
Final Report

Making Production Operating System Kernels Adaptive:
Incremental Specialization in Practice (Synthetix Project)

Abstract

We summarize the results produced by the DARPA contract "Making Produc-
tion Operating System Kernels Adaptive: Incremental Specialization in Prac-
tice", also known as the Synthetix Project. The main objective of the project
is to develop specialization technology to improve the modularity, adaptive-
ness, and performance of production operating system code. The main results
are software toolkits that help programmers to build systems with specialized
components that maintain their modularity and portability. The project is be-
ing extended by the Microlanguage and Immunix projects. We have released
the Synthetix Specialization Toolkit and Software Feedback Toolkit.

DARPA Order Number:
Name of contractor:

Contract Number:
Principal Investigator:

Project Title:

B752
Oregon Graduate Institute of Science &
P.O. Box 91000
Portland, OR 97291-1000
N00014-94-1-0845
Calton Pu
Phone: (503) 690-1214
FAX: (503) 690-1553
Email: calton@cse.ogi.edu
URL: http://www.cse.ogi.edu/~calton
Synthetix Project

Aemerred tor pubKe teleo**
PMnacutics;

K

;&£

sr

Sponsored by
Defense Advanced Research Projects Agency, CSTO/ITO

DARPA Order No. B752
Issued by ONR under grant N00014-94-1-0845

The views and conclusion contained in this document are those of the
authors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of the Defense Advanced Research
Projects Agency, the Office of Naval Research, or the U.S. Government.

19971007 126 »ü-G^v,
'«sju

'■** £fe:r^
'£»0 4

Contents

1 Task Objectives 1
1.1 Summary of Project Objectives 1
1.2 Synthetix Deliverables 1

2 Technical Problems 2

3 General Approach and Methodology 3
3.1 Methodical Specialization 3
3.2 Toolkit Based Specialization 4
3.3 Interaction With Other OGI Projects 5

4 Technical Results 6
4.1 Papers and Publications 6
4.2 Presentations and Interactions 9
4.3 Software Deliverables 11

4.3.1 Summary of Deliverables 11
4.3.2 June-Dec 1994 12
4.3.3 Jan-Dec 1995 12
4.3.4 Jan-Dec 1996 12
4.3.5 Jan-June 1997 13

5 Important Findings 14
5.1 Early Findings 14
5.2 Summary of Project Findings 15

6 Significant Hardware Developments 15

7 Special Comments on Industrial Collaboration 15

8 Implication for Further Research 16
Bibliography 17

1 Task Objectives

1.1 Summary of Project Objectives

This is the final report for the Synthetix project grant (DARPA/ONR grant N00014-94-1-

0845). The Synthetix project is also strengthened and complemented by the Microlanguage

contract (number F19528-95-C-0193), as well as augmented with another DARPA grant in

the Information Survivability program (Immunix, DARPA grant F30602-96-1-0331). We will

report the progress and achievements of the project as a whole, distinguishing the results

from each contract funding as appropriate.

For the Synthetix grant, the concrete deliverables fall into three categories: a methodol-

ogy for applying it to existing operating system kernels, tools to support incremental special-

ization, and kernel code that demonstrates its use in practice. Similarly, for the Microlan-

guage contract, the concrete deliverables fall into three groups: techniques, microlanguages

plus their associated software tools, and experimental systems that use microlanguages.

Synthetix specialization is primarily targeted towards situations where the systems soft-

ware can infer the kind of specialization to apply. The goal of microlanguages is to expand

the power and applicability of specialization techniques and toolkit to situations where sys-

tems programmers and application programmers may direct the specialization process. Some

of the basic specialization techniques and tools apply equally to inferred and directed special-

ization, but many methods and tools need to be refined and redesigned to take into account

both kinds of specialization.

1.2 Synthetix Deliverables

We will develop a methodology for the design and implementation of operating systems

(and their components) that use incremental specialization. Concretely, this methodology

will outline a series of steps that will guide kernel developers both in the development of new

kernels from scratch, and in the modification of existing kernel code. The methodology will

apply to existing monolithic kernels and micro-kernels.

We will develop a toolkit that includes a C preprocessor and compiler with support

for: (a) fine-grain modularity, (b) the specification of invariants and guards, and (c) the

generation of templates that can be instantiated post compile time. In addition, the toolkit

will also include a run-time kernel supporting dynamic code generation, dynamic linking,

and possibly some code optimization such as constant folding and loop unrolling.

Another important part of the Synthetix specialization toolkit is the support for fine-

grain adaptation using software feedback. The software feedback toolkit will include (1) a

software implementation of generic filters to be used in the kernels, (2) software tools for

filter design, development, and testing, (3) composition tools to combine elementary filters

into more sophisticated filters, and (4) guard programs that detect input oscillation beyond

1

the specified filter range.

The specialization toolkit is demonstrated in production operating system kernels. Our

initial experiments were conducted on HP-UX, the HP commercial version of Unix, partic-

ularly in the Unix File System component. Experiments have been conducted on SUNOS

(the RPC component) and Linux, a public domain Unix operating system (the signal handler

component).

For brevity of presentation and focus on Synthetix we omit the list of deliverables from

the Microlanguages contract and the Immunix grant.

2 Technical Problems

Modern operating systems have been growing in size and complexity due to the constant

pressure for additional functionality. As the variety of applications widens, and hardware

platforms become increasingly powerful, the operating system has been used for different

purposes. Consequently, operating system code has been stretched far beyond its original

intent. For example, file systems optimized for block size access typically do not support

byte-by-byte access efficiently. Although libraries such as stdio keep work outside the kernel,

the result is the growing size and complexity of both the kernel code and the systems software

related to the kernel.

To aggravate the problem, kernel operations are encapsulated within blackbox bound-

aries, so users cannot customize the kernel very easily. Specialization of the operating system

kernel has been developing as a promising technique in a number of projects such as Syn-

thesis [25, 19], x-kernel [21], Spin [2], and Synthetix [9, 22]. However, specialization has

encountered two limitations in its wide application. First, it has been applied successfully

in specific domains, but each domain seems different enough to require a large new effort.

Second, efforts to make customization easy, such as Spin, have yet to address the concerns

of quality control, interference with other kernel modules, maintainability, and system evo-

lution.

Specialization is a well known technique that has been applied in an ad hoc way in

operating system kernels (and all the other layers of systems and application software). The

Synthetix approach aims for a methodical approach to specialization and the construction

of tools to help kernel programmers apply specialization techniques to systems software.

In making specialization a methodical approach, we have identified three main technical

problems:

• The identification and explicit specification of assumptions (called quasi-invariants)

made by the specialized code. Any quasi-invariants that remain implicit may cause

bugs in the other components of the system that call the specialized code, since all of

the quasi-invariants must be true for the specialized code to function correctly.

• The guarding of the quasi-invariants during execution of the specialized code. After

the quasi-invariants have been made explicit, the system must guard them during the

execution. This is particularly difficult to handle in kernels, since events may render

quasi-invariants false during the execution of specialized kernel calls.

• Specialization can be seen as adaptation at a coarse granularity, when quasi-invariants

become violated. An important concern for adaptive software is a lower cost mecha-

nism for fine-grain adaptation. Most adaptive systems, even those based explicitly on

feedback mechanisms, are ad hoc with hand customization. The development of a gen-

eral purpose software feedback toolkit useful for many applications remains a serious

technical problem.

In addition to these technical problems, our industry partners made it very clear to

us that a fundamental requirement for technology transfer is the availability of tools for

their programmers. Therefore, our solutions must be packaged in tools that help program-

mers adopt these solutions. We consider this fourth problem also an engineering problem,

in addition to the three technical problems, since the development of tools influenced the

development of the methodology and the technology itself. In particular, most of the other

projects developing techniques for the enhancement of ad hoc specialization have missed this

important consideration.

3 General Approach and Methodology

3.1 Methodical Specialization

The first part of the Synthetix approach to the technical problems listed in Section 2 is the

design and refinement of a methodical approach to specialization of systems software. In

constrast to ad hoc specialization, we enumerate the steps through which a programmer may

develop specialized code, whether by hand or by using tools. By dividing the steps carefully,

we are able to design specialization tools to help the programmer during these steps. We

divide the specialization process into 5 steps.

The first step is the analysis of the general algorithm and the specialized versions. We

assume that each specialized piece of code has a general algorithm behind it. Although

the general algorithm does not have to be necessarily implemented in the system, we avoid

considering the specialized code in isolation. By comparing the different versions of special-

ized code with the general algorithm, the goal is to make as many of the quasi-invariants

explicit as feasible. In the specialization of the Unix File System example [22], examples of

quasi-invariants include: (1) exclusive access to the file and (2) sequential access of the file.

The second step, once the quasi-invariants have been identified, is to specify them

and identify the other system components that interact with these quasi-invariants. In the

Unix File System example, the exclusive access quasi-invariant interacts with some obvious

modules (e.g., open of the file) and some non-obvious ones (e.g., sending the file descriptor

in a message that allows the receiver to access the same file). It is important to identify all

of the interactions, since missing any constitutes a bug in the overall system.

The third step is the design and implementation of the specialized code and all the

identified guards for the quasi-invariants. The specialized code takes full advantage of the

quasi-invariants to simplify the code with respect to the general algorithm. At the same

time, the guards watch over the possible violations of the quasi-invariants to make sure the

specialized code executes only during the moments the quasi-invariants are actually true.

The first three steps form an interactive process, where the design of the specialized code

and guards influence the choice of which quasi-invariants are used for specialization.

The fourth step is the refinement of specialized code and guards at a micro level. Even

when we preserve the quasi-invariants, there are many implementation choices for each piece

of specialized code and its guards. This is particularly the case when the specialized code is

evolving (for a number of reasons), and the specialized code and guards must be regenerated

after each change.

The fifth step in the methodology is the evaluation of the specialized code and guards

through measurements. During and after implementation, it is important to evaluate their

performance and robustness through actual measurements. Further tuning may result in

additional design and implementation changes. This final step forms the final link in the

interactive development of the entire specialization process.

3.2 Toolkit Based Specialization

We have built the Synthetix Specialization Toolkit (Section 4.3.2) to assist kernel program-

mers in the specialization process. It consists of two guarding programs (TypeGuard and

MemGuard), a concurrent replugger, and access to the Tempo-C program specializer. The

toolkit is available through the World Wide Web at the URL:

http://www.cse.ogi.edu/DISC/proj ects/synthet ix/toolkit/

An example of specialization using the toolkit is the specialization of Linux signal han-

dling, which is described in a tutorial in the web page. In general, tool-based specialization

follows the same methodology described in Section 3.1. In the specialization of Linux signal

handling, TypeGuard is used in step 2 in the identification of possible violations of quasi-

invariants. Tempo-C is used in step 3 and 4 for the generation and optimization of signal

code. MemGuard is used in the development and debugging of the specialized kernel. The

replugger is not used directly in this example due to the nature of typical signal handling,

but it is used in some other experiments.

3.3 Interaction With Other OGI Projects

The Synthetix project has been the leading component of a set of D ARPA supported projects

at OGI, summarized below (all of them have Calton Pu as the lead PI).

• Synthetix project (94-97): described in this report.

• Microlanguages project (95-98): design and implementation of microlanguages for

directed specialization, in contrast to the inferred specialization done in Synthetix.

• Immunix project (96-99): application and extension of specialization techniques and

the Synthetix Specialization Toolkit to increase the information survivability of oper-

ating systems.

• Quasar Microfeedback project (97-2000): investigation of feedback system properties

within and outside the assumption specifications, and the construction of a composable

microfeedback toolkit.

We briefly summarize the influence of Synthetix on these projects and the information

flow as well as technology adoption and transfer among them.

Microlanguages The main objective is to apply discipline to specialization through

microlanguages, meta-interface languages that characterize how an interface is used, and

tailored for each application. Each microlanguage specifies all the specialized execution

paths in an appropriate systems software component, e.g., file system, network protocol,

and a client/server interface for an application area. On the client's side, a sufficiently rich

microlanguage provides a high level declarative way to express customization, rather than

by writing code in a (third-generation) system implementation language that then has to be

"sanitized" and inserted into the kernel. On the systems side, kernel designers determine

the scope of specialization during the design and implementation of microlanguages. The

Synthetix Specialization Toolkit is being used in the Microlanguages project, which extends

it for use by directed specialization.

Immunix The main objective is to increase OS security fault resistance through sys-

tematic specialization. Synthetix specialization of operating system kernels uses an explicit

specification of invariants that allow dynamic generation of code at run-time to improve op-

erating system performance while preserving modularity. All the specialized cases preserve

the same OS kernel functional interface semantics. Reusing these performance-oriented in-

variants and introducing artificial invariants where necessary, we can generate operating

system modules as complex and varied as we specify them to be, while maintaining the

operating system functionality. The Specialization Toolkit has helped directly (e.g., the

construction of MemGuard/StackGuard against stack overflow attacks) and indirectly (e.g.,

the classification of responses to attacks into a two-dimensional table in terms of interface

restriction and permutation, and implementation restriction and permutation).

Quasar Microfeedback The main objective is to build a toolkit of software feedback

coomponents with four functional properties:

1. (1) Working characteristics: how quickly the microfeedback responds to changes in

input, and what is the maximum error (delay) in its response;

2. (2) boundaries of applicability: under which conditions the microfeedback fails to

respond appropriately, and how badly it fails;

3. (3) feedback interaction: how aggressive, competitive, and cooperative the microfeed-

back is in the presence of other feedback mechanisms;

4. (4) meta adaptation: any changes on the above three properties due to adjustment of

microfeedback parameters or its replacement when crossing its applicability boundaries.

The Synthetix Software Feedback toolkit forms the starting point of the Microfeedback

Toolkit. We are analyzing the properties of feedback components and building the support

for composing them.

4 Technical Results

The main technical results from the Synthetix project consist of publications of papers and

software toolkits. We have also had significant collaboration and interaction with the in-

ternational research community. In Section 4.1 we outline a selection of our publications

and relevant papers written during this period. Section 4.2 summarizes the external pre-

sentations and interactions with other groups. In Section 4.3 we summarize the Synthetix

contract deliverables, including the software published up to now (September 97).

4.1 Papers and Publications

During the June-Dec 1994 period:

1. Calton Pu presented the main ideas of the Synthetix project [26] at the 1994 OOPSLA

Workshop on Flexibility in Systems Software.

During the Jan-Dec 1995 period:

1. Shanwei Cen presented a demonstration [4] of our real-time distributed MPEG video/audio

player at the 1995 ACM International Conference on Multimedia. The demo showcased

our software-feedback based software, which has been freely available on the Web since

April 1995. The player was described in a separate paper [5] in the 1995 International

Workshop on Network and Operating System Support for Digital Audio and Video.

2. Our paper [13] on "Adaptive Methods for Distributed Video Presentation" has ap-

peared in a special Symposium on Multimedia of the ACM Computing Surveys journal.

The paper analyzes the problems and solutions for delivering real-time multimedia pre-

sentations across the Internet, with special attention to our approach based on software

feedback and our demonstration software.

3. Jonathan Walpole presented our paper [22] at the 1995 ACM Symposium on Operating

Systems Principles (SOSP). The paper described our experience with applying special-

ization techniques systematically to a commercial operating system (HP-UX). In this

paper, we have demonstrated the potential gains of specialization in performance and

modularity on the one hand, and on the other hand, the difficulties with verifying

the correctness of the specialized code, requiring powerful software tools for the large

scale application of specialization. The SOSP is the bi-annual premier conference in

operating systems research.

During the Jan-Dec 1996 period:

1. Our paper [8] on "A General Approach for Run-Time Specialization and its Application

to C" has been presented in the 1996 ACM Symposium on Principles on Programming

Languages (POPL). This paper describes the theoretical foundation of the C on-line

partial evaluator Consel is developing in France as part of the Synthetix specializa-

tion toolkit. The POPL is the annual premier conference on programming languages

research.

2. Our paper [31] on "Safe Operating System Specialization: the RPC Case Study" has

been presented at the First Workshop on Compiler Support for Systems Software

(WCSSS), Arizona, February 1996. This paper describes the experiments in applying

specialization to the RPC code of the Chorus microkernel.

3. Our paper [7] on "A Uniform Approach to Compile-Time and Run-Time Specializa-

tion" has been presented at the 1996 Dagstuhl Workshop on Partial Evaluation, Ger-

many, February 1996. This paper describes the general approach of the Rennes group

to specialization at both compile-time and run-time.

4. The paper [14] on "A Wait-free Algorithm for Optimistic Programming: HOPE Real-

ized", by Crispin Cowan and Hanan L. Lutfiyya, was presented at the 1996 Interna-

tional Conference on Distributed Computing Systems, Hong Kong, May 1996.

5. Our paper [30] on "A Uniform Automatic Approach to Copy Elimination in System

Extensions via Program Specialization", by Volanschi, E.-N., Müller, G., Consel, C,

Hornof, L., Noye, J. and Pu, C, was published as IRISA Research Report No. 1021,

Rennes, France, June 1996. It was submitted to the 1996 Symposium on Operating

System Design and Implementation, Seattle, October 1996.

7

6. Our paper [10] "Automated Guarding Tools for Adaptive Operating Systems", by

Crispin Cowan, Andrew Black, Charles Krasic, Calton Pu, and Jonathan Walpole was

submitted to the 1996 Symposium on Operating System Design and Implementation,

Seattle, October 1996.

7. Our paper [29] "Managing Adaptive Presentation Executions in Distributed Multime-

dia Database Systems" by H. Thimm, W. Klas, J. Walpole, C. Pu, and C. Cowan,

presented in the 1996 IEEE International Workshop on Multimedia Database Manage-

ment Systems, Blue Mountain Lake, New York, August 1996.

8. Our paper [3], "System Support for Mobility", by A. Black and J. Inouye, was presented

at the ACM SIGOPS European Workshop in Ireland, September 1996.

9. Our paper [12] "Specialization Classes: An Object Framework for Specialization", by

Crispin Cowan, Andrew Black, Charles Krasic, Calton Pu, and Jonathan Walpole of

OGI, and Charles Consel and Eugen-Nicolae Volanschi of University of Rennes / IRISA,

accepted for presentation in the 1996 International Workshop on Object Orientation

in Operating Systems, Seattle, October 1996.

10. Our paper [23] "A Specialization Toolkit to Increase the Diversity in Operating Sys-

tems" by C. Pu, C. Cowan, A. Black and J. Walpole of OGI, and C. Consel of

IRISA/University of Rennes, accepted for presentation in the ICMAS Workshop on

Immunity-Based Systems, Kyoto, Japan, December 1996.

11. Our paper [24] "Microlanguages for Operating System Specialization" by C. Pu, C.

Cowan, A. Black and J. Walpole of OGI, and C. Consel of IRISA/University of Rennes,

accepted for presentation in the POPL Workshop on Domain-Specific Languages, Paris,

January 1997.

12. Crispin Cowan presented the specialization class paper [12] at the International Work-

shop on Object-Oriented in Operating Systems, Seattle, October, 1996.

13. Veronica Baiceanu [1] and Dan Revel [28] presented their work on CPU and disk

scheduling for multimedia applications at the Workshop on Resource Allocation Prob-

lems in Multimedia Systems, Washington, D.C., December 1996.

14. Calton Pu presented our ideas for improving operating system survivability [23] at the

Immunity-Based Systems Workshop, Japan, December 1996.

During the Jan-June 1997 period:

1. Andrew Black presented the paper [24] "Microlanguages for Operating System Spe-

cialization", by Calton Pu, Andrew Black, Crispin Cowan, Jonathan Walpole (OGI),

and Charles Consel (Univ. of Rennes/IRISA), at the ACM SIGPLAN Workshop on

Domain-Specific Languages January 18, 1997 Paris, France (in association with POPL'97).

2. Crispin Cowan presented the paper "Immunix: Survivability through Specialization",

by Crispin Cowan and Calton Pu, at the Information Survivability Workshop, orga-

nized by SEI, San Diego, 2/12.

3. Jonathan Walpole and others wrote the paper [32] "A Toolkit for Specializing Pro-

duction Operating System Code", submitted to the ACM SIGOPS Symposium on

Operating Systems Principles (SOSP'97).

4. Gilles Muller, Renaud Marlet, Eugen-Nicolae Volanschi, Charles Consel, Calton Pu,

and Ashvin Goel wrote the paper [20] "Fast, Optimized SUN RPC Using Automatic

Program Specialization", submitted to the ACM SIGOPS Symposium on Operating

Systems Principles (SOSP'97).

5. Dan Revel, Crispin Cowan, Dylan McNamee, Calton Pu and Jonathan Walpole wrote

the paper [27] "Predictable File Access Latency for Multimedia", submitted to IFIP

Fifth International Workshop on Quality of Service (IWQOS'97).

6. Jon Inouye, Jonathan Walpole, and Jim Binkley, wrote the paper [16] "Physical Me-

dia Independence: System Support for Dynamically Available Network Interfaces",

Technical Report CSE-97-001, Oregon Graduate Institute, January 1997.

7. Jon Inouye, Shanwei Cen, Calton Pu and Jonathan Walpole, wrote the paper [15]

"System Support for Mobile Multimedia Applications", appeared in the Proceedings

of the 7th International Workshop on Network and Operating System Support for

Digital Audio and Video (NOSSDAV'97), St. Louis, Missouri, May 19-21, 1997.

4.2 Presentations and Interactions

During the June-Dec 1994 period:

1. On 6/03/94, Calton Pu presented the talk entitled "Update on The Synthetix Oper-

ating System Project" at Hewlett-Packard, Cupertino, California, hosted by Mr. John

Sontag.

2. On 8/29/94, Calton Pu presented the talk entitled "The Synthetix Operating System

Project" at Honeywell Technology Center, Minneapolis, hosted by Dr. Steve Vestal.

3. On 9/28/94, Calton Pu presented the talk entitled "The Synthetix Operating Sys-

tem Project" at Georgia Institute of Technology, Atlanta, hosted by Prof. Mustaq

M ah am ad.

4. On 9/29/94, Calton Pu presented the talk entitled "The Synthetix Operating System

Project" at Clark-Atlanta University, Atlanta, hosted by Prof. Alvin Lim and Prof.

Karsten Schwan.

During the Jan-Dec 1995 period:

1. On 04/19/95, Calton Pu presented the talk entitled "Kernel Specialization Tools and

Techniques: Synthetix Project", at Technical University of Darmstadt, Darmstadt,

Germany, hosted by Dr. Prof. Alejandro Buchmann.

2. On 04/24/95, Calton Pu presented the talk entitled "Kernel Specialization Tools and

Techniques: Synthetix Project", at University of Rennes, Rennes, France, hosted by

Prof. Charles Consel.

3. On 08/17/95, Calton Pu presented the talk entitled "Kernel Specialization Tools and

Techniques: Synthetix Project", at DEC CEC, Karlsruhe, Germany, hosted by Dr.

Lutz Heuser.

4. On 08/18/95, Calton Pu presented the talk entitled "Kernel Specialization Tools and

Techniques: Synthetix Project", at University of Kaiserslautern, Germany, hosted by

Prof. Jürgen Nehmer.

5. On 11/09/95, Calton Pu presented the talk entitled "Kernel Specialization Tools and

Techniques: Synthetix Project", at Xerox PARC, California, hosted by Gregor Kicza-

les.

During the Jan-Dec 1996 period:

1. Andrew Black presented the overview of the project at the University of Glasgow in a

visit during March 1996.

2. Adaptive Operating Systems (overview of Synthetix in the large) presented at the

University of Waterloo department of Computer Science on June 20th by C. Cowan.

3. Adaptive Real-time Scheduling for Multimedia Quality of Service in a UNIX Environ-

ment. Guest lecture to the University of Waterloo department of Computer Science

CS 452 (Real Time Systems) course. Presented on June 21st by C. Cowan.

4. Andrew Black presented the paper [3] at the European SIGOPS Workshop.

5. Heiko Thimm, our collaborator from GMD/IPSI, who was visiting OGI for 4 months

during Summer, presented the paper [29] at the Multimedia Database Workshop, Au-

gust 1996.

6. Jonathan Walpole presented the talk on "Quality of Service Specification and Adaptive

Resource Management for Distributed Multimedia Systems" for the Intel Research

Council and Research Relations at Hillsboro, Oregon, September 1996.

7. Calton Pu presented a talk on "Overview of the Synthetix Project" at IRIS A/University

of Rennes, France, September 1996.

10

8. Jonathan Walpole gave the talk on Quality of Service Specification and Adaptive Re-

source Management for Large Distributed Systems at the Quorum PI meeting (Dallas,

November 1996).

9. Crispin Cowan visited CMU, Prof. Daniel Jackson, on December 9th, 1996, to discuss

collaboration. We are actively studying the use of lackwit, their software analysis

tool, for the static verification of guarded code. The OGI group has sent real code to

be analyzed by the CMU group as the preliminary evaluation of the tool robustness

for production code.

During the Jan-June 1997 period:

1. Andrew Black visited University of Glasgow (Glasgow, United Kingdom, 1/24), and

gave a talk on "Microlanguages for Operating System Specialization".

2. Charles Consel visited Xerox PARC (Palo Alto, California, 2/21), Microsoft (Red-

monds, Washington, 2/24), University of Washington (Seattle, Washington, 2/26),

and gave talks on the Tempo Specializer and system support for microlanguages.

3. Crispin Cowan visited Intel's Data Security Group (Hillsboro, Oregon, 3/12) to give a

talk on "Immunix: Survivability through Specialization".

4. Calton Pu was an invited panelist in the panel on "Survivability in the Face of Malicious

Attack", in the Sixth IFIP Working Conference on Dependable Computing for Critical

Applications (DCCA-6), panel chaired by Teresa Lunt of DARPA/ITO.

5. Jonathan Walpole gave the presentation "The Design of a Multimedia Player with

Advanced QoS Control" at the Advanced Information Processing and Analysis Sym-

posium, Washington, DC, 3/26.

4.3 Software Deliverables

4.3.1 Summary of Deliverables

Synthetix deliverables consist of a systematic methodology for applying specialization to op-

erating systems code, and toolkits for specialization as well as software feedback adaptation.

The results are delivered in several forms. We have published papers and technical reports

as listed in Section 4.1, given presentations in conferences, workshops, and specific visits to

universities and companies as listed in Section 4.2. We have also released software toolkits

on August 1997, as summarized in following subsections.

We also include some references to results produced from the Microlanguages and Im-

munix projects that have benefitted from or used Synthetix deliverables. The deliverables

from these other projects are clearly marked under their own headings.

11

4.3.2 June-Dec 1994

During the initial six months of the grant we worked on the development of the deliverables,

as described below.

4.3.3 Jan-Dec 1995

Specialization Methodology We have been refining the specialization methodology in

our work. A preliminary version of the methodology has been described in our SOSP pa-

per [22]. The refined methodology, which includes the use of and support for microlanguages,

is under active development.

Specialization Toolkit Our main accomplishment is the creation and refinement of the

concept of specialization class. Each concrete specialization is an instance of a general type

of specialization, defined by the specialization class. Many tools in the specialization toolkit

are based on this concept. The explicit (and machine readable) definition of specialization

classes allows the software tools to communicate with each other easily. We are writing

several papers on specialization classes and developing code using them. Preliminary versions

of specific tools have been under test by the members of our group, including the Tempo-C

on-line partial evaluator in France and the dynamic kernel module replugger at OGI.

Software Feedback We have been designing and implementing a software feedback

toolkit for fine-grain adaptive distributed computation. We have released a distributed mul-

timedia MPEG player in May 1995. There are two recent developments in this effort. First,

conceptually, we are modeling software feedback as a fine-grain specialization technique.

This way, we will be able to use the specialization tools to support software feedback, and

integrate the software feedback toolkit into the specialization toolkit easily. Second, con-

cretely, we are re-implementing the distributed multimedia video/audio player to use the

software feedback toolkit. This is a Synthetix deliverable.

Microlanguage Development We have started the development of our first microlan-

guage for file systems. From the conceptual side, this effort is based on recent work on

the specialization of file systems such as our SOSP paper [22] and other research papers on

choosing the appropriate caching strategy (e.g., [18]) for an application. ,[,From the systems

building side, this work is integrated with the construction of the specialization toolkit. We

are re-designing the specialization tools to make them extensible and add hooks supporting

microlanguages from the beginning.

4.3.4 Jan-Dec 1996

Specialization Methodology We have been refining the specialization methodology in

our work. Using the plans for experimentation, we have been designing and implementing

the specialization and software feedback toolkit as described below. A new experiment on

automated elimination of copying has been reported [30].

12

Specialization Toolkit We have been refining the concept of specialization class. Each

concrete specialization is an instance of a general type of specialization, defined by the

specialization class. Currently, the specialization class is considered the "assembly language"

of specialization, into which the microprograms will be translated. Components completed

for alpha testing include the Replugger [10] the type-based guard checker, and the preliminary

version of the Tempo-C compiler [8]. The second paper [12] describes the current refinements

of specialization classes. Besides the Replugger [10], the type-based guard checker, and the

preliminary version of the Tempo-C compiler [8], we have continued the development of the

memory run-time guard checker. All tools are being tested and used in our experimental

work.

Software Feedback We have redesigned the software feedback toolkit. Currently, it

consists of a component library being written in C++, composition tools, and guarding tools

built using the specialization toolkit. The component library will be illustrated using a

new demonstration program that has enhanced functionality compared to the distributed

multimedia MPEG player we released in May 1995. A Master's thesis was completed [17],

on the "Design of a Multimedia Player with Advanced QoS Control".

Microlanguage Development We have continued the development of our first family

of microlanguages. The design has been refined using our experience with the implementa-

tions of the multimedia player and the file system specialization experiment. The file system

microlanguage [24] is under continued development. The family is an integrated set of four

microlanguages to describe and program multimedia applications. At the top level, it will be

a Quality of Service (QoS) specification microlanguage. The QoS specification is then trans-

lated into a media-aware scheduling microlanguage. The data access part of the scheduling

microlanguage is then translated into a low level file system microlanguage. The file system

microlanguage is finally translated into specialization classes. We are also exploring a vari-

ety of scheduling approaches [1, 28] and developing a CPU scheduling microlanguage to be

combined with file prefetching, to help achieve multimedia QoS requirements.

4.3.5 Jan-June 1997

Specialization Toolkit "We have used the specialization toolkit to specialize production

operating system code, both inside the kernel and in system libraries. In [32], we describe

the specialization of the Linux operating system signal handler code and vmalloc, a well

known package that combines several memory allocation policies. In [20], we describe the

specialization of SUNOS RPC code. Using the experience gained from these experiments,

we have packaged our specialization toolkit, released in August 1997.

Software Feedback We have been developing the software feedback toolkit [6], which is

used in a file system [27] and in a mobile multimedia application [15]. The Software Feedback

Toolkit is released on the Web as of August 1997. Both the Synthetix Specialization Toolkit

and Software Feedback Toolkit are available to the public at URL:

13

http://www.cse.ogi.edu/DISC/proj ects/synthetix/toolkit/

Microlanguage Development and Experiments In the application development us-

ing the software feedback toolkit [27, 15], we have been developing microlanguages for a

systematic interface among system modules. The initial experience is outlined in [24]. The

file system prefetching experiment is outlined in [27], where a microlanguage is being de-

signed for controlling the prefetch policy of file blocks for advanced applications such as

multimedia and scientific computation. The mobile application in multimedia is outlined

in [15, 16], where network device switching happens regularly, with severe strains on the

system resource scheduling due to widely differing bandwidths provided by wired (e.g., Tl)

and wireless (e.g., 9600 baud) connections. The actual experiments using microlanguages

will be reported in future papers.

Information Survivability We continued to discuss our approach with colleagues and

exchange ideas. This includes Cowan's participation in the SEI workshop on Information

Survivability, his presentation at Intel, and Pu's participation in the DCCA panel. We have

collected and classified a number of attacks on binary code, e.g., buffer overflow in the stack.

We are designing experiments that use variation and diversity, as well as specialization tools

such as MemGuard, to handle these attacks.

5 Important Findings

5.1 Early Findings

The Synthetix project consists of a combination of efforts from the operating systems side and

from the programming languages side. Our initial important findings have been summarized

in two papers, both appearing in the most prestigious conference of each area. In our SOSP

paper [22], our most important findings in operating systems are:

1. Systematic specialization is feasible and worthwhile (significant performance gains in

the kernel calls studied). Our current work on specialization classes [12] follows this

thread.

2. Large-scale specialization requires sophisticated and easy-to-use software tools. See

the discussion below.

In our POPL paper [8], our most important findings in the programming languages area

are:

1. It's possible to build an on-line partial evaluator (Tempo-C) to support specialization.

2. It's possible to apply the partial evaluator to significant pieces of operating system code

written in (cleaned-up) C. Our current experiments [30, 20, 32] follow this thread.

14

Our experimental work [7, 31, 13, 4] has validated our research ideas and provided directions

to its continued development.

5.2 Summary of Project Findings

At a high level, the Synthetix project has confirmed the hypothesis that specialization is

a promising technique for improving systems software. At the same time, we have iden-

tified challenging research issues in the technology transition of specialization to practice.

Specifically, the automation towards the generation of specialized code and guarding of quasi-

invariants is clearly the bottleneck in the wide spread adoption of specialization technology.

Software tools that help programmers manage the creation and evolution of specialized code

are the main contributions of Synthetix.

The Specialization Toolkit consists of the TypeGuard [11], MemGuard, the Replug-

ger [10], and Tempo-C compiler [8] (available on request). The Software Feedback Toolkit

consists of a component library for C++ and Java, with a re-implementation of the dis-

tributed multimedia MPEG player [5] to demonstrate the toolkit components. Both toolkits

are available on the Web as of August 1997. These toolkits are being gradually adopted by

industry groups such as Intel and Tektronix to facilitate their specialization efforts. We are

further developing tools for specific application areas under the Microlanguages, Immunix,

Quasar Microfeedback, and Quasar Systemic QoS projects, as well as smaller efforts funded

by Intel and Tektronix.

Software in general and operating systems in particular are growing steadily in size, for

example by the incorporation of Internet Explorer and Viper transaction processing monitor

into the Microsoft Windows NT 5.0. Although dynamic object technologies such as DCOM

have postponed a crisis in the integration of these facilities, the performance, reliability,

and survivability of these ever growing software systems seem to decline steadily, too. As

they mature, specialization tools show increasing relevance towards the management and

mitigation of systems software evolution problems.

6 Significant Hardware Developments

The Synthetix project is a software development project. We have not planned any hardware

developments. During the project, no unexpected hardware developments were necessary.

7 Special Comments on Industrial Collaboration

In the Synthetix project, we have maintained an active collaboration with industry. Through-

out the project, we have the following active collaborations:

15

• Hewlett-Packard: HP-UX operating system development group funded the initial per-

sonnel, software, and hardware experiments. We also benefitted greatly from regular

meetings at Cupertino with the developers, who convinced us to develop specialization

tools as the means for technology transfer.

• Tektronix: distributed multimedia application support based on software feedback. We

are receiving funding from Tektronix for this collaboration. One of the Pis, Jonathan

Walpole, is spending his sabatical working with Tektronix.

• Xerox PARC: use of reflection in specialization and the application of specialization

as reflection. As our collaborators (G. Kiczales) receive additional funding in the

Information Survivability area, we expect closer interaction in this area.

• Intel: application of specialization to distributed multimedia and architectural sup-

port for specialization. We received funding in 1996 and 1997 for this collaboration.

One of our graduating PhD students, Jon Inouye, has joined Intel and will transfer

specialization technology to them.

8 Implication for Further Research

Although the Synthetix grant has ended, the project as a whole is ongoing, with further

DARPA funding (The Microlanguages contract, the Immunix project, and the Quasar Mi-

crofeedback project) and industrial funding (e.g., Tektronix and Intel). Currently, we are

working on the following aspects of the research:

• Specialization Methodology: We are continuing to refine the methodology as we develop

the specialization and software feedback toolkits. We are redoing the specialization ex-

periments using the toolkit, as we use the experience to refine the toolkits. Ongoing

experiments include specialization of Unix vmalloc for performance, and specializa-

tion of signal handlers for modularity, and random specialization for generic operating

system modules for survivability.

• Specialization Toolkit: We are using toolkit components in our experimental work. The

Specialization Toolkit, consisting of the Replugger, the TypeGuard, the MemGuard,

and Tempo-C available on request, has been released to the public (Aug. 1997). We

are further documenting our toolkit components towards the research on specialization

of multi-layer software systems.

• Software Feedback: The new software feedback toolkit continues to be developed, in-

cluding the component library, composition and guarding tools, and the demonstration

distributed MPEG multimedia player program. The composition and guarding tools

will use the specialization toolkit wherever feasible. The Software Feedback Toolkit

16

has been release to the public (Aug. 1997). We are further developing the toolkit as

part of the Quasar Microfeedback project (Quorum program).

• Microlanguage Development: We are developing our first family of microlanguages,

which consists of a QoS specification microlanguage, a resource scheduling microlan-

guage, a file system microlanguage, and appropriate specialization classes in the kernel.

Several examples of microlanguage has been designed for file systems and mobile ap-

plications. This is in the context of the Microlanguages project.

• Information Survivability: We are designing the experimental evaluation of special-

ization as a defense against system attack methods we have collected. For example,

many of the attacks use the overflow of buffer allocated on the program stack. We are

using diversity and existing specialization tools such as MemGuard for experimenta-

tion. Another area of system protection introduced by Immunix is in the Morphing

File System, which adds dynamic checking into the file system sharing. This is in the

context of the Immunix project (Information Survivability program).

References

[1] V. Baiceanu, C. Cowan, D. McNamee, C. Pu, and J. Walpole. Multimedia applications re-
quire adaptive CPU scheduling. In Proceedings of the 1996 Workshop on Resource Allocation
Problems in Multimedia Systems, Washington, D.C., December 1996.

[2] B.N. Bershad, C. Chambers, S. Eggers, C. Maeda, D. McNamee, P. Pardyak, S. Savage,
and E.G. Sirer. SPIN - An Extensible Microkernel for Application-specific Operating System
Services. In SIGOPS 1994 European Workshop, February 1994. UW Technical Report 94-03-
03.

[3] A. Black and J. Inouye. System support for mobility. In Proceedings of the Seventh ACM
SIGOPS European Workshop, pages 129-132. ACM, September 1996.

[4] S. Cen, C. Pu, R. Staehli, C. Cowan, and J. Walpole. Demonstrating the effect of software
feedback on a distributed real-time MPEG video audio player. In Proceedings of the 1995
ACM International Conference on Multimedia, San Francisco, November 1995.

[5] S. Cen, C. Pu, R. Staehli, C. Cowan, and J. Walpole. A distributed real-time MPEG video
audio player. In Tom Little, editor, Proceedings of the 1995 International Workshop on Network
and Operating System Support for Digital Audio and Video, volume 1018 of Lecture Notes
in Computer Science. Springer-Verlag, 1995. Also appeared in the Proceedings of the 1995
International Workshop on Network and Operating System Support for Digital Audio and
Video, April 1995, New Hampshire.

[6] Shanwei Cen. A Software Feedback Toolkit and its Applications in Adaptive Multimeida Sys-
tems. PhD thesis, Department of Computer Science and Engineering, Oregon Graduate Insti-
tute of Science and Technology, August 1997.

17

[7] C. Consel, L. Hornof, F. Noel, and E.N. Volanschi. A uniform approach to compile-time and
run-time specialization. In Proceedings of the 1996 Dagstuhl Workshop on Partial Evaluation,

Germany, February 1996.

[8] C. Consel and F. Noel. A general approach for run-time specialization and its application
to c. In Proceedings of the 1996 ACM Symposium on Principles of Programming Languages,

Florida, January 1996.

[9] C. Consel, C. Pu, and J. Walpole. Incremental partial evaluation: The key to high performance,
modularity and portability in operating systems. In Proceedings of the 1993 ACM Symposium

on Partial Evaluation and Semantics-Based Program Manipulation, Copenhagen, Denmark,

June 1993.

[10] C. Cowan, T. Autrey, C. Krasic, C. Pu, and J. Walpole. Fast concurrent dynamic linking for
an adaptive operating system. In Proceedings of the International Conference on Configurable

Distributed Systems, Maryland, May 1996.

[11] C. Cowan, A. Black, C. Krasic, C. Pu, and J. Walpole. Automated guarding tools for adaptive
operating systems. Technical Report OGI-CSE-95-0XX, Department of Computer Science and

Engineering, Oregon Graduate Institute, May 1996.

[12] C. Cowan, A. Black, C. Krasic, C. Pu, J. Walpole, C. Consel, and N. Volanschi. Specialization
classes: An object framework for specialization. In Proceedings of the 1996 International
Workshop on Object-Orientation in Operating Systems, Seattle, October 1996.

[13] C. Cowan, S. Cen, J. Walpole, and C. Pu. Adaptive methods for distributed video presentation.
ACM Computing Surveys, 27, December 1995.

[14] C. Cowan and H. Lutfiyya. A wait-free algorithm for optimistic programming: Hope realized.
In Proceedings of the 16th International Conference on Distributed Computing Systems, Hong

Kong, May 1996.

[15] J. Inouye, Cen S., C. Pu, and J. Walpole. System support for mobile multimedia applications.
In Proceedings of the Seventh International Workshop on Network and Operating System Sup-

port for Digital Audio and Video (NOSSDAV'97), St. Louis, May 1997.

[16] J. Inouye, J. Walpole, and J. Binkley. Physical media independence: System support for
dynamically available network interfaces. Technical Report OGI-CSE-97-001, Department of
Computer Science and Engineering, Oregon Graduate Institute, January 1997.

[17] Rainer Koster. Design of a multimedia player with advanced QoS control. Master's thesis,
Oregon Graduate Institute of Science and Technology, Portland, Oregon, 1996.

[18] D. Kotz. Disk-oriented I/O for MIMD multiprocessors. In Proceedings of the First Symposium
on Operating Systems Design and Implementation, pages 61-74, Monterrey, CA, November

1994. Usenix.

[19] H. Massalin and C. Pu. Threads and input/output in the Synthesis kernel. In Proceedings
of the Twelfth ACM Symposium on Operating System Principles, pages 191-201, Arizona,

December 1989.

18

[20] G. Muller, R. Marlet, E-N. Volanschi, C. Consel, C. Pu, and A. Goel. Fast, optimized sun rpc
using automatic program specialization. Technical Report IRISA PI-1094, IRISA/University
of Rennes, January 1997.

[21] S. O'Malley and L. Peterson. A dynamic network architecture. ACM Transactions on Com-
puter Systems, 10(2):110-143, May 1992.

[22] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J. Inouye, L. Kethana, J. Walpole, and
K. Zhang. Optimistic incremental specialization: Streamlining a commercial operating sys-
tem. In Proceedings of the Fifteenth Symposium on Operating Systems Principles, Colorado,
December 1995.

[23] C. Pu, A. Black, C. Cowan, and J. Walpole. A specialization toolkit to increase the diversity of
operating systems. In Proceedings of the 1996 ICMAS Workshop on Immunity-Based Systems,
Nara, Japan, December 1996.

[24] C. Pu, A. Black, C. Cowan, and J. Walpole. Microlanguages for operating systems special-
ization. In Proceedings of the 1997 POPL Workshop on Domain-Specific Languages, Paris,
January 1997.

[25] C. Pu, H. Massalin, and J. Ioannidis. The Synthesis kernel. Computing Systems, 1(1):11—32,
Winter 1988.

[26] C. Pu and J. Walpole. A case for adaptive OS kernels. In Proceedings of the 1994 OOPSLA
Workshop on Flexibility in Systems Software, Portland, Oregon, October 1994.

[27] D. Revel, C. Cowan, D. McNamee, C. Pu, and J. Walpole. Predictable file access latency for
multimedia. Department of Computer Science and Engineering, Oregon Graduate Institute;
March 1997.

[28] D. Revel, C. Cowan, D. McNamee, C. Pu, and J. Walpole. An architecture for flexible multi-
media prefetching. In Proceedings of the 1996 Workshop on Resource Allocation Problems in
Multimedia Systems, Washington, D.C., December 1996.

[29] H. Thimm, W. Klas, J. Walpole, and C. Pu, C.and Cowan. Managing adaptive presentation ex-
ecutions in distributed multimedia database systems. In Proceedings of the IEEE International
Workshop on Multimedia Database Management Systems, pages 152-159, Blue Mountain Lake,
NY, August 1996.

[30] E.-N. Volanschi, G. Müller, C. Consel, L. Hornof, J. Noye, and C. Pu. A uniform automatic
approach to copy elimination in system extensions via program specialization. Research Report
1021, Irisa, Rennes, France, June 1996.

[31] E.N. Volanschi, G. Müller, and C. Consel. Safe operating system specialization: the rpc
case study. In Proceedings of the First Workshop on Compiler Support for Systems Software,
Arizona, February 1996.

[32] J Walpole, Cen S., C. Cowan, R. Koster, D. Maier, C. Pu, and L. Yu. Adaptive real-time video
streaming over the internet. In Proceedings of the 26th Applied Imagery Pattern Recognition
Workshop (AIPR-97), Washington, DC, October 1997.

19

