SF 208 MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES

REPORT DOCUMENTATION PAGE

Form Approved
OMB NO. 0704-0188

Suite 1204, Arl

9/14/97

Technical Report

Public feponing burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, ]
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection
of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway,

lington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project !0701-01883 Washin%on DC 20503. v 5
. . ERE

Timothy A. Ameel
Robert O. Warrington

47 TITCE AND SUBTTILE 5. FUNDING NUMBERS
Evaluation of the Eigenvalues of the Graetz Problem in Slip-flow DAAHO04-94-G-0348
. AUTHOR(S)
Xianming Wang

Louisiana Tech University
P.O. Box 7923 T.S.
Ruston, LA 71272

7. FERFORMING ORGANIZATION NAME(S] AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

U.S. ARMY RESEARCH OFFICE
P.0. BOX 12211
RESEARCH TRIANGLE PARK, NC 27709-2211 ﬁR,o

[ 9 SPONSORING / MONITORING AGENCY NAME(SY AND ADDRESS(ES] T0.  SPONSO
AGENCY REPORT NUMBER

33944, Y-PH-DPS

11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official
Department of the Army position, policy, or decision, unless so designated by other documentation.

Approved for public release; distribution unlimited.

12a.  DISTRIBUTION 7AVAITCABICITY STATEMENT 12b. DISTHRIBUTIONTODE

13. ABSTRACT (Maximum 200 words)

numbers as functions of Kn and the Graetz number were derived.

practical calculations, relationships between eigenvalues and Kn were obtained.

14, SUBJECT TERMS

The objective of this research was to develop a new technique for evaluation of the eigenvalues of the Graetz problem in slip-
flow, a heat transfer problem for gases at low pressures or in extremely small geometries. In this investigation, the velocity
distribution with slip-flow has been obtained and expressed simply in terms of the Knudsen number Kn. The expression shows
that the velocity always increases as Kn increases. The relationship between Kn and molecular mean free path for a gas shows
that Kn may become large enough to significantly affect the velocity distribution and consequently affect the heat transfer
properties. A mathematical model of temperature distribution was established by combining the energy and momentum
equations. A series solution was obtained by the method of Frobenius. Also, expressions for the local and overall Nusselt

A new technique for evaluation of eigenvalues for the solution of the Graetz problem in slip-flow was developed. The
computational results show that it is an effective method, and the lowest five eigenvalues were found for 0.02 < Kn < 0.12. For

WEAT TrAMIIFEL 1IN MLROTUWREN

15. NUMBER OF PAGES

B89

16. PRICE CODE

[7 SECURITY CLASSIFICATION T8, SECURITY CLASSIFICATION 9. SECURITY CLASSIFICATION
OR REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

20, LIMITATION OF ABSTRACT |
UL

NSN 7540-01-280-5500

anaara Form eV, 2~




EVALUATION OF THE EIGENVALUES OF THE GRAETZ PROBLEM IN SLIP-FLOW

TECHNICAL REPORT

XIANMING WANG
TIMOTHY A. AMEEL
ROBERT O. WARRINGTON

MARCH, 1996
U.S ARMY RESEARCH OFFICE

CONTRACT/GRANT NUMBER
DAAH04-94-G-0348

LOUISIANA TECH UNIVERSITY
P.O. BOX 7923 T.S.
RUSTON, LA 71272

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

THE VIEWS, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE
. THOSE OF THE AUTHOR(S) AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL
DEPARTMENT OF THE ARMY POSITION, POLICY, OR DECISION, UNLESS SO

19971007 118




ABSTRACT

The objective of this research was to develop a new technique for evaluation of the
eigenvalues of the Graetz problem in slip-flow — a heat transfer problem for gases at low
pressures or in extremely small geometries. In this investigation, the velocity distribution
with slip—flow has been obtained, expressed simply in terms of Knudsen (Kn) numbers.

The expression shows that the velocity always increases as the Knudsen number in-
creases. The relationship of Kn and molecular mean free path for a gas shows that Kn may
become large enough to significantly affect the velocity distribution and consequently af-
fect the heat transfer properties. A mathematical model of temperature distribution was
established by combining the energy and momentum equations. A series solution was
obtained by the method of Frobenius. Also, expressions for the local and overall Nusselt
numbers were derived. All these expressions can be taken as functions of Knudsen num-
bers and Graetz numbers.

A new technique for evaluation of eigenvalues for the solution of the Graetz problem
in slip—flow was developed. This method was based on the construction of a matrix. The
computational results show that it is an effective method, and the lowest five values were

found for Kn from 0.02 to 0.12. For practical calculations, relationships between eigen-

values and Knudsen numbers were obtained.
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NOMENCLATURE

tube surface area [m?]

coefficient in Eq. (3.12)

coefficient in Eq. (4.8)
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acoustic velocity

coefficient in Eq. (1.3)

unit heat capacity at constant
pressure[J/kg-K]

specific heat at constant volume
[J/kg-K]
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tube diameter[m)

specular reflection coefficient
(U =)/ (Uy - uy)
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local convective heat transfer coef—
ficient [W/m2-K]

average convective heat transfer
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coefficient [W/m2-K]

Nu,

thermal conductivity [W/m-K];
number of terms in Equation (5.2)
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length of tube[m]

overall heat transfer coefficient,
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local heat transfer coefficient,
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fluid pressure [Pa]
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heat transfer rate [W]
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tube radius[m]
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T(r,x), temperature [K]

bulk temperature [K]

temperature at x = L [K]

4N, log-mean~temperature




difference (LMTD) [K]

u  velocity in x direction [m/s]

uj average streamwise velocity of the
incident molecules

u,  average streamwise velocity of the
reflected molecules

Uw average streamwise velocity of the
surface

v radial velocity

x  distance along tube[m]

x* dimensionless distance, (/L)

Greek Symbols

a  fluid thermal diffusivity, (k/oc)
[m?%/s]

thermal accommodation coefficient
(1+4 Kn) coefficient in Eq. (4.1)

ratio of specific heats

DN =% ™ R

A=i-k in Eq.(4.8);
A=(Nu~ Nuy) in Fig. 5.9

7 mean free path of gas

A eigenvalue;

A" eigenvalue divided by g

#  dynamic viscosity[kg/m s]

v kinematic viscosity [m%/s]

o density[kg/m3]

7t 3.141592654

0 (T-T,)/(Ty-Ty) dimensionless tem—
perature

08 (Tp—Tw)/(Tp-Ty) dimensionless
bulk temperature

gL dimensionless fluid bulk temperture
atx=1L

OLN dimensionless LMTD

Subscripts
0 atx=0
B  bulk

¢  centerline

m average
s  slip-flow
w  wall
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CHAPTER 1
INTRODUCTION

1.1 The Graetz Problem

By the end of the last century, the problem of forced convection heat transfer in a
circular tube in laminar flow gained interest because of its fundamental importance in
physical problems such as the analysis and design of heat exchangers.

The Graetz problem is a simplified case of the problem of forced convection heat
transfer in a circular tube with laminar flow. With the assumptions of steady, incom-
pressible and fully—established flow, constant fluid properties, no swirl” component of
velocity, a fully developed temperature profile, and negligible energy dissipation effects,
Graetz (1883) originally solved this problem analytically. The solution by Graetz in-
volved an infinite number of eigenvalues, and in his paper only the first two eigenvalues
were evaluated.

Since the accuracy of the Graetz solution mainly depends on the number of eigenva-
lues, it is extremely important to obtain more eigenvalues, as Tribus and Klein (1953)
pointed out. For seventy years, the research on this problem focused mainly on finding
more eigenvalues. And Abramowitz (1953) employed a fairly rapidly converging series
solution of the Graetz equation in makin g the calculation and found the lowest five values
with much more accuracy. Sellars et al.(1956) extended the problem to include a more
effective approximation technique for evaluation of the eigenvalues of the problem; they
could get any number of eigenvalues as needed. This work solved the Graetz problem

completely.




(3]

1.2 The Graetz Problem in Slip-Flow

Applications of microstructures such as micro heat exchan gers have led to increased
interest in convection heat transfer in micro geometries. Some experimental work has
been done, such as the experimental investigations in microtubes (Choi et al.. 1991), in
microchannels (Pfahler et al., 1991), and in micro heat pipes (Petersen et al., 1993).
Therefore, appropriate models are needed to explain the significant departures in the
micro—scale experimental results from the thermofluid correlations used for convention-
al-sized geometries. Forexample. the measured heat transfer coefficients in laminar flow
in small tubes exhibits a Reynolds number dependence, in contrast to the conventional
prediction for fully established laminar flow, in which the Nusselt number is constant
(Choietal., 1991). Also, an experimental investigation of fluid flow in extremely small
channels showed that there are deviations between the N avier-Stokes predictions and the
experimental observations (Pfahler et al., 1991).

Therefore, some effects and conditions that are normally neglected when consider-
ing macro~scale flow must be taken into consideration in micro-scale convection. One
of these conditions is slip—flow (Flik et al., 1992, Beskok and Karniadakis, 1992). It has
been found that the analytical model combined with slip flow conditions can fit the exper-
imental data in microchannels with a uniform cross—sectional area (Arkilic et al., 1994)
and with a non-uniform cross-sectional area (Liu et al., 1995).

Slip—flow occurs when gases are at low pressures or for flow in extremely small pas-
sages. At low pressures, with correspondingly low densities, the molecular mean free
path becomes comparable with the body dimensions, and then the effect of the molecular
structure becomes a factor in flow and heat transfer mechanisms(Eckert and Drake,1972).

The relative importance of effects due to the rarefaction of a gas can be indicated by

the Knudsen number, a ratio of the magnitude of the mean free molecular path in the gas




to the chafacteristic dimension in the flow field. The effects of rarefaction phenomena on
flow and heat transfer becomes important when the Knudsen number can no longer be
neglected.

In defining when slip—flow occurs, Beskok and Karniadakis (1992) have proposed

to classify four flow regimes for gases, as follows:

Continuum flow: Kn <1073
Slip—flow: 103 <Kn<0.1
Transition flow: 0.1<Kn<10
Free molecular flow 10 <Kn

When slip-flow occurs, the gas adjacent to the surface, in contrast to its behavior in
continuum flow, no longer reaches the velocity or temperature of the surface. The gas
at the surface has a tangential velocity, and it slips along the surface. The temperature
of the gas at the surface is finitely different from the temperature of the surface, and there
is a jump in temperature between the surface and the adjacent gas. Eckert and Drake
(1972) give expressions for the temperature jump condition and slip velocity at the sur-
face. The slip velocity as a function of the velocity gradient near the wall can be expressed
as follows:

us=-n( %) _p (1.1

and Arkilic et al. (1994) give the expression as follows:

B L2F g, e

c 3 ar/H )r=r (1.2a)

or

u=2E g e (120)




which includes the consideration of three accommodation coefficients represented by the
specular reflection coefficient F. For most engineering surfaces, F has values near unity.
In the case of F having a value of one, Eq. (1.2) becomes Eq. (1.1). For simplicity, in this
investigation, Eq. (1.1) is applied to evaluate the velocity.

The original solution by Graetz (which was discussed above) is valid for céntinuum
flow; however, for gases at low pressures or in extremely small tubes, the flow may enter
the slip—flow regime, in which case the velocity at the tube surface is not zero. In this
case, the heat transfer coefficient depends not only on the Reynolds number and Prandtl
number, but also on the Knudsen number. This fact will no doubt make the model more
complex and the evaluation of its eigenvalues more difficult. Therefore, anew technique

is needed to evaluate the eigenvalues for a solution to the problem in slip—flow.

1.3 Related Research
Graetz (1883) originally solved the problem of forced convection heat transfer in a
circular tube in laminar flow, with a developing temperature profile. Figure 1.1 shows

the geometry and conditions for this problem.

__)X

) (W

— Y,
X/ 777777 N\
INSULATION Tw= constant

Fig. 1.1 Coordinate system and thermal boundary conditions




The mathematical statement of this problem is as follows:

T = T(xr)
aT _ ka , aT
uQCpa' = 75(7‘5) (1.3)

U = 2um[l=(r/rp)?]

with the boundary conditions:

T(R» -x) = Tw forx > 0
Trn0)=Tp forx<0
70,0)=Ty forx<0

The nondimensional form of the problem is:
a0 1 1 0,06
— = = (r == 14
ox" 1-r*2r* or* e ax*) (14)
and the boundary conditions are as follows:
6(1, x*) =0 forx*> 0
0(rx0)= 1 forx*<0
The solution for this system can be obtained (Graetz):

Or*x%) = 2 GGy e (1.5)
< .

where the A, are the eigenvalues required to make the solution satisfy the following differ-

ential equation :

r¥Gy" + Gy + A r*(1-r*)G, = 0 (1.6)

Graetz posed an eigenfunction:

[+ ]

Gukr) = golﬁ"dk = 1+ A2d, + Akd, + A8d, + . (1.7)




and he gave only two values: A 1=2.704 and X =6.50. Unfortunately, it was very diffi-
cult at that time to calculate the larger values of A,

Sellars et al.(1956) extended the problem to include a more effective approximation
technique for evaluation of the eigenvalues of the problem. They developed an approxi-
mate method by using three expressions to represent the Graetz functions in three ranges:
(1) near the center; (2) between the centerline and the wall; and (3) near the wall. They
obtained an approximate expression as follows:

M=4(n-1)+8/3 n=123 .. (1.8)
The comparison of the values with other investigations (see Table 5.3) shows that the
approximate method is correct and effective, especially for largern. The accuracy, except
the first eigenvalue, is acceptable. This work solved the Graetz problem completely.

The objective of this research is to evaluate the eigenvalues for the Graetz problem
in slip—flow — a heat transfer problem for gases at low pressures or in extremely small
tubes. To do this, the velocity profile with slip—flow must be found first, and a mathemati-
cal model of temperature distribution in slip flow must be established by combining the
energy and momentum equations. Next, by using the method of Frobenius, aseries solu-
tion must be obtained and finally, a technique for evaluation of the eigenvalues for the
series solution must be developed. For practical calculations, relationships between the

eigenvalues and the Knudsen number should be obtained.




CHAPTER 2
VELOCITY AND TEMPERATURE DISTRIBUTIONS

In order to build the mathematical model for the Graetz Problem in slip—flow, the
velocity profile must be found first. In this chapter, based on some assumptions, the ex-
pression for velocity will be derived from the continuity equation and momentum equa-
tion. The slip condition will be used to evaluate the slip velocity and the velocity will be
expressed in terms of Knudsen numbers. A mathematical model of temperature distribu-

tion in slip—flow will be established by combining the energy and momentum equations.

2.1 Velocity Distribution

As amodel, one can consider the flow of a fluid in a circular tube of radius R, shown

in Figure 2.1:

I
t~

Fig. 2.1 Coordinate system for the problem

For this model the following conditions have been assumed (Barron, 1994):

(1) The flow is steady. This means that the properties of the flow are time indepen-
dent.

(2) The fluid is incompressible (or, if a gas is considered, the Mach number is low).

In this case, the density may be assumed constant.




(3) The flow is fully established. In this case, the axial velocity, u, is a function of

the radial coordinate only, and not a function of the axial coordinate. In addition,

the radial velocity is zero.

(4) The "swirl” component of velocity is identically zero. This fact means that the

flow properties are independent of the angular coordinate in cylindrical coordi-

nates.
(5) Fluid properties are constant.
(6) Energy dissipation effects are negligible.

(7) The tube wall temperature is constant.

2.1.1 Continuity E ion

The general continuity equation can be written in cylindrical coordinates as follows:

0,14 3 _
3t Trarlem) + 52(ew) = 0

For steady flow of an incompressible fluid, Eq. (2.1) reduces to:

Therefore,

r v = constant

(2.1)




Since the radial velocity is zero at the wall (the wall is impermeable), we must conclude
that:

v =0 (identically).

2.1.2 Velocity Distribution with
Slip Condition

The Momentum Equation can be written in cylindrical coordinates as follows (Kays

et al., 1993):

L, 0u au dp ﬂa(

ou ox ovor dx ror (22)

or

For fully-established, steady—flow of an incompressible fluid, the Navier—Stokes equa-

tion for the axial direction reduces to:

T T T (2.3)
In this case, the velocity u is independent of x, so we can define the constant,
¢ =42 2.4)
Then, Eq. (2.3) can be written in the following form:
4Cy + +L oy = (2.5)

This expression can be solved by directly integrating twice to yield:

u=Cylnr+C3-C;r? (2.6)
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Since the velocity u is finite at the center of the tube (r=0), we must have C, = 0.

At the centerline of the tube (r=0), the velocity is equal to u. (the center-line veloc-
ity). Using this condition in Eq. (2.6), we obtain: u(0) = u. = C;

At the surface of the tube (r=R), the velocity is not zero in slip-flow, but is equal to

a finite velocity u;. Using this condition, we find, from Eq. (2.6):

u(R) = us = uo — C1R? (2.7)
Rearranging and solving for Cj:

Uc—Uus; _ 1dp

¢ =ttt L2

(2.8)

Making these substitutions, we find the following expression for the velocity dis-

tribution:

U=t —(ue—us ) (/R)? =u. [ 1= (r/R? ]+ ug (1/R)? (2.9)

This velocity profile is shown in Figure 2.2.

Ul

Fig. 2.2 Velocity distribution

Letus now calculate the mean fluid velocity up, in the tube. The volumetric flow rate

can be written as follows:
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R
aAR%u,, =j 27rudr (2.10)
0

If we introduce the dimensionless variable, r*, we can write Eq. (2.10) as:

1 1
Upy = 2{ ur*dr* = 2[ [ue —(ue—ug)r *2)r * dr * (2.11)
0 0

Carrying out the integration, we obtain:

1
um = 20 (uc/2) r*¥* ~(ueug) (r** /4) 1 |
0

or

Un =2l uc /12— ue— ug)/ 41 =( u. + us) /2 (2.12)
The centerline velocity can be written in terms of the mean velocity and the slip velocity,
as follows:

Ue =2 Uy — U (2.13)

Making this substitution, we find the following expression for the velocity profile in slip—

flow:
U=2( Uy — ug) (1=r%) + ug (2.14)
If the slip velocity is zero, then Eq. (2.14) reduces to the Poiseuille distribution:

u=2u, (1-r¥) (2.15)




2.13E ation of the Slip Veloci

The slip velocity can be evaluated from Eq. (1.1) as:

— A, du _ 4/1(um“us) _ 8A(“m"us)
WERlGE =t =—5

Introducing the Knudsen number, we find:

Us _ _8Kn
Um 1+ 8Kn

12

(2.16)

(2.17)

Making this substitution in Eq. (2.14), we obtain the following expression for the velocity

profile in slip flow:

u _ 2(1=r*?) + 8Kn
Um = T 1+ 8Kn

(2.18)

The molecular mean free path for a gas can be calculated from the following expres-

sion(Sreekanth, 1968):

=H__ i
A Q(ZRgT)

The acoustic velocity for a gas is given by:

Ca = (YRgT)'/?

where: y = ¢,/c,. Substituting Eq. (2.20) into Eq.(2.19), we obtain:

(2.19)

(2.20)

(2.21)
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for a gas having a specific heat ratio, ¥ = 1.40. The Knudsen number may then be written

as the reciprocal of the Reynolds number based on the sonic velocity in the gas as follows:

= (1 i 1
K= pee, (2 ) T Rew( ) 0.6743 Re * (2.22)

From the expression, it is obvioﬁs that the Knudsen number is dependent on Re *for a gas.
Thus, for a given temperature, Kn can be calculated from Eq. (2.22) and the velocity dis-
tribution can be determined from Eq. (2.18).

For example, for nitrogen gas at 300 K (26.8°C or 80°F) and atmospheric pressure,
the gas mean free path may be determined from Eq. (2.21), where the property values for
nitrogen gas are as follows:

0 = 1.6332 kg/m3 = 0.07106 1bm/ft3
u =0.01784 mPa~s = 0.04316 1bm /ft—hr
R, =206.8 J/kg-K = 55.15 ft—1bf/lbm—-°R

_(0.01784) (10-3) 7T
- (1.6332) (2) (206.8) (300)

A ]1/2

A=0.2189x10%m =0.2189 pm

If we accept a difference of 5 percent between the case for slip flow and the case for
continuum flow as the effect of the slip condition, from Eq. (2.17) we find that the slip

flow effects become significant when:

Us — 8Kn -
Um 1+ 8Kn 0.05

Then
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8Kn ~ 0.05 ,or Kn = 0.00625

The corresponding tube diameter is:

D =0.2189/0.00625 = 35.0 um

For slip—flow (10~3 < Kn < 0.1), the tube diameter range is:

Dmin=22um for Kn=0.1

Dmax =218.9 um for Kn=0.001

and from Eg. (2.18) the maximum velocity can be found in the range of:

Umax / Uy = 1.556  for Kn =0.1

Umax / U = 1.992  for Kn = 0.001

while Umax / Uy =2 for Kn =0 (no slip)

which means that the velocity difference between the wall and the centerline can be re-

duced significantly in small size tubes.

2.2 Temperature Distribution

The general temperature field equation for flow of an incompressible fluid with zero

swirl or angular components, zero energy generation, and negligible frictional energy dis-

sipation is as follows:
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(L4 T | 9Ty - 19 (,9Ty | 9°T
oc (G + v +ug) = My gD + & (2.23)

For steady flow and for zero radial velocity (v = 0), the energy equation reduces

l to:
2
ug—)f=a[%—a—( POLy 4 92T (2.24)
From an order-of-magnitude analysis for the case in which the tube length is much larger

than the tube diameter, the second term on the right side of Eq. (2.24) is much smaller

than the first term on the right side and the energy equation can then be written in the fol-

lowing form:
0T _ ad oT
Yox = Tor ( arr ) (2.25)

One can then consider the case for flow which is fully established hydrodynamically
atthe end of the insulated section ( alon gentry length), but which is developing thermally
due to the temperature jump on the tube wall. The physical model is illustrated in Figure
1.1. The velocity profile is fully-established at the end of the insulated section, x=0, and
the temperature of the fluid entering the uninsulated section is uniform T = T, . The

boundary conditions for this situation are:
TR, x)=T, forx>0
T(r0)=T) forx<0

Using the dimensionless variables, the energy equation may be written in the following
form:

|

|




R2u 46 _ 1

al ox*  r*gr*

Using the velocity distribution given by Eq. (2.14)

d (r*89

or*

)

=2 thn — us) (1=r%2) + tg = 2( thy — ug) (1 —r*2 + 4Kn)

the energy equation reduces to:

umD? 36 _ 1 d_( x99
2aL( 1 + 8Kn) dx*  (1—r*2 + 4Kn)r * or * or*
The Graetz number Gz is defined by:
_ _ Dumopcp _ u,D?
Gz = Re Pr (D/L) = L kL- ol
The energy equation, Eq. (2.28), can be written as follows:
Gz 0 _ 1 d (r* 1) )
201 +8Kn) or*  (1—r*2 + 4Kn)r * or * or*

with boundary conditions:
6(1, x*) =0
6(rx 0) =1

2.3 Summary

forx*> 0

forx* <0

)
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(2.26)

(2.27)

(2.28)

(2.29)

In this chapter, the velocity distribution with slip-flow has been obtained. It can be

expressed simply in terms of the Knudsen number. From the expression, it is obvious that

the velocity increases always as Kn increases. From the relationship of Kn in term of mo-

lecular mean free path for a gas A and diameter of tube D, we can see that Kn in microtubes
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may become large enough to significantly affect the velocity distribution and consequent-
ly affect the heat transfer for this problem. Also, a mathematical model of temperature
distribution in slip~flow has been established by combining the energy and momentum

equations.




CHAPTER 3
ANALYTICAL SOLUTION

In the last chapter, the velocity distribution was expressed in terms of mean velocity
and Knudsen number, and a mathematical model of temperature distribution in slip—flow
was established by combining the energy and momentum equations. In this chapter, a
series solution will be obtained by the method of Frobenius. Considering the given
boundary condition, a temperature distribution in terms of a generalized Fourier series
will be derived. Also, expressions for the local and overall Nusselt numbers will be

obtained.

3.1 Graetz Solution

3.1.1 Separation of Variables Solution

Eq. (2.29) can be solved by a separation—of—variables technique. Suppose we let
O(r*x*) = G(r*) X(x*)

Making this substitution into Eq. (2.29) and rearranging the components results in

the following:

Gz aX _ 1 d(r*a'G)=_/12
2(1 + 8Kn) X dx* (l—r*2 + 4Kn)r*dr* dr*

(3.1)

where 4 is an arbitrary constant. The ordinary differential equations which result are:

2
dX 201+ 8KmA2

dx * Gz 0 (32

18
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and

d*G 1 dG 2 2 —
o T (S5a )+ A 1 4 4Kn )G = 0 (3.3)

with boundary conditions:
G(1) =0,

and
G(0) = 1.

The solution of Eq. (3.2) is:

2( 1+ 8Kn ) A2
G x* (3.4)

The constant C in Eq. (3.4) will be evaluated below, and A will be evaluated in the next

Xx*) = C exp[ -

chapter.
The solution of Eq. (3.3) may be obtained by the method of Frobenius. Suppose we

take the function G( r*) as a power series.

GG* = 2a; r¥ (3.5)
j=0
Then,
G (r¥) = Zja r*f‘1 2(1 + Da; iy TF (3.6)
and

G" (r*) = Z;(j +1)j g,y r¥l= %(H DG+ 2a,, r¥ (3.7
J= J=

Making these substitutions into Eq. (3.3), we obtain:

jé?o(,'+ D G+ 2a;, r¥+ Jé?o(j+ D a,, ret+

R +dKn) 2 rH- X g puit2] = (3.8)
j=0 j=0
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Expanding Eq. (3.8) and multiplying each term by r*, we obtain:

(2a,r* + 6a,r *2 4 12a,r *3 4 .+ (a; + 2a,r* + 3a3r *2 4 4a,r *3 L D+

L (1+4Kn) (agr* +ar*? +ay*® + ) @g® + .)] = 0 (3.9)

The first two constants ap and a; are arbitrary, so let us take the even solution with

the following values:

ap=1 and a; =0

Equating the coefficients on like powers of r* in Eq. (3.9), we obtain:

2a+2a,+A2(1+4Kn)ay=0

Ofr,

ay=—(A/2)2(1 +4Kn)
and

6as+3a3+A%(1+4Kn)a; =0
or,

a3=0

In fact, we find that all terms involving odd numbered subscripts drop out.

ax-1=0 fork=123,...

For the coefficients aj, with j > 4, we find the following recursion relationship:
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G=1)()a+ja+A2[(1+4Kn) g s-agi4]=0

or,

g = —(/1/]')2[(1+4Kn)aj_2—aj_4] forj=4,6,8,... (3.10)

1.2 Eigenfunction of the Series Solution
At the surface of the tube ( r* = ] ), the temperature in slip flow is given as follows
(Eckert and Drake, 1972):

9T

TFTW—_(I-F)/ )Pr or

r=R (3.11)

Introducing the dimensionless variables, this condition can be written as follows:

T~T,, 4y Kn, 00
O = (7, TO—T )= l+y Pr(ar*)"“_1 (3.12)
We note that:
6; = 0 (1,x*) = X(x*) G(I)
and
90(1, x *) dG(l)
Torr - XD
Therefore,
_ 4y Kn dG(Q)
6= -135 B G+ (3.13)

We can write Eq. (3.5) and Eq. (3.6) as follows:

G (r* = Zaz r*¥= 1 +a, r*2 + ay r¥ 4
j_

dG(r*) . :

NP =1§;2j ay; r*2-l= 2 a, r*+4a, red 4




22

Making these substitutions into Eq. (3.13), where dG(1)/dr* = dG(r*)/dr*|,»_ 1, We

obtain the following condition;
5 . 4y Kn |, _
1+1§1a2j[1+2j(m)ﬁ]—0 (3.14)

Eq. (3.14) defines the present problem. The coefficients ay; are functions of the

eigenvalues 4,, where n=1,2,3, ... . The eigenfunctions for this problem can be written
as follows:
Gu(r*) = ZO ay (An) r*¥ n=123,. (3.15)
Jj=

3.1.3 Determination of ( ‘onstants C,

We can write the solution for the temperature distribution in terms of a generalized

Fourier series, as follows:

2 (A)2x* (1 + 8 Kn)

6 (r* x*) = ZIC,,G,,(r*) exp [ —

G ] (3.16)
Note that the lower limit on n is now 1, which is arbitrary.
The constants G, can be found from the entrance condition,
atx=0(orx*=0); T(r,0) = To,or O(r*0)=1
Making this substitution into Eq. (3.16), we obtain:
_Z:) Cn Gu(r®) = 1 (3.17)
Jj=

The governing differential equation, along with the boundary conditions, is a Sturm—

Liouville problem, with a weight function,
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w=r¥(1-r*2+4Kn)

and from orthogonality,

1
f GnGmr * ( 1=r** + 4Kn )dr*= 0 for m%n
0

The constants may be evaluated by multiplying Eq. (3.17) on both sides by
Gmr*( 1 —r*2 + 4Kn )

and integrating between 0 and 1. Only the term in which m =n is non—zero, and we find:

1 1
J Gnr*( 1-r*? + 4Kn ) dr*= Cnf (G)?r*( 1-r*2 + 4Kn ) dr* (3.18)
0 0

The integral on the left side may be evaluated from the differential equation (Eq. (3.3)),

as follows:
* %2 = _ 1 0 *aGn
Gpr*( 1-r* + 4Kn) (A,,)26r*(r 5 )
and
1 2 1 G 1
* —r ¥ = *x __-n
IOG,,r(lr + 4Kn ) dr (An)z(r ar*)l

which becomes

1
* %2 *— _ 1 aGn
f Gur*(1or? 4 4Kn) dr At ). (3.19)
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The iniegral on the right side of Eq. (3.18) can be evaluated from (Graetz, 1885, see
Appendix D)

1
2 2 = 1 9G y 9Un
j LG (lore? e akn ) arx= L[ (80 22

Making the substitutions for the integrals, we find the following values for the constants

in the series expansion:

C, = - T 2)] (3.20)

n

The term in the denominator may be evaluated, as follows:

[+ <] «©

_ dazj i a2]
[( )1 —[%(dﬂ ] 2

J= n = n

Each of the terms in this equation may be worked out from the previous results, Eq.

(3.10), as follows:

)
(d,l)
da4 _ 12 2
(dl)n— ]
3 2
da A(1 + 4 Kn) 34

— n 2
A(a'ﬂ)__ 43 [5+——8—(1+4Kn)]

..............................................................................................................
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For the special case of x/L/Gz > 0.05, which means that the entrance effect can be
neglected for the rest of the tube, only the first term in Eq. (3.15) is needed to represent

the temperature distribution accurately. In this case, we have:

24 x*(1+8K
0 (r* x*) = _T_(r—T;%T—— = C,G,(r*) expl- — )sz( " 2
The expressions for the temperature distribution are summed as follows:
& 2 v %
0 (r*x%) = 2 CGur®) exp [ - 2Lnx* U+ 8 Kn) | (3.16)
n=1] Gz
where
Gu(r*) = ZO ay (L) r*¥ n =123, .. (3.15)
j=
Cn = - 2
Aol (% ) 1, (3.20)

=1

[( ) ] _ g‘ aZJ

From these expressions, we can see that the coefficients apj and A, must be predetermined

in order to calculate the temperature.
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3.2 Heat Transfer Coefficient Correlation

3.2.1 Bulk Temperature

The bulk or average temperature can be determined from:

2 R
0p = -1?2[ (u/um) 6 r dr

0
or
1
0 = 2-] (u/um) 6 r* dr* (3.22)
0
where:
6. = Tg-T,
N Ty-T,

Using the velocity distribution from Eq. (2.18) and the temperature distribution from
Eg. (3.16), we can evaluate the bulk temperature at any location along the length of the

tube, as follows:

2 (A2 x* (1 + 8 Kn)
4,,21(1 T8k “P - Gz »

1
f Gn (1-r*2 + 4Kn ) redr* (3.23)
0

The integral had been worked out previously in Eq. (3.19). Making this substitution, we

obtain the expression for the local bulk temperature of the fluid in the tube.

o — 4 C, dG,(1) 2 ()2 x* (1 + 8 Kn)
BT U+ 8k = @) arr P l- Gz ]

(3.24)
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3.2.2 Local Heat Transfer Coefficient

The local or "point” convective heat transfer coefficient can be defined by:
QAy=hy (Tg - Ty) (3.25)

The heat flux can also be written, as follows:

k(TeTy)
9 _ k()1 _p == ( . (2., (3.26)

Equating the heat flux from Egs. (3.25) and (3.26), we obtain the expression for the local

convective heat transfer coefficient.

= __k_ =_2k 30
he = ReB(ar*)'f*=1 DGB(ar*)"*:l 3.27)

Making the substitutions from Eq. (3.16) for the temperature gradient at the wall and Eq.
(3.24) for the local bulk temperature, the following expression is obtained for the local
or ”point” Nusselt number.

2 2C 2 (A,)2x* (1+8 Kn)

n [ - ]
d : €
Nu, = ""kD = > z (3.28)
B

Or,

a +8K)nz c,,dG(l) o - 2(/1,.)2X’;(2:1+8Kn) :

) (3.29)
C, 4G (l) 2 (4,)*x* (1+8 Kn)
2 § @A) arr P [ - Gz ]

Nu, =
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For the special case of x*/Gz > (.05, Eq. (3.29) reduces to the following expression:

Nux=(1/2)(1+8Kn)( A )% (3.30)

3.2.3 Overall Convective Heat Transfer
Coefficient

The average or overall convective heat transfer coefficient is defined through the

following expression:

- L '
Q=hc(7tDL)(AT)LN=j hy ( To~Tw) ( & D dx) (3.31)
0

where (AT )iy = log-mean—temperature difference (LMTD).

The LMTD may be written in terms of the inlet temperature Ty and the exit bulk

temperature T , as follows:

- (To—Tw)—(TL—Tw) __(OB,L—I)(TO_TW)
(AT)LN“zn[(TO—TW)/(TL-TW)] B In (6g,) (3.32)

Let us define the dimensionless LMTD, as follows:

(4 Ty

O =7 - (3.33)
Then,
o _ (Opi 1)
W= 6, (3.34)

The expression for the average convective heat transfer coefficient can then be written,

from Eq. (3.31):

1
s 1
he=2—| ke 6gdx*
c IO x (3.35)
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We had obtained the following result previously in Eq. (3.28):

2 k 6
h:fp =-_D_(%E)lf“=l

and
- 2@A)2x*(1 +
hy 6, D> 2k C, dG,,(l) An)? x*( 8 Kn)

=1 D dr* exp [ - Gz (3.36)

Making this substitution into Eq. (3.35) and integrating, we obtain the following result

for the average Nusselt number:

Nu = thD
= Gz v C, dGu1) 2 @A)2 x* (1 + 8 Kn)
Nu TO N+ 8Kn),,2;(,1,,)2 ar+ {1-expl- Gz 1)

(3.37)

The expression for the average Nusselt number may be written in a somewhat more

compact form, as follows. At the inlet of the tube, the temperature of the fluid is uniform,
T(r0)=Ty, 6pp=
Using Eq. (3.24), we obtain:

- 4 C, dG,(1)
O0 = 1= (1 +8Kn)p=1(1,)2 dr* (3:38)

and,
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_ 43 Co dGu(l) . 2()?
5L = -TF 8Kn) w2 —ar* L=

x* (1 + 8 Kn)
G ] (3.39)

By comparison with the expression given in Eq. (3.37) and using Eq. (3.34), we obtain

o 2 =0 ) (3.40)

The expressions for both local and average Nusselt number are summed as follows

(1 + 8K 2 CndG(l) o[- 2(/1,,)2x*G(Zl+8Kn) |
Nuy = - — — (3.29)
23 G dO), o 20.)x U+8Kn) |
n=l(}~n) dr* Gz
= Gz s Cp dG,(1) 2 A2 x* (1 + 8 Kn)
Nu = 0,1 + 8Kn) nzx An)? dr¥* {-expl- Gz 4 (3.37)
6. - (6p;—-1)
W= 6, (3.34)
N 4 v Cp dGy1) 2 A% x* (1 + 8 Kn)
OB'L T+ 8Kn)n=1(A,)2 dr* expl - Gz ] (3.39)
Gur*) = 2ay () r*¥ n =123,
j=0

(3.15)
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co-_ 2
n ﬁ v
Anl ( ) ]f“=1 (3.20)
c,  da
G 2j
L5, ] 20,

dGp(1) _ dGu(r*)
dr* = dr*

e}
loey = 22 a,;
re=1 j=1J 2j

From these expressions we can see that the coefficient apj and A, must be predetermined

in order to calculate the Nusselt numbers.

3.3 Summary

In this chapter, a series solution for the mathematical model of temperature
distribution in slip flow in circular geometries has been obtained by the method of
Frobenius. Considering the given boundary condition, a temperature distribution in
terms of a generalized Fourier series has been derived. Also, expressions for the local
and overall Nusselt numbers have been obtained. All these expressions can be taken as
functions of the Knudsen number and the Graetz number. In order to calculate either the

temperature or the Nusselt numbers, the coefficient ay; and A, must be predetermined.




CHAPTER 4
EVALUATION OF EIGENVALUES

In the last chapter, we obtained a series solution for the temperature distribution.
Also, expressions for the local and overall Nusselt numbers have been obtained, as func-
tions of the Knudsen number and the Graetz number. In this chapter we presents a tech-
nique for expansion of the coefficient ayj and evaluation of eigenvalues for the solution of
the Graetz Problem in slip—flow, since the coefficient ay; and eigenvalues A, must be pre-
determined for the calculation of either the temperature distribution or the Nusselt num-
bers. A matrix will be constructed and a formulation described to find the coefficients ay;

directly as well as d,. Based on these d, the eigenvalues A, can be calculated easily.

4.1. Introduction

The series solution of Eq. (3.8) can be expressed as Eq. (3.16), which required the
solution of Eq. (3.10).

Letting f = ( 1+44Kn ), Eq. (3.10 ) can be rewritten as follows:

d*G 1 dG
dr ¥2 +(r*dr* )+Az(ﬂ“"*2)G= 0 4.1
with boundary conditions:
GO) =1 4.2)
G(1l) =0 (4.3)

A particular solution of Equation (4.1) satisfying condition (4.2) is

Gir*) = go"k’ 2k (4.4)

32
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Substituting j = 2k, the recursion relationship Eq.(3.10) can be rewritten as follows:

ay = 1, 4da+pA?=90 } ‘ 45)
ke + A% [Bay_; - ar_] = 0

fork=2,34,....

From Eq. (4.5) we can see that the expansion of g involves A with different powers.
In order to satisfy Eq. (4.3), the parameter A must take on an infinite number of discrete
values4,, and G(1) can be taken as a function of A. Then, aneigenfunction is obtained by

rearranging terms according to 4 2:
Gr*) lu_; = G(1,A) = kZ’Od,ﬂ =1 +dA2+dA* +ddS+ . = 0 (46)

One of the procedures employed in determining the values of A is to (1) expand each
coefficient g to a large k by relationship Eq. (4.5); (2) add up all the terms with the same
order of A in determining the coefficients dy in Eq. (4.6); and, (3) determine the values of
An. This technique is computationally inefficient for large k because the expansion of g
for large k is very complicated and makes the determination of An from the eigenfunction
G(1,4) = O extremely difficult. Itis the purpose of this chapter to obtain a formulation for

calculation of g; in Eq. (4.5) as well as forA, in the eigenfunction expansion (Eq. (4.6)) in

a more effective way.

4.2. Formulation of dy

4.2.1 Expansion of ay (Kn = 0 or B=1)

First of all, let us expand the coefficients @, For simplification, let coefficients a; be

expanded from the recursion relationship Eq. (4.5) for B =1 (or Kn = 0) as follows:
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a; = — M/[2@M) 112

ay= [A2204/[203)21H72

a3 = —[ M4(22+42)+16)/[2Q)3)(31)2

ag= [ M2262+A5(22+42462)+A8)/[2D@)(41)2)

as = —{ M[2262+482(22+42)]4)3(22+42462+82)+A10)/2D6)(51)2]

ag = {A9226210%+ A3[2262+82(22+42)+102(224424+62)] +A 100224424 +102)+
+M2}[2@6)(61)2)

a7 == { M[2262102+122[2262 + 82(22+42)] + A10[2262482(22+42)+ ] 02(22+42462)+
+122(22442462482)] +A12(224424  4122)414 M2 712

ag= {A$2262102142+010[22621024122[2262 + 82(22442)]4142[22624 §2(22442)+

+102(224+42462)])+ M22262482(22+42)+102(224+424+62)+ 122224+ 424624+82)+
+142(27442+.. +102)] +A14(22442+ 1+142)4016)/[22®)(8 2]
............................................................................................... 4.7)
The underlines are explained in examples 1 and 2 below.

From these expansions of g, we can see the complexity of the expressions with large

k. Both the number of terms and the constants increase with increasing k. Because the
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denominator increases very rapidly, it will be extremely difficult to find the a;.’s we need
for evaluation of eigenvalues 4,,.
To see more clearly the relationship between a;, and dy, let us construct a matrix from

the expansions of a;.

4.2.2 Construction of the 4; ; Matrix

Since we need to add up the numbers related to the order of A%in g the expansions of

@ can be rearranged as

1 2 3 4 5 6 7
@y @Yy @9 4% @' @'?) @'
1
-4 0 0 0 0 0 0
T:Z % 0 0 0 0 0
=20 -]
0 2304 2304 0 0 0 0
144 56 1
147456 147456 147456 ) 0 0 0
0 ~1424 120 ~1 0 0
14745600 14745600 14745600
0 14400 7024 220 1 0
2123366400 2123366400 2123366400 2123366400
0 0 0 —219456 -24304 -364 —]
416579814400 416579814400 416579814400 416579814400
0 0 0 2822400 1596160 67424 560

106542032486400 106542032486400

106542032486400

106542032486400
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S0 a matrix B is constructed:

by, 0 0 0 0
by by 0 0 0
0 by, by; 0 0

S O O O

0 by bys bss 0
0 0 bsybsy bss O ..
O 0 b6‘3 b6‘4 b6’5 b6'6 cen

From the matrix and the expansions ai, we observe that

- _ D!
- 2@a)(1)2
b = D2
227 20212

1
- 2 _ -
bay = b33 2% = by, 2012 = 2(2)(1)52_'1(31)2
g

=13
22)B3)(31)2

b3.3 -

2
by, = bs 5 (22 + 4% = b3, 2203-2)12 4 22) = by, 20 ¥ (51)2
’ 5 =1

N ol O
T 2@X)(41)2

3
= by 20012422 4 39 = p,, 2<2><1>Zl(s1)2
5 =

2 sp-1
bap = bag 2%6%) = by 204D = p, 200 (3 (5. 4 14 3 (5]
5,=1 5i=1

.......
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where we define the summation for the upper limit of zero as follows:

Z_l(sl)2 =0

From these observations, we can deduce a formulation to calculate b;; directly re-
lated to the index instead of from the expansion of each term a. The formulation is:
N GOk
MO 222
and fori > k

s4-1 53-1 51

by = b;; 24 2 (54 +4-D7 Z Ga + A7 [E(S +1)2[Z_fls12]]...]]

S =
4.8)
where 4 = i — k, and then the coefficients in the eigenfunction can be found from
2%
= 2=7k bix 4.9)

Example 1:

$-1

bs; =b 522<53>[Z(s +1)[Zsl

=G 24[3221's 2+42Fjs 2]
226)(51)2 s=11 s=1 1

_ -1 472212 2,12 2
= 13,745,600 2 3717+ 4°(1% + 2%

. —1,424
" 14,745,600
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Example 2:

53“1 J"y—'l

bys = bgg 255 Z(s +2>[2(s +1)2[2s21 ] ]

§3 =3
2—1

—1)8
=2—2ET>12)37)2' 6[522(s2 1)2[2s2]+622(s +1)2[Z's1

Sp-1

+722(s +1)[2s1
— 1 67222212 2rq212 2012 2
—m2{531+6[31+4(1 + 29 +

+ 73712 + 42(12 + 22) + 52(12 + 22 + 32)])

__ 1,59,160
106, 542, 032, 486, 400

These two examples are also shown as the underlined parts in expansion, Eq. (4.7);
when applying the recursion relationship, Eq. (4.5) and the procedures described in part
4.1, the computations are not easy but rather are complex and time—consuming. For ex-
ample, the computation of bs s involves the expansions of a;,, ay, ..., ag and addition of all
term with 210 in those expansions. Thus, these examples also show that the computation
by the formulation in Eq. (4.8) is much more effective than that found by the recursion

relationship, Eq. (4.5).

4,2,3. Expansion of ay (Kn > 0)

From the above two examples, we can see the correctness and effectiveness of Eq.
(4.8) and, based on it, the formulation for Kn > 0 also can be derived.

For § >1 the corresponding expansion of ai are as follows:
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ap= 1

ay = — Mp/2@U 11?2

ay= [ A2ZME2[2002(21)2)

a3 = = [ MPA4DASBY DO 31

ag= [ M22624A82(22442462)+A8p4)/[2D@) (41)2]

as = —{ MB[2267+82(22+42)]+A3B3(22442+624+82)+A1085 )/ 2DO)(51)2]

ag= { 1622621o2+18(32[2262+82(22+42)+102(22+42+62)]+AIOB4(22+42+...+102)
+A12B6}/[2(26)(61)2]

a7 = —{ A¥B[226210%+127[2262 + 82(22+42)] + A10B3[2262482(22442)+
+102(22+42+62)+122(22442462+82)] +M2B5(224424  4+122)+
+HMABTHR2@D 71y

ag={ 1%226210214%+A1082[2262102+122[2262 + 82(22+42)]+
+142[226%+ 82(22+441)+102(22+42+62)] ]+ A12B4[2262+82(22+42)+
+10%(22+42462)+122(22+42462482)+ 14222442+ +102)]+
+M4BO(22+42+.. +142)+A16B8}/[2QB)(81)2)
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so the matrix is modified as follows:

b, 8 0 0 0 0 0
by1 b8 0 0 0 0
0 b3,8 b38° 0 0 0
B=10 by, bfb8* 0 o0
0 0 bsaB bsB’ bs B 0 ..
0 O b6’3 bé,‘ﬂz b6’ﬁ4 b6'ﬁ6 eee
| e ves ses ves .es ves ...J
Let
b = b Jﬂi—?A 4.11)
then
2k
d, = Z;cbix' (4.12)

All the expressions for evaluation of eigenvalues of the Graetz Problem in slip—flow

are summed as follows:

Grr*) | uy = G(1,4) = kZ_?Od,glzk =1+ dA2+dA* + ddS+ .. =0 (46)
o= DT
M 22
k s4-1 $3-1 s-1
big = b;; 2 Z_'A(S 4+ A-1)7 Z_?A (544 + A-2)2[...[§_52(s2 + D %sﬂ]]...]]
(4.8)

bi,k' = b, Jﬁ;_u 4.11)
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2%k
d, = Zbik’ 4.12)
i=k
where 4 = [ -k,

From these expressions one can see that the summation notation greatly simplifies

the evaluation of eigenvalues.

4.3. Summary

In this chapter, a technique for calculation of the eigenvalues occurring in the Graetz
Problem in slip~flow has been derived by constructing a matrix. The two examples show
that the computation of the b; x by the formulation in Eq. (4.8) is much more effective than
when found by the recursion relationship, Eq. (4.5). With the formulation, any number of

eigenvalues can be theoretically determined. The next chapter will deal with the algo-

rithms, the computational program, and will carry out the calculation of the eigenvalues.




CHAPTER 5
COMPUTATIONAL RESULTS

In the previous chapter, the formulation for the calculation of the coefficients occur-
ring in the eigenfunction was determined. In this chapter, we will develop the codes for
the evaluation of eigenvalues for the Graetz Problem in slip—flow. We will calculate the

eigenvalues and discuss the computational results.

5.1 Treatment of Very Large Numbers in the Computations

By using Eq. (4.8), the calculation of the coefficient b;x involves the constant
22(i1)2, which can become a very large number. For example, if i = 30 (or k = 15), then
2%(i1)2 =290(301)% = (1.15 x 1018)(7.04 x 10%) = 8.11 x 1022 , which will overflow on
the computer. Therefore, to reduce the effect of very large numbers in the computation,
the eigenfunction must be treated as follows.

(1) We can combine 2% into the summation in Eq. (4.8) as

s,4-1 $5-1
w = 2(2:(13)2 2“2 S8+ 8D 2 5y + 42702 (5, + DA Z $71)-1
s4-1=4-1 $2=2

; k T e . 2
(G2, 2442(34+A 1)[ Z‘ Sy +4 2)[ [Z(Sz+1) [Z'S,

22(j1)? s,=4 22 s, =d-1 22 s,=2 22

. k 2 su-l
1) (84 +4-1) Sy + A—2) (s, + 1)
= 294-2i(j1)2 =4 72 [XA_1Z='A 1“2_ szz—'z 2 22 ]] Jl

So fori = 30 (or k = 15) , the largest number in the term boy k can be reduced to (30/)2 =

7.04 x 1064
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(2) Letting 4'=A/g and d}' = g4, and allowing the magnification coefficient, g
be any given number greater than 1, we have

GA) = kZ'OA”‘dk =1+ A%, + A%, + A%, + ..

dl d/ d’ e d/
=1+ @e)l=4+ W2+ W) 4+ .. = X ek ie
4'g) p%; “'g) 24 “'g) 26 k=0(/1 8) per:

=1+ A% + 2%, + 2%, + ...

4]

= 2% =6a) =0 (5.1)

For example, when we let g be 10, then from Eq. (4.9) and Eq. (4.8) we have

21) 2(1)
dy' = £Vd, = 10%0d; = 10202 p,, = X 1020p,,

i=1 " i=1

10°Dp, | + 102Wp, |

2(2) 2(2)
d) = §*¥d, = 10204, = 10203 p,, = X 102,
i=2 " i=2 ’
= 10°®p,, + 10*@p, , + 10*@p, ,
2(3) | 2(3)
dy' = g2¥4, = 1026)g, = 102(3)2171'3 = 2102(3)bi3
i=3 " i=3 :

= 10295 + 10°®b,, + 102, + 1024)p,

.................................................................................




In general then,

% 2%
4 = g*d, = ngigkbi.k = g;gzkbuc

.................................................................................

For the example in which k = 15, we have

2(15) 2(15)
"= 102097 = 10205 = 215
dys" = 10095 = 10X ),.:Z;Sbi,ls = ;ﬁ“:slo @b, 15

Thus, combining 1025 into the term bs0,15 , the largest number in this term reduces to
(i1)2/10% = (301)2 /10%° = 7.04 x 104,

(3) The magnitude of the term | b;; | can be reduced for computational purposes by
taking the logarithm of both sides and later reversing this computation by taking the expo-

nential function of both sides. That is,
i
log\ob;; = =2i loglo2—2I£I log;ok (5.2)
This method can reduce the number greatly. For example, for i = 30, then,
30
logyobsg30 = —2(30) lo,g102—2k§l log,ok

= —(60) (0.301)-64.847 = —82.907

All three of these methods were used in the computer code to accommodate the in-

herently large numbers.

5.2 Flow Chart of Computation
A block diagram for computation of the eigenvalues is shown in Figure 5.1. The
input data includes the number of terms, k, the magnification coefficient, g, in Eq. (5.1),

and the Knudsen number, Kn or B in Eq. (4.11).
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a=1; a1 =-1/2% B=1+4Kn; i=1; j=

yes i
1<2k? J=
1——-‘i+l
no A =i;

call summation b;; | ¥e8 calculate b;,;”
solver with A, j; @

bij’= b; j(1+4Kn)i-2A

no
no calculate d,’
1<2k? I=1+1
es
i=i+] p Y
di=d+by;d’=d’+ by
call A solver with d;’ calculate 4,

END

Fig. 5.1 Flow chart of computation of eigenvalues
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The calculation procedure can be broken down into three steps:

1) calculation of coefficient b;j (which requires a summation solver for Eq. (4.8)
for b;j and Eq. (4.11) for b;;'):;

2) calculation of d by Eq. (4.9) and d; " by Eq. (4.12); and

3) calculation of eigenvalues A,, or 4, by Eq. (5.1).

Based on the flow chart, the codes for computation of the eigenvalues have been de-
veloped and are listed in Appendix A. The codes need as input the value of the Knudsen
number, Kn, and the number of coefficients dy, or k, and the magnification coefficient, 8
The output of the calculation includes the coefficient bij, di, and eigenvalues, Ay

From Examples 1 and 2 in Chapter 4 for the formulation of Eq. (4.8), we can see the
feature of the calculation of the k—th term: the calculation involves all the previous (k-1)
terms, that is, the summations of parameters sy, sy, ..., -1, and further expanded summa-

tionsof sy, s; ..., ;. forthe presentk. This concept can be illustrated using the following

N
o AN SN

triangles in Fig. 5.2.

k=2

Fig. 5.2 Illustration of the growth of S1s 82y «.. » §-1 as functions of k

5.3 Results

3.3.1 Comparison of the First Ten
d. (Kn=0)

5.3.1.1 Accuracy. Because the evaluation of eigenvalues involves the determination of

an infinite number of terms, it is extremely difficult to determine directly the accuracy of
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the approximate numerical eigenvalues. All we have to do is to find the consistencies
existing in the results by different methods instead to determine the relative accuracy.
In order to assess the accuracy of the computation of Eq. (4.8), a comparison of the
firstten dj, using Mathcad 5.0 was made, as shown in Table 5.1. In the table. the data in the
second column are the computational coefficients dy ( with g = 10) using Eq. (4.8); the
data in the fourth column are the absolutely exact coefficients dj calculated by expansions
using the symbolic processor in Mathcad 5.0; the third column gives the equivalent deci-
mal values of the fourth column. The differences between Eq. (4.8) and the exact values

are shown in Table 5.2.

Table 5.1 Comparison of Coefficients d (g=10)

Simulation by Mathcad Version 5.0

k | Eq. (4.9)

Numeric

equivalent Symbolic solution
0 1.0000 1.00000 1
I | -18.7500 | -18.75000E-02 -3/16
2 | 792101 |79.210069E-04 739,216
3 [-144.043  [-144.04297E-06 ~59/409,600
4 | 145.080 145.07980E-08 603,793/416,197,814,400
5 | 926715 | -92.67144E-10 -555,379/59,929,893,273,600
6 | 4038619 40.861856E~12 4.266,870,481/104,421,846,039,920,640,000
7 | -13.1812 | -13.181156E-14 -37.217,872,147/282,356,671,691,945,410,560.000
8 3.24941 | 3.2451315E-16 41,377,942,693,441/127,507,755,229,335,476.282,327.040,000
9 | -0.646315 [—0.62971547E-18 -9.281,940,782,645,851/14,739,896,504,51 1,181,058,237,005,824E +6
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Table 5.2 Differences of d; Between Two Methods

k Of1{ 2 3 4 5 6 7 8 9
Difference | 0 | | [ 3.1E-9 [3.0E-11 [2.0E-12 | 5.5E~15 | 1.4E-17 |44E_19 |43E-19 | 19630

From the comparison, we can see that the coefficient di computed by Eq. (4.8) is

always a little larger than that found by Mathcad, but the differences are rather small.
Based on the comparison, itis evident that the computational results have enough accura-
cy for an accurate determination of the eigenvalues.
S.3.1.2 Efficiency. In order to assess the efficiency of the computation of Eq. (4.8), we
can compare the computational efficiencies using Mathcad and a calculation of Eq. (4.8)
using a Fortran code for k= 9.

Using Mathcad 5.0, three steps were implemented to solve for the eigenvalues:

1) Expand ay, ay, ay, ..., a;3, as shown in Chapter 4;
2) Add up the terms in the expansions with respect to A2 for d 1 Mford,, ...,
M8 for dg; and
3) Solve the eigenfunction equation for the eigenvalues
I+ d M+ doh% + dshS+ ..+ dgAl8 = 0
Procedure 1) took about ten hours and 2) about five hours to accomplish. Forlarge
k, for example k=25, it would be too time—consuming and complex to use those methods,

Using the computer code given in Appendix A, which uses Eq. (4.8) to determine all

di fork=1109, the process took approximately one minute. Therefore, the latter proce-

dure is an effective and efficient technique for the calculation of eigenvalues.
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5.3.2 Behavior of the Eigenfunction

In practice, the number of terms used in the eigenfunction expression must be lim-
ited. In order to see how the eigenfunction behaves with respect to the number of coeffi-
cient terms, a number of calculations have been carried out and plotted.

Figure 5.3 shows the behavior of the eigenfunction as a function of the number of
coefficient terms. The numbers of the curves indicate the number of terms d, used in the
computations. At least six terms are needed to obtain the two lowest eigenvalues, shown

as the curve numbered 6.

G\)
1.0
Kn=0
k=25
g=10
05 |-
" N " 1 1 9
o'oc.o 0.5 A
0.5 5 [

Fig.5.3 Behavior of the eigenfunction as the number of coefficient terms increases

Graetz found the first two values, A1=2.7043 and Ay =6.50 from the followin geigen-
function:
0=1-220.1875 + 14 0.007921 — A5 0.00014404 + A8 145.92x10-5 +
- M094.938x10-104 . (5.3)
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Comparing the coefficients d; from Eq. (5.3) with those givenin Table 5.1 we can see
significant differences exist from the 5th term on, revealing why Graetz’s second eigen-
value is not accurate.

Obviously, the second eigenvalue determined by curve 6 is less than the "accurate
value,” which is slightly greater than 6.6 (see Table 5.3), shown as curves 7, 8, and 9 etc.,
in Figure 5.4.

In Figure 5.4, we can see that the true second eigenvalue lies between those obtained
by curves 7 and 8. It is clear that the second eigenvalue obtained initially by curve 6 is
rather rough; with one more term, the value is larger than the first one as shown by curve 7,
but closer to the “accurate value”; the second eigenvalue given by curve 8 is a little less
than that given by curve 7 but is even closer to the “accurate value.” The same holds true
for the case with nine terms, ten terms, and so on.

From this discussion we can conclude:

(1) that the eigenvalues initially obtained with the minimum number of coeffi-
cients is always rather rough, such as the second eigenvalue obtained by curve
6.and the third eigenvalue obtained by curve 9;

(2) that the next to the last available eigenvalue that can be determined for a certain
number of coefficients is always correct and sufficiently accurate. For instance,
for curve 7, the second eigenvalue can be assumed to be reasonably accurate and
correct; and

(3) that the eigenvalues and the convergence of the eigenfunction are sensitive to the
accuracy of the coefficients dj.

Figure 5.5 shows the plot of the eigenfunction with 25 terms. There are six eigenva-
lues shown in the plot. From the above discussion, we conclude that the first five eigenva-

lues are correct, but the last one, or the sixth, is somewhat inaccurate due to the truncation
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Fig. 5.5 Plot of eigenfunction with 25 coefficient terms

of the eigenfunction expression. The plot also shows that the eigenfunction is oscillating

with decreasing magnitude.

5.3.3 Comparison With Previously Known
Eigenvalues With Kn = 0

Table 5.3 shows the comparison with previously known eigenvalues for the classical
"Graetz Problem” (8= 1 or Kn=0) as presented by Sellarsetal. (1956). Asseenin Table
5.3, the first four eigenvalues are in excellent agreement. Therefore, we can apply this

technique to the Graetz Problem in slip—flow for evaluation of the eigenvalues.

5.3.4 Eigenvalues for Kn > ()

Table 5.4 shows the first five eigenvalues for slip-flow with different Knudsen num-

bers, Kn.




Table 5.3 Comparison with Previously Known Eigenvalues
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Sellar et al. Jakob Analog computer Present paper
n Ay My A
1 2.667 2.705 2.704
2 6.667 6.66 6.69 6.679
3 10.667 10.3 10.62 10.670
4 14.667 14.67 14.58 14.761
5 18.667 17.255
Table 5.4 Eigenvalues for Different Kn
Kn A L A3 A As
0.00 2.704 6.679 10.670 14.761 17.255
0.005 2.671 6.584 10.512 14.220
0.01 2.639 6.493 10.359 14.209
0.02 2.578 6.320 10.071 13.815 16.576
0.04 2.468 6.013 9.561 13.099 15.836
0.06 2.371 5.747 9.120 12.560 14.646
0.08 2.284 5.513 8.737 11.963 14.573
0.10 2.206 5.305 8.396 11.514 13.938
0.12 2.136 5.119 8.096 11.074 14.273
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0.000 0.500 1.000 1.500 A

Figure 5.6 Plots of the eigenfunction as a function of Knudsen number

Figure 5.6 shows the behavior of the eigenfunction for various Kn under slip~flow condi-
tions. It shows that the eigenvalues decrease as Kn increases. For Kn > 0, the plots appear
unstable after the fifth root so that only the first four values are reliable. The possible
cause for this instability is that the truncation errors are magnified by the factor (1+4Kn)i

on b, ; in the modified matrix B. The coefficients di” for Kn from 0.00 to 0.12 are shown

in Appendix B.

5.3.5 Influence of Kn on the Nusselt Number

5.3.5.1 Local heat transfer coefficient. Using Eq. (3.29) and Eq. (3.20), the local heat

transfer coefficient Nu, has been calculated.
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Figure 5.7 shows the local Nuy value as a function of x*/Gz for Kn =0.02 and with the
number of eigenvalues as a parameter. The value of the local Nusselt number converges
dramatically with the increase in the number of eigenvalues in the computation. When
x*/Gz is 0.02, the error in Nuy, is 0.7 percent when two eigenvalues are used and compar-
ing to the straight line ( using one eigenvalue ), the erroris 14 percent. Itcan be concluded
that the results using four eigenvalues are sufficiently accurate for x*¥/Gz > 0.02. When
x*/Gz is greater than 0.05, the error is at most 1.3 percent — that s, all three plots become

nearly flat, indicating a thermally fully—developed condition.

Nuy

n: number of eigenvalues used in calculation

R: radius of tube

8 Kn=0.02
7
6 4,39365
4.39326
436429 3.808620
5 3.85581 3.90620

3.80620
3.85581

LN B B § ' L AL ) ' L S A B |

1 1 1 L (] A 1 L | 1 1 A 1 | 1 i A L | 1 i i L J

0.04 (0.05) 008 0.08 0.10
x*/Gz

_om
o
o
o
o
N

Fig. 5.7 The local Nusselt number As a function of x*/Gz

Figure 5.8 shows the local Nusselt numbers as a function of Kn. It is obvious that Kn

has an influence on the Nusselt number. All the plots in Fig. 5.8 show that the Nusselt
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number increases as Kn increases, and that this effect is magnified near the entrance.

When x*/Gz is greater than 0.05, all the plots become nearly flat, indicating a thermally

fully—developed condition.

Nu(x)
5.5 \

! \ 0.12
50 0.10

- 0.08
0.06
0.04

Kn
sk \', 4471
: \ 4228

4.160
[ 0025 4,020
40
i 0.017
0.005 3.855
3.761
0.00 3.710
3.675
3.5 1 3 1 1 l 3 1 1 1 l 1 [l 1 'y l 1 Il 1 1 | x/(RRePr)
0.00 0.02 0.04 0.06 0.08

Fig. 5.8 The local Nusselt numbers as functions of x*/Gz and Kn for n = 4

Table 5.5 shows the values of the Nusselt number for fully—developed conditions
(where x*/Gz > 0.05) for different Kn and the ratios of these values to those with Kz = 0.
This ratio increases with an increase of Kn. The data show that when Kn is 0.01, the value
of the Nusselt number increases about 3 percent, and when Kn is 0.02, the increase is

greater than 5 percent. Thus, we can conclude that when Kz is greater than 0.01, the effect
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Kn

Fig. 5.9 Fully developed Nu as a function of Kn

5.3.5.2 Overall heat transfer coefficient. Using Egs. (3.37), (3.34), and (3.39), the over-
all heat transfer coefficient Nu can be calculated. Fig. 5.10 shows the plots of Nu, Nu,,
and (Nu - Nues), or A as functions of x*/Gz.

From Fig. 5.10, we can see that the overall heat transfer coefficient Nu is greater than
the local heat transfer coefficient Nuy: that the entrance has a greater effect on Nu than
on Nuy: and that when x*/Gz is greater than 0.05, Nuy becomes nearly flat, indicating a
thermally fully-developed condition. However, Nu does not becomes flat, so that it can
not be considered as a fully—developed condition until x*/Gz greater than 0.20.

From the above discussion, we can see that:

(1) slip—flow has a positive influence on the heat transfer coefficient and can enhance

the heat transfer efficiency;
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n=4

Nu,

— ey T
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0.15 0.20
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Fig. 5.10 Plots of Nu, Nuy and A as functions of dimensionless axial location

(2) the influence depends on the Knudsen number and increases as Kn increases;
(3) when Kn is equal or greater than 0.02, the increase in the fully—developed Nu is
greater than 5 percent so that the effect of slip—flow should be taken into consider—
ation in the computations of the heat transfer coefficient; and
(4) that the influence of Kn on Nueo will decrease as Kn increases.
5.4 Simplified Eigenvalue Relationships
with Kn
Figure 5.11 shows that 4, are functions of Kn. For practical purposes, a simplified
expression for calculation of the eigenvalues is needed. By using a least-squares curve

fit program, the following exponential expressions as given in Table 5.4 were found to

yield the best fit. The general form may be expressed as
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Fig.5.11 The first four eigenvalues as a function of Kn
/= C1+ Cy Knexp(Cs Kn) (5.4)

The constants Cy, C;, C3 and the correlation coefficient R2 are listed in Table 5.6, as func-

tions of Kn.
Table 5.6 Coefficients in Eq. (5.4) as Functions of A
n An C C, Cs R?
1 2.704 2.704 -6.6236 -2.8482 0.9997
2 6.679 6.679 -18.9118 -3.2003 0.9997
3 10.670 10.670 -31.7454 -3.3293 0.9972
4 14.761 14.761 -49.5056 —4.2066 0.9637
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5.5 Summary

In this chapter, the codes were developed for the evaluation of eigenvalues. The first
six eigenvalues were found, and the behavior of the eigenfunction was plotted. From the
comparison and discussion, it is evident that the new technique using Eq. (4.8) for evalua-
tion of the eigenvalues of the Graetz Problem in slip—flow is computionally effective and
efficient; the Nusselt number increases as the Knudsen number increases; and the simpli-
fied relationship of the eigenvalues as a function of the Knudsen number is reliable and

convenient for calculation purposes.




CHAPTER 6

CONCLUSIONS AND FURTHER RESEARCH

6.1 Conclusions

In the previous chapters, the mathematical models of velocity distribution and tem-
perature distribution were established, and the expression for the series solution shows
the importance of the eigenvalues. Since those eigenvalues were extremely difficult to
evaluate directly from the original expansion, a formulation was derived based on a Spe-
cially constructed matrix of coefficients bij. The formulation can be used to find any giv-
en b;j using only the indices i and J- This fact makesit possible to evaluate the eigenvalues
by computer. The computer codes were developed and some results were obtained. From
the discussions and analysis of the computational results, the following conclusions can
be drawn:

1. The te‘q.hnique forevaluation of the eigenvalues of the Graetz Problem in slip—flow
is computational effective:

2. The Nusselt number increases as Kn increases, or the heat transfer is enhanced
under slip—flow conditions;

3. When Kn is equal to or greater than 0.02, the increase in fully developed Nusselt
number is greater than 5 percent so that the effect of slip flow conditions should
be taken into consideration in the computations of the heat transfer coeffient; and

4. The simplified relationship between the eigenvalues and the Knudsen number is

reliable and convenient for calculation purposes.

62
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6.2 Further Research
The evaluation of the eigenvalues is very important for the solution of the Graetz
Problem in slip—flow. Although the technique is effective forn< 5, itis extremely time—
consuming, and the computational error is a problem for large A. Based on this work,
the following future research is suggested:
1. Develop computer codes for calculating the heat transfer coefficient and Nusselt
number, which involves the computation of G, and differentiation of eigenfunction
G,atr¥=1;
2. Obtain a simplified relationship between the overall Nusselt number and the
Knudsen number;
3. Develop a more effective technique to deal with very large numbers in computa—
tions;
4. Improve the codes to reduce the computing time; and/or

5. Develop a more effective technique to reduce the computing time.




APPENDIX A

PROGRAMS FOR COMPUTATION OF EIGENVALUES
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KA AR Ao AR HA A AR AR A AR AR A KA AR KA A Ko Ao KKK K oK o oo o oK o o ok o o ok Ko K oo ok

THIS PROGRAM FOR CALCULATION OF COEFFICIENT a; j and dy *
a: aj; *
at: inidal of a; *
d: dy *

£: magnification coefficient
kn: Knudsen number

bb: sqri(1.+4.*kn)

s A=iq *
*********************************************************************************

L K R TR I Y
* ¥

real a(1000,1000),d(0:1000),1,u,at,sum,g,kn, bb
integer s

C INPUTKn, g
read *kn, g
bb=sqrt(1.4+4.*kn)

C CALCULATING g;;
do 10i=1,26
aLi=(=1***(((@/2)* *()/(funt 1 (1)) **2)*bb**(2*i)
10 continue

C CALCULATING a; J
do 50 j=1,25

at=1

prim *,'***’,j

do 40 i=j+1,2%j
$=i—j
summ(i,j,s,at)
ai,)=at*(=1)**i*(((b/2)**(§)/((funt1(i)/ 10.%%(s/2.)/(2%*5))))**2) ¥bb**(2*i—4 *s)

C OUTPUT aj
write(*,110)i,5,a(i,j)

110 format(i5,5x,i5,5x,6 10.4)
at=1

40 continue

* print*,a(i,j)

50 . continue

C INITIATING dy zreo
do 55j=0,25
d@=0
55 continue




C CALCULATING d¢ BY SUMMATION a; J
d(0)=1
do 60 j=1,25
do 70 i=j,2*j
d()=d()+a(i,j)
70 continue
60 continue

C OUTPUT k,Kn,dy
open(3)
write(3,*’k =25 Kn="kn
do 100 i=0,25
print *,d(i)
write(3,*)d(i)
100 continue

C CALCULATING THE VALUES OF EIGENFUNCTION AT EACH POINT
du=0.0001
open(3)
do 200 i=1,30000
u=du*(i-1)
write(3,%)u,f(u,25,d),df(u,25,d)
200 continue
call newton(d,25)
end
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C FUNCTION OF n!
function funtl(n)

funtl=1
do 10i=1,n
funti=funt]*i
10 continue
retumn
end
*****************************************************
*1D FUNCTION OF THE LOWEST SUMMATION
function sum1jj)
real sum]
sum1=0
do 10 i=1,jj
sum 1=suml+i**2/10.
10 continue
sumI=sum1/4.
return

end
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*******************************************************

*2)

10

FUNCTION OF THE 2ND LOWEST SUMMATION
function sum?2(jj)
real sum?
integer ss
sum2=0
do 10 ss=2,jj
sum2=sum?2+sum1(ss—1)*(ss+1)**2/10.
continue
sum2=sum?2/4.
return
end

*******************************************************

*(3)

10

function sum3(jj)
real sum3
integer ss

sum3=(0
do 10 ss=3,jj
sum3=sum3+(ss+2)**2*sum?2(ss—1)/10.
continue
sum3=sum3/4.
return
end

**************************************************

*4)

10

function sum4(jj)

real sum4

integer ss

sum4=0
do 10 ss=4,jj
sumd=sumd4+(ss+3)**2*sum3(ss—1)/10.
continue
sum4=sum4/4,
return
end
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*(5)

10

function sum5(jj)
real sum5
integer ss

sum5=(
do 10 ss=5,jj
sumS=sum5+(ss+4)**2*sum4(ss—1)/10.
continue

67




A Ao AR KRR KR S K o o o e ok s o oo o o ok oo o ko oK ok oK

*(6)

10

*******************************************************

D

10

**************************************************

*@®)

10

*******************************************************

*9)

sumS=sum5/4.
return
end

function sum6(jj)
real sumé
integer ss
sum6=0
do 10 ss=6,jj
sum6=sumé6+sum5(ss—1)*(ss+5)**2/10.
continue
sum6=sumé6/4.
return
end

function sum7(jj)
real sum?7
integer ss

sum7=0
do 10 ss=7,jj

sum7=sum7+(ss+6)**2*sum6(ss—1)/10.

continue
sum7=sum7/4.
return

end

function sum8(jj)
real sum8
integer ss

sum8=0
do 10 ss=8,jj

sum8=sum8+(ss+7)**2*sum7(ss—1 Y10.

continue
sum4=sum4/4.
return

end

function sum9(j)
real sum9
integer ss
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sum9=0
do 10 ss=9,jj
sum9=sum9+(ss+8)**2*sum8(ss—1)/10.
continue
sum9=sum9/4.
return
end

**************************************************

*(10)

10

function sum10(jj)
real sum10
integer ss

sum10=0
do 10 ss=10,jj
sum10=sum10+(ss+9)**2*sum9(ss—1)/10.
continue
sum 10=sum10/4.
return
end

***************#***************************************

*(1D

10

function sum11(jj)
real sum]1
integer ss

sum11=0
do 10 ss=11,jj
sumll=sum1+(ss+10)**2*sum10(ss—1)/10.
continue
sumll=sumll/4.
return
end

**************************************************

*(12)

10

function sum12(jj)
real sum12
integer ss

sum12=0
do 10 ss=12,jj
sum12=sum12+(ss+11)**2*sum11(ss—1)/10.
continue
sum12=sum12/4,
return
end

*******************************************************

*(13)
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function sum13(jj)
real suml3
integer ss

sum13=0
do 10 ss=13,jj
suml3=sum13+(ss+12)**2*sum12(ss—1)/10.
10 continue

sum13=sum13/4.

rewurn '

end
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*(14)

function sum14(jj)

real suml4

integer ss

sum 14=0
do 10 ss=14,jj
sumI4=sum 14+(ss+13)**2*sum13(ss—1)/10.

10 continue

sum 14=sum14/4,

return

end
*******************************************************
*(15)

function sum15(jj)

real suml5

integer ss

sum15=0

do 10 ss=15,jj
sum15=sum15+(ss+l4)**2*sum14(ss—1)/10.

10 continue

sumi5=sum15/4.

return

end
******************#*******************************
*(16)

function sum 16(jj)

real suml16

integer ss

sum16=0
do 10 ss=16,jj
suml6=sum16+(ss+15)**2*sum15(ss—1)/10.
10 continue
sum16=sum16/4.
return
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*******************************************************

*17D
function sum17(jj)
real sum17
integer ss

sum17=0
do 10 ss=17.jj
sum17=sum17+(ss+16)**2*sum16(ss—1)/10.
10 continue

sum17=sum17/4.

return

end
**************************************************
*(18)

function sum18(jj)

real sum18

integer ss

sum18=0
do 10 ss=18,jj
sum18=sum18+(ss+17)**2*sum17(ss—1)/10.
10 continue
sum18=sum18/4.
return

end
*******************************************************

*(19)
function sum19¢jj)
real sum19
integer ss

sum19=0
do 10 ss=19,jj
sum19=sum19+(ss+1 8)**2*sum18(ss-1)/10.
10 continue
sum19=sum19/4.
retum

end
**************************************************

*(20)
function sum?20(jj)
real sum?20
integer ss

sum20=0
do 10 ss=20,jj
sum20=sumZO+(ss+l9)**2*sum19(ss—l)/10.
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print*,’sum20=",sum20
continue
sum20=sum?20/4.
return

end
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*21

function sum21(jj)
real sum21
integer ss

sum21=0

do 10 ss=21,jj

sum?2 l=sum21+(ss+20)**2*sum20(ss—1)/10.

print*,’sum21=" ,sum?21
continue
sum2 l=sum?21/4.
return
end
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*(22)

10

function sum?22(jj)
real sum22
integer ss

sum22=0
do 10 ss=22.,jj
sum22=sum?22+(ss+21)**2*sum?21(ss—1)/10.
print*,’sum?22’ sum?22
continue
sum22=sum?22/4.
return
end

*******************************************************

*(23)

10

function sum?23(jj)
real sum23
integer ss

sum23=0
do 10 ss=23,jj
sum23=sum?23+(ss+22)**2*sum?22(ss—1)/10.
continue
sum?23=sum?23/4.
return
end

***********************#**************************

*(24)
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function sum?24(jj)
real sum24
integer ss

sum?24=0
do 10 ss=24,jj
sum24=sum?24-+(ss+23)**2*sum23(ss—1)/10.
10 continue
sum24=sum?24/4.
return
end
*******************************************************
*(25)
function sum?25(jj)
real sum25
integer ss
sum25=0
do 10 ss=25,jj
sum25=sum?25+(ss+24)**2*sum?24(ss—1)/10.
10 continue
sum25=sum?25/4.
return
end
**************************************************
subroutine newton(para,k)
real para(0:1000),k
read *,ul,pr
10 u2=ul-f(ul,k,para)/df(ulk,para)
error=abs((u2-ul)/u2)
if(error.gt.pr) then
ul=u2
print *,ul,error
goto 10
endif
u2=b*u2
print *,u2,f(u2/2,k,para)
return
end
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function f(u,k,para)
real para(0:1000)
f=0.
do 10 i=0k
f=f+para(i)*u**(2*i)
10 continue
return




end

*****************************************

20

function df(uk,para)

real para(0:1000)

df=0.

do 20 i=1,k+1
df=df+para(i)*u**(2*i-1)*2%

continue

return
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C FUNCTION OF SUMMATION

function summ(i,j,s,at)

real at

if (s .eq. 24) then
at=sum24(j)
goto 30

endif

if (s .eq. 25) then
at=sum?25(j)
goto 30

endif if (s .eq. 23 ) then
at=sum23(j)
goto 30

endif

if (s .eq. 22) then
at=sum?22(j)
goto 30

endif

if (s .eq. 21) then
at=sum21(j)
goto 30

endif

if (s .eq. 20) then
at=sum?20(j)
goto 30

endif

if (s .eq. 19) then
at=sum19(j)
goto 30

endif if (s .eq. 18 ) then
at=sum18(j)
goto 30

endif

if(s .eq. 17) then
at=sum17(j)

goto 30
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endif

if (s .eq. 16) then
at=sum16(j)
goto 30

endif

if (s .eq. 14) then
at=sum 14(j)
goto 30

endif

if (s .eq. 15) then
at=sum15(j)
goto 30

endif if (s .eq. 13 ) then
at=sum13(j)
goto 30

endif

if (s .eq. 12) then
at=sum12(j)
goto 30

endif

if (s .eq. 11) then
at=sum11(j)
goto 30

endif

if (s .eq. 10) then
at=sum10(j)
goto 30

endif

if (s .eq. 9) then
at=sum9(j)
goto 30

endif if (s .eq. 8 ) then
at=sum8(j)
goto 30

endif

if(s .eq. 7) then
at=sum7(j)
goto 30

endif

if (s .eq. 6) then
at=sum6(j)
goto 30

endif

if (s .eq. 4) then
at=sum4(j)

goto 30
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endif

if (s .eq. 5) then
at=sum5(j)
goto 30

endif if (s .eq. 3 ) then
at=sum3(j)
goto 30

endif

if(s .eq. 2) then
at=sum2(j)
goto 30

else
at=sum1(j)

endif

30 returen
end
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APPENDIX B

COEFFICIENT dy OF EIGENFUNCTION FOR DIFFERENT Kn
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THE COEFFICIENT di” OF EIGENFUNCTION FOR DIFFERENT Kn

k 0.00 0.02 0.04 0.06 0.08

0 1.000000 1.000000 1.000000 1.000000 1.000000

1 -18.750000 -20.750000 -22.750000 —-24.750000 -26.750000
2 79.210100 98.265600 119.321000 142.377000 167.432000

3 -144.043000 -201.296000 ~271.689000 -356.553000 —-457.224000
4 145.080000 229.024000 344.257000 497.614000 696.594000
5 -92.671500 -165.560000 -277.502000 —442.200000 —676.202000
6 40.861900 82.728000 54.757000 272.024000 454.598000
7 -13.181200 -30.273700 —-63.245900 -122.683000 ~224.130000
8 3.249410 8.466540 19.757500 42.302900 84.501400
9 -0.646315 -1.883630 —4.887290 -11.531000 -25.168400
10 0.124692 0.363041 1.005790 2.575100 6.103080
11 -3.58121E-02  -7.81416E-02 -0.196144 -0.505606 -1.259180
12 1.48968E~02 2.45660E-02 4.68932E-02 1.02985E-01 0.243432
13 -5.81835E-03  -9.07529E-03  -1.47620E-02 -2.62552E-02 -5.21826E-02
14 1.82761E-03 297430E-03  4.78575E-03 7.83189E-03 1.34943E-02
15 —4.58083E-04  -7.98782E-04 -1.34809E-03 -2.23449E-03 -3.71120E-03
16 9.33666E-05 175660E-04  3.16460E-04 5.51241E-04 9.39192E-(4
17 —-1.57875E-05  -3.21078E-05 -6.20691E-05 —1.1 5009E-04 —2.05969E-04
18 2.25303E-06 4.95574E-06 1.02964E-05 2.03759E-05 3.86913E-05
19 -2.75302E-07  -6.55009E-07 -1.46339E-06 -3.09708E-06 ~-6.25517E-06
20 2.91544E-08 7.50298E-08 1.80276E-07 4.08225E-07 8.77967E-07
21 -2.70262E-09  -7.52384E-09  -1.94436E—08 -4.71180E-08 ~1.07959E-07
22 2.22204E-10 6.68238E-10 1.85579E-09 4.81032E-09 1.17395E-08
23 -1.57586E-11  -5.16599E-11  —1.55104E-10 -4.31820E-10 ~1.12584E-09
24 1.17557E~12 4.04916E-12 1.28004E-11 3.75388E-11 1.03039E-10
25 -3.96765E-14  -1.63832E~-13  —6.01195E-13 -2.00029E-12 ~6.12443E-12
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THE COEFFICIENT di’ OF EIGENFUNCTION FOR DIFFERENT Kn (continued)

k 0.005 0.10 0.12

0 1.000000000000 1.000000000000 1.000000000000

1 -19.249999755282 -28.750000000000 -30.750000000000

2 83.786455012016 194.48784722222 223.54340277778

3 -157.19747929320 ~575.03255208333 ~711.31380208333

4 163.48101833927 949.36357393887 1264.7562007813

5 -107.88202195819 -999.17322697416 -1434.1592495969

6  49.163092053819 728.53075977812 1126.9391090331

7 -16.395674045065 -389.65391363012 —649.68941116624

8  4.1785060393633 159.38657434817 286.48984269996

9  -0.85474908176110 -51.472458492094 -99.748319034885
10 0.16295069004395 13.456265606584 28.116494799992
11 -4.2678849965781D-02 -2.9059588237375 -6.5472351852919
12 1.6696073164466D-02 0.52713284089290 1.2806819641796
13 —6.4933580354236D-03 -8.1451719510272D-02 -0.21339847213796
14 2.0688881265729D-03 1.0849459119075D-02 3.0653718130602D-02
15 ~5.2835960492763D-04 -1.2586480084747D-03 -3.8350878281171D-03
16 1.0984968315700D—04 1.2831332514336D-04 4.2164684557941D-04
17 -1.8952355167967D-05 ~1.1585667342762D-05 —4.1059428596368D-05
18 2.7599126784909D-06 9.3297867024356D-07 3.5660366873094D—-06
19 -3.4412736954670D-07 -6.7424213213213D-08 -2.7794492323325D-07
20 3.7186482821050D—08 4.3971254994017D-09 1.9549974662813D-08
21 -3.5185593897498D-09 -2.6008164814639D-10 -1.2471725946634D-09
22 2.9411030829215D-10 1.4015685304521D-11 7.2489509368086D-11
23 -2.1886373955472D-11 ~6.9100732439231D-13 -3.8547073869455D-12
24 1.4598270425440D-12 3.1286794400673D-14 1.8824408023026D-~13
25 -8.7801704962411D-14 ~-1.3054533728857D-15 —8.4718119683390D-15




APPENDIX C

COEFFICIENT &;; FOR DIFFERENT Kn




L b;,jforKn=0([3=l)

§li=j,j+l, 42, ., 2%-1, 2%

1 —2500E+02 0.6250E+01

2 0.1562E+03 —.8681E+02 0.9766E+01

3 —4340E+03 0.3798E+03 —.9657E+02 0.6782E+01

4 0.6782E+03 -.8138E+03 0.3308E+03 —.5273E+02 0.2649E+01

5 —.6782E+03 0.1036E+04 —.5840E+03 0.1498E+03 —.1709E+02 0.6623E+00

6 0.4710E+03 -.8746E+03 0.6328E+03 —2265E+03 0.4173E+02 —3668E+01 0.1150E+00

7 —2403E+03 0.5256E+03 -4653E+03 0.2148E+03 —.5541E+02 0.7881E+01 —.5597E+00
0.1467E-01

8 0.9386E+02 —.2364E+03 0.2477E+03 —.1405E+03 0.4692E+02 —.9363E+01 0.1077E+01
—-.6381E~01 0.5729E-02

9 -.2897E+02 0.8256E+02 —.1000E+03 0.6740E+02 —.2773E+02 0.7179E+01 - 1160E+01
0.1114E+00 -.2258E-01 0.4420E-03

10 0.7242E+01 -.2304E+02 0.3170E+02 ~.2477E+02 0.1213E+02 —.3878E+01 0.8143E+00
~.1100E+00 0.3612E-01 -.1594E-02 0.2763E-04

11 —1496E+01 0.5258E+01 —.8098E+01 0.7202E+01 —.4100E+01 0.1564E+01 -.4059E+00
0.7132E-01 -.3297E~01 0.2357E-03 —-9193E-04 0.1427E~05

12 0.2598E+00 —.9992E+00 0.1704E+01 ~.1700E+01 0.1104E+01 —.4899E+00 0.1520E+00
—3305E-01 0.1989E-01 -.2002E-02 0.1265E-03 —4412E-05 0.6194E-07

13 —3843E-01 0.1606E+00 —.3003E+00 0.3324E+00 —.2425E+00 0.1230E+00 —-4445E-01
0.1156E-01 -.8622E-02 0.1131E-02 -.1006E-03 0.5681E-05 -.1790E-06 0.2291E-08

14 0.4902E-02 -.2211E-01 0.4501E-01 —.5473E-01 0.4436E—01 -2531E-01 0.1046E-01

—3176E-02 0.2835E-02 —.4609E-03 0.5345E-04 —4252E-05 0.2167E-06 —.6216E-08
0.7304E-10

15 —5446E-03 0.2638E-02 —.5806E~02 0.7696E-02 —.6862E-02 0.4355E-02 —.2028E-02
0.7045E-03 -.7343E-03 0.1430E-03 ~.2057E-04 0.2134E—05 ~.1532E-06 0.7109E-08
-.1869E~09 0.2029E-11

16 0.5319E-04 -.2753E-03 0.6516E~03 —9350E-03 0.9099E—03 -6359E-03 0.3297E-03
—1291E-03 0.1542E-03 -.3509E-04 0.6051E-05 —.7788E-06 0.7293E—07 ~476TE-08
0.2027E-09 -.4916E-11 0.4953E-13

17 —~4601E-05 0.2535E-04 —.6419E-04 0.9916E-04 —.1046E-03 0.7984E-04 —.4563E-04

0.1991E-04 -.2683E-04 0.7000E-05 —.1411E-05 0.2178E-06 —-2532E-07 0.2158E-08
-.1293E-09 0.5068E-11 -.1140E-12 0.1071E-14

18 0.3550E-06 —.2074E-05 0.5596E-05 —9260E-05 0.1052E-04 -.8716E-05 0.5446E-05
~2622E-05 0.3938E-05 —.1160E-05 0.2682E-06 —.4842E-07 0.6753E-08 -.7148E-09
0.5585E~10 -.3084E-11 .1121E-12 -2348E-14 0.2066E-16
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19 -.2459E-07 0.1518E-06 —.4348E-06 0.7674E-06 -.9350E-06
0.8351E-06 -.5665E-06 0.2984E—-06 —4947E-06 0.1626E-06
—4246E-07 0.8795E-08 —.1435E-08 0.1823E-09 —.1769E-10
0.1274E-11 -.6523E~13 0.2207E-14 —.4326E-16 0.3578E-18

20 0.1537E-08 -.1000E-07 0.3030E-07 -.5681E-07 0.7389E-07
—7080E-07 0.5183E-07 -.2966E-07 0.5383E-07 —.1954E-07
0.5695E-08 -.1333E-08 0.2498E-09 -.3713E-10 0.4325E-11
—3871E-12 0.2584E-13 -.1231E-14 0.3896E-16 —.7169E-18
0.5590E-20

21 —8711E~10 0.5959E-09 -.1905E-08 0.3781E-08 —.5228E-08
0.5351E-08 —.4206E-08 0.2599E-08 —.5127E-08 0.2038E-08
—.6564E~09 0.1716E-09 -.3634E-10 0.6204E-11 —8461E~12
0.9090E~13 -.7540E-14 0.4687E-15 —.2088E-16 0.6200E~18
-.1075E-19 0.7922E-22

22 0.4499E~11 -.3228E-10 0.1085E-09 —.2274E-09 0.3332E-09
—.3628E-09 0.3047E-09 -.2023E-09 0.4311E-09 —.1864E-09
0.6578E~10 —.1901E-10 0.4497E-11 —.8683E-12 0.1360E-12
—1711E~13 0.1704E-14 ~.1316E~15 0.7650E-17 —.3198E~18
0.8939E-20 -.1464E-21 0.1023E-23

23 ~2126E-12 0.1596E-11 -.5632E~11 0.1242E-10 —.1922E-10
0.2219E~10 -.1984E~10 0.1408E-10 -.3226E-10 0.1508E-10
—.5789E-11 0.1834E-11 -4797E-12 0.1035E-12 —.1834E-13
0.2651E~14 -.3093E-15 0.2869E-16 —2071E-17 0.1130E-18
—4444E-20 0.1173E-21 -.1820E-23 0.1209E-25

24 0.9229E-14 -.7235E-13 0.2673E-12 -6192E-12 0.1009E-11
—1231E-11 0.1168E-11 -.8826E~12 0.2163E-11 —.1087E-11
0.4512E~12 -.1556E-12 0.4463E~13 —.1065E-13 0.2109E-14
—3450E~15 0.4625E-16 —.5026E-17 0.4359E-18 —.2954E-19
0.1516E-20 -.5632E-22 0.1408E-23 -.2073E-25 0.1312E-27

25 ~3692E-15 0.3017E-14 —.1165E-13 0.2827E-13 —.4841E-13
0.6223E~13 -.6241E-13 0.5006E~13 —.1307E~12 0.7028E-13
—3139E-13 0.1171E-13 -3656E~14 0.9570E-15 —.2097E-15
0.3835E-16 -.5819E-17 0.7267E~18 -.7385E-19 0.6011E~20
—3834E~21 0.1858E-22 ~.6533E-24 0.1550E-25 —2172E-27
0.1312E-29
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APPENDIX D

THE INTEGRAL OF EQ. (3.18)
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The constant G, in the solution

b 2
0 (roxn = X CGurn) exp [ - 22 U3 8 Kn) (D.1)

must satisfy the following condition for all r*

1 = 21 CoG,y | (D.2)
n=

To determine G,, two theorems must first be proved for the functions G,,, like those
for Bessel’s function.

Theorem I Let G; and G;j be two functions satisfying

dzc‘- 1 dG, 2
g T GEgE ) AN 4 4kn )G = 0 (D.32)
d2G. dG;
j 1 J 2 2 =
grez ¥ Usagee ) H AP 1r %2 4 4Kn )Gy = 0 (D.3b)

if A; and A; are the roots of equation G(1) = 0, and 7 A, then

1
f ; G,-Gj r¥( 1-r*? + 4Kn )dr*¥= ( (D.4)

Let 4; and 4; be the first two eigenvalues. Multiplying Eq. (D.3a) with Gjdr*, Eq.

(D.3b) with G;dr* and integrating from 0 to 1, and subtracting each other, we obtain

1 dG; dG,
(,1i2_,1j2)f ) GG r*(1-r*2 + 4Kn ) dr*= ( G; #—GJ-F ) pe=y (D.5)

Because both G; (1) = 0 and G1)=0,4 # 4;, therefore, Eq. (D.4) must be true.




85

Theorem II. The value of the integral in Eq. (D.4) for i = J can be determined by

1 % %2 % l dG, dGl
. GG r*( 1-r** + 4Kn ) dr*= 2/L'( Z, dr* )r= (D.6)

Let 4; and 4; be the first two eigenvalues again, and the Eq. (D.5) is true. Now let

dG,

Ai =A’i+dj’i N GJ= Gi+dAi(ﬂ»i
and
1 0G; 9G; 92G;
2 =(— —L _Gg.— i _
Ztij OG,Gi r¥( 1-r** 4+ 4Kn ) dr*= ( ar, or¥ G‘al,- 3 ) (D.7)

Since the special 4, is one of the roots of equation G (1) =0, we have

1
_ 1 OG, aG,
f i GGir*(1-r** + 4Kn ) dr*= 2fl,~( T ore )=l (D.8)

With the help of these two theorems, multiplying the Eq. (D.2)
1= 2 C,G,
n=1

with G; r*(1- r*2) dr* and integrating, we obtain

1 1
f G, r*(1-r*2 + 4Kn ) dr*= C,-j G,Gj r¥( 1—-r*2+4Kn)a'r*
0 0

(D.9)
From the differential equation (Eq. (D.3a)), the left side of the integration equals to

1, 4G;
")'_2"( F ),-*=1

i




Therefore,
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(D.10)
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