
19971007 103
Knowledge Representation

in the TRAINS-93 Conversation System

D.R. Traum, L.K. Schubert, M. Poesio, N.G.]$f artin,
M.N. Light, C.H. Hwang, P.A. Heeman, G.F. Fergusonj and J.F. Allen

TRAINS Technical Note 96-4 and Technical Report 633
August 1996

UNIVERSITY OF

ROCHESTER
COMPUTER SCIENCE

DIIC Q
3YlH3B5GnBD*,l

Knowledge Representation
in the TRAINS-93 Conversation System*

David R. Traum1 Lenhart K. Schubert2 Massimo Poesio3

Nathaniel G. Martin2 Marc Light4 Chung Hee Hwang2 Peter Heeman2

George Ferguson2 James F. Allen2

The University of Rochester
Computer Science Department
Rochester, New York 14627

Technical Report 633 and TRAINS Technical Note 96-4

Abstract

We describe the goals, architecture, and functioning of the TRAINS-93 system, with
emphasis on the representational issues involved in putting together a complex language
processing and reasoning agent. The system is intended as an experimental prototype of an
intelligent, conversationally proficient planning advisor in a dynamic domain of cargo trains
and factories. For this team effort, our strategy at the outset was to let the designers of the
various language processing, discourse processing, plan reasoning, execution and monitoring
modules choose whatever representations seemed best suited for their tasks, but with the
constraint that all should strive for principled, general approaches.

Disparities between modules were bridged by careful design of the interfaces, based on
regular in-depth discussion of issues encountered by the participants. Because of the goal of
generality and principled representation, the multiple representations ended up with a good
deal in common (for instance, the use of explicit event variables and the ability to refer to
complex abstract objects such as plans); and future unifications seem quite possible. We
explain some of the goals and particulars of the KRs used, evaluate the extent to which
they served their purposes, and point out some of the tensions between representations that
needed to be resolved. On the whole, we found that using very expressive representations
minimized the tensions, since it is easier to extract what one needs from an elaborate
representation retaining all semantic nuances, than to make up for lost information.

The University of Rochester Computer Science Department supported this work.

*To appear in International Journal of Expert Systems Vol. 9, No. 1.

"TECFA, FPSE, Universite de Geneve, 9 Rte de Drize, 1227 Carouge, Switzerland.
Email: David.Traumetecfa.unige.cn Telephone Number: +41 22 705 9696 Fax: +41 22 342 8924

2Computer Science Department, University of Rochester, Rochester, NY 14607, USA.
3 Centre for Cognitive Science, University of Edinburgh, 2 Buccleuch Place, Edinburgh, EH8 9LW

Scotland.
4Universität Tübingen, SfS Computerlinguistik, Wilhelmstr. 113, D-72074 Tübingen, Germany.

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of Information la estimated to average 1 hour per response. Including the time for reviewing Instructions, searching existing data

sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other

aspect of this collection of Information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and

Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-018B),

Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

August 1996
3. REPORT TYPE AND DATES COVERED

technical report
4. TITLE AND SUBTITLE

Knowledge Representation in the TRAINS-93 Conversation System

5. FUNDING NUMBERS

ONR/ARPA N00014-92-J-1512

6. AUTHOR(S)

Traum, Schubert, Poesio, Martin, Light, Hwang, Heeman, Ferguson, & Allen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES

Computer Science Dept.
734 Computer Studies BIdg.
University of Rochester
Rochester NY 14627-0226

8. PERFORMING ORGANIZATION

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESSES(ES)

Office of Naval Research ARPA
Information Systems 3701 N. Fairfax Drive
Arlington VA 22217 Arlington VA 22203

10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

TR 633 and TRAINS TN 96-4

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution of this document is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

(see title page)

14. SUBJECT TERMS

knowledge representation; natural language understanding; dialogue systems
15. NUMBER OF PAGES

52 pages
16. PRICE CODE

free to sponsors; else $3.00
17. SECURITY CLASSIFICATION

OF REPORT

unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

Key Words: Knowledge Representation, Natural Language Understanding, Dialogue
Systems

1 Introduction

TRAINS is a long-term research project aimed at developing an intelligent, conversationally
proficient planning assistant. The task domain for the initial phases of the project involved
the use of factories and cargo trains to achieve given delivery goals, such as the delivery of
some quantity of orange juice to particular cities, using orange juice factories and orange
warehouses at other cities in a railroad network. We have built a prototype system at
the end of each of the first 5 years of the project. Each year's effort, except for the most
recent (TRAINS-95), was centered around one or two particular problem solving dialogues,
obtained by slightly editing transcripts selected from a corpus of human-human spoken
dialogues involving TRMNS-world problems. An overview of the TRAINS project up to 1994
appears in [Allen et al., 1995b].

In the present paper we focus on the interactions between the language understanding
components and reasoning components in TRAINS-93, which allows the TRAINS modules
to work together in an incremental, cooperative planning process. The nature of these
interactions depends crucially on the nature of the knowledge representations used within
the interacting modules. Thus much of the paper will be devoted to explaining the rationales
for the various representations, the way in which inter-module communication in TRAINS-93

bridges the gaps between the representations, and the advantages as well as the remaining
tensions associated with this architecture.

The heterogeneous architecture of TRAINS-93 is a consequence of the project goals and
our research philosophy. Our primary goal was, and remains, to gain a deeper understand-
ing of the relationship between NL dialogue and problem solving, how each informs and
constrains the other. How, we ask, is dialogue shaped by the need to solve realistic prob-
lems involving significant amounts of world knowledge? And conversely, how is cooperative
problem-solving shaped by the availability of and necessity for linguistic interaction?

In addition, the TRAINS project is intended to serve certain "research management"
objectives. It provides a setting in which researchers on different facets of NLP and problem
solving can confront the interface issues and work out a common, integrated, comprehensive
view of problem solving dialogues, as opposed to working independently on just a few
selected problems of theoretical interest. Finally, we are committed to the practical goal
of building a series of working and integrated prototype systems, as a way of keeping the
theoretical efforts focused and earth-bound. While these systems are not ends in themselves,
they are intended as steps toward a conversationally proficient, intelligent planning assistant
for dynamic task domains.

As indicated in our opening remarks, our methodology has been to undertake a se-
ries of joint efforts centered around specific, increasingly complex and realistic dialogues.
By drawing these dialogues from a corpus of natural spoken dialogues between people, we
ensure that our theories will apply to actual discourse, and that our systems will show
increasingly "life-like" behavior. However, we would not be satisfied with ad hoc theories

and techniques that happen to work in the TRAINS domain. We are interested in principled,
general solutions that will apply to entirely different and potentially richer task domains.
Given this emphasis on generality, it was important to let individual researchers bring to
bear whatever representational theories and techniques seemed to them most promising
for their subproblem. In this, our system differs from the SOAR project [Lehman et al.,
1991] which is similar in its aims to build an integrated, multi-functional, language-using
agent. The SOAR project uses a common knowledge representation and inference mech-
anism throughout. We decided, instead, to seek integration through careful consideration
of interface and control issues, rather than insisting on a uniform representation from the
outset; efforts on individual modules are kept "honest" by the need to interact with other
modules in a straightforward way.

The rest of the paper is organized as follows. In the next section we present an overview
of the TRAINS domain and the modules of the TRAINS-93 system. Section 3 describes the
knowledge requirements of various aspects of the system. Next we present an overview
of the KR languages used in the system, in Section 4, followed by a trace of the system
working on a small dialogue fragment, in Section 5. We continue with a discussion of how
the different languages are related and some of the obstacles to unification of the ontologies
inherent in the different KR systems, and conclude with an evaluation of the state of the
system and future directions.

2 The TRAINS-93 System

In this section we briefly describe the domain and architecture of the TRAINS-93 system, in
order to provide a concrete foundation for the specific discussion of the knowledge repre-
sentation and reasoning issues in the rest of the paper. More details on the system itself,
and rationales for choosing the domain can be found in [Allen et al., 1995b].

2.1 The TRAINS Domain

The TRAINS-93 system helps a user construct and monitor plans about a railroad freight
system. The user is responsible for assigning cargo to trains, scheduling cargo shipments
and various simple manufacturing tasks, and for revising the original plans when unexpected
situations arise during plan execution. Neither system nor user directly executes the actions
in the TRAINS domain. Rather, the actions are performed by the simulated railroad engineers
and factory and station supervisors. Dialogue is encouraged by giving the user and the
system different responsibilities and knowledge. The user is given the goals that need to be
achieved but does not have direct access to the agents in the world or complete knowledge
about the actions that can be performed. The system acts as the user's assistant. It knows
what actions are possible, and provides the communication link to the world. It interacts
with the user about all aspects of the task, using a natural language interface. The only
information that they initially share is a map of the current TRAINS scenario, as shown in
Figure 1. The world consists of five cities, each of which contains a rail station that contains
engines and rail cars as indicated. Some cities also contain warehouses containing goods

lEngine Elj

/Banana ^
vWarehousy

Boxcar

Tanker Car

Boxcar

Boxcar

1 Engine E2|

lEngine E3l

[03 Factory)

Figure 1: A TRAINS-world Map

(e.g., there are bananas at Avon and oranges at Corning), and factories (e.g., Elmira has
an orange juice factory that converts oranges to orange juice).

Our research has been strongly motivated by studying actual human performance in
these situations. We have collected over eight hours of human-human dialogue1 in the
TRAINS domain [Gross et al., 1993; Heeman and Allen, 1994b], and have used this data to
gain insight into both how people collaborate to form plans and how language is actually
used to construct and discuss joint plans. This type of analysis is crucial for identifying
what problems actually arise in dialogue, and helps us avoid working on issues that might
seem interesting in the abstract, but do not occur in practice.

Figure 2 shows the target dialogue for the TRAINS-93 implementation. The dialogue
concerns the TRAINS world situation given in Figure 1, with the goal, as stated in the first
utterance, of shipping a boxcar of oranges to Bath. This dialogue is a simplified version of
one of the human-human dialogues from our corpus.2 The simplifications include deletions
of disfluencies, elimination of some difficult interactions (e.g., elimination of a difficult repair
subdialogue in turns 9 to 13), and merging of separate prosodic phrases into full sentential
utterances (e.g., 3.3-3.6 merges the third to sixth prosodic phrases of the third turn in the
original spoken dialogue into one complete sentential utterance). The labeling scheme here
thus maintains a correspondence to the <turn>.<utterance> numbering of the original,
despite the simplifications.

This dialogue was chosen as a point of common ground for integrating and testing the

JIn which a person fills the role of the system.
2d91-6.1 in [Gross et al., 1993].

1 U: We better ship a boxcar of oranges to Bath by 8 AM.
2 S : Okay.
3.3-3.6 U: So we need to get a boxcar to Corning where there are oranges.
3.7 U: There are oranges at Corning.
3.8 U: Right?
4 S: Right.
5.1 U: So we need an engine to move the boxcar.
5.2 U: Right?
6 S : Right.
7.1-7.2 U: So there's an engine at Avon.
7.3 U: Right?
8 S : Right.
9-13 U: So we should move the engine at Avon, engine El, to Dansville to pick up the boxcar

there.
14 S : Okay.
15.2-15.4 U: And move it from Dansville to Corning.
15.5-15.7 U: Load up some oranges into the boxcar.
15.8-15.10 U: And then move it on to Bath.
16 S : Okay.
17 U: How does that sound?
18.3 S : That's no problem.
19 U: Good.

Figure 2: The dialogue processed by TRAINS-93.

different components of the system together since it places most of the processing burden on
the language understanding, knowledge representation, and plan-recognition components,
while requiring only simplistic NL generation to achieve the desired system responses. The
TRAINS-93 implementation can engage in the dialogue in Figure 2 with a user typing into
the keyboard. The system interprets and evaluates the user's utterances and produces
appropriate responses, while maintaining the dialogue context and building a representation
of the shared plan which can be sent to a TRAINS world simulator and executed. Section 5
shows an annotated trace of some of the representations produced as the system processed
turns y and 8 of the dialogue in Figure 2.

2.2 The TRAINS-93 System Architecture

Figure 3 shows the modules of the TRAINS-93 implementation, as well as the main flow of
communication between modules. Also shown are the representation languages used by the
modules. These languages will be discussed in section 4.

As the figure indicates, the language interpretation modules are tightly integrated with
the task modules for domain planning and plan execution. Granularity of interleaving in
the implementation is at the sentential utterance level. Each utterance (from either the
user or the system) is processed by all the modules up to the dialogue manager (which
calls the domain reasoner to disambiguate hypotheses about meaning and to update the
representation of the current plan). Information from the planner can also be used as a basis
for forming NL responses, e.g., acceptances, rejections, or repairs of plan-based suggestions.

JNL Input

NL Output

T
Parser ■*

Episodic
Logic

i

Scoping and
Disambiguation

Speech Act
Interpreter

NL Generator

CRT ~~~~~~

s^

Dialogue
Manager -*— -+♦■ Plan Reasoner

FRTI T i Plan Graphs
.f.l.'.f. 1 1 ::::;

t i
Plan Executor
and Monitor

TYRO i
1 TRAINS Svstem

Y
TRAINS World & Agents

-

Figure 3: TRAINS-93 System Architecture

When a complete plan has been built and is believed to be shared by the conversants, this
can be sent to the executor and monitor to be executed in the simulated world.

Parsing and Logical Form Computation

The first module in the interpretation process is a parser which takes an utterance as input
and produces a syntactic analysis together with an underspecified logical form (ULF), al-
lowing for scopal and referential ambiguities. We use a GPSG style grammar [Gazdar et al.,
1985] that makes extensive use of a feature system including subcategorization features and
several feature principles governing feature percolation. Each rule in the grammar consists
of a syntactic rule coupled with a corresponding semantic rule. This allows us to build the
interpretation compositionally in the sense of Montague's semantics [Montague, 1973]. The
parser is a chart parser which uses probabilities gathered from the TRAINS corpus to choose
which arc to expand next.

A lexicon consisting of syntactic features and semantic expressions for 700 stems was

constructed by hand. In addition, the Alvey lexicon (60,000 stems) and morphological
analyzer (Kimmo-based segmenter combined with a unification-based chart parser) [Ritchie
et al., 1992] were integrated with the TRAINS sentence-level parser. However, the Alvey
lexicon does not contain the fine-grained semantic information needed by the TRAINS system
and thus was only useful for its syntactic features which were mapped straightforwardly onto

the TRAINS syntactic features.

Scoping and Deindexing

The task of the Scoping and Deindexing module, SAD-93, is to 'deindex' (i.e., fix the value
of) context-dependent aspects of an utterance's content such as referential expressions. The

input to SAD-93 is the underspecified representation produced by the parser. The output is
a set of alternative hypotheses about how to resolve the ambiguities that are suggested in

the given context.

SAD-93 arrives at a hypothesis by applying discourse interpretation rules with varying
strength, all of which operate directly off the underspecified interpretation. The decision
to integrate scope interpretation with other aspects of pragmatic interpretation reflects the
thesis put forth in [Poesio, 1994] that the scoping preferences of human subjects result from
the interaction of several discourse interpretation processes.

Speech Act Analysis

The speech act interpreter is responsible for determining what the speaker means by her
utterance. For instance, when a speaker utters "there are oranges at Corning" (as in
utterance 3.7 in the conversation presented in Figure 2), she might be saying this to inform
the hearer of this fact, to check whether the hearer agrees with this, to question the hearer
about whether this is the case, or as a suggestion to use the oranges in the current plan.
These alternatives are not all mutually exclusive. The speech act interpreter builds a list
of hypotheses about the speech act interpretations of an utterance.

Rather than working from fully scoped and deindexed forms, the speech act analyzer,
like the Scoper and Deindexer, takes the ULF as its input. After both the speech act
analysis and scoping and deindexing are completed, the result of scoping and deindexing
is incorporated into the speech act hypotheses, which is then passed on to the dialogue

manager for verification.

Dialogue Management

The dialogue manager is responsible for maintaining the flow of conversation and making
sure that the conversational goals are met. For this system, the main goal is to construct

and agree upon a plan with the user, and then to execute it.

The dialogue manager must keep track of the user's current understanding of the state
of the dialogue, verify the hypotheses about intentions that motivate utterances of the user,
adopt intentions (in the form of speech acts) to respond, send these intended speech acts
to the NL generator to produce system utterances, and send commands to the domain plan

reasoner and domain plan executor when appropriate. The dialogue manager is described
in more detail in [Traum and Allen, 1994; Traum, 1994].

Domain Plan Reasoning

The plan reasoner provides planning and plan recognition services and performs reasoning
about the state of the world. The system must explicitly represent the plan(s) under
consideration, since many of the user's utterances concern contributions to the current plan.
In our framework, representations of plans contain explicit statements of what the goals of
the plan are and, importantly, the assumptions underlying the plan. Assumptions must be
made both during plan recognition (to fill in details left unspecified by the user but necessary
to connect the current utterance to the plan) and during planning (for example, persistence
assumptions). Since these assumptions often drive the dialogue, we have investigated an
explicit representation of plans as arguments based on assumptions [Ferguson, 1995].

The TRAINS plan reasoner supports interleaved planning and recognition (as necessary
in processing dialogue), and exports a variety of functions to other modules of the system,
in particular the dialogue manager. The dialogue manager uses the results of plan reasoning
to disambiguate speech act interpretations, update beliefs, and generate new conversational
elements (e.g., an ambiguity detected by the plan reasoner could cause a clarification sub-
dialogue to be started).

NL Generation

The NL Generator takes speech act representations produced by the dialogue manager and
converts them to natural language text which is then "uttered" as output to the user (and
fed back through the language analysis modules, as described in Section 5). As NL Gener-
ation was not a research focus of the project, a very simple template matcher was used to
produce utterances from the speech act forms, without regard to some of the more complex
generation issues (such as the sequencing of information for presentation, the use of detailed
knowledge of syntax and the correspondence between syntax and semantic representation,
rhetorical style, or choice of the most appropriate referring expression, etc.).

Plan Execution

The plan executor implements domain plans by sending requests to individual agents (engi-
neers, factory and warehouse attendants) in the simulated world. It selects a set of requests
by reasoning about the possible consequences of the actions that agents will perform in
satisfying the requests.

The plan executor also monitors the progress of the plan by communicating with these
agents as they perform their tasks, gathering information so it can make better choices
when executing subsequent plans. It bases its decisions on constraints on probabilities that
are inferred from observations, from probabilities asserted by the programmer, and from
facts inferred from its knowledge base. The principles behind the executor's operation are
described in more detail in [Martin, 1993].

7

The plan executor can also perform two additional services for other modules. It can aid
the planning process by making choices among a set of alternatives (e.g., choosing which
among a set of alternative paths to take between destinations), and it can monitor and
report the current state of the world.

TRAINS World Simulation

The TRAINS world is a detailed simulation of action executions by agents on world objects.
It is used for plan execution and monitoring (since, as far as the system is concerned, it
is the real world). The intentions of the system have no direct bearing on the behavior of
the world. Actions will take place regardless of the system's goals. The world implements
a dynamic physical model which is not accessible by the system. The only way the system
can effect change in the world is by sending directives to the agents in the world — i.e.,

the engineers, factory managers, etc. If they receive the messages (some may be lost),
they execute the requested actions. These actions may or may not have the consequences

anticipated.

3 Knowledge Requirements of Problem-Solving Dialogues

To engage in the TRAINS task and participate in a dialogue like that shown in Figure 2,
a system must reason about a number of different types of knowledge. Separate research
traditions involving different subtasks have led to (sometimes very) different ontologies and
representations. An obvious split is between language interpretation tasks, in which the
representation language must be rich enough to represent the nuances present in natural
language, and domain or plan reasoning tasks, in which a representation closer to the
ontology of action in the domain is desired. There are, however, separate research traditions

even within these two areas.

On the language processing side, there is often a split between more semantically ori-
ented representations, which focus on the truth-functional nature of a sentence given a
model, and more pragmatically oriented representations which focus on how the utterance
in context affects the conversing agents. On the task side, there is also a tension between
the representations most convenient for finding efficient plans, talking about them with an-
other agent, and executing them in the world. In the rest of this section, we describe some
of these divergent representational requirements that must be addressed within the scope
of a system designed to perform the TRAINS task. In Section 4, we show how these issues
are addressed by the actual KR languages, some of which are exemplified in the trace in
the following section. Then in Section 6, we return to the conflicting assumptions in the
different research traditions and show the connections and some of the differences between
the languages and why it would have been difficult to start out with a single representation

language.

3.1 Knowledge of Language

When dialogues with a natural language system are limited to some narrow task domain,
the form and content of utterances tend to be equally limited. In such a setting it is often
possible to achieve a semblance of understanding through ad hoc rules that shortcut serious
syntactic and semantic analysis, going more or less directly from domain-specific clue words
and patterns to domain-specific meanings and intentions.

Since the TRAINS task domain is quite narrow, such shortcut methods could certainly
be employed to achieve short-term performance goals (and indeed we are interested in
integrating such methods with more general ones). However, as stated at the outset, our goal
in TRAINS-93 was to handle language in a way that would be defensible for any conversational
domain, even those far richer and varied than the TRAINS domain. In other words, the
approach should in principle be extensible to "full understanding", with full use of all
available syntactic, semantic, and world knowledge to interpret and respond to inputs.
In fact, we took as our working hypothesis that the techniques and representations we had
previously developed for understanding narratives (including children's stories) should carry
over into the TRAINS domain.

The requirement with respect to syntax is that the chosen syntactic framework be do-
main independent and (potentially) comprehensive, and in a form that facilitates the syntax-
semantics mapping. Also, an important requirement is the design of a feature system that
is helpful in systematically minimizing syntactic ambiguity, for instance filtering out syn-
tactically inappropriate PP attachments (such as attachment of to Corning to need in We
need to get a boxcar of oranges to Corning).

Semantic interpretation is decidedly the most challenging aspect of building a NL mod-
ule, in terms of the representational and interface issues raised. To achieve generality and
extensibility, we naturally looked to formal linguistic semantics for theoretical foundations.
Thus Montague semantics, situation semantics, and discourse representation theory pro-
vided important building blocks. However, any given linguistic semantic theory (with the
exception of Montagovian ones) generally employs some formalism with limited expres-
siveness, neglecting many semantic phenomena encountered in even the most mundane
dialogues. As well, each theory tends to provide only fragmentary details about the map-
ping from surface form to the formal meaning representation, so that it is hard to tell
whether the theory could be extended to a realistic grammar with broad syntactic and se-
mantic coverage, with a reasonably simple transduction from surface form to the meaning
representation, and with an approach to the problems of context and indexicality.

By contrast, our computational goals require that we be able to derive semantic rep-
resentations for anything the user might reasonably say, within a single, comprehensive
framework. Thus expressiveness and ease of transduction are crucial. The two issues are
related: if we can devise a representation that closely matches the expressiveness of ordi-
nary language, in terms of the available vocabulary of concepts and the permissible ways of
combining these into complex types, then it should also be relatively simple to derive the
representations of utterances. These considerations can be restated in terms of the following
three general requirements for a semantic representation language, which we have striven
to meet in designing the target EL representation (described below in Section 4.1):

expressive adequacy: the language should be powerful enough to allow us to represent
the most common constructs and semantic nuances in naturally occurring sentences.
Among other things, this includes tense operators (past and present), aspect (perfect
and progressive), various kinds of adverbials, including manner adverbials (e.g., "using
engine E3"), purpose clauses (e.g., "to pick up the boxcar"), predicate modifiers (e.g.,
"almost finished," "very good," "looks difficult"), kinds of actions and events (e.g.,
the kind of action "to get a boxcar", referred to in "we need to get a boxcar" - see turn
3 in Figure 2), kinds of natural objects (e.g., "we need oranges"), modals (e.g., "need
to," "should," "had better"), and other intensional verbs including creation verbs
(e.g., "make OJ"). A further requirement in the initial stages of interpretation is to
allow for underspecified representations, i.e., logical forms that remain noncommittal
about the scopes of certain operators (such as quantifiers and tense operators) and

about the referents of referring expressions such as pronouns.

derivational adequacy: the language should support a simple, systematic derivation of
meaning representations from English surface structures.

semantic adequacy: the meaning of the language itself should be precisely defined, i.e.,
it should have a denotational semantics. This requirement is met by the linguistic
semantic formalisms that were our starting point, but is all too easily lost sight of when
one devises extensions to deal with the semantic complexities of real discourse. Yet
semantic adequacy is crucial for ensuring representational coherence (in the sense that
the symbols we use in the meaning representations be capable of consistently carrying
the meaning we intend them to carry), and for supporting the desired inferences.

3.2 Conversation Structure

In order to carry on a coherent conversation, in addition to the representation of the se-
mantics of sentences, the system must be able to represent the context of conversation and
how that context is dynamically updated during the conversation. This context consists
not just of the content expressed in the utterances, but of structured information about the
interaction, as well. The relevant structure which must be maintained to understand and
participate felicitously in conversation includes the following:

discourse segments: Attentional focusing structure [Grosz and Sidner, 1986] is useful for
a variety of purposes in linguistic interpretation and generation, including the ability
to determine the possible referents for a referring expression and the intentional rela-
tions between utterances. Discourse segmentation structure, particularly the notions
of focus and accessibility, will guide how certain utterances will be interpreted. Ut-
terances like "yes" can be seen as an acceptance or confirmation of the most recent
unanswered question, if one exists in a discourse segment that is still open. Certain
utterances such as "by the way", or "anyway", or "let's go back to" or "let's talk
about" will signal a shift in segments, while other phenomena such as clarifications
will signal changes in the structure by their information content.

10

intentional structure: A related structure (also described in [Grosz and Sidner, 1986])
has to do with why the speakers are engaging in the particular subdialogues - how
the subdialogues relate to the overall purposes of the conversation. For task-oriented
conversations, the nature of the task often has a strong bearing on the intentional
structure of the dialogue about the task.

grounding: The participants must track their state of mutual understanding of what has
been communicated. This involves both performance and recognition of acknowledg-
ments, and repairs, when necessary [Clark, 1992].

turn-taking: The notion of who has the turn is important in deciding whether to wait for
the other agent to speak, or whether to formulate an utterance. It will also shape the
type of utterance that will be made, e.g., whether to use some kind of interrupting form
or not. Turn-taking is also influenced by the overall initiative (or Control [Walker and
Whittaker, 1990]), which is often related to the intentional structure. In the TRAINS
domain, the initiative is shared, with different participants holding it at different
points in the conversation. In the initial phase, the user has the initiative while the
task is conveyed. In the main part of the conversation - the construction of the plan
- the initiative can lie with either party, though it generally remains with the user. In
the final phase, verifying successful completion of the problem, the initiative belongs
with the system.

rhetorical: There is also often a local structuring of utterances into standard subdialogue
types. Examples include pairs like questions and answers, suggestions and accep-
tances, as well as summaries and lists. This kind of structure is variously called
rhetorical [Mann and Thompson, 1987], exchange [Sinclair and Coulthard, 1975], ad-
jacency pair [Schegloff and Sacks, 1973], or dialogue games [Mann, 1988]. While this
type of structure is somewhat similar to the intentional level, above, they are not
identical, since the same rhetorical patterns may be used for a variety of purposes, yet
expectations and obligations to respond appropriately within the particular dialogue

game remains the same, regardless of underlying intentions. The precise nature of
this type of structure and its relations to other types is still fairly controversial as can
be seen in by the contributions in [Rambow, 1993].

situations: Non-linguistic information relevant for conversation is structured into coherent
bundles or situations. Some of the situations that are relevant for the TRAINS task
include:

the discourse situation: the speaker and hearer together with their utterances and
other actions, as well as aspects of their mental states, described in the following
section.

the map situation: what the user knows about the initial conditions of the world
from the TRAINS map, shown in Figure 1.

plan situations: updates of the map situation representing what would be the case
in the future, if particular plans are performed.

11

3.3 Mental State

In order to participate fully in the conversation, the system needs to represent certain
aspects of both its own and its partner's mental state. In particular, the system must
represent at least the following aspects of mental state.

beliefs: In addition to representing its own beliefs about the state of the world, the system
must represent its beliefs about the user's beliefs in order to interpret the user's
utterances. It must also represent mutual beliefs so that it can track the grounding

process.

goals: The system needs to keep track of what goals it hopes to achieve to achieve by
participating in the conversation. These will lead to adoption of specific intentions

and performance of actions.

plans: The system must represent different views of plans, including: plans it has developed
itself via planning, proposals by itself and the user, and mutually agreed-upon (or
shared) plans. The distinctions are important for the system to respond appropriately
in order to achieve the final goal of an executable shared plan, (e.g., proposing an
addition to the plan, or accepting or rejecting a prior suggestion).

intentions: The intentions of the system help guide the future behavior of the system,
generally constraining future planning to fit within the context of prior intention.
[Bratman, 1987] describes in detail some of the ways that intentions will help guide
and constrain an agents future deliberation.

obligations: Obligations are actions that an agent should perform, according to external
norms. They are different in kind from goals or intentions, though a well-behaved
agent will choose to meet its obligations, and in fact there is generally a social cost for
not meeting obligations which may encourage a purely strategic agent to endeavor to
meet them. In a conversational setting, an accepted offer or a promise will incur an

obligation. Also a request or command by the other party will bring an obligation to
perform or address the requested action. Discourse obligations are discussed further

in [Traum and Allen, 1994].

While some of these attitudes might be represented only implicitly in the control struc-
ture of a dialogue system, a declarative representation will help in diagnosing and repairing
problems that come up in the interaction, as well as allowing a flexible initiative strategy
{e.g., placing more or less importance on obligations or goals at different times in the con-
versation). Goals and obligations are also necessary to represent the meaning of utterances

such as "we have to".

3.4 Domain Knowledge

The TRAINS domain requires a relatively modest quantity of knowledge, in terms of basic
object and event-types. Still, the interactions of properties and events can get quite complex.
Some of the properties of actions and events that must be dealt with even for such a simple

domain are:

12

1. Actions and events take time. During this time, they can have a rich structure,
including intermediate states and decomposable sub-actions, yet the activity over
that stretch of time is appropriately described as a single event.

2. The relationship between actions and events and their effects is complex. For example,
some effects become true at the end of the event and remain true for some time after
the event. Other effects only hold while the event is in progress.

3. External changes in the world might occur no matter what actions an agent plans to
do, and can interact with the planned actions. Possible external events should be an
important factor when reasoning about what effects an action might have. Certain
goals can only be accomplished by depending on external events.

4. Actions and events can interact in complex ways when they overlap or occur simulta-
neously. In some cases, they will interfere with certain effects that would arise if the
actions were performed in isolation. In other cases the effects will be additive. And in
still other cases, the effect of performing the two actions can be completely different
from the effects of each in isolation.

5. Knowledge of the world is necessarily incomplete and unpredictable in detail, thus
reasoning about actions and events can only be done on the basis of certain assump-
tions. No plan is foolproof, and it is important that a formalism make the necessary
assumptions explicit so that they can be considered in evaluating plans.

These and similar considerations led us to a representation based on interval temporal
logic, the technical details of which are presented in [Allen and Ferguson, 1994]

3.5 Planning Knowledge

In addition to traditional requirements for a problem solving system, such as the ability
to represent the problem, the solution, and operators which lead from one to another, the
embedding of a plan reasoner within a mixed-initiative dialogue system adds additional
requirements and representational challenges.

The first requirement is that the input to the plan reasoner be "language-like." That is, it
needs to be expressed in a highly expressive language with multiple levels of representation.
These include the domain level (trains, commodities, cities, time, etc.), the plan level (plans,
actions, events, enablement, generation, etc.), and the problem-solving level (strategies,
focus of attention, choice-points, etc.). All of these and more are candidates for discussion
in a system such as TRAINS. In all cases, the objects involved may be only partially or
indefinitely described, and part of the job of the plan reasoner may be to determine more
fully which objects are involved (e.g., "move a boxcar").

The next requirement is that planning and plan recognition (and other plan reasoning)
be interleaved during a dialogue. Plan recognition is typically done to understand the
meaning of what has been said, then planning is done to refine the proposal and possibly
generate new suggestions, while plan evaluation is, in a sense, a continuous process. Further,
the different forms of plan reasoning are performed in different ways. Plan recognition is

13

typically a satisficing process, since we are primarily interested in ensuring coherence of the
dialogue. That is, so long as we can make something of the user's statements, we shouldn't
expend too many resources trying to optimize the results. Planning, on the other hand,
is more of an optimizing process, performed when the system has an opportunity to think
about how to improve or complete the plan. In the case of an intelligent planning assistant,
of course, the results are expected to be both accurate and helpful.

This interleaved nature leads to the third requirement, which is that it should be possible
to perform plan reasoning in arbitrary knowledge contexts. We note below that the dialogue
manager maintains belief contexts representing different views of the conversation. The
plan reasoner can be called upon to reason in any of these—in a system-related context the
system is "thinking for itself," and in a user-related context the system is simulating the
thought processes of the user. Because the contents of the contexts depend on what has
already been said, the plan reasoner must be able to start with a partial plan in a context

and reason from it.

Fourth, the plan reasoner must return useful information - the results of plan reasoning
operations need to be expressed declaratively so that they can be used to generate utter-
ances, and update beliefs. Since not everything can be communicated to the user at once,
some parts of the information returned by the plan reasoner may not become part of the
final plan, at least not immediately. And if a plan reasoning operation fails for some reason,
it is essential that useful information describing the failure be returned in order that the
system can at least inform the user, if not address the problem at the problem-solving level.

Finally, much of the reasoning performed by the plan reasoner is defeasible. This means
making assumptions explicit, being able to assert and retract them, and, importantly, re-
alizing that the system shouldn't always perform complete reasoning. Rather, it can make
an assumption or, since the system is interactive, indicate that it would be better to ask

the user a question about how to proceed.

3.6 Plan Execution Knowledge

Acting in a world has a slightly different set of requirements from reasoning about and
talking about action. In addition to reasoning at an abstract level about change, a plan
executor must reason at the level of perceptions and manipulations that it can perform
- how it can achieve a desired action and how it can tell whether and when it has been
performed. The eyes, ears, and arms of the TRAINS system are the agents in the simulated
world. In performing actions in a plan, such as moving a boxcar, the executor must reason
in terms of messages that must be sent to an engineer. Moreover, to determine whether
the action has succeeded the executor must solicit reports on the current and future state

of the world from this engineer and other agents.

In addition, the executor must reason about the information the individual agents have,
since these agents only know about their immediate surroundings. Requests for action and
information must be formulated in terms that the agents can understand - condition action
pairs, with conditions consisting only of an agent's local state. The reports the executor
receives back will, likewise, only describe aspects of the reporting agent's local state. The

14

executor must relate the low-level observations back to anticipated events that are important
to the plan.

4 The TRAINS-93 KR Formalisms

In starting the project, it was not obvious that any existing KR formalism or inference
system would have been appropriate to represent and reason efficiently about all the different
kinds of necessary information described in the previous section. Since there were already
well-established traditions and tools designed to reason about several of the sub-issues, we
decided to use those as starting points adding and adapting where necessary. In addition,
adopting different formalisms made it easier to develop general-purpose components that
could also be used in isolation. We felt it was best to postpone any unification attempts
until we gained a better understanding of the problems we had to face.

4.1 Episodic Logic

The representation used by the Parser to represent the meaning of utterances is called
Episodic Logic (EL), EL is an intensional situational logic developed as a semantic and
knowledge representation for general NLU [Hwang and Schubert, 1993a; Hwang and Schu-
bert, 1993b]. The most distinctive feature of EL is its natural-language like expressiveness,
aimed at meeting our stated requirements of expressive, derivational, and semantic ade-
quacy. It allows for generalized quantifiers, lambda abstraction, predicate and sentence
modifiers, predicate and sentence nominalization, intensional predicates (corresponding to
wanting, needing, believing, etc.), tense and aspect, surface speech act operators, and ex-
plicit situational variables together with operators to specify what's true in a situation.

As a result, the correspondence between surface form and logical form (LF) can be kept
extremely simple. In general, single-morpheme content words are interpreted as atomic
predicates or operators on predicates. Each of the phrase structure rules in the TRAINS
grammar is paired with a simple compositional semantic rule, and the Parser computes the
initial, underspecified EL representation of an utterance as it builds a parse tree for the
utterance. The initial representation is underspecified in that it may contain unscoped op-
erators (quantifiers, tense operators), indexical expressions (e.g., tense operators, pronouns)
and ambiguous predicates. An example of a grammar rule is

rule name: P2-Ploc+N2
syntactic rule: ((P 2bar) (P Obar loc) (N 2bar ace object))
semantic rule: (:p 1 2) .

In the syntactic rule, the first constituent (P 2bar) is the left-hand side and the remaining
two constituents the right-hand side of a GPSG-like rule. Thus the rule admits the forma-
tion of a locative prepositional phrase from a locative preposition and an accusative noun
phrase, like at Corning from at and Corning. (The rule name concisely echoes the rule.)
The loc feature is transmitted from the preposition to the prepositional phrase through the
head feature principle of GPSG [Gazdar et al., 1985]. Unlike GPSG, our grammar uses
hierarchies of atomic features. For instance, loc belongs to the set of features {loc, time,

15

phow, pwhy, subj-matr, oppos} which subdivide the ppred (prepositional predicate) feature,
and loc is in turn subdivided into {place, path). The lower-level features unify with their hi-
erarchy ancestors. Such feature systems, in conjunction with feature percolation principles,
allow for quite compact representations of auxiliary verb structure, noun premodification,
adverbial modification, subcategorization, etc. The semantic rule in the example indicates
that the interpretation of the prepositional phrase is obtained by applying the interpretation
of the first constituent (a dyadic predicate) to the interpretation of the second constituent
{e.g., the individual denoted by the NP, if the NP is referential). The keyword :p denotes
predicate application. Additional examples will be seen in section 5, as annotations of the

parser output.

While all formulas of EL may be written in lisp-like prefix form, complete sentential
formulas are usually written in infix form, with the subject preceding the predicate as in
English. This infix form is distinguished by the use of square brackets, e.g., for Train TR1

is at Avon we might write

{pres [TR1 loc-at Avon]).

(In the "lispified" version of the infix notation we would use (i: ...) for [...], as will be seen
in section 5.) The pres operator heading this formula is indexical, and is replaced in the

deindexing process by predications involving explicit episodic variables.

EL makes extensive use of predicate and sentence modifiers: operators that map predi-
cates into other predicates or sentence meanings into other sentence meanings. For example,
the predicate OJ is true of quantities of orange juice. The predicate operator make takes
this predicate and produces another predicate {make OJ), which is true of any agent who
makes orange juice. Many different syntactic constructs have simple interpretations when
viewed as predicate modifiers, including attributive adjectives, certain classes of adverbs,
and certain kinds of intensional verbs (like make, above). Simple examples of sentence
modifiers are modal ones such as maybe and should. Among the most important predicate
and sentence modifiers are those corresponding to PP adverbials. For instance, the phrase

go to Dansville is represented as

{{ADV-A {to-loc Dansville)) go).

Here ADV-A is an operator that transforms a monadic predicate (viz., {to-loc Dansville))
into a predicate modifier (operating on go). Similarly, the sentence Train TR1 left at 8 PM

would be represented by the form

{{ADV-E {at-time 8PM)) [TR1 leave}),

where the ADV-E operator converts a monadic predicate (in this case, {at-time 8pm)) into
a sentence modifier. Like the tense operators pres and past, adverbial predicate and sen-
tence operators are replaced in the deindexing process by predications explicitly involving

episodic variables.

EL also has operators for predicate and sentence nominalization (reification). The main
predicate nominalization operator, K, constructs a kind or type of object from a predicate.
The noun phrase orange juice, for example, often refers to orange juice in general rather
than to some specific quantity of orange juice, as in the sentence / like orange juice. If
OJ is a predicate true of quantities of orange juice, then {K OJ) is the kind of thing, or
substance, orange juice. Kind terms are used extensively with events as well, as in the

16

sentence / want to load the oranges, where what is desired is the performance of some
action of the kind "load the oranges," rather than a specific, existing act of loading oranges.
Sentence nominalization operators are crucial to the EL representation of attitudes. For
instance, to express that The user told the system that engine TR1 is at Avon, we would
form the nominalized sentence (or proposition)

{That (pres [TR1 at-loc Avon])),

and this would become the object of a ie//-predication, whose subject is the user.

The forms of quantifiers and of lambda abstracts in EL can both be illustrated with the
interpretation of the phrase the engine at Avon (utterance 9-13 in the sample dialogue):

(The Xx[[x engine] A [x at-loc Avon]])

This expression could in principle be directly interpreted as a generalized quantifier, but
in EL it is instead viewed as an unscoped quantifier, yet to be "raised" so that it will have
a sentence as its scope. The alternative ways of raising unscoped quantifiers (and certain
other unscoped operators) account for scope ambiguities. In the present case, if we consider
a little more of the utterance embedding the quantifier, we should move the engine at Avon
to Dansville, a possible scoping of the corresponding EL formula is

(The x: [[x engine] A [x at-loc Avon]]
(pres (should [We ((ADV-A (to-loc Dansville)) (move x))]))).

Note that the general form of scoped quantification is (Qa : 4>ip), where Q is the quantifier,
«is a variable, <f> is an open sentence restricting the domain of the variable, and ip is the
sentence comprising the scope of the quantifier.

The deindexed EL representation of sentences describing events, processes or situations
contains explicit episodic variables. Like situations in situation semantics [Barwise and
Perry, 1983], episodes are partial states of affairs in the world, encompassing some prop-
erties of some participants over some period of time at some location. Episodes subsume
Davidsonian events [Davidson, 1967] as used in many representations, i.e., an event is a
particular kind of episode. The content of episodes can be described using two special
operators, * and **.

The ** operator indicates that an arbitrary formula characterizes an episode. A simple
example would be the formula

[TR1 move Avon Dansville] ** El

which is true if episode El is characterized by engine TR1 moving from Avon to Dansville.
In a Davidson-based event logic, this might be written as move(El, TR1, Avon, Dansville),
where the event is an argument of the predicate. But EL can represent much more complex
events than is possible using event arguments of predicates. For example, the "negative
situation" E2 of train TR1 failing to arrive on time can be characterized as follows (ignoring
the details of "arriving on time"):

[-i[TRl arrive-on-time]] ** E2.

A Davidsonian representation could approximate the characterization of El by saying that
there is no event of TR1 arriving on time during E2, but such an approximation is inadequate
for capturing causal relations. For example, it may be true that some event, E3, during
which there was no instance of TR1 arriving on time caused TR1 to derail - for instance, E3

17

could be the event of TRl taking a curved section of track too quickly. On a Davidsonian
analysis of negative situations, this causal relation can be seen to entail, incorrectly, that
the failure of TRl to arrive on time caused its derailment!3

As a quantified example, the episode E2 consisting of every train going to some city

could be characterized as follows:

(Vi : [t train] (3x : [x city] [t {{ADV-A {to-loc x)) move]) ** E2.

This could not easily be encoded as a single event in an event-based logic.

The second episodic operator provided by EL, *, asserts that a proposition is true in an
episode. This is a weakening of the ** operator, not requiring the proposition to characterize
the episode as a whole, only some aspect of it. In that sense * is analogous to the (= relation
between a situation and an infon in situation semantics. Both the * and the ** operator are

important in EL axioms and inference about causal relations and other relations between

episodes [Hwang and Schubert, 1993b].

A semantically adequate knowledge representation with all of the above syntactic ma-
chinery naturally requires a rich ontology, e.g., to accommodate intensional predicate and
sentence modifiers, the abstract kinds, properties and propositional entities formed by nom-
inalizations operators, and the episodes, times and locations referred to in episode descrip-
tions. EL allows for all of these, as well as for numbers, collections and sequences. All
entities in the domain are regarded as "possible individuals", and this includes possible
episodes (situations), possible facts (which correspond to consistent propositions), etc. In-
tensionality is modeled by interpreting atomic symbols in a situation-dependent way. For
example, the two-place predicate leave is interpreted as a partial function

/: D->(D-> (S->{0,1})),

where D is the domain of possible individuals and S is the set of possible episodes (sit-
uations), a subset of D. It can be seen that by applying / to two successive individual
arguments, we obtain a sentence intension, a partial function from possible situations to
the truth values {0,1}. The fact that such functions are partial allows for "fine-grained" se-
mantic distinctions between propositions that are logically equivalent in the classical sense.
Also, by making the situational argument in predicate intensions (such as / here) the last
argument (rather than the first, as in Kripke- or Montague-style semantics), we are able to
simplify our lexical and phrasal semantic rules, avoiding Montague's ubiquitous intension/
extension operators. The interpretation of the * operator within this framework corresponds
closely to truth in a situation; i.e., [<j> * rj] is a way of saying that the semantic value of <f>
at the situation denoted by 77 is 1 (truth). The conditions for truth of [4> ** rj] are more
stringent, requiring that 77 "as a whole" be a ^episode, rather than just having a ^-episode
as some part or aspect of it. The formal distinction relies on "persistence" of sentential

3More exactly, speed-around-curve(E3,TRl)Aderail(E4,TRl)Acause-of(E3,E4) A ->{3e)during{e,E3)A
arrive-on-time(e,TRl) entails (3e')[->(3e)during(e,e')Aarrive-on-time(e,TRl)]Aderail(E4,TRl)Acause-
of(e',E4). This entailment, obtained by existential generalization of E3, says that some eventuality e'
during which TR\ did not arrive on time caused the derailment E4. Thus if we accept "some eventuality e'
during which TRl did not arrive on time" as a characterization of a negative eventuality (an eventuality of
TR\ failing to arrive on time), we are led to the unwarranted conclusion that an eventuality of TRl failing
to arrive on time caused its derailment

18

truth in a set of semilattices of situations, each having a maximal possible situation - a
possible world - as its "top".

EL was originally designed for story understanding, but its comprehensiveness and its
NL-like syntax and semantics made it an entirely plausible candidate for dialogue inter-
pretation. In fact, we encountered no fundamental difficulties in this redeployment. The
real challenges lay in expanding the very small syntactico-semantic fragments we had built
to deal with a few narrative sentences, so as to cover the selected TRAINS dialogues in a
principled way. We needed to develop a system of several hundred features (organized into
some 27 feature hierarchies) and ways of assigning default lexical features; fairly broad-
coverage syntactic rules (including many types of questions and imperatives, coordination,
i/iere-insertion, subcategorization patterns, etc.); and most of all, carefully thought-out so-
lutions to numerous specific semantic problems. For example, the question arose whether
to treat modals such as should, shall and better (see utterance 1 of the dialogue) as sentence
or predicate modifiers at the level of semantics. We chose the former so as to be able to
account for "opaque" readings of sentences such as Someone should pick up the oranges, or
Somebody better be there when the shipment arrives.

Some of the simplest utterances - yes/no, right, okay - proved surprisingly subtle and
controversial. The problem is that these utterances have implicit arguments - some salient
propositions or proposal is being affirmed / denied / approved. The question is whether
to make these implicit arguments explicit in the immediate LF, or to send unanalyzed
atoms to the deindexing and discourse modules. In the case of right and okay we opted for
explicit arguments because they can occur with subjects (e.g., That's right) and be viewed
as members of a productive group of APs and other predicate phrases - consider, true;
wrong; fine; very good; no problem; well done; etc. Yes/no could be handled either way.
Of course in all cases the work of identifying the implicit referents is left to deindexing and
discourse processing. Similarly so is a subtle cue word establishing a relevance or following-
from connection to something prior, and in this case we simply translate this as an initial
coordinator (a sentence modifier) whose significance is a matter for the discourse module
to consider.

Perhaps one elaboration of the original narrative understanding framework particularly
worth mentioning is the addition of locutionary acts (surface speech acts) to the interpre-
tations of utterances. I.e., the LF of a surface declarative contains the top-level construct
(ignoring the explicitly added utterance episode)

[Speaker tell Hearer (That ...)],

for questions we have an ask act, for imperatives an instruct act or something similar, etc.
This locutionary act information is very important for subsequent reasoning about dis-
course structure (in contrast with the case of narratives). Technically, the locutionary acts
are introduced into the LF's through the terminal symbols of utterances, i.e., punctuation,
turn-taking or (ultimately) prosodic markers.

There were many additional problematic issues concerning logical form, including the
semantics of problem, plan, make, purpose clauses, proper nouns, numbers and measures,
etc. None of these problems were trivial, but the important point is that the EL frame-
work provided sufficient flexibility to allow us to consider various plausible options, and to
implement workable solutions. (For some further remarks on plans, see Section 6.3.)

19

The main shortcoming of EL as a representation for conversations is that it focuses pri-
marily on utterance content, not context. In [Hwang and Schubert, 1993b] context structures
called tense trees and an algorithm for tense deindexing are proposed. However, this algo-
rithm presupposes that tense operators and quantifiers have already been correctly scoped,
and that referent determination can be done independently of scoping and tense deindexing.
For the TRAINS system, we needed an integrated account of these processes.

4.2 CRT

Conversation Representation Theory (CRT) [Poesio, 1994] is an account of contextual in-
terpretation and ambiguity resolution in conversations that builds on the theory of lexical
semantics developed in Episodic Logic. The formalism used in CRT extends the language
of EL with underspecified expressions—expressions that indicate which aspects of a sen-
tence's meaning have to be disambiguated and are given a proper semantics [Poesio, 1991;
Alshawi and Crouch, 1992; Reyle, 1993; Poesio, 1995]. The theory also includes an ac-
count of disambiguation as defeasible reasoning over underspecified interpretations of the
discourse situation.

One of the two main assumptions motivating CRT is that the interpretation of a sentence
is obtained by means of inferences that crucially involve underspecified representations. The
underspecified representations produced by the parser (see previous section), which in EL
were given only an implicit interpretation in terms of their disambiguation, are seen as
first-class objects of the language of CRT, and disambiguation is formulated as a process
of inference over such representations. A second important assumption, borrowed from
work on discourse in the Al tradition such as [Grosz and Sidner, 1986], is that the process
of disambiguation crucially involves information which is pragmatic in nature, such as the
hierarchical relations between speech acts. Thus, the model of context adopted in CRT, while
inspired in many ways from those used in 'dynamic' theories of context such as Discourse
Representation Theory (DRT) [Kamp, 1981; Kamp and Reyle, 1993] and Dynamic Predicate
Logic [Groenendijk and Stokhof, 1991], is a model of the effect that utterances have on the
discourse situation, rather than of the effect that sentences have on the propositional content

of a text.

For an example of disambiguation, consider the sentence / can't find the engine. Dis-
ambiguation is initiated when the context is updated with an underspecified interpretation
of an utterance. Interpreting this sentence in a particular context involves recognizing the
speech act performed by the speaker, the intended referent of the engine, and the scope
of the modal operator can and the negation operator. The effect of updating the existing
context after an utterance of this sentence is represented by the following CRT expression.

20

(1)

eel tl

eel: te\\(A,B, s:

eel <B tl
eel C d

I can find A P engine (x) A P(x)

The expression in (1) can be paraphrased as: a speech act eel occurred, of A telling B
about situation s that s is characterized by the underspecified expression within the nested
box. (In what follows, we will also use the term conversational event to refer to speech
acts.) The following things have to be explained about the expression in (1). First of all,
context is modeled as a discourse representation structure (DRS), a pair consisting of a set
of discourse markers (here, eel and tl) and a set of conditions (wffs). DRSs can be nested;
the 'top' DRS, which provides a representation of the common ground as a whole, is called
'Root DRS'. In Discourse Representation Theory, the root DRS provides a representation
of the 'described situation', or the situation the discourse is about; in CRT, the root DRS
is a representation of the discourse situation, i.e., the situation in which the participants
to the conversation find themselves. The description of the described situation (here, s) is
embedded in the description of the discourse situation.

Secondly, the representation in (1) is underspecified in many ways. As in the EL inter-
pretation of complete utterances, what is initially recorded in the model of context is the
occurrence of a locutionary act (here, tell), from which the actual intentions of the speaker
have to be recovered (see following sections). The expressions of the CRT language used
to encode alternative scope readings are syntactic trees whose leaves are EL expressions.
This representation derives from the unscoped LF of EL, but makes it more explicit that an
'unscoped representation' is simply one in which operators have been left in their syntactic
position. These expressions are another aspect of an utterance's interpretation that has to
be resolved in context.

The third aspect of the interpretation to be resolved in context is the value of anaphoric
expressions, called parameters and written down as variables with a 'dot': x. These are
aspects of an utterance's meaning which have to be related ('anchored') to some previously
introduced element of context (discourse marker). In (1) there are three such parameters:
the described situation s, the referent of the definite description x, and the conversational
thread d. This last bit needs some explanation. Each speech act is assumed to be part of
a 'conversational thread', which is a particular type of situation. All conversational events
in the same thread are assumed to be 'about' the same discourse topic, which is another
situation. Conversational threads are used in CRT to capture Grosz and Sidner's notion
of discourse segment, whereas discourse topics are a formalization of the notion of 'focus
space'. Thus, whereas in Grosz and Sidner's theory we would have a focus space extending
another focus space on a stack, in our framework we have a situation extending another

21

situation; in this way we do not introduce an additional stack mechanism, and the processes
of focus space construction and focus space shift can be modeled as reasoning processes, as

discussed in [Poesio, 1993].

The rest of the syntax of the language used in CRT is borrowed from EL: thus we have
lambda expressions, modifiers, kind-forming operators, and all the other tools discussed in
the previous section. One remaining syntactic difference from EL is the use of expressions
of the form s:$ instead of [$ * s] to assert that $ holds of s. The difference is not just a
matter of syntactic sugar, as discussed below.

Because of the need to give a direct interpretation to underspecified expressions, the
semantics of CRT is a generalization of the semantics of EL. EL expressions denote functions
from situations to objects in the domain (for example, the denotation of a sentence is a
function from situations to truth values); the expressions of the CRT language, instead,
denote sets of such functions; for example, the denotation of a sentence is a set of functions

from situations to truth values. The resulting logic is much weaker than the one of EL.
4

(This is one reason why disambiguation is done by defeasible reasoning.) DRSs are given
the same type of sentential expressions, i.e., they are interpreted as (sets of) functions from

situations to truth values (situation types).

The semantics of the 'semantically annotated syntactic trees' used to capture scopal
underspecification is defined bottom-up using a 'CV function (for Cooper Value) that
assigns to each of them as a value a set of sequences of expressions {(au ...), (ßi,...),...}.
The first element of each sequence provides a phrasal LF of the appropriate type (e.g., a
variable or generalized quantifier for an NP, a predicate for a VP, and a wff for an S), while
the remaining elements are quantifiers or other operators "in storage". For example, the CV
of'find an engine' would be a set of two sequences, {{Xx 3y engine(y) A find(x,y)}, (Xx
find(x,i), (i,XP engine(y) A P(y)))}. The denotation of a tree [S ...] is then the set of
functions that can be "extracted" from CV([S ...]) (each of whose elements is required to
be a singleton sequence, i.e., there are no elements "in storage").

A detail of importance when talking about the anaphoric accessibility of discourse mark-
ers, is that expressions in CRT are assigned a value with respect to a situation, a variable
assignment, and a function C ("cases") from situations to variable assignments. Conditions
like s:K assert that a situation s is of the type specified by the DRS K, and in addition they
shift the parameters of evaluation so that the value of the discourse markers occurring in
K is provided by the variable assignment associated with the value of s, i.e., C([s]), (where

w
is the semantic value of s with respect to the original variable assignment and the original
cases C). In this way, the discourse markers introduced in a statement about situation s are
accessible when interpreting an anaphoric expression which is part of a second statement

about the same situation.

The disambiguation rules are formulated as inference rules which result in a less un-
derspecified interpretation. The reasoning framework in which inference is formulated re-
sembles Prioritized Default Logic [Brewka, 1991] in that the rules of disambiguation are
Reiter-like default inference rules with different priorities, and in that the result of disam-

4For instance, $ V -•$ is not a theorem.

22

biguation are zero, one or more extensions of the default theory consisting of the context
augmented with the initial interpretation of the utterance together with the set of default
inference rules. Space prevents a discussion of the rules actually used in the system; as
a simple example of what a disambiguation rule might look like, here is how one could
formulate a hypothetical rule assigning wide scope to operators in subject position. The
rule is a "normal default rule" [Reiter, 1980]. Notice how the result of disambiguation is
a partially disambiguated CRT expression, with the universal quantifier taking scope over
whatever operator occurs in the VP.

GRAMMATICAL-FUNCTION-PRINCIPLE

S

NP

A Q. (V y: p(y) (Q(y)))

VP (V y:p(y)(NP VP))

A
y

(V y:p(y)(NP

A
VP)) =

The disambiguation process is subject to a Condition on Discourse Interpretation which,
roughly speaking, states that an extension cannot contain underspecified expressions. The
result of interpretation is therefore an expression which can also be given a semantics within
Episodic Logic; this makes it possible to translate such expressions into the other formalisms
used in TRAINS.5 For example, the following expression is the final result of the disambigua-
tion of the sentence I can't find the engine:

(2)

eel tl s

s:
engine(:c)
Avon(tc)
at (a:, u>)

eel: tell(^,5, s:

eel @ tl
eel C ctl

—I can (find (.4,2^)

Notice that the described situation of the conversational event has been identified as the
previously introduced situation s, that the scope of the operators has been resolved, and that
the conversational thread to which eel belongs has been identified. The results of speech
act interpretation are not presented in (2); these would be expressed as the introduction
of a new speech act ce2 generated by eel (in the sense of Goldman [Goldman, 1970], i.e.,
occurrence of eel by its nature involves the occurrence of speech act ce2).

At the moment, the possibility of such a translation is merely a conjecture based on our experience in
building the interface to EBTL - no formal result has been proved.

23

The 'Scope And Deindexing' module of TRAINS-93, SAD-93, is a partial implementation
of Conversation Representation Theory. The system consists of an implementation of a
prioritized default reasoner, together with declarative rules that encode theories of disam-
biguation for scope, definite description interpretation, pronoun interpretation, modals, and
tense, among others. The input to the system is the underspecified representation produced
by the parser; the output is a set of hypotheses about possible interpretations. The 1993
implementation was tested on both the dialogue of Figure 2 and an entirely different, shorter

dialogue used in the TRAlNS-91 system.

4.3 EBTL

EBTL (Event Based Temporal Logic) is used by the Speech Act Interpreter, Dialogue Man-

ager and Plan Reasoner, and as a communication language between these modules. It is a
typed logic based on interval temporal logic [Allen, 1984], which was designed to facilitate
reasoning about actions and events in temporally complex worlds. EBTL is a more restricted
language than EL or CRT: only events and some simple states can be represented directly

rather than general episodes and situations.

In starting the TRAINS project, the RHET knowledge representation system [Allen and
Miller, 1991] seemed a good starting point for representing the plan and domain knowledge,
having been used and developed in parallel with previous discourse [Allen et al., 1989], tem-
poral reasoning [Koomen, 1990], and plan recognition efforts [Miller, 1990] at Rochester.
RHET provides theorem-proving (both forward and backward chaining inference), as well
as type hierarchies and typed unification, equality and inequality reasoning, temporal rea-
soning, frame-like event representations, and an explicit hierarchical context mechanism for
representing belief contexts, hypothetical reasoning and other modalities.

It quickly became apparent, however, that additional features were needed for the
TRAINS system reasoning functions. EBTL provides additional constructs that proved es-
sential for representing the meanings of natural language input and relations of facts to
plans, as well as a more straight-forward Lisp interface. These include explicit quantifiers,
discourse markers, lambda expressions and quoted propositions. The underlying inference
is performed by RHET, augmented with special reasoners in Lisp for the new constructs.

The terms in EBTL are those allowed in RHET. Constants are written as atoms within
square brackets. Thus [EWG3] is a term. Distinct names do not necessarily identify distinct
objects, since the language supports equality reasoning. When terms are defined, their
type is usually defined as specifically as possible. [EHG3], for instance, is declared to be of
type T-ENGINE. Variables are indicated using the form ? varname*typename. For instance,
?x*T-ACTI0N is a variable that ranges over all objects of type T-ACTION.

Propositions in EBTL are represented by lists. For instance, since EQ? is the equality
predicate, the proposition (EQ? [F-ENGINE [M2]] [ENG3]) would assert that ENG3 is the

engine causing the move event M2.

EBTL has a reified event representation, where event instances are denoted by explicit
terms in the language. Figure 4 shows part of the event hierarchy for the TRAINS domain.
This hierarchy predominantly deals with events caused by actions, which capture different
actions available to the TRAINS domain planner. Events that cannot be directly executed are

24

classified as non-action events. These events are necessary to provide a clean interface with
the natural language system, because people often talk in terms of the events caused rather
than the actions executed. For example, the system never plans to execute an arrive event.
Rather, it plans a move action, one aspect of which is sometimes described as an arrive
event. The specific features of events are identified by role functions, which are defined over
event classes. For example, all actions will have agent roles, as well as the general time
role for all events. Subactions such as T-MOVE will also have (in the TRAINS-93 domain) an
engine role, etc.

T-EVENT

T-ARRIVE
T-LEAVE

T-LQAD

T-LO AD-COMMODITY

T-UNLOAD

^ T-UNLO AD-COMMODITY

T-COUPLE

T-UNCOUPLE

T-MOVE
MOVE-COMMODITY

T-LOAD-ORANGES

- T-UNLOAD-ORANGES

^2 T-MOVE-CAR
MOVE-ENGINE

T-RUN-FACTORY

T-MAKE
"--T-MAKE-OJ

T-BRING-ABOUT

T-MOVE-ORANGES
-T-MOVE-OJ

Figure 4: The event hierarchy of TRAINS domain events

Conversation Level Representation

EBTL also includes features for reasoning about conversational interpretation. These include:
a subclass of the action type from Figure 4 for speech acts, operators for representing combi-
nations of primitive speech acts (e.g., conjunction, exclusive and non-exclusive disjunction,
and sequencing), relationships between conversational events (e.g., preceding or following in
a discourse segment), other conversation act types (as described in [Traum and Hinkelman,
1992]), including predicates for argumentation relations between speech acts, turn-taking,
and grounding acts.

25

The core speech act types used in the TRAINS-93 system are shown below, with their

meanings:

T-INFORM The speaker provides new information in order to establish a shared belief

in the proposition asserted.

T-YNQ The speaker asks a yes-no question, creating an obligation for the hearer to re-

spond.

T-CHECK The speaker is attempting to verify that a certain proposition is true.

T-SUGGEST The speaker proposes a new item (action, proposition) as part of the plan.

T-REQUEST The speaker aims to get the hearer to perform some action. In the TRAINS
domain, this is treated like a suggest, with the addition of an obligation on the hearer

to respond.

T-ACCEPT The speaker agrees to a prior proposal by the hearer.

T-REJECT The speaker rejects a prior proposal by the hearer.

T-SUPP-INF The speaker provides additional information (perhaps already known) that
augments, or helps the hearer interpret some other accompanying speech act.

T-SUPP-SUG The speaker makes a supplementary suggestion of content, which is pre-
supposed to be part of the plan by other accompanying suggestion or request.

Many of the types of discourse structure and mental state needed by the dialogue man-
ager (such as the discourse segments, turn-taking, and grounding structures mentioned in
Section 3.2) are represented not within EBTL itself but as RHET belief contexts or lisp data
structures containing EBTL formulae. However there are EBTL predicates which can be
proved by functional calls to inspect these data structures. More on the conversation-level
representation can be found in [Traum, 1994].

EBTL also contains terms that explicitly denote plans and predicates that are used to
describe the content of plans. Some examples of these are:

(GOAL-OF proposition plan): the proposition is a goal of the indicated plan

(USES object proposition plan): the object is used in the plan.

(EVENT-IN event plan): the event is part of the plan.

These predicates are used by the dialogue manager to treat plans in an abstract way
- objects with particular properties. Different combinations of these properties may be
present in different mental modalities, which will provide the specific motivation for the
system to perform plan related utterances such as suggestions and acceptances. These
predicates are also used to represent the contents of plan related speech acts, and as calls
to the domain plan reasoner to incorporate these items into a partial plan.

26

Plans Graphs

In addition to describing the properties of plans using EBTL plan predicates, the TRAINS-93
domain plan reasoner maintains an additional representation of plans as connected, directed,
acyclic graphs of event and fact nodes labeled by events and propositions, respectively.
These plan graphs are given a formal semantics in terms of arguments: they represent
an argument that a certain course of action under certain conditions will achieve certain
goals. Since plans are objects in the ontology, plan description predicates can be defined
that impose constraints on the plan-as-argument. There are structural predicates, such as
Actionln, Enables, Premise, Goal, etc., that are defined in terms of the structure of the
plan graph. Then there are evaluation predicates. These include absolute predicates such
as Plausible or Impossible and relative predicates that allow plans to be compared, for
example, according to resource usage or time constraints. Further details are available in
[Ferguson, 1995].

4.4 Tyro

In order to do the reasoning necessary for executing and monitoring plans and statistical
reasoning about the effects of actions, we have developed a language, called Tyro. Like
EBTL, Tyro is implemented as an extension of RHET. Tyro allows representation of statistics
about the number of observations of event instances of a particular event type and provides
techniques for computing confidence intervals from the statistics. It also allows one to
specify utility and to apply decision theory based on these utilities and confidence intervals.

Tyro represents individual event instances (e.g., [Move-Boxcar-1]) and it reifies sets of
event instances specified by lambda abstractions into event types (e.g.,[Boxcar-Moved]).
Here, the term [Boxcar-Moved] represents the set of event instances in which any boxcar
was moved; [Move-Boxcar-1] represents a particular instance in which a particular boxcar
was moved.

Tyro also includes statistical predicates, which are defined over event types. These
predicates are Occurrences, and Probability. Occurrence takes a temporal interval, an
integer and a set of event types, as in (3); it indicates that the integer is the number of event
instances in the intersection of the event types that occured during the temporal interval.
Probability takes a confidence level, two event types, a probability measure, and a tempo-
ral interval as in (4); it indicates that the probability measure is the conditional probability
during the temporal interval of the occurrence of the first event given the occurrence of the
second event.

(3) [Occurrence tl 5 [Requested-Boxcar-Move] [Boxcar-Moved]]

(4) [Probability .95 [Requested-Boxcar-Move] [Boxcar-Moved] [0.24 0.76] tl]

In Tyro, a probability measure can be either a point (a number between 0 and 1) or an
interval (where both end points are numbers between 0 and 1). In addition, probabilities can
either be asserted or inferred from the Occurrence predicate. Probabilities that are asserted
are entered before the system runs; probabilities that are inferred are calculated after the

27

system has made some observations. A point probability indicates that a programmer
asserted a number to be the probability and that the system has insufficient evidence to
doubt the assertion. An interval probability indicates either that the programmer asserted
an interval probability or that the system has sufficient evidence to conclude that an asserted

probability is incorrect.

Tyro infers the probability of a particular event, say [Boxcar-Moved] given a trial event
type, say [Requested-Boxcar-Move] by considering the event type that represents the inter-
section of the instances in each event type, i.e. [Requested-Boxcar-Move-and-Boxcar-Moved]
as the success event type and the trial event type [Requested-Boxcar-Move]. It then calcu-
lates the confidence for the binomial random variable [Bickel and Doksum, 1977] where an
event instance in the intersection event type is a success and an event instance in the trial
event type is a trial. If an asserted probability does not fall entirely within this confidence
interval, it rejects an asserted probability and concludes that the probability is the confi-

dence interval computed from the number of occurrence of the event types it has seen. If
no probability was asserted and no observations have been made, Tyro uses the probability

interval [0, 1]. This treatment of probability is based on Kyburg's evidential probability

[Kyburg, 1991].

Tyro also represents the utility of event types so it can make decisions based on expected
utility. The predicate, Utility takes an event type, an integer and a temporal interval, as
shown in (5); it indicates that the integer is the utility of the event type during the temporal
interval. Utility expresses the desirability of an event; probability expresses the likelihood
of an event. Both types of information are necessary to make a choice between events.
This difference is reflected in the meaning of the temporal interval associated with utility
and probability. The temporal interval associated with probability represents the time over
which the evidence for that probability was gathered; the temporal interval associated with
utility represents the time over which the event is desirable. For example, If one is shipping
oranges, it may be desirable to wait for a train that is scheduled to arrive in the future, but
undesirable to wait for a train that has already left. The desirability can be changed by
evidence of the effectiveness of the act of shipping the oranges by this train. If, in the past,
it has proved impossible to load the oranges, perhaps because the train does not stop at
this station long enough, it may not be desirable to wait for the train even if it is scheduled

to arrive in the future.

(5) [Utility [Boxcar-Moved] 10 t2]

Tyro calculates expected utility by multiplying the probability by the utility - result-
ing, when the probability is an interval, in an interval expected utility. When an interval
expected utility is calculated, there may be no clear choice between alternatives. When
there is no choice, one can do one of three things: one may reduce the confidence level in
the calculation resulting in a narrower interval, one may avoid making the choice hoping
that further information will make the choice clearer, or one may gather more information
about needed probability. In Tyro, when one reduces confidence to zero, it calculates a
point probability from the maximum likelihood estimate [Bickel and Doksum, 1977]. If one
avoids the choice, subsequent events may rule out some actions, making the choice clearer.
Because more evidence also narrows the interval, collecting more evidence may also make

28

possible a choice.

Although both EBTL and Tyro allow reasoning about events and event types, these are
used for different purposes in the two languages. When planning, events are terms that
represent occurrences that may be added or subtracted from the plan as necessary. But
when the plan is being executed the event represents something that cannot be modified, but
only described. Some of the unspecified properties of an planned event might be important
when the plan is executed. For example, whether the axle on [Boxcar-1] is broken might
be ignored when planning if broken axles are rare enough, but the state of the axle will be
crucial to the event that actually occurs. This state of affairs will be discovered only after
the event that is purportedly the [Move-Boxcar-1] event has occurred but, because the
effects of [Move-Boxcar-1] do not hold, the plans goals will not hold.

To deal with these problems, the executor views the EBTL event [Move-Boxcar-1] as
an event type that includes all of the event instances that have the properties specified
for [Move-Boxcar-1]. Using Tyro, the executor reasons about what it can do to make
an event instance occur that will be a random member of the event type corresponding to
[Move-Boxcar-1]. By reifying the event types, Tyro allows the executor to use statistical
probability to choose a random member of the action event type that is most likely to
co-occur with the event type corresponding to [Move-Boxcar-1]. In addition, Tyro allows
the executor to reason that an event type corresponding to [Move-Boxcar-1] occurred,
but that the instance of this event type that occurred does not support the plan. That is,
even though what occurred satisfied all of the conditions specified of [Move-Boxcar-1], it
is invalid to assume that the boxcar moved because, in fact, the boxcar did not move. The
executor may or may not know why the boxcar did not move, but, being in a position to
keep track of the plan, it can determine that the boxcar did indeed fail to move.

5 A Dialogue Processing Example

While a true sense of the operation of the representation systems presented in the previous
section can only be achieved by examining a substantial section of dialogue, there is not
room here for a complete look at even one of the formalisms on a very substantial amount
of dialogue. Instead, we illustrate the use of the implemented KR systems by means of
a single example exchange from the conversation in Figure 2, sentences 7.1-7.2 through
8, repeated here as (6), for convenience. More details on how the rest of the dialogue is
represented can be found in [Poesio, 1994], for CRT, [Traum, 1994], for EBTL, and [Ferguson,
1995], for the plan graphs.

7.1-7.2 U: So there's an engine at Avon.
(6) 7.3 U: Right?

8 S : Right.

The Parser produces the underspecified representation shown in (7) for 7.1-7.2. It can
be thought of as a parse tree whose leaves have been replaced by the semantics of lexical
items. Non-leaf nodes are annotated with a rule name and the corresponding semantic rule.
The initial numerals 1, 2, ... indicate the first subconstituent, second subconstituent, and so

29

on. As explained in section 4.1, the rule names S_N2THERE+V2, V2THERE-SING_VBE+N2+P2,
etc. reflect the left-hand side and right-hand side categories occurring in the syntactic
part of the rules. The semantic rules specify the formation of EL expressions, using Lisp
expressions of the form (<key> <item>+), where <key> indicates the type of semantic object
represented by the expression. In particular, the key :F indicates a functional application
of the first argument to the rest, the key :P indicates a predicate application of the the
first argument to the rest, the key : I indicates a formula in infix form (with the "subject"
argument first, followed by the predicate, followed by any additional arguments), the key :L
indicates a lambda-expression, the key :0 indicates an unscoped operator (here, a present
tense operator), and the key :Q indicates an unscoped quantifier. Scoped quantifiers are
used directly as keys, e.g., :E indicates existential quantification.

(7) ((1 UTT 1
(1 S-TELL (:F :DECL 1)

(1 S_C0NJC00RD+S (:I :UTT-IMP 1 2) (1 SOI :S0-C00RD)
(2 S_N2THERE+V2 2 (1 THERE1 :EXISTS)

(2 V2THERE-SING_VBE+N2+P2 (:E :Y (:I :Y 2) (:I :Y (:F i 3)))
(1 -S2 (:L :X (:0 :PRES :X)))
(2 PRED_DETAN+N1 2 (1 AN1 :E)

(2 ENGINE1.1 :ENGINE))
(3 P2_PPLACE+N2 (:P 1 2) (1 ATI :AT-L0C)
(2 AV0N1 :AV0N)))))

(2 /PERI0D1 NIL))))

Thus the top-level node is an UTT (utterance) node whose LF in EL is just that of
its first and only constituent, a punctuated declarative sentence (S-TELL). The semantic
rule for this S-TELL applies the :DECL operator to the EL formula for the unpunctuated
sentence. As previously explained, this :DECL operator signals a particular illocutionary
act (a 'telling'). The unpunctuated sentence, formed by rule S_C0NJC00RD+S, has as its first
constituent a conjunctive coordinator, so, and the second constituent is a sentence. The EL
semantic rule specifies formation of an infix formula which relates an implicitly referenced
utterance, :UTT-IMP, to the content of the current sentence, using the meaning of the
coordinator as the relation. Without the so, we have a sentence labeled with S_N2THERE+V2,
i.e., one consisting of an existential there subject and a verb phrase (V2, meaning 'V 2-
bar'). This verb phrase consists of the copular verb, a noun phrase (N2) subject in verb
complement position, and a locative propositional phrase (P2). The EL formula for the
sentence is just that of the verb phrase - the there is ignored. The verb phrase in this case
is interpreted as a sentence rather than a predicate, because of the "embedded" subject
(here, an engine); the EL semantic rule specifies existential quantification of the embedded
subject, and applies a predicate formed from the interpretation of the copula (here is, which
in essence supplies a present tense operator) and the locative P2 (here, at Avon).

The further interpretation into CRT does not directly apply the EL semantic rules, but
rather converts the Parser output into a CRT expression that represents the (surface) con-

versational event, or locutionary act, resulting from the production of that utterance. This
expression is added to the DRS representing the current discourse situation. As the syntax
of CRT is a superset of that of EL, this conversion is mostly straightforward; see Section 6.1
for some further discussion. The Scoping and Deindexing (SAD) module uses the informa-

30

tion contained in the resulting DRS to do inferences that resolve contextually-dependent
expressions. This results in one or more hypotheses about the nature of the conversational
events that are implicit in the given surface conversational event, taking into account the
discourse context. The 6-part hypothesis obtained by processing (7) is shown in (8).

(8) (:SIT-DESCR (:PAR :*C0A994* :CONV-THREAD)
(:DRS (:CE993 :CE995)

OEV-DESCR :CE993 (:DRS NIL (:I :HUM :S0-INIT)))
(:I :CE993 :AT-ABOUT :N0W12)
(:I :CE993 :SUBSIT (:PAR :*C0A994* :CONV-THREAD))
(:I :CE995 :AT-AB0UT :N0W13)
(:I :CE995 :SUBSIT (:PAR :*C0A994* :CONV-THREAD))
(:I :CE993 :BEFORE :CE995)
(:EV-DESCR :CE995

(:DRS NIL
(:I :HUM :TELL :SYS

(:SIT-DESCR (:PAR :*S996* :SIT)
(:DRS (:E991 :X989)

(:EV-DESCR :E991
(:DRS NIL (:I :X989 :AT-L0C :AV0N)))

(:I :E99i :AT-AB0UT :CE995) (:I :E991 :SUBSIT :S*)
(:I :X989 :ENGINE))))))))

(:= (:PAR :*RES-SIT992* :SIT) :PLAN1)
(:= (:PAR :*RES-SIT990* :SIT) :MAPS)
(:= (:PAR :*C0A994* :CONV-THREAD) :C0A1)
(:I :CE995 :AGENT :X989) (:I :CE995 :THEME :AV0N)

The expression in (8) states, roughly, that (:PAR :*C0A994* :CONV-THREAD) (a situa-
tion, more particularly a conversational thread — see Section 6.1) has been augmented with
the two conversational events :CE993 and :CE995. :CE993 corresponds to the utterance of
"so" and :CE995 to the utterance of "there's an engine at Avon".

The Lisp-like syntax used in the implementation of CRT is shown in the example. A DRS
with discourse markers a ... b and conditions $i ... $„ is represented in this syntax by an
expression of the form (:DRS (:A ...:B) $i ...$n). The expression s:3> asserting that
$ holds at situation s is represented by the Lisp list (:SIT-DESCR :s 3>); the expression
(:EV-DESCR :s $) states that $ is a complete characterization of s and corresponds to the
expression [$** s] of EL. For example, the expression (:EV-DESCR :CE993 (:DRS NIL (:I
:HUM :S0-INIT))) in (5) asserts the occurrence of an event :CE993 completely character-
ized by the situation type (:DRS NIL (:I :HUM :S0-INIT)), i.e., as an event of the agent
:HUM performing an action of type :SO-INIT.

Some of the facts listed for (:PAR :*C0A994* :CONV-THREAD) are temporal ones {e.g.,
that the two utterances occurred at respective time points :N0W12 and :N0W13, and some
are about situation structure {e.g., that both utterances are part of (:PAR :*C0A994*
:CONV-THREAD)). Most importantly, an event description is given for each of the two utter-
ance events. The event description for :CE993, the utterance of "so", merely notes that the
agent : HUM produced such an utterance, without as yet attempting to assign a detailed logi-
cal form. The event description for : CE995 says that this is an event of the agent : HUM telling
the agent :SYS that a situation to be contextually determined, (:PAR :*S996* :SIT) sat-

31

isfies a certain description. This description asserts that there is an eventuality :E991 of
an entity :X989 being located at Avon; it further asserts temporal and situation-structure

facts, and that :X989 is an engine.

All the aspects of the interpretation which were initially underspecified have been re-
solved. The only traces left of the initial underspecified interpretation are the parameters-
terms which are used to represented anaphoric 'holes' in the interpretation, as seen in section
4.2. Lisp expressions of the form (:PAR :x <TYPE>) where <TYPE> is the type of the pa-
rameter are used to represent parameters for which the syntax x or y was used in Section 4.2.
For example, the expression (:PAR :*C0A994* :COMV-THREAD) indicates a parameter of
type CONVERSATIONAL-THREAD, and the expression (:PAR :*S996* :SIT) indicates a pa-
rameter of type situation. These parameters are 'anchored' to some specific value; for ex-
ample, the second-last line of the description of (:PAR : *C0A994* :CONV-THREAD) equates
this discourse segment with a previously established conversational thread, :C0A1, so the

indeterminacy has been resolved.

Both the SAD hypothesis (8) and the underspecified representation in (7) are fed to the

Speech Act Interpreter, which produces a set of core speech act alternatives, shown in (9)

and a list of argumentation acts, shown in (10).

(9) (:SEQ (:SURF-IMTERP [CE993] [ST-ACCEPT-0028])
(:SURF-INTERP [CE995] (:OR (:EX-0R [ST-IMFORM-0029] [ST-CHECK-0030] [ST-YNQ-0031])

[ST-SUGGEST-0032])))

(10) ((:THE ?PA*T-SPEECHACT ?PADM*T-ANYTHING (:PREV-CE [CE993] ?PA*T-SPEECHACT)
(:THE ?NA*T-SPEECHACT ?NADM*T-ANYTHING (:NEXT-CE [CE993] ?NA*T-SPEECHACT)

(:S0 ?PA*T-SPEECHACT ?NA*T-SPEECHACT))))

In general, there can be many interpretations for an utterance, and the manner in which
they can provide an interpretation for the utterance is specified in an alternative list of the
core speech act interpretations. This list relates the conversational event to its interpre-
tations via the predicate SURF-INTERP. As there are two sequenced conversational events
{i.e., utterance of "so" and "there's an engine at Avon"), a SEQ operator is used to allow
sequential contextual speech act pruning and update. The manner in which the alternatives
can combine is specified by the operators AND, OR, and EX-OR. The interpretation of CE995
is that it is a suggestion, ST-SUGGEST-0032 and/or one (and only one) of the following:
an inform, ST-INFORM-0029, a check ST-CHECK-0030, or a yes/no question, ST-YNQ-0031.
As for CE993, the "so", it is interpreted as possibly being an acceptance ST-ACCEPT-0028.
This is the only core speech act conjectured for "so", but note that the argumentation act
in (10), also produced from CE993, says that there is a :S0 relation between the previous
act, and the next act, which is CE995. The speech act definitions for [ST-ACCEPT-0028],
[ST-INFORM-0029], and [ST-SUGGEST-0032], expressed in EBTL, are shown in (11), (12),

and (13), respectively.

The definition of [ST-ACCEPT-0028] in (11) requires that this accept speech act has
the agent :HUM as a speaker, :SYS as a hearer, and has as content (i.e., the content to be
accepted) a speech act that was produced by :SYS and was addressed to :HUM and remains
unaccepted so far. The [ST-INFORM-0029] definition in (12) specifies as content of the act

32

that there is an engine at Avon. Speaker, hearer, and time roles which are identical to those

of (11) have been omitted. The (13) definition is similarly abbreviated. The definitions for

[ST-CHECK-0030] and [ST-YNQ-0031] are identical to that of [ST-INFORM-0029].

R-SPEAKER [HUM])
R-HEARER [SYS])
R-TIME [F-TIHE [CE993]])

(11) (:AND (:R0LE [ST-ACCEPT-0028]
(:R0LE [ST-ACCEPT-0028]

(:R0LE [ST-ACCEPT-0028]

(:CONTENT [ST-ACCEPT-0028]

(:LAMBDA 7SA+T-SPEECHACT

(:AND (:R0LE ?SA*T-SPEECHACT :R-SPEAKER [SYS])

(:R0LE ?SA*T-SPEECHACT :R-HEARER [HUM])

(:OCCURS ?SA*T-SPEECHACT)
(:UNACCEPTED ?SA*T-SPEECHACT)))))

(12) (:AND (:R0LE [ST-INFORM-0029] :R-TIME [F-TIME [CE995]])

(:CONTENT [ST-INFORM-0029]

(:LF-EXISTS ?vl3237*T-ENGINE [X989] NIL
(:AT ?vl3237*T-ENGINE [AVON] [E991])))

(:FOCUS [ST-INFORM-0029] [X989]))

(13) (:CONTENT [ST-SUGGEST-0032]
(:THE ?P*T-PLAN ?DM*T-ANYTHING (:CURRENT-PLAN ?P*T-PLAN)

(:LF-EXISTS ?VAR*T-ENGINE [X989] NIL
(:USES 7VAR+T-ENGINE (:AT ?VAR*T-ENGINE [AVON] [E991]) ?P*T-PLAN)))))

During speech act pruning, [ST-ACCEPT-0028] is ruled out because there is no un-

accepted suggestion by the system. (Thus only the argumentation-act interpretation of

"so" remains.) Also, [ST-INFORM-0029] is ruled out because the system did find an en-

gine at Avon in the Shared belief context ([ENGINE-1]). This leads to a decision that

[ST-CHECK-0030] was the informational act performed. Evaluating [ST-SUGGEST-0032]

leads to the plan reasoner call in (14). Here, the dialogue manager determined that

[PLAN-4719] was the current plan, the context was the focused node in the plan graph

(shown in Figure 5 from the preceding planner call, as indicated by the :so argumentation

act, and the background information is that the engine is useful because it is at Avon. The

planner returns the EBTL formulae in (15), which indicates that this engine fills the engine

role for the focused action.

(14) (INCORPORATE (:USE-OBJECT [X989]) [PLAN-4719] :INCORP-TYPE :ROLE-FILLER
:CONTEXT #EVENT-0LD<[MOVE-CAR-7867]> :FOCUS [X989] :BG
(:AT [X989] [AVON] [E991]))

(15) (:PLAN-FACT (:AND (:EQ [X989] [F-ENGINE MOVE-CAR-7867])) [PLAN-4719])
(:PLAN-SUPPORTS

(:AND (:EQ [X989] [F-ENGINE MOVE-CAR-7867])) [MOVE-CAR-7867] [PLAN-4719])
(:PLAN-PREMISE (:AND (:Eq [X989] [F-ENGINE MOVE-CAR-7867])) [PLAN-4719])
(:AND (:EQ [X989] [F-ENGINE MOVE-CAR-7867]))

The forms in (15) mean, respectively, that this equality is a fact (as opposed to an event)

in the plan, that it supports the move-car event (by identifying a necessary role), that it is

33

MV-COMM-4779
X3 from CORNING to BATH using X244
X3 = ORANGES-1

[F-MOVE-CAR MV-COMM-4779]
X244 from CORNING to BATH

(:At X244 CORNING)

(:At ORANGES-1 CORNING)

MV-CAR-7867
X244 to CORNING

Figure 5: Plan Graph before Utterance 7.1-7-2

a premise (i.e., it does not need to be achieved through further planning), and finally that

the equality itself is present.

The successful incorporation lets the dialogue manager decide that [ST-SUGGEST-0032]
was a valid interpretation. In addition, the dialogue manager determines that this utterance
initiated a new discourse unit which would later need to be acknowledged [Traum, 1994],
and that the user kept the turn.6 The final set of conversation acts determined to be
performed in performing this utterance are shown in (16), where :CSAS are the core speech
act interpretations, :ARGS is the argumentation act, :GAS refers to the grounding acts, and

:TTAS refers to the turn-taking acts.

(16) CSAS ([ST-CHECK-0030] [ST-SUGGEST-0032]) :ARGS (SO [CE721] [CE995])

GAS (INIT HUM DU-4 ([ST-CHECK-0030] [ST-SUGGEST-0032]) NIL)

TTAS (KEEP-TURN HUM [N0W13])

Since the user kept the turn, the system waits for the next utterance, 7.3. The parser's
output for this sentence is shown in (17). This analysis views the utterance, right?, as
an elliptic sentence, consisting just of a predicate, followed by a question mark and thus
acquiring interrogative force. The top-level :QUES operator, like :DECL in the case of
assertions, supplies the type of the locutionary act (an 'ask' act). A present tense operator
is taken to be implicit in this type of abbreviated sentence, as can be seen in the semantic
rule for the S_PRED constituent. This rule also introduces an implicit pronoun (:IT-IMP),
i.e., the meaning of the question is regarded as equivalent to Is that right?

(17) (1 UTT 1
(1 S.SELL+? (:F :DUES (:F :? 1))

(1 S_PRED (:0 :PRES (:I :IT-IMP D)

(1 PRED_A2 1
(1 A2_A1 1 (1 RIGHT1 :RIGHT-CORRECT))))

(2 /QUESTION-MARK1 NIL)))

6The user can signal a desire to keep the turn in one of two ways. Either typing an explicit signal <kt> in
the input stream, or typing the next utterance before the system has finished processing the previous one.

34

This is converted to the CRT form shown in (18).

(18) (:SIT-DESCR (:PAR :*C0A1090* :CONV-THREAD)

(:DRS (:CE1091) (:I :CE1091 :AT-AB0UT :N0W14)

(:I :CE1091 :SUBSIT (:PAR :*C0A1090* :CONV-THREAD))

(:EV-DESCR :CE1091

(:DRS NIL
(:I :HUM :ASK :SYS

(:SIT-DESCR (:PAR :*S1092* :SIT)

(:DRS (:E1088)

(:EV-DESCR :E1088

(:DRS NIL (:I (:PAR :*IT-IMP1087* :IT-IMP)
:RIGHT-CORRECT)))

(:I :E1088 :AT-AB0UT :CE1091)
(:I :E1088 :SUBSIT :S*))))))))

(:= (:PAR :+RES-SIT1089* :SIT) :PLAN1)
(:= (:PAR :*S1092* :SIT) :C0A1) (:= (:PAR :*C0A1090* :CONV-THREAD) :C0A1))

The only core speech act possibility for this utterance is the check act with content
shown in (19). This act checks whether the content of some previous act is correct. In
speech act evaluation, the dialogue manager decides that this refers to [ST-CHECK-0030],
from utterance 7.1-7.2. Also, at the grounding level, this utterance is seen as a repair,
replacing the previous speech act.7 In addition, this utterance is seen as releasing the turn,
and allowing the system the chance to respond.

(19) (:CONTENT [ST-CHECK-0033]
(:THE ?CE*T-INF-SA ?CEDM*T-ANYTHING (:PREV-ACT [CE1091] ?CE*T-INF-SA)

(:RIGHT-CORRECT ?CE*T-INF-SA)))

The dialogue manager now checks its representation of the conversational state, and
according to the algorithms described in [Traum and Allen, 1994; Traum, 1994], the system
first decides to acknowledge the utterances by the user, and then to act on the obligation
to answer the check query. This will result in first checking to see if it agrees with the
mentioned fact that an engine is at Avon, and then generating an affirmative reply. The
dialogue manager sends the templates shown in (20) to the generator which produces the
response labeled 8.

(20) ACK ([ST-CHECK-0033] [ST-SUGGEST-0032]) Reason: (GROUNDING)
INFORM-IF (FOCUS RIGHT (RIGHT-CORRECT [ST-CHECK-0030]))

Reason: (OBLIGATION (CHECK-IF (RIGHT-CORRECT [ST-CHECK-0030])))

The system's response is also interpreted by the system, both to update the context as
well as check to make sure the intended interpretation is the most likely interpretation. The
parser produces the form in (21) for this utterance. This is of course very similar to the
form produced for the previous elliptic question. The only semantic difference, induced by
the difference in punctuation, is the declarative force of the utterance, as encoded by the
:DECL operator.

7Since the previous utterance also received a check interpretation, this has no significant effect, but if,
for example, the inform possibility had been chosen, this utterance would change the interpretation to that
of a check.

35

(21) (1 UTT 1
(1 S-TELL.ELL (:F :DECL 1)
(1 S_PRED (:0 :PRES (:I :IT-IMP 1))

(1 PRED_A2 1
(1 A2_A1 1 (1 RIGHT1 :RIGHT-CORRECT))))

(2 /PERIOD1 NIL)))

The SAD module then produces the CRT form in (22).

(22) (:SIT-DESCR (:PAR :*C0A1143* :CONV-THREAD)
(:DRS (:CE1144) (:I :CE1144 :AT-AB0UT :N0W15)

(:I :CE1144 :SUBSIT (:PAR :*C0A1143* :CONV-THREAD))

(:EV-DESCR :CE1144

(:DRS NIL

(:I :SYS :TELL :HUM

(:SIT-DESCR (:PAR :*S1145* :SIT)

(:DRS (:E1141)

(:EV-DESCR :El141
(:DRS NIL (:I (:PAR :*IT-IMP1140* :IT-IMP) :RIGHT-CORRECT)))

(:I :E1141 :AT-AB0UT :CE1144) (:I :E1141 :SUBSIT :S*))))))))
(:= (:PAR :*RES-SIT1142* :SIT) :PLAN1)
(:= (:PAR :*S1145* :SIT) :C0A1) (:= (:PAR :*C0A1143* :CONV-THREAD) :COAl))

The speech act interpreter discovers two speech act possibilities for this utterance, as

shown in (23), with the contents shown in (24) and (25). Both of these interpretations are

validated by the dialogue manager, which as a result, transfers the plan results from the

proposed to the shared plan belief context. This utterance is also seen as acknowledging

the two previous utterances by the user, as well as releasing the turn.

(23) (:SURF-INTERP [CE1144] (:0R [ST-INFORM-0035] [ST-ACCEPT-0034]))

(24) (:CONTENT [ST-ACCEPT-0034]
(:LAMBDA ?SA*T-SPEECHACT (:AND (:R0LE ?SA*T-SPEECHACT :R-SPEAKER [HUM])

(:R0LE ?SA*T-SPEECHACT :R-HEARER [SYS])
(:OCCURS ?SA*T-SPEECHACT)
(: UNACCEPTED ?SA*T-SPEECHACT.))))

(25) (:CONTENT [ST-INFORM-0035] (:THE ?C*T-INF-SA ?DM*T-ANYTHING (:PREV-ACT [CE1144] ?C*T-INF-SA)
(:RIGHT-CORRECT ?CE*T-INF-SA)))

6 Relations between the KR Languages

Not choosing a single representation formalism from the very beginning involved a risk,

namely, that we would end up with a number of mutually incompatible representations.

In fact, this did not happen. There are strong connections between the formalisms we

use, and a number of ontological assumptions are shared, so that most translations are a

straightforward matter. A number of factors conspired in keeping the formalisms we use

relatively close to each other. First of all, there was an unspoken agreement by all to adopt

36

logic-based formalisms. Secondly, as work progressed, it became more and more clear that
a tight interaction between the modules was needed. In this section, we describe some of
those connection points, as well as some of the ontological differences springing from the
different research traditions that still make it non-trivial to combine all the reasoning into
a single representation language.

6.1 Translating between the Languages

The conversion from the EL-annotated parse tree produced by the parser into the initial
underspecified CRT expression is mostly straightforward. For example, the parser produces
for the NP "an engine" the syntactically annotated subtree shown in (26), whose last element
is the semantic object to be produced.

(26) [NP [Det an; exists] [N engine; engine]; (:Q 1 2)]

The resulting CRT expression, shown in (27), is almost identical, but the lexical items are
eliminated from nodes such as [Det an; exists] , and the semantic operation is eliminated
from the specification of phrasal categories, since it's part of the semantics of the CRT
expression.

(27) [NP [Det A P A Q (3 x : P(x) (Q(x)))] [N engine]]

In (27), [Det A P A Q (3 x : P(x) (Q(x)))] is the semantic translation of "an",
and engine is the predicate associated with the noun "engine" in the lexicon, and x is
used as the discourse marker (see Section 6.2). One aspect of the translation which involves
an actual modification is where anaphoric items are involved, since EL does not have the
equivalent of parameters.

The translation from EL and CRT to EBTL takes the form of an approximation, where
the more complex episode or situation constructs in EL and CRT are approximated in the
weaker EBTL, in terms of events and actions. EBTL does not contain general situations
or episodes as first-class objects, and so only those episodes which correspond directly to
events or time intervals can be translated. Much of the time, however, no information is
lost, since most domain-related episodes that arise in the dialogues correspond to simple
event occurrences.

More general situations that are characterized by a more complex structure of events
or facts can sometimes be approximated within the belief contexts from RHET. While
not strictly a part of EBTL, reasoning about hierarchically related belief contexts which
contain sets of EBTL formulae is an important part of the reasoning performed by the
dialogue manager. Thus, for example, discourse segments, which are represented in CRT by
plural situations (called conversational threads) are represented (in part) as belief contexts
containing EBTL facts and events.

In addition, as the domain predicates in EBTL are only those used in the TRAINS do-
main, more general event descriptions are specialized to their precise meaning in the TRAINS
domain, e.g., the EL action pick-up, as in utterance 9-13, which has more general appli-
cability in a range of situations is disambiguated to a COUPLE action within EBTL.

Translating a plan graph, represented in EBTL, to the information that the executor
uses, represented in Tyro, is again an approximation. This translation removes most of the
dependencies between the events expressed in a plan. That is, it finds all the actions in the
plan such that the action is an Actionln the plan and considers them individually. It also
uses each fact that Enables an action as a condition to trigger the action. In addition, the
executor treats the EBTL events in the plan graphs as Tyro event types. The event types are
constructed by taking the EBTL description of the EBTL event, and using that description
as a lambda abstraction that is reified into an Tyro event type. By doing this, the executor
can use its statistical knowledge to choose its actions (messages to agents in the simulated

world) to best achieve the planned event.

The loss of information in the action converstion process is important because it allows
the executor to assume independence of the events in the plan, simplifying the computation
of probability. Though the relations between events are certainly important for reasoning
about the likely success of the whole plan, and communicating these aspects with the user,

they are not essential to determining whether the events themselves will occur. On the other
hand, information lost decreases the accuracy of the conditional probabilities computed.
This problem is ameliorated somewhat because the executor can report failures back to the
rest of the system. If some problem with a particular event in the plan occurs, the executor
could communicate back to the domain plan reasoner, which would then have the full plan

argument to assist in replanning.

6.2 Interface Issues

A number of knowledge-representation issues came up in the course of building the system
that transcended the functioning of any one module or representation language. We briefly

discuss some of them here.

Discourse Markers

Any system for handling an extended dialogue (as opposed to isolated sentences) must
maintain a notion of discourse context. Thus the SAD module maintains knowledge of tem-
poral relations between events and a structure for referentially accessible entities, and the
dialogue manager and plan reasoner maintain information about mental states and plans.
Some sharing of information across these distinct representations of context is essential.
If, for example, the SAD module decides that some mentioned entity is the same as one
that had been described before (which, perhaps the plan reasoner had decided played a
particular role in a plan), it is crucial that the other modules realize this connection. This
problem is addressed by introducing common discourse markers, serving as unique names
across the entire system, for entities introduced by the dialogue (typically through indefinite
NPs, or implicitly through lengthier dialogue segments, as in the case of various situations

and plans).

These discourse markers are an integral part of CRT and EBTL, and play a crucial
role in the interface between the knowledge representation languages and modules. Their

38

importance is best seen by looking at the interface between the parser, SAD, and speech act
interpreter.

Discourse markers are introduced into the unscoped logical form produced by the parser,
corresponding to existentially quantified and i/je-quantified unscoped terms. This modified
parser output becomes the input for both the SAD module and the speech act interpreter.
The speech act interpreter then builds a skeleton of the speech act in terms of the discourse
markers present in the parse tree. For the content, it turns to the CRT output of the SAD
module. The merging process converts the CRT definitions for these discourse markers into
EBTL, and then puts the markers and the EBTL definitions into the appropriate spots in
the speech act output. In addition, these same discourse markers allow reference to objects
across sentences, and in both the CRT and EBTL knowledge bases.

Definite Description

Resolving definite descriptions is a venerable problem in natural language interpretation.
It is clearly necessary to represent definite description more or less directly in the under-
specified logical form, so that different possibilities for the referent can be considered and
chosen between, using various semantic, contextual, and inferential processes, as is done in
the SAD module in TRAINS. What is less obvious is that the same kind of definite quantifier
construct is also useful for the modules that reason about the discourse pragmatics and
plan execution.

While explicit definite descriptions coming from utterances (e.g., the boxcar) could in
principle be eliminated when the referent is resolved by the SAD module, it is still usefull
to have a definite description operator in EBTL for representing several aspects of the con-
textual pragmatics in the hypotheses built by the speech act interpreter. These include the
following:

• suggestions without explicit goals are taken to be implicitly suggestions with respect
to some plan that is contextually relevant. The speech act interpreter, which builds
hypotheses without reasoning about the context, uses the construct in (28) to signal
the dialogue manager that the plan ?P, referred to in the body of the suggestion,
should be the current plan in the current discourse segment.

(28) (:THE ?P*T-PLAN ?DM*T-ANYTHING (:CURRENT-PLAN ?P*T-PLAN)),

• argumentation acts which make reference to component speech acts that are not part
of the current utterance are augmented with definite reference information that will
allow the dialogue manager to select the appropriate acts. For instance, this is done in
the case of the argumentation act coming from cue word so, as represented in (10), in
the previous section. Here, the dialogue manager can decide which are the appropriate
previous and next acts which are connected by the argumentation act.

A process similar to definite reference resolution is also performed by the plan executor,
when trying to monitor execution of the plan produced by the plan reasoner. The plan
reasoner reifies future events in plans for the purpose of reasoning about, e.g., enabling

39

conditions, effects, etc. However, the plan executor, while trying to actually cause an
event in the plan like [Move-Boxcar-1], views this event as an event type with some
qualifications. Moreover, in monitoring the plan, the executor receives from the agents
in the world a huge list of reports of things that happened during a particular stretch of
time, and it needs to decide if these things mean that the intended [Move-Boxcar-1] has
actually occurred. If two events of this type have occurred and they differ only on irrelevant
details, it can be difficult to determine which of them was [Move-Boxcar-1] , much as in the
case of multiple referents fitting a definite description. So, although no definite description
operator is involved here, the process is very similar to definite reference resolution, in which
presuppositions of identifiability and uniqueness (within a given context) guide the selection

of the appropriate object.

A related problem is how to interpret existential there - see for instance utterance

3.7, There are oranges at Corning. Originally the EL interpretation treated the "lowered
subject", oranges, as having the same denotation as it would as an ordinary bare-plural
subject, namely, the kind, (K (plur orange)). But the fact that the resultant LF's provided
an existential entailment only indirectly, and that sentences such as Pencils are in the top
drawer, and There are pencils in the top drawer differ in meaning persuaded us to treat
the lowered subjects as predicates; we then let there is/are introduce explicit existential
quantifiers over the domains of these predicates.

As such, there is no need for the SAD module to try to identify these oranges - it merely
adds a discourse marker so that future reference to this object can be recognized. At the
pragmatic level, however, this utterance, in the context of the problem solving dialogue,
is interpreted as (among other things) a suggestion to use the oranges in the plan. Thus,
seen from the point of view of the dialogue manager, this is very like a definite reference,
which is resolved by querying the database to see which oranges are there (in this case, 01).
When the suggestion is incorporated into the plan, 01 is used, and equated to the discourse
marker so that future references will be recognized.

Indirect Action

Although the TRAINS dialogues contain locutions such as we should move the engine, in
which the conversants refer to themselves as the agents of domain actions, as mentioned
above, in the TRAINS domain, neither the user nor the system can effect changes on the
world directly. Such locutions are part of a general phenomenon of indirect agency, in
which one agent {e.g., the system) can perform an action by having another agent (e.g.,
the train engineer in the simulated world) do something. This brings up the point of where
and how the translation from the system and user, mentioned explicitly in the dialogue, to
the actual agents in the world should take place. Given the focus on domain independent
language translation, it is clear that this translation cannot occur in the initial logical form
- one could very well imagine the same conversations occurring in a slightly altered domain
where system and user had direct control over the domain actions (e.g., by moving trains
represented in a GUI showing the map). Even at the conversation level, it is necessary
to represent the original agents, so that the dialogue manager can track the obligations to
perform particular actions. While the domain planner has no need to represent the system

40

and user, it also is not hindered by leaving them in the agent roles, assuming such actions
actually can be performed in the world.

It is up to the plan executor to finally resolve this issue by recognizing that the actions
specified in the plans correspond to requests to the simulated agents. To do this, it must
examine the event specified in the plan and reason about which agents in the domain should
be involved. For example, if the event involves moving a railroad car, the executor knows
that the only agents that can really make a car move are train engineers. It also knows that
it communicates with engineers through their engines, so it looks for an engine mentioned
in the event.

In fact, this problem is more general than just a case of "sloppy" or metaphoric locu-
tion. This kind of indirect agency is also sometimes expressed directly, as in the following
utterance from another TRAINS dialogue, "We'll have E3 pick it up". For this reason, a
bring-about event was incorporated in both EL and EBTL. In fact, even the verb ship, in our
first sentence is most properly translated as bringing about a move-commodity event.

This raises a related issue in sentences like 1, from Figure 2 where there is a temporal
qualification of "by 8 a.m." on the ship action. The question arises as to whether this refers
to the ship action itself or the underlying move-commodity action. While, in general, the
locution is ambiguous, with, perhaps a preference for the former (e.g., "We have to ship
this package by 5pm, before UPS closes."), in examining the TRAINS corpus, all temporal
qualifications of ship refered to the conclusion of the embedded move-commodity event.

6.3 Conflicting Ontologies

While there is need for more interaction and information sharing between the modules
of the TRAINS system than was present in the TRAINS-93 implementation, (e.g., the SAD
module needs to know the results of Speech Act interpretation, as these affect discourse
segmentation and therefore the availability of anaphoric references), it is by no means clear
that in the future all modules of the system will be able to access a unified database of
information. In order for that to happen, it is not enough to adopt a single representation
formalism; it is also necessary that all modules adopt the same ontological perspective, and
it is by no means clear that that's possible, or even desirable. We mention below a couple
of issues in which the most natural view of some important phenomenon is different for
modules concentrating on different aspects of the planning dialogue task.

Common Ground

Most work on reference resolution makes the assumption that felicitous reference requires
mutual knowledge [Clark and Marshall, 1981], and that, further, everything that is uttered
in a shared situation immediately becomes a part of the common ground and, hence, is
available for reference. This assumption was carried over into CRT , so that, e.g., a speaker
can refer to an object mentioned in the immediately preceding utterance.

As shown in [Clark and Wilkes-Gibbs, 1986; Clark and Schaefer, 1989; Traum and
Hinkelman, 1992], this assumption of immediate addition to common ground is an ideal-
ization: utterances by one party must be recognized and acknowledged by the other before

41

becoming part of the (assumed) common ground. It is important for a system engaging
in extended dialogues (rather than just iterative question answering exchanges) to have
an awareness of the grounding process, so that acknowledgments and repairs can be both
recognized and produced when appropriate. Grounding is tracked by the dialogue manager
(the current state accessible through EBTL predicates) and used both for recognition and

production of utterances.

Because of the different interpretations of the common ground and the importance of
the concept for various tasks (definite reference resolution on the one hand, and producing
and interpreting acknowledgments and repairs on the other), there are two parallel repre-
sentations of much of the discourse context. Thus, the SAD module represents discourse
segments in CRT, using situations, while the dialogue manager represents them in EBTL

using RHET's belief context mechanism.

What are Plans?

Plans are obviously one of the most important entities to be represented in a system de-
signed to engage in planning dialogues. However, the most useful perspective on the plan
varies from module to module, resulting in different ontologies of plans in the different
representation languages. This distinction goes far beyond the by now familiar distinction
between plans as recipes and plans as mental state [Bratman, 1987]. The different views of
plans and their rationales are summarized below.

Parser/Semantic Interpreter: From a natural language perspective, the semantic cat-
egory of plans should be whatever category is assigned to them by locutions that di-
rectly and uncontroversially specify them. The clearest examples of such locutions are
those like "Our current plan is to fill tankers T3 and T4 with beer", "The plan is for en-
gine E3 to go to Dansville and pick up the boxcar there", or "Our plan of going to Bath
and picking up both boxcars won't work", or "The plan is that we'll bring a boxcar of
oranges to Elmira, take them to the factory, and produce OJ". Arguably, the infinitive
in the first sentence (to fill... with beer), the /or-clause in the second (for engine E3 to
go ... the boxcar there), the gerund in the third (going to Bath ... both boxcars), and
the that-cla,use in the fourth (that we'll bring .. .andproduce OJ) are all nominals; i.e.,
syntactically, they occupy noun phrase positions and semantically they denote indi-
viduals of some sort. But it can be further argued that nominalized infinitives, nom-
inalized /or-clauses and gerunds denote kinds/types of actions (or kinds/types of sit-
uations/events), and that i/iai-clauses denote propositions (e.g., see [Chierchia, 1985;
Hwang, 1992]). The difference between viewing plans as situation types and viewing
them as propositions is minor in Episodic Logic: a proposition determines a situation
type, namely the type of situation in which the proposition holds; and conversely, a
situation type determines a proposition, namely the proposition which is true precisely
in situations ofthat type. Thus the most natural assumption to make about linguisti-
cally specified plans is that they are types of situations, or (more or less equivalently)

propositions.

SAD: Another important aspect of plans is that, just as with the visual situation (or map
— Figure 1 in the TRAINS domain), and the conversational threads that are part of

42

the discourse situation, they can serve as a resource situation for referring expressions.
There are some objects (e.g., orange juice to be created later) or qualifications (e.g.,
"the boxcar at Corning", when there will be such a boxcar only after performance of
some planned actions) which are present only in plans. In order to treat coreference
uniformly — whether it is between expressions in descriptions of actual events, or
between expressions in descriptions of planned events, or (as often happens) between
expressions one of which occurs within a description of a given situation, while the
other occurs within a description of a planned situation — the SAD module treats a
plan as a situation, just like the others — in this case containing (potential) future
objects and events and the way the map will be as a result of the occurrence of the
events in the plan. While some of the ways of talking about a plan, such as those given
above or the ability to perform temporal modificiation (e.g., doing the plan at noon
rather than morning, or doing it twice in a row), might indicate that a plan should
be a situation type rather than a situation, the situation view has other practical
considerations. When people plan they often seem to (sometimes tentatively) commit
as they go, so that the planned steps are presented as if they were simply descriptions
of future events.

Dialogue Manager: From a dialogue management perspective, the most salient aspect of
plans is that they are constructed and their content negotiated through the dialogue
process. It is not important for dialogue management purposes to focus on the de-
tails or correctness of plans, but rather that conversants can have different views of
a plan, that the composition of a plan can change through time as the conversation
progresses (both through the addition of further details, as well as modification of
existing components), and that, in spite of these differences, in some sense the conver-
sants are talking about the same plan. For these reasons, the dialogue manager views
plans as abstract objects that, like physical objects, may have different properties at
different times oraccording to different agents. Plans are treated as individuals in the
logic, with properties expressed by plan predicates described in Section 4.3. A plan
is represented as an EBTL term, along with a collection of predicates about the term,
with different sets in different belief contexts.

Plan Reasoner: Embedding of the plan reasoner within a mixed-initiative planning setting
(where each participant may contribute parts, and must recognize and agree to the
contributions of others) has implications for how plans themselves are viewed. Since
the plan reasoner must reason about the intended relations between mentioned actions
and states within a plan (whether or not these relations would actually hold), as well
as evaluating plans, and producing augmentations to be proposed to the user, and all
of these processes are defeasable, the plan reaoner must be able to represent incorrect
plans, as well as the fact (and reasons why) the plans are incorrect. Also, plans need
only be specified as far as necessary to convince the user and system of their feasibility.
These requirements make it natural to view a plan as an argument that a given goal
will be achieved, given certain actions and assumptions. The system and user can
incrementally refine their plans just as arguments are refined in response to criticisms
or perceived deficiencies. The argument structure of a plan is represented as a DAG,
as described in Section 4.3.

43

Executor: The plan executor's task of sending messages to agents in the world requires
a focus on a yet another different aspect of plans. From this point of view, the plan
is a partial specification of behavior. Unlike the language modules or even the plan
reasoning module, the executor cannot treat the plan as a single situation. Instead, it
must extract from the plan the points at which the ongoing behavior of the world can
be modified to meet the plan's specifications. To make the plan occur, the executor
must first decompose the plan into a set of events whose occurrence it can affect.
Next, it must reason about how to make these events happen. Usually, the events
occur when the executor sends requests to agents that can act to cause the events
directly. Finally, it must note the expected effects so it can monitor the occurrence of
these events. Currently, because the executor does not report the failure of plans back
to the rest of the system, there is no reason to record that the events it is monitoring
are part of a plan; monitoring only gathers information that will be used to reason

about subsequent events of the same type. If, however, the executor were to report the
failure of the plan, it would have to record the plan that gave rise to the events with
the events it is monitoring. As it stands now, however, a plan is a set of temporally
ordered desirable events, which can be translated into a sequence of requests for an
appropriate agent to act in such a way that to the specified event will occur in the

simulated world

While none of these are completely incompatible, unification into a single representation
language must be performed carefully, in such a way that each module can perform its own
functions with as great a facility as in the current system. Given the divergent perspectives,
it is more straightforward to insure consistency within separate languages than within a

single one.

7 Assessing the KR in the System

Concerning syntax, we previously noted our use of a GPSG-like grammar in the parsing /
LF-computation module. Of course, phrase structure grammars are thought to fall slightly
short of the expressive power needed in general for the syntactic characterization of human
languages. However, this appears not to be a serious impediment to building broad-coverage
grammars of English, and the simplicity of chart parsing for phrase structure grammars
make their use almost irresistible for large-scale systems. Some more serious problems for
syntax and parsing, which we deliberately set aside for TRAINS-93, are the fragmentation
of sentence structure through turn-taking; false starts and other disfluencies; the role of
prosody; and more generally, the problems raised by interactive spoken language, such as
how to deal with the inevitable word recognition errors.

Among implemented NL systems that use a formal meaning representation, the great
majority rely on description logics or frame-like representations. By and large, these rep-
resentations capture only a subset of the expressive power of standard FOL, and in terms
of their inference capabilities are aimed primarily at subsumption checking [Brachman and
Levesque, 1984; Nebel and Smolka, 1991; Schmölze and Israel, 1983; Hayes, 1979].8

'In lexically oriented work such as [Dorr, 1993], Jackendoff's Lexical Conceptual Structures are gaining

44

Our KR formalisms, especially the EL and CRT representations for language, were seen
to be considerably more expressive than FOL. One might ask whether in retrospect the
purposes of our project might have been equally well served by a weaker representation.
We think this would have made our language module less general, while at the same time
making it harder to implement and extend. As ever, the devil here lies in the details, so let
us briefly consider utterance, 5.1, from our dialogue.

The only way to provide an approximate representation of this in standard FOL (without
quantifying over possible worlds) is to leave out a great deal. In particular, as shown in the
example, the so appears to establish a relevance connection or a "following-from" connection
between a previous proposal and the present one, but FOL does not allow us to talk about
this sort of sentential or propositional connection. Further, need is patently intensional. So,
ignoring both, we might claim that in essence, the utterance posits a future mow-event
whose instrument is some engine and whose theme is the boxcar. This readily admits an
FOL-representation.

Now the neglect of a weak cue word like so is probably harmless in many cases; but
such a strategy does not generalize well. For instance, an initial but can be used to call into
question a previous suggestion, as in

"First let's get rid of the tanker cars."

"But we need a tanker car to ship the orange juice."

So neglect of cue words is bound to impair discourse understanding, and we would
probably end up treating them as a separate phenomenon with a separate representation,
losing in simplicity and generality. Similarly the neglect of intensional verbs like need would
come back to haunt us. If we replace it by simple future, we may misunderstand a goal
statement as a prediction; if we leave it in place but treat it as non-intensional, we will
incorrectly conclude that there is a particular engine that is needed to move the boxcar,
and may well ask, "Which one is it?"

The TRAINS dialogues are full of such locutions defying simple FOL representations. As a
few more examples (besides those mentioned in section 3.1) drawn from various transcripts,
consider "That's reliable information" (the subject of the predication is a proposition); "...
our next objective here which is to deliver a boxcar of bananas to Corning" (the "objective"
is equated with an action type); "Problem number two looks difficult" ("looks difficult" is
not equivalent to "is difficult", and creating a new predicates like looks-difficult would
severly inflate the lexicon and KB); "What is the best way for me to accomplish my task?"
(the referent of "the best way ..." is an action type or plan); "That's a little beyond my
abilities" (the subject is an action type, and "a little" is a predicate modifier not reducible
to a conjunct); "Our current plan is to fill tankers T3 and T4 with beer" (the NP subject
and the infinitive complement refer to the same thing, a plan).

If we truly want to understand such locutions, then reliance on an expressively weak
representation would make it much more difficult to find any sort of approximate LF, and
we would in addition have to fill in the gaps left by these approximations in various ad hoc
ways. We would lose doubly, in both simplicity and generality.

some currency. However, inference based on LCS's again tends to be restricted to subsumption, implemented
by translating into a description logic such as CLASSIC.

45

Contrary to a widespread myth a rich syntax is no obstacle to effective inference. For
instance, although only a very limited set of EL inference capabilities has been used in
TRAINS-93, EL has been separately implemented in the EPILOG system [Schaeffer et al.,
1993]. EPILOG is a powerful knowledge management and inference system allowing data-
driven inference, goal-driven inference, and featuring integration with about a dozen spe-
cialist modules for accelerating temporal, taxonomic, partonomic, set-theoretic, numeric,
and other special types of inference.

In general, in building a complex system containing multiple knowledge representations,
it is better to err on the side of "overly rich" representations than on the other side. The
reason is that when information is shipped from one module to another, it is far easier to
discard superfluous information than to make up for missing information, omitted for lack of
sufficient expressive power. This has been strongly confirmed by our experience, where the

rapid evolution of each module caused frequent changes in its information needs, and hence
also in the information extracted from its "supplier" modules. The unusual expressiveness
of our representations, particularly at points nearer to the input end, made these adaptive

changes relatively easy."

8 Current and Future Directions

While the theories behind many of the individual modules are continuing research projects,
there are also several efforts in progress or under discussion which follow up on the knowledge
representation issues described in this paper. Some of these are described briefly below.

Unified Conversational Context Representation Given the experience of designing
the individual modules and the interfaces, we are now in a position to meet head
on the ontological differences springing from the different research traditions on dis-
course context representation. In [Poesio and Traum, 1995] we present the first steps,
which alters CRT to also allow representation of the aspects of conversational context

represented in EBTL in the TRAINS-93 system.

Robust Spoken and Multi-modal Interaction The TRAINS-95 system [Allen et al.,
1995a; Ferguson et al, 1996], the most recent effort in the TRAINS project as of
this writing, represents a somewhat separate effort to develop a relatively simple but
extremely robust multi-modal system, based on our experiences with TRAINS. This
system understands both spoken and typed input, as well as various mouse opera-
tions such as selecting from a map or menu. It generates responses using both spoken
language and graphical displays.

The task for TRAINS-95 is currently a simple route planning scenario designed to en-
courage interaction between the human and the system, thereby demonstrating the
effectiveness of dialogue-based interaction. The goal is to allow an untrained user to
sit down and solve a randomly-generated problem. This puts the emphasis on robust-
ness, since we have to deal with such phenomena as incomplete and ungrammatical
utterances, speech recognition errors, multi-modal input and output, and so on. We

46

have also concentrated on more clearly delineating the modules of the system as in-
dependent knowledge sources, reasoning agents, and display engines, allowing us to
plug in more sophisticated components easily. We are currently scaling up the delib-
erately naive route planning domain reasoner to a more interesting and challenging
transportation planning scenario.

Knowledge Acquisition by Simulation We have built a general purpose simulator for
transportation domains such as TRAINS [Martin and Mitchell, 1995]. The simulator
provides a graphical interface that allows us to quickly set up scenarios in the TRAINS
world. It also animates the simulation to help us debug the plans the system generates.
We are currently exploring techniques for incorporating simulation as a source of
knowledge that the system can use to help the user develop effective plans. While
evaluating the effects of a plan may be intractible in general, due to too many possible
contingencies and inadequate prior information, simulation based on probablities can
reveal likely problems and expectations for success of particular options.

Other We expect to eventually build a hybrid TRAINS system, containing modules similar
to those of earlier prototypes, but also incorporating the speech processing modules of
TRAINS-95, as well as its heuristic mechanisms for mapping very fragmentary parses
into plausible speech act hypotheses. We also expect to use a mechanism for auto-
matically detecting and correcting speech repairs, along the lines of that presented in
[Heeman and Allen, 1994a].

Acknowledgments

The TRAINS project has been funded in part by ONR/ARPA grant N00014-92-J-1512, U.S.
Air Force-Rome Laboratory research contract F30602-91-C-0010, and NSF grant IRI-90-
13160. We would like to thank the other participants in the TRAINS project efforts who
were not directly involved in the knowledge representation and reasoning components of
the TRAINS-93 system, especially Brad Miller, who provided continuing support for RHET,
used for EBTL reasoning, Tsuneaki Kato, who implemented the probabilistic parser used
in TRAINS-93, and Graham Katz, who first pointed out the problems with the temporal
constraints of ship described in Section 6.2.

47

References

[Allen, 1984] Allen, J. F. (1984). Towards a general theory of action and time. Artificial

Intelligence, 23(2):123-154.

[Allen and Ferguson, 1994] Allen, J. F. and Ferguson, G. (1994). Actions and events in

interval temporal logic. Journal of Logic and Computation, 4(5).

[Allen et al., 1995a] Allen, J. F., Ferguson, G., Miller, B., and Ringger, E.
(1995a). Spoken dialogue and interactive planning. In Proc. of the ARPA
Spoken Language Technology Workshop. Also available via the WWW as
http://www.cs.rochester.edu/research/trains/trains95/.

[Allen et al., 1989] Allen, J. F., Guez, S., Hoebel, L., Hinkelman, E., Jackson, K., Ky-
burg, A., and Traum, D. (1989). The discourse system project. Technical Report 317,

Department of Computer Science, University of Rochester.

[Allen and Miller, 1991] Allen, J. F. and Miller, B. W. (1991). The RHET system: A
sequence of self-guided tutorials. Technical Report 325, Department of Computer Science,

University of Rochester.

[Allen et al., 1995b] Allen, J. F., Schubert, L. K., Ferguson, G., Heeman, P., Hwang, C. H.,
Kato, T., Light, M., Martin, N., Miller, B., Poesio, M., and Traum, D. R. (1995b). The
TRAINS project: a case study in building a conversational planning agent. Journal of
Experimental and Theoretical Artificial Intelligence, 7:7-48.

[Alshawi and Crouch, 1992] Alshawi, H. and Crouch, R. (1992). Monotonie semantic in-
terpretation. In Proceedings of the 30th Annual Meeting of the Association for Compu-

tational Linguistics, pages 32-39, University of Delaware.

[Barwise and Perry, 1983] Barwise, J. and Perry, J. (1983). Situations and Attitudes. MIT
Press, Cambridge, MA.

[Bickel and Doksum, 1977] Bickel, P. J. and Doksum, K. A. (1977). Mathematical Statis-
tics: Basic Ideas and Selected Topics. Holden-Day, Inc., Oakland, CA.

[Brachman and Levesque, 1984] Brachman, R. J. and Levesque, H. J. (1984). The tractabil-
ity of subsumption in frame-based description languages. In Proceedings of the fourth
National Conference of the American Association for Artificial Intelligence (AAAI-84),

pages 34-37.

[Bratman, 1987] Bratman, M. E. (1987). Intention, Plans, and Practical Reason. Harvard

University Press.

[Brewka, 1991] Brewka, G. (1991). Nonmonotonic Reasoning: Logical Foundations of Com-
monsense. Cambridge University Press, Cambridge.

[Chierchia, 1985] Chierchia, G. (1985). Formal semantics and the grammar of predication.

Linguistic Inquiry, 16:417-443.

48

[Clark, 1992] Clark, H. H. (1992). Arenas of Language Use. University of Chicago Press.

[Clark and Marshall, 1981] Clark, H. H. and Marshall, C. R. (1981). Definite reference and
mutual knowledge. In Joshi, A. K., Webber, B. L., and Sag, I. A., editors, Elements
of Discourse Understanding. Cambridge University Press. Also appears as Chapter 1 in
[Clark, 1992].

[Clark and Schaefer, 1989] Clark, H. H. and Schaefer, E. F. (1989). Contributing to dis-
course. Cognitive Science, 13:259-294. Also appears as Chapter 5 in [Clark, 1992].

[Clark and Wilkes-Gibbs, 1986] Clark, H. H. and Wilkes-Gibbs, D. (1986). Referring as a
collaborative process. Cognition, 22:1-39. Also appears as Chapter 4 in [Clark, 1992].

[Davidson, 1967] Davidson, D. (1967). The logical form of action sentences. In Rescher,
N., editor, The Logic of Decision and Action. University of Pittsburgh Press, Pittsburgh,
PA.

[Dorr, 1993] Dorr, B. J. (1993). Interlingual machine translation: A parameterized ap-
proach. Artificial Intelligence, 63(1,2).

[Ferguson, 1995] Ferguson, G. (1995). Knowledge Representation and Reasoning for Mixed-
Initiative Planning. PhD thesis, University of Rochester. Also available as TR 562,
Department of Computer Science, University of Rochester.

[Ferguson et al., 1996] Ferguson, G., Allen, J. F., and Miller, B. (forthcoming, 1996).
TRAINS-95: Towards a mixed-initiative planning assistant. In Proceedings of the Third
International Conference on AI Planning Systems (AIPS-96), Edinburgh, Scotland.

[Gazdar et al., 1985] Gazdar, G., Klein, E., Pullum, G., and Sag, I. (1985). Generalized
Phrase Structure Grammar. Blackwell, Oxford.

[Goldman, 1970] Goldman, A. I. (1970). A Theory of Human Action. Prentice Hall Inc.

[Groenendijk and Stokhof, 1991] Groenendijk, J. and Stokhof, M. (1991). Dynamic Predi-
cate Logic. Linguistics and Philosophy, 14:39-100.

[Gross et al., 1993] Gross, D., Allen, J., and Traum, D. (1993). The TRAINS 91 dialogues.
TRAINS Technical Note 92-1, Department of Computer Science, University of Rochester.

[Grosz and Sidner, 1986] Grosz, B. J. and Sidner, C. L. (1986). Attention, intention, and
the structure of discourse. Computational Linguistics, 12(3):175-204.

[Hayes, 1979] Hayes, P. (1979). The logic of frames. In Metzing, D., editor, Frame Con-
ceptions and Text Understanding, de Gruyter.

[Heeman and Allen, 1994a] Heeman, P. and Allen, J. (1994a). Detecting and correcting
speech repairs. In Proceedings of the 32th Annual Meeting of the Association for Com-
putational Linguistics, pages 295-302, Las Cruces, New Mexico.

49

[Heeman and Allen, 1994b] Heeman, P. A. and Allen, J. (1994b). The TRAINS 93 dia-
logues. TRAINS Technical Note 94-2, Department of Computer Science, University of

Rochester.

[Hwang, 1992] Hwang, C. H. (1992). A Logical Approach to Narrative Understanding. PhD
thesis, University of Alberta, Department of Computing Science, Edmonton, Alberta,

Canada.

[Hwang and Schubert, 1993a] Hwang, C. H. and Schubert, L. K. (1993a). Episodic Logic: A
comprehensive, natural representation for language understanding. Minds and Machines,

3:381-419.

[Hwang and Schubert, 1993b] Hwang, C. H. and Schubert, L. K. (1993b). Episodic Logic:
A situational logic for natural language processing. In Situation Theory and its Applica-

tions, V. 3, pages 303-338, CSLI, Stanford, CA.

[Kamp, 1981] Kamp, H. (1981). A theory of truth and semantic representation. In Groe-
nendijk, J., Janssen, T., and Stokhof, M., editors, Formal Methods in the Study of Lan-

guage. Mathematical Centre, Amsterdam.

[Kamp and Reyle, 1993] Kamp, H. and Reyle, U. (1993). From Discourse to Logic. D.
Reidel, Dordrecht.

[Koomen, 1990] Koomen, J. A. (1990). The timelogic temporal reasoning system. Technical
Report 231, Department of Computer Science, University of Rochester.

[Kyburg, 1991] Kyburg, Jr., H. E. (1991). Evidential probabilities. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI '91), pages 103-110.

[Lehman et al., 1991] Lehman, J. F., Lewis, R. L., and Newell, A. (1991). Natural lan-
guage comprehension in Soar: Spring 1991. Technical Report CMU-CS-91-117, School
of Computer Science, Carnegie Mellon University.

[Mann, 1988] Mann, W. C. (1988). Dialogue games: Conventions of human interaction.
Argumentation, 2:511-532.

[Mann and Thompson, 1987] Mann, W. C. and Thompson, S. A. (1987). Rhetorical struc-
ture theory: A theory of text organization. Technical Report ISI/RS-87-190, USC, In-
formation Sciences Institute.

[Martin, 1993] Martin, N. G. (1993). Using Statistical Inference to Plan Under Uncertainty.
PhD thesis, Department of Computer Science, University of Rochester.

[Martin and Mitchell, 1995] Martin, N. G. and Mitchell, G. J. (1995). TRAINS world sim-
ulator: User's manual. TRAINS Technical Note 95-2, Department of Computer Science,

University of Rochester.

[Miller, 1990] Miller, B. W. (1990). The RHET plan recognition system. Technical Report
298, Department of Computer Science, University of Rochester.

50

[Montague, 1973] Montague, R. (1973). The proper treatment of quantification in english.
In Hintikka, K. et al., editor, Approaches to Natural Language, pages 221-242. D. Reidel,
Dordrecht.

[Nebel and Smolka, 1991] Nebel, B. and Smolka, G. (1991). Attributive description for-
malisms ... and the rest of the world. In Herzog, O. and Rollinger, C, editors, Text
Understanding in LILOG. Springer-Verlag.

[Poesio, 1991] Poesio, M. (1991). Relational semantics and scope ambiguity. In Barwise,
J., Gawron, J. M., Plotkin, G., and Tutiya, S., editors, Situation Semantics and its
Applications, vol.2, chapter 20, pages 469-497. CSLI, Stanford, CA.

[Poesio, 1993] Poesio, M. (1993). A situation-theoretic formalization of definite description
interpretation in plan elaboration dialogues. In Aczel, P., Israel, D., Katagiri, Y., and
Peters, S., editors, Situations Theory and its Applications, vol.3, chapter 12, pages 343-
378. CSLI, Stanford.

[Poesio, 1994] Poesio, M. (1994). Discourse Interpretation and the Scope of Operators.
PhD thesis, University of Rochester. Also available as TR 518, Department of Computer
Science, University of Rochester.

[Poesio, 1995] Poesio, M. (1995). Semantic ambiguity and perceived ambiguity. In van
Deemter, K. and Peters, S., editors, Semantic Ambiguity and Underspecification. CSLI,
Stanford, CA.

[Poesio and Traum, 1995] Poesio, M. and Traum, D. R. (1995). A multi-purpose model of
conversational context. In IJCAI-95 Workshop on Context in Natural Language Process-
ing.

[Rambow, 1993] Rambow, O., editor (1993). Proceedings ACL SIG Workshop on Intention-
ality and Structure in Discourse Relations. Association for Computational Linguistics.

[Reiter, 1980] Reiter, R. (1980). A logic for default reasoning. Artifical Intelligence,
13(1,2):81-132.

[Reyle, 1993] Reyle, U. (1993). Dealing with ambiguities by underspecification: Construc-
tion, representation and deduction. Journal of Semantics, 3.

[Ritchie et al., 1992] Ritchie, G., Russell, G., Black, A., and Pulman, S. (1992). Computa-
tional Morphology: Practical Mechanisms for the English Lexicon. MIT Press.

[Schaeffer et al., 1993] Schaeffer, S. A., Hwang, C. H., de Haan, J., and Schubert, L. K.
(1993). EPILOG: The computational system for Episodic Logic (user's guide). Technical
report, Department of Computational Science, University of Alberta, Edmonton, Alberta.

[Schegloff and Sacks, 1973] Schegloff, E. A. and Sacks, H. (1973). Opening up closings.
Semiotica, 7:289-327.

51

[Schmölze and Israel, 1983] Schmölze, J. G. and Israel, D. J. (1983). KL-ONE: Semantics
and classification. In Research in Knowledge Representation and Natural Language Un-
derstanding, pages 27-39. Bolt, Beranek, and Newman Inc. BBN Technical Report No.
5421.

[Sinclair and Coulthard, 1975] Sinclair, J. M. and Coulthard, R. M. (1975). Towards an
analysis of Discourse: The English used by teachers and pupils. Oxford University Press.

[Traum, 1994] Traum, D. R. (1994). A Computational Theory of Grounding in Natural
Language Conversation. PhD thesis, Department of Computer Science, University of
Rochester. Also available as TR 545, Department of Computer Science, University of

Rochester.

[Traum and Allen, 1994] Traum, D. R. and Allen, J. F. (1994). Discourse obligations in
dialogue processing. In Proceedings of the 32th Annual Meeting of the Association for

Computational Linguistics, pages 1-8.

[Traum and Hinkelman, 1992] Traum, D. R. and Hinkelman, E. A. (1992). Conversation
acts in task-oriented spoken dialogue. Computational Intelligence, 8(3):575-599. Special

Issue on Non-literal language.

[Walker and Whittaker, 1990] Walker, M. A. and Whittaker, S. (1990). Mixed initiative in
dialogue: An investigation into discourse segmentation. In Proceedings ACL-90, pages

70-78.

52

