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Continuous and Discontinuous Analysis 
Using the Manifold Method 

Jeen-Shang Lin 
Department of Civil and Environmental Engineering 

University of Pittsburgh 
Pittsburgh, PA 15261 

Abstract 

The manifold method is a new numerical method which provides a unified framework 
for solving problems dealing with continuous media, discontinuous media, or both. 
Furthermore, in the manifold method the response function can either be continuous or 
discontinuous. One of the most innovative features of the method is that it employs two 
sets of meshes, the physical mesh and the mathematical mesh. The physical mesh is dictated 
by the physical boundaries of a problem; the mathematical mesh by the computational 
considerations. These two are inter-related through an igneous application of weighting 
functions. The fundamental concepts central to the manifold method are discussed in detail 
that include the concepts of the generalized node, the generalized element, the definition 
of discontinuity, and the role of weighting functions. Whenever possible, the essential 
elements of the manifold method are explained by using the finite element analogy. Finally, 
illustrative examples are presented. 

Introduction 

Materials often are characterized very differently depending upon the nature of a 
problem, the scale or dimension of interest, or even the focus of an investigation. Under 
some circumstances, a material may be modeled as a continuous medium, while under 
others as a discontinuous medium. Then there are occasions to characterize it as a mixture 
of both. For the purposes of analysis, the available methods of analysis frequently dictate 
how a material is to be modeled. Time and again, we find ourselves forced to neglect some 
important features of a problem in order to attain a solution. This, in turn, casts doubts on 
the validity of the analysis results. 



The manifold method is a novel numerical method which provides a new approach 

for that gives us a better grip on the modeling. The method was conceptualized by Shi 

(1991, 1992). In the manifold method, the independent response variables, such as 
displacements, can be continuous or discontinuous throughout a problem domain. This 

paper provides an overview of the method and presents a computational procedure. Some 

results from a on-going  study are also given. 

The term "manifold" originates from topology. Topology is a branch of geometry 
which studies the properties of geometric figures under continuous transformation (Stillwell, 
1993). The manifolds is one of the most important geometric figures it studies. Briefly 

stated, a manifold is simply a collection of objects, such as points, that satisfies certain 

homogeneity and continuity requirements. For instance, a two-dimensional manifold, or 2- 

manifold, is a geometric figure in that every point has a neighborhood equivalent to the 

interior of a disk. Therefore, surfaces of a sphere and torus are both 2-manifold. In a 

broad view, engineering analysis also falls into the general areas studied by topology. This 

is because a problem domain of an engineering analysis is, mathematically speaking, a 
manifold, and its response such as deformation is simply a transformation of the manifold. 

It is therefore not surprising that the methods of topology also have important bearings. For 

example, when a manifold is subjected to a complicated transformation, it is frequently 

decomposed into simpler shapes such as triangles or polygons through a process called 

triangulation. These simpler shapes are then covered by other figures that are easier to 

analyze. By so doing, a complicated problem is converted into smaller and simpler problems 

on these covering figures. For problems of engineering interests, often the number of the 
covering figures is finite. The concept of finite covers is the basis of the manifold method. 

Because the concepts involved may be abstract and , at times, difficult to engineers, 
this paper also presents an explanation as to how different parts of the manifold method 

are formulated and put together. Whenever possible this study employs the finite element 

analogy to facilitate the explanation. The essential issues addressed include how to cover 
a manifold, what constitute the generalized elements and the generalized nodes, how to 

derive the stiffness matrix and the force vector, and how to obtain a solution. 

A Two-layer Description of a Problem 

Shi's proposal of using a two-layer description for a problem is perhaps one of the 

most innovaFtive features of the manifold method. The first layer of the description is called 



a physical mesh. A physical mesh is a unique portrait of the physical domain of a problem 

that should include all the discontinuities. It defines the manifold whose response is being 

sought. The second layer of description is called a mathematical mesh. A mathematical 
mesh can be a mesh of some regular pattern, or a combinations of some of arbitrary figures. 
The mesh or shape size may be chosen according to the problem geometry, solution 

accuracy requirements, and the physical property zoning. The mathematical mesh is used 

for building covers and has to be large enough to cover every point of the physical mesh. 

This two-layer description concept is illustrated here with a retaining wall example. 

The soil behind the retaining wall above the potential sliding plane is modeled as consists 

of several thin slices to facilitate the occurrence of a particular mode. These decisions define 

a physical mesh for the problem which is depicted in Fig. 1(b). A triangular mesh, as 

shown in Fig. 1(a), is arbitrarily selected as the mathematical mesh. A superposition of 

these two meshes, shown as Fig. 1(c), gives a covered manifold of the problem. It is 

important to note that the manifold method does not require a mathematical mesh to 
conform to the physical boundary of a problem. This greatly simplifies an input preparation. 

(a) 
<M 

(c) yfn—/ -v—y ^v 

/ \  ,'  \ /   \ / \ / \  / 

Figure 1.    A manifold example (a) an arbitrary triangular mathematical mesh 
(b) a physical  description of a retaining wall problem (c) a covered manifold 



In the narrow scope of this study the manifold method can be viewed as a 

combination of the finite element and the discrete element methods. Thus many features 

of the finite elements and the discrete elements, particularly those of the Discontinuous 
Deformation Analysis, DDA, (Shi, 1988; 1993), are incorporated into the current manifold 

method formulation. 

Generalized Nodes and Elements 

The key to the manifold method as an analysis tool lies in the generalization of the 

node and element concepts. The manifold method, by not requiring a mathematical mesh 

to coincide with the physical boundary of a problem, departs significantly from the finite 

element, or the discrete element methods for that matter. Two generalizations in the 

manifold method make it possible for a rather arbitrary selection of the mathematical mesh. 

First, it constructs the interpolation on the basis of the mathematical mesh. Second, it uses 

weighting functions to track the physical boundary of a problem. 

Without losing generality, the following discussion considers displacements as the only 

independent variables. In other words, the so-called assumed displacement method (e.g., 
Macneal, 1994) is adopted here. Other considerations include the use of a triangular mesh 
as the mathematical mesh and the use of a linear displacement field within a basic triangle. 

To avoid confusion, an intersection point on a physical mesh is denoted as a vertex, while 
one on a mathematical mesh is denoted as a node. Also, a basic triangle refers to a triangle 

formed by three neighboring nodes. 

Within a basic triangle bounded by three nodes, say 0,1, and 2, the assumption of 
a linear displacement field leads to the following linear equations, 

where, u(x,y) and v(x,y) are the x- and y- displacements, respectively, at a point (x,y). 

Evaluation of u(x,y) at all three nodes gives 
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The coefficients [a; ] can be expressed as a function of nodal displacement [u; ] as 

[a}= [A\[uj (3) 

where, [A] is the inverse of the nodal coordinate matrix [X]. A similar relationship can also 
be written for the coefficients [bj: 

[b}= [AM (4) 

Substituting (4) and (3) to   (1), the internal displacement within a basic triangle can be 
written in terms of nodal values by 

N0(x,y)       0       Nx{x,y)       0       N2{x,y)       0 

0       NQ(x,y)      0       Nfafi      0       N2(x,y) 
(5) 

where, N;(x,y) is the so-called interpolation function or shape function of a node i, which has 
a peak value of 1 at i, and 0 at the rest of the nodes. N;(x,y) can be found as, 

NfryY 
1 

detlAT (^W+V) (6) 

and using the arithmetic of mod 3, one can write, 

nn=y/+i ~y^2 
ni2=Xi*2 ~X/*1 

(7) 



Fig. 2 shows a plot of the interpolation function N;(x,y) and the domain area it 
affects. This area affected by a node i is the combined area of all triangles with a common 

node i. In topology, such an area is called a star, or a neighborhood star. A nodal response, 
such as u, or v;, is but a scaling factor for the interpolation function that resides on a star. 
Adopting this geometric view, the manifold method considers stars as the generalized nodes. 

The benefits of such a viewpoint become apparent when a discontinuity is encountered. 

Figure 2.  A geometric view of an interpolation function and the star it covers 

Another generalization can be realized from a different interpretation of (5). What 

(5) implies is: "Within a basic triangle bounded by three nodes, the internal displacement 

is determined once the nodal displacements are known." If the statement is recasted in terms 
of stars, a generalization emerges. (5) may be interpreted as- "Any physical area that is 
covered by three stars has its displacement field defined." This is significant: Within any such 

an area, the strain, stress, strain energy can all be computed from the defined displacement 

field, and it is, therefore, possible to apply to it mechanical theories such as the minimum 
energy principle. Using the finite element analogy, such a physical area constitutes an 
element. In the manifold method, a generalized element is hence defined as "any physical 

area that is covered simultaneously by a certain number of stars". This number of covering 

stars required depends upon the type of interpolation functions used. Using a triangular 

mesh with a linear interpolation function, a generalized element is an area covered by three 
stars. If, however, a rectangular mesh is used together with a four-term bilinear interpolation 
function, a generalized element becomes a physical area covered by four stars. On the other 

hands, a rigid object is a star by itself. 



Thus from this very simple generalization, a new way of generating elements is 

established. Considering the basically infinite ways of defining response functions-- which 

may be different physical entities, the possibility of coming up new elements are therefore 

without limit. 

Discontinuities and Weighting Functions 

In order to conduct a continuous-discontinuous analysis, the issue of continuity and 

discontinuity has to be clarified first. This study finds the issue can easily be resolved using 

the concept of "connectedness" from topology which is central to question such as if a figure 

is of one piece (e.g., Mendelson, 1990). Among the various types of connectedness, the 
concept of path-connectedness is found particularly useful. A domain is called path- 
connected if any pair of its points can be connected by a path in it. For example, the domain 

as depicted in Fig. 3 is path-connected because any pair of points, such as 1 and 2, can be 

connected by a path. It can readily be shown that a path-connected domain has a 

continuous response. On the other hand, a discontinuity is a figure, or a curve in a 2- 

dimensional case, that makes it impossible for a domain to stay path-connected. Thus a 
discontinuity always divides a domain into components each of which is path-connected, and 

no points from different components can be connected without crossing the discontinuity. 

Figure 3. A path-connected domain 

Discontinuities may enter an analysis because they are present physically. Or, they 

may be introduced by a mathematical mesh. This study is concerned mainly with the star 

discontinuity. Because whenever a star is divided, its components may response 
independently, and the interpolation function resides on the divided star becomes 

discontinuous. 



Fig. 4 shows a physical domain a-b-c-d which contains a   physical discontinuity e-f 
that divides it into two components a-e-f-d and e-b-c-f. A partial mathematical mesh is also 
depict on it. The star associated with the node 5, shown in hatch, covers the polygon of 1-2- 
6-9-8-4, is divided by    e-f into two components. This reflects the fact that a physical 

discontinuity always causes a discontinuity in the star it crosses. On the other hand, the 

curves g-h and mn are not physical discontinuities since the components they are in remain 

path-connected. But g-h nonetheless introduces a discontinuity in the star associated with 

the node 6 that covers the polygon 2-3-7-10-9-5, while m-n does not introduce and 
discontinuity in the stars that cover it. This clearly illustrates that the selection of a 

mathematical mesh reflects our view of the scale effects. We would choose a mathematical 
mesh with a size compatible to the scale of discontinuity of concern to us. 

b 

Figure 4.  Physical discontinuities and star discontinuities 

The manifold method uses an elegant approach to model a discontinuous 
interpolation over a divided star. Whenever a star is divided a new star is added for each 
additional component.   Following Shi's notation, this study denotes a star with a node 

8 



N_Cx,y> 

w.-Xx.y) 

Figure 5.  Construction of the interpolation function for the star 5, 

number and a subscript that starts from 1 onward to distinguishes all its components. In the 
case of the node 5 of the above example, two independent stars are needed since two 
components are formed. Two stars are independent only if they are scaled by two 
independent nodal values. To accomplish this, two sets of nodal values are stored at node 
5. For the two stars at 5, let 5j represent the component to the left of e-f and 52 to its right. 
For each one of them, its interpolation function is constructed in two steps. First, the same 
interpolation function, N5(x,y), as defined by (2) are used for both 5j and 52. Second, 
different weighting functions, w5](x,y) and w52(x,y), are then introduced. Each weighting 
function has the value of 1 over its corresponding component area, and 0 elsewhere. For 
example, the weighting function, w5l(x,y), for 5! is depicted in Fig. 5. The actual 
interpolation function used in an analysis is obtained by multiplying the interpolation 
function with the weighting function. That is, the actual displacement field, say u(x,y), due 



to 5, is 

u{x,y)--w5 (x,y)N5(x,y)u^ (8) 

where u5l is nodal value assigned for scaling the star 5t Similar equation can be written for 

5,. The displacement over the combined 5l and 5, area, i.e., the polygon 1-2-6-9-8-4 due to 

these two 5 stars becomes 

u{x,y) = w5{x,y)N5(x,y)u5i + w52(x,y)N5(x,y)u5j (9) 

which is continuous within 5l or 52, but becomes discontinuous when crossing e-f. In general, 

the displacement u(x,y) within an element can be written as, 

^/)=EI^v)W^. (10) 
'   J 

where i    is a sum over all the covering stars on an element, j is a sum over all the 

component within an i star. 

(b) 

"L 2. 12,3, /2s 3i 
4, 5,15,6,  5,6, 
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Figure 6.   Identification of stars and elements 



Fig. 6 further illustrates how to integrate the concepts of stars and discontinuities 
into identifying the generalized elements. Just to illustrate the liberty we have in selecting 
the mathematical mesh, a rectangular mesh is adopted here for this example. The 
underlying response is assumed to be bi-linear within each star. Here except for the node 
2, each node is associated with one star only. A 2 star covers the quadrilateral area 1-4-6-3 
which is divided into two components by e-f. Here, the star 2X is designate as the cover over 
the domain left of e-f, while star 7^ to its right. There are therefore 10 stars in this problem: 
l1,ll,21,3l,Al,51,6l,ll,%l, and 9X . Each generalized element in this example is an 
area covered by four stars. There are, therefore, five elements for this problem. Element 1 
is covered by 119 2X ,A\ and 5r; element 2 by 2X, 3V 5X and 6{, element 3 by 2^ 3X, 5X and 6^ 
element 4 by 4V 5X , lx and 8X; and element 5 by 5X, dx, 8: and 9t. It is important to note 
that each element can take a rather arbitrary physical shape. 

Basic Formulations on Elements 

Since most engineers are familiar with the finite element method, the following 
discussions use the finite element terminology. Stiffness matrix of an element due to the 
strain energy is derived here to illustrate the basic formulations. Here, the strain energy over 
a basic triangle is derived first, which is then modified by a weighting function to give the 
real strain energy over its physical domain. 

In a plane strain small deformation problem, the strain-displacement relationship can 
be expressed as follows, 

w= 

du 

£*r 
dx 
dv 

dy 
1 ,du   dv. —(—+—) 
2 dy   dx 

(11) 

Rewriting  (5) as 

[u(x,y))= mx,y)] [uj (12) 

the element strain can be related to the nodal displacement with 

11 



where, [B(x,y)] is a linear derivative of [N(x,y)]. Furthermore, let the constitutive relationship 

be 

[a]=[Q[e] (14) 

then the strain energy density, u0(x,y), may be written as 

»JM)=\[e] TM =\[ "J r[ W)] \ Q [BW>] I "I       <15> 

and the total strain energy of an element can be obtained through integration. To account 
for the physical area of a generalized element, again, the weighting function is introduced. 
The true total strain energy of an element is obtained as follows, 

U=$w(x,y)u0(x,y)dA (16) 

Employing the minimum potential energy principle, the stiffness matrix associate with the 

straining of the element can be found as follows, 

[^jw{x,y)[B(x,y)]T[Q[B{x,y)]dA (17) 

In a similar fashion, other components of the stiffness matrix and the force vectors 
can be derived. Among the factors that are considered for a general applications are initial 

strains, initial stresses, body forces, inertia forces, interactions through contacts, boundary 
loadings, and other structures components such as earth anchors or rock bolts. 

Formulations Across Discontinuities 

Discontinuities pose two sets of constraints. First, objects should not penetrate each 

12 



other across the discontinuities that separate them. Second, the motion of one object against 

another along a discontinuity is affected by the surface strength characteristics. In the 

manifold method, the first constraint is modeled via the use of a penalty formulation, 
namely, a very stiff normal spring is inserted at the point of contact. Any tendency to 
penetrate is restrained by the spring's high stiffness. The second constraint is modeled by 

inserting a shear spring which yields if its strength governed by Mohr-Coulomb's law is 

reached. The strain energy in the contact springs is modeled as part of the overall potential 

energy of the system. This results in the coupling of the stiffness matrices of the elements 

that are in contact. It is important that the stiffness matrices are coupled because it allows 

the motion constraints be imposed as  soon as interactions take place. 

Figure 7.  Modeling the constraints between element boundaries 

A simple example is depicted in Fig.7 to illustrate how a discontinuity is modeled. 

Here only the physical boundaries of elements are shown. Initially, edge 2-3 of an element 
I is in contact with edge 5-8 of an element J. As the loading is applied, both elements may 

move. Before a constraint across the discontinuity is imposed, the edge 2-3 may move, say 
to 2'-3\ while the edge 5-8 to 5'-8'. In the manifold method, just like in DDA, edge contacts 
are modeled via vertex-edge contacts. For this example, the two edge contacts are modeled 

as two contacts, one between vertex 2' and edge 5'-8\ and the other between vertex 3' and 

edge 5'-8'. Here only the formulation for the first one is detailed. If the vertex 2' penetrates 
the edge 5'-8\ the movement from 2 to 2' is first decomposed into a normal and a shear 

components against the edge 5'-8' and they are denoted as d and s respectively. From a 

geometric consideration using vector cross product, d can be written as (Shi, 1988), 

</.A._L 
"58     -58 

1   *, + */2 y2 + v2 

1   ^ + */5  y5 + v5 

1    <V"8   >8 + K8 

(18) 
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where, 158 is the length of 5-8, u; and v; are unknown vertex displacements, Xj and y; are 

known vertex coordinates and A can be expressed as 

A=4,+[te-78) ter-*s)] + [08-^2)   (^--«s)] 
u« 

Aiy2-ys) (^-^) 

In this expression, d0 is a function of known vertex coordinates and is a constant; while the 

displacements at vertices 2, 5 and 8 are functions of the unknown nodal displacements. For 

instance, u2 and v2 can be expressed in terms of the nodal displacements of the element I 

by substituting the (x2,y2) coordinates into the interpolation relationship of element I as 

follows, 

u2 
= [M*>.r2)]/ [u}, 

(20) 

Similarly, u4,v4 and u5, v5 can be expressed in terms of those of the element J. Thus d can 
be expressed as a linear functions of unknown nodal displacements of elements I and J in 

the following form, 

d=d0+l*\Mi+WMj (21) 

where, [a] and [b] are constant row vectors. Since 2' is not to penetrate 5'-8\ a correct 

solution should make this normal penetration d zero. As stated, this is carried out by 

inserting a very stiff spring in the penalty formulation. The potential energy, II, of a contact 

spring is 

kd2 
(22) 

A solution obtained from a minimum potential energy of the complete system generally 
gives negligible penetration. It is important to note that in a penalty formulation, which is 
an approximation to the Lagrange multiplier (Hughes, 1987), a constraint is only 

approximately satisfied. A small penetration always takes place. If the penetration is deemed 

too large, improvements can be made by increasing the spring stiffness or by reducing the 

14 



time step size. The penalty method has the advantage, however, that the spring constant 
does have physical meaning and can be selected to match laboratory test results be they 
linear or nonlinear. 

The shear deformation, s, of point 2' along 5'-8' causes shear stresses which is 
modeled by a shear spring, ks. Expressing s in terms of nodal displacements, the potential 
energy of the spring is also formulated. The corresponding stiffness and forcing terms can 
be similarly determined. Again, the stiffness matrices due to shear movements are coupled 
in this approach. Iteration is required if the shear spring yields. 

Elements may form new contacts or may disengage from existing contacts. Because 
of the coupling in the stiffness matrix, how large a memory area should be reserved for an 
analysis becomes an important issue as the number of elements increases. 

Construction of Physical Boundaries of Elements 

To show that the computational geometry also plays an important role in the 
manifold method, the construction of the physical boundaries of elements from a covered 
manifold is described here. 

1. First of all, the physical mesh is obtained which includes the boundary of blocks 
and discontinuities with them. A computational algorithm devised by Shi for DDA can be 
adopted for this purpose. The algorithm uses tree-cutting analogy and the "coherent 
orientation" scheme in topology (e.g., Giblin, 1977). 

2. One may choose to work on all blocks simultaneously, or one block a time. The 
latter approach is described here. For instance, Fig. 8 (a) depicts a rather general block. 
One may easily determine a rectangular box that covers the block. Let the lower left corner 
be (x_min,y_min) and the upper right corner be (x_max,y_max). 

3. According to the size of the mathematical mesh selected, the mathematical mesh 
may be generated starting from  (x_min,y_min), until the mesh covers (x_max,y_max). 

4. For each point on the mesh, determines if the point or its immediate neighbors 
fall on the boundary or within the interior of the block. If so, the point is retained for 
constructing stars. In Fig. 8(b), it shows 12 points are retained. This means that at least 12 
stars are need to cover the block. 

15 



5. For each point retained, the corresponding star or stars are constructed. If a star 

falls completely within the block, no thing needs to be done. If it intersects with the block, 

the intersected region is the real star area. This step can be achieved with some polygon 
intersection algorithm. If a star is divided by discontinuities, the number of components are 

determined. For instance, there are two 2-stars as depicted in Fig. 8 (c). 

6. Obtain the total number of elements and their physical boundaries. This is 

equivalent to obtain the area overlapped by three stars associated with the triangles of the 

underlying mesh. 

Figure 8.   Construction of physical boundaries of elements (a)A typical object 
(b) after identifying the relevant nodes (c) construction of stars 

Example Applications 

Two problems are solved here for illustration. For the purpose of illustration, these 

examples are much simplified: large size mathematical meshes are used together with linear 

interpolation functions. All the elastic objects have a Poisson ratio of 0.3, a mass density 
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of 1.8 Mg/m\ a unit weight of 18 kN/m3, and elastic moduli ranging from 1500 to 4000 

kN/nr. All the rigid bodies are marked by hatch dots in the following drawings. 

The first problem tackles an elastic medium with rigid inclusions. In this problem 

the elastic medium has both exterior and interior boundaries. Here, two rigid plates are 

pressed against an elastic medium with two rigid inclusions placed unsymmetrically. Initially, 

there are perfect contacts between the elastic medium and the rigid inclusions, as well as 

between the elastic medium and the rigid plates. The covered manifold is depicted in Fig. 

9 (a). All contacts are modeled as frictional with a friction angle of 5°. The deformed 

configuration after experiencing a 14.7% vertical strain is shown in Fig. 9(b). Because of the 

way inclusions are placed, the elastic medium deformed unsymmetrically. Part of the 

contacts between the inclusions and the medium are separated. The contacts between the 

rigid plates and the elastic medium also shift. 

<b) 
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Figure 9. An elastic medium with rigid inclusion problem (a) a covered manifold 
(b) its deformed configuration 



The second problem, as shown in Fig. 10(a), studies an elastic object, which contains 

a set of well-defined fissures, and is being pressed from the sides. Surfaces of the fissures 
are characterized by a friction angle of 5°. This problem is presented here to illustrate the 
capability of the manifold method in modeling discontinuities. For this purpose, tips of the 

fissures are not allowed to propagate. Even with this simplification, this is still a rather 

difficult problem. Pressing the sample from sides, the fissures show a complicated movement 

pattern. The side rigid blocks in this example are assumed smooth frictionless surfaces. The 

deformed configuration at a horizontal strain of 20.8 % is summarized in Fig. 10(b). In 
order to show the deformed configuration clearly, the mathematical mesh is not shown in 

this plot. Because of the rough mesh used, this result is only a crude approximation. 

Although much simplified, the example shows the manifold method may have a potential 

use in solving  problems involving  clusters of discontinuities in various arrangements. 

do) 
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Figure 10.  An elastic medium with non-propagating fissures (a) a covered manifold 
(b) its deformed configuration 
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Conclusions 

This study explains the fundamentals of the manifold method using concepts with 
which engineers are familiar, and shows how different parts are put together for an 
engineering analysis. The illustrative examples may also shed lights on what problems may 
be benefited from its use. 

The manifold method has several distinctive features that are important from 
engineering analysis point of view. First and foremost, by using a covered manifold it opens 
up a new way for the continuous and the discontinuous methods of analysis. Second, it 
satisfies the minimum energy principle globally, namely both within elements and across 
elements. Except for the discretization simplifications, the procedure is rigorous both 
analytically and numerically. Third, the unifying underlying formulations allows extensions 
be introduced, such as the inclusion of rigid bodies, in a consistent manner. 
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Abstract 

This paper presents a 2D simplified version of Shi's manifold method when combined 
with the artificial joint concept. The physical solid blocks are refined into a system of sub- 
blocks by a certain pattern of artificial joint mesh. The displacement function used and 
modelling of block interactions are directly extracted from Shi's discontinuous deformation 
analysis. This simplified version can determine the refined stress distribution within selected 
blocks of any shape, and permit simulating fracture propagation of intact solids. 

Introduction 

Since the manifold method was first introduced by Shi in 1992, the concept and 
potential use of this method has drawn great attention from international researchers in 
both the mathematical and engineering fields. It is foreseen that the manifold method will 
become one of the most flexible tools to deal with material problems of complex geometry 
or mixed phases, as encountered in composite materials, fracture propagation, multi-phase 
flows, etc. 

As a key issue in the method, the separation of mathematical and physical meshes 
makes it possible to solve problems involving complex/different material domains. The 
mathematical mesh does not only relate to the physical behavior of a material (i.e. some 
partial differential equations), but also includes the numerical discretization scheme on the 
space as well as the shape function used. The selection of shape functions might be quiet 
arbitrary. However, in order to handle complex material boundaries, the simplest and 
lowest-ordered are preferred. The physical mesh represents the complex space occupied by 
a material domain, and subsequently indicates the integration domain in a numerical 
analysis. The physical mesh is given and can not be changed arbitrarily. It is emphasized 
in the manifold method that a simple mathematical function is used to integrate over a 
complex geometrical domain. 
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With the finite covering concept, the manifold method can model a wide variety of 

continuous or discontinuous materials.  If a local function f;(x,y) is defined over Cover U; 

fj{x,y)      (x,y)<=Ui (D 

then the global function for the whole finite cover system can be given by 

where o);(x,y) is the weight function, and is defined by 

co-(x,y) = 0     (x,y) $ If; 

Ys^y^u^M'y)   =l 
(3) 

According to this concept, both the finite element method and Shi's discontinuous 

deformation analysis (DDA) are special cases of the manifold method. 
DDA (Shi, 1988) adopts displacements as unknowns which are solved implicitly, fully 

satisfies dynamic equilibrium, and has complete block kinematics for block contacts. For 

Block i of a 2D space, the displacements of any interior point (x,y) is given by 

V 
(*.y) 

[TA^fim (4) 

where 

[TA (*-y) 

l 0 -(/-jo) x-x0    0     Uy-y0) 
v 

0 1 X      Xn 

m\l = ("< o    n> Yo c x    c y 

y-y0 j(x-x0) 

i xy) 

(5) 

where (u0,v0,y0) are the three components of rigid-body movements, and (e^y^) the three 

components of strain.  The local function is [TJ^DJ, and the weight function is 

^(x,y) = i    (x,y) ey 
uj(x,y)   = 0     (x,y)€Uj 

(6) 

where U; is the physical domain of Block i. Accordingly, DDA blocks are totally 

discontinuous to each other. Besides, it is seen in Eqn(5) that each DDA block possesses 

a state of constant stress, regardless of its shape. 
In the early computer code of the manifold method developed by Shi (1992), the 

mathematical mesh used for the blocks is the three-noded finite elements, and block 
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interactions are modelled according to the block kinematics in DDA. This code can analyze 

a system of discrete deformable solid blocks of complex geometry. 
This paper presents a 2D simplified version of the manifold method when comb.ned 

with the artificial joint concept. The physical solid blocks are refined into a system of sub- 
block by a certain pattern of artificial joint mesh. The displacement funct.on used and 
modelling of the interactions between solid blocks are the same as in DDA. This simplified 
version can determine the refined stress distribution within selected blocks of any shape or 
even containing complex interior features, and permit simulating fracture propagation of 
intact solids. In this paper, the artificial joint concept is first introduced, followed by 
illustration of several numerical examples. Discussions on the comparison of vanous 
schemes and selection of adequate artificial joint meshes are also included. 

The Artificial Joint Concept 

The artificial joint concept includes two parts: cutting and patching. Cutting is a 
process of dividing a block domain into sub-blocks by artificial joints so that the block 
becomes an assemblage of sub-blocks created by imaginary boundaries. These added 
artificial joints represent "additional" physical boundaries within the block. Figure 1 shows 
a quadrilateral block (solid lines) and a regular pattern of artificial joint mesh (dashed lines) 
which creates equilateral triangular sub-blocks. It can be seen in the figure that the block 
is divided into six sub-blocks, among which only one is equilateral triangular, and the others 
have irregular shapes produced by the block outer boundaries and adjacent artificial joints. 
With a regular artificial joint mesh, the resultant regular sub-blocks are generally present 
much within the refined block and the irregular ones near the block outer boundaries. 

Figure 1. A solid block and artificial joint mesh 
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Patching is a process of assigning strengths to the artificial joints to glue sub-blocks 

together. If the artificial joints are infinitely strong, the contacts between sub-blocks never 
fail, leading to continuous connection of two adjacent sub-block by contact springs. As the 
stiffness of contact springs increases, the contact sides of two adjacent sub-blocks will 

displace similarly. As a result, the assemblage of sub-blocks behaves as a continuous body 
like the original block but with refined stress distribution since each sub-block has its own 

stress state. If the artificial joints are assigned finite strengths, they provide potential 

cracking paths wherever contact forces exceed limiting values. The energy loss due to 

cracking is represented by the strain energy release of failed contact springs. Accordingly, 

fracture propagation of an intact block along a predestined path can be simulated. The 

failure criterion for (T,CT) along the contacts between sub-blocks follows Mohr-Coulomb's law 

with a tensile strength cut-off. Ke (1993) coded the procedures to deal with joints having 

cohesion and tensile strength, in which contact pairs, each composed of two contact points, 

need to be sought first. Artificial joints intersecting the cracks, or boundaries of holes and 

interior blocks, allow these complex features to be modelled. 
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Figure 2.  (a) A block with complex geometry and interior features; and refined 
geometry by (b) Type A artificial joints; (c) Type C artificial joints 

Figure 2a depicts a complex block domain with a notch at the left, one isolated crack 

below and another with a branch above the notch, and two interior boundaries at the right. 

Figures 2b and 2c show the resultant sub-block systems of the block domain in Figure 2a 
by adding regular artificial joint meshes. Note that any portions of the added artificial joints 

outside the refined domain have been automatically deleted by the joint mesh generator. 

Type A artificial joint mesh (Figure 2b) contains two orthogonal joint sets and generates 

rectangular sub-blocks; Type C artificial joint mesh (Figure 2c), which also appeared in 

Figure 1, contains three joint sets to produce equilateral triangular sub-blocks. There are 

another three artificial joint mesh types available to refine a homogeneous and isotropic 
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block domain, as follows. 

Type Number of joint sets Sub-blocks formed 

B 4 Right-angle triangular 
D 2 Diamond-shaped 
E 3 Hexagon-shaped 

Numerical Examples 

The applicability of the artificial joint-based manifold method is illustrated by the 
following five examples. The 'static' mode is used in the first three examples; while the 
'dynamics' mode (in which the velocity of each block is updated step by step) is used in the 
last two where a progressive failure is involved. 

Cantilever beam 

This example examines the performance of Types A and C artificial joint meshes for 
stress analysis in a cantilever beam. The beam, 8m long and lm high, is fixed at its left end 
and is loaded at its right tip. The Young's modulus and Poisson's ratio of the beam are 100 
MPa and 0.2, respectively; the tip load is 100 kN. Type A artificial joints divide the beam 
into 128 sub-blocks; while Type C artificial joints cut the beam into 228 sub-blocks. The 
added artificial joints have infinite strength. 

Figure 3a shows the deformed geometry and principal stress field1 of the Type A 
refined beam. The results are unsatisfactory; all sub-blocks have the same tensile principal 
stress at -45° and the same compressive stress at 45°. The whole beam responded in simple 
shear rather than bending, because the deformed shape of the rectangular sub-blocks 
generated by Type A artificial joint mesh is restrained by, the first-order displacement 
function used, to deform only into parallelograms2. 

Figure 3b depicts the deformed geometry and principal stress field of the beam 
refined by Type C artificial joints. In contrast to Figure 3a, Type C mesh allows the beam 

the principal stress field described in this paper means the computed graphic output 
showing the principal stresses of each block at its centroid; compressive stresses are 
indicated by solid lines and tensile stresses by dotted lines. 

this is no longer true when using a higher-order displacement function. 
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to deflect, developing a neutral axis with tensile fiber stress in its upper part and 

compressive fiber stress in its lower part. This example shows the adequacy of Type C 

artificial joints to detail beam structures. Ke (1993) examined other cases with smaller 

deflection, in which Type C artificial joint mesh yielded results agreeing with those 

calculated using classical simple beam theory. 

Ixnglh (m) 
  O.JE-00 
Principal »treu 

     tenjMDfi 

Length (m) 
  Q.5E*O0 
Principal stress 
  O.SE*04 
   tension 

Figure 3.  Principal stress field of: (a) Type A refined beam; (b) Type C 
refined beam 

Stress concentration near a crack tip 

Analytical solutions to two-dimensional crack problems for various loading conditions 

show that the stresses at a small distance r from the crack tip always vary as r'm (Rice, 

1968). Two behavioral modes of a crack, Mode I (in-plane opening) and Mode II (in-plane 

shearing), are investigated here. Figures 4a or b show a block, lm high and lm wide, with 

a horizontal crack extending six tenths of the way across its width; the block is fixed at its 

two bottom corners. In Figure 4a, a vertical load P pulls the upper-left corner of the block 

upward, causing crack opening (Mode I); in Figure 4b, a horizontal load H at the left end 

of the top crack wall causes sliding (Mode II crack shearing). The block has the same 
Young's modulus and Poisson's ratio as in the cantilever beam example and the crack is 

assigned zero friction to signify the sliding behavior in Mode II. The cracked block was 

refined into 252 sub-blocks by Type C artificial joints with infinite strength. 
Figure 4c shows the deformed geometry and principal stress field of the cracked 

block subjected to P= 10 kN.  In this figure, the crack is open, and higher values of tensile 
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principal stresses are present near the crack tip in the radial direction. If more sub-blocks 

are used, the stress concentration near the crack tip in Mode I will be more precisely 
described. 

Figure 4d depicts the deformed geometry and principal stress field of the cracked 

block subjected to //= 100 kN. The adjacent crack walls are in contact at the tip and on the 
left end, but open between these two points. Higher compressive principal stresses run from 
the loading point, along the top crack wall, around the tip, then attenuate finally to merge 
toward the lower-right fixed corner; tensile stress is distributed below the crack wall and 

concentrated near the lower-left fixed corner. 
P 

(a) 

(c) 

■\i~r ../.... --■•■<• -X- •■•■•*  

/    v   \  . 

(d) 

—V —.y~...; 

:'*  \ /   •  * .- '■ ' /   > » /   \ + /  -. + /  ■.•«.,' '- \ - \ \ /:      :\ , / \ .   / \ ,   / :  .  / \   .  / \   . /\   .   A        A        A   ~~. 

■'•'- \ / --\ / x\ '/ v \  .-' / \ />■'•. /\\ /\.:       :/A ' /W '/_'".' ''_'-'''_\'/^\'/_\*/'  \ '/ \ ' -' V 

^"T'/T~K"T""A.'"/V  '"■7;" —•.-•.-^f—---V-Jj     M;--y.i V V ~ *'- ■V-~A;l-.--V'.-I^----A''-'- 

•■•»• '. •.<;•—■/-■- 

/ ' '• / ' *• / ' '-. -' ' ~   -' 
* •    . < / '. * ■;.. / ■■,: :•, ..-•., .• •. , .■ : , : \ , ,". , ,'\ . ,-\ 

■••••/ * A ' '■:'['■ A/ ■ './ ■ V •• \/' \/' 'A - A"' -\ 
';•. - A * / '■ '/';)■■ >-;,\"," T~. AA ,■. ,y-~:\ ■ A .""■ 
-  \; * V_ '__■./ _/_j :.•   - \ .   /     ,. , "-. / , \ : , \ ; . \ / . \ / 

'■'"•" / '•   * /\ ' .;': .".  /  .• '•. y   ■"•   .   ■'':  .~T\   .~?:   . ~J\   .   /\ 
■' ' \ •' x ■. •   ' '. ■■\\ ■/■■ ;,'•  ,-V •■ /.     /.'./. \  / . '■   . .\ ,-     ..-...,. /_...    ...>...., ;^^ ^,_  ._. ___-^_ :J_ __v  \ 

/ \ >  .' '.  1   /■ 

Figure 4. A block with a crack: (a) vertical load P (Mode I); (b) horizontal 
load H (Mode II); (c) principal stress field (Mode I); (d) principal 
stress field (Mode II) 27 



Block-in-matrix materials 

A block-in-matrix material contains isolated (interior) blocks which are embedded 

within a matrix. The properties of the matrix and interior blocks may not be the same; the 

interfaces between the matrix and interior blocks are inherent discontinuities. The global 

behavior of a block-in-matrix material is a function of the proportion, orientation, 
arrangement, and size of interior blocks and, especially, the interface strengths (Ke, 1995). 

Figure 5 shows two specimens from a particular case of block-in-matrix materials, 

melange, found in the subduction zones paralleling present and ancient convergent plate 

margins. Melange is distinguished by its oriented lenticular interior blocks. The specimen 
in Figure 5a contains 19 horizontally oriented blocks (shaded areas) which occupy 40% of 

the total "volume"; that of Figure 5b has 27 vertically oriented blocks covering 58% of the 

"volume". 

Figure 5.  Melange specimens: (a) specimen 1 with 19 horizontally oriented 
blocks; (b) specimen 2 with 27 vertically oriented blocks 

Young's moduli of the matrix and interior blocks are 250 and 420 MPa, respectively; 

both materials have the same Poisson's ratio of 0.4. The interfaces are assumed to be 

frictionless. A numerical uniaxial compression test was conducted on both specimens 

(Figure 5) by adding stiff loading plates on the top and bottom of the specimen. The bottom 
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plate is fixed; a vertical load, P, is applied to the top of the upper plate. The displacements 
of selected points around the specimens were used to compute their overall secant moduli 
and Poisson's ratios3. The matrix domain was refined by Type C artificial joints with infinite 

strength. 

Table 1   Computed secant moduli and Poisson's Ratios in Example 3 

P=l(kN) F=2(kN) />=5(kN) F=10(kN) 

Secant moduli: Specimen 1 298.5 298.0 297.9 297.9 

Secant moduli: Specimen 2 312.2 310.3 309.9 309.9 

Poisson's ratios: Specimen 1 0.4819 0.5165 0.5262 0.5205 

Poisson's ratios: Specimen 2 0.5986 0.6595 0.8422 0.8755 

Table 1 lists the computation results of two specimens, in which moduli are expressed 
in units of MPa. Both specimens behave non-linearly, indicated weakly by the computed 
secant moduli and more convincingly by Poisson's ratios3. The non-linear behavior derives 
from the large number of frictionless interfaces that undergo sliding in several directions, 
leading to continuous reduction in stiffness with increasing load. Some of the interfaces 
intersect the outer boundaries, especially on the free side walls of the specimens (Figure 5), 
further degrading the overall stiffness. Table 1 also indicates that although the block 
proportion of Specimen 2 is higher than that of Specimen 1 by 18%, the increase in modulus 
is not proportionally large. This is probably because Specimen 2 loses some stiffness due 
to increased chance for sliding along its longer frictionless interfaces. 

An arch dam subjected to impact 

As an example of showing the fracture propagation capability, cracking and 
destruction of an arch dam subjected to enormous impact is simulated here. Figure 6a gives 
a plan view of an arch dam abutting on jointed rock and a huge block at t=0 approaching 
the dam in the indicated direction. Points 1 to 11 are fixed. Because an arch dam is always 

ratios of average horizontal to vertical displacements revealed by the output. 
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made of rectangular concrete blocks, Type A artificial joints were used to refine the dam 
into 36 concrete sub-blocks, as depicted in Figure 6a. Each concrete sub-block was not 

further refined at the stage of this study. 
Young's modulus and Poisson's ratio of the dam are 1000 MPa and 0.2, respectively, 

and those of the abutments are 200 MPa and 0.2, respectively. All joints in the abutments 

are cohesionless and have a friction angle of 15°; the interfaces between the dam and 

abutments have a friction angle of 30° and a cohesion of 0.1 MPa. The added artificial 
joints (interfaces between concrete blocks in the dam) have a limited strength: a friction 
angle of 30°, a cohesion of 0.1 MPa and a tensile strength of 0.03 MPa. The velocity of the 

approaching rock is 141.1 m/sec. 
Figure 6b shows the deformed geometry of the dam at t=0.002sec when the rock just 

hit the dam. Many interfaces near the collision point fail (indicated by solid lines), and lose 

their initial cohesion and tensile strength. Two gaps form in the interfaces of concrete 

blocks below the impact point. At t=0.003sec, cracking of interfaces is propagating into the 

two wings of the dam, as revealed in Figure 6c. Figure 6d depicts the significantly deformed 

geometry of the dam at t=0.01sec. In this figure, no interface survives at this time, and 
remarkable gaps arise between the concrete blocks below the hitting point. At this stage, 

imagine that water at a reservoir pressure enters these gap, leading to the total collapse of 

the dam. 

A flying object hitting a shelter roof 

This imaginary example provides a second illustration of fracture propagation within 
a solid structure. As depicted in Figure 7a, the structure subjected to impact resembles a 
military shelter for tanks or aircraft, which is composed of 80 concrete blocks (this was also 
done using Type A artificial joints). A warhead-like object is approaching the middle point 
of the shelter at a downward velocity of 100 m/sec. The foundation block are fixed at its 

three corners. 
Young's modulus and Poisson's ratio of the shelter and foundation are 1000 MPa and 

0.2, respectively. The interfaces between the shelter and foundation have a friction angle 

of 30° and a cohesion of 0.1 MPa. The added artificial joints (interfaces between concrete 

blocks in the shelter) have a finite strength: a friction angle of 40°, a cohesion of 0.05 MPa 

and a tensile strength of 0.01 MPa. 
Figure 7b shows the deformed geometry of the cracking shelter at t=0.0015sec when 

the object started to penetrate the shelter roof. Many interfaces near the collision point fail 
(indicated by solid lines), and lose their initial cohesion and tensile strength. At t=0.01sec, 
cracking is propagating into the two wings of the shelter, as revealed in Figure 7c.  Figure 
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Figure 6.  Cracking of an arch dam at t=: (a) 0; (b) 0.002; (c) 0.003; (d) 0.01sec 
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Figure 7.  Cracking of an shelter at t=: (a) 0; (b) 0.0015; (c) 0.01; (d) O.OSsec 
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7d depicts the total collapse of the initially intact shelter at t=0.05sec. In this figure, the 
intruding object has already dug into the shelter and the protected object(s) inside will be 
destroyed shortly. 

Discussions 

Comparison of various schemes 

In addition to the artificial joint-based manifold method, there are at least three 
schemes which can handle variable stress and fracture propagation within a continuous 
block. They include using a higher-order displacement function in DDA, finite element- 
based DDA (Shyu 1993 and Chang 1994), and the original form of manifold method (Shi 
1992). Tables 2 and 3 compare these schemes with respect to refined stress distribution and 
fracture propagation capabilities. 

Adopting a higher-order displacement function in DDA is the most straight-forward 
to attain a variable stress field and to indicate a point where stress concentration occurs and 
cracking initiates. In this case, since straight block sides become curved after deformation, 
additional nodes must be added along those long straight block sides for better detection 
of contacts. The computation time and complexity of block integration involved increase 
with the order of the displacement function used. However, this scheme alone can not 
resolve a block domain having extremely irregular shape and containing non-crossing cracks 
or interior blocks. Also because it does not identify and allow non-crossing cracks within 
a block, it can only simulate the fragmentation of blocks, i.e. a block breaks into two or four 
pieces instantly. 

In a finite element-based DDA, the original block unknowns are now replaced by 
finite element nodal displacements. To refine a complex block domain containing non- 
crossing cracks, a versatile mesh generator is required. It is possible for this scheme to 
simulate fracture propagation if the element boundaries are allowed to break down. The 
energy loss due to cracking can be modelled by damping or reduction in stress, which may 
require input from physical tests. 

The original code of manifold method developed by Dr. Shi contains a versatile finite 
element mesh generator which can refine a block domain even containing swirling non- 
crossing cracks. With adopting adequate failure criteria, the fracture propagation within a 
solid can be readily simulated. However, the energy loss due to cracking must be 
represented by the same way as used in the above scheme. 

When attaining a refined stress distribution within the same order of solution 
precision, the total number of degree of freedom required by the artificial joint concept- 
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Table 2  Comparison of Various Schemes for Stress Variation Capability 

Scheme Computatio 
n Need 

Complex Block Shape Inclusions1 

Higher-order 
displacement 
function2 

_3 _3 Impossible 

FE-based DDA O.K. Need good mesh 
generator 

Need good 
mesh 
generator 

Original manifold 
method 

O.K. O.K. O.K. 

Artificial joint-based 
scheme 

Higher O.K. O.K. 

1 such as non-crossing cracks, holes and interior blocks. 
2 additional nodes needed along the initial long straight block sides. 
3 depending on the order of displacement function. 

Table 3  Comparison of Various Schemes for Fracture Propagation Capability 

Scheme Capability Energy Loss Cracking 
Direction 

Higher-order 
displacement 
function 

Fragmentatio 
n only 

Damping/Acr Any 

FE coupling Possible Damping/Acr Along 
element 
boundaries 

Original manifold 
method 

O.K. Damping/A<7 Any 

Artificial joint-based 
scheme 

O.K. Strain energy 
release of failed 
contact springs 

Along 
artificial 
joints1 

1 relaxed by allowing the breakage of sub-blocks. 
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based scheme are about 40% larger than the other schemes, leading to longer computation 
time. However, this does not remain true when modelling fracture propagation, in which 
an intact solid is gradually fractured and finally broken into pieces. In this scheme, the 
energy-loss associated with cracking is naturally modelled by the strain energy release of 
failed contact springs, with no need of inputting other measured or artificial quantities. The 
cracking direction is constrained by the artificial joint mesh selected, but this limitation can 
be overcome by allowing the breakage of sub-blocks according to a certain failure criterion. 

Selection of adequate artificial joint meshes 

Solid materials are usually composed of crystals or grains in the micro scale, as ideally 
shown in Figure 8. The crystal/grain boundaries are essentially softer and weaker than the 
solid parts of crystal/grains. Therefore, these boundaries are more deformable and represent 
potential cracking routes. If an artificial joint mesh could match exactly these boundaries 
or mostly their macro-pattern which would be mappable, then the computation results with 
an adequate displacement function should be much more compatible to the actual behavior 
of the solid domain, in terms of mechanical behavior. 

For a homogeneous and isotropic solid with unknown crystal boundary pattern, a 
regular artificial joint mesh should be used, like those as described in the Section of THE 
ARTIFICIAL JOINT CONCEPT. If a first-order displacement function is used, only those 
generating triangular sub-blocks (such as Types B and C) should be used. In the case of a 
higher-order displacement function used, all joint mesh types can be adopted. When a 
transversely isotropic material is encountered, Type A joint mesh may be applied, with one 
closely-spaced joint set being parallel to the geological structure like foliation. 

(b) 

Figure 8.  Ideal representation of a solid composed of: (a) crystals; (b) grains 
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Conclusions 

Since the concept of separating mathematical and physical meshes, the manifold 

method has been becoming one of the most flexible tools to deal with material problems of 

complex geometry or mixed phases. This paper presented a 2D simplified version of the 

manifold method when combined with the artificial joint concept. This simplified version 
can determine the refined stress distribution within selected blocks of any shape or even 

containing complex interior features, and permit simulating fracture propagation of intact 

solids. When compared with other schemes, the artificial joint-based scheme seems to be 

more flexible and practical. Selection of an adequate artificial joint mesh depends upon the 

understanding of the solid material under investigation. 
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1. Introduction 

The wave propagation analysis in an either elastic continuous or discontinuous medium is of 
great importance in geotechnical, rock and earthquake engineering. However, the limitation 
of analytical solution due to the complex boundary condition, and numerical error due to 
the temporal and spatial discretization in Finite Element Method (FEM) analysis for wave 
propagation of continuous system has posed a long-standing challenge. In addition, the ques- 
tionable dynamic solution of the existing discontinuous computations methods such as FEM 
with large number of joint element or Discrete Element Method (DEM) in wave analysis of 
discontinuous system resulted fairly less confidence among researchers and engineers on the 
computation results. 

Manifold Method (MFM) is a novel numerical method developed by Dr. Gen-hua Shi early 
90's (Shi, 1991). Mathematical field (mesh or domain) and physical mesh are defined sep- 
arately and integrally incorporated to model the continuous or discontinuous material with 
complex internal geometry like composite structure, inherent or growing crack, sliding failure 
plane. The mathematical fields may overlap each other, cover the entire material space to 
form a finite cover system. Mathematical field is always approximated by regular grids, FEM 
type mesh or randomly distributed convergence regions of series function, whichever is the 
closest. Since any vibration of a system can be solved into the natural modes of vibration 
in general case and the natural modes of vibration can be well represented by trigonometric 
(Fourier) series. Fourier function naturally become the best candidate for representing the 
mathematical field of MFM in wave propagation analysis. Using Fourier function, FEM type 
numerical error of spatial discretization can be eliminated since no spatial discretization is 
needed. 

A simplest fashion, one dimensional single field using Fourier function, MFM has been devel- 
oped and examined for better understanding of MFM's principal, potential and for further 
development. Single field means that physical mesh is covered by only one single field rep- 
resented by a displacement function.   For instance of a block system, every block is only 
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covered by a single mathematical field and has no overlaps. In this paper, manifold method 
using Fourier function is referred as MFMj. Major formulations are presented and followed 
by three classic examples. Comparison made in three examples show the great potential, 

advantage of MFM as well as its beauty. 

2. The Best Displacement Function 

The physical meshes in MFM are based on the external boundary and internal joints or 
interface and represent the material boundary and joints. The displacement function defines 
the mathematical field. Integration over the mathematical field is based on the selected 
displacement function or mathematical mesh, and boundaries defined by physical meshes. 
Since virtually displacement function can any format as long as it converges in the area of 
defined mathematical field, the best displacement is possibly to be found. The best dis- 
placement means that a displacement function has higher degree accuracy or less degree of 
approximation to represent the mathematical field with reasonable unknown variables. 

A general one-dimensional series approximation can be served as a displacement function: 

N 

u = 2J ajfj(x) (1) 

where a,j is the coefficient of the series approximation and referred as the deformation vari- 
ables here. Equilibrium conditions is reached only when the total potential energy (FT) is a 
minimum. By minimizing the total potential energy with respect to these variables, a set of 
simultaneous equilibrium equation is set up as the following equation: 

du 
da 

t ^n \ 
dao 

\dJ1   I \   daff   I 

= 0 (2) 

Minimum can be sought only within the constraint of an assumed displacement pattern, 
which varies with a finite set of undermined displacement variables. A assumed displace- 
ment function with a set of displacement variables limits the infinite degree of freedom and 
may not be the best approximation for a specific problem. As a result, the true minimum 
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of the energy may not have be reached. Therefore, the displacement function should be 
able to represent the true displacement distribution as closely as possible. One beauty and 
powerful feature of MFM to incorporate the best displacement function, if it exists, into 
its formulations. For dynamic problem such as wave propagation, since any vibration of a 
system can be resolved into the natural modes of vibration in general case and the natural 
modes of vibration can be well represented by trigonometric (Fourier) series approximation, 
which can be considered as the best displacement function (see Equation 3). 

f(x) = a0 + 2Ja2„-ism — +a2ncos — J (3) 
71=1 

Zilj ^"2 

where xt- is the center point of ith single field in a n-field system, or a n-block system. /,■ is 
the length of ith block. N can be any number of integer. The displacement of point x can 
expressed as: 

.      7r(x — X{) 7r(x — X{) 
u    =    do + GEI sin — h öi cos — h ... 

mr(x — X{)                  mr(x — X;) 
+a2n-i sin — h a2n cos — + ... 

.    Nir(x — Xi)                  NTT(X — Xi) . . 
+a2N-i sin — h a2N cos —  (4) 

The greater the degrees of freedom of approximation, the more closely the solution approxi- 
mate to the true one ensuring complete equilibrium will be. To ensure the best approxima- 
tion, the greater degrees of freedom in terms of larger number of N in equation 3 is essential. 
In addition, each field can has an own displacement function, which does not have to be the 
same type approximation, if necessarily, or the same number of N. 

In this paper, formulations of MFM given in program coding-ready format is based on a 
general Fourier approximation. Any number of N can be chosen in the final formulations or 
inputted in the program depending on the specific problem. 
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3. Simulataneous Equations and Submatrices 

Equilibrium equations are derived by minimizing the total potential energy JI done by the 
forces and stresses as Equation 5 for field or block i: 

|p=0   r = 0,1...27V, (5) 
oari 

These equations represent the equilibrium of all the loads and contact forces acting on block 
i along the moving direction or deformation defined by </„•. Equation 6 can be obtained from 

equation 5: 

[Ku\[Di] = [Ft] (6) 

One block has 2N+1 degree of freedom or deformation variables. Ku in the coefficient ma- 
trix of equation 6 is a (2N+l)x(2N+l) matrix. D, and F,- are (2N+l)xl matrices where A 
represents the deformation variables. The total potential energy f] 1S *ne summation over 
all the potential energy of individual stress and force. In MFM, the potential energy of each 
force or stress and their differentiation are computed separately. The differentiation 

^,     r = 0,l,...2JV, (7) 

are the coefficients (A',-,-) of unknown dri of the equilibrium equation 6 for variables <fr,-. 
The differentiations 

an<°>       r = 0,l,...2tf, (8) 
ddri 

are the free terms [Fx] of equation 6 after shifting it to the right. Total Ku and F\ are the 
sum of Ku or F{ due to the different potential energy. 

Simulataneous equations of a n-block system are written as: 
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/ Kn K12 A'i3 
K2\ K22 K23 
K31    K32    K33 

^ Knl   Kn2   K, n3 

■■■   Km \ (   A   ) ( Fl "\ 
• ■ ■   K2n D2 F2 

■ ■ •   K3n Dz = F3 

**-nn   j \ D» I {Fn) 

(9) 

where K^ is determined by contact between block i and block j.  K^ is zero if block i and 
block j do not contact. nc is the potential enegry due to the contact, so: 

11     ddridd 
r,s = 0,1,...27V. (10) 

sj 

In equation 10, Kij and F; have a number of submartices such as elastic submatrice, point 
loading submatrice, inertial force submatrice, prievous stress submatrice, contact subma- 
truce, etc. In this paper, elastic, initial stress, volum loading, point loading, inertial force, 
fixed point and contact force are given in some detail. The more detail can be found in 
reference 1. All the submatrices are expressed in the general fashion. 

3.1 Elastic Submatric 

Equation 4 is written in maxtrix form: 

(«) = (l    sin^l Tt(x — Xj) 

21, 

donte: 

Pi] = ( 

sin 
NTTJX — X,) 

21, COS- 
NTT(X- ■n(x — Xj)   \ 

21, ) 

(     a0     \ 

&2n-\ 

0-2n 

\   a2N    / 

1 ■        Tr(x-Xi) 7T<X — Xi) 
1   smuT   cosv~ sin NTT(X-XJ) 

21, cos • NTTIX- -K(X-XJ)   \ 
21, J 

(11) 

(12) 
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[Di] = 

/    a0    \ 
CL\ 

] = &2n-\ 

«2n 

V   a2N   I 

u  J  = = mjiA-] 
Then: 

Strain (ex) of any point in block is the differntial of u: 

0 

—   [    dx    ) 

\ 

7T ir(x-Xi) 
-i- COS — -L 
21, CUb       2/, 

7r      •      TT(X — Xi) 

-2f,Sm2U 

21,   UU& 21, 
_Nn Q;n Nff(j-r.-) 

2/;   bU1 2/, / 

The potential energy due to elastic stresses is expressed: 

7 C-JC     X 

" Cr -*—/ C-rCitx/ = /- 7 2 

=      ^[^.]T(/[^]T[^][^]^Pe] 

Donte 

Ks = ^"^-  = J ([Pe)
T[E][Pe}dx =  [E](J{Pe}

T[Pe]dx+ -►  [ff«] 

[A] = J[Pe]
T[Pe]dx 

'  ^   p = q=l,2,... 2N 
ap, = |   Q       p = 2n-l & q = 2m-l or p = 2n k q = 2m, n < m < 2N 

0 others 

(13) 

(14) 

a0   ai   a2    •■■    a6 j = [D][P] (15) 

(16) 

(17) 

(18) 

(19) 
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Q = (_i)P+1ü^[^_sinlüi+^ + (.ijP+i-i-sin (üZ^]^ + (-1)^]    (20) 
4/;    m + n 2 m — n 2 

3.2 Initial Stress 

The initial stress (cr%
x), which is not necessarily constant along the block, is a function of x 

and can be represented by a Fourier approximation function in term of the initial strain and 
Young's moudulus: 

ox = Eex = E[P][D*) (21) 

where [P] is the same as the equation 15 and [D1] is (2N+l)xl martix depending on the 
initial stress. The potential energy of initial stresss is 

II = " / **°idx = -[E] j[De]T[Pe}
T[F][D'}dx (22) 

i 

Minimizing Hi by taking the derivatives: 

f _   9n,-(o) 
Jr      — 

ddri 

=   [E\J[Pt]
T[I»\\iy]dx^[Ft\ 

=   E r+l\^r)2(l + 22 + 32 + ... + N2)[Dp]da 
Jxi—li      Zli 

7T2 

Ei^NiN + mN + l)^}   + —►[#] (23) 

which is added to F,- in the global equation 9. 

3.3 Point Loading Matrix 

The potential energy due to the point load (Fx) at point x is 

JJ = -Fxu = -[DiflTifFx (24) 

45 



where u is the displacement of loading point. To minimize Up, the derivatives are computed: 

<9ryo) 
/r   = ddri 

[Tt}
TFx    + —►[#] (25) 

This (2N+l)xl submatrix is added in the global equation 9 

3.4 Volume Loading Matrix 

Volume loading (/x)is constant and acts on the block with length of /,-. The potential energy 
due to this loading is 

II = ~ luf*dx = - [{D,]T[T,}Tfxdx = -{Diffx( f[T,]Tdx) (26) 

The derivatives of Ylw are taken to minimize the potential energy: 

Jr     — 
ddri 

J[Tt]
TdxFx    +^[Fl] (27) 

fr      { ^mf(l + (-I)1")     r = 2n or 2n-l, n = 1,2,..N, (28) 

which is added to [F{] in the global equation 9. 

3.5 Matrix of Inertia Force 

The inertia force acting on the point of x can be written as: 

Fx = -M-^SJ-  M is unit mass (29) 
dt2 v    ; 

and results in the time dependent displacement, u(t). The potential energy of inertia force 
over the block is: 

46 



where: 

n = - JuFxdx = j Mu—^dx (30) 

d2u{t)     ^,d2[Dt] ,   s -^ = [r.]-^l (31) 

Using Tayor approximation to obtain the following equation: 

[Z>l = [fl(A), = fl(0) + A^ + f^P (32, 

where A is time interval of this time step and [D] is the displacement at the end of this time 
step. The displacement at the begining of time step, D(0) is zero. This equation becomes: 

Assuming the constant accleration at each time step, so Equation 33 can be written as: 

d2D(t)        2 ._      2 00(0)        2 rM      2rw1 ,    , 

[   ge,' '] is the velocity, [VQ] at the begining of the time step. The equation 34 becomes: 

n   =   M j[DY[TY(d^)dx 

=   M[Df(J[Tf[T}dx)(^-) 

=   M^-2[D}[D}T(J[T]T[T]dx)~ M^{Df(J[T]T[T}dx)[V0} (35) 

To reach equilibrium, fl; is minimzed with respect to displacement variables. 

™(J[Te]
T[Te]dx)   +-►[#,■,■] (36) 

™(J[Tef[Te]dx)[Ve)   +-+m (37) 
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w hich are added into the global equations, if denote [B] — f[Te]
T[Te]dx 

Jpq 

{ 2li p = q = 0 

^«"f[l + (-1)P1 P = 0 or q = 0 
h p = q 
Q p = 2n and q = 2m or q = 2n-l and q = 2m-1 
0 others 

(38) 

where n,m = 1,2,...N and Q is expressend as: 

Q = 6pg = (-l)pf[ /,-r       1 

7T m + n 
sin 

[m + n)7T [m — n )TT 
+ (-iy-^—sm^     ">"][! + (-ir«]      (39) 

m — n 

3.6 Displacement Constraint at a Point 

As a boundary condition, some of the blocks are fixed at specific points. The constraint can 
be applied to the block system with very stiff springs. Assume the fixed point xf. so: 

u(x) = 0 

The stiffness of springs is p. The spring forces are 

fx = -pu (40) 

The strain energy of the spring is Hm, then 

n = r« P    2 

2T' 

-[A]WPi][A] (41) 

The derivatives are computed to minimize the spring strain energy fir 

Krs 

d2Ylm Kn O2 

ddriddsi       2  ddridds 

which is added to [F,-] in the global equation 9. 

[AiwraA] (42) 

p[Tt]
r[rs]   +^[Ku] (43) 
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3.7 Contact Spring 

Assume there are two points (x; of block i and Xj of block j) contacting, the inte-penetration 
distance is d as following: 

Denote the stiffness of the spring as kn and the strain energy of the contact spring is 

n = \xn<f 
k z 

=    ~7TKxi +ui ~XJ ~ui) 2 

-(dQ + Ui - UjY 
h 

2 

=   j(do + [Dm)-{Dm])2 (44) 

where do = x,- - Xj, the derivatives of n*;: 

d2Uk   =Kn     d
2 

ddriddsi       2 ddridds 
^s = ir^T- = ^TrFärWimmm ^ 

KJFi^Ti]   + —►[#,-,■] (46) 

Kn[Tt)
T[T3]  + —>[/£;] (47) 

AnPifP)]   + —►[*;;] (48) 

The derivatives of Yik a^ 0: 

/r = _djm 
ddri 
d 

M \Kr\Dtf\n) (49) 
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-Knd0[Ti\   +-+[Fi] (50) 

Knd0{Tj]   + ^[F] (51) 

which are added into the global equations 9. 

4. Illstrative Examples 

Three examples presented here are simple and classic. The detail of first two examples can be 
found in Reference 2. The first case presents both static and dynamic solution. In the second 
example, the original solution of Discontinuous Deformation Analysis (DDA) was computed 
along with MFMj and analytical solution. The third examples, although extremely simple 
to save analytically, is a source of considerable insight as regards impact and separation 
phenomena. Discussion will be given with regard to the contact or impact behavior under 
influence of displacement function. 

4.1 Force Suddenly Removed in a Beam with Fixed Ends 

There are two stages in this case. At the beginning the constant force was applied at middle 
points of beam which is a static case (Figure 1), then the force was suddenly removed. The 
initial displacement essentially caused the vibration inside beam. 

As displacement under a static loading, P, showed in Figure 2, MFMj provides fairly ac- 
curate results. When larger number of N (N=24) was used, MFMj displacement is almost 
identical with the theoretical solution, even in a static case. After P is suddenly removed, 
vibration due to the initial displacement within beam starts. The time history of displace- 
ment at middle point of beam was computed by MFMj with N = 3 and is compared with 
solution provided by Timoshenko and Young(1955), which is: 

e   = 
2AE 

JV —1 

Ael    v^    (—l)-^-   .   NTTX      N-Kat 
u   =   —-    > sin——cos—;— (52) 

where A is the section area of beam, 1 is the length, 7 represents density and a =JEg/j. N 
of 30 was used in Timoshenko's solution. It is noted that the peak displacement has small 
attenuation. It is because of time disceretation in MFMj using the first order of Taylor ap- 
proximation (Equation 32). Higher order of time discretation will reduce such attenuation. 
The time interval used in this case was 1/10,000 sec. It appeared to have little affect on such 
attenuation if time interval is significantly redued. 
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Density =  1.7 T/ms i      E =  1.0xlo'T/m8 

Figure 1. Configuration of Example 1. 
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Figure 2. Static Displacement. 
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OOOOO   MFMf 
  Theoretical  Solution 

-3 6° 00 
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0.02 0.03 0704 0.05 0.01 
Time,  sec. 

Figure 3. Time History of Middle Point Displacement. 

4.2 Forced Longitudinal Vibrations of a Beam 

In this case (Figure 4), the left end of which is a fixed and to the right end of which a 
disturbing force P is applied. The solution provided by Timoshenko and Young(1955) is : 

SglP 
aWfA N=1.3.s.... 

(_1)V   .   NTTX,, Nnat v     '■—-stn—rr-(l — cos—^7—) 
N2 21 21 

(53) 

where a, 1, 7 and A are defined as the same as the first case. Static displacement was com- 
puted and shown in Figure 5. In addition to the theoretical and MFMj solution. This case 
was computed by DDA (2.0) as well. The current DDA versions can be considered as a single 
field MFM using the first order Taylor displacement function. Displacement time history of 
middle point of beam from three solution are shown in Figure 6. There were thirty terms 
of fourier approximation used in Timeoshenko's solution and only three terms incorporated 
in MFMf. The solution from DDA was quite different with other two solutions in terms of 
frequency when the vibration amplitude are close. The more evidence can be found in Figure 
7 which suggests that the points in blocks vibrate as same phase and different amplitude, 
in other words, the wave can not propagate through the block. MFMj takes the benefit of 
the fourier approximation to characterize the wave propagation inside block as demonstrated 
in Figure 8 Figure 9 illustrates the displacement distributions at 0.01 and 0.04 sec. The 
displacement in only small portion of beam have slightly difference in Timeoskenko (n=30) 

and MFMj (n=3) solution. 
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Density =1.7 T/m1 E =   1.0x10* T/m' 
P  = 

- 10 m — 

Figure 4. Configuration of Example 2. 
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Figure 5. Static Displacement. 
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10b 

DDA 
Theoretical Solution 

ooooo MFMf 

Time, sec. 

Figure 6. Time History of Middle Point Displacement. 

middle point 
right end point 

0.02 0.03 
Time.  sec. 

0.05 

Figure 7. Time History of Displacement (DDA). 
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middle  point 
right end point 

0.02 0.03 
Time,  sec. 

0.05 

Figure 8. Time History of Displacement (MFMf). 
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Figure 9. Displacement at 0.01 sec. and 0.04 sec. 
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4.3 Impact of Two Identical Elastic Beam 

Previous examples were only a single block problem. In this example, two-beam system has 
been investigated in case of one beam moves at constant velocity toward to another rest 
beam. It involved the impact at contact and consequence wave propagation in each beam. 
Two identical beams with E=100, 7 = 0.01 and length 1=10 were lined up horizontially. 
This problem has been investigated using FEM by Huges et al.(1977). Comparison between 
two solutions were made. 

Figures 10a-10d show the time history of displacement, velocity at the contact point, contact 
force and stress at middle point of beam 2 obtained from MFMj with N = 9. The negative 
stress means the compression stress. As seen in figures, not only MFMj results are com- 
parable with Huges et al.'s solution, but also present the stress oscillation after separation, 
which was difficult to capture numerically, especially with coarse grid mesh in FEM solution 
as pointed by Huges et al. (1977). 

The contact period computed by MFMj is about 0.205 sec. compared to 0.2 sec. of 
theoretical solution. The contact algorithm of MFMj is different from one used by Hughes 
et al. and is a spring approximation as described in section 3.7. The contact spring stiffness 
is an essential element in this computation. The more stiff of contact spring will result in the 
higher maximum the contact force and less contact duration. It is consist with the physical 
observations in general cases to assign it as the Young's modulus. There was a contact 
element in Huges et al.'s solution. The contact behavior of two beam was mainly controlled 
by this no-exist element based on 'theoretical estimation'. However, such approach will be 
much less effective when slightly complicated contact problem is considered. On another 
hand, spring approximation of contact is effective, simple and has been adopted in many 
discontinuous methods. Moreover, when a great deal of attention was given to improve the 
contact model alone, it was found from this case, the approximation of contact body seems 
to be a fact which influences the contact behavior. Figures 11 and 12 show the contact force 
and stress history when only N = 3 was used. More rough contact force and less smooth 
stress were resulted from reducing N value from 9 to 3. It may indicate that contact behavior 
can be improved by increasing number of freedom in the approximation. 

In this case, there are total 19 unknown variables in MFMj compared to 41 unknown 
variables in FEM (Huges et al., 1977). Without spatial discretization,MFMj avoids the 
numerical error induced by such discretization, which has been a major concern in wave 
propagation analysis using FEM. 
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Figure 11. Time History of Contact Force (N = 3). 
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Figure 12. Time History of Stress at Middle Point of Beam 2 (N=3). 
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5. Closure Remarks 

The study presented in this paper demonstrates that Manifold method with Fourier displace- 
ment function can provide a reasonable solution with higher degree of accuracy, specially 
for wave propagation analysis. From example 3, it is noted that Fourier function with high 
number of terms can facilitate to model the contact or impact behavior in a more relistic way. 

Implementation and development of manifold theory in numerical computation open a new 
avenue to reach a point, where the numerical method can be truely used in design and 
analysis for real world problems, especially for failure analysis, composite structure analysis, 
contact or impact problem in civil engineering. Significannce of this new movement is far 
beyond what were presented in this paper. This study is only part of starting point for 
further understanding and development. 

Acknowledgments 

This study was initiated in late 1992 with funding of National Science Foundation (Grant 
No. MSS-9021973) at Clarkson University, Potsdam, New York. Constructive input and 
suggestions provided by Drs. An-Bin Huang and Jone S. Lee are highly appreciated. Sup- 
port from C.W. Associates dba Geolabs-Hawaii on this study is gratefully acknowledged. 

The writer would like to thank Dr. Gen-hua Shi for his continued encouragement and 
guidance in past six years. Without his support, this study would not have been possible. 

References 

Shi, G. (1991)."Manifold Method of Material Analysis." Proceeding of the 9th Army Con- 
ference on Applied Mathematics and Computing. 

Timoshenko, S. and Young, D.H. (1955) "Vibration Problems in Engineering." D. Van Nos- 
trand Company, Inc. Princeton, New Jersey. 

Hughes, T.J., Taylor, R.L., Sackman, J.L., Curnier, A. and Kanoknukulchai, W. (1977). 
"A Finite Element Method for a Class of Contact-Impact Problems." Computer Method in 
Applied Mech. and Eng., No.8, 249-276. 

59 



Approximation Theories for the Manifold Method 

Chung-Yue Wang, Jopan Sheng, Ming-Hong Chen, and Ching-Chiang Chuang 

Department of Civil Engineering 
National Central University 

Chungli, 320, Taiwan, R. O. C. 

Abstract 

Approximation theories for the manifold method (MM) which is applicable to the 
analysis of dynamic, continuous or discontinuous, large displacement deformation of 

materials is studied. In this paper, finite covers concept proposed by the manifold method 
is used to evaluate the approximation theories of finite element method and the moving 
least-squares method (MLSM). This comparison study provides some reference 
information for the further development of the manifold method. The finite cover concept 
can provide a more general sense to classify those existed approximation methods like finite 

element method (FEM), finite difference method (FDM), discontinuous deformation 
analysis method (DDA) and diffuse element method (DEM). In contrast to the conventional 

approximation methods, two independent meshes called mathematical mesh and physical 

mesh are introduced by the manifold method to gain more freedom in selecting effective 

approximation functions and conducting integral evaluation during the simulation process. 
At the end of this paper, a modified manifold method with adaptive covers and quadrature 
cells is proposed for future study. 

Introduction 

Due to mechanical loading, chemical reactions, thermal treatments during 
manufacturing process or damage during service, there might be discontinuities existed in 
the physical field of engineering system at different scope levels. Complicated behaviors 

due to these discontinuities lead to difficulties of interpretation and analysis. In the past 

few years, topics concerning discontinuities like the behaviors of jointed rock masses, ice 
plates, granular materials, delamination of layered medium, blasting fragmentation and 
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damage/fracture progression of materials etc. have been worked by a number of researchers 

and engineers. 

It has become clear that researchers are expedient to explore methods which may 

simulate the whole deformation process of solid bodies within a mechanical or 

electromagnetic physical field from a state of continuous system to a discontinuous one. 

According to Rice and Ting's (1992) classification, there are two common groups of 

numerical methods used in the study of structural response. One of these groups can be 

classified as numerical analysis and consists of the finite element method (FEM), finite 

difference method (FDM) and boundary element method (BEM), etc. These techniques are 

intended mainly for the pre-failure and failure analysis of a continuous medium by giving 

quantitative predictions of stress, strain, and displacement values. The second group can 

be termed numerical simulation and consists of the finite block method, distinct element 

method, discontinuous deformation analysis method (DDA), etc. This group is utilized 

chiefly in modeling discontinuous media to qualitatively recreate the behavior of granular or 

jointed materials through motion histories using the contact forces acting on the discrete 

bodies (Babosa and Ghaboussi 1990; Heuze, et. al.; Shi 1988; Cundall 1974; Munjiza 

1992). 

In the past few years, the author with his colleagues have applied Shi's DDA 

method to study some fundamental problems in solid mechanics (Wang et al.; Chen et al.) 

Through those study, it is found that DDA method with it outstanding contact detection and 

numerical simulation algorithm can well model the dynamic interaction behaviors among 

deformable bodies. But in the original DDA formulation (Shi 1988), constant strain field is 

assumed in each block that will lead some computational difficulties and inaccuracy when 

dealing problems of blocks with complicated strain fields. Due to this disadvantage, it is a 

natural thought of attaching a finite element mesh on the block to have a better deformation 

description. This concept also motives Shi's development of his newly proposed manifold 

method (Shi 1991). The manifold method retaining most of the DDA's attractive features 

can be identified as the generalized finite element and discontinuous deformation analysis 

method. From the theory of manifold method, one can realize its potential of solving 

various challenging mechanical problems up to date in an effective and straightforward 

manner. In this paper, it is planned to present some point of views extended from the finite 

element method (Axelsson and Barker 1984), diffuse element method (Nayroles et al. 

1992) and manifold method (Shi 1991) to evaluate the correspondence among these three 

methods. Finally, a modified manifold method is proposed based on the approximation 

theories discussed in this paper. This new method is designed to have the capability of 

analyzing continuous/discontinuous deformation of solid bodies accurately and efficiently. 
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Approximation Theories 

The basic concept of the finite element method is not new. Kardestuncer (1988) 

had the following statements: " Today's understanding of the finite-element method, 

however, is finding an approximate solution to a boundary- and initial-value problem by 

assuming that the domain is divided into well defined subdomains (element) and that the 

unknown functions of the state variable is defined approximately within each element. 

With these individually defined functions matching each other at the element nodes or at 

certain points at the interfaces, the unknown function is approximated over the entire 

domain." It can be concluded that the approximation theory play a paramount role in the 

Galerkin type analyses. The values of physical variable at nodal points or at certain points 

will be the basic unknown parameters of the problem, just as in the simple, discrete, 

structural analysis. 

Recently, there are two similar approximation theories have been developed and can 

be considered as the generality of the finite element method. One group is the diffuse 

element method introduced by Nayroles et al. (1992) and the element-free Galerkin method 

developed by Belytschko et al. (1994); the other group is the manifold method developed 

by Shi (1991). Both groups of methods are very interesting and promising. In Shi's 

manifold method, the finite covers theory in mathematics is introduced to develop the 

approximation theory of unknown functions. Two independent meshes called mathematical 

mesh and physical mesh were created to formulate the whole numerical analysis procedure. 

In diffuse element method, only a group of nodes and a boundary description is needed to 

develop the Galerkin equations. It is surprising to realize that there are some common 

features existed between these two independently developed methods. Hence, the main 

goal of present paper is to reinvestigate and readdress the manifold method imbued with the 

superiority of the diffuse element method and the element-free Galerkin method. 

Basic concepts of the manfold method 

Finite covers approximation theory 
For the manifold method, the local displacement function is independently defined 

on individual covers. Local displacement functions can be connected together to form a 

global displacement function on the whole material volume. As shown by Fig. 1, 

manifolds connect many individual folded domain together to cover the entire material 

volume. The global displacement function is general and flexible enough to represent the 
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local function, f2 
is defined 

Fig. 1    A material volume is covered by individual folded domains. 

Cover function, <f>2 

domain of 
cover U-2 

Fig. 2   Mathematical mesh and physical mesh in the 
manifold method. 
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wide variety of continuous or discontinuous materials located within moving boundary. 
The local functions fi (x,y) defined on physical cover Ui 

fi(x, y) (x, y) € Ui (1) 

can be constant, linear, high order polynomials or locally defined series.  These local 
functions are connected together by the weight function W}(x, y) 

Wi(x,y)>0 (x, y)eUi (2) 

Wi(x,y) = 0   (x,y)eUi (3) 

with 

]Tw.(x,y)=l 
(x,y)eU. 

(4) 

The meaning of the weight functions W}(x, y) is weighted average, which is to take 
a percentage from each local function fj(x, y) for all physical covers U{ containing point (x, 

y). Using the weight functions W^y) a global function F(x,y) on the whole physical 

cover system is defined from the local functions 

n 

F(x,y)=][V(x,y)f.(x,y) 
i=i (5) 

From the forementioned basic concept of the finite covers approximation one can realize 
that there are some important issues have to be discussed: 

(1) How do the weighting functions Wj ,(i=l, n) corresponding to the selected 

local functions of all physical covers be effectively generated? 
(2) How do we formulate a numerical scheme based on this newly proposed 

finite covers theory? 

(3) What are the relations with the conventional finite element method? 

To solve these questions, Shi (1991) has proposed two independent discretization meshes 
named mathematical mesh and physical mesh to construct the computational scheme of his 
manifold method. The mathematical mesh is used to construct the domain of covers Ui and 

the associated local trial functions fj while the physical mesh formed by the geometrical 

boundary of the solid body and the mathematical mesh is used to define the zone of 
numerical integration in a discretization sense. As shown in Fig. 2, the element e4 5 6 is 
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within the common part of the hexangular mathematical covers U-4, U-5 and U-6. Each 

node in the mathematical mesh represents a cover function. For the finite element type 

mathematical mesh, the cover function can be chosen as the global basis function in the 

traditional finite element method. 

Finite element approximation theory 
If the finite element theorem is used to construct the global approximation function, 

then the mathematical mesh of manifold method is related to the finite element mesh. 

According to the FEM, a function F(x,y) belongs to a finite element space Vn = SPAN 

{01; <j)2, <j>3,...., <|>n}, spanned by the finite element basis functions <f>i (i=l,n), can be 

expressed as 

n 

F(x,y) = JV^x.y), (x,y) e Qe 

1=1 (6) 

where the global basis functions, §{ (i=l,n) defined on a domain Uj satisfy the following 

properties (Axelsson and Barker 1984): 

(I) The restriction of §{ to any element ek has the polynomial form 

^(x^^C^y^ (x,y)eek 

s=i (7) 

where the power p(s) and q(s), s=l,2,....T, are independent of i and k. 

(II) ^(Nj) = 5y     for i, j = 1, 2, , n (g) 

where Nj is the coordinates of node j. 
(HI)     (j); is uniquely determined on every element edge by its values at the nodes 

belonging to that edge. 

Property (II) implies that $i, <j>2» $3» — fyn31^ linearly independent.   The coefficients in 

Eq. (7) are determined from Eq.(8) through the linear system of equations 

Y  c<s> ^(s)    q(s) « 
/ , Sk Xft)   y.(k)        X'      IUrlr x' 
S=l Jr >r 

= 0,    otherwise,      r=l,2, ,T       /g\ 
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u    -(k) 

where ir -s the global node number of node r in element k. This system can be expressed 

in the matrix-vector form 

where 

SmC_ = d 
im im (10) 

Sm - m — 

p(l) q(l) p(2)  q(2)     p(T) q(T) 
A.(m) >\(m) A(m) J (m)                    A (m) J (m) 

p(l) q(l) P(2)  (2)                  p(T) qCD 
A.(m) •/» A (m) J (m)                    A (m) > (m) 

• • •••••• • 

• • •••••• • 

xP(Dvq(D P(2)  q(2) ######   P(T) qCT) 
A.(m) •>» A.(m) J»                    A.(m) ^.(m) 
lj.lj.lj.lj.                          Ij.        Ij. 

(11) 

Except in very special "degenerate" case Sm is nonsingular and fa is well defined on em. 

Further, property (IE) ensures that fa is continuous at element edges. This, together with 

the continuity of polynomials, implies that 

(IV) fa  6 C (Qe) (12) 

Suppose node Ni is not in element. Then dim= 0, and it follows from Eq.(10) and Eq.(9) 

that fa vanishes everywhere in em. Hence, 

(V)      fa assumes nonzero values only in those elements to which N, locates. 

In finite element theory, it calls the union of elements to which Nj belongs the "support" of 

(fc. It is analogical to the domain of the cover in the manifold method. Thus, property (V) 

states that fa vanishes outside of its support. By definition, a function F(x,y) belongs to 

Vn can be approximated by the interpolation function Fj(x,y) for the k-th element as 

11 

FI(x,y)=^F(Ni)^)i(x,y) 
i=l (x,y) e Qe (13) 
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or can be written by inserting Eq.(7) into it as 

FI(xy)=^XF(Ni)C^xP(,)yq(8) (*-y)^k) 

i=l  s=l (14) 

By comparison between Eq.(l) and Eq.(13), we can hardly identify that the exact 

correspondence among basis function 0;, nodal constant F(Nj) in the FEM and the 

weighting function Wj(x, y), cover function fj.in the manifold method. It seems that the 

basis function in the FEM contained both the characters of cover function and weighting 

function defined by the manifold method. The basis functions fa (i=l,n) used to span the 

finite element interpolation space can be treated as the finite cover functions in the manifold 

method. Actually, the statements between Eq.(6) to Eq.(14) denotes the implementation of 

the Ritz-Galerkin method with finite element basis functions, i.e., basis functions that are 

continuous, piecewise polynomials and that have local support in the sense that each 

function vanishes outside of small subregion of the domain Ui (the cover). 

Here it has to be pointed out that the number of cover functions on the physical 

variable function at the point to be interpolated is restricted by the finite element type that 

mathematical mesh used. That is, for a n nodes element there are n layers of covers with 

theirs corresponding local functions above the element domain for constructing the global 

interpolation function. For example, as shown in Fig. 3(a), if the 6-node quadratic 

triangular element is used in the mathematical mesh, then there are 6 layers of cover laying 

above this element used to construction the interpolation function. 

Finite Covers of Finite Element Mesh 

At present time, the attachment of finite element mesh on analysis domain of 

discrete blocky system has been conducted (Shi 1991, 1994) and it is just a special case of 

the manifold method. As seen in Fig. 4(a), the domain of the mathematical mesh outside 

the physical domain V has little contribution to the analysis and causes the shape of the 

element around the boundary to be irregular. These irregular shaped elements lead some 

difficulty in the numerical integration of element stiffness matrices. Although this difficulty 

can be conquered by applying the simplex integration theorem recently derived by Shi 

(1994).  But for the simplicity, the conventional triangular finite mesh ( see Fig. 4(b)) 
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Triangular mathematical Mesh 

t - Physical Mesh 

Layers of< Cover IpP^ \f ijr 

Linear (3)    Quadratic (6)    Cubic (9) 
element element element 

(a) 

Square Mathematical Mesh 

Layers of Cover 

1 Element of the 
Physical Mesh 

Linear (4) 
element 

Quadratic (8) 
element 

Cubic (12) 
element 

(b) 

Fig. 3   Mathematical mesh and physical mesh of the manifold method 
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Fig. 4 Finite Covers of Finite Element Mesh 
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attached on each physical body is suggested to be used to proceed the numerical analysis. 

A computation code based on the formulation presented in Shi (1991) together with the 

contact detection scheme of DDA method can be developed. Recently, Shyu (1993) has 

developed a this type of code to simulate the large and vibration characteristics of an 

automobile's leaf spring-dashpot suspension system. This research work verifies the 

accuracy and capability of the manifold method. 

Basic concepts of the diffuse element method & element- 
free Galerkin method 

Nayroles et al. (1992) and Belytschko et al. (1994) have recently introduced a very 

interesting and promising method which they called the diffuse element method and 

element-free Galerkin method respectively. In this type of method, only a group of nodes 

and boundary description is needed to develop the Galerkin equations. The interpolants are 

polynomials which are fit to the nodal values by a least-squares approximation. The 

conventional finite element mesh is totally unnecessary in this method. As Nayroles et al. 

(1992) stated, the motivations of developing the diffuse element method are to provide 

smoother approximations and no explicit elements to avoid difficulty in generating adequate 

discretization meshes for complex tridimensional domains. Belytschko et al. (1994) have 

successfully extended this concept to develop their element-free Galerkin methods and 

demonstrated that the methods does not exhibit any volumetric locking, the rate of 

convergence can exceed that of finite elements significantly and a high resolution of 

localized steep gradients can be achieved The main reason of the success of this diffuse 

element, element-free or implicit element type method is due to its application of the 

moving least-squares interpolation theory. Different from the traditional FEM, the moving 

least-squares methods interpolants do not pass through the data because the interpolation 

functions are not equal to unity at the nodes unless the weighting functions are singular. In 

the following of this paper, a brief introduction of this type of method mainly from 

Nayroles et al. (1992) and Belytschko et al. (1994) is given and the correlation with respect 

to the manifold method are discussed in detail. 

Moving least-squares interpolant 
Similar to the finite element approximation, the moving least squares (MLS) 

interpolant uh(x) of the function u(x) is defined in the domain Q by 
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uh(x)=^pj(x)aj(x)SpT(x)a(x) 

J=i (15) 

where p(x) is a vector of "m" independent functions, most often polynomial terms, and 

a(x) is a vector of "m" approximation parameters which are position dependent in the 

domain Q. For example, a quadratic basis in a two-dimensional domain is provided by 

pT(x) = [ 1, x, y, x2, xy, y2 ], m=6. Compared with the interpolant of FEM expressed by 

Eq.(6), the position dependency of the coefficient vector a(x) is the main character of this 

MLS type approximation and makes it become a more general method. The a(x) is 

obtained at any point x by minimizing a weighted discrete Lo norm as follows: 

n 

J = 2^w(x - XjMp^Xj) a(x) -Uj] 
1=1 (16) 

where n is the number of points in the neighborhood of x for which the weight function 

w(x -Xj) * 0, and Uj is the nodal value of u at x = Xj. 

This neighborhood of x is called the domain of influence of x , or circle of 

influence in two dimension. Actually, this domain of influence can be identified as the 

circular shaped implicit element of this diffuse element method. From the manifold method 

point of view, the mathematical mesh of this moving least-squares method is composed of 

infinite overlapped circular elements centered at the point where the approximation is 

required (see Fig. 5(a)). This implicit element is the common domain of the n covers 

associated with those n nodes within the element. The exact form of the cover function will 

be presented in the latter part of this section. 

The connectivity of an interpolated point depends on the nodes in the domain of 

influence. Fig. 5(b) shows the connectivity of the nodes to the evaluation point in the 

diffuse element method and in the finite element method respectively. In the finite element 

method the connecting lines are restricted inside the element which the evaluation point x 

located and the connected nodes are the nodes associated with the element. It is also noted 

that the connectivity lines can not intersect any geometrical boundary of the material 

volume. 

In this approximation theory, the number of nodes used to construct the 

interpolation function can be freely adopted and removed from the domain of influence 

zone. Compared with conventional finite element method of fixed number of nodes, this 

moving least squares approximation can provide various type of interpolants. Even more 
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Cells 

* center of influence domain for the interpolated point x 

• nodal point for the moving least-squares approximation theory 

(a) 

implicit element of 
MLS approximation 

\ 

Quadratic 
triangular element 

(b) 

Fig. 5 (a): Element-free Galerkin method and the moving 
least-squares approximation, 

(b): Connectivity in the MLS approximation and the 
finite element approximation. 73 



exciting are its potential in adaptive methods for the portion of material required more 

accuracy as in the crack and damage progression problems. 

The stationary of J in Eq.(16) with respect to a(x) leads to the following linear 
relation between a(x) and U;: 

-l 
a(x)=A   (x) B(x)u ^ 

where A(x) and B(x) are the matrices defined by 

n 
A(x) =^wI(x)pT(xI)p(xI) 

1=1 

Wj (x) = w(x - Xj) 

B(x) = [w1(x)p(x1), w2(x)p(x2), , wn(x)p(xn)] 

uT = [u ,ur „ , un] 

Hence, we have 

11    in ii 

uh(x) = XXPJ(X)( A_1(x)B(x))ji ui =X^lUi 
1=1 j=l 1=1 

where the basis function ^(x) is defined by 

m 

^I(x)=^pj(x)(A_1(x)B(x))jI 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

This is the global basis function or called cover function used to span the space of the 

approximation functions. Compared with the basis functions in the finite element method, 

the MLS approximation does not exactly verify the interpolation property expressed by Eq. 

(8). In practice, this property is verified with good accuracy except in the vicinity of points 

where the function u is discontinuous or the gradients of u are very large. 

The partial derivatives of can be obtained as follows: 
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♦i.i = £{Pj, (A"^ + pj(A~1B + A-'B.).,} 
j=1 (24) 

where 

A:1--A"1 A. A"1 

(25) 

and the index following a comma is a spatial derivative. The rank and conditioning of 
matrix A depend on the relative locations of the nodes belonging to the certain 
neighborhood of the point x called the influence domain. A necessary condition to get a 
non singular A matrix is the existence of at least "m" nodes in the neighborhood of x. An 

advantage of this MLS approximation is that it requires no postprocessing for the output of 
strains and stresses or other field variables which are derivatives of the primary-dependent 
variables since these quantities are already very smooth. 

Choice of weighting functions 
The weighting function Wj(x) = w(x -Xj) play an important role in the performance 

of the moving least-squares method. They should decrease in magnitude as the distance 
from x to Xj increase. The approximate function is made smooth by replacing the 

discontinuous coefficients in Eq.(16) by continuous weighting function. Vanishing of 
these weighting functions Wj(x) at a certain distance from the point x preserves the local 

character of the approximation. If the weighting function is continuous with respect to x, 

the basis function (Eq.(23)) and the approximation function (Eq. (22)) are continuous with 
respect to x, as well as the shape functions of the derivatives and the estimates of the 
derivatives up to order "m". The standard finite element method can be obtained if the 
weight function Wj(x) is defined as piecewise-constant over each subdomain or element. 
For example, Wj(x)=l if node I belongs to element and wr(x) = 0 otherwise. By 

comparison equations (7), (14) with (22), (23), it is easy to realize the relationship between 

the finite element approximation and the moving least-squares approximation. The 

accuracy of the moving least-squares approximation method is directly related to the choice 

of the weighting functions. The rational fraction type weighting function, Gauss like 
function and triangular function have been successfully tested by Nayroles et al. (1992). 
While Belytschko et al. (1994) have considered the exponential and conical type of 
weighting functions.   Belytschko et al. (1994) have found that the performance of 
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exponential function which is essentially a truncated Gauss distribution, performs far better 

than a conical weight function. These weight functions depend only on the distance 

between two points as follow: 

wj(x) = w(x -Xj) = wj(d) (27) 

where d = 11 x -x: 11 is the distance between the two points x and Xj. That is, the 

functions present a symmetry around x. But it may be helpful to use anisotropic weighting 

function, for instance to fit a steep front. 

Modified Manifold Method 
—Adaptive Covers with Quadrature Cells 

At the present time, both the diffuse element method and element-free Galerkin 

method (EFGM) are at their infant stage. Compared with the manifold method which is 

developed from the discontinuous deformation analysis method (DDA), the EFGM has not 

included the multi-body dynamic interaction mechanism into the analysis procedure. But 

the concept inherited inside its approximation theory do inspire the manifold method on its 

future development. 

From the discussion on the finite element approximation and moving least squares 

approximate, it can be found that in the conventional finite element method the number of 

basis functions (or called covers) is fixed for each element (domain of integration). While 

for the element-free Galerkin method, the number of cover functions used for interpolation 

is free to be adopted or abandoned. Therefore, we can characterize these two types of 

approximation theory as the "fixed covers approximation" and the "adaptive covers 

approximation" respectively. 

Here we propose a modified manifold method in which the finite element 

approximation as discussed in the previous section is replaced by the moving least-squares 

approximation theory. In this newly proposed method there is no explicit mathematical 

mesh but with distributed nodes and the physical mesh is represented by quadrature cells 

(see Fig. 6). In each cell, Gauss quadrature is used to evaluate the integrals for the 

formulation of system governing equations. The number of quadrature points depends on 

the number of nodes in a cell.  Belytschko et al. (1994) have suggested nq x nq Gauss 

quadrature for square shaped cell structure where 
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Quadrature Cells crack 

refinement of 
quadr; 

o new node 

crack growing 

Fig. 6   Modified manifold method of 
adaptive covers with quadrature cells 
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n„ = Vm +2 

and m is the number of nodes in a cell.   The number of cells to be used in most of 

Belytschko et al. (1994) analysis by using mc x ir^ cells, where 

nN 

and nN is the total number of nodes in the solid body. In our modified manifold method, 

triangular cellular mesh is used due to its capability of discretizing solids of irregular shape. 

When high accuracy requires, either mesh refinement or increasing number of nodes per 

cell can be considered. One technique for refining a triangular mesh is by placing new 

nodes at the midpoints of all element edges. (See Fig. 6) In this adaptive covers manifold 

method the cellular structure is designed for the numerical quadrature of integrals. 

Therefore, the refinement of a coarse grid can be proceeded locally within an element 

without considering of the connectivity condition between adjacent elements as discussed in 

conventional FEM. This is very effective for crack propagation problems. The quadrature 

scheme is the same as the one used in EFGM (1994). Based on these adaptive covers and 

quadrature cell concepts, then just follows the formulation procedure of the finite covers 

finite element mesh in Shi (1991) and substitutes the cover functions f; by the basis 

functions obtained by Eq.(22). According to this proposal, one can formulate a scheme 

which is capable to simulate the whole deformation process of solid body system within a 

mechanical or electromagnetic physical field from a state of continuous system to a 

discontinuous one. 

Numerical Examples 

Based on the formulation proposed in Shi (1991, 1994), a manifold analysis code 

of triangular finite element mesh is developed. It is noted that the manifold method is an 

incremental dynamic formulation. Hence it can be applied to analyze the elastodynamic 

problems of large displacements. To evaluate the capability and accuracy of the computer 

code, a simple problem was studied first. As shown in Fig. 7, a 10 cm x 40 cm elastic 

strip (E= 2 x 10 6 kg/cm2, v = 0.2) of thickness t= 1cm without any constraint sustains a 

pair of suddenly applied 30,000 kg constant loads. Triangular finite element mesh is used 

to construct the approximation function.  In the manifold method terminology this is a 
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block with finite covers of finite element mesh. The analytical solution of this 2D elasticity 

problem is difficult to obtain due to the Poission's effect. But it is sure that the axial 

displacement of the tip is oscillation about it static solution. Transverse vibration shares 

some strain energy from the axial deformation. This effect causes the oscillation amplitude 

of the tip varying at a low frequency mode during the vibration. 

Two kinds of time integration schemes, namely constant acceleration method and 

linear acceleration method, were used to simulate the problem. The time integration 

schemes used in the DDA formulation and the Newmark- ß method (ß= 1/4, 5= 1/2) 

belong to the constant acceleration type and both are unconditional stable with respect to the 

time step size. Fig. 8 shows the simulations of the problem with different time step size by 

constant acceleration time integration scheme. From this figure it is found that there is 

some numerical damping existed in the numerical algorithm. The damping effect is 

proptional to the time step size. Exact solution can be approached if very small time step 

size is used. For the same time step size, the linear acceleration time integration scheme can 

provide better approximation as shown by Fig. 9.    But this scheme becomes unstable after 
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Fig. 9 Dynamic behavior of a suddenly loaded elastic strip 
simulated by linear acceleration time integration 
scheme at different time step. 
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certain iteration steps at bigger time step size as shown in Fig. 10 (a) and Fig. 10 (b). The 

reason of the deviation of the center line of vibration from the static solution is mainly due 

to the finite element mesh used in the model. From this numerical example, one can realize 

that the time integration scheme plays an important role in applying the manifold method to 

analyze dynamic problems effectively and accurately. 

Another important factor which affects the simulation results of applying manifold 

method to multibody dynamics is the penalty value of the contact spring. Fig. 11 shows 

the configuration of 100 blocks shocked by a step loading at the outer blocks. Stress wave 

propagation behavior at diffeent time is tried to be studied (see Fig. 12). In this example, 

for each block its mathematical mesh coincides with the physical mesh. This is a special 

case of the manifold method. Contact detection actions among blocks are performed during 

the simulation. With properly selected values of time step size and its associated contact 

spring constant as the way suggested by the author in his previous study7, the simulation 

results approaches the analytical solution quite well (see Fig. 13). 

Discussion and Conclusions 

The finite element method, diffuse element method, element-free Galerkin method 

and even the manifold method can be grouped as a Ritz-Galerkin type method based on its 

characters of constructing the approximation function of the analysis domain for finding the 

solution of a boundary value problem. It is interested to find that the concept of finite 

covers already has been embedded in the Ritz-Galerkin type approximation theories. The 

concepts of the moving least -squares approximation are more general than the finite 

element method 

The moving least squares approximation theory has it superiority in analysis crack 

or damage propagation problems due to its high rate of convergence and the achievement of 

a high resolution of localized steep gradients. It is sure that the adoption of those superior 

features of element-free Galerkin method and retaining the dynamic multibody interaction 

scheme of discontinuous deformation method can make the manifold method be a more 

powerful tool for the continuous-discontinuous analysis. Nevertheless, the potential 

benefits in many problems are so attractive that this manifold method deserves 

consideration and further development. 
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Introduction 

In fractured rock, the hydraulic conductivity is extremely sensitive to changes in 
fracture aperture because hydraulic conductivity is a function of aperture to the third 
power (i.e., is based on the cubic law). When a nuclear waste repository drift is 
excavated in a rock mass, the introduction of the boundary surfaces (drift walls) reduces 
their traction to zero from that corresponding to the natural state of stress. Such traction 
reduction induces the change of the stress state in the host rock around the drift, as well 
as displacements in the vicinity of the excavation. Fractures in the rock mass may be 
extended or initiated, and existing fractures can be opened or closed by the change of the 
stress state. Thermally-induced stresses in rock can greatly enhance the above described 
responses. The change in fracture aperture can be estimated using a thermomechanical 
model of the rock mass, where the rock mass is represented by discrete rock blocks 
between the fractures. Whether the change could have a significant effect on repository 
performance can be determined based on the change in hydraulic conductivity and the 
amount of flow path length affected. 

The purpose of this study is to demonstrate the use of the Discontinuous 
Deformation Analysis (DDA) code, [Shi, 1993], for estimating the changes in the fracture 
aperture in the vicinity of the repository openings caused by mechanical and 
thermomechanical effects (i.e., caused by construction and heat). The simulated opening 
and closing of fracture apertures in the vicinity of a waste emplacement drift, together 
with the induced stress state, may be used to provide information for assessing the rock 
mass disturbance. Since the DDA code cannot model the initiation of new fractures 
(cracking) due to the change of stress state, only the dislocation and the opening/closing 
of existing fractures are simulated. This approach may be sufficient because the cracking 
of intact rock only occurs in a very limited zone adjacent to the drift wall as compared 
to the mechanically and thermomechanically disturbed zone (i.e., such model limitation 
will have little influence on the results because of the small zone in which they may 
occur). 
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Description of Numerical Method 

The DDA code is a two-dimensional numerical model for simulating mechanical 
processes of a discrete system which is physically divided into a finite number of blocks 
that are bounded by preexisting discontinuities. The code models the relative movement 
between rock blocks that may be undergoing block deformation and rigid body motion. 
Rock blocks are considered to be elastic. Individual blocks are connected by contacts 
between blocks. A contact is defined by the force/displacement relationship between a 
corner of a block and an edge of another block. If the contact corner of one block has 
invaded (overlapped) into the other block through the reference edge, this contact is 
closed. Otherwise, the contact is open. For a closed contact, the comer of one block 
may be locked or sliding on the reference edge of another block. The Coulomb Frictional 
Law as a function of frictional angle and cohesion of the discontinuous surfaces is applied 
to govern the contact lock/slide mechanisms. For a locked contact, there is a relative 
shear movement between the corner and the reference edge if an external force parallel 
to the reference edge is acting on one of the blocks in contact. Hence, the mechanism 
of the penetration and shear movement of a locked contact can be modeled by inserting 
a pair of stiff springs between the block corner and the reference edge. The pair of 
springs are oriented in the directions normal to and parallel with the reference edge. For 
a sliding contact, the stiff spring parallel to the reference edge is substituded with a pair 
of external forces governed by the sliding criterion. 

The method of approximation used in the DDA code is similar to that used in the 
finite element method where the solution of the complete system, as an assembly of its 
elements (blocks), follows precisely the same rules as applicable to a standard discrete 
system. A discrete time system is used to simulate the dynamic behavior of the 
discontinuous system. In other words, motion over a long period of time is the 
accumulation of motion over multiple small time intervals. The recurrence relationship 
for the system behavior in a small discrete time interval is formulated using the minimum 
total potential energy theorem where the governing equations, Newton's law of motion, 
the elastic constitutive law, and the prescribed boundary conditions of all contiguous 
blocks are solved simultaneously. The nonlinear contact behavior between blocks, which 
involves the frictional energy dissipation, is solved iteratively by choosing the trial contact 
positions between the blocks. Although the DDA code is a numerical method used for 
simulating the dynamics of a mechanical system, it can be used for quasi-static analyses. 
By resetting the velocity vectors of all blocks to zero at the beginning of each 
computational time step, the solution of the governing equations after many time steps 
represents the quasi-static condition of the mechanical system. Therefore, the time steps 
used in the quasi-static simulation are just a means to reach convergence through an 
iterative solution process. The theoretical detail and the formulation of the DDA code can 
be found in Shi (1993) and Tsai (1993). 

The DDA code was modified to consider the effect of thermal loads. The thermal 
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loads are included using the change in temperature between two time increments for each 
block. The immediate mechanical response of rock blocks caused by temperature changes 
is a variation of block strains.  Under the linear thermal expansion law, 

[A*«l = «Any- 

where [Aew] is the incremental strain tensor, Skl is the Kronecker delta, a is the thermal 
expansion coefficient of the block at the current temperature, and AT is the change in 
temperature. The variation of block strains is considered as a perturbation to the strain 
field. Using the linear elastic stress-strain relationship, a stress perturbation corresponding 
to the strain perturbation of a block can be expressed as 

[HH*(,«nA««] 

where [EljU^ is the elastic tensor for the block, and [A<7y] is the incremental stress tensor. 
Hence, the stress perturbation in a block can be expressed as 

{^,]-aLT{E..kl][8kl] 

When the potential energy corresponding to the stress perturbation is taken into 
account as a part of potential energy for obtaining the quasi-static equilibrium condition 
of the system, movements (deformation, rotation, and translation) of blocks generated by 
the thermal loads are induced. During a small discrete time interval of the computation 
for the iterative solution process, the thermal expansion coefficient of a block is 
considered to be constant (according to the linear thermal expansion law). The 
nonlinearity of the thermal expansion coefficient is modelled using the updated thermal 
expansion coefficient computed from the nonlinear function using the updated temperature 
at the beginning of each time step. 

Description of Model 

To conduct the numerical analyses using the DDA code, information is required 
about block geometries, fixed points or directions on the boundaries, block material 
constants, discontinuity properties, initial stresses, body forces, and various external loads. 
The input information about the jointed-rock pattern, the in situ stress condition, and the 
material properties of intact rock and rock joints for this study was adopted from the 
Reference Information Base (RIB) for Yucca Mountain (DOE, 1994) and from a site 
characterization report by Lin et al. (1993). Some of this information was modified to 
obtain a simple model which could be reasonably analyzed using the DDA code. The 
input data for the DDA simulation is listed in Table 1. The nonlinear thermal expansion 
coefficients for the rock blocks, shown in Figure 1, were adopted from the preliminary 
results of a laboratory test performed by Sandia National Laboratories (SNL). The 
specimen used for this laboratory test was taken from borehole USW NRG-6 at the Yucca 
Mountain site. 
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The computer simulation was performed in three stages: an initial stress loading 
stage, an excavation stage, and a thermal loading stage. For analysis of the initial stress 
loading, the region analyzed is composed of a jointed-rock mass, 40 m in height (20 m 
above and 20m below the centerline of the drift) with a width that corresponds to the drift 
spacing. Using the joint orientations and spacings listed in Table 1, the mesh generator 
in the DDA code produces a discrete system of rock blocks. In order to simulate the 
mechanical behavior of rock mass before and after excavation of a drift, the shape of each 
rock block in the center of the region is modified to fit the shape of the drift. To 
simplify the application of displacement and force boundary conditions on the problem 
domain, these rock blocks are bounded by rigid frames. The prescribed boundary 
displacements and forces are applied on these rigid frames rather than individual rock 
blocks at each edge of the mesh. 

Table 1.   Model Input Parameters 

Joint Properties 
Orientation 
Spacing 
Frictional Angle 
Cohesion 
Normal Stiffness 
Shear Stiffness 

Others 

Vertical Joints 
100° dipping 
0.4 m 
43 degrees 
7.3 MPa 
1.7xl06 MPa/m 
6.9xl04 MPa/m 

Horizontal Joints 
10° dipping 
2.8 m 
43 degrees 
25.2 MPa 
1.7xl06 MPa/m 
6.9xl04 MPa/m 

Intact Rock 
Young's Modulus 32.7 GPa 
Poisson's Ratio 0.22 
Bulk Density 2.3 g/cm3 

Depth of Tunnel Invert 311m 
Vertical In Situ Stress @ 311 m 7.00 MPa 
Horizontal In Situ Stress @ 311 m 3.85 MPa 
Ratio of Horizontal to Vertical Stresses 0.55 

In a conventional finite element analysis, it is not necessary to conduct the initial 
stress-loading simulation. The initial stresses can be a part of the input parameters to 
describe the initial condition. In the DDA analyses, the initial condition of the system 
also includes the relative position of block interfaces, although the initial stresses may be 
input parameters. Contacts between blocks are established by the compression of contact 
springs which have no initial length. In other words, when two blocks are in contact, a 
small amount of geometrical overlap exists between them. Within a given space occupied 
by the initial system of nonoverlaping blocks, the contact overlap between blocks 
produces voids in the initially assigned system space. Hence, the stress relaxation in rock 
blocks caused by the existence of such voids may be a meaningless numerical result. 
Although very stiff springs (as compared to the stiffness of rock blocks) can be used 
where only a very small amount of stress reduction is generated in each block, the large 

91 



UUIImmmtmiit 

Figure 2.  DDA Mesh 

92 



stiffness of contact springs creates the numerical difficulty for solving the system 
equations. To avoid this difficulty, a DDA model can start with the initial stresses and 
the geometries of overlapped blocks or with null initial stresses and rock blocks without 
overlapping surfaces. In the case of non-overlapped blocks with null initial stresses, the 
initial internal contacts are established by compacting the system using the external loads, 
which are statically equivalent to the in situ stresses. 

Figure 2 shows the DDA model's representation of the jointed-block-rock mass 
which contains a 7.0-m diameter drift with 23.3-m drift spacing. This is the mesh used 
for the initial stress-loading simulation. The left and bottom boundary frames are fixed 
in the reference space. External point loads (the arrows shown in Figure 2) which are in 
static equilibrium with the horizontal in situ stresses are acting on the right boundary 
frame. The weight of the overburden is applied as the external vertical load that acts on 
a number of boundary frames at the top of the mesh. Since the overburden load is 
applied through a number of small frames (rather than one long piece of rigid frame), 
non-uniformly distributed displacements across the top of the mesh are modeled. At the 
bottom of the mesh, the non-uniformly distributed displacements are modeled by adding 
a layer of load-bearing blocks between the bottom of the jointed rock mass and the 
bottom rigid frame which is fixed in the reference space. The Young's Modulus for these 
load-bearing blocks is therefor assumed to be one order magnitude smaller than the 
corresponding value for the rock blocks in the jointed-rock mass and the joint surface of 
load-bearing blocks is assumed to be frictionless. 

After the quasi-static solution of the initial stress loading simulation has been 
obtained, the rock blocks within the drift are removed to simulate the excavation process. 
The remaining rock blocks with their deformed/displaced geometry are then used as the 
initial geometry for the excavation simulation. The corresponding final block stresses 
generated by the initial stress loading simulation are adopted as the initial block stresses 
for the excavation simulation. The right frame for applying the external loads 
corresponding to the horizontal in situ stresses is then fixed in the reference space 
(without any external loads) to simulate the line of symmetry for the rock response 
induced by excavation of multiple drifts whose center-to-center distance is constant. The 
external vertical point forces remain the same as those for the initial stress-loading 
simulation to represent the weight of the overburden formation. The rock mass response 
induced by excavation is then obtained by obtaining the quasi-static solution that 
corresponds to the updated initial geometry and stresses and the revised load and 
displacement boundary conditions. 

The thermal load is expressed by the value of areal mass loading (AML). For a 
given thermal load, the waste package spacing is adjusted according to the drift spacing. 
Lingineni (1994) computed the temperatures of the waste package and surrounding host 
rock as a function of time after waste emplacement. Thermal profiles in the near field 
were predicted for various thermal loads, package spacings, and drift diameters. The 
thermal model calculation is applicable to the in-drift emplacement mode where the 
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modelled region consists of a single, infinitely long emplacement drift surrounded by the 
host rock. These computations were carried out in a one-dimensional, radial coordinate 
system. The temperatures induced by thermal loads in neighboring drifts were computed. 
The superimposition of temperature fields for many drifts was then calculated to simulate 
the effects of thermal loads in multiple drifts. As part of the input data for this study, 
Lingineni provided the 100-year post-emplacement temperature distribution. These 
temperatures were reported at the center of each rock block in the deformed region 
generated by the excavation simulation. For a one-dimensional radial coordinate system, 
the computed temperature profile for thermal loading as a function of the radial distance 
from the center of the drift is shown in Figure 3. 

To analyze the thermal loading effects, the DDA model was restarted (without any 
change in the boundary and loading conditions) from the quasi-static solution found in 
the excavation simulation using the concept that a perturbation of the block strain 
corresponds to a change in block temperature. By minimizing the total potential energy, 
which includes the variation of the strain energy generated by the change of block 
temperatures, the DDA model computes the thermally induced block deformation and 
rigid body motion of the blocks. 

Discussion of Results 

To observe the change of the character of the joints, the status of contacts in the 
system has been presented graphically. A segment of a joint is represented by two edges 
of different blocks which are assumed to be nearly parallel. Therefore, a joint segment 
is referenced by a pair of contacts defined by corners and reference edges. If either 
contact corner is close to but not touching the referenced contact edge, the joint between 
these two blocks is open. A joint is closed only if the two contacts used to reference the 
joint segment are both closed. As shown in Figure 4, the size of a joint opening can be 
represented approximately using the associated contact opening which is the distance from 
the corner of a block to the referenced contact edge measured perpendicular to the edge. 
Each open contact can be represented by a vector normal to the referenced contact edge. 
The length of the vector represents the magnitude of the contact (joint) opening. 

For the initial stress-loading simulation, a fairly uniformly distributed stress field 
was generated by the external loads which are in static equilibrium with the in situ 
stresses. The vertical stresses are about 6.5 MPa in the rock blocks near the top of the 
modeled region and about 7.4 MPa in the rock blocks near the bottom of the region (see 
Table 1). The ratio of the horizontal stress to the vertical stress remains at about 0.55 in 
each rock block. Since non-uniform contact forces are generated among blocks of various 
sizes, the principal stresses for each rock block are slightly different. As a result of the 
initial stress-loading, all joints in the modeled rock mass are closed. 

The final stress distribution and joint openings from the excavation simulation are 
shown in Figures 5 and 6.   The stress concentration around the drift after excavation 

95 



Block Geometry 
B' 

Reference Edge and Vertex 

Scaled Trajectory 

Scaled Trajectory 

Opening Trajectory 

Figure 4.  Joint Opening Representation 

96 



I I 

.*. + ++♦ 

i   v +   ■ T 

■     X    * 

* + 

A    7     •      *■ 
*<■ 

f   *• 

*  f + *  r 

vt T 

i  T-TT   •    * 

•   * r > 
: it '  ' 

.     i    t 

x     * 

<f/' 

t      ♦♦*•'♦♦ 

A    + + 

t?- 

+ + + 1      T     + 

X   f+TT     ' 

+     titH xx   T    tt 

tX    t 

x+ - Tl 
.TT   +    X   X   Tl 

T      +     *    T 

*^' 
X   + 

^+T litt 

X  x^+    j.    x 
XXX+T+< 

X   T   + 

:^-^^^S^^-^T^M *♦♦♦■ 

Scale:  lOOMPa   »- 

Figure 5.  Principal Stresses After Excavation 

97 



Scale: 1mm 

Figure 6.   Joint Opening After Excavation 
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forms a pressure arch that makes the drift opening structurally stable. Noticeable joint 
opening appears after the excavation, as shown in Figure 6. The openings in the rock 
mass only occur in the immediate vicinity of the drift walls (the invert and the roof). 
This effect is limited to a distance of less than the half the diameter of the drift (3.5 m). 
Except for joints formed by a few rock wedges at the upper left and the lower right 
corners of the drift, the size of joint openings in the immediate area of the drift wall is 
on the order of 0.03 mm. The vertical and horizontal drift closures after the excavation 
loading stage are about 1.6 and 0.3 mm, respectively. 

Thermomechanical Effects 

Figures 7 and 8 show the final stress distribution and joint opening after the 
thermal loading stage. The vertical stresses of all blocks after thermal loading remains 
at about the level of the block initial values (6.5 to 7.4 MPa) due to upward rock mass 
thermal expansion. The horizontal stresses after thermal loading are increased 
significantly over the entire region, due to the fixed lateral displacement boundary 
conditions on both sides of the region. In general, the horizontal stresses in the rock 
mass, a few meters away from the drift are about 55 to 60 MPa. The model with a fixed 
lateral displacement boundary condition represents the center of the repository only. At 
the edge of the repository, a certain amount of lateral thermal expansion of rock mass 
would occur. Therefore, less horizontal stress would build up at this location because of 
thermal loading. 

In the immediate area around the drift, the major principal stress may reach 90 
MPa. This high principal stress in the jointed rock mass around the drift may cause rock 
spalling to occur at the drift wall. After thermal loading, the large number and magnitude 
of joint openings in the rock mass immediately around the drift suggests that some rock 
wedges at the drift wall may become detached. Figure 8 also shows that the amount of 
the disturbance (joint opening) extends to the boundary of the modeled domain. This 
indicates that a larger domain (more than 20 m above and 20 m below the drift 
centerline) should have been modeled in order to determine the full extent of the 
disturbance. The opening of horizontal joints is about 0.2 to 0.7 mm in an area within 
about a 10 m radius of the drift wall. In general, all of the vertical joints remain closed 
after the thermal load is applied. In contrast to the 1.6 mm vertical drift closure and 0.3 
mm horizontal drift closure generated in the excavation stage, the drift height measured 
through the center of the drift increases (expands) 13.4 mm, while the drift width 
measured through the center of the drift closes 13.3 mm during the thermal loading stage. 

The Reference Information Base (DOE, 1994) indicated that the rock mass 
strength is about 49 MPa at the confining pressure of about a3 = 7 MPa. After thermal 
loading the horizontal stress in the area a few meters away from the drift is about 55 
MPa. This prediction indicates the rock mass failure in the entire domain of the modeled 
rock mass may occur due to the compressive stresses generated by the 111 MTU/acre 
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Figure 7.  Principal Stresses After Thermal Loading 
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Figure 8.  Joint Opening After Thermal Loading 
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thermal load. The high horizontal stresses with thermal load predicted by the DDA model 
was validated using a simple one-dimensional analytic solution based on the theory of 
linear elasticity, the theory of linear thermal expansion, and the boundary condition that 
there is no displacement at the ends of the one-dimensional segment. 

The prediction of rock mass failure in the entire modeled domain (near field) is 
dependent on the validity of the criterion for rock mass strength and the assumption of 
fixed boundary displacement in the horizontal direction provided by boundary frames at 
both sides of the region, as well as the free sliding against the boundary frame in the 
vertical direction for the thermal loading stage simulation. Such assumptions are widely 
used for simulating the rock mass response to a mining layout using multiple parallel 
drifts. It is believed that this assumption is reasonable for simulating the rock mass 
response around the drifts at the center of the entire repository. If the rock mass strength 
criterion and the boundary frame assumptions are shown to be valid, the 111 MTU/acre 
thermal load may not be feasible because the entire near field rock mass may become 
mechanically unstable. 

Estimated Change in Hydraulic Conductivity 

Existing fracture aperture sizes may be used to help estimate the undisturbed 
hydrologic properties of the fracture network beyond the zone affected by the drift 
excavation and thermal loads. The change in the fracture network hydrologic properties 
of the disturbed rock mass may be assessed by comparing the change of fracture apertures 
caused by excavation and thermal loading. 

Montazer et al. (1986) and Thordarson (1983) reported bulk permeability for the 
TSw in the range of lxlO"13 to IxlO"11 m2 for fracture aperture sizes in the range of 0.1 
to 1 mm. The corresponding bulk permeabilities in the composite fracture/matrix porosity 
model have been estimated to be about lxlO"15 and lxlO"12 m2 using cubic law for 
fracture permeability (Shenker et al, 1995). The bulk permeabilities used by Dunn and 
Sobolik (1993) for flow calculation in TSw fractured rock are 3xl0"16 m2 and lxlO"12 m2 

roughly corresponding to 0.005 mm and 0.07 mm fracture apertures, respectively. 
Fracture aperture sizes in Topopah Spring welded hydrogeologic unit (TSw), reported by 
Peters et al., (1984) are in the range of 0.004 to 0.005 mm. The average fracture aperture 
in the Tiva Canyon is about 0.5 mm and the fracture apertures of TSw are expected to 
be much smaller (personal communication, Lawrence Anna, USGS). Based on the wide 
range of values described here, we conservatively estimate that the average undisturbed 
fracture aperture for TSw is about 0.005 mm. 

Through a literature review, it was found that the fracture aperture can increase 
up to 1 mm in a 10 meter wide mechanically disturbed zone around a drift, if the drift 
is excavated by drill-and-blast methods. Based on the DDA model calculations for the 
case of an 111 MTU/acre thermal load, the fracture aperture will be increased about 0.03 
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mm and 0.2 mm for the mechanically- and thermally-disturbed zones, respectively, if the 
drift is mechanically excavated. Compare to the undisturbed fracture aperture estimated 
in the last paragraph, the disturbed fracture aperture is about the same as the change of 
aperture size caused by thermal load. Hence, the change of bulk permeabilities in the 
thermally-disturbed zones for the case of an 111 MTU/acre thermal load is predicted to 
be significant. 

CONCLUSIONS 

This paper has demonstrated that the mechanical and thermomechanical affects 
caused by excavation and thermal load can be analyzed using the DDA method. Based 
on the analysis, the following conclusions can be drwan: 

Quantitative descriptions of the joint openings induced by excavation and 111 
MTU/acre thermal load are estimated to be of the order of 0.01 and 0.2 mm, 
respectively, in the near field of the potential repository. The corresponding bulk 
permeabilities in the composite fracture/matrix porosity model are estimated to be 
about lxlO15 and lxlO"12 m2. 

The zone of disturbance caused by excavation was found to extend about half a 
drift diameter beyond the drift wall. Because of the limited extent of this 
disturbed zone and the small change in fracture aperture (0.01 mm) it can be 
assumed that this zone would not affect ground-water travel time significantly 
over the path length from the repository to the accessible environment (about 5300 
m). 

The results of modeling of the stress distribution around the repository drift for 
the 111 MTU/acre thermal load indicate that stresses may be higher than the 
strength of the rock mass. This indicates that the rock mass could fail if this 
thermal load is applied and if the rock mass strength criterion and the boundary 
frame assumptions are shown to be valid. 

The increase in hydraulic conductivity caused by thermal loading is about three 
orders of magnitude. A change of this magnitude could be significant with respect 
to ground-water travel time depending on the extent of the disturbance. 

For the region modeled using DDA the thermal disturbance occurred throughout 
the entire region, 20 m above to 20 m below the center line of the drift. Based 
on this result the thermally disturbed zone is more than 20 m beyond the drift 
(more than one drift diameter). 
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Abstract 

The Manifold Method (MM) of Material Analysis is a very flexible and powerful numerical 
analysis method, which contains and combines widely used Finite Element Method (FEM) 
and joint or block oriented Discontinuous Deformation Analysis (DDA) method in a unified 
form. 

However, up to now, there is no effective means to make MM models, and it is not easy 
to make such a model by hand. As a result, the practical applications of the MM method 
are limited considerably. 

For this reason, we present a method to create MM models from the corresponding DDA 
models automatically. Since we have already developed a very powerful DDA software called 
DDAWorkTool, which contains a model-maker module, it is easy to make a DDA model by 
use of the tool. 

The program for the method has been developed, and it has been shown to be very 
efficient by transferring a lot of DDA models into MM models. It will be put into practical 
use soon. We expect that the powerful MM method will get more and more widely practical 
applications by using the program. 

1    Introduction 

The Manifold Method (MM) of Material Analysis, as we know, is a very flexible and powerful 

numerical analysis method. It contains and combines widely used Finite Element Method (FEM) 

and joint or block oriented Discontinuous Deformation Analysis (DDA) method in a unified form 

(Shi, 1994). 

The meshes of the manifold method are finite covers, which overlap each other and cover 

the entire material volume. The cover system of a model is formed by both mathematical and 

physical meshes. The major work of creating a MM model is to delimit these meshes. However, 

up to now, there is no effective means to do this, and it is not easy to make such a mesh by hand. 

As a result, the practical applications of such a new good method are limited considerably. 

Here, we present a method to create the mathematical meshes automatically based on the 

physical meshes for any MM models. We also propose to use a block system of DDA for the 

same problem as the physical meshes. Since we have already developed a very powerful DDA 

software called DDAWorkTool, which contains a model-maker module (Chen et al., 1995), it 
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now is very easy to make a DDA block system by use of the tool. 

The program for the proposed method has been developed, and it has been shown to be very 

efficient by transferring a lot of DDA models into MM models. 

2    Outline of the proposed method 

The physical meshes outline the boundaries of the material volume, joints and blocks. Obviously, 

they correspond to the assemblage of blocks for DDA models. For us, it is convenient to use DDA 

models to make MM models since DDA models are easily made by use of our newly developed 

DDAWorkTool. 

The mathematical meshes of a MM model can arbitrarily be chosen by user and it does not 

matter even if some meshes extend outside the material volume. This is one of the major advan- 

tages of the MM method, which makes it possible to create mathematical meshes automatically 

for any shape of materials. 

It is common to use triangular meshes like FEM to form mathematical meshes. Both the 

formulation and the program of MM for a triangular element of mathematical mesh have been 

developed by Shi, 1994. We also choose those meshes in our method. 

For simple description and better understanding, we only use the term element for this 

specific choice instead of using the concepts of cover and mesh in the general meaning. 

An element means a mathematical element and a physical element (Fig.l). 

A mathematical element is a triangle represented by three element nodes like FEM. The dis- 

placements of the element nodes are unknowns of MM. An element node has both the coordinate 

and the node number, and it can be outside the physical region. 

A physical element is a part of the mathematical element in which the material exists, and 

the integration will be carried out. It is represented by the vertices of the area, called element 

vertices here (Fig.l). 

If an element vertex lies on the physical boundaries of a block system, it is also a boundary 

point. All the boundary points are needed to be specified for the purpose of checking the contacts 

between blocks in the MM calculation. 

For example, in Fig.l, the triangle is the mathematical element represented by three element 

nodes i, j and k; the shaded area is the corresponding physical element with vertices 1, 2, • • •, 

7; all the element vertices except for 7 are the boundary points of the physical block delimited 

by dotted lines. 

In fact, the major task of creating a MM model is to make all the elements, that is, to 



element nodes: i, j and k 

eleaent vertices: 1. 2  7 

Fig.1. A mathematical element (the triangle) and the corresponding 

physiscal element (the shaded area) 

a triangular raw element 
represented by the three 
raw nodes i. j and k 

a block system with two 
blocks (the shaded area 
with the thick lines) 

a cover with triangular 
raw elements delimited 
by the thin lines 

Fig.2. A cover with triangular raw elements over a block system 
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determine the coordinates and node numbers of all the element nodes; to specify the three 

element node numbers of each mathematical element and to obtain element vertices of each 

physical element. 

For this purpose, we, in the first place, create a rectangular cover with regular triangles over 

the whole block system, i.e. the blocks of a DDA model. Fig.2 shows an example in which the 

cover with 32 triangles delimited by the thin lines covers the block system of two blocks (the 

shaded areas with the thick lines). 

The grid points of the cover are called raw nodes, and the triangles are called raw elements 

here. A raw element is represented by three raw nodes as shown at the upper right corner of 

the cover in Fig. 2. We use the terms raw element and raw node here to distinguish them from 

the elements and the element nodes of MM. 

In the second place, we produce all the elements from the raw elements based on the block 

system. If a r.v.v clement has a common area with a block, an element will be produced. The 

physical element corresponds to the common area and the mathematical element corresponds to 

the raw element. In other words, the element vertices directly take the vertices of the common 

area, and the element nodes take either the corresponding raw nodes or their copies. The copy 

of a raw node is a new raw node with the same coordinate as the original but a new different 

number next to the last raw node number. 

Finally, we compress the element nodes by deleting the nodes which are not used by any 

elements, and find out all the boundary points for each block. 

The major procedures of making a MM model are shown in Fig.3. 

3     Creation of the Cover with Triangular Raw Elements 

The cover with triangular raw elements in a rectangle region is, adaptable to any shape of 

materials in our method. It should be large enough to cover the whole block system. 

Fig.4(a) shows the outline of the cover to be created, and it is divided into four quadrants 

from the axis center (xo,t/o)- There are nr x n* grids in quadrant 1, n/ x nt grids in quadrant 

2, ni x n& grids in quadrant 3 and nr x nj, grids in quadrant 4 respectively. All grids have the 

same size with Az x Ay, and a grid contains two triangular raw elements. 

The number of the grids in each quadrant is determined by the following formulas according 

to the dimension of the block system: 

nT    =    intl 14-1 
A* 
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Fig.3. The major procedures of making a MM model 
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ni    =    int{ 
xo -xr 

-) + l 

nt lnt\ Ä ) + 1 

7l(, 
■    ,/2/0       !/mtn <.        . int{- j + 1 

where (xm:n, ymjn) and (xmax, Vmax) are the coordinates of the lower left and upper right corner 

points of the rectangle which just encloses the whole block system. 

In creation of such a cover, we need to calculate the coordinates of all the raw nodes, to 

assign a unique number to each of them, and to specify the three raw node numbers of each raw 

element. 

In quadrant 1, there are Ni = (nT + l)(nt + l) raw nodes to be determined. The node number 

of the raw node in jth row and fth column from the center is noted as klji and its coordinate 

is noted as (Xki^^Yki^), which are determined as follows: 

klji = i + l+j(nT + l) 

Xkiji = xo + iAx 

Ykiji = yo+j&y 

i = 0, 1, 2, • - •, nr 

j = 0, 1, 2, • • •, nt . 

The three raw node numbers of the lower raw element of a grid in this quadrant are 

klj'-i.t-i 

klj-i,i 

klj,i-i 

i = l,2,---,nr;   j = 1, 2, • • • ,n, 

while those of the upper raw element of a grid are 

klj-i,i 

klJ,i-i 

i = 1,2, ■■■,nr;   j = 1,2, • • • ,nt . 

In quadrant 2, there are N% = ni(nt + 1) raw nodes to be determined. The node number of 

the raw node in jth. row and ith column from the center is noted as k2ji and its coordinate is 
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noted as (X^,,, Yki,,), which arc determined as follows: 

k2ß    =    Ni +i+ jni 

Xk2ji      =     x0 ~ i&x 

Yk2:i    =   2/0 + i Ay 

i    =    1,  2,  • • •, ni 

j    =    0,   1,  • • •, nt . 

Since the raw nodes in the boundary between quadrant 1 and 2 have already been determined 

in quadrant 1, they are just copied to quadrant 2 as follows: 

Jc2jo = kl jo for     j = 0,l,2,---,nf 

The three raw node numbers of the lower raw element of a grid iu quadrant 2 are 

kZj—ij 

_i = l,2,---,ni;   j = 1, 2, •• ■ ,nt 

while those of the upper raw element of a grid are 

i = 1,2, ■■■,ni;   j = 1,2, • • • ,nt . 

In quadrant 3, there are N3 = (n/ + l)n{, raw nodes to be determined. The node number of 

the raw node in jth row and ith. column from the center is noted as k3ji and its coordinate is 

noted as (Xk3jt, Yks^), which are determined as follows: 

Jfc3if-    =    iVi + ;V2 + *' + l + (i-l)*(ni + l) 

=   XQ — iAr 

=        1/0   - J Ay 

i    =    0, 1, •••, ni 

j    —    1, 2, • • •, nb . 

Since the raw nodes in the boundary between quadrant 2 and 3 have already been determined 

in quadrant 2, they are just copied to quadrant 3 as follows: 

k3oi = k2oi        for     i = 0,1, 2, • • •, n* . 

Ykzj{ 
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The three raw node numbers of the lower raw element of a grid in quadrant 3 are 

i = l,2,---,nj;      j - 1,2, ■ ■ ■ ,nb 

while those of the upper raw element of a grid are 

£3j-i,x-i 

i = 1,2, ■■■,ni;     j = 1,2, • • • ,nj . 

In quadrant 4, there are N4 = nrnb raw nodes to be determined. The node number of the 

raw node in jth. row and z'th column from the center is noted as k4ji and its coordinate is noted 

as {XkAji-, Ykiji), which are determined as follows: 

k4j{ = Ni + N2 + N3 + i + (j - l)nr 

Xkiji = xo + iAz 

Yk4jt - yo - jAy 

i = 1, 2, •••, rip 

j = 1, 2, • • •, nb . 

Since the raw nodes in the boundaries between quadrants 4 and 1 as well as 4 and 3 have already 

been determined in quadrant 1 and 3 respectively, they are just copied to quadrant 4 as follows: 

kA0i = kloi for     z = 0,1,2, ■•-,nr 

k4j0 = k3j0 for    j = 0,1,2, • • • ,n& . 

The three raw node numbers of the lower raw element of a grid in quadrant 4 are 

k4jti-i 

k4jj 

i = 1,2, ■••,nr;     j = 1, 2, • • ■ ,nb 

while those of the upper raw element of a grid are 

' k4tj-U 

k4jti-x 

i = 1,2, ■■■,nT;      j = 1,2, • • • ,nb . 

113 



Fig.4(b) shows an example of the created cover, in which the numbers of grids are 

nt — nb = nr = n; = 2 . 

There are 32 raw elements denoted by the larger bold numbers and 25 raw nodes denoted by 

the smaller numbers in the example. 

4     Creation of the Elements of MM 

All the elements of MM are derived from raw elements based on the block system. An element 

will be produced if there is a common area between a raw element and a block. Therefore, we 

need to check, one by one, every raw element with every block to find out all the common areas. 

4.1    Common Areas 

How to detect all the common areas efficiently and correctly is the crucial point of this new 

method, which is explained in detail as follows. 

Suppose that a block is represented by the ordered vertices which is numbered counterclock- 

wise (Fig.5(a)), a raw element is represented by the three raw nodes with numbers i, j and k 

also counterclockwise, and the edges are also labelled as shown in Fig.5(b). 

In general, the following types of common areas axe possible: 

1. When a raw element is inside a block completely (Fig.6(a)), the common area is the whole 

raw element, and the vertices of the common area are the three raw nodes. 

2. When a block is inside a raw element completely (Fig.6(b)), the common area is the whole 

block, and the vertices of the common area are those of the block. 

3. When a raw element is partially overlapped on a block (Fig.6(c)), the common area is 

enclosed by both the block boundaries and the edges of the raw element. 

4. When a raw element is divided into several parts by the boundaries of a block or joints 

within a block, multiple common areas are possible (Fig.6(d)), The common areas are 

enclosed by both the block boundaries and the edges of the raw element. 

Type 1 and type 2 are easily detected. However, types 3 and 4 are a little difficult to be 

detected. For this reason, we mainly introduce how to detect the common areas like types 3 and 

4 as follows. 

We link the consecutive boundaries inside the raw element to obtain an oriented line called 

crossed line here. In general, a crossed line consists of an entering point, an exiting point and, 
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edge k 
edge j 

(a), a block 

edge i 

(b). a raw element 

Fig.5. A block with ordered vertices and a raw element 

with three raw nodes and edges 

(a). A raw element inside a block (b). A block inside a raw element 

(c). A common area (the shaded part) (d). Multiple common areas 

Fig.6. Various types of common areas between a raw element and a block 
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if any, inside points (the arrowed line in Fig.7(a)). We also define a special crossed line for a 

raw node inside the block as shown in Fig.7(b), where the arrowed line is the special crossed 

line defined for the raw node j, and it enters into the raw element from the edge i, exits from 

the edge j. The entering point and exiting point are the same for a special crossed line, i.e. the 

raw node itself. 

The crossed lines for various types of common areas are shown in Fig.8. It can be found from 

the figure that all the common areas can be obtained if the crossed lines are connected in such 

a way that the exiting point of a crossed line is connected with the entering point of the other 

crossed line which is the nearest to it and lies in its left side. The vertices of the common area 

are the points in the connected crossed fines. 

To specify a crossed line, we need to determine the entering point, the exiting point and, if 

any, inside points. 

Inside points are those vertices of the block inside the raw element, which are easily detected. 

Both entering and exiting points are the intersection points between a boundary line segment 

and an edge of the raw element. Whether an intersection point is an entering point or an exiting 

point can be judged as follows: 

1. If a boundary line segment i,i + 1 has only one intersection point with the three edges of 

the raw element, one of end points, i or i + 1, should be inside the raw element. If the end 

point i + 1 is inside the raw element, the intersection point should be an entering point, 

otherwise, an exiting point. 

2. If a boundary line segment i,i + 1 has two intersection points with the three edges of the 

raw element, the one that is near in distance from the end point i is an entering point, 

and the other is an exiting point. 

4.2     Mathematical Elements 

An element is to be produced when a common area is found out. Producing an element means 

to determine the three element nodes for the mathematical element and to obtain the element 

vertices for the physical element. 

The element vertices can be directly taken from the vertices of the common area. However, 

it is uncertain if an element node is directly taken from the corresponding raw node or from its 

copy. The copy of a raw node can be considered a new raw node which has the same coordinate 

as the original but a new node number next to the last raw node number. 

Since a raw element may have common areas with more than one blocks, a raw node may 
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: the entering point 

2: the inside point 

3: the exiting point 
edge j edge i 

(a). A general crossed line (b). A special crossed line 

Fig.7. A general crossed line and a special crossed line 

(a) (b) 

(c) (d) 

Fig.8. The crossed lines for various types of common areas 
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be related to several blocks. As we know, the element nodes for a physical block should totally 

be different from those for the other block. Therefore, if a raw node has already been used by 

a block, the other blocks can only use its copy. The copy for a block should be unique, but the 

copies for different blocks should be different. 

In general, the element node derived from a raw node should be unique for all the elements 

related to the same block, that is, there is only one element node at a raw node point for a 

block, and it is shared by all the elements in that block. 

However, there exists the special case when two adjacent elements in the same block are 

separated by fractures or boundaries. In this case, there may be two element nodes overlapped 

at a raw node point for two elements in the same block, that is, the copy of an element node 

should be used for one of the two elements. Which one should use the copy depends on the 

surrounding elements . First of all, we determine some element nodes based on the un-separated 

adjacent elements according to the rule that the element nodes should be the same along the 

common edge if there is no discontinuity between the two adjacent elements. Then, if some 

other element nodes still remained undetermined, they should be replaced by their copies. 

4.3    An Example 

Here we take the example shown in Fig.9 to explain the method more clearly. 

The block system in the example consists of two physical blocks (Fig.9(a)), and block 2 

contains a fracture. 

The created cover is shown in Fig.9(b). The larger bold numbers denote raw elements and 

the smaller numbers denote raw nodes. For example, raw element 1 is represented by the three 

raw nodes 1, 2 and 4. There are 32 raw elements and 25 raw nodes in this example. 

35 common areas are detected between 32 raw elements and 2 blocks. Therefore, 35 elements 

are produced in this example (Fig.9(c)), and the numbers in the figure denote the physical 

elements. Since some mathematical elements are overlapped each other, they are separately 

shown in Fig.9 (d), (e) and (f). In these figures, each triangle with thin lines represents a 

mathematical element, and the shaded part of a mathematical element is its corresponding 

physical element. The numbers in the figures denote the element node numbers. 

Fig.9 (d) shows the mathematical elements related to block 1. For example, the element 26 

has the element nodes 10, 16 and 26. 

Fig.9 (e) shows the mathematical elements related to the right part and the part below the 

fracture of block 2. For example, the element 5 has the element nodes 7, 1 and 4. 
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Fig.9 (f) shows the mathematical elements related to the right part and the part above the 

fracture of block 2. For example, the element 6 has the element nodes 30, 1 and 4. 

The following things should be emphasized in this example: 

1. Element nodes are compressed 

Since raw elements 8 and 16 are outside the block system completely, raw nodes 6, 8 

and 9, as well as raw nodes 13, 14 and 15 are not used by any elements. As a result, 

element node numbers 6, 8, 9, 13, 14 and 15 should not be used by any elements because 

element nodes are derived from raw nodes. Obviously, unused element nodes should be 

deleted. That is why we need to compress the element nodes after all the elements are 

produced. By compressing, element nodes 7, 10, 11, 12 become 6, 7, 8, 9, and the element 

node numbers larger than 15 become smaller by 6. For example, element nodes 16, 22 and 

32 of element 26 become 10, 16 and 26 by compressing. The element node numbers shown 

in Fig.9(d), (e) and (f) are the compressed numbers 

2. Multiple elements may be derived from a raw element 

For example, elements 26 and 27 are derived from raw element 26, elements 5 and 6 

are derived from raw element 9. 

3. Multiple element nodes may overlap at a raw node point 

For example, there are 3 element nodes at raw node 10: element node 7 of element 7, 

element node 30 of element 8 and element node 20 of element 12. 

4. The element nodes of the elements in block 1 are totally different from those in block 2 

Comparing Fig.9(d) with Fig.9(e) and (f), it can be seen that the element nodes denoted 

in Fig.9(d) are totally different from those in Fig.9(e) and (f). Although both elements 26 

and 27 are derived from the same raw element 26, the three element nodes 10, 16 and 26 

of element 26 in block 1 are totally different from the three element nodes 22, 27 and 2 of 

the element 27 in block 2. 

Here, we take element 26 as an example to explain how to determine the element nodes. 

(a) Since raw node 16 has been used as the element node of element 24 in the same block, 

it should also be used as the element node of element 26; 

(b) Since raw node 22 is not used by any element at that time, it can directly be used as 

the element node of element 26; 

(c) Since raw node 2 has already been used as the element node of elements 1, 2, 3 and 

25 in block 2, the different block, the copy of raw node 2, which is numbered 32, 
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should be used as the element node of element 26. 

(d) As a result, element 26 has three element nodes 16, 22 and 32, which become 10, 16 

and 26 after compressing. 

5. There is at least one different element node between the two elements divided by the 

fracture although they are in the same block and produced from the same raw element. 

The number of different element nodes between this kind of two elements depends on 

the surrounding elements. For example, there is only one different element node between 

the elements 5 and 6 while there are two different element nodes between the elements 7 

and 8, and three between the elements 9 and 10. 

In the following, we take elements 5 and 6 as examples to see how to determine the element 

nodes when discontinuity is involved between two adjacent elements. 

Because of the fracture in block 2, raw element 9 has 2 common areas with block 2. Therefore, 

elements 5 and 6 are produced from these two common areas. They are adjacent to element 1. 

Since there is no any discontinuity from both elements to the element 1, the element nodes 

1 and 4 along the common edge can be determined as those for the elements 5 and 6. 

Since there is no any discontinuity between the elements 5 and 13, the element node 7 (which 

was numbered 10 before compressing) can be determined as the remained node of element 5. 

However, element node 7 can not be used as the remained node of element 6 since there is a 

discontinuity between element 6 and element 13. As a result, the copy of the element node 

7, which has a new number 30 (which was numbered 36 before compressing), is used for the 

remained node of element 6. 

5    About the Program 

The program for the new method has been developed. It is coded with C language, X-Window 

and XView libraries on SUN Workstation. 

Fig. 10 shows the menu panel and the working windows of the program. All the operations 

are nothing but pushing menu buttons or filling numbers in tables. The images of the input 

data are shown in the window immediately. Therefore, it is very easy to make a MM model by 

using the program. 

The major procedures of making a MM model are as follows: 

1. Input the physical block system. 

The corresponding DDA model data, which is supposed to have already been made by 
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DDAWorkTool, can be easily inputted from data files just by selecting the model name 

from the menu button [input DDA models], which is a pull down menu and contains the 

names of all the DDA models in the current directory. 

2. Create a cover over the block system. 

After the block system is shown in the window, push the menu button [Create the 

Cover], and then, a table for inputting the parameters of the cover appears (Fig.ll). 

Assigning the proper number to each item in the table and pushing the button [Create], 

the cover will be created automatically. 

In the panel table shown in Fig.ll, the items Grids for Half Width and Grids for 

Half Height refer to the numbers of half grids to be produced in horizontal and vertical 

directions respectively; the item Over Cover refers to the excess of the cover over the entire 

block system; the items Center Shift for X and Center Shift for Y refer to the excentricity 

of the axis center from the center of the block system. 

3. Make all the elements and determine the boundary points of each block just by pushing 

the menu button [Determine Elements] (Fig.12). 

6    Conclusions 

The method for making MM models have been presented in this paper. It can create mathemat- 

ical meshes automatically for any shape of physical meshes. We also propose to make physical 

meshes in the same way as making block systems by using DDAWorkTool, a powerful software 

developed for DDA method. 

The concepts such as Raw Element, Element, Mathematical Element and Physical Element 

have been denned and used to describe a MM model with the help of the terms such as Raw 

Node, Element Node, Element Vertex and boundary point. Therefore, it becomes very clear what 

kind of data are needed in a MM model. 

The program for the method has been developed and it has been shown to be very efficient 

by transferring a lot of DDA models into MM models. It will be put into practical use soon. 

We expect that the powerful MM method will get more and more widely practical applications 

by using the new program. 
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Abstract 

This paper presents a numerical model transitional from the Discontinuous 

Deformation Analysis (DDA) to the Manifold Method. The Manifold Method has two 
independent meshes: a mathematical and a physical mesh. In DDA which is a special 
case of the Manifold Method for a discontinuous block system, the physical and 
mathematical meshes are the same. The model presented here uses a finite element mesh 

for the mathematical covers in each DDA block and incorporates nonlinear material 

behavior. This formulation improves the physical mesh's deformation ability by placing a 
mathematical mesh of triangular elements in each individual material body. The nonlinear 
constitutive behavior of materials is incorporated in the formulation by using piecewise 

linear approximation similar to the DDA's step-by-step linear kinematics approach which 

has been successfully used in solving geometric nonlinearity problems. Therefore, 
continuous and discontinuous analyses can be performed to study the detailed mechanical 
response, the global stability and the failure modes of the finite element meshed multi- 

body system under static and dynamic loads. 

Introduction 

The analysis of structural and material behavior varies with different 
mathematical tools. With the advent of digital computers, the analytical solutions 
obtained from simplified models no longer satisfied the engineer once computers allowed 
the conversion of a complex continuous problem to a discrete one. Finite Element 
Method (FEM) led to a revolution in mathematics, and made an important contribution in 
numerical analysis solving scientific and engineering problems in the early 1960s. Thus, 
leading computational mechanics into a new age. It is now a well developed and powerful 
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method for solving continuous deformation problems. For total discontinuous 

displacement, Shi derived the first entrance theory of block kinematics to regulate the 

movements of all the blocks and to find the locations of all contacts among the blocks. 

Using the minimization of total potential energy to reach equilibrium and adopting the 

implicit algorithm of FEM, Shi (1988) developed Discontinuous Deformation Analysis 

(DDA) to analyze the stability and stress distribution of a system of blocks containing 

pre-existing cracks or joints. 

Since FEM and DDA adopt the same algorithm and energy theorem, Shi (1991) 

proposed the Manifold Method to bridge the gap between continuity and discontinuity. In 

this method the local functions defined on each cover are independent, and the global 

function of the manifold takes a percentage weight from the local functions on the 

overlapped regions of each cover. Thus, both the mathematical mesh and the physical 

mesh are independent. The mathematical mesh, chosen by the user, consists of 

overlapping finite covers which defines the displacement functions and derives the 

numerical interpolation from finite difference grids, finite element meshes, or series with 

convergence regions. The physical mesh, representing the material conditions, delimits 

the integration zone and includes the boundary of the material volume, joints, blocks and 

the dividing lines of different zones. Furthermore, Shi (1994) derived analytical solutions 

of simplex integration of n-dimensional general shaped domains, and was able to obtain 

integration of complex material domains from simple functions. Therefore, the global 

displacement functions of the manifold are able to represent large displacement and 

deformation of the material volume starting from fully continuous state, and allows the 

development of micro-crack zones which propagates into macrocracks, until the damage 

stage. 

The displacement functions of DDA and the triangular element of FEM are 

complete first order polynomials. From the Manifold Method's point of view, the 

triangular element is composed of three constant covers. These--three covers can be seen 

as three "nodes" of the element. Viewing from the displacement function of a triangular 

element, DDA's physical mesh of a block system overlays within the boundary of a big 

triangular element, common area of three mathematical covers. Shi transformed these 

nodal variables into six essential variables such as rigid body motion, axial and shear 

deformations, then placed them at each block's center of gravity to depict its trace of 

motion. After the transformation of variables, the multi-body system of the physical mesh 

is simply a system of blocks. Each block is a domain, and each domain is a cover. Blocks 

are in contact along their boundaries that are not overlapped with each other. Since the 
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mathematical mesh and the physical mesh are the same, in total discontinuity DDA is a 

special case of the Manifold Method. 

Since a constant stress/strain field in each block is not a realistic assumption for a 

large block, one should select a mathematical mesh to improve the physical mesh or the 

block's deformation ability in order to enhance the precision of stress/strain distribution 

field. The model presented here used the triangular element of finite element mesh as its 

mathematical mesh. The roughness or refinement of the triangular element mesh in 

individual material body depends on the requirement of engineering accuracy. The more 

triangular elements are placed in each physical body, the more mathematical covers are 

overlapped together. The mathematical mesh region coincides with each physical body. 

Besides, the addition of nonlinear material behavior in each element using step-by-step 

linear approximation enables the proposed model to solve more realistic engineering 

problem. 

The original Manifold Method computer program developed by Shi used arbitrary 

scaled equilateral triangular element mesh as its mathematical mesh. When two layers of 

mathematical and physical mesh merge together, more nodes or covers are generated 

along the boundaries of the physical mesh. The elements inside each physical body can 

have irregular forms that is more flexible than those in the proposed model. 

Overlaying of Physical Mesh with Finite Element Mesh 

The main purpose of placing the mathematical covers of a finite element mesh in 

each material body is to improve its deformation ability. Not only the movements of the 

multi-body system will be depicted by DDA's block kinematics, but also the stress 

distributions within the material volume can be obtained. Once the finite element mesh of 

triangular elements is chosen, the complete first order polynomial displacement function 

are used to describe the element's behavior. 

The geometry function of the material bodies is used as the contact boundaries, 

thus, so the shape of the physical body does not need to be triangular. By adding a finite 

element mesh as the mathematical mesh in individual body, more nodes are distributed 

along the contact boundaries of the block, and the contact detection from block system 

kinematics become more complicated in the discontinuous system. Consider a three-node 

element where the boundaries are drawn along the nodes in certain directions, forming a 

three-edge block with the same size as the element. This configuration is called a three- 

node "element block"—a block with nodal displacements as unknowns. If a three-node 
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Figure 1 .a. Input lines for mathematical mesh 

Figure 1 .b.   Input lines for physical mesh 

18 19 19 20 31 21 

14 15 15 16 30 17 

14 15 15 16 30 17 

26 25 25 28 29 27 

9 10 10 11 24 12 12 13 

5 6 f> 23 7 7 S 

5 6 23 7 7 S 

1 2 
v    2 22 3 3 4 

Figure 1 .c. Mesh of elements and blocks 
(same nodal numbers are shared between the elements, but 
different nodal numbers are used along the block boundaries) 
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element is extended to a n-node element mesh, an element-mesh block with n nodes is 

obtained. In general, a block can be as small as an element or as large as an element 

mesh. Different meshes can also be put into different blocks if conditions permit. 

In the computer program, the mathematical meshes and the boundaries of the 

material bodies need to be input separately with line segments containing the coordinates 

of two end points (Figure La, Lb). Then, after the process of tree cutting and forming of 

the mathematical and physical meshes, both are merged with the same nodal numbers 

between the elements, but with different nodal numbers between the boundaries of the 

blocks (Figure l.c). The basic element in this numerical model is triangular. For the 

convenience of putting the mesh in each block, four-node element meshes are generated 

first in the mesh program. Next, a condense five-node element —a quadrilateral element 

with four nodes on its vertices and one additional node inside it that forms four triangular 

elements— is used for the forward model computations. 

Based on the idea of element-mesh blocks, the boundary of the mesh in standard 

FEM is just one block in DDA. Thus, FEM only has a mathematical mesh that is a special 

case in the Manifold Method for continuous problems. By choosing mathematical covers 

of the finite element mesh overlaid with physical mesh of the block system, it is possible 

to take advantage of the continuous properties in FEM and discontinuous characteristics 

of DDA, thereby simulating engineering problems more accurately. 

Simultaneous equilibrium equations 
The simultaneous equilibrium equations derived by minimizing the total potential 

energy, Ü, have the following form: 

K]Y{4}) ftfP 
K] {A}    te} 
K] {A} = fö} 

r[Kn]    [K12]    [K13] 

[^21 ]      [K2l]      [^23 ] 
[K3l]   [K32]   [K33] 

.{"-}. mi 

(1) 

J*..]    fra]    I**]    -    KJ, 
The nodal displacements are chosen as the unknown variables and each has two degree- 
of-freedom for the two-dimensional case. For the given i-th node, [K;J] is 2 x 2 submatrix 

representing the stiffness of displacement at the i-th node with respect to the load acting 
on the j-th node.  {/?,} and {/;} are 2x1 submatrices for the corresponding unknown 

nodal displacement and nodal loading matrices. 
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Displacement functions 

For a   triangular element, the displacement functions can be described by a 

complete first order polynomial 

u - ax + bxx + c,y 

v = a2 + b2x + c2y 

With (.*-,,>',) and (ü,.V,) being the coordinates of nodes and related nodal 

displacements of the triangular element where / = 1,2,3, 
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[T^j and {dj are the matrices of shape function and displacement variables per 
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Inertia matrix 
Because the inertia force plays a key role in rigid body motion, it is crucial to 

include it in dealing with the motions of a discontinuous multi-body system. Assuming 

the acceleration in each time step is constant, the 2 x 2 nodal stiffness matrices and 2 x 1 

force matrices of element / can be described as 

[K, «]=f [JMr*.H ^='-2'3 (3) 

[Fj-^ifjjai^i^K«»} G„2;L„m    
<4) 

where 

K)(0)} = dt vio(0)j 

M is the mass per unit area, and A is time interval of current time step. The analytical 

solutions of the above integration that ensures the convergence of "open-close" iterations 

can be obtained (Chang 1994). 

Normal contact matrix 
When two bodies are detected to be in contact, the requirement of no penetration 

must be satisfied according to DDA's block kinematics. The contact problem reduces to 

the relationship of angle-to-edge (point-to-line) case. When interpenetration pushes the 

point through the reference line, the distance between them should be zero after the 

installation of spring with stiffness p at the contact position. The nodal stiffness and force 

matrices of element i and j are described as 

KrWs)] = P{K}{HST ^ = 1'2'3 

K^} = P^Mf        r,s = 1,2,3 (5) 

Kr^] = P{GMf        r,s = 1,2,3 

[*W>] = PIGMY        ^ = 1'2'3 

{Fj(r)} = -p{^]{Gr} 

r,s = 1,2,3 
(6) 

r,s = 1,2,3 
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where 

/(!) = ', 
for element / < i(2) = i2       for element  j 

.i'(3) = /3 

The detailed derivation of internal stress, external loading, displacement constraint, and 

contact matrices are described in Shyu (1993) and Chang (1994). 

;(!) = y, 
j(2) = j2 

Nonlinear Material Behavior 

In structural mechanics, nonlinearity can be classified as material nonlinearity and 

geometric nonlinearity. Geometric nonlinearity is modeled in DDA using a discrete time 

system. The present work develops material nonlinearity formulation. 

DDA uses a step-by-step linear approach. Each step starts with the deformed 

shape and positions from the previous step; the stresses from the previous step are 

considered as the initial stresses at the current step. After adopting the updated geometry, 

the contact positions, the velocities, and the stresses from the previous time step, the 

computation for the current step is independent from the data of the previous step. All 

the deformability constants, loading, initial stresses, and boundary conditions can be 

changed at the current step. Because the time interval of each time step is very small, the 

displacement, the deformations, and the changes of stresses are very small, so that the 

tangent modulus of the stress-strain relationship at the current step is very close to the 

secant modulus of the stress-strain curve. Thus, the arc-length method (Figure 2) can be 

used to calculate the piecewise linear modulus based on the updated values of stresses 

and strains for nonlinear constitutive behavior of materials. 

The use of line segments to depict the nonlinear behavior of the material allows 

that the linear step-by-step approach can be employed in both material and geometric 

nonlinearity problems. It should be mentioned that solving nonlinear material problems 

using only one step may violate the infinitesimal displacement theory. When 

mathematical covers of finite element mesh and physical mesh of blocks are combined 

together to obtain the stress distributions, or to improve the deformation ability of the 

block, the use of piecewise linear stress-strain curve to solve material nonlinearity step by 

step allows the solutions of complex engineering problems. 

The present work develops equations for nonlinear isotropic materials using 

principal strain as the criterion for the change of Young's modulus E and Poisson's ratio, 

v. The more line segments that are chosen to follow the stress-strain curve, the better 
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experimental curve 
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—    coarse piecewise linear curve 
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Figure 2. Arc-length method 

Stress (a) 

Continuous loading 
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Figure 3. Nonlinear inelastic stress-strain modelling 
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approximation of nonlinear inelastic material behavior for each time step. Without the 

incorporation of a fracture criterion, the element meshed block of the system always 

remains as intact in the present model. The material is assumed to be strain hardening 

after yielding, because the strain-softening behavior observed in the experimental stress- 

strain curve reflects the global specimen instead of the individual blocks. The 

Bauschinger effect is considered in cyclic loading; the unloading and reloading paths 

after yielding are assumed to be the same in the stress-strain curve, as shown in Figure 3. 

The inclusion of nonlinear material behavior also provides another source of energy 

dissipation. 

Stiffness matrix 
A linearly step-by-step approach to discretize the stress-strain curve can be used 

to simplify a material nonlinearity problem. For an isotropic inelastic material, the stress- 

strain relationship is assumed to be linear at each time step. After taking the derivatives 

of displacement variables from the elastic strain energy, three  2x2 nodal stiffness  of 

element / are formed. 

[K,r),(J = [B,w]r[E,.lB,J; r,s = 1,2,3 

where 

f 

[E-] = TT 

1 v 

v 1 

0   0 
V 

/(/) = 

*3 9 

0 

0 
1-v 

2 ; 

/=i 

1 = 2 

1 = 3 

[B,] = 
7a     ^ 

0    /„ 
\hl      Hi) 

first node 

second node 

third node 

/ = 1,2,3; 

Applications 

The following numerical simulations are presented to show the versatility of the 

model to study the stability and failure modes of the discontinuous structure systems, and 

the stress distribution analysis for nonlinear materials. 
Figure 4-7 show the computations analyzing the compressive post-failure 

behavior of a marble specimen with preexisting cracks formed by Wood's metal (Chang 
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Figure 4. Original Configuration of the marble specimen 
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Figure 5. Configuration of the marble specimen, step=300 
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Figure 6. Configuration of the marble specimen, step=4000 
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Figure 7. Configuration of the marble specimen, step=7000 
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Figure 8. Original configuration of St. Francis Dam with bed rock 
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Figure 9.   Configuration of St. Francis Dam with bed rock, step=300 
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Figure 10. Configuration of St. Francis Dam with bed rock, step=500 
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Figure 11. Reference configuration of rock caverns (no liner, no rock bolts) 

140 



Q       fixed pt 

Figure 12. Principal stresses around two caverns (static excavation), step=500 
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Figure 13. Magnification of two caverns during earthquake excitation, step=100 
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Figure 14. Original configuration of rock caverns with strong liner 
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Figure 16. Rock caverns with strong liner under earthquake excitation, step=250 
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Figure 18. Principal stresses around two caverns (static excavation), step=500 
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Figure 19.  Magnification of right cavern under earthquake excitation, step=500 
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et al.). The propagation of plastic regions, the global stability and failure modes can be 
observed from the loading process. 

The second application studies the initiation of block failures at the east abutment 
of the St. Francis Dam in failure reassessment (Rogers 1992; Rogers and McMahon 

1993; Chang 1994). The modified rectangular dam is under the hydraulic pressure 

(horizontal stress), and the effective uniform vertical stress, the resultant of arching stress 
and vertical loads including the dead weight of the dam and full pore pressure, along the 
bottom of the dam. Figure 9-11 show the dynamic simulation process. 

The last simulation analyzes the seismic response and global stability of large 
underground rock caverns with rock bolt and liner support (Chang 1994). Three cavern 
support designs were investigated: (1) reference case; (2) cavern supported by liner; (3) 
cavern support by rock bolts. Two stage computation — 500 time step static excavation, 
and 500 time step dynamic excitation were performed. Cavern 1 collapsed under seismic 
load (Figure 12-14); cavern 2 was stable (Figure 15-17), however the rocks around the 
cavern showed large deformation. Caverns 3 were safe due to rock intact stability and no 
noticeable movement of rocks were observed (Figure 18-20). 

Conclusions 

By incorporating physical mesh of the multi-body block system overlaying 
mathematical covers of finite element mesh, and placing nonlinear material behavior into 
each triangular element, the proposed numerical model can solve large displacement and 
deformation problems for a continuous body or numerous discontinuous blocks with 
flexible moving boundary under static or dynamic loads, in addition to clarifying the 
stress distribution in the element block system. However, the boundaries of mathematical 
mesh of triangular elements are preset to be the same as physical boundaries. After 
mathematical mesh merges with physical mesh, the elements inside the physical bodies 

are regular forms that is less flexible than those in the Manifold Method. Therefore, the 

present model can be seen as an entrance level version of the Manifold Method. 
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Manifold Method of Material Analysis 

Dezhang Lin and Haihong Mo 

Rock Mechanics Institute, University of Oklahoma, Norman, OK 73019, USA 

1. INTRODUCTION 

The manifold method is an approximate method of solving differential equations in mate- 
rial analysis. An approximate solution of the boundary-value problem is sought on a finite 
number of fixed intersecting subdomains (sectors, half-disks, disks), called basic covers, in 
the discrete form of integrals or differential operators based on the basis functions. 

The approximate solution of a boundary-value problem, found by means of the manifold 
method, is convergent with respect to the discreteness parameter up to the boundary of the 
polygon (two-dimensional manifold) even if the defined boundary values of the solution are 
discontinuous within the polygon. 

In the method of composite nets, the corresponding integral representation of the so- 
lution of the boundary-value problem is proximate with the account of interpolants of the 
derivatives of some orders which defined within a cover. 

Numerical examples shows that the present implementation effectively computes stress 
concentrations and stress intensity factors at discontinuities with very irregular arrangement 
of nodes; the latter makes it very advantageous for modeling progressive discontinuity prop- 
agation. 

The manifold method was recently developed to cope with coupled problems involving 
discontinua and continua. Since this method is in its infancy, a large number of issues need 
to be addressed and we will outline some of these issues and give some indications of how 
coupled problems can be addressed. 

2. CONCEPTS OF MANIFOLDS 

A set M is given the structure of a differentiable manifold if M is provided with a finite or 
countable collection of charts, so that every point is represented in at least one chart (see 
Bishop and Goldberg 1980). 

A map is an open set U in the euclidean coordinate space q = (qi,..., qn), together with 
a one-to-one mapping /: W ->• U of a subset W c M of the set M onto U (see Fig.l). 
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I (ttxi.A ^f 

Figure 1: A map 

Consider there are two maps /,-: W{ ->• U{ and fj : Wj -»> Uj. If the set W{ and Wj 
intersect, then their intersection Wi n Wj has an image on both maps: 

Uij = MWi n Wj),       I;* = MWj n w{) (i) 

We assume that if points p, and ft in two charts £/, and £/,- have the same image in M, 
then pi and py have neighborhoods Uj C f/, and £/,-,• c ü} with the same image in M. In 
this way we get a mapping fjifr^Pi)) ■ U{j -»> C^-,- (see Fig.2). 

Any point of M we can find a cover W and a diffeomorphism / of H^ with an open 
subset, U, of i?n given by setting the last n-k coordinates equal to zero. Suppose that we 
can cover M by a finite number of such covers, Wu...,Wr. Each W, comes with its own 
/,■ and 

fi(Wi n M) = Uij n Rk. (2) 

Let us call this subset £/,-,- is an open subset of Rk. On any overlap W{ D PVj we can 
consider the restriction of either /, or fj. So /, (W, n f7«j-) is an open subset of £/,- and /,- (W7; Pi 
Uji) is an open subset of Uj. 

TTiis is a mapping of the region C/,- of the euclidean space q onto the region Uj of the 
euclidean space q', and it is given by n functions of n variables, q' = q'(q), (q = q(q'))- 
The charts U and Uj are called compatible if these functions are differentiable. An atlas is 
a union of compatible maps. Two atlases are equivalent if their union is also an atlas. 
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Figure 2: Compatible maps 

A differentiable manifold is a class of equivalent atlases. We will consider only con- 
nected manifolds. Then the number n will be the same for all charts; it is called the di- 
mension of the manifold. A neighborhood of a point on a manifold is the image under a 
mapping (p: U —v M of a neighborhood of the representation of this point in a chart U. We 
will assume that every two different points have non-intersecting neighborhoods. 

In other word, instead of cutting M up into pieces, we write any form as a sum of small 
pieces each of which lives only on one coordinate patch on M which we can integrate by 
pulling it back to a subset of Rh. A repeated use of the change of variables formula easily 
shows that this definition of integral does not depend on the choice of the patch (see Arnold 
1982). 

Here are two examples: 

• The sphere S2 = (x, y, z) : x2 + y2 + z2 = 1 has the structure of a manifold, with 
maps, for example, consisting of two maps (Ui,fi,i = 1,2) in stereographic projec- 
tion (see Fig.3). Here we have 

Wl=S2-{N},   U^Rl (3) 

W2 = S2-{S},   U2 = R2
2. (4) 
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Figure 3: Maps of a sphere 

• An map for the donut can be constructed by using angular coordinates. We can con- 
sider the four maps obtained (see Fig.4). 

0 < 9 < 2?r,     -IT < 6 < 7T (5) 

0  < 4> < 27T,      -7T  <  (f> <  7T (6) 

e 

* 

Figure 4: Map for a donut 
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3. MANIFOLD STRUCTURE 

The set /(W) is not necessarily a smooth submanifold of M. It could have "self-intersections" 
or "folds" and could even be reduced to a point. However, even in the one-dimensional case, 
it is clear that it is inconvenient to restrict ourselves to contours of integration consisting of 
one piece: it is useful to be able to consider contours consisting of several pieces which can 
be traversed in either direction, perhaps more than once. The analogous concept in higher 
dimensions is called a chain. 

A chain of dimension n on a manifold M consists of a finite collection of n-dimensional 
oriented simplices su •••, sr, in M and integers mi,..., mr, called multiplicities (the multi- 
plicities can be positive, negative, or zero). 

A chain is denoted by 

Ck = misi + ... + mrsr. (7) 

The boundary of a polyhedron can be regarded as an example. Let K be a convex ori- 
ented k-dimensional polyhedron in k-dimensional euclidean space Rk. The boundary of K 
is the (k — l)-chain dK on Rk defined in the following way. 

The cells s, of the chain dK are the (k-l)-dimensional faces s,- of the polyhedron K, 
together with maps /, : Ä", -> Rk embedding the faces in Rk and orientations 0, defined 
below; the multiplicities are equal to 1: 

ds = ZSi Si = (KiJuO). (8) 

Rule of orientation of the boundary. Let ei,..., ek be an oriented frame in Rk. Let Ki 
be one of the faces of K. We choose an interior point of Ki and there construct a vector n 
outwardly normal to the polyhedron K. 

An orienting frame for the face Ä", will be a frame fi,...,fk, on Ki such that the frame 
(n, ft,..., fk) is oriented correctly (i.e., the same way as the frame ei,..., ek). 

The boundary of a chain is defined in an analogous way. Let s = (K, /, 0) be a k- 
dimensional cell in the manifold M. Its boundary ds is the (k - l)-chain: ds = Sa,- con- 
sisting of the cells <r; = (Ar,,/,, Ot), where the T, are the (k - /)-dimensional faces of 
K, Oi are orientations chosen by the rule above, and fi are the restrictions of the mapping 
/ : K -> M to the face I\. 

The boundary a dck of the k-dimensional chain Q in M is the sum of the boundaries of 
the cells of Ck with multiplicities: 

dck = d(miSi + ... -f mrsr) — m\ds\ + ... + mrdsr. (9) 

Obviously, dck is a (k-l)-chain on M. 
Let u;k be a k-form on M, and ck a k-chain on M, ck=T,miSi. The integral of the form 

wk over the chain ck is the sum of the integrals on cells, counting multiplicities: 

f uk = Em, I ujk. (10) 
Jck JSi 
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Figure 5: Simplicial subdivision of K 

For any polyhedron K, it can be partitioned into simplices: 

K = Zsi,  dK = T,dsi (11) 

Let A' be the simplex [po, Pi, p2) in R
2, and let /: s ->■ R2 be a function whose compo- 

nents (fi, f2) have continuous derivatives on [po,px, P2]. The integral within the simplex K 
is 

/ D{h2)(fuf2)(x) = (f       +/       +/      ) (12) 
-/lP0,Pl,P2j >'lPl,P2j        •'IP2.P0J        JlPO,Pl] 

(fi(x)Dif2(x)dx1 - f2(x)Dif1(x))dx1 + 
(f1(x)D2f2(x)dxl - f2(x)D2fi(x))dx2 

where 

D(i,2)(fij2)(x) = det[Djfi(x)],   i,j = 1.2. (13) 

The integral on the left is an integral on the 2-dimensional simplex K in R2. The in- 
tegrals on the right in the above formulas are integrals on the one-dimensional Simplexes 
[Pi>P2J, [p2,Po]> [po,Pi] in R2. Formula expresses the integral on a as an integral around 
the boundary of K. Observe that 

d{po,Pl,p2) = (pi,p2) + (p2,Po) + (po,Pi) (14) 

Figure 5 shows K as positively oriented in R2, but the integral is a correct statement in 
all cases. 

Let Pk, k = 1,2,.... be a sequence of simplicial subdivisions of K which are positively 
oriented in R2, and let c : (a0, ax, a2) denote a simplex in Pk. If two Simplexes s and s' 
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Figure 6: Division of a polyhedron and its boundary 

have a one-dimensional side in common, then this side has opposite orientations because 
the simplexes in each Pk form an oriented Euclidean complex. Then two Simplexes s and 
s', with a one-dimensional side in common contribute two terms which cancel in the sum. 
The term remains after all cancellations have been made if and only if (au a2) is a side of 
only a single simplex c. After cancellations, if and only if (ai, a2) is a one-simplex in the 
boundary of the chain of all simplexes in Pk. There is no loss of generality in assuming that 
a0, in the simplex c : (a0, ax, a2), is in the interior of 5, and that the side of c in the boundary 
dK of A' has vertices alt and a2. Then the sum equals the sum of terms of the form shown in 
(14). Figure 4 indicates graphically the cancellation which occurs in the sum in (14) when 
the terms in the sum are represented in the form indicated in Figure 5 also indicates that the 
terms correspond to a counterclockwise, or positive, subdivision of the boundary of K. 

4. BOUNDARY VALUE PROBLEM OF A POLYGON 

Before setting up a boundary-value problem we shall discuss the method of describing the 
boundary of a multiply-connected polygon K. Suppose a finite sequence of points pi,p2, ...,pfc, 
k > 2, is given in the two-dimensional complex plane z. We set po = Pfc- 

Successively connecting the points pi, p2,..., pk by line segments, we get a closed polyg- 
onal line T. We denote by CJ the segment whose endpoints are pt- and pj+i and call it a side 
of the polygonal line T. The points pi,p2, ...,PA:, are the vertices of the polygonal line T (see 
Figure 6). 

Let pi be a set of points of the complex plane z which belong to at least one side of the 
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polygonal line T. The closed polygonal line V is attainable from the inside (from the outside) 
if the following conditions are fulfilled: 

(a) there is a finite (infinite) domain K whose boundary coincides with pk\ 
(b) the direction of traverse of the polygonal line V corresponding to the order of num- 

bering of its vertices coincides with the generally accepted positive traverse of the boundary 
of the domain A' for which the domain K is locally on the left of T. 

Closed polygonal lines attainable from the inside or from the outside are called admis- 
sible polygonal lines. 

An open finitely-connected bounded domain K in the complex plane z is a polygon if 
its boundary can be composed of a finite number of pairwise nonintersecting admissible 
closed polygonal lines one of which is attainable from the inside (the external boundary of 
the domain A'), and the others are attainable from the outside. 

In the case when the boundary of the polygon K serves as only one polygonal line at- 
tainable from the inside, the polygon is simply connected. 

The vertices, sides and angles of polygonal lines that form the boundary of the polygon 
K are the vertices, sides and angles of the polygon K itself. For the sake of convenience, 
we introduce the following unbroken numeration of the vertices and sides of the multiply 
connected polygon K. We preserve the numbers of the vertices an sides of the polygonal 
line attainable from the inside, i.e., the external boundary of the polygon K. Then we con- 
tinue to number the vertices and, respectively, the sides of a certain closed polygonal line 
attainable from the outside, constituting a part of the boundary, by natural numbers. The 
new numeration is in the same order as the original numeration of the vertices and sides of 
the polygonal line. Then, by analogy, we continue to number the vertices and sides of the 
next polygonal line, attainable from the outside, constituting the boundary of the polygon 
K, and so on. The total number of vertices and sides of the polygon K will be denoted by 
nb. 

Let pi be the set of all vertices of the polygon K for which the following conditions are 
fulfilled: 

(a) at a vertex lie the endpoints of two adjacent sides on which boundary conditions of 
the first kind are simultaneously specified; 

(b) the boundary values defined on these sides do not coincide at the vertex. 
The solution of the boundary-value problem is a function u with the following proper- 

ties: 
(1) u is bounded and satisfies partial differential equation on the polygon K. (2) u is 

continuous up to the boundary of the polygon K, except for the set pi of its vertices at which 
the specified boundary values are discontinuous, (3) on the polygon K the function u has 
partial derivatives du/dx and du/dy, continuous up to its boundary, except for some of its 
vertices. 
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Figure 7: A cover and extended cover 

5. FINITE COVERING OF A POLYGON 

The first step in seeking an approximate solution of the boundary value problem by the 
method being considered is the construction of a covering of the polygon K by a finite num- 
ber of overlapping sectors of disks, half-disks and disks which we shall call covers. An 
approximate solution of boundary value problem can be found on every cover as a certain 
elementary function. 

Suppose we are given, generally speaking, a multiply-connected polygon K with ver- 
tices pj,j = 1,2, ...,nb. We choose a finite number of points pq, q = nb + l,nb + 2, ...,L, 
lying inside (i.e., not at the endpoints) of some sides of the polygon K and also several points 
pm, m = L + 1, L + 2,..., M, lying strictly within the polygon K,nb < L < M. There 
may be several points chosen on some sides of the polygon and none on the other sides. 

The covers (sectors of disks, half-disks, disks) Cb are called basic covers and the covers 
Ce are called extended covers. Every basic cover Cb is a part of the corresponding extended 
cover. Figures 7 shows a basic cover and its extended cover. A choice of covering is, ev- 
idently not unique. For instance, besides the covering of polygon shown in Figure 8, the 
covering depicted in Figure 9 is also permissible. 

The closed basic covers of "smaller dimensions" form (with certain intersections) a cov- 
ering of the closed polygon cls(K) and, all the more so, the closed extended blocks form 
the indicated covering. 

The double covering of a polygon by basic and extended covers is necessary to find an 
approximate solution of the boundary-value problem by the manifold method. In what fol- 
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Figure 8: A covering of the polygon K 

Figure 9: A covering of the polygon K 
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lows, when speaking of a covering of the polygon A', we shall first of all bear in mind the 
existence of a covering by finite basic covers and finite extended covers. We shall obtain an 
approximate solution of boundary value problem on closed basic covers. 

Here we construct integral representation of the solution of the boundary-value problem 
on basic covers, namely, sectors, half-disks, and disks. The solution is given on covers in 
terms of the shape functions (with basis functions) of the values of the solution itself within 
the boundary of the cover and also in terms of the specified boundary values of the required 
solution or of its normal derivative along the sides of the polygon K to which the corre- 
sponding polygon (block) is adjacent. These representations lie at the basis of the construc- 
tion of an approximate manifold method for solving the boundary-value problem. 

6. DISCRETE COORDINATE FUNCTIONS WITHIN A COVERING C 

After constructing a finite covering of the polygon K by covers in accordance with the rules 
formulated, we define shape function which satisfy a local weighted least squares fitting 
within the cover. These shape functions explicitly appear in the representations of the solu- 
tion of the boundary value problem on covers considered. Generally, piecewise continuous 
polynomial functions are involved which are defined to be zero outside of the specific cover 
assigned. 

Let u be a function defined on a cover C. Then the approximation of the function u(x), 
Uh(x) in Rn, is given by uj with n collocation points within the cover. Obviously, n may 
have be to be large in order to capture in u/ = u(xi) all the important characteristics of 
u(x). 

uh = E£i?A/(x)ui (15) 

where the uj are the elements in the linear independent basis that span a linear space C 
of dim C = n. 

Because we can not use an infinite number of basis functions are typical impossible. 
Some considerations are needed as to the choice of basis functions, in that some families of 
basis may be more successful in reducing approximation error. It is oftentimes useful to em- 
ploy familiar functions such as the multidimensional polynomial* trigonometric functions, 
Legendre, Chebyshev in that these functions have nonzero value almost everywhere in the 
cover C. Generally, the classic piecewise continuous polynomial functions are involved 
which are defined to be zero outside of the cover assigned. In the examples presented here, 
for simplicity we use a set of classic polynomial, the normalized Legendre polynomials, al- 
though in general the method requires only the polynomial be orthonormal (see Nayroles 
1992). 

The approximation problem is to find the best approximation of uh(x.) using the basis 
function 4> = {<f)U <f>2,..., <ßm} on the cover C. 

uh = Sj=^^(x)a (16) 
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The approximation of the function uA at collocation point / is 

u*(xi) = Ejir^i(xi)a (17) 

An inner product with respect to the weighting function W > 0 is defined for functions 
rji, T]J on C 

M;) = fc WrmdC (18) 

The vector a can be easily obtained by minimizing a weighted L2(C) norm within the 
cover C. 

min   i ^(xi)(uh(xi) - Ul)
2dC (19) 

Jc 

The shape function A/ at point / 

A/ = ptS-1(x)T(x) (20) 

S(x) = SFw(x - xI)p(xr)pt(xI) (21) 

T(x) = [w(x-xi)p(xi)] (22) 

Let Vj and i>k be in L2(C). Then Vj and 0* are orthogonal in C if 

(0„ 0*) = / ^(xI)^j(xI)V'k(xi)dC = 0,   if j ^ k (23) 

A set of functions ipu 02, -, 0m in I2(C) is an orthogonal set in C if (0j, V»*) = 0 for 

j ^ k. 
The previous basis {&} of the cover C can be orthnormalized with respect to the inner- 

product by the Gram-Schmidt process as follows. 

0i   =  0i/ II 4>\ II 
02     =      [01-(02,0l)0l]/  ||  01-(02,0l)01   \[ 

.".'   =   '" (24) 

0m      =      [0m -(0m,0l)01 ---(0m,0m-l)0m-l] 
/  ||  0m -(0m,0l)01  - ... ~ (0m, 0m-l )0m-l   || 

From the above algorithm, the {^,; i = 1,2, ...,m},orthonormal with respect to weight 
function on the cover C, forms another basis of the L2(C) Hubert space (see Theodore 
1993). If 0, is a polynomial of degree s, then the set is fully specified and unique. The first 
m of theses polynomials form a subspace of this Hubert space which is isomorphic with the 
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Rm euclidean space. The elements of the basis vectors of this basis are defined for C due 
to the convenient properties that 

Wj,rl>k) = 8ik (25) 

The weight function is made using the Gaussian distribution. Let p denote a positive 
real number. The weight function W(x, xi) defined by 

W(x,xi) = exp(-(" X~Xl *')p)   for x within cover C (26) 
c 

This is useful, as correct choice of W(x, xi) can effect a particular favorable distribution 
of the xi. 

7. INTEGRAL AND DIFFERENTIAL TYPE OF APPROXIMATION 

The section is devoted to the discussion of several methods of numerical approximation that 
are based on manifold method discussed in the previous section. Many important engineer- 
ing problems fall into the category of being operators, with supporting boundary conditions. 

• Generalized Fourier Series 

In the first type of integral form an inner-product and norm is used to approximate 
such engineering problems by developing a generalized Fourier series. The resulting 
approximation is the approximation in that a least-squares (L2) error is minimized si- 
multaneously for fitting both the problem's boundary conditions and satisfying the 
operator relationship (the governing equations) over the basic cover. Because the nu- 
merical technique involves a well-defined inner product, error evaluation is readily 
available using Bessells inequality. Minimization of the approximation error is sub- 
sequently achieved with respect to a weighting of the inner product components, and 
the addition of basis functions used in the approximation. 

The general setting for solving a linear operator equation with boundary values by 
means of an inner product is as follows: Let C be a cover in R"1 with boundary T 
and denote the closure of C by cl{C), dC. Consider the real Hubert space L2(cl(C)), 
which has inner product (/, g) — Jc fgdC. 

Then an inner product is given by 

(1,9) = f fgdC+ f fgdT (27) 
JK JT 

Choose a set of m linearly independent functions /,, and Sm be the m-dimensional 
space spanned by the elements of /, Here, the elements of fj will be assumed to be 
functions of dependent variables. 

The generalized Fourier series approach can now be used to obtain the approximation 
ißj cSm of the function tpj using the defined innerproduct and corresponding norm. 
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The next step in developing generalized Fourier series is to construct a new set of 
functions which are the orthonormal representation of the /,-. 

• Weak form 

The calculus of variations provides an alternate method to the integral type of approx- 
imation. 

Now consider the operator equation L: 

Lu = f in A' (28) 

If u0iC, where C is a basic cover, is such that 

(Lu0-f,4>i) = Q forev.vI =1,2  (29) 

then we have Lu0 - / = 0 in H, that is, u0 is the solution of Eq.(28) in H. In other 
words, finding the solution of Eq. (28) is equivalent to finding the solution of Eq. 
(29). This equivalence forms the basis of the Galerkin method. 

Consider the operator Eq. (28) and let the cover C be such that it contains all linear 
combinations of the form 

uh = S?^>/«/ for every 1=1,2,...,n (30) 

where Uh is any irregular set of discretization points, n is number of discrete points 
within the cover and ui are constants to be determined using Eq. (29): 

(Luh-f,<f>1) = 0,   I=l,2,...,n (31) 

This gives n equations for the n unknown constants. 

If the operator L is linear, then Eq. (31) becomes 

S?(I</>/,<^A-)"/ = (/^A-),   K=l,2,...n (32) 

Further, if L is symmetric, Eq. (31) becomes 

£?(&, L4>K)U! = (/, 4>K),  K=l,2,...n (33) 

which is the same as the system obtained in the Ritz procedure. 

It should be noted that the Galerkin method is applicable to a much larger class of 
operator equations than the positive-definite linear operator equations, which can be 
solved by the Ritz method. In the Galerkin method, the most general form of which is 
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given by Eq. (31), the operator L is not restricted to being positive definite, symmet- 
ric, or even linear. Due to this general nature of the Galerkin procedure, the questions 
of solvability, existence, and uniqueness of solutions, as one might suspect, are more 
difficult, in general. 

Use of the weak form relaxes the continuity requirement of the coordinate functions, 
the essential boundary conditions of the coordinate functions is not imposed. On the 
other hand, the manifold method seeks solutions from the basic cover. 

• Discrete Representation of Differential Operators 

The solution of differential equations can be obtained based on the representation of 
the derivative operator in a discrete coordinate basis. This representation requires a 
suitable transformation from the representation of a function in a polynomial basis set, 
as discussed. It can be shown that when Gaussian quadrature rules based on these ir- 
regular points within a cover are used to evaluate the integrals appearing in Galerkin 
formulations of certain differential equations, then the resulting equations are equiv- 
alent to those determined by collocating the same points. 

The linear differential equation is collocated in each cover. When the collocation 
equations resulting from the boundary conditions, continuity conditions, and differ- 
ential equation are added together, they yield a linear equations, which is equal to the 
number of unknown expansion coefficients. Therefore, provided the coefficient ma- 
trix is nonsingular, this system of equations possesses an unique solution. 

8. AN EXAMPLE FOR SOLVING ELASTIC PROBLEM ON A POLYGON 

Let us consider tow-dimensional problem in a domain K with a known boundary dT. 

A<r + b = 0 in/if (34) 

a ■ n = t on Tt (35) 

u = ü on Tu (36) 

We assume that the domain has been covered by means of a set of finite covers and write 
the condition for equilibrium in the form of the virtual work equation: 

/ tr(a ■ def(Sv)) = [ 6vb+ f <Jv • t + /  8X ■ (u - ü) + /  8y ■ X (37) 
JK JK Jrt Jra Jr» 

Clearly, the equivalence condition A/(xj) = 8u is not satisfied by all choices of basic 
functions. The interpolants A/ are not only continuous but have continuous derivatives over 
the basic cover. In order to perform Gaussian quadrature the center of a cover will be located 
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basic cover 

coordinate mesh 

Figure 10: A cover for quadrature 

at the quadrature points pq (see Figure 10). Each point within the cover contributes nonzero 
entries to the integral equations. 

We set up a system of linear algebraic equations for the approximate values u/ of the 
function u at the points pL, by approximating the integral representations of the function u 
on covers by quadrature formulas. For a sufficiently large n this system is uniquely solvable. 

An infinite plate with a central circular hole is subjected to a unidirectional tensile load 
in the y direction. One quadrant of a square plate, of side length 26, with a hole of radius 
a = 0.16 is divided into 121 regular patterns where Gaussian quadrature is performed. The 
distribution of 99 interpolants is shown in Fig (11). Use of small regular patterns around the 
edge of the hole facilitates the accurate modeling of circular shape of this boundary. The 
interpolants are polynomials which are fit to the nodal values by a least-squares approxima- 
tion. The mesh is totally unnecessary in this method. The method used here requires only 
nodal data, no element connectivity is needed. 

Plane strain condition is assumed with E = 1.0 x 103 and /i = 0.3. The closed solution 
for the stress is 

arr = 1/2(1 -£)(i-(l-?£)co520) (38) 

aee = 1/2(1 + ^ + (1 + ^-)cos29) (39) 

«^ 1/2(1-^)(l + ^-)«n2* (40) 

Along the plane of symmetry 9 = 0, we have the tensile stress 

*„ = 1/2(2 + ^ + K) (41) 
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Figure 11: One quadrant of plate with a circular hole 

An even better resolution of the stress concentration factor can be achieved by increasing 
the number of interpolants. As the width of the plate is reduced, so the exact solution for the 
stresses will deviate increasingly from the infinite plate solution. The larger the ratio a/b, 
the greater will be the effect of the finite boundaries on the stress concentration. 

An evaluation of the modeling error can be made by comparing the calculated values and 
the exact values. The L2 displacement error norm and energy error norm can be defined as: 

{ /   {Uapp - Uexact)7{Uapp - U^ac^dK}1'2 

JK 

{ / (eapP - epsilonexact)
TD(eapp - eexact)dK}1/2 

JK 

(42) 

(43) 

Convergence rate in L2 norm of error in displacement for the plane strain case is less 
that 10    and the convergence rate in energy norm is less than 10 -2 

9. DISCUSSION 

After constructing the required covering of an arbitrary polygon K by covers, the approx- 
imate solution of a boundary-value problem, found by means of the manifold method. No 
preliminary information is required concerning the connectivity of interpolants being cov- 
ered. The approximate solutions may be obtained on the covers in the form of integration 
and differentiation. 

The paper present possibly the new and useful manifold method concepts that may serve 
the computer modelers in their attempt to bridge the gap between continuum analysis and 
discontinuum analysis. 
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Abstract 

This paper presents a numerical model that incorporates four-node isoparametric fi- 

nite element mesh to Gen-hua Shi's newly-developed two dimensional manifold method. 
Manifold method is a numerical method that pieces together finite element method and dis- 
continuous deformation analysis. For manifold method, mathematical mesh (or finite cov- 
ers) and physical mesh are independent The mathematical mesh consists of overlapping 

covers, which are the interpolation points of the material volume. For each cover, a lo- 
cal displacement function is defined. These local displacement functions are connecting 
together to define a global displacement function for the entire material domain. On the 
other hand, the physical mesh which consists of boundaries of material volumes, joints, and 
blocks, defines the integration domain. Under the definition of finite covers, both finite ele- 
ment method and discontinuous deformation analysis are special cases of manifold method. 
The triangular element of finite element method is used to define finite covers of mathemat- 
ical mesh in Shi's original work, and here, four-node isoparametric element is implemented 
to define the finite covers. The simulation of the large displacement and vibration character- 
istics of an automobile's leaf spring-dashpot suspension system is the numerical example. 

Introduction 

For material analyses, the finite element method (FEM) is the widely-used numerical 
tool. However, conventional FEM was only limited to model continuum. Based on the phe- 
nomenon of complicated boundaries and discontinuous interfaces in real world, people tried 
to develop contact finite elements by using different kinds of contact constraint formula- 
tions (Simo etal., 1985; Carpenter etal., 1991; Hungk, 1993; Heegaard and Curnier, 1993). 
But the difficulty still exists because we need a complete block kinematics to describe mo- 
tions and contact behaviors of a multi-body block system. Recently, Shi (1988) introduced 
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discontinuous deformation analysis (DDA), which included a complete block kinematics 

to obtain large displacement and deformation solutions for discontinuous multi-body sys- 

tem. The subsequent developments of DDA can be found in Shyu (1993); Ke (1993); Chang 

(1994). 

Both FEM and DDA have very solid theoretical backgrounds, and each stands on the 

extreme case of modeling. From the numerical computation's point of view, conventional 

FEM is completely a continuous model while DDA is totally a discontinuous one. It is truly 

possible that there could be a method (model) which could link up both FEM and DDA. This 

means that there could be a method which could analyze a material volume from continuous 

state, through fracturing state, and to totally-damaged state. After all, Shi (1991) proposed 

another new method—manifold method, which could compute large displacement, defor- 

mation solutions, moving boundaries, flexible boundaries and free surfaces problems. 

The basic meshes of manifold method are finite covers. Manifold method defines 

an independent local displacement function on each cover. These local displacement func- 

tions on finite covers are connected together through weighting functions to form a global 

displacement function for the entire material domain, i.e., these covers overlap each other 

and cover the entire material domain. Using finite cover system, manifold method totally 

separates the mathematical mesh and the physical mesh. 

The mathematical mesh consists of overlapping covers, which are the interpolation 

points of the material volume. The mathematical mesh is chosen by the users, the fine or 

rough approximation of the mesh depends on engineering needs. For each cover, a local 

displacement function is defined. Conventional grids, finite element meshes or converged 

regions of series, can be defined as regions overlapped by finite covers in the mathematical 

mesh. On the other hand, the physical mesh which consists of real boundaries of material 

volumes, joints, and blocks, only defines the integration domain. The entire material system 

is formed by both the mathematical and physical meshes. 

All the Regions of overlapped covers sharing a common finite cover form a cover 

space. If this cover space is completely cut through by physical mesh Ooints, block bound- 

aries), then this common finite cover is cut to two or more separately independent finite cov- 

ers. Based on the finite cover concepts, manifold method is more flexible and general to in- 

clude analytical method, FEM, DDA in a unified form, and to compute large displacements, 

deformations, moving boundaries and free surfaces of both continuous and discontinuous 

materials. 

166 



Manifold Method with Finite Element Mesh 

As mentioned above, the finite element mesh can be used as the mathematical mesh 
for manifold method. Under the definition of finite covers, the node of an element is just 

like a cover of manifold method and the element of FEM is just like a region overlapped 

by the covers of manifold method. Since a polynomial series can be defined on a cover, the 

nodal displacements of a node in finite element mesh are just zero order cover (constants) 

in manifold method. Therefore, after applying finite element mesh as the finite covers to 

the mathematical mesh of manifold method, the manifold method can perform the compu- 

tations of FEM for continuous materials. And when the physical mesh is applied, the joint 

or discontinuous behaviors in the continuous domain can be computed as well. 

For manifold method, the integration domains always have general shapes because 

the joints or physical boundaries are always complicated. Therefore, the computations of 
integration for manifold method are more difficult than those for FEM. However, the ana- 

lytical solutions of integration have been found for many cases of manifold method (Shi, 

1994). Based on finite cover system, manifold method computes the integrations of simple 

functions on complex domains (through the defined displacement function for each cover, 

and the defined weighting function for the overlapped region), while FEM computes the in- 

tegrations of complex functions on simple domains (through isoparametric transformation 

to natural coordinates). 

In Shi's original work of manifold method, the triangular finite element mesh is used 

as the mathematical mesh for manifold method. The number of elements for mathematical 

mesh depends on the accuracy needs of a specific problem. For each triangular element, 

there are three nodes, i.e., for each triangular region, there are three covers connected by 

a weighting function (shape function) to describe the displacement function of a triangular 

region. For each cover, the local displacement function is zero order constants (nodal dis- 
placements). And for each triangular region, the global displacement function is exactly a 

complete first order polynomial (displacement function for a triangular element in FEM). 

Because the displacement function for a triangular region is precisely defined, joints 

of the physical mesh could randomly cut or cut through a cover space formed by triangular 

regions sharing the common finite cover. This makes possible the material region to be of 

any shape, because the material regions formed by the physical mesh only defines the in- 

tegration domain. The displacement function for a material region is still exactly defined 

within the triangular region overlapped by three finite covers, even if these finite covers 
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are out of the boundaries of the material region. This means that the exact solutions of an 

integration for an irregularly-shaped material region can be obtained. If a joint dose not 

cut through a cover space, then the cover space remains continuous for that common finite 

cover. On the other hand, if a joint completely cut through a cover space, then the cover 

space is discontinuous, and two separately independent cover space are generated. 

As for the DDA case, the mathematical mesh of a large triangular region overlapped 

by three finite covers contains all the blocks inside the region. Each block completely cuts 

the three finite covers to include an individual three-cover mathematical mesh of its own. 

Each individual mathematical mesh does not overlap each other. The three-cover mathe- 

matical mesh defines an individual complete first order polynomial displacement function 

for each block. Then, DDA transforms the three-cover mathematical mesh to one-cover 

mathematical mesh, which defines the same displacement function for each block, namely 

1 0      -T 

0 1 
u I =   ~(y~y°)    (z-xo) 
v I (x — xo) 0 

0 (y - sto) 
(y-yo)/2    (x-x0)/2j 

where (xQ, y0) is the center of gravity of the block. 

' «o 
vo 
To 

7xjj ' 

It is clear that the single mathematical cover is located at the center of gravity of the 

block and the weighting function is shown in the square brackets. The single mathematical 

cover contains six constants—u0, v0, r0, ex, ey, -yxy. u0,v0,r0are the rigid body transla- 

tions and rotation of the center of gravity, and ex, ey, -yxy are the normal and shear strains 

of the block. 

Therefore, DDA is the totally discontinuous case of manifold method, and the math- 

ematical mesh and the physical mesh of DDA are the same where all covers do not overlap. 

In this way, when continuous mathematical mesh and discontinuous physical mesh 

are applied, joints in the material volume can open, slide; blocks can move according to the 

block kinematics, and the continuous area of the material volume remains continuous. 

Four-node Isoparametric Finite Element Mesh 

In this paper, a four-node isoparametric finite element mesh is used as the mathemat- 

ical mesh for manifold method. Each four-node element is corresponding to a quadrilateral 
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region overlapped by four finite covers. The nodal displacements of a node of four-node 

element are the zero order local displacement function terms defined for one finite cover 

of the quadrilateral region in manifold method. Since the overlapped region is quadrilat- 

eral, the weighting function for the quadrilateral region (or four-node element) can not be 

exactly defined, i.e., the global displacement function for a quadrilateral region can not be 

exactly described. For this reason, when using four-node isoparametric finite element mesh 

as the mathematical mesh for manifold method, the joints and block boundaries of physical 

mesh can only cut along the element boundaries, because it is difficult to obtain the global 

displacement function for an irregularly-shaped material region within the quadrilateral re- 
gion. 

When analyzing a material system, the simultaneous equilibrium equations are de- 

rived by minimizing total potential energy of the system. These equations have the form: 

[K]{D} = {F}, where [K] is the global coefficient matrix, and {D},{F} are the unknown 
anJ loading vectors. 

The displacement field [ u v] of a four-node element i (or quadrilateral region 

overlapped by four finite covers, see Figure 1) can be described as 

|;j = [N.-(:r,y)]{d.-}, 

Ni     0     N2     0     N3     0 N4 0 
0     JVj     0     N2     0     N3 0 N4 

where 

[Ni(x,y)} = 

are the shape functions, and 

{di} = [m    vi    u2    v2    u3    v3    uA    v4] 

(*s»Ja) 

te.Ä) 

1   (•Tl.J'l) 

(-1,1) (1, i) 

4 3 

ßT 
^ 
J 

1                   2 
1 

(-1,-1)       (1,-1) 

Figure 1. Four-node isoparametric element 
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are the nodal displacements. However, [N,(x,y)] are difficult to define for general four- 

node elements. By isoparametric transformation, the shape functions [N*] are defined in 

natural coordinates system (£, 77). The shape functions [Nt(£, 77)] for the square element 

Ark(^) = ^(l+£kO(l + ^),    k= 1,2,3,4 

where (<fk, ?7k) is the coordinates of the node of square element in natural coordinates. And 

4 4 

k=l k=l 

where (xk, 2/k) is the coordinates of the node of general four-node element. 

Elastic stiffness submatrix 

For element?', strain field {et} = [B,]{d,-} and stress field {<x,} = [Ei][B,-]{dt-}, 

where 

[B,-] = 

dNx 
dx 

0      Ma      0      aNa 0 dN4 

dx 0 

0 0 
dx w dx 

0 ¥* 0 m 1y dy aV 
3N1       dNi       dN2 dN2 dNa dNs       dN4       9N. 
dy dx dy dx dy dx dy dx 

dNi Ml 

and 

IE.-] = 
E 

l-I/2 

1 V 0 
V 1 0 
0 0 2    J 

for plane stress. E, u are Young's modulus and Poisson's ratio. For plane strain, E, v are 

replaced by E/(l — u2) and vj{\ - v). 

The derivatives 

Mt 
dx 

dNk 

dy 
[J."] 

-1 

where 

is the Jacobian matrix. 

[J.] = 

dNk N 

dNk r '    k = 1,2,3,4 
drj    > 

r dx       dy -1 
d{     as 
dx        Ö£ 
dr)       drj - 

Then for element i, the local stiffness submatrix 

2     2 

*      E T/{^(U,Vn))T{El}[Bi(U,Vn)]\[3i}\WmWn (1) 
^m=l n = l 
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is added to [K]. (£m,?7n) = (±l/\/3,±l/v/3), m,n = 1,2 are the Gauss integration 
points, and Wm, Wn = 1.0 are the integration weights of Gaussian quadrature, t is the 
element thickness and |[J,]| is the determinant of Jacobian matrix. 

Inertia submatrix 

It is assumed that constant acceleration is over current time step and the initial el- 
ement nodal displacements are zero (begins with updated configurations). Let M, be the 
unit mass, A be the time interval of current step, and {v?} be the initial nodal velocities of 
element i. Then the local stiffness submatrix (consistent mass matrix) 

^t mR[Nl(x,y)}T[Nt(x,y)}dxdy^ (2) 

is added to [K], and 

2M, 
A -t ^[N,(x,y)]T[N,(x,y)]^^ {v?} (3) 

is added to {F}. The analytical solutions of the integrations can be exactly evaluated (see 
[6]). For next time step, the initial nodal velocities will be the final velocities {v,} at the 
end of current time step 

{v,} = |{dj - {v°}. (4) 

Normal contact submatrix 

When a close contact is detected between two blocks, the no-penetration require- 
ment has to be fulfilled. All the contact conditions can be finally converted into the case of 
an angle P5 penetrating a contact edge P6P7 (see Figure 2). A spring (penalty) with stiff- 
ness p" is introduced between the angle and the contact edge along normal direction of the 

Y Ps(x5, ys) 

Figure 2. Normal contact of angle to edge 

171 



edge. P5(x5, jfe) is on element i and P6(x6, y6), P7(x7, y7) are on element j. P5, Ps and P7 

are assigned counterclockwise. (x5,y5),(x€,y6),(x7,y7) are mapped to (£5,775), (65,776) 

and (£7,777). As spring is added, the distance from P5 to P6P7 should be zero after the dis- 

placement increments are applied (the second order terms are discarded as infinitesimals). 

Denote 

a° = 
1 X5 2/5 
1 xe ye 
1 x7 2/7 

and 

{m?} 
T 

Kr = 
L 

1 

ye -y? 

y7 -ys 
£5 — X7 

[Nt (£5,775)]; 

[^(£6,776)] + ^ 
ys -ye 
X6 — X5 

[^(£7,777)], 

where L = y/{x7 -x6)
2 + (</7 -ye)2 is the length of the contact edge. Then the local 

stiffness submatrices 

pn{mn{m?}T (5) 

Pn{mr}{n?}r (6) 

p"{n]}{mnT (7) 

pn{nJ}K}T (8) 

are added to [K], and the local force submatrices 

,0' 

-P 

-P 

{m?} (9) 

(10) 

are added to {F}. 

Numerical Simulation 

Before the simulation begins, the block system configuration is prepared by a pre- 

processor. Two kinds of meshes are input: the physical mesh and the mathematical mesh 

(see Figures 3 and 4). These two meshes will form a discontinuous block system and a con- 

tinuous element system respectively. Due to the discontinuity of block boundary, the nodes 

along block boundaries are further separately numbered. Then the blocks and the elements 
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Figure 3. The physical mesh 

Figure 4. The mathematical mesh 

 1  

1«                    21    :     21            22 

i 

19                         19     {      11               20 

30                      11 

29                        17 

19                         19 

23                         24 

19               20 

24               ( 

29                        17 

21                        31 

i            2  i 
t      2 
1 
I ! 

7             i   : 
9 

3 

10 

o\ 

27               4    j      4                 9 

| 
29               13 I      13               14 

1 
7             ■ \ 

•                           1 

29               11 

25               11 

13               14 

11               12 

Figure 5. Block system with element meshes 
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are mapped together to produce a complete discontinuous block system with continuous el- 

ement meshes inside (see Figure 5). Therefore, the block containing continuous element 

mesh can have a flexible boundary. The computer programs were written in ANSI C lan- 

guage and the computations were all performed on the Silicon Graphics workstation. Nu- 

merical simulation is performed to show the improvement and flexibility achieved when fi- 

nite element mesh is associated with block kinematics to handle discontinuous contact prob- 

lems under large displacements and deformations. 

Leaf spring-dashpot suspension system 

The analysis of leaf spring is a laminated beam problem. It has the characteristics of 

large displacements and deformations, as well as complicated contact geometry and sliding 

conditions at discontinuous interfaces. The feature of flexible boundaries of the block is 

suitable for modeling large displacements and deformations of the leaf spring system. 

The physical mesh and the mathematical mesh (see Figures 6 and 7) are input, and 

the block system is shown in Figure 8. Four oblique beams are piled up to form a leaf spring 

system. The top beam is 1.4 m long, beam depth is 0.8 cm. On top of the leaf spring is a 

large mass body with depth of 7 cm. The top beam is connected with the large mass body 

and is fixed at one end, shackled at the other end (bolt with stiffness EA = 200 MN). Two 

bolts (stiffness EA = 60 MN) connect the top and third beams to simulate the hoop clamps 

often seen in automobile's leaf spring system. Some other bolts (stiffness EA = 60, 200 

MN) are connected for the purpose of deforming the leaf spring system. The leaf spring is 

forced 10.5 cm downward at the center within 1.5 s to deform to a shape of an arc since most 

of the leaf spring systems are arc-shaped. The input data are the following: 

plane strain, static condition, 

time steps: 2000, 

spring stiffness: 1000000 MN/m, 

time interval: 0.001 s, 

maximum displacement ratio: 0.002, 

friction angle: 20°, 

element thickness: 0.1 m, 

unit mass: 0.00785 Mkg/m3, 

gravity: 9.81 m/s2, 

Young's modulus, Poisson's ratio: 200000 MPa, 0.28. 
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Figure 6. Physical mesh of the leaf spring 

Figure 7. Mathematical mesh of the leaf spring 
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Figure 8. Block system with element meshes of the leaf spring 
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Figure 9. Deformed shape of the leaf spring 
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The solution of large displacement is the accumulations of the small displacement 
in each time step. Figure 9 shows the result at the end of calculation. This simulation 
demonstrates features of the numerical model which is capable of enhancing the 
deformation ability and refining the stress field of a block for discontinuous computa- 
tion. 

Suppose that the arc-shaped leaf spring will be mounted on a wheel to test the 
vibration behaviors of suspension system. The block system configuration from 
previous calculation is used and the stresses in beams as well as bolt forces are reset to 
zero. The orientations of the hoop clamps are corrected to be nearly perpendicular to 
the top beam. Six fixed points (or displacement-control points) are assigned near the 
center region to simulate the mounting of leaf spring to a wheel. A dashpot is 
connected between the large mass body and the bottom beam. 

The following computations are intended to simulate the vibration response of 
an automobile under road excitation. The leaf spring carries two types of mass body: 
one is light mass (unit mass of 0.00785 Mkg/m3), the other is car mass (unit mass of 
0.05495 Mkg/m3). The spring system is set to the equilibrium position under static 
loading of gravity force (see Figures 10 and 11). 

The information of system stiffness of the leaf spring is required for dynamic 
computations. The loadings of ± 0.02 MN, + 0.07 MN are separately applied on top 
of the light and car masses to obtain system stiffness. Using static calculations, the 
loadings are applied within 1.0 s and time interval is 1 X 10~3s. Figures 12 and 13 
show the load-displacement curves of static calculations for light and car masses. 
Therefore, the system stiffness is taken approximately as 0.407 MN/m for light mass 
case (1.815 MN/m for car mass) for the following dynamic vibration computations. 

A road excitation record is applied at the positions of mounting area. Dynamic 
calculations is required for vibration simulation. The damping coefficient is defined by 
fi - 2$Vmk~, where £ is damping ratio, m is total carrying mass, and k is system 
stiffness. Then the damping coefficient of dashpot is given by \L ~ 0.0112f for light 
mass case {p. ~ 0.0625f for car mass). 

The response of the mass is recorded at the center on top of the mass body. The 
time step is 7500 and the time interval is 4 X 10"5s. For light mass case, a damping 
ratio of zero is used for dashpot to record the response of free vibrations. Figure 14 
shows the response of free vibrations of the light mass. 
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Figure 10. Equilibrium position of leaf spring, light mass 
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Figure 11. Equilibrium position of leaf spring, car mass 
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Figure 12. Load-displacement curves, static calculations 
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Figure 13. Load-displacement curves, static calculations 
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As another simulation, the car mass is carried to simulate the real automobile's leaf 

spring-dashpot suspension system. For the consideration of comfortable ride for commer- 

cial automobiles, damping coefficient for the dashpot is normally set close to critical damp- 

ing (damping ratio of 1.0). A damping coefficient of 0.05625 MNs/m (damping ratio of 0.9) 

is assigned for the computation. Figure 15 shows the response of the car mass. The result 

gives the right response that there is no oscillation in the free vibration region. 

Conclusions 

For manifold method, mathematical mesh (or finite covers) and physical mesh are 

independent. The mathematical mesh consists of overlapping covers, which are the interpo- 

lation points of the material volume; while the physical mesh which consists of boundaries 

of material volumes, joints, and blocks, defines the integration domain. For each cover, a 

local displacement function is defined. And for a specific region, covers overlap each other 

through a weighting function to define a global displacement function for that region. If the 

global displacement function can be precisely defined within a region, then the material re- 

gion formed by the physical mesh can be of any shape and the joints can randomly cut or cut 

through the cover space because the manifold method computes the integrations of simple 
functions on complex domains. 

When using finite element mesh as the mathematical mesh for manifold method, 

it is clear that manifold method is a numerical method that pieces together finite element 

method and discontinuous deformation analysis. Under the definition of finite covers, both 

finite element method and discontinuous deformation analysis are special cases of manifold 

method, and the nodal displacements are just the zero order terms of local displacement 
functions defined for finite covers. 

When the triangular element mesh is used for mathematical mesh, the existence of 

"half element" is possible because the global displacement function for a triangular region 

is exactly the complete first order polynomial. 

The four-node isoparametric finite element mesh is implemented as the mathemati- 

cal mesh in this paper. However, the global displacement function of an element (or quadri- 

lateral region in manifold method) can not be exactly defined, the joints of the physical mesh 

can only cut along the element boundaries. 

In general, when using the concepts of finite covers, the manifold method is capable 
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of computing material volume from continuous state, through fracturing state, to totally- 

damaged state. And it is able to analyze materials of free surfaces, flexible boundaries, mov- 

ing boundaries, and even the case of different phases because the mathematical mesh can 

move with the physical mesh or can be fixed in space. 

Acknowledgement 

The authors are grateful to Dr. Gen-hua Shi for the guidance in the development of 

the computer programs. 

References 

Carpenter, N. J. Taylor, R. L. and Katona, M. G. (1991), "Lagrange constraints for transient finite 

element surface contact", Int. J. Numer. Meth. Engng., vol. 32,103-128. 

Chang, C.-T. (1994), "Nonlinear dynamic discontinuous deformation analysis with finite element me- 

shed block system", PhD. Thesis, Department of Civil Engineering. University of California 

at Berkeley. 

Heegaard, J.-H. and Curnier, A. (1993), "An augmented Lagrangian method for discrete large-slip 

contact problems", Int. J. Numer. Meth. Engng., vol. 36,569-593. 

Hunäk, I. (1993), "On a penalty formulation for contact-impact problems", Comput. Struct., vol. 48, 

193-203. 

Ke, T. (1993), "Simulated testing of two dimensional heterogeneous and discontinuous rock masses 

using discontinuous deformation analysis", PhD. Thesis, Department of Civil Engineering, 

University of California at Berkeley. 

Shi, G. (1988), "Discontinuous deformation analysis—a new numerical model for the statics and dy- 

namics of block systems", PhD. Thesis, Department of Civil Engineering, University of Cal- 

ifornia at Berkeley. 

Shi, G. (1991), "Manifold method of material analysis", Proc. 9th Army Conf. Appl. Math. Comp., 

June 18-21. 

Shi, G. (1994), "Modeling dynamic rock failure by discontinuous deformation analysis with simplex 

integrations", Proc. 1st North Amer. RockMech. Symp (Austin, Texas), 591-598. 

Shyu, K. (1993), "Nodal-based discontinuous deformation analysis", PhD. Thesis, Department of 

Civil Engineering, University of California at Berkeley. 

Simo, J. C. Wriggers, P. and Taylor, R. L. (1985), "A perturbed Lagrangian formulation for the finite 

element solution of contact problems", Comput. Meth. Appl. Mech. Engng., vol. 50,163-180. 

182 



Development of Second Order Displacement Function for 
DDA and Manifold Method 

J.C. Chem, C.Y. Koo and S. Chen 

Geotechnical Research Center 
Sinotech Engineering Consultants, Inc. 

Taipei, Taiwan 

Abstract 

The developments of second order displacement function for DDA and manifold 
method were made by incorporating the complete second order terms to the first order 
displacement field. The formulations for the stiffness matrix and force matrix due to 
elastic stress, initial stress, point load, body force, inertia force, contact force and fixed 
point are presented. Several modifications to the first order DDA code to incorporate the 
second order displacement function and to improve the accuracy and efficiency of the 
calculation were implemented. The preliminary results from the validation tests show 
that with the improved deformation capability of the block, the second order DDA can 
better simulate the stress distribution and deformation of the block system and also 
release the restriction on block shape required for certain types of problem. 

1. Introduction 

Since the pioneering work on the analysis of discontinuous medium published by 
Gen-hua Shi in the late 1980's, discontinuous deformation analysis(DDA) and manifold 
method have become rapidly developing new numerical modeling techniques. These 
methods have rigorous scheme of block kinematics in dealing with the interactions 
between discrete blocks, and the equilibrium conditions are achieved by minimizing the 
total potential energy. Thus, they have found wide acceptance by researchers and 
engineers in analyzing various fields of problem. 

In the present version of DDA method, it utilizes first order displacement function 
to describe the block movement and deformation. Therefore, constant stress or strain 
throughout the block is assumed and the capability of block deformation is limited. This 
may yield unreasonable results when the block deformation is large and geometry of the 
block is irregular. To overcome the limitations, two approaches have been attempted. 
They are: 

(1) adding artificial joints in the block (Ke, 1993); and 
(2) adding finite element meshes in the block (Shyu, 1993). 

Manifold method which separates the mathematical mesh from the physical mesh can 
also improve the flexibility of deformation and achieve a better stress distribution 
throughout the block. High order displacement function is another approach to overcome 
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the limitations. Ideally, third order displacement function can have a better description of 
the block deformation. It also allows a second order stress and strain distribution for 
extreme value determination which is important in the analysis of stress concentration or 
fracturing of block. However, due to large computation capacity and CPU time required, 
this approach has not been attempted yet. At this stage, a second order displacement 
function was used as a practical compromise. This paper describes the formulation in 
DDA and manifold method using second order displacement function. Validation of 
second order DDA formulation and the coding are also presented. 

2. Second Order Displacement Function for DDA Method 

2.1   Displacement and deformation of block 

The current version of DDA uses the first order displacement function to 
approximate the displacement field of the block. The displacement field is described as 
follows: 

u = ax + a2x + a3y 

v = bx + b2x + b3y (2-1) 
The unknowns of the individual block can be represented by selecting the six 

displacement variables (uo>vo>ro>sx>sy>rxy), in which «o,v0 are rigid body translation of a 

specific point {x0,y0) within the block; r is the rigid body rotation of the block with 

rotation center at (*o >>o); s* > e
y and rv are the normal and shear strains of the block. 

The second order displacement function used herein is extended from the first order 
function by adding the complete second order terms and is expressed as: 

u = ax + a2x + a3y + a4x
2 + a5xy + a6y

2 

v = bx+b2x + b3y + b4x
2 + b5xy + b6y

2 (2-2) 
The unknowns of the individual block can be represented by choosing the following 

twelve displacement variables,  vH>   vo   ro   e*   ey   
rxy   zx*   zxy   zyj   

z
y,y   

rxy^   
rxyy)  in 

which u0,v0 axe rigid body translation of the block; ro >sx>e
y 

an^rxy axe the constant 

terms of the rotation, normal  and shear strains;  exj>ex,y>Ey,x'ey,y>rxyj>
rxy,y   are the 

gradients of the normal and shear strains and they are expressed as follows: 

ug = a, +a2x0 +a3y0 +a4x
2 +a5x0y0 +a6y

2 

v0 = bx +b2x0 +b3y0 +b4x
2 +b5x0yQ +b6y

2 

dv    du 
*       . -] = ^[(62-a3) + (2*4-a5)x0+(65-2a6)>;0]   (2-3) 
ox    oyj    2U J 

The constant part of r0 is : 

The normal and shear strains are: 
du 

ex = — = a2 + 2a4x + a5y 
dx 
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_dv 

'' " dy 
dv    du 

s.. = — = b3 + b5x + 2b6y 

r„=— + -z!i = (b2+a3) + (2b,+a5)x + {2a6+b5)y (2-5) 
ox    dy 

The constant terms of normal and shear strains are: 

The strain gradients exj>ex,y>eyj>ey,y>rxy,xirxy,y are defined as: 

(2-6) 

ÖS. 5r. 

■ = a5  >   S,,.r = 
£5 
ax ■=& 

£.,.,= = 2Ä6  » V* = -T^ = 2Z,4 +«5  »  'xv.v = 
-dr*y _ 6, + 2ctt "*> By "6''^ 5X —4   ■  -5  >  •«>,., ^ -5—6 

(2-7) 

•».^ 

Using equations (2-3),(2-4),(2-6) and (2-7), the coefficients of the displacement function 
can be solved and are equal to: 

«2 = <> a3 = ~(rxy ~2r0
c) , a, = -exr , a5 = exy , a6 = -(rxyy-eyx) 

b2=\[r°xy +2/-oC) ,b3=sc
y, b4 =I(^ -ej , b5=syx , K=Uyy   (2-8) 

The displacement functions can be expressed as: 

« = "o -(y-y0)ro+{x-Xo)zcx+-(y-yoK +-(*2 -xz
Q)&X}X +(*v -x0y0)sx 

--{y2 -y2ohy,x +-{y2 -y2ohy,y 

v = v0 +{x-x0)r0
c +(y-y0)ec

y + -{x-x0)rx]> --{x2 -xl)exy +{xy-x0y0)e} 

+-{y2-y2ohy,y+-{x2-4hy,x 

And the displacement functions can be written in matrix form as: 

"1^^ (2-9, 
in which [T] may be expressed as [7^    T2    T3] and 

i   o -(y-y0) (*-*<,)     o     ~(y-yo) 

y,* 

Tx = 

T2 = 

T3 = 

0     1    (x-x0) (y-y0) I/-V- 
(*-*o) 

-(x2-x2) {xy-x0y0)    --(y
2-y2

0) 

0 -~{x2-x2)     (xy-x0y0) 

0 0 \(y2-yl) 

\(y2-yl) \(x2-xl)        0 
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and the displacement variable matrix [£)lr is : 

lUu ' Vo ' ro ' E jr' £ > ' rxy ' £ *,.r ' £ *.>■ ' £ y^r' £ >*,.v ' rr.v^r' ^jrv.y J 

2.2 Elastic stiffness matrix 

For linear elastic material, the elastic strain energy fl   produced by the stresses in 
the block is: 

1 
IX = Jjrtae, + <^ey + ^x/^dxdy 

JJT [e][<j]dxdy 
2 L JL  J     ' (2-10) 

For plane stress condition, the stress-strain relationship is given by: 

E 
"l-v2 

1       V 

V      1 

0   0 

0 £, e* 

0 £v =tel r 
l-v 

2   . .V .v 
(2-11) 

where E and v are Young's modulus and Poisson's ratio. The strains can be approximated 
by 

x x x,x x.ys 

ev+£y.^ + £v.v^ y.yJ 

xy xy        xy,x xy,ys 

and can be written in matrix form as follows: 
"0    0    0 

(2-12) 

H*>Y = {D]T[Nf 

0    0    0 
0 0    0 
1 0 0 
0 1 0 
0 0 1 
x 0 0 

y 0 0 
0x0 
0 y 0 
0 0 x 
0    0   y_ 

Therefore, the elastic strain energy of the i-th block can be written in matrix form as: 

n^ilJ^lLj^Ls^Laf^LalAL,*^       (2-13) 

By minimizing the strain energy, it leads to the stiffness matrix: 

*.-■£%--ll[»,lÄ*.U*L,** (2"14) 
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where the integration [j [Nj'2x3[£j3t3[N,]3jl2afo/F can be expressed in the following 

form: 
0    0    0 0 0 0 0 0 0 0 0 0 

0    0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

s Sv 0 s, Sy sxV Syv 0 0 

s 0 Sxv V s, s. 0 0 

E 

0-v)s 
2 

0 0 0 0 s, 
(1-v) 

2 
0 

Sy 

O-v) 
2 

0 
1-v2 

Syy V 

^ 

0 

0 

0 

0 

Symmetric 

^ 

5» 

0 

(1-v) 
2 sv 

0 

(1-v) 
2 

yy 

(1-v) 

2 J 
in which S , Sx , S  , S^ , S   andS   are the two dimensional Simplex integrations as 

defined by Shi( 1989). 

2.3 Initial stress matrix 

For the i-th block, the potential energy of the initial stresses (<T°,a°,T^j is: 

—JjMWfc] y 
dxdy (2-15) 

in which 

<=K°+<s+<yy 

Therefore, 

y      ~y    ■ ~yx 

' xy       ' xy    '  ' xy,x' 

y,yJ 

0 c0  .     o o 7*   =r   +r    x + r    v xy        xy        xy. x xy,ys 

(2-16) n„.=-JJ[4]r[A',r[£lA',KM 
By minimizing the potential energy, it leads to the force matrix of the initial stress of the 
i-th block as follows: 

where 
mx\ 

r = l,...,l2 (2-17) 

187 



and 

[A°L=K    <    r0°    sf    s?    <    s?,    E°,    zl    el    r^    r^] 

2.4 Point load force matrix 

The potential energy of the i-th block due to point loads ls'^// is: 
r p 

Ylp = -(FxU+FyV) = -[u    v] 
F„ 

ww 
F, 
yj 

(2-18) 

By minimizing the potential energy, the force matrix due to point load is obtained as: 

/,= 
an,, 
5c/„ 

= [r,Y 
F> 
F, 

r = l 12 (2-19) 

2.5 Body force matrix 

Assuming that \fx,f) is the constant body force of the i-th block, the potential 

energy due to the body force is: 

n,=-JJU«+/,v)A# 

The integration can be written as: 

"/. =-[/[« v]Jx ^=-[A]rJ/M <** 

jj[T,fdxdy   = 

S 

0 

0 

0 

0 

0 

s„ - 

s,s, 

*2 \ 

S    --*■ 

0 

0 

/ ,2  \ 

s    -^ 
v ^ J 

'f, 
fy 

0 

0 

0 

0 

0 

0 

s„ - 
.2 A 

" 2 x 

S '—*- ™ c 

2  ~\ s 
J 

• 2 A 

S„ - 

(2-20) 
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where S , Sx , Sy , S„ , Sxv cmdSw are the Simplex integrations. 
By minimizing the potential energy, the body force matrix is 

/, 

/> 
which will be added into the global force matrix 

2.6 Inertia force matrix 

r = l,...,12 
yj 

The potential energy for the i-th block due to inertia forces [Fx,Fy) of unit area is: 
~F. 

(2-21) U,=-\j[u   v] 

The initial forces per unit area are 
F. 

dxdy 

~F; 
= -M 

\d2u(t)] 
dt2 

d2v(t) 

. dt2 J 
(2-22) 

according to Newton's Second Law of Motion. M is the mass per unit area. From 
equations (2-9) and (2-22), the potential energy can be expressed as: 

'Mt) 
n,=\JM[u v] dt2 

Mt) 
L dt2 . 

dxdy 

,32AW (2-23) 

Neglecting the higher order term of Taylor's series expansion, 
d2A(')_ 2r    ,    2d DM 

dt2       A2[  ,J   A    dt 
where A is the time increment, therefore, the potential energy due to inertia force is 

Minimizing the potential energy, we obtained 
2M 

K„ = A^m^nJ^n^y    •     r,s = l,...,l2   (2-24) 
which will be added into stiffness matrix, and another term 

fr^jji^jT^dxdylW,]     ,r = l,...,12    (2-25) 

will be added into the force matrix. The integration [[[^[^W^ is a 12x12 matrix 

and is in the following form: 
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5    0        0 0      0 

5        0 0      0 

-5 

— 5, 

Si 

2        2*       2 
1 

0 0 

Is,     Is, 
2   2        2   ' 

1 

-5, 
2   " 

S+S2    -Sj    S3     —5,- —5,        ^ 57       512    ^ o8 ^6,+On ^^10        _ \ -5 

0 -5,0 5,       0 -5, 

S2 -S, 

S8 

0 
1 

0 

I 
-s„ 

2Sl "" 2 

45'+45^      4s7     2S'2 _45'    _459 + 25"      45'0       4 
1 „ 1 „ 1 
■s» 

-AS» 
0 

-5, 0 
2   7 

\_ I 
*   * d 

0 '- 

Symmetric 

41 j 

S|s+ — Sn      -T'^!7""r'J|*    "T   "    _4   13      7   |7 

T^14 + S,8 T^I7 ~S|6 ~T     '< 
4 2 2 4 

7^1« 7^15 ® 4 4 

4 

i-5 

in which S,S.,...,Slt are functions of Simplex integration. The high order Simplex 
integrations are as follows: 

M     1 

S«, = \\x'dxdy = £ —O,3 + *•*,., +x,x2
M +xliy0 

/«I 

^ = \\y3dxdy = Z^ttf +-^-*» +^'>> +y^)Jo 30 
A/ Af      I 

Sm = jjx4dxdy = £—(*,4 +x,3x,+I +x?xll+xixlt + xf+l)J0 
1=1 J" 
W     1 

s^ = \\y*dxdy = ^—(.yt+y'yM + ybli + yty
3

M + y*M )Jo 
M     t 

^ = JJVj*^ = X~t3*^/ +2X,JC/+1^, +X^,X- +X,
2
^,+I +2x,xMyM + 3x2

+lyM)J0 

5
W = \\xy2dxdy = J^—Qy-X; +2y,yMx,+yllx, + y2xM +2y,yMxM +3y2

MxM)J0 
60 

Af        1 

S^cy =   \\x3ydxdy = £ —(4x,3j-, + 3x,2x,.+I>>,. +2x,x2
Myi + xl1yi+x3yM +2x2xMyM 

+ 3x,x,2
+I.y1.+]+4x3

+I.y,+1)./0 

w     1 
Smy =  \\xy3dxdy = £ —(4.K.?*/ + ^X»*/ + ^/li*/ + >£,*,■ + J^w + Sj^x*, 

^  =   \jx1y1dxdy = *Z — (6xiy?+3xfylyM+xlyll+3xixMy?+4xixMylyM+3xlxMy?.l 

+ *I2*I^ +3^,7;^, + 6x,2
+1>£1)Jr

0 
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2.7 Fixed point matrix 

The constraint at the fixed point on the block boundary may be simulated by using 
two stiff springs acting on the fixed points. The potential energy due to the springs at the 
i-th block is equal to : 

nf = -\[u v] 

= -\[u   v] '-pu 

= f[4]WKM (2-26) 

where p is the spring constant at the fixed point. The stiffness matrix due to fixed point 
can be obtained as follows: 

K = 
d2Yl, 

ddriddsi 
-tfjJLKI 2x12 

r,s = l,...,12 (2-27) 

2.8 Normal and shear contact matrices 

The formulations for normal and shear contact matrices are exactly the same as 

those given by Shi(1989) with exception of using extended \f] and\D\ matrices. The 

sub-matrices due to the interaction between blocks are mainly induced by the contact 
forces which are determined by the quantity of penetration, relative movement between 
blocks and stiffness of contact spring. They are : 

l\x\2 

which are added to the stiffness matrix [.£..] , [^..1 , IKA , \K] ', and 

I   Le'Ji2^i '      i   lAui Jl2il 

are added to the force matrixr^l;^ 1. 

In these sub-matrices, p is the stiffness of contact spring, / is the length of contact 

edge, and [V] ,\g] nave me following forms: 

Mi2,i=7ft(Wi)f 
~yi -yi 

_Xy -x2_ 

3" -x3_ 
-[Tj(x3,y3)]7 yi-y2 

x2    xx 

and 
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1      X, y\ 
1    x2 y2 

1    x3 ^3 

The stiffness matrices and force matrices at the individual block derived above are 
assembled into global stiffness and force matrix for the block system. Simultaneous 

equations were formed for solving the unknowns [£)] for all blocks. 

3. Development of Second Order Displacement Function for Manifold 
Method 

3.1  Second order displacement function 

Complete second order displacement functions were used to approximate the 
movement and deformation of the manifold covered by the mathematical mesh. 

u = a]+ a2x + a3y + a4x
2 + a5xy + a6y 

v = 6, + b2x + b3y + b4x
2 + b5xy + b6y

2 (3-1) 

For  six  vertices  element  with  nodal  coordinates  (x, ,y^  , i = l,...,6,  the  nodal 

displacements are: 

w-, 

u. 

Similarly 
I3J 

1 X, V, X, X,V, V, 

1 x2 y2 x\ x2y2 y\ 

1 x3 v3 x\ x3y3 y\ 

i *4 y* A x*y* y* 
1 x5 v5 x5

2 x5y5 y\ 

1 x6 y6 xl x6y6 y2^ 

a, 

cu 

a, 

a. 

a< 

a* 

-[^LfiL^iLi 

V p,l 
V2 b2 

V3 

V4 

= [s]6x6 
b3 

V5 b5 

.V«. kJ 

-[^LeL^Li 

So the coefficients can be obtained as 

[A] = [s]- 

u-, 

and   \_A2\ = [S'\ (3-2) 

Therefore, the displacements at any point within the mesh are 
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.-[! x   y   x2    xy   y2\sY ;v = [i x   y   x2    xy    y2][S]~ 

Let 

where 

[/,    A    A    A    A   A] = [l   x   y   x2    xy   y2 K'(3. •3) 

-i-I 
1     X, J'l 

2 
w 

2 \A Ai  ■ -      /,5 JX6 
1    x2 ^2 *7 

2 
Wi ^2 

2 Ax J22 "      /25 J26 
1      X3 ^3 *3 ^3 tt _ : : ; 

1      *4 ^4 
2 

w* 
2 Ax /a    • ••  As JS6 

1      X5 J>5 x; 
2 

*5^5 ^5 
2 Jex 762 As J66 

1      *6 J>6 K W ^6. 

[sT = 

Equation (3-3) can be rewritten into 

' Axx +A2xx+Axy+A*xx2 +Asixy+Amy2 

An + /^x+Ai y+AA2
X2

 +As2xy+fay1 

fx3 + ^23^ + /svV + /43*2 + /S3*V + /«/ 

/|4 + /24* + /* J> + fu^ + f»W + /«/ 

/is+/25*+A3Sy+AAS*
2
 + Assxy+A6iy

2 

_/i6+Ai6x+f*y+AAS*
2
 + A6xy+A«,y2. 

Therefore displacement field can be written in matrix form as: 
u 

[A   A   A   A   A   A6] = 

nT 

=RL«[A] 112^1 
(3-6) 

where 

and 

[T] = 'A   o   A   o   A   o   A   o   A   °   /6   ° 
o   /,   o   /2   o   A   o   /4 

[*>] = [«, «2 W, M, W, 

o   /, *o   /,. 

W* 

3.2 Elastic stiffness matrix 

The strain energy in the element is: 

(3-7) 

vbA 

(3-3) 

(3-4) 

(3-5) 

For linear elastic material, the stress-strain relationship in plane stress condition is given 
by the following equation. 
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r        ~i 

<?x 
E 

°y 1-v2 

KJ 

1       V 

V       1 

0    0 

0 e, Ex 

0 £v = [^1 £v 
l-v 

r >".., 2   J L *••' J _ -vJ 

(3-8) 

From Eqn. (3-5) and definition of strains, 

du 
dx 
dv_ 

dy 
du    dv 

dy    dx 

(3-9) 

0 

3/. 

df: 
dx 

0 

0 

dy 

5x     3y 

0 

ay 

5/a 

0 

5/3 

0 

dy 

dx 

0 

0 

3/4 
5x 

0 

5y 5x     5y     5x 

ay 
a/  iA M. M 

ay ax   ay 

0 

3y 

ax 

:*1 

ax 
0 

£4 
ay 

(3-10) 

0 

dy 
5/ 
ax 

[A] 

where 

ax oy 
= fy+f5ix + 2f6iy , i = l,...,6 

The strain energy of the element can be expressed as 

n£ = \ JlHx.yiD.fjB.r^E.UB.l, „[D.l^dxdy     (3-11) 
in which w(x,y) is the weighting function to compute the integration over the common 
area between mathematical mesh and physical mesh. Minimizing the potential energy, 
the stiffness matrix of the element is 

^ = ^^ = \\Hx,y)[BSnjEeUBeLl2dxdy     r,s = l,...M       (3-12) 

where the integration jj^ixty)[Bt]^x3[Et]U3lBt]M2dxdy is a 12x12 matrix and il 

contains 144 complex integrations which may be carried out by using the integration 
program. 

3.3 Initial stress matrix 

For element e, the potential energy of the initial stresses [o°x ,o°y ,z°iy) 

no° = -//(s/xH +e,o; + r^) dxdy= -jj[z]T[a*}kdy 

is 
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z°y \lxdy (3-13) 

where 

= -\\^x,y)[Dt]
T[Bt]

T[Et] 

= \B]   ID
0
} 

Therefore, the potential energy of initial stresses fl 0 can be expressed as 

nao =-\\[DenBe]
T[Ee][Be}{D:}dXJy (3-14) 

Minimizing the potential energy, it leads to the force matrix of the element. 

/r=- 

ango 
dd„ =JJ**o*UU*JJ*.L« *#W  (3-15) 

3.4 Point load matrix 

The potential energy of point loads \FX,F) acting at coordinates (x,y) of element e 

is 

fl  =-{Fxu + Fyv) 

TrmlT --wra (3-16) 

Miitimizing the potential energy, it yields the force matrix due to point loads 
'F. 

r = l,...,l2 (3-17) fr=^=[Tey 
dd„ 

3.5 Body force matrix 

The potential energy due to body forces (fx,f) of element e is: 

nB=-\\{fxu + fyv)dxdy 

= -[De]
Tj\w(x,y)[Te]

Tdxdy 
/v 

(3-18) 

Minimizing the potential energy, it leads to the force matrix due to body forces: 

/> dd„ 
= jjw(x,y)[Te]

T 

A 
dxdy    ,     r = l,...,12    (3.19) 

3.6 Fixed point matrix 

As a boundary condition, the constraint at the fixed point can be simulated by using 
stiff spring. The spring forces in element e are: 
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7' -pu 

-pv_ 
(3-20) 

where p is the spring constant. The potential energy caused by the force acting on the 
fixed point is : 

nf = ~lu v] 

Minimizing the potential energy, it leads to stiffness matrix 

K = 
d2 n / 

9dndd„ 
= p[Te]

7'[Te]     ,     r,s = l,...,\2 

(3-21) 

(3-22) 

3.7 Inertia force matrix 

The inertia forces of mass per unit area are: 
'd2u{t)' 

= -M dt2 

d2v(t) 

dt2 

The potential energy due to inertia forces of the element e is: 

'd2u(t)' 

Tl,=jjw(x,y)M[u   v] dt2 

d2v(t) 

dt2 J 

dxdy 

= jj Mw(x,y)[De]
T[Tj[Te]^0Ucdy 

(3.23) 

(3-24) 

Rewriting £) (/) in Taylor's series expansion and neglecting the higher order term of 

Taylor's series expansion, 
d2De{t)_2L 2dDe(t) 

dt1 A    dt 
where A is the time increment, therefore, the potential energy due to inertia forces is 

I!, =[D.]r\\^y)[T,]T[T.]bdy^f{D,}-2-f[Va] 

Minimizing the potential energy, it leads to stiffness matrix 

K_ = 
1M_ 

A2 
jjw(x,y)[Tef[Te]dxdy r,s = l,...,\2 (3-25) 

and another term fr is the force matrix. 

fr=^\h(^y)[^lT[Te]dxdy[V0]     ,r = l,...,12 (3-26) 
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The integration   IT [7^] [Te]dxdy   is a  12x12 matrix and it contains   144 complex 

integrations which can be carried out by using the integration program. 

3.8 Normal and shear contact matrices 

The formulations for normal and shear contact matrices are almost the same as those 
given by the first order manifold method with the exception of using extended 
[7^] ara/f-Dj matrices. The sub-matrices due to the interaction between elements are 
mainly induced by the contact forces which are determined by the quantity of penetration, 
relative movement between elements and stiffness of contact spring. They are : 

which are added to the stiffness matrix [/^.l , \Kr] , [äT.,| , \K-\, and 

--pKL. 5 —T^KL, 
are added to the force matrix[/^1 and \F\- 

In these sub-matrices, p is the stiffness of contact spring, / is the length of contact 

edge, and [•"« J > [  «v J in normal contact matrices have the following forms: 

[*-k,=K,(w,)]r >2" -y3~ 

.-V 
>3" 

-x2_ 

-yi 
*\- -*3_ 

r v,- + [Tej(xs,y,jf yi-y2 

X2 ~ X) 

and 
U 

50 = 

1 *1 yi 

1 X2 yi 

1 x3 y3 

an^ [Hei] ' \pej\ have the following forms in shear contact matrices: 

[tf-],M
asfr(W,)]r 

[G«*Ll=[^(X2^2)]r 

+[Tej(x3,y,)] 

Xl      X2 

lyi-ysj 
-JC, + 2(l-w)x2 +(2w-l)x3 

-yl+2(\-w)y2+(2w-l)y3 

x, +(2w-l)x2 -2wx3 

_yl+(2w-l)y2-2wy3 

where o < w < 1; and S0 can be expressed as follow 

So = [xi -0~ w)x2 ~ ™*3    v, -(1 - w)y2 - wy3] 
x3   x2 

L^-^2. 
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The stiffness matrices and force matrices at the individual element derived above are 
assembled into global stiffness and force matrices for the system. Simultaneous equations 
were formed for solving the unknowns [£)] for all elements. 

4. Validation of Second Order DDA Code 

4.1  Modification of DDA code 

DDA code version(l993) developed by Dr. Gen-hua Shi was used as the basic 
program for modification. The main features of the modified version of DDA program 
include : 

(1) incorporate the second order displacement function; 
(2) revise the variable contact spring constant to fixed value; 
(3) change the solver of simultaneous equation from successive over-relaxation 

(S.O.R.) technique to preconditioned biconjugate gradient(PBCG) method; and 
(4) change the convergence criteria from iteration number of 200 or relative 

criterion of 10"1 to an absolute criterion of 10~8. 

This modified version of the program was used for validation analysis to check the 
correctness of formulation and coding. The results are presented in the following section. 

4.2 Results of validation 

(1) Patch test 
A displacement functions assumed for the block shown in Figure 1 are as 

follows: 

u = 0.01* - 0.01j> + 0.001jc2+0.0001xy- 0.001/ 
v = -0.01x + 0.01j>-0.001x2-0.0001xy + 0.001v2 

The  prescribed displacements  at the   12  vertices,  which are  consistent  with  the 
displacement function, were applied to the block and are shown in Table  1. The 
displacements at 4 locations within the block were calculated by the code and compared 
with those obtained by the displacement function. The results are shown in Table 2. 

Table 1    Prescribed displacements at the vertices 
Vertices coord. Prescribed displacements 

u V 

A(0,0) 0 0 
B(1,0) 0.011 -0.011 
C(3,0) 0.039 -0.039 

D(4.5,0) 0.06525 -0.06525 
E(4,l) 0.0454 -0.0454 

F(3.5,2) 0.02395 -0.02395 
G(3,3) 0.0009 -0.0009 
H(2,3) -0.0144 0.0144 
1(1,3) -0.0277 0.0277 
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J(0,3) -0.039 0.039 
K(0,2) -0.024 0.024 
L(0,1) -0.011 0.011 

Table 2    Patch test results 
Measuring 

points coord. Exact solutions SDDA 
u V u V 

M(l,l) 0.0001 -0.0001 0.000095 -0.000095 
N(l,2) -0.0128 0.0128 -0.012806 0.012806 
0(3,2) 0.0156 -0.0156 0.015598 -0.015598 
P(3,l) 0.0283 -0.0283 0.028296 -0.028296 

From the preliminary tests, it may be concluded that the second order formulation 
and coding are correct. But there are still many functions , such as point load, body force, 
inertia force, etc. to be validated. 

ri   Measuring point 

O     Vertices with prescribed displacements 

Figure 1. Block configuration for patch test 

(2) Cantilever beam 
An 8 m long x 1 m deep cantilever beam with unit thickness subjected to 1 ton 

concentrated load at the end of the beam was used for validation. The material properties 
of the beam were assumed to be E=105Tim2 and v=0.2. The problem was solved by 
dividing the beam into 1, 4, 8, 16, 32 and 64 blocks. The results for the deformation 
along the beam axis are shown in Figure 2. And stress components <y at the centroid of 
each block for the case of 64 blocks are shown in Figure 3. It may be seen that 64 blocks 
can obtain good approximation as compared with analytical solution. This example also 
illustrates that the second order DDA can release the restriction of block shape 
requirement for certain types of problem, such as beams. It also requires a smaller 
number of blocks to achieve the same degree of accuracy as the first order code. 
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Figure 2. Results for the deformation of cantilever beam 
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Figure 3. Results for the distribution of CT  at the centroid of blocks 

(3) Kirsch solution 
This problem used a uniformly loaded linear elastic plate with a central circular 

opening to study the effect of stress concentration. To simplify the calculation, a slice of 
the plate as shown in Figure 4 was used. The problem was analyzed by using 8 blocks 
together with 2 rigid blocks to provide the fiictionless lateral boundaries which simulate 
the condition of zero circumferential displacement. The results of stress concentration 
factors for radial stress, circumferential stress and shear stress at the block centroid 
together with the analytical solutions are shown in Figure 5. Very good agreement in 
results may be seen even for the very crude blocks adopted. 
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Figure 4. Block system for simulating the Kirsch solution 

0.50 T 

u 
^    0.00 

_c 
ö -0.50   : 

S -1.00 - 
o 

w ■ 
5? -1.50 3 
S~ 

CO 

-2.00 

 Radial stress  (SDDA) 
♦♦ + + + Tangential stress  (SDDA) 
00QOO Shear  stress  (SDDA) 
  Radial stress  (exact  soL) 
    Tangential  stress   (exact   sol.) 

■---  Shear  stress   (exact  soL) 

0--Ö- «--c * -0 ft o 

y 

/ 

15.00 20.00 0.00 5.00 10.00 
Distance   (M) 

Figure 5. Comparison of results calculated by second order DDA and exact solutions 

5.   Discussions and Conclusions 

In this paper, second order displacement function formulations for DDA and 
manifold method are presented. Modifications to the original DDA code were made. 
Validation test results showed that it can obtained results in good agreement with the 
analytical results. From these studies, it appears that the major improvements in adopting 
the second order displacement function in DDA method are : 

(1) with  improved  deformation  mode,   second  order  DDA  can  release  the 
requirement for block shape in certain types of problem, such as beam; 

(2) reduce the block number required for calculation, especially in the case with 
large deformation or stress concentration; and 

(3) improve the efficiency of calculation and obtain a better stress and strain 
distributions in blocks. 
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From the limited experience in using DDA to solve the engineering problems, it 
appears that the second order DDA with improved solving technique can model many 
types of problem more accurately and efficiently in comparison with the original version 
of DDA. The most severe limitation in using DDA to solve practical problem is the 
memory capacity of the computing facility and the computing time required. However, 
with the rapid development in computer hardware, DDA can be a powerful tool in 
solving the engineering problems. 
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Applications of DDA Augmented Lagrangian Method 
and Fracturing Algorithms in the Manifold Method 
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Abstract 

Beginning with the original work of Dr. Shi [1], called the Manifold method, two 
extensions to the method are explored in this paper. The extensions consist of improving the 
contact algorithms and adding block fracturing capabilities. Discontinuous contacts between 
blocks are to be modeled using an Augmented Lagrangian Method instead of the penalty method 
originally proposed by Dr. Shi [1]. This allows the discontinuous contacts to be enforced more 
precisely and contact forces to be determined more accurately. Two fracturing algorithms, which 
have been implemented in the DDA method by Lin [2], are introduced into the manifold method. 
Using a three-parameter (cohesion, friction, tensile strength) Mohr-Coulomb criterion, one 
algorithm allows intact rocks to be broken into smaller blocks. Fracturing can be in shear or 
tension. The second algorithm allows fractures to propagate inside the blocks either in Mode I 
(tensile fracturing) or Mode II (shear fracturing). These two extensions are proposed to be 
implemented into the original program of the manifold method. With the two extensions, the 
manifold method will be more applicable to a greater range of rock mechanics problems and 
other engineering problems involving blocky systems. Two numerical examples implemented in 
the DDA method are presented to examine the two extensions with regard to masonry wall and 
slope stability problems with plane stress condition. The examples using the proposed extensions 
implemented into the manifold method will be presented in the near future. 

The Augmented Lagrangian Method 

The penalty method, which was originally used in the DDA and manifold methods, of enforcing 
contact constraints has proved effective in many areas of numerical modeling and is discussed 
by Campbell [3], Felippa [4, 5], and Zienkiewicz et al. [6]. The advantages of such a method are: 
(1) the number of governing equations is not increased because of the contacts and (2) the 
solution is easily obtained by simply adding contact components to the stiffness matrix. However, 
the method has three major disadvantages. First, the accuracy of the contact solution depends 
highly on the choice of the penalty number and the optimal number cannot be explicitly found 
beforehand. Secondly, the penalty approach satisfies the contact constraints only approximately. 
Finally, the contact forces must be calculated using auxiliary calculations. All three limitations 
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can be overcome by using An Augmented Lagrangian Method. 
The classical Lagrange Multiplier Method was one of the first methods to solve block 

contact problems when contact forces are explicitly obtained. However, as shown by Lin [2], the 
method increases the number of governing equations and extra computational effort is needed to 
solve the increased number of equations. A modified Lagrange Multiplier (Augmented 
Lagrangian Method) can be used, instead, to retain the simplicity of the penalty method and 
minimize the disadvantages of the penalty method and the classical Langrange Multiplier Method. 

BLOCK J 

Figure 1.  Interaction between two contacting blocks. 

Consider two blocks i and j as shown in Figure 1, where point Pj of block i penetrates 
a depth, d, into edge P2P3 of block j. Let (xffi,yj and (ivvj be, respectively, the coordinates and 
the displacement increments at points Pffi (m=l,2,3). Using the penalty method is equivalent to 
placing a spring between point Px and the edge P2P3, perpendicular to P2P3. The strain energy of 
the contact spring is equal to pd2/2 where p is a large positive penalty number which is also the 
spring stiffness. On the other hand, using die Langrange Multiplier Method, the strain energy of 
the contact is equal to Xd where X is the unknown contact force due to the penetration of point 
Pi into the edge P2P3. 

The essential concept behind the Augmented Lagrangian Method is to use both a penalty 
number, p (representing the stiffness of die contact spring) and a Lagrange multiplier, X* 
(representing the contact force X), for each block-to-block contact to iteratively calculate the 
contact force [7]. An iterative method is used to calculate the Lagrange multiplier until the 
distance, d, of penetration of one block into the other is below a minimum specified tolerance 
and the residual forces between block contacts is also below another minimum specified 
tolerance. 

Consider, again, two blocks i and j as shown in Figure 1. When using the Augmented 
Lagrangian Method, the contact force at the contact point can be accurately approximated by 
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iteratively calculating the Lagrange multiplier X*. A first order updated value for X' can be 
written as follows 

x = A;,, = A.; + pd (i) 

where the penalty number, p, can be variable and does not have to be a very large number as in 
the penalty method. In Equation (1), X*k is the Lagrange multiplier at the k* iteration and X*k+1 

is the updated Lagrange multiplier. At the k& iteration, the strain energy, ns, resulting from the 
contact force becomes 

n, = x;d+±pd2 (2) 

Equation (2) consists of two components. The first component is the strain energy resulting from 
the iterative Lagrange Multiplier X*k, and the penalty constraint creates the second. The 
contribution of the second component to the 6n x 6n global stiffness matrix K was already 
covered by Shi [8], so only the contribution of the first component of Equation (2) to matrix K 
is derived below. 

After the displacement increments (u^V;) are calculated, the perpendicular distance d 
between point Pj (x„ y^ and the reference edge P2P3 can be calculated as follows 

d-A 
1 *l+"l ?1 +V1 

1 *2+«2 ?2+V2 

1 h+U3 y3
+v3 

(3) 

where 1 is the length of P2P3 and A is such that 

1 *1 ?1 1  Ul yl 1  xx  vt 1   ttj   vt 

1   *2   %" H1  w2 y2- hl    X2   V2- -1    «2   V2 

1  % y3 1  «3 y3 1  x3 v3 1    K3   V3 

(4) 

The last term in Equation (4) can be neglected since it is an infinitesimal second order function 
of the displacements. Denoting the first term by S0, Equation (4) can then be approximated as: 

A~S0+ 

1   ux  yj 1   xx   V, 

1   "2  >V hi   Jtj   v2 

1   u3 y3 1  x3  v3 

(5) 
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Combining Equations (3) and (5) gives 

■*E D.+G D; (6) 

where E and G are 1 x 6 matrices with components er and g,. (r= 1-6) defined as 

e. = 

8r 

[(y2-yMxi>yi)+ 

[(y3-yiK(x2,y2)+ 

(xl -x3)^(x2 ,y2)] + 

7[(yi-y2)fiÄ^)+ 

(XJ-X^C^JJ)] 

(7) 

In (7), tir(xl5 Yi) and t^x,, yj) are the components of matrix Tf defined by Shi [8] for block i 
with the center of rotation (xi0, y^; and, tlr(x2, y^, t^(x2, yj, tu(x3, y3), and tj/x,, y3) are the 
components of matrix Tj for block j with the center of rotation (x^, y^). 

Denoting this first component as ITgl and using the definition of d in Equation (2) gives 

n,4;(ioj+GD> (8) 

ihe first üc.auvw of nsl with respect to d^ and d^ at 0 are equal to 

(9) 
dILsl(0) 

ÄL 

and 

f dU^0)        J V        r   1    * fri-—n— = -ki8r . r=l-6, rJ       dd- rj 

(10) 

which form two 6 x 1 matrices -X*kE
T and -X'tG

T that are added to sub-matrices F; and Fj, 
respectively. Note that the X*k values are known and calculated from the previous iteration. They 
are distinct from the X values which are unknowns in the classical Lagrange Multiplier Method. 

Equations (9) and (10) were derived for the first component of the strain energy, ns, in 
(2). The second component in Equation (2) is associated with the penalty method and its 
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contribution to the simultaneous equilibrium equations was already derived by Shi [8]. For the 
Augmented Lagrangian Method, the combined contributions of the first and second components 
of ns to the simultaneous equilibrium equations K D = F can be summarized as follows: 

perer -* Ku , r=l-6, (11) 

is added to sub-matrix 1^ in the simultaneous equilibrium equations; 

P er8r — K9 , r=l-6, (12) 

is added to sub-matrix Kjj in the simultaneous equilibrium equations; 

pgrer-*Kß ,r=l-6, (13) 

is added to sub-matrix K^ in the simultaneous equilibrium equations; 

pgrgr -* KM, r=l-6, (14) 

is added to sub-matrix K^ in the simultaneous equilibrium equations; 

-{K^)er ^ Ft , r=l-6, (15) 

is added to sub-matrix F4 in the simultaneous equilibrium equations; and 

-iK^)gr ~* Fj , '=1-6, do) 

is added to sub-matrix Fj in the simultaneous equilibrium equations. 

The feature of calculating the contact force X from the Lagrange Multiplier Method is 
retained here by using the iterative algorithm. However, since a value of X,, is known at each 
iteration, there is no increase in the size of the system of simultaneous equilibrium equations. In 
addition, the simplicity of the penalty method is retained and the disadvantages are minimized. 
From a physical point of view, again, the Lagrange multiplier, X, represents the contact force 
along a point of contact between two blocks and the penalty number, p, represents the stiffness 
of the contact spring. The final exact contact forces can always be obtained by the iterative 
method even with small initial values of the penalty number. 

However, if the initial penalty number is too small, many iterations are required, making 
the method less efficient. Hence, the penalty number p governs the rate of convergence of the 
iterative effort. This is because the penalty number represents the stiffness of the contact spring 
and a stronger spring pushes the interpenetration distance d to a required minimum much raster 
than a weaker spring does. In general, it is necessary to increase the penalty number after a 
certain number of iterations within any time step. This variable penalty number approach 
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represents a major improvement over the penalty method used by Shi [8]. Shi recommended that 
the penalty number be within 10 to 1000 times the Young's Modulus of the block material in 
order to prevent the blocks from penetrating one another excessively. This constraint no longer 
applies when using the variable penalty number approach in the Augmented Lagrangian Method. 

The Augmented Lagrangian Method was implemented in the original DDA program with 
a variable penalty number function. Except for substituting the Augmented Lagrangian Method 
for the penalty method, all other features of the DDA program developed by Shi were retained. 
The most important feature of the new program is that any initial penalty number can now be 
selected by the user. Then, at each time step, and for each iteration within that time step, the 
optimal penalty number is found for all contacts by the program itself in order to satisfy the 
requirements of minimum distance of contact interpenetration and minimum residual forces 
between block contacts. All the features with the Augmented Lagrangian Method will be also 
implemented in the manifold method. 

Residual forces in the augmented Lagrangian method 

The Augmented Lagrangian Method is an iterative method to obtain exact solutions for 
contact forces. The precision of the solution depends on residual forces that are produced during 
the iterative calculations of the contact forces. From a physical point of view, the residual forces 
are the unbalanced forces between external forces and internal forces. The external forces include 
all surface tractions, body forces and contact forces. As the contact forces are gradually 
approached by Lagrangian multipliers k*, the unbalanced (residual) forces should converge to 
zero. 

The criterion for convergence is based on the Lj norm of the residual forces, that is 

\KDk^-KDk\  ^€ (17) 

jKDJ 

where the tolerance, e, is a positive number that is specified by the user. For a good 
approximation to the exact solution, this values should be close to zero, hi the DDA examples 
presented below, values of e ranging between 0 (corresponding to no contact) and 0.1 were found 
to give excellent results. 

Illustrative example 

As an illustrative example, consider the two-block system shown in Figure 2(a). The 
bottom block is fixed and the top block is subject to a vertical load of 1,000 lbs (4.4 kN) and a 
horizontal load of 2,500 lbs (11.0 kN). The interface between the two blocks has zero cohesion 
and a friction angle of 30°. The intact material in the blocks has a Young's modulus of 10* psf 
(4,781 MPa), a Poisson's ratio of 0.25 and a unit weight of 130 pcf (0.02 MN/m3). Both the 
penalty method of Shi [8] and the Augmented Lagrangian Method with variable penalty number 
were used to solve the same problem with a low initial value of the penalty number equal to 104 

lbs/ft (0.15 MN/m). 
The deformation of the block system, using the Augmented Lagrangian Method to enforce 

the contact interface, is shown in Figures 2(b) after 30, 60, 90, and 315 time steps of 0.01 
seconds. It is clear that no block interpenetration occurs here even though the initial penalty 
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number is low. On the other hand, the deformation of the block system, using the classical 
penalty method, shown in 2(c) after 30, 60, and 90 time steps of 0.01 seconds, indicates that a 
small penalty number is unable to enforce the interpenetration constraint. 

N = 1000 lbs. 

T = 2500 lbs 

Remarks 

a. STEP 0 
Figure 2(a).  Initial configuration. 

Using the Augmented Lagrangian Method to enforce contact restraints retains the 
simplicity of the penalty method and reduces the disadvantages of the penalty and classical 
Lagrange Multiplier methods. Moreover, the accuracy of the contact forces is controlled by the 
residual forces. If sliding does not take place along a block-to-block (i.e. Coulomb friction is not 
mobilized), two springs with same stiffness added at a right angle to each other are required in 
the DDA or manifold method. In this case, the spring forces and stiffnesses are determined using 
the same methodology as described above. Another situation where two springs are necessary is 
in the sub-block analysis which was first presented by Lin [2]. 

Block Fracturing 

This capability allows intact blocks to be broken into smaller blocks, and allows for Mode I, 
Mode II or mixed Modes I and II fracture propagation within sub-blocks in the DDA method and 
mathematical meshes in the manifold method. 

Fracturing criterion 

The criterion selected in this research for block fracturing is a Mohr-Coulomb criterion 
with three parameters : s0 is the inherent shear strength of the block material, <j> is its friction 
angle, and T0 represents its tensile strength. It is assumed that tensile normal stresses are positive, 
and the major and minor principal stresses are denoted as o1 and a3 (with o1 a a3), respectively. 
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STEP  30 STEP  60 

STEP  90 STEP 315 

Figure 2(b).   Deformation of the block system after 30, 60, 90 and 315 time  steps  of 
0.01   seconds with the Augmented Lagrangian Method. 
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Figure 2(c).  Deformation of the block system after 30, 60, 90 and 315 time 
steps of 0.01 seconds with the penalty method. 

211 



A critical value of the minor principal stress is defined as 

-C0 + ^tan^+l-) (18) 3c -o -o v4       2 

where C0- 2s0tan (re/4 +<j>/2) is the unconfined compressive strength of the block material. 
According to the Mohr-Coulomb fracturing criterion, shear failure occurs when 

0-3 < a^     A     o3 < -C0 ♦ altan2(^-+|) (19) 

(where 'A'-and') and tensile failure occurs when 

o3 > 0-3,     A     o, > T0. (20) 

The immediate advantage of this criterion is that different types of fracture (in tension or 
shear) are well defined by the transitional normal stress a*.. Tensile failure is more likely to 
occur in strong brittle rocks under tension. On the other hand, shear failure is more likely to 
occur in soil or in weak rocks. 

Intact block fracture 

The three-parameter Mohr-Coulomb criterion was added to the DDA program and is 
graphically shown in the theoretical and physical plots in Figures 3(a) and 3(b). For each block 
of the system, the major and minor in-plane principal stresses ax and a3 are determined at the 
block's centroid. These two stress components are then compared to the third principal stress 
which is equal to 0 for a state of plane stress. The largest of the three principal stresses is taken 
as ox and the smallest as a3. In the program, the user divides the blocks into two groups : those 
that are allowed to break (breakable blocks) and those that are not (intact blocks). Fracturing of 
the blocks in the first group is determined in the program by comparing ajand a3 with the 
following expressions of the three-parameter Mohr-Coulomb criterion 

at>T0        if  0^03^ (21a) 

ox>TQ      if  al>0>o3>ayc (21b) 

a3<-C0+a1tan2(^+-|)     if  al>0>a3e>a3 (21c) 
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(a) 

(b) 

Figure 3.  The Mohr-Coulomb criterion with three parameters. 
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a3<-C0    if  0^7j^73 (21d) 

If condition (21c) is satisfied within a breakable block, shear failure is assumed to occur 
with two failure planes passing through the block's centroid and inclined at ± (jt/4 - $/2) with 
respect to a3, as shown in Figure 3(b). Then, the block is divided into four blocks and the 
analysis is resumed with a new block configuration. If, on the other hand, either condition (21a) 
or (21b) is satisfied within a breakable block, tensile failure occurs with a failure plane passing 
through the block's centroid and oriented at right angles to ox as shown in Figure 3(a). In this 
case, the block is divided into two blocks and the analysis is resumed. This process is repeated 
for all breakable blocks in the system. In this formulation, no energy dissipation is assumed to 
occur during shear or tensile failure. Upon breaking, the new blocks are assumed to have the 
same velocities as the original block. Also, the new fractures have Coulomb friction and 
cohesion. Note that condition (21d) is not considered in this thesis since, in that case, shear 
failure occurs on two planes in a direction parallel to  ov 

Sub-block fracture 

Consider a large block divided into several sub-blocks, as shown in Figure 4, that can be 
triangular mathematical meshes in the manifold method. The sub-block contacts satisfy the 
displacement compatibility conditions along block-to-block contacts. A crack has been initiated. 
Fracturing takes place at the crack tip (point A in Figure 4) and the direction of crack 
propagation depends on the state of stress in the sub-block in direct contact with the crack tip 
(shaded sub-block in Figure 4). Mode I (tensile), Mode II (shear), or mixed Mode I and Mode 
II fracture propagation is allowed as specified by the user. In each case, propagation results in 
the sub-block in contact with the crack tip to be divided into two new sub-blocks and the process 
is repeated at the next time step. In contrast to the independent fracturing of whole blocks, sub- 
block fracturing allows continuous crack propagation. All new crack surfaces have Coulomb 
friction and cohesion. 

Mode I fracture (tensile failure) 

With this type of fracture mode, the crack will propagate through the sub-block just ahead 
of the crack tip if the principal stresses ot and a3 in that sub-block satisfy condition (20). The 
direction of crack propagation will be perpendicular to ov 

A typical example of this type of fracture is shown in Figure 5. The crack is initiated at 
point 1. Point O is the centroid of the sub-block. When the state of stress of the sub-block (or 
at point O) satisfies condition (20), the crack propagates from point 1 to point 2 in a direction 
perpendicular to ov 

Mode II fracture (shear failure) 

The crack will propagate through the sub-block just ahead of the crack tip if the principal 
stresses oz and a3 in that sub-block satisfies (19). Now, the direction of propagation is inclined 
at +(ji/4-<j)/2) or -(n/4-§/2) with respect to a3. One of those two directions is specified by the user. 
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Crack s* r r^A H 

Figure 4. A large block consists of several sub-blocks and a initial crack with 
crack tip at point A. The sub-block in contact with the crack tip is 

shaded. 
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*  O : represents centroid of the sub-block. 
** 1-2 : represents the Mode I cracking plane. 

**» <r,: represents the major principal stress. 

Figure 5.  Model I sub-block fracturing. 
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A typical example of this type of fracture is shown in Figures 6(a) and 6(b). In Figure 
6(a), the crack is initiated at point 1. Point O is the centroid of the sub-block. When the state of 
stress in the sub-block ahead of the crack front satisfies (19), the crack propagates from point 1 
to 2 in a direction inclined at +(jt/4 - <j>/2) with respect to a3. Similarly, Figure 6(b) shows 
another possible shear cracking plane, with the direction of propagation from point 1 to 2 inclined 
at -(JI/4 - <f>/2) with respect to a3. 

Mixed mode fracture 

Here, the crack will propagate through the sub-block ahead of the crack front if the 
principal stresses a, and a3 in the sub-block satisfy either Equation (19) or (20). The direction 
of propagation is perpendicular to a, if a, and a3 satisfy condition (20). On the other hand, the 
direction of propagation is inclined at +(n/4-<j>/2) or -(ji/4-<f»/2) with respect to a3 if ot and a3 

satisfy condition (19). In the latter case, one of the shear fracturing directions must be specified 
by the user. 

The advantage of the mixed mode option is that either tensile or shear fracture is 
determined by the state of stress in the sub-block ahead of the crack front at the time of fracture. 

Energy balance during fracturing 

Although classical fracture mechanics stipulates that some strain energy is released during 
fracture [9], the current research does not include an energy loss criterion. Therefore, an 
alternative kinematic condition has to be satisfied and enforced in the model. 

Consider a block (or sub-block) i that is to be fractured at a certain time step when the 
state of stress in the block satisfies the fracturing criterion. A fracture plane is introduced and two 
new blocks are formed. One is denoted as block il and the other as block i2. At the end of the 
time step, the new block velocities öDü(t)/öt and dDJfyldi are assumed to satisfy the following 
equation 

aP«(0 . dDu(t) _ dDi2(t) 

dt dt dt 
(22) 

where öD;(t)/öt is the velocity of the original block. Since velocities are conserved, there is no 
energy loss associated with fracturing. 

Remarks 

Since the DDA or manifold method assumes discontinuity of element joints, the newly 
created discontinuous element joints resulting from block fracturing can be naturally handled by 
the methods. They are also given Coulomb friction and cohesion. With the same concept in the 
cases of applying the intact block and sub-block fracturing capabilities in the DDA method 
described above, the addition of the block fracturing algorithms in the manifold method will 
make the method a powerful tool for modeling fracture propagation in already fractured rock 
masses or other blocky systems. 
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** 1-2 

***   CT3 

represents centroid of the sub-block. 
represents the Mode II cracking plane, 
represents the minor principal stress. 

(a) 

Figure 6(a).  Mode II sub-block fracturing. 
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*  0 : represents centroid of the sub-block. 
** 1-2 : represents the Mode II cracking plane. 

•** CT3: represents the minor principal stress. 

(b) 

Figure6(b).  Mode II sub-block fracturing. 
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Numerical Examples 

Modeling masonry structures 

Masonry structures are blocky systems that are of great interest to civil engineers. 
Masonry structures, and in particular unreinforced masonry structures such as stone and brick 
walls, arches and vaults, constitute a sizable portion of existing buildings (some of them with 
historical value) all over the world. Many of these structures suffer from numerous deficiencies 
related to the construction material, construction techniques or to continuous deterioration due 
to aging. Also, older stone masonry structures can be quite complex in their geometry and 
composition. Being able to analytically model unreinforced masonry structures and their behavior 
under vertical and horizontal loads is very important when assessing their short and long term 
stability and the needs for repair and retrofitting. 

Masonry structures are discontinua at the engineering scale. They consist essentially of 
intact units e.g. masonry blocks (stone, clay units) separated by discontinuities (mortar joints). 
The discontinuities can be inherent or induced by loading. There is enough laboratory and field 
evidence to show that these discontinuities have a strong non-linear effect and dominate the 
deformation and strength behavior of masonry structures. In general, continuum models are 
inadequate in predicting the response of such systems to loading and unloading. This has led 
many structural engineers to use analysis and design methods that rely heavily on empirical rules. 

The numerical models used for the structural analysis of masonry structures have been 
mostly based on the FEM method, in which the masonry is treated as a continuum, an equivalent 
continuum or a discontinuum with discrete interfaces [10, 11]. Both discrete and smeared crack 
models have been used [12, 13, 14, 15, 16]. Also, some attempt has been made in using discrete 
element methods for masonry structures [17, 18]. Applications of rigid block solutions (similar 
to DEM methods) to masonry arches were presented by Melbourne and Gilbert [19] and 
Melbourne et al. [20]. A review of the different numerical approaches used in structural masonry 
can be found in Middleton and Pande [21]. 

In general, none of the past approaches has adequately modeled the occurrence and 
propagation of the brittle cracking and sliding which characterizes the behavior of unreinforced 
masonry structures. The example presented below is designed to show how the new DDA model 
can capture this behavior. 

Example 1 

A racking test involving an unreinforced masonry wall section with the geometry of 
Figure 7 subjected to a vertical load and a horizontal shear load, is considered in this section 
[22]. This experiment, basically, is designed to simulate the response of a shear wall in a building 
to in-plane loads [23, 24, 25]. 

Consider now a 28.67 in. x 39.4 in. (72.8 cm x 100 cm) unreinforced masonry wall, as 
shown in Figure 7.1.1, which consists of 10 layers of bricks with 3.5 units per layer. The bricks 
are 8.19 in. x 3.94 in. (20.8 cm x 10 cm) in size. The shear wall sits on a fixed base and has a 
35.74 in. x 3.54 in. (90.7 cm x 9 cm) beam on top. A horizontal point load of 450 kips (2 MN) 
is applied from left to right and a vertical downward load P placed on top of the wall. The wall 
and the beam are assumed to have a Young's Modulus E=1.84 x 108 psf (8,800 MPa) and a 
Poisson's ratio v=0.16. The bricks have a unit weight y=150 pcf (2.36xl0'2 MN/m3), an inherent 
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Figure 7.  Initial configuration of a shear wall with a vertical load P and a 
horizontal load of 450 kips (2 MN). 
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shear strength (cohesion) s0=73 ksf (3.5 MPa), a tensile strength T0=72 ksf (3.45 MPa), and a 
internal friction angle <$>= 30 degrees. Two kinds of brick joints were considered in this example. 
In the first case, the brick joints have a uniform joint friction angle of 32.6* and a cohesion of 
27.4 kips/ft (0.40 MN/m). In the second case, the brick joints have a uniform joint friction angle 
of 32.6 degrees and zero cohesion. The beam and the fixed base are represented by one DDA 
block each. Also, each brick is represented by one DDA block. No sub-blocks are used in this 
example. 

Either shear or tensile fracturing of each breakable block is allowed in this example, 
depending on the values of the major and minor principal stresses, as described above. When 
shear fracturing occurs, the fracturing plane passes through the centroid of the block and is 
inclined at +(jt/4-4>/2) with respect to the minimum principal stress o3. When tensile fracturing 
occurs, the fracturing plane passes through the centroid of the block and is perpendicular to the 
major principal stress ov 

For the case of cohesive joints, the DDA program was run with the following specifications: 

Initial Penalty 
Number 

Time Step 
(seconds) 

Max. No. of 
Iterations per 

Time Step 

Residual Force 
Ratio (e) 
(Eq. (17)) 

1.84 x 108 lbs/ft 
(2.69xl03MN/m) 

lxlO-4 16 sO.l 

Figures 8(a)-(d) show the deformed and fractured shear wall with cohesive joints after 10, 
30, 90, and 100 time steps, respectively. In this example, the vertical load P is equal to 808 kips 
(3.6 MN). It is clear that the wall starts cracking near its right toe. Then more diagonal cracks 
develop from that area and propagate towards the top left hand side of the wall. It can also be 
seen that although the wall was initially intact, fracturing occurs across the brick units with some 
offset along the brick joints. Note here that fracturing of the wall proceeds without user 
intervention; fracture orientation, new element generation and new interactions being 
automatically calculated within the program. This analysis would be extremely difficult using 
conventional finite element or boundary element methods. 

Figures 9(a)-(d) show the results of another numerical run where the bricks are now 
assumed to be frictionless and to have a cohesion of 27.4 kips/ft (0.4 MN/m). All other 
mechanical properties and the computer run specifications are the same as before. The vertical 
load P is equal to 493 kips (2.2 MN). Figures 9(a)-(d) show that diagonal wall fracturing is more 
defined here than in Figures 8(a)-(d). 

For the case of cohesionless joints and bricks with internal friction and cohesion, the DDA 
program was run with the following specifications: 
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Figure 8.   Deformed and fractured shear wall with cohesive joints after 10, 30, 
90, and 100 time steps of 10^* seconds in (a)-(d). Bricks have an 

internal angle of 30°. 
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Figure 9. Deformed and fractured shear wall with cohesionless joints after 10, 
22,46, and 70 time steps of 1 (T* seconds in (a)-(d). Bricks are 

assumed to be frictionless. 
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Initial Penalty 
Number 

Time Step 
(seconds) 

Max. No. 
Iterations per 

Time Step 

Residual Force 
Ratio (E) 
(Eq. (17)) 

1.84 x 108 lbs/ft 
(2.69xl03MN/m) 

1 x 10 "4 4 sO.l 

Figures 10(a)-(d) show the deformed and fractured shear wall with cohesionless joints 
after 10, 15, 30, and 50 time steps, respectively. It is clear here that cracking of the wall starts 
again at its right toe. More cracks develop from that area, and propagate upwards but not 
diagonally. 

The use of the DDA method to study the fracture behavior of unreinforced masonry shear 
walls is still at the exploratory stage. The purpose of the above examples was to show how the 
DDA formulation could help in providing a better understanding of the behavior of unreinforced 
masonry structures at the field scale. The fracture modes shown in Figures.8, 9 and 10 are 
consistent with those observed in laboratory tests on masonry walls [14]. The numerical results 
also show that joint cohesion and brick internal friction have a significant effect on the 
deformation and fracturing of unreinforced masonry shear walls. 

Example 2 

Consider now another 64 in. x 64 in. (162.6 cm x 162.6 cm) unreinforced masonry wall, 
as shown in Figure 11, which consists of 8 layers of bricks with 4 units per layer. The bricks are 
16 in. x 8 in. (40.6 cm x 20.3 cm) in size. The shear wall sits on a fixed base and has a 80 in. 
x 8 in. (203.2 cm x 20.3 cm) beam on top. In order to avoid any rotation of the beam, a fixed 
top is placed on top of the wall, as shown in Figure 11. A horizontal point load of 45 kips (0.2 
MN) is applied from left to right on the beam and a total vertical downward load of 78 kips (0.35 
MN) is placed on top of the beam. The wall and the beam have a Young's Modulus E=7.2 x 10s 

psf (34,470 MPa) and a Poisson's ratio v=0.16. The bricks have a unit weight Y=150 pcf (2.36 
x 10"2 MN/m3), a compressive yield stress f0=1.44 x 105 psf (6.89 MPa), and a compressive 
strength fm=2.88 x 10s psf (13.8 MPa). The brick joints have a uniform joint friction angle of 
38.3° and a cohesion of 3.07 kips/ft (0.045 MN/m). All the material properties were obtained 
from the paper by Lotfi and Shing [14] for the purpose of comparison. 

The beam, the fixed base and the fixed top are represented by one DDA block each. Also, 
each brick is represented by one DDA block. No sub-blocks are used in this example. All the 
bricks are non-breakable. 

The DDA program was run with the following specifications: 
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Figure 10.    Deformed and fractured shear wall with cohesionless joints after 
10, 15, 30, and 50 time steps of W4 seconds in (a)-(d). 
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Figure 11.    Initial configuration of a shear wall with a total vertical load of 78 
kips(0.35 MN) and a horizontal load of 45 kips (0.20 MN). 
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Initial Penalty 
Number 

Time Step 
(seconds) 

Max. No. 
Iterations per 

Time Step 

Residual Force 
Ratio (E) 
(Eq. (17)) 

7.2 x 1010 lbs/ft 
(1.05xl23MN/m) 

1 x 10 '4 2 sO.l 

Figure 12(a) shows the distribution of the minor principal stress o3 over the wall after 100 
time steps. It is clear that the crushing areas of the masonry wall (where the minor principal 
stress a3 exceeds f J are in the upper left hand and lower right hand comers. This figure also 
shows that the yielding area of the masonry wall (where the minor principal stress a3 exceeds 
f0) is over a diagonal band stretching from the upper left hand comer to the lower right hand 
corner of the wall. The crushing and yielding patterns are consistent with the experimental results 
of Lotfi and Shing [14], as shown in Figure 12(b). 

Using the DDA analysis, the predicted horizontal displacement at point Q in Figure 11 
is 2.63 in. (6.68 cm) which is not consistent with the experimental value of 0.12 in. (0.3 cm) 
obtained by Lotfi and Shing [14]. One possible explanation for this discrepancy is mat in the 
DDA model the joint behavior is relatively simple. In contrast, other numerical methods used for 
masonry use a more complex arrangement of normal and tangential springs and dashpots such 
as shown in Figure 13 [26]. 

In this shear wall example, the shear behavior of mortar joints needs to be simulated by 
tangential springs (and even by dashpots when creeping behavior is studied) and the normal 
behavior of tensile debonding also needs to be included. Therefore, sliding along the mortar joints 
can be highly reduced and the accuracy of the predicted displacement at point Q can be 
improved. 

Given the blocky nature of masonry, the DDA method seems to have, in its current 
formulation, many features which would be highly desirable for the stability analysis of masonry 
structures. In particular, compared to the FEM method, it can handle in a more straight forward 
manner the geometric changes in the physical model as blocks yield and crack and interfaces 
slide. On the other hand, the finite element method requires updating and reformulation of the 
structural stiffness matrix to account for physical changes in the structure. Since DEM methods 
emphasize block contacts, many of the problems encountered with the FEM can be eliminated. 

To be considered as a viable alternative method to the FEM for masonry applications, the 
DDA method would have to be modified to include more capabilities. Some of these 
modifications could provide the basis for further research: 

(i) The method should be able to model (1) interface normal behavior such as tensile 
debonding, interface opening and closing, (2) interface shear behavior in the pre-and post-peak 
regions, and (3) interface damage during monotonic or cyclic loading, which have been observed 
in various laboratory experiments [22, 27, 28, 29, 30]. 

(ii) The method should be able to model fracturing, yielding and cracking of the block 
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Figure12(a). Contour plot of a3 (in psf) over a masonry shear wall. 

229 



'-%'- 

o Yielding   ■ Crashing Failure 

Figure12(b).   Final yielding and crushing patterns over a masonry wall from 
Lotfi and Shing (1994). 
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Figure13.   Numerical joint modeling for block contact (after Ting et al. 1993). 

231 



elements and in particular how cracks, initiated in block elements, interact with existing masonry 
interfaces. 

(iii) The method should be able to account for load changes as a function of time and to 
model the response of masonry to displacement and load control loading modes. This is 
particularly important when analyzing laboratory tests on structural elements. 

(iv) The method should be able to model the effect of cyclic loading which is very 
important for the stability of masonry structures in earthquake areas. 

(v) The method should be able to model the effect of reinforcement which is important 
for modern masonry structures and older masonry structures that have been retrofitted. Methods 
of reinforcement such as grout injection, installation of reinforcing steel, and prestressing are of 
particular interest to engineers interested in structural masonry. 

Modeling slope stability 

Gravity can cause instability in natural slopes, in slopes formed by excavation and in 
slopes of earth dams and embankments. Slope failure can be of three major types : rotational 
(circular or noncircular) slip, translational slip and compound slip. In classical soil mechanics, 
slope stability analysis is usually conducted using limiting equilibrium methods. Various 
techniques are available such as the Fellenius method, the Bishop method, the Morgenstern 
method, etc [31]. Numerical approaches using the FEM method have also been used. These 
often incorporate a complex criterion, such as a visco-plastic model [32] or an elasto-plastic 
model [33, 34, 35] to analyze slope failure. The example presented below is used to show how 
the enhanced DDA method can predict rotational slip in slopes with homogeneous properties. It 
is also used to demonstrate the sub-blocking capability. 

Consider a footing resting at the crest of a 10.5 ft (3.2 m) high slope with an angle of 45 
degrees (Figure 14). A 1.5 ft (0.46 m) deep initial tension crack is located along the right side 
of the footing. Two vertical loads of 11 kips (4.9 x 10"2 MN) each are applied on the footing. The 
material in the slope is assumed to be homogeneous with a Young's Modulus E=l x 10* psf 
(4,800 MPa), a Poisson's ratio v=0.3, a unit weight y=130 pcf (2 x 10"2 MN/m3), an inherent 
shear strength (cohesion) s0=1000 psf (4.8 x 10"2 MPa), a very high tensile strength, and a friction 
angle of 26°. In selecting a high tensile strength, only shear failure was allowed to occur. When 
shear fracturing occurs, the fracturing plane passes through the cracking front and is inclined at 
+(JE/4-(J>/2) with respect to the minimum principal stress o3. The footing was assumed to have the 
same elastic properties at the slope material. In the DDA analysis, the footing was represented 
by one non-breakable block. The slope was represented by one.block divided into 103 sub- 
blocks; 24 of which were fixed in the horizontal and vertical directions (Figure 15). The contact 
between the footing and the slope, the initial crack and all subsequent cracks were given a 
friction angle of 30 degrees and zero cohesion. 

For the example shown in Figure 15, the DDA program was run with the following 
specifications: 
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2 X  11000 Ibi 

0.5 ft 
2.5'X T Fooling 

FTZ 1.3 ft deep initial crack 

I* 

Slope 

9.5 ft 

30 ft 

(a) 

FigureU.  Problem geometry. Slope with a 1.5 ft (0.46 m) deep tension initial 
crack and a footing. The footing, baded by two vertical toads 

11,000 lbs (48.9 kN) each, rests at the corner of the slope. 

233 



K 

~3T 

JL 

30» H 
(b) 

Figure15.  Msh and initial configuration. The blocks in the shaded area 
are fixed. 
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Initial Penalty 
Number 

Time Step 
(seconds) 

Max. No. of 
Iterations per 

Time Step 

Residual Force 
Ratio (e) 
(Eq. (17)) 

1 x 107 lbs/ft 
(1.46xl02 MN/m) 

6 x 10 "4 14 sO.l 

Figures 16(a)-(f) show the trajectory of crack propagation and the fractured and deformed 
slope after 5, 11, 150, 250, 300 and 500 time steps, respectively. Loading of the footing results 
in having the crack propagate in a rotational manner. After 11 time steps, the foundation starts 
fracturing at the initial crack tip and the crack propagates towards the slope. The slope is then 
divided into two distinct sections. The upper section continues to slide downward along the newly 
created crack surface. Large displacements along the footing-slope contact and the rotational slip 
surface can be noticed. The results clearly demonstrate that the assumption of a rotational failure 
surface is valid in this case. This validation also provides further confidence in the capability of 
the enhanced DDA model and the sub-blocking feature. It also suggests that the new DDA 
method may be a useful tool in the analysis of a range of slope stability problems. 

Conclusions 

Over the past three years, three major extensions to the DDA method have been 
implemented: (1) improvement of block contact, (2) calculation of stress distributions within 
blocks, and (3) block fracturing. Two numerical examples in this paper have shown that the 
modified DDA method with the three extensions is more applicable to a greater range of rock 
engineering problems than the original DDA method. More examples can be seen in Lin's thesis 
[2]. 

In the stability analysis of masonry structures, the DDA method can handle in a more 
straightforward manner than with the FEM method, the geometric-changes observed in physical 
models as blocks yield and crack and slide along their interfaces. The DDA results showed that 
joint cohesion and brick internal friction have a significant effect on the deformation and 
fracturing of unreinforced masonry shear walls. 

In modeling slope stability, the DDA sub-block analysis clearly demonstrates that not only 
the assumption of a rotational failure surface, which has been made by many researchers before, 
is valid, but also that large displacements along the footing-slope contact and the rotational slip 
surface can be captured. 

In the near future development of the manifold method, extensions of (1) and (3) are to 
be implemented in the program to enhance the method to be more applicable to a greater range 
of rock mechanics problems and other engineering problems involving blocky systems. 
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Figurel6.  Fractured slope after 5 and 11 time steps in (a) and (b). 
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Figure16.  Fractured slope after 150 and 250 time steps in (c) and (d). 
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Figure16.  Fractured slope after 300 and 500 time steps in (e) and (f). 
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Manifold Method Application: 
Tunnel Roof Deflection 

Mary M. MacLaughlin 
Department of Civil Engineering, University of California, Berkeley, CA  94720 

Abstract 

The Manifold Method is applied to the problem of roof deflection in a tunnel through 
horizontally layered rock. In this problem, the roof is modeled first as a single beam and 
then as a two-layer system, with a thin beam overlying a thicker one. Analytical 
solutions are available for both cases. The Manifold Method results compare reasonably 
well with the analytical solutions. A cracked beam was also analyzed to show 
qualitatively that the deflections are greater than those of an intact beam. 

Introduction 

The Manifold Method is a numerical method recently developed by Dr. Gen-hua Shi to 
model material behavior (Shi, 1992). The material may be deformable and may contain 
discontinuities. The domain of interest is modeled with a physical mesh and any number 
of mathematical meshes. The physical mesh, which consists of the boundaries and 
internal discontinuties of the material, defines the limits of the integration zones. The 
mathematical meshes are used to describe the behavior of the material within each 
integration zone. The details of the numerical aspects of the method are available 
elsewhere (Shi, 1991). 

The current computer implementation of the method consists of a finite element type of 
mathematical mesh comprised of 60° constant strain triangles, with displacements along 
the discontinuities modeled according to the discontinuous deformation analysis method 
(Shi, 1993). 

The ability to model both material deformability and displacements along discontinuities 
within the material makes the manifold method particularly appealing for modeling 
geologic materials, which are deformable and for the most part inherently discontinuous. 
In this study the method is applied to the problem of roof deflection in a tunnel through 
horizontally layered rock. The roof is modeled first as a single beam and then as a two- 
layer system, with a thin beam overlying a thicker one. A cracked beam is also analyzed 
to show qualitatively that the deflections are greater than those of an intact beam. 
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Case 1: Beam Bending 

Analytical solutions are available for the case of beam deflection under self-weight, for 
which (Lindeburg, 1980). Three boundary conditions were analyzed: clamped, pinned, 
and cantilever. The beam dimensions were 40 m long and 4 m thick. The mesh 
configuration used has two rows of triangular elements within the beam (Figure 1). The 
material parameters used are as follows: 

Young's modulus: E = 4800000 kPa Mass density: p = 2580 kg/m3 

Poisson's ratio: v= .25 Unit weight: Y = 25.3kN/m3 

The results are summarized in Table I. The solution computed by the manifold method 
are lower than the analytical solution, but equivalent to finite element solutions using 
constant strain triangles (Zienkiewicz, 1977). 

Table I.   Comparison of Analytical and Manifold Method solutions for deflection at 
the midpoint (clamped and pinned) or the end of the beam (cantilever). 

Beam Type     Analytical Solution    Manifold Method 

Clamped .026 m .010 m 

Pinned .132 m .014 m 

Cantilever 1.265 m .258 m 

Figure 1:   Beam configuration analyzed for Case 1. 
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Case 2: Two-Layer System 

The second problem analysed is the case of a thin layer overlying a thick layer, which 
also has an analytical solution (Goodman, 1989). The solution assumes that the beams 
are clamped. The length of the beams is 40 m and the thicknesses for the upper layer and 
the lower layer are 2 and 4 m, respectively. The material parameters are the same as 
those used for Case 1 above. The geometry is shown in Figure 2. Although the 
computed solution (.012) deviates from the analytical solution (.035), it is approximately 
20 to 30% greater than the solution for the deflection of the lower layer alone (which 
indicates that there is a load transfer from the upper layer to the lower) as predicted by 
the analytical solution. 

/ 
/ / 

A ■s 

' / 
■■-. / 

V A / 

/ /      \ / / / \ / / \ 
/  \ 

/ /   \ 

Figure 2: Beam configuration analyzed for Case 2. 

Case 3: Cracked Beam 

The Manifold Method is also capable of modelling a material which contains 
discontinuities. This feature was used to model a 40 m long by 4 m thick beam 
containing several cracks. Again, the material parameters are the same as those for Case 
1. The deformed configuration is shown in Figure 3. The calculated deflection (x) is 
greater than that of an intact beam (.026 m). 

\    / V V V \ / \/ 
V 

A .    A / \     A /\    A 

Figure 3 
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