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1 Introduction 

The problems of image sequence compression and new view synthesis have both received a lot 
of attention recently. In the former case, it is desired to compactly represent the original image 
set by exploiting redundancy and correlation. This issue is particularly important in applications 
of storage and transmission. In contrast, the goal of new view synthesis is to generate arbitrary 
viewpoints of a given scene primarily for visualization purposes. Notice that there exists a trade- 
off between representation size and the quality of the synthesized images: As more views of the 
scene are added to the representation, the image quality increases as does the representation size. 
Hence, an interesting problem is to consider both problems at once; that is, construct a compact 
representation which reconstructs the original images and synthesizes new views. 

We propose two depth-based representations to address these problems. The first approach in- 
volves several so-called reference frames for which depth and intensity information are both defined. 
New views are generated by warping the reference intensity and depth data in a manner similar 
to view interpolation techniques [3, 6, 10, 1, 2, 9, 5]. The second proposed approach integrates 
all available information with respect to a single reference frame akin to layered representations 
[7, 14, 13, 15]. The representation then consists of a multivalued array of depth and intensity values 
which overcomes occlusions and redundancy [4]. These depth-based representations both assume 
the given image sequences arise from a static 3-D scene captured by a moving camera restricted to 
the x-y plane. Note that the exact motion of the camera is unknown a priori and will be estimated. 

The report is organized as follows. Section 2 describes techniques for estimating dense depth 
from a set of neighboring frames and for warping this information to synthesize new views. In 
Section 3, these techniques are applied to the proposed approach of view interpolation from multiple 
reference frames. In Section 4, a multivalued representation is presented which condenses and 
redefines the available information with respect to a single reference frame. Finally, extensions and 
areas for future work are discussed in Section 5. 

2 Depth Estimation and Synthesis 

The basis for the proposed representations is computing depth information at reference locations. 
Given a particular frame, the goal is to derive an estimate of depth for every pixel location using 
neighboring frames. Dense depth information is desired because it provides the appropriate map- 
ping for every point during synthesis. Depth estimation and synthesis techniques are described in 
the following sections. 



2.1     Dense Depth Estimation: Pairwise 

Given an image sequence, it seems intuitive to compute depth pairwise between the reference 
frame and each of its neighbors to generate local "depth maps". Since every frame is related by a 
planar translation, depth estimation can be accomplished by 1-D correspondence matching along 
the parallel epipolar lines. In [1], the /2 norm of intensity error is minimized over possible depth 
values using adaptive neighborhoods Af: 
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where predicted coordinates (u', v') and disparity d are related to a candidate motion vector (m, n) 

by 

u'   =   u + m (2) 

v'   =    v + n (3) 

d   =    Vm2 + n2 = -Jbl + bl (4) 

Moreover, points which lead to potential artifacts and spurious matches are marked as low confi- 
dence. To improve the estimates, the local depth maps are normalized and then combined together 
to form a single estimate for the given reference frame. The combined result is more accurate 
because low confidence regions in the local depth maps do not always overlap, thus enabling higher 
confidence estimates to fill in these regions. 

Figure 1: Example of depth maps using fixed and adaptive block sizes: (a) intensity reference frame; 
(b) matching with fixed 9x9 blocks; (c) matching with adaptive blocks; and (d) combining multiple 
local depth maps. The colors in (c) and (d) represent low confidence matches resulting from different 
artifacts as described in [lj. 

As an example, consider Figures 1 (a)-(d). An intensity frame from the Mug2 sequence in 
Section 3 is shown in Figure 1 (a). To obtain dense depth information for this frame, one attempts 
to match it with each of its neighbors. Figure 1 (b) shows the resulting local depth map using a 
fixed 9x9 block size. While the mug and stool are somewhat discernible, there are a large number 
of artifacts throughout the scene due primarily to the many low-textured regions. In contrast, 
Figure 1 (c) shows a depth map obtained using an adaptive block size with various low confidence 
regions marked accordingly. Notice the improvement in depth estimation for the mug and stool as 
well as the background points. Figure 1 (d) demonstrates the effectiveness of combining several 
local depth maps together. The final depth map is a more accurate estimate of the given scene as 
compared with Figure 1 (c). The regions in the combined depth map which may be inaccurate are 
marked in yellow to indicate low confidence. To eliminate low confidence regions, one may apply a 
spline-based filling algorithm [1]. 
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2.2    Dense Depth Estimation: Multiframe 

While pairwise matching leads to reasonable depth results, multiframe approaches perform even 
better by reducing ambiguity and increasing accuracy when camera motion is known. To compute 
depth for a particular frame, a variant of Okutomi and Kanade's multiple-baseline algorithm is used 
[12]. The approach consists of finding the inverse depths that minimize the sum of component in- 
tensity errors. More precisely, suppose there are M images denoted by /;(•, •) and let k G 1,2,.. .M 
be the reference frame. Then, the goal is to compute inverse depth C, for every desired point with 
the following expression 

m;n|l> (££||4(^)-/*K^)II2) I (5) 

where Af is a local neighborhood around the pixel of interest, Oi indicates the influence of frame i, 
and («', v') are the predicted image coordinates. For planar translation, they are given by 

u' 

v' 

u - fbxi( (6) 

V   -   fbyiC (7) 

Assuming the baselines (bxi, byi) are known a priori or else computed, one can proceed to estimate 
the inverse depths ( using Eqn (5) for all desired points in the frame. 

Our implementation of the multiple-baseline algorithm differs from Okutomi and Kanade's in 
several ways. First, adaptive neighborhood sizes for jV are employed to improve estimation in 
low-textured regions. The neighborhood is automatically adjusted according to the local variance 
of neighboring intensities [5]. Next, instead of normalizing the largest baseline to be 1, one of the 
shorter baselines is considered to have unity baseline. This feature permits wider baselines to be 
included without drastically increasing computational time. 

Because wider baselines may be used, occlusions in the scene will pose a larger problem in 
multiframe matching. The effects of occlusions are mitigated by the addition of <j{ in Eqn (5) [4]. 
For a given point in the reference frame, it is very likely that no corresponding point is visible in at 
least"one other frame of the sequence. Blindly including all frames in the minimization may lead 
to spurious results. One possibility is to examine the intensity errors associated with each frame 
i over the entire range of allowable (s and then set <rt- = 0 for the point if the error exceeds some 
predetermined threshold. In this manner, only the frames in which the point can be seen contribute 
to the minimization. 

The parameter Oi may also reduce matching problems along edges. When edges in a pair of 
images are oriented in the same direction as the motion (assuming planar translation), typical 
algorithms produce spurious matches due to the limited extent of the local neighborhood, the so- 
called aperture ambiguity problem. A very reasonable solution would be to ignore frames whose 
edges are oriented parallel to the direction of camera motion. 

2.3    View Synthesis 

Once a dense depth map has been computed using either pairwise or multiframe matching, it is 
relatively straightforward to warp the reference information to synthesize new views of the scene. 
The procedure consists of regarding the depth map as a deformable mesh of quadrilateral patches 
[5]. Vertices of each patch are warped by the appropriate transformation. For reconstruction of the 
original images, the transformation is simply 

u'   =   u + fbx/Z (8) 

v'   =   v+fby/Z (9) 



where / is the focal length, (bx,by) is the amount of planar translation, and Z is the depth corre- 
sponding to point (w, v). Alternatively, off-plane views may be obtained by using the transformation 

u    — 

v     = 

rlylX + rh2Y + rl>3Z + Ax 

rz,\X + r3>2Y + r3>3Z + Az 

r2,iX + r2,2y + r2ßZ + Ay 
r3,iX + r3i2y + r3j3Z + Az 

(10) 

(11) 

The interior is rendered using a traditional 2-D scan-line algorithm and Z-buffering to ensure the 
proper depth ordering [8]. Patches which transcend depth edges are not rendered since they may 
lead to "smearing" [5]. In the end, it is possible for the final image to contain "holes" which 
correspond to slight inaccuracies in the estimated depth or to regions unseen in the original frames. 

Figure 2: Example of synthesizing new view from a single reference pair: (a) intensity image frame 
35 of Mug; (b) corresponding depth map; and (c) synthesized view. The depth map is quantized to 
256 gray levels where the depth is inversely related to the brightness. Note that depth has also been 
histogram equalized to show the contrast between the object and the surrounding background. Holes 
shown in red correspond to regions that become uncovered. 

To illustrate this synthesis procedure, consider frame 35 from the Mug sequence in Section 3 
as shown in Figure 2 (a). Pairwise matching is performed between frame 35 and every one of its 
neighbors. The local depth maps are then combined to form Figure 2 (b). Figure 2 (c) is the result 
of warping every pixel according to its depth to synthesize a translated virtual camera. Notice 
how the motion parallax effect is preserved: Points closer to the camera appear to move more 
than those farther away. The red regions in the figure correspond to previously occluded points 
in the scene which become visible from the synthesized viewpoint. Note that there is insufficient 
information from a single reference intensity-depth pair to adequately fill in these regions. However, 
incorporating more information may reduce the size and number of these regions; this fact motivates 
the proposed representations in the following sections. 

3    View Interpolation 

It is clear from Section 2.3 that novel views of the scene may be synthesized quite accurately 
and easily from a single reference intensity-depth pair. Further improvements can be made by 
introducing a second or multiple reference pairs. Hence, our first proposed representation consists 
of employing multiple reference pairs. One may derive this representation using the techniques 
described in Section 2 in the following steps: 

1.  Compute dense depth for every reference frame. 
Assuming the reference frames have been chosen from the given image sequence(s), local 



depth maps are obtained using the pairwise techniques of Section 2.1. The local depth maps 
are normalized and combined to form an accurate dense map [1]. 

2. Estimate motion between reference frames. 
For reference frames related by planar translation, it is sufficient to estimate the motion 
parameters (bx,by) up to a scale factor using the least squares technique described in [5]. 

3. Discard neighboring frames to form representation. 
Notice that their use affects only the quality of the representation and not its compactness. 
The representation consists of the depth and intensity maps corresponding to the reference 
frames. 

4. Generate view estimates and combine to form desired view. 
To synthesize a desired view, the transformation in Section 2.3 may be separately applied 
to each reference intensity-depth pair to create view estimates. Information from one view 
estimate will likely fill in the holes of another view estimate, and thus the overall number of 
holes may be reduced by combining view estimates together. Hence, multiple reference pairs 
help to overcome problems of occlusion during synthesis. 

Figure 3: Reconstruction of horizontal view from reference frame 35 and 65 of Mug: (a) intensity 
image frame 65 of Mug; (b) corresponding depth map; (c) view estimate using only reference frame 
65; and (d) reconstructed view combining view estimates. 

Figure 4: Reconstruction of vertical view from reference frame 35 of Mug and frame 37 of Mug2: 
(a) intensity image frame 37 of Mug2; (b) corresponding depth map; and (c) reconstructed view. 

The above steps are applied to a real-world scene filmed by a camcorder undergoing unknown 
horizontal translation at two different elevations. The two sequences, known as Mug and Mug2, 
were digitized to 320 X 240 and subsampled temporally to obtain eighteen Mug frames and seven 



Mug2 frames. Three frames, frames 35 and 65 from Mug and frame 37 from Mug2, were chosen to 
serve as reference frames; Figures 2, 3, and 4 show these reference pairs, respectively. 

Using reference frames 35 and 65, the midpoint view along the same horizontal trajectory is 
chosen to be reconstructed. Using only reference frame 35 or 65 leads to the view estimates shown 
in Figure 2 (c) and Figure 3 (c), respectively. Since the holes in the view estimates do not overlap, 
one would expect improved results after combining the view estimates. As shown in Figure 3 (d), 
the combined result quality is good for the most part. The horizontal edges, e.g. top of the door, 
top of the mug, specularities in front of the stool, and the drawers, have been reconstructed quite 
well. The proposed approach takes care of problems in occluded regions; there are only a few errors 
to the right of the mug and near the mug handle. These artifacts arise because the depth edges 
were not localized perfectly. 

To generate a view not originally scanned by the camcorder, reference frames 35 and 37 are 
used to synthesize the midpoint on the vertical trajectory relating the two views; the result is 
given in Figure 4 (c). The image is a reasonable estimate of the desired view. As before, the most 
troublesome region in the image lies inside the handle of the mug. 
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Figure 5:   Examples of synthesized views using multiple reference frames:   (a) translation toward 
scene; (b) translation away from scene; and (c) arbitrary rotation and translation. 

More interesting views not necessarily confined to the x-y plane may be reconstructed with 
this representation. For instance, the viewpoint of a camera translated toward the scene can also 
be rendered quite easily; the resulting image is given in Figure 5 (a). Note that this view differs 
from a simple "zoom-in" since the latter requires only a larger focal length and it does not uncover 
occluded regions. The two regions above the stool are marked red because none of the reference 
frames has information about what lies behind the stool in the scene. Figure 5 (b) shows the view 
translated away from the scene with the uncovered regions marked accordingly. Finally, Figure 5 
(c) shows an oblique view of the scene taken by rotating the camera 10° clockwise and translating 
along both the x and z axes. The quality of the synthesized image is quite good given the amount 
of uncovered regions. 

4    Multivalued Representation 

In representing a 3-D scene, it is common for the images to be very similar and to exhibit a lot of 
redundancy. This fact is especially true when the images come from arbitrary translational motion 
in the x-y plane since the depth of scene points remains fixed in all the images. One possible compact 
representation for this case would involve remapping all visible information with respect to one 
particular frame. We thus consider exploiting the redundancy to form a multivalued representation 
(MVR) of depth and intensity. The MVR separates information into levels of occlusion and can 
easily handle points occluded from reference viewpoint. 
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Figure 6: Block diagram for the multivalued representation. 

To build a MVR from a set of images, one first selects a single frame, denoted as the primary 
reference frame or PRF, for which the representation is defined. As diagrammed in Figure 6, the 
following steps are then performed: 

1. Estimate motion parameters between PRF and each neighbor. 
Point correspondences are first established by the approach of Zhang, Deriche, et al. [16]. 
Since only relative motion may be estimated, one horizontal parameter is fixed to 1. The 
remaining motion parameters are estimated using least squares [5]. 

2. Calculate dense depth for PRF using multiframe algorithm. 
The depth map corresponding to the PRF is computed using all neighboring frames simulta- 
neously as described in Section 2.2. 

3. Compute depth for new information in other frames. 
The PRF depth may then be warped to each of its neighbors' coordinate system. The points 
that are unmapped in each frame correspond precisely to the "new" or previously occluded 
information in that frame compared to the PRF. A multiframe algorithm is then executed 
to estimate depth for all the new information regions. Notice that this method is faster than 
calculating dense depth with respect to every frame. 

4. Fit piecewise 3-D surfaces through depth maps. 
Clustering techniques are performed to segment regions of support in the depth domain [14]. 
Noisy depth estimates are then smoothed by fitting piecewise surfaces over the appropriate 
regions of support [11]. 

5. Merge and reduce data to produce final MVR. 
All of the new depth and intensity information are compensated back to the PRF by applying 
the inverse baselines. The depth map corresponding to the PRF is assigned to the first level 
of the MVR (level 0). Compensated points are added to the appropriate level by comparing 
existing points. 

The final result consists of a multivalued array of intensities and depths corresponding to the 
primary reference frame. Notice that the information contained in the MVR consists of the union 
of intensity and depth that can be extracted from the original image data. 

As before, we consider the Mug and Mug2 sequences, where only nine frames of Mug and four 
from Mug2 are used. Frame 50, shown in Figure 7 (a), is selected as the primary reference frame 
for the representation. Using the multiframe algorithm of Section 2.2 leads to the depth map found 
in Figure 7 (b). Notice the accuracy of the estimated depths especially the descending walls. The 
synthesis techniques of Section 2.3 may be applied to this depth map to obtain an estimate of, 
say, frame 21.  If this view estimate is compared with the original image (see Figure 7 (c)), one 



Figure 7: Example of estimating new information: (a) intensity PRF 50 of Mug; (b) depth PRF 
50; (c) intensity frame 21 of Mug; and (d) new information in frame 21 wrt frame 50. As expected, 
the algorithm identifies the cubicle located behind the mug as well as the right border of the image, 
both obscured from view in frame 50. 

can easily extract the new information contained in frame 21 with respect to the PRF as shown in 
Figure 7 (d). 

Applying the above algorithm, dense depth corresponding to the points visible from the PRF 
as well as points occluded in this frame are recovered. The intensity and depth information in level 
0 are shown in Figures 8 (a) and (b). Points shown in blue correspond to regions without intensity 
and depth. The shape of the mug and the stool have been recovered quite well. Notice that the 
left and right sides descend in depth as expected. Also, the dimensions of the original image have 
been expanded and the points seen along the borders have been recovered. Even the legs of the 
stool have been extended. 
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Figure 8: Recovered information for level 0 of the MVR: (a) intensity and (b) depth. The depth 
is quantized to 256 gray levels where the depth is inversely related to the brightness. Note that 
depth has also been histogram equalized to show the contrast between the object and the surrounding 
background. 

Figures 9 (a) and (b) show the recovered information in the second level of the MVR. Most 
of the information corresponds to points that are located behind the mug. The cubicle and the 
wall are both recovered from behind the mug since they were seen in some of the original images. 
Moreover, the ground obscured by the stool is revealed in this level. By filling in points from level 
0 as in Figure 10, it appears that the mug and most of the stool have been removed. Notice that 
the bottom portion of the legs and part of the stool remain since the regions behind them were 
occluded in the original images. 

The reconstruction techniques of Section 2.3 are applied to generate the original images. As an 
example, Frame 21 has been reconstructed in Figure 11 (a). Notice that the reconstructed quality 
is quite good. Similar quality is obtained in the other reconstructed images as seen in Figures 11 
(b)-(d). The average PSNR for reconstructed images is 30.707 dB. 
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Figure 9: Recovered information for level 1 of the MVR: (a) intensity and (b) depth. The cubicle 
located behind the mug was recovered in both intensity and depth domains. Also the wall behind the 
mug handle and the floor behind the stool are revealed. 

Figure 10: Points from level 1 are combined with points from level 0 to put the representation in 
context. 

Synthesized views of the scene may be generated in a similar manner. Translations toward and 
away from the scene are given in Figures 12 (a) and (b), respectively. Figures 12 (c) and (d) show 
the virtual camera undergoing arbitrary motion. Despite an increase in the number of artifacts for 
these views, the resulting images are reasonable and provide a convincing sense of depth. 

5    Discussion and Future Work 

We have proposed two depth-based representations to address the problem of compact represen- 
tation for image reconstruction and new view synthesis. The results from previous sections verify 
the effectiveness of both approaches. In the first case, multiple reference intensity-depth pairs serve 
as the representation. They provides an intuitive method for compressing and representing the 
information in a given image set while allowing for the generation of novel viewpoints of the scene. 

Figure 11: Examples of reconstructed views using MVR: (a) frame 21; (a) frame 37; (a) frame 40; 
and (d) frame 80. 
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Figure 12: Examples of synthesized views using MVR: (a) translation toward scene; (b) translation 
away from scene; (c) and (d) arbitrary rotation and translation. 

The use of multiple reference frames leads to improved results especially in uncovered regions. 
The second representation redefines the available information with respect to a single multival- 

ued array of depth and intensity. Because of its similarity to layered representations, it accumulates 
information seen in the union of frames as well as minimizes the redundancy of the overall rep- 
resentation. However, it can also lead to the generation of new views and handle more complex 
shapes than modeled by 2-D affine motion. Since it is primarily a depth-based representation, it is 
also capable of overcoming problems of occlusion during synthesis. A multiframe depth estimation 
algorithm has been shown to be effective in incorporating all frames simultaneously to estimate 
depth. 

We are currently exploring several extensions to these depth-based representations. One obvious 
extension is to remove the planar translation restriction and allow arbitrary camera motion. We also 
plan to improve techniques for clustering and surface modeling, especially in the hope of further 
compacting the representation. Finally, we will examine issues involved in virtual environment 
applications (e.g. flyarounds and flythroughs). 
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