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ABSTRACT 

The objective of this research was to develop an analytical solution to the heat 

transfer problem in microchannels with slip-flow _ a heat transfer problem for gases at 

low pressures or in extremely small geometries, and to verify  this solution 

experimentally.    In this investigation, an analytical expression for the velocity 

distribution with slip-flow was obtained which involved the Knudsen CO.) number in an 

infinite series form. The result showed that the velocity always increased as the Knudsen 

number was increased. The Knudsen number for extremely small channels may become 

large enough to affect significantly the velocity distribution and consequently affect the 

heat transfer properties.    A mathematical model of temperature distribution was 

established by combining the energy and momentum equations. A series solution was 

obtained.  Also, expressions for the local and overall Nusselt numbers were derived in 

terms of the Knudsen number and Graetz number. 

A new technique fo, evaluation of eigenvalues for the solution of the heat transfer 

problem in microchannels was developed. This method was based on the construction 

ofamatrix. The computational results showed that the method was effective. Thelocal 

valuesand average Nusse..numberwerefoundfor&from0.005,o0.3 with aspec.ratio 

a - 1. 2/3, 1/2, 1/4 and 1/8. Experiments for helium through a microchannel with 

dtmensions of 117 pm * 24 pm x 63.5 mm and a microtube with inside diameter of 52 
fxm were conducted. 

in 
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CHAPTER 1 

INTRODUCTION 

The objective of this research is to develop an analytical solution of the heat transfer 

problem in microchannels with slip-flow — a heat transfer problem for gases at low 

pressures or in extremely small ducts, and to verify the analytical model experimentally. 

To do this, the velocity profile with slip-flow must be found first. A mathematical model 

of the temperature distribution in slip flow should be established by combining the energy 

and momentum equations. And finally, an effective technique for evaluation of the 

eigenvalues for the series solution should be developed and heat transfer experiments 

with microchannel/microtube should be conducted. 

1.1 Heat Transfer Problem in Ducts 

By the end of the last century, the problem of forced convection heat transfer in a 

circular tube in laminar flow gained interest because of its fundamental importance in 

physical problems such as the analysis and design of heat exchangers. 

The Graetz problem is a simplified case of the problem of forced convection heat' 

transfer in a circular tube in laminar flow. With the assumptions of steady and 

incompressible flow, constant fluid properties, no "swirl" component of velocity, fully 

developed velocity profile, and negligible energy dissipation effects, Graetz (1883) 

originally solved this problem analytically. The solution by Graetz involved an infinite 

number of eigenvalues, and in his paper, only the first two eigenvalues were evaluated. 



Since the accuracy of the Graetz solution mainly depends on the number of 

eigenvalues, it is extremely important to obtain more eigenvalues, as Tribus and Klein 

(1953) pointed out. For seventy years, the research on this problem focused mainly on 

finding more eigenvalues. Abramowitz (1953) employed a fairly rapidly converging 

series solution of the Graetz equation in making the calculation and found the lowest five 

values with much more accuracy. Sellars et al. (1956) extended the problem to include 

a more effective approximation technique for evaluation of the eigenvalues of the 

problem; they could get any number of eigenvalues as needed. This work solved the 

Graetz problem completely. 

Dennis et al. (1959) studied the case in rectangular ducts. By employing 

homogeneous linear algebraic equations and Rayleigh quotient, they devoloped a 

technique for evaluation of the eigenvalues for the analytical solution of the problem of 

forced convection heat transfer in rectangular ducts with different aspect ratios. The same 

results were obtained by other researchers numerically (Shah and London, 1978). 

1.2 Heat Transfer Problem in Ducts 
in Slip-Flow 

Applications of microstructures such as micro heat exchangers have led to increased 

interest in convection heat transfer in micro-geometries. Some experimental work has 

been done , such as the experimental investigations in microtubes (Choi et al., 1991), in 

microchannels (Pfahler et al., 1991), and in micro heat pipes (Petersen et al., 1993). 

Appropriate models are needed to explain the significant departures in the micro-scale 

experimental results from the thermofluid correlations used for conventional-sized 

geometries. For example, Choi et al. (1991) conducted heat transfer experiments using 

essentially smooth tubes with a relative roughness of 0.0003 and a diameter ranging from 

3 um to 81 urn. As shown in Fig. 1.1, the measured heat transfer coefficients in laminar 



o o 
d o o 

0 
tX 

': 2 

o c o 
d o 

C 
2 
u 
0 
Li 
LI 
U 

i i 
C   § IM r- 

• n — 
c> ir> CD 

»-BH   oo<] 

1""" ' ■'—luau-u—limn ■ ■    I,,,,, i i ,    I,, 

c 
o o 

■a 
0> 

*s 
u 
01 

-Q 
s 
•M 
o 
ha 
u 

OS 

O 
E 
O 

'■C u 
c a 
es 
S3 

M 
E 

o o 
o 
s 

o 
d 

o o o o o o o 
c 

I 
b: c c 



flow in small tubes exhibited a Reynolds number dependence, in contrast to the 

conventional prediction for fully established laminar flow, in which the Nusselt number 

is constant. Also, an experimental investigation of fluid flow in extremely small channels 

showed that there are deviations between the Navier-Stokes predictions and the 

experimental observations (Pfahler et al., 1991). 

Therefore,  some effects and  conditions  that are  normally  neglected  when 

considering macro-scale flow must be taken into consideration in micro-scale 

convection.   One of these conditions is slip-flow (Flik et al., 1992, Beskok and 

Karniadakis, 1992). It has been found that the analytical model combined with slip-flow 

conditions can fit the experimental data in microchannels with a uniform cross-sectional 

area (Arkilic et al., 1994) and with a non-uniform cross-sectional area (Liu et al., 1995). 

Slip-flow occurs when gases are at low pressures or for flow in extremely small 

passages. At low pressures, with correspondingly low densities, the molecular mean free 

path, which can be expressed as Eq. (1.1), becomes comparable with the body 

dimensions, and then the effect of molecular structure becomes a factor in flow and heat 

transfer mechanisms (Eckert and Drake, 1972). 

A  = ^ rRuT 
p\2gcM (1.1) 

The relative importance of effects due to the rarefaction of a gas can be indicated by 

the Knudsen number, a ratio of the magnitude of the mean free molecular path in the gas 

to the characteristic dimension in the flow field. The effects of rarefaction phenomena on 

flow and heat transfer becomes important when the Knudsen number can no longer be 

neglected. The Knudsen number may be defined as 

DH     pDHyJ2gcM (1.2) 



In defining when slip-flow occurs, Beskok and Karniadakis (1992) have proposed 

to classify four flow regimes for gases, as follows: 

Continuum flow: #„ < JQ-3 

Slip-flow: 10-3<A>2<0.1 

Transition flow: o. 1 < Kn < 10 

Free molecular flow 10 <,Kn 

When slip-flow occurs, the gas adjacent to the surface, in contrast to its behavior in 

continuum flow, no longer reaches the velocity or temperature of the surface.   In 

continuum flow, intermodular collisions dominate the flow field, and a usual boundary 

condition (continuous boundary) at the interface between a fluid and a solid surface is that 

the fluid adjacent to the surface assumes both the velocity and temperature of the surface. 

In the case of slip-flow, the molecular mean free path Am is rather larger than any 

significant body dimension so that most of the gas molecules striking and leaving the 

body surface do not collide with free-stream molecules until very far from the surface. 

Thus, the gas at the surface has a tangential velocity, and it appears to slip along the 

surface. 

The slip velocity can be expressed as follows as a function of the velocity gradient 

near the wall: 

Us = ~km{ dj W (1.3) 

and Arkilic et al. (1994) give the expression as follows: 

C F {~dy/H ]y=G U-4a) 
or 

u   = 2=£- 2    ( du  \ 
F   Am{7fy }y=o (1.4b) 



which includes the consideration of three accommodation coefficients represented by the 

speculation reflection coefficient F, which has values that typically He between 0.9 and 

1 (Ebert et al., 1965). In the case of F having the value one, Eq. (1.4) becomes Eq. (1.3). 

For simplicity in this investigation, Eq. (1.3) was applied to evaluate the velocity. 

The temperature boundary condition can be regarded as discontinuous; that is, there 

is a jump in temperature at the wall. Actually, the temperature of the gas near the solid 

surface changes continuously to the temperature of the surface but only in a very thin layer 

on a microscale so that on the macroscale there appears to be a jump in temperature 

between the surface and the adjacent gas. Eckert and Drake (1972) give expressions for 

the temperature jump condition: 

K 1 +y }Pr ( dy } vo (L5) 

where Am represents the mean free path for collisions between a moving molecule and 

the fixed molecules (or Am"l is the average number of collisions per unit distance ) 

(Present, 1958), and 3T/ey is the temperature gradient at the wall. As shown in Eq. (1.5), 

the temperature jump is proportional to Am: a small value of Am means that a great 

numbers of molecules are involved in energy transport so that the temperature jump is 

small, while a large value of Am means that fewer molecules are involved in energy 

transport so that the temperature jump is relatively larger. When Am is small enough, as 

in a conventional case, the temperature jump may be neglected. 

With the introduction of the slip-flow condition into the Graetz problem, it becomes 

more difficult to solve such problems. The classical Graetz problem is governed by a 

partial differential equation with a continuous temperature boundary condition; while in 

the Graetz problem combined with slip-flow condition, the temperature boundary 

condition is no longer continuous, which makes the solution as well as the corresponding 

eigenvalues much more complicated and difficult. 



In the case of circular tubes in sup-flow, that is, gases at low pressures or in extremely 

small tubes, the heat transfer coefficient depends not only on the Reynolds number and 

Prandtl number, but also on the Knudsen number. Barron et al. (1995) developed a 

technique and evaluated the eigenvalues of the analytical solution for this problem in the 

case of a constant wall temperature. Wang et al. (1995) solved this problem completely. 

Their studies shows that the Nusselt number increases significantly with the increase of 

the Knudsen number, as shown in Fig. 1.2. Ameel et al. (1996) studied the case with 

OLIO 

Knudsen number, Kn 
ai2 

Fig. 1.2 Fully developed Nu as a function of Kn [Barron et al.] 
(constant wall temperature) 

constant heat flux, and the results indicate that the fully-developed Nusselt number 

decreases with the increase of the Knudsen number, as shown in Fig. 1.3. Therefore, 

some research is needed to analyze this type of problem in the case of rectangular ducts 

in slip-flow. 
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Fig. 1.3 FuJly developed Nu as a function of Kn [Ameel et al.] 
(constant heat flux) 
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1.3 Related Research 

Ebert and Sparrow (1965) have found the fluid velocity distribution for slip-flc 

microchannels. Their results can be summarized as follows: 

The momentum equation can be written as follows in the coordinate system shown 

in Fig. 1.4: 

d2w ,  cfiw    =   if^ 
d£2      drj2 Mdg (1.6) 

T 
2h- 

I- 

Tl 

*5 

■2b- 

Fig. 1.4 Coordinate system 

with the slip-flow boundary condition 

a = h/b 

D H 
_    Ah 

1 +a 

w = -2h£x^   atr,  = h,    0  < £  < b F       ÖT) (1.7a) 

w = - 2-F i Bw      , f.        . 
~F~  ~d£    at$   = b>    0  < t)   < h (1.7b) 

-^=0   atrj  = 0,   0  < £  < fc 

■^=0   ar £  = 0,    0  < T)  < h 

(1.7c) 

(1.7d) 
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The velocity can expressed as 

sin a.: w      _   0y< cos a; TJ 
cosh%£ 

M dz 
a 

cosh -gi + 2 Kn at TTT> sin 

and the mean velocity can be determined by 

a 

(1.8) 

H>, 

DHdp 
0-r = -2ZJL< sin2 a 

£W i=ia? 1 +2Knsin*a, 
r1  dz 

where the eigenvalues a,- satisfy 

■>§- 
sink % 

cosh % + 2Kn a-, sin % 
-) (1.9) 

a  tan a; = —J— 
'      2 Kn (1.10) 

Dennis et al. (1959) solved the problem of forced heat convection in laminar flow 

through rectangular ducts with non-slip-flow. Their rcSults may be summarized as 

follows: 

The energy equation can be written as follows in the coordinate: 

1.5: 
■ system shown in Fig. 

(1.11) 

T 
2h- 

I- 

♦ 1 

■2b' -I 
a = h/b       Du = -4!l H 1 + a 

^w 2 H       Du ö  

Fig. 1.5 New coordinate system for dimensionless 

H 

variables 
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with the boundary condition 

Tw =   T1 S>  o 
T =   To s< o 

(1.12a) 

(1.12b) 

Introducing dimensionless variables 

^//     J ^      *   -   5J      Ö = T^fT 

number where the hydraulic diameter DH = 4A/S, and the aspect ratio a and Knudsen 

b F 2/z 

When the aforementioned change of variables is carried out and neglecting the axial 

conduction k&T/B? for large enough Peclet number, since it is of order (1/Pe)2 

compared to the axial convection term wdT/dg, the governing equations and the boundary 

conditions become 

& + &    =   £ä^P n rr 2 DHdp 
dx2 +  dy2      -    ~Tz °r Vl  " =   -/■£ (1.13). 

« * + **> " "*>»*     or       v^-^l (U4) 

where Vj2 =a2/SA:2 + d2/ay2, Wo is ^ mean vdocity] and 

w = dw 
- -Kn £ —   a,   v  = o and ß,   0  < x < ß' (1.15a) 

- _Kn ß'—   m  x = 0 and ß',   0  < y  < ß (1.15b) 

dw      n ß -äy-=0aty=-,0<:x<ß> (M5c) 

-=0   a,,=-     o  *y*ß 
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and 

ew = Ö,  *  0 z >   0 (U6a) 

0=1 z ^   ° (1.16b) 

The solution of Eq. (1.16) can be written as 

6   =   IcnGn(x,y)e^z + 61 (1 17) 

where Gn andA„ are eigenfunctions and eigenvalues required to make the solution to the 

following membrane equation: 

Vl
2G + i»;= o WQ    ~-   u (1.18) 

subject to the boundary condition deduced from Eqs. (1.14) Gn = 0 on the boundary C* 

Coefficients Q can be determined by 

//.■ 
w Gn dx dy 

I    I rv 

li (1.19) 
w dx dy 

The Nusselt number can be determined by 

w8   n = l 

where 



13 

w 8 dx dy 

0   - J  J D' 

\l w dx dy (i.20) 

=  Icn
2e^ 

n = \ 

and Nu«, = X\ I A. 

Eigenvalues An can be determined by the following infinite set of homogeneous 

linear algebraic equations 

00 00 

p%   ^«W^Mm,«--* bp<q{m,n)} ap,q = 0   ( m,n = 0,1,2, ... )    (1.21) 

where 

dp,q(m, n) =   I   I     0m,„0Pi(?   dx dy (1.22) 

öm,n(m,n)Am>n = (7T2/4a)(m2 + a2n2), (1.23) 

bp,q{m,n)  - 4{ J^,^, - ^_pln+9 + dm+Ptn+q - dm+pM^ } (1.24) 

fß fß' 

(1.25) 

h   rm„w    * °    for all/>,?,m,rc  * 0 

= 0     for any p,q,m,n = 0 (1-26) 
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Dennis et al. (1959) estimated the eigenvalues for different aspect ratios for 

nonslip-flow by employing the Rayleigh quotient 

K = -\ enVfdndx dyj  I     I    ren
2dx dy 

™ " 00 00 00 00 

= f=0 -Z&PJPM ßP
2 + YgMP,q(n)]2/ I    I I    2bp^MMA^n) 

r    "   H ;=J    j—\  p=l    q=\ " r* 

(1.27) 

for example, for aspect ratio a = 1, Aj =11.91 and Nu« = 2.98. 

Therefore, based on those research, a model for the case of rectangular channel 

slip-flow can be established and a technique of evaluation of the corresponding 

eigenvalues for the analytical solution of the model should be developed. 

in 



CHAPTER 2 

VELOCITY AND TEMPERATURE DISTRIBUTIONS 

In order to build the mathematical model for the problem in süp-flow, the velocity 

profile must be found first in the new coordinate system. In this chapter, based on some 

assumptions, the expression for velocity will be derived from the continuity equation and 

momentum equation. The slip condition will be used to evaluate the slip velocity, and 

the velocity will be expressed in terms of a Knudsen number. A mathematical model of 

temperature distribution in slip-flow will be established by combining the energy and 

momentum equations. 

2.1 Velocity Distribution 

Consider the flow of a fluid in a rectangular duct, as shown in Figure 2.1: 

Fig. 2.1 Coordinate system for the problem 

For this model, the following conditions have been assumed (Barron, 1996): 

(1) The flow is steady. This means that the properties of the flow are time 

independent. 

(2) The fluid is incompressible (or, if a gas is considered, the Mach number is less 

than 0.30). In this case, the density may be assumed constant. 

15 
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(3) The flow is fully established. In this case, the axial velocity, w, is a function of 

the coordinates TJ and £ only, and not a function of the axial coordinate g. In addition, the 

radial velocity is zero. 

(4) The "swirl" component of velocity is identically zero. This means that both u = 

0 and v = 0. 

(5) Fluid properties are constant. 

(6) Energy dissipation effects are negligible. 

(7) The tube wall temperature is constant 

2.1.1 Continuity Equation 

The general continuity equation can be written in the cartesian coordinates as 

follows: 

t + ^")+^^)+f(^) = 0 (2.D 

For steady flow of an incompressible fluid, the equation above reduces to: 

du   ,   dv      dw _ n 

#      *?      d£ (2.2) 

For fully developed flow, 

Therefore, 

£* = o 

du  |   dv _ n 
dt     dV ~ U 

Since the normal velocity is zero at the walls (the wall is impermeable), we must conclude 

that: 
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and 

u = 0 (identically). 

v = 0 (identically). 

2.1.2 Velocity Distribution with 
Slip Condition 

The Momentum Equation can be written in the coordinates shown in Fig. 2.2 

follows (Kays et aL, 1993) for fully-developed (hydrodynamic) flow: 

as 

d2w + dhv   _   \_dp_ 
d£2      drj2 V dg (2.3) 

ß' 

ß 

fl = h/b       Dw = -i^ H -r¥-        ß = 2lL = L±JL       R, _ 2b     i + i/fl 

Fig. 2.2 New coordinate system for dimensionless variables 

with the slip-flow boundary condition 

w = - 

w = — 

2-F-i   dw 
—Am-frj atr)  = 0.2Ä,    0  < |  < 2b 

2-Fi   dw «. 
~Amä|" at*  = °>2b>    0  < rj  < 2h 

dw 
drj ■^--0   atrj  = h,    0<£<2fc 

3£ 
OH    _   A . 
-^- - 0   ar £  = fc,    0 < rj  < 2h 

(2.4a) 

(2.4b) 

(2.4c) 

(2.4d) 
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Introducing diraensionless variables 

where the hydraulic diameter DH = 4A/S, and the aspect ratio a and Knudsen number 

The governing equations and the boundary conditions become 

^,^vv    _   DHdp 2 DHdp 
Bx* + dy*    "   -JTTz 0r Vi w =   ~ffz (2.5) 

w = -Kn ß -^   at  y = 0 and ß,    0 < x < ß' (2.6a) 

w = -Kn ß'&   at  x = 0 and ß\    0  < y  < /? (2.6b) 

dw     n ß 
~äy-=0   aty  =- ,    0  <x < ß' (26c) 

-^ = 0   atx =-,    0  <y  < ß (26d) 

The solution may be proposed as 

m = £?■w cos <f-,v" (2.7) 

where a; are a set of eigenvalues, and the W, (x) are a set of x- dependent functions. Eq. 

(2.7) identically satisfies boundary condition (2.6c), that is 

dw 
-r— oo 

ivg = 'ßa^'ix) sin ^~1)a' = °   aty = ßn 
M dz 

By substituting Eq. (2.7) into the boundary condition (2.6a), we have 
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M dz 

so 

2V, (x) [cos (-j-DOi - 2Kn at sin (y-Da,- ] = 0 (2.8) 

For a non-trivial velocity solution, it is necessary that 

a, tan a,- = -L- (2 9) 

This is the condition from which the eigenvalues are determined. 

Now, we find the function ¥* (*). To do this, Eq. (2.5) can be rewritten as 

<£w+<£w - DHdP Yn  , *        ,2y   „ 
dx2 + dy2 ~ —Tz£x

Qi to c°5 (-J-1)«.- (2.10) 

From Eq. (2.7), we have 

a2w_    DudpycP-Wi 2y   ,N 

dyi-~M Tz~wi,wicoshr-1*! 

(2.11) 

dy2 f* dz ß2 r=i   ' "w K ß 

so we derive a differential equation 

    ~ ^2 *r Oi = 0 dx2       K ß '   r~"<" ~ u (2.12) 
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We can obtain the homogeneous solution from 

2a,- 
J]~ = u (2.13) A2 - e?)2 = 0 

that is, 

.   _      2a,- 

Therefore, let 

2a- 

Vi*=CleT*+C1e-T*+C, (2.15) 

substituting Eq. (2.15) into Eq. (2.12), we have 

2a,- - 
- (-y)2c3 - ß,. = o 

or 

°3  " " 4a7 (2-16) 

From boundary condition (2.6d), that is, 

dWt 2a,-,       *, 
-£■   = <cy) [C^ßt-Cte-,*]^^  = 0 (2.17). 

Therefore, we obtain 

C2  = Cxe~ 

so 

^,* = C,e7 [ e>^ + e-'fi**') ] + C3 

= D1co^^(2x-^') + C3 (2.i8) 
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And from boundary condition (2.6b), we have 

Of 

j^j-   = 2 Wt (x) cos irf-Da, = -Kn ß ■2y ,x_      „  „aw, 

_ to 

„   0/rV^iW 2y 

or 

v, w + & /n^ i^ = o (2.19) 

Substituting Eq. (2.18) into Eq. (2.19), we have 

P 

a,-      fa. ci = C3/[(e- + 1 ) + 2 Kn -£{e* -1)] 

£2ß,    2-,- 

[ CO.ÄÄ  + 2 Kn %sinh<± ] (2"20) 

Evaluation of Qi(x) can be made from the assumption 

00 

Iß. (X) cos (IjL-iya. = i (221) 

and the property of orthogonality 
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Leta=(2y/ß-l),wehave 

2Qi (x) cos a.o= 1 

From the orthogonality we have 

Qj       cos a; o cos a- o do =       cos a,- a do 
Jo Jo        J 

Carrying out the integration for a; = a,-, we obtain: 

Q r ai + sinctj cosoLj     _ sinai 
2a, J " — 

or 

Q. _        2sinai 2_(  sinar 

(2.23) 

(2.24) 

''      ai + siruzicosoi     a/(   1 + 2 Kn 'sin^a,.   } (125> 

Now, the velocity can be expressed as 

w/C = -2l COS Gi (2y/ß~l) < sin ai ,,. cart^i(2*//T-l) 
'=1 «/3 1 + 2 J&i sin* a,-Äi   r„v/j a,r , - „ —of* >        cosh -g+ 2 Kn a, sin -tf 

(2.26) 

where C = (DH/M)(dp/dz) and the mean velocity is found by integration of Eq. (2.26) 

across the section of the channel: thus, 

wj. 
Upon carrying out the indicated operation, we obtain: 

wn  = -*- I   w dA (2.27) 
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Wn/C = -2-£ -s-f -t2g' v£i__^_JI'lA  a 0/C = -2Z JL( ^L2i )(£i_. , 
i-1 a,-5 1 + 2 Kn sin* a**   cosh % + 2 Kn ^ ^ a, ' (2.28) 

2.2 Temperature Distribution 

The general temperature field equation for flow of an incompressible fluid with zero 

swirl or angular components, zero energy generation, and negligible frictional energy 

dissipation is: 

k{ «2 + dv2 +^~   ^ (2.30) 

with the boundary condition 

Tw =   T1 g >   o 

T =   7"o S <   0 

(2.31a) 

(2.31b) 

introducing dimensionless variables 

_ _J_       _ j/_        _   g 7-7 

OT'i 

When the aforementioned change of variables is carried out and the axial conduction 

kd^T/dg2 can be neglected for a large enough Peclet number, the governing equations and 

the boundary conditions become 

¥l + ¥T, n   BT 
— nr v -« —  

wodz (2.32) 
*(^+0)=^°«f       or Vfr-ZM 

where V,2 =«2/^ + a2/Sy2, with the boundary condition 



24 

Ow = 0i   =   0 z >   0 (2.33a) 

0 =   l z<   0 (2.33b) 

2.3 Summary 

In this chapter, the velocity distribution with sup-flow has been obtained which can 

be expressed simply in terms of the Knudsen number. From the relationship of Kn i 

terms of pressure and dimension, we can see that Kn in microtubes may become larg 

enough to significantly affect the velocity distribution and consequently affect the heat 

transfer for this problem. Also, a mathematical model of temperature distribution 

slip-flow has been established by combining the energy and momentum equations. 

m 

e 

in 

1 



CHAPTER 3 

ANALYTICAL SOLUTION 

In the last chapter, the velocity distribution was expressed in terms of mean velocity 

and Knudsen number, and a mathematical model of temperature distribution in slip-flow 

was established by combining the energy and momentum equations. In this chapter, a 

series solution will be obtained by the method of Frobenius. Considering the boundary 

condition, a temperature distribution in terms of a generalized Fourier series will be 

derived. Also, expressions for the local and overall Nusselt numbers will be obtained. 

3.1 Graetz Solution 

3.1.1 Separation of Variables Solution 

The governing equation 

1 ">odz 

where Vj2 = d2/dx2 + d2/dy2, with the boundary condition 

0W =   0 z >   0 

B =   1 z <   0 

Eq. (3.1) can be solved by a separation-of-variables technique. Suppose we let: 

0(x,y,z) = G(x,y) Z(z) 

25 

(3.1) 

(3.2a) 

(3.2b) 
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Making this substitution into Eq. (3.1) and rearranging results in the following: 

( £G     d?G ,^o = dZ _   j 
V dx2      dy2  ;Gw     Zdz       A " (3.3) 

where A is an arbitrary constant. The ordinary differential equations which result are: 

Tz + XZ = ° (3.4) 

and 

ViG+     w0    
G =   0 (3.5) 

with boundary conditions: 

G(0,0) = 0 

G(0,l) = 0 

G(l',0) = 0 

G(l',l) = 0. 

The solution of Eq. (3.4) is: 

Z(z)  = C exp[ -4.Z ] (3 6) 

The constant C in Eq. (3.6) will be evaluated below and A will be evaluated later. 

3.1.2 Determination of Constants C„ 

We can write the solution for the temperature distribution in terras of a generalized 

Fourier series, as follows: 
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00 

6   =   IcnGn(x,y)e^ (35) 

where G„ and Xn are eigenfunctions and eigenvalues required to make the solution to the 

Eq. (3.3) subject to the boundary conditions deduced from the boundary condition Eq. 

(3.2a) 

G(0,0) = G(0,l) = G(l',0) = G(l',l) = 0. 

The constants Q can be found from the entrance condition, Eq. (3.2b) 

atz = 0t g(x,yO) = 1 

Making this substitution into Eq. (3.5), we obtain: 

oo 

2, Cn  G„(x,y)  =  1 
j=0 (3.6) 

The governing differential equation, along with the boundary conditions, is a 

Sturm-Liouville problem, with a weight function, 

w = w(x,y) 

where w(x,y) is the z-component of velocity and from orthogonality, 

I   I    w(x,y)GnGm dx dy = 0 formen (3.7) 

The constants may be evaluated by multiplying Eq. (3.6) on both sides by 

w(x,y)Gm 
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and integrating between on the domain D' bounded by C. Only the term in which m 

= n is the result non-zero, and we find: 

:"\ j D
w{x'y){Gn)ldx dy=  \  I    w(x>y) G« & dy (3.8) 

therefore, 

//, 
w(x,y) Gn dx dy 

I     I  rv (3.9) 

I  I    w{x,y) (Gn)2dxdy 

Each   Gn   has   arbitrary   amplitude   which   we   choose   for   convenience,   so 

that 

j   I    w(x,y) Gn dx dy 
r -.* J» (3.10) 

IL«*- y) dx dy 

The temperature 6 (x, y z) is therefore known to any desired accuracy once sufficient 

Gn have been found. Two further thermal quantities are of interest. Experimental 

measurements are made on the basis of a mean mixed temperature of the fluid, that is, 

6(x,y,z) averaged with respect to the local fluid velocity over any section of the channel. 

This temperature is a function of z only and its difference between any two sections gives 

a measure of the heat transferred across the wall between them. 

From these expressions, we can see that   the coefficients  Gn and Cn must be 

predetermined in order to calculate the temperature. 



3.2 Heat Transfer Coefficient Correlation 

3.2.1 Bulk Temperature 

The bulk or average temperature can be determined from: 

\Lw(x- ,y) 0 dxdy 
I       I   JV 

'B 

//,* 
y) dx dy 

or 

eB(z) =    I Cn
2 e^ 

n = l 

where: 

°B — r—T~ 

29 

(3.11) 

3.2.2 Local Heat Transfer Coefficient 

The local or "point" convective heat transfer coefficient can be defined by: 

Q/Aw = hx(TB-Tw) (312) 

The heat flux can also be written, as follows: 

kd5jc§ ds  =-*< Tr Tw >ds I c & ds     (3.13) 
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where s is the distance measured along the perimeter of the boundary curve C in an 

anti-clockwise direction and v is the outwanWiawn coordinate normal to the channel 

wall: v'=v/DH, S '=,/DH . Equating the heat flux from Eqs. (3.12) and (3.13) and making 

the substitutions from Eq. (3.11) for the temperature gradient at the wall and for the local 

bulk temperature, the following expression is obtained for the local or "point" Nusselt 

number. 

Nu(z)=-DHjc^7ds'/seB (3.14) 

Wenowelimmate.mtermofthe^byEq^S^andapplyGreen'stheoremtoEq.^), 
so that 

jc   dv'   ds  ~~~oj  \ D,w(*>y) G„ dx dy (3.15) 

Using Eq. (3.10) and since SlD'»dxdy = A>Wo, where A' is the dimensionless area 

within C, we finally obtain 

mZ]'" A ?J»C"^ (3,6, 

A. large distances down the channel, Nu(z, approaches a limiting mi„imum valuc 

If A, is the smallest of the V we have, as i -» - , that ^ NuU) _ A, c,2 cxp (_ ^ z) 

andeBW- C^expM^sothat 

rVu(») = 1L 
4 (3.17) 
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3.2.3 Overall Convective Heat 
Transfer Coefficient 

The average or overall convective heat transfer coefficient is defined through the 

following expression: 

Q = hc ( 4 h b L ) ( A T )w =   I      hz{ T0-Tw) ( 4 hb dg) (3.18) 

where (AT)JJJ = log-mean-temperature difference (LMTD). 

The LMTD may be written in terms of the inlet temperature T0 and the exit bulk 

temperature Ti, as follows: 

( A T ),„ =       ( To- T„ ) -( TL- Tw ) ( 6BJL- 1 ) ( T0- Tw ) 
)W     *nl(T0-Tw)/(TL-Tw)l   = MV)    (3J9) 

Let us define the dimensionless LMTD, as follows: 

_{AT)W 

W       To- Tw (3.20) 

Then, 

fl ( OBJT 1 ) 
ln ( 6BZ ) (3.21) 

The expression for the average convective heat transfer coefficient can then be written, 

fromEq. (3.18): 

ew]   0 
hr = -~ I     hzeB dl 

(3.22) 

In the fundamental equation, we have q = hw S g AI^. Now q can either be obtained 

by integrating Eq. (3.13) from zero to g or, alternatively, it is the heat given up by the fluid 
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in cooling from T0 to Tm, so that q = AWOQC^TO - Tm). Equating these two and 

introducing dimensionless quantities, we have the mean logarithmic Nusselt number, 

hLNDn/k, given by: 

NU =       W      = "4 ln ( ^ } (3-23) 

3.3 Summary 

In this chapter, a series solution for the mathematical model of temperature 

distribution in sup flow in microchannels has been obtained. Considering the given 

boundary condition, a temperature distribution in terras of a generalized Fourier series 

has been derived. Also, expressions for the local and overall Nusselt numbers have been 

obtained. All these expressions can be taken as functions of the Knudsen number and 

the Graetz number. In order to calculate either the temperature or the Nusselt numbers, 

the coefficient Q, andA„ must be predetermined. 



CHAPTER 4 

EVALUATION OF EIGENVALUES 

In the last chapter, we obtained a series solution for the temperature distribution. 

Also, expressions for the local and overall Nusselt numbers have been obtained as 

functions of the Knudsen number and aspect ratio. In this chapter, we present a technique 

for evaluation of eigenvalues for the solution of the heat transfer problem in slip-flow, 

since eigenvalues A„ must be predetermined for the calculation of either the temperature 

distribution or the Nusselt numbers. A matrix will be constructed and a formulation 

described to find the coefficients Z^(m,n). Based on these ^(m,n) the eigenvalues kn 

can be calculated numerically. 

4.1. Introduction 

We consider the general domain D>.   Based on the principle of the method of 

Galerkin, let {^„J be the complete set of eigenfunctions of the equation 

VV+^=0 (41) 

with d<p /dv '= -N<p on C*. Any arbitrary function 0(x,y) which satisfies these boundary 

conditions and which possesses continuous partial derivatives up to the second order can 

be expanded in an absolutely and uniformly convergent series in the form 

00 oo 

*,,)=I,I,'"'«') (4.2) 

33 
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where 

and 

am'n ~ ö^tjT) j j D
e^n dx dy 

öp,q{m,ri) =   I   I    <pm^pq   dxdy 

(4.3) 

(4.4) 

öp,q(m,n) = 0 unless m=pandn = g.Wt can make 0 the solution of Eq. (3.5) so that 

multiplying this equation by 0m,„ and integrating overD' we have, by Eqs. (4.1) and (4.3), 

öm,n(m,n) Am<namn = X J  I    /•(*,y)6>0m>„ dx dy (4.5) 

where r(x,y) = w(x,y)/wo. If we substitute for 0 by Eq. (4.2), then Eq. (4.5) is reduced 

to an infinite set of homogeneous linear algebraic equations 

00 00 

P?O   £o{Ö™im'n) A^~k bpdm,n)} aM = 0   { m,n = 0,1,2,  ... ) (4.6) 

where 

W".") =   I  I    r$mjpM   dxdy 
(4.7) 

The tnatrix associated with Eqs. (4.6, is symmetrica! since W„,,„) = b^M) ^ ^ 

ektmnant for a „„„-trivia! s„l„rio„ gives an infinite determinant equation j W = 0 

whose intent roots are the eigenvalues of Eq. (3.5). Dividing each row of A (X) by its 

leading diagonal ekments, the „suiting determinant converges if the off-diagonal sum 

is absolutelyconvergemandAhasnc value which makes a leading diagonal element zero *fc u"*£l 
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If this condition is satisfied, then the convergence of sura J^S^o I ap,q I and, 

moreover, of sum Ip=0Iq=0 öp,q(p,q) Ap,q, I Op>q I follows. The eigenvectors {^W} 

corresponding to a given root A =A, can then be obtained, theoretically, in terms of any 

arbitrary coefficient; in practice, the determination of a given eigensolution is a problem 

in numerical analysis. 

Eigenvalues K can determined by the following infinite set of homogeneous linear 

algebraic equations 

LW go 

P?o   £jdP^n) Am,n-k bM(m,n)J aM = 0     ( m,n = 0,1,2, ... ) (4.6) 

where 

öp,q{m,n) = (pm^>p,q   dxdy 
D' 

öm,n(m,n)Ampn = (7t2/4a) ( m2 + a2n2), 

bP,q(m,n)  - i{ ^„^ _ d^n+q + dm+p^ _ dm+p^ } 

d;;   =     \ \      2L    rn<   /Ev^   ™„   ,   «T. 

(4.8) 

(4.9) 

(4.10) 

'«■/;/> 
™ijx)cos(BLy)dxdy (ij=0,l,2,...l    (4.11, 

with 

w«.i){ *° fora11 /7'*'m'n *° 
= 0     for any p,q,m,n = 0 (4J2) 
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4.2 Expansion of Eq. (4.6) 

Considering the condition Eqs. (4.8) and (4.12) and underlining the only one with 

both p = ra and q = n, we have the following expansion: 

l)m = 0,n = 0 

(^üMü^Xbo,o)ao,o+(6ojAo,o-Xboj)aoj+(6o,2A0,(^Xbo,2)ao,2+(öo3Ao,o-^bo>3)ao,3+... 

(6i,oAo,o-^bljo)alio+(61(1Ao,o-^b1)])au+(ö1?2Ao,o-^bI,2)a],2+(ö1,3Ao)o-^bi>3)aii3+... 

(62,oAo,0-^b2,o)a2,o+(62,iAo,o-Xb2,i)a2,i+(62,2Ao,0-Xb2,2)a2,2+(Ö2,3Ao,o-Xb2,3)a2,3+... 

(Ö3,oAo,o-^b3,o)a3,o+(63,iAo,o-^b3,i)a3>i+(63,2Ao,o-^b3,2)a3,2+(Ö3,3Ao<o-5tb3(3)a3)3+... 
= 0 

the underlined term may not be equal to zero. All terms of öp,qAo,o and coefficients of X, 

bp,q but 6n,nAo,Q are zeros according to the condition Eqs. (4.8) and (4.12); therefore, 

(öo,oA0,o)ao,o = 0 

2) m = 0, n = 1 

(6o,oAoj-Xbo,o)ao)0+(^Aiu-^bo,i)ao,i+(6o,2Ao,i-Xbo,2)ao,2+(öo,3Ao,i-Xbo,3)ao,3+... 

(6i,oAoj-Xb1,o)a1>o+(ö1,1A0,1-Xb1,])a1,1+(61)2A0jl-Xb1,2)a1,2+(61)3Ao,i-Xb1,3)a1,3+... 

(Ö2,oAo,1-Xb2)o)a2)o+(Ö2,1A0,]-Xb2,1)a2,1+(ö2i2A0,1-Xb2>2)a2,2+(ö2>3Ao,i-Jib2,3)a2,3+... 

(63,oAo,i-Xb3,o)a3,o+(63,]Ao,1-?ib3,i)a3,]+(Ö3,2Ao,i-Xb3>2)a3,2+(63,3Ao(i-Xb3!3)a3 3+... 
= 0 

therefore. 

(5o,iAotl)ao,] =0 

Similarly, 

3)m = 0,n=2 

(öo,2Ao,2)ao,2 = 0 

4) m = 0. n = 3 

(öo,3Ao,3)ao,3 = 0 
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5)m= l,n = 0 

(öo,oAi,o-Xbo)o)ao,o+(6o,iAi,o-Xbo,i)ao,i+(6o,2A1)o-Xbo,2)ao,2+(6o,3Ai,o-^bo,3)a0,3+. 

(^Ai^Xb1>o)ai,o+(öi,iAito-Xbi,i)ai,i+(öi,2Ai,o-Xb1,2)ai,2+(6i,3A1(o-Xbi,3)ai,3+. 

(62,oAi>o-Xb2,o)a2)o+(62,iAi,o-Xb2,i)a2)i+(82,2Alio-Xb2,2)a2,2+(Ö2,3Ai>o-Xb2,3)a2,3+. 

(63,oAi,o-Xb3)o)a3>o+(63,]Ai>o-Xb3,i)a3)i+(63>2A1,o-Xb3>2)a3>2+(633A1)o-Xb3i3)a3,3+.. 

= 0 

therefore, 

($i,nAi,o )aito= 0 

6) m = 1, n = 1 

(6o,oAu-Xbo,o)ao,o+(öo,iA1(]-Xbo,])ao,i+(öo,2Au->,bo)2)ao,2+(8o,3Au-Xbo,3)ao,3+.. 

(8i,oAi,i-Xb1>o)a1)o+(^LTiAlTi-Xb1>i)a1)1+(6I)2Au-Xb1,2)a1,2+(ö1>3A1(]-Xbi(3)a1,3+.. 

(82,oAU-Xb2(o)a2>0+(Ö2;lAU->cb2,l)a2,i+(82,2Ai,1-Xb2,2)a2,2+(62,3AU-Xb2,3)a2,3+.. 

(Ö3,oAU->tb3ro)a3jo+(83,]Au-Xb3,])a3>]+(63,2Au-Xb3>2)a3,2+(63,3AU-Xb3,3)a3)3+.. 
= 0 

therefore, 

(öaaAi4.-Xbiil)aiil+(-Xbi)2)ai(2+(-Xbi,3)ali3+... 

+(-Xb2)i)a2,i+(-Xb2>2)a2r2+(-^b2,3)a2,3+... 

+(-^b3,i)a3t]+(-Xb3>2)a3>2+(-Xb3)3)a3,3+... = 0 

or, 

(ö-ioAu -Xbl 1 i,i)ai,i+(-Xbl 1 i,2)ai(2+(-Xbl li,3)ai,3+... 

+(-Xbll2,i)a2,i+(-Xbl l2(2)a2,2+(-Xbll2,3)a2,3+... 

+(-Xbl l3,])a3>i+(-Xbl I3,2)a3.2+Hbll3i3)a3t3+... = 0 

7) m = l,n = 2 

(oo,oAi,2-Xbo,o)ao)o+(öojAlt2-Xboj)ao,i+(6o,2A1,2-Xbo,2)ao.2+(8o,3Ai,2-Xb0,3)ao,3+... 
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(6i,oAi;2-^b1,o)ai)o+(6i4Ai,2-^bij)alii+(^iT2Ai^->,bU2)ai,2+(6i,3Ai,2-^bi>3)a1,3+... 

(Ö2,oAi,2-^b2,o)a2,0+(Ö2,lAl,2-^b2,l)a2)i+(62,2Al,2-Xb2,2)a2,2+(62,3Air2-Xb2,3)a2,3+... 

(Ö3,oAi,2-Xb3io)a3,o+(Ö3>1Ali2-Xb3,])a3,i+(Ö3,2Ai(2-Xb3,2)a3>2+(83,3Alr2-Xb3)3)a3)3+... 

= 0 

therefore, 

(-Xbi(i)ai)i+(^2Au-Xbi(2)ai>2+(-Xbi>3)air3+... 

+(-Xb2,i )a2,i+(-Xb2,2)a2,2+(-Xb2,3)a2,3+... 

+(-Xb3,i)a3,i+(-Xb3)2)a3i2+(-Xb3>3)a3(3+... = 0 

or, 

(-Xbl2ij)aij+(^uAw-Xbl2i,2)ai)2+(-Xbl2i>3)ai,3+... 

+(-Xb 122, i )a2, i+(-Xb 122)2)a2,2+(-Xb 122,3)a2,3+ ... 

+(-Xbl23>])a3>]+(-)tbl23,2)a3(2+(-Xbl23i3)a3,3+... = 0 

8)m = l,n = 3 

(öo,oA1,3-Xbo,o)ao,o+(öojA1)3->,bo,i)a0>1+(8o,2A1>3-Xbo,2)ao,2+(öo,3A1>3-Xbo,3)ao,3+... 

(öi,oAi3-Xb1,o)ai>o+(81JA13-Xb1j)a1J+(81(2A13-Xbli2)a1>2+(^Aia-Xb1,3)alt3+... 

(62,oAI,3-Xb2,o)a2)0+(62,lA1>3-Xb2,i)a2>]+(82i2A1,3-Xb2,2)a2(2+(82,3A1,3-}lb2,3)a2(3+... 

(Ö3,0Ai,3-Xb3,0)a3,0+(63,iA1,3-Xb3j)a3,]+(63>2A1,3-Xb3,2)a3>2+(63,3A1)3-Jlb3>3)a3r3+... 

= 0 

therefore, 

(-Xbi)i)ai,i+(-Xbi72)aii2+(8iT3AiT3.-)ibi,3)ai>3+... 

+(-Xb2,i )a2,i+(-Xb2,2)a2,2+(-Xb2>3)a2>3+... 

+(-Xb3,i)a3>i+(-Xb3>2)a3i2+(-Xb3>3)a3i3+... = 0 

or 

(-Xbl3u)au+(6^2ALT2-Xbl31)2)ai,2+(-Xbl31(3)a]>3+... 

+(-Xbl32,i)a2,i+(-Xb322,2)a2,2+(-Xbl32,3)a2,3+... 

+(-Xbl33,i)a3,i+(-Xbl33t2)a3i2+(-Xbl33i3)a3>3+... = 0 
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Similarly, 

9) m = 2, n = 0 

(67,nA2,o )a2ro= 0 

10)m = 2,n=l 

(-Xb21u)au+(-Xb211)2)a1>2+(-Xb211(3)ali3+... 

Hhitel -^2l2,i)a2>i+(-Xb212(2)a2,2+(-Xb212,3)a2)3+ 

+(-Xb2l3>1)a3,]+(-Xb2l3,2)a3,2+Hb2l3i3)a3,3+... = 0 

ll)rn = 2,n = 2 

(-Xb221>1)au+(-Xb221)2)alt2+(-Xb221,3)a1,3+„. 

+(-Xbl22tl)a2,]+(^?i?A2>2 -Xbl22,2)a2,2+(-Xbl22(3)a2(3+. 

+(-Xb223,1)a3>i+(-Xb223,2)a3,2+(-Xb223>3)a3)3+... = 0 

12)m = 2,n = 3 

(-Xb23u)au+(-Xb231,2)a1)2+(-Xb23I)3)a1>3+... 

+(-Xb232>1)a2,1+(-Xb232>2)a2,2+(^uA2a -to232,3)a2,3+.. 

+(-Xb233,i)a3,]+(-Xb233t2)a3,2+(-Xb233(3)a3,3+... = 0 

13)3 = 2,n = 0 

(^oA^ )a3,o= 0 

I4)m=3,n = 1 

(-Xb31u)aliI+(-Xb311)2)a1,2+(-Xb311)3)a]>3+... 

+(-Xb312,i )a2, i +(-Xb312,2)a2,2+(-Xb312,3)a2)3+ ... 

+(^4A3a-^b3l3>])a3,]+(-Xb3l3j2)a3>2+Hb3l3(3)a3>3+... = 0 
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15)m = 3,n = 2 

(-Xb32u)au+(-Xb32it2)ali2+(-Xb321>3)a1>3+... 

+(-Xb322,i)a2,i+(-Xb322,2)a2,2+(-Xb322,3)a2,3+... 

+(-Xb323tl)a3>1+($3i2A3>2 -Xb323,2)a3>2+(-Xb323>3)a3>3+ = 0 

16)m = 3,n = 3 

(-Xb33u)au+(-Xb33i,2)aI,2+(-Xb33],3)a1>3+... 

+(-Xb332,i)a2,i+(-Xb332,2)a2t2+(-Xb332,3)a2,3+... 

+(-Xb333t])a3>1+(-Xb333,2)a3>2+(^3A24->tb333(3)a3,3+ = 0 

From all these expansions, we can obtain 

(di,nAj,o )aij0= 0 

and, in matrix form and introducing tmfk = Ö^A^ , Eq. (4.6) becomes 

'eu-XbUu -XbU12 -Afcll, 3 

-A/712,, eX2-Xb\2U2 -AM213 

-Xb\3u      -Xb\3l2    e13-4^13,3 

-Xb2\u 

-XbU2l -Xb\\22 -?M\ 

-Xb\22l -Xbl222 -)ib\Z 

~Xb\3u      -Xb\322      -Xb\3 

-Xb2\ 1.2   -^21,3 ... e21-Xb2l2l    -Xb2\ 

-Xb22u      -Xb22l2      -Xb22u 

-Xb23u      -Xb23l2      -Xb23u 

2.2 

2.3 

2,3 

32,3 

-Xb2\ 2,3 

-*-mu    e22-Xb2222    -Xb2223 

~Xb232A      -Xb2322    e23-Xb2323 

M.l 

'1.2 

l1.3 

'2,1 

'2.2 

'2.3 

= 0 

(4.13) 

In the next section, we will deal with Eq. (4.13). 
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4.3 Simplification of Eq. (4.13) 

From condition (4.12) and bmnp,q being non-zero only if m+p and n+q are both 

even, Eq. (4.13) can be further simplified as 

~eu-XbUu 0 -J.bl\l3    . 0 0 0 
|"ci.i" 

0 eU2-J.bl2h2 0 0 0 0 a\2 
-AM3U 0 ei.3-^13u . 0 0 0 fl1.3 

0 0 0 • e2,i~^2121 0 -Xb2\1:i    ... fl2.1 
0 0 0 0 e22-kb2222 0 °2.2 
0 0 0 .    -Xb2l2y 0 e2,3^232i3 ... fl2.3 

= 0 

or generalized as 
(4.14) 

~x  0   x 0 .. . 0 0 0 0   ... X 0 x   0  ..."] 
0x0 x  .. .  0 0 0 0   ... 0 X 0   x  ... 
x   0   A: 0 .. . 0 0 0 0   ... X 0 x   0 ... 
0x0 x .. .  0 0 0 0   ... 0 X 0   x  ... 

0   0   0 0 .. X 0 X 0   ... 0 0 0   0 ... 
0   0   0 0 .. 0 X 0 X    ... 0 0 0  0 ... 
0   0   0 0 ... 0 0 X 0   ... 0 0 0  0 ... 
0   0   0 0 ... 0 X 0 X    ... 0 0 0  0 ... 

x   0   x 0 ... 0 0 0 0   ... X 0 x   0 ... 
0x0 x  ... 0 0 0 0   ... 0 X 0  x ... 
x   0   x 0 ... 0 0 0 0   ... X 0 x  0 ... 
0x0 x   .. 0 0 0 0   ... 0 X 0   x ... 

a 

a 

l.i 
ha. 
1,3 

'2.1 
22,2 
22,3 
l2A 

'3.1 

'3.2 

'3.3 

'3,4 

= 0 

where x are ( em - Xbpqp,q ) and x are -lbmn„, lp.q- 
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Employing block matrices, Eq. (4.14) can be further rewritten as 

q 
x\   0   x13   0   x15 

where 

Xp = 

m 

0     X2    0     X;24    0 
X31     °    *3     Ox 
0 

35 

v51 

A42 

0 
0  *4 0 

*53    0    ^5 

4 

'*] 0 x 0 .. 

0 x2 0 x .. 

x 0 x3 0 .. 

0 x 0 x, ... 

= 0 

LAsJ 

"x   0   x 0 ... 
0x0 x  ... 

X/J9 - x   0   x 0 ... 
0x0 x  ... 

m 

Ap = 

a 

P.1 

PA 

a p,q 

(4.15) 

4.4. Summary 

In this chapter, a technique for calculation of the eigenvalues occurring in the heat 

transfer problem in slip-flow has been derived by constructing a matrix. With this 

formulation, any number of eigenvalues can be theoretically determined. The next 

chapter will deal with the algorithms and the computational procedure, and the 

calculation of the eigenvalues will be carried out. 



CHAPTER 5 

COMPUTATIONAL RESULTS 

In the previous chapter, the formulation for the calculation of the coefficients 

occurring in the eigenfunction was determined. In this chapter, we will discuss the 

procedures for the evaluation of eigenvalues for the heat transfer problem in slip-flow. 

We will calculate the eigenvalues and discuss the computational results. 

5.1 Procedures of Computation 

The procedures of computation are as following: 

1) Calculate a\ for certain Knudsen number Kn by Eq. (2.10) in Chapter 2 

G<tan G<-= rk (5.D 
2) Calculate coefficients d-^ for certain Knudsen number Kn and aspect ratio a by Eq. 

(4.11) in Chapter 4 

[ß fß' 
jx ) cos{jy)dx dy (i,j=0,l,2,... )    (5.2) 

where 

=0 cos a-, (iy - 1) . cosh Oi,2_   _ n 

w/C = -l2 g_       ( 
smai )(] 

h aiß'X     1} 

1=1 a'3 I +2Kn sin2 a,-A    cn„h ^ , 9 ~   n    .   a,. > i       cosn -ft + 2 Kn at sin -tf- 

(5.3) 

43 
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and 

w0/C =-2Z-2-t 
sin2 a-. a: 

5V1    i   i   v..   -i-O  _   X~— 
sm/z -^ 

-ia.^1 + 2 J&, rf a/^-^^—^——y)      (5.4) 

3) Determine bp>q(ra, n) (or bmnp>q) by Eq. (4.10) in Chapter 4 

_ 1 
bp,q(m,n)  - 4{ d^^ - d]m_pln+g + dm+pM+q - dm+ptin_ql }        (5.5) 

4) Calculate ep>q = öp>qAPtq for certain m and n by Eq. (4.9) 

öPfq(m,n)APfq = {7i2/4a) (m2 + a2«2), (5.6) 

5) Determine truncation eigenfunction for certain m and n by Eq. (4.15) in Chapter 4 

where 

*,    0   x13   0 

0   A:, 0 
L15 

l24 0 
l35 «31   0   Z3    0 

0   x42  0   X4   0 
X51     0    X53    0     *5 

L  

= 0 

lA5J 
(5.7) 

Am   — 

' X 0 x   0  ... 
0 X 0   x  ... 
X 0 x   0 ... 
0 X 0   x ... 

l^mn  — 

"x 0x0... 
0 x   0   x  ... 
X 0x0... 
0 x   0   x  ... 

Am   — 

a m,l 
7m,2 
Jm,3 

"m,4 

where x are ( ,M -XbnmM ) and x m-XlmnM and ^ = ^M for certain m and n. 
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are For example, the truncated eigenfunction for m, n = 0,1 and for m, n = 0,1,2,3 

respectively 

A](X)=\X1\=0 

A3(X) = IX)I «21IX,I- \x3J\ «21 \x13\ = 0 

and A (X) = lim Ap(X) when p -> oo. 

6) Evaluate the eigenvalue X by the known truncated eigenfunction such as Eq. (5.8) 

7) Determine the fully-developed Nusselt number by Eq. (3.17) in Chapter 3 

(5.8a) 

(5.8b) 

A^oo   = _*1 
(5.9) 

5.2 Calculation of a\ 

Table 5.1 lists the first eight values of each a{ for Kn from 0.005 to 0.3 by Eq.(5.1). 

Fig.5.1 shows that fli vary as functions of Kn. From Fig.5.1, we can see that the difference 

of the adjacent öi and aM becomes smaller as Kn increases butgoes to a constant* as both 

Kn and i increase. 

Table 5.1 The first eight values of a; 
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0.1 0.2 
Knudsen number, Kn 

Fig. 5.1 Velocity eigenvalues a, as functions of A« 

0.3 
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5.3 Calculation of rfy 

For Kn = 0.00 and a = 1 (for Kn = 0.00 and a = 1 see Appendix B), and i,j = 0,1,2,..., 10, 

the d\j are as following: 

dij = 

1.0015 0 -0.27819 0 -0.08309 0 -0.03854 0 -0.02209 0 -0.0143] 
0   0 0   0 0   0 0   0   0 0 0 

-0.27809 0 0.08285 0 0.02237 0 0.00979 0 0.00542 0 0.00342 
0   0 0   0 0   0 0   0   0 0 0 

-0.08299 0 0.02237 0 0.00725 0 0.00338 0 0.0192 0 0.00122 
0   0 0   0 0   0 0   0   0 0 0 

-0.03844 0 0.00979 0 0.00338 0 0.01670 0 9.1Se-4 0 6.31<?-4 
0   0 0   0 0   0 0   0   0 0 0 

-0.02198 0 0.00542 0 0.00191 0 9.73e-4 0 5.82e-4 0 3.84e-4 
0   0 0   0 0   0 0   0   0 0 0 

-0.01418 0 0.00343 0 0.00122 0 6.30*M 0 3.94e-^ 0 2.63<?-4 

5.4 Determination of bp>q(m, n) (or bmnp>g) 

bp,q{m, n) (or bmnp>q) for m,n = 1,2,3 and p,q = 0,1,2,..., 5 are as following: 

Ml PA 

0 0 0 0 0 0 
0 0.41015 0 -0.06390 0 -0.01428 
0 0 0 0 0 0 
0 -0.06390 0 0.01134 0 0.002178 
0 0 0 0 0 0 
0 -0.01428 0 0.002178. 0 5.340 e-A 
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"0 0 0 0 0 0" 
0 0 0.3463 0 -0.07818 0 

bnp<q = 
0 

0 

0 

0 

0 

-0.05256 

0 

0 

0 

0.01352 

0 

0 

0 0 0 0 0 0 
0 0 -0.01211 0 0.002718 0 

0 0 0 0 0 0 
0 -0.06390 0 0.3320 0 -0.08338 

b\2>p,q = 
0 

0 

0 

0.01134 

0 

0 

0 

-0.05040 

0 

0 

0 

0.01425 
0 0 0 0 0 0 
0 0.002178 0 -0.01157. 0 0.002908 

"0 0 0 0 0           0' 
0 0 -0.07818 0 0.3268        0 

bUP,q = 
0 

0 

0 

0 
0 

0.01352 

0 

0 
0           0 

-0.04965       0 

0 0 0 0 0           0 
0 0 0.002718 0 -0.01137       0 

ro 0 0 0 0         0 
0 -0.01428 0 -0.08338 0      0.3243 

bl5p<q = 
0 0 0 0 0         0 
0 0.00218 0 101425 0   -0.04933 
0 0 0 0 0         0 
0 5.4 e-A 0      ( 3.00291 0 -0.01128 
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b2lp,q = 

0 0 0 0 . 0 0 
0 0 0 0 0 0 
0 0.3463 0 -0.05256 0 -0.01211 
0 0 0 0 0 0 
0 -0.07818 0 0.01352 0 0.002718 
0 0 0 0 0 0 

"0 0 0 0 0     0] 
0 0 0 0 0     0 

*22M = 
0 

0 

0 

0 

0.2937 

0 

0 

0 

-0.06466  0 

0     0 
0 0 -0.06466 0 0.01624   0 

0 0 0. 0 0    o_ 

0 0 0 0 0   0 
0 0 0 0 0   0 

b23p<q = 
0 

0 

-0.05256 

0 

0 

0 

0.2816 

0 

0  -0.06914 

0   0 
0 0.01352 0 -0.6194 0  0.01715 

v 0 0 0 0 0   0 

M4M = 

"0 0 0 0 0   0 
0 0 0 0 0   0 
0 0 -0.06466 0 0.2771 0 
0 0 0 0 0   0 

0 0 0.01624 0 -0.061024 0 
0 0 0 0 0   0 
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b25p<q = 

0 0 0 0 0   0 
0 0 0 0 0   0 
0 -0.01207 0 -0.06984 0 0.3126 
0 0 0 0 0   0 " 
0 0.02460 0 0.01568 0 -0.06173 
0 0 0 0 0   0 

0 0 0         0 0    0 
0  -0.06373 0  0.01040 0   0.001988 

b3lpn   = 
0    0 0   0 0    0 

r **i 
0  0.3705 0 -0.05134 0  -0.01595. 
0    0 0   0 0    0 
[0 -0.08289 0 0.01306 0  0.002629 J 

"o       0 0     0 o       o" 
0   0 -0.05333  0 0.012390 0 

hV>      — u-}'-p,q  — 
0   0 0     0 0    0 
0         0 0.31922   0 -0.6294  0 
0   0 

0   0 
0     0 0    0 

1 -0.06984  0 0.01568  0 

b33Piq = 

0 0 0 0 0 0 
0 0.01040 0 -0.5134 0 0.01306 
0 0 0 0 0 0 
0 -0.05134 0 0.3076 0 -0.06721. 
0 0 0 0 0 0 
0 0.01306 0 -0.06721 0 0.01658 J 
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b34Piq = 

"0 0 0 0 0 0 
0 0 0.01239 0 -0.05068 0 
0 0 0 0 0 0 
0 0 -0.06294 0 0.3033 0 

0 0 0 0 0 0 
0 0 0.01568 0 -0.06631 0 

b35p,q = 

0 0 0 0 0   0 
0 0.001988 0 0.01306 0 -0.05038 
0 0 0 0 0   0 
0 -0.01160 0 -0.06721 0 0.3013 
0 0 0 0 0   0 

L° 0.002629 0 0.01658 0 -0.06591 

bmnPiqshould be equal to bn^or the matrices bmn should be equal to W. Using these 

properties, we can check the computational errors. For example, from M 13>1 =-0.06390 

and Mlu =-0.06373, we know the third digit in these values maybe not be correct. 

5.5 Determination of Truncation Eigenfunction 

*i = 

4.9348-A0.41015 0 A0.06390 

0 12.33701-A0.3463 0 
A0-06390 0 24.67401-A0.3320 
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X2 = 

12.33701-A0.3463 0 A0.05256 

0 19.73921-40.3294 0 

A0.05256 0 32.07621-A0.3705 

*3 = 

"24.67401-A0.3320 0 A0.05134 

0 32.07621-A0.3705 0 
A0-05134 0 44.41322-A0.3076 

■*n ~~ ■tu  — 13 31 

"A0.06373 0       -A0.01040 

0        A0.05333        0 

-A0.01040       0        A0.05134 

If we take the first 3x3 elements of each matrices only, we have then 

1^7l = (12.33701-X0.3463)[(4.9348-X0.41015)(24.67401-X0.3320)-X20.063902] 

1^I = (19.73921-X0.3294)[(12.33701-X0.3463)(32.07621-X0.3705)-X20.052562] 

lA:3l = (32.07621-X0.3705)[(24.67401-X0.3320)(44.41322-X0.3076)-X20.051342] 

l*Ml = \x13\ = X3[(0.06373)(0.05333)(0.05134) - (0.0104)2(0.05333)] 

Therefore, 

A](X) = iXj\ 

= (12.33701-X0.3463)[(4.9348-X0.41015)(24.67401-X0.3320)-X20.063902]=0 
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and 

A3a) = \X1\\X2\\X3\-\x31\\X2Ux13\ 

= {(12.33701-X0.3463)[(4.9348-X0.41015)(24.67401-X0.3320)-X20.063902]- 

(19.73921-X0.3294)[(12.33701-X0.3463)(32.07621-X0.3705)-X20.052562]- 

(32.07621-X0.3705)[(24.67401-X0.3320)(44.41322-X0.3076)-X20.051342]}- 

{(19.73921-X0.3294)X6[(12.33701-X0.3463)(32.07621-X0.3705)-X20.052652] 

[(0.06390)(0.05333)(0.05134) - (0.0104)2(0.05333)]2} = 0 

In the first order approximation of eigenfunction Ax(k), the value of \x can be 

calculated approximately by the first term (4.9348-X0.41015), because the value of the 

term (X20.063732) can be neglected. It will be discussed in the following section. 

5.6 Evaluation of Eigenvalue A and 
Fully-Developed Nusselt Number 

From the above approximation of eigenfunctions, we can evaluate the eigenvalues. 

Table 5.2 shows the comparison of h(a =1) for Kn = 0.00 with previously known values 

(see Appendix C). From this comparison, we know that the first eigenvalues calculated 

by the first term are sufficiently accurate. 

Table 5.2 Comparison of Xj(fl = 1) calculated by different approximation 

Dennis et al. First term Altt) ^ß) 
*1 11.91 12.030528 11.96289311 11.962888035 

difference % 0 1.012 0.44410672 0.44406406 

Table 5.3 gives the computational results of X, (a) by the first term for different aspect 

ratios. Table 5.4 lists the comparison of X, (a) for Kn = 0.00 with previously known values 
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Table 5.3 Eigenvalue M<*) for different aspect ratios 

Kn MD M2/3) Ml/2) Ml/4) Ml/8) 
0 12.0305 12.6418 13.7316 17.9174 22.487 

0.005 12.219 12.7896 13.873 18.0654 22.653 
0.01 12.380 12.9928 14.071 18.2681 22.839 
0.02 12.680 13.1959 14.266 18.4708 23.025 
0.04 13.204 13.5795 14.638 18.8488 23.465 
0.06 13.646 13.9631 15.011 19.2153 23.905 
0.08 14.027 14.3466 15.383 19.5876 24.344 
0.10 14.359 14.7302 15.755 19.9829 24.784 
0.20 15.549 15.8749 17.281 20.8838 25.467 
0.30 16.295 16.6361 17.618 21.7846 26.151 
0.50 17.189 17.5510    j 18.563 22.6739 27.517 

Table 5.4 Comparison of Ma) for Kn = 0.00 with previously known values 

Ma) Ml) M2/3) Ml/2) Ml/4) Ml/8) 
This work 12.0305 12-6418 13.7316 17.9174 22.487 

Dennis et al. 11.91 12.49 13.57 17.76 22.38 
difference% 1.01 1.21 1.19 0.89 0.48 

and it shows that all of the differences are less than 1.3 percent. From this comparison, we 

know that the first eigenvalues calculated by the first term are sufficiently accurate for all 

different aspect ratios. 

Table 5.5 shows the computed results of NUoo(a) for different aspect ratios by 

Eq.(5.9), and Figure 5.2 shows NUoo(a) as functions of tot. It shows that Nusselt number 

NUoo increase as the Knudsen number Kn increases and that the values of Nu« increase as 

the aspect ratio, a, decreases for a fixed Kn. 
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a = 1/8 

Fig. 5.2 Fully developed Nu as a function of Kn for different aspect ratio 
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J3 

£ 
l 

Fig. 5.3 Ratio * as a function of Kn for different aspect ratio 

[ k = Nu(Kn)/Nu(0) ] 
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Table 5.5   Nu«,(a) for different aspect ratios 

Kn NMD NU2/3) Nuood/2) NM1/4) Nuood/8) 
0 3.0076 3.1605 3.429 4.4794 5.6217 

0.005 3.0548 3.1974 3.468 4.5164 5.6632 
0.01 3.0950 3.2482 3.518 4.5670 5.7098 
0.02 3.1700 3.2990 3.566 4.6177 5.7563 
0.04 3.3010 3.3949 3.660 4.7122 5.8662 
0.06 3.4115 3.4908 3.753 4.8038 5.9761 
0.08 3.5068 3.5867 3.846 4.8969 6.0861 
0.10 3.5898 3.6826 3.939 4.9957 6.1961 
0.20 3.8873 3.9688 4.320 5.2209 6.3668 
0.30 4.0736 4.1590 4.405 5.4462 6.5376 
0.50 4.2970 4.3878 4.6408 5.6685 6.8792 

Table 5.6 k(a) for different aspect ratios 

Kn k-tube *(D Jfc(2/3) *(l/2) *(l/4) *(l/8) 
0 1 1 1 1 1 1 

0.005 1.015 1.016 1.012 1.011 1.008 1.007 
0.01 1.028 1.029 1.028 1.026 1.020 1.016 
0.02 1.054 1.054 1.044 1.040 1.031 1.024 
0.04 1.099 1.100 1.074 1.067 1.052 1.043 
0.06 1.138 1.137 1.105 1.094 1.072 1.063 
0.08 1.170 1.169 1.135 1.122 1.093 1.083 
0.10 1.198 1.194 1.165 1.149 1.115 1.102 
0.20 - 1.292 1.256 1.260 1.166 1.133 
0.30 — 1.354 1.316 1.285 1.216 1.163 
0.50 — 1.459 1.388 1.353 1.266 1.224 

Note: k = Nuoe (Kn) /Nu« (0), ^ - for channel and ktube - for round tube 

To see the effect of the Knudsen number Kn on the Nusselt number Nu«, for a certain 

aspect ratio with respect to the case of non-slip-flow, a ratio k = Nu« (Kn) /Nu« (0) was 
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introduced. Table 5.6 gives the computed results of k(a) for different aspect ratios. 

Figure 5.3 shows that the ratio k as a function of the Nusselt number Kn for different 

aspect ratios. It shows that the ratio k increases as Kn increases for all aspect ratios and 

that the ratio k decreases as the aspect ratio decreases for 0< Kn <0.30. The maximum 

increase of* (or the Nusselt number NuM) is as follows: 35.4 percent (Kn = 0.30) for a = 1; 

31.6Percentforfl = 2/3;28.5percentforfl = l/2;21.6percentforfl = l/4;andl6.3 percent 

for a = 1/8. Figure 5.4 shows the comparison of Nusselt number values with that of a 

round tube. The result of an aspect ratio a = 1 agrees with that of the round tube (the 

maximum difference is 0.33 percent), because the "aspect ratio" of the round tube can be 

regarded as around 1 while the ratio k becomes smaller with a decreasing aspect ratio. 

The aspect ratio a also affects the Nusselt number NuM. Fig. 5.5 shows the ratio of the 

NusseltnumberwiththeaSpectratio(fl<l)toNusseltnumberwithfl=l,orNu(a)/Nu(l), 

as a function of aspect ratio a. As shown in Fig. 5.5, these ratios increase greatly as the 

aspect ratio a moves toward 0; however, the effects are weaked slightly with the increase 

of the Knudsen number Kn. 

5.7 Local Heat Transfer Coefficient 
for the Case of a Microtube 

The local heat transfer coefficient Nux plays an important role in determining the 

thermal effect of Kn in the entrance length. To depict how the local heat transfer 

coefficient Nux behaves with length, at least two eigenvalues are needed. Unfortunately, 

it is extremly difficult at present to obtain the second eigenvalue in the case of a 

microchannel. However, based on the similarity of the circular microtube and the square 

microchannel, the situation in the Graetz problem with slip-flow condition can be 

revealed by considering the microtube solution. 
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^ 

0.00 0.02 0.04 0.06 0.08 0.10 

Fig. 5.4 Comparison of ratio k between microchannel and microtube 
[ k = Nu(Kn)/Nu(0) ] 



60 

0.4 

aspect ratio, a 
o.e 1.0 

Fig. 5.5 Ratio of Nu(a)/Nu(l) as a function of aspect ratio 
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Figure 5.6 shows the local Nux value in the case of a microtube as a function of x*/Gz 

for Kn = 0.02 and with the number of eigenvalues as a parameter. The value of the local 

Nusselt number converges dramatically with the increase in the number of eigenvalues in 

the computation. When x*/Gz is 0.02, the error in Nux is 0.7 percent when two 

eigenvalues are used and, comparing to the straight line (using one eigenvalue), the error 

is 14 percent. It can be concluded that the results using four eigenvalues are sufficiently 

accurate for x*/Gz > 0.02. When x*/Gz is greater than 0.05, the error is at most 1.3 

percent- that is, all three plots become nearly flat, indicating a thermally fully-developed 

condition. 

n: number of eigenvalues used in calculation 

R: radius of tube 

Kn=0.02 

-I—I 1 L. 

°-00 0.02 0.04   (0.05)     o.OB 0.08 

Fig. 5.6 The local Nusselt number as a function of x*/Gz 
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Figure 5.7 shows the local Nusselt number as a function of Kn. It is obvious that Kn 

has an influence on the Nusselt number. All the plots in Fig. 5.7 show that the Nusselt 

number increases as Kn increases and that this effect is magnified near the entrance. When 

x*/Gz is greater than 0.05, all the plots become nearly flat, indicating a thermally 

fully-developed condition. 

0.12 
0.10 
0.08 
0.06 
0.04 

- 3.7B1 
3.710 
3.675 

*0.00 —^ 0.04  '      '      '      '  0.«   '      '      '      '  o.!)^6^ 

Fig. 5.7 The local Nusselt numbers as functions of x*/Gz and Kn 

From the above discussion, we can see that: 

(1) slip-flow has a positive influence on the heat transfer coefficient and can enhance 

the heat transfer efficiency; 

(2) the influence depends on the Knudsen number and increases as Kn increases; 

(3) when Kn is equal or greater than 0.02, the increase in the fully-developed Nu is 

greater than 5 percent so that the effect of slip-flow should be taken into 
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consideration in the computations of the heat transfer coefficient; and 

(4) that the influence of Kn on Nu« will decrease as Kn increases. 

5.8 Discussion on Other Eigenvalues 

In the expressions of Apß), if we take Xm to be an ixi matrix, then there should exist 

ip eigenvalues. For example, for p = 1 and i = 1, there exists only one eigenvalue; for p = 1 

and i = 3, that is A tfX) in the calculations, there exists three eigenvalues; and for p = 3 and i 

= 3, that Is A3(X) in the calculations, there should exist nine eigenvalues rather than the 

five shown in Table 5.7 (four eigenvalues are missing). The calculated results are shown 

in Table 5.7 (see Appendix A in details). From the results in Table 5.7, it is obvious that 

the first eigenvalue is reliable, while the others are not reliable due to truncation error. 

Therefore, in this research, only first eigenvalues were evaluated. 

Table 5.7 Comparison of ^(a =1, Kn = 0.00) calculated by different approximation 

Dennis et al. AJU)OTXI Xl *3 ^a) h 11.91 11.962893 - - 11.962888 
k2 — 35.62984 34.96576 — 35.62984 
h 71.07 77.06352 67.20875 71.40406 71.40407 h — - 121.27253 113.90901 113.90902 
h 157.9 -     1    - 180.87005 121.27253   1 

5.9 Summary 

In this chapter, the procedures for the evaluation of eigenvalues for the heat transfer 

problem through microchannels in slip-flow were developed. The first eigenvalues and 

thefully-developedNusseltnumberNu.werefoundfordifferentaspectratios.Fromthe 

comparison and discussion, it is evident that the new technique for evaluation of the first 

eigenvalues and the fully-developed Nusselt numbers of the Graetz Problem through 
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rectangular microchannels in süp-flow is coraputionally effective, and the calculated 

Nusselt numbers are valuable to predict the heat transfer coefficients for the 

dimensionless length x*/Gz greater than 0.05. 



CHAPTER 6 

EXPERIMENTAL APPARATUS AND PROCEDURE 

The puipose of this work was to determine the heat transfer coefficient and Nusselt 

number in the rectangular microchannel and microtube in a laminar flow region and 

compare the analytical results with experimental measurements. Section 6.1 details the 

test section with the microchannel and microtube. The flow loop and the data acquisition 

system are described.  Section 6.2 discusses the design background for the apparatus. 

Section 6.3 describes the procedure used to obtain the data in the experiment It should 

be noted that while an attempt was made to verify the analytical results experimentally, 

the data obtained from the experiments was inconclusive. It is hoped that the details of 

the experiments contained in the next two chapters may aid others what attempt similar 

experiments in slip-flow. 

6.1. Experimental Apparatus 

6.1.1 Test Section 

The test section is the part of the experimental apparatus where the microchannel and 

microtube are tested. The microchannel/microtube were fabricated from 3.2 mm (0.125 

in) thick 6061-T6 aluminum bar. Aluminum was chosen for its high thermal 

conductivity.   Conventional cutting and milling processes were used to machine the 

aluminum pieces and channel blanks, to the final 25.4 mm x 101.6 mm (1 in x 4 in) shape. 
The fabrication technique was discussed in detail by Bailey (1996). 

65 



66 

The microchannel blank configuration is shown in Figure 6.1. The macrochannel 

with dimensions of 117 um x 24 um x 63.5 mm was milled by Dr. Craig Friedrich of the 

Institute for Micromanufacturing. The milling machine, referred to as the Ultra Precision 

Milling Center, is a one-of-a-kind machine that was specially built by Dover Instrument 

Corporation for the Institute for Micromanufacturing at Louisiana Tech University. 

The roughness of the channel was obtained by using a WYKO Roughness/Step 

Tester (RST) along the channel at 30 locations. The raw data are shown in Appendix D. 

The average roughness was shown to be 2.28 um. 

The WYKO RST was also used to determine the channel width and depth. The 

average top width is 120.43 um, and the average bottom width is 112.76 urn; the average 

depth is 24.04 urn. 

An aluminum cover was glued onto the surface of the blank with epoxy. A 70 ram 

long microtube (shown in Fig. 6.2) was glued into the channel having dimensions of 350 

um x 350 (im x 63.5 mm. Two pieces of lexan also were glued onto the glued aluminum 

parts to form the whole test section with a water jacket. Lexan was chosen based on its 

combination of the properties of insulation, strength, and machinability. Care was 

exercised to prevent the glue from entering the microchannel section. 

6.1.2 Flow Loop 

Figure 6.3. shows the flow loop used to conduct heat transfer experiments. It 

consisted of (a) a helium gas cylinder (full pressure of 2200 psi), (b) three flowmeters, (c) 

two metering valves, (d) a heater, (e) a test section, (f) two vacuum gages, (g) a vacuum 

pump, and (h) a constant temperature water bath. The test section, as shown in Fig. 6.3, 

consisted of a microchannel and a water jacket with two thermocouples. As shown in Fig. 

6.4, two other thermocouples located at the ends of the microchannel fixed in the test 

fixture (Bailey, 1996) were used to measure the inlet and outlet conditions of the 
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a) the test section 

aluminum blank thermocouples 
lexan parts 

thermocouple thermocouple 

microchannel      water jacket 

b) the blank with a microchannel 

gluing areas 

grooves for glue escaping 

Fig. 6.1 Side cut-away view of the test section and 
the blank with microchannel 

(117 |im x 24 fim x 63.5 mm ) 
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aluminum blank       thermocouples lexan parts 

thermocouple thermocouple 

Fig. 6.2 Side cut-away view of the test section and 
the blank with microtube 

(D; = 52.1 um, D0 = 350 um, L = 70 mm ) 
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Manifold Microchannels 

Thermocouple Heater Thermocouple 

AkimkHim fcaat Plata 

Fig. 6.4 Top view and side cut-away view of test fixture 
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microchannel or microtube. The reading from the thermocouple in the water jacket was 

used to determine the overall heat transfer coefficient. 

6.1.3 Data Acquisition 

The data acquisition system consisted of a Gateway 2000 personal computer 

equipped with a Lab VIEW for Windows data acquisition system. The raw data consisted 

of temperature readings (°C) from the thermocouples, voltage output from the pressure 

transducers, and frequency from the flowmeters. Converted data are displayed on the 

monitor to allow the user to determine when a steady state has been reached. The raw data 

can be sent to an Excel spreadsheet when desired. Once in the spreadsheet, the voltage 

output can be converted into pressure, and the frequency output can be converted into 

volumetric flow rate by using the calibration curve supplied with the meters. In addition, 

the pressure and temperature readings at the exit of the flowmeter can be used to convert 

the volumetric flow rate into a mass flow rate. 

6.2 Design Background 

There are two restrictions that must be achieved in the experimental apparatus: 

1) The flow must be in the slip-flow regime, so 

0.01<Kn<0.30 

2) The flow must be laminar, so 

Re < 2300 

6.2.1 Working Fluid, Sizing and Pressure 

For a gas, the Knudsen number is found from: 

Kn = -4-    *M 
pDHyJ2gcM (6.1) 
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Therefore, there are three factors which may be chosen to achieve slip flow: 

1) Small geometry (small hydraulic diameter), 

2) Low pressure, and 

3) Large value of gas viscosity. 

Table 6.1 shows the corresponding pressure ranges for different DH for nitrogen and 

helium from Eq. (6.1). Knowing that a microchannel of 10 fun on aluminum could not 

be milled on the Ultra Precision Milling Center, DH = 50 um is chosen. Thus, for the case 

of the microtube, the diameter D = 50 um, and for the case of microchannel, the dimension 

is 100 fim wide x 25 urn deep, DH = 40 urn. Helium gas was chosen as the working fluid 

because its required pressure for a given Knudsen number is three times higher than that 

of nitrogen. Note that the atmospheric pressure is patm = 14.7 psia (101.3 kPa). Thus, 

we conclude that a vacuum must be used to achieve slip flow. Table 6.2 lists the fluid 

properties for two gases. 

Table 6.1 Corresponding pressure for different DH for nitrogen and helium 

DH: um 10 50 100 
Kn 0.01 0.3 0.01 0.30 0.01 0.30 

P 
(psia) 

N2 9.7 0.32 1.94 0.064 0.97 0.032 
He 29.1 0.96 5.82 0.190 2.91 0.096 

Table 6.2 Properties of nitrogen and helium gases 

gc 
kg-m/N-s2 kg/m s 

M 
g/mol 

Ru 
J/mol-K 

T 
K 

N2 1 1.784xl0"5 
28.95 8.3144 300 

He 1 
—  1.987xl0-5 

4.003 8.3144 300 
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6.2.2 Flow Rate 

To assure the gas flow in the slip flow condition, we let pi = 5.82 psia (300 toir) and 

P2 = 0.19 psia (9.79 torr) or less. Thus, we assume that flow in such a condition (rarefied 

gas) should be treated as a compressible flow. Consequently, the estimation of pressure 

drop, Reynolds number, and flow rate become complicated problems. 

The exit pressure and inlet pressure are related by (Shapiro, 1953): 

_P2_=    (p/p *)2 
Pi (p/p*), (6.2) 

where 

P  _   l     / Y + 1 

P*     M  y 2[1 + (y-l)M2/2] (6.3) 

for helium gas y = 1.667. Although the flow can be treated as choked flow, that is, M2 

= 1, Mj must be known for the estimation of inlet pressure, while the determination of 

Mi (or the velocity of the fluid at the inlet) depends on the inlet pressure and outlet 

pressure. Also, the Reynolds number is a function of pressure and may increase at most 

ten times of that at STP (standard temperature and pressure, 300 °K and 101.325 kPa or 

1 atm) (White, 1991). 

The rough estimation of the Reynolds number is carried by using the formulas for 

incompressible flow. The maximum mass flow rate to achieve laminar flow may be found 

as follows: 

Re  = -^ = 2300 

n -   m  -   (2300)(0.01987)(10-3) G " AT (iöJüöS) L = 914-0 kg/«' 
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m = (914.0)(7t/4)(50 x 10"6)2 = 1.795 x 10"6 kg/s 

The corresponding volumetric flow rate at STP is: 

,-, _   ra        (1.795)(10-6)^ ,     , 
V ~Q^=       (0.1625)      = 11.04 x 10-^ mVs 

v = 11.04   cm3/s  = 662.6 cm3/min. at STP 

This is the maximum flow rate for the slip flow condition, corresponding to a Reynolds 

number of 2300. If the flow rate is reduced to 10 cmVtam. at STP, which is the minimum 

flow rate for the flowmeter in the lab in the Institute for Micromanufacturing, the 

corresponding Reynolds number is: 

Re = (2300)(10/662.4) = 34.7 

Even ten times this value (347) is much less than 2300, the value of Reynolds number for 

laminar flow. Thus, laminar flow should be assured with the design parameters. Taking 

the experiment conducted by Yu (1994) as a reference (D; = 52.1 m, nitrogen, Pl = 42.64 

psia, flow rate = 9.81 ml/min, Re = 255.91), the flow rate maybe higher than 10 ml/min. 

Therefore, the experiments should be carried out without technical problems. 

6.3 Experimental Procedure 

The test gas was supplied from an industrial helium gas cylinder and the pressure of 

the test gas was reduced down to the proper pressure (about 100 psia) by the coarse valve. 

The pressure and the flow rate were controlled precisely by the fine metering valve. 

Before entering the test component, the gas was heated to the desired temperature 

range by a heater strip with a length of 400 mm wrapped around the stainless steel tube. 

The input power was controlled by a temperature controller. In the test section, water was 

circulated on the outside of the microchannel by a recirculating pump in the constant 
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temperature water bath. 

The experimental procedures in the experiments were as follows: 

1) Pump the test section including the steel pipes connected to the flow meter over 40 

hours to check gas leakage and water leakage. 

2) Run the acquisition system half an hour. 

3) Control the metering valve to desired flow rate. 

4) Take the data when the flow reaches steady-state. It took about 20 minutes for 

stabilization. 

6.4 Data Reduction 

6.4.1 Data Reduction of the MicroChannel 

For the heat transfer test, the heat transfer coefficient of the inside channel is derived 

by the following procedures. From the energy balance of the control volume as shown 

Figure 6.5, we have 

in 

-h-jS dx (T-Tw) = m CpdT (6.4) 

T + dT 

Fig.6.5 Control volume of heat transfer in microchannel 
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Integrating Eq. (6.4) over the entire length of the channel yields 

L T2-Tw2 

hAw    fdx   _      f       dT f dx 
JL m Cp   j  L J     T-Tw2 
0 T,-Tw2 

(6.5) 

resulting in 

i_2~Tw2 hAw   N „,. 
T_T    = exp (--r-pf- ) (6.6) 11   1 w2 m LD 

The wall temperature was considered constant along the microchannel so that the 

heat transfer coefficient h was estimated by Eq. (6.6) and the Nusselt number by Eq. (6.7) 

Fluid properties were evaluated at the mean bulk temperature of the fluid.  The 

Reynolds number is evaluated as follows: 

Re = Gv JtDv (6.8) 

6.4.2 Data Reduction of the Microtube 

In the case of the microtube, because the tube is made of polymide (low thermal 

conductivity), the wall temperature will change along the microtube, decreasing from 

Twl to Tw2 so that the average temperature difference is over-estimated by Eq. (6.6). 

Traditionally, a correction factor is used to correct the error, where F is a function of 

parameters FCTj, T2, Tw], Tw2) and the function is readily available from Holman (1986). 

The heat transfer process in the tube involves a combination of convection and 

conduction. The overall heat transfer is expressed in terms of an overall heat transfer 

coefficient U as: 
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Q = U Aw AT 

where U is dependent on the definition of AT. If AT = Tfluid - Tw , the h is given by 

j j ln(£)     in#) 
—— " —— + ^r-r^ + ~- (6-9) 
UJIDJ      hjTCDj       2jdct      27tkc 

Once U (= h) is evaluated from Eq. (6.6), hi can be calculated from the above 

equation. Fluid properties were evaluated at the mean bulk temperature of the fluid. 



CHAPTER 7 

EXPERIMENTAL RESULTS 

In this chapter, the experimental results involving the microchannel and the 

microtube are discussed. It was noted that there was a significant discrepancy between 

the Nusselt number measured experimentally and the Nusselt number calculated from the 

analytical model involving slip-flow. The fact that the gas temperature did not increase 

from inlet to outlet as heat was added to the flow passage indicated that there was some 

problem in measurement of the gas temperature at the exit. Upon examination of the 

thermocouple location at the flow passage exit, it was noted that the thermocouple 

position was not at the centerline of the flow channel; therefore, the indicated temperature 

was not the gas exit temperature, in all likelihood. It is possible (but not probable) that 

micro-specific mechanisms caused the results of the experimental study to deviate 

significantly from the analytical model. 

7.1. Heat Transfer with MicroChannel 

In this experiment, inlet and outlet pressures, flow rate, and inlet and outlet fluid 

temperatures were measured. These readings were used to determine the heat transfer 

coefficient of the microchannel with a certain Knudsen number. It was found that the 

temperature drop of the flow media depended on the flow rate, as shown in Table 7.1. 

In Figure 7.1, Nusselt number was plotted as a function of Reynolds number, Re. 

From this experiment, one can observe: 

1) Constant wall temperature. As shown in Table 7.1, the temperature differences of 

wall are less than 0.2°C; it is reasonable to regard the condition as an isothermal wall. 
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Table 7.1 Experiment with microchannel 

79 

Gv 
ml/rain 

Tinlet 
°c 

Xautlet 
°c 

Twi 
°C 

TW2 
°C 

Nu Re 

343.3 29.90 37.47 78.41 78.56 80.96 720 
300.9 29.62 33.56 74.89 74.96 43.18 618 
246.7 29.84 32.15 69.83 69.88 20.43 507 
198.6 29.77 31.69 74.81 74.89 11.78 408 
173.3 29.42 30.54 70.65 70.69 6.59 356 
149.2 29.31 30.12 72.13 72.22 3.59 307 
125.9 29.21 29.67 71.07 71.12 1.76 259 
101.8 29.11 29.18 68.69 68.74 0.11 208 
*47.3 29.33 28.79 70.65 70.71 0.52      1 97 

3 z 
i-T 
ID 

X) 
E 
3 
c 

3 

Nu = 3.233xl0-9 Re3-64 

(a = 117/24 = 0.227) 

(a = 1/8, Kn = 0 ) 
.4.48 (a = 1/4, J&i = 0 ) 
' 3.65 (circular tube, Kn = 0 

Nu = 0.023 Re0-8 Pr0-3 

(259)  300 

±36% 

400      500 
Reynolds number, Re 

600 700 

Fig. 7.1 Nusselt number as a function of Reynolds number 
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In Figure 7.1, Nusselt number was plotted as a function of Reynolds number, Re. 

From this experiment, one can observe: 

1) Constant wall temperature. As shown in Table 7.1, the temperature differences of 

the wall are less than 0.2°C; it is reasonable to regard the condition as an isothermal wall. 

2) MicroChannel flow. Fig. 7.1 shows that Nusselt numbers were much larger than 

those of the empirical formula (Dittos et al. 1930) for laminar flow if the flow rate is 

greater than 200 ml/min (Re > 400). It is obvious that the flow condition cannot be 

explained simply by slip-flow or even turbulent flow. For the case of laminar with Kn = 

0.00 and a = 1/4, Nu = 4.48; when a = 1/8, Nu = 5.62 ; and, even in slip-flow with Kn = 

0.30 and a = 1/8, Nu = 6.54. Therefore, there is likely a different mechanism in a flow 

through a microchannel/microtube to explain such a large discrepancy. It will be 

discussed in detail later in the next section of this chapter. 

3) Non-heating-up-phenomenon. The experimentally measured gas temperature at 

theoutletwashigherthan the inletgas temperature when the flow rate was relatively large 

(343.3 ml/min., for example). As the gas flow rate was decreased to a value less than 125 

ml/min., the gas temperature difference became quite small. In fact, a negative 

temperature increase (i.e., a temperature decrease) was indicated when the flow rate was 

less than 47.3 ml/min.   This phenomenon was not anticipated. 

Upon examination of the test apparatus, it was noted that the thermocouple at the 

flow channel exit was not positioned exactly along the centerline of the flow channel. As 

the gas exited the test flow channel, instead of impinging directly on the thermocouple, 

the gas mixed with the gas already within the plenum chamber at the flow passage exit. 

The thermocouple indicated the gas temperature in the exit plenum instead of indicating 

the exit gas temperature. 



81 

This thermocouple measurement error is the most probable source of the so-called 

"non-heating-up" phenomenon observed in the experiments. For high flow rates, the gas 

in the plenum chamber was rapidly replaced by gas exiting the flow passage; therefore, 

the thermocouple indication was more nearly that of the exit gas temperature. On the 

other hand, at low flow rates, the warm gas exiting from the flow passage mixed with the 

much larger volume of colder gas already in the plenum chamber. As a result, the gas 

mixture temperature (measured by the thermocouple) was significantly lower than the 

gas exit temperature. 

It is also possible that there was some leakage along the length of the microchannel, 

although gas leakage would not result in a decrease of the gas temperature while the gas 

was being heated. 

7.2. Heat Transfer with Microtube 

In this experiment, the flow rate was carefully controlled to 0.1 ml/min in an attempt 

to keep the inlet pressure in the vacuum regime. After twenty minutes, the data were 

measured with the inlet pressure 737 torr (14.3 psia) and outlet pressure 5 torr (0.097 

psia); the gas temperature in the pipe far away from the test section was 25°C. The results 

are shown in Table 7.2. 

Table 7.2 Experiment with microtube 

Run 
no. 

Gv 
ml/min 

Tinlet 
°c 

Toutlet 
°c 

Twi 
°C 

TW2 
°C 

Nu Re 

1 0.11 29.50 25.11 88.41 82.56 0.27 
2 0.11 30.05 25.58 91.35 85.43 0.27 
3 0.11 30.28 25.87 89.50 84.12 0.27 
4 0.11 30.29 25.92 87.73 82.93 0.015 0.27 
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From Table 7.2, one can observe that: 

1) Non-constant wall temperature. It is obvious that constant wall temperature 

condition cannot be achieved by the current designed apparatus. The temperature 

difference between the inlet wall temperature Twl and the outlet wall temperature Tw2 

(approximately) is about 6 °C. It is due to that the microtube wall being made of polymite 

(k = 0.155 W/m-K) rather than aluminum (k = 204 W/m-K). Therefore, it cannot be 

regarded as an isothermal wall. 

2) Non-heating-up-phenomenon. The experimental results shows that the inlet gas 

temperature Tin]et is higher than the outlet gas temperature Toutlet by about 4.5°C, which 

was not the anticipated situation. This phenomenon happened also in the experiment with 

the microchannel when the flow rate was 47.3 ml/min. 

One explanation is that the Joule-Thomson effect caused by the expansion of the gas 

at the outlet may result in a cooling effect to such an extent that the outlet gas temperature 

Toutlet is of a smaller value. The expansion of a real gas from a high to a lower pressure in 

an isenthalpic (constant-enthalpy) process will result in a temperature change, which 

may be either positive or negative, depending on the pressure and temperature and type of 

gas. For helium gas expanding from Tj = 300 K = 26.8°C to an exit pressure of 1 atm, we 

find the following values (Table 7.3) forthe exit temperature, using hj = h2 (Mann, 1962). 

Note that the temperature increases during the Joule-Thomson expansion for helium gas. 

We may conclude that any decrease in temperature of the helium gas could not be caused 

by the Joule-Thomson expansion effect.   Any Joule-Thomson effect for helium gas 

around the ambient temperature would result in a warming effect or an increase in 

temperature.   Unless the inlet pressure is greater than about 30 atm (440 psia), the 

temperature change is small (less than 2°C or 4°F). 
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Table 7.3 Temperature change vs. pressure for helium gas 

PRESSURE, Pl 
atm    psia    kPa 

EXIT TEMPERATURE, T2 
K               °F                °C 

(T2- 
°C 

-Ti) 
°F 

4     58.8    405 300.2            80.6             27.0 0.2 0.4 
6     88.2    608 300.3             80.8              27.1 0.3 0.5 
8     117.6    811 300.4             81.0              27.2 0.4 0.7 

10     147.0    1013 300.6             81.3              27.4 0.6 1.1 
20    294.0   2027 301.2             82.4             28.0 1.2 2.2 
50    735.0   5066 303.2            86.0             30.0 
 ——  3.2 5.8 

Other explanations are as follows: 

Wang et al. (1994) pointed out, based on their experiments: 

Microscale heat transfer and transport phenomena are expected to be quite 
different from those in customary situation. ... 

(1) For single-phase liquid forced convection through microchannel, a fully 
developed heat transfer regime is initiated at about Re = 1000-1500. The 
transition to turbulent mode is influenced by liquid temperature, velocity and 
micro size. ... 

(2) Transition and laminar heat transfer in microchannels are highly strange 
and complicated [italics added], compared with the conventionally sized 
situation. The range of transition zone, and heat transfer characteristics of both 
transition and laminar flow are highly affected by liquid temperature, velocity and 
micro size. 

Yu (1994) pointed out in his dissertation: 

One may ask the reason and significance of the shifting. It is well known now 
that the process of convective heat transfer depends on flow field. The relative 
rates of diffusion of heat and momentum are related by the Prandtl number. In the 
micro tube experiments, it has been shown that flow resistance was reduced both 
in laminar and turbulent flow. As it is well known, if the velocity profile follows a 
parabolic curve, then the friction factor f times the Reynolds number should be 64. 
But in various micro tube experiments, the number is around 50. As discussed 
before in Section 1, it cannot be caused by a slip boundary condition.   This 
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manifests that there are some alterations in velocity profile, and this in turn will 
affect convective heat transfer [italics added]. Similarly, flow resistance 
reduction is also found in turbulent flow. AH of these will lead one to expect that 
heat transfer in micro tubes will behave differently both in laminar and 
turbulent flow [bolds added]. 

Also Bailey et al. (1995) pointed out: 

Several effects and conditions can exist in micro-scale convection that are 
normally neglected when considering macro-scale flow. ... Another observed 
micro-scale effect is that of large temperature variations of the transport fluid 
[italics added] (Wang and Peng, 1994). This can cause a significant variation in 
fluid properties throughout a micro-system, invalidating the often used 
assumption of constant properties. ... As of yet, it is not completely clear when 
these factors come into play as fluid convection systems are reduced in size. At 
present, there are not enough experimental data to make this determination. 
Additionally, there are likely more micro-specific effects and conditions that 
have yet to be observed [bolds added]. 

The experimental results for the heat transfer in the microtube and the microchannel 

were different in this study. In both the microchannel and the microtube, the Reynolds 

number was significantly less than 2000; therefore, the flow pattern was completely 

within the laminar flow regime. Although it is possible that unrecognized micro-specific 

phenomena could be responsible for the unusual experimental results, it is more probable 

that the placement error of the thermocouple at the flow channel exit caused the 

unanticipated experimental results at the very low flow rates. 

The fact that the dimension of the flow passages and the thermocouple bead were the 

same order of magnitude could also contribute to the thermocouple measurement error. 

Because of these uncertainties, the experimental data obtained in this research are likely 

to be of little value in assessing the validity of the analytical solutions. 
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7.3 Uncertainty Analysis for the 
Experimental Data 

Along with statistical analysis, uncertainly analysis mainly concerns uncertainty in 

the final results because of uncertainties in the primary measurements. The method 

presented by Kline and McClintock (1953) was used in this research. If the final result R 

is a function of several independent variables, xi, X2, ..., xn, 

R = R(x!,x2, ...,xn), 

then the uncertainty of R associated with the uncertainties in measuring the primary 

variables is: 

or 

UR. U, ,       U, , TT 

From the manufacturers' data, the measuring uncertainties for each independent 

variable are: 

UD/D = 0.0025, UL/L =0.001, UGv/Gv = 0.0128 

Up/P = 0.0025, UT = 0.4 °C, Uc/cP = iye = Uv/v = Uk/k =0.005 

(1) uncertainty in the Reynolds number 

Re      KGV.) +(TT}  +(~)r/ 

and URe/Re = 1.4ft. 
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(2) uncertainty in dimensionless temperature 

T - & <£> n + (|rt1/2 

Ue/0 = 1.45% for the case of microtube; ItyO = 2.13% for the case of a microchannel with 

Gv = 343.3 ml/min and Ue/9 = 1.92% with Gv = 149.2 ml/min 

(2) uncertainty in the Nusselt number 

& = K^ + & + & + & + & + C^ 
UNu/Nu = 18.3% for the case of a microtube; UNu/Nu = 36.0% for the case of a 

microchannel with Gv = 343.3 ml/min and UNu/Nu = 14.9% with Gv = 149.2 ml/min. 



CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

8.1 Conclusions 

In the previous chapters, the mathematical models of velocity distribution and 

temperature distribution were established, and the expression for the series solution 

shows the importance of the eigenvalues. Since those eigenvalues were extremely 

difficult to evaluate directly from the original expansion, a concise matrix was derived 

based on the properties of the elements in the original matrix. A truncated eigenfunction 

was obtained which can be used to evaluate the eigenvalues. The procedures were 

developed and some results were obtained. Also, the heat transfer experiments were 

conducted with a single microchannel and with a microtube. From the discussions of 

analytical and experimental results, the following conclusions can be drawn: 

1) The technique for evaluation of the eigenvalues of the heat transfer problem in 

slip-flow is computationally effective in the evaluation of the first eigenvalues; 

2) The Nusselt number increases as Kn increases, or the heat transfer is enhanced 

under slip-flow conditions for a given aspect ratio; 

3) When Kn is equal to or greater than 0.02, the increase in Nu« is greater than 5 

percent so that the effect of slip flow conditions should be taken into consideration in the 

computations of the heat transfer coefficient; 

4) The experiments were of no value in assessing the validity of the analytical 

solutions in this research. 

87 
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8.2 Recommendations for Future Study 

Considering the results such as the non-heating-up-phenomenon occurring in the 

heat transfer experiment with a microchannel/raicrotube may be caused totally by 

measurement errors due to the small flow rate and the fact that both the dimensions of the 

microtube to be measured and that of the t-c bead are of the same dimension level, it is 

suggested that further experiments which may result in acceptable data be conducted. 

The suggested changes to the experiment include the following: 

1) A microchannel machined in the aluminum should be used to reach an 

approximate isothermal wall condition. The wall made of a material with high heat 

conductivity can easily maintain a small temperature difference between the inlet and the 

outlet, better approximating the isothermal boundary condition. 

2) A much shorter microchannel or several parallel microchannels should be 

employed to increase the flow rate for a reasonable pressure drop. 

3) A hot gas that is cooled by a surrounding cold water jacked should be used rather 

than the reverse situation. A high temperature is desired at the inlet in order to produce 

a relatively large Kn. 

For the analytical solution, the evaluation of the eigenvalues is very important for 

the solution of the heat transfer problem through microchannels in slip-flow. Although 

the technique is effective for the first values, it is extremely time-consuming and the 

computational error is a problem for other eignevalues. It is suggested that new codes 

be developed on a supercomputer to solve the extremely large matrices to obtain more 

eigenvalues more effectively so that the thermal entrance effect in the rectangular 

microchannels can be established. 



APPENDIX A 

CALCULATION OF EIGENVALUE I FOR Kn = 0.00 

WITH ASPECT RATIO a = 1 
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Calculation of Eigenvalue I for Kn = 0.00 with Aspect Ratio a = 1   10/27/95 

11 = ß = (1+a)/2 and 12 = ß' = (1+1/a)/2 

11 =1 12 =1    a =1 

i =0,1.. lOj =0,1.. 10 

Ro =.±. y    i 

/  ^(2-k-l)4 

8 

(2k- 1).*       ■        2 

R(x,y) :=—■ £ 
J       coshj(2k-l)-,(x-0.5) 

 -sin (2k- 1)^;; l L a  
«'  kT, (2-k-I)3     I a.: ^.(2-k-l).,' 

Calculating time is about 30 minutes for i = j = 10 

rii    rl2 

«.j 

J 0      JO 

R(x,y)      /.    x        /.    v\ 
-rr^-oosii-Jt— -cosii-Ä-i- dydx 
|R0        I     11/      \J    12    y 

'\Jl\iJ\T\l\>KdJ- 

1.00147 0 -0.27819 0 -0.08309 0  -0.03854  0  -0.02209  0  -0.01431 
0 0   0 0 0 0 0 0 

-0.27809 0 0.08285 0 0.02237 0  0.00979  0  0.00542  0  0.00343 

0 0 0 0 0 0 0 0 
-0.08299 0 0.02237 0 0.00725 0  0.00338  0  0.00192  0  0.00122 

0 0 0 000000 0 0 

0.03844  0   0.00979   0   0.00338   0      0.00167 0  9.73085-104 0 6.30798-10"4 

000000 0 0 0 0 0 

0.02198  0   0.00542   0   0.00191   0 9.72637-10"4 0  5.81959-10"4 0 3.83988-10"4 

oooooo 0 0 0 0 0 

L-0.01418  0   0.00343   0   0.00122   0 6.29649-10"4 0  3.93537-10"4 0 2.6271 MO"4 
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m :0 n -"0 

P=0,1..5q=0,l„5      b60 =0   b7f0=0   bM=0 

1   . 
b      =-idi       , -d 

P,q      4  \   im-p, , in —q 1- d - d 'i m-p,,n-q       m~p,n-q       m-r-p.in-q/ 

0 0 0 0 0   0 i 
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0 0 o o o oj 

jO  0 0  0  0 0 I 

j 0 0 0 0 0 o I 
bOO =10  0 0  0  0 0 i 

io 0 0 0 0 0 I 
;o o o o o o i 
10 0 0 0 0 0 i 
[00  0000! 
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Comparison of different approximation 
1 -11,11.1.. 80 

Xl(i) -(4.9348^.0.41015).(12.33701 - 1,346255H24.6740, - X, 

used in evaluation of eigenvalue 

331973 )•(!)■ 
10001— 

Xl(l) 

-10001 

10 20 30 

- (12.33701-i,346255).^.0.0638952 

J. =10 
root(Xia),l) = i1.96289 

J. =40 
root(Xia),l)=35.62984 

i =70 

root(Xl(l),i) =77.06352 

* =30,30.1.. 130 

4.9348 

0.41015 

12.33701 

0.346255 

19.73921 

0.2937 

= 12.0317 

= 35.62984 

= 67.20875 

X2(X) =(i9.7392i - L0.2937H 12.33701 - X-0.346255H32, 

2000 
07621 -X-0.281595)- 

xn\) 

-20001 

20 «° 60 

- (19.73921-X.0.2937).X2.0.064662 

* =10 

iw*(X2(l),l) =34.96576 

X. =70 

root(X2(X),i) =67.20875 

X =120 

nx)t(X2(l),l) = 121.27253 

12.33701 

0.346255 

19.73921 

0.2937 

32.07621 

0.281595 

= 35.62984 

= 67.20875 

= 113.90902 

140 



>• =70,70.05.-190 

X3(l) = (24.674- X-0.331973)(32.07621 - *0.281595)(44.41322- 1-0.270) 

- (32.07621 - 10.281595)i2-0.06914252 

96 

3000 

-2000 

200 

X =70 
root(X3a),X) =71.40406 

i- =110 
mot(X3(X),X) = 113.90901 

X =180 
root(X3(l),l) = 180.87005 

24.67401    „ 

olil^T74-32535 

32.07621 

0.281595 

44.41322 

0.27003 

= 113.90902 

= 164.47513 
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* =11,11.05.. 125 

x(l)=>.3.0.063895.0.0503775-0.00291065925-l3.0.083385.0.0503775.0.0021775 

XI23(1) =X1(1).X2(1).X3(1)- X2(l)-x(i)2 

1-1010 

0 

X123CI) 

-l-io10 

-1.5-1010 

1 "=10 
root(X123(X),l) = 11.96288801491174 

1 =40 

root(X123(X),X) =35.62984 

X =70 

root(X123(X),X) =71.40407 

1 =110 

root(X123(l),X) = 113.90902 

1-165 

root(X123(X),X) = 121.27253 

140 
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a = h/b aspect ratio 

a =1  1=1 

n =0,1..5 
m =0,1. .5 

V.=^-(»-.V) 

0 

2.4674011 

9.8696044 

2.4674011 9.8696044 22.2066099 39.4784176 

4.9348022 12.3370055 24.674011 41.9458187 

g= ..v~,™  12.3370055 19.7392088 32.0762143 49 348022 

22.2066099 24.674011 32.0762143 44.4132198 61.6850275 

39.4784176 41.9458187 49.348022 61.6850275 78 9568352 

61.6850275 64.1524286 71.5546319 83.8916374 1011634451 

61.6850275 

64.1524286 

71.5546319 

83.8916374 

101.1634451 

123.370055 



APPENDIX B 

CALCULATION OF dg AND bmnp>q FOR Kn = 0.02 

WITH ASPECT RATIO a = 1 



Calculation of dfJ and bmnp,q for Kn = 0.02 with Aspect Ratio a = 1 

100 

Kn =0.02 a = .01,.02..22 

*(<*) = 2Knatan(a)- ]. 

3000 

2000 - 

tg(o) 
1000 - 

u(a) 

-1000 

tg(a) =tan(a)a        „(a) =_J__ 
(2Kn) 

root(f(a),a) = 1.510451617057772 

a =4.533017031227471 
root(f(a),a) =4.533017098853988 
a =7.560312429685289 
root(f(a),a) =7.560312976908389 
a = 10.59472926320076 
root(f(a),a) = 10.59472964716824 
a = 13.63777351248604 
root(f(a),a) = 13.63777658025087 
a = 16.69010436230128 
root(f(a),a) = 16.69010802858231 
a =19.75169253134426 
root(f(a),a) = 19.75169677799757 
a =22.82205687896281 
root(f(a),a) =22.82205788967408 

b, =1-510451617057772 

b2 =4.533017098853988 

b3 =7.560312976908389 

b4 = 10.59472964716824 

13.63777658025087 

16.69010802858231 

: 19.75169677799757 

22.82205788967408 

b« = 

b, = 



w/wO (w) for 8 a's for ratio a =1 ( here a = b) in Eq.(19) [ Eqs. (12) and (13) ] 

101 

wO --2- E-~ sinfb, 

i=1   (bi)M + 2.Kn-«,(b.)2 

/bj 
sinhl — 

\a 

cosh( — U 2Knb.sinh - 
. ■ / '        \ a wO =-0.16265 

wO --2- 
sin ib.,2 

i=l   ibij   l + 2KnsiDvbi; 

bj 
sinhj — 

\a 

;bi lb. 
cosh| —  ■>- 2-Kn-bj-sinh — 

i = 1,2..8 wO =-0.16284 

sin! b 

1 -r 2-Kn-snv bj2 ^b)3 8i 

coshl — U2Knb.sinh —. 

w(x,y) =-2- ^  cos! 

i=l 
11      /   i   « 

l-coshM-J2--- 1 ßi 
MO, 0.5) =-0.02681 
M 1,1) ="0.00259 
w( 0.5,0) =-0.02498 

w(x ■« =-* s cos 

i=l 

V|2^-3!   ,, 1 - cosh 
a  \    12 ■til 

Therefore, using 8 u's is accurate enough 

w( 0,0.5) =-0.0265 
w( 1,1) =-0.00305 
w( 0.5,0) =-0.02629 
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m =1 ii =1 

:0,1..5q = 0,1..5 

b 
p.q 

1   <A 
4   ^   im-pi In — ql im- -d -d 

p ,n-r-q        m—p,n—q        m-j-p, |ii-q 

b = 

1 0   0 0 0 0 0 

0   0.38917 0 -0.05173 0 -0.01325 

0   0 0 0 0 0 

0 -0.05191 0 0.0079 0 0.00198 

0   0 0 0 0 0 

0 -0.01406 0 0.00199 0 4.625-10~4 

0   0 0 0 0 0 

0   0 0 0 0 0 

0   0 0 0 0 0 

JO        0        0'       0        0 

0   0.38917   0 -0.05173  0 

bll 

!0 

i° 
io ! 
jo 
0 

0 

0        0 

-0.05191   0 

0        0 

0        0 

0.0079    0 

0        0 

-0.01406 0 0.00199 0 

0 0        0 0 

0 0        0 0 

0 0        0 0 

0        ; 

-0.01325   i 
i 

o      I 
0.00198   ! 

i 

0 j 

4.625 10"4 | 

o i 
o . I 

o      I 

b1 ,=0.38917 

similarly, 

b!2 

0 0 0 0        0 0 

0 0 0.33744 0 -0.06498 0 

0 0 0 0         0 0 

0 0 -0.04401 0 0.00988 0 

0 0 0 0         0 0 

0 0 -0.01207 0 0.00245 0 

0 0 0 0         0 0 

0 0 0 0         0 0 

0 0 0 0         0 0 

bl3 

0 0 0   0 0   0 

0 -0.05173 0 0.32419 0 -0.07135 

0 0 0   0 0   0 

0 0.0079 0 -0.04203 0 0.01056 

0 0 0   0 0   0 

0 0.00199 0 -0.01161 0 0.00264 

0 0 0   0 0   0 

0 0 0   0 0   0 

0 0 0   0 0   0 

bl4 

0 0        0 0 0 0 

0 0 -0.06498 0 0.31782 0 

0 0        0 0 0 0 

0 0 0.00988 0 -0.04134 0 

0 0        0 0 0 0 

0 0 0.00245 0 -0.01142 0 

0 0        0 0 0 0 

0 0        0 0 0 0 

0 0        0 0 0 0 

;0 0 0        0 0         0 

io -0.01325 0 -0.08323 0 0.36255 

JO 0 0        0 0         0 

JO 0.00198 0 0.01306 0 -0.05037 

bl5 =| 0 0 0        0 0        0 

iO 4.625-IO-4 0 0.00264 0 -0.01134 

0 0 0        0 0        0 

iO 0 0        0 0        0 

[0 0 0        0 0        0 
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fo 0 0 0 0 0 

!0 0 0 0 0 0 
jO 0.33726 0 -0.04383 0 -0.01127 

iO 0 0 0 0 0 
b21 =10-0.06596 0 0.00989 0 0.00244 

;0 0 0 0 0 0 

|0 0 0 0 0 0 
JO 0 0 0 0 0 
•0 0 0 0 0 0 

[0 0 0 0       0 0 

;0 0 0 0       0 0 

;0 0 0.29343 0 -0.0551 0 

JO 0 0 0       0 0 
b22 =jo 0 -0.05608 0 0.01233 0 

JO 0 0 0       0 0 

10 0 0 0       0 0 

JO 0 0 0       0 0 

10 0 0 0       0 0. 

b23 ■ = 

0        0 0 0 0 0 

10        0 0 0 0 0 

0 -0.04383 0 0.28216 0 -0.06079 

0        0 0 0 0 0 

0   0.00989 0 -0.05363 0 0.0132 

0        0 0 0 0 0 

0        0 0 0 0 0 

0        0 0 0 0 0 

oooooo 

b24 = 

0 0       0 0 0 0 

0 0       0 0 0 0 

0 0 -0.0551 0 0.27647 0 

0 0       0 0 0 0 

0  0 0.01233 0 -0.05277 0 

0 0       0 0 0 0 

0  0       0 0 0 0 

0 0       0 0 0 0 

0 0       0 0 0 0 

b25 

:o 0 0 0 0 0 

|o 0 0 0 0 0 
iO 
1 

-0.01127 0 -0.06079 0 0.27422 
iO 0 0 0 0 0 
io 
1 

0.00244 0 0.0132 0 - 0.05239b 31 : = 

1° 0 0 0 0 0 
10 0 0 0 0 0 
0 0 0 0 0 0 

.0 0 0 0 0 0 

oooooo 
0 -0.05191   0    0.0079    0   0.00198 

OOOOOO 

0   0.32321   0 -0.04184  0 -0.01081 

OOOOOO 

0 -0.07107  0   0.01055   0    0.0026 

OOOOOO 

OOOOOO 

OOOOOO 
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b32 

0 0       0 0       0 ol 

0 0 -0.04401 0 0.00988 0 i 

0 0        0 0        0 0 | 

0 0   0.28136 0 -0.05265 0 i 

0 0        0 0        0 0 | 

0 0 -0.06052 0 0.01316 0 I 

0 0        0 0 ! 

0 0       0 0 i 

0 0 

0 0 

0  0 0 0 0 0 

10 0        0       0 0       o 

!0 0.0079    0 -0.04203 0   0.01056 

jo 0       0       0 0       0 
!0 -0.04184  0   0.27055 0 -0.05815 

b33 =|0 0        0        0 0        0 

JO 0.01055   0 -0.05792 0    0.0141 

|o 0       0       0 0       0 

jo 0       0       0 0       0 

[000000 

;0 0       0 0 0       o 

0  0 0.00988 0 -0.04134  0 

10 0        0 0 0 0 

jO  0 -0.05265 0 0.26505   0 

b34 =j 0 0        0 0 0 0 

|0 0 0.01316 0 -0.05697  0 

jO 0        0 0 0 0 

!0 0        0 0 0        0 

LO 0        0 0 0        0 

t>35 

|0 0 0 0   0   0  1 

0 0.00198 0 0.01056 0 -0.04105 

0 0 0 0   0   0 

0 -0.01081 0 -0.05815 0 0.26288 

0 0 0 0   0   0 
0 0.0026 0 0.0141 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 -0.05657 

0 0 

0 0 

0 0 



i =0,1.. 10 j =0,1.. 10 

105 

•11 

».j 

12 

-p—--cos i-n— .cosu-n-J-  dvdx 
M \     11/       J    12/  y 

d = 

[m^mijplcilj ' 

; 0.99883 0 -0.24674 0 -0.08526 0 

'000000 

1-0.24538  0   0.06573   0   0.02028   0 

j      0 0        0 0        0 0 

j -0.08324 0 0.02024 0 0.00639 0 

i      0 0       0 0        0 o 

-0.03838 0 0.00887 0 0.00297 0 

i      0 0        0 0        0 0 

0.04342 

0 

0.00912 

0 

0.00315 

0 

0.00158 

0 -0.0222 0 -0.01381 

0 0 0 0 
0 0.00486 0 0.00306 

0 0 0 0 
0 0.00162 0 0.00101 

0 0 0 0 

0  7.94552-10"4 0 4.91934-10'4 

0 0 0 0 0 

0.02189 0   0.00493   0   0.00169   0  9.45238-10"4 0 4.68553-104 0 2.89189-10"4 

0        °        °        0        0        0 0 0 0 0 0 

0.01411   0   0.00313   0   0.00108   0 6.24868 10"4 0 3.15992-10"4 0 1.94737-10"4 

m =0    n =0 

P =0,1..5q =0,1..5 

b      = — id        I,      , - rf 
P.q      4   I   im-pljn-q!      a 

Vo =0  b7,o =0  b8f0" = 0 

m-pi,n-)-q^   m-Hp,n_q       m+p, |n-q| 

b = 

0 0 0 0 0 o] 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

oooooo 
oooooo 
oooooo 

bOO = 

OOOOOO 

OOOOOO 

0 0 0 0 0 0 

OOOOOO 

OOOOOO 

0 0 0 0 0 0 J 
oooooo! 
oooooo 
oooooo 
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BY DENNIS ET AL. 
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THE FIRST THREE EIGENVALUES FOR Kn = 0.00 (DENNIS ET AL.) 

a 1.000 0.667 0.500 0.250 0.125 

*i 11.91 12.49 13.57 17.76 22.38 
h 71.09 51.58 41.17 28.17 25.61 
h 157.9 99.71 94.93 47.82 31.81 
ffli 0.804 0.802 0.789 0.756 0.737 
®2 0.104 0.064 0.071 0.107 0.091 
®3 0.014 0.043 0.020 0.028 0.034 



APPENDIX D 

DATA OF ROUGHNESS AND DIMENSION OF MICROCHANNEL 



DATA OF ROUGHNESS AND DIMENSION OF MICROCHANNEL 

Test# 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

Mean 
Standard Error 
Median 
Mode 
Standard Deviation 
Variance 
Kurtosis 
Skewness 
Range 
Minimum 
Maximum 
Sum 
Count 

Ra: nm 
143.31 
140.81 
102.9 

141.38 
116.37 
113.79 
108.68 
91.45 
97.62 

149.83 
90 

98.37 
118.83 
82.42 
98.07 
79.71 
75.25 

100.62 
91.26 

127.49 
128.89 
115.02 
93.57 

115.21 
142.57 
149.95 
88.13 

128.61 
105.2 
93.32 

Rq:nm iRt: micro 
179.43 
169.44 
129.28 

2.6 
2.74 

176.5 
154.2 

144.95 
141.12 
121.73 

131.5 
187.22 

1.77 
3.39 
2.36 

117.61 
122.61 
155.26 
111.46 
124.16 
100.51 
95.66 

129.55 
117.22 
160.78 
157.93 
146.06 
118.38 
149.07 
181.83 
184.24 
119.18 
162.84 
133.64 

122.5 

2.05 
2.81 
2.16 
3.06 
2.25 
1.86 
2.05 
2.26 
3.39 
1.81 
1.81 
2.05 
2.89 
3.02 
1.71 
2.12 
2.02 
2.37 
2.15 
2.28 
1.97 
1.86 
1.99 
1.69 
1.92 

2.280333 
0.089209 

|       2.135 
1 2.05 
0.488619 
0.238748 
-0.00615 
0.973331 
 1/7 

1.69 
3.39 

68.41 
 30 
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Test*',                |     Width   |                | Depth 
i       Top   | Bottom I 

1 115.5€ 112 20.97 t 

* 133.11 114.12 20.58 2 133.97 r 114.23 22.32 
A 131.56 113.1S 20.87 
5 128.01 114.97 21.51 
6 118.52 114.37 21.96 
7 117.34 113.19 22.29 
8 117.82 114.23 23.67 
9 118.52 112.6 22.71 

10|     117.93 110.82 21.55 
11 119.17 113.21 22.85 
12 122.6 113.03 24.61 
13 128 112.61 22.65 
14 126.12 113.63 25.18 
15 123.2 113.04 25.83 
16 118.89 112.35 25.51 
17 117.22 111.24 24.86 
18 117.2 112.44 24.41 
19 118.42 114.83 23.27 
20 119.71 112.6 24.62 
21 118.41 112.44 25.34 
22 118.52 113.18 26.81 
23 116.74 112.01 24.84 
24 114.35 110.01 25.94 
25 120.02 113.63 27.81 
26 117.15 112.41 27.22 
27 116.84 112.02 23.92 
28 116.59 112 26.25 
29 116.61 111.89 26.66 
30 114.69 110.58 24.21 

Mean 120.4263 112.7623 24.04067 
Standard tj 0.991225 0.22057 0.368448 
Median 118.47 112.605 24.31 
Mode 118.52 112 #N/A 
Standard C 5.429164 1.20811 2.018072 
Variance 29.47582 1.459529 4.072613 
Kurtosis 0.910125 -0.0658 -0.96811 
Skewness 1.396207 -0.21856 -0.01815 
Range 19.62 4.96 7.23 
Minimum 114.35 110.01 20.58 
Maximum |     133.97 114.97 27.81 
Sum         !   3612.79 3382.87 721.22 
Count      !           30 30 30 
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EXPERIMENTAL HEAT TRANSFER DATA 
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Inlet, outlet and wall temperatures 

Experiment date: June 3,1996 

Flow media: Helium gas 

Size of microchannel: 117 u.m x 24 \im 

Length of microchannel: 63.5 mm 

Operation temperature: 24°C 

Run 
number 

Gv 
ml/min 

Tinlet 
°c 

Toutlet 
°c 

Twi 
°C 

TW2 
°C 

1 343.3 29.90 37.47 78.41 78.56 
2 300.9 29.62 33.56 74.89 74.96 
3 246.7 29.84 32.15 69.83 69.88 
4 198.6 29.77 31.69 74.81 74.89 
5 173.3 29.42 30.54 70.65 70.69 
6 149.2 29.31 30.12 72.13 72.22 
7 125.9 29.21 29.67 71.07 71.12 
8 101.8 29.11 29.18 68.69 68.74 
9 47.3 29.33 28.79 70.65 70.71 
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Inlet, outlet and wall temperatures 

Experiment date: June 18, 1996 

Row media: Helium gas 

Size of microtube: 52.1 \im 

Length of microchannel: 70 mm 

Operation temperature: 25°C 

Run 
no. 

Gv 
ml/min 

Mnlet 
°c 

^outlet 
°C 

Twi 
°C 

Tw2 
°C 

1 0.11 29.50 25.11 88.41 82.56 
2 0.11 30.05 25.58 91.35 85.43 
3 0.11 30.28 25.87 89.50 84.12 
4 0.11 30.29 
 _ 25.92 87.73 82.93 
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REDUCED HEAT TRANSFER DATA 
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Data reduction of heat transfer 

Experiment date: June 3, 1996 

Flow media: Helium gas 

Size of microchannel: 117 [im x 24 fim 

Length of microchannel: 63.5 mm 

Operation temperature: 24°C 

Table El 

Run 
number 

Gv 
ml/min 

Tinlet 
°c 

^outlet 
°c 

Twi 
°C 

TW2 
°c 

Nu Re 

1 343.3 29.90 37.47 78.41 78.56 80.96 720 
2 300.9 29.62 33.56 74.89 74.96 43.18 618 
3 246.7 29.84 32.15 69.83 69.88 20.43 507 
4 198.6 29.77 31.69 74.81 74.89 11.78 408 
5 173.3 29.42 30.54 70.65 70.69 6.59 356 
6 149.2 29.31 30.12 72.13 72.22 3.59 307 
7 125.9 29.21 29.67 71.07 71.12 1.76 259 
8 101.8 29.11 29.18 68.69 68.74 0.11 208 
9 47.3 29.33 28.79 70.65 70.71    1 -0.52 97 
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Experiment date: June 18, 1996 

Flow media: Helium gas 

Size of microtube: 52.1 \im 

Length of microchannel: 70 mm 

Operation temperature: 25°C 

Table F.2 

Run 
no. 

Gv 
ml/min 

Tinlet 
°c 

^outlet 
°c 

Twi 
°C 

TW2 
°C 

Nu Re 

1 0.11 29.50 25.11 88.41 82.56 0.27 
2 0.11 30.05 25.58 91.35 85.43 0.27 
3 0.11 30.28 25.87 89.50 84.12 0.27 
4 0.11 30.29 25.92 87.73 82.93 -0.015 0.27 



APPENDIX G 

PROPERTIES OF THE MICROCHANNEL AND MICROTUBE 

PROPERTIES OF HELIUM GAS 
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Table G.l. Physical properties of the microchannel 

Channel material Aluminum 

Mechanical Properties 
Density, kg/m3 

(lbm/ft3) 
Tensile Strength (MPa) 

(psi) 

2707 
(169) 
120.7 

(17500) 

Thermal Properties 
Thermal Conductivity 

W/m-K 204 
(Btu/hr-ft-°F) (118) 

Specific Heat 
KJ/kg-K 0.896 
(Btu/lbm-°F) (0.214) 

Polymide 

1042 
(65) 
103 

(15,000) 

0.155 
(0.090) 

1.088 
(0.260) 

Source of Data: J.P. Holman, Heat Transfer, McGraw-Hill Book Co., New York, 1986 
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Table G.2. Properties of helium gas at atmospheric pressure 

Values of u, k, and Cp are not strongly pressure-dependent for He and may be used 

a fairly wide range of pressures. 

over 

T,K 0 
kg/m3 

CP 
kJ/kg°C kg/m s 

V 

m2/s 
k 

W/m°C 
200 0.2435 5.200 15.66X10"6 

64.38x10"6 
0.1177 

255 0.1906 5.200 18.17 95.50 0.1357 
366 0.13280 5.200 23.05 173.6 0.1691 
477 0.08282 5.200 27.50 269.3 0.197 
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