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Abstract 

We describe the goals, architecture, and functioning of the TRAINS-93 system, with 
emphasis on the representational issues involved in putting together a complex language 
processing and reasoning agent. The system is intended as an experimental prototype of an 
intelligent, conversationally proficient planning advisor in a dynamic domain of cargo trains 
and factories. For this team effort, our strategy at the outset was to let the designers of the 
various language processing, discourse processing, plan reasoning, execution and monitoring 
modules choose whatever representations seemed best suited for their tasks, but with the 
constraint that all should strive for principled, general approaches. 

Disparities between modules were bridged by careful design of the interfaces, based on 
regular in-depth discussion of issues encountered by the participants. Because of the goal of 
generality and principled representation, the multiple representations ended up with a good 
deal in common (for instance, the use of explicit event variables and the ability to refer to 
complex abstract objects such as plans); and future unifications seem quite possible. We 
explain some of the goals and particulars of the KRs used, evaluate the extent to which 
they served their purposes, and point out some of the tensions between representations that 
needed to be resolved. On the whole, we found that using very expressive representations 
minimized the tensions, since it is easier to extract what one needs from an elaborate 
representation retaining all semantic nuances, than to make up for lost information. 
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1     Introduction 

TRAINS is a long-term research project aimed at developing an intelligent, conversationally 
proficient planning assistant. The task domain for the initial phases of the project involved 
the use of factories and cargo trains to achieve given delivery goals, such as the delivery of 
some quantity of orange juice to particular cities, using orange juice factories and orange 
warehouses at other cities in a railroad network. We have built a prototype system at 
the end of each of the first 5 years of the project. Each year's effort, except for the most 
recent (TRAINS-95), was centered around one or two particular problem solving dialogues, 
obtained by slightly editing transcripts selected from a corpus of human-human spoken 
dialogues involving TRMNS-world problems. An overview of the TRAINS project up to 1994 
appears in [Allen et al., 1995b]. 

In the present paper we focus on the interactions between the language understanding 
components and reasoning components in TRAINS-93, which allows the TRAINS modules 
to work together in an incremental, cooperative planning process. The nature of these 
interactions depends crucially on the nature of the knowledge representations used within 
the interacting modules. Thus much of the paper will be devoted to explaining the rationales 
for the various representations, the way in which inter-module communication in TRAINS-93 

bridges the gaps between the representations, and the advantages as well as the remaining 
tensions associated with this architecture. 

The heterogeneous architecture of TRAINS-93 is a consequence of the project goals and 
our research philosophy. Our primary goal was, and remains, to gain a deeper understand- 
ing of the relationship between NL dialogue and problem solving, how each informs and 
constrains the other. How, we ask, is dialogue shaped by the need to solve realistic prob- 
lems involving significant amounts of world knowledge? And conversely, how is cooperative 
problem-solving shaped by the availability of and necessity for linguistic interaction? 

In addition, the TRAINS project is intended to serve certain "research management" 
objectives. It provides a setting in which researchers on different facets of NLP and problem 
solving can confront the interface issues and work out a common, integrated, comprehensive 
view of problem solving dialogues, as opposed to working independently on just a few 
selected problems of theoretical interest. Finally, we are committed to the practical goal 
of building a series of working and integrated prototype systems, as a way of keeping the 
theoretical efforts focused and earth-bound. While these systems are not ends in themselves, 
they are intended as steps toward a conversationally proficient, intelligent planning assistant 
for dynamic task domains. 

As indicated in our opening remarks, our methodology has been to undertake a se- 
ries of joint efforts centered around specific, increasingly complex and realistic dialogues. 
By drawing these dialogues from a corpus of natural spoken dialogues between people, we 
ensure that our theories will apply to actual discourse, and that our systems will show 
increasingly "life-like" behavior.  However, we would not be satisfied with ad hoc theories 



and techniques that happen to work in the TRAINS domain. We are interested in principled, 
general solutions that will apply to entirely different and potentially richer task domains. 
Given this emphasis on generality, it was important to let individual researchers bring to 
bear whatever representational theories and techniques seemed to them most promising 
for their subproblem. In this, our system differs from the SOAR project [Lehman et al., 
1991] which is similar in its aims to build an integrated, multi-functional, language-using 
agent. The SOAR project uses a common knowledge representation and inference mech- 
anism throughout. We decided, instead, to seek integration through careful consideration 
of interface and control issues, rather than insisting on a uniform representation from the 
outset; efforts on individual modules are kept "honest" by the need to interact with other 
modules in a straightforward way. 

The rest of the paper is organized as follows. In the next section we present an overview 
of the TRAINS domain and the modules of the TRAINS-93 system. Section 3 describes the 
knowledge requirements of various aspects of the system. Next we present an overview 
of the KR languages used in the system, in Section 4, followed by a trace of the system 
working on a small dialogue fragment, in Section 5. We continue with a discussion of how 
the different languages are related and some of the obstacles to unification of the ontologies 
inherent in the different KR systems, and conclude with an evaluation of the state of the 
system and future directions. 

2    The TRAINS-93 System 

In this section we briefly describe the domain and architecture of the TRAINS-93 system, in 
order to provide a concrete foundation for the specific discussion of the knowledge repre- 
sentation and reasoning issues in the rest of the paper. More details on the system itself, 
and rationales for choosing the domain can be found in [Allen et al., 1995b]. 

2.1     The TRAINS Domain 

The TRAINS-93 system helps a user construct and monitor plans about a railroad freight 
system. The user is responsible for assigning cargo to trains, scheduling cargo shipments 
and various simple manufacturing tasks, and for revising the original plans when unexpected 
situations arise during plan execution. Neither system nor user directly executes the actions 
in the TRAINS domain. Rather, the actions are performed by the simulated railroad engineers 
and factory and station supervisors. Dialogue is encouraged by giving the user and the 
system different responsibilities and knowledge. The user is given the goals that need to be 
achieved but does not have direct access to the agents in the world or complete knowledge 
about the actions that can be performed. The system acts as the user's assistant. It knows 
what actions are possible, and provides the communication link to the world. It interacts 
with the user about all aspects of the task, using a natural language interface. The only 
information that they initially share is a map of the current TRAINS scenario, as shown in 
Figure 1. The world consists of five cities, each of which contains a rail station that contains 
engines and rail cars as indicated.   Some cities also contain warehouses containing goods 



lEngine Elj 

/Banana   ^ 
vWarehousy 

Boxcar 

Tanker Car 

Boxcar 

Boxcar 

1 Engine E2| 

lEngine E3l 

[03 Factory) 

Figure 1: A TRAINS-world Map 

(e.g., there are bananas at Avon and oranges at Corning), and factories (e.g., Elmira has 
an orange juice factory that converts oranges to orange juice). 

Our research has been strongly motivated by studying actual human performance in 
these situations. We have collected over eight hours of human-human dialogue1 in the 
TRAINS domain [Gross et al., 1993; Heeman and Allen, 1994b], and have used this data to 
gain insight into both how people collaborate to form plans and how language is actually 
used to construct and discuss joint plans. This type of analysis is crucial for identifying 
what problems actually arise in dialogue, and helps us avoid working on issues that might 
seem interesting in the abstract, but do not occur in practice. 

Figure 2 shows the target dialogue for the TRAINS-93 implementation. The dialogue 
concerns the TRAINS world situation given in Figure 1, with the goal, as stated in the first 
utterance, of shipping a boxcar of oranges to Bath. This dialogue is a simplified version of 
one of the human-human dialogues from our corpus.2 The simplifications include deletions 
of disfluencies, elimination of some difficult interactions (e.g., elimination of a difficult repair 
subdialogue in turns 9 to 13), and merging of separate prosodic phrases into full sentential 
utterances (e.g., 3.3-3.6 merges the third to sixth prosodic phrases of the third turn in the 
original spoken dialogue into one complete sentential utterance). The labeling scheme here 
thus maintains a correspondence to the <turn>.<utterance> numbering of the original, 
despite the simplifications. 

This dialogue was chosen as a point of common ground for integrating and testing the 

JIn which a person fills the role of the system. 
2d91-6.1 in [Gross et al., 1993]. 



1 U: We better ship a boxcar of oranges to Bath by 8 AM. 
2 S : Okay. 
3.3-3.6 U: So we need to get a boxcar to Corning where there are oranges. 
3.7 U: There are oranges at Corning. 
3.8 U: Right? 
4 S: Right. 
5.1 U: So we need an engine to move the boxcar. 
5.2 U: Right? 
6 S : Right. 
7.1-7.2 U: So there's an engine at Avon. 
7.3 U: Right? 
8 S : Right. 
9-13 U: So we should move the engine at Avon, engine El, to Dansville to pick up the boxcar 

there. 
14 S : Okay. 
15.2-15.4 U: And move it from Dansville to Corning. 
15.5-15.7 U: Load up some oranges into the boxcar. 
15.8-15.10 U: And then move it on to Bath. 
16 S : Okay. 
17 U: How does that sound? 
18.3 S : That's no problem. 
19 U: Good.  

Figure 2: The dialogue processed by TRAINS-93. 

different components of the system together since it places most of the processing burden on 
the language understanding, knowledge representation, and plan-recognition components, 
while requiring only simplistic NL generation to achieve the desired system responses. The 
TRAINS-93 implementation can engage in the dialogue in Figure 2 with a user typing into 
the keyboard. The system interprets and evaluates the user's utterances and produces 
appropriate responses, while maintaining the dialogue context and building a representation 
of the shared plan which can be sent to a TRAINS world simulator and executed. Section 5 
shows an annotated trace of some of the representations produced as the system processed 
turns y and 8 of the dialogue in Figure 2. 

2.2     The TRAINS-93 System Architecture 

Figure 3 shows the modules of the TRAINS-93 implementation, as well as the main flow of 
communication between modules. Also shown are the representation languages used by the 
modules. These languages will be discussed in section 4. 

As the figure indicates, the language interpretation modules are tightly integrated with 
the task modules for domain planning and plan execution. Granularity of interleaving in 
the implementation is at the sentential utterance level. Each utterance (from either the 
user or the system) is processed by all the modules up to the dialogue manager (which 
calls the domain reasoner to disambiguate hypotheses about meaning and to update the 
representation of the current plan). Information from the planner can also be used as a basis 
for forming NL responses, e.g., acceptances, rejections, or repairs of plan-based suggestions. 
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Figure 3: TRAINS-93 System Architecture 

When a complete plan has been built and is believed to be shared by the conversants, this 
can be sent to the executor and monitor to be executed in the simulated world. 

Parsing and Logical Form Computation 

The first module in the interpretation process is a parser which takes an utterance as input 
and produces a syntactic analysis together with an underspecified logical form (ULF), al- 
lowing for scopal and referential ambiguities. We use a GPSG style grammar [Gazdar et al., 
1985] that makes extensive use of a feature system including subcategorization features and 
several feature principles governing feature percolation. Each rule in the grammar consists 
of a syntactic rule coupled with a corresponding semantic rule. This allows us to build the 
interpretation compositionally in the sense of Montague's semantics [Montague, 1973]. The 
parser is a chart parser which uses probabilities gathered from the TRAINS corpus to choose 
which arc to expand next. 

A lexicon consisting of syntactic features and semantic expressions for 700 stems was 



constructed by hand. In addition, the Alvey lexicon (60,000 stems) and morphological 
analyzer (Kimmo-based segmenter combined with a unification-based chart parser) [Ritchie 
et al., 1992] were integrated with the TRAINS sentence-level parser. However, the Alvey 
lexicon does not contain the fine-grained semantic information needed by the TRAINS system 
and thus was only useful for its syntactic features which were mapped straightforwardly onto 

the TRAINS syntactic features. 

Scoping and Deindexing 

The task of the Scoping and Deindexing module, SAD-93, is to 'deindex' (i.e., fix the value 
of) context-dependent aspects of an utterance's content such as referential expressions. The 

input to SAD-93 is the underspecified representation produced by the parser. The output is 
a set of alternative hypotheses about how to resolve the ambiguities that are suggested in 

the given context. 

SAD-93 arrives at a hypothesis by applying discourse interpretation rules with varying 
strength, all of which operate directly off the underspecified interpretation. The decision 
to integrate scope interpretation with other aspects of pragmatic interpretation reflects the 
thesis put forth in [Poesio, 1994] that the scoping preferences of human subjects result from 
the interaction of several discourse interpretation processes. 

Speech Act Analysis 

The speech act interpreter is responsible for determining what the speaker means by her 
utterance. For instance, when a speaker utters "there are oranges at Corning" (as in 
utterance 3.7 in the conversation presented in Figure 2), she might be saying this to inform 
the hearer of this fact, to check whether the hearer agrees with this, to question the hearer 
about whether this is the case, or as a suggestion to use the oranges in the current plan. 
These alternatives are not all mutually exclusive. The speech act interpreter builds a list 
of hypotheses about the speech act interpretations of an utterance. 

Rather than working from fully scoped and deindexed forms, the speech act analyzer, 
like the Scoper and Deindexer, takes the ULF as its input. After both the speech act 
analysis and scoping and deindexing are completed, the result of scoping and deindexing 
is incorporated into the speech act hypotheses, which is then passed on to the dialogue 

manager for verification. 

Dialogue Management 

The dialogue manager is responsible for maintaining the flow of conversation and making 
sure that the conversational goals are met. For this system, the main goal is to construct 

and agree upon a plan with the user, and then to execute it. 

The dialogue manager must keep track of the user's current understanding of the state 
of the dialogue, verify the hypotheses about intentions that motivate utterances of the user, 
adopt intentions (in the form of speech acts) to respond, send these intended speech acts 
to the NL generator to produce system utterances, and send commands to the domain plan 



reasoner and domain plan executor when appropriate. The dialogue manager is described 
in more detail in [Traum and Allen, 1994; Traum, 1994]. 

Domain Plan Reasoning 

The plan reasoner provides planning and plan recognition services and performs reasoning 
about the state of the world. The system must explicitly represent the plan(s) under 
consideration, since many of the user's utterances concern contributions to the current plan. 
In our framework, representations of plans contain explicit statements of what the goals of 
the plan are and, importantly, the assumptions underlying the plan. Assumptions must be 
made both during plan recognition (to fill in details left unspecified by the user but necessary 
to connect the current utterance to the plan) and during planning (for example, persistence 
assumptions). Since these assumptions often drive the dialogue, we have investigated an 
explicit representation of plans as arguments based on assumptions [Ferguson, 1995]. 

The TRAINS plan reasoner supports interleaved planning and recognition (as necessary 
in processing dialogue), and exports a variety of functions to other modules of the system, 
in particular the dialogue manager. The dialogue manager uses the results of plan reasoning 
to disambiguate speech act interpretations, update beliefs, and generate new conversational 
elements (e.g., an ambiguity detected by the plan reasoner could cause a clarification sub- 
dialogue to be started). 

NL Generation 

The NL Generator takes speech act representations produced by the dialogue manager and 
converts them to natural language text which is then "uttered" as output to the user (and 
fed back through the language analysis modules, as described in Section 5). As NL Gener- 
ation was not a research focus of the project, a very simple template matcher was used to 
produce utterances from the speech act forms, without regard to some of the more complex 
generation issues (such as the sequencing of information for presentation, the use of detailed 
knowledge of syntax and the correspondence between syntax and semantic representation, 
rhetorical style, or choice of the most appropriate referring expression, etc.). 

Plan Execution 

The plan executor implements domain plans by sending requests to individual agents (engi- 
neers, factory and warehouse attendants) in the simulated world. It selects a set of requests 
by reasoning about the possible consequences of the actions that agents will perform in 
satisfying the requests. 

The plan executor also monitors the progress of the plan by communicating with these 
agents as they perform their tasks, gathering information so it can make better choices 
when executing subsequent plans. It bases its decisions on constraints on probabilities that 
are inferred from observations, from probabilities asserted by the programmer, and from 
facts inferred from its knowledge base. The principles behind the executor's operation are 
described in more detail in [Martin, 1993]. 

7 



The plan executor can also perform two additional services for other modules. It can aid 
the planning process by making choices among a set of alternatives (e.g., choosing which 
among a set of alternative paths to take between destinations), and it can monitor and 
report the current state of the world. 

TRAINS World Simulation 

The TRAINS world is a detailed simulation of action executions by agents on world objects. 
It is used for plan execution and monitoring (since, as far as the system is concerned, it 
is the real world). The intentions of the system have no direct bearing on the behavior of 
the world. Actions will take place regardless of the system's goals. The world implements 
a dynamic physical model which is not accessible by the system. The only way the system 
can effect change in the world is by sending directives to the agents in the world — i.e., 

the engineers, factory managers, etc. If they receive the messages (some may be lost), 
they execute the requested actions. These actions may or may not have the consequences 

anticipated. 

3     Knowledge Requirements of Problem-Solving Dialogues 

To engage in the TRAINS task and participate in a dialogue like that shown in Figure 2, 
a system must reason about a number of different types of knowledge. Separate research 
traditions involving different subtasks have led to (sometimes very) different ontologies and 
representations. An obvious split is between language interpretation tasks, in which the 
representation language must be rich enough to represent the nuances present in natural 
language, and domain or plan reasoning tasks, in which a representation closer to the 
ontology of action in the domain is desired. There are, however, separate research traditions 

even within these two areas. 

On the language processing side, there is often a split between more semantically ori- 
ented representations, which focus on the truth-functional nature of a sentence given a 
model, and more pragmatically oriented representations which focus on how the utterance 
in context affects the conversing agents. On the task side, there is also a tension between 
the representations most convenient for finding efficient plans, talking about them with an- 
other agent, and executing them in the world. In the rest of this section, we describe some 
of these divergent representational requirements that must be addressed within the scope 
of a system designed to perform the TRAINS task. In Section 4, we show how these issues 
are addressed by the actual KR languages, some of which are exemplified in the trace in 
the following section. Then in Section 6, we return to the conflicting assumptions in the 
different research traditions and show the connections and some of the differences between 
the languages and why it would have been difficult to start out with a single representation 

language. 



3.1     Knowledge of Language 

When dialogues with a natural language system are limited to some narrow task domain, 
the form and content of utterances tend to be equally limited. In such a setting it is often 
possible to achieve a semblance of understanding through ad hoc rules that shortcut serious 
syntactic and semantic analysis, going more or less directly from domain-specific clue words 
and patterns to domain-specific meanings and intentions. 

Since the TRAINS task domain is quite narrow, such shortcut methods could certainly 
be employed to achieve short-term performance goals (and indeed we are interested in 
integrating such methods with more general ones). However, as stated at the outset, our goal 
in TRAINS-93 was to handle language in a way that would be defensible for any conversational 
domain, even those far richer and varied than the TRAINS domain. In other words, the 
approach should in principle be extensible to "full understanding", with full use of all 
available syntactic, semantic, and world knowledge to interpret and respond to inputs. 
In fact, we took as our working hypothesis that the techniques and representations we had 
previously developed for understanding narratives (including children's stories) should carry 
over into the TRAINS domain. 

The requirement with respect to syntax is that the chosen syntactic framework be do- 
main independent and (potentially) comprehensive, and in a form that facilitates the syntax- 
semantics mapping. Also, an important requirement is the design of a feature system that 
is helpful in systematically minimizing syntactic ambiguity, for instance filtering out syn- 
tactically inappropriate PP attachments (such as attachment of to Corning to need in We 
need to get a boxcar of oranges to Corning). 

Semantic interpretation is decidedly the most challenging aspect of building a NL mod- 
ule, in terms of the representational and interface issues raised. To achieve generality and 
extensibility, we naturally looked to formal linguistic semantics for theoretical foundations. 
Thus Montague semantics, situation semantics, and discourse representation theory pro- 
vided important building blocks. However, any given linguistic semantic theory (with the 
exception of Montagovian ones) generally employs some formalism with limited expres- 
siveness, neglecting many semantic phenomena encountered in even the most mundane 
dialogues. As well, each theory tends to provide only fragmentary details about the map- 
ping from surface form to the formal meaning representation, so that it is hard to tell 
whether the theory could be extended to a realistic grammar with broad syntactic and se- 
mantic coverage, with a reasonably simple transduction from surface form to the meaning 
representation, and with an approach to the problems of context and indexicality. 

By contrast, our computational goals require that we be able to derive semantic rep- 
resentations for anything the user might reasonably say, within a single, comprehensive 
framework. Thus expressiveness and ease of transduction are crucial. The two issues are 
related: if we can devise a representation that closely matches the expressiveness of ordi- 
nary language, in terms of the available vocabulary of concepts and the permissible ways of 
combining these into complex types, then it should also be relatively simple to derive the 
representations of utterances. These considerations can be restated in terms of the following 
three general requirements for a semantic representation language, which we have striven 
to meet in designing the target EL representation (described below in Section 4.1): 



expressive adequacy: the language should be powerful enough to allow us to represent 
the most common constructs and semantic nuances in naturally occurring sentences. 
Among other things, this includes tense operators (past and present), aspect (perfect 
and progressive), various kinds of adverbials, including manner adverbials (e.g., "using 
engine E3"), purpose clauses (e.g., "to pick up the boxcar"), predicate modifiers (e.g., 
"almost finished," "very good," "looks difficult"), kinds of actions and events (e.g., 
the kind of action "to get a boxcar", referred to in "we need to get a boxcar" - see turn 
3 in Figure 2), kinds of natural objects (e.g., "we need oranges"), modals (e.g., "need 
to," "should," "had better"), and other intensional verbs including creation verbs 
(e.g., "make OJ"). A further requirement in the initial stages of interpretation is to 
allow for underspecified representations, i.e., logical forms that remain noncommittal 
about the scopes of certain operators (such as quantifiers and tense operators) and 

about the referents of referring expressions such as pronouns. 

derivational adequacy: the language should support a simple, systematic derivation of 
meaning representations from English surface structures. 

semantic adequacy: the meaning of the language itself should be precisely defined, i.e., 
it should have a denotational semantics. This requirement is met by the linguistic 
semantic formalisms that were our starting point, but is all too easily lost sight of when 
one devises extensions to deal with the semantic complexities of real discourse. Yet 
semantic adequacy is crucial for ensuring representational coherence (in the sense that 
the symbols we use in the meaning representations be capable of consistently carrying 
the meaning we intend them to carry), and for supporting the desired inferences. 

3.2     Conversation Structure 

In order to carry on a coherent conversation, in addition to the representation of the se- 
mantics of sentences, the system must be able to represent the context of conversation and 
how that context is dynamically updated during the conversation. This context consists 
not just of the content expressed in the utterances, but of structured information about the 
interaction, as well. The relevant structure which must be maintained to understand and 
participate felicitously in conversation includes the following: 

discourse segments: Attentional focusing structure [Grosz and Sidner, 1986] is useful for 
a variety of purposes in linguistic interpretation and generation, including the ability 
to determine the possible referents for a referring expression and the intentional rela- 
tions between utterances. Discourse segmentation structure, particularly the notions 
of focus and accessibility, will guide how certain utterances will be interpreted. Ut- 
terances like "yes" can be seen as an acceptance or confirmation of the most recent 
unanswered question, if one exists in a discourse segment that is still open. Certain 
utterances such as "by the way", or "anyway", or "let's go back to" or "let's talk 
about" will signal a shift in segments, while other phenomena such as clarifications 
will signal changes in the structure by their information content. 

10 



intentional structure: A related structure (also described in [Grosz and Sidner, 1986]) 
has to do with why the speakers are engaging in the particular subdialogues - how 
the subdialogues relate to the overall purposes of the conversation. For task-oriented 
conversations, the nature of the task often has a strong bearing on the intentional 
structure of the dialogue about the task. 

grounding: The participants must track their state of mutual understanding of what has 
been communicated. This involves both performance and recognition of acknowledg- 
ments, and repairs, when necessary [Clark, 1992]. 

turn-taking: The notion of who has the turn is important in deciding whether to wait for 
the other agent to speak, or whether to formulate an utterance. It will also shape the 
type of utterance that will be made, e.g., whether to use some kind of interrupting form 
or not. Turn-taking is also influenced by the overall initiative (or Control [Walker and 
Whittaker, 1990]), which is often related to the intentional structure. In the TRAINS 
domain, the initiative is shared, with different participants holding it at different 
points in the conversation. In the initial phase, the user has the initiative while the 
task is conveyed. In the main part of the conversation - the construction of the plan 
- the initiative can lie with either party, though it generally remains with the user. In 
the final phase, verifying successful completion of the problem, the initiative belongs 
with the system. 

rhetorical: There is also often a local structuring of utterances into standard subdialogue 
types. Examples include pairs like questions and answers, suggestions and accep- 
tances, as well as summaries and lists. This kind of structure is variously called 
rhetorical [Mann and Thompson, 1987], exchange [Sinclair and Coulthard, 1975], ad- 
jacency pair [Schegloff and Sacks, 1973], or dialogue games [Mann, 1988]. While this 
type of structure is somewhat similar to the intentional level, above, they are not 
identical, since the same rhetorical patterns may be used for a variety of purposes, yet 
expectations and obligations to respond appropriately within the particular dialogue 

game remains the same, regardless of underlying intentions. The precise nature of 
this type of structure and its relations to other types is still fairly controversial as can 
be seen in by the contributions in [Rambow, 1993]. 

situations: Non-linguistic information relevant for conversation is structured into coherent 
bundles or situations. Some of the situations that are relevant for the TRAINS task 
include: 

the discourse situation: the speaker and hearer together with their utterances and 
other actions, as well as aspects of their mental states, described in the following 
section. 

the map situation: what the user knows about the initial conditions of the world 
from the TRAINS map, shown in Figure 1. 

plan situations: updates of the map situation representing what would be the case 
in the future, if particular plans are performed. 
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3.3 Mental State 

In order to participate fully in the conversation, the system needs to represent certain 
aspects of both its own and its partner's mental state. In particular, the system must 
represent at least the following aspects of mental state. 

beliefs: In addition to representing its own beliefs about the state of the world, the system 
must represent its beliefs about the user's beliefs in order to interpret the user's 
utterances. It must also represent mutual beliefs so that it can track the grounding 

process. 

goals: The system needs to keep track of what goals it hopes to achieve to achieve by 
participating in the conversation. These will lead to adoption of specific intentions 

and performance of actions. 

plans: The system must represent different views of plans, including: plans it has developed 
itself via planning, proposals by itself and the user, and mutually agreed-upon (or 
shared) plans. The distinctions are important for the system to respond appropriately 
in order to achieve the final goal of an executable shared plan, (e.g., proposing an 
addition to the plan, or accepting or rejecting a prior suggestion). 

intentions: The intentions of the system help guide the future behavior of the system, 
generally constraining future planning to fit within the context of prior intention. 
[Bratman, 1987] describes in detail some of the ways that intentions will help guide 
and constrain an agents future deliberation. 

obligations: Obligations are actions that an agent should perform, according to external 
norms. They are different in kind from goals or intentions, though a well-behaved 
agent will choose to meet its obligations, and in fact there is generally a social cost for 
not meeting obligations which may encourage a purely strategic agent to endeavor to 
meet them. In a conversational setting, an accepted offer or a promise will incur an 

obligation. Also a request or command by the other party will bring an obligation to 
perform or address the requested action. Discourse obligations are discussed further 

in [Traum and Allen, 1994]. 

While some of these attitudes might be represented only implicitly in the control struc- 
ture of a dialogue system, a declarative representation will help in diagnosing and repairing 
problems that come up in the interaction, as well as allowing a flexible initiative strategy 
{e.g., placing more or less importance on obligations or goals at different times in the con- 
versation). Goals and obligations are also necessary to represent the meaning of utterances 

such as "we have to". 

3.4 Domain Knowledge 

The TRAINS domain requires a relatively modest quantity of knowledge, in terms of basic 
object and event-types. Still, the interactions of properties and events can get quite complex. 
Some of the properties of actions and events that must be dealt with even for such a simple 

domain are: 
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1. Actions and events take time. During this time, they can have a rich structure, 
including intermediate states and decomposable sub-actions, yet the activity over 
that stretch of time is appropriately described as a single event. 

2. The relationship between actions and events and their effects is complex. For example, 
some effects become true at the end of the event and remain true for some time after 
the event. Other effects only hold while the event is in progress. 

3. External changes in the world might occur no matter what actions an agent plans to 
do, and can interact with the planned actions. Possible external events should be an 
important factor when reasoning about what effects an action might have. Certain 
goals can only be accomplished by depending on external events. 

4. Actions and events can interact in complex ways when they overlap or occur simulta- 
neously. In some cases, they will interfere with certain effects that would arise if the 
actions were performed in isolation. In other cases the effects will be additive. And in 
still other cases, the effect of performing the two actions can be completely different 
from the effects of each in isolation. 

5. Knowledge of the world is necessarily incomplete and unpredictable in detail, thus 
reasoning about actions and events can only be done on the basis of certain assump- 
tions. No plan is foolproof, and it is important that a formalism make the necessary 
assumptions explicit so that they can be considered in evaluating plans. 

These and similar considerations led us to a representation based on interval temporal 
logic, the technical details of which are presented in [Allen and Ferguson, 1994] 

3.5     Planning Knowledge 

In addition to traditional requirements for a problem solving system, such as the ability 
to represent the problem, the solution, and operators which lead from one to another, the 
embedding of a plan reasoner within a mixed-initiative dialogue system adds additional 
requirements and representational challenges. 

The first requirement is that the input to the plan reasoner be "language-like." That is, it 
needs to be expressed in a highly expressive language with multiple levels of representation. 
These include the domain level (trains, commodities, cities, time, etc.), the plan level (plans, 
actions, events, enablement, generation, etc.), and the problem-solving level (strategies, 
focus of attention, choice-points, etc.). All of these and more are candidates for discussion 
in a system such as TRAINS. In all cases, the objects involved may be only partially or 
indefinitely described, and part of the job of the plan reasoner may be to determine more 
fully which objects are involved (e.g., "move a boxcar"). 

The next requirement is that planning and plan recognition (and other plan reasoning) 
be interleaved during a dialogue. Plan recognition is typically done to understand the 
meaning of what has been said, then planning is done to refine the proposal and possibly 
generate new suggestions, while plan evaluation is, in a sense, a continuous process. Further, 
the different forms of plan reasoning are performed in different ways.  Plan recognition is 
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typically a satisficing process, since we are primarily interested in ensuring coherence of the 
dialogue. That is, so long as we can make something of the user's statements, we shouldn't 
expend too many resources trying to optimize the results. Planning, on the other hand, 
is more of an optimizing process, performed when the system has an opportunity to think 
about how to improve or complete the plan. In the case of an intelligent planning assistant, 
of course, the results are expected to be both accurate and helpful. 

This interleaved nature leads to the third requirement, which is that it should be possible 
to perform plan reasoning in arbitrary knowledge contexts. We note below that the dialogue 
manager maintains belief contexts representing different views of the conversation. The 
plan reasoner can be called upon to reason in any of these—in a system-related context the 
system is "thinking for itself," and in a user-related context the system is simulating the 
thought processes of the user. Because the contents of the contexts depend on what has 
already been said, the plan reasoner must be able to start with a partial plan in a context 

and reason from it. 

Fourth, the plan reasoner must return useful information - the results of plan reasoning 
operations need to be expressed declaratively so that they can be used to generate utter- 
ances, and update beliefs. Since not everything can be communicated to the user at once, 
some parts of the information returned by the plan reasoner may not become part of the 
final plan, at least not immediately. And if a plan reasoning operation fails for some reason, 
it is essential that useful information describing the failure be returned in order that the 
system can at least inform the user, if not address the problem at the problem-solving level. 

Finally, much of the reasoning performed by the plan reasoner is defeasible. This means 
making assumptions explicit, being able to assert and retract them, and, importantly, re- 
alizing that the system shouldn't always perform complete reasoning. Rather, it can make 
an assumption or, since the system is interactive, indicate that it would be better to ask 

the user a question about how to proceed. 

3.6     Plan Execution Knowledge 

Acting in a world has a slightly different set of requirements from reasoning about and 
talking about action. In addition to reasoning at an abstract level about change, a plan 
executor must reason at the level of perceptions and manipulations that it can perform 
- how it can achieve a desired action and how it can tell whether and when it has been 
performed. The eyes, ears, and arms of the TRAINS system are the agents in the simulated 
world. In performing actions in a plan, such as moving a boxcar, the executor must reason 
in terms of messages that must be sent to an engineer. Moreover, to determine whether 
the action has succeeded the executor must solicit reports on the current and future state 

of the world from this engineer and other agents. 

In addition, the executor must reason about the information the individual agents have, 
since these agents only know about their immediate surroundings. Requests for action and 
information must be formulated in terms that the agents can understand - condition action 
pairs, with conditions consisting only of an agent's local state. The reports the executor 
receives back will, likewise, only describe aspects of the reporting agent's local state. The 
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executor must relate the low-level observations back to anticipated events that are important 
to the plan. 

4    The TRAINS-93 KR Formalisms 

In starting the project, it was not obvious that any existing KR formalism or inference 
system would have been appropriate to represent and reason efficiently about all the different 
kinds of necessary information described in the previous section. Since there were already 
well-established traditions and tools designed to reason about several of the sub-issues, we 
decided to use those as starting points adding and adapting where necessary. In addition, 
adopting different formalisms made it easier to develop general-purpose components that 
could also be used in isolation. We felt it was best to postpone any unification attempts 
until we gained a better understanding of the problems we had to face. 

4.1     Episodic Logic 

The representation used by the Parser to represent the meaning of utterances is called 
Episodic Logic (EL), EL is an intensional situational logic developed as a semantic and 
knowledge representation for general NLU [Hwang and Schubert, 1993a; Hwang and Schu- 
bert, 1993b]. The most distinctive feature of EL is its natural-language like expressiveness, 
aimed at meeting our stated requirements of expressive, derivational, and semantic ade- 
quacy. It allows for generalized quantifiers, lambda abstraction, predicate and sentence 
modifiers, predicate and sentence nominalization, intensional predicates (corresponding to 
wanting, needing, believing, etc.), tense and aspect, surface speech act operators, and ex- 
plicit situational variables together with operators to specify what's true in a situation. 

As a result, the correspondence between surface form and logical form (LF) can be kept 
extremely simple. In general, single-morpheme content words are interpreted as atomic 
predicates or operators on predicates. Each of the phrase structure rules in the TRAINS 
grammar is paired with a simple compositional semantic rule, and the Parser computes the 
initial, underspecified EL representation of an utterance as it builds a parse tree for the 
utterance. The initial representation is underspecified in that it may contain unscoped op- 
erators (quantifiers, tense operators), indexical expressions (e.g., tense operators, pronouns) 
and ambiguous predicates. An example of a grammar rule is 

rule name: P2-Ploc+N2 
syntactic rule: ((P 2bar)   (P Obar loc) (N 2bar ace object)) 
semantic rule: (:p 1 2) . 

In the syntactic rule, the first constituent (P 2bar) is the left-hand side and the remaining 
two constituents the right-hand side of a GPSG-like rule. Thus the rule admits the forma- 
tion of a locative prepositional phrase from a locative preposition and an accusative noun 
phrase, like at Corning from at and Corning. (The rule name concisely echoes the rule.) 
The loc feature is transmitted from the preposition to the prepositional phrase through the 
head feature principle of GPSG [Gazdar et al., 1985]. Unlike GPSG, our grammar uses 
hierarchies of atomic features.  For instance, loc belongs to the set of features {loc, time, 
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phow, pwhy, subj-matr, oppos} which subdivide the ppred (prepositional predicate) feature, 
and loc is in turn subdivided into {place, path). The lower-level features unify with their hi- 
erarchy ancestors. Such feature systems, in conjunction with feature percolation principles, 
allow for quite compact representations of auxiliary verb structure, noun premodification, 
adverbial modification, subcategorization, etc. The semantic rule in the example indicates 
that the interpretation of the prepositional phrase is obtained by applying the interpretation 
of the first constituent (a dyadic predicate) to the interpretation of the second constituent 
{e.g., the individual denoted by the NP, if the NP is referential). The keyword :p denotes 
predicate application. Additional examples will be seen in section 5, as annotations of the 

parser output. 

While all formulas of EL may be written in lisp-like prefix form, complete sentential 
formulas are usually written in infix form, with the subject preceding the predicate as in 
English. This infix form is distinguished by the use of square brackets, e.g., for Train TR1 

is at Avon we might write 

{pres [TR1 loc-at Avon]). 

(In the "lispified" version of the infix notation we would use (i: ...) for [...], as will be seen 
in section 5.) The pres operator heading this formula is indexical, and is replaced in the 

deindexing process by predications involving explicit episodic variables. 

EL makes extensive use of predicate and sentence modifiers: operators that map predi- 
cates into other predicates or sentence meanings into other sentence meanings. For example, 
the predicate OJ is true of quantities of orange juice. The predicate operator make takes 
this predicate and produces another predicate {make OJ), which is true of any agent who 
makes orange juice. Many different syntactic constructs have simple interpretations when 
viewed as predicate modifiers, including attributive adjectives, certain classes of adverbs, 
and certain kinds of intensional verbs (like make, above). Simple examples of sentence 
modifiers are modal ones such as maybe and should. Among the most important predicate 
and sentence modifiers are those corresponding to PP adverbials. For instance, the phrase 

go to Dansville is represented as 

{{ADV-A {to-loc Dansville)) go). 

Here ADV-A is an operator that transforms a monadic predicate (viz., {to-loc Dansville)) 
into a predicate modifier (operating on go). Similarly, the sentence Train TR1 left at 8 PM 

would be represented by the form 

{{ADV-E {at-time 8PM)) [TR1 leave}), 

where the ADV-E operator converts a monadic predicate (in this case, {at-time 8pm)) into 
a sentence modifier.   Like the tense operators pres and past, adverbial predicate and sen- 
tence operators are replaced in the deindexing process by predications explicitly involving 

episodic variables. 

EL also has operators for predicate and sentence nominalization (reification). The main 
predicate nominalization operator, K, constructs a kind or type of object from a predicate. 
The noun phrase orange juice, for example, often refers to orange juice in general rather 
than to some specific quantity of orange juice, as in the sentence / like orange juice. If 
OJ is a predicate true of quantities of orange juice, then {K OJ) is the kind of thing, or 
substance, orange juice.   Kind terms are used extensively with events as well, as in the 
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sentence / want to load the oranges, where what is desired is the performance of some 
action of the kind "load the oranges," rather than a specific, existing act of loading oranges. 
Sentence nominalization operators are crucial to the EL representation of attitudes. For 
instance, to express that The user told the system that engine TR1 is at Avon, we would 
form the nominalized sentence (or proposition) 

{That (pres [TR1 at-loc Avon])), 

and this would become the object of a ie//-predication, whose subject is the user. 

The forms of quantifiers and of lambda abstracts in EL can both be illustrated with the 
interpretation of the phrase the engine at Avon (utterance 9-13 in the sample dialogue): 

(The Xx[[x engine] A [x at-loc Avon]]) 

This expression could in principle be directly interpreted as a generalized quantifier, but 
in EL it is instead viewed as an unscoped quantifier, yet to be "raised" so that it will have 
a sentence as its scope. The alternative ways of raising unscoped quantifiers (and certain 
other unscoped operators) account for scope ambiguities. In the present case, if we consider 
a little more of the utterance embedding the quantifier, we should move the engine at Avon 
to Dansville, a possible scoping of the corresponding EL formula is 

(The x: [[x engine] A [x at-loc Avon]] 
(pres (should [We ((ADV-A (to-loc Dansville)) (move x))]))). 

Note that the general form of scoped quantification is (Qa : 4>ip), where Q is the quantifier, 
«is a variable, <f> is an open sentence restricting the domain of the variable, and ip is the 
sentence comprising the scope of the quantifier. 

The deindexed EL representation of sentences describing events, processes or situations 
contains explicit episodic variables. Like situations in situation semantics [Barwise and 
Perry, 1983], episodes are partial states of affairs in the world, encompassing some prop- 
erties of some participants over some period of time at some location. Episodes subsume 
Davidsonian events [Davidson, 1967] as used in many representations, i.e., an event is a 
particular kind of episode. The content of episodes can be described using two special 
operators, * and **. 

The ** operator indicates that an arbitrary formula characterizes an episode. A simple 
example would be the formula 

[TR1 move Avon Dansville] ** El 

which is true if episode El is characterized by engine TR1 moving from Avon to Dansville. 
In a Davidson-based event logic, this might be written as move(El, TR1, Avon, Dansville), 
where the event is an argument of the predicate. But EL can represent much more complex 
events than is possible using event arguments of predicates. For example, the "negative 
situation" E2 of train TR1 failing to arrive on time can be characterized as follows (ignoring 
the details of "arriving on time"): 

[-i[TRl arrive-on-time]] ** E2. 

A Davidsonian representation could approximate the characterization of El by saying that 
there is no event of TR1 arriving on time during E2, but such an approximation is inadequate 
for capturing causal relations. For example, it may be true that some event, E3, during 
which there was no instance of TR1 arriving on time caused TR1 to derail - for instance, E3 
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could be the event of TRl taking a curved section of track too quickly. On a Davidsonian 
analysis of negative situations, this causal relation can be seen to entail, incorrectly, that 
the failure of TRl to arrive on time caused its derailment!3 

As a quantified example, the episode E2 consisting of every train going to some city 

could be characterized as follows: 

(Vi : [t train] (3x : [x city] [t {{ADV-A {to-loc x)) move]) ** E2. 

This could not easily be encoded as a single event in an event-based logic. 

The second episodic operator provided by EL, *, asserts that a proposition is true in an 
episode. This is a weakening of the ** operator, not requiring the proposition to characterize 
the episode as a whole, only some aspect of it. In that sense * is analogous to the (= relation 
between a situation and an infon in situation semantics. Both the * and the ** operator are 

important in EL axioms and inference about causal relations and other relations between 

episodes [Hwang and Schubert, 1993b]. 

A semantically adequate knowledge representation with all of the above syntactic ma- 
chinery naturally requires a rich ontology, e.g., to accommodate intensional predicate and 
sentence modifiers, the abstract kinds, properties and propositional entities formed by nom- 
inalizations operators, and the episodes, times and locations referred to in episode descrip- 
tions. EL allows for all of these, as well as for numbers, collections and sequences. All 
entities in the domain are regarded as "possible individuals", and this includes possible 
episodes (situations), possible facts (which correspond to consistent propositions), etc. In- 
tensionality is modeled by interpreting atomic symbols in a situation-dependent way. For 
example, the two-place predicate leave is interpreted as a partial function 

/: D->(D-> (S->{0,1})), 

where D is the domain of possible individuals and S is the set of possible episodes (sit- 
uations), a subset of D. It can be seen that by applying / to two successive individual 
arguments, we obtain a sentence intension, a partial function from possible situations to 
the truth values {0,1}. The fact that such functions are partial allows for "fine-grained" se- 
mantic distinctions between propositions that are logically equivalent in the classical sense. 
Also, by making the situational argument in predicate intensions (such as / here) the last 
argument (rather than the first, as in Kripke- or Montague-style semantics), we are able to 
simplify our lexical and phrasal semantic rules, avoiding Montague's ubiquitous intension/ 
extension operators. The interpretation of the * operator within this framework corresponds 
closely to truth in a situation; i.e., [<j> * rj] is a way of saying that the semantic value of <f> 
at the situation denoted by 77 is 1 (truth). The conditions for truth of [4> ** rj] are more 
stringent, requiring that 77 "as a whole" be a ^episode, rather than just having a ^-episode 
as some part or aspect of it.   The formal distinction relies on "persistence" of sentential 

3More exactly, speed-around-curve(E3,TRl)Aderail(E4,TRl)Acause-of(E3,E4) A ->{3e)during{e,E3)A 
arrive-on-time(e,TRl) entails (3e')[->(3e)during(e,e')Aarrive-on-time(e,TRl)]Aderail(E4,TRl)Acause- 
of(e',E4). This entailment, obtained by existential generalization of E3, says that some eventuality e' 
during which TR\ did not arrive on time caused the derailment E4. Thus if we accept "some eventuality e' 
during which TRl did not arrive on time" as a characterization of a negative eventuality (an eventuality of 
TR\ failing to arrive on time), we are led to the unwarranted conclusion that an eventuality of TRl failing 
to arrive on time caused its derailment 
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truth in a set of semilattices of situations, each having a maximal possible situation - a 
possible world - as its "top". 

EL was originally designed for story understanding, but its comprehensiveness and its 
NL-like syntax and semantics made it an entirely plausible candidate for dialogue inter- 
pretation. In fact, we encountered no fundamental difficulties in this redeployment. The 
real challenges lay in expanding the very small syntactico-semantic fragments we had built 
to deal with a few narrative sentences, so as to cover the selected TRAINS dialogues in a 
principled way. We needed to develop a system of several hundred features (organized into 
some 27 feature hierarchies) and ways of assigning default lexical features; fairly broad- 
coverage syntactic rules (including many types of questions and imperatives, coordination, 
i/iere-insertion, subcategorization patterns, etc.); and most of all, carefully thought-out so- 
lutions to numerous specific semantic problems. For example, the question arose whether 
to treat modals such as should, shall and better (see utterance 1 of the dialogue) as sentence 
or predicate modifiers at the level of semantics. We chose the former so as to be able to 
account for "opaque" readings of sentences such as Someone should pick up the oranges, or 
Somebody better be there when the shipment arrives. 

Some of the simplest utterances - yes/no, right, okay - proved surprisingly subtle and 
controversial. The problem is that these utterances have implicit arguments - some salient 
propositions or proposal is being affirmed / denied / approved. The question is whether 
to make these implicit arguments explicit in the immediate LF, or to send unanalyzed 
atoms to the deindexing and discourse modules. In the case of right and okay we opted for 
explicit arguments because they can occur with subjects (e.g., That's right) and be viewed 
as members of a productive group of APs and other predicate phrases - consider, true; 
wrong; fine; very good; no problem; well done; etc. Yes/no could be handled either way. 
Of course in all cases the work of identifying the implicit referents is left to deindexing and 
discourse processing. Similarly so is a subtle cue word establishing a relevance or following- 
from connection to something prior, and in this case we simply translate this as an initial 
coordinator (a sentence modifier) whose significance is a matter for the discourse module 
to consider. 

Perhaps one elaboration of the original narrative understanding framework particularly 
worth mentioning is the addition of locutionary acts (surface speech acts) to the interpre- 
tations of utterances. I.e., the LF of a surface declarative contains the top-level construct 
(ignoring the explicitly added utterance episode) 

[Speaker tell Hearer (That ...)], 

for questions we have an ask act, for imperatives an instruct act or something similar, etc. 
This locutionary act information is very important for subsequent reasoning about dis- 
course structure (in contrast with the case of narratives). Technically, the locutionary acts 
are introduced into the LF's through the terminal symbols of utterances, i.e., punctuation, 
turn-taking or (ultimately) prosodic markers. 

There were many additional problematic issues concerning logical form, including the 
semantics of problem, plan, make, purpose clauses, proper nouns, numbers and measures, 
etc. None of these problems were trivial, but the important point is that the EL frame- 
work provided sufficient flexibility to allow us to consider various plausible options, and to 
implement workable solutions. (For some further remarks on plans, see Section 6.3.) 
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The main shortcoming of EL as a representation for conversations is that it focuses pri- 
marily on utterance content, not context. In [Hwang and Schubert, 1993b] context structures 
called tense trees and an algorithm for tense deindexing are proposed. However, this algo- 
rithm presupposes that tense operators and quantifiers have already been correctly scoped, 
and that referent determination can be done independently of scoping and tense deindexing. 
For the TRAINS system, we needed an integrated account of these processes. 

4.2     CRT 

Conversation Representation Theory (CRT) [Poesio, 1994] is an account of contextual in- 
terpretation and ambiguity resolution in conversations that builds on the theory of lexical 
semantics developed in Episodic Logic. The formalism used in CRT extends the language 
of EL with underspecified expressions—expressions that indicate which aspects of a sen- 
tence's meaning have to be disambiguated and are given a proper semantics [Poesio, 1991; 
Alshawi and Crouch, 1992; Reyle, 1993; Poesio, 1995]. The theory also includes an ac- 
count of disambiguation as defeasible reasoning over underspecified interpretations of the 
discourse situation. 

One of the two main assumptions motivating CRT is that the interpretation of a sentence 
is obtained by means of inferences that crucially involve underspecified representations. The 
underspecified representations produced by the parser (see previous section), which in EL 
were given only an implicit interpretation in terms of their disambiguation, are seen as 
first-class objects of the language of CRT, and disambiguation is formulated as a process 
of inference over such representations. A second important assumption, borrowed from 
work on discourse in the Al tradition such as [Grosz and Sidner, 1986], is that the process 
of disambiguation crucially involves information which is pragmatic in nature, such as the 
hierarchical relations between speech acts. Thus, the model of context adopted in CRT, while 
inspired in many ways from those used in 'dynamic' theories of context such as Discourse 
Representation Theory (DRT) [Kamp, 1981; Kamp and Reyle, 1993] and Dynamic Predicate 
Logic [Groenendijk and Stokhof, 1991], is a model of the effect that utterances have on the 
discourse situation, rather than of the effect that sentences have on the propositional content 

of a text. 

For an example of disambiguation, consider the sentence / can't find the engine. Dis- 
ambiguation is initiated when the context is updated with an underspecified interpretation 
of an utterance. Interpreting this sentence in a particular context involves recognizing the 
speech act performed by the speaker, the intended referent of the engine, and the scope 
of the modal operator can and the negation operator. The effect of updating the existing 
context after an utterance of this sentence is represented by the following CRT expression. 
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(1) 

eel  tl 

eel: te\\(A,B, s: 

eel <B tl 
eel C   d 

I       can find A P engine (x) A P(x) 

The expression in (1) can be paraphrased as: a speech act eel occurred, of A telling B 
about situation s that s is characterized by the underspecified expression within the nested 
box. (In what follows, we will also use the term conversational event to refer to speech 
acts.) The following things have to be explained about the expression in (1). First of all, 
context is modeled as a discourse representation structure (DRS), a pair consisting of a set 
of discourse markers (here, eel and tl) and a set of conditions (wffs). DRSs can be nested; 
the 'top' DRS, which provides a representation of the common ground as a whole, is called 
'Root DRS'. In Discourse Representation Theory, the root DRS provides a representation 
of the 'described situation', or the situation the discourse is about; in CRT, the root DRS 
is a representation of the discourse situation, i.e., the situation in which the participants 
to the conversation find themselves. The description of the described situation (here, s) is 
embedded in the description of the discourse situation. 

Secondly, the representation in (1) is underspecified in many ways. As in the EL inter- 
pretation of complete utterances, what is initially recorded in the model of context is the 
occurrence of a locutionary act (here, tell), from which the actual intentions of the speaker 
have to be recovered (see following sections). The expressions of the CRT language used 
to encode alternative scope readings are syntactic trees whose leaves are EL expressions. 
This representation derives from the unscoped LF of EL, but makes it more explicit that an 
'unscoped representation' is simply one in which operators have been left in their syntactic 
position. These expressions are another aspect of an utterance's interpretation that has to 
be resolved in context. 

The third aspect of the interpretation to be resolved in context is the value of anaphoric 
expressions, called parameters and written down as variables with a 'dot': x. These are 
aspects of an utterance's meaning which have to be related ('anchored') to some previously 
introduced element of context (discourse marker). In (1) there are three such parameters: 
the described situation s, the referent of the definite description x, and the conversational 
thread d. This last bit needs some explanation. Each speech act is assumed to be part of 
a 'conversational thread', which is a particular type of situation. All conversational events 
in the same thread are assumed to be 'about' the same discourse topic, which is another 
situation. Conversational threads are used in CRT to capture Grosz and Sidner's notion 
of discourse segment, whereas discourse topics are a formalization of the notion of 'focus 
space'. Thus, whereas in Grosz and Sidner's theory we would have a focus space extending 
another focus space on a stack, in our framework we have a situation extending another 
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situation; in this way we do not introduce an additional stack mechanism, and the processes 
of focus space construction and focus space shift can be modeled as reasoning processes, as 

discussed in [Poesio, 1993]. 

The rest of the syntax of the language used in CRT is borrowed from EL: thus we have 
lambda expressions, modifiers, kind-forming operators, and all the other tools discussed in 
the previous section. One remaining syntactic difference from EL is the use of expressions 
of the form s:$ instead of [$ * s] to assert that $ holds of s. The difference is not just a 
matter of syntactic sugar, as discussed below. 

Because of the need to give a direct interpretation to underspecified expressions, the 
semantics of CRT is a generalization of the semantics of EL. EL expressions denote functions 
from situations to objects in the domain (for example, the denotation of a sentence is a 
function from situations to truth values); the expressions of the CRT language, instead, 
denote sets of such functions; for example, the denotation of a sentence is a set of functions 

from situations to truth values. The resulting logic is much weaker than the one of EL.
4 

(This is one reason why disambiguation is done by defeasible reasoning.) DRSs are given 
the same type of sentential expressions, i.e., they are interpreted as (sets of) functions from 

situations to truth values (situation types). 

The semantics of the 'semantically annotated syntactic trees' used to capture scopal 
underspecification is defined bottom-up using a 'CV function (for Cooper Value) that 
assigns to each of them as a value a set of sequences of expressions {(au ...), (ßi,...),...}. 
The first element of each sequence provides a phrasal LF of the appropriate type (e.g., a 
variable or generalized quantifier for an NP, a predicate for a VP, and a wff for an S), while 
the remaining elements are quantifiers or other operators "in storage". For example, the CV 
of'find an engine' would be a set of two sequences, {{Xx 3y engine(y) A find(x,y)}, (Xx 
find(x,i), (i,XP engine(y) A P(y)))}. The denotation of a tree [S ... ] is then the set of 
functions that can be "extracted" from CV([S ... ]) (each of whose elements is required to 
be a singleton sequence, i.e., there are no elements "in storage"). 

A detail of importance when talking about the anaphoric accessibility of discourse mark- 
ers, is that expressions in CRT are assigned a value with respect to a situation, a variable 
assignment, and a function C ("cases") from situations to variable assignments. Conditions 
like s:K assert that a situation s is of the type specified by the DRS K, and in addition they 
shift the parameters of evaluation so that the value of the discourse markers occurring in 
K is provided by the variable assignment associated with the value of s, i.e., C([s]), (where 

w 
is the semantic value of s with respect to the original variable assignment and the original 
cases C). In this way, the discourse markers introduced in a statement about situation s are 
accessible when interpreting an anaphoric expression which is part of a second statement 

about the same situation. 

The disambiguation rules are formulated as inference rules which result in a less un- 
derspecified interpretation. The reasoning framework in which inference is formulated re- 
sembles Prioritized Default Logic [Brewka, 1991] in that the rules of disambiguation are 
Reiter-like default inference rules with different priorities, and in that the result of disam- 

4For instance, $ V -•$ is not a theorem. 
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biguation are zero, one or more extensions of the default theory consisting of the context 
augmented with the initial interpretation of the utterance together with the set of default 
inference rules. Space prevents a discussion of the rules actually used in the system; as 
a simple example of what a disambiguation rule might look like, here is how one could 
formulate a hypothetical rule assigning wide scope to operators in subject position. The 
rule is a "normal default rule" [Reiter, 1980]. Notice how the result of disambiguation is 
a partially disambiguated CRT expression, with the universal quantifier taking scope over 
whatever operator occurs in the VP. 

GRAMMATICAL-FUNCTION-PRINCIPLE 

S 

NP 

A Q.   (V   y: p(y) (Q(y))) 

VP (V   y:p(y)(    NP VP       )) 

A 
y 

(V   y:p(y)(    NP 

A 
VP )) = 

The disambiguation process is subject to a Condition on Discourse Interpretation which, 
roughly speaking, states that an extension cannot contain underspecified expressions. The 
result of interpretation is therefore an expression which can also be given a semantics within 
Episodic Logic; this makes it possible to translate such expressions into the other formalisms 
used in TRAINS.5 For example, the following expression is the final result of the disambigua- 
tion of the sentence I can't find the engine: 

(2) 

eel tl s 

s: 
engine(:c) 
Avon(tc) 
at (a:, u>) 

eel: tell(^,5, s: 

eel @ tl 
eel C   ctl 

—I can (find (.4,2^ ) 

Notice that the described situation of the conversational event has been identified as the 
previously introduced situation s, that the scope of the operators has been resolved, and that 
the conversational thread to which eel belongs has been identified. The results of speech 
act interpretation are not presented in (2); these would be expressed as the introduction 
of a new speech act ce2 generated by eel (in the sense of Goldman [Goldman, 1970], i.e., 
occurrence of eel by its nature involves the occurrence of speech act ce2). 

At the moment, the possibility of such a translation is merely a conjecture based on our experience in 
building the interface to EBTL - no formal result has been proved. 
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The 'Scope And Deindexing' module of TRAINS-93, SAD-93, is a partial implementation 
of Conversation Representation Theory. The system consists of an implementation of a 
prioritized default reasoner, together with declarative rules that encode theories of disam- 
biguation for scope, definite description interpretation, pronoun interpretation, modals, and 
tense, among others. The input to the system is the underspecified representation produced 
by the parser; the output is a set of hypotheses about possible interpretations. The 1993 
implementation was tested on both the dialogue of Figure 2 and an entirely different, shorter 

dialogue used in the TRAlNS-91 system. 

4.3    EBTL 

EBTL (Event Based Temporal Logic) is used by the Speech Act Interpreter, Dialogue Man- 

ager and Plan Reasoner, and as a communication language between these modules. It is a 
typed logic based on interval temporal logic [Allen, 1984], which was designed to facilitate 
reasoning about actions and events in temporally complex worlds. EBTL is a more restricted 
language than EL or CRT: only events and some simple states can be represented directly 

rather than general episodes and situations. 

In starting the TRAINS project, the RHET knowledge representation system [Allen and 
Miller, 1991] seemed a good starting point for representing the plan and domain knowledge, 
having been used and developed in parallel with previous discourse [Allen et al., 1989], tem- 
poral reasoning [Koomen, 1990], and plan recognition efforts [Miller, 1990] at Rochester. 
RHET provides theorem-proving (both forward and backward chaining inference), as well 
as type hierarchies and typed unification, equality and inequality reasoning, temporal rea- 
soning, frame-like event representations, and an explicit hierarchical context mechanism for 
representing belief contexts, hypothetical reasoning and other modalities. 

It quickly became apparent, however, that additional features were needed for the 
TRAINS system reasoning functions. EBTL provides additional constructs that proved es- 
sential for representing the meanings of natural language input and relations of facts to 
plans, as well as a more straight-forward Lisp interface. These include explicit quantifiers, 
discourse markers, lambda expressions and quoted propositions. The underlying inference 
is performed by RHET, augmented with special reasoners in Lisp for the new constructs. 

The terms in EBTL are those allowed in RHET. Constants are written as atoms within 
square brackets. Thus [EWG3] is a term. Distinct names do not necessarily identify distinct 
objects, since the language supports equality reasoning. When terms are defined, their 
type is usually defined as specifically as possible. [EHG3], for instance, is declared to be of 
type T-ENGINE. Variables are indicated using the form ? varname*typename. For instance, 
?x*T-ACTI0N is a variable that ranges over all objects of type T-ACTION. 

Propositions in EBTL are represented by lists. For instance, since EQ? is the equality 
predicate, the proposition (EQ? [F-ENGINE [M2]] [ENG3]) would assert that ENG3 is the 

engine causing the move event M2. 

EBTL has a reified event representation, where event instances are denoted by explicit 
terms in the language. Figure 4 shows part of the event hierarchy for the TRAINS domain. 
This hierarchy predominantly deals with events caused by actions, which capture different 
actions available to the TRAINS domain planner. Events that cannot be directly executed are 
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classified as non-action events. These events are necessary to provide a clean interface with 
the natural language system, because people often talk in terms of the events caused rather 
than the actions executed. For example, the system never plans to execute an arrive event. 
Rather, it plans a move action, one aspect of which is sometimes described as an arrive 
event. The specific features of events are identified by role functions, which are defined over 
event classes. For example, all actions will have agent roles, as well as the general time 
role for all events. Subactions such as T-MOVE will also have (in the TRAINS-93 domain) an 
engine role, etc. 

T-EVENT 

T-ARRIVE 
T-LEAVE 

T-LQAD 

T-LO AD-COMMODITY 

T-UNLOAD 

^ T-UNLO AD-COMMODITY 

T-COUPLE 

T-UNCOUPLE 

T-MOVE 
MOVE-COMMODITY 

T-LOAD-ORANGES 

- T-UNLOAD-ORANGES 

^2 T-MOVE-CAR 
MOVE-ENGINE 

T-RUN-FACTORY 

T-MAKE 
"--T-MAKE-OJ 

T-BRING-ABOUT 

T-MOVE-ORANGES 
-T-MOVE-OJ 

Figure 4: The event hierarchy of TRAINS domain events 

Conversation Level Representation 

EBTL also includes features for reasoning about conversational interpretation. These include: 
a subclass of the action type from Figure 4 for speech acts, operators for representing combi- 
nations of primitive speech acts (e.g., conjunction, exclusive and non-exclusive disjunction, 
and sequencing), relationships between conversational events (e.g., preceding or following in 
a discourse segment), other conversation act types (as described in [Traum and Hinkelman, 
1992]), including predicates for argumentation relations between speech acts, turn-taking, 
and grounding acts. 
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The core speech act types used in the TRAINS-93 system are shown below, with their 

meanings: 

T-INFORM The speaker provides new information in order to establish a shared belief 

in the proposition asserted. 

T-YNQ The speaker asks a yes-no question, creating an obligation for the hearer to re- 

spond. 

T-CHECK The speaker is attempting to verify that a certain proposition is true. 

T-SUGGEST  The speaker proposes a new item (action, proposition) as part of the plan. 

T-REQUEST The speaker aims to get the hearer to perform some action. In the TRAINS 
domain, this is treated like a suggest, with the addition of an obligation on the hearer 

to respond. 

T-ACCEPT The speaker agrees to a prior proposal by the hearer. 

T-REJECT The speaker rejects a prior proposal by the hearer. 

T-SUPP-INF The speaker provides additional information (perhaps already known) that 
augments, or helps the hearer interpret some other accompanying speech act. 

T-SUPP-SUG The speaker makes a supplementary suggestion of content, which is pre- 
supposed to be part of the plan by other accompanying suggestion or request. 

Many of the types of discourse structure and mental state needed by the dialogue man- 
ager (such as the discourse segments, turn-taking, and grounding structures mentioned in 
Section 3.2) are represented not within EBTL itself but as RHET belief contexts or lisp data 
structures containing EBTL formulae. However there are EBTL predicates which can be 
proved by functional calls to inspect these data structures. More on the conversation-level 
representation can be found in   [Traum, 1994]. 

EBTL also contains terms that explicitly denote plans and predicates that are used to 
describe the content of plans. Some examples of these are: 

(GOAL-OF proposition plan): the proposition is a goal of the indicated plan 

(USES object proposition plan): the object is used in the plan. 

(EVENT-IN  event plan): the event is part of the plan. 

These predicates are used by the dialogue manager to treat plans in an abstract way 
- objects with particular properties. Different combinations of these properties may be 
present in different mental modalities, which will provide the specific motivation for the 
system to perform plan related utterances such as suggestions and acceptances. These 
predicates are also used to represent the contents of plan related speech acts, and as calls 
to the domain plan reasoner to incorporate these items into a partial plan. 
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Plans Graphs 

In addition to describing the properties of plans using EBTL plan predicates, the TRAINS-93 
domain plan reasoner maintains an additional representation of plans as connected, directed, 
acyclic graphs of event and fact nodes labeled by events and propositions, respectively. 
These plan graphs are given a formal semantics in terms of arguments: they represent 
an argument that a certain course of action under certain conditions will achieve certain 
goals. Since plans are objects in the ontology, plan description predicates can be defined 
that impose constraints on the plan-as-argument. There are structural predicates, such as 
Actionln, Enables, Premise, Goal, etc., that are defined in terms of the structure of the 
plan graph. Then there are evaluation predicates. These include absolute predicates such 
as Plausible or Impossible and relative predicates that allow plans to be compared, for 
example, according to resource usage or time constraints. Further details are available in 
[Ferguson, 1995]. 

4.4    Tyro 

In order to do the reasoning necessary for executing and monitoring plans and statistical 
reasoning about the effects of actions, we have developed a language, called Tyro. Like 
EBTL, Tyro is implemented as an extension of RHET. Tyro allows representation of statistics 
about the number of observations of event instances of a particular event type and provides 
techniques for computing confidence intervals from the statistics. It also allows one to 
specify utility and to apply decision theory based on these utilities and confidence intervals. 

Tyro represents individual event instances (e.g., [Move-Boxcar-1]) and it reifies sets of 
event instances specified by lambda abstractions into event types (e.g.,[Boxcar-Moved]). 
Here, the term [Boxcar-Moved] represents the set of event instances in which any boxcar 
was moved; [Move-Boxcar-1] represents a particular instance in which a particular boxcar 
was moved. 

Tyro also includes statistical predicates, which are defined over event types. These 
predicates are Occurrences, and Probability. Occurrence takes a temporal interval, an 
integer and a set of event types, as in (3); it indicates that the integer is the number of event 
instances in the intersection of the event types that occured during the temporal interval. 
Probability takes a confidence level, two event types, a probability measure, and a tempo- 
ral interval as in (4); it indicates that the probability measure is the conditional probability 
during the temporal interval of the occurrence of the first event given the occurrence of the 
second event. 

(3) [Occurrence tl 5   [Requested-Boxcar-Move]   [Boxcar-Moved]] 

(4) [Probability  .95   [Requested-Boxcar-Move]   [Boxcar-Moved]   [0.24 0.76]  tl] 

In Tyro, a probability measure can be either a point (a number between 0 and 1) or an 
interval (where both end points are numbers between 0 and 1). In addition, probabilities can 
either be asserted or inferred from the Occurrence predicate. Probabilities that are asserted 
are entered before the system runs; probabilities that are inferred are calculated after the 
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system has made some observations. A point probability indicates that a programmer 
asserted a number to be the probability and that the system has insufficient evidence to 
doubt the assertion. An interval probability indicates either that the programmer asserted 
an interval probability or that the system has sufficient evidence to conclude that an asserted 

probability is incorrect. 

Tyro infers the probability of a particular event, say [Boxcar-Moved] given a trial event 
type, say [Requested-Boxcar-Move] by considering the event type that represents the inter- 
section of the instances in each event type, i.e. [Requested-Boxcar-Move-and-Boxcar-Moved] 
as the success event type and the trial event type [Requested-Boxcar-Move]. It then calcu- 
lates the confidence for the binomial random variable [Bickel and Doksum, 1977] where an 
event instance in the intersection event type is a success and an event instance in the trial 
event type is a trial. If an asserted probability does not fall entirely within this confidence 
interval, it rejects an asserted probability and concludes that the probability is the confi- 

dence interval computed from the number of occurrence of the event types it has seen. If 
no probability was asserted and no observations have been made, Tyro uses the probability 

interval [0, 1]. This treatment of probability is based on Kyburg's evidential probability 

[Kyburg, 1991]. 

Tyro also represents the utility of event types so it can make decisions based on expected 
utility. The predicate, Utility takes an event type, an integer and a temporal interval, as 
shown in (5); it indicates that the integer is the utility of the event type during the temporal 
interval. Utility expresses the desirability of an event; probability expresses the likelihood 
of an event. Both types of information are necessary to make a choice between events. 
This difference is reflected in the meaning of the temporal interval associated with utility 
and probability. The temporal interval associated with probability represents the time over 
which the evidence for that probability was gathered; the temporal interval associated with 
utility represents the time over which the event is desirable. For example, If one is shipping 
oranges, it may be desirable to wait for a train that is scheduled to arrive in the future, but 
undesirable to wait for a train that has already left. The desirability can be changed by 
evidence of the effectiveness of the act of shipping the oranges by this train. If, in the past, 
it has proved impossible to load the oranges, perhaps because the train does not stop at 
this station long enough, it may not be desirable to wait for the train even if it is scheduled 

to arrive in the future. 

(5) [Utility   [Boxcar-Moved]   10 t2] 

Tyro calculates expected utility by multiplying the probability by the utility - result- 
ing, when the probability is an interval, in an interval expected utility. When an interval 
expected utility is calculated, there may be no clear choice between alternatives. When 
there is no choice, one can do one of three things: one may reduce the confidence level in 
the calculation resulting in a narrower interval, one may avoid making the choice hoping 
that further information will make the choice clearer, or one may gather more information 
about needed probability. In Tyro, when one reduces confidence to zero, it calculates a 
point probability from the maximum likelihood estimate [Bickel and Doksum, 1977]. If one 
avoids the choice, subsequent events may rule out some actions, making the choice clearer. 
Because more evidence also narrows the interval, collecting more evidence may also make 
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possible a choice. 

Although both EBTL and Tyro allow reasoning about events and event types, these are 
used for different purposes in the two languages. When planning, events are terms that 
represent occurrences that may be added or subtracted from the plan as necessary. But 
when the plan is being executed the event represents something that cannot be modified, but 
only described. Some of the unspecified properties of an planned event might be important 
when the plan is executed. For example, whether the axle on [Boxcar-1] is broken might 
be ignored when planning if broken axles are rare enough, but the state of the axle will be 
crucial to the event that actually occurs. This state of affairs will be discovered only after 
the event that is purportedly the [Move-Boxcar-1] event has occurred but, because the 
effects of [Move-Boxcar-1] do not hold, the plans goals will not hold. 

To deal with these problems, the executor views the EBTL event [Move-Boxcar-1] as 
an event type that includes all of the event instances that have the properties specified 
for [Move-Boxcar-1]. Using Tyro, the executor reasons about what it can do to make 
an event instance occur that will be a random member of the event type corresponding to 
[Move-Boxcar-1]. By reifying the event types, Tyro allows the executor to use statistical 
probability to choose a random member of the action event type that is most likely to 
co-occur with the event type corresponding to [Move-Boxcar-1]. In addition, Tyro allows 
the executor to reason that an event type corresponding to [Move-Boxcar-1] occurred, 
but that the instance of this event type that occurred does not support the plan. That is, 
even though what occurred satisfied all of the conditions specified of [Move-Boxcar-1], it 
is invalid to assume that the boxcar moved because, in fact, the boxcar did not move. The 
executor may or may not know why the boxcar did not move, but, being in a position to 
keep track of the plan, it can determine that the boxcar did indeed fail to move. 

5    A Dialogue Processing Example 

While a true sense of the operation of the representation systems presented in the previous 
section can only be achieved by examining a substantial section of dialogue, there is not 
room here for a complete look at even one of the formalisms on a very substantial amount 
of dialogue. Instead, we illustrate the use of the implemented KR systems by means of 
a single example exchange from the conversation in Figure 2, sentences 7.1-7.2 through 
8, repeated here as (6), for convenience. More details on how the rest of the dialogue is 
represented can be found in [Poesio, 1994], for CRT, [Traum, 1994], for EBTL, and [Ferguson, 
1995], for the plan graphs. 

7.1-7.2    U: So there's an engine at Avon. 
(6) 7.3 U: Right? 

8 S : Right. 

The Parser produces the underspecified representation shown in (7) for 7.1-7.2. It can 
be thought of as a parse tree whose leaves have been replaced by the semantics of lexical 
items. Non-leaf nodes are annotated with a rule name and the corresponding semantic rule. 
The initial numerals 1, 2, ... indicate the first subconstituent, second subconstituent, and so 
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on. As explained in section 4.1, the rule names S_N2THERE+V2, V2THERE-SING_VBE+N2+P2, 
etc. reflect the left-hand side and right-hand side categories occurring in the syntactic 
part of the rules. The semantic rules specify the formation of EL expressions, using Lisp 
expressions of the form (<key> <item>+), where <key> indicates the type of semantic object 
represented by the expression. In particular, the key :F indicates a functional application 
of the first argument to the rest, the key :P indicates a predicate application of the the 
first argument to the rest, the key : I indicates a formula in infix form (with the "subject" 
argument first, followed by the predicate, followed by any additional arguments), the key :L 
indicates a lambda-expression, the key :0 indicates an unscoped operator (here, a present 
tense operator), and the key :Q indicates an unscoped quantifier. Scoped quantifiers are 
used directly as keys, e.g., :E indicates existential quantification. 

(7) ((1 UTT 1 
(1  S-TELL  (:F   :DECL  1) 

(1  S_C0NJC00RD+S  (:I   :UTT-IMP  1  2)   (1  SOI   :S0-C00RD) 
(2 S_N2THERE+V2 2  (1 THERE1   :EXISTS) 

(2 V2THERE-SING_VBE+N2+P2 (:E  :Y  (:I   :Y 2)   (:I   :Y  (:F i 3))) 
(1  -S2   (:L   :X  (:0   :PRES   :X))) 
(2 PRED_DETAN+N1 2   (1 AN1   :E) 

(2 ENGINE1.1   :ENGINE)) 
(3 P2_PPLACE+N2  (:P  1  2)   (1 ATI   :AT-L0C) 
(2 AV0N1   :AV0N))))) 

(2  /PERI0D1 NIL)))) 

Thus the top-level node is an UTT (utterance) node whose LF in EL is just that of 
its first and only constituent, a punctuated declarative sentence (S-TELL). The semantic 
rule for this S-TELL applies the :DECL operator to the EL formula for the unpunctuated 
sentence. As previously explained, this :DECL operator signals a particular illocutionary 
act (a 'telling'). The unpunctuated sentence, formed by rule S_C0NJC00RD+S, has as its first 
constituent a conjunctive coordinator, so, and the second constituent is a sentence. The EL 
semantic rule specifies formation of an infix formula which relates an implicitly referenced 
utterance, :UTT-IMP, to the content of the current sentence, using the meaning of the 
coordinator as the relation. Without the so, we have a sentence labeled with S_N2THERE+V2, 
i.e., one consisting of an existential there subject and a verb phrase (V2, meaning 'V 2- 
bar'). This verb phrase consists of the copular verb, a noun phrase (N2) subject in verb 
complement position, and a locative propositional phrase (P2). The EL formula for the 
sentence is just that of the verb phrase - the there is ignored. The verb phrase in this case 
is interpreted as a sentence rather than a predicate, because of the "embedded" subject 
(here, an engine); the EL semantic rule specifies existential quantification of the embedded 
subject, and applies a predicate formed from the interpretation of the copula (here is, which 
in essence supplies a present tense operator) and the locative P2 (here, at Avon). 

The further interpretation into CRT does not directly apply the EL semantic rules, but 
rather converts the Parser output into a CRT expression that represents the (surface) con- 

versational event, or locutionary act, resulting from the production of that utterance. This 
expression is added to the DRS representing the current discourse situation. As the syntax 
of CRT is a superset of that of EL, this conversion is mostly straightforward; see Section 6.1 
for some further discussion.  The Scoping and Deindexing (SAD) module uses the informa- 
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tion contained in the resulting DRS to do inferences that resolve contextually-dependent 
expressions. This results in one or more hypotheses about the nature of the conversational 
events that are implicit in the given surface conversational event, taking into account the 
discourse context. The 6-part hypothesis obtained by processing (7) is shown in (8). 

(8) (:SIT-DESCR (:PAR  :*C0A994*   :CONV-THREAD) 
(:DRS  (:CE993   :CE995) 

OEV-DESCR  :CE993  (:DRS NIL  (:I   :HUM   :S0-INIT))) 
(:I   :CE993   :AT-ABOUT  :N0W12) 
(:I   :CE993   :SUBSIT  (:PAR  :*C0A994*   :CONV-THREAD)) 
(:I   :CE995   :AT-AB0UT  :N0W13) 
(:I   :CE995   :SUBSIT  (:PAR   :*C0A994*   :CONV-THREAD)) 
(:I   :CE993   :BEFORE  :CE995) 
(:EV-DESCR  :CE995 

(:DRS NIL 
(:I   :HUM   :TELL  :SYS 

(:SIT-DESCR (:PAR  :*S996*   :SIT) 
(:DRS  (:E991   :X989) 

(:EV-DESCR  :E991 
(:DRS NIL   (:I   :X989   :AT-L0C   :AV0N))) 

(:I   :E99i   :AT-AB0UT  :CE995)     (:I   :E991   :SUBSIT   :S*) 
(:I   :X989   :ENGINE)))))))) 

(:=  (:PAR  :*RES-SIT992*   :SIT)   :PLAN1) 
(:=  (:PAR   :*RES-SIT990*   :SIT)   :MAPS) 
(:=  (:PAR   :*C0A994*   :CONV-THREAD)   :C0A1) 
(:I   :CE995   :AGENT  :X989)     (:I   :CE995  :THEME  :AV0N) 

The expression in (8) states, roughly, that (:PAR :*C0A994* :CONV-THREAD) (a situa- 
tion, more particularly a conversational thread — see Section 6.1) has been augmented with 
the two conversational events :CE993 and :CE995. :CE993 corresponds to the utterance of 
"so" and :CE995 to the utterance of "there's an engine at Avon". 

The Lisp-like syntax used in the implementation of CRT is shown in the example. A DRS 
with discourse markers a ... b and conditions $i ... $„ is represented in this syntax by an 
expression of the form (:DRS (:A ...:B) $i ...$n). The expression s:3> asserting that 
$ holds at situation s is represented by the Lisp list (:SIT-DESCR :s 3>); the expression 
( :EV-DESCR :s $) states that $ is a complete characterization of s and corresponds to the 
expression [$** s] of EL. For example, the expression (:EV-DESCR :CE993 (:DRS NIL (:I 
:HUM :S0-INIT))) in (5) asserts the occurrence of an event :CE993 completely character- 
ized by the situation type (:DRS NIL (:I :HUM :S0-INIT)), i.e., as an event of the agent 
:HUM performing an action of type :SO-INIT. 

Some of the facts listed for (:PAR :*C0A994* :CONV-THREAD) are temporal ones {e.g., 
that the two utterances occurred at respective time points :N0W12 and :N0W13, and some 
are about situation structure {e.g., that both utterances are part of (:PAR :*C0A994* 
:CONV-THREAD)). Most importantly, an event description is given for each of the two utter- 
ance events. The event description for :CE993, the utterance of "so", merely notes that the 
agent : HUM produced such an utterance, without as yet attempting to assign a detailed logi- 
cal form. The event description for : CE995 says that this is an event of the agent : HUM telling 
the agent :SYS that a situation to be contextually determined, (:PAR  :*S996*   :SIT) sat- 
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isfies a certain description. This description asserts that there is an eventuality :E991 of 
an entity :X989 being located at Avon; it further asserts temporal and situation-structure 

facts, and that :X989 is an engine. 

All the aspects of the interpretation which were initially underspecified have been re- 
solved. The only traces left of the initial underspecified interpretation are the parameters- 
terms which are used to represented anaphoric 'holes' in the interpretation, as seen in section 
4.2. Lisp expressions of the form (:PAR :x <TYPE>) where <TYPE> is the type of the pa- 
rameter are used to represent parameters for which the syntax x or y was used in Section 4.2. 
For example, the expression (:PAR :*C0A994* :COMV-THREAD) indicates a parameter of 
type CONVERSATIONAL-THREAD, and the expression (:PAR :*S996* :SIT) indicates a pa- 
rameter of type situation. These parameters are 'anchored' to some specific value; for ex- 
ample, the second-last line of the description of (:PAR : *C0A994* :CONV-THREAD) equates 
this discourse segment with a previously established conversational thread, :C0A1, so the 

indeterminacy has been resolved. 

Both the SAD hypothesis (8) and the underspecified representation in (7) are fed to the 

Speech Act Interpreter, which produces a set of core speech act alternatives, shown in (9) 

and a list of argumentation acts, shown in (10). 

(9) (:SEQ (:SURF-IMTERP [CE993] [ST-ACCEPT-0028]) 
(:SURF-INTERP [CE995] (:OR (:EX-0R [ST-IMFORM-0029] [ST-CHECK-0030] [ST-YNQ-0031]) 

[ST-SUGGEST-0032]))) 

(10) ((:THE ?PA*T-SPEECHACT ?PADM*T-ANYTHING (:PREV-CE [CE993] ?PA*T-SPEECHACT) 
(:THE ?NA*T-SPEECHACT ?NADM*T-ANYTHING (:NEXT-CE [CE993] ?NA*T-SPEECHACT) 

(:S0 ?PA*T-SPEECHACT ?NA*T-SPEECHACT)))) 

In general, there can be many interpretations for an utterance, and the manner in which 
they can provide an interpretation for the utterance is specified in an alternative list of the 
core speech act interpretations. This list relates the conversational event to its interpre- 
tations via the predicate SURF-INTERP. As there are two sequenced conversational events 
{i.e., utterance of "so" and "there's an engine at Avon"), a SEQ operator is used to allow 
sequential contextual speech act pruning and update. The manner in which the alternatives 
can combine is specified by the operators AND, OR, and EX-OR. The interpretation of CE995 
is that it is a suggestion, ST-SUGGEST-0032 and/or one (and only one) of the following: 
an inform, ST-INFORM-0029, a check ST-CHECK-0030, or a yes/no question, ST-YNQ-0031. 
As for CE993, the "so", it is interpreted as possibly being an acceptance ST-ACCEPT-0028. 
This is the only core speech act conjectured for "so", but note that the argumentation act 
in (10), also produced from CE993, says that there is a :S0 relation between the previous 
act, and the next act, which is CE995. The speech act definitions for [ST-ACCEPT-0028], 
[ST-INFORM-0029], and [ST-SUGGEST-0032], expressed in EBTL, are shown in (11), (12), 

and (13), respectively. 

The definition of [ST-ACCEPT-0028] in (11) requires that this accept speech act has 
the agent :HUM as a speaker, :SYS as a hearer, and has as content (i.e., the content to be 
accepted) a speech act that was produced by :SYS and was addressed to :HUM and remains 
unaccepted so far. The [ST-INFORM-0029] definition in (12) specifies as content of the act 
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that there is an engine at Avon. Speaker, hearer, and time roles which are identical to those 

of (11) have been omitted. The (13) definition is similarly abbreviated. The definitions for 

[ST-CHECK-0030] and [ST-YNQ-0031] are identical to that of [ST-INFORM-0029]. 

R-SPEAKER  [HUM]) 
R-HEARER  [SYS]) 
R-TIME  [F-TIHE   [CE993]]) 

(11) (:AND   (:R0LE  [ST-ACCEPT-0028] 
(:R0LE [ST-ACCEPT-0028] 

(:R0LE [ST-ACCEPT-0028] 

(:CONTENT [ST-ACCEPT-0028] 

(:LAMBDA 7SA+T-SPEECHACT 

(:AND (:R0LE ?SA*T-SPEECHACT :R-SPEAKER [SYS]) 

(:R0LE ?SA*T-SPEECHACT :R-HEARER [HUM]) 

(:OCCURS ?SA*T-SPEECHACT) 
(:UNACCEPTED ?SA*T-SPEECHACT))))) 

(12) (:AND (:R0LE [ST-INFORM-0029] :R-TIME [F-TIME [CE995]]) 

(:CONTENT [ST-INFORM-0029] 

(:LF-EXISTS ?vl3237*T-ENGINE [X989] NIL 
(:AT ?vl3237*T-ENGINE [AVON] [E991]))) 

(:FOCUS [ST-INFORM-0029] [X989])) 

(13) (:CONTENT  [ST-SUGGEST-0032] 
(:THE ?P*T-PLAN    ?DM*T-ANYTHING (:CURRENT-PLAN ?P*T-PLAN) 

(:LF-EXISTS ?VAR*T-ENGINE  [X989]  NIL 
(:USES 7VAR+T-ENGINE (:AT ?VAR*T-ENGINE  [AVON]   [E991])  ?P*T-PLAN))))) 

During speech act pruning, [ST-ACCEPT-0028] is ruled out because there is no un- 

accepted suggestion by the system. (Thus only the argumentation-act interpretation of 

"so" remains.) Also, [ST-INFORM-0029] is ruled out because the system did find an en- 

gine at Avon in the Shared belief context ([ENGINE-1]). This leads to a decision that 

[ST-CHECK-0030] was the informational act performed. Evaluating [ST-SUGGEST-0032] 

leads to the plan reasoner call in (14). Here, the dialogue manager determined that 

[PLAN-4719] was the current plan, the context was the focused node in the plan graph 

(shown in Figure 5 from the preceding planner call, as indicated by the :so argumentation 

act, and the background information is that the engine is useful because it is at Avon. The 

planner returns the EBTL formulae in (15), which indicates that this engine fills the engine 

role for the focused action. 

(14) (INCORPORATE (:USE-OBJECT  [X989])   [PLAN-4719]     :INCORP-TYPE  :ROLE-FILLER 
:CONTEXT #EVENT-0LD<[MOVE-CAR-7867]>     :FOCUS   [X989]   :BG 
(:AT   [X989]   [AVON]   [E991])) 

(15) (:PLAN-FACT  (:AND  (:EQ   [X989]   [F-ENGINE MOVE-CAR-7867]))   [PLAN-4719]) 
(:PLAN-SUPPORTS 

(:AND   (:EQ   [X989]   [F-ENGINE MOVE-CAR-7867]))   [MOVE-CAR-7867]   [PLAN-4719]) 
(:PLAN-PREMISE  (:AND  (:Eq   [X989]   [F-ENGINE MOVE-CAR-7867]))   [PLAN-4719]) 
(:AND  (:EQ   [X989]   [F-ENGINE MOVE-CAR-7867])) 

The forms in (15) mean, respectively, that this equality is a fact (as opposed to an event) 

in the plan, that it supports the move-car event (by identifying a necessary role), that it is 
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MV-COMM-4779 
X3   from CORNING  to  BATH using X244 
X3   =   ORANGES-1 

[F-MOVE-CAR  MV-COMM-4779] 
X244   from  CORNING   to   BATH 

(:At X244 CORNING) 

(:At ORANGES-1 CORNING) 

MV-CAR-7867 
X244   to  CORNING 

Figure 5: Plan Graph before Utterance 7.1-7-2 

a premise (i.e., it does not need to be achieved through further planning), and finally that 

the equality itself is present. 

The successful incorporation lets the dialogue manager decide that [ST-SUGGEST-0032] 
was a valid interpretation. In addition, the dialogue manager determines that this utterance 
initiated a new discourse unit which would later need to be acknowledged [Traum, 1994], 
and that the user kept the turn.6 The final set of conversation acts determined to be 
performed in performing this utterance are shown in (16), where :CSAS are the core speech 
act interpretations, :ARGS is the argumentation act, :GAS refers to the grounding acts, and 

:TTAS refers to the turn-taking acts. 

(16) CSAS   ([ST-CHECK-0030]   [ST-SUGGEST-0032])     :ARGS   (SO   [CE721]   [CE995]) 

GAS   (INIT HUM DU-4   ([ST-CHECK-0030]   [ST-SUGGEST-0032])  NIL) 

TTAS   (KEEP-TURN HUM   [N0W13]) 

Since the user kept the turn, the system waits for the next utterance, 7.3. The parser's 
output for this sentence is shown in (17). This analysis views the utterance, right?, as 
an elliptic sentence, consisting just of a predicate, followed by a question mark and thus 
acquiring interrogative force. The top-level :QUES operator, like :DECL in the case of 
assertions, supplies the type of the locutionary act (an 'ask' act). A present tense operator 
is taken to be implicit in this type of abbreviated sentence, as can be seen in the semantic 
rule for the S_PRED constituent. This rule also introduces an implicit pronoun (:IT-IMP), 
i.e., the meaning of the question is regarded as equivalent to Is that right? 

(17)   (1 UTT 1 
(1 S.SELL+? (:F :DUES (:F :? 1)) 

(1 S_PRED (:0 :PRES (:I :IT-IMP D) 

(1 PRED_A2 1 
(1 A2_A1 1 (1 RIGHT1 :RIGHT-CORRECT)))) 

(2 /QUESTION-MARK1 NIL))) 

6The user can signal a desire to keep the turn in one of two ways. Either typing an explicit signal <kt> in 
the input stream, or typing the next utterance before the system has finished processing the previous one. 
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This is converted to the CRT form shown in (18). 

(18) (:SIT-DESCR (:PAR :*C0A1090* :CONV-THREAD) 

(:DRS (:CE1091) (:I :CE1091 :AT-AB0UT :N0W14) 

(:I :CE1091 :SUBSIT (:PAR :*C0A1090* :CONV-THREAD)) 

(:EV-DESCR :CE1091 

(:DRS NIL 
(:I :HUM :ASK :SYS 

(:SIT-DESCR (:PAR :*S1092* :SIT) 

(:DRS (:E1088) 

(:EV-DESCR :E1088 

(:DRS NIL  (:I  (:PAR  :*IT-IMP1087*  :IT-IMP) 
:RIGHT-CORRECT))) 

(:I   :E1088   :AT-AB0UT  :CE1091) 
(:I   :E1088   :SUBSIT   :S*)))))))) 

(:=  (:PAR   :+RES-SIT1089*   :SIT)   :PLAN1) 
(:=  (:PAR  :*S1092*   :SIT)   :C0A1)   (:=  (:PAR  :*C0A1090*   :CONV-THREAD)   :C0A1)) 

The only core speech act possibility for this utterance is the check act with content 
shown in (19). This act checks whether the content of some previous act is correct. In 
speech act evaluation, the dialogue manager decides that this refers to [ST-CHECK-0030], 
from utterance 7.1-7.2. Also, at the grounding level, this utterance is seen as a repair, 
replacing the previous speech act.7 In addition, this utterance is seen as releasing the turn, 
and allowing the system the chance to respond. 

(19) (:CONTENT  [ST-CHECK-0033] 
(:THE ?CE*T-INF-SA    ?CEDM*T-ANYTHING     (:PREV-ACT  [CE1091]   ?CE*T-INF-SA) 

(:RIGHT-CORRECT ?CE*T-INF-SA))) 

The dialogue manager now checks its representation of the conversational state, and 
according to the algorithms described in [Traum and Allen, 1994; Traum, 1994], the system 
first decides to acknowledge the utterances by the user, and then to act on the obligation 
to answer the check query. This will result in first checking to see if it agrees with the 
mentioned fact that an engine is at Avon, and then generating an affirmative reply. The 
dialogue manager sends the templates shown in (20) to the generator which produces the 
response labeled 8. 

(20) ACK  ([ST-CHECK-0033]   [ST-SUGGEST-0032])      Reason:   (GROUNDING) 
INFORM-IF     (FOCUS RIGHT  (RIGHT-CORRECT  [ST-CHECK-0030])) 

Reason:   (OBLIGATION (CHECK-IF  (RIGHT-CORRECT  [ST-CHECK-0030]))) 

The system's response is also interpreted by the system, both to update the context as 
well as check to make sure the intended interpretation is the most likely interpretation. The 
parser produces the form in (21) for this utterance. This is of course very similar to the 
form produced for the previous elliptic question. The only semantic difference, induced by 
the difference in punctuation, is the declarative force of the utterance, as encoded by the 
:DECL operator. 

7Since the previous utterance also received a check interpretation, this has no significant effect, but if, 
for example, the inform possibility had been chosen, this utterance would change the interpretation to that 
of a check. 
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(21) (1  UTT   1 
(1  S-TELL.ELL  (:F   :DECL  1) 
(1  S_PRED  (:0   :PRES  (:I   :IT-IMP  1)) 

(1  PRED_A2  1 
(1  A2_A1  1   (1 RIGHT1   :RIGHT-CORRECT)))) 

(2  /PERIOD1 NIL))) 

The SAD module then produces the CRT form in (22). 

(22) (:SIT-DESCR  (:PAR  :*C0A1143*   :CONV-THREAD) 
(:DRS   (:CE1144)   (:I   :CE1144  :AT-AB0UT  :N0W15) 

(:I :CE1144 :SUBSIT (:PAR :*C0A1143* :CONV-THREAD)) 

(:EV-DESCR :CE1144 

(:DRS NIL 

(:I :SYS :TELL :HUM 

(:SIT-DESCR (:PAR :*S1145* :SIT) 

(:DRS (:E1141) 

(:EV-DESCR :El141 
(:DRS NIL  (:I   (:PAR  :*IT-IMP1140*   :IT-IMP)   :RIGHT-CORRECT))) 

(:I   :E1141   :AT-AB0UT   :CE1144)   (:I   :E1141   :SUBSIT  :S*)))))))) 
(:=  (:PAR   :*RES-SIT1142*   :SIT)   :PLAN1) 
(:=  (:PAR   :*S1145*   :SIT)   :C0A1)   (:=  (:PAR  :*C0A1143*   :CONV-THREAD)   :COAl)) 

The speech act interpreter discovers two speech act possibilities for this utterance, as 

shown in (23), with the contents shown in (24) and (25). Both of these interpretations are 

validated by the dialogue manager, which as a result, transfers the plan results from the 

proposed to the shared plan belief context. This utterance is also seen as acknowledging 

the two previous utterances by the user, as well as releasing the turn. 

(23) (:SURF-INTERP  [CE1144]   (:0R  [ST-INFORM-0035]   [ST-ACCEPT-0034])) 

(24) (:CONTENT  [ST-ACCEPT-0034] 
(:LAMBDA ?SA*T-SPEECHACT (:AND (:R0LE ?SA*T-SPEECHACT :R-SPEAKER [HUM]) 

(:R0LE ?SA*T-SPEECHACT :R-HEARER [SYS]) 
(:OCCURS ?SA*T-SPEECHACT) 
( : UNACCEPTED ?SA*T-SPEECHACT.) ) ) ) 

(25) (:CONTENT [ST-INFORM-0035] (:THE ?C*T-INF-SA ?DM*T-ANYTHING (:PREV-ACT [CE1144] ?C*T-INF-SA) 
(:RIGHT-CORRECT ?CE*T-INF-SA))) 

6     Relations between the KR Languages 

Not choosing a single representation formalism from the very beginning involved a risk, 

namely, that we would end up with a number of mutually incompatible representations. 

In fact, this did not happen. There are strong connections between the formalisms we 

use, and a number of ontological assumptions are shared, so that most translations are a 

straightforward matter. A number of factors conspired in keeping the formalisms we use 

relatively close to each other. First of all, there was an unspoken agreement by all to adopt 
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logic-based formalisms. Secondly, as work progressed, it became more and more clear that 
a tight interaction between the modules was needed. In this section, we describe some of 
those connection points, as well as some of the ontological differences springing from the 
different research traditions that still make it non-trivial to combine all the reasoning into 
a single representation language. 

6.1     Translating between the Languages 

The conversion from the EL-annotated parse tree produced by the parser into the initial 
underspecified CRT expression is mostly straightforward. For example, the parser produces 
for the NP "an engine" the syntactically annotated subtree shown in (26), whose last element 
is the semantic object to be produced. 

(26) [NP  [Det an;   exists]   [N engine;   engine];   (:Q  1 2)] 

The resulting CRT expression, shown in (27), is almost identical, but the lexical items are 
eliminated from nodes such as [Det an; exists] , and the semantic operation is eliminated 
from the specification of phrasal categories, since it's part of the semantics of the CRT 
expression. 

(27) [NP   [Det  A P A Q  (3 x  :    P(x)   (Q(x)))]   [N engine]] 

In (27), [Det A P A Q (3 x : P(x) (Q(x)))] is the semantic translation of "an", 
and engine is the predicate associated with the noun "engine" in the lexicon, and x is 
used as the discourse marker (see Section 6.2). One aspect of the translation which involves 
an actual modification is where anaphoric items are involved, since EL does not have the 
equivalent of parameters. 

The translation from EL and CRT to EBTL takes the form of an approximation, where 
the more complex episode or situation constructs in EL and CRT are approximated in the 
weaker EBTL, in terms of events and actions. EBTL does not contain general situations 
or episodes as first-class objects, and so only those episodes which correspond directly to 
events or time intervals can be translated. Much of the time, however, no information is 
lost, since most domain-related episodes that arise in the dialogues correspond to simple 
event occurrences. 

More general situations that are characterized by a more complex structure of events 
or facts can sometimes be approximated within the belief contexts from RHET. While 
not strictly a part of EBTL, reasoning about hierarchically related belief contexts which 
contain sets of EBTL formulae is an important part of the reasoning performed by the 
dialogue manager. Thus, for example, discourse segments, which are represented in CRT by 
plural situations (called conversational threads) are represented (in part) as belief contexts 
containing EBTL facts and events. 

In addition, as the domain predicates in EBTL are only those used in the TRAINS do- 
main, more general event descriptions are specialized to their precise meaning in the TRAINS 
domain, e.g., the EL action pick-up, as in utterance 9-13, which has more general appli- 
cability in a range of situations is disambiguated to a COUPLE action within EBTL. 



Translating a plan graph, represented in EBTL, to the information that the executor 
uses, represented in Tyro, is again an approximation. This translation removes most of the 
dependencies between the events expressed in a plan. That is, it finds all the actions in the 
plan such that the action is an Actionln the plan and considers them individually. It also 
uses each fact that Enables an action as a condition to trigger the action. In addition, the 
executor treats the EBTL events in the plan graphs as Tyro event types. The event types are 
constructed by taking the EBTL description of the EBTL event, and using that description 
as a lambda abstraction that is reified into an Tyro event type. By doing this, the executor 
can use its statistical knowledge to choose its actions (messages to agents in the simulated 

world) to best achieve the planned event. 

The loss of information in the action converstion process is important because it allows 
the executor to assume independence of the events in the plan, simplifying the computation 
of probability. Though the relations between events are certainly important for reasoning 
about the likely success of the whole plan, and communicating these aspects with the user, 

they are not essential to determining whether the events themselves will occur. On the other 
hand, information lost decreases the accuracy of the conditional probabilities computed. 
This problem is ameliorated somewhat because the executor can report failures back to the 
rest of the system. If some problem with a particular event in the plan occurs, the executor 
could communicate back to the domain plan reasoner, which would then have the full plan 

argument to assist in replanning. 

6.2     Interface Issues 

A number of knowledge-representation issues came up in the course of building the system 
that transcended the functioning of any one module or representation language. We briefly 

discuss some of them here. 

Discourse Markers 

Any system for handling an extended dialogue (as opposed to isolated sentences) must 
maintain a notion of discourse context. Thus the SAD module maintains knowledge of tem- 
poral relations between events and a structure for referentially accessible entities, and the 
dialogue manager and plan reasoner maintain information about mental states and plans. 
Some sharing of information across these distinct representations of context is essential. 
If, for example, the SAD module decides that some mentioned entity is the same as one 
that had been described before (which, perhaps the plan reasoner had decided played a 
particular role in a plan), it is crucial that the other modules realize this connection. This 
problem is addressed by introducing common discourse markers, serving as unique names 
across the entire system, for entities introduced by the dialogue (typically through indefinite 
NPs, or implicitly through lengthier dialogue segments, as in the case of various situations 

and plans). 

These discourse markers are an integral part of CRT and EBTL,  and play a crucial 
role in the interface between the knowledge representation languages and modules.  Their 
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importance is best seen by looking at the interface between the parser, SAD, and speech act 
interpreter. 

Discourse markers are introduced into the unscoped logical form produced by the parser, 
corresponding to existentially quantified and i/je-quantified unscoped terms. This modified 
parser output becomes the input for both the SAD module and the speech act interpreter. 
The speech act interpreter then builds a skeleton of the speech act in terms of the discourse 
markers present in the parse tree. For the content, it turns to the CRT output of the SAD 
module. The merging process converts the CRT definitions for these discourse markers into 
EBTL, and then puts the markers and the EBTL definitions into the appropriate spots in 
the speech act output. In addition, these same discourse markers allow reference to objects 
across sentences, and in both the CRT and EBTL knowledge bases. 

Definite Description 

Resolving definite descriptions is a venerable problem in natural language interpretation. 
It is clearly necessary to represent definite description more or less directly in the under- 
specified logical form, so that different possibilities for the referent can be considered and 
chosen between, using various semantic, contextual, and inferential processes, as is done in 
the SAD module in TRAINS. What is less obvious is that the same kind of definite quantifier 
construct is also useful for the modules that reason about the discourse pragmatics and 
plan execution. 

While explicit definite descriptions coming from utterances (e.g., the boxcar) could in 
principle be eliminated when the referent is resolved by the SAD module, it is still usefull 
to have a definite description operator in EBTL for representing several aspects of the con- 
textual pragmatics in the hypotheses built by the speech act interpreter. These include the 
following: 

• suggestions without explicit goals are taken to be implicitly suggestions with respect 
to some plan that is contextually relevant. The speech act interpreter, which builds 
hypotheses without reasoning about the context, uses the construct in (28) to signal 
the dialogue manager that the plan ?P, referred to in the body of the suggestion, 
should be the current plan in the current discourse segment. 

(28) (:THE ?P*T-PLAN ?DM*T-ANYTHING  (:CURRENT-PLAN ?P*T-PLAN)), 

• argumentation acts which make reference to component speech acts that are not part 
of the current utterance are augmented with definite reference information that will 
allow the dialogue manager to select the appropriate acts. For instance, this is done in 
the case of the argumentation act coming from cue word so, as represented in (10), in 
the previous section. Here, the dialogue manager can decide which are the appropriate 
previous and next acts which are connected by the argumentation act. 

A process similar to definite reference resolution is also performed by the plan executor, 
when trying to monitor execution of the plan produced by the plan reasoner. The plan 
reasoner reifies future events in plans for the purpose of reasoning about, e.g., enabling 
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conditions, effects, etc. However, the plan executor, while trying to actually cause an 
event in the plan like [Move-Boxcar-1], views this event as an event type with some 
qualifications. Moreover, in monitoring the plan, the executor receives from the agents 
in the world a huge list of reports of things that happened during a particular stretch of 
time, and it needs to decide if these things mean that the intended [Move-Boxcar-1] has 
actually occurred. If two events of this type have occurred and they differ only on irrelevant 
details, it can be difficult to determine which of them was [Move-Boxcar-1] , much as in the 
case of multiple referents fitting a definite description. So, although no definite description 
operator is involved here, the process is very similar to definite reference resolution, in which 
presuppositions of identifiability and uniqueness (within a given context) guide the selection 

of the appropriate object. 

A related problem is how to interpret existential there - see for instance utterance 

3.7, There are oranges at Corning. Originally the EL interpretation treated the "lowered 
subject", oranges, as having the same denotation as it would as an ordinary bare-plural 
subject, namely, the kind, (K (plur orange)). But the fact that the resultant LF's provided 
an existential entailment only indirectly, and that sentences such as Pencils are in the top 
drawer, and There are pencils in the top drawer differ in meaning persuaded us to treat 
the lowered subjects as predicates; we then let there is/are introduce explicit existential 
quantifiers over the domains of these predicates. 

As such, there is no need for the SAD module to try to identify these oranges - it merely 
adds a discourse marker so that future reference to this object can be recognized. At the 
pragmatic level, however, this utterance, in the context of the problem solving dialogue, 
is interpreted as (among other things) a suggestion to use the oranges in the plan. Thus, 
seen from the point of view of the dialogue manager, this is very like a definite reference, 
which is resolved by querying the database to see which oranges are there (in this case, 01). 
When the suggestion is incorporated into the plan, 01 is used, and equated to the discourse 
marker so that future references will be recognized. 

Indirect Action 

Although the TRAINS dialogues contain locutions such as we should move the engine, in 
which the conversants refer to themselves as the agents of domain actions, as mentioned 
above, in the TRAINS domain, neither the user nor the system can effect changes on the 
world directly. Such locutions are part of a general phenomenon of indirect agency, in 
which one agent {e.g., the system) can perform an action by having another agent (e.g., 
the train engineer in the simulated world) do something. This brings up the point of where 
and how the translation from the system and user, mentioned explicitly in the dialogue, to 
the actual agents in the world should take place. Given the focus on domain independent 
language translation, it is clear that this translation cannot occur in the initial logical form 
- one could very well imagine the same conversations occurring in a slightly altered domain 
where system and user had direct control over the domain actions (e.g., by moving trains 
represented in a GUI showing the map). Even at the conversation level, it is necessary 
to represent the original agents, so that the dialogue manager can track the obligations to 
perform particular actions. While the domain planner has no need to represent the system 
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and user, it also is not hindered by leaving them in the agent roles, assuming such actions 
actually can be performed in the world. 

It is up to the plan executor to finally resolve this issue by recognizing that the actions 
specified in the plans correspond to requests to the simulated agents. To do this, it must 
examine the event specified in the plan and reason about which agents in the domain should 
be involved. For example, if the event involves moving a railroad car, the executor knows 
that the only agents that can really make a car move are train engineers. It also knows that 
it communicates with engineers through their engines, so it looks for an engine mentioned 
in the event. 

In fact, this problem is more general than just a case of "sloppy" or metaphoric locu- 
tion. This kind of indirect agency is also sometimes expressed directly, as in the following 
utterance from another TRAINS dialogue, "We'll have E3 pick it up". For this reason, a 
bring-about event was incorporated in both EL and EBTL. In fact, even the verb ship, in our 
first sentence is most properly translated as bringing about a move-commodity event. 

This raises a related issue in sentences like 1, from Figure 2 where there is a temporal 
qualification of "by 8 a.m." on the ship action. The question arises as to whether this refers 
to the ship action itself or the underlying move-commodity action. While, in general, the 
locution is ambiguous, with, perhaps a preference for the former (e.g., "We have to ship 
this package by 5pm, before UPS closes."), in examining the TRAINS corpus, all temporal 
qualifications of ship refered to the conclusion of the embedded move-commodity event. 

6.3    Conflicting Ontologies 

While there is need for more interaction and information sharing between the modules 
of the TRAINS system than was present in the TRAINS-93 implementation, (e.g., the SAD 
module needs to know the results of Speech Act interpretation, as these affect discourse 
segmentation and therefore the availability of anaphoric references), it is by no means clear 
that in the future all modules of the system will be able to access a unified database of 
information. In order for that to happen, it is not enough to adopt a single representation 
formalism; it is also necessary that all modules adopt the same ontological perspective, and 
it is by no means clear that that's possible, or even desirable. We mention below a couple 
of issues in which the most natural view of some important phenomenon is different for 
modules concentrating on different aspects of the planning dialogue task. 

Common Ground 

Most work on reference resolution makes the assumption that felicitous reference requires 
mutual knowledge [Clark and Marshall, 1981], and that, further, everything that is uttered 
in a shared situation immediately becomes a part of the common ground and, hence, is 
available for reference. This assumption was carried over into CRT , so that, e.g., a speaker 
can refer to an object mentioned in the immediately preceding utterance. 

As shown in [Clark and Wilkes-Gibbs, 1986; Clark and Schaefer, 1989; Traum and 
Hinkelman, 1992], this assumption of immediate addition to common ground is an ideal- 
ization: utterances by one party must be recognized and acknowledged by the other before 
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becoming part of the (assumed) common ground. It is important for a system engaging 
in extended dialogues (rather than just iterative question answering exchanges) to have 
an awareness of the grounding process, so that acknowledgments and repairs can be both 
recognized and produced when appropriate. Grounding is tracked by the dialogue manager 
(the current state accessible through EBTL predicates) and used both for recognition and 

production of utterances. 

Because of the different interpretations of the common ground and the importance of 
the concept for various tasks (definite reference resolution on the one hand, and producing 
and interpreting acknowledgments and repairs on the other), there are two parallel repre- 
sentations of much of the discourse context. Thus, the SAD module represents discourse 
segments in CRT, using situations, while the dialogue manager represents them in EBTL 

using RHET's belief context mechanism. 

What are Plans? 

Plans are obviously one of the most important entities to be represented in a system de- 
signed to engage in planning dialogues. However, the most useful perspective on the plan 
varies from module to module, resulting in different ontologies of plans in the different 
representation languages. This distinction goes far beyond the by now familiar distinction 
between plans as recipes and plans as mental state [Bratman, 1987]. The different views of 
plans and their rationales are summarized below. 

Parser/Semantic Interpreter: From a natural language perspective, the semantic cat- 
egory of plans should be whatever category is assigned to them by locutions that di- 
rectly and uncontroversially specify them. The clearest examples of such locutions are 
those like "Our current plan is to fill tankers T3 and T4 with beer", "The plan is for en- 
gine E3 to go to Dansville and pick up the boxcar there", or "Our plan of going to Bath 
and picking up both boxcars won't work", or "The plan is that we'll bring a boxcar of 
oranges to Elmira, take them to the factory, and produce OJ". Arguably, the infinitive 
in the first sentence (to fill... with beer), the /or-clause in the second (for engine E3 to 
go ... the boxcar there), the gerund in the third (going to Bath ... both boxcars), and 
the that-cla,use in the fourth (that we'll bring .. .andproduce OJ) are all nominals; i.e., 
syntactically, they occupy noun phrase positions and semantically they denote indi- 
viduals of some sort. But it can be further argued that nominalized infinitives, nom- 
inalized /or-clauses and gerunds denote kinds/types of actions (or kinds/types of sit- 
uations/events), and that i/iai-clauses denote propositions (e.g., see [Chierchia, 1985; 
Hwang, 1992]). The difference between viewing plans as situation types and viewing 
them as propositions is minor in Episodic Logic: a proposition determines a situation 
type, namely the type of situation in which the proposition holds; and conversely, a 
situation type determines a proposition, namely the proposition which is true precisely 
in situations ofthat type. Thus the most natural assumption to make about linguisti- 
cally specified plans is that they are types of situations, or (more or less equivalently) 

propositions. 

SAD: Another important aspect of plans is that, just as with the visual situation (or map 
— Figure 1 in the TRAINS domain), and the conversational threads that are part of 
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the discourse situation, they can serve as a resource situation for referring expressions. 
There are some objects (e.g., orange juice to be created later) or qualifications (e.g., 
"the boxcar at Corning", when there will be such a boxcar only after performance of 
some planned actions) which are present only in plans. In order to treat coreference 
uniformly — whether it is between expressions in descriptions of actual events, or 
between expressions in descriptions of planned events, or (as often happens) between 
expressions one of which occurs within a description of a given situation, while the 
other occurs within a description of a planned situation — the SAD module treats a 
plan as a situation, just like the others — in this case containing (potential) future 
objects and events and the way the map will be as a result of the occurrence of the 
events in the plan. While some of the ways of talking about a plan, such as those given 
above or the ability to perform temporal modificiation (e.g., doing the plan at noon 
rather than morning, or doing it twice in a row), might indicate that a plan should 
be a situation type rather than a situation, the situation view has other practical 
considerations. When people plan they often seem to (sometimes tentatively) commit 
as they go, so that the planned steps are presented as if they were simply descriptions 
of future events. 

Dialogue Manager: From a dialogue management perspective, the most salient aspect of 
plans is that they are constructed and their content negotiated through the dialogue 
process. It is not important for dialogue management purposes to focus on the de- 
tails or correctness of plans, but rather that conversants can have different views of 
a plan, that the composition of a plan can change through time as the conversation 
progresses (both through the addition of further details, as well as modification of 
existing components), and that, in spite of these differences, in some sense the conver- 
sants are talking about the same plan. For these reasons, the dialogue manager views 
plans as abstract objects that, like physical objects, may have different properties at 
different times oraccording to different agents. Plans are treated as individuals in the 
logic, with properties expressed by plan predicates described in Section 4.3. A plan 
is represented as an EBTL term, along with a collection of predicates about the term, 
with different sets in different belief contexts. 

Plan Reasoner: Embedding of the plan reasoner within a mixed-initiative planning setting 
(where each participant may contribute parts, and must recognize and agree to the 
contributions of others) has implications for how plans themselves are viewed. Since 
the plan reasoner must reason about the intended relations between mentioned actions 
and states within a plan (whether or not these relations would actually hold), as well 
as evaluating plans, and producing augmentations to be proposed to the user, and all 
of these processes are defeasable, the plan reaoner must be able to represent incorrect 
plans, as well as the fact (and reasons why) the plans are incorrect. Also, plans need 
only be specified as far as necessary to convince the user and system of their feasibility. 
These requirements make it natural to view a plan as an argument that a given goal 
will be achieved, given certain actions and assumptions. The system and user can 
incrementally refine their plans just as arguments are refined in response to criticisms 
or perceived deficiencies. The argument structure of a plan is represented as a DAG, 
as described in Section 4.3. 
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Executor: The plan executor's task of sending messages to agents in the world requires 
a focus on a yet another different aspect of plans. From this point of view, the plan 
is a partial specification of behavior. Unlike the language modules or even the plan 
reasoning module, the executor cannot treat the plan as a single situation. Instead, it 
must extract from the plan the points at which the ongoing behavior of the world can 
be modified to meet the plan's specifications. To make the plan occur, the executor 
must first decompose the plan into a set of events whose occurrence it can affect. 
Next, it must reason about how to make these events happen. Usually, the events 
occur when the executor sends requests to agents that can act to cause the events 
directly. Finally, it must note the expected effects so it can monitor the occurrence of 
these events. Currently, because the executor does not report the failure of plans back 
to the rest of the system, there is no reason to record that the events it is monitoring 
are part of a plan; monitoring only gathers information that will be used to reason 

about subsequent events of the same type. If, however, the executor were to report the 
failure of the plan, it would have to record the plan that gave rise to the events with 
the events it is monitoring. As it stands now, however, a plan is a set of temporally 
ordered desirable events, which can be translated into a sequence of requests for an 
appropriate agent to act in such a way that to the specified event will occur in the 

simulated world 

While none of these are completely incompatible, unification into a single representation 
language must be performed carefully, in such a way that each module can perform its own 
functions with as great a facility as in the current system. Given the divergent perspectives, 
it is more straightforward to insure consistency within separate languages than within a 

single one. 

7    Assessing the KR in the System 

Concerning syntax, we previously noted our use of a GPSG-like grammar in the parsing / 
LF-computation module. Of course, phrase structure grammars are thought to fall slightly 
short of the expressive power needed in general for the syntactic characterization of human 
languages. However, this appears not to be a serious impediment to building broad-coverage 
grammars of English, and the simplicity of chart parsing for phrase structure grammars 
make their use almost irresistible for large-scale systems. Some more serious problems for 
syntax and parsing, which we deliberately set aside for TRAINS-93, are the fragmentation 
of sentence structure through turn-taking; false starts and other disfluencies; the role of 
prosody; and more generally, the problems raised by interactive spoken language, such as 
how to deal with the inevitable word recognition errors. 

Among implemented NL systems that use a formal meaning representation, the great 
majority rely on description logics or frame-like representations. By and large, these rep- 
resentations capture only a subset of the expressive power of standard FOL, and in terms 
of their inference capabilities are aimed primarily at subsumption checking [Brachman and 
Levesque, 1984; Nebel and Smolka, 1991; Schmölze and Israel, 1983; Hayes, 1979].8 

'In lexically oriented work such as [Dorr, 1993], Jackendoff's Lexical Conceptual Structures are gaining 
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Our KR formalisms, especially the EL and CRT representations for language, were seen 
to be considerably more expressive than FOL. One might ask whether in retrospect the 
purposes of our project might have been equally well served by a weaker representation. 
We think this would have made our language module less general, while at the same time 
making it harder to implement and extend. As ever, the devil here lies in the details, so let 
us briefly consider utterance, 5.1, from our dialogue. 

The only way to provide an approximate representation of this in standard FOL (without 
quantifying over possible worlds) is to leave out a great deal. In particular, as shown in the 
example, the so appears to establish a relevance connection or a "following-from" connection 
between a previous proposal and the present one, but FOL does not allow us to talk about 
this sort of sentential or propositional connection. Further, need is patently intensional. So, 
ignoring both, we might claim that in essence, the utterance posits a future mow-event 
whose instrument is some engine and whose theme is the boxcar. This readily admits an 
FOL-representation. 

Now the neglect of a weak cue word like so is probably harmless in many cases; but 
such a strategy does not generalize well. For instance, an initial but can be used to call into 
question a previous suggestion, as in 

"First let's get rid of the tanker cars." 

"But we need a tanker car to ship the orange juice." 

So neglect of cue words is bound to impair discourse understanding, and we would 
probably end up treating them as a separate phenomenon with a separate representation, 
losing in simplicity and generality. Similarly the neglect of intensional verbs like need would 
come back to haunt us. If we replace it by simple future, we may misunderstand a goal 
statement as a prediction; if we leave it in place but treat it as non-intensional, we will 
incorrectly conclude that there is a particular engine that is needed to move the boxcar, 
and may well ask, "Which one is it?" 

The TRAINS dialogues are full of such locutions defying simple FOL representations. As a 
few more examples (besides those mentioned in section 3.1) drawn from various transcripts, 
consider "That's reliable information" (the subject of the predication is a proposition); "... 
our next objective here which is to deliver a boxcar of bananas to Corning" (the "objective" 
is equated with an action type); "Problem number two looks difficult" ("looks difficult" is 
not equivalent to "is difficult", and creating a new predicates like looks-difficult would 
severly inflate the lexicon and KB); "What is the best way for me to accomplish my task?" 
(the referent of "the best way ..." is an action type or plan); "That's a little beyond my 
abilities" (the subject is an action type, and "a little" is a predicate modifier not reducible 
to a conjunct); "Our current plan is to fill tankers T3 and T4 with beer" (the NP subject 
and the infinitive complement refer to the same thing, a plan). 

If we truly want to understand such locutions, then reliance on an expressively weak 
representation would make it much more difficult to find any sort of approximate LF, and 
we would in addition have to fill in the gaps left by these approximations in various ad hoc 
ways. We would lose doubly, in both simplicity and generality. 

some currency. However, inference based on LCS's again tends to be restricted to subsumption, implemented 
by translating into a description logic such as CLASSIC. 
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Contrary to a widespread myth a rich syntax is no obstacle to effective inference. For 
instance, although only a very limited set of EL inference capabilities has been used in 
TRAINS-93, EL has been separately implemented in the EPILOG system [Schaeffer et al., 
1993]. EPILOG is a powerful knowledge management and inference system allowing data- 
driven inference, goal-driven inference, and featuring integration with about a dozen spe- 
cialist modules for accelerating temporal, taxonomic, partonomic, set-theoretic, numeric, 
and other special types of inference. 

In general, in building a complex system containing multiple knowledge representations, 
it is better to err on the side of "overly rich" representations than on the other side. The 
reason is that when information is shipped from one module to another, it is far easier to 
discard superfluous information than to make up for missing information, omitted for lack of 
sufficient expressive power. This has been strongly confirmed by our experience, where the 

rapid evolution of each module caused frequent changes in its information needs, and hence 
also in the information extracted from its "supplier" modules. The unusual expressiveness 
of our representations, particularly at points nearer to the input end, made these adaptive 

changes relatively easy." 

8     Current and Future Directions 

While the theories behind many of the individual modules are continuing research projects, 
there are also several efforts in progress or under discussion which follow up on the knowledge 
representation issues described in this paper. Some of these are described briefly below. 

Unified Conversational Context Representation Given the experience of designing 
the individual modules and the interfaces, we are now in a position to meet head 
on the ontological differences springing from the different research traditions on dis- 
course context representation. In [Poesio and Traum, 1995] we present the first steps, 
which alters CRT to also allow representation of the aspects of conversational context 

represented in EBTL in the TRAINS-93 system. 

Robust Spoken and Multi-modal Interaction The TRAINS-95 system [Allen et al., 
1995a; Ferguson et al, 1996], the most recent effort in the TRAINS project as of 
this writing, represents a somewhat separate effort to develop a relatively simple but 
extremely robust multi-modal system, based on our experiences with TRAINS. This 
system understands both spoken and typed input, as well as various mouse opera- 
tions such as selecting from a map or menu. It generates responses using both spoken 
language and graphical displays. 

The task for TRAINS-95 is currently a simple route planning scenario designed to en- 
courage interaction between the human and the system, thereby demonstrating the 
effectiveness of dialogue-based interaction. The goal is to allow an untrained user to 
sit down and solve a randomly-generated problem. This puts the emphasis on robust- 
ness, since we have to deal with such phenomena as incomplete and ungrammatical 
utterances, speech recognition errors, multi-modal input and output, and so on. We 
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have also concentrated on more clearly delineating the modules of the system as in- 
dependent knowledge sources, reasoning agents, and display engines, allowing us to 
plug in more sophisticated components easily. We are currently scaling up the delib- 
erately naive route planning domain reasoner to a more interesting and challenging 
transportation planning scenario. 

Knowledge Acquisition by Simulation We have built a general purpose simulator for 
transportation domains such as TRAINS [Martin and Mitchell, 1995]. The simulator 
provides a graphical interface that allows us to quickly set up scenarios in the TRAINS 
world. It also animates the simulation to help us debug the plans the system generates. 
We are currently exploring techniques for incorporating simulation as a source of 
knowledge that the system can use to help the user develop effective plans. While 
evaluating the effects of a plan may be intractible in general, due to too many possible 
contingencies and inadequate prior information, simulation based on probablities can 
reveal likely problems and expectations for success of particular options. 

Other We expect to eventually build a hybrid TRAINS system, containing modules similar 
to those of earlier prototypes, but also incorporating the speech processing modules of 
TRAINS-95, as well as its heuristic mechanisms for mapping very fragmentary parses 
into plausible speech act hypotheses. We also expect to use a mechanism for auto- 
matically detecting and correcting speech repairs, along the lines of that presented in 
[Heeman and Allen, 1994a]. 
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