear finite scu specimens have been iding within the 15. NUMBER OF PAGES 115 16. PRICE CODE 2 ATION 20. UMITATION OF ARSTRACT
ABSTRACT (Maximum 200 work hree issues have be ominated failure pr nvestigated at room new testing proced olymer matrix compo cteristics of damag an be determined fo lement computations erformed taking int osipescu fixture.	en addressed in this operties of graphite, temperature using th ure has been suggeste sites. Using this met generated in the gr r various loading cor of internal stresses o account the effect posites, biaxial test security CLASSIFICATION OF THIS PAGE	report. First /polymid fabric ne biaxial Iosi ed for evaluati thod, three-dim raphite/polyimi nditions. Fina s in the Iosipe of specimen sl ting, Iosipescu	ly, the biaxial shear composites have been pescu method. Secondly, ng micro-damage in ensional failure char- d Iosipescu specimens lly, non-linear finite scu specimens have been iding within the 15. NUMBER OF PAGES 115 16. PRICE CODE 2 ATION 20. LIMITATION OF ARSTRACT
Distribu ABSYRACT (Maximum 200 word hree issues have be ominated failure pr nvestigated at room new testing proced olymer matrix compo cteristics of damag an be determined fo lement computations erformed taking int osipescu fixture. I. SUBJECT TERMS raphite/polymid com icro-damage Z. SECURITY CLASSIFICATION OF REPORT unclassified	Action ten addressed in this operties of graphite, temperature using the ure has been suggested sites. Using this met generated in the graph r various loading corr of internal stresses to account the effect uposites, biaxial test 18. SECURITY CLASSIFICATION OF THIS PAGE unclassified	report. First /polymid fabric ne biaxial Iosi ed for evaluati thod, three-dim raphite/polyimi nditions. Fina s in the Iosipe of specimen sl ting, Iosipescu	ly, the biaxial shear composites have been pescu method. Secondly, ng micro-damage in ensional failure char- d Iosipescu specimens lly, non-linear finite scu specimens have been iding within the 15. NUMBER OF PAGES 115 16. PRICE CODE 2 ATION 20. LIMITATION OF ARSTRACT unlimited

. Annual Review of the Problement High Temperature Engine Materials Tech Mology Magain (HITEMP) NASA Lewis Research Center, April 30, 1959 BIAXIAL FAILURE ANALYSIS OF GRAPHITE REINFORCED

POLYIMIDE COMPOSITES*

MACIEJ S. KUMOSA^{**}, Kevin H. Searles^{***} and Greg Odegard^{**}

**Center for Advanced Materials and Structures Department of Engineering University of Denver Denver, Colorado

*** Department of Materials Science and Engineering Oregon Graduate Institute of Science and Technology Portland, Oregon

Introduction

High temperature polymers and polymer matrix composites (PMC's) are finding increasing use in the aerospace and electronics industries. Graphite fiber reinforced polyimides are advanced thermosetting polymer composites which have become highly relevant in the realm of high temperature applications (ref. 1). These composites possess exceptional specific properties and are stable to temperatures as high as 360 °C (680 °F). For successful application of graphite/polyimide composites, it is essential to have a reliable database of material properties and a detailed understanding of fracture and failure behavior, especially at elevated temperatures. A major limitation of many fiber/polymer composite systems is the inability of these materials to resist intralaminar and interlaminar damage initiation and propagation under biaxial, shear dominated, monotonic and cyclic loading conditions. The purpose of this research is to investigate failure properties of fabric and unidirectional graphite/polyimide composites tested over the temperature range -50 °C to 315.6 °C (-58 °F to 600 °F) under biaxial, shear dominated loading conditions.

The Josipescu shear test, which was originally designed for determining shear properties of metals (ref. 2), was first applied to composite materials by Walrath and Adams (ref. 3). The traditional losipescu shear test essentially consists of a double edge-notched beam specimen, to which two counteracting force couples are applied such that the net bending moment at the specimen midlength is zero, and a relatively uniform shear stress field exists in the central gage section of the specimen. Based upon the traditional Iosipescu shear test, an in-plane biaxial Iosipescu test fixture has been designed and developed at the University of Cambridge (ref. 4). The fixture (Fig. 2) is capable of testing Iosipescu specimens in either pure shear or a combination of shear and transverse tension/compression under static or cyclic loads. Shear tests can be performed under externally applied compressive loads (P_0) normal to the longitudinal axis of the specimen as in the traditional test (refs. 1 and 2). For in-plane, biaxial tests, the specimen is rotated clockwise (c.w.) or counter-clockwise (c.c.w.) such that the compressive load (P_{α}) is applied at various angles (α) to the normal (Fig. 3).

Research funded under NSF and AFOSR grants CMS-9696160 and F49620-96-1-0314

Recent studies have employed the fixture for obtaining biaxial failure and fracture properties of unidirectional GRP and CFRP composites, teak wood, Ti/SiC composites and adhesive joints (refs. 4-8). For this study, a series of shear and biaxial losipescu tests were performed at room and elevated temperatures on the following three composite materials:

- 1. Graphite/PMR-15 (fabricated at the NASA Lewis Research Center); Fiber: T650-35, 8-H Satin Cloth; Ply Layup: 16-ply (warp-aligned); Matrix: PMR-15.
- 2. Graphite/Avamid-R (fabricated by DuPont); Fiber: T650-35, 8-H Satin Cloth; Ply Layup: 10-ply (warp-aligned and 0/90); Matrix: Avamid-R.
- 3. Graphite/PMR-15 (fabricated at the NASA Lewis Research Center); Fiber: T650-35, unidirectional; Ply Layup: 34-ply; Matrix: PMR-15.

Composites 1 and 3 were fabricated using a simulated autoclave according to G.E.'s specifications. The panels were post-cured according to G.E.'s schedule. In this paper, only the results from the biaxial testing of the fabric composites are presented.

The load-displacement diagrams for the graphite/PMR-15 Iosipescu specimens tested in the biaxial fixture at room temperature are presented in Fig. 4. It can be observed that the shape of the load-displacement curves depends on the loading angle. Similar tests were performed on the graphite/Avamid-R composites (warp-aligned and 0/90). The loads at failure as a function of the loading angle (α) for the investigated composites are shown in Fig. 5. At room temperature, the biaxial strength properties of these three composite systems appear to be different. Moreover, different failure modes were identified and it was also established that the shear and biaxial strength properties of the graphite/PMR-15 system may be significantly influenced by the manufacturing process.

The micro-failure process in the PMR-15 system tested at room temperature starts from the initiation of interlaminar cracks between the layers (Fig. 6a). This usually leads to the formation of large delaminations within the gage section of the losipescu specimens. Often, one of the interlaminar cracks propagates catastrophically along the sample causing a significant drop on the load-displacement curves. Such load drops can be observed in Fig. 4. This effect, however, seems to be dependent on the manufacturing process. If the strength of the interfaces between the layers is high, the load drops do not occur. The interlaminar damage in the PMR-15 system creates large out-of-plane deformations on the specimen surface i.e., bulging (see Fig. 6b). The micro-failure process which determines the failure of the Avamid-R system is the formation of interlaminar cracks between the layers. Since the interlaminar strength properties of the Avamid-R system appear to be higher compared to the PMR-15 system, the bulging effect on the composite surface is substantially less pronounced.

The micro-damage generated in the composite Iosipescu specimens tested under biaxial loading conditions can be evaluated by capturing and performing qualitative analyses of scanning electron microscope (SEM) images from planar specimen slices. Subsequently, the slices are reassembled into 3-D space and the net volumetric effect of damage can be determined. In Fig. 7, a 3-D projection of damage within the gage section of the PMR-15 Iosipescu specimen tested in shear is presented.

19971006 155

The biaxial tests at elevated temperatures were performed using a high temperature setup assembled at the University of Denver (Fig. 8). Since the high temperature, biaxial losipescu research is still in progress, only preliminary results from the high temperature investigation are presented and discussed in this paper. As an example, the load-displacement diagrams for the graphite/PMR-15 and graphite/Avamid-R (0/90) composites tested in shear at various temperatures are shown in Figs. 9 and 10, respectively. The effect of elevated temperature on the load-displacement curves for the graphite/Avamid-R composite is significantly stronger in comparison with the graphite/PMR-15 system. From the maximum loads determined using the curves in Figs. 9 and 10, the shear strength properties were subsequently estimated. The shear strengths of the composites as a function of temperature are presented in Fig. 11. At room temperature, it appears that the shear strength of the graphite/Avamid-R system is slightly higher than that of the graphite/PMR-15 system. However, at elevated temperatures above 232 °C (450 °F), the graphite/Avamid-R composite exhibits a rapid decrease in its shear strength, whereas the shear strength of the PMR-15 system gradually decreases with an increase in temperature.

References

- Meador, M.M.; Cavano, P.J.; and Malarik, D.C.: High Temperature Polymer Matrix Composites for Extreme Environments, Structural Composite: Design and Processing Technologies. Proc. Sixth Annual ASM/ESD Advanced Composites Conference, Detroit, Michigan, pp. 8-11, October 1990.
- 2. Iosipescu, N.: New Accurate Procedure for Single Shear Testing. J. Materials, vol. 2, no. 3, 1967, pp. 537-566.
- 3. Walrath, D.E.; and Adams, D.F.: The Iosipescu Shear Test as Applied to Composite Materials. Exp. Mech., vol. 23, no. 1, 1983, pp. 105-110.
- 4. Broughton, W.R.; Kumosa, M.; and Hull, D.: Analysis of the Iosipescu Shear Test as Applied to Unidirectional Carbon-Fiber Reinforced Composites. Comp. Sci. Tech., vol. 38, 1990, pp. 299-325.
- Bansal, A.; and Kumosa, M.: Experimental and Analytical Studies of Failure Modes in Iosipescu Specimens Under Biaxial Loadings. J. Comp. Mat., vol. 29, no. 3, 1995, pp. 334-358.
- 6. Bansal, A.; and Kumosa, M.: Application of the Biaxial Iosipescu Method to Mixed-Mode Fracture of Unidirectional Composites. Int. J. Fracture, vol. 71, 1995, pp. 131-150.
- Ding, S.: Mixed Mode Failure Analysis of Adhesively Bonded Composite Systems Using the Modified Iosipescu Test Method, Ph.D. Thesis, Oregon Graduate Institute of Science and Technology, Portland, Oregon, April 1996.
- Balakrishnan, M.V.; Bansal, A.; and Kumosa, M.: Biaxial Testing of Unidirectional Carbon-Epoxy Using the Biaxial Iosipescu Test Fixture. J. Comp. Mat., vol. 31, no. 5, 1997, pp. 486-508.

Objectives

- Determine failure and fracture properties of unidirectional and fabric graphite reinforced polyimide composites based on PMR-15 and Avamid-R resins tested under biaxial, shear dominated loading conditions over the temperature range -50 °C to 315.6 °C (-58 °F to 600 °F)
- Characterize micro-damage initiation and development in the composites as a function of:
 - Testing temperature
 - Biaxial, shear dominated in-plane stress conditions
 - Type of polyimide resin
 - Manufacturing process
- Develop a finite element model of biaxial, graphite/polyimide losipescu specimens for elevated temperature applications

Loading Diagram for Inducing an In-Plane Biaxial Stress State

Damage at the Notch Root in Graphite/PMR-15 losipescu Specimens: a) Inter- and Intralaminar Cracks

Fig. 6a

Damage at the Notch Root in Graphite/PMR-15 losipescu Specimens: b) Out-of-Plane Damage (Bulging)

Fig. 6b

3-D Projection of Damage in a Graphite/PMR-15 losipescu Specimen Tested in Shear at Room Temperature

High Temperature Experimental Setup

Load-Displacement Diagrams for Graphite/PMR-15 losipescu Specimens Tested at Elevated

Shear Strength as a Function of Temperature

Fig. 11

Summary of Results

- Biaxial strength properties and failure modes for graphite/PMR-15 and graphite/Avamid-R are different at room temperature:
 - It appears that the shear strength properties of the Avamid-R system are better than the PMR-15 system
 - Under biaxial shear/compression loading conditions, the PMR-15 composite exhibits significantly higher strength in comparison with the Avamid-R system
- The effect of elevated temperatures on the load-displacement curves in shear for the graphite/Avamid-R composite is significantly more prevalent than for the graphite/PMR-15 composite
- The shear strengths of the Avamid-R system at elevated temperatures are significantly lower than the high temperature shear strengths of the graphite/PMR-15 system

Fig. 12

Conclusion

- Application of the biaxial losipescu test fixture can be successfully extended to include graphite reinforced polyimide fabric and unidirectional composites when determining:
 - shear strength properties at room and elevated temperatures
 - shear dominated, biaxial failure mechanisms

Future Work

- Complete biaxial losipescu testing on fabric and unidirectional graphite polyimide composites over a range of temperatures
- Complete development of image analysis techniques for reproduction of damage from planar specimen slices
- Develop acoustic emission and resonant frequency methodologies for monitoring and identifying damage progression in the composites at high temperatures
- Develop numerical schemes for modeling damage in composite biaxial losipescu specimens at high temperatures