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Abstract 

This research identifies variables and specifies equations that can be 

used to estimate the unit production cost of a weapon system. It is concerned 

with both explanation and prediction.  Three major variables identified are 

cumulative quantity, production rate, and change in regime. Cumulative 

quantity is used in learning curve theory.  Production rate is found in the U- 

shaped short- and long-run cost curves of economic theory. This study uses 

the term regime to refer to any major change in the production environment 

of a weapon system. This research attempts to integrate the use of these three 

variables. 

A change in regime may be due to a change in acquisition strategy, 

configuration, or manufacturing method.  It is recommended that a categorical 

variable be used to capture the effect of a change in regime.  Several specific 

equations are proposed and discussed. In general, they entail a shift, shift and 

rotation, or shift and two rotations of the cost-quantity-rate surface due to a 

change in regime. Many accepted methods of integrating learning and rate do 

not produce U-shaped rate curves; this study suggests one that does. Principles 

and equations discussed are applied in modeling the cost history of three 

missile systems. 

VII 



FACTORS AFFECTING THE UNIT COST OF WEAPON SYSTEMS 

I. Background and Statement of the Problem 

Introduction 

The purpose of this study is to help identify variables and specify 

equations that can be used to estimate unit production cost. This thesis is 

concerned with both explanation and prediction.  Factors that affect 

production cost and equations used to estimate production cost will be 

discussed.  The statistical technique of regression analysis will be used and a 

basic knowledge of regression is assumed 

Two major traditions shape our thinking on these topics. One is the 

learning curve concept.  This started in the aircraft industry prior to World 

War II.   Knowledge and familiarity with the learning curve continues to 

spread from the Department of Defense to academia and society at large. It can 

be represented through the general equation Cost = f(cumulative quantity), 

(Wright, 1936). 

The other major tradition comes from microeconomic theory and 

includes the production function and cost curves for the firm. The theory of 

production and cost has proven useful in explaining economic behavior in 

many industries and settings around the world and through history.  Although 

commonplace in Economics departments, adoption of this approach has been 



sporadic in the Department of Defense. The general equation is 

Cost = f(production rate), (Ferguson and Gould, 1975, Mansfield, 1970). 

There have been attempts to integrate these two fundamental 

approaches both conceptually and in terms of estimation.  The general 

equation is Y = f(cumulative quantity, production rate), (Bemis, 1981). 

In addition to these two traditions, estimators must often consider a 

change to the production environment of a weapon system. This thesis refers 

to this as a change in regime. This could be the use of multiyear procurement 

after several years of single year procurement (Domin, 1984). Another 

example is the introduction of a second producer (Cox and Gansler, 1981). 

Further examples include greater automation in manufacturing, the 

incorporation of new technology in a weapon system, or the production of a 

new model of a weapon system. The general model here is either 

Y = f(cumulative quantity, regime), or Y = f(cumulative quantity, rate, 

regime). 

A change in regime can be captured in regression analysis by using an 

indicator, or categorical, variable.  The use of indicator variables is a standard 

technique in regression analysis (Neter, 1990:455-496).  However little 

attention has been devoted to using indicator variables when fitting learning 

curves, or rate augmented learning curves.   This thesis will investigate the 

addition of indicator variables to standard models. 



The following general cost models will be examined in this thesis: 

(1) Y = f( cumulative quantity) 
(2) Y = f(production rate) 
(3) Y = f(cumulative quantity, production rate) 
(4) Y = f(cumulative quantity, regime) 
(5) Y = f(cumulative quantity, production rate, regime) 

Two other possible models, Y = f(production rate, regime) and Y = 

f(regime), are remote from both economic theory and DoD cost estimating 

practice, and will not be discussed. 

In addition to identifying and discussing variables, this study will 

specify and discuss equations that can be estimated with historical data. 

Estimation is the major focus of this thesis.  Since the emphasis is on using 

regression analysis to analyze data, the study is largely empirical in nature. 

However, in order to make sense and be persuasive, the objective is to use 

equations that have a good conceptual basis and are consistent with prior 

theory and experience. 

Production   Cost 

The Department of Defense must estimate the cost of weapon systems in 

order to plan, manage and budget its operations. In addition, economy of force 

is one of the traditional principles of war, and in the broad sense, estimation of 

future costs is essential to the achievement of this principle (Ely, 1997).  The 

total cost of a weapon system is its life cycle cost. This includes all costs 

incurred from the inception of the weapon system to its ultimate retirement 



(SCEA Glossary of Terms, 1994:140). It is often referred to as the cost from the 

cradle to the grave, or from the womb to the tomb. 

The Army cost breakdown for life cycle cost is shown in Appendix 1, 

Army Cost Element Structure.  It has six major categories:  1) Research, 

Development, Test, and Evaluation, 2) Production, 3) Military Construction, 4) 

Military Personnel, 5) Operations and Maintenance, and 6) Defense Business 

and Operations Fund. Each category is further subdivided to obtain a detailed 

breakdown of costs. Life cycle cost elements are mutually exclusive and 

collectively exhaustive (Cost Analysis Manual, 1997:148-163). 

Life cycle cost is an important term and concept.  However attention is 

often directed to one or another subset of the total cost of a weapon system. 

The subset chosen depends upon the objective. Costs may be estimated for near 

term annual budgets, for a particular contractor, or for a particular contract. 

Future costs, such as production costs or operating costs, may be estimated for 

planning purposes. 

This study pertains to Recurring Production, 2.02, in the Army cost 

element structure.  2.01, Nonrecurring Production, is excluded from this study. 

Definitions for these cost elements are contained in Appendix 2, Cost 

Definitions. Also excluded from this study are research and development costs. 

References to production or manufacturing cost in this study should be taken 

as referring to Recurring Production. 



In practice, analysts may find that costs identified in contractor or 

government records as recurring production may contain some non- 

recurring costs.   However, major separately identifiable non-recurring 

investment will be excluded from recurring production. 

To examine this issue, consider a production program that includes 

major expenditures for initial production facilities.  Initial production 

facilities (IPF) is defined in appendix 2 and is classified as non-recurring 

production.  If separate IPF contracts are let for each year's expenditure, these 

non-recurring expenditures will be mapped to 2.01.  However, some non- 

recurring costs may still remain in 2.02.  The recurring production contracts 

will contain overhead costs. At least some of these overhead costs will be fixed 

or semi-fixed and will not vary directly with production.  Conceptually these 

are non-recurring costs (Nelson and Balut, 1996). 

Even direct manufacturing labor costs may have some components that 

are non-recurring. The time to set-up for production depends on the number 

of set-ups independently of the number of items produced following a set-up. 

This has been recognized for some time (Wright, 1936:124, Asher, 1956:87). 

More recently, the author negotiated direct manufacturing manhours for the 

Army's 1984 Apache helicopter contract.  The contractor estimated set-up 

hours apart from the recurring manufacturing hours that were estimated 

using learning curve theory.  This procedure had the effect of introducing a 

non-recurring, or semi-fixed, aspect to direct manufacturing manhours. 



introducing a non-recurring, or semi-fixed, aspect to direct manufacturing 

manhours. 

Cost estimates for production are often expressed in terms of unit costs. 

Unit costs are important for planning. A high unit cost may cause a program 

to be canceled, or may lead to the selection of a competing program. Estimated 

high unit costs may lead to a change in program quantities or production rate. 

In order to reduce unit cost, alternative weapon technology, manufacturing 

technology, or the use of alternative materials may be considered. Different 

acquisition strategies may be considered to reduce cost.  Acquisition strategies 

that can be considered include multi-year production, the introduction of 

another production source, or component breakout, that is, buying 

components directly from subcontractors.  High production cost estimates may 

also lead to cost sharing through Joint Service or international production 

(L'Heureux and Grant, 1995). 

In addition to planning, it is desirable to estimate costs for budgeting 

and monitoring program progress. For these reasons, we need to estimate 

costs, and unit costs, by year. Estimates for annual costs should include the 

impact of inflation and may require consideration of changes in relative 

prices (Gill, 1994). 



Estimating   Level 

This thesis discusses many models. It also discusses many estimating 

levels, for example labor hours and total recurring cost, or, average fixed cost 

and average total cost. Many models are robust and are applicable at several 

estimating levels.  Nevertheless questions arise as to the applicability of a 

particular model for estimating at a particular level of detail. Hence 

discussions of estimating level will reoccur throughout this thesis. Highly 

detailed cost estimates are described as bottoms-up, grass-roots, or engineering 

estimates. A bottoms-up estimate may include estimates for several categories 

of labor, major components, purchased parts, and raw material. To these costs 

are added applicable overhead rates and profit. Developing such detailed 

estimates may require a significant amount of data and time. 

Other estimates are based on highly aggregated data, for example, 

contract cost and quantity. These top-down estimates may be made because we 

lack the resources necessary to develop a bottom-up estimate, or because an 

independent "sanity-check" of a detailed estimate is required.  Yet another 

reason for developing top-down estimates is to determine major factors that 

affect cost. This is an effort to see the forest rather than the trees. 

Cost estimating relationships, CERs, are equations that include 

performance or physical variables, such as speed, weight, or type of material 

used, to predict cost (SCEA Glossary of Terms, 1994:55). CERs are often based 

upon data from many weapon systems and are generally considered a top down 



technique. Each equation estimated in this thesis will be based upon data from 

a particular weapon system. 

Both types of estimating, bottoms-up and top-down, are valid. This study 

pertains to both types of estimates but the major emphasis is on top-down 

estimates.   In particular, the emphasis is on estimating recurring production 

cost for a single weapon system by using a single equation. 

Research   Questions 

The general research question addressed by this thesis is: What is the 

proper identification of variables and specification of equations to estimate 

unit production cost? Specific research questions to be addressed are: 

Question 1: Is it valid to fit a linear composite learning curve 
given that component learning curves are linear 
and of varying slopes? 

Question 2:    Can the addition of a production rate variable 
improve the learning curve equation? 

Question 3:    Can the addition of a categorical variable improve 
learning or, learning and rate, equations? 

Question 4:    Can a categorical variable provide useful diagnostic 
information? 

Question 5:    Should new equations of learning and rate be 
explored? 

8 



II.   Literature Review and Discussion 

Introduction 

The literature review and discussion will be in four parts. The first 

deals with the learning curve.  The learning curve estimates cost as a function 

of cumulative quantity. The second part discusses the economic theory of 

production and cost. Economic theory estimates cost as a function of 

production rate.  The third part discusses efforts to integrate the learning 

curve with economic theory.  The final part discusses additional specific 

factors that can affect unit cost, and the use of indicator variables in either a 

learning, or a learning and rate, context. 

Learning   Curve   Theory 

The Learning   Curve. T. P. Wright is credited with identifying and 

recommending the use of the cost-quantity relationship known as the 

learning curve.  His 1936 article, "Factors Affecting the Cost of Airplanes," 

published in the Journal of Aeronautical Sciences, remains remarkably clear, 

complete and insightful today, some six decades later. 

In the intervening time many articles have been written about the 

learning curve. Yelle (1979:324-328) lists 93 articles in his bibliography. A 

query of the Defense Technical Information Center data base resulted in the 

identification of 44 articles since 1979, the year of the Yelle article. 



Use of the learning curve has become an essential technique for 

analysts working for prime contractors, subcontractors, support contractors, 

and for the Department of Defense. This thesis will not discuss the entire body 

of learning curve theory and practice that has developed over time. However 

some important aspects of the learning curve will be discussed.  The learning 

curve equation will be used to help organize the material. 

The general learning curve equation is: 

(6)      Y = AXb 

Y is cost. X is cumulative quantity. The exponent, b, is a small negative 

number and determines the rate of cost reduction, or the learning rate. The 

coefficient A is the theoretical cost of the first item produced. 

The learning curve equation started primarily as an empirical 

generalization.  It was observed that cost falls with an increase in quantity. 

The learning curve equation produces a curved relationship.  Cost decreases at 

a decreasing rate1.   Costs are relatively high initially, fall quickly at first, and 

then fall at an ever slower rate. As X approaches infinity, Y approaches zero. 

As a practical matter, cost appears to level off during the production of a 

weapon system.  The learning curve is non-linear when plotted in arithmetic 

space.  When plotted in log-log space it is a straight line.  A learning curve 

(A=100, b=-.152) is shown in Figures 1 and 2. 

1 The first derivative, is negative: f' = b A x(D~1) < 0. The second derivative is positive: 
i" = (b-1) b x(b"2) >0. 

10 



Figure 1.  Learning Curve Plotted in Arithmetic Space 
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Figure 2.   Learning Curve Plotted in log-log Space 
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X is cumulative quantity; often called the unit number.  Although 

sometimes people omit the word cumulative, it is an essential aspect of the 

learning curve.  The learning curve equation applies to cumulative quantity 

since program inception. The clock does not reset with a new year or a new 

contract. 

The learning curve relationship is determined by raising X to the b 

power. The exponent b determines the rate of cost reduction associated with 

increasing quantity.  The equation for b is: 

(7)      b = ln(learning curve slope)/ln(2), where the learning 

slope is expressed in decimal form. 

The nature of the learning curve is that cost falls at some constant 

percentage in response to a constant percentage increase in cumulative 

quantity. This is normally presented in terms of a doubling, that is a 100% 

increase, of quantity.  If cost falls ten percent with a doubling of quantity, we 

speak of a 10% learning rate, or a 90% learning slope (Kankey, 1983:17). Using 

the above equation: b= ln(.9)/ln(2) =.-152. As mentioned earlier, b is a small 

negative number. A range of learning curve slopes from 70% to 100%, 

corresponds to a range of b from -.51 to zero. 

Considering the cost-quantity phenomenon chronologically, the cost of 

the first unit is A.  "A" is also essential to the mathematical expression of the 

learning curve. If A were zero, cost would be zero. As we increase or decrease 

values of A, we raise or lower the entire learning curve. 

12 



Unit   and  Cumulative  Average  Formulations.  Wright's original 

formulation of the learning curve is known today as the cumulative average 

formulation.   In the cumulative average formulation, Y represents the 

average cost of the first X units. Using a 90% slope and a first unit cost of 100, 

the average cost of the first two units is 90. The average cost of the first four 

units is 81. The average cost of the first eight units is 72, and so on. 

The first major alternative to the cumulative average formulation came 

from a reappraisal of Y, cost. This led to the unit formulation of the learning 

curve, which is sometimes called the Boeing or the Crawford curve.  Using the 

unit theory formulation, Y is the cost of a particular unit. Once again assume a 

90% slope and a first unit cost of 100. The cost of the second unit is 90. The cost 

of the fourth unit is 81, and the cost of the eighth unit is 72. 

Given either formulation, one can calculate unit, average, and total cost. 

However the two formulations are distinct. One should no more mix the unit 

and cumulative average formulations than compute change using yen and 

dollars. 

The cost analyst often starts with data and fits a learning curve. The 

data is in terms of ordered pairs: X and Y, cumulative quantity and cost. In the 

case of the unit curve, each data point is distinct and stands on its own. 

However in the cumulative average formulation, a data point includes 

information from prior data points. This can be demonstrated through an 

example. Suppose the average cost of the first four units is 81, and the average 

13 



cost of the first eight units is 72. These two bits of information are not 

independent. We know that if the cost of the first four units were to increase, 

the average cost of the first eight units would likewise increase. 

The cumulative average formulation tends to smooth the data through 

the computation of averages.  Smoothing is often used in forecasting.  However 

the process of fitting a single learning curve to many data points also 

represents a way of smoothing out random variation in the data while 

capturing the essential connection between cost and cumulative quantity.  The 

primary method of fitting learning curves is to use regression analysis.  The 

cumulative average data points are correlated with one another.  This suggests 

the possibility of serially correlated error terms in the fitted regression which 

is considered a problem in regression analysis (Neter et al, 1990:497-500). 

Statisticians generally take data points to be independent of one another and 

not functionally related. Therefore, even if we had a method of fitting the data 

other than regression analysis, there might be a statistical problem associated 

with the cumulative average formulation. 

Ilderton (1970:13) discusses a 1969 DCAA report presented to Congress on 

DCAA and contractor use of learning curves. The report indicated that 93% of 

the curves examined were based on the unit curve formulation.  Although 

both formulations are generally considered acceptable, this thesis will use 

unit theory when fitting learning curves to actual data. 

14 



Calculation  of  Midpoints. The revised definition of Y that came with 

the introduction of the unit formulation necessitates a redefinition of X.  Using 

the cumulative average formulation, X equals 100 when the estimator has the 

average cost for the first 100 units.  However using the unit formulation, X 

equals the midpoint of the lot that starts with unit 1 and ends with unit 100. 

The midpoint, M, is the unit whose predicted cost equals the average cost of the 

lot. The necessity of setting X equal to the midpoint is a bad news - good news 

situation. The bad news is that coming up with the lot midpoint is not so 

simple.  The good news is that we have powerful, inexpensive computers, and 

techniques have been worked out. Three equations are provided below. 

Exact solution: 

(8) M = (thesumfromX=FtoX=LofXD/(L-F-l))A(i/b) 

Approximation 1: 

(9) M = (((L+.5)A(b+l)-(F-.5)A(b+l))/((b+l)*LotSize)) A(i/b) 

Approximation 2: 

(10) M = (F+L+2*^*!)-5) /4 

In each case, M = lot Midpoint, F= First unit of lot, L = Last unit of lot. 

These equations apply to any lot with any first or last unit. The first two 

methods recognize that M depends on the value of b and, implicitly, the 

learning curve slope.  The derivation of equations 8 and 9 are contained in 

Appendix 3, Midpoint Equations. An Excel macro function for calculating the 

exact solution, equation 8, is provided in Appendix 4, Exact Midpoint 

15 



Calculation. The third method calculates M independently of b. It uses the 

average of the arithmetic and geometric means (Nussbaum, 1994:3). The two 

approximation equations can be incorporated easily in an electronic 

spreadsheet or other personal computer software. 

Results using the three approaches for calculating lot midpoints are 

shown in tables 1 and 2 below. The last two columns show the absolute value of 

the error expressed as a percentage. 

Table 1. Lot Midpoints Using a 90% Learning Curve Slope 

First Last M exact M Apx 1 M Apx 2 Abs % err 1 Abs % err 2 

1 10 4.36 4.32 4.33 0.94% 0.67% 

11 20 15.19 15.18 15.17 0.02% 0.13% 

21 30 25.31 25.31 25.30 0.01% 0.05% 

31 40 35.37 35.36 35.36 0.00% 0.02% 

41 50 45.40 45.39 45.39 0.00% 0.02% 
Avg error= 0.19% 0.18% 

Table 2. Midpoints Using a 70% Learning Curve Slope 

First Last M exact M Apx 1 M Apx 2 Abs % err 1 Abs % err 2 

1 10 3.95 3.88 4.33 1.83% 9.65% 

11 20 15.09 15.08 15.17 0.03% 0.53% 

21 30 25.25 25.25 25.30 0.01% 0.19% 

31 40 35.32 35.32 35.36 0.01% 0.10% 
41 50 45.36 45.36 45.39 0.00% 0.06% 

Avg error= 0.38% 2.10% 

Differences between methods are greatest when we have a steep 

learning curve, 70%, and when we are in the early portion of the curve, lot 1. 
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Both approximation methods work well for the second and subsequent lots. 

Deviation from the exact solution is greatest for the first lot for both 

approximation methods. This is due to the rapid changes that occur early in 

the learning curve. 

The first approximation method generally comes closer to the exact 

solution than does the second method. This is especially evident when we 

exclude the first lot. The first approximation method is also considerably more 

accurate when the true learning curve slope is 70%. The is due to the fact that 

the first approximation method takes the learning curve slope into account 

and generates revised lot midpoints.  This thesis will use the first 

approximation method, equation 9, for calculating lot midpoints. 

Fitting the Learning Curve. Raw data does not provide learning 

curve equations. It is seldom the case that one has the cost of the first unit, 

and one must always estimate or assume a value for "b". 

Contract information is available within a project office that allows the 

analyst to treat each production contract as a production lot. One needs only 

the cost, quantity and sequence of each contract.  Sometimes information on 

production lots within a contract is available. One uses lot information to 

estimate, or fit, a learning curve. 

Using production lot data, one computes the first and last item, and 

average cost for each lot. Average cost should be expressed in terms of either 

constant dollars or manhours depending on the level of detail at which one is 

17 



estimating.  Using the first and last values, one computes the midpoint for each 

lot by using either equation 8, 9, or 10. At this point, ordered (X,Y), 

(quantity, cost) pairs exist that are suitable for use in estimating the unit 

learning curve equation. 

A common method of fitting the learning curve is to transform the 

learning curve equation, Y = A X^, by taking the logarithm of both sides. This 

yields: 

(11)    ln(Y) = ln(A) + bln(X) 

Reexpressing ln(X) as x, and ln(Y) as y, regression analysis can be used 

to find the linear relationship between x and y. This results in the estimated 

equation: y = a + bx. The estimated coefficient "a" corresponds to our original 

Ln(A).   Therefore ea=A. The estimated coefficient b corresponds to b without 

transformation. Equations (9) and (10) use an assumed value for b. At this 

point in the procedure, an estimated value for b exists that can be used to 

recompute lot midpoints. This results in new X, and x, values that can be used 

in a new regression.  One can iterate the process until the estimate for b equals 

the value of b used in midpoint calculations.  This results in an internally 

consistent learning curve equation Y = A X^. The fitted equation can be used 

for several purposes.  For example, it can be used, along with planned future 

quantities, to estimate the cost of future contracts. 

18 



It should be noted that estimating the cost of the first unit requires 

extrapolation. The reason is that Y=A when X=l, but all lot midpoints are 

greater than 1. Regression equations go through the mean of x and the mean 

of y. The first unit will be some distance from the mean of x. Any 

misestimation of the slope, b, will have a large impact on the estimated value of 

"a". The effect on "A" will be even greater since A = ea. Although A comes 

first chronologically, it is derived late in the estimation process. Additional 

data, production lots, or revisions to the data may have a large impact on A. 

First unit cost is often referred to as the theoretical first unit cost, or Tl. The 

cost of the first unit is usually a mathematical abstraction rather than a 

measured quantity. 

A Note on Logarithms. The unit formulation is a straight line in 

logarithmic space only.   Freehand, straight line representations must be 

interpreted with care.  For example a sketched linear learning curve that goes 

below the x axis usually implies an unrealistically high quantity, X. To some 

this may imply a negative value of y.  In reality, this corresponds to a cost, Y, 

that is an order of magnitude less than the original scale. Y can never assume 

a negative value as a result of applying learning curve theory. 

The  Learning  Curve as  an  Explanatory Model.  The learning 

curve has gained increasing acceptance as an explanatory model.  People 

learn through practice.   It takes progressively fewer hours to perform a task 

with repetition.  Individuals can reflect on their own experience to see the 
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merit of this argument.  It takes less time to change a flat tire, or install 

personal computer software the second time than the first time.  The greater 

the experience, the faster and better the task can be performed.  Similarly it is 

reasonable to expect, and it has been observed, that manufacturing labor 

hours decline as workers gain experience in performing repetitive operations 

(Wright, 1936, Asher, 1956, and others). 

Sources   of  Learning. Reductions in labor hours are not due 

exclusively to worker learning.   Organizational learning is also important. 

Hirsch (1952:143-155) attributed 87% of labor hour savings to changes in 

technical knowledge which Yelle (1979:309) describes as a type of 

organizational learning.   In the previously mentioned Apache helicopter 

contract negotiation, contractor personnel emphasized the contribution of 

industrial engineers in reducing manufacturing labor hours. 

The curriculum at AFIT has emphasized numerous quantitative 

techniques that can reduce the inputs required to obtain a specified level of 

output.   These techniques include line-balancing, statistical process control, 

total quality management, linear programming, and make-buy decisions. 

These techniques and others contribute to organizational learning and can 

lead to cost savings in labor, subcontract items, and raw material. The 

difference between individual and organization learning has been examined 

in the literature (Hirsch, 1952:143-155, Andress, 1954:89). 
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Asher (1956:3) identifies the following factors as leading to a decline of 

unit airframe cost as cumulative output increases: 

1. Job familiarization by workmen, which results from the 
repetition of manufacturing operations. 

2. General improvement in tool coordination, shop 
organization, and engineering liaison. 

3. Development of more efficiently produced subassemblies. 
4. Development of more efficient parts-supply systems. 
5. Development of more efficient tools. 

Many   Learning   Curves. The learning curve has been recognized 

from the start (Wright, 1936) as useful in estimating several categories of cost 

in addition to labor. Raw material cost can decline due to reduced scrap and 

rework.  Purchased items include someone else's labor which declines with 

experience.  Wright mentioned the following learning curve slopes:   80% for 

labor, 88% for purchased parts, 95% for raw material, and 70% for overhead 

(Wright, 1936:124-125). He also presents a learning curve for the complete 

airplane. This is a composite curve because it is based upon several separate 

curves. Wright's composite curve had variable slopes.  It started as an 83% 

curve, changed slope to an 85% curve, then an 87% curve, and finally to a 90% 

curve (Wright, 1936:125-126). 

The practice of fitting distinct learning curves to labor, subcontract 

items, purchased parts, and a composite curve to the entire system remains 

popular today.  Only the practice of fitting a learning curve to overhead 

appears to have disappeared. Because the learning curve can be applied to 

cost elements other than labor, more general terms have been introduced: 
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progress curve, cost improvement curve, and experience curve (Badiru, 

1992:176). However, this thesis uses the familiar term learning curve due to its 

widespread use and acceptance. 

Occasionally the term learning curve is used in the restricted sense of 

applying to labor only.  In this case, Y is usually measured in hours rather 

than dollars. This has the advantage of using a unit of measure that has a fixed 

value rather than one whose value changes over time due to inflation, 

deflation, or industry or company specific change in wage rate. 

Analysts may fit many learning curves to labor.  During the 1984 

Apache Helicopter contract negotiations the author examined learning curve 

data for two manufacturers, Hughes Helicopter and Sikorsky, manufacturers of 

the Apache and Black Hawk helicopters respectively.  For each company, the 

author grouped several types of labor (eight and fourteen respectively) into 

four categories:  sheet metal, machining, subassembly, and final assembly. 

Learning curves were calculated for each category and for each company. 

Learning curve slopes differed by category and company; however several 

results were apparent.  Learning was greatest for final assembly.  This was 

followed by subassembly.  Learning was flattest for sheet metal, then 

machining.   These findings were consistent with the findings of others who 

have found that learning is greatest for assembly and lowest for machining 

(Hirsch, 1952:143-155, Hirsch, 1956:136-143, Asher, 1956:92). 
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The previous example came from contract negotiations.  Contract 

negotiations and source selections provide excellent opportunities for 

obtaining detailed cost information. During source selection on another 

program, the author was shown detailed manhour data to substantiate claimed 

learning curve slopes for labor.  The contractor displayed manufacturing 

hours for numerous small lots within each contract. However, it is usually 

difficult to obtain such detailed information. Analysts may have to treat each 

contract as a production lot, and estimate at the level of contract cost or price 

(cost to the government). 

The cost and complexity of weapon systems has grown over time. Today 

many prime contractors rely greatly on subcontractors. For example, the 

fuselage of the Apache helicopter is obtained from a major subcontractor. 

Detailed cost estimating often entails fitting a learning curve to each of the 

major subcontractors (Apache lot 3 and lot 4 contract negotiations, Apache 

Program Office Estimates). 

A multitude of linear learning curves are possible. It is also possible to 

fit a single composite learning curve to the entire program.  Should we expect 

the composite curve to be linear as well? Some authors (Conway and Schultz, 

1959:41, Asher, 1956:70) have suggested that the answer is "No." This leads to 

research question 1 which is examined further in chapters 3 and 4: 

Question 1: Is it valid to fit a linear composite learning curve 
given that component learning curves are linear 
and of varying slopes? 
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Other Issues Addressed  by  the  Learning  Curve. The learning 

curve has one independent variable, cumulative quantity.  However, it has 

been used to address many issues, or variables, in addition to quantity. For 

example consideration of learning as an explanatory variable suggests that a 

break in production should lead to some amount of forgetting. This can be 

modeled by a move back up the learning curve. Sometimes effort is added or 

subtracted from a program due to configuration changes or revised make 

versus buy decisions. An addition can be modeled with an additional curve 

starting at unit 1. When effort is subtracted from the program, the cost of the 

theoretical first unit cost is adjusted downward for estimating the cost of later 

lots. The impact of advanced planning has also been examined in learning 

curve theory. Yelle (1979:314-315) indicates that the effect of pre-production 

planning is to reduce Tl, the theoretical first unit cost, and to flatten the 

learning slope. 

Other Formulations  of the  Learning  Curve. Yelle (1979:302-328) 

and Badiru (1992:176-188) both discuss several alternative formulations of the 

learning curve.  These include the S-curve, Stanford-B model, Dejong's model, 

and the Plateau model. The merit of these formulations depends partially on 

reason: what makes sense.  However merit may be determined to an even 

greater extent based upon experience: what works. Yelle (1979:304) states: 
The essential point is that although the log-linear model 

has been, and still is, by far the most widely used model, some 
manufacturers have found other models that better describe 
their experiences. 
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My own experience includes working with a project office that decided 

to use a flatter composite learning curve for later lots. This is similar to the 

plateau model. The use of a composite curve of progressively declining slope 

was recommended as early as 1936 (Wright, 1936:125-126). 

One method of examining a program to determine if the learning slope 

has changed is proposed in Chapter in and used in Chapter IV. The method 

uses an indicator variable to determine if there is a statistically significant 

difference in slope for different lots. 

Any observed change in slope could be due to the effect of an omitted 

variable. One variable which comes to mind is production rate. The combined 

learning and rate models of several authors (Balut, 1981, Nelson and Balut, 

1996, Bemis, 1981) suggest that unit cost falls with increasing production rate. 

Cox and Gansler (1981) emphasize U-shaped rate curves. In either case, cost 

falls in early production lots, because of both learning and rate effects.  In 

later years, when rate is relatively fixed, cost declines solely due to learning. 

The analyst who considers learning only would see a flattening of the 

learning curve (Cox and Gansler, 1981:36-38). 

Another reason offered to explain possible flattening of the learning 

curve is that there could be little pressure to learn and reduce cost in later lots 

(Kankey, 1983:19). This would appear to have relevance to another variable, 

competition.  Competitive pressures may encourage more cost reducing effort 

and steeper learning curves (Cox and Gansler, 1981). Competition is presented 

25 



as a change in regime later in this Chapter. 

Because the shape of the learning curve may be affected by omitted 

variables, many recent studies have used multiple regression.  The potential of 

multivariate analysis is explained by Badiru (1992:186): 

This paper has presented a comprehensive survey of 
univariate and multivariate learning curves.   Multivariate 
models are useful for detailed cost and productivity analysis in 
many economic and production processes. With a simple 
bivariate mode, it may be impossible to obtain accurate 
estimates for the effects of the two variables involved. 
Consequently, it is often necessary to consider more 
complicated models. 

Economic   Theory. 

Production and Cost. Subsequent material is based upon standard 

economic theory as presented in Microeconomic Theory by Ferguson and 

Gould, Microeconomics. Theory and Applications by Mansfield, and the text to 

AMGT 559. life Cvcle Cost and Reliability, by Gill, specifically chapter 2, The 

Economics of Cost Analysis.  Microeconomics includes the theory of production 

and cost. The starting point is the theory of production. Cost curves are 

derived from the theory of production. 

Production theory deals with the relationship between inputs and 

outputs. Many different kinds of inputs may be required to produce a good or 

service.  For example, labor, raw material, capital equipment, and land may be 

required.  Inputs may be combined in various ways. To increase production, a 
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firm could hire more workers and buy more raw material while keeping the 

amount of capital equipment and land the same. A different approach to 

increasing production is to invest in capital equipment and buy more raw 

material, while mamtaining, or reducing, the size of the work force. 

Isoquant   Curves. Relationships between inputs and outputs are 

illustrated using isoquant curves.  An isoquant shows the various ways inputs 

can be combined in order to generate a specified level of output. In principle 

there are as many dimensions to an isoquant as there are inputs. However 

since two dimensions work best on paper, two variables are usually chosen for 

the purpose of illustration. 

A common approach is to choose one input that tends to be relatively 

fixed, such as land, and one that can be varied more easily, for example labor. 

Land, buildings, and capital equipment are inputs that tend to be fixed in the 

short run.  In contrast, the amount of labor utilized, raw material or energy 

consumed is more readily changed. 

The approach taken here is to label one axis as fixed and the other as 

variable.  One can think of "fixed" as referring to a particular input, or to a 

composite of several inputs.  Similarly "variable" can stand-in for any, or all, 

of the inputs whose use can be quickly increased or decreased. Given enough 

time, the long run, all inputs are variable.  Four isoquants are shown in 

Figure 3. 
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Isoquants 

100 200 300 400 500 600 
Variable 

Figure 3.  Isoquants 

The points on an isoquant curve correspond to one level of output. 

Output is frequently labeled as quantity, but should really be understood as 

rate because production takes place in a given interval of time.  The isoquants 

above are for the output of 100, 200, 300 and 400 units per time period. 

A production function relates the use of inputs to the production of 

outputs. The Cobb-Douglas production function was used to produce the 

isoquants shown in Figure 3. Equation 12 is the equation for the Cobb-Douglas 

production function. 
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(12)     R = AIiall2a2 

R is rate, the level of output per period of time. Ii and 12 are the amount 

of input 1 and input 2 that are utilized. In this case, R = 5 F-2 V-8, with values of 

R set to 100,200,300 and 400. 

Isoquants show technological possibilities. One input can be substituted 

for another while producing a constant level of output. Adding units of F or V, 

increases rate and results in a different isoquant. 

If we add more of input 1 while keeping input 2 constant, rate increases. 

If we keep adding input 1, rate continues to increase, but does so at a 

decreasing rate.  This is the empirically derived law of diminishing marginal 

returns.  In the extreme, rate may decline with too much of one input. 

However, this would be outside of the economic region of production that we 

are considering. 

Isocost   Curves. Up to this point there has been no discussion of cost. 

Cost is determined by the price and quantity of the inputs used. In the two 

input model, the cost of production is (IfxPf) + (IvxPv). A curve that has 

constant cost is referred to as an isocost curve.  It is a straight line.  In this 

case, it has a slope of Pv/Pf. Isocost curves that are closer to the origin have 

lower costs. 

In order to produce a given rate at the lowest possible cost, we select the 

isocost line that is tangent to the appropriate isoquant curve. The least cost 

combinations of inputs is obtained at the point of tangency of the two curves. 
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Figure 4 adds isocost curves that are tangent to the isoquants previously 

displayed. 

Rate and Cost 

0 100 200 300 400 500 600 
Variable 

Figure 4. Least Cost Combinations of Inputs 

Returns  to  Scale: Costs in the Long Run. What happens to 

average cost as we increase rate? Cost doubles with a doubling of inputs. If the 

exponents of the Cobb-Douglas production function sum to 1, as here, a 

doubling of inputs leads to a doubling of rate. Since cost and rate both double, 

average cost remains the same.  This is referred to as constant returns to scale. 
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If the sum of the exponents is larger than one, a doubling of inputs 

more than doubles rate. Average cost goes down. This is referred to as 

economies of scale. Technological factors are one major source of economies 

of scale. Producing at a higher rate may enable better plant layout.  Personnel 

and machines may mesh better at higher production rates (Ferguson, 

1975:208). Certain geometrical relationships such as the relationship between 

area and volume may lead to more efficient production (Mansfield, 1970:138). 

Capital equipment may be indivisible. For example, one cannot have half of an 

open hearth furnace (Mansfield, 1970:138). Demand for products may become 

more stable at higher production rates (Mansfield, 1970:138). A second major 

source of economies of scale is the specialization of labor (Ferguson, 1975:208) 

that is possible at higher production rates. The specialization of labor due to 

increasing rate was first recognized by Adam Smith in The Wealth of Nations 

published in 1776. 

If the sum of the exponents is less than one, we have diseconomies of 

scale. A doubling of inputs, and cost, will lead to less than a doubling of rate. 

Average cost increases.  Diseconomies of scale have been attributed to the 

difficulty of coordinating large scale enterprises (Mansfield, 1970:138), or 

limitations in efficient management (Ferguson, 1975:208).  If communication 

and decision making costs grow exponentially with personnel, diseconomies of 

scale could result. The coordination of competing product lines and possible 

cannibalization of sales is an issue faced by some large companies that is not 
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an issue for small companies.  For example, International Business Machines 

has lost mainframe sales due to the sales of its own personal computers. 

In the long run costs initially decline due to economies of scale. This is 

followed by a region of constant returns to scale. As a firm becomes larger 

and produces at a higher production rate, diseconomies of scale set in. This 

pattern produces a U-shaped long run average cost curve (Ferguson, 1975:198- 

202, Mansfield, 1970:172-175, Gill, 1994:26-29). 

Standard texts on economics present references to U-shaped long run 

cost curves in chapters on the cost curve of the firm, competition, 

monopolistic competition, and oligopoly. The chapter on monopoly will 

usually mention several kinds of monopoly.  One is the "natural monopoly." 

This occurs if the long-run cost curve either does not turn up, or does not turn 

up at a production rate relevant to the industry. The long run cost curve 

declines and then levels off in the relevant range (Ferguson, 1975:262, 

Mansfield, 1970:177). 

Costs in the Short Run. The discussion so far assumes that all inputs 

can be varied. This is the case in the long run.  However, in the short run 

some inputs are fixed.  Holding these constant often denies the flexibility 

needed to choose the least cost combination of inputs. These relationships are 

shown in Figure 5. 
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Fixed Inputs 

0 100 200 300 400 500 600 
Variable 

Figure 5.  Production in the Short Run 

Figure 5 depicts a situation where the fixed-type inputs are set at 50. 

Isocost lines have been added for R=200, 300 and 400 given the new constraint, 

F=50. At each rate, the isocost line has moved to the right compared to Figure 4, 

which means that cost is higher for each rate.  Cost is higher for each 

production rate shown. 200 units of output could be produced at a lower cost, if 

less than 50 units of the fixed input could be utilized. If more than 50 units of 

the fixed input could be used, production at rates of 300 or 400 could proceed at 

lower cost. The greatest cost penalty occurs at production rates of 100 and 400. 
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Average cost depends on factor proportions. Optimal proportions are 

indicated by the point of tangency of isocost and isoquant curves. Given these 

proportions, average cost is at its minimum. Any deviation from optimal 

proportions, leads to higher average cost. 

In the short run, there is initially too much fixed input given the low 

production rate. As the rate increases, average cost declines because we are 

making better use of our fixed input. At some point average cost achieves a 

minimum because the optimal mix of fixed and variable inputs is achieved. As 

production continues to increase, average cost increases because there is too 

much of the variable input and not enough of the fixed input.  The short run 

average cost curve is U-shaped (Ferguson,1975:190-198, Mansfield, 1970:172- 

175, GUI, 1995:26-29). 

There is a short run cost curve associated with fixed input equal to 50. If 

we specify a different level of fixed input, for example 75, we obtain a 

different short run cost curve.  There are many short run cost curves but only 

one long run curve. 

These same relationships can be developed by reference to average 

fixed and average variable cost curves. The average fixed cost curve declines 

with rate because the fixed cost is divided by an ever greater production rate. 

The average variable cost curve increases with rate due to the diminishing 

marginal return of the variable inputs.  The average total cost curve is the 

sum of average fixed and average variable curves.  Initially the reduction of 
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average fixed cost dominates, and the average total cost curve declines. At 

higher production rates, the increase in average variable cost dominates and 

the average total cost curve increases. 

In the long run all inputs can be varied.  In the short run some inputs 

can be varied. Because of the added flexibility, the long run cost curve is 

always lower than, or tangent to, any of the short run cost curves.  The long 

run cost curve and two short run cost curves are shown below in Figure 6. The 

vertical axis is average cost. Sometimes it is referred to as average total cost 

because it equals the sum of average fixed cost and average variable cost. The 

horizontal axis is production rate. 

Long and Short Run Cost Curves 

A 
C 

Short Run 
Curve 

Long Run Curve 

Rate 

Figure 6.  Long and Short Run Cost Curves 
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In a two input model, there are short and long run cost curves. A model 

that has many inputs may have medium runs, depending on the speed at 

which each input may be varied. However in short and medium runs, average 

cost curves are U-shaped. The long run cost curve is U-shaped, except in the 

case of a natural monopoly. In terms of estimation, one way to fit a U-shaped 

curve is through the use of a quadratic equation relating average cost, Y, to 

rate, R. This is shown below: 

(13)    Y = a + bR + cR2 

The economic discussion to this point assumes a given set of input 

prices.  If input prices change, the analysis must be modified somewhat.  For 

example, if overtime pay is authorized at higher production rates, average cost 

will increase.  The discussion to this point also assumes a given level of 

technology. 

Technology. Mansfield (1970:10) states: "The important thing about 

technology is that it sets limits on the amount and types of goods that can be 

derived from a given amount of resources." He further states (Mansfield, 

1970:118): 

For any commodity, the production function (italics in the 
original) is the relationship between the quantities of various 
inputs used per period of time and the maximum quantity of 
the commodity that can be produced per period of time. More 
specifically, the production function is a table, a graph, or an 
equation showing the maximum output rate that can be 
achieved from any specified set of usage rate of inputs. The 
production function summarizes the characteristics of 
existing technology at a given point in time; it shows the 
technological constraints that the firm must reckon with. 
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Ferguson (1975:124) states: 

The theory of production consists of an analysis of how the 
businessman—given the "state of the art" or 
technology—combines various inputs to produce a stipulated 
output in an economically efficient manner. 

Technological advance changes isoquant curves and, by implication, 

cost curves. Isoquant curves change because more output can be obtained 

with a given amount of input. More output can be obtained at a given cost and 

average cost falls. 

Technological change is an important concept which links standard 

economic theory and the learning curve phenomenon.  DoD experience in the 

production of weapon systems indicates that cost reducing technological 

advance is correlated with increasing cumulative production.  This is another 

way of stating that weapon systems undergo learning. 
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Efforts   to   Integrate   Learning   and   Economic   Theory 

Introduction.  Efforts to integrate learning and economic theory are 

more recent. Three approaches will be discussed briefly below.  One 

distinguishes between fixed and variable costs, and estimates each separately. 

Another uses a production function that is modified to address learning. Yet 

another approach augments the learning curve equation with a rate variable. 

Estimating   Fixed and Variable Costs. The first approach can be 

found in the work of Smith (1981) and Balut (1981, Balut, Gulledge and Womer, 

1989, Nelson, Balut, 1996). The driving factor in determining the production 

rate effect is assumed to be the reduction of average fixed cost. This is 

manifested in a reduction in contractor overhead rates.  In Balut's approach 

(Balut, 1989, 1996), contractor direct costs are mapped to the economists' 

category of variable cost.  Contractor overhead, or indirect, costs are separated 

and mapped to variable cost and to fixed cost. Fixed cost provides the basis for 

the production rate effect.  As the contractor's business base grows, the 

overhead rate declines. Variable cost, both direct and indirect, is estimated 

using learning curve theory.  Overhead rate factors are applied to variable 

cost in order to allocate fixed cost. Since this approach is based exclusively on 

the reduction of average fixed cost resulting from an increase in rate, it does 

not generate a U-shaped cost curve. 
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Using   Production   Functions. A second approach emphasizes micro- 

economic theory. A good discussion of major studies can be found in Giuliano 

(1995). Early studies include those by Alchian (1963:679-693) and Rosen 

(1972:366-382). More recent effort includes several contributions by Womer 

and Gulledge including The Economics of Made-to-Order Production (Gulledge 

and Womer, 1986). The studies of Womer and Gulledge, individually and in 

collaboration, use a production function, similar to the Cobb-Douglas function 

shown in Equation 12 which relates inputs to output. The production function 

is augmented by a learning hypothesis. Labor productivity depends upon 

learning which is functionally related to cumulative quantity.  This is a 

theoretically robust approach which integrates learning curve theory with 

production/cost theory at a very low level.  It is a general approach that does 

not restrict the rate effect to a negative slope. The approach has the potential 

of providing new insights and demonstrating new findings for both economic 

theory and learning curve theory. 

Adding a Rate Term.  Another major approach involves the direct 

estimation of cost using cumulative production and rate. Rate can be expressed 

as quantity per month, quantity per year, or as a ratio to some standard, or 

economic rate. Preston and Keachie (1964:100-106) estimated both labor hours 

and cost with a variety of estimating equations that showed cumulative 

production and rate to be statistically significant. 
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More recent practice has used a learning curve equation augmented by 

a rate term: 

(14) Y=AX*>RC 

Smith (1976) used this equation to predict labor hours. More recently, 

equation 14 has been applied to recurring production cost (Bemis, 1981). 

Bemis popularized this approach which is sometimes referred to as the Bemis 

model. It can also be described as a rate augmented learning curve. Equation 

14 will be applied to recurring production cost in this thesis. 

Taking the logarithm of both sides of equation 14 produces the 

following equation: 

(15) lnY = InA + blnX + clnR 

Expressing LnY as y, LnA as a, LnX as x, and LnR as r results in an 

equation that can be estimated using multiple regression: y = a + bx + cr. As 

with the learning curve, iteration is required to generate an internally 

consistent model in which the estimated value of b equals the value of b used to 

generate lot midpoints. 

Interpretation is similar to that of the learning curve.   "A" is the 

theoretical cost when cumulative quantity is 1, and rate is 1. It could be 

referred to as T1R1, analogous to Tl in learning curve theory. As in the case of 

the learning curve, "A" is a theoretical value based upon extrapolating from 

the data set.  b has the same interpretation as in learning curve theory,  c has 

an interpretation very similar to b: 
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(16)    c = ln(rate slope)/ln(2) 

Like b, the expectation is that c will be a small negative number. 

Regardless of sign, c cannot generate a U-shaped cost-rate curve.  Equation 14 

results in a three dimensional cost, cumulative quantity, rate surface. A 

hypothetical example with A equal to 50,000, a learning slope of 96% and a rate 

slope of 94% is depicted below: 

Cost, Quantity, Rate Surface 
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Figure 7. Cost, Quantity, Rate Surface 
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An advantage of this approach is that annual and cumulative quantity, 

and average lot cost are data that are readily available. Average lot cost and 

cumulative quantity are the basic inputs for deriving a learning curve. 

Annual quantity can be used as a proxy for rate. One can also divide annual 

quantity by 12 to express rate as a monthly value. 

Determining   Rate.  Although annual quantity is often a reasonable 

proxy for rate, analysts may encouraged to examine monthly production and 

delivery schedules if that data is available. Doing so may lead to new insights 

and a different value for the rate variable. Annual contracts may not 

correspond to 12 months of effort.  Early Apache helicopter contracts required 

about 30 months of effort. There was considerable overlap between contracts 

and the contractor often worked on three successive annual buys at once. 

There may also be breaks between contracts. At a minimum, one should not be 

surprised by a Holiday break at the end of the year. 

However, it should be noted that overlaps or breaks between contracts 

are complicating factors for learning theory too.  Overlaps between contracts 

would seem to deny latter contracts the full learning benefit of prior 

contracts.  Breaks would suggest the possibility of lost learning, or forgetting. 

Multicollinearity. Another problem stems from the fact that 

cumulative quantity and rate are often correlated. The author has observed 

that weapon system production often follows a general pattern. This same 

pattern was described by the instructor for the ACEIT model (Cost 674, Seminar 
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in Cost Analysis). The pattern is for production to have three phases. They 

are, in chronological order:  1) production rate increases, 2) production rate 

levels off, and 3) production rate declines. Production rate increases as 

numerous production issues are resolved. Production continues at the planned 

economical rate.  Production rate declines and enables an orderly transition to 

other work. Production ramps up, levels off, and then declines. This contrasts 

with cumulative quantity which always increases.  This is illustrated in 

Figure 8. 

Figure 8. Rate and Cumulative Quantity 

If the data is in the first phase, rate and cumulative quantity will be 

highly correlated.  When X and R are highly correlated, the regressors x and r 

are highly correlated also.  In regression analysis this situation is called 

multicollinearity. 
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Multicollinearity is a problem in regression analysis (Neter et al, 

1990:285-295, 385-388). When independent variables move together, the 

multiple regression algorithm has difficulty sorting out their individual 

contributions.  This may result in unreliable estimates for the regression 

coefficients. 

The fact that some or all predictor variables are correlated 
among themselves does not, in general, inhibit our ability to 
obtain a good fit nor does it tend to affect inferences about 
mean responses or predictions of new observations, provided 
these inferences are made within the region of observations. 
(Neter et al, 1990:289) 

Another sign and consequence of multicollinearity is that adding or 

deleting variables changes the regression coefficients of the remaining 

variables (Neter, 1990:385). Estimated regression coefficients may have an 

algebraic sign that is opposite of that expected from theoretical considerations 

of prior experience (Neter, 1996:385).  Multicollinearity also increases the 

estimated standard deviations of the regression coefficients (Neter, 1990:385). 

This reduces the t values of the regression coefficients.  This may cause some 

important variables to appear statistically insignificant (Neter, 1990:385). 

Extensions. The Bemis equation, Y = A X& Rc, is an extension of the 

learning curve equation, Y = A Xb. These equations can be extended further. 

For example, Moses (1996), building on the work of Greer and Liao (1987), 

examines several equations including: Y = A Xb Rc CRd IRf. CR is company- 

wide activity rate and IR is industry capacity utilization rate.  In Chapter III, 
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extensions to the unit formulation and Bemis models are proposed. These 

extensions use an indicator variable to capture the effect of a change in 

regime. 

A Change   in   Regime. 

Introduction. A weapon system may undergo a change in its 

production environment.  In this thesis, this is referred to as a change in 

regime.  The regime may change because of a change in acquisition strategy, 

manufacturing method, or a change in the configuration of the weapon 

system.  Examples of changing acquisition strategy are the use of multiyear 

procurement, dual source procurement, and component breakout.  Multiyear 

production and competition will be discussed in detail below. Increased use of 

automation is an example of a change in manufacturing method. There are 

many ways that the configuration of a weapon system may change. A series of 

changes is often captured with new model designators, "A" model, "B" model, 

etc. 

In order to evaluate the impact of a change in regime, the analyst must 

separate the impact of learning and regime.  If a learning and rate model is 

used, the estimator must evaluate the separate impacts of learning, production 

rate, and regime. 
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Adding   Categorical   Variables. A general method for estimating the 

impact of regime will be proposed and discussed thoroughly in Chapter HI.  It 

is based upon the use of categorical variables.  Although categorical variables 

are a standard tool in regression analysis (Neter, 1990:455-496), the author has 

been unable to find any discussion in the literature that explores or 

emphasizes the use of categorical variables in a learning, or learning and 

rate, context. 

An objective of this thesis is to emphasize and develop the use of 

categorical variables to address the impact of a change in regime in a 

learning, or a learning and rate, context.  Specific equations for evaluating a 

shift, or a shift and rotation(s) of the learning curve or the cost-quantity-rate 

surface will be proposed in Chapter III and applied in Chapter IV. 

Multiyear   Procurement.  Multiyear procurement, or multiyear 

contracting, is a method of contracting by which several annual 

requirements, up to 5, are obtained with a single contract.  Congress funds a 

multiyear program on an annual basis.  However, in the event of program 

cancellation, the contractor can recoup expenses made for future year 

requirements (Domin, 1984:1-1).  Multiyear procurement increases program 

stability and extends the contractor's and subcontractors' planning horizons. 

Multiyear procurement allows the contractor to make commitments that might 

otherwise be imprudent.  Cost savings from multiyear procurement have been 

attributed to:  1) reduced prices for parts and material, 2) avoidance of price 

46 



escalation, 3) improved efficiency by the prime contractor (Domin, 1984: ii, 2- 

3 to 2-4). 

Cost savings from multiyear procurement have been estimated at 7.9% 

for the Black Hawk helicopter, and 8.9% for the F-16 compared to the use of 

annual contracts (Domin, 1984:2-1). GAO estimated the average savings from 

multiyear procurement for 12 major systems at 9.7% (GAO, 1982:10). 

A typical scenario involves the introduction of a multiyear 

procurement after several successive single year buys.  The actual multiyear 

cost can be compared to an estimate of what the cost would have been if single 

year contracts had been used instead. Single year estimates are based upon a 

projection of the learning curve.  This is depicted in Figure 9. 

Log Single year buys 
or 

Cost "^"""•HL   /    1 Forecast average 
■"-s,-    of single year 

^•s^   buys 

i 

Estimated Savings E^S^ 
Estimated 
learning 

Multiyear Buy curve 

Log of Quantity 

Figure 9.   Single Year and Multiyear Procurement 
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From a learning, or learning and rate, perspective, cost savings can be 

described as a change in "A", the theoretical first unit cost. A method for 

evaluating a change in A is proposed in Chapter III. 

Competition. The availability of two producers for a major weapon 

system, for example a helicopter or missile, or a major component, such as an 

engine, is usually described as competition.  Dual source production contrasts 

with the common situation where only one producer exists. Competition may 

be present at the start of production, or a second source may be introduced 

after several sole source buys have taken place. 

Cost savings attributable to competition are often considerable but have 

varied greatly from procurement to procurement (Washington, 1996:1-2). 

Flynn and Herrin (1990) examined Navy experience in the 1980's for 12 

programs.  Average net savings attributable to competition were 14.2% of the 

estimated cost of sole source production. Savings ranged from .8% to 27.9%. 

Cost savings attributable to competing a weapon system must be 

estimated. The general approach is similar to that described for estimating 

multiyear procurement savings.  A second source is often introduced after 

several sole source buys have taken place. The sole source buys are used to 

develop a sole source learning curve. This is used to estimate cost given 

continued sole source procurement. This estimate is compared to the actual 

cost from dual source production.  After several competitive contracts have 

been let, learning curves can be estimated for the competitive regime.  One 
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can then compare sole source and competitive learning curves. 

Cox and Gansler (1981) explored the impact of competition adjusting for 

learning and production rate. They described the relation between cost and 

rate as U-shaped in both the short and long run (Cox and Gansler, 1981:32-35). 

Based on prior studies, they expected that the introduction of competition 

would lead to immediate cost savings, and a steeper learning curve: a shift and 

rotation of the learning curve.  This is consistent with the view that 

permanent competitive pressure leads to greater learning and progressively 

greater percentage cost savings.  A shift and rotation of the learning curve is 

illustrated in Figure 10. 

Introducing Competition 
Shift and Rotation of the Learning Curve 

Sole Source 

Ln(Cost) 

Projected 
Sole Source 

Competition 

Ln(Cumulative Quantity) 

Figure 10. Sole and Dual Source Production 
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Cox and Gansler examined five tactical missile systems, eight military 

electronics programs, and one guided missile frigate.  In each program, a 

second source was introduced after several years of sole source production. 

The actual dual source experience was compared to what would be expected 

given continuance of the sole source regime. 

In the case of the frigate, the slope was 4% steeper under competition. 

However the first buy from the second source was more expensive than from 

the original source who had more experience.  The learning curve of the 

second source was steep but involved an upward shift. 

In the case of the missile systems, the learning curve slope of the 

second source was, on average, 5% steeper than that of the first source. The 

second source experienced some upward shift of the curve.  Electronic systems 

experienced an immediate reduction in cost, a downward shift of the learning 

curve. There was inadequate data to estimate a dual source learning slope. 

Although results varied, they were able to conclude (Cox and Gansler, 

1981:42): 
For less costly and complex systems, a second source can be 

competitive from the outset; as cost and complexity increase, 
more time is required for a second source to be competitive. 
Furthermore, in all cases where there was sufficient data to 
permit analysis, the slope of the collective cost improvement 
curve of the second source was steeper than that of the 
original producer. 
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The authors examined competitive savings and the duration of the sole 

source regime. They observed that the later the introduction of competition, 

the greater the downward shift and rotation of the learning curve.  They 

viewed this as "making up" for potential but unrealized cost savings.  The 

authors generated an optimal learning curve based on competition starting 

with the first buy (Cox and Gansler, 1981:42-45). It has the original first unit 

cost but a steeper learning slope than experienced in sole source production. 
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III.   Methodology 

Adding   Learning   Curves 

A prime contractor may have a separate learning curve for each labor 

category.  A learning curve may be applied to each subcontractor.  Further, 

learning curves, or quantity discounts, may be computed for purchased parts 

and raw material. To these costs, various overhead rates are applied. Given 

this aggregation of cost, one might question the merit of a single, simple 

composite weapon system learning curve. 

What happens when several learning curves are added together? Does 

it result in a composite learning curve that could be fit directly? It has been 

pointed out (Conway and Schultz, 1959:41) that summing several learning 

curves results in a composite learning curve that is not linear in the 

logarithms. Asher (1956:70) states: 

If an analysis of actual data reveals that departmental 
progress curves do, in fact, have significantly different 
slopes from each other, then the unit curve (the sum of the 
departmental curves) cannot be linear. 

This reasoning applies to an even greater degree in aggregating curves 

from the steepest, assembly labor, to the flattest, raw materials to come up with 

a recurring production cost learning curve.  One might conclude that it is 

inappropriate to fit a composite learning curve that is linear in the 

logarithms.  This leads to the following research question: 
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Question 1: Is it valid to fit a linear composite learning curve 
given that component learning curves are linear 
and of varying slopes? 

A hypothetical case is examined in Chapter IV to address this important 

question. 

Quantity and Rate 

Research question 2 is reproduced below: 

Question 2:    Can the addition of a production rate variable 
improve the learning curve equation? 

The theoretical basis for considering production rate was discussed in 

Chapter II.  The effort to integrate rate effects with learning was also 

discussed. One approach recommended was to use equation (14) Y= A X*5 Rc. 

This equation will be used further in Chapter IV to analyze the cost history of 

three weapon systems. 

Using   Categorical   Variables 

Introduction. The use of categorical variables is an extension of the 

basic learning and rate augmented learning models.  Categorical variables, 

also known as indicator, or dummy variables, are a standard tool in multiple 

regression analysis (Neter, 1990:455-496). A categorical variable assumes a 

value of zero or one to distinguish between categories.  In this thesis, 

categories are called regimes.  The categorical variable will have a value of 

zero in regimeo, and a value of one in regimei. 
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Adding a categorical variable for regime to the basic learning curve 

model leads to either a shift, or a shift and rotation, of the learning curve. 

Adding a categorical variable for regime to the rate augmented learning curve 

model leads to either a shift of the cost-quantity-rate surface, or a shift with 

one, or two rotations to the cost-quantity-rate surface depicted in Figure 7. 

Learning and Regime. Consider a program that has been produced for 

many years in a sole source regime. A second source is introduced and 

competitive, dual source production continues for many years. There are two 

regimes, sole source and competitive. The categorical variable can be given a 

value of zero for the sole source procurements, and a value of one for the 

competitive procurements. 

One way to specify the learning curve to account for a change in 

regime is proposed below: 

(17) y = AecZx(b+dZ) 

Z is the categorical variable which assumes a value of zero or one.  "e" is 

the base of the natural logarithms. When Z has a value of zero, equation 17 

reduces to the standard learning curve equation. When Z has a value of one, 

we obtain a revised first unit cost, Aec, and a revised learning coefficient, b+d. 

Taking the logarithm of both sides results in: 

(18) ln(Y) = ln(A) + cZ + (b+dZ)ln(X) 

Expressing ln(Y) as y, ln(X) as x, and ln(A) as "a" results in the 

following equation: y = a + cZ + (b+dZ)x, or , y = a + cZ + bx + dZx. Expressing Zx 
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as the variable Q, results in the equation y = a + cZ + bx + dQ. This can be 

estimated using multiple regression and results in the estimated coefficients a, 

b, c, and d. Raising e to the "a" power yields the theoretical first unit cost for 

regimeo: ea = A. For regime i, the theoretical first unit cost is equal to ea+c. 

For regimeo, b is interpreted in the normal way. The corresponding value for 

regime i is equal to (b+d). 

This procedure results in a shift and rotation of the learning curve. In 

other words, it results in separate learning curves for regimeo and regime i. 

The identical curves could be fit by simply breaking the data into two data sets 

and fitting each separately.  Some change in learning curve intercepts and 

slopes is anticipated due to random variation in the data but these measured 

change may or may not be statistically significant.  An advantage of the 

proposed method is that it provides additional diagnostic information. Tests for 

the c and d coefficients will indicate if the change in intercept and slope are 

statistically significant. 

There are occasions where one expects the intercept to vary but the 

slope to remain the same for the two regimes, a shift of the learning curve. 

An example discussed in chapter 2 is the use of multiyear contracts after 

several years of single year contracts. Equation 19 can be used to evaluate a 

shift of the learning curve. 

(19)    Y = AecZXb 
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When transformed, we obtain: 

(20) ln(Y) = ln(A) + cZ + bln(X) 

In regimeo, single year procurement, this reduces to the standard 

learning curve.   In regime 1, multiyear procurement, a revised first unit cost 

is calculated, AecZ.  If multiyear procurement results in savings as expected, 

the estimated coefficient c will be a negative number.  Multiyear savings, 

accounting for learning and expressed as a percentage, will be: 

(21) Multiyear Savings Percent = 100*(AecZ/A) 

It is possible to hold the theoretical first unit cost fixed while allowing 

the learning slope to vary by regime: 

(22) Y = A#+dZ) 

Taking the logarithm of both sides: 

(21) ln(Y) = ln(A) + (b+dZ)ln(X) 

Although equation 21 can be readily estimated, this method is 

discouraged.   Generally when the learning slope changes, the intercept is 

expected to change as well. 

Learning, Rate and Regime. A categorical variable for regime can be 

added to equation 14, the standard rate augmented learning equation. If the 

expectation is that only the intercept will vary by regime, a shift of the cost- 

quantity-rate surface, the following equation can be used: 

(22) Y = AecZXbRf 
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The transformed equation is: 

(23) ln(Y) = ln(A) + cZ + bln(X) +fln(R) 

These equations might be appropriate in examining the impact of 

multiyear procurement in a rate augmented learning framework. 

If we believe that the intercept and learning slope should both change, 

a shift with one rotation of the cost-quantity-rate surface, the following 

equations can be used: 

(24) Y = AecZ#+dz)Rf 

(25) ln(Y) = ln(A) + cZ + (b+dZ)ln(X) +fLn(R) 

This could be used to examine the impact of competition, or a change in 

technology. 

A change in regime could affect the sensitivity of cost to rate in addition 

to learning. This would correspond to a shift with two rotations of the cost- 

quantity-rate surface.  A change in regime from a labor intensive to a capital 

intensive operation would have several implications.   Organizational learning 

would continue but the opportunity for labor learning would be less. 

Therefore one would expect the learning slope to be less steep.  Increased 

automation may lead to an increase in fixed cost. One reason for the rate effect 

is the reduction of average fixed cost as rate increases.  Therefore an increase 

in fixed cost should increase the rate effect. To summarize, one might 

anticipate that the effect of introducing capital intensive procedures would be 

to reduce the sensitivity of cost to learning, and increase the sensitivity of cost 
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to rate. The impact to the intercept, T1R1 is uncertain, and one might want to 

allow it to vary also. The relevant equations are: 

(26) Y = A ecZX(b+dz) R(f+gZ) 

(27) ln(Y) = ln(A) + cZ + (b+dZ)ln(X) + (f+gZ)ln(R) 

Other combinations are possible, for example one could allow the 

intercept and rate slope to vary by regime while keeping the learning slope 

constant. It is recommended that the analyst first consider the implications of 

a particular change in regime and then specify an equation, rather than to 

specify and fit all equations. 

Research questions 3 and 4 are reproduced below: 

Question 3:    Can the addition of a categorical variable improve 
learning or, learning and rate, equations? 

Question 4:    Can a categorical variable provide useful diagnostic 
information? 

The discussion to this point suggests an affirmative answer to questions 

3 and 4. The cost history of three weapon systems will be analyzed in chapter 4 

to further address questions 3 and 4. 
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Another Approach to Quantity and Rate 

Research question 5 is reproduced below: 

Question 5:    Should new equations of learning and rate be 
explored? 

The rate augmented learning curve equation has been specified as 

Y = AXb Rc. This is the standard learning curve equation with an added rate 

term. It reflects the learning curve tradition modified by the addition of a rate 

variable. 

What might happen if an economist, steeped in the economic tradition 

which emphasizes U-shaped cost curves, were to decide to modify standard 

economic theory to incorporate a rate term? The author suggests that the 

following specification might ensue: 

(27)    Y = A + bR + cR2 + dLnX 

This is a quadratic, U-shaped, relationship between cost and rate with 

the addition of a learning term.  Using this equation, the U-shaped curve 

would fall with increasing values of X, cumulative quantity.  Costs would 

decrease at a decreasing rate with cumulative experience. An example is 

shown in Figure 11. 
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Figure 11. Alternative Cost, Quantity, Rate Surface 

The advantage of this model is that the relationship between cost and 

rate corresponds to standard economic theory. Costs initially decline, reach a 

minimum, and then increase. The reasons and terminology differ based upon 

whether we are examining the short run, where some factors of production 

are fixed, or the long run, where all factors are variable.  The short run 

discussion addresses reductions is average fixed cost, and increases in average 

variable cost.  Short run costs pertain to whether we have too much, the right 

amount, or too little fixed inputs for a specified rate of production. Long run 

60 



discussions are in terms of economies of scale, constant returns to scale, and 

diseconomies of scale. 

Cost declines over time due to cost reducing technological change, labor 

learning and organizational learning.  This cost reduction is a function of the 

cumulative number of items produced. 

The relationship between cost and cumulative quantity changes 

somewhat compared to standard learning curve theory. A doubling of 

quantity leads to a fixed reduction of cost, instead of the usual fixed percentage 

reduction of cost. This may seem strange to analysts immersed in the learning 

curve tradition. However the equation Y = A + bR + cR2 + dLnX should not be 

compared to the learning curve equation Y = A X*3, but to the rate augmented 

learning curve equation, Y = A Xb Rc. We have somewhat less experience in 

the simultaneous fitting of learning and rate, than in fitting a simple learning 

curve.  The correct specification of the general equation (3) Y = f(cumulative 

quantity, production rate) is not certain. 

The discussion in this section is highly preliminary.  Equation (27) 

Y = A + bR + cR2 + dLnX will be applied to three weapon systems in Chapter 

IV. The merits of this equation is, in part, an empirical question. Given that 

the equation is reasonable and logical, does it work? 
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IV.  Data Description and Analysis 

Adding   Learning   Curves 

Research question 1 is reproduced below: 

Question 1: Is it valid to fit a linear composite learning curve 
given that component learning curves are linear 
and of varying slopes? 

A hypothetical case will be examined to help to answer this question. 

Assume three cost categories, labor, subcontract items, and material. Each has 

its own learning curve.  The learning curve for labor is based on a first unit 

cost of 50 and a 75% learning curve slope.  The learning curve for subcontract 

items has a first unit cost of 35 and an 85% learning slope. The first unit cost 

for materials is 15 and it is on a 95% learning slope. Based upon these three 

inputs, costs were computed for unit 1, unit 10, and every tenth unit thereafter 

until unit 1,000. These were then summed to obtain the total cost for every 

tenth item. Four cost curves, labor, subcontract items, raw materials, and a 

total, or composite, cost curve are shown in Figure 12. 
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Figure 12. Total and Component Curves 

Although labor initially has a higher cost than subcontract items or 

raw material, it ultimately has the lowest cost because of its steep learning 

curve. The opposite holds for raw material. Because the costs that are on a 

flatter learning curve become a larger proportion of total cost, one might 

expect the composite learning curve to become flatter and bowed. 

The composite curve is only slightly bowed in Figure 12. It may seem 

surprising that the variation in component curves does not produce a greater 

curvature of the composite curve.  The explanation is found in the 

compression of the Y axis due to the logarithmic scale. 

63 



Regression analysis was used to fit a learning curve to the total cost 

curve. The composite curve has an 85.7% learning slope. The analysis of 

variance table for the regression is shown in Table 3. 

Table 3. ANOVA Table, Composite Curve 

Dependent variable is:       LCost 
No Selector 
R squared = 99.2%      R squared (adjusted) = 99.2% 
s = 0.0213 with  101 - 2 = 99 degrees of freedom 

Source Sum of Squares      df      Mean Square      F-ratio 
Regression       5.95596 1 5.95596 13094 
Residual 0.045031 99 0.000455 

Variable      Coefficient      s.e. of Coeff      t-ratio        prob 
Constant 4.44904 0.0116 382 < 0.0001 
LQty -0.222598 0.0019 -114 < 0.0001 

The fitted relationship is very strong.  The cumulative quantity variable 

is statistically significant at the 99.99% level.  The coefficient of 

determination, R2, indicates that the regression equation explains more than 

99% of the variation of ln(cost). The fitted regression line is very close to the 

composite line. 

Large residuals, differences between actual and predicted cost, could 

indicate that it is inappropriate to fit a linear composite curve.  Residual values 

were computed in dollars, rather than the logarithm of dollars. These were 

divided by actual cost and multiplied by 100 to obtain the error expressed as a 

percentage. Using the absolute value of all errors, the mean absolute error is 

1.38%.  There was considerable error in predicting the theoretical first unit 
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cost:  14%. However Tl values tend to be volatile in learning curve analysis 

due to the high initial steepness of the learning curve.  All other estimates 

were much closer to actual values. Excluding unit 1, the maximum error is 

2.47%. 

In reality, the analyst does not start with equations and smooth curves. 

Rather, data exists for each production lot. There would be some random 

variation for each element of cost: labor, subcontract items, raw materials, 

and overhead. Due to these variations, neither the component curves nor the 

composite curve will fit the actual data exactly.  Statistical measures such as R^, 

the F-statistic, and the b coefficient P-value, are normally far less than shown 

in Figure 12. 

The predicted bowing of the composite curve does not appear to be a 

sufficient reason for rejecting the common practice of developing composite 

curves. The answer to research question 1 appears to be that, it is valid to fit 

composite learning curves. 
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Analysis  of Weapon System Cost History 

The cost history of three weapon systems will be analyzed to address 

research questions two, three and four, reproduced below: 

Question 2:    Can the addition of a production rate variable 
improve the learning curve equation? 

Question 3:    Can the addition of a categorical variable improve 
learning or, learning and rate, equations? 

Question 4:    Can a categorical variable provide useful diagnostic 
information? 

Efforts to obtain data on additional weapon systems were not fruitful. 

Consequently the author was required to use recurring production cost data 

previously obtained through work. 

Multiple   Launch   Rocket   System   (MLRS). The MLRS Project 

Management Office provided cost and schedule data on eleven contracts. The 

data included monthly deliveries, useful in determining a rate variable.  The 

time-span of deliveries ranged from 5 to 14 months. The rate variable was 

determined by dividing contract quantity by months of deliveries.  There were 

some months when deliveries were made for more than one contract.  In some 

months no deliveries were made. One large contract completely overlapped a 

very small contract.  These were combined for purposes of rate and learning. 

The value of the categorical variable was determined based upon the 

characteristics of the larger contract.  This reduced the number of data points 

to 10. 
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Fitting a learning curve, Y = A X^, to the data provides good results. The 

F-ratio for the estimated equation is 92.4 which is highly significant.  The 

coefficient of determination, R2, adjusted for degrees of freedom is 91.0%. This 

indicates that 91% of the variation about the mean of ln(Y) is explained by the 

regression equation. The standard error of the estimate, SEE, is .1338. 

Coefficients are of the expected sign; A is positive and b is negative. The 

value of b implies a learning slope with a reasonable magnitude. The P-value 

for b is less than .0001, which indicates that b is highly significant. 

Adding a rate term results in the equation Y= A X^ R^ and improves the 

fitted relationship. The F-test increases to 136. R2 adj. increases to 96.8%. The 

SEE drops to .0804. 

The logarithm of quantity and the logarithm of rate are highly 

correlated. The correlation coefficient, r, for these two variables is .946. This 

suggests that there may be problems due to multicollinearity.  The regression 

algorithm may have difficulty ascertaining the separate effect of rate and 

learning.  Also, p-values for coefficients may understate their true statistical 

significance. 

All coefficients are of the expected sign and of a reasonable magnitude. 

The learning slope becomes less steep with the addition of rate. Some of the 

reduction of cost is now ascribed to rate. The coefficient f is highly 

significant, P-value = .0062. However the P-value for b falls to .1704. The rate 

augmented learning curve appears highly suitable for estimating. 
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Table 4. MLRS: Comparing Models 

Equation Goodness of Fit 
F-Ratio       R2adj. SEE 

1. Y = AXb 92.4 91.0% .1338 
2. Y=AXbRf 136.0 96.8% .0804 

Early contracts were single year contracts, while later contracts were 

multiyear contracts.  Given our prior theoretical discussion, it makes sense to 

consider a downward shift of the cost, quantity, rate surface due to expected 

savings from multiyear procurement. The estimating equation is specified as 

Y = A ec^ Xb Rf. Z is given a value of zero for single year contracts and a value 

of 1 for multiyear contracts. 

When we fit this equation, the F-ratio falls to 88.5, although it is still 

highly significant.   R2 adj. is reduced marginally to 96.7%. The SEE is slightly 

better with a value of .0814. All coefficients are of the expected sign. However 

the learning slope becomes very flat.  Savings attributable to the use of 

multiyear procurement, adjusted for learning and rate, are estimated at 10.3% 

which is very plausible.  The coefficients b and c are not statistically 

significant.   Although the apparent savings on multiyear procurement is 

encouraging, this specification may be no better that the one previously 

discussed. 

As a result of further inspection of the data, it was discovered that all 

single year contracts were also low rate initial production (LRIP) contracts. 

LRIP is designed to further resolve design and producibility issues. As 
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discussed previously, greater preparation for production should reduce the 

theoretical first unit cost and flatten the learning curve slope.  One might 

expect regular production contracts to have a lower estimated first unit cost 

and a flatter learning slope compared to LRIP contracts, a shift and rotation of 

the learning curve. The magnitude of the shift should increase due to the 

simultaneous change to multiyear production. This suggests use of the 

equation Y = A ecZx(b+dz) Rf. 

When this is estimated the F-ratio increases to 143. R^ adj. increases to 

98.4% and SEE drops noticeably to .0558. All coefficients are significant. AU 

coefficients have the expected sign.  However "d" is large. As a result, (b+d) is 

just slightly greater than one.  This implies a learning slope that is a little over 

100% in the regime characterized by multiyear contracts and regular 

production. This slope is probably mistaken and is caused by the high 

correlation between rate and quantity.  Except for this fly in the ointment, this 

model appears to be a very successful explanation of the factors present in the 

cost history of this system. It is considered superior to the equation previously 

discussed. Results to this point are summarized in Table 5. 

Table 5. MLRS: Comparing Models - 2 

Equation Goodness of Fit 
F-Ratio R2adj. SEE 

1. Y = AXb 92.4 91.0% .1338 
2. Y=AXbRf 136.0 96.8% .0804 
3. Y = AecZXbRf 885 96.7% .0814 
4. Y = AeCZx(b+dz)Rf 143.0 98.4% .0558 
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The most successful specifications found in Table 5 are equations 2 and 

4. For the most part, equation 4, which allows for a shift and rotation of the 

learning curve based upon regime, is superior.  However it results in a 

learning slope for regimei that is slightly over 100%, which seems unlikely, 

and is probably due to the high correlation between rate and quantity. 

Consequently it may be a matter of judgment whether one prefers equation 2 

or 4. 

It is possible that the change to regular production entailed more 

automation.  Given prior discussion in Chapter in, this would imply a change 

in the rate slope. This can be captured by the equation Y = A e
cZx(b+dz) 

R(f+gZ). xhe use of this equation produces estimated coefficients identical to 

those obtained by dividing the data set by regime and fitting the rate 

augmented learning curve equation, Y = A Xb Rf, to each regime. 

A benefit of the proposed equation, Y = A ecZx(b+dZ) R(f+8Z), is that 

statistical tests can be obtained for changes in the intercept, learning slope 

and rate slope. When the equation is fitted, the F test, R2 adj., and SEE were 

comparable to that of the model previously discussed.  However the learning 

slope for regimei was of the wrong sign and of an unacceptable magnitude. 

The change in intercept and change in rate slope were not statistically 

significant.   This specification did not prove successful. 
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Because the shift was not statistically significant in the preceding 

model, one could consider dropping ecZ from the model. However, it is 

generally recommended that analysts retain intercept terms (Neter, 1990:163) 

even when they are not statistically significant.  This prescription probably 

holds for a change in intercept term as well. As an experiment, the intercept 

term was dropped and the equation Y = A x(b+dZ) R(f+8Z) was estimated. Many 

results appear stellar: F-ratio = 223, R2 adj. = 99.0%, SEE = .0448. Moreover all 

coefficients were statistically significant.   However, as was the case in the 

previous model, (b+d) has the wrong sign and is of a high magnitude. This 

specification is not recommended. 

Patriot Missile. The Patriot Project management office provided cost 

and quantity data. In the absence of schedule information, annual quantity is 

used as a proxy for rate. There are six data points. 

The standard learning curve equation fit the data well. The F-ratio is 

127 which is highly significant.   R2 adj. is 96.2%. The SEE equals .0404. All 

coefficients are of the proper sign, significant, and of reasonable magnitude. 

The first three data points are the analog model. The last three are the 

digital model.  Army management asked if there was a change in learning 

curve slopes between models. The data could be broken in two and each data 

set estimated separately. Chance variation in the data would suggest the 

likelihood that a different first unit cost and learning slope would be 

estimated.  The same coefficients are estimated using a categorical variable and 
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the equation Y = A ecZx(b+dz), which enables a shift and rotation of the 

learning curve. The added benefit of this method is that the statistical 

significance of any change in intercept and slope can be evaluated. 

Estimating Y = A ecZ x(b+dl) provides the following result. The F ratio 

drops greatly to 51.1. There is a very small increase in R2 adj. to 96.8%. The 

SEE decreases slightly to .0370. The c and d coefficients are not statistically 

significant. Their p-values are .7700 and .8875 respectively. The change in 

slope and intercept between the analog and digital models is not statistically 

significant. The shift and rotation appear to be due to chance. 

The rate augmented learning curve, Y= A Xb Rf, results in an improved 

fit of the data compared to the standard learning curve.  However the high 

correlation between ln(quantity) and ln(rate), .829, indicates that there may 

be problems due to multicollinearity. The F-ratio increases to 141.0. R2 adj. 

increases to 98.2%, and the SEE falls to .0273. All coefficients are of the 

expected sign and of reasonable magnitude.  All coefficients have acceptable 

levels of statistical significance. The p-values for b and f are .0052 and .1016 

respectively.  Results are summarized in Table 6. 

Table 6. Patriot: Comparing Models 

Equation Goodness of Fit 
F-Ratio       R2 adj. SEE 

1. Y = AXb 127.0 96.2% .0404 
2. Y = AecZ#+dz) 51.1 96.8% .0370 
3. Y=AXbRf 141.0 98.2% .0273 
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Advanced   Medium   Range   Air-to-Air  Missile   (AMRAAM). This 

data set was previously obtained using the InfoArch data base. Detailed 

schedule information was not available. Contract quantity was used as a proxy 

for rate. The author was unaware of any changes in regime, therefore no 

categorical variable was used. The cost history consisted of seven data points. 

The standard learning curve equation fit the data extremely well. The 

F-ratio is 309. R2 adj. is 98.1%. The SEE is .0897. All estimated coefficients are 

of the proper sign, of reasonable magnitude, and highly significant. 

There is a very high degree of correlation between ln(quantity) and 

ln(rate), .976, which suggests that there may be problems due to 

multicollinearity. When the rate variable is added, the F-ratio drops to 178 and 

R2 adj. and SEE show very little improvement. The coefficient for rate has the 

wrong sign and is of a high magnitude.  The learning slope becomes very 

steep. It appears that the regression algorithm cannot sort out the separate 

contributions of rate and quantity.  In this case, multicollinearity has led to a 

significant problem, the misestimation of coefficients b and f. 

In this instance the addition of a rate variable did not improve results. 

Adding another regressor does not guarantee an improved relationship. 

Table 7. AMRAAM: Comparing Models 

Equation Goodness of Fit 
F-Ratio       R2 adj. SEE 

1. Y = AXb 309.0 98.1% .0897 
2. Y= AXb Rf 178.0 98.3% .0839 Wrong sign for rate 
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An Alternative Approach to Rate and Quantity 

The rate augmented learning curve equation used up to this point is 

Y = AXb Rc. A possible alternative, broached in Chapter III, is to start with a 

standard U-shaped cost curve based upon rate, and add a learning variable. 

This can be described as a learning augmented rate curve, or as a learning 

augmented U-shaped cost curve. One can use equation 27, Y = A + bR + cR2 + 

dLnX.  These are two different ways of specifying equations that conform to 

the general equation presented in Chapter I:  (3) Y = f(cumulative quantity, 

production rate).  Other specific equations are possible.  Research question 

number 5 is reproduced below: 

Question 5:    Should new equations of learning and rate be 
explored? 

Fitting the equation Y = A + bR + cR2 + dLnX to the MLRS system 

provides an F test that is very significant at 160. R2 adj. is 98.2%. All 

coefficients are of the expected sign and are highly significant.  The predicted 

minimum cost based upon rate is within the range of the data set for rate. The 

rate associated with minimum cost is somewhat higher than the midpoint of 

the range of rate. 

Fitting the learning augmented rate curve, Y = A + bR + cR2 + dLnX, to 

Patriot results in a very significant F ratio, 157. R2 adj. is 98.9%. All estimated 

coefficients are of the expected signs. P-values for the b, c, and d coefficients 

are .0990, .1037, and .0090, respectively. The predicted minimum cost rate is 
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somewhat higher than the midpoint of the range of rate. 

In the case of AMRAAM, the F ratio is highly significant with a value 

of 327. R2 adj. is 99.4%. All coefficients are of the expected sign and are 

highly significant.  Once again the predicted minimum is somewhat higher 

than the midpoint of the range. 

The standard error of the estimate, SEE, was used to compare the 

learning augmented rate curve, Y = A + bR + cR2 + dLnX, with the standard 

rate augmented learning curve, Y= A X^ Rf. In the former case, the SEE is 

based on Y. In the latter case, the SEE is based upon ln(Y). In order to obtain 

comparable values of SEE, SEE was computed in terms of Y for both cases. SEE is 

equal to the root mean squared error. Values of Y were estimated based upon 

the fitted equation Y= A Xb Rf. These estimates were compared to actual values 

of Y to obtain error terms which were then squared and summed. The 

resulting value was divided by the degrees of freedom associated with the 

regression equation Y= A X*5 R^. The square root was then taken. Comparisons 

of standard error of the estimate, in Y, are shown in Table 8 for both models. 

Table 8. Standard and Alternative Cost, Quantity, Rate Relationships 

Equation Standard Error of the Estimate (SEE) 
MLRS      Patriot     AMRAAM 

1. Y=AXbRf 463.0 18.45 .110 
2. Y = A + bR + cR2 + dLnX 410.6 7.93 .039 
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The standard error of the estimate, SEE, is lower using the learning 

augmented rate curve, equation 2 in Table 8, for these three systems. 

Although one would expect some reduction in SEE due to the presence of an 

additional coefficient, the comparison appears favorable to equation 2. 

Based upon the F-test, R2 adj. and SEE, the learning augmented rate 

curve provides a very good fit of the data for the three systems examined. All 

estimated coefficients have the expected sign and have an acceptable level of 

significance. For each weapon system, the predicted economic production rate 

is within the range of the data set.  The statistical results are encouraging. 

However these findings remain tentative due to the small number of systems, 

and the limited number of data points for the systems examined. 

Combining the discussion on the impact of learning and rate contained 

in Chapter II, with the discussion of equation 27, Y = A + bR + cR2 + dLnX, 

found in Chapter III indicates that the learning augmented rate curve has an 

adequate theoretical basis. 

Combining theoretical discussion with the statistical analysis suggests 

that an affirmative answer to research question 5 is warranted; new equations 

of learning and rate should be explored. 
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V. Findings and Conclusions 

Chapter I introduced the following general research question: What is 

the proper identification of variables and specification of equations to 

estimate unit production cost? This thesis has attempted to address this 

question thoroughly. The three major variables identified are cumulative 

quantity, production rate, and any major change in the production regime of a 

weapon system. 

A standard method of incorporating regime based upon the use of a 

categorical variable was developed in Chapter III.  In a learning curve model, 

a change in regime can lead to either a shift, or a shift and rotation, of the 

learning curve. There are more options in a rate augmented learning model. 

A change in regime can lead to a shift, a shift and a learning rotation, a shift 

and a rate rotation, or a shift with both learning and rate rotations, of the cost- 

quantity-rate surface. Specific research questions are addressed below: 

Question 1: Is it valid to fit a linear composite learning curve 
given that component learning curves are linear 
and of varying slopes? 

A hypothetical, representative case was developed to answer this 

question.  Although there was a bowing of the composite learning curve as 

predicted by several authors, the bowing was minor and well within the 

estimating error of learning curve estimates.  Hence question 1 can be 

answered affirmatively. 
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Question 2:    Can the addition of a production rate variable 
improve the learning curve equation? 

Improvement was evaluated in terms of individual coefficients and the 

model as whole.  Individual coefficients were evaluated based upon their sign, 

magnitude, and statistical significance.  Models were evaluated in terms of 

their F test, coefficient of determination adjusted for degrees of freedom, and 

the standard error of the estimate. The addition of a production rate variable 

led to significant improvement for the Multiple Launch Rocket System (MLRS) 

and the Patriot missile system. Adding a production rate variable did not 

produce desirable results in the case of the Advanced Medium Range Air-to- 

Air Missile (AMRAAM) system.  Production rate appears to be an important 

variable.  However due to the correlation between cumulative quantity and 

production rate, which commonly occurs, the regression algorithm may have 

difficulty separating the effects of quantity and rate.  Hence judgment is 

required in evaluating a rate augmented learning curve model.  The answer to 

question two is affirmative, but qualified. The addition of a production rate 

variable can, but need not, improve the learning equation. 
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Question 3:    Can the addition of a categorical variable improve 
learning or, learning and rate, equations? 

This question could only be examined for two systems MLRS and Patriot, 

since no reason for using a categorical variable was apparent for AMRAAM. 

In the case of MLRS, the addition of a categorical variable improved the fit of 

the data compared to either the learning curve equation, or the rate 

augmented learning curve equation.  The resulting equation was generally 

logical and good. However it contained one flaw which is probably due to the 

correlation of quantity and rate.  Hence it is a matter of judgment whether the 

equation with the categorical variable is superior to the rate augmented 

learning curve. In the case of Patriot, the addition of a categorical variable 

did not lead to an improved equation. However it did provide valuable 

diagnostic information. The author is confident that the correct answer to 

question 3 is "yes". This study provided some support for an affirmative 

answer but the support is weak. 

Question 4:    Can a categorical variable provide useful diagnostic 
information? 

The answer to this question is a definite "yes." In the case of Patriot, 

the use of a categorical variable made it possible to determine that a shift and 

rotation of the learning curve was not statistically significant and was 

probably due to chance. In the case of MLRS, examination of diagnostic 

information associated with the categorical variable provided numerous 

insights. 
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Question 5:    Should new equations of learning and rate be 
explored? 

There may be many plausible equations involving learning and rate 

that could be explored. A possible deficiency of the standard rate augmented 

learning curve is that it does not generate increasing costs at high production 

rates.  This study introduced a new equation that does generate higher costs at 

higher production rates, consistent with standard economic theory.  The 

equation is logical and fits the data very well for all three weapon systems 

examined.  This further suggests an affirmative answer to question five. 

This study is based upon three weapon systems. MLRS had ten data 

points. Patriot had six and AMRAAM had seven. More systems and production 

lots should be examined to further answer questions two through five.  In 

particular questions two, three, and the new proposed model of rate and 

learning contained in the discussion of question five, could benefit from the 

study of additional weapon systems and systems with more production lots. 

None of the systems examined experienced a reduction in production rate. It is 

expected that such a reduction would reduce the multicollinearity between 

cumulative quantity and rate, and might improve analysis. 

The research questions and answers in this thesis apply at the level of 

recurring production cost.  This often includes labor, subcontract items, raw 

material, and several overhead costs. The findings contained in this study are 

most applicable at that level and may not apply when estimating at a lower 

level. 
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Appendix 1, Army Cost Element Structure 

Cost Element Structure 

1.0       RESEARCH,  DEVELOPMENT,  TEST,  AND  EVALUATION  (RDT&E)- 
FUNDED  ELEMENTS 

1.01 DEVELOPMENT ENGINEERING* 
1.02 PRODUCIBILITY ENGINEERING AND PLANNING (PEP)* 
1.03 DEVELOPMENT TOOLING* 
1.04 PROTOTYPE MANUFACTURING* 
1.05 SYSTEM ENGINEERING/PROGRAM MANAGEMENT 
1.051 PROJECT MANAGEMENT ADMINISTRATION (PM CIV/ML) 
1.052 OTHER 
1.06 SYSTEM TEST AND EVALUATION 
1.07 TRAINING 
1.08 DATA 
1.09 SUPPORT EQUIPMENT 
1.091 PECULIAR 
1.092 COMMON 
1.10 DEVELOPMENT FACILITIES 
1.11 OTHER RDT&E 

2.0       PROCUREMENT-FUNDED   ELEMENTS 
2.01 NONRECURRING PRODUCTION 
2.011 INITIAL PRODUCTION FACILITIES (IPFs)* 
2.012 PRODUCTION BASE SUPPORT (PBS)* 
2.013 OTHER NONRECURRING PRODUCTION* 
2.02 RECURRING PRODUCTION 
2.021 MANUFACTURING* 
2.022 RECURRING ENGINEERING* 
2.023 SUSTAINING TOOLING* 
2.024 QUALITY CONTROL* 
2.025 OTHER RECURRING PRODUCTION* 
2.03 ENGINEERING CHANGES* 
2.04 SYSTEM ENGINEERING/PROGRAM MANAGEMENT 
2.041 PROJECT MANAGEMENT ADMINISTRATION (PM CIV/ML) 
2.042 OTHER 
2.05 SYSTEM TEST AND EVALUATION, PRODUCTION 
2.06 TRAINING 
2.07 DATA 
2.08 SUPPORT EQUIPMENT 
2.081 PECULIAR 
2.082 COMMON 

*  These elements should be further subdivided to reflect the MIL-STD-881B Level 3 prime mission 
equipment WBS elements. Greater level of detail is permissible. 

2.09 OPERATIONAL/SITE ACTIVATION 
2.10 FIELDING 
2.101 INITIAL DEPOT-LEVEL REPARABLES (SPARES) 
2.102 INITIAL CONSUMABLES (REPAIR PARTS) 
2.103 INITIAL SUPPORT EQUIPMENT 
2.104 TRANSPORTATION (EQUIPMENT TO UNIT) 
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2.105 NEW EQUIPMENT TRAINING (NET) 
2.106 CONTRACTOR LOGISTICS SUPPORT 
2.11 TRAINING AMMUNITION/MISSILES 
2.12 WAR RESERVE AMMUNITION/MISSILES 
2.13 MODIFICATIONS 
2.14 OTHER PROCUREMENT 

3.0       MILITARY  CONSTRUCTION  (MC)-FUNDED  ELEMENTS 
3.01 DEVELOPMENT CONSTRUCTION 
3.02 PRODUCTION CONSTRUCTION 
3.03 OPERATIONAUSITE ACTIVATION CONSTRUCTION 
3.04 OTHER MC 

4.0       MILITARY PERSONNEL  (MP)  DIRECT-FUNDED ELEMENTS (not reimbursed by 
any other appropriation) 

4.01 CREW 
4.02 MAINTENANCE (MTOE) 
4.03 SYSTEM-SPECIFIC SUPPORT 
4.04 SYSTEM ENGINEERING/PROGRAM MANAGEMENT 
4.041 PROJECT MANAGEMENT ADMINISTRATION (PM MIL) 
4.042 OTHER 
4.05 REPLACEMENT PERSONNEL 
4.051 TRAINING 
4.052 PERMANENT CHANGE OF STATION (PCS) 
4.06 OTHER MP 

5.0       OPERATIONS  AND  MAINTENANCE   (0&M)-FUNDED  ELEMENTS 
5.01 HELD MAINTENANCE CIVILIAN LABOR** 
5.02 SYSTEM-SPECIFIC BASE OPERATIONS 
5.03 REPLENISHMENT DEPOT-LEVEL REPARABLES (SPARES)** 
5.04 REPLENISHMENT CONSUMABLES (REPAIR PARTS)** 
5.05 PETROLEUM, OIL, AND LUBRICANTS (POL)** 
5.06 END-ITEM SUPPLY AND MAINTENANCE 
5.061 OVERHAUL (P7M) 
5.062 INTEGRATED MATERIEL MANAGEMENT 
5.063 SUPPLY DEPOT SUPPORT 
5.064 INDUSTRIAL READINESS 
5.065 DEMILITARIZATION 
5.07 TRANSPORTATION 
5.08 SOFTWARE 

**   These elements should be further subdivided to reflect the MIL-STD-881B Level 2 prime mission 
equipment WBS elements and the support equipment element Greater level of detail is permissible. 

5.09 SYSTEM TEST AND EVALUATION, OPERATIONAL 
5.10 SYSTEM ENGINEERING/PROGRAM MANAGEMENT 
5.101 PROJECT MANAGEMENT ADMINISTRATION (PM CIV) 
5.102 OTHER 
5.11 TRAINING 
5.12 OTHER O&M 

6.0       DEFENSE BUSINESS  OPERATIONS  FUND  (DBOF)   ELEMENT 
6.01 DBOF CLASS IX WAR RESERVES 
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Appendix 2, Cost Definitions 

2.01      NONRECURRING PRODUCTION 

2.011 INITIAL PRODUCTION FACILITIES (IPFs) 
This element includes the cost of the initial hard tooling and production line set up to support low-rate and 
full-scale production of the system; and the cost of fabrication, assembly, and installation of tools 
(including modification and rework of development tools for production purposes), dies, templates, patterns, 
form block manufacture, jigs, fixtures, master forms, inspection equipment, handling equipment, load bars, 
work platforms (including installation of utilities thereon), and test equipment (such as checkers and 
analyzers) to support the manufacture of the specified system. It includes initial and duplicate sets of tools 
necessary to reach full-rate production plus modification of LRIP tool records, establishment of make-or- 
buy and manufacturing plans on nonrecurring tools and equipment, scheduling and control of tool orders, 
and programming and preparation of software for numerically controlled machine equipment Included in 
this element are any provision of industrial facilities (PIF), depot maintenance plant equipment (DMPE), 
and layaway of industrial facilities that are system specific. 

2.012 PRODUCTION BASE SUPPORT (PBS) 
This element includes the procurement-funded costs of construction, conversion, or expansion of facilities 
for production, inventory, or maintenance required to accomplish the program. These costs may be 
identified with either or both the contractor and in-house efforts. They may be identified with the total 
system or with specific components of the total system, such as the engine. This element excludes any 
PIF costs included in IPFs. 

2.013 OTHER NONRECURRING PRODUCTION 
This element includes any procurement-funded, nonrecurring production costs not included in the above 
subelements. Costs must be system specific and clearly identified. For example, disposal, demilitarization, 
or layaway costs of Government-owned production equipment should be included here as a cost to the 
system. 

2.02      RECURRING PRODUCTION 

2.021 MANUFACTURING 
This element includes the costs of material, labor, and other expenses incurred in the fabrication, checkout, 
and processing of parts, subassemblies, and major assemblies/subsystems needed for the final system. This 
element also includes Government-furnished equipment and material, as well as costs of subcontractors and 
purchased parts/equipment. The element further includes costs of the efforts to integrate and assemble the 
various subassemblies into a working system, costs to install special and general equipment, costs to paint 
and package the system for shipment to its acceptance destination, and costs associated with preplanned 
product improvements. It also includes moves in order to assemble into a final system. 

2.022 RECURRING ENGINEERING 
This element includes the costs of all engineering efforts performed in support of production, including 
maintainability/reliability engineering, maintenance engineering, value engineering, and production 
engineering costs associated with the system. It also includes redesign, evaluation, and other support 
engineering efforts (either in-house, contract, or separate contractor) directly involved with production of the 
components/end item, e.g., maintenance of the TDP, preparation of engineering change proposals (ECPs), 
engineering change orders (ECOs), and analysis of test results. 
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2.023     SUSTAINING TOOLING 
This element includes the costs of maintenance replacement or modification of tools and test equipment 
after the start of production. It includes the replacement of initial tools that break down, and modification, 
maintenance, and rework of initial and duplicate sets of tools occurring after production begins. 

2.024   QUALITY CONTROL 
This element includes the costs of implementing controls necessary to ensure that a manufacturing process 
produces a system that meets the prescribed standards. Included are costs of receiving, in-process, and final 
inspections of tools, parts, subassemblies, and complete assemblies. It also includes such tasks as 
reliability testing, establishment of acceptable quality levels (AQLs), statistical methods for determining 
performance of manufacturing processes, preparation and review of reports relating to these tasks, stockpile 
reliability testing, and the performance of production acceptance tests (PATs). 

2.025    OTHER RECURRING PRODUCTION 
This element includes any procurement-funded, recurring production costs not included in the above 
subelements. Costs must be system specific and clearly identified, e.g., warranty cost for a specific item. 

84 



Appendix 3, Derivation of Midpoint Equations 

XJAU\.C uvii.v LiUun   \sx   jL\_/t   ij.xj.vi-j-'vyxAxt. 

Y=AXb 

Total cost = ZY = the sum from X=F to X=L of AXb 

Average cost = the sum from X=F to X=L of AXb / (L-F+i) 

Average cost = Afv1b 

Therefore: AM- = the sum from X=F to X=L of AX*3 / (L-F+1) 

Dividing both sides by A results in 

Mb = the sum from X=F to X=L of Xb / (L-F+1) 

Taking the bth root of both sides results in 

M = (the sum from X=F to X=L of Xb / (L-F+1))A(1 /b) 

Which is equation 8: 

(8)       M = (the sum from X=F to X=L of Xkv'(L-F-i))A( I/b) 

Derivation of approximation 1, equation (9): 
w * wr"\ 
T =AA" 

Total cost is the area underneath the learning curve. This is equal to the definite integral from F to 
I      _JT    A wh 
L.OI «A~ 
-t-Ä+„i +      / * »/u   -* \   i /h-i-IV    /» #/u . j \   r-f h_i_1 V      //»"Ui-*\*    M /n-i-11    r-fHj»1V Totai COSt = ^A/^+1) L-\-" 'i)-(/M(0+i) r\~- •/) = {A/(0+i))  (L\~- -/-r^- >') 
To obtain averane cost divide b" the number of units in the lot, (L-F+1) 

Average cost = (A/ ((b+1 )(L-F+1))) (L(b+1) - F(b+1)) 

Average cost = AMb 

Therefore 
MIVI" = (A/ ((0+1 )(L.-r+1)))    (i_\~ ■ ■ / - r\~ ■ ■ /) 

Dividing both sides by A results in 
> «h     /. fhj.11   i-fh+1\\   « »»■-..»*/■   c:.-»v 

ivi~ = (i_v~ • ' / - r\~T • /) / ((o+1) (i_-r+1)) 

Taking the bth root of both sides 

ivl = ui_vJi v-rv' •/; / ^(o+ij(i_-r+i;;; •■ p/0) 

However the learning curve is a not a continuous function. Therefore the endpoints must be 
aHjnctorl hw  t; unite oc fhlfrturc 

M = (((L+.5)(b+1>- (F-.5)(b+1)) /((b+1)(L-F+1))) A (1/b) 

Which is equation 9: 
(9)       M = (((L+.5)A(b+l)-(F-.5)A(b+l))/((b+l)*LotSize)) A (1/b) 

Equation 9 is equivalent to the equation found on page 40 of Alpha & Omega 
and the Experience Curve. United States Army Missile Command, Huntsville, 
AloKomo MO£C\ 



Appendix 4, Exact Midpoint Calculation 

This Excel Macro function provides an exact calculation of the lot 
midpoint for a production lot. It has three arguments: first unit in lot, last unit 
in lot, and learning curve slope. A 90% learning curve slope is entered as .9. 

ALM 
=ARGUMENT(nFirst") 
=ARGUMENT('*Lasr) 
=ARGUMENT("S!ope") 
=SET.NAME("K",First) 
=SET.NAME("sum",0) 
=SET.NAME(TotSize",Last-First+1) 
=SET.NAME("b",LN(Slope)/LN(2)) 
=IF(K=Last+1 ,GOTO(A13)) 
=SET.NAME("sum\sum+KAb) 
=SET.NAME("K",K+1) 
=GOTO(A9) 
=(sum/LotSize)A(1/b) 
=RETURN(A13) 
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