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Abstract 

Increases in processor speeds and the availability of audio and video devices for per- 
sonal computers have encouraged the development of interactive multimedia applications 
for teleconferencing and digital audio/video presentation among others. These applications 
have stringent timing constraints, and traditional operating systems are not well suited to 
satisfying such constraints. On the other hand, hard real-time systems that can meet these 
constraints are typically static and inflexible. 

This dissertation presents an enforced operating system resource reservation model for 
the design and implementation of predictable real-time programs. Applications can reserve 
resources based on their timing constraints, and an enforcement mechanism ensures that 
they do not overrun their reservations. Thus, reserves isolate real-time applications from the 
temporal properties of other real-time (and non-real-time) applications just as virtual mem- 
ory systems isolate applications from memory accesses by other applications. In addition, 
reserves are first class objects that are separated from control abstractions such as processes 
or threads. Therefore reserves can be passed between applications, and this model extends 
naturally to distributed systems. 

Reserves support the development of hard real-time and soft real-time programs, and 
programming techniques based on reserves illustrate how to use them effectively. An imple- 
mentation of processor reserves in Real-Time Mach shows that reserved multimedia appli- 
cations can achieve predictable real-time performance. 
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Chapter 1 

Introduction 

This dissertation presents the design, implementation, and experimental analysis of a 
model for operating system resource reservation. The reservation system supports predict- 
able performance in real-time and multimedia applications, enabling them to meet their tim- 
ing requirements, and facilitating adaptive resource management. This approach is suitable 
for real-time programming problems that arise in personal computers and workstations 
where users may want to run real-time multimedia applications or other real-time programs. 
The approach is also applicable to embedded system design where better resource reserva- 
tion abstractions at the system level aid in the design, debugging, and maintenance of such 
systems. 

1.1 Motivation 
Recent increases in processor speed and network bandwidth combined with the wide 

availability of digital audio and video devices have enabled a plethora of multimedia appli- 
cations and services. Examples of these include audio/video presentation and playback, 
audio/video phone and conferencing, persistent multimedia data storage services, telephone 
answering and call management, speech processing, and virtual reality applications. 

Stringent timing constraints and large volumes of data characterize these applications. 
Existing operating systems are not designed to support such applications, especially when 
real-time multimedia applications execute alongside a non-real-time workload. A key 
requirement of systems for multimedia applications is predictability, and this means that 
possible contention for resources must be identified and managed to ensure the timeliness of 
multimedia data processing and delivery. Although it is possible to manage contention for 
system resources in an ad hoc manner based on the specific requirements of a particular 
class of applications, this dissertation describes a more structured approach to managing 
contention based on: 

•    A reservation model that provides an abstraction for resource capacity 



reservation and a system-level mechanism for scheduling resources. 

• A higher-level layer for implementing resource management policy using 
the system-level mechanism. 

• Programming techniques for structuring applications in a way that can 
take full advantage of the resource reservation model. 

The reservation mechanism and allocation policy provide abstractions that relieve the 
system designer from relying on complicated high-level application information to make 
low-level scheduling decisions. And the programming techniques facilitate the program- 
ming of real-time applications that meet their timing constraints. 

1.2 Background 

Real-time system designers must take timing constraints into account when developing 
real-time applications and the systems to support them. The programming techniques and 
resource management policies that have been developed for real-time systems typically 
apply ad hoc solutions for each application area. Several issues and problems arise which 
can be addressed with appropriate system abstractions. 

1.2.1 Programming real-time applications 

In applications with timing requirements, the software must be designed to satisfy the 
timing constraints. The user-level servers and system services used by such applications 
must be designed with timing constraints in mind. The resource management policies under- 
lying those system services must also be designed to support applications with timing con- 
straints. 

Traditionally in real-time system design, application programmers use small, simple 
operating systems that provide fixed priority processor scheduling, priority queueing for 
various system resources such as semaphores and mailboxes, and perhaps priority inherit- 
ance protocols. The application programmers must then build many of their own real-time 
system services such as database management systems, file systems, and network communi- 
cation. These programmers must carefully schedule the various applications running on the 
system and manage contention for the processor and other system resources. In doing the 
design and scheduling, the computational requirements of applications must be carefully 
measured and characterized, and resource sharing must be carefully planned. Applications 
are therefore very sensitive to the misbehavior of other applications. For example, if a high- 
priority real-time application has a bug that sends it into an infinite loop, the effect on other 
applications and the system as a whole would be devastating. The errant application would 
take over the processor and would not relinquish it, forcing a system crash. 

This extreme sensitivity among applications is the result of a lack of suitable system 
abstractions for effectively managing shared resources in real-time systems. Many abstrac- 
tions exist in real-time scheduling theories, but typically the assumptions of the theoretical 
results are implicitly embedded in real systems. An example of an assumption that many 



theories require is that the worst-case execution times (WCET) for computations in real- 
time applications are known at system design time. Most systems designed using analysis 
techniques that have this assumption do not explicitly check or enforce worst-case execution 
times for computations. Appropriate system abstractions would explicitly bring the assump- 
tions into the actual system where they could be checked and, in the best case, even 
enforced. 

1.2.2 Resource management problems 

Suitable system abstractions could effectively address several problems that arise in 
real-time system. These problems fall into three broad areas: resource management policies 
that can satisfy timing constraints, mechanisms to support the policies, and analysis tech- 
niques based on the available mechanisms. 

Many systems do not provide scheduling policies that directly support real-time 
resource management. For processor scheduling, most systems provide either fixed priority 
or deadline scheduling policies. Both of these policies lack complete information about real- 
time requirements and therefore do not address important problems such as how priority 
should be assigned or how to prevent overload. The following issues arise in the design of 
resource management policies: 

• Priority assignment problem: Simple priority schedulers are hard to 
use, especially if there are many activities with timing constraints. If 
there is no global repository of knowledge about the timing constraints of 
different activities in different applications, there is no basis for deciding 
what the priority ordering of the activities should be. 

• Overload problem: To prevent overload, the scheduling policy requires 
information about real-time constraints such as the computational 
requirements and frequency of execution. Even if the designer can 
express the resource and timing requirements for real-time applications, a 
system with no admission control policy cannot protect itself from over- 
load. 

• Flexibility requirement: The timing constraints and resource require- 
ments for dynamic real-time applications may change dynamically dur- 
ing execution. The scheduling algorithm must support efficient 
adjustment of requirements. 

To effectively schedule real-time applications such that applications cannot monopolize 
system resources requires some usage measurement and enforcement mechanisms. Informa- 
tion gleaned through these mechanisms can be used in the scheduling policy to make deci- 
sions about how priorities or deadlines should be dynamically adjusted to reflect the 
requirements and usage patterns of applications. The problems that motivate the use of these 
mechanisms are described briefly below: 

• Enforcement problem: An application that specifies resource and tim- 
ing requirements may accidentally or deliberately attempt to exceed its 



stated requirements. This may interfere with the satisfaction of timing 
constraints for other reserved activities, and it may cause starvation 
among unreserved activities. 

• Measurement problem: Enforcement of resource requirements means 
that resource usage of each application must be accurately measured and 
compared to the allocation that has been made on its behalf. If the activ- 
ity uses external modules, servers, and system services, the measurement 
must include that usage as well. 

• Coordination problem: Many time-constrained activities are composed 
of multiple sub-activities implemented by other modules, user-level serv- 
ers, or system services. Allocating resources for a single activity that 
spans multiple modules, possibly in different memory protection 
domains, is complicated. It is necessary, however, to be able to place tim- 
ing requirements on the overall activity and to track the resource usage 
for the overall activity. 

Other problems deal with higher level issues of how to analyze system behavior given 
more sophisticated abstractions and mechanisms for scheduling and resource management. 
The following issues arise in this context: 

• Distributed real-time scheduling problem: An activity that uses exter- 
nal modules and services may require the use of multiple resources 
within certain time constraints. Coordinating usage across multiple 
resources to meet timing constraints is a hard problem. 

• QOS management problem: Real-time applications may dynamically 
change their quality of service (QOS) requirements. In a system with 
many such applications, a high-level resource manager (sometimes called 
a QOS manager) is needed to resolve conflicts and negotiate between 
applications. 

In traditional real-time systems design, many of these problems are avoided in the 
design phase by careful measurement and analysis of simple computations and their 
resource requirements and by ad hoc scheduling techniques. This approach results in inflex- 
ible systems that are difficult to maintain [43,68]. In particular, supporting dynamic real- 
time activities with timing constraints and resource requirements that may change freely at 
run-time stretches the traditional approach beyond its limits. 

Recent work in real-time systems addresses some of these problems. Several systems 
(e.g. [3,53,113,124,125]) allow specification of timing requirements instead of forcing the 
programmer to determine an appropriate priority assignment. A few systems have on-line 
admission control policies [3,78,113], but many others use off-line analysis [53,124,125]. 
Still others have no admission control at all [19,21,90]. Some limited flexibility require- 
ments for hard real-time have been addressed recently [122]. This work focuses on mode 
changes, which are radical but infrequent changes in the task sets of a real-time system. For 
example, the real-time system in an airplane might experience a mode change after takeoff 
as it switches from the ground-based task set to the air-based task set. 



Very few software systems address the measurement and enforcement problems with 
respect to resource usage although most systems can detect and react to missed deadlines 
[43,125]. In networks, the notion of enforcement or policing is much more common 
[33,98,128]. The work on priority inheritance protocols [8,16,51,86,97,108] addresses some 
aspects of the coordination problem. 

The distributed real-time scheduling problem is an active area of research [38]. The 
QOS problem is another active area of research. Some operating system research in this area 
focuses on best effort approaches [21] although other research emphasizes guarantees 
[46,53,78,81,126]. 

1.3 Resource reserves 
This dissertation defines a resource reservation model that provides an operating system 

abstraction called a reserve. Reserves explicitly represent reservations on resources such as 
processors, memory pages, disks, and network devices. In particular, reserves support 

specification of reservation parameters, 

admission control, 

scheduling based on timing constraints and usage requirements, 

reservation enforcement, 

reserve propagation in the RPC mechanism, 

flexible binding of threads to reserves. 

Reserves prevent applications from over-running their allowed resource usage and inter- 
fering with other reserved activities or starving unreserved activities. Applications reserve 
capacity on the resources they need to carry out their computations. For example, an appli- 
cation can reserve 10 ms of computation time on a processor for every 100 ms of real-time. 
The application then binds to the reserve, and the processor scheduler uses the information 
associated with the reserve to control the scheduling of the application. The system also per- 
forms an admission control test before granting the reservation to make sure that the 
resource can support the reservation being requested. The enforcement mechanism ensures 
that an application does not use more than its reserved time if doing so would interfere with 
other reserved activities. 

The reservation parameters associated with an application's reserves are not necessarily 
fixed for the lifetime of the application. A dynamic real-time application must be prepared 
to change its behavior and timing requirements based on changing requirements of users and 
possibly the changing availability of resources. A user may want to change the frame rate on 
a video player or change the resolution, and the application must be ready to adjust its 
resource reservation levels appropriately. Likewise, reserves must support an operation that 
modifies the reservation parameters, subject to the admission control policy. 

Reserves are first class objects in the operating system; a reserve is associated with a 
particular thread (or process) by explicitly binding the thread to the reserve. This allows an 



application to reserve all of the resources it will need for its computation, including 
resources that will be needed by various modules, servers, and system services it intends to 
invoke. The application can then pass references for its resource reserves to modules or 
servers along with the operation invocation. The module or server can bind its thread to this 
reserve when performing the operation, and it can then take advantage of the resources that 
have been reserved by the client. Having modules and servers charge a caller's reserve for 
work done on behalf of the caller also maintains a consistent view of the resource usage that 
is being consumed on behalf of that client. 

The reserve model presented in this dissertation addresses the problems identified in the 
previous section. The scheduling policies embedded in the reserve model address the prior- 
ity assignment problem and the overload problem while remaining flexible in terms of 
accommodating dynamic changes in application resource requirements as discussed below. 

• Priority assignment problem: Reserves avoid the priority assignment 
problem by accepting reservation specifications that include the timing 
constraints and usage requirements. 

• Overload problem: The admission control policy of the reservation 
mechanism prevents overload. This is possible since the scheduling pol- 
icy has information about both the computational resource requirements 
and the timing constraints (such as period of invocation) for each applica- 
tion. 

• Flexibility requirement: Changes in reservation parameters can be 
made at any time, subject to the admission control policy. 

The reserve model makes use of several system mechanisms that support the abstrac- 
tion. These mechanisms provide information about resource usage and that coordinate the 
consumption of resources for an activity that crosses memory protection boundaries as fol- 
lows: 

• Enforcement problem: Reservation enforcement isolates reserved 
activities from undue interference from other reserved activities. 

• Measurement problem: The flexibility in binding reserves makes it 
possible to accumulate resource usage charges for an activity even when 
work is done by external modules, servers, or system services. 

• Coordination problem: The reserve model supports reserve propagation 
which includes a "priority" inheritance mechanism and which takes 
advantage of the flexibility in binding reserves to threads. 

The reserve model provides an abstraction that can be used for distributed real-time 
scheduling and QOS management. The approaches to these problems are described briefly 
below: 

• Distributed real-time scheduling problem: The reserve model supports 
reservations for remote resources, and pipeline-style software architec- 
tures are supported. This is not optimal, but future work on this problem 
could take advantage of the reserve model as a base. 



• QOS management problem: A high-level QOS management layer can 
use reserves to carry out resource allocation policy decisions. The QOS 
managers can carry out their allocation decisions by manipulating reser- 
vation parameters for the applications being managed. 

1.4 Contributions 
This dissertation describes and analyzes a resource reservation solution to the problem 

of supporting predictable execution of real-time and multimedia applications with specific 
quality of service parameters. It shows that: 

Resource reserves, an enforced operating system resource reserva- 
tion abstraction, effectively supports real-time and multimedia 
applications. Reserves allow the software designer to specify timing 
requirements on resources required, thus providing a method for 
guaranteeing deadlines in real-time applications. The reservation 
abstraction accommodates non-real-time applications as well as 
real-time applications. 

This dissertation defines an enforced resource reservation model called reserves and 
then describes programming techniques for developing applications using reserves. It pre- 
sents an implementation of one type of resource reserves, processor reserves, in Real-Time 
Mach along with several real-time applications that use reserves to satisfy their timing con- 
straints. These applications included a suite of synthetic benchmark programs, a QuickTime 
video player, an MPEG player, and a version of the X server. Experiments with these appli- 
cations showed that reserves can indeed provide predictable behavior for real-time applica- 
tions even with competition from other real-time and non-real-time applications. 

Reserves are a tool that real-time system designers can use to raise the level of abstrac- 
tion for resource scheduling in real systems. This allows applications' timing requirements 
to be defined and guaranteed in isolation with the system providing high-level guarantees 
that resources will be available when needed by each real-time application. 

1.5 Overview of the dissertation 
Chapter 2 describes the background and motivation for the dissertation in more detail. 

Chapter 3 describes the reserve model, and Chapter 4 discusses techniques for structuring 
programs to best take advantage of reserves. 

Chapter 5 describes the implementation of processor reserves in Real-Time Mach, a 
quality of service (QOS) manager, and several reserved applications and servers. Chapter 6 
presents an experimental evaluation that explores the predictability achieved by using 
reserves and the overhead involved in providing that predictability. 

Chapter 7 discusses related work, and Chapter 8 summarizes the contributions of the 
dissertation and presents the conclusions and future directions. 





Chapter 2 

Background and Motivation 

This chapter discusses the requirements of real-time and multimedia applications and 
describes some of the problems system designers encounter in attempting to support such 
applications. The case is made for an operating system resource reservation approach to the 
problem. 

2.1 Real-time and multimedia application requirements 
Real-time applications require not only that computations result in logically correct 

answers, but that the answers are available within certain timing constraints. A logically cor- 
rect answer that arrives late is considered incorrect in a real-time system [114]. Many multi- 
media applications have this property that late computations are useless. For example, if a 
video frame or audio sample arrives after the time at which it was to be displayed or played. 
it is no longer useful. 

This section gives an overview of different kinds of timing constraints and criticalily 
characteristics of real-time and multimedia applications. The models described here repre- 
sent a compendium of the models that researchers have addressed in the literature. 

2.1.1 Timing characteristics 

In general, a task in a real-time system has timing constraints that specify when the com- 
putation may begin, how long it executes, and the deadline for the completion. Figure 2-1 
illustrates a computation schematically. This generic model is common in the operations 
research literature [20]. The computation has a ready time, r, at which the computation 
becomes available for scheduling. At some point after the ready time, the computation will 
be scheduled and start processing for a total duration of C. The duration between the ready 
time and the start of processing is enclosed in a white box. This indicates that the task is 
available for scheduling but has not started yet. The black box represents the compulation 
that completes at time E. A deadline, d, may be associated with the computation as well, and 



the goal is to complete the computation before the deadline. In Figure 2-1, a thick vertical 
line represents the deadline. 

Ready (r)    Scheduled        Completed (E)   Deadline (d) 

\        \ \ \ 

i 

time 

Figure 2-1: Schematic of a Time Constrained Computation 

The ready time of a computation may arise from a clock event, an external interrupt, or a 
software event generated by some other computation. The ready event may be an instance of 
a periodic computation where the same computation is activated periodically. The ready 
event may be aperiodic but predictable, or it may be unpredictable. The computation time 
may be fixed or it may be variable or unpredictable. The computation itself may be preempt- 
ible, or it may form a non-preemptible critical region. The deadline is usually some fixed 
duration after the ready time, but the implications of missing a deadline may vary. Hard 
real-time computations take the deadline to be a hard deadline where the computation must 
be complete by the deadline time. Alternatively, the deadline may just be a recommendation 
or preference for completion of the computation, a soft deadline. 

Since a computation may be periodic, we must sometimes distinguish between the over- 
all activity and the periodically occurring computations. We call the overall activity a task, 
and we refer to an instantiation or individually scheduled computation of the task as a job; 
thus a task is a stream of jobs. The jobs of a particular task are considered to be identical for 
the purposes of scheduling although variations can be indicated by a variable or stochastic 
computation time. We will use the word task to mean both the stream of instantiations and 
an individual instantiation when such usage is clear from the context. 

A periodic task has ready times for the task instantiations separated by a fixed period. 
Periodic tasks are the main focus of the original rate monotonic scheduling work [67J and 
the many extensions that have followed [63,108]. Figure 2-2 shows a periodic task. The fig- 
ure shows four instantiations, each with an associated ready time, rj. The ready times are 
separated by the period t. The computation time is represented by the black box, and the 
preceding white box represents the time when the task is ready by has not yet been sched- 
uled to execute. In this example, the computation time is constant across task instantiations, 
and the deadline is at the end of the period. 
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Figure 2-2: Periodic Task 

Aperiodic tasks are more difficult to specify. Some aperiodic tasks are predictable to a 
certain extent; it may be possible to predict the arrival of instantiations of an aperiodic task 
within some scheduling horizon of h time units. Figure 2-3 shows an aperiodic task with a 
scheduling horizon of duration h from the current time. This kind of timing requirement is 
used in computer music, for example [5,25]. Within this window of h time units, the ready 
times of instantiations of the task are known, but beyond the horizon, nothing is known of 
the behavior. The computation time is assumed to be constant across instantiations in the 
single task, and the deadlines are left unspecified. 

Current 

time 

time 

Figure 2-3: Aperiodic, Predictable Task 

Another class of aperiodic tasks is almost completely unpredictable. It is common, how- 
ever, to associate a minimum interarrival time for the instantiations of these unpredictable 
aperiodic tasks. Much work has been done on scheduling aperiodic tasks with soft deadlines 
[120] and on aperiodic tasks with hard deadlines, which are known as sporadic tasks 
[52,111]. Figure 2-4 illustrates an aperiodic task where the arrivals are unpredictable. 



time 

Figure 2-4: Aperiodic, Unpredictable Task 

The computation time is another dimension along which tasks may vary. The computa- 
tion time may be fixed or merely bounded in duration. The computation could also be 
described by a statistical distribution, but that case is much harder to analyze. 

time 

Figure 2-5: Preemptible Task 

Another characteristic of the computation is its preemptibility. It may be completely pre- 
emptible (that is preemptible at any point) or it may be non-preemptible. Or it may be pre- 
emptible but with one or more non-preemptible critical regions during which scheduling 
events are not allowed (possibly during system calls for example). Different assumptions 
are made to achieve different results [67,72,82], and in particular, much work has been done 
on handling non-preemptible critical regions [8,16,51,97,108]. Figure 2-5 shows an exam- 
ple of a preemptible task, P, and its interaction with another task, Q. For this example, we 
assume that P is preemptible and has a lower priority than Q. P becomes ready at time /-,, and 
begins to execute immediately. At time rQ, Q becomes ready, and since Q has priority over 
P, Q preempts the ongoing execution of P. After Q completes, the execution of P resumes. 
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Figure 2-6: Non-preemptible Task 

Figure 2-6 illustrates a similar case where the computation of P is non-preemptible and 
where Q has priority over P. P becomes ready at time rp and begins to execute. Q becomes 
ready at time rQ, but even though Q has priority over P, P cannot be preempted, and Q must 
wait until the execution of P completes. After P is finished, Q can begin execution. 

2.1.2 Criticality 

Deadlines may be classified as hard or soft. We can describe various types of deadlines 
by means of a value function. Value functions have been used for scheduling [15,55], but 
here they are used for purposes of exposition. A value function is a function of time that 
indicates the value that completion of the task would contribute to the overall value of the 
system. For example, Figure 2-7 shows the value function of a task that has a hard deadline; 
the value drops off to negative infinity at t = d. The task becomes ready at time r, and its 
deadline is d. If the task is completed at time t where r<t<d, then the system receives some 
value, V. On the other hand, if the task completes after d, the value is negative infinity, a cat- 
astrophic failure. 
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time. 

Figure 2-7: Hard (Catastrophic) Deadline Value Function 



The result of missing a hard deadline may not be catastrophic. Figure 2-8 shows a case 
where completion of a task would have some value until the deadline d when the value of 
completion of the task goes to zero. This indicates that the system will receive no benefit 
from completing the computation after d, and so the task should be aborted, freeing any 
resources it holds. In contrast to the previous case, the system can continue to operate, 
achieving a positive value even if this particular task is aborted and makes no contribution to 
that value. 
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Figure 2-8: Hard Deadline Value Function 

Other variations on the idea of hard deadline might include a value function that ramps 
up to the deadline as illustrated in Figure 2-9. And depending on where the ramp starts, this 
type of value function can specify tasks that must be executed within very narrow intervals 
of time. 
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Figure 2-9: Ramped Hard Deadline Value Function 
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The concept of a soft deadline is illustrated in Figure 2-10 where the value function goes 
gradually to zero after the deadline. In this case, there is some value to the system in com- 
pleting the task after the deadline, and the task should not be aborted right away as in the 
case of the hard deadline. 

o 
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Figure 2-10: Soft Deadline Value Function 

A non-real-time task might be described by the value function shown in Figure 2-11. In 
this case, completion of the task always has a positive value associated with it. This indi- 
cates no explicit timing constraint, although in practice, few of us are willing to wait indefi- 
nitely for a computation to complete. 
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Figure 2-11: Non-real-time Value Function 
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2.2 Applications timing requirements 

Many multimedia applications have real-time constraints. Even simple playback appli- 
cations have real-time constraints that must be satisfied. For example, an audio player appli- 
cation might repeatedly read audio data from a file on disk and then enqueue the data for the 
audio device. Figure 2-12 illustrates the periodic computational requirements of such a play- 
back application. The activity of the player is illustrated on the line labeled "P". and the 
activity of the device is represented on the line labeled "D". In each period, the applications 
reads, processes, and enqueues the data to a device. At the end of each period, the device 
reads the data out of its buffer, performs D/A conversion, and the analog signals goes to a 
speaker. 

D 

time 

Figure 2-12: Periodic Playback Computations 

A potential problem is that the computation of the audio player may be delayed so much 
that the device buffer empties and there are no samples for the device to convert to an analog 
signal. For a playback application, one solution is to introduce a large buffer and allow the 
playback application to execute, for many periods to build up a large buffer of data ready to 
be played by the device. 

Figure 2-13 shows a player with execution history shown on the line labeled "P". The 
player buffers a number of data blocks for a device; the size of the data is indicated in the 
area labeled "B" between P and D. The device consumes data from the buffer, and the activ- 
ity of the device is indicated on the line labeled "D". Even if the audio player is delayed for 
a period or two, there will still be plenty of data in the buffer and the device will not run out 
of data blocks. The player can catch up with the processing that was delayed. 

Another potential problem is that if some other activity on the machine is very active 
and manages to deprive the audio player of the resources (like processor time) for a very 
long time, then audio playback will be noticeably disturbed. This kind of intense competing 
activity can be avoided, and with large buffers audio playback will be quite smooth. 
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Figure 2-13: Playback Application Computing Ahead 

Interactive applications cannot afford to use large buffers to smooth variations in sched- 
uling delay. The delay introduced by large buffers is often too great to satisfy stringent end- 
to-end delay bounds in interactive applications like video teleconferencing. Instead, the sys- 
tems must support applications that can ensure that bounds on the scheduling delay are 
observed. Thus the variations can be reduced and less buffering is required. 
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Figure 2-14: Interactive Application with Limited Workahead 

Figure 2-14 shows the case where an interactive application can buffer the data gener- 
ated in one period, but since there is a delay constraint, the application cannot afford to com- 
pute ahead several periods as in the previous case. The buffer must remain small. In order to 
make sure that the buffer is never empty when the device goes to get the next block of data, 
the application must make sure that the computations to enqueue the next block of data are 
done in time. This means it must also make sure that resources it will need from the system 
are available in time as well. 
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Other multimedia applications have timing constraints that differ from the periodic tim- 
ing of the stream-oriented applications described thus far. For example, computer music 
applications involve performing computations to generate musical notes and other musical 
events. The number of notes that need to be generated at any point in time may vary widely 
depending on what the music calls for, so there is little periodic structure to describe the 
computations to be executed. 

Silence-suppressed audio presents a similar problem. For audio conversations, it is not 
always necessary to transmit data for the silent portions of the audio streams in a two-way 
conversation. Again, the computational requirements become aperiodic when the amount 
and timing of data depend on speech patterns. 

There are other applications, such as compressed video players, where a periodic execu- 
tion pattern exists but where the computation time required within the periods varies. Com- 
pressed video data contains frames whose size varies according to the compression 
algorithm and the characteristics of the scene and how fast scenes are changing in the video 
source. 

2.3 Quality of service management 
Many multimedia applications have timing requirements and other quality of service 

(QOS) parameters that represent the user's desires and expectations for the performance of 
the applications. The complexity of providing for these timing requirements at the system 
level is exacerbated by the fact that the user may change those timing requirements at any 
time during the execution of the applications; and of course the user may create and termi- 
nate multimedia applications at any time. 

2.3.1 QOS background 

In recent years, researchers in the computer networking and in the telecommunications 
communities have been working on ways to express the QOS requirements for multimedia 
applications. Some of this work dealt with human perception requirements for various 
media [30,117], and other work focused especially on parameters and QOS architectures 
that are important in the context of scheduling traffic on a network [14,88]. This work can 
be considered an extension of the earlier work done in the telephone companies to character- 
ize quality of service for telephone customers [100]. 

As researchers gained more experience with the idea of building networks that could 
provide quality of service levels suitable for different types of multimedia traffic, the ques- 
tion of how to ensure quality of service levels for end-to-end applications arose. Achieving 
that goal means QOS requirements must be supported in the operating system as well as the 
network. This observation was an initial motivation for the work described in this disserta- 
tion [76], and other system designers have started to focus on this aspect as well 
[3,21,46,53,83,102,126]. 
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2.3.2 Mapping QOS parameters 

In dealing with QOS management it is important to realize that there are different types 
of QOS parameters for different levels of the system. Applications must interact with the 
user in terms of user-level QOS parameters. For video, these user-level parameters might 
include frame resolution (width and height of each frame), number of bits/pixel, frames per 
second, maximum delay, and maximum jitter. For audio the user-level parameters might 
include sample rate, sample size, maximum delay, and maximum jitter. These are the types 
of parameters that might be meaningful to the user of a multimedia application. Or it might 
be preferable to offer QOS levels with names like: "worst", "fair", "good", "better", and 
"best" to simplify the interface. It would then be up to the application to translate these 
abstract QOS specifications to frame rates and sample rates. 

Once the user-level QOS parameters are determined, they have to be mapped into sys- 
tem-level QOS parameters that would be meaningful for system-level resource management 
mechanisms. These system-level QOS parameters would describe how much time is needed 
on various resources. They depend on the user-level QOS parameters and on detailed com- 
putations that the application performs on data elements in the media stream. 

Simple User-level 
QOS Specification Interface 

Sophisticated User-level 
QOS Specification Interface 

System-level 
QOS Specification 

Figure 2-15: Levels of QOS Specification 

Figure 2-15 summarizes these levels of QOS specification. The arrows in the figure 
indicate that there are mappings from one level to the next lower level and also that there are 
inverse mappings that come into play as well. 

To allow the user to specify the QOS parameters desired at the highest level, the applica- 
tion must be able to map from user-level QOS parameters to system-level QOS parameters. 
The system-level parameters are required for the application to be able to ask for the 
resources it will need to execute. If the resources are unavailable, the system-level resource 
management mechanism should be able to communicate the fact that those parameters can- 
not be guaranteed. It should then initiate a negotiation to arrive at a set of system-level 
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parameters that can be supported by the system. The inverse mapping to user-level QOS 
parameters should yield a QOS specification that can be tolerated by the user. Thus, the 
inverse mapping from system-level to user-level QOS parameters is just as important as the 
forward mapping. 

2.3.3 QOS negotiation 

The user's QOS requirements may sometimes conflict with resource usage limitations. 
and therefore the QOS layer may need to negotiate user requirements to resolve such con- 
flicts. This negotiation process may be needed throughout the lifetime of certain applica- 
tions since user-level QOS requirements may change over the course of execution. 

The approach advocated in this dissertation for handling the complexity of a dynamic 
execution environment (where programs may have changing real-time requirements) is to 
divide the problem into two parts. One part is the dynamic negotiation of resource alloca- 
tion. The second part is the resource reservation and scheduling based on the allocation. 
These two parts can be addressed with a layering of functionality in the system where a sys- 
tem-level QOS management layer handles the resource allocation policy decisions and a 
low-level operating system resource reservation mechanism handles the details of dynamic 
scheduling and usage enforcement. 

Application A Application B 

User-level 
QOS Specification 

User-level 
QOS Specification 

1 

i i 

1 

1 i 

System-level 
QOS Specification 

System-level 
QOS Specification 

System-level 
QOS Manager 

Resource Reservation 
Mechanism 

Figure 2-16: QOS Levels with QOS Manager 
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An illustration of the basic outline of the QOS management system appears in Figure 2- 
16. Each application has user-level QOS specifications. The applications map the user-level 
QOS parameters in to system-level QOS parameters and then negotiate with the system- 
level QOS manager to determine a mutually acceptable set of system-level parameters. The 
operating system contains a resource reservation mechanism which is used by the system- 
level QOS manager to actually allocate the resource capacity, schedule appropriately, and 
enforce the resource reservations. 

The QOS management layer makes policy decisions about where resource capacity in 
the system should be allocated. To do this, it will depend on input from applications as they 
make their system-level QOS parameters known. The QOS manager may take input from 
user preferences expressed in the form of rules about which applications are more important 
than other applications, and it may take input from user interface tools designed to help the 
user manage resource allocation in the system. The QOS manager may also coordinate with 
other QOS managers on remote hosts for setting up distributed multimedia applications that 
require resources on several different hosts. 

2.4 System design approaches 

Several approaches have been used in the past to support interactive and playback types 
of multimedia applications. These range from hoping for the best, to dedicating expensive 
resources, to system support for real-time programming. 

2.4.1 Specialized hardware 

One approach to supporting real-time multimedia applications is to dedicate hardware to 
the tasks that must be performed in real-time. This relieves any contention for resources. As 
an example, Pandora's Box [44] was an early attempt to support multimedia applications in 
the context of a desktop workstation. The box contained six transputers, each one dedicated 
to a particular activity or class of activity including audio processing, storage/disk manage- 
ment, video processing, decompression, network communication, and bus management. 
This box was connected to a Sun workstation, to a network, and to a monitor. It coordinated 
graphical display from the workstation and video streams from the network or other devices. 
combining them and displaying the result on the monitor. The system allowed researchers to 
learn much about programming multimedia applications, what kinds of applications where 
useful, and user interface issues. However, the cost of the box was very high, and the com- 
plexity of programming the box itself was also great. 

2.4.2 Time-sharing systems 

A number of multimedia applications are available for personal computers and desktop 
workstations that run more sophisticated operating systems like UNIX and Windows NT. 
These systems use time-sharing scheduling policies that are not particularly well suited for 
meeting the timing constraints of multimedia applications. 
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Time-sharing schedulers are tuned to provide fair allocation of resources among users 
which are considered equally important. These schedulers also look at whether a processes 
is compute-bound or not, and they depress the priority of compute-bound processes in favor 
of interactive (or I/O-bound) applications which can benefit from better response times. 

This kind of scheduling behavior works well in mainframe systems, but may work 
against multimedia applications. For example, a video application that performs a filtering 
computation on video frames may look compute-bound to a time-sharing scheduler and may 
therefore get a low priority compared to network and I/O activity on the machine. This may 
occur even if the video application is the most important activity to the user. 

Consider a teleconferencing application that display several video streams on the screen 
at the same time. A fair time-sharing scheduling algorithm would give each of these streams 
an equal share of the processor, resulting in the same frame rate for all of the video displays. 
This might not be appropriate for the particular application. The user might want more con- 
trol over where resources are focused, perhaps to show a higher frame rate for the person in 
the conference who has the floor. 

In many operating systems such as UNIX [62], VMS [80] and Windows NT [24], the 
time-sharing scheduling policy is augmented with a fixed priority extension. The extension 
is usually in the form of a range of fixed "real-time" priorities. With fixed priorities, it is 
possible to exercise more control over how the processor is scheduled, but there are other 
problems. Many of these issues arise in the context of real-time operating systems as well, 
where fixed priority scheduling is commonly used. The next section addresses some of the 
difficulties of real-time programming with fixed priority schedulers. 

2.4.3 Real-time operating systems 

Much work in recent years focuses on how to apply real-time systems techniques to 
multimedia systems and applications. This includes work directed at methods for using 
technology available in commercial real-time operating systems as well as efforts to build 
research prototype operating systems. 

2.4.3.1 Commercial real-time systems 

Most commercial real-time operating systems support fixed priority (FP) scheduling of 
processes [99,104]. FP schedulers while useful for real-time scheduling, cannot by them- 
selves support multimedia applications. 

For example, fixed priority schedulers have no mechanism for dealing with overflow sit- 
uations. In general, real-time operating systems do not have the mechanisms for deciding 
whether enough resources are available in a system to run a new application; they do not 
have support in the system for admission control. Furthermore, there are no mechanisms for 
detecting and dealing with overload situations when too many applications are allowed to 
run. These issues of load management are typically addressed in an ad hoc manner by sub- 
systems specific to particular applications. 
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Even if a system user could determine that a particular collection of applications could 
run successfully on a system, the problem of determining what priority assignment should 
be used remains unsolved. An application designer may use multiple threads or processes in 
the implementation of the program, and that designer will undoubtedly know enough about 
the processes' computational requirements, timing constraints, and precedence relationships 
to assign priorities in a reasonable way. However, when running several such applications 
developed by different people on the same system, the question arises: How should priori- 
ties be assigned to processes in different applications in a way that will result in correct tim- 
ing behavior? Without global knowledge of all processes and their timing constraints, 
assigning priorities appropriately is exceedingly difficult. 

In practice, commercial operating systems are used mainly in embedded applications 
where designers carefully measure the resource requirements and coordinate scheduling 
based on a scheduling analysis of the specific task set designed for the application [68]. The 
system designers have global knowledge about resource requirements, and they use that 
information in the scheduling analysis to generate a priority assignment. This makes the sys- 
tems rigid and difficult to maintain. Much more flexibility would be desirable. 

2.4.3.2 Research prototype real-time systems 

Several research prototype operating systems have applied results from real-time sched- 
uling theory to multimedia applications [3,53,126]. The DASH kernel [3] used an admission 
control algorithm based on a timeline and then used earliest deadline scheduling to actually 
sequence the tasks. Other systems used analyses from real-time scheduling theory to guar- 
antee timing constraints for applications. For example, YARTOS [53] uses algorithms for 
scheduling sporadic tasks [52] to guarantee timing constraints. In order to guarantee perfor- 
mance, the computational requirements of the applications must be measured and analyzed 
along with the timing constraints such as delay bounds. Then the application can be run with 
the expectation that timing constraints will be satisfied. 

In RT-Mach [125], much of the work on support for multimedia applications (other than 
the work described in this dissertation) used the traditional rate monotonic scheduling algo- 
rithm. As with YARTOS, the computational requirements of applications were measured in 
advance and analyzed to ensure that timing constraints would be met. The applications 
could then run successfully on the system. Much of the work on RT-Mach centered on high- 
performance real-time threads packages [92] and QOS managers [127]. 

These systems took a careful approach to analyzing and guaranteeing timing require- 
ments for multimedia applications based on real-time scheduling analyses. They also incor- 
porated advanced real-time system features such as priority inheritance protocols [ 108] and 
inheritance protocols for deadline scheduling [16]. These features are essential for support- 
ing strong real-time guarantees among programs that share data and interact in other ways. 

2.4.4 Soft real-time system support 

Several multimedia systems have used scheduling algorithms like earliest deadline first 
to make the system more sensitive to timing without necessarily guaranteeing that timing 
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constraints will be met. For example, a system based on Chorus [103] proposed using dead- 
line scheduling with no admission control [21]. Other algorithms such as lottery scheduling 
[133] attempt to support multimedia applications using proportional sharing of resources 
without real-time delay guarantees. A deterministic version of the approach called stride 
scheduling [134] was proposed to better support multimedia applications. 

These types of systems are able to be more sensitive than time-sharing systems to the 
timing constraints of multimedia applications, but without effective admission control, over- 
load cannot be prevented. 

2.5 Reserve abstraction 

The reserve abstraction described in this dissertation addresses several of the key prob- 
lems raised above. The abstraction provides a framework for reasoning about resource res- 
ervation in an operating system. Other research efforts have focused on reservation of 
different resources in isolation. A framework to unify various reservation algorithms is 
needed. 

The reserve abstraction gives resource reservation first-class status in the operating sys- 
tem. Reserves can be allocated independent of any particular process, and references to 
reserves can be passed around and bound to different processes as appropriate. For example, 
a real-time client might pass information about its timing constraints to a server to ensure 
expedited service. This is in contrast to the approach where timing constraints and resource 
usage requirements are associated directly with processes which makes it difficult or impos- 
sible to have one process temporarily take on the timing constraints of another process. 

The key feature of the reserve abstraction is the enforcement mechanism. This prevents 
applications from overrunning their reservations if that would interfere with the timing 
requirements of other reserved activities. 

The reservation framework and first-class status of reserves provide the power and flex- 
ibility to deal with the problems that arise in real-time system design and practical resource 
management. And the enforcement mechanism guaranteed proper resource scheduling. In 
combination, these aspects of the reserve abstraction offer an effective solution to the gen- 
eral real-time programming problem. 
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Chapter 3 

Reserve Model 

This chapter gives a definition of reserves on resources, which form the basis of the res- 
ervation model. Reserves provide a framework for integrating admission control, schedul- 
ing, and usage enforcement. Issues in reserve management are also addressed. 

3.1 Reserve abstraction 
The reservation model defines the concept of a reserve against a particular operating 

system resource. A reserve is a first class object that represents a part of the capacity or a 
quantity of the resource that is set aside for a computation which presents that reserve along 
with a request to use the resource. The word "capacity" is used in a broad sense here: reserv- 
ing a portion of the capacity of a resource means that a thread will have access to the 
resource subject to some detailed reservation parameters, and the parameters are specific to 
the resource and the reservation system implementation. As an example, a reserve miglii 
specify that 30 ms of computation time on the processor are reserved out of every 1 üü ms of 
real time. 

Reserving resource capacity implies that the resource can be multiplexed among several 
computations, and the model focuses on multiplexed resources such as processors and net- 
work bandwidth. Other types of resources such as physical memory pages and buffers are 
not amenable to extremely fine-grained multiplexing, and these are referred to as discrete 
resources. In this model, discrete resources are reserved on a per unit basis and the reserva- 
tion dedicates the resources units indefinitely rather than implying a multiplexed usage of 
capacity over time. 

3.1.1 Reservation guarantee 

A key requirement in offering a resource reserve abstraction in a system is that the 
reserved resource capacity be available, subject to the reservation parameters, to a computa- 
tion which presents the reserve and requests the resource. If the system cannot guarantee 



that the resource capacity will be available as promised, the usefulness of the system is lim- 
ited. Therefore, the enforcement of resource reservations is of critical importance. Enforce- 
ment is important not only to protect against malicious users, which may present a problem 
in systems where resources are shared by many, but also to relieve individual applications 
from the burden of ensuring that their own performance is strictly predictable and con- 
trolled. The system should tolerate applications which may try to use more than their reser- 
vation allows, isolating unrelated applications from this kind of behavior. This kind of 
temporal isolation is similar in concept to the isolation provided by a virtual memory sys- 
tem, which allows a process to try to access memory locations as it wishes, intervening only 
when a memory access is not allowed. In no case should a virtual memory system allow a 
process to access the memory of another process's protected memory, and likewise in no 
case should a reservation system allow a thread to impinge on the reserved resource capacity 
of another thread. 

Thus, the system guarantees that resource capacity, given by the reservation parameters, 
will be available to the thread that has a reserve. However, it is up to the application pro- 
grammer to make sure that the thread is in a position to take advantage of the resource 
capacity when it is made available. The reservation system itself makes no claims that a par- 
ticular application will meet its timing constraints. For example, if an application blocks 
indefinitely waiting for a message, it may not be in a position to take advantage of resource 
capacity when it is available. For an application to have predictable real-time performance. 
it must have the proper resource reserves, and it must be able to use those resource reserves 
in a way that satisfies the timing constraints of the application. 

3.1.2 Scheduling frameworks 

The reserve abstraction can accommodate different frameworks for admission control, 
scheduling, and enforcement. Most of the features of reserves, specifically the operations 
available in the reserve abstraction, remain the same even if the scheduling framework 
changes. The primary differences in the interface to a different framework are the specifica- 
tion of the reservation request parameters for admission control and the resource usage sta- 
tistics available from the enforcement mechanism. 

3.1.3 Styles of programming with reserves 

Reserves can be used in two different styles of real-time programming. Reserves support 
strict hard real-time applications and can equally well support more flexible soft real-time 
applications. The primary distinction between hard and soft real-time programming in the 
discussion of the reservation model is: 

• whether resource usage requirements are carefully measured and specified in exact 
detail guaranteeing performance before the program is actually deployed (hard 
real-time), or 

• whether resource usage requirements and resource capacity reservations are 
dynamically adjusted based on run-time usage measurements instead of being 
matched exactly during the design phase. 
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In either case, the resource reserves guarantee the requests that are admitted to the sys- 
tem, and whether or not those reserves are used for hard real-time programming or soft real- 
time programming depends on how the applications themselves use the reserves. 

Another distinction in real-time programming using reserves is whether resources are 
reserved locally for each thread or whether they are reserved globally for an activity that 
may span multiple threads in different protection domains and even on different machines. 
In the activity-based model of using reserves, the originator of an activity acquires resource 
reserves for the activity and then passes those reserves along with any requests made to var- 
ious servers. Using this model, accounting for resource usage across clients and servers is 
simplified, and the negotiation of quality of service parameters can be simplified as well. 
The reserves for each request come in with the request, and the server charges resource 
usage to those reserves when servicing the corresponding request. The responsibility of get- 
ting the appropriate resource reserves falls to the original client. 

To summarize, several features of reserves are useful for both hard and soft real-time 
programming: 

1. Take care of global admission control decisions, relieving the designer of doing 
global scheduling analysis. 

2. Schedule threads on resources according to their reserves. 

3. Accumulate usage information that could be useful during development, especially 
for adaptation in soft real-time applications. 

4. Prevent interference from other real-time applications and non-real-time applica- 
tions and activities that may be competing for the same resources. 

5. And finally, reserves can serve either to separate the resource allocation and man- 
agement of modules from each other or to integrate the resource allocation and 
management of modules, allowing reservations to span multiple threads and pro- 
tection domains of a single activity. 

3.2 Basic reserves 

The basic reserve provides an abstraction for capacity on a particular resource. Note that 
this statement about basic reserves does not guarantee that applications will meet their tim- 
ing requirements. The only guarantee is that capacity will be reserved and available to be 
used. We will explore the issue of what guarantees can be made at a higher level about the 
behavior of applications that use reserves. 

The reserve itself is an operating system abstraction that is orthogonal to control struc- 
tures like threads. A thread may bind to a resource reserve in which case the scheduler will 
use the information in the reserve when making scheduling decisions about the thread. Mul- 
tiple threads may be bound to a single reserve, but typically a reserve will have only one 
thread bound to it at a time. The scheduler will always find an associated reserve, although 
sometimes that reserve will be a default reserve which has no actual reservation and just 
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serves to accumulate the resource usage of all threads that make unreserved use of the 
resource. 

The specification of the reservation depends on the type of resource. Multiplexed 
resource reservations include information about the amount of work to be done per period o\' 
real time. They may also include a delay requirement. This parameter would specify the 
maximum amount of time after the beginning of each period the thread will have to wait 
before getting its reserved time on the resource. Discrete resources reservations just specify 
a count of the units of discrete resource required; they include no notion of time. 

Despite the differences between multiplexed and discrete resource reservations, they 
share the same basic structure. They both require: 

1. a reservation specification interface, 

2. an admission control policy, 

3. a scheduling policy, and 

4. an enforcement mechanism. 

For discrete reserves like memory pages and network buffers, the reservation specifica- 
tion gives a number of units of resource being requested. The admission control policy for 
discrete resources would just check the availability of the requested number of units of 
resource. Since discrete reserves are by definition not multiplexed, they require no schedul- 
ing. 

It is important to note that the basic reserve abstraction is independent of the admission 
control and scheduling policies used. For multiplexed resources, reserves provide a frame- 
work to request resource capacity reservations, do admission control, schedule computa- 
tions, and enforce capacity reservations. The choice of admission control and scheduling 
policies will impact the way reservation requests are specified and the way the enforcement 
mechanism tracks their behavior, but the framework is general enough to accommodate dif- 
ferent policies. The following sections illustrate the reserve model in terms of a periodic 
scheduling framework. 

3.2.1 Reservation specification 

The reservation system must provide a way for applications to specify the resource 
capacity they would like to reserve. The form of the specification differs from resource to 
resource, and different admission control and scheduling policies may require different res- 
ervation specification parameters. In the most general sense, reservations specify a duration 
of usage with some time constraints be available, used, and replenished by some specific 
regimen. 

As an example of the kind of parameters that might appear in a specification, a resource 
reservation may specify an amount of time to be spent on the resource per period of real 
time, and it may specify a start time for the periods as well. For example, a reservation 
request might specify 30 ms every 100 ms starting at 1:00pm. 
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Figure 3-1 illustrates how the reserved time might be consumed in a simple computation 
time per period of real time framework for reserves. The reserved computation time is avail- 
able to be used during each reservation period. The computation time is guaranteed to be 
available at some point during the period; it is not guaranteed to be in any particular place 
such as the front of the period or the end of the period. 

Reserved 
computation 

time 

Reservation period 

time 

Figure 3-1: Periodic Scheduling Framework 

There are many different scheduling policies and scheduling analysis techniques that 
could be used to provide a reserve abstraction, each of which would require a corresponding 
admission control test, scheduling policy, and enforcement mechanism. 

3.2.2 Admission Control 

An admission control policy associated with each resource decides which reservation 
requests for that resource can be admitted and which must be denied. It makes this decision 
based on the parameters provided in the reservation request and information about the other 
reservations that have already been granted for that resource. The admission control policy 
necessarily depends on the scheduling policy in order to do an admission control analysis. 

3.2.3 Scheduling 

The scheduling algorithm for a resource makes decisions about the order in which 
threads receive time on a resource. The scheduler looks at the reserve owned by each thread 
that is ready to run, and uses information in the reserve to determine which thread will get 
access to the resource. The algorithm supports the decision made by the admission control 
policy. 

The scheduler must also coordinate with the enforcement mechanism to make sure that 
it does not try to schedule threads associated with a reserve that has already used its reserved 
resource time for a particular reservation period. Thus a reserve which still has time left on 
its reservation is in "reserved mode" and one that has run out of time is temporarily in "unre- 
served mode." This represents a significant departure from other real-time scheduling algo- 
rithms, which generally assume that the resource usage requirements of application are 
accurately characterized and need not be enforced [67]. 
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3.2.4 Enforcement 

The reservation system must ensure that processes do not use more than their reserved 
capacity or reserved units of a resource. Enforcing reservations on discrete resources is 
straightforward; the system ensures that a resource dedicated to one process is not re-allo- 
cated to another process. Enforcing multiplexed reservations requires the system to keep 
accurate usage numbers that describe how much capacity has been consumed against each 
reservation. If a thread attempts to use some capacity beyond its reservation, the system 
must recognize this and actively prevent the process from consuming any additional capac- 
ity in reserved mode (consuming additional capacity in an unreserved mode may be 
allowed.) 

If for some reason the reserved time on a resource is not used by the owner of a reserve 
in a given reservation period, that allocation of time is lost to the owner. The owner may not 
be in a position to use the resource if it is blocked waiting for some other resource to become 
available or for synchronization or communication with another computation. The resource 
will not necessarily be idle for that amount of time since the scheduling policy is free to 
allow an unreserved computation to use the resource (as long as the unreserved computation 
can be preempted to allow the reserve owner to use the resource). This implies that a com- 
putation may not save up reserved time (by not using it) and then use it all at once in a burst. 
The allocation of resource time is available during each period, but cannot be carried over 
past the end of the period. 

On the other hand, if the thread that owns a reserve consumes the entire reserved alloca- 
tion for a reservation period and attempts to continue executing, the thread will compete 
with the other unreserved computations for the resource under whatever policy the resource 
scheduler uses for unreserved computations. Thus a reserve may be in reserved mode where 
it still has some resource usage allocation left for the current reservation period, or it may 
temporarily be in unreserved mode where the allocation for the current reservation period is 
depleted (until the next reservation period). 
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Figure 3-2: Enforcement Illustration 
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Figure 3-2 shows the reserved time made available on a particular resource for a single 
reservation. At the beginning of each reservation period, the allocation of reserved time is 
replenished, and the thread that has this reservation uses the resource in "reserved mode." 
After the reserved time allocated for that period is depleted, the enforcement mechanism 
generates a scheduler event to indicate that the reserved time has been consumed for that 
period. The scheduler is responsible for using that information in making scheduling deci- 
sions. In the figure, the thread continues to use the resource in "unreserved mode," consum- 
ing more time on the resource at the discretion of the scheduler. The execution history 
shown in the figure is based on the assumption that no other threads compete for the 
resource and that the policy lets it run in timing-sharing mode after its reservation has 
expired, and so the thread can get time in unreserved mode. At the beginning of the next res- 
ervation period, the reserve is replenished and the thread can run in reserved mode again. 
The main point of this figure is that the enforcement mechanism tracks resource usage and 
raises this "reserve depleted" event for the scheduler. The scheduler can then use this infor- 
mation in making future scheduling decisions. For example, it can give other reserved activ- 
ities preference or allow unreserved time-sharing activities to use the resource. 

Three important issues arise in the design of the enforcement mechanism: 

1. how to accurately accumulate resource usage, 

2. how to notice that a thread has depleted its reserve for a resource, 

3. how to know when to replenish the allocation of a reserve. 

To accurately accumulate the resource usage for each reserve, the system records the 
time during each reserve switch. A reserve switch occurs in two cases: when a thread con- 
text switch is performed or when a thread is changing the reserve against which it will 
charge its computation time. In the case of a thread context switch, the reserve switch 
records the current time, cancels the overrun timer (which signals the reserve depletion 
event as described below), computes the time the old thread ran, and adds that time to the 
accumulated usage of the old thread. The reserve switch mechanism then saves the current 
time for use later in computing the computation time of the new thread and sets the overrun 
timer. A reserve switch triggered by a thread changing the reserve to which it wants to 
charge its computation time works the same way, the only difference is how the reserve 
switch is triggered. Figure 3-3 illustrates how timers are used in enforcement. In the execu- 
tion history on the timeline, it shows the reserved activity of interest in a solid pattern and 
some other activity (associated with other reserves) in a striped. The reserve switches (also 
context switches in this example) between these activities occur where the striped boxes and 
the stippled boxes meet. 
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Figure 3-3: Enforcement Timers 

The overrun timer is set during the reserve switch to expire at the end of the new 
thread's remaining reserved computation time or at the end of its reservation period, which- 
ever is earlier. If the new thread is preempted before its reserved computation time is com- 
pleted, the overrun timer will be cancelled. If the new thread consumes all of its reserved 
time, the overrun timer expires, and the scheduler is called to take some action based on that 
event. Figure 3-3 shows where the overrun timer is set for the reserve of interest; the over- 
run timer may also be set for the other activity if it is reserved, but that is not shown in the 
figure. The overrun timer in the figure does not actually expire until the last time it is set. 

The handle replenishment, each reserve has a replenishment timer which is started at the 
reserve start time and which expires periodically at each reservation period. The replenish- 
ment timer records the usage accumulated on the corresponding reserve at the time of the 
reservation period and records that along with the current time as a "usage checkpoint." 
Then the timer handler changes the state of the reserve to reflect a new allocation of 
resource usage and resets the periodic replenishment timer. This replenishment model corre- 
sponds to a deferrable server [120] replenishment scheme; other replenishment methods are 
described and analyzed by Sprunt [111,112]. Figure 3-3 illustrates where the replenishment 
timer is set relative to the reservation period. 
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3.3 Reserve propagation 

One important feature of the reserve model is that reserves can be passed from clients to 
servers, enabling the server to take advantage of the resources the client reserves for its 
entire computation. Passing reserves also enables the server to charge the resource usage it 
consumes to the appropriate client, preserving system-wide consistent usage accounting. 
This is called reserve propagation. 
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Figure 3-4: Reserve Propagation 

Figure 3-4 illustrates a client/server interaction with reserve propagation. Assume that 
the client acquires resource reservations sufficient for the computation that it will perform 
locally as well as the computations to be done by servers on the client's behalf. In the figure, 
these reserves appear in the clients as two small rectangles. The interaction is a straightfor- 
ward remote procedure call from the client to the server. For simplicity, assume that the cli- 
ent sends an RPC request to the server and waits for the reply. The server processes the 
request and sends an RPC reply, and then the client receives the reply. 

When the client send the service request, it also sends references to the reserves that it 
has allocated. These reserves are to be used by the server as it processes the client's request. 
Thus, the server must start charging its resource usage to the client's reserves when it starts 
processing that request, and it must stop charging to those reserves when it finishes with the 
request and sends back the response. 

Ideally, a server would schedule service requests to execute in the same order that the 
computations would execute if the clients could do them instead of the server. For example. 
the processor scheduler orders ready threads based on the processor reserve parameters 
This ordering can be seen as a sort of "priority" ordering among those activities. If a thread 
makes a request of a server, the server should take the "priority" in the scheduler's ordering 
while it is servicing that request. Then the fact that a client relies on a server for some com- 
putation does not affect the progress of its computation with respect to other threads. 

To help the server achieve this ideal, the RPC mechanism should propagate the reserve 
"priority", as represented by the reserve and its reservation parameters, of the client to the 
server. The queue of service requests for the server must be maintained in reserve "priority" 
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order, and a kind of "priority inheritance" must be used to prevent priority inversion in the 
access to the server. 

On the receipt of a new service request, his "reserve priority inheritance" mechanism 
enqueues the request in the priority queue, and then it checks to see if the thread that will 
service the requests is waiting for new requests or servicing a previous request. If the thread 
is busy and the "priority" of the new request is greater than the "priority" of the currently 
processing request, the RPC mechanism sets the priority of the thread so the priority of the 
new request. It does not, however, change the reserve that the thread is charging against. 
When the server thread finishes the previous request and receives the new request, it keeps 
the priority of that new request (which it inherited before) and also begins charging to the 
reserves associated with the new request. When the request is finished, the server thread 
stops charging against the client's reserves. 

The "priority" inheritance mechanism described here, which is referred to as "reserve 
propagation", differs from traditional priority inheritance in two ways: 

1. reserve propagation specifies how a server should change the reserves it charges to 
based on the client it is servicing whereas traditional priority inheritance has no 
notion of charging to a reserve or account, 

2. the "priority" of the server may change during the course of the request processing 
if the reserved resources are depleted during that time whereas with traditional pri- 
ority inheritance, the priority is fixed. 

The fact that a server's "priority" may drop during request processing complicates 
reserve management and reserve "priority" inheritance. When a reserve is depleted, the 
scheduler must determine whether the thread charging against the reservation inherited the 
reserve "priority" or not. If not, the thread's order in the ready queue may change. It so. the 
scheduler must determine from the threads pending request queue what the appropriate 
reserve "priority" for the thread should be, given the change in the state of the reserve that 
was depleted. 

Reserve propagation from client to server is not mandatory. The next chapter discusses 
different programming models where this is useful and where it is not. Briefly, reserve prop- 
agation is useful when the system is organized such that an application allocates the 
resource reserves it will need for all of its activities and passes those reserves around to the 
servers it invokes to do work on its behalf. In this model, applications need not negotiate 
quality of service parameters explicitly with these servers. The scenario where reserve prop- 
agation is not that useful is where the system is organized such that applications negotiate 
quality of service explicitly with all of its servers. 

3.4 Example scheduling frameworks 

Many different admission control and scheduling policies could be used to support the 
reserve abstraction. For example, reserves based on rate monotonic scheduling [671 would 
be able to guarantee the availability of a certain amount of time on a resource per period of 
real time. For pure rate monotonic scheduling, the delay associated with receiving the com- 
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putation time in each period would be the length of the period itself. For deadline monotonic 
scheduling [64], the delay bound could be shortened. The following sections discuss these 
frameworks and others in more detail as they apply to the reserve abstraction. 

3.4.1 Rate monotonic 

The rate monotonic (RM) priority assignment of Liu and Layland [67] can guarantee 
that a certain amount of computation time will be available for a reserve for each period of 
real time with a delay bound equal to the length of the period. The discussion of rate mono- 
tonic scheduling uses the word "task" to denote the series of instances of a computation; 
with reserves, it is understood that this computation represents available resource capacity 
and not necessarily a complete program. Under rate monotonic scheduling, higher priority is 
assigned to the higher frequency programs. The rate monotonic scheduling analysis yields a 
basis for a processor reservation admission policy. 

3.4.1.1 Reservation parameters 

Reservation parameters for the simplest form of rate monotonic based reserves include 
computation time and reservation period: A start time is also useful for controlling the phase 
of the periodic reservations. This allows the programmer to synchronize the availability of 
the reserved computation time with a periodic program. 

3.4.1.2 Admission control decision 

Let n be the number of periodic tasks and denote the computation time and period of 
program i by Ci and 7., respectively. Liu and Layland proved that all of the tasks would 
successfully meet their deadlines and compute at their associated rates if 

n 

X^(21/n-l) 
i=\ 

\/n 
When n is large, n(2 - 1) = In 2 = 0.69 . This bound is pessimistic: it is possible 

for task sets which do not satisfy the inequality to successfully meet their deadlines, but this 
cannot be determined from the Liu and Layland analysis. 

An admission control policy follows naturally from this analysis. To keep track of the 
current reservations, the system must remember the utilization of the tasks that have 
reserved computation time, and the total reservation is the sum of these individual utiliza- 
tions. A simple admission control policy is to admit a new reservation request if the sum of 
its utilization and the total previous reservations is less than 0.69. Such a policy would leave 
a lot of computation time that could not be reserved. One possibility is to use that time for 
unreserved background computations. Another possibility is to use the exact analysis of 
Lehoczky et al. [63] to determine whether a specific collection of reservations can be sched- 
uled successfully, although the exact analysis is more expensive than the simple, pessimistic 
analysis above. In their work, Lehoczky et al. also gave an analysis showing that on aver- 
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age, task sets can be scheduled up to 88% utilization. So in most cases, this unreservable 
computation time is only 10-12% rather than 31%. 

It should be noted that the rate monotonic scheduling algorithm was analyzed under sim- 
plifying conditions. Liu and Layland [67] made the following assumptions to enable their 
analysis: 

• arrivals are periodic, and the computation during one period must finish by the end 
of the period (its deadline) to allow the next computation to start, 

• the computation time of each program during each period is constant. 

• computations are preemptive with zero context switch time, and 

• computations are independent; i.e. computations do not synchronize or communi- 
cate with other computations. 

In the context of the reserve abstraction, this means that rate monotonic scheduling can 
be used to guarantee that resource capacity is available to the applications. However, appli- 
cations that have precedence constraints with other applications may not be in a position to 
use the available resources. 

3.4.1.3 Scheduling 

Reserved mode activities get precedence over unreserved. Among reserved mode activi- 
ties, smaller period gets precedence over larger. Among unreserved activities, some time- 
sharing algorithm may be in effect. 

3.4.1.4 Enforcement 

Accumulate usage in each period. Update usage (determined using accurate measure- 
ment techniques) at each context switch. Set a timer for the currently running activity to 
expire at the end of its reserved usage. Set another timer for each reservation period. 

3.4.2 Deadline monotonic 

The deadline monotonic scheduling (DM) algorithm [7,64,66] is closely related to the 
original rate monotonic (RM) algorithm [67]. DM has the same kind of periodic scheduling 
frame as RM; the difference is that with DM, there is an additional parameter called the 
deadline specifies the duration of time by which the computation released at the beginning 
of the period must be completed. For the original version of RM, this deadline is assumed to 
be the end of the period, when the next instantiation of the computation will be released. For 
DM, this deadline is specified explicitly. 
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Figure 3-5: Deadline Monotonie Scheduling Framework 

Figure 3-5 illustrates the periodic scheduling framework of DM along with the addi- 
tional deadline parameters that does not appear in the original RM algorithm. The deadline 
in this case is before the end of the period, but it could also be after the beginning of the next 
period (in which case there would be multiple instantiations of the computation, started in 
different periods, at one time). 

3.4.2.1 Reservation parameters 

The reservation parameters for DM are the same as RM with the addition of the deadline 
parameter. As an example, a reservation request may specify 30 ms on the resource be 
reserved for every 100 ms with the delay constraint that the 30 ms must be available within 
50 ms of the beginning of each 100 ms period. As for rate monotonic scheduling, a start time 
parameter is useful for synchronizing reservations with periodic threads and with other res- 
ervations. 

3.4.2.2 Admission control decision and scheduling 

Schedulability analysis tests for DM are given by Lehoczky [64] and by Audslcy el al. 
[7]. These tests are quite a bit more complicated than the simple schedulability bound test 
for RM, involving systems of equations that have to be checked. Even so. the schedulability 
tests provide suitable admission control decisions for a reservation mechanism based on 
DM. 

Scheduling is based on the deadline monotonic algorithm that assigns fixed priorities to 
tasks based on the deadline value. Shorter deadlines are assigned higher fixed priorities than 
longer deadlines. As with the rate monotonic algorithm, the reservation mechanism distin- 
guishes between reserved mode activities and unreserved mode activities. At the beginning 
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of any given reservation period, an activity with a reservation is in reserved mode until it 
consumes all of the reserved time for that period. It is then changed to unreserved mode. The 
scheduler services reserved mode activities first, in order of their deadline values. If there 
are no reserved mode activities, unreserved activities are scheduled. 

3.4.2.3 Enforcement 

The enforcement mechanism accumulates usage in reserved mode until one of the fol- 
lowing occurs: the resource usage reserved for that period is consumed or the deadline time 
has passed. In either case, the activity is changed from reserved mode to unreserved mode 
where it can compete with time-sharing activities for the resource. 

3.5 Basic reserve types 

Operating systems manage many different kinds of resources that system and user pro- 
grams may use to do their work. The most important examples are processors, physical 
memory, buffers, and network bandwidth. 

Reserve 
Abstraction 

Resource 
Abstraction 

Hardware 
Resources 

Processor 
Capacity 
Reserves 

Processor 
Capacity 
Resource 

Processor 

Network 
BW 
Reserves 

Network 
BW 
Resource 

Network 
Card 

Figure 3-6: Resources and Basic Reserves 

Many of these resources must be managed in the reservation system, so we define basic- 
reserves, which are used to reserve and control the usage of different types of system 
resources. Each basic reserve type is associated with a resource type in the system. Figure 3- 
6 illustrates the relationship between the operating system resources and the basic reserves. 
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3.5.1 Processor 

Processor capacity reserves represent reserved time on a processor. Reserve requests 
specify capacity in terms of time that will be reserved on the processor, rather than in terms 
of instructions that will be executed or any similar measure of processor usage. The requests 
may specify other information, depending on the admission control and scheduling policy in 
effect. The discussion in the following sections assumes a deadline monotonic scheduling 
framework where the reservation request specifies the amount of time to reserve on the pro- 
cessor, a period at which the allocation will be replenished, and a delay bound. These sec- 
tions will cover these topics in more detail and will additionally discuss issues in 
enforcement, blocking time, and usage monitoring. 

3.5.1.1 Units of work 

Processor reserves deal with allocating real time on a processor rather allocating a 
sequence of instructions. The reason for this is that reserving instructions would be too diffi- 
cult. It would require knowing the exact sequence of instructions to be used with the reser- 
vation, fixing the exact sequence for accuracy (to avoid cache effects, etc.). allocating a time 
slot on the processor to execute those instructions, etc. 

Several pitfalls complicate the use of this reservation model that is based on time spent 
on the processor. For example, DMA can impact the amount of work that gets done in a cer- 
tain amount of time spent on the processor. Cache effects can introduce variance in the 
amount of work per time on the processor. Processor pipeline flushing at context switches 
decreases the amount of work done during a fixed time on the processor. These are all sec- 
ond order effects, but their impact should be accurately characterized. 

Processor reserves leave it to the individual applications and other higher-level software 
to make an appropriate mapping between the computational requirements of the applica- 
tions to the appropriate reservation specification. For hard real-time applications, accurately 
characterizing processor requirements is very important. For soft real-time applications, an 
adaptive approach is the .key to dealing with the fact that reservations are for time on the 
processor rather than work done by the processor. These applications can look at their own 
behavior and make adjustments as necessary. 

3.5.1.2 Admission control and scheduling 

For processor reserves in a rate monotonic scheduling framework, a reservation request 
consists of three parameters: a computation time, a period, and a start time. The admission 
control and scheduling policies described here are based on rate monotonic scheduling [67] 
as described above. 

3.5.1.3 Enforcement 

The enforcement mechanism for processor reserves must keep track of the processor 
usage for each reserve so that a scheduling event can be raised at the point where the 
reserves allocation has been depleted for a given reservation period. The usage measure - 
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ment task is complicated by the fact that a thread charging to a particular reserve may be 
preempted, and so at each thread context switch, the usage numbers must be updated to 
reflect the usage since the last context switch. 

Accurately accumulating resource usage 

To accurately accumulate resource usage in the face of preemptive use of the resource, 
the system must, at each context switch, compute the usage since the last context switch. 
This can be achieved by recording the start time of the computation (at the last context 
switch) and then computing the difference between the time at the current context switch 
and the time of the last context switch. This is the time the last thread was using the proces- 
sor resource, and this time is added into the usage accumulator for that thread's reserve. 
Thus the accumulator keeps an accurate account of the resource usage charged to it. 

Noticing reserve depletion 

The enforcement mechanism must be able to notice when the reserve of the currently 
executing thread becomes depleted. To do this, the system at each context switch computes 
the longest contiguous time the thread is entitled to execute on its reserve, and it sets a timer 
for that time. If a context switch occurs before the timer expires, the accumulators are 
updated and the timer is set for the next thread to execute. If the timer expires while the 
thread is executing, the system updates the accumulators, marks the reserve as "inactive", 
and calls on the scheduler to make some decision based on the new state of that reserve. 

Replenishing a reserve's allocation 

Each reserve must have its allocation replenished at the beginning of each reservation 
period so that the time on the resource is available if it is needed during that period. To do 
this, the system uses a periodic timer for each reserve which is set to expire at the beginning 
of that reserve's reservation period. When the timer expires, the state of the reserve is 
updated to reflect a full allocation of resource usage for the upcoming period. 

3.5.2 Physical memory 

A physical memory reserve represents a collection of physical memory pages. Physical 
pages are discrete resources, so they support simple discrete reservations. The more interest- 
ing question is how the owner of a page reserve uses this collection of physical pages. Basi- 
cally, pages can be locked down or paged in and out, and they can be prefetched or demand 
paged. A small application which could fit into its page reserve would benefit from 
prefetching its image into the page reserve and locking down the pages. A larger application 
might benefit from prefetching and locking down some (more frequently used) pages while 
keeping other physical pages available for less frequently used logical pages to be paged in 
and out. The advantage of using physical page reserves for these larger applications is in the 
increased control reserve give the application over traditional time-sharing demand paging 
replacement policies. With physical page reserves, the owner of a page reserve will at least 
be isolated from competition for pages with other threads in the operating system. 
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3.5.2.1 Admission control and scheduling 

The admission control policy for this discrete resource is as follows: if there are enough 
free physical pages to satisfy a reservation request, then the reserve is granted: otherwise the 
reservation request is denied. The physical page reserve contains the number of pages that 
are reserved, and these pages are completely free and ready to be used by the thread that 
owns the reserve. The system may want to keep some number of physical pages as '"unre- 
servable" pages to allow time-sharing threads enough resources to make progress. 

There is no scheduling of the use of pages by the reserve mechanism. 

3.5.2.2 Enforcement 

The enforcement of reservations for this discrete resource is relatively straightforward: a 
thread that has a physical memory reserve can use pages in its own memory pool and can 
also use pages from the time-sharing free page pool. Thus a thread using a physical memory 
reserve is assured of having at least the reserved number of pages available and possibly 
more. At no time will the pool of pages in the reserve fall below the reserved number. 

3.5.3 Network bandwidth 

Reserves for network bandwidth represent reservations for time on the network device. 
The system must include a mechanism for identifying the reserve to be used for incoming 
network packets. These reserves will typically be closely coordinated with processor capac- 
ity reserves and with bandwidth reservation supported by the network. The operating system 
will control the amount of outgoing traffic for each session (or virtual channel), and it will 
ideally coordinate with a network reservation system to limit the amount of incoming traffic 
for each session. 

3.5.3.1 Units of work 

The unit of work for a network bandwidth reserve is the transfer of a number of packets 
of a particular size (which will probably be constant, the MTU). Servicing of single packets 
is certainly non-preemptive, and it should also be possible to bundle multiple packets into 
non-preemptive work units. 

3.5.3.2 Admission control and scheduling 

The reservation specification for net bandwidth reserves includes a reserved time per 
period of real time, and possibly an indication of expected blocking time. 

Timeline or rate monotonic scheduling frameworks among others would be appropriate 
for net bandwidth reserves. Several important issues relate to the non-preemptive nature of 
the work unit. Ideally, the expected blocking time would be used in the admission control 
policy and scheduling algorithm. 



3.5.3.3 Enforcement 

Accurate measurements of usage time can be computed between requests. This informa- 
tion can then be used in the enforcement mechanism and for input into scheduling policy 
decisions. 

3.6 Reserve management 

3.6.1 Default reserves 

Default reserves exist in the system to simplify the implementation of the reservation 
mechanism by providing "reserves" for non-real-time programs to charge usage against. 
These default reserves do not actually represent reserved resources, but they do accumulate 
usage for all activities that have created their own reserves or had reserves created for them. 

For example, new threads are assigned to run under the default processor capacity 
reserve when they are created. Thus a thread will charge its time to this global reserve until 
it acquires a reserve of its own. 

3.6.2 Composite reserves 

Having many types of reserves allows flexibility in specifying resource requirements to 
the system and in allocating resources, but the job of managing those resource reservations 
at the user level becomes more involved. For example, a multimedia application, such as a 
video player, might reserve resources for several constituent activities. It might reserve 
some processor capacity for the module which reads audio and video data from the disk and 
passes the data to an audio server and a display server. It might also reserve processor 
capacity for a control module which provides fast response to interactive control commands 
from the user. The player part might also reserve physical memory and message queue buff- 
ers at the file system manager. Each of these reservations has an associated reserve, and we 
would like to be able to collect a subset of these reserves under a single name to avoid hav- 
ing to refer to them individually. 

Grouping related reservations together helps alleviate this complexity. The model 
allows reservations for different types of resources, and the situation arises where a program 
has reserves for several different resources. Since it has to present the appropriate reserve 
handle to be able to use a resource, a way of grouping all of the reserves under one handle 
would make it easier for the program to identify its reservations to the system and to the 
servers it invokes. 

A composite reserve groups reserves for different resource types under a single handle. 
A composite reserve has the following properties: 

• it will contain a number of basic reserves, 

• it may contain only basic reserves (no composite reserves), 
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it may contain at most one reserve for each basic resource type 

Processor 
reserve 

30 ms per 
100 ms 

Composite 
reserve 

Memory 
reserve 

Net Buffer 
reserve 

105 pages 24 buffers 

NetBW 
reserve 

200kb per 
100 ms 

Figure 3-7: A Composite Reserve 

Figure 3-7 shows the relationship between a composite reserve and its constituent basic 
reserves. In the video player example above, we might collect all of the reserves to be used 
by the player part (processor, physical memory, and message queue buffers) into a compos- 
ite reserve. Then the system could use this reserve to reference the collection of resources 
reserved for the player. To charge computation time to the player, the system would take 
this reserve and look for the processor reserve under it. 

3.6.3 Reserve inheritance 

When a process creates a child process, the reserve of the parent is passed to the child, 
and the child runs against the resources reserved in the inherited reserve. This feature pro- 
vides a way to allocate resources for non-real-time activities that create large process trees 
(like "make"). Reserve inheritance is appropriate for the automatic propagation of reserves 
for non-real-time programs, but real-time programs should generally configure their 
resources reserves explicitly. Figure 3-8 shows the difference between a process P whose 
children do not inherit its resource reserves and another process Q whose children and other 
descendants do inherit its resource reserves. 
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Figure 3-8: Reserve Inheritance 

3.7 Chapter summary 

This chapter described the basic reserve abstraction including reservation specification, 
admission control, scheduling, and enforcement. The idea of reserve propagation where a 
client hands reserves to a server to which it sends a request for service is shown to be a pow- 
erful mechanism for making reservations on a per-activity basis (rather than a per-thread 
basis). Several different scheduling frameworks which could be used in an operating system 
supporting the reserve abstraction were described, and the chapter discussed several differ- 
ent types of basic reserves for various resources such as: processor time, physical memory, 
and network bandwidth. A section on reserve management described default reserves, com- 
posite reserves, and reserve inheritance which address some practical issues in using 
reserves in a real system. 
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Chapter 4 

Programming with Reserves 

This chapter describes how to write programs that take advantage of resource reserves to 
satisfy their timing constraints. It focuses on three main issues: How should reserves be used 
in an application given that it uses various modules, external servers, and system services in 
the course of its computation? And also: How should the reservation parameters, particu- 
larly the reserved resource usage parameter, be initially chosen? How should they be 
adjusted given that applications must support different platforms and may have computa- 
tional requirements that depend on changing input data? 

4.1 Overview 

This chapter describes the major issues involved in programming with reserves includ- 
ing the design decisions and tradeoffs that a programmer must make. The specific issues 
addressed are: 

• How to structure programs to take advantage of reserves. 

• How to map reserves onto a program's structure. 

• How reservation parameters should be sized. 

• How adaptive programs should adjust reservation levels. 

One can think of a program as a graph of computational nodes, and each computational 
node has a reserve associated with it. Determining exactly what reserves should be allo- 
cated, what their reservation parameters should be, and how reserves should be associated 
with these computations involves design decisions that impact the program structure. 

For example, the programmer must decide whether applications that depend on each 
other will explicitly negotiate timing requirements among themselves for the specific ser- 
vices they provide to each other. The alternative is to allocate resource reserves for their 
combined activity and then pass those reserves along as the abstract "activity" passes from 
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one to the other. In the first case, the partitioning of requirements and the explicit specifica- 
tion of timing requirements for each computation in each application creates a great deal of 
bookkeeping that has to be done. In the latter case, the requirements summarize the entire 
activity without specifying each detail along the way. As long as each phase of the activity 
adheres to a few rules such as not introducing unnecessary delays into the overall activity, 
the same high-level timing requirements can be satisfied without excessive dissection of the 
programs. 

Another design decision addressed here relates to the flexibility of applications that use 
reserves. Hard real-time applications would typically specify fixed reservation parameters. 
Adaptive programs might be able to monitor their resource usage and adjust reservation 
parameters to fit their behavior over time. They might even be able to select different algo- 
rithms with different semantics and different performance characteristics to tune their com- 
putation time. 

Finally, this chapter addresses the issue of programming with multiple resources. This 
requires applications to be broken into sub-computations at points where different resources 
are required. Coordinating resource reservations on multiple resources to satisfy end-to-end 
timing constraints requires careful design. Two approaches using reserves are described. 

4.2 Using reserves in application design 

This section focuses on the structure of applications and how reserves fit into that struc- 
ture. Programs are considered to comprise one or more concurrent activities. Each activity 
might have a thread associated with it, and each activity has ä call graph describing the sub- 
routines that are called by each subroutine. The call graph is extended to include calls to 
external servers or system services made by each subroutine. 

The following sections describe these extended call graphs and address the coordination 
of reserves between reserved modules, reserved clients and servers, and reserved operating 
system services. 

4.2.1 Program structure 

To understand the timing constraints and resource requirements, one must consider the 
structure of application code. This section describes how an application might be divided 
into separate activities. It describes how a periodically executed computation in an activity 
might be broken down into sub-computations by splitting computations at procedure calls, 
remote procedure calls (RPCs), and system traps. The result is like a call graph that includes 
"calls" to servers and to the operating system. 

For the purpose of this analysis, an activity is defined to be an abstract thread of control 
that starts out in a process and moves in and out of user-level servers and the operating sys- 
tem as calls are made to those servers and the system. This is similar to threads traversing 
objects in Clouds [26]. Such an abstract thread model corresponds to a synchronous pro- 
gramming style, which is in contrast to an asynchronous programming style where activities 
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are essentially "forked" by making asynchronous service requests to external servers or ker- 
nel primitives. For example, consider an animation application that synthetically generates 
animation frames in real time. The application consists of two activities: one to generate and 
display animation frames and one to process user interface events such as requests to resize 
the animation window. 

Each of these activities may call modules in the same address space, make RPCs 10 serv- 
ers, or make system calls. By this definition, when a (synchronous) RPC is made to a server. 
the activity "moves" to the server for the duration of the server's compulation and then the 
activity returns to the client when the call returns. If the server were to call another server 
synchronously, the activity would move to the second server for the duration of the call. The 
same is true of a system call. When a system call is made, the activity "moves" to the oper- 
ating system and returns when the call returns. 

An activity may be periodic. For example, consider the frame generation activity of the 
animation application. Suppose this activity originates in a subroutine (called 
process_frame) that is invoked periodically every 33 ms to process and display frames. Now 
suppose process_frame calls generate_frame and display_frame, which eventually performs 
an RPC to a window system server that accesses the frame buffer. Figure 4-1 shows an 
example call graph rooted at the function process_frame. 

f  process_frame 

generate_frame display_frame 

Client 

DisplayBitmap 

Server 
ServerDisplayBitmap 

Figure 4-1: Call Graph for Frame Generation and Display 
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This call graph includes an RPC from the client to the server. The DisplayBitmap sub- 
routine makes the RPC in the client, and the ServerDisplayBitmap subroutine in the server 
continues the activity. Thus, this graph captures all of the sub-computations of the animation 
activity. 

4.2.2 Reservations for periodic computations 

Given that the process_frame subroutine shown in Figure 4-1 is invoked periodically, 
the thread would "release" the computation periodically by using a while loop with a delay 
primitive or by setting a period attribute in the case of RT-Mach's periodic threads [125]. 
Thus, the activity has an initial release time and a period parameter. To associate a processor 
reserve with this activity requires that a reserve be allocated with a start time and period that 
corresponds to that of the process_frame activity. It is possible to bind a periodic thread that 
attempts to execute its computation every 40 ms to a reserve that has a reservation period of 
50 ms. This is not recommended, however, because the resources would not necessarily be 
available when the activity was released. 

Thread 

Reserve 

time 

|     | Thread computation 
I Reserved time available 

(a) 

time 

|     | Thread computation 

I Reserved time available 
(b) 

Figure 4-2: Thread and Reserve Out-of-Phase 
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Figure 4-2(a) illustrates a case where the thread period is not aligned with the reserve 
period, resulting in undesirable delays. In part (a) of the figure, the reserved computation 
time is not available until near the end of the thread's period. Thus the thread cannot start 
running until the very end of its period, and it misses its deadline at the end of the period. 
The problem is that the availability of the reserved time did not match the availability of the 
thread. Figure 4-2(b) shows the case where the thread period and reservation period are syn- 
chronized. This means that the thread will be ready when the reserved computation time is 
available, and the reserve guarantees that the reserved computation time will be available by 
the end of that period, so the thread is assured of being able to complete. 

4.2.3 Localized reserve allocation 

Consider the resources required in each node of the call graph in Figure 4-1. Assume 
that generate_frame requires only the processor. For nodes under display_frame, assume the 
frame buffer is mapped into the window system server's address space and that the proces- 
sor is the only resource required. 

process_frame 

generate_frame display_frame 

Server 
ServerDisplayBitmap 

Figure 4-3: Call Graph with Separate Client and Server Reserves 

With these assumptions, one approach to allocating reserves for the sub-computations 
would be to allocate a processor reserve for all of the nodes in the animation application and 
another processor reserve for the nodes in the window system server. Thus, the server would 
have a reserve allocated for each of the clients holding open connections to it. This approach 
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is necessary in the case where the server resides on a remote machine, but it may be pre- 
ferred even when both utilize the same processor. Figure 4-3 illustrates this approach. 

The RPC from the client to the server implies a switch from the client's reserve to ihc 
server's reserve. With this approach, the traditional "priority" inheritance mechanism would 
not be useful because the fact that the server has a reserve allocated internally for the anima- 
tion client defines the "priority" for the client's request in the server and the client's "prior- 
ity" does not get propagated. Another mechanism to associate the animation applications 
RPC request with the appropriate reserve inside the server would be very useful. Such a 
mechanism might take the "priority" of the server-allocated reserve to be associated with the 
animation client and apply it to the thread that will handle the client's request. This is a kind 
of "priority" inheritance where the server's thread gets the priority of the reserve it allocated 
for a client instead of getting the priority of the client itself. 

Since the server must allocate the reserve for its computation on behalf of a client, it 
must know what the reservation parameters should be for the reserve. This approach 
requires the client and server to enter into a dialogue to allow the client to explicitly request 
a server-specific QOS level, meaning a certain pattern of server operations to be called with 
certain timing constraints. The server must then map the requested QOS requirements to 
system resource requirements and decide whether it can acquire the reserves to support that 
activity. All of this negotiation must be explicit, and that means a client/server interface for 
negotiating server-specific QOS requirements must exist. Further, the server must have the 
machinery to map those QOS requirements to system resource requirements. 

I     | client computation 
| server computation 

time 

(a) 

Client's 
Reserve 

Server's 
Reserve 

|     1 client computation 

| server computation 

time 

(b) 

Figure 4-4: Switching Reserve from Client to Server 
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Another issue is that the timing parameters of the two reserves must be carefully coordi- 
nated for the call to be executed smoothly. Essentially, the client's call to the server means 
that the computation in the server becomes ready, and its reserve must provide the resources 
for it to execute in a timely fashion after it is ready. The sequence of client computation fol- 
lowed by server computation is illustrated in Figure 4-4(a). 

The server's computation time might be available immediately after the call is made, as 
in the first period of execution history shown in Figure 4-4(b), in which case the deadline for 
the combined activity is met. But as shown in the second period of the execution history in 
Figure 4-4(b), the client's computation time may be available very late in its period. The 
server's computation time may be available earlier in its period but not available so close to 
the end. It is guaranteed to be available sometime in the period, but not at any particular 
time. Thus the activity could miss its deadline. 

Introducing an intermediate deadline for the client's computation could solve this syn- 
chronization problem. Figure 4-5(a) shows the usage pattern of the client and server with an 
intermediate deadline for the client. 

JH 
I    I client computation time    time 

(a) | server computation time 

Client »- 
Reserve * 
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|     [ client computation time 

| server computation time 

time 

Figure 4-5: Client Requirement with Intermediate Deadline 

Using reserves with deadline parameters, Figure 4-5(b) shows how the reserves can be 
allocated such that the client reserve has its computation time available at the beginning of 
the client's period with an intermediate deadline halfway through the period. The server's 
start time is at that intermediate deadline, and it has a deadline that corresponds to the end of 
the client's overall period. Thus, both activities are guaranteed to synchronize and complete 
by the overall deadline as desired. 



All of the explicit handling of QOS requirements and resource requirements and the 
careful synchronization of interactions between reserves makes programming clients and 
servers much more complex. While this may be necessary for designing complex hard real- 
time systems, for soft real-time systems and less complex hard real-time systems, the 
approach where resource requirements for clients and servers are folded into one reserve 
may be better. 

4.2.4 Activity-based reserve allocation 

Another approach would be to allocate a single processor reserve for all of the nodes in 
the entire call graph; Figure 4-6 illustrates this approach. Of course, if the server is running 
on a remote host, this approach may not be feasible since it is not clear how a single proces- 
sor reserve could be made to represent processor time on two different processors. 

process_frame 

generate_frame 

Client 

Server 

display_frame 

DisplayBitmap 

ServerDisplayBitmap 

Figure 4-6: Call Graph with One Reserve for AH Nodes 

Even if the animation application and the server are on the same host running on the 
same processor, there is a problem that must be addressed in this approach: the server may 
not be ready to service the RPC call at the time it is issued. In fact, there is a potential "pri- 
ority" inversion problem associated with such an RPC (where "priority" refers to the order- 
ing of reserved activities by the scheduler rather than an integer priority for a thread). If the 

52 



RPC arrives in the server's queue at a time when the server is servicing another client, the 
server's thread will be bound to the reserve associated with the other client. If that other cli- 
ent is processor-poor, the reserved time may run out during the service, and the server may 
experience some scheduling delay. If the other client has a reserve that happens to get its 
processor time very late in its period, there may be a significant delay until the server, run- 
ning with that other client's reserve, can finish the on-going operation. 

To limit the delay the animation application experiences waiting for the server to handle 
its RPC, a "priority" inheritance protocol [108] must be employed. If the animation clients 
reserve would be sequenced by the reserve scheduler before the other client's reserve, the 
server which is using that other client's reserve would be sequenced as if it were using the 
animation client's reserve. However, for consistency of the usage measurement, it will still 
charge its usage to the other client's reserve. Then when that service is finished, the server 
will bind to the reserve of the animation server and that completes the propagation of the 
animation application's reserve to the server. 

For this reserve passing to work best, the RPC should be synchronous, meaning that the 
client should wait for the result after making the call to the server. With a synchronous RPC. 
either the client or the server will be charging against the client's reserve whereas with an 
asynchronous RPC where the client does not wait for the result from the server, both the cli- 
ent and server may be charging against a single reserve at the same time. This is not cata- 
strophic, but it may result in complicated interactions between the client and server. 

This approach implies that the client application must request reservation parameters 
that include the computation time that will be consumed by the nodes residing in the server. 
This can be done by having the client discover the requirements empirically during runtime, 
by having the server explicitly provide its resource requirements, or by determining the 
requirements at design time (this issue is discussed in detail in the next section). 

The important point here is that the client and server need not explicitly exchange infor- 
mation about resource requirements if the client allocates the reserve and passes ii to the 
server. In particular, a great deal of complexity can be avoided if the client/server interface 
does not need to be able to support a complex negotiation of requirements. For legacy sys- 
tems, this means that existing interfaces need not be radically modified, the only change 
being the mechanism for passing reserves from client to server. 

4.2.5 Coordinating multiple resources 

This section describes an issue that arises when an application uses multiple different 
kinds of resources in different sub-computations. Consider an audio/video player applica- 
tion that reads data stored on a disk and then outputs an audio stream and displays video 
frames. The player could be structured as three activities: audio playback, video playback, 
and user interface. The video playback activity would be periodic, reading and displaying a 
frame every 30 ms. 
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Figure 4-7: Call Graph for Video Playback 

Figure 4-7 shows a possible call graph for the video playback activity. The graph is 
rooted at a subroutine called process_frame, which calls three more subroutines: 
read_frame, decode_frame, and finally display_frame. In the read_frame routine, calls are 
made until eventually the program makes a system call and traps into the kernel where more 
subroutines are called until finally a device command is issued to read data from the disk. 
This call graph introduces another type of call, referred to as a device command, which is 
used in addition to the original three types of calls (procedure call, RPC, and system call). 
The decode_frame routine converts the video frame data to a form that is suitable for dis- 
play. The last call is to display_frame which is the root for a sequence of calls resulting in an 
RPC to a window system server which makes additional subroutine calls and finally 
accesses the frame buffer. 

The resource requirements for this call graph include disk access as well as processor 
time, so a disk reserve is allocated and bound to the disk read node. The other nodes require 
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only the processor, and one approach is to allocate a single processor reserve for all of those. 
This reserve allocation and binding approach is illustrated in Figure 4-8 

read frame 

disk read cmd 

process_frame 

display_frame 

DisplayBitmap 
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Server 
ServerDisplay 

Figure 4-8: Call Graph for Video Playback with Reserves 

There is a subtle problem, however, that is related to the synchronization problem 
between and client and server with localized reserve allocation. The resource usage pattern 
for the process_frame activity is the following: 

• The processor is needed for all the nodes up to where the read command 
is issued to the disk, 

• the disk is required for that read command node, 

• all the nodes after that require only the processor. 

This resource usage pattern is illustrated in Figure 4-9(a); in every period, the computa- 
tion first has a processor requirement, then a disk requirement, and then another processor 
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requirement. If a processor reserve and a disk reserve are allocated, the execution pattern 
may look like the pattern shown in the first period of Figure 4-9(b). 

[    | time on processor    *ime 

Hi time on disk 
(a) 

Proc 

Disk 

I    | time on processor   üme 

■ time on disk 
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Figure 4-9: Synchronization Problem with Multiple Resources 

However, the only guarantee associated with the processor reserve is that the processor 
time reserved will be available by the end of the period. If that time happens to only be 
available at the very end of the period, the execution pattern might look like the one in the 
second 33 ms period of Figure 4-9(b). In that second period, the leading processor require- 
ment is serviced too late, and by the time the disk activity is finished, there is no more time 
left in the period for the second half of the processor requirement, and the deadline is 
missed. Worse still, if the reserved disk usage is only available at the beginning of the disk 
reservation period, the activity will be delayed into the next reservation period and certainly 
miss a deadline and possibly miss the following deadline as well. 

One way to solve this problem is to introduce intermediate deadlines in different stages 
of the computation to separate sub-computations that use different kinds of resources. For 
example, Figure 4-10(a) illustrates the usage requirements and new intermediate deadlines 
for the video playback activity. 
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Figure 4-10: Multiple Resources Used with Intermediate Deadlines 

A reserve is allocated for each of the three phases of the computation: the leading pro- 
cessor requirements, the disk requirement, and the final processor requirement. Since the 
end-to-end timing requirement or deadline is divided up into intermediate deadlines for per- 
forming the three phases of the overall computation, the reserves that are associated with the 
phases must have deadline parameters. Figure 4-10(b) shows a timeline for each reservation 
and how the usage is timed in the three reserves. 

So with this approach, two processor reserves (labeled Procl and Proc2 in Figure 4-10) 
and one disk reserve are allocated. The call graph with this reserve allocation and binding 
appears in Figure 4-11. 

This example points out two major factors that influence how reserved computations 
should be structured and how reserves should be bound to the sub-computations. One factor 
is the temporal sequence of the resource requirements. Generally speaking, a node in ihe 
graph that requires a resource different from its parent acts as a delimiter for grouping com- 
putations that can use the same reserve. To minimize the number of reserves required, the 
application programmer should minimize the number of times computations must switch 
between required resources. 
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Figure 4-11: Video Playback with Better Reserve/Computation Mapping 

The second factor is the spatial organization of the nodes in the system. When a call 
crosses to another address space or to the operating system, a decision has to be made about 
whether to switch reserves at that point or not. The system designer has more control over 
that choice, as described above. 

4.3 Sizing Reservations 

To use resource reserves, an application must specify appropriate reservation parame- 
ters. For hard real-time applications, the reservation parameters would be determined a pri- 
ori by the system designer. For dynamic real-time applications, external agents such as a 
QOS Manager may suggest or require different reservation parameters during the course of 
the application's execution. In the dynamic framework, it is important for the application to 
be aware of the resources required to do the work it needs to do and to be flexible in terms of 
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its timing requirements (how often or under what delay bounds it does the work). In general. 
two important questions must be addressed: 

• How can the resource usage requirements of an application be deter- 
mined, especially given that the application may be used on different 
machine types and system configurations? 

• How should an application adjust its resource reservations using informa- 
tion about previous performance? 

This section deals with the determination of initial resource reservations and adjustment 
of reservation levels for dynamic periodic activities. 

4.3.1 Determining resources required 

The first problem to be addressed is how to determine which resources will be needed 
during the course of the computation and how to determine the initial reservation levels for 
the various resources required by an activity. 

The resources that are needed during the course of a computation will depend on what 
external services are used by the computation. The list of resources for the computation will 
be the union of all the resource lists for the transitive closure of external services used by the 
computation. It is therefore very important for services to be named so that each service can 
name those services that it uses. And in turn, each service must name those resources that it 
uses. Then it is possible to find the resources used by the transitive closure of services the 
application uses. 

A potential problem is that different functions offered by a service may use different 
resources. If a client uses only one function offered by the service, it should reserve only the 
resources needed for that function rather than the complete list of resources needed by every 
function the service offers. In this case, it may be useful to consider the resource lists 
required for "sub-services" or subsets of operations of the service where the subsets are 
defined to use similar sets of resources. 

In any case, the method for ascertaining required resources should be flexible, efficient, 
and easy to use. Ideally, the system would help to determine the list of resources during an 
initialization phase of each application. Each time the system encountered an application 
that required a particular resource but had no corresponding reserve, it would add a reserve 
of the appropriate type with no reservation parameters to the reserve tree bound to the appli- 
cation. After the initialization phase, the application would have references to the resource 
that were required by its component computations, even those resources used by servers thai 
were called on its behalf. 

Other approaches to determining resources required could be used as well including the 
following. 

• The list of resources could be obtained by sending a query to every server 
to be used in the computation and having the server provide a list of 
resources it requires and a list of services it uses. The transitive closure of 
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required resources collected during this query would be accurate as of the 
server connection time. This method does not require that the system and 
(possibly more static) documentation remain synchronized with respect 
to specification of resources used. Upgrades for various system software 
modules could be made without having to issue new resource list docu- 
mentation. Also, servers would be free to determine which resources, 
among many possibilities, would be best to serve that connection given 
the state of the system and its load at the time the connection was 
requested. Thus an additional degree of freedom is allowed the servers. 

• The list could be found using a database where each server registers the 
list of resources as well as other services it requires. This makes it possi- 
ble to write applications that automatically determine the transitive clo- 
sure of services used and resources required, even if some of those 
services and resource types did not even exist at the time the application 
was developed and compiled. One important requirement to make this 
dynamic method work is that service names and resource types not be 
hard-coded. Instead, a program should be able to handle and manipulate 
new service names and resource names with no recompilation. 

• The list of resources required by various user-provided services and sys- 
tem services could be static, long-lived, and well documented. The pro- 
grammer must manually look up all the services and find the transitive 
closure of services used and then the union of the resource lists of all 
those services. The major problem with this approach is that the slightest 
changes to the software for the services may change the list of services 
used and the resource list, thus making the lists in the manual obsolete 
and making all the programs written to the specification of the manual 
obsolete. 

4.3.2 Determining initial reservation levels 

Once the programmer knows what resources are needed by an activity, she must set up 
the reserves for those resources and request reservations. Requesting reservations requires 
that reservation parameters be provided. In the reserve model, a reservation request has 
parameters for resource time to be reserved and for a reservation period. In many cases, the 
reservation period will be the same as the period of the activity. This will sometimes be 
derived directly from user-level quality of service requirements (such as frame rate), and 
sometimes it will be derived indirectly from user-level requirements. For example, the rate 
for handling audio packets might depend on the audio sampling frequency, the packet size, 
and perhaps the system overhead per packet. The resource usage time is more difficult to 
ascertain. It depends on the platform, the system software, and the data being processed 
among other things. 

One way to get a reasonable estimate as to what the resource usage requirements might 
be for a given instantiation of an application involves measuring the actual computation that 
forms the main focus of the application. With one run through a periodic activity, for exam- 
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pie, the application could get a fairly good estimate of future computation times using the 
reservation mechanism's usage measurement features. Another variation on this approach is 
to use a simple computation to gauge the speed of the machine and/or system architecture, 
and then use a characterization of the real application's computation expressed in terms of 
the simple computation to estimate the appropriate reservation level. For example, if the 
application first ran a SPECint benchmark and knew how much the reserved computation 
needed in terms of SPECint benchmarks, it could derive the estimate directly. 

The following methods could also be used to determine the initial reservation level: 

• An application could store in a persistent preferences database some 
information about reservation levels used in previous instantiations of the 
application. This information would be a good guess as to what reserva- 
tion levels should be procured, and it might be possible to maintain a 
small database to map prior experience with different QOS parameters to 
reservation parameters. This approach might get much more complicated 
as more QOS parameters, reservation parameters, and target system 
architectures are used. 

• The initial reservation level could be set to zero or some other relatively 
small value that is known to be smaller than the actual reservation level. 
though unknown, that will be required. This approach requires the mech- 
anisms for reservation level adaptation to quickly acquire the feedback 
on usage that is necessary to set a reasonable reservation level where 
desired quality of service parameters can be achieved. Initially, the 
desired QOS parameters will not be achieved and they may never be 
achieved. These are the major drawbacks of this no-knowledge approach. 

• An alternative approach to the zero level initial reservation is to take the 
maximum reservation level available on the resources at the time the res- 
ervation is requested. This has the advantage of having the highest 
chance of meeting the desired QOS parameters for the application, but 
the disadvantage is that resource capacity may be unnecessarily tied up 
and unavailable to other applications requesting reservations. This situa- 
tion would persist until the adaptation mechanism had the chance to eval- 
uate the situation and make the proper adjustments to the reservation 
levels. 

4.3.3 Measuring performance 

An adaptive reserved application should keep track of the resource usage required 10 
perform its computation at each repetition to decide if it has more resource capacity reserved 
than it needs or if it has too little resource capacity to do its work during each period. It 
should also keep track of the real-time delay incurred during each repetition of the computa- 
tion to determine whether the computation was completed within the period or not. 

The application can easily measure the real-time delay of a computation by taking a 
timestamp at the beginning and at the end of the computation. Measuring the resource 
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capacity usage for a computation, however, is more involved, requiring support from the 
operating system. This support must be more accurate than the traditional logical clock for 
processor time provided to processes in most operating systems. Logical clocks usually take 
usage measurements by sampling at clock interrupts to find which process is running and 
incrementing that process's logical clock as if it had been executing for the entire period. 
Statistical sampling of this kind, which is inherently inaccurate for short-term measure- 
ments, will not provide an application with the clear picture of short-term behavior. Such 
knowledge of short-term behavior is needed to be able to make suitable adjustments to the 
reservation parameters. 

For the kind of accuracy required for measurements of resource capacity usage, the sys- 
tem must accumulate usage associated with reserves at each context switch. In this context, 
reserves act as abstract thread logical clocks rather than process logical clocks. And since 
the reservation system manages capacity usage for resources other than just the processor, 
the system must keep usage accumulators for all types of resources, and these must be 
updated at each context switch on the appropriate resource. 

Reserve usage measurements will indicate how an application's actual behavior is 
related to its reservation. Several possible patterns of behavior are described in the next sec- 
tions. 

4.3.3.1 Balanced applications 

An application is balanced with respect to its reservation if the resource usage in each 
period is fairly constant and the reservation level is at this constant value. (It may be impos- 
sible for resource usage to be completely constant for some interesting resources such as 
processors.) 

units of resource 

reservation_ 
level 

time 

Figure 4-12: Resource Demand Constant and Reserved 

Figure 4-12 illustrates a computation's demand on a particular resource over time. Time 
is on the x-axis, and it is divided into intervals equal to the reservation period. The y-axis is 
units of resource, e.g. time spent on the processor executing instructions, bytes transmitted, 
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etc. Within each reservation period, the number of units of resource consumed by the com- 
putation is measured, and the height of the bar in that interval is the number of units con- 
sumed. 

In the figure, the number of units of resource required in each reservation period is 
nearly constant, and the reservation level is slightly more than this constant demand. There- 
fore, the demand is satisfied by the reservation, and the computation will have the resources 
to be able to execute completely in each period. 

4.3.3.2 Under-reserved applications 

An application is under-reserved with regard to a particular resource if its resource usage 
requirement is greater than its reservation. Two cases are distinguished: 

1. worst-case (maximum) resource usage requirement for the computation is greater 
than the reservation but the average resource usage requirement is less that the res- 
ervation, and 

2. the average resource usage requirement is greater than the reservation (implying 
that the worst-case resource usage requirement is also greater than the reservation). 

In the first case, the average resource usage requirement is less than the reservation, so 
over the long term, the application will be able to keep up with its work requirement. The 
problem is that since the worst-case resource usage requirement is larger than the reserva- 
tion, the completion of the worst-case computation may be delayed and this may delay or 
otherwise affect the computations in subsequent periods. If the worst-case computation 
occurs very infrequently, its negative affects on the overall performance of the application 
can be minimized or ignored. A human viewer may not even notice an occasional dropped 
frame during video playback. If the worst-case computation occurs frequently, it may be 
more difficult to ignore; many dropped video frames would certainly be noticed. 

units of resource 

reservation_ 
level 

/ 

worst-case computation 
exceeds reservation level 

time 

Figure 4-13: Resource Demand Occasionally Exceeds Reservation 
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Figure 4-13 illustrates this slightly underreserved case. The resource usage requirement 
in most reservation periods is less than the reservation level for this particular resource. In 
these periods, the computation will have the resources available to complete. However, 
there is one period in the illustration (the 4th) in which the resource usage requirement is 
larger than the reservation. Depending on the system's policy for treating this case, the com- 
putation may happen to be completed (using idle time), it may be aborted, or it may extend 
into the next reservation period, interfering with the completion of the computation which 
would normally execute in that period. 

units of resource 
worst-case computation 
exceeds reservation level 
and is aborted 

reservation 
level 

time 

Figure 4-14: Exceedingly Demanding Computation Aborted 

Figure 4-14 shows how the usage pattern would look if the computation in the 4th reser- 
vation period were aborted. Note that the computations in the subsequent periods are not 
affected by the aborted computation. 
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Figure 4-15: Computation Impinges on Following Computation 
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Figure 4-15 shows the case where the computation in the 4th reservation period extends 
into the next reservation period and prevents the next computation from being initiated. 
Computations following that are left undisturbed. 

worst-case computation 
exceeds reservation level 

subsequent computation delayed 
in effort to catch up 

reservation 
level 

time 

Figure 4-16: Computation Impinges on Subsequent Computations 

In Figure 4-16 the 4th computation overruns its reservation period and consumes part of 
the next period. The computation associated with that period is initiated after the previous 
computation is completed (as opposed to the previous case where this computation was not 
initiated). But since the 5th computation is initiated later than usual, it also overruns its res- 
ervation period and is deferred to the next period. This cascading effect continues until there 
is enough (normally) unused but reserved units of resource to make up for the original over- 
run. 

In cases where the average resource usage requirement is more than the reservation, the 
activity will never be able to accommodate all of the computations which overrun, and it 
would be necessary to shed some of the load by aborting some computations or by not initi- 
ating some computations. In either case, the attempted overruns would occur frequently and 
have a potentially damaging effect on overall application behavior. In a video player, for 
example, this would mean that many frames get dropped. 

Figure 4-17 illustrates a possible pattern of demand that has the average demand greater 
than the reservation level. The computations in several reservation periods require more 
than the reservation for that period. Many of the computations will have to be aborted if 
there is no idle time available beyond the reserved level. 
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Figure 4-17: Average Demand Exceeds Reservation 

4.3.3.3 Over-reserved applications 

An application is over-reserved if the resource usage in each period is (much) smaller 
than the reservation level. 

units of resource 

reservation 
level 

time 

Figure 4-18: Resource Demand Smaller than Reservation 

Figure 4-18 illustrates a case where the usage on a particular resource is much smaller 
than the reservation in all of the reservation periods. Here the computation is never in any 
danger of overrunning into the next period. 

4.3.3.4 Multiple resources 

When there are multiple resources involved in each computation, the measurements of 
usage compared to reservation level for each reserve will be different. One resource may be- 
over-reserved while all of the others are under-reserved, or perhaps more commonly, one 
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resource may be under-reserved (representing a bottleneck) while all of the other resources 
are over-reserved for the activity. 

processor time 
(over-reserved) 

disk I/O 
(under-reserved) 

network bandwidth 
(over-reserved) 

remote processor time 
(over-reserved) 

Figure 4-19: Measurements of Multiple Resources 

Figure 4-19 illustrates a case where there are multiple resources involved in a single 
activity. They all have the same reservation period, but the demands placed on various 
resources are different. In this case, the disk I/O is under-reserved while the local processor 
usage, the network bandwidth, and the remote processor usage are all over-reserved. 

Once an application has measurements of usage for the various resources it requires for 
its computation, it can begin to make decisions about how to modify its own behavior or 
modify its own resource reservation levels to achieve better performance or better effi- 
ciency. 

4.3.4 Adapting 

Reservation parameters can be changed dynamically as the user, the application itself, or 
a central quality of service manager determines that new reservation parameters would be 
preferable. Applications adapt based on the influences of various external entities, but once 
a resource reservation is made, the system ensures that the resources are available. 
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Adaptive applications can measure their own performance by mapping measured system 
resource performance metrics to application-specific performance indicators. This applica- 
tion-specific information can then be used along with application-specific performance 
objectives to: 

1. modify the computation being done by the application (to change resource require- 
ments), 

2. modify the reservation level for resources being used by the application, or 

3. do nothing. 

The performance measurement interval could be comparable to the period of the repeti- 
tive computation, but it would be more efficient if the adaptation interval were an order of 
magnitude larger than the activity period (e.g. the adaptation might occur every 500 ins for 
an activity with a 50 ms period). 

4.3.4.1 Modifying an application's computation 

One way that an application might react to the fact that its resource usage is different 
from its reservation is to change its behavior so that its usage more closely matches its reser- 
vation (leaving the reservation unchanged). The actual mechanisms for modifying behavior 
in an application are fairly straightforward. An application which is meant to modify its own 
behavior must have different behaviors available (i.e. different algorithms implemented 
internally). It must be able to tell which algorithm it should use depending on the format of a 
incoming or outgoing data stream, on the resources such as network bandwidth or computa- 
tional power that are available to it, or on the limitations of other software with which it 
must interact. For example, an MPEG video decoder could use different decoding or dither- 
ing algorithms depending on the resources available. If the decoder were taking the MPEG 
data stream from a server in real time, it might be able to negotiate MPEG encoding param- 
eters with the server and have the server place new parameters in the data stream. Thus, 
adaptive applications are constrained by: 

1. the algorithms they have coded, 

2. the data formats they are using, 

3. the data formats and data rates that other components of the pipeline can handle. 
and 

4. the resources that are available to it. 

Typically, the application would contain a collection of algorithms that could be ordered 
based on processor requirements, network bandwidth requirements, etc. Thus, once an adap- 
tive application decided to increase or decrease a reservation on a particular resource, it 
could determine which algorithms could satisfy that constraint. It is important to distinguish 
between two kinds of behavioral adaptations: 

1. local changes in algorithm and 

2. global changes. 
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An example of a local change would be a change in the number of bits actually being 
decoded by the receiver of a bit stream (assuming the bit stream was encoded using a hierar- 
chical encoding scheme). A global change would involve not only the receiver but the 
sender. It would require a way for the receiver to request a change in the format or number 
of bits being sent as well as requiring the receiver to recognize that the format of the bit 
stream changed. 

As an example of what the code structure for an adaptive application would be, consider 
a video player. The basic control structure of the player is a loop that reads some data (from 
a disk, network or some other source), decodes the data, displays the data, and evaluates its 
performance. 

while   (1) 

read data for a frame 

decode data 

display frame 

evaluate resource usage 

It is the evaluation part of this loop which will look at the resources that are being 
expended over time to play the video frames and decide whether the amount of work being 
performed should be increased, decreased, or remain the same. If it decides the work should 
be locally increased or decreased, it may change some state in the player to indicate how the 
data should be decoded (by looking at more or fewer bits of the data). If the evaluation 
phase decides that the work should be globally changed, it may initiate negotiations with the 
source of the data stream to try to increase or decrease the bandwidth of the bitstream. This 
negotiation may or may not change the state of the player itself, but the changes to the char- 
acteristics of the bit stream and the point in the bitstream where the change takes place 
should be clearly identified in the player and should be recognized in decoding the data. 
Thus, if and when a change in the format of the bitstream occurs, the player will be able to 
make the appropriate changes in decoding the stream. 

So the software structure of the adaptive player, with a little more detail filled in, 
becomes: 

while (1) 

read data 

check for control data 

switch based on bitstream format 

switch based on local decoding state 

decode data 

display frame 

evaluate performance 
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The application first reads the data and then checks either for control information 
embedded in the data or for some kind of synchronization point which is known, through 
information communicated via an external channel, to imply a change in data format. Then 
the proper algorithm is chosen to decode the data based on the format of the bitstream and 
on the local decoding state. Once the data is decoded, it is displayed (possibly using differ- 
ent algorithms indicated by the player state), and finally the performance is evaluated. To 
reduce overhead, the performance may not be evaluated during every iteration of the loop. 

This example shows how a player might change its behavior and thus its performance 
characteristics based on decisions about local algorithms and global changes in data 
streams. 

4.3.4.2 Adjusting reservation levels 

Another way an application might react to noticing a difference between its usage and 
reservation is to change the reservation (without modifying its computation). We will exam- 
ine several cases, possible behavior modifications, and their effects on delay, efficiency, and 
total reservation. 

Under-reserved applications 

As indicated in the section on measuring resource usage, an application is under- 
reserved if its resource usage requirements are greater than its reservation level. There are a 
couple of ways to change the reservation parameters to accommodate this situation: 

1. increase only the units of reserved resource usage 

2. increase both the units of reserved resource usage and the reservation period. 

By increasing the reserved resource usage to match the computation's requirements, the 
application can ensure that the resources will be available to the computation, and the com- 
putation can be invoked just as often as before. The delay experienced by each computation 
will be decreased since there will be fewer overrun situations to cause delays, but the overall 
reservation level is increased. This means there is less resource capacity available for other 
applications, or when resource reservations are really tight, it may be impossible to increase 
the reservation level at all. 

If the application increases the units of reserved resource and the reservation period pro- 
portionally, there will be enough reserved resource capacity in each reservation period to 
service the computation. And since the reserved amount and the reservation period are 
increased proportionally, the overall reservation level is not increased. This also implies that 
the computation is requested less often to correspond with the longer reservation period 
since requesting it just as often would not reduce the overall workload (without a load-shed- 
ding mechanism coming into play). 
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Over-reserved applications 

Over-reserved applications are those which have a reservation level that is greater than 
the actual resource demand. This situation is inefficient since the application has more 
resource capacity reserved than it expects to use, and that reserved capacity could be used to 
ensure predictable performance for other applications that will actually use ihc resource. 

The simplest action to take in this case is to reduce the units of resource reserved in each 
period to a value that is closer to the actual resource requirement. It is possible to increase 
the reservation period without increasing the period of the computations to decrease the res- 
ervation level, but that would have other undesirable effects on the timing of the program. 
such as increasing the delay for some computations. 

4.4 Chapter summary 

This chapter describes how programs should be structured to take advantage of reserves 
for predictable real-time performance. For hard real-time applications, information about 
the resources used by and timing requirements of each program must be known at design 
time and must be used in planning reserve allocation. So a localized way of using reserves 
might be appropriate. With local reserves, each program allocates its own reserves based on 
its requirements and the requirements of other programs that depend on it. For dynamic soft 
real-time systems, a global method for reserve allocation where an activity allocates the 
resources for all of its constituents including external servers and operating system services 
might be more appropriate. This makes it easier to monitor and control the usage of the 
entire activity rather than just localized parts of it. These recommendations are not cast in 
stone; the choice of whether to use localized or global reserve allocation ultimately rests 
with the system designer. 

The discussion also dealt with methods for determining resources required by an appli- 
cation, reservation parameters appropriate for an application, and adaptive methods for 
adjusting reservation parameters or behavior based on performance history. In hard real- 
time systems, many of these questions must be answered at design time, and there is less 
flexibility in adaptation strategies. Soft real-time systems, however, have a great deal of 
flexibility and can take advantage of some of the techniques described in this chapter. 
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Chapter 5 

Implementation 

This chapter describes an implementation of processor reserves done using the Real- 
Time Mach operating system. It discusses applications that were modified to use processor 
reserves, network protocol processing software modified to use reserves, a QOS manager 
for negotiating resource allocation with applications, and tools for reserve monitoring. 

5.1 Overview 

This chapter describes the implementation of processor reserves in RT-Mach as well as 
several other components of the system. It also covers some applications that were modified 
or designed and implemented to use processor reserves. Figure 5-1 shows the various com- 
ponents and gives an indication of their relationship. 
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RT-Mach with Reservation Mechanism 

Figure 5-1: System Components 
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First there is the implementation of processor reserves in the RT-Mach kernel which is 
the basis for the rest of the implementation work. Reserves were implemented as a new ker- 
nel abstraction with operations for create/terminate, requesting reservation parameters, 
binding threads to reserves, and extracting usage information about reserves. 

Several real applications were modified to use processor reserves including: a Quick- 
Time video player developed at CMU called QTPlay, an MPEG decoder called mpeg_play 
[93], and a version of the X Server [34]. 

A version of the user-level socket library [70] was modified to use reserves as well. This 
socket implementation supports predictable performance for applications that send and 
receive network packets. 

A QOS manager was implemented to allow for more sophisticated negotiation of 
reserve parameters than that provided by the kernel mechanism itself. The QOS manager 
interacts with applications to try to balance resource usage and negotiate with applications 
when conflicts arise in the resource reservation requests. 

Tools were implemented to help manage reserves and to monitor resource allocations 
and measure usage. The rmon application is a reserve monitor that provides a graphical user 
interface for reserves. It displays the reservation levels and usage in recent history, and it 
also allows the user to change the reservation parameters from the graphical interface. 

5.2 Reserves in RT-Mach 

The implementation of processor reserves in RT-Mach involved adding the new reserve 
abstraction, implementing the operations on reserves, creating a new scheduler, and adding 
code for accurate usage measurement. In addition to the new scheduler, the reserve imple- 
mentation also required modifications in the RT-Mach priority inheritance mechanisms to 
support reserve inheritance and reserve propagation. 

The reserve abstraction in RT-Mach is managed much like the other abstractions like 
hosts, processor sets, tasks, threads, etc. that originated in Mach 3.0 [11]. These types of 
resources in Mach are referenced by ports, which are used as capabilities. 

In RT-Mach, processor reserves are allocated from processor sets. In the uniprocessor 
version, there is only one processor set, so all reserves originate from this processor set. 

5.2.1 Attributes and basic operations 

Abstractions like tasks and threads offer basic operations such as create, destroy, get 
attributes, and set attributes. The basic operations on reserves are as follows: 

reserve_create(out reserve) Creates a new processor reserve and returns it as an 
out parameter. 

reserve_terminate(reserve) Terminates the given reserve, making its reserved 
capacity available for other requests. 
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reserve_set_attribute(reserve, attrjname, attr_value, attr_value_size) Set the 
value of an attribute of the reserve. 

reserve_get_attribute(reserve, attr_name, out attr_value, out attr_value_size) 
Get the value of an attribute of the reserve. 

processor_set_reserves(processor_set, out  reservejist)  Returns  the  list  of 
reserves associated with the given processor set. 

The get attribute and set attribute operations give the programmer access to some of the 
attributes of reserves. The externally visible attributes that reserves have appear in the fol- 
lowing list. The data types for the attributes are given in parentheses after the attribute 
names; "int" is an integer, "timespec_t" specifies a time value, "mach_reserve_name_t" is a 
fixed length string, and "boolean_t" is a boolean flag. 

name (mach_reserve_name_t) A symbolic name for the reserve. 

ckpt_total (timespec_t) The cumulative total usage measured at the at last period 
boundary. 

ckpt_time (timespec_t) The absolute time of last period boundary (when the 
ckpt_total value was recorded). 

accum_total (timespec_t) Cumulative total usage at the current time (usually 
updated when accessed). 

accum_time (timespec_t) The time that the total usage was last updated. 

used (timespec_t) Usage charged against the reserve so far in current period. 

next_period (timespec_t) The absolute time of the next period boundary (end of 
the current period). 

period (timespec_t) The duration of the reservation period. 

computation (timespec_t) The reserved computation time. 

recent_checkpoint_position (int) The position in the recent_checkpoints array 
for the next item to be written. The array is a circular buffer. 

ncheckpoints (int) The number of how many checkpoint entries currently in the 
array. 

recent_checkpoints[MAX_CHECKPOINT_COUNT] (timespec_t) The usage 
values for the recent checkpoints. 

recent_checkpoint_times[MAX_CHECKPOINT_COUNT] (timespecj) The 
times at which corresponding checkpoint usage values were recorded. 

A "checkpoint" occurs at each period boundary for each reserve. At that time, the accu- 
mulated usage is recorded along with the absolute time of the period boundary. This infor- 
mation can be used later by applications or monitoring tools that need information about 
how much usage was charged against a reserve in a particular reservation period. 
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There are a few other reserve attributes that are only used internally. They form part of 
the scheduling state for a reserve and are not available through the get attribute operation. 
These internal attributes are: 

reserved (booIean_t) The bit that indicates whether the reserve is in "reserved 
mode" or "unreserved mode". 

wait_replenish (boolean_t) An internal flag indicating that the reserve has a res- 
ervation that has been depleted for the current period. The reserve is awaiting 
replenishment. 

start (timespec_t) The absolute time at which the first period for the reserve 
started. 

5.2.2 Reservation requests and admission control 

When initially created, a reserve does not have an associated resource reservation. Get- 
ting a resource reservation for the reserve requires an additional call. The following opera- 
tion allows a programmer to specify reservation parameters and request a reservation. This 
call is used when there is no reservation associated with the reserve, or if the programmer 
wishes to request a reservation with parameters that are different from the reservation asso- 
ciated with the reserve. 

reserve_request(reserve, reservation_parameters) Requests a resource reserva- 
tion to be allocated to the reserve. The caller provides the reservation parameters. 
Reservation parameters include desired reserved time per period, the period itself, 
and start time for reservation to take effect. 

This operation is used to request a reservation with certain parameters. If there was 
previously no reservation associated with the reserve and the reservation request 
succeeds, then the operation returns "success" and the reservation is granted for 
that reserve. If the reservation request fails, the operation returns the error, and the 
reserve is left without a-reservation. 

If the reserve already had a reservation at the time the request call was made, the 
behavior is as follows. If the new reservation request is granted, the new reserva- 
tion parameters will be associated with the reserve, and the old reservation will be 
freed in this process. If the new reservation request fails, the old reservation 
parameters remain in effect; that is, the old reservation will not be freed if the new 
reservation request cannot be granted. 

The request operation invokes the admission control policy to determine whether the 
new reservation request can be accommodated given the collection of other reservations that 
have already been accepted for the resource. The RT-Mach implementation uses an admis- 
sion test based on rate monotonic analysis, but the decision is somewhat optimistic in that it 
uses a utilization bound of 90% for testing for schedulability. This is based on the analysis 
of average schedulable bound [63], which says that for a randomly generated task set the 
schedulable bound is 88% on average. 
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5.2.3 Scheduling 

The scheduler in RT-Mach was structured so as to make it easy to develop and incorpo- 
rate scheduling policies. The scheduler uses a well-defined interface for scheduler opera- 
tions, and a function pointer table in the scheduler contains the operations for the scheduling 
policy in effect. The scheduling policy can be changed dynamically by putting the ready 
threads in a policy-independent queue, changing the pointers in the function table to refer to 
the operations for the new scheduling policy, and then transferring the ready threads into a 
policy specific queue. 

Several scheduling policies, including the "Reserves" scheduler, are supported in RT- 
Mach [85]. The scheduling policies in RT-Mach are associated with "processor sets," and in 
the case of a uniprocessor, there is only one processor set in the system. The operations to 
get and set attributes of a processor set are used to query or set a scheduling policy. 

processor_set_get_attribute(processor_set, attr_name, out attr_value) To get 
the scheduling policy for a processor set, PSET_SCHED_POLICY_ATTR is spec- 
ified for "attr_name". The operation sets the "attr_value" to reflect the currently 
active scheduling policy. 

processor_set_set_attribute(processor_set, attr_name, attr_value) To set the 
scheduling policy for a processor set, PSET_SCHED_POLICY_ATTR is speci- 
fied for "attr_name". A value such as SCHED_POLICY_RESERVES is given for 
the "attr_value". 

Several scheduling policies are implemented in RT-Mach. The original Mach time-shar- 
ing policy is available, as are several varieties of fixed priority and rate monotonic policies. 
Earliest deadline scheduling is available, and round robin scheduling is supported for exper- 
imental purposes. Reserve-based scheduling is also a policy option. The policies that are 
available in the MK83j version of RT-Mach are: 

1. Mach Time-sharing - Original time-sharing policy. 

2. Fixed Priority/RR - The fixed priority/round robin policy services threads 
in order of a fixed priority associated with each thread. Within a priority 
class, threads are scheduled round robin with a quantum. 

3. Fixed Priority/FIFO - The fixed priority/FIFO scheduler uses fixed prior- 
ities as well, but within a priority class, threads are scheduled using a 
FIFO discipline (with no quantum). 

4. Rate Monotonic - Rate monotonic scheduling based on the periods given 
to periodic threads. 

5. Deadline Monotonic - Deadline monotonic scheduling based on the 
deadlines given to periodic threads. 

6. Earliest Deadline First - Schedules based on the deadline information of   - 
threads. 

7. Round Robin - Simple round robin scheduling (with a time quantum). 
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8.    Reserves - Scheduling policy for the reservation system. 

The "Reserves" scheduling policy uses one queue for "reserved mode" threads, which 
are listed in order from smallest reservation period to largest. It uses an additional table of 
queues for implementing a multi-level feedback queue for time-sharing or "unreserved 
mode" threads. The reserved mode threads are scheduled first, and when there are no more 
reserved mode threads, the scheduler services the unreserved mode threads. In order to pre- 
vent starvation of unreserved mode threads, the reservation parameters are limited. In the 
implementation, a reservation cannot have a period larger than one second. This ensures that 
no reserved computation time can be greater than 0.9 second, so in the worst case, reserved 
activities can hold the processor continuously for no longer than 1.8 seconds before time- 
sharing programs get a chance to use the processor. 

5.2.4 Usage measurement and enforcement 

The scheduler for the reservation mechanism requires very accurate usage measurement 
so that the system can keep track of how the resource usage of each activity relates to its res- 
ervation (if any). In particular, reserved activities must be prevented from over-running their 
reservations and interfering with other reserved and unreserved activities. 

To accumulate very accurate usage measurements, the system has code in the context 
switch from an old thread to a new thread that does the following: 

1. takes a timestamp from a high-resolution free-running clock. 

2. computes the duration of time the old thread was running and charges 
that usage against the reserve associated with the old thread. 

3. stores the timestamp for doing the same computation later for the new 
thread. 

Those actions mean that threads get charged for the amount of time they spent on the 
processor rather than getting charged an estimate of the time they spent. This timestamp 
method much more accurate than the method used for accumulating usage in many time- 
sharing systems where the process running at the time of a clock tick is charged for the dura- 
tion of the clock tick (whether it was running the whole time or not). 

The reserve abstraction has several operations that provide the programmer with access 
to usage information in the reserve. The usage-related operations are: 

reserve_get_checkpoint(reserve, out checkpoint_total, out checkpoint_time, 
out accum_total, out accum_time) Get reserve's checkpoint information, taken 
from the last reservation period boundary. 

reserve_get_attribute(reserve, attr_name, out attr_value, out attr_value_size) 
The reserve_get_attribute operation can be used with "attr_name" set to 
RESERVE_RECENT_CHECKPOINTS to get an array of the recent checkpoint 
values for the last several period boundaries. 

78 



In addition to the accurate usage measurement, the enforcement mechanism uses timers 
to keep threads from over-running their reserved computation time and to replenish the 
reserved time for a reserve appropriately. Two kinds of timers are used for doing these 
things: the overrun timer and replenishment timers. 

The overrun timer is set at each context switch, and it is set for the maximum time the 
new thread could run before over-running its reserved computation time for its current reser- 
vation period. If the thread is still running when the timer expires, the system will update the 
reserve to show that the activity used all of its time for that period, and it will change the 
activity to unreserved mode. Then the scheduler will get an opportunity to reevaluate ready 
threads, and it may decide to switch to another thread. 

If the current time is close to the end of the reservation period for the new thread and the 
reserved time is longer than the difference between the current time and the end of the reser- 
vation period, the overrun timer is set to expire at the end of the reservation period. If the 
timer goes off at that point, the reserve will be replenished and the activity will again be eli- 
gible to run. 

The second kind of timer is the replenishment timer. Each reserve has a replenishment 
timer that is initially set at the reserve's start time. The timer is set to expire at the end of the 
reservation period (or the beginning of the new reservation period). When a replenishment 
timer expires, the system changes the state of the reserve to reflect that it has a new alloca- 
tion of its reserved time for the next reservation period. The reserve is set to reserved mode, 
and the replenishment timer is set to expire again at the end of the new reservation period. 

5.2.5 Reserve propagation 

One of the key features of the reserve abstraction is that reserves can be bound to threads 
as appropriate for particular applications. This feature is useful in the situation where an 
application initiates a reserved activity that may invoke services of server processes locally 
or even on remote machines. When invoking a server, an application can make its reserves 
available for the server to use in its computations. The server can then take advantage of 
having the resources available, and the time it takes to perform the computation on behalf of 
the client can be charged to the client's reserves. In this way, reserves provide a method for 
consistently measuring resource usage of entire activities, even if threads in different protec- 
tion domains cooperate on behalf of the broader activity. 

The following operations are related to the binding of reserves to threads: 

thread_set_current_reserve(thread, reserve) Each thread has a current reserve 
and a base reserve. The value of the current reserve may be the result of a reserve 
propagation, but it is not necessarily permanent. It may eventually revert to the 
base reserve. This primitive sets the current reserve of a thread. 

thread_restore_base_reserve(thread) Makes the base reserve the current reserve 
for the given thread. 

thread_set_reserve(thread, reserve) Set the reserve of a thread. 
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thread_get_reserve(thread, out reserve) Get a thread's reserve. 

In addition to the binding operations, the priority inheritance mechanism of RT-Mach 
[59,86] aids in ensuring bounded delay for access to servers and mutexes. In the context of 
reserve scheduling, "priority inheritance" means "reserve inheritance" in the following 
sense. Interpreting "priority" in the broadest sense, one could think of a thread's reserve 
information and time-sharing priority information as combining to yield a total ordering for 
values of these fields. The scheduler schedules threads based on this total ordering from 
highest "priority" to lowest: 

1. threads that have the "reserved" bit set are ordered with smaller reserva- 
tion period having higher "priority" than larger reservation periods. 

2. threads with the "reserved" bit cleared are ordered according to their 
time-sharing priority, which is a field of each thread (not a field of the 
reserve). 

This concept of "priority" comes into play in the priority inheritance mechanism in RT- 
Mach. As an example, consider a single-threaded server with several clients. When a client 
makes a call to the server, the server takes on the "priority" of the client (done in the priority 
inheritance mechanism) and binds its own thread to the client's reserve to charge its time to 
it (using the bind operation). 

If during this service time a second client with a higher "priority" makes a request, the 
IPC mechanism enqueues the new request for the server. It then calls on the priority inherit- 
ance mechanism to change the "priority" of the server to that of the newly enqueued client 
(thus limiting the duration of the "priority" inversion). The server continues to charge time 
to its first client's reserve, however, so that reserve will reflect the true resource usage 
required for the computation. After the service is finished, the server stops charging against 
the first client's reserve, picks up the request from the second client, and starts charging 
against the second client's reserve. The server continues to execute under the "priority" of 
the second client. 

Priority inheritance for reserved activities presents an additional complication beyond 
what fixed priority inheritance mechanisms must face. In particular, with reserves (and with 
other dynamic priority disciplines), the "priority" the server takes may change during the 
service. For example, if the server executes for longer than the reserved time of its client's 
reserve, the reserve will be degraded into unreserved mode, and the "priority" thus changes. 
In the implementation, the priority inheritance mechanism is informed when this happens so 
that it can set the priority of the server to the appropriate value given the list of clients wait- 
ing for that server. For example, if a server uses all the reserved computation time for a par- 
ticular client it would normally have its reserve downgraded and its "priority" decreased. 
However, if another reserved client is waiting for the server, the server will inherit the "pri- 
ority" of that client so as to avoid a priority inversion. 
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5.3 Applications 

A number of applications were modified to use reserves to show that real applications 
could actually achieve predictable behavior using the reservation system. A QuickTime 
video player and an MPEG decoder were modified to use reserves, and a version of the X 
Server [34] was modified to cooperate with reserved applications to provide predictable 
window system services. 

5.3.1 QuickTime video player 

A QuickTime video player, called QTPlay, was implemented at CMU. The player can 
display JPEG encoded video as well as raw, unencoded video. The player was modified to 
use reserves to achieve predictable performance. 

QTPlay avoids interactions with system components that have not been modified to sup- 
port predictable performance via reserves, such as the UX server. It loads a short clip of 
video into memory during initialization to avoid interaction with the UX server during play- 
back. For experiments, the player loops over the clip for the duration of the test. Figure 5-2 
summarizes the structure of the reserved QTPlay application. 

load short video clip 
allocate reserve with command-line parameters 
create periodic threads 
bind thread to reserve 

while not done 
save start timestamp 
display a frame 
save end timestamp 

dump timestamps to a file 

Figure 5-2: QTPlay Outline 

At initialization, QTPlay reserves time on the processor and binds the periodic thread 
responsible for frame processing to the reserve. The start time of the periodic thread and the 
start time of the reservation are synchronized so that when the thread becomes ready at the 
beginning of each period, the allocation of processor time will be available as well. The 
other reservation parameters, in particular the reserved computation time and the reservation 
period, are given as command-line arguments. They are typically determined by measure- 
ments made prior to the execution of the player. This particular application does not dynam- 
ically discover the appropriate reservation parameters nor does adjust the reservations after 
execution begins. 

The player uses a version of the X Window System library, Xlib, that was modified to 
cooperate with a reserve-enabled X Server. This library passes a reference to the thread's 
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reserve when the player opens the connection to the X server. The X server then uses the 
reserve for operations requested by the player (such as DisplayBitmap). 

In each period, the thread displays a frame of the video and then saves the start time and 
completion time for the frame in a buffer in memory. Just before the player exits, it dumps 
the contents of this timestamp buffer to a file for subsequent analysis. 

5.3.2 MPEG decoder 

The Berkeley MPEG decoder [93] was modified to use processor reserves in RT-Mach. 
This version of mpeg_play reserves processor capacity during its initialization and periodi- 
cally evaluates its performance and makes adjustments to its processor reservation and tim- 
ing constraints as necessary. 

The original Berkeley MPEG decoder works by repeatedly reading MPEG encoded 
macroblocks from an input stream, transforming them, and displaying the frames. The 
underlying mpeg library has some features for managing the timing of frames, but the sim- 
ple player that is provided to demonstrate the use of the library displays frames as fast as 
possible without attempting to regulate their timing. 

A number of changes and extensions to the MPEG player were required to enable pre- 
dictable performance and to take advantage of the timing features of RT-Mach as well as the 
processor reservation mechanism. Figure 5-3 summarizes the code structure of the modified 
version of mpeg_play. 

load short video clip 
allocate reserve with command-line parameters 
create periodic thread 
bind thread to reserve 

while not done 
save start timestamp 
display a frame 
save end timestamp 
if frame_number mod 3 0 == 0 then 

evaluate usage 
adjust reservation parameters and/or algorithm 

Figure 5-3: mpeg_play Outline 

As with the QTPlay, mpeg_play prefetches a short clip of video into memory to avoid 
interacting with the file system during runtime. The frames are decoded and displayed by a 
periodic thread that has the period desired for video playback, typically 33 ms. 

During the initialization of the modified MPEG player, it requests a processor reserva- 
tion based on an estimate of the computation time and the length of the period. Since the 
computation time may vary on different hardware platforms and different MPEG data 
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streams, it is very difficult to get an accurate estimate before running the application, and 
this player tunes its reservation parameters as it executes. 

For each frame, the player records the time the computation was started, the time it 
ended, and the amount of processor time it used during its execution (taken from the usage 
information in the processor reserve). It periodically computes statistics on these numbers 
for the recent periods to find out how much computation time was required for each frame 
and whether the delay for the computation is excessive. This information is used to decide 
what adjustments need to be made (if any). In its evaluation, mpeg_play distinguishes three 
cases: 

1. reservation level okay, do nothing. 

2. reservation level too low but some capacity is available to be reserved. 
increase reserved computation time while keeping the same period. 

3. reservation level too low and no additional capacity is available to be 
reserved, increase the reserved computation time to the desired amount 
and increase the reservation period proportionally. 

The modified version of mpeg_play incorporates some basic adaptive techniques, but it 
could be extended in a number of directions to improve its flexibility and performance. The 
decoding and display phases of the player should be decoupled to allow the variation in 
decoding time to be masked by buffering with the application. Incremental decoding tech- 
niques would yield several options for how much computation to do for each frame, and 
changing the dithering algorithm dynamically would increase flexibility as well. 

5.3.3 X Server 

Each real-time X client acquires a processor reserve and charges its own execution time 
against that reserve as well as providing the reserve to the X Server so that the Server can 
charge service time done on behalf of that client to the appropriate reserve. We have modi- 
fied a version of the X Server to order service requests according to their timing constraints 
and to charge service time to the client for which the service is performed. Basically, the 
server should mimic as closely as possible the behavior that would be observed if each client 
could do its own graphical display within the context of its own address space and schedul- 
ing domain. Thus the modified X Server has the following properties: 

1. The Server ensures that the activities of real-time clients are isolated 
from unwanted interference from non-real-time X clients by ordering all 
request from real-time clients down through non-real-time clients and 
servicing them in that order. 

2. The Server itself is isolated from unwanted interference from non-real- 
time applications (even applications which are not X clients) by virtue of 
the processor reservation mechanism. The reservation system ensures 
that, while the X Server is running under a client's reservation, the 
resource capacity associated with that reservation is available to the X 
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Server. 

3. Other real-time applications that are not X clients are isolated from 
unwanted interference from the X Server and its clients if they use the 
reservation system. This would not be true if the X Server were jusi 
assigned a "high priority" or if it over-reserved resources. 

The goal of this work is to achieve predictable performance for real-time applications 
that make use of the graphical display services provided by the X Window System. '"Pre- 
dictable performance" means that real-time applications will be scheduled based on their 
timing requirements, and their graphical display requests serviced by the window system 
will be scheduled to meet the timing requirements. Thus, the abstract activity for each real- 
time client, consisting of the computations within each client application and the associated 
computations within the window system, should suffer only bounded delays due to other 
real-time and non-real-time applications sharing the window system. 

The processor capacity reserve mechanism provides this kind of timing isolation for 
independent programs which do not communication or synchronize with each other. How- 
ever, when applications share a single software resource such as the X Server, the same kind 
of timing isolation provided by reserves must be extended into the Server's computations. 
To provide this isolation and bounded delay, the following is required of the server: 

1. Requests from different clients that queue up in the server should be ser- 
viced in the order that the clients would be serviced if they were doing 
the work themselves and being scheduled by the processor reservation 
mechanism. In other words, the server should handle requests in order of 
client "priority" (where client priority refers to an implied ordering 
among clients defined by the reservation system). 

2. Computation performed in the server on behalf of a client should enjoy 
resources, such as processor capacity, that have been reserved for that cli- 
ent. The server should execute at the priority of the client whose request 
it is servicing. Likewise, the resource usage for such a computation 
should be charged to the client's reservation, so that a client is prevented 
from getting more than its reserved time by sending some work to the 
server and then doing other work locally. 

3. Priority inversion should be minimized (and unbounded priority inver- 
sion completely avoided) in servicing the clients' requests. Thus if the X 
Server is occupied with a request from a client when another request 
comes in from a higher priority client, the server should inherit the prior- 
ity of the newly arrived client. 

These requirements have many implications for the coding of the server. The idea that 
the server should mimic the behavior of individual threads performing the same computa- 
tions places some restrictions on how the server can be designed. Also, each of the three 
specific requirements listed above has some additional implications for the coding of the 
server. 
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First we address the desire to have the server behave as the individuals would. This is 
conceptually easy to achieve by thinking of spawning a new thread for each client's request 
as it arrives at the server, binding the thread with the reservation or priority of its client, and 
then allowing the threads to be scheduled by the processor reservation system based on that 
information. Unfortunately, spawning a potentially large number of new threads is expen- 
sive, and while there exists a version of the X Server that is multi-threaded [110], the one on 
which this work is based has only a single thread. With a single-threaded server, we try to 
mimic the desired behavior by satisfying the three requirements listed above as follows: 

1. Client requests are enqueued in the server in priority order. 

2. At the beginning of the computation for each service request, the server 
takes on the resource allocation persona of the client, enjoying the 
resource reservations of the client and charging usage against the client's 
reserve. 

3. The RT-IPC [59] mechanism handles priority inheritance to minimize the 
effects of priority inversion. 

These are the modifications made to the X Server to provide predictable performance. 
However, there are some problems with the X Server that interfere with real-time applica- 
tions and which are very difficult if not impossible to fix. Several of these problems are 
addressed in the development of a window system intended for real-time performance 
[105]. Briefly, the problems are: 

1. The X Protocol supports a "grab server" operation which blocks out all 
other operations for an unbounded period of time. 

2. The X library batches requests for higher throughput. This can increase 
the delay of single operations as multiple operations are combined into 
one. 

Despite these hindrances to 100% guaranteed real-time performance, the modified X 
server can provide good real-time behavior for typical multimedia applications such as 
video players. 

5.4 Reserved network protocol processing 

A predictable network service depends on how the protocol processing for network 
packets is handled as well as how these activities are scheduled. This section examines sev- 
eral different approaches to protocol processing software design and discusses the advan- 
tages and disadvantages of these approaches. 

5.4.1 Software interrupt vs. preemptive threads 

Traditionally, protocol processing software has been designed to take packets from the 
network interface and immediately begin processing them at high priority. For example, 4.3 
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BSD protocol processing is done at a "software interrupt level" which executes at a higher 
priority than any schedulable activities in the system (like processes) but at a lower priority 
than hardware interrupts [62]. Unfortunately, network packets associated with a low priority 
activity may flood the protocol processing software and execute while higher priority pro- 
cesses are delayed. This is an example of priority inversion [48,75]. 

To prevent this kind of priority inversion, it is necessary to associate priorities with 
packets so that they can be queued and serviced in priority order. It may also be helpful 10 be 
able to preempt the processing of one low priority packet in favor of a higher priority 
packet, especially if the computation time required for protocol processing is significantly 
more than that required for a context switch. One approach, used in the ARTS real-time ker- 
nel, has preemptible threads to shepherd packets through the protocol software [124]. This is 
similar to the method used in the x-kernel [45], but unlike the x-kernel threads, ARTS proto- 
col processing threads were preemptive. This approach provides fast response to high prior- 
ity packets and prevents low priority network activities from interfering with high priority 
work on the processor. 

5.4.2 Mach 3.0 networking 

Networking in the context of the Mach 3.0 UX server [36] is accomplished by calling 
the 4.3 BSD networking primitives, which are handled by the UX server. The UX server 
interacts directly with the network device drivers to send and receive packets. 

RT Mach 3.0. 

Figure 5-4: Networking with the UX Server 
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As shown in Figure 5-4, this makes the UX server a single point of contention for all 
activities that are using the network. Unfortunately, the networking code inside the UX 
server does not support priority. So this software does not satisfy the requirements for prior- 
ity and preemptibility in predictable protocol processing software. 

Another problem with networking under the UX server of Mach 3.0 is that the interpro- 
cess communication (IPC) required between the application and the UX server and between 
the UX server and the network device drivers adds overhead to network communication. 
This decreases throughput and increases latency. To alleviate these problems, Maeda and 
Bershad created a library implementation of TCP/IP and UDP/IP sockets [70]. Their library 
handles the protocol processing for sending and receiving packets and interacts with the net- 
work packet filter [139] and network device drivers directly. The library can be linked in 
with applications that use the networking calls, so each application can do its own protocol 
processing in its own scheduling domain (i.e. within its own threads). The library only inter- 
acts with the UX server to create and destroy connections and for a few other control opera- 
tions. The fast path for sending and receiving packets is confined to the library itself (and 
the device drivers). Figure 5-5 illustrates their networking software structure. 

RT Mach 3.CL 

Figure 5-5: Networking with the Socket Library 

Maeda and Bershad report that their socket library yields much better performance in 
terms of throughput and delay than the UX server sockets implementation [70]. Coinciden- 
tally, their implementation also satisfies the requirements for effective real-time scheduling 
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of protocol processing. By including the code in a user library, the computation is done by 
the user thread at the user's priority. It is also preemptible since it runs in user mode and 
shares nothing with other threads in other applications. 

5.4.3 Reserved protocol processing 

Since the socket library enables the protocol processing computation to be scheduled 
under the priority of the application and since it is also preemptible, the processor reserva- 
tion system can be applied to programs which do socket-based communication [77]. Com- 
pared with a TJX server socket implementation, the library partitions the data structures and 
control paths of all of the networking activities and places them in independent address 
spaces where they do not to interfere with each other. In the UX server, these different activ- 
ities are forced to share the same queues without the benefit of a priority ordering scheme. 
Other activities such as file I/O, asynchronous signals, etc. may interfere with the protocol 
processing, thus delaying packets as a result of other operating system activity that is not 
even related to networking;. "£>• 

In the socket library, these components do not interfere with each other, so the reserva- 
tion mechanism is free to make decisions about which applications should receive computa- 
tion time and when. The control exercised by the reservation scheduler is not impeded by 
additional constraints brought on by the sharing of data structures and threads of control. 
Applications that use the socket library with the reservation mechanism should therefore 
achieve very predictable networking behavior. 

5.5 QOS manager 

A QOS manager was implemented to provide a central point for resource allocation 
decisions. It exports an interface that allows the application programmer to create and termi- 
nate reserves, to request a reservation at a specific desired level, and to set preferences for 
the minimum reservation levej. If the reserved load becomes high and the server has diffi- 
culty granting minimum reservation levels for new requests, the server begins to downgrade 
some of the previously granted reservations to their minimum levels in order to admit the 
new reservation request at its minimum level. 

In general, information about resource allocation requirements may come from a variety 
of sources and may change over time. Resource allocation information can come from 
applications themselves which may request resource and negotiate if the request cannot be 
satisfied immediately. It can come from static user preferences about which applications 
should be more resources under what circumstances. And it can come from various user 
interface elements designed to bring resource management decisions to the console user. 

5.5.1 Information sources 

The QOS manager uses the information it gathers to make policy decisions about how to 
allocate resources to various activities. The information may come from user preferences 
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files, applications themselves, and graphical resource management tools. Figure 5-6 sum- 
marizes the information flow associated with the QOS manager. 

rmon 

Video JinC 

Reserved Apps 

Unreserved Apps 

User preferences 

Resource Reservation 
Mechanism 

RT-Mach 

Figure 5-6: Resource Management Schematic 

The static user preferences used by a QOS manager might come from a configuration 
file located in the user's home directory or in a system default directory. Such a file could 
contain arbitrarily sophisticated rules for the QOS manager to use in making allocation pol- 
icy decisions. For example, the file might contain rules to indicate how the user's focus 
should affect resource allocation. It might have rules to determine which applications are 
more important (e.g. specifying that audio/video applications are more important that file 
transfer). There might be rules about how temporal properties indicate which applications 
are more important (e.g. giving recently created applications preference over older applica- 
tions). And there might be rules about how past usage should affect future reservation. 

The dynamic user preferences might come from the applications themselves, from a sep- 
arate tool, or from some mechanism associated with a window manager. In any case, cues 
given by the user, which can be picked up in the user interface, are very important to the pol- 
icy decisions that must be made about where to allocate resource capacity. These cues can 
be explicit, where the user makes certain gestures to change the resource capacity alloca- 
tions of various activities. Or the cues can be implicit, as in the case of a window manager 
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which notices which window has the user's focus (based on the position of the mouse 
pointer) and passes this information along to the QOS manager. 

Information about the recent resource usage of various activities might be used to deter- 
mine what the future resource reservation levels should be for those activities. For example, 
an audio player receiving transmissions over the network might become quiet due to long- 
lasting lull at the sender. When this happens, it may be appropriate to notice the lack of 
resource usage in the associated reserve and temporarily scale down the reservation level in 
order to free up more reservable capacity for other activities. A QOS manager with this fea- 
ture would undoubtedly also provide a mechanism for such dormant applications to come 
back to life at their original reservation level once they become active again. 

5.5.2 Admission control 

The admission control policy of the QOS manager must be coordinated with the admis- 
sion control of the system. The reservation system has an admission control policy that 
allows it to enforce reservations and keep itself internally consistent with respect to resource 
allocation and enforcement. The QOS manager must have a version of the same admission 
control policy so that it can evaluation reservation requests that it gets and look at more 
sophisticated issues such as how different requests it gets can be combined or changed to fit 
together better. 

This design was chosen because it keeps the admission control test of the kernel simple 
and fast while allowing arbitrarily sophisticated admission control decisions and negotia- 
tions to be carried out in user-level QOS managers. It would be possible to combine the two 
policies but there are drawbacks to that approach. If the sophisticated policy with negotia- 
tion were implemented in the kernel, the system would become more complicated, slower. 
and less flexible. If the kernel depended on user-level admission control for its own consis- 
tency, it would be vulnerable to errors in the user-level QOS managers. 

5.5.3 Extensions 

The QOS manager reacts to new reservation requests that strain the available resource 
capacity by trying to free up resource capacity from among previously reserved activities. 
subject to the limitations that those activities allow as expressed by their minimum reserva- 
tion levels. This policy could be extended to accommodate information about which activi- 
ties should be downgraded first, whether new minimums could be negotiated with activities 
to free up even more capacity, or whether the activities requesting reservations should be 
denied to keep the previously reserved activities at their current reservation levels [79]. 
Another extension might upgrade reservations to the old desired values once reservable 
resource capacity became plentiful. 

90 



5.6 Tools 

Two tools were developed in the course of this dissertation work to do debugging and 
execution monitoring for experiments and to provide a user interface for reserves. One is a 
reserve monitor with a graphical user interface, and the other is a usage monitor that oper- 
ates in batch mode to gather usage statistics for experiments. 

5.6.1 Reserve monitor 

A reserve monitor, called rmon, provides the user at the console with a graphical user 
interface to monitor and control processor reserves. The two important aspects of this tool 
are its presentation of usage information and its support for control of resource reservation. 

5.6.1.1 Usage information 

The primary view of rmon displays basic information about all of the processor reserves 
in the system. This information consists of the name of the reserve, a graphical representa- 
tion of the recent usage information, normalized to the reservation period, and the reserva- 
tion period itself. Figure 5-7 shows a screen dump of this primary view. 
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Figure 5-7: rmon Main View 



As the figure shows, each reserve takes one row in the display. Each row contains the 
following elements: 

• detail button - Pressing the detail button pops up another window which shows 
more detailed information associated with the reserve. 

• reserve name - Each reserve may have a name associated with it for ease of identi- 
fication. 

• graphical usage display - This graphic displays a bar with length corresponding to 
the percent resource usage over the last several reservation periods. The usage is 
normalized to the reservation period, and the graphic includes markings to indicate 
the scale of the usage. 

• reservation period - The reservation period indicates the averaging interval of the 
usage measurement. 

As reserves are created and terminated in the system, corresponding rows are created 
and destroyed in the primary view. The two system reserves (called "default reserve" and 
"idle reserve") always exist. So they always appear in the view. The default reserve is where 
all the usage is charged for applications that do not have their own private reserves. It has no 
actual resource capacity reservation associated with it; it just accumulates the usage of the 
unreserved programs. The idle reserve accumulates the usage of the idle thread; it also lacks 
an actual resource reservation. 

For each reserve that has a resource capacity reservation associated with it, rmon dis- 
plays a vertical bar in the usage graphic to indicate the level of the reservation, in terms of 
normalized capacity. In Figure 5-7, the reserves named "Reserve_A" and "Reserve_B" have 
resource capacity reservations associated with them whereas "Reserve_C" and 
"Reserve_D" do not. The vertical bars in the usage graphics of Reserve_A and Reserve_B 
indicate that the have reservations of 20% and 33%, respectively. The reservation periods 
are 50 ms and 60 ms, respectively. 
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Figure 5-8: rmon Detail Views 
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Pressing the "detail" button at the beginning of a reserve's row pops up another window 
of detailed information about the reserve. This includes a graphical display of the recent his- 
tory of resource usage as well as the parameters of the reserve. Figure 5-8 shows two exam- 
ple detail windows. Part (a) of the figure shows the detail for an activity that has a 
reservation, and part (b) shows an activity without a reservation. 

As shown in the figure, the recent history occupies the top portion of the detail window. 
It shows the normalized usage of the reserve over the last several reservation periods, and it 
advances in real-time in a manner similar to that of xload [74]. For the reserved activity in 
Figure 5-8(a), which is Reserve_A from the Main View, this usage is fairly constant over 
time. For the unreserved activity in Figure 5-8(b), Reserve_C, this usage is variable from 
period to period. Each window also displays the reserved computation time and the reserva- 
tion period. The unreserved activity has zero reserved computation time but a non-zero res- 
ervation period (the implementation represents an unreserved activity using a reserved 
computation value equal to the reservation period, and this representation happens to be 
exposed in this view). This indicates that usage measurements for this activity will be taken 
based on the reservation period, but that there is no actual resource capacity reservation. 

5.6.1.2 Allocation Control 

The level of the reservation for a reserve, as indicated by the vertical bar in the normal- 
ized usage graphic, can be changed by clicking the mouse in that usage graphic at the level 
desired for the reservation. This action modifies the reserved computation time parameter of 
the reserve without changing the reservation period. 

The upper screen view in Figure 5-9 shows several reserves at various reservation lev- 
els. Notice the position of the mouse pointer in the usage graphic of the reserve called 
Reserve_B, which is reserved at 20% of processor capacity. Clicking the mouse button with 
the pointer at this position changes the reservation level of Reserve_B to that shown in the 
lower screen dump in the figure. The reservation level is now about 40%, and the actual 
usage of the activity reflects the availability of that additional capacity. 

5.6.2 Usage monitor 

A usage monitor based on reserves was developed to aid in debugging and to support 
usage measurements for experiments. This monitor allocates a reserve and requests a reser- 
vation for its own execution. It periodically polls for the usage on specified reserves in the 
system, saving the usage numbers in a large buffer. Then it formats the usage information 
and writes it to a file for processing by a graphing tool. 
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Figure 5-9: Modifying a Reservation 

5.7 Chapter summary 

This chapter describes the implementation several software components in the reserva- 
tion system including: 

• processor reserves in RT-Mach, 

• reserved video players and a version of the X Server that uses reserves, 

• a version of the Mach 3.0 socket library implementation modified to use 
reserves, 

• a QOS manager, 

• a tool for providing a user interface to the reservation system. 
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The description of the implementation of reserves presents operations that are supported 
for manipulating reserves as well as a description of how the scheduling and usage enforce- 
ment is handled. The implementation of two video players that use reservation is described 
along with that of a version of the X Server that was modified to use reserves. The section 
on the socket library implementation discusses issues in the organization of protocol pro- 
cessing software to support real-time packet processing. A description of the QOS manager 
indicates how it works and its relationship with applications and the reservation mechanism. 
Finally, a graphical user interface tool is described; it displays information about reserves 
and provides an interface for controlling reservation parameters. 
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Chapter 6 

Experimental Evaluation 

This chapter presents an experimental evaluation of the implementation of processor 
reserves in RT-Mach. The reservation mechanism was designed to support predictable 
behavior for real-time and multimedia applications, so the evaluation answers the questions: 
Can reserved programs achieve predictable behavior, and what is the price of predictability? 

6.1 Overview 

The experimental evaluation presented in this chapter answers two questions: Can 
reserved programs achieve predictable behavior, and what is the cost for predictability? 
These questions are addressed using synthetic benchmarks, real applications, and measure- 
ments of individual mechanisms. The chapter is divided into two main sections, one to 
address predictability and another to address scheduling costs. 

The section on predictability shows that for a wide variety of task sets, real-time tasks 
exhibit predictable behavior and meet their timing constraints: 

• Independent synthetic workload measurements show that for pure com- 
putations that have no interactions with other tasks, the reservation mech- 
anism successfully guarantees timing constraints. 

• Client/server experiments show that the reserve propagation mechanism 
helps guarantee the client's timing constraints, even when there are mul- 
tiple clients with and without reservations. 

• Results of experiments with the QTPlay QuickTime video player and the 
X Server show how this client/server pair is coordinated to meet the tim- 
ing constraints of the video player, even when there are unreserved X cli- 
ents competing for the attention of the X Server. 

• Experiences with the mpeg_play decoder and the X Server demonstrate 
how an application can start with an inaccurate estimate of required com- 
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putation time and then adjust its reservation parameters to balance its 
usage requirements with the resource availability. 

• Experience with a library-based network protocol software structure 
shows that protocol processing for real-time applications can be guaran- 
teed using processor reserves. 

The other main section of this chapter explores the scheduling costs of the reservation 
system. Two measurement techniques are used: 

• A comparison of the system scheduling costs for periodic real-time pro- 
grams that use reserves vs. periodic programs that do not use reserves 
shows that the cost varies, as expected, depending on the period of the 
program. 

• Measurements of various internal operations such as reserve switch time, 
overrun timer handling, replenishment timer handling, and usage check- 
point operations provide a means of estimating scheduling cost for 
reserved task sets. 

The measurements for most of these experiments were taken using RT-Mach version 
MK83j with UNIX server UX41. The mpeg_play and libsockets experiments used RT- 
Mach version MK83i, which does not different significantly from MK83j in the features 
used in the experiments. The hardware platform for the first three sets of experiments was a 
90MHz Pentium with 16 MB RAM and an Alpha Logic ST AT! timer card. The timer card 
has a 48-bit free-running clock with 1 (is resolution, and a 16-bit interrupting timer with 1 
|Lis resolution. For the remaining experiments, the hardware platform was the same except 
the processor was a 486 DX2 instead of a Pentium. For easy reference, the chart below sum- 
marizes which platforms were used for which experiments. 

Experiment 
RT-Mach 
Version 

UX Version Processor 

Independent task sets MK83j UX41 Pentium 

Client/server task set MK83J UX41 Pentium 

QTPlay/X Server MK83j UX41 Pentium 

mpeg_play/X Server MK83i UX41 486 

libsockets MK83i UX42 486 

Aggregate scheduling costs MK83j UX41 486 

Micro measurements MK83J UX41 486 
i 

Table 6-1: Summary of Testbed Platforms 
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In general, the switch from the 486 to the Pentium speeds up the compute-intensive 
applications by about 30%. Since the micro measurements involve kernel instruction 
streams that access external devices such as the clock/timer card, these measurements arc 
not expected to change significantly using a Pentium processor. 

In summarizing the results of many of the experiments, percentiles are used to specify 
dispersion. While running these experiments on a desktop computer connected to the nor- 
mal departmental network, occasional anomalies occurred. 5-percentiles and 95-percentiles 
are used to indicate the range of the strong majority of measurements while ignoring the 
occasional anomaly. As defined in Jain's book [50], the 5-percentile is obtained by sorting a 
set of n observations and taking the [1 + n(.05)]th element in the sorted list (where [.] is used 
to indicate rounding to the nearest integer). The 95-percentile is the [1 + n(.95)]th element in 
the sorted list. 

6.2 Predictability 
What is meant by "predictability?" In the context of this work, a predictable application 

is one whose timing behavior can be determined from the application code, the resource res- 
ervations that it acquires, and its dependence on other programs. In particular, a predictable 
application that is not under-reserved will meet all of its timing constraints. 
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Figure 6-1: Compute-Bound Periodic Task with No Competition 
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As an example, consider a periodic application that computes for a fixed duration of 
time in each period and spends all of its computation time in a tight loop. Such an applica- 
tion should be able to allocate a reservation for its computation time, and it should exhibit 
the same behavior when it is executing concurrently with other activities as when it is exe- 
cuting in isolation. That is, it should be able to consume its reserved computation time in 
each period before the "deadline" at the end of the period. 

Figure 6-1 shows the processor usage over time of a periodic application with a local 
computation and no competition for resources. The x-axis is time measured in seconds; ii 
shows several seconds of usage information for the application. The y-axis is the normalized 
processor utilization of the application. Time on the x-axis is divided into intervals that cor- 
respond to the period of the application, and the processor time used during each period is 
measured and the utilization computed for the period. The utilization is plotted at that con- 
stant level for each period. For the duration of the test shown, he periodic application has an 
average utilization of 0.467. The distribution of measurements is very closely packed 
around this average with a 5-percentile of 0.465 and a 95-percentile of 0.473. 
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Figure 6-2: Compute-Bound Periodic Task with Competition 

Figure 6-2 shows a similar graph of the processor usage of a periodic application that 
has a local computation but has competition for the processor from other programs (not 
shown). Even though there is competition, the reservation system ensures that the appropri- 
ate amount of processor time will be available to the application in each period. The applica- 
tion consumed an average of 0.462 of the processor in each period. As in the previous case, 
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most of the measurements were very close to the average; the 5-percentile is 0.460 and the 
95-percentile is 0.470. 

6.2.1 Independent synthetic workloads 

Independent synthetic workloads are used to test whether the reservation system can 
successfully provide access to reserved processor resources. The example above demon- 
strates that the reservation system can ensure predictable behavior for a periodic application 
running with competition from other activities, and one of the experiments described below 
shows that multiple independent reserved applications can achieve predictable behavior, 
even with competing unreserved activities. Two additional experiments show that the reser- 
vation guarantee is independent of the number of competing activities, regardless of 
whether the competitors are reserved or unreserved. 

6.2.1.1 Methodology 

These experiments were run using two software tools developed for performance evalu- 
ation. A configuration manager parses the specification of a task set with timing parameters 
and reservation parameters and then creates programs with the appropriate parameters. Sev- 
eral different kinds of programs that exhibit different kinds of behavior can be specified in 
the task set. Each of these programs takes a start time, a duration to compute, a thread 
period, a computation time to reserve, and a reservation period. Two programs are used in 
these experiments: 

• arith - Creates a periodic thread that executes in a tight loop for some 
duration of time in each period. 

• monitor - Records the usage charged to reserves in the experiment. 
This program has a reservation of its own to enable it to run even when 
there are many reserved programs in the experiment. 

A usage monitor is usually included in the task set to take usage measurements for all of 
the programs created by the configuration manager. The monitor buffers the measurements 
during the course of the experiment and then formats the data and writes them to disk after 
the experiment is completed. The data are then graphed. 

Experiment 1 is designed to show that reserved activities are able to execute their peri- 
odic computations within their time constraints, even with competing unreserved activities. 
Even if the reservation parameters have different computation times and different periods 
the timing constraints of the reserved activities will be satisfied. 

Table 6-2 shows the programs used in Experiment 1 along with the number of instances 
of each program, the timing parameters, and the reservation parameters. In this experiment 
there were 3 arith programs that were reserved with different timing and reservation 
parameters. One had a reservation of 5 ms of every 20 ms, the second had a reservation of 
14 ms every 40 ms, and the third a reservation of 8 ms every 50 ms. The reservation^ set 
slightly higher (1 or 2 ms) than the computation time that would be consumed by the pro- 
gram in isolation. This accommodates variation in the computation time due to cache effects 

101 



and context switches. In addition to those three, there were 5 arith programs running in 
infinite loops with no reservations; these provide compute-bound competition for the 
reserved activities. And finally, the experiment included a monitor program to collect 
usage numbers throughout the duration of the test. This monitor had 2 ms reserved of every 
20 ms. 

Program # 
Program 

Computation 
Program 
Period 

Reserved 
Computation 

Reservation 
Period 

arith 1 4 ms 20 ms 5 ms 20 ms 

arith 1 12 ms 40 ms 14 ms 40 ms 

arith 1 6 ms 50 ms 8 ms 50 ms 

arith 5 infinite loop N/A 0 ms 40 ms 

monitor 1 N/A 20 ms 2 ms 20 ms 

Table 6-2: Experiment 1 Parameters 

The other two experiments measure the sensitivity of reserved applications to competi- 
tion. Both experiments consist of eight series of tests. Each test has a reserved arith pro- 
gram whose measurements are the focus of the test. The series differ in that the reserved 
arith program increases in reserved utilization in each series. Each series itself consists of 
a sequence of tests with an increasing number of competitors. In each series of Experiment 
2, the one reserved arith program competes with an increasing number of unreserved 
arith programs. For each test, the 5-percentile and 95-percentile for the resource usage 
measured in each reservation period is reported. The parameters for an example task set in 
Series 1 of this experiment appear in Table 6-3. 

Program # 
Program 

Computation 
Program 
Period 

Reserved 
Computation 

Reservation 
Period      : 

arith 1 3 ms 40 ms 4 ms 40 ms      : 
i 

arith 2 infinite loop N/A 0 ms 40 ms 

monitor 1 N/A 20 ms 2 ms 20 ms      | 
i 

Table 6-3: Example Parameters for Experiment 2 

The task set that appears in Table 6-3 has one reserved arith program that computes 3 
ms in every 40 ms and has a reservation of 4 ms for every 40 ms. It also has two unreserved 
arith programs and a monitor program. Other tests in the Series 1 have unreserved 
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competitors ranging in number from 0 to 9 competitors. This task set is designed to show 
that regardless of what the reserved utilization is and regardless of how many competitors 
there are (ranging from 0 to 9 compute-bound, unreserved competitors), a reserved activity 
will always be able to get its reserved allocation. 

Experiment 3 is like Experiment 2 except that the competitors are reserved instead of 
unreserved. For convenience, the competitors all have identical reservations, so the number 
of competitors for a reserved activity is limited to the number of competitors that can be 
accepted by the admission control policy. 

The tests of Experiment 3 are organized into 8 series with 10 tests, just as in Experiment 
2. Again, the series differ in that the reserved arith program that is observed varies in its 
reserved utilization, and within each series, the number of competitors ranges from 0 to the 
highest number that can pass admission control along with the observed program. Variation 
in the usage of the measured reserved program is again characterized by the 5-percentile and 
95-percentile. The parameters for an example test in this experiment appear below. 

Program # 
Program 

Computation 
Program 
Period 

Reserved 
Computation 

Reservation 
Period 

arith 1 3 ms 40 ms 4 ms 40 ms 

arith 2 2 ms 30 ms 3 ms 30 ms 

monitor 1 N/A 20 ms 2 ms 20 ms 

Table 6-4: Example Parameters for Experiment 3 

The task set in Table 6-4 has one arith program with computation duration 3 ms and a 
period of 40 ms. The reservation given to this program is 4 ms every 40 ms. The table lists 
two other reserved arith programs with 2 ms computation time and 30 ms period, and 
these both have reservations of 3 ms every 30 ms. This is a test from Series 1 of Experiment 
3, and other tests in this series have the different numbers of competing reserved programs. 
The number of competitors for Series 1 ranges from zero to seven, but the number of com- 
petitors for Series 8 is zero since no competitors could be admitted once the primary 
reserved program and the reserved monitor pass admission control. The purpose of this task 
set is to demonstrate that regardless of what the reserved utilization of the primary reserved 
program and regardless of the number of competitors, the primary reserved activity will get 
its reserved allocation virtually all of the time. 

6.2.1.2 Results 

The results from Experiment 1 demonstrate that multiple reserved programs meet there 
timing constraints, despite the competition between the reserved activities and compeuuoii 
from unreserved activities. Figure 6-3 shows a graph of the behavior of the three reserved 
programs in Experiment 1, leaving out the usage measurements of the competing unre- 
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served activities. These usage measurements are in the same format as the example case 
described earlier: the x-axis is time in seconds for the test, and the y-axis is processor utili- 
zation. The usage for each reservation period for each reserved program is computed and 
plotted on the graph, yielding three functions of utilization over the duration of the test. 
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Figure 6-3: Experiment 1 Results 

Each of the three reserved programs sustains a fairly constant utilization level through- 
out the entire test, in spite of the competition from reserved and unreserved activities. The 
reserved program with a computation time of 4 ms every 20 ms gets a fairly constant utiliza- 
tion with an average of 0.219 (context switching overheads and cache effects push the mea- 
sured usage higher than what it would be in a quiescent system). The 5-percentile is 0.216 
and the 95-percentile is 0.227, indicating that very few measurements fall far from the aver- 
age. The reserved program computing 12 ms every 40 ms gets an average utilization of 
0.312. It gets a 5-percentile of 0.310 and a 95-percentile of 0.320, so there is clearly very lit- 
tle variation in the utilization across periods. The program computing 6 ms every 50 ms gets 
an average utilization of 0.132 across the periods shown above. The 5-percentile is 0.126 
and the 95-percentile is 0.141. Thus Experiment 1 shows that the reservation system can 
guarantee the timing constraints for multiple reserved programs even when there is competi- 
tion from unreserved activities. 

The results from Experiment 2, illustrated in Figure 6-4, show that the timing behavior 
of a reserved program is not affected by the number of unreserved competitors, regardless of- 
the utilization of the reserved program. The graph in Figure 6-4 has the number of competi- 
tors on the x-axis and processor utilization on the y-axis. The data from the eight series are 
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plotted as functions on the graph. For example, the function for Series 1 starts with the aver- 
age utilization for the test that has zero competitors. The function then continues to the aver- 
age utilization for the test in that series that has 1 competitor and so on up to the average 
utilization for the test with nine competitors. At each point where the average utilization is 
plotted, there is also a range that gives the 5-percentile and 95-percentile to indicate the vari- 
ation in the behavior of the reserved program on that test. The rest of the functions are simi- 
lar. This graph shows that for each series, the average processor utilization is nearly 
constant, regardless of the number of competitors. Furthermore, the variation given for each 
measurement is quite small, indicating that for the vast majority of reservation periods, the 
reserved program is able to meet its timing constraints. 
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Figure 6-4: Experiment 2 Results 

The results for Experiment 3 are presented in Figure 6-5. These results show that the 
behavior of a reserved program does not depend on the number of competing reserved activ- 
ities, regardless of the utilization of the reserved program of interest. The graph for Experi- 
ment 3 is much like the graph for Experiment 2. The x-axis is the number of competing 
programs, and the y-axis is processor utilization. There are data from the same kinds of 
series, and the plot of average utilization as a function of number of competitors is the same. 
Each plotted point has a 5-percentile and 95-percentile range to indicate the variation. Since 
each of the competitors must pass the admission control policy, the number of competitors 
becomes more limited as the utilization of the measured reserved activity gets larger. So the 
maximum number of competitors for Series 1 is seven and for Series 8. no competitors can 
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pass admission control after the measured reserved activity and the monitor do. These 
results show that the average processor utilization for each series is nearly constant, i.e. it 
does not depend on number of competitors. The variation in processor utilization is very 
small, indicating that the reservations are available to allow the reserved activity to satisfy 
its timing constraints. This is true regardless of the processor utilization of the measured 
reserved program. 
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Figure 6-5: Experiment 3 Results 

6.2.1.3 Analysis 

These three experiments show that for cases where periodic threads allocate reserves for 
their computations, the reservation system is able to ensure that the reserved time is avail- 
able as promised. The reserved time is available even when there are multiple reserved 
activities and unreserved competitors as in Experiment 1. Experiment 2 showed thai a 
reserved activity is assured of being able to use its reserved time regardless of the number of 
unreserved competitors and regardless of whether the reservation is for a small computation 
time or a large computation time. Experiment 3 demonstrated that a reserved activity will 
get its reserved time regardless of the number of reserved competitors it has, and this is also 
true whether the reserved activity has a small amount of time reserved or a large amount of 
time. 

Two issues are highlighted by these experiments. One is that the computation time for 
the reserved programs was always less than the reserved computation time by 1 to 2 milli- 
seconds. The computations that the programs will execute are based on arithmetic computa- 
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tions that were timed on a quiescent system with only the timing program running. The 
synthetic workload was tuned in this environment. When these workloads are executed with 
other activities, there are additional overheads that are not included in the task set specifica- 
tions. These overheads include: 

• context switch times and cache effects, which are likely to increase as the 
task set size increases, 

• periodic thread overhead associated with periodically releasing and reset- 
ting the computation, 

• and interference from interrupts. 

The reserved computation time is set to be 1 to 2 milliseconds larger than the pure com- 
putation amount to accommodate these overheads. 

The second issue is that in some rare cases, a series of interrupts or a large critical region 
in the kernel may preempt a program and cause it to miss its reserved time and subsequently 
miss its deadline for the period. To mask these rare instances in Experiments 2 and 3, the 5- 
percentile and 95-percentile are given. This shows that for the vast majority of reservation 
periods for these threads, the usage observed is that which is expected based on the reserva- 
tion. 

6.2.2 Client/server synthetic workloads 

Most interesting applications are not independent, so it is important to consider experi- 
ments that characterize the effect of interactions such as client/server relationships in 
reserved applications. The experiments described below show that reserved activities can 
achieve predictable behavior, even when the activities involve coordination between clients 
and servers. 

6.2.2.1 Methodology 

The following experiments use the same kind of software environment as described in 
Section 6.2.1. There is a configuration manager that reads a specification of a task set and 
then creates the programs for the task set. In addition to the arith and monitor programs 
described above, these experiments use the following programs: 

• tsclient - Creates a periodic thread that invokes a server to compute 
for some duration of time specified in the invocation. The invocation is 
performed using the regular Mach IPC mechanism. 

• tsserver - Services requests sent in from instantiations of the 
tsclient program. 

• rclient - Creates a periodic thread that invokes a server to compute 
for some duration of time, but unlike the tsclient, the rclient uses 
RT-IPC instead of regular Mach IPC, and the rclient sends a reserve 
to the server so that it can charge the computation time to the client's 
reserve. 
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• rserver - Services requests sent from instantiations of the rclient 
program. Uses RT-IPC and charges the computation requested by a client 
to the client's reserve, which is passed as an argument with the invoca- 
tion. 

Experiment 4 is designed to show the processor usage of a client/server pair that has no 
competition from other programs; this is the base case, showing the desired behavior for the 
client and server. It uses a task set with an instance of the tsclient program using Mach 
JPC to periodically invoke an instance of tsserver to perform a computation. A monitor 
records the usage for later analysis. In this case, the client sends the computation time 
amount (to be consumed in a tight loop) to the server. And the server computes for that 
amount of time and returns a result. The parameters for the programs in this task set are 
given in Table 6-5. The client is periodic and has a reservation associated with it. As long as 
the computation time requested by the client is smaller than the period, the server with no 
competition should be able to finish the computation by the end of the period, yielding a 
fairly constant utilization over time. 

Program # 
Program 

Computation 
Program 
Period 

Reserved 
Computation 

Reservation 
Period 

tsclient 1 10 ms 40 ms 10 ms 40 ms 

tsserver 1 infinite loop N/A 0 ms 40 ms 

monitor 1 N/A 20 ms 1 ms 20 ms 
1 

Table 6-5: Experiment 4 Parameters 

In Experiment 5, the task set includes competition from unreserved programs as well as 
the tsclient, tsserver, and monitor. This experiment is meant to show how com- 
petition for the processor from unreserved activity can interfere with the coordinated activ- 
ity of a client and server using a typical IPC mechanism. 

Program # 
Program 

Computation 
Program 
Period 

Reserved 
Computation 

Reservation 
Period 

rclient 1 8 ms 40 ms 10 ms 40 ms      i 

rserver 1 N/A N/A 0 ms 40 ms 

arith 5 infinite loop N/A 0 ms 40 ms 

monitor 1 N/A 20 ms 2 ms 20 ms 

Table 6-6: Experiment 6 Parameters 
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Experiment 6 is designed to determine whether a client/server pair, using an IPC mecha- 
nism integrated with the reservation system in terms of queueing and scheduling, can sus- 
tain a predictable, coordinated activity even with competition for the processor. Table 6-6 
shows the task set specification for Experiment 6. The rclient has a processor reservation, 
and the rclient and rserver communicate using RT-IPC. The competition for the pro- 
cessor comes from five arith programs which are unreserved. 

Program # 
Program 

Computation 
Program 
Period 

Reserved 
Computation 

Reservation 
Period 

rclientl 1 8 ms 40 ms 10 ms 40 ms 

rclient2 1 8 ms 50 ms 10 ms 50 ms 

rclient3 1 8 ms 60 ms 10 ms 60 ms 

rserver 1 N/A N/A 0 ms 40 ms 

arith 5 infinite loop N/A 0 ms 40 ms 

monitor 1 N/A 20 ms 2 ms 20 ms 
i 

Table 6-7: Experiment 7 Parameters 

Experiment 7 is intended to show whether several reserved clients can execute in a man- 
ner that satisfies their timing constraints when using the same server and competing with 
unreserved, compute-bound programs. The task set, shown in Table 6-7 shows three 
reserved instances of the rclient program with different reservation parameters. There is 
also an instance of the rserver program. The competition comes from five instances of 
the arith program which are unreserved, and there is a reserved monitor program. 

Program # 
Program 

Computation 
Program 
Period 

Reserved 
Computation 

Reservation 
Period 

rclient 1 8 ms 40 ms 0 ms 40 ms 

rclient 1 8 ms 50 ms 10 ms 50 ms 

rclient 1 8 ms 60 ms 10 ms 60 ms 

rserver 1 N/A N/A 0 ms 20 ms 

arith 5 infinite loop N/A 0 ms 40 ms 

monitor 1 N/A 20 ms 2 ms 
i 

20 ms 

Table 6-8: Experiment 8 Parameters 
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Finally, Experiment 8 is designed to determine whether reserved clients can meet their 
timing constraints if there is an unreserved client that is using the same server. As shown in 
Table 6-8, the task set for Experiment 8 contains one rclient program with no reserva- 
tion and two rclient programs with reservations. There is an rserver and five compet- 
ing arith programs which are unreserved. A monitor is also included in the task set. 

6.2.2.2 Results 

The results from Experiment 4, shown in Figure 6-6, illustrate the processor usage pat- 
tern of the periodic client and its server. The x-axis is time over the duration of the test mea- 
sured in seconds, and the y-axis is processor utilization. The usage measurements for both 
the client and the server are taken from the corresponding reserves. The client has a reserve 
that it charges for its own computation, and the server has a reserve that it charges against 
when performing an operation for a client. For each of these reserves, the monitor records 
the computation time used in each reservation period. Those computation times are then 
normalized with respect to the length of the corresponding reservation periods and plotted as 
constant for the duration of each reservation period. 
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Figure 6-6: Experiment 4 Results 

Figure 6-6 shows that the processor utilization charged to the server's reserve is fairly 
constant over the duration of the test. The average is 0.256 with a 5-percentile of 0.255 and 
a 95-percentile of 0.264 for the measurements graphed in the figure. The normalized 
charges to the client reserve average only 0.0210; the 5-percentile is 0.0207 and the 95-per- 
centile is 0.0213. In this setup, the server is doing most of the work while the client does no 
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work other than sending off requests and receiving replies. Since there is no competition and 
the client makes the same request in every period, the utilization is fairly constant over the 
duration of the test. 

Figure 6-7 shows the results of Experiment 5 where the same client/server pair has com- 
petition for the processor from unreserved activities. As before, the x-axis is time measured 
in seconds, and the y-axis is processor utilization. In this case, the client and server do not 
have constant utilization numbers over each reservation period. For the measurements 
shown in the graph, the server has an average utilization of 0.191, which is significantly 
lower than the desired level. The 5-percentile for the server is 0, and the 95-percentile is 
0.262. The client has an average utilization of 0.0117 across the periods shown in the graph: 
its 5-percentile is 0 and its 95-percentile is 0.0158. With the client and the server recording 0 
utilization in a significant number of periods in a row, it is clear that the client/server combi- 
nation is not achieving the desired behavior. 
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Figure 6-7: Experiment 5 Results 

The competition from unreserved programs interferes with the execution of the server, 
and completely locks out the server for up to 100 to 200 ms at a time. During these periods, 
there is no usage recorded by either the server or the client, since the client cannot make 
progress without the server making progress. The usage for both the client and the server 
falls to zero for several reservation periods. This kind of behavior is clearly undesirable 
since many instances of the computation cannot take place, and the deadline is missed each 
time. 
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The results of Experiment 6 (Figure 6-8) show that when a client and server use an IPC 
mechanism that is integrated with the reservation scheduling policy, in this case a version of 
RT-IPC extended to work with the reservation scheduling policy, the combined client/server 
activity is quite predictable. The RT-IPC mechanism propagates the client's reserve to the 
server and supports a server that charges the computation time of each client to the client's 
reserve. So most of the computation in this experiment is being charged to the client (as it 
should be) instead of to the server (as in the previous case). The utilization charged to the 
client's reserve averages 0.223 with a 5-percentile of 0.222 and a 95-percentile of 0.228. 
The server utilization for the graphed intervals is 0.0114 on average; the 5-percentile is 
0.0112 and the 95-percentile is 0.0117. These numbers indicate very predictable perfor- 
mance for these programs over time. 
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Figure 6-8: Experiment 6 Results 

Figure 6-9 shows the results from Experiment 7. These results show that even when sev- 
eral reserved clients are using the same server, they can all meet their periodic timing con- 
straints (subject to the admission control policy). This is true in spite of the presence of 
competition from unreserved arith programs. 

Experiment 7 shows the usage charged to the reserves of the three reserved clients. The 
client with the 8ms/40ms synthetic computation has an average utilization of 0.223 with a 5- 
percentile of 0.221 and a 95-percentile of 0.232. The client with the 8ms/50ms computation 
has an average utilization of 0.178, a 5-percentile of 0.176 and a 95-percentile of 0.184. And 
the client with the 8ms/60ms computation gets an average utilization of 0.150; the 5-percen- 
tile is 0.147 and the 95-percentile is 0.157. These numbers indicate fairly tight distributions 
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around the averages for these applications, even though they are competing for the server 
and even though there are additional unreserved programs competing for the processor as 
well. The servers computation time seems erratic, and there are two reasons: it has a small 
reservation period (which just determines the usage measurement period), and its clients all 
have different periods and request different computations at different rates. 

c o 

o 
CO 
co 
<D 
U 
O 

rciient 
^(8ms/40ms) 

rciient 
*~(8ms/50ms) 

rciient 
(8ms/60ms) 

-rserver 

7 8 
Time (sec) 

10 

Figure 6-9: Experiment 7 Results 

Finally, the results of Experiment 8 appear in Figure 6-10. These results show that in the 
case where reserved clients compete with an unreserved client for a single server, the 
reserved clients are still able to satisfy their timing constraints. 

The reserved client with the 8ms/50ms computation has an average utilization of 0.181. 
It has a 5-percentile of 0.176 and a 95-percentile of 0.187. The reserved client with the 8ms/ 
60ms computation has an average utilization of 0.151 with a 5-percentile of 0.148 and a 95- 
percentile of 0.158. Thus, these reserved programs are able to get the processor time they 
have reserved. As the graph shows, the unreserved client manages to complete its computa- 
tion during some of its periods, but not in others. So the usage function goes back and forth 
between getting about 0.22 utilization in the periods where the computation is completed 
and getting 0 utilization in the periods where it does not get to complete the computation. 
The average utilization for this unreserved client is 0.131; the 5-percentile is 0.0059 and the 
95-percentile is 0.222. This of course confirms that the dispersion of the utilization measure- 
ments for this unreserved client is large. 

13 



c o 
03 
N 

■— 

O 
CO 

<D 
O 
O 
s-i 

7 8 
Time (sec) 

rclient 
^(SmsMOms) 

.rclient 
(8ms/50ms) 

rclient 
(8ms/60ms) 

-rserver 

10 

Figure 6-10: Experiment 8 Results 

6.2.2.3 Analysis 

The experiments with unreserved and reserved client/server pairs demonstrate the 
importance of doing reserve propagation properly between client and server when the server 
is designed to use the client's reserve. Experiment 4 shows the baseline behavior for the cli- 
ent/server pair with a periodic client driving the timing of the activity. 

Experiment 5 demonstrates the problem that can occur when the reserve propagation is 
not handled properly. In this experiment, the client allocates a reserve and passes it to the 
server, which then uses it to charge the client's service time. However, this client/server pair 
does not use the "priority" inheritance mechanism to ensure that the server takes on the "pri- 
ority" of the client as soon as the RPC is enqueued in the servers input queue. With compe- 
tition from unreserved activities, this lack of "priority" inheritance results in many missed 
deadlines for the client/server activity. 

The results of Experiment 6 show that the proper periodic behavior of the client/server 
pair can be restored by using the "priority" inheritance mechanism. Priority inheritance 
makes sure that the competing unreserved activities do not interfere with the server as it 
attempts to read the request from its input queue and switch to the client's reserve. 

The last two experiments demonstrate that the reserve propagation mechanism, which 
includes "priority" inheritance and the server binding to the client's reserve, works properly 
even when there are multiple reserved clients or there are unreserved clients in addition to 
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reserved clients. Experiment 7 demonstrates that with three reserved clients (all with differ- 
ent computation times and timing constraints), the server can service them all in time to 
make their deadlines. This is true even though there is competition from unreserved activi- 
ties, which can exploit any lapses in an incorrectly implemented reserve propagation mech- 
anism and cause delays in the client/server activities. 

Experiment 8 shows that when two reserved clients and one unreserved client share a 
server in an environment with competition from other unreserved activities, the reserved cli- 
ents will always meet their deadlines. In this case the reserved clients meet their deadlines 
even though other unreserved competitors sometimes delay the unreserved client. This 
experiment further tests the integrity of the reserve propagation mechanism by making sure 
that the "priority" of the unreserved client is not propagated to the server at the wrong time. 
causing the server to appear unreserved and resulting in interference from the unreserved 
competitors. 

6.2.3 QTPIay/X Server 

Experiments using task sets with synthetic workloads provide evidence that the reserva- 
tion system can support the predictable execution of real-time programs. However, experi- 
ments with real applications that use the reservation system to meet timing constraints 
provide stronger evidence of the usefulness of the reservation system in real-world situa- 
tions. The experiments described in this section use a video player that has been modified to 
use processor reserves and a version of the X Server that has been modified to support 
reserves. 

6.2.3.1 Methodology 

These experiments use the QuickTime video player, called QTPlay, and the reserved X 
Server, both of which were described in the previous chapter. Since these programs are 
described in detail elsewhere, the description here is brief. 

The QTPlay application prefetches a short video clip into main memory and repeatedly 
displays that clip to avoid interaction with the file system and disk (which are noi reserved 
in this system) during the experiments. It allocates a reserve during initialization based on 
command-line arguments and then starts playing the video. For each frame, the player 
records in a buffer the start time and end time for the frame processing, and at the end of the 
experiment these data are written to a file on the disk for later analysis. 

When QTPlay connects to the X Server, it passes a reference to its reserve for the X 
Server to use when performing frame display operations. The X Server was modified to 
order requests based on reservation information and to charge the computation time for each 
operation to the appropriate client's reserve. 
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Figure 6-11: Software Configuration 

Figure 6-11 shows the basic software structure that is used for all of the experiments in 
this section. There is an instrumented QTPlay application which may or may noi have a 
reservation and which records timestamps for each frame at the beginning of the frame dis- 
play computation and then again at the completion of frame display. Other instances of 
QTPlay may compete with this instrumented player. These are unreserved and continu- 
ously display frames as fast as possible (providing the maximum competition). 

QTPlay can display frames at a particular period or in a continuous loop, and in all of 
the experiments below, the frame resolution is 160x120 pixels with 8 bits/pixel. The timing 
is specified by command-line arguments. 

Experiment 9 is designed to illustrate the usage pattern for QTPlay with no competition 
for the processor. The parameters for QTPlay are given in Table 6-9. The period is 33 ms, 
which corresponds to a frame rate of 30 frames/second. 

Program # Mode Period 
Reserved 

Computation 
Reservation 

Period 

QTPlay 1 Periodic 33 ms 0 ms 0 ms 

Table 6-9: Experiment 9 Parameters 
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Experiment 10 is intended to show what can happen when QTPlay is executed under a 
time-sharing scheduler with a competing instance of the QTPlay program. The parameters 
for this experiment appear in Table 6-10. The QTPlay instance listed in the first row of the 
table is instrumented to provide timing information and the other just competes for the 
resources for displaying frames by continuously displaying frames as fast as possible. 

Program # Mode Period 
Reserved 

Computation 
Reservation 

Period 

QTPlay 1 Periodic 33 ms 0 ms 0 ms 

QTPlay 1 Continuous N/A 0 ms 0 ms 

Table 6-10: Experiment 10 Parameters 

Experiment 11 is designed to show how well an instance of QTPlay with a reservation 
can coordinate with the reserved X Server to achieve a constant playback rate for frames. 
Table 6-11 gives the parameters for the experiment. The instrumented QTPlay application 
has a reservation and competition from one other unreserved QTPlay instance. 

Program # Mode Period 
Reserved 

Computation 
Reservation 

Period 

QTPlay 1 Periodic 33 ms 14 ms 33 ms 

QTPlay 1 Continuous N/A 0 ms 0 ms 

Table 6-11: Experiment 11 Parameters 

Experiment 12 is similar to Experiment 10 in that it explores the behavior of an unre- 
served QTPlay with competition from 3 unreserved QTPlay instances rather than just one. 
For completeness, the parameters appear in Table 6-12. 

Program # Mode Period 
Reserved 

Computation 
Reservation 

Period 

QTPlay 1 Periodic 33 ms 0 ms 0 ms 

QTPlay 3 Continuous N/A 0 ms 0 ms 

Table 6-12: Experiment 12 Parameters 
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Experiment 13 is similar to Experiment 11; it looks at the behavior of a reserved 
QTPl'ay instance with three competing QTPlay instances. The parameters are given in 
Table 6-13. These last two experiments look at the behavior of unreserved and reserved 
QTplay applications under adverse conditions (intense competition from multiple unre- 
served X clients). 

Program # Mode Period 
Reserved 

Computation 
Reservation 

Period 
i 

QTPlay 1 Periodic 33 ms 14 ms 33 ms 

QTPlay 3 Continuous N/A Oms 0 ms 

Table 6-13: Experiment 13 Parameters 

6.2.3.2 Results 

The results for Experiment 9 illustrate the timing behavior of a QTPlay application 
with no competition. Figure 6-12 shows these results. For each frame, the player records the 
starting time and ending time. The x-axis is the frame number, counting frames starting at 
the 200th frame through to the 400th. For each frame value, the difference between the start 
time and end time is computed, and the y-axis is this frame delay measured in milliseconds. 
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Figure 6-12: Experiment 9 Results 
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In the figure, the frame delay averages 12.1 ms with a 5-percentile of 11.8 and a 95-per- 
centile of 12.6. This indicates that the software took an average of about 12 ms to perform 
all the computations necessary to display a frame when there was no competition for 
resources. 
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Figure 6-13: Experiment 10 Results 

The results from Experiment 10 show a slightly different picture in Figure 6-13. Again. 
the x-axis is frame number, and the y-axis is frame delay measured in ms using the same 
method. With time-sharing scheduling and one competing QTPlay, the instrumented 
QTPlay sees quite a bit of interference in its frame delay time. The frame delay is much 
more variable. The average delay is 25.8 ms with a 5-percentile of 11.2 and a 95-percentile 
of 45.0. 

In the results from Experiment 11, the instrumented QTPlay has a reservation, and its 
frame delay is much less variable even with competition from one unreserved QTPlay 
instance. Figure 6-14 shows the timing behavior. As before, the x-axis is frame number: the 
y-axis is frame delay in milliseconds. 

The frame delay still has a bit of variation, but it is much less variable than the case 
where the QTPlay application is unreserved. The average delay is 19.4 ms with a 5-percen- 
tile of 14.7 and a 95-percentile of 24.3. So QTPlay is almost always able to display each 
frame within its 33 ms period. 
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Figure 6-14: Experiment 11 Results 
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Figure 6-15: Experiment 12 Results 
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The results from Experiment 12 show how much the frame delay variation can be for an 
unreserved QTPlay instance that has three unreserved QTPlay applications competing to 
display frames. Figure 6-15 shows these results. As the figure shows, the variation in frame 
delay is quite large. The 5-percentile for the frame delay is 11.5 ms, and the 95-percentile is 
107 ms with an average frame delay of 40.3 ms. A delay of 150 ms (which does not show up 
in the 95-percentile number but occurs a number of times during the test) or even 100 ms in 
a sequence of video frames is clearly noticeable to the human eye. Frame rates of 15 frame/ 
second or more are required to sustain the illusion of smooth motion. This implies that with 
delays above 66 ms or so, the illusion of smooth motion may be destroyed. 

In contrast, the results of Experiment 13, shown in Figure 6-16, demonstrate how well 
the reservation system can control the variability in frame delay for the reserved QTPlay 
application, even with much competition from unreserved instances of the QTPlay pro- 
gram. The frame delay in the figure is somewhat variable, but the variation is much less than 
in the case of the unreserved QTPlay with three competitors. The 5-percentile is 13.4 ms 
and the 95-percentile is 34.2 ms with an average of 20.7 ms. This is well below the target of 
the 60 ms period necessary for smooth-looking motion. 
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Figure 6-16: Experiment 13 Results 

6.2.3.3 Analysis 

The QTPlay/X Server experiments show that even with real applications like a Quick- 
Time video player and the X server, the reservation system can provide predictable perfor- 
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mance for real-time programs that must meet timing constraints to achieve satisfactory 
performance. 

Experiment 9 shows the baseline behavior that is desired for the video player. This 
experiment has no competing activity, so there is no contention for resources and the behav- 
ior is very regular. Experiment 10 has a competing video player in addition to the instru- 
mented video player, and with time-sharing scheduling, this competitor causes some 
scheduling delay in the instrumented player. In Experiment 12, there are three competitors. 
and the interference to the instrumented player is very bad. The player frequently has frame 
delays of 60 to 100 ms and even as high as 150 ms. These kinds of delays are clearly notice- 
able to a human observer of the video stream. 

In Experiment 11, the instrumented video player is reserved with one competitor, and 
although there is a little fluctuation in the frame delay, it is limited to 24.3 for the 95-percen- 
tile. In Experiment 13, the reserved video player has competition from three unreserved 
video players. The frame delays show a little more variability, but are still limited to a 95- 
percentile of 34.2 ms compared to the 100 and even 150 ms delays experienced with time- 
sharing scheduling. 

The question of why the reserved QTPlay/X Server combination suffered any delay 
arises. The reason is that the X Server was not implemented from scratch to use reserves. 
The extensions to allow it to use reserves did not completely restructure the request input 
queue, in particular. So the server reads requests from its input queue, orders them inter- 
nally, and then performs the operations. If server's client interface code were completely re- 
written to support reserves, the behavior would be comparable to that of the client/server 
synthetic benchmarks where the servers were designed from scratch. 

6.2.4 mpeg_play/X Server 

In addition to the QuickTime video player, a version of the mpeg_play decoder was 
modified to use reserves and coordinate with the reserved X Server. This decoder uses some 
simple usage measurement and adaptation techniques to tune the reservation parameters and 
timing parameters based on changing system conditions. 

6.2.4.1 Methodology 

The mpeg_play modifications were described in detail in the previous chapter, so the 
description here is brief. The player prefetches a video clip into memory to avoid interfer- 
ence in the file system. It requests a processor reservation and passes the reference to its 
reserve to the X Server. While it is executing, the decoder keeps track of its resource usage 
and timing characteristics, and it makes adjustments to the reservation parameters and/or 
period of the program based on usage. 

Experiment 14 is designed to determine whether the mpeg_play decoder can success- 
fully modify its reservation parameters and/or behavior based on existing conditions. The 
decoder starts executing with a reservation that is too small for its computation time. Com- 
petition is then introduced in the form of reserved and unreserved activities. 
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6.2.4.2 Results 

The behavior of the mpeg_play application under the conditions of Experiment 14 is 
illustrated in Figure 6-17. The decoder is able to tune its reservation parameters based on 
run-time information and stabilize its own behavior. 
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Figure 6-17: Experiment 14 Results 

Figure 6-17 shows the processor utilization of the mpeg_play decoder over a period of 
40 seconds. The x-axis is time in seconds, and the y-axis is processor utilization. During the 
first 7 seconds, mpeg_play averages about 40% of the processor, even though its reserva- 
tion is only 30 ms every 100 ms. Since there is no competition, it consumes 40%. At about 7 
seconds into the experiment, a reserved program (shown in the graph) and several unre- 
served programs (not shown) are introduced. The usage of mpeg_play immediately drops 
to its reserved level of 30% of the processor. This is not enough to sustain its previous frame 
rate, so some frames are dropped. 

The reserved activity, which had a usage spike at the time it started, settles down to a 
constant 37%. The spike occurs since the time-sharing algorithm initially allows the new 
program to get more cycles than its reservation. After consuming a large percentage of the 
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processor, however, the reserved activity no longer gets additional cycles from the time- 
sharing algorithm, and the usage flattens. 

After several seconds, mpeg_play realizes its frame rate has fallen and attempts to 
increase its reservation. At about 17 seconds into the experiment, the decoder increases its 
reservation to 41 ms reserved every 100 ms, and its frame rate increases accordingly. Again 
at about 37 seconds into the experiment, the decoder changes its reserved computation time 
to 47 ms and its reservation period to 111 ms to fine-tune the reservation even further. 

6.2.4.3 Analysis 

This experiment demonstrates that an application can adjust its reservation parameters 
and adapt its behavior based on the usage information from the reservation mechanism. In 
this case, the initial reservation of the mpeg_play application did not have to be accurate 
since the application automatically adjusted the reservation levels based on usage measure- 
ments. 

6.2.5 Protocol processing workloads 

The experiments in this section explore the real-time behavior of the socket library 
(called libsockets) protocol processing. The behavior obtained by an application using 
the socket library is compared to the behavior using the UX Server's socket service under 
both time-sharing scheduling and reserves. 

6.2.5.1 Methodology 

The libsockets experiments use the same software environment as the experiments 
with independent tasks and client/server workloads. There is a configuration manager that 
reads the task set specification and creates the specified programs. In addition to the work- 
load programs introduced so far, these experiments use the following programs: 

• stdio - Creates a periodic thread that calls a sequence of file opera- 
tions. 

• udps - Creates a periodic thread that sends some number of packets 
(specified in the program computation field) in each period. This pro- 
gram uses the UX Server to send packets. 

• udpls - Creates a periodic thread that sends some number of packets in 
each period. This program uses libsockets to send the packets rather than 
interacting with the UX Server. 

• udpr - Creates a periodic thread that receives some number of packets in 
each period using the UX Server to receive the packets. 

• udplr - Creates a periodic thread that receives some number of packets 
in each period using libsockets. 
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Experiment 15 is designed to show how a packet-sending activity can be disturbed by 
competition from a combination of compute-intensive and I/O-intensive activities, espe- 
cially when all of those activities use system services which interact with each other as they 
do in the UX Server. The task set for this experiment is given in Table 6-14. It shows two 
udp senders (udps) with slightly different workloads. The competition for this experiment 
(as for the next three experiments) consists of five compute-intensive arith programs and 
five I/O-intensive stdio programs. In this experiment, the packets sent by the udps pro- 
grams are received on a remote machine by yet another program that records a timestamp 
when the each packet arrives. This program buffers the timestamps and dumps them out at 
the end. The timestamp data can be used to judge whether the packet senders were able to 
send their packets out as desired or not. 

Program # 
Program 

Computation 
Program 
Period 

Reserved 
Computation 

Reservation 
Period 

udps (A) 1 4pkt 40 ms 0 ms 40 ms 

udps (B) 1 2pkt 40 ms 0 ms 40 ms 

arith 5 various various 0 ms 40 ms 

stdio 5 various various 0 ms 40 ms 

monitor 1 N/A 20 ms 1 ms 20 ms 

Table 6-14: Experiment 15 Parameters 

Experiment 16 is designed to determine whether the packet-sending applications can 
send their packets on time when using libsockets for their network protocol processing. 
The parameters are given in Table 6-15. This experiment differs from Experiment 15 in that 
the UDP packet senders use libsockets instead of the UX Server and they have reservations 
instead of being scheduled by the time-sharing scheduler. The competition is the same: five 
compute-intensive programs and five I/O-intensive programs. 

Program # 
Program 

Computation 
Program 
Period 

Reserved 
Computation 

Reservation 
Period 

udpIs (A) 1 4pkt 40 ms 10 ms 40 ms 

udpls (B) 1 2pkt 40 ms 6 ms 40 ms 

arith 5 various various 0 ms 40 ms 

stdio 5 various various 0 ms 40 ms 

monitor 1 N/A 20 ms 1 ms 20 ms 

Table 6-15: Experiment 16 Parameters 
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The purpose Experiment 17 is to determine whether a UDP packet-receiving program 
that attempts to receive a number of packets periodically can meet that objective. The udpr 
program attempts to receive some number of packets in each period. This program receives 
packets through the UX Server and runs without a reservation. The competing activities are 
identical to the previous two experiments. Table 6-16 presents the parameters for this exper- 
iment. 

Program # 
Program 

Computation 
Program 
Period 

Reserved 
Computation 

Reservation 
Period 

udpr (A) 1 4pkt 40 ms 0 ms 40 ms 

udpr (B) 1 3pkt 40 ms 0 ms 40 ms 

arith 5 various various 0 ms 40 ms 

stdio 5 various various 0 ms 40 ms 

monitor 1 N/A 20 ms 1 ms 20 ms 

Table 6-16: Experiment 17 Parameters 

Experiment 18 is designed to determine whether a reserved packet receiver that uses lib- 
sockets can predictably execute periodically to receive a number of packets. The udplr 
program is a periodic packet receiver that uses libsockets instead of the UX server. 
This experiment includes the same competition from compute-intensive and I/O intensive 
tasks as the other experiments in this section. The parameters are given in Table 6-17. 

Program # 
Program 

Computation 
Program 
Period 

Reserved 
Computation 

Reservation 
Period 

udplr (A) 1 4pkt 40 ms 0 ms 40 ms       I 

udplr (B) 1 3pkt 40 ms 0 ms 40 ms 

arith 5 various various 0 ms 40 ms       I 
i 

stdio 5 various various 0 ms 40 ms 

monitor 1 N/A 20 ms 1 ms 20 ms 

Table 6-17: Experiment 18 Parameters 
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Figure 6-18: Experiment 15 Results 
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6.2.5.2 Results 

The results of Experiment 15 are shown in Figure 6-18. Part (a) of the figure shows the 
processor utilization over time for the two packet senders, which use the UX Server imple- 
mentation of sockets and run without reservations. The x-axis is time in seconds, and the y- 
axis is processor utilization. The two programs, denoted "Sender A" and "Sender B", show 
a very erratic usage pattern. Frequently, the usage drops to zero for over 1 second. The aver- 
age utilization for Sender A is 0.023 with a 5-percentile of 0 and a 95-percentile of 0.0741. 
The average utilization for Sender B is 0.0193 with a 5-percentile of 0 and a 95-percentile of 
0.0796. The dispersion is clearly substantial for these applications, and that dispersion in 
utilization achieved translates directly into missed deadlines. 

Figure 6-18(b) shows the record of timestamps that were received by a remote receiver 
for both senders. The x-axis in the graph is time in seconds, and there are two horizontal 
lines, one for Sender A and the other for Sender B. A mark on the line corresponding to 
Sender A at a particular time indicates that a packet arrived at that time and likewise for 
Sender B. This graph shows that the packets were received on the remote host sporadically. 
The pattern of packet receptions corresponds closely with the pattern of usage seen in part 
(a) of the figure. The largest gaps between received packets were 1.28 seconds and 1.22 sec- 
onds for Sender A and 1.93 seconds and 1.40 seconds for Sender B. These senders are 
attempting to send packets every 40 ms, so clearly they are not able to schedule the message 
sending activity as desired. 

The results of Experiment 16 appear in Figure 6-19. In this case, the senders have reser- 
vations and use the libsockets library to avoid depending on the UX Server for net- 
working. The graph shown in part (a) of the figure shows time in seconds on the x-axis and 
processor utilization on the y-axis. The processor utilization for both of the senders is very 
regular, indicating that in each reservation period, the programs were able to send the pack- 
ets they were supposed to send. There are no long intervals of zero usage as in the previous 
case. The average utilization of Sender A is 0.103 with a 5-percentile of 0.101 and a 95-per- 
centile of 0.110 indicating a very tight distribution around the average. Likewise for Sender 
B, the average utilization is 0.0591 and the 5-percentile is 0.0582 with a 95-percentile of 
0.0624. This is also a tight distribution. 

The graph in Figure 6-19(b) supports the conclusion that the senders in this experiment 
are able to send their packets very regularly in each period. As before, the x-axis is time in 
seconds and two horizontal lines indicate the timestamps for packets received from the two 
senders. A point on the line corresponding to Sender A represents a packet that was received 
at the associated time. In this experiment, packets are received very regularly from each 
sender. There are no significant gaps in the reception pattern. The maximum gaps for pack- 
ets received from Sender A are 0.0519 seconds and 0.0423 seconds, and the maximum gaps 
for packets received from Sender B are 0.0438 seconds and 0.0435 seconds. So the conclu- 
sion is that the combination of libsockets with reserved resources yields predictable behav- 
ior for packet senders. 
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Figure 6-19: Experiment 16 Results 
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Figure 6-20 shows the results of Experiment 17. In this case, a remote sender periodi- 
cally sends packets to the two receivers described in the task set. In this experiment, the two 
receivers are unreserved and use the UX Server's implementation of sockets. The graph has 
time in seconds on the x-axis and processor utilization on the y-axis. The behavior is very 
erratic. The remote host sends packets periodically, but the receiver is not always able to run 
long enough to receive the packets. Receiver A has an average utilization of 0.0134 with a 
5-percentile of 0 and a 95-percentile of 0.0617. This is not the kind of timely behavior 
desired in the packet receiver. Receiver B has an average utilization of 0.0220 with a 5-per- 
centile of 0 and a 95-percentile of 0.0726. Again, the dispersion is significant. The usage for 
both receivers frequently drops to zero, indicating that the packets are being dropped for sig- 
nificant periods of time. 
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Figure 6-20: Experiment 17 Results 

The results of Experiment 18 are shown in Figure 6-21. Again, a remote sender periodi- 
cally sends packets to two receivers which have reservations and which use the libsock- 
ets implementation of sockets. The graph has time in seconds on the x-axis and processor 
utilization on the y-axis. The usage functions of the two receivers are plotted over the dura- 
tion of the experiment. The average utilization for Receiver A in this case is 0.149 with a 5- 
percentile of 0.139 and a 95-percentile of 0.173. This indicates a fairly tight distribution. 
Receiver B has an average utilization of 0.130 with a 5-percentile of 0.115 and a 95-percen- 
tile of 0.140. Again the utilization achieved is quite consistent across periods for the dura- 
tion of the test. It is clear that the receivers do not drop to very low utilizations for 
significant intervals of time. Their relatively constant usage indicates that they are able to 
process the incoming packets in a predictable manner. 
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Figure 6-21: Experiment 18 Results 

The results from the libsockets experiments showed that when packet senders and 
receivers ran in time-sharing mode using the socket implementation provided by the UX 
Server, their behavior was erratic when other programs were competing for the processor 
and access to other services provided by the UX Server. Reserved packet senders and 
receivers that used libsockets for handling network packets had much better behavior. 
They were able to execute periodically and perform each sending or receiving computation 
by the end of the corresponding period. Other experiments (not presented here) showed that 
the behavior of reserved programs that used UX sockets was just as bad as that of unre- 
served programs with UX sockets. Also, unreserved programs that used libsockets 
exhibited unpredictable behavior when executing with competition as well. These experi- 
ments indicate that using a reservation mechanism or a libsockets mechanism alone 
does not ensure predictability in programs; both mechanisms are needed. 

6.3 Scheduling cost 
This section addresses the scheduling costs of predictable programs that can meet their 

timing constraints under the reservation system. It looks at measured aggregate costs for the 
system as well as measurements of scheduling operations that contribute to the costs. Such 
measurements enable cost projections to be made for specific task sets. 
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6.3.1 Measured aggregate scheduling cost 

The reservation system ensures that reserved resources will be available to enable real- 
time programs to meet their timing constraints, but this predictability has costs associated 
with it. In particular, the accurate measurements and the timers necessary for enforcement 
take some time. In measuring the aggregate scheduling cost, the intention is to determine 
how much time is consumed by scheduling costs in the case of a reserved periodic thread 
compared to that of an unreserved thread. 

6.3.1.1 Methodology 

Experiment 19 is designed to measure the scheduling cost for a periodic thread as the 
period varies. The task set includes the periodic thread and an "idle" thread that runs in the 
background to consume all processor time not consumed by the periodic thread and the sys- 
tem's housekeeping activities. The system scheduling cost is taken to be the total time of the 
test minus the time consumed by the periodic thread and the idle thread. This scheduling 
cost includes context switch times, associated cache effects, as well as the cost of timers and 
clock operations for the reservation mechanism. 

One series of tests measures the scheduling cost for a reserved periodic thread whose 
reservation period ranges from 20 ms to 200 ms. Most of the cost for the reservation system 
is a fixed cost in each period, so a longer period implies a relatively smaller cost. The other 
series of tests measures scheduling cost for an unreserved periodic thread with a period that 
varies from 20 ms to 200 ms. 

6.3.1.2 Results 

The results of the scheduling cost measurements are presented in Figure 6-22. The graph 
consists of two functions: the scheduling cost associated with a reserved periodic thread as a 
function of period and the scheduling cost associated with an unreserved periodic thread as a 
function of period. The x-axis is the period in milliseconds, and the y-axis is the percentage 
of the processor that is lost to scheduling costs. 

The scheduling cost for the reserved thread starts out about 3% for a reservation period 
of 20 ms and drops off as the reservation period is increased. For a 100 ms reservation 
period, the scheduling cost is about 0.5% and for a 200 ms reservation period, it is about 
0.2% For the unreserved thread, the scheduling cost is smaller, starting at about 2.2% for a 
20 ms period. The cost drops off to about 0.5% for a 100 ms period and then to about 0.1 % 
for a 200 ms period. 
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Figure 6-22: Scheduling Cost 

6.3.1.3 Analysis 

The scheduling cost measurements indicate that the cost of threads with very small res- 
ervation periods (smaller than about 30 ms) grows somewhat as the reservation period 
decreases. For reservation periods in the range of 40 to 100 ms, which would be an appropri- 
ate range for many audio and video applications for example, the scheduling cost is accept- 
able. 

The scheduling cost is relatively high for the reservation system because the clock/timer 
card used in the experiments is very sensitive to the timing of loads and stores in its control 
and data registers. The card is used quite often in the reservation system to read a free-run- 
ning clock, set an interrupting timer, or cancel a timer. Since each of these operations 
requirements multiple reads and stores to device registers and since the device driver for the 
card contains many delay loops required to synchronize properly with the card, much time is 
wasted. With clock and timer support from a better card, the scheduling cost should be sig- 
nificantly lower. 

6.3.2 Individual operations 

This section presents measurements of the individual internal operations used by the res- 
ervation mechanism. These measurements can be used to project scheduling costs for task 
sets. 

6.3.2.1 Reserve Switch 

During a context switch, the system must switch the reserve to which it is charging com- 
putation time as it switches the thread that is running on the processor. This involves updat- 
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ing usage accumulators in the old reserve and possibly setting the overrun timer for the next 
reserve. The four measured cases for the reserve switch are: 

• Neither the old or new activity was reserved - Just update the usage accu- 
mulators. 

• The old activity was reserved - Cancel the overrun timer for the old activ- 
ity and update usage. 

• The new activity is reserved - Set up and arm the overrun timer for the 
new activity and update usage 

• Both activities are reserved - Cancel the old overrun timer, set up the new 
overrun timer, and update usage. 

The following table gives the measurements for these cases. 

Action Duration 

Neither old nor new activity reserved 23 u.s 

Old activity reserved 100 (is 

New activity reserved loo p.s       ! 

Both activities reserved 180 p,s 

Table 6-18: Reserve Switch 

6.3.2.2 Overrun and Replenishment Timers 

The measured cost for handling an overrun timer includes identifying the timer, setting 
some state in the reserve, and initiating a context switch. It does not include the cost of the 
context switch itself. 

The cost for handling a replenishment timer includes identifying the timer, setting some 
state in the reserve, resetting the timer for the next reservation period boundary, and possi- 
bly resetting the overrun timer. Four different cases for replenishment timer handling were 
measured: 

• A reserve with a reservation whose computation allocation had been 
depleted during the period (the overrun timer had expired for this activ- 
ity), and it was waiting for a new allocation. 

• A reserve with a reservation whose computation allocation had not been 
depleted. 

• A reserve with no reservation whose replenishment timer expired while it 
was running. 

• A reserve with no reservation which was not running at the time the 
replenishment timer expired. 
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The following table shows the measurements for the overrun timer and each of the 
replenishment timer cases. 

Action Duration 

Handle overrun timer 130 [is 

Reserved and waiting for new allocation 170 [is 

Reserved but not waiting 140 [is 

Unreserved and running when timer expired 140 [is 

Unreserved and not running when timer expired 140 p.s 

Table 6-19: Replenishment Timer 

6.3.2.3 Usage checkpoints 

This section gives measurements of the system primitives that extract usage information 
from the kernel. The reserve usage data from the reservation system implemented in RT- 
Mach come in two forms: the current accumulated usage of a reserve, and the accumulated 
usage as of the last reservation period boundary. The record of the accumulated usage of a 
reserve taken at a reservation period boundary is called a checkpoint. The reservation sys- 
tem offers two system primitives for retrieving usage data: the first gives the data for a sin- 
gle checkpoint along with the current accumulated usage, and the second give the last 20 
checkpoints from the last 20 reservation period boundaries. The following table gives the 
measured costs for both of these system primitives. 

Action Duration     ', 

Retrieve single checkpoint 130 [is 

Retrieve 20 recent checkpoints 220 [is           i 

Table 6-20: Checkpoint Cost 

6.3.2.4 Analysis 

The measurements described in this section can be used to estimate the cost associated 
with running specific task sets on the reservation system. The replenishment timer costs 
occur in every period of every reserved activity, and these numbers can help project the 
impact of having many tasks with small reservation period. The overrun timer costs detail 
the penalty associated with a program whose computation does not closely match its reser- 
vation. The checkpoint costs can be used in estimating the overhead for a monitor and in 
choosing timing properties of a monitor to balance accuracy of information with overhead 
cost. 
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6.4 Chapter summary 

This chapter addressed the questions of whether the reservation system supports predict- 
able application behavior and how much the predictability costs in terms of scheduling over- 
head. To show that the reservation system supports predictable behavior for applications, 
several experiments were done using task sets consisting of independent compute-bound 
synthetic workloads as well as client/server task sets with synthetic workloads. In an experi- 
ment with three reserved programs and five unreserved competitors, the reserved programs 
achieved measured processor utilizations that had 5-percentiles and 95-percentiles within 3- 
7% of their average utilizations, indicating that they were able to get their processor reserva- 
tions with very little variance in their computation times. In the client/server experiments, 
even a case where an unreserved client was competing with two reserved clients for the 
same server (along with other independent unreserved programs competing for the proces- 
sor), the reserved clients were able to achieve their timing constraints. The 5-percentiles and 
95-percentiles for the two reserved clients in this case where within 5% of their average uti- 
lizations. These experiments showed that the reservation system guarantees very tight distri- 
butions of processor utilization even with different types of computation and with different 
combinations of client/server interactions. 

Additional experiments used a reserved QuickTime video player and a modified version 
of the X Server to show that reserved applications can coordinate with shared servers to sat- 
isfy timing constraints on computations such as displaying video frames. In these experi- 
ments, the reserved players (even with interference from competing non-real-time X clients) 
had processor utilization measurements with 5-percentiles and 95-percentiles within 65% of 
their average utilizations. The utilization distributions were not as tight as the synthetic cli- 
ent/servers because the internal structure of the X Server is not ideally suited to reserve 
propagation and charging to clients' reserves. However, the performance of the reserved 
players was still much improved over that of unreserved players which had measurements 
with 5-percentiles and 95-percentiles that were as much as 166% of their average utiliza- 
tions. 

Experiments with libsockets showed that with an appropriate protocol processing struc- 
ture, packet senders and receivers could achieve predictable behavior. The reserved senders 
in the experiments had processor utilization measurements with 5-percentiles and 95-per- 
centiles that were within 7% of the average utilizations, and the reserved receivers had 5- 
and 95-percentiles that were within 16% of the average utilizations. This is compared with 
unreserved senders and receivers that had 5- and 95-percentiles of up to 360% of their aver- 
age utilizations. 

The scheduling costs of the reservation system were measured by running a periodic- 
thread and measuring the idle time left over to find the scheduling cost. The results from 
several experiments with reserved and unreserved periodic threads with different periods 
show that the scheduling cost of reserved threads is typically about twice that of unreserved 
threads. 

136 



Chapter 7 

Related Work 

The work presented in this dissertation draws on research in several different areas. The 
reserve model depends on theoretical results from real-time scheduling, and the design and 
implementation were influenced by the work in real-time system design as well as the 
requirements for multimedia applications. This chapter presents an overview of related 
work: most of the related work focuses on systems issues although a section on applications 
discusses work on tools and application adaptation techniques. 

7.1 System Implementation 
The increasing integration of computer and telecommunications technologies has 

focused attention on the real-time issues that arise in processing digital audio and video. 
Handling multimedia data streams requires an understanding of the timing requirements, 
encoding techniques, and data formats of the new media types [ 13,69,94,135,136] as well as 
programming interfaces [60,101] and new application design techniques [35]. 

7.1.1 Multimedia support 

A great deal of recent work has focused on how software systems (including operating 
systems) can be designed to support multimedia applications. Many researchers and practi- 
tioners consider resource reservation desirable if not absolutely necessary for real-time mul- 
timedia operating systems [3,46,53,60,87,102,127]. Herrtwich [42] gives an argument for 
resource reservation and careful scheduling in these systems. Others prefer a best effort 
approach to OS design for multimedia applications [19,21,90]. Recent survey papers 
[116,132] and books [12,115] discuss work in this area. 

One of the simplest ways to do resource allocation for multimedia applications is to ded- 
icate an entire machine to a single multimedia application. Multimedia applications for sin- 
gle-user personal computers typically assume that only a single multimedia activity will 
exist at any one time. Or if several multimedia activities exist, the assumption is that they 
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will be associated with a single application that can do cooperative scheduling of these 
activities. Adobe Premiere [95] is an example of such an application. If this assumption is 
violated, neither the applications nor the system will be in a position to assert anything about 
the behavior of multimedia applications. There is no admission control or any kind of over- 
load protection in such systems. 

Other systems such as OS/2 [60] put limits on the number of high-level activities, such 
as video streams being processed by the system, as a primitive form of admission control. 
This technique does not address the problem of resource allocation or admission control for 
arbitrary computations and media processing applications. 

Jeffay etal. implemented an operating system designed for guaranteed real-time sched- 
uling [53]. A video capture and playback application demonstrates that the analytical tech- 
niques can be successfully applied to real applications. In subsequent work, Jeffay has 
focused attention on transport mechanisms to detect and deal with variability in network 
behavior [54]. The reservation system described in this dissertation uses real-time schedul- 
ing analysis as does Jeffay. It focuses on enforcement whereas Jeffay's recent work focuses 
more on flexibility. The reservation system would benefit greatly from the increased flexi- 
bility of having adaptive mechanisms such as Jeffay's at higher levels. 

Anderson et al. [3] argue for introducing more sophisticated timing and scheduling fea- 
tures into operating systems, and their DASH system design supports a reservation model 
based on linear bounded arrival processes (LBAP) [22,23]. They implemented their system 
design and were able to report some preliminary experiences with the system. They use ear- 
liest deadline scheduling for real-time traffic because it is optimal in the sense that if any 
algorithm can schedule a particular collection of tasks, the earliest deadline algorithm can 
do it. Admission control for this system is based on a time-line where new jobs are admitted 
only if they fit onto the time-line when the job request arrives [129]. The reservation system 
described in this dissertation uses an admission control algorithm based on a periodic sched- 
uling framework with scheduling analysis rather than a timeline approach. One way for 
reserves to accommodate one-shot events would be to use a timeline based admission con- 
trol policy and scheduling algorithm. The reservation system focuses more on enforcement 
of specified computation times. 

Hyden [46] considered the problem of supporting QOS in operating systems in his the- 
sis. He implemented a system that offers a virtual processor interface to applications. A 
video decoder application demonstrates how such an interface can be used by an applica- 
tion. In contrast, the reserve system provides flexibility in reservation binding for a more 
integrated view of resource usage reservation, measurement, and enforcement. 

Coulson et al. [21] present a system design based on Chorus [103]. This system uses ear- 
liest deadline scheduling, but they do not provide any admission control and usage enforce- 
ment. QOS commitments can be revoked, and overload is permitted; commitments are 
degraded as a response to overload. The work focuses primarily on fast context switching 
and reducing protection domain crossings. The reserve system provides guaranteed resource 
reservation using an enforcement mechanism with QOS policy modules layered over the 
reservation abstraction. 

138 



Jones [56] describes some ideas on system design for multimedia applications which 
depend on value functions as a means of scheduling processes based on timing constraints. 
semantic importance, user preferences, and other information about application-level 
requirements. The reserve system divides the QOS provision problem into a reservation 
mechanism and QOS policy layers. Jones' work focuses more on the QOS policy and could 
benefit from mechanisms for guaranteed resource reservation. 

Many multimedia cards and co-processor boards and boxes are actually embedded sys- 
tems with their own processors and operating systems. These systems must manage 
resources for multiple real-time activities that must be multiplexed. 

Hopper [44] described Pandora's Box which is a transputer system designed to be a mul- 
timedia peripheral for a traditional workstation. The Pandora system employs several trans- 
puters, each of which handles a particular function in the system such as compression, 
decompression, network traffic, and audio. A similar approach is being pursued in the con- 
text of the Desk Area Network [40] and related operating system efforts [9,81]. The reserve 
system addresses the sharing of devices and software resources by appropriate admission 
control policies, scheduling algorithms, and enforcement mechanisms. Multiplexing of 
resources results in more efficient resource utilization. 

The Mwave system [47] consists of a digital signal processor (DSP) card intended for 
use with a PC. The Mwave card handles various audio processing and telephony tasks, 
depending on the host processor for control functions. A programmer can develop applica- 
tions that are divided between the host system and the Mwave processor. There is a pro- 
gramming environment that supports application development, and the operating system 
running on the Mwave processor provides some real-time support for scheduling and 
enforcement. In particular, the Mwave/OS performs enforcement functions, resetting the 
card when any of the real-time activities misses a deadline. The reserve abstraction provides 
more functionality for flexible binding of reserves, and the reserve system also has a more 
flexible policy for handling timing failures. In particular, real-time activities are not affected 
by the timing failure of an independent real-time or non-real-time activity. 

7.1.2 QOS architectures 

The reserve abstraction is designed to support higher-level architectures for managing 
quality of service specification and negotiation. Several QOS architectures have been pro- 
posed assuming that the mechanisms for operating system resource management, such as 
the reserve system, would be developed. 

Nicolaou [89] described a QOS architecture suitable for programming distributed multi- 
media applications. His work describes an architecture that one might use to design and 
implement multimedia applications. While some systems issues like resource management 
and scheduling are identified as being important, the cited work does not address those 
problems. A prototype implementation based on the architecture demonstrates the feasibil- 
ity of this approach, but since the prototype is implemented on UNIX, its performance suf- 
fers from a lack of real-time scheduling techniques in the operating system. The reserve 
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model is designed to provide the kind of operating system support necessary for Nicolaou's 
QOS architecture. 

Wolf et al. [137] defined a QOS architecture for a communication transport system, and 
they have an initial implementation of their system, called the Heidelberg Transport System. 
The reserve system focuses more on admission control, dealing with interaction between 
processes (such as client/server interactions) and usage enforcement. 

The QOS Broker [84] provides an architecture for handling QOS negotiation among 
resource "buyers" and "sellers." Protocols are provided for carrying out the negotiation, and 
a version of the QOS Broker was implemented and used in the context of a telerobotics 
application. The Broker contains hooks for reserving resources in operating systems and 
networks when reservation mechanisms are available. The reserve system described in this 
dissertation provides the mechanism necessary for negotiating guaranteed service. 

7.1.3 Networking 

The idea of bandwidth reservation for network quality of service models has been 
explored by a number of researchers. The thesis work complements the work on networking 
by providing resource reservation in the end hosts as well as in the network. Thus the oper- 
ating system resource reservation work enables predictable end-to-end performance for real- 
time programs. 

Ferrari and Verma [31] describe a model for guaranteeing bandwidth in a wide-area net- 
work. Their analytical model provided a basis for subsequent work on network bandwidth 
reservation. In contrast, Clark et al. [18] describe another service model based on the idea of 
predictive service. In related work, L. Zhang et al. [140] gave a basic description of RSVP, 
a protocol for reserving resources across nodes in an internetwork. This thesis provides 
operating system support to implement these types of schemes. Reserves support guaranteed 
service for hard real-time applications as well as supporting predictive service for soft real- 
time applications that dynamically change their requirements on various system resources. 

H. Zhang [141] describes a bandwidth reservation model and an implementation in an 
internetwork protocol. He was able to allocate and control network bandwidth in gateways. 
but did not address the allocation and control of resources like the processor in the more 
general operating system environment. The reserve system would make it possible to 
address resource reservation issues in general end systems, extending H. Zhang's work on 
resource reservation within the network and its routers. 

Anderson et al. [4] describe a Session Reservation Protocol (SRP) which reserves 
resources along the route of a connection to ensure a particular bandwidth and delay for the 
connection. This protocol provides resource reservation at routers for predictable network 
performance. The reserve system would make it possible to reserve resources at end hosts as 
well as in the network routers. 
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7.2 Scheduling theory 
Real-time scheduling theory has been an active area of research for years. Many impor- 

tant theoretical results date back to the 1950's and 1960's [20,49], and work on system 
design dates back to the same time period [71,73,82]. More recently, real-time systems 
research has focused on scheduling algorithms and techniques for building complex, distrib- 
uted real-time systems [1,130,131]. 

The reserve system was designed using several results from real-time scheduling theory 
in its admission control policy, scheduling algorithm, and synchronization and communica- 
tion primitives. The reserve model is based on the original rate monotonic scheduling analy- 
sis [67] as well as recent extensions [63]. The simple two-parameter reservation model is 
suitable for a wide range of applications, but applications that require different reservation 
semantics might need a model that takes advantage of other scheduling algorithms and anal- 
yses. For example, an application might require generalized rate monotonic analysis 
[39,64,107,109], aperiodic servers with different replenishment policies [111,112,120], ear- 
liest deadline first scheduling [27,49,67], sporadic task scheduling [51], or deadline mono- 
tonic scheduling [7]. 

The reservation system also depends of priority inheritance protocols for fixed priority 
scheduling [96,108], and similar inheritance protocols for earliest deadline first [8,16] 
would be required for a reservation model based on that policy. 

The two-parameter periodic scheduling framework of the original rate monotonic sched- 
uling analysis divides the capacity of the processor among multiple tasks. Other scheduling 
techniques such as processor sharing and fair share scheduling aim to provide a similar kind 
of proportional sharing of the processor. The primary difference is that the two-parameter 
periodic scheduling framework specifies a granularity of sharing by specifying a period. 
Processor sharing and fair share scheduling seek to support sharing at a very fine granular- 
ity. 

A processor sharing technique [50] intended to be accurate enough to accommodate the 
timing constraints of arbitrary multimedia applications would require a very small quantum. 
This would imply a high scheduling overhead. Such a system would also require some 
method for controlling the effects of synchronization and communication between pro- 
cesses. 

Fair share schedulers [41,58,138] provide for resource allocation like processor sharing, 
although at a coarser granularity. Such schedulers ensure that users who pay more for com- 
pute time get better service than others who pay less do. They record usage measurements to 
try to match usage with target allocation levels over the long term. 

More recently, work on fair share scheduling and proportional share scheduling has 
addressed the integration of network scheduling and end-system scheduling [118.133.134]. 
Instead of focusing on ensuring that a certain amount of computation time will be available 
by a deadline, this work focuses on ensuring that a certain proportion of the processor is 
available to a compute-bound task in any interval. 
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7.3 Applications 
Two classes of applications turn out to be very important to the resource reservation 

work. Adaptive applications are important because dynamic real-time applications must be 
very sensitive to the relationship between their (changing) resource requirements and their 
levels of resource reservations. In addition, design tools, performance monitors, and 
dynamic resource allocation tools are necessary for the design and on-line monitoring and 
tuning of resource reservations for dynamic real-time applications. 

7.3.1 Adaptive applications 

Recently there has been a focus on how systems and applications can adapt their compu- 
tations to the resources they find available to them. For example, video compression algo- 
rithms are designed to allow for tradeoffs in resource requirements in various ways. 
Software techniques are also being developed, primarily in the area of mobile computing, 
for application awareness of resource requirements and adaptation based on system 
resources available. 

The MPEG compression algorithms support several ways to trade off between band- 
width, computational resources, and image quality [17,61]. The MPEG-1 q-factor trades 
image quality for less bandwidth and computational resources, and the MPEG-2 hierarchi- 
cal encoding scheme supports incremental improvements in image quality for additional 
bandwidth and computation time [10,17]. Other methods such as subband encoding [121], 
Hyden's method [46], and other hierarchical encoding schemes [2,17] support this tradeoff 
as well. 

Recent work in mobile computing explores how applications can be sensitive to the 
resources that are available to them in terms of network bandwidth, processor power, and 
screen resolution among others [32,91,106]. These applications discover the resources that 
are available to them and then use this information to guide their own computations. For 
example, a video player residing on a high-end workstation might request from a video 
server a full color (24 bits per pixel), full motion (30 frames per second), relatively high res- 
olution (640x480 pixels) video stream. The same video player on a low-end personal com- 
puter might request only 256 bits of color, 15 frames per second, and a resolution of 
160x120 pixels. Supporting a scenario like this requires that all of the involved system com- 
ponents are aware of the resources they have available, the resources they need to do their 
work, and the level at which all of the other components in the end-to-end activity can per- 
form. 

7.3.2 Tools 

The reserve system provides a mechanism for tools that monitor and control resource 
usage. This section discusses current tools for monitoring functions and for controlling 
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Different tools intended for monitoring various aspects of system performance work at 
different levels. Some are intended for program design while others are intended for system- 
level debugging and on-line resource monitoring. 

Performance analysis tools such as gprof [29,37] and PCA [28] use PC sampling tech- 
niques to characterize program runtime behavior and object code to determine the static- 
structure. This method gives a great deal of insight into the behavior of individual programs. 
but there is no notion of tuning task sets as a whole. Also, the method of exercising control 
of the programs being analyzed is through the programs themselves, either changing their 
structure or modifying their parameters. The tool does not exercise this control directly. 

System monitoring tools typically separate the functions of capturing performance data, 
analyzing the data, and having an effect on the system that was measured. The Advanced 
Real-Time Monitor (ARM) [123], which was originally designed for the ARTS Kernel 
[124] and more recently updated for RT-Mach [125], takes this approach. ARM uses a ker- 
nel mechanism to capture scheduling events and then sends those events over the network to 
an ARM application running on a different machine. ARM then displays a scheduling his- 
tory based on the events, and this history can be viewed, analyzed, and saved for future use. 

Tools like xload [74] provide a very simple view of the cumulative processor load on a 
workstation. The xload application does this on-line, but it leaves out some interesting infor- 
mation like a breakdown of which processes are consuming what percent of the load. It also 
lacks a control element to help the user have an effect on the load through the tool. 

Tools like the Memory Sizer on the Macintosh [6] offer control over a system resource, 
but the resource information is very simple, and one cannot set the memory size of a pro- 
gram while it is running. The reserve system allows for much more sophisticated control of 
system resource allocation. With the help of a QOS manager, a tool such as rmon can graph- 
ically display resource usage information and interact with the console user to control 
resource allocation. 
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Chapter 8 

Conclusion 

This dissertation has presented a comprehensive model describing resource reserves, the 
operations they support, the scheduling algorithm and enforcement mechanism required, 
and how reservations for various resource types can be encapsulated in a single framework. 
An implementation and experimental evaluation demonstrate that real applications with 
non-trivial client/server interactions can achieve predictable real-time performance using 
resource reserves. The reserves ensure this predictability even when there are multiple real- 
time and non-real-time applications competing for the same resources. 

This work shows that system mechanisms that address entire activities are important for 
real-time resource management. Furthermore, it shows that enforcement is essential, other- 
wise a reservation abstraction has no meaning. Programming techniques such as software 
pipeline architectures with synchronized periods and deadlines are useful for achieving pre- 
dictable behavior. The following sections detail the contributions of this work and directions 
that this work opens for future research. 

8.1 Contributions 
The contributions of this work include the abstraction for operating system resource res- 

ervation, its implementation, real applications which use it, and an experimental evaluation 
of those applications. The following sections discuss these in more detail. 

8.1.1 Resource reservation abstraction 

The resource reserve abstraction provides a model for how real-time scheduling algo- 
rithms and analyses can be incorporated in an operating system design in an integrated man- 
ner. This is in contrast to the specification of scheduling algorithms and analyses in the 
context of a simplified task model where many practical systems issues and programming 
issues are ignored. Two key features of the abstraction are flexible binding of reserves to 
threads and enforcement of reservation parameters. 
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Since reserves are first class objects in the system rather than being tightly and perma- 
nently bound to threads (or processes), the management of resources is much easier. For 
example, reservation parameters can be allocated for a reserve by a thread and then a refer- 
ence to the reserve can be passed to system service providers invoked by the thread. By 
allowing the binding of reserves to threads to be flexible, reserves can be passed around in 
this way, and the resource usage for the abstract activity is tracked and guaranteed through- 
out all of the server calls. 

The enforcement mechanism eases program development and debugging for program- 
mers of hard and soft real-time applications. Programmers of hard real-time applications can 
exploit the usage accumulation mechanism to measure the requirements of their code during 
development. During runtime, the enforcement mechanism and usage measurements can be 
used to isolate timing bugs. Programmers of soft real-time applications can use the enforce- 
ment mechanism to ensure isolation between applications and to provide information on 
resource usage requirements for adaptive applications. This relieves the programmer of 
doing the exhaustive measurements and analysis usually required to achieve real-time pre- 
dictability. 

8.1.2 Implementation 

The implementation of processor reserves in Real-Time Mach and the implementation 
of several real applications that use reserves demonstrate the feasibility of the approach 
described in this document. The implementation shows how to design an enforcement 
mechanism and integrate it with the scheduling policy. It shows how a reserve propagation 
mechanism can be built to ensure consistent resource reservation and account for abstract 
activities that span multiple threads (or processes). It also demonstrates how QOS managers 
can be incorporated into the system to negotiate reservation parameters between reserved 
applications and the operating system, and how resource usage monitor and control can be 
used to promote awareness of resource requirements and dynamic adjustment of resource 
allocation. 

8.1.3 Experimental evaluation 

The experimental evaluation demonstrates that the applications using the reservation 
system can achieve predictable behavior with acceptable overhead costs. Experiments with 
synthetic benchmark applications were able to achieve very consistent real-time perfor- 
mance even in the face of competition from other real-time and non-real-time applications. 
In the experiments, periodic reserved applications ran over a relatively long duration of 
time, and measurements of the processor utilization during each period were recorded. The 
5-percentile and 95-percentile numbers for these measurements were typically within 5-7% 
of the average utilization across all the periods, indicating a very tight distribution of proces- 
sor utilization measurements across periods and a quite consistent pattern of real-time 
behavior. In other experiments with real applications such as a video player and X Server. 
processor utilization measurements yielded 5- and 95-percentiles which differed from the 
average utilization by up to 65%. This is not nearly as tight as the synthetic client/server 
benchmark applications due to the input/output organization of the X Server which is not 
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ideally suited to reserve propagation techniques. In any case, the behavior of reserved X cli- 
ents was much better than that of unreserved X clients, which had 5- and 95-percentiles that 
were as much as 166% of their average utilizations. Experiments with network transmit/ 
receive applications showed processor utilization measurements with 5- and 95-percentiles 
of 7-16% of the average utilizations. When unreserved, these applications had measure- 
ments with 5- and 95-percentiles of up to 360% of their average utilizations. In each case, 
the reserved application showed much more consistent real-time behavior than its unre- 
served counterpart. 

8.2 Future directions 
The work described in this document opens up many avenues for future research. By 

providing a general framework and testbed platform for operating system resource reserva- 
tion, this work provides a concrete context for many research topics such as QOS provision 
and negotiation, resource allocation algorithms, and adaptive application programming 
techniques. 

This work on resource reservation also provides a design point for comparison with 
other system design approaches [65] and for other scheduling paradigms [119]. The idea of 
enforced resource reservation can also be used as a building block for exploring higher-level 
concerns such as the role of user in resource management [57]. 
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