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Introduction

High temperature polymers and polymer matrix composites (PMC’s) are finding increasing use
in the aerospace and electronics industries. Graphite fiber reinforced polyimides are advanced
thermosetting polymer composites which have become highly relevant in the realm of high
temperature applications (ref. 1). These composites possess exceptional specific properties and
are stable to temperatures as high as 360 °C (680 °F). For successful application of
graphite/polyimide composites, it is essential to have a reliable database of material properties
and a detailed understanding of fracture and failure behavior, especially at elevated
temperatures. A major limitation of many fiber/polymer composite systems is the inability of
these materials to resist intralaminar and interlaminar damage initiation and propagation under
biaxial, shear dominated, monotonic and cyclic loading conditions. The purpose of this research
is to investigate failure properties of fabric and unidirectional graphite/polyimide composites
tested over the temperature range -50 °C to 315.6 °C (-58 °F to 600 °F) under biaxial, shear
dominated loading conditions.

The losipescu shear test, which was originally designed for determining shear properties of
metals (ref. 2), was first applied to composite materials by Walrath and Adams (ref. 3). The
traditional losipescu shear test essentially consists of a double edge-notched beam specimen, to
which two counteracting force couples are applied such that the net bending moment at the
specimen midlength is zero, and a relatively uniform shear stress field exists in the central gage
section of the specimen. Based upon the traditional losipescu shear test, an in-plane biaxial
Josipescu test fixture has been designed and developed at the University of Cambridge (ref. 4).
The fixture (Fig. 2) is capable of testing losipescu specimens in either pure shear or a
combination of shear and transverse tension/compression under static or cyclic loads. Shear tests
can be performed under externally applied compressive loads (Po) normal to the longitudinal
axis of the specimen as in the traditional test (refs. 1 and 2). For in-plane, biaxial tests, the
specimen is rotated clockwise (c.w.) or counter-clockwise (c.c.w.) such that the compressive
load (P,,) is applied at various angles (o) to the normal (Fig. 3).
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Recent studies have employed the fixture for obtaining biaxial failure and fracture properties of

unidirectional GRP and CFRP composites, teak wood, Ti/SiC composites and adhesive joints

(refs. 4-8). For this study, a series of shear and biaxial losipescu tests were performed at room

and elevated temperatures on the following three composite materials:

1. Graphite/PMR-15 (fabricated at the NASA Lewis Research Center); Fiber: T650-35, 8-H
Satin Cloth; Ply Layup: 16-ply (warp-aligned), Matrix: PMR-15.

2. Graphite/Avamid-R (fabricated by DuPont); Fiber: T650-35, 8-H Satin Cloth; Ply Layup: 10-
ply ( warp-aligned and 0/90); Matrix: Avamid-R.

3. Graphite/PMR-15 (fabricated at the NASA Lewis Research Center); Fiber: T650-35,
unidirectional; Ply Layup: 34-ply; Matrix: PMR-15.

Composites 1 and 3 were fabricated using a simulated autoclave according to G.E.’s

specifications. The panels were post-cured according to G.E.’s schedule. In this paper, only the

results from the biaxial testing of the fabric composites are presented.

The load-displacement diagrams for the graphite/PMR-15 losipescu specimens tested in the
biaxial fixture at room temperature are presented in Fig. 4. It can be observed that the shape of
the load-displacement curves depends on the loading angle. Similar tests were performed on the
graphite/Avamid-R composites (warp-aligned and 0/90). The loads at failure as a function of the
loading angle (o) for the investigated composites are shown in Fig. 5. At room temperature, the
biaxial strength properties of these three composite systems appear to be different. Moreover,
different failure modes were identified and it was also established that the shear and biaxial
strength properties of the graphite/PMR-15 system may be significantly influenced by the
manufacturing process.

The micro-failure process in the PMR-15 system tested at room temperature starts from the
initiation of interlaminar cracks between the layers (Fig. 6a). This usually leads to the formation
of large delaminations within the gage section of the losipescu specimens. Often, one of the
interlaminar cracks propagates catastrophically along the sample causing a significant drop on
the load-displacement curves. Such load drops can be observed in Fig. 4. This effect, however,
seems to be dependent on the manufacturing process. If the strength of the interfaces between
the layers is high, the load drops do not occur. The interlaminar damage in the PMR-15 system
creates large out-of-plane deformations on the specimen surface i.e., bulging (see Fig. 6b). The
micro-failure process which determines the failure of the Avamid-R system is the formation of
intralaminar cracks along the notch root axis. The second mechanism is the formation of
interlaminar cracks between the layers. Since the interlaminar strength properties of the Avamid-
R system appear to be higher compared to the PMR-15 system, the bulging effect on the
composite surface is substantially less pronounced.

The micro-damage generated in the composite losipescu specimens tested under biaxial loading
conditions can be evaluated by capturing and performing qualitative analyses of scanning
electron microscope (SEM) images from planar specimen slices. Subsequently, the slices are
reassembled into 3-D space and the net volumetric effect of damage can be determined. In Fig.
7, a 3-D projection of damage within the gage section of the PMR-15 losipescu specimen tested
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The biaxial tests at elevated temperatures were performed using a high temperature setup
assembled at the University of Denver (Fig. 8). Since the high temperature, biaxial losipescu
research is still in progress, only preliminary results from the high temperature investigation are

_presented and discussed in this paper. As an example, the load-displacement diagrams for the
graphite/PMR-15 and graphite/Avamid-R (0/90) composites tested in shear at various
temperatures are shown in Figs. 9 and 10, respectively. The effect of elevated temperature on the
load-displacement curves for the graphite/Avamid-R composite is significantly stronger in
comparison with the graphite/PMR-15 system. From the maximum loads determined using the
curves in Figs. 9 and 10, the shear strength properties were subsequently estimated. The shear
strengths of the composites as a function of temperature are presented in Fig. 11. At room
temperature, it appears that the shear strength of the graphite’Avamid-R system is slightly higher
than that of the graphite/PMR-15 system. However, at elevated temperatures above 232 °C (450
°F), the graphite/Avamid-R composite exhibits a rapid decrease in its shear strength, whereas the
shear strength of the PMR-15 system gradually decreases with an increase in temperature.
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Objectives

Determine failure and fracture properties of unidirectional and fabric
graphite reinforced polyimide composites based on PMR-15 and Avamid-R
resins tested under biaxial, shear dominated loading conditions over the
temperature range -50 °C to 315.6 °C (-58 °F to 600 °F)

Characterize micro-damage initiation and development in the composites as
a function of:

~ Testing temperature

- Biaxial, shear dominated in-plane stress conditions

-~ Type of polyimide resin

- Manufacturing process
Develop a finite element model of biaxial, graphite/polyimide losipescu
specimens for elevated temperature applications

Fig. |

Biaxial losipescu Test Fixture




Loading Diagram for Inducing an In-Plane Biaxial
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Load as a Function of Displacement for
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Damage at the Notch Root in GraphitelPMR-15 losipescu

Specimens: a) Inter- and Intralaminar Cracks
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Damage at the Notch Root in Graphite/PMR-15 losipescu
| Specimens: b) Out-of-Plane Damage (Bulging)

Fig. 6b

3-D Projection of Damage in a Graphite/PMR-15 losipescu
Specimen Tested in Shear at Room Temperature
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High Temperature Experimental Setup
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Load-Displacement Diagrams for Graphite/PMR-15
losipescu Specimens Tested at Elevated
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Load-Displacement Diagrams for Graphite/Avamid-R
(0/90) losipescu Specimens Tested at Elevated
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Summary of Results

Biaxial strength properties and failure modes for graphite/PMR-15 and
graphite/Avamid-R are different at room temperature:

- lItappears that the shear strength properties of the Avamid-R system
are better than the PMR-15 system

- Under biaxial shear/compression loading conditions, the PMR-15
composite exhibits significantly higher strength in comparison with the
Avamid-R system

The effect of elevated temperatures on the load-displacement curves in
shear for the graphite/Avamid-R composite is significantly more prevalent
than for the graphite/PMR-15 composite

The shear strengths of the Avamid-R system at elevated temperatures are
significantly lower than the high temperature shear strengths of the
graphite/PMR-15 system

Fig. 12

Conclusion

Application of the biaxial losipescu test fixture can be successfully
extended to include graphite reinforced polyimide fabric and unidirectional
composites when determining:

- shear strength properties at room and elevated temperatures
- shear dominated, biaxial failure mechanisms
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Future Work

Complete biaxial losipescu testing on fabric and unidirectional graphite
polyimide composites over a range of temperatures

Complete development of image analysis techniques for reproduction of
damage from planar specimen slices

Develop acoustic emission and resonant frequency methodologies for
monitoring and identifying damage progression in the composites at high
temperatures '

Develop numerical schemes for modeling damage in composite biaxial
losipescu specimens at high temperatures




