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ABSTRACT 

Echosounders are widely used in the remote detection and classification of marine organisms such 
as Zooplankton. In order to interpret the data, accurate acoustic scattering models must be used. 
Zooplankton present a formidable challenge when attempting to describe their scattering properties. 
These animals come in many sizes, shapes, and material properties. The animals can be divided into 
several major categories of gross anatomical groupings — fluid-like or weak scatterers, bodies with 
gas-inclusions, and fluid-filled elastic shelled bodies. Approximate models according to the different 
shapes and boundary conditions have been developed for these anotomical types. 

INTRODUCTION 

There is a wide body of literature describing the scattering of sound by objects [1,2]. The work has 
almost exclusively involved simple objects such as spheres, and infinitely long cylinders although there 
has been some work involving more complicated bodies such as prolate spheroids and finite cylinders. 
When attempting to describe the scattering of sound by Zooplankton, the models involving idealized 
objects only have some utility in that they provide much intuition regarding the dominant scattering 
mechanisms. However, because of the great irregularity of the animals' boundaries and nonuniformity 
of their material properties, extensive research has been required in order to accurately describe the 
scattering by the animals. In particular, approximate models have been derived based, in part, on 
existing models involving idealized objects as well as laboratory scattering measurements [3-12]. 

SHAPE AND MATERIAL PROPERTY CONSIDERATIONS 

The great challenge one has in modeling the scattering of sound by Zooplankton is illustrated by 
the diversity of plankton (Fig. 1). The animals come in many sizes, shapes, and material properties. 
Because there are many thousands of species of the animals, it would be impossible to study the 
animals on a species by species basis. Hence, we have categorized the animals into several classes of 
gross anatomical features: fluid-like or weak scatterers, animals with gas inclusions, and fluid-filled 
elastic shelled animals. Furthermore, the shape has a profound effect on the scattering. Hence, another 
set of categories involves the shapes of spheres, finite length cylinders (straight and bent), and prolate 
spheroids. Our analyses to date have involved many combinations of both boundary condition and 
shape [3-12]. 
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APPROXIMATE SCATTERING MODELS 

We are investigating the scattering due to one realization of the animal (i.e. one echo for a given 
size, shape, and angle of orientation) as well as averages over those same parameters. The following 
summarizes research investigating the scattering due to a single realization of each type of animal 
which best illustrates the basic dominant scattering mechanisms. All results are given in terms of the 
scattering amplitude /, acoustic wavenumber k (= 2K/A where A is the wavelength), and cylindrical 
or spherical radius a. 

The krill (a shrimp-like animal) and salp both fall into the same category as being bent finite-length 
weakly scattering cylinders. The scattering has been shown, at least for the shrimp-like animals, to 
be dominated by contributions from echoes from the front and back interfaces of each body [10,11]: 

/  ~   l,/^B:n12e-
i2ka(l-T12T21e

i4kaeifi^)    ,      ka ^ 0.1 

where pc is the radius of curvature of the cylinder axis, 7^i2 is the reflection coefficient for the front 
interface, T\2 and T2\ are transmission coefficients, and fj, is an empirically derived coefficient that 
extends the usefulness of this ray-based formula down to about ka ~ 0.1. The "1" term in the 
parentheses represents the echo from the front interface while the T\2 ... term corresponds to the back 
interface. 

The siphonophore is mostly fluid-like but with at least one small gas inclusion near one end. 
Assuming that the gas dominates the scattering, the following simple approximate equation is used 
that describes the scattering by a single gas bubble [5,12]: 

a(ka)2arsG* 
f  ~ — r    ,      all ka 

(1 + maYals}/{n\2F)Y 

where a^s is a term containing relative mass density and speed of sound, and G and F are empirically 
determined terms to describe the shape of the curve near resonance. Phase shifts were ignored in this 
all ka expression. 

The gastropod (a small snail) is a fluid-filled elastic shelled body with an overall exterior that is 
more spherical than elongated (less than 2:1 ratio of length to width). To a first approximation, the 
animal is modeled as being a fluid-filled elastic shelled sphere. For this animal, data indicate that 
the scattering is dominated by the reflection from the front interface and the (subsonic) zero order 
(antisymmetric) Lamb wave. A simple ray-based equation that can be used to describe the scattering 
is [1]: 

f   ~   \n12ae-'2ka  -   \UL     2  .    .2  .   C. ,       ka » 1 

where GL is a coupling coefficient between the external field and the Lamb wave, 6L is the "launching" 
angle of the Lamb wave, ßi, is the attenuation coefficient of the wave, and c and c^ are the speeds 
of the external field and Lamb wave, respectively. The first term containing 1ZX2 represents reflection 
from the front interface (note that Ref. 1 contains a more general expression involving the thickness 
resonance). The second term containing GL represents contributions from the many zero order Lamb 
waves that have circumnavigated the body 1,2,3... times. 

CONCLUSIONS 

Modeling the scattering of sound by Zooplankton is a tremendous challenge due to their complex 
shapes and boundary conditions. Our laboratory data has provided much insight into what are the 
dominant scattering mechanisms for the different animals. Hence, we have been successful in describing 
the scattering by certain fluid-like, gas-bearing, and elastic shelled animals. Additional work is needed 
to extend these models to include other kinds of plankton. 
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Figure 1. Various important Zooplankton found in the sea.  These fall into the major acoustic cate- 
gories of fluid-like, fluid-filled elastic shell, and gas-bearing. 


