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Lineal Feature Extraction by Parallel Stick Growing 

Galen C. Hunt * and Randal C. Nelson ** 

Department of Computer Science 
University of Rochester, Rochester, NY 14627, USA 

{gchunt,nelson}@@cs.rochester.edu 

Abstract Finding lineal features in an image is an important step in many object 
recognition and scene analysis procedures. Previous feature extraction algorithms 
exhibit poor parallel performance because features often extend across large areas 
of the data set. This paper describes a parallel method for extracting lineal features 
based on an earlier sequential algorithm, stick growing. The new method produces 
results qualitatively similar to the sequential method. 
Experimental results show a significant parallel processing speed-up attributable 
to three key features of the method: a large numbers of lock preemptible search 
jobs, a random priority assignment to source search regions, and an aggressive 
deadlock detection and resolution algorithm. This paper also describes a portable 
generalized thread model. The model supports a light-weight job abstraction that 
greatly simplifies parallel vision programming. 

1   Introduction 

Finding lineal features in an image is an important step in many object recognition and 
scene analysis procedures. It is also a time-consuming one. Even with modern worksta- 
tions, finding all of the lines in a single image can take on the order of tens of seconds. 
Given the need for speed, lineal feature extraction is an obvious candidate for parallel 
processing. However, unlike many image processing operations, such as convolution, 
and more general local area operations such as relaxation and morphological transforms, 
higher level feature extraction computations do not have a regular structure that can be 
easily exploited by automatic parallelization techniques. Extended feature detection op- 
erations in general, and lineal feature extraction algorithms in particular tend to make 
disproportionate access to image data elements in the features (e.g., along the lines). It 
is difficult to predict the computational pattern in advance because feature locations are 
known only after the computation has finished. Extended feature extraction processes in 
vision represent an important class of irregularly structured problems for which efficient 
parallel algorithms are needed. 

We present here a parallel method for lineal feature extraction suitable for coarse- 
grain implementation. The method is a parallel adaptation of the line-segment finding 
procedure described in [10]. Although we implement an algorithm for the extraction of 
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a specific kind of extended feature (line segments), we think that the general parallel 
approach can be applied to a wide variety of extended feature extraction processes. In 
particular, the original serial algorithm has been since modified to extract curvilinear 
boundaries. Carrying over the parallel implementation in this case is trivial. 

The layout of the paper is as follows. The remainder of this section gives a brief 
introduction to lineal-feature extraction methods and previous parallel work. Section 2 
briefly describes Nelson's stick-growing method for segment extraction. Section 3 de- 
scribes our programming model and the parallel stick growing method. In Section 4 we 
present experimental results demonstrating the strong scalability of the new method. 
Concluding remarks and future work can be found in Section 5. 

1.1    Lineal Feature Extraction 

There have been several approaches to extracting lineal primitives. The most widely 
used involves edgel linking and segmentation. The basic idea is to find local edge pixels 
using some low-level process, link them into contours on the basis of proximity and 
orientation, and then segment the contours into relatively straight pieces, again using 
any of several processes. The classic example of this approach is the Nevatia Babu 
line detector [11]. Other examples include work by Zhou et al. [15] and Nalwa and 
Pauchon [9]. Difficulties with the linking approach are basically due to its locality, 
and include unreliability of the low-level edge finder, instability of segmentation in the 
presence of bumps or many low-level edges, and difficulty hooking up long features if 
the data are sparse. Some of these problems can be ameliorated using multi-resolution 
representations e.g., [4], and grouping techniques [7]. 

A second method of line detection is based on the Hough transform [2]. Here local 
edges vote for all possible lines they are consistent with, and the votes are tallied up 
later to determine what lines are actually present. The main problems with this approach 
are complexity, coarse resolution, and lack of locality. The method is also expensive 
to implement, particularly if high resolution is desired, because every edgel must vote 
for all the lines it is consistent with. This problem is sometimes addressed in a post- 
processing, verification phase. The method also has trouble finding short segments in 
busy images. Princen et al. [13] address some of these problems using a hierarchical 
grouping process in conjunction with a local Hough transform. 

A third method of lineal feature detection due to Burns et al. [1] utilizes the gradient 
direction to partition the image into a set of support regions, each of which will presum- 
ably be associated with a single feature. A least-squares fitting procedure is then used 
to fit a line segment to each region. This method can detect low-contrast features, but 
the segmentation can be unstable. Also features can rather easily be broken up by local 
perturbations. 

Finally, there are statistical approaches. For example, Mansouri et al. [8] propose a 
hypothesize and test algorithm to find line segments of a given length by hypothesizing 
their existence based on local information, and attempting to verify that hypothesis 
statistically on the basis of a digital model of an ideal segment edge. 

The method we implement here, is closest to the linking approaches, but uses a 
growth rule based upon a non-linear energy minimization scheme over a broad region 
of support in order to avoid the locality problems of traditional linking methods. 



1.2   Previous Parallel Work 

Our parallel method is significant because we parallelize an irregular algorithm with 
robust extraction capabilities. Prior works have parallelized regular algorithms with 
limited extraction capabilities. 

Little [6] describes a feature extraction implementation on the massively parallel 
Connection Machine with 64K processors. Each pixel in the image is assigned to a 
separate virtual processor. Edgel detection is performed by convolving the image with a 
Gaussian operator. Each pixel is linked with any existing neighboring pixel. The pixels 
in a contour are labeled by an iterative distance-doubling algorithm. Each processor is 
assigned a fixed unique integer identifier. At every step of the algorithm each processor 
exchanges with its linked neighbors the maximum identifier known to belong to the 
contour. Little's algorithm provides edgel detection and linking, but does not segment 
contours into extended features. 

Lin et al. [5] describe a parallel algorithm in which each processor performs a variant 
of the Nevatia-Babu [11] algorithm on a small region of the image. If the pixels of a 
contour cross a region boundary, the lines from each region are joined using a linear 
approximation algorithm credited to Williams [14]. They report a weighted speedup of 
78 using 4096 processors on a MasPar MP-2 and a speedup of 307 on a 512 processor 
CM-5 [12]. 

Gerogiannus and Orphanoudakis [3] describe aparallel implementation of the Hough 
transform [2]. The image is broken into discrete regions with each region assigned to a 
processor. Each processor calculates the votes by the edges within its region for lines in 
the Hough space. The votes are then summed across processors. Using an iPCS/2, they 
report speedups of 4 for 64 processors. An implementation of the Hough transform using 
lock-free increment instructions for voting could achieve significantly higher speedup. 

2   Stick Growing 

Our parallel algorithm is based on a sequential line finding procedure described in [10]. 
The essence of the method is to define a metric that assigns a score to any possible line 
segment, based on the underlying image data, and repeatedly extract the best segment 
from the image. The practical problems are first, to design an appropriate matching 
measure, and second, to make the method efficient since it is clearly impractical to look 
through all possible segments multiple times. The efficiency problem can potentially be 
dealt with using any of several approximate maximization techniques. In this case, the 
problem is well enough behaved that a hill climbing method is effective. 

The issue of designing a matching criterion for mapping lineal features to line 
segments is a bit subtle. The main difficulty is that, while a line segment is well defined 
mathematically, the notion of a lineal feature is a subjective one and must be dealt with 
as such. Intuitively, a lineal feature consists of a straight part, and two ends. Hence we 
define a matching criterion that includes explicit representations for the straight section 
of the feature, and the end stops. These end stops turn out to be extremely important in 
achieving good performance. We call the combined representation a stick. 



The matching criterion is applied to the image as follows. The gradient magnitude 
and direction are determined by local convolution operators. To compute the match- 
score for a particular stick, the magnitude image is correlated with three templates at the 
appropriate positions and orientations. One of these represents a straight segment, the 
other two end stop patterns. The straight segment is a Gaussian whose central profile 
has been linearly extended, and the end stop patterns are differences of Gaussians 
with centers separated by two standard deviations. The correlation is computed using 
only points whose gradient direction is consistent with the direction of the segment. 
The match score is computed by adding the straight correlation value to any positive 
response from the end stop measures. Negative values from the end-stop templates are 
set to zero. This non-linearity prevents a sudden brightening in the line from inhibiting 
the growth of a stick. 

Sticks are fitted to lineal features by first finding a high-gradient starting point. 
These starting points are edgels, determined by applying non-maximum suppression in 
the direction of the gradient. Starting with a short initial stick aligned perpendicular 
to the local gradient and centered at the starting point, a hill climbing procedure is 
performed, varying the centerpoint, length, and orientation of the stick incrementally to 
maximize the match score. 

A few additional practical details are involved. Since it is inefficient to compute the 
entire straight correlation at each step for longer sticks, the full match value is computed 
only for sticks up to a certain length (about 14 pixels in the current implementation). 
This constitutes a seed segment. Beyond that point, the effect of extension at both ends 
is explored by probing out from a base point (initially the center point of the seed) with 
extension templates with a restriction that the orientation can change only slightly from 
that of the seed. Should extension be indicated, then a new basepoint is selected from 
among the three adjacent pixels that would increase the length of the stick by finding 
the best match among the nine permitted basepoint/angle combinations. When a local 
maximum is finally reached, if the final stick has a length exceeding a selected threshold, 
the points contributing to the final score are marked, and eliminated from contributing 
to other segment scores. 

In order to find multiple segments, the image is broken up into neighborhoods, and 
sticks are grown starting at the top N locations in each neighborhood. A new starting 
location is not selected until completion of the growth phase of the previous stick, since 
some previously attractive start locations may be subsumed by the new feature. A stick 
can grow out of its original neighborhood, which can have the effect of eliminating 
some start-point candidates in others it passes through. 

In summary, the stick growing algorithm operates as follows: 

1. Preprocess image and extract gradients and local edge points. 
2. Break image into small 32x32 pixel regions. 
3. For each region: 

(a) Find edgel point with highest gradient. 
(b) Grow segment up to 14 pixels long perpendicular to gradient using template 

matching. 
(c) If segment is longer than 14 pixels, try to grow the tips as follows: 

i. Start each tip as one half of the segment. 



ii. Perform template match (nonlinear) for possible tip extensions, 
iii. As long as extensions correlate at least as well as original line segment 

extend the tip. 
(d) Record the line segment (stick), erase gradient and edge pixels used in stick 

construction and look for another segment in the same region. 

3   Parallel Stick Growing 

Creating a good parallel algorithm requires a sound programming model and a clear 
insight into where potential parallelizations exist within a program. In this section we 
describe first, the programming model used for creating our parallel stick growing 
method. We then describe the parallelization possible within stick growing and our 
methods for exploiting it. 

3.1    Programming Model 

Our parallel stick growing method uses a generalized thread model (GTM). GTM 
abstracts a shared-memory system providing the creation and destruction of parallel 
threads and re-entrant mutexes. GTM is implemented as a small set of abstract C++ 
classes defining a system, threads and mutexes. Concrete classes for each operating 
system inherit and expand these abstract classes. GTM implementations exist for Sun 
Solaris, SGI IRIX, Digital Unix (OSF/1) and the Win32 API (Windows 95 and Windows 
NT). Porting GTM to a new system requires modifying only a single file which is 
normally on the order of 200 lines of well-documented C++ code. 

Although threads are normally considered light-weight, they can be quite expensive 
when compared to process granularities in most vision algorithms which can be as small 
as a few hundred CPU cycles. For instance, during preprocessing stick growing uses 
a 3x3 pixel averaging filter. Theoretically, the optimal granularity would be a set of 9 
input pixels and single output pixel. In reality, false sharing effects within cache lines 
enlarges the smallest practical granularity to something on the order of one hundred 
input pixels, which corresponds to several thousand CPU cycles. Cache-line effects are 
small compared to the cost of creating and destroying processor threads. On our SGI 
Challenge, thread start-up times are usually on the order of 250ms. Given a 100MHz 
clock cycle, thread creation takes approximately 25 million CPU cycles. Thread creation 
times dwarf most vision algorithm granularities. 

In order to reduce the smallest possible CPU scheduling granularity, we introduce 
into our programming model the concept of jobs. Abstractly, a job is the smallest 
indivisible unit of work available in an algorithm. In practice, the size of a job is limited 
by cache-line effects. Jobs normally have a minimal size of a few tens-of-thousands of 
CPU cycles. We implement jobs as concrete classes derived from an abstract C++ class. 
All state for a job must be contained within its class instance. In addition to state specific 
to its work, a job also has a fixed priority assigned at the time of its creation. Runnable 
jobs are placed in a priority heap. Worker threads, one per processor, remove a single 
job at a time from the queue. Optimal load balance is guaranteed for any specific job 
granularity. The worker thread executes the job by calling its run member function. 



The job runs non-preemptively until it either finishes or returns itself to the queue. 
Because all of a job's state is maintained within its class instance, worker threads use 
a single stack. Another positive benefit is that job don't need any kind of locking of 
their private state because they can never be preempted. Context switching between jobs 
consists of nothing more than selecting a job pointer from the heap and calling its run 
member function. Job creation requires only a single, typically small, dynamic memory 
allocation for the class instance member functions and a function call to add the job to 
the queue. 

The combination of a highly portable generalized thread model (GTM) and an 
extremely light-weight job abstraction, provides a powerful programming model for 
vision algorithms. With GTM, our code is readily runnable on a large number of 
machines. Jobs strengthen the model by creating a unit of processing with granularity 
close to that exhibited by most vision problems. 

3.2   Parallelization 

Parallelism in stick growing exists in two forms, the first is data parallelism in the 
initialization step. Stick growing correlates line segments using a large set of templates. 
We reduce algorithm start-up time by creating templates in parallel. Another costly, but 
parallelizable, task is image preprocessing. The largest fraction of image preprocessing 
in stick growing consists of a number of 3x3 averaging and gradient calculation opera- 
tions. We parallelize preprocessing by creating distinct jobs which operate on horizontal 
strips just 8 pixels wide. 

The vast majority of processing time in stick growing is spent finding and growing 
line segments. The obvious units for parallelization are the 32x32 search regions. We 
create one job for each search region. The job's task is to extract the lines starting within 
its region. Each search job is assigned a unique fixed priority. As will be shown in 
section 4, assigning priorities randomly increases the chance that temporally concurrent 
jobs are spatially distant. Spatially distant reduces the chance that two jobs will contend 
for the same region. 

Because lines almost always extend beyond a single region, there exists a need 
to synchronize job access to image regions. The stick search and grow algorithm is 
implemented using a roll-back enable transaction mechanism. A job searches for a line 
segment then grows it using a sequence of states. All state information about a line is 
maintained in such a way that line growing can be suspended or rolled back to the start 
configuration at any time when a search job attempts to enter a new region. 

When a job has found a line, it commits by erasing the gradient and edge information 
subsumed by that line. Jobs must not erase data being used by another job. Synchroniza- 
tion becomes even more important in light of the fact that lines always have two ends 
and often cross each other. A job must hold a lock on a region before it can touch any 
data within the region. A job holds locks to all regions it has touched while growing a 
line segment until it either commits or is forced to roll back. 

Before entering a new region, a job attempts to grab the lock for the region. If the 
lock is not held by another job, the job continues growing its current stick. If the lock is 
held by another job, the former job suspends itself. The suspension releases the worker 
thread to the next job available on the work queue. 



Because a job suspends itself whenever it cannot acquire a lock to a region, deadlock 
conditions are frequent. A deadlock results when one job is waiting on a lock held by 
another job which is waiting to acquire yet another lock. In most systems job completion 
is a high priority. Often job completion necessitates conditions that make deadlock 
detection and prevention extremely complex. In stick growing, however, deadlock often 
means that two jobs are working on the same line. The optimal choice is to stop one of 
the jobs as soon as possible so that the other can complete the line. 

We detect and recover from deadlock as early as possible by adding a scavenger job 
to the system. The scavenger job is assigned minimal priority. It runs only when there 
is a processor available with no outstanding search jobs. The scavenger examines the 
list of region locks. Whenever it finds a job suspended on a lock waiting for a job that is 
waiting for another region lock, it compares the priorities of the jobs. If the job holding 
the region has the highest priority, the scavenger does nothing. If a suspended job has a 
higher priority, the scavenger forces the job holding the region to roll back its search and 
release all locks. The scavenger job guarantees that no job is ever suspended waiting for 
a job with lower priority that isn't making progress. 

The combination of aggressive job creation and early deadlock detection by the 
scavenger creates a system which make continual progress. As will be shown in the next 
section, our method has good performance in spite of the complex interactions of lines 
in most images. 

4   Experimental Results 

Our experimental test suite consists of 4 images ranging from very simple to very 
complex. Each of image measures 512x512 pixels with 256 gray scales. The test images 
are: square, group, tinytown, and tree. See Figure 1. 

First, we conducted qualitative experiments to verify that the results produced using 
the parallel method where sufficiently similar to those produced by the original method. 
Figure 2 contains the original image, the lines extracted using the original stick growing 
method and lines extracted using our parallel stick growing method with 5 processors. 
There are some discrepancies produced by the nondeterminism of the parallel method. 
Parallel nondeterminism is a result of the race condition between jobs competing for 
the same pixels. These differences are most visible in the hexagon and triangle shapes 
in Figure 2. The discrepancies produced by the parallelism are no greater than those 
produced by the nondeterminism of the original method (e.g. when run on a shifted 
version of the image). The results indicate that our parallel method is qualitatively 
equivalent to the original method. 

Our second set of experiments are quantitative in nature. We measure runtime 
performance of the parallel stick growing method. Runtimes were measured on our 12 
processor SGI Challenge using the 20ns memory-mapped hardware clock. 

Figure 3 plots the normalized execution times on 11 processors while varying the 
assigning priorities to search regions. Recall that throughout its lifetime a search job 
retains the priority assigned to the region from which it originates. 

The column major algorithm assigns region priorities in column major order from 
bottom to top moving from left to right. The row reversal algorithm assigns regions 



Fig. 1. Test images: square (TL), group (TR), tinytown (BL) and tree (BR). 

column major priorities, but even rows move from left to right and odd rows move from 
right to left. The column interleave algorithm assigns column major priorities moving 
from left to right, but even columns all have higher priorities than all odd columns. 
The interleave and reversal algorithm combines the even/odd row reversal with the 
even/odd column interleaving. For the fifth algorithm, random assigns each region a 
unique random priority. Random priority assignment reduces the probability that that 
two spatially proximal searches will be active at the same time. 

Figure 4 plots the speedup for each of the four sample images. Region priorities 
were assigned using the random algorithm. Each experiment was repeated 40 times. The 
average execution time pre image was calculated after discarding the first experiment to 
remove startup virtual memory paging latencies. Runtimes ranged from 2 seconds for 
11 processors on square to 96 seconds for a single processor on tree. Appendix A 
contains summaries of the experimental data. 

The square and group images exhibit poor scalability because their features are 
restricted both in number and in size. In the extreme case, the method extracts 9 lines 
from square. Since each line is be extracted by a single processor, almost all of the 
speed-up for simple images can be attributed to the parallelization of the preprocessing 



Fig. 2. Group (T) and tinytown (B): Image, Sequential Method, 5 Processor Method. 

Random 
Interleave and Reversal 
Column Interleave 
Row Reversal 
Column Major 

I 

tinytown 

Fig. 3. Normalized execution times on 11 processors for stick growing varying the assignment 
algorithm. 
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Fig. 4. Speedup of the parallel method on the sample images. 

operations. As described in Section 2, the preprocessing is comprised of operations 
which are readily parallelized by traditional methods. 

Tinytown and tree demonstrate the strong scalability of our parallel method on 
complex images. Since most of the processing time is spent growing line segments, two 
of factors limit scalability: 1) resource contention, when one or more processors attempt 
to acquire a lock on the same region, and 2) wasted computation, when two or more 
jobs attempt to grow the same line from separate regions. These effects are reduced 
by aggressive deadlock avoidance and priority assignment which temporally isolates 
spatially proximal tasks. 

5    Conclusion 

We have presented a parallel stick growing algorithm that is qualitatively equivalent to 
the sequential stick growing method. Experimental results demonstrate that our method 
exhibits good parallel scalability for a wide range of images. We also presented a 
parallel programming model using the jobs abstraction which is well suited to vision 
algorithms. The jobs abstraction provides flexible sizing in task granularity for both 
regular and irregular vision algorithms. A future improvement to the jobs abstraction 
would add a processor affinity to each job to improve cache locality. The programming 
model we describe is very flexible and has been ported to Sun Solaris, SGI IRIX, Digital 
Unix and Microsoft Windows NT. We believe our model should be readily exploitable 
by other vision tasks providing performance similar to that demonstrated by our parallel 
stick growing method. In particular, parallelizing the curvilinear variant of the sequential 
stick growing method should be a trivial extension of our current work. 

Source Code Availability 

The C++ sources for the parallelized stick-growing algorithm and the GTM package 
can be found at http: / /www. cs. rochester. edu/u/gchunt/ipp. 
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A     Execution Times 

The following table contains maximum, average and minimum execution times for each 
of the test images. Also shown are the average number of line segments found in each 
image and the average number of aborts initiated by the scavenger thread to avoid 
deadlock. 

square group 
Execution Time (sees.) Execution Time (sees.) 

P Max. Avg. Min. Seg. Aborts P Max. Avg. Min. Seg. Aborts 
1 7.1267 7.0184 6.9748 9 0 1 23.5426 22.3784 21.5262 107 0 
2 4.3798 3.8457 3.6324 9 7 2 14.5387 12.5891 11.2854 108 57 
3 3.2556 3.0442 2.9078 9 21 3 10.6219 9.1392 7.7385 108 154 
4 2.8744 2.7182 2.6418 9 26 4 8.1085 7.4060 6.2877 108 201 
5 2.8162 2.5118 2.4569 9 25 5 7.5025 6.4209 5.4747 108 230 
6 2.7215 2.3908 2.3309 9 26 6 6.6728 5.5070 5.2807 109 295 
7 2.5799 2.2835 2.2239 9 29 7 6.2184 5.1825 4.5674 109 313 
8 2.8202 2.2562 2.1422 9 29 8 5.8441 4.8979 4.4045 109 333 
9 2.2166 2.1591 2.1142 9 28 9 5.4492 4.4756 3.8098 109 336 
10 2.5150 2.1361 2.1035 9 28 10 5.5447 4.4283 3.7731 109 349 
11 2.1337 2.0871 2.0632 9 28 11 5.2645 4.1880 3.5121 109 337 

tinytown tree 
Execut ion Time (sees.) Execution Time (sees.) 

P Max. Avg. Min. Seg. Aborts P Max. Avg. Min. Seg. Aborts 
1 71.2920 69.8364 67.6445 886 0 1 96.0055 94.6899 92.9571 1075 0 
2 38.6185 36.8806 35.4569 886 207 2 51.9263 49.6628 48.2414 1077 387 
3 26.5888 25.6757 24.7986 884 403 3 37.3478 35.5521 33.1753 1078 1 859 
4 21.3605 20.4401 19.5630 885 655 4 28.8391 27.6471 26.0316 1078 11176 
5 17.8572 16.6815 15.6954 887 11014 5 28.4120 23.7589 21.4923 1078 11502 
6 15.3411 14.1217 12.8148 887 11158 6 20.9000 19.5797 18.3607 1079 21781 
7 14.0021 12.7300 11.7680 888 11418 7 18.3213 17.5979 16.4599 1078 22024 
8 12.6716 11.3598 10.2568 889 11590 8 16.4218 15.7018 14.7241 1078 22199 
9 11.9200 10.5001 9.1272 889 11700 9 15.0749 14.3241 13.4812 1079 22286 
10 11.0740 9.6792 8.8570 889 11767 10 13.7033 13.2774 12.6115 1080 22343 
11 10.5673 9.0596 8.2577 890 11792 11 13.1274 12.3223 11.5535 1079 22390 

This article was processed using the IATjX macro package with LLNCS style 


