
Lineal Feature Extraction
by Parallel Stick Growing

G.C. Hunt and R.C. Nelson

Technical Report 625
June 1996

UNIVERSITY OF
ROCHESTER
COMPUTER SCIENCE

19971007127

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
.0Is al > H" , T'C°"T "' 'n'°r"""°" " '""'"""' '° a,erag° 1 "°Ur P"r reSP°""- lnClUdl"° lh° "™ '" "■"■"■ '"■'ruc.lo'n,, ..arching .»„„no data
ZT, ,H? f, "7 ""7.9 ^ ""*' "nd COmP,e,ln9 "nd reVleWlnfl 'he "lleC,IOn °' ""°™,l°n- ■«- "-"™"* regardfng ,h,. burd.n ...,1" JanyCh.r

1. AGENCY USE ONLY (Leave blank)

4. TITLE AND SUBTITLE

2. REPORT DATE

June 1996
3. REPORT TYPE AND DATES COVERED

technical report

Lineal Feature Extraction by Parallel Stick Growing

6. AUTHOR(S)

5. FUNDING NUMBERS

ONRN00014-93-I-0221

Galen C. Hunt and Randal C. Nelson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES
Computer Science Dept.
734 Computer Studies Bldg.
University of Rochester
Rochester NY 14627-0226

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESSES(ES)
Office of Naval Research
Information Systems
Arlington VA 22217

11. SUPPLEMENTARY NOTES

8. PERFORMING ORGANIZATION

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

TR625

.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution of this document is unlimited.

13. ABSTRACT (Maximum 200 words)

(see title page)

12b. DISTRIBUTION CODE

14. SUBJECT TERMS

line detection; feature extraction; irregular parallel processing
lock preemption; deadlock prevention

17. SECURITY CLASSIFICATION
OF REPORT

unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

unclassified

15. NUMBER OF PAGES

12 pages
16. PRICE CODE

free to sponsors; else $2.00
20. LIMITATION OF ABSTRACT

UL

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

Lineal Feature Extraction by Parallel Stick Growing

Galen C. Hunt * and Randal C. Nelson **

Department of Computer Science
University of Rochester, Rochester, NY 14627, USA

{gchunt,nelson}@@cs.rochester.edu

Abstract Finding lineal features in an image is an important step in many object
recognition and scene analysis procedures. Previous feature extraction algorithms
exhibit poor parallel performance because features often extend across large areas
of the data set. This paper describes a parallel method for extracting lineal features
based on an earlier sequential algorithm, stick growing. The new method produces
results qualitatively similar to the sequential method.
Experimental results show a significant parallel processing speed-up attributable
to three key features of the method: a large numbers of lock preemptible search
jobs, a random priority assignment to source search regions, and an aggressive
deadlock detection and resolution algorithm. This paper also describes a portable
generalized thread model. The model supports a light-weight job abstraction that
greatly simplifies parallel vision programming.

1 Introduction

Finding lineal features in an image is an important step in many object recognition and
scene analysis procedures. It is also a time-consuming one. Even with modern worksta-
tions, finding all of the lines in a single image can take on the order of tens of seconds.
Given the need for speed, lineal feature extraction is an obvious candidate for parallel
processing. However, unlike many image processing operations, such as convolution,
and more general local area operations such as relaxation and morphological transforms,
higher level feature extraction computations do not have a regular structure that can be
easily exploited by automatic parallelization techniques. Extended feature detection op-
erations in general, and lineal feature extraction algorithms in particular tend to make
disproportionate access to image data elements in the features (e.g., along the lines). It
is difficult to predict the computational pattern in advance because feature locations are
known only after the computation has finished. Extended feature extraction processes in
vision represent an important class of irregularly structured problems for which efficient
parallel algorithms are needed.

We present here a parallel method for lineal feature extraction suitable for coarse-
grain implementation. The method is a parallel adaptation of the line-segment finding
procedure described in [10]. Although we implement an algorithm for the extraction of

* Galen Hunt was supported by a research fellowship from Microsoft Corporation.
** This work was supported in part by NSF IIP grant no. CDA-94-01142, and ONR research grant

no.N00014-93-I-0221.

a specific kind of extended feature (line segments), we think that the general parallel
approach can be applied to a wide variety of extended feature extraction processes. In
particular, the original serial algorithm has been since modified to extract curvilinear
boundaries. Carrying over the parallel implementation in this case is trivial.

The layout of the paper is as follows. The remainder of this section gives a brief
introduction to lineal-feature extraction methods and previous parallel work. Section 2
briefly describes Nelson's stick-growing method for segment extraction. Section 3 de-
scribes our programming model and the parallel stick growing method. In Section 4 we
present experimental results demonstrating the strong scalability of the new method.
Concluding remarks and future work can be found in Section 5.

1.1 Lineal Feature Extraction

There have been several approaches to extracting lineal primitives. The most widely
used involves edgel linking and segmentation. The basic idea is to find local edge pixels
using some low-level process, link them into contours on the basis of proximity and
orientation, and then segment the contours into relatively straight pieces, again using
any of several processes. The classic example of this approach is the Nevatia Babu
line detector [11]. Other examples include work by Zhou et al. [15] and Nalwa and
Pauchon [9]. Difficulties with the linking approach are basically due to its locality,
and include unreliability of the low-level edge finder, instability of segmentation in the
presence of bumps or many low-level edges, and difficulty hooking up long features if
the data are sparse. Some of these problems can be ameliorated using multi-resolution
representations e.g., [4], and grouping techniques [7].

A second method of line detection is based on the Hough transform [2]. Here local
edges vote for all possible lines they are consistent with, and the votes are tallied up
later to determine what lines are actually present. The main problems with this approach
are complexity, coarse resolution, and lack of locality. The method is also expensive
to implement, particularly if high resolution is desired, because every edgel must vote
for all the lines it is consistent with. This problem is sometimes addressed in a post-
processing, verification phase. The method also has trouble finding short segments in
busy images. Princen et al. [13] address some of these problems using a hierarchical
grouping process in conjunction with a local Hough transform.

A third method of lineal feature detection due to Burns et al. [1] utilizes the gradient
direction to partition the image into a set of support regions, each of which will presum-
ably be associated with a single feature. A least-squares fitting procedure is then used
to fit a line segment to each region. This method can detect low-contrast features, but
the segmentation can be unstable. Also features can rather easily be broken up by local
perturbations.

Finally, there are statistical approaches. For example, Mansouri et al. [8] propose a
hypothesize and test algorithm to find line segments of a given length by hypothesizing
their existence based on local information, and attempting to verify that hypothesis
statistically on the basis of a digital model of an ideal segment edge.

The method we implement here, is closest to the linking approaches, but uses a
growth rule based upon a non-linear energy minimization scheme over a broad region
of support in order to avoid the locality problems of traditional linking methods.

1.2 Previous Parallel Work

Our parallel method is significant because we parallelize an irregular algorithm with
robust extraction capabilities. Prior works have parallelized regular algorithms with
limited extraction capabilities.

Little [6] describes a feature extraction implementation on the massively parallel
Connection Machine with 64K processors. Each pixel in the image is assigned to a
separate virtual processor. Edgel detection is performed by convolving the image with a
Gaussian operator. Each pixel is linked with any existing neighboring pixel. The pixels
in a contour are labeled by an iterative distance-doubling algorithm. Each processor is
assigned a fixed unique integer identifier. At every step of the algorithm each processor
exchanges with its linked neighbors the maximum identifier known to belong to the
contour. Little's algorithm provides edgel detection and linking, but does not segment
contours into extended features.

Lin et al. [5] describe a parallel algorithm in which each processor performs a variant
of the Nevatia-Babu [11] algorithm on a small region of the image. If the pixels of a
contour cross a region boundary, the lines from each region are joined using a linear
approximation algorithm credited to Williams [14]. They report a weighted speedup of
78 using 4096 processors on a MasPar MP-2 and a speedup of 307 on a 512 processor
CM-5 [12].

Gerogiannus and Orphanoudakis [3] describe aparallel implementation of the Hough
transform [2]. The image is broken into discrete regions with each region assigned to a
processor. Each processor calculates the votes by the edges within its region for lines in
the Hough space. The votes are then summed across processors. Using an iPCS/2, they
report speedups of 4 for 64 processors. An implementation of the Hough transform using
lock-free increment instructions for voting could achieve significantly higher speedup.

2 Stick Growing

Our parallel algorithm is based on a sequential line finding procedure described in [10].
The essence of the method is to define a metric that assigns a score to any possible line
segment, based on the underlying image data, and repeatedly extract the best segment
from the image. The practical problems are first, to design an appropriate matching
measure, and second, to make the method efficient since it is clearly impractical to look
through all possible segments multiple times. The efficiency problem can potentially be
dealt with using any of several approximate maximization techniques. In this case, the
problem is well enough behaved that a hill climbing method is effective.

The issue of designing a matching criterion for mapping lineal features to line
segments is a bit subtle. The main difficulty is that, while a line segment is well defined
mathematically, the notion of a lineal feature is a subjective one and must be dealt with
as such. Intuitively, a lineal feature consists of a straight part, and two ends. Hence we
define a matching criterion that includes explicit representations for the straight section
of the feature, and the end stops. These end stops turn out to be extremely important in
achieving good performance. We call the combined representation a stick.

The matching criterion is applied to the image as follows. The gradient magnitude
and direction are determined by local convolution operators. To compute the match-
score for a particular stick, the magnitude image is correlated with three templates at the
appropriate positions and orientations. One of these represents a straight segment, the
other two end stop patterns. The straight segment is a Gaussian whose central profile
has been linearly extended, and the end stop patterns are differences of Gaussians
with centers separated by two standard deviations. The correlation is computed using
only points whose gradient direction is consistent with the direction of the segment.
The match score is computed by adding the straight correlation value to any positive
response from the end stop measures. Negative values from the end-stop templates are
set to zero. This non-linearity prevents a sudden brightening in the line from inhibiting
the growth of a stick.

Sticks are fitted to lineal features by first finding a high-gradient starting point.
These starting points are edgels, determined by applying non-maximum suppression in
the direction of the gradient. Starting with a short initial stick aligned perpendicular
to the local gradient and centered at the starting point, a hill climbing procedure is
performed, varying the centerpoint, length, and orientation of the stick incrementally to
maximize the match score.

A few additional practical details are involved. Since it is inefficient to compute the
entire straight correlation at each step for longer sticks, the full match value is computed
only for sticks up to a certain length (about 14 pixels in the current implementation).
This constitutes a seed segment. Beyond that point, the effect of extension at both ends
is explored by probing out from a base point (initially the center point of the seed) with
extension templates with a restriction that the orientation can change only slightly from
that of the seed. Should extension be indicated, then a new basepoint is selected from
among the three adjacent pixels that would increase the length of the stick by finding
the best match among the nine permitted basepoint/angle combinations. When a local
maximum is finally reached, if the final stick has a length exceeding a selected threshold,
the points contributing to the final score are marked, and eliminated from contributing
to other segment scores.

In order to find multiple segments, the image is broken up into neighborhoods, and
sticks are grown starting at the top N locations in each neighborhood. A new starting
location is not selected until completion of the growth phase of the previous stick, since
some previously attractive start locations may be subsumed by the new feature. A stick
can grow out of its original neighborhood, which can have the effect of eliminating
some start-point candidates in others it passes through.

In summary, the stick growing algorithm operates as follows:

1. Preprocess image and extract gradients and local edge points.
2. Break image into small 32x32 pixel regions.
3. For each region:

(a) Find edgel point with highest gradient.
(b) Grow segment up to 14 pixels long perpendicular to gradient using template

matching.
(c) If segment is longer than 14 pixels, try to grow the tips as follows:

i. Start each tip as one half of the segment.

ii. Perform template match (nonlinear) for possible tip extensions,
iii. As long as extensions correlate at least as well as original line segment

extend the tip.
(d) Record the line segment (stick), erase gradient and edge pixels used in stick

construction and look for another segment in the same region.

3 Parallel Stick Growing

Creating a good parallel algorithm requires a sound programming model and a clear
insight into where potential parallelizations exist within a program. In this section we
describe first, the programming model used for creating our parallel stick growing
method. We then describe the parallelization possible within stick growing and our
methods for exploiting it.

3.1 Programming Model

Our parallel stick growing method uses a generalized thread model (GTM). GTM
abstracts a shared-memory system providing the creation and destruction of parallel
threads and re-entrant mutexes. GTM is implemented as a small set of abstract C++
classes defining a system, threads and mutexes. Concrete classes for each operating
system inherit and expand these abstract classes. GTM implementations exist for Sun
Solaris, SGI IRIX, Digital Unix (OSF/1) and the Win32 API (Windows 95 and Windows
NT). Porting GTM to a new system requires modifying only a single file which is
normally on the order of 200 lines of well-documented C++ code.

Although threads are normally considered light-weight, they can be quite expensive
when compared to process granularities in most vision algorithms which can be as small
as a few hundred CPU cycles. For instance, during preprocessing stick growing uses
a 3x3 pixel averaging filter. Theoretically, the optimal granularity would be a set of 9
input pixels and single output pixel. In reality, false sharing effects within cache lines
enlarges the smallest practical granularity to something on the order of one hundred
input pixels, which corresponds to several thousand CPU cycles. Cache-line effects are
small compared to the cost of creating and destroying processor threads. On our SGI
Challenge, thread start-up times are usually on the order of 250ms. Given a 100MHz
clock cycle, thread creation takes approximately 25 million CPU cycles. Thread creation
times dwarf most vision algorithm granularities.

In order to reduce the smallest possible CPU scheduling granularity, we introduce
into our programming model the concept of jobs. Abstractly, a job is the smallest
indivisible unit of work available in an algorithm. In practice, the size of a job is limited
by cache-line effects. Jobs normally have a minimal size of a few tens-of-thousands of
CPU cycles. We implement jobs as concrete classes derived from an abstract C++ class.
All state for a job must be contained within its class instance. In addition to state specific
to its work, a job also has a fixed priority assigned at the time of its creation. Runnable
jobs are placed in a priority heap. Worker threads, one per processor, remove a single
job at a time from the queue. Optimal load balance is guaranteed for any specific job
granularity. The worker thread executes the job by calling its run member function.

The job runs non-preemptively until it either finishes or returns itself to the queue.
Because all of a job's state is maintained within its class instance, worker threads use
a single stack. Another positive benefit is that job don't need any kind of locking of
their private state because they can never be preempted. Context switching between jobs
consists of nothing more than selecting a job pointer from the heap and calling its run
member function. Job creation requires only a single, typically small, dynamic memory
allocation for the class instance member functions and a function call to add the job to
the queue.

The combination of a highly portable generalized thread model (GTM) and an
extremely light-weight job abstraction, provides a powerful programming model for
vision algorithms. With GTM, our code is readily runnable on a large number of
machines. Jobs strengthen the model by creating a unit of processing with granularity
close to that exhibited by most vision problems.

3.2 Parallelization

Parallelism in stick growing exists in two forms, the first is data parallelism in the
initialization step. Stick growing correlates line segments using a large set of templates.
We reduce algorithm start-up time by creating templates in parallel. Another costly, but
parallelizable, task is image preprocessing. The largest fraction of image preprocessing
in stick growing consists of a number of 3x3 averaging and gradient calculation opera-
tions. We parallelize preprocessing by creating distinct jobs which operate on horizontal
strips just 8 pixels wide.

The vast majority of processing time in stick growing is spent finding and growing
line segments. The obvious units for parallelization are the 32x32 search regions. We
create one job for each search region. The job's task is to extract the lines starting within
its region. Each search job is assigned a unique fixed priority. As will be shown in
section 4, assigning priorities randomly increases the chance that temporally concurrent
jobs are spatially distant. Spatially distant reduces the chance that two jobs will contend
for the same region.

Because lines almost always extend beyond a single region, there exists a need
to synchronize job access to image regions. The stick search and grow algorithm is
implemented using a roll-back enable transaction mechanism. A job searches for a line
segment then grows it using a sequence of states. All state information about a line is
maintained in such a way that line growing can be suspended or rolled back to the start
configuration at any time when a search job attempts to enter a new region.

When a job has found a line, it commits by erasing the gradient and edge information
subsumed by that line. Jobs must not erase data being used by another job. Synchroniza-
tion becomes even more important in light of the fact that lines always have two ends
and often cross each other. A job must hold a lock on a region before it can touch any
data within the region. A job holds locks to all regions it has touched while growing a
line segment until it either commits or is forced to roll back.

Before entering a new region, a job attempts to grab the lock for the region. If the
lock is not held by another job, the job continues growing its current stick. If the lock is
held by another job, the former job suspends itself. The suspension releases the worker
thread to the next job available on the work queue.

Because a job suspends itself whenever it cannot acquire a lock to a region, deadlock
conditions are frequent. A deadlock results when one job is waiting on a lock held by
another job which is waiting to acquire yet another lock. In most systems job completion
is a high priority. Often job completion necessitates conditions that make deadlock
detection and prevention extremely complex. In stick growing, however, deadlock often
means that two jobs are working on the same line. The optimal choice is to stop one of
the jobs as soon as possible so that the other can complete the line.

We detect and recover from deadlock as early as possible by adding a scavenger job
to the system. The scavenger job is assigned minimal priority. It runs only when there
is a processor available with no outstanding search jobs. The scavenger examines the
list of region locks. Whenever it finds a job suspended on a lock waiting for a job that is
waiting for another region lock, it compares the priorities of the jobs. If the job holding
the region has the highest priority, the scavenger does nothing. If a suspended job has a
higher priority, the scavenger forces the job holding the region to roll back its search and
release all locks. The scavenger job guarantees that no job is ever suspended waiting for
a job with lower priority that isn't making progress.

The combination of aggressive job creation and early deadlock detection by the
scavenger creates a system which make continual progress. As will be shown in the next
section, our method has good performance in spite of the complex interactions of lines
in most images.

4 Experimental Results

Our experimental test suite consists of 4 images ranging from very simple to very
complex. Each of image measures 512x512 pixels with 256 gray scales. The test images
are: square, group, tinytown, and tree. See Figure 1.

First, we conducted qualitative experiments to verify that the results produced using
the parallel method where sufficiently similar to those produced by the original method.
Figure 2 contains the original image, the lines extracted using the original stick growing
method and lines extracted using our parallel stick growing method with 5 processors.
There are some discrepancies produced by the nondeterminism of the parallel method.
Parallel nondeterminism is a result of the race condition between jobs competing for
the same pixels. These differences are most visible in the hexagon and triangle shapes
in Figure 2. The discrepancies produced by the parallelism are no greater than those
produced by the nondeterminism of the original method (e.g. when run on a shifted
version of the image). The results indicate that our parallel method is qualitatively
equivalent to the original method.

Our second set of experiments are quantitative in nature. We measure runtime
performance of the parallel stick growing method. Runtimes were measured on our 12
processor SGI Challenge using the 20ns memory-mapped hardware clock.

Figure 3 plots the normalized execution times on 11 processors while varying the
assigning priorities to search regions. Recall that throughout its lifetime a search job
retains the priority assigned to the region from which it originates.

The column major algorithm assigns region priorities in column major order from
bottom to top moving from left to right. The row reversal algorithm assigns regions

Fig. 1. Test images: square (TL), group (TR), tinytown (BL) and tree (BR).

column major priorities, but even rows move from left to right and odd rows move from
right to left. The column interleave algorithm assigns column major priorities moving
from left to right, but even columns all have higher priorities than all odd columns.
The interleave and reversal algorithm combines the even/odd row reversal with the
even/odd column interleaving. For the fifth algorithm, random assigns each region a
unique random priority. Random priority assignment reduces the probability that that
two spatially proximal searches will be active at the same time.

Figure 4 plots the speedup for each of the four sample images. Region priorities
were assigned using the random algorithm. Each experiment was repeated 40 times. The
average execution time pre image was calculated after discarding the first experiment to
remove startup virtual memory paging latencies. Runtimes ranged from 2 seconds for
11 processors on square to 96 seconds for a single processor on tree. Appendix A
contains summaries of the experimental data.

The square and group images exhibit poor scalability because their features are
restricted both in number and in size. In the extreme case, the method extracts 9 lines
from square. Since each line is be extracted by a single processor, almost all of the
speed-up for simple images can be attributed to the parallelization of the preprocessing

Fig. 2. Group (T) and tinytown (B): Image, Sequential Method, 5 Processor Method.

Random
Interleave and Reversal
Column Interleave
Row Reversal
Column Major

I

tinytown

Fig. 3. Normalized execution times on 11 processors for stick growing varying the assignment
algorithm.

11
10
9

Tinytown -*— / ■
Tree - /

Group -a— /
Square -«— /

8
7
6
5
4
3
2

/v^>-^ „ -»—«—*—"* * *

1 ■ >^

123456789 10 11
Processors

Fig. 4. Speedup of the parallel method on the sample images.

operations. As described in Section 2, the preprocessing is comprised of operations
which are readily parallelized by traditional methods.

Tinytown and tree demonstrate the strong scalability of our parallel method on
complex images. Since most of the processing time is spent growing line segments, two
of factors limit scalability: 1) resource contention, when one or more processors attempt
to acquire a lock on the same region, and 2) wasted computation, when two or more
jobs attempt to grow the same line from separate regions. These effects are reduced
by aggressive deadlock avoidance and priority assignment which temporally isolates
spatially proximal tasks.

5 Conclusion

We have presented a parallel stick growing algorithm that is qualitatively equivalent to
the sequential stick growing method. Experimental results demonstrate that our method
exhibits good parallel scalability for a wide range of images. We also presented a
parallel programming model using the jobs abstraction which is well suited to vision
algorithms. The jobs abstraction provides flexible sizing in task granularity for both
regular and irregular vision algorithms. A future improvement to the jobs abstraction
would add a processor affinity to each job to improve cache locality. The programming
model we describe is very flexible and has been ported to Sun Solaris, SGI IRIX, Digital
Unix and Microsoft Windows NT. We believe our model should be readily exploitable
by other vision tasks providing performance similar to that demonstrated by our parallel
stick growing method. In particular, parallelizing the curvilinear variant of the sequential
stick growing method should be a trivial extension of our current work.

Source Code Availability

The C++ sources for the parallelized stick-growing algorithm and the GTM package
can be found at http: / /www. cs. rochester. edu/u/gchunt/ipp.

References

[I] J. B. Bums, A. R. Hanson, and E. M. Riseman. Extracting Straight Lines. In Proc. DARPA
IV Workshop, pages 165-168, New Orleans, LA, 1984.

[2] R. O. Duda and P. E. Hart. Use of the Hough Transform to Detect Lines and Curves in
Pictures. Communications of the ACM, 15:11-15,1972.

[3] D. Gerogiannus and S. C. Orphanoudakis. Load balancing requirement in parallel imple-
mentations of image feature extraction tasks. IEEE Transactions on Parallel and Distributed
Systems, 4(9):994-1013,1993.

[4] T. H. Hong, M. O. Shneier, R. L. Hartley, and A. Rosenfeld. Using pyramids to detect good
continuation. IEEE Transactions on Systems, Man and Cybernetics, 13:631-635,1983.

[5] C.-C. Lin, V. K. Prasanna, and A. Khokhar. Scalable Parallel Extraction of Linear Features
on MP-2. In M. A. Bayoumi, L. S. Davis, and K. P. Valavanis, editors, Proceedings of the
IEEE Workshop on Computer Architectures for Machine Perception, pages 352-361, New
Orleans, LA, 1993.

[6] J. J. Little. Parallel Algorithms for Computer Vision on the Connection Machine. AIM-928,
Massachusetts Institute of Technology, Artificial Intelligence Laboratory, 1986.

[7] D. G. Lowe. Perceptual Organization and Visual Recognition. Kluwer Academic Publish-
ers, Hingham, MA, 1985.

[8] A. Mansouri, A. S. Malowany, and M. D. Levine. Line Detection in Digital Pictures: A
Hypothesis Prediction / Verification Paradigm. Computer Vision, Graphics, and Image
Processing, 40:95-114,1987.

[9] V. S. Nalwa and E. Pauchon. Edgel Aggregation and Edge Description. Computer Vision,
Graphics, and Image Processing, 40:79-94,1987.

[10] R. C. Nelson. Finding Line Segments by Stick Growing. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 16(5):519-523,1994.

[II] R. Nevatia and K. R. Babu. Linear Feature Extraction and Description. Computer Vision
Graphics and Image Processing, 13:257-269,1980.

[12] V. K. Prasanna, C.-L. Wang, and A. Khokhar. Low Level Vision Processing on Connection
Machine CM-5. In M. A. Bayoumi, L. S. Davis, and K. P. Valavanis, editors, Proceedings
of the IEEE Workshop on Computer Architectures for Machine Perception, pages 117-126,
New Orleans, LA, 1993.

[13] J. Princen, J. Illingworth, and J. Kittler. A hierarchical approach to line extraction based on
the Hough transform. Computer Vision Graphics and Image Processing, 52:57-77,1990.

[14] CM. Williams. An Efficient Algorithm for the Piecewise Linear Approximation of Planar
Curves. Computer Graphics and Image Processing, 8:286-293,1978.

[15] Y. T. Zhou, V. Venkateswar, and R. Chellappa. Edge Detection and Linear Feature Ex-
traction Using a 2-D Random Field Model. IEEE Trans. Pattern Analysis and Machine
Intelligence, 11:84-95,1989.

A Execution Times

The following table contains maximum, average and minimum execution times for each
of the test images. Also shown are the average number of line segments found in each
image and the average number of aborts initiated by the scavenger thread to avoid
deadlock.

square group
Execution Time (sees.) Execution Time (sees.)

P Max. Avg. Min. Seg. Aborts P Max. Avg. Min. Seg. Aborts
1 7.1267 7.0184 6.9748 9 0 1 23.5426 22.3784 21.5262 107 0
2 4.3798 3.8457 3.6324 9 7 2 14.5387 12.5891 11.2854 108 57
3 3.2556 3.0442 2.9078 9 21 3 10.6219 9.1392 7.7385 108 154
4 2.8744 2.7182 2.6418 9 26 4 8.1085 7.4060 6.2877 108 201
5 2.8162 2.5118 2.4569 9 25 5 7.5025 6.4209 5.4747 108 230
6 2.7215 2.3908 2.3309 9 26 6 6.6728 5.5070 5.2807 109 295
7 2.5799 2.2835 2.2239 9 29 7 6.2184 5.1825 4.5674 109 313
8 2.8202 2.2562 2.1422 9 29 8 5.8441 4.8979 4.4045 109 333
9 2.2166 2.1591 2.1142 9 28 9 5.4492 4.4756 3.8098 109 336
10 2.5150 2.1361 2.1035 9 28 10 5.5447 4.4283 3.7731 109 349
11 2.1337 2.0871 2.0632 9 28 11 5.2645 4.1880 3.5121 109 337

tinytown tree
Execut ion Time (sees.) Execution Time (sees.)

P Max. Avg. Min. Seg. Aborts P Max. Avg. Min. Seg. Aborts
1 71.2920 69.8364 67.6445 886 0 1 96.0055 94.6899 92.9571 1075 0
2 38.6185 36.8806 35.4569 886 207 2 51.9263 49.6628 48.2414 1077 387
3 26.5888 25.6757 24.7986 884 403 3 37.3478 35.5521 33.1753 1078 1 859
4 21.3605 20.4401 19.5630 885 655 4 28.8391 27.6471 26.0316 1078 11176
5 17.8572 16.6815 15.6954 887 11014 5 28.4120 23.7589 21.4923 1078 11502
6 15.3411 14.1217 12.8148 887 11158 6 20.9000 19.5797 18.3607 1079 21781
7 14.0021 12.7300 11.7680 888 11418 7 18.3213 17.5979 16.4599 1078 22024
8 12.6716 11.3598 10.2568 889 11590 8 16.4218 15.7018 14.7241 1078 22199
9 11.9200 10.5001 9.1272 889 11700 9 15.0749 14.3241 13.4812 1079 22286
10 11.0740 9.6792 8.8570 889 11767 10 13.7033 13.2774 12.6115 1080 22343
11 10.5673 9.0596 8.2577 890 11792 11 13.1274 12.3223 11.5535 1079 22390

This article was processed using the IATjX macro package with LLNCS style

