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ABSTRACT 

The objective of this research was to develop a new technique for evaluation of the 

eigenvalues of the Graetz problem in slip-flow—a heat transfer problem for gases at low 

pressures or in extremely small geometries. In this investigation, the velocity distribution 

with slip-flow has been obtained, expressed simply in terms of Knudsen (Kn) numbers. 

The expression shows that the velocity always increases as the Knudsen number in- 

creases. The relationship of Kn and molecular mean free path for a gas shows that Kn may 

become large enough to significantly affect the velocity distribution and consequently af- 

fect the heat transfer properties. A mathematical model of temperature distribution was 

established by combining the energy and momentum equations. A series solution was 

obtained by the method of Frobenius. Also, expressions for the local and overall Nusselt 

numbers were derived. All these expressions can be taken as functions of Knudsen num- 

bers and Graetz numbers. 

A new technique for evaluation of eigenvalues for the solution of the Graetz problem 

in slip-flow was developed. This method was based on the construction of a matrix. The 

computational results show that it is an effective method, and the lowest five values were 

found for Kn from 0.02 to 0.12. For practical calculations, relationships between eigen- 

values and Knudsen numbers were obtained. 
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NOMENCLATURE 

Aw   tube surface area [m2] 

cik    coefficient in Eq. (3.12) 
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ca    acoustic velocity 

Cn    coefficient in Eq. (1.3) 
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(ur - uj) / (Uw - uj) 

g      magnification ratio in Eq. (5.1) 

G    G(r*): Graetz function 
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hx    local convective heat transfer coef- 

ficient [W/m2-K] 
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H    characteristic dimension 

coefficient [W/m2-K] 

k     thermal conductivity [W/m-K]; 

number of terms in Equation (5.2) 
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L     length of tube [m] 

Nu   overall heat transfer coefficient, 

(hcD/k) 

Nux local heat transfer coefficient, 

(hxD/k) 

p     fluid pressure [Pa] 

q     heat flux per unit wall area [W/m2] 

Q     heat transfer rate [W] 

r      radius[m] 

r*    dimensionless radius, (r/R) 

R     tube radius[m] 

Re    Reynolds number, (QUD/JU) 

Re* Reynolds number at ca 

Rg    ideal gas constant [J/kg-K] 

Pr   Prandtl number, (v/a) 

T     T(r,x), temperature [K] 

TR   bulk temperature [K] 

7L   temperature at x = L [K] 

(4 7)LN>   log-mean-temperature 



difference (LMTD) [K] 

u     velocity in x direction [m/s] 

U[     average stream wise velocity of the 

incident molecules 

ur    average stream wise velocity of the 

reflected molecules 

Uw  average stream wise velocity of the 

surface 

v     radial velocity 

x     distance along tube[m] 

x*    dimensionless distance, (x/L) 

Greek Symbols 

a     fluid thermal diffusivity, (k/gc) 

[m2/s] 

dg    thermal accommodation coefficient 

ß      (1+4 Kn) coefficient in Eq. (4.1) 

y     ratio of specific heats 

A      zl=/-HnEq.(4.8); 

A = (Nil - Nux) in Fig. 5.9 

T]     mean free path of gas 

A eigenvalue; 

X' eigenvalue divided by g 

fx dynamic viscosity[kg/m s] 

v kinematic viscosity [m2/s] 

Q density[kg/m3] 

n 3.141592654 

6 (T-Tw)/(To-Tw) dimensionless tem- 

perature 

0B    (%-7,w)/(7a-7'w) dimensionless 

bulk temperature 

#B,L dimensionless fluid bulk temperture 

at* = L 

ÖLN dimensionless LMTD 

Subscripts 
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m average 
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CHAPTER 1 

INTRODUCTION 

1.1 The Graetz Problem 

By the end of the last century, the problem of forced convection heat transfer in a 

circular tube in laminar flow gained interest because of its fundamental importance in 

physical problems such as the analysis and design of heat exchangers. 

The Graetz problem is a simplified case of the problem of forced convection heat 

transfer in a circular tube with laminar flow. With the assumptions of steady, incom- 

pressible and fully^stablished flow, constant fluid properties, no "swirl" component of 

velocity, a fully developed temperature profile, and negligible energy dissipation effects, 

Graetz (1883) originally solved this problem analytically. The solution by Graetz in- 

volved an infinite number of eigenvalues, and in his paper only the first two eigenvalues 

were evaluated. 

Since the accuracy of the Graetz solution mainly depends on the number of eigenva- 

lues, it is extremely important to obtain more eigenvalues, as Tribus and Klein (1953) 

pointed out For seventy years, the research on this problem focused mainly on finding 

more eigenvalues. And Abramowitz (1953) employed afairly rapidly converging series 

solution of the Graetz equation in making the calculation and found the lowest five values 

with much more accuracy. Sellars et al.(1956) extended the problem to include a more 

effective approximation technique for evaluation of the eigenvalues of the problem; they 

could get any number of eigenvalues as needed. This work solved the Graetz problem 

completely. 



1.2 The Graetz Problem in Slip-Flow 

Applications of raicrostructures such as micro heat exchangers have led to increased 

interest in convection heat transfer in micro geometries. Some experimental work has 

been done, such as the experimental investigations in microtubes (Choi et al.. 1991), in 

microchannels (Pfahler et al., 1991), and in micro heat pipes (Petersen et al., 1993). 

Therefore, appropriate models are needed to explain the significant departures in the 

micro-scale experimental results from the thermofluid correlations used for convention- 

al-sized geometries. For example, the measured heat transfer coefficients in laminar flow 

in small tubes exhibits a Reynolds number dependence, in contrast to the conventional 

prediction for fully established laminar flow, in which the Nusselt number is constant 

(Choi et al., 1991). Also, an experimental investigation of fluid flow in extremely small 

channels showed that there are deviations between the Navier-Stokes predictions and the 

experimental observations (Pfahler et al., 1991). 

Therefore, some effects and conditions that are normally neglected when consider- 

ing macro-scale flow must be taken into consideration in micro-scale convection. One 

of these conditions is slip-flow (Flik et al., 1992, Beskok and Karniadakis, 1992). It has 

been found that the analytical model combined with slip flow conditions can fit the exper- 

imental data in microchannels with a uniform cross-sectional area (Arkilic et al., 1994) 

and with a non-uniform cross-sectional area (Liu et al., 1995). 

Slip-flow occurs when gases are at low pressures or for flow in extremely small pas- 

sages. At low pressures, with correspondingly low densities, the molecular mean free 

path becomes comparable with the body dimensions, and then the effect of the molecular 

structure becomes afactorin flow and heat transfer mechanisms(Eckert and Drake,1972). 

The relative importance of effects due to the rarefaction of a gas can be indicated by 

the Knudsen number, a ratio of the magnitude of the mean free molecular path in the gas 



to the characteristic dimension in the flow field. The effects of rarefaction phenomena on 

flow and heat transfer becomes important when the Knudsen number can no longer be 

neglected. 

In defining when slip-flow occurs, Beskok and Karniadakis (1992) have proposed 

to classify four flow regimes for gases, as follows: 

Continuum flow: Kn < 10~3 

Slip-flow: 10-3<K«<0.1 

Transition flow: 0.1 < Kn< 10 

Free molecular flow 10 <Kn 

When slip-flow occurs, the gas adjacent to the surface, in contrast to its behavior in 

continuum flow, no longer reaches the velocity or temperature of the surface. The gas 

at the surface has a tangential velocity, and it slips along the surface. The temperature 

of the gas at the surface is finitely different from the temperature of the surface, and there 

is a jump in temperature between the surface and the adjacent gas. Eckert and Drake 

(1972) give expressions for the temperature jump condition and slip velocity at the sur- 

face. The slip velocity as a function of the velocity gradient near the wall can be expressed 

as follows: 

Us = ~n{ % )r=R <u) 

and Arkilic et al. (1994) give the expression as foUows: 

us   _ 2-F v   , du/c 

or 



which includes the consideration of three accommodation coefficients represented by the 

specular reflection coefficient F. For most engineering surfaces, F has values near unity. 

In the case of F having a value of one, Eq. (1.2) becomes Eq. (1.1). For simplicity, in this 

investigation, Eq. (1.1) is applied to evaluate the velocity. 

The original solution by Graetz (which was discussed above) is valid for continuum 

flow; however, for gases at low pressures or in extremely small tubes, the flow may enter 

the süp-flow regime, in which case the velocity at the tube surface is not zero. In this 

case, the heat transfer coefficient depends not only on the Reynolds number and Prandtl 

number, but also on the Knudsen number. This fact will no doubt make the model more 

complex and the evaluation of its eigenvalues more difficult. Therefore, a new technique 

is needed to evaluate the eigenvalues for a solution to the problem in slip-flow. 

1.3 Related Research 

Graetz (1883) originally solved the problem of forced convection heat transfer in a 

circular tube in laminar flow, with a developing temperature profile. Figure 1.1 shows 

the geometry and conditions for this problem. 

;/;/////// 
->x 

_t: 
■>T0 

zzzzzzzzzzzj- 
INSULATION Tw= constant 

Fig. 1.1 Coordinate system and thermal boundary conditions 



The mathematical statement of this problem is as follows: 

T   =   T(x,r) 

u   =   2um[l-(r/r0)2} 

with the boundary conditions: 

T(R,x) = Tw forx>0 

T(r,0) = T0 forx<0 

T(0,0) = T0 forx<0 

The nondimensional form of the problem is: 

Bd 1     1   B ,*d0, 
3x* l-VVä7(r -£? (1.4) 

and the boundary conditions are as follows: 

6(l,x*) = 0 forx*>0 

6(r*,0)= 1 forx*<0 

The solution for this system can be obtained (Graetz): 

00 

0(r*,x*)   =   ZcnGn(r*)e-**x' 
n = l U-Jj 

where the ^ are the eigenvalues required to make the solution satisfy the following differ- 

ential equation : 

r*Gn" + Gn' +Xn
2r*(\-r*2)Gn   =   0 (L6) 

Graetz posed an eigenfunction: 

00 

Gn{Xn) =   Ixfdk = 1 + kid, + XU2 + Xfc3 + ... (1.7) 



and he gave only two values: l{ = 2.704 and X2 = 6.50. Unfortunately, it was very diffi- 

cult at that time to calculate the larger values of ^ 

Sellars et al.(1956) extended the problem to include a more effective approximation 

technique for evaluation of the eigenvalues of the problem. They developed an approxi- 

mate method by using three expressions to represent the Graetz functions in three ranges: 

(1) near the center; (2) between the centerline and the wall; and (3) near the wall. They 

obtained an approximate expression as follows: 

Xn = 4(n-l) + 8/3 n= 1,2,3,  (1.8) 

The comparison of the values with other investigations (see Table 5.3) shows that the 

approximate method is correct and effective, especially for larger n. The accuracy, except 

the first eigenvalue, is acceptable. This work solved the Graetz problem completely. 

The objective of this research is to evaluate the eigenvalues for the Graetz problem 

in slip-flow — a heat transfer problem for gases at low pressures or in extremely small 

tubes. To do this, the velocity profile with slip-flow must be found first, and a mathemati- 

cal model of temperature distribution in slip flow must be established by combining the 

energy and momentum equations. Next, by using the method of Frobenius, a series solu- 

tion must be obtained and finally, a technique for evaluation of the eigenvalues for the 

series solution must be developed. For practical calculations, relationships between the 

eigenvalues and the Knudsen number should be obtained. 



CHAPTER 2 

VELOCITY AND TEMPERATURE DISTRIBUTIONS 

In order to build the mathematical model for the Graetz Problem in slip-flow, the 

velocity profile must be found first. In this chapter, based on some assumptions, the ex- 

pression for velocity will be derived from the continuity equation and momentum equa- 

tion. The sup condition will be used to evaluate the slip velocity and the velocity will be 

expressed in terms of Knudsen numbers. A mathematical model of temperature distribu- 

tion in slip-flow will be established by combining the energy and momentum equations. 

2.1 Velocity Distribution 

As a model, one can consider the flow of a fluid in a circular tube of radius R, shown 

in Figure 2.1: 

.1'. 

Fig. 2.1 Coordinate system for the problem 

For this model the following conditions have been assumed (Barron, 1994): 

(1) The flow is steady. This means that the properties of the flow are time indepen- 

dent 

(2) The fluid is incompressible (or, if a gas is considered, the Mach number is low). 

In this case, the density may be assumed constant. 
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(3) The flow is fully established. In this case, the axial velocity, u, is a function of 

the radial coordinate only, and not a function of the axial coordinate. In addition, 

the radial velocity is zero. 

(4) The "swirl" component of velocity is identically zero. This fact means that the 

flow properties are independent of the angular coordinate in cylindrical coordi- 

nates. 

(5) Fluid properties are constant. 

(6) Energy dissipation effects are negligible. 

(7) The tube wall temperature is constant. 

2.1.1 Continuity Equation 

The general continuity equation can be written in cylindrical coordinates as follows: 

f + 7Tr(Qrv) + jfciQu) = 0 (2.1) 

For steady flow of an incompressible fluid, Eq. (2.1) reduces to: 

T>>+f=0 

For fully developed flow, 

dx 

Therefore, 

r v = constant 



Since the radial velocity is zero at the wall (the wall is impermeable), we must conclude 

that: 

v = 0 (identically). 

2.1.2 Velocity Distribution with 
Slip Condition 

The Momentum Equation can be written in cylindrical coordinates as follows (Kays 

etal., 1993): 

eUdx + QVdr + dx      rdr(
r
dr) (2.2) 

For fully-established, steady-flow of an incompressible fluid, the Navier-Stokes equa- 

tion for the axial direction reduces to: 

dx + -Jr{rl?)-{) (2-3) 

In this case, the velocity u is independent of x, so we can define the constant, 

r   -     1 dP 
Cl ~ 'JfTdx (2-4> 

Then, Eq. (2.3) can be written in the following form: 

4C,+I|(rf, = 0 (2.5) 

This expression can be solved by directly integrating twice to yield: 

u = C2lnr+C3-Cir
2 (2.6) 
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Since the velocity u is finite at the center of the tube (r=0), we must have Ci - 0. 

At the centerline of the tube (r=0), the velocity is equal to Uc (the center-line veloc- 

ity). Using this condition in Eq. (2.6), we obtain:   u(0) = uc = C3 

At the surface of the tube (r=R), the velocity is not zero in slip-flow, but is equal to 

a finite velocity us. Using this condition, we find, from Eq. (2.6): 

u(R) = us = uc- QR2 (2.7) 

Rearranging and solving for C\: 

c = Uc ~ Us = L^P 1 R2 Afidx (2.8) 

Making these substitutions, we find the following expression for the velocity dis- 

tribution: 

u^Uc-iuc-Us) (r/R)2 =uc [ 1 - (r/R)2 ] + us (r/R)2 
(2.9) 

This velocity profile is shown in Figure 2.2. 

Fig. 2.2 Velocity distribution 

Let us now calculate the mean fluid velocity um in the tube. The volumetric flow rate 

can be written as follows: 



Carrying out the integration, we obtain: 

"m = 2[ (MC/2) r*2-("<-",) (r*4/4) ] I 
o 

11 

JiR2um =        2wrurfr (2-10) 

If we introduce the diraensionless variable, r* we can write Eq. (2.10) as: 

um = 2      wr*Jr*   = 2 I    [uc -{ue-us)r *2]r * dr * (2.11) 

or 

um = 2[uc/2-( uc- us)/4] = ( uc + us)/2 (2.12) 

The centerline velocity can be written in terras of the mean velocity and the slip velocity, 

as follows: 

"c = 2 um - us (2.13) 

Making this substitution, we find the following expression for the velocity profile in slip- 

flow: 

u = 2(um- us) (I - r*2) + us (2.14) 

If the slip velocity is zero, then Eq. (2.14) reduces to the Poiseuille distribution: 

u = 2um(l-r*1) (2.15) 
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2.1.3 Evaluation of the Slip Velocity 

The slip velocity can be evaluated from Eq. (1.1) as: 

Us        R(dr*}l* = i~+ R D  (2-16) 

Introducing the Knudsen number, we find: 

Jh   =     SKn 
um       i + iKn (2.17) 

Making this substitution in Eq. (2.14), we obtain the following expression for the velocity 

profile in slip flow: 

u_   _ 2(l-r*2) + %Kn 
u" 1 + 8Kn (2.18) 

The molecular mean free path for a gas can be calculated from the following expres- 

sion(Sreekanth, 1968): 

2  — P (     n      \l/2 1 ~ Q( 2RJ ] (2-19) 

The acoustic velocity for a gas is given by: 

ca = (yRgT)1'2 (2.20) 

where: y = cp/cv. Substituting Eq. (2.20) into Eq.(2.19), we obtain: 

i _  M ,ny u/2      1.4829/f 
A-Q?~a(—)/    =  -QCT~ (2-21) 
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for a gas having a specific heatratio, y = 1.40. The Knudsen number may then be written 

as the reciprocal of the Reynolds number based on the sonic velocity in the gas as follows: 

DQC0
(
  2   ) Re*{  2   }      " 0.6743 Re * {221) 

From the expression, it is obvious that the Knudsen number is dependent on Re * for a gas. 

Thus, for a given temperature, Kn can be calculated from Eq. (2.22) and the velocity dis- 

tribution can be determined from Eq. (2.18). 

For example, for nitrogen gas at 300 K (26.8°C or 80°F) and atmospheric pressure, 

the gas mean free path may be determined from Eq. (2.21), where the property values for 

nitrogen gas are as follows: 

Q = 1.6332 kg/m3 = 0.07106 lbm/ft3 

[A =0.01784 mPa-s = 0.04316 lbm /ft-hr 

Rg = 206.8 J/kg-K = 55.15 ft-lbf/lbm-°R 

x = (0.01784) (10-3) n /2 

(1.6332)        L (2) (206.8) (300) J 

A = 0.2189 x lO"6 m = 0.2189 u,m 

If we accept a difference of 5 percent between the case for slip flow and the case for 

continuum flow as the effect of the slip condition, from Eq. (2.17) we find that the slip 

flow effects become significant when: 

=     8jfo       = 0 05 
1 + %Kn       U-UD 

Then 
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%Kn ft* 0.05 , or  Kn ** 0.00625 

The corresponding tube diameter is: 

D = 0.2189/0.00625 = 35.0 um 

For slip-flow (10"3 < Kn < 0.1), the tube diameter range is: 

0,^ = 2.2(1111     for Kn=Q.l 

Dmax = 218.9 [Am   for Kn=0.00l 

and from Eq. (2.18) the maximum velocity can be found in the range of: 

"max / um = 1.556    for Kn = 0.1 

"max /um= 1.992    for Kn = 0.001 

while       umax / um = 2 for Kn = 0 (no slip) 

which means that the velocity difference between the wall and the centerline can be re- 

duced significantly in small size tubes. 

2.2 Temperature Distribution 

The general temperature field equation for flow of an incompressible fluid with zero 

swirl or angular components, zero energy generation, and negligible frictional energy dis- 

sipation is as follows: 
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^•<f-f+"f) = 4|<rf)+0J (2.23) 

For steady flow and for zero radial velocity (v = 0), the energy equation reduces 

to: 

"S - « I *£< rf > + 0 ] (2-24) 

From an order-of-magnitude analysis for the case in which the tube length is much larger 

than the tube diameter, the second term on the right side of Eq. (2.24) is much smaller 

than the first term on the right side and the energy equation can then be written in the fol- 

lowing form: 

, dT _   ad,    8T v Kta "   TJfi rjf ) (2.25) 

One can then consider the case for flow which is fully established hydrodynamically 

at the end of the insulated section (a long entry length), but which is developing thermally 

due to the temperature jump on the tube wall. The physical model is illustrated in Figure 

1.1. The velocity profile is fully-established at the end of the insulated section, x=0, and 

the temperature of the fluid entering the uninsulated section is uniform T = T0 . The 

boundary conditions for this situation are: 

T(R,x) = Tw    forx>0 

T(r,0)=T0    forx<0 

Using the dimensionless variables, the energy equation may be written in the following 

form: 
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R2u dd _ j d_(   *je_ , 
ah dx*      r*dr*K r   dr *  ' (2-26^ 

Using the velocity distribution given by Eq. (2.14) 

u = 2(um- us) (1 -r*2) + us = 2(um- us) (1-r*2 + 4Kn) (2.27) 

the energy equation reduces to: 

umD2 86   _  1   e dB 
2aL{ 1 + 8Kn) dx*      (i_r*2 +4Kn)r*dr*( r*JF* ] (2"28) 

The Graetz number Gz is defined by: 

Gz = Re Pr (D/L)  = ^£^£^ = «a£? 
M     k L        ah 

The energy equation, Eq. (2.28), can be written as follows: 

! Gz dd_ _  J    d ßß 
2( 1 + %Kn)  dr*      (i_r*2 +4Kn)r*dr* ( r   ä7^ } (2"29> 

with boundary conditions: 

6(l,x*) = 0 forx*>0 

6(r*0) = l forx*<0 

2.3 Summary 

In this chapter, the velocity distribution with slip-flow has been obtained. It can be 

expressed simply in terms of the Knudsen number. From the expression, it is obvious that 

the velocity increases always as Kn increases. From the relationship of Kn in term of mo- 

lecular mean free path for a gas A and diameter of tube D, we can see that Kn in microtubes 
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may become large enough to significanüy affect the velocity distribution and consequent- 

ly affect the heat transfer for this problem. Also, a mathematical model of temperature 

distribution in slip-flow has been established by combining the energy and momentum 

equations. 



CHAPTER 3 

ANALYTICAL SOLUTION 

In the last chapter, the velocity distribution was expressed in terms of mean velocity 

and Knudsen number, and a mathematical model of temperature distribution in slip-flow 

was established by combining the energy and momentum equations. In this chapter, a 

series solution will be obtained by the method of Frobenius. Considering the given 

boundary condition, a temperature distribution in terms of a generalized Fourier series 

will be derived. Also, expressions for the local and overall Nusselt numbers will be 

obtained. 

3.1 Graetz Solution 

3.1.1 Separation of Variables Solution 

Eq. (2.29) can be solved by a separation-of-variables technique. Suppose we let 

0(r* x*) = G(r*) X(x*) 

Making this substitution into Eq. (2.29) and rearranging the components results in 

the following: 

 Qz    dX _ 1 d   (r*dG   , J2 
2( 1 + %Kn) X dx*       (l_r*2 + 4Kn)r*dF*~{ r   dF* )   ~ " A (3J) 

where A is an arbitrary constant. The ordinary differential equations which result are: 

dX   ,  2( 1 + &&QA2,,      n — + _ x = 0 (3.2) 

18 
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and 

(3.3) ^-+(^)+A2(l-r^+4^)G= 0 

with boundary conditions: 

G(l) = 0, 

and 
G(0) = 1. 

The solution of Eq. (3.2) is: 

vrv ^  _ r      r    2( 1 4- %Kn ) A2 
A(x*)   = C «gp[ 1 x* 

Gz (3.4) 

The constant C in Eq. (3.4) will be evaluated below, and X will be evaluated in the next 

chapter. 

The solution of Eq. (3.3) may be obtained by the method of Frobenius. Suppose we 

take the function G( r*) as a power series. 

G(r*)  = Zajr*J (3 5) 

00 

Then, 

G' (r*)   = 
y=i J j=o 

and 

G' (r*)   = Siaj r*J->= Z(j+l)aj+1   r*J (3.6) 

G" (r*)  = £(/ + \)j a.+ 1  r*M= ZJJ + i) 0- + 2)aj+2  r»    (3.7) 

Making these substitutions into Eq. (3.3), we obtain: 

Z(j + 1) 0" + 2)aj+2  r*J + I(j + 1) a       r*J-i + 

CO 00 

2[ (1 + AKn ) Zfl, r*'- 2" a- r*J+2 1   = T A  I   K i -r t/v«   i  ^-i a-   r"-   /,   n.   rWT*   i    —   n /o o\ 
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Expanding Eq. (3.8) and multiplying each term by r* we obtain: 

(2a2r* + 6a3r*2 + I2a4r*3 + ...) + (a{ + 2a2r* + 3a3r*2 + 4a4r*3 + ...) + 

+ X\ (1 + 4Kn ) (a0r* + a{r*2 + a2r*3 + ...) -   (a0r*3 + ...)]  = 0     (3.9) 

The first two constants OQ and a} are arbitrary, so let us take the even solution with 

the following values: 

ao = 1    and a\  = 0 

Equating the coefficients on like powers of r* in Eq. (3.9), we obtain: 

2a2 + 2a2 + X2(l+4Kn)a0 = 0 

or, 

a2 = -(X/2)2(l+4Kn) 

and 

6 a3 + 3 a3 +A2 ( 1 + 4Kn ) a\ = 0 

or, 

03 = 0 

In fact, we find that all terras involving odd numbered subscripts drop out. 

fl2k-i=0    for k- 1,2,3,... 

For the coefficients ah with; >4, we find the following recursion relationship: 
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(J-l)(J)aj+jaj+A2[(l+4Kn)aj_2- a^ ] = 0 

or, 

^2 Oj=-{XIJY[{\+AKn)ai.2-aH}     forj = 4,6, 8,... (3.10) 

3.1.2 Eipenfunction of the Series Solution 

At the surface of the tube ( r* = 1), the temperature in slip flow is given as follows 

(Eckert and Drake, 1972): 

T   T    —    (       '       \ A    t dT -. 
Is-lw-H  l+y)p^(-^)r = R (3J1) 

Introducing the diraensionless variables, this condition can be written as follows: 

s      K   T0-Tw 
) 1 +y  Pr { dr*  } ^= 1 <3-12) 

We note that: 

es = e (i,x*) = x(x*) G(i) 

and 

Therefore, 

*S*2-*^ 

am -   -il- Kn dG{l) 
W) - -TT7 -p-r -jpr (3.13) 

We can write Eq. (3.5) and Eq. (3.6) as follows: 

00 

G (#•*)   = Sa2j r*2J=  1 + a2  r*2 + aA  r *
4 + .. 

y = 0 

dG(r *) 
= Zlj a2j r*2J-l= 2a2  r* + 4 a4 r*3 + ... ^ *       ~r"2/ 
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Making these substitutions into Eq. (3.13), where dG(l)/dr* = dG(r*)/dr*\r*= j, we 

obtain the following condition: 

00 

1 + ^[i+2y(Ti2L)f ] =o (3.i4) 

Eq. (3.14) defines the present problem. The coefficients a2j are functions of the 

eigenvalues 4, where n =1,2,3,.... The eigenfunctions for this problem can be written 

as follows: 

00 

Gn(r*)  = Say (An) r*2J „  = 1,2,3,... (3.15) 

3.1.3 Determination of Constant«; C.„ 

We can write the solution for the temperature distribution in terms of a generalized 

Fourier series, as follows: 

n = i Gz 

Note that the lower limit on n is now 1, which is arbitrary. 

The constants Q can be found from the entrance condition, 

atx = 0(or.x* = 0); T( r, 0) = T0, or 6( r*,0) = 1 

Making this substitution into Eq. (3.16), we obtain: 
00 

Zcn  Gn(r*)  =  1 
7 = 0 

(3.16) 

(3.17) 

The governing differential equation, along with the boundary conditions, is a Sturm- 

Liouville problem, with a weight function, 
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w = r*( 1 - r*2 + 4 Kn ) 

and from orthogonality, 

I GnGmr * ( l-r *2 + AKn )dr* = 0   for m^n 

The constants may be evaluated by multiplying Eq. (3.17) on both sides by 

Gmr * ( 1 - r *2 + AKn ) 

and integrating between 0 and 1. Only the term in which m = n is non-zero, and we find: 

I Gnr*( l-r*2 + AKn ) dr*= Cn (Gn)2r*( l-r*2 + AKn ) dr*   (3.18) 

The integral on the leftside may be evaluated from the differential equation (Eq. (3.3)), 

as follows: 

Gnr*( l-r*2 + AKn)   = - 
(Xn)2dr* K       dr*  ' 

and 

Gn r*( l-r*2 + AKn ) dr* = 1  :(r*^)\l 

iK)2 dr o 

which becomes 

Gn r*( l-r*2 + AKn ) dr* = 1    , dGn 

an)2    dr*  V = i (3.19) 
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The integral on the right side of Eq. (3.18) can be evaluated from (Graetz, 1885, see 

Appendix D) 

|   !  (Gn)2r*( 1-r*2 + AKn ) dr*= -i-[ ( |2 )  |% ] 

Making the substitutions for the integrals, we find the following values for the constants 

in the series expansion: 

C„=- 
*.[(*?)] (3-20) 

dl n    r*= 1 

The terra in the denominator may be evaluated, as follows: 

[(££)]      = rfc-^L)   r*2j o      _ jy^A 

Each of the terms in this equation may be worked out from the previous results, Eq. 

(3.10), as follows: 

da-, X 

da 2 ] 2 (^)=(A)[1+^(1 + 4&)2] 

(
da6)   _     A,» ( 1  + 4 Äh ) 3A„2   , ,       , ^    , 

(^r\ 144  [ 5 +-f- ( 1  + 4 ^ )2] 
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For the special case of x/L/Gz > 0.05, which means that the entrance effect can be 

neglected for the rest of the tube, only the first terra in Eq. (3.15) is needed to represent 

the temperature distribution accurately. In this case, we have: 

a (r* x*) -   T{r,x)-Tw     rr.^       .     2 (A^) x* (1 + 8 Kn) 
d (r  >x  ) T0-TW      ~ CiGi(r*) «5Pf * Q-Z -]    (3.21) 

The expressions for the temperature distribution are summed as follows: 

6(r*,x*) =  IcnGn(r*)exp[-   2 «n)2 x* (1 + S Kn) 
n = \ Gz 

where 

Gn(r*)  = Ia2J a„)r*2J n  = i,2,3, .. 

C„ = - 

«<£>] 

(3.16) 

pa1} KAn) r~* n  = 1,2,3,  ... (3.15) 

är;„V=1 (3-20) 

cM.      n    r*= 1        y=0     dk     n 

From these expressions, we can see that the coefficients a2j and l» must be predetermined 

in order to calculate the temperature. 
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3.2 Heat Transfer Coefficient Correlation 

3.2.1 Bulk Temperature 

The bulk or average temperature can be determined from: 

=M o{u/u e
B ~ Tö\       (u/um) 6 r dr 

or 

•J       (u/u 6B = 2- (u/um)6r*dr* (3.22) 

where: 

_ Tg-Tw e„ = 

Using the velocity distribution from Eq. (2.18) and the temperature distribution from 

Eq. (3.16), we can evaluate the bulk temperature at any location along the length of the 

tube, as follows: 

B        „ = i(l + SKn) eXp L Gl  > 

I l 

Gn ( l-r*2 +4Kn) r*dr* (3.23) 

The integral had been worked out previously in Eq. (3.19). Making this substitution, 

obtain the expression for the local bulk temperature of the fluid in the tube. 

we 

6R= 4 y   Cn   dGn{\) 2gn)2x* (1 + 8&i). 
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3.2.2 Local Heat Transfer Coefficient 

The local or "point" convective heat transfer coefficient can be defined by: 

Q/Aw = hx ( T_ - Tw ) (325) 

The heat flux can also be written, as follows: 

Aw       "(dr^'-x R  (37?) I^ = i (3.26) 

Equating the heat flux from Eqs. (3.25) and (3.26), we obtain the expression for the local 

convective heat transfer coefficient. 

hx        R6B 
{dr* )l**-i--De; (ä77)i^=i (3-27) 

Making the substitutions from Eq. (3.16) for the temperature gradient at the wall and Eq. 

(3.24) for the local bulk temperature, the following expression is obtained for the local 

or "point" Nusselt number. 

- 2  2C dG"{l)rXis r      2 (A.)* s* (1 + 8 A)») 

*x (3.28) 

Or, 

Nux = 
(I+8Ä1) 2  rßem^i      2 q.)»^ (1+8 Ah) 
 n = i dr Qz J 

its, £%%,.- 2«J'^a+g_sa 1 „ = i(Aj2    dr*      ^ L Gz J 
(3.29) 
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For the special case of x*/Gz > 0.05, Eq. (3.29) reduces to the following expression: 

Nux = ( 1 / 2 ) ( 1 + 8 Kn ) ( X2 )2 (3>30) 

3t2t3 Overall Convective Heat Transfer 
Coefficient 

The average or overall convective heat transfer coefficient is defined through the 

following expression: 

Q = he ( n D L ) ( A T )^ =  [ L hx ( To_Tw) { n D dx) 

J   o 
(3.31) 

where (AT)LN = log-mean-temperature difference (LMTD). 

The LMTD may be written in terms of the inlet temperature T0 and the exit bulk 

temperature TL, as follows: 

(A T)IN = ( 7o~ T" ) "( Tr~ Tw ) _ ( eBL- l)(T0-Tw) 
k[(T0-Tw)/(TL-Tw)] M^T)      (3-32) 

Let us define the dimensionless LMTD, as follows: 

8     ~{A T)w U'M Tf 7p  

(3.33) 
LN T rp 

J0~  Jw 

Then, 

( OBJT 1 ) 
ßLN = ln ( °BX ) (3.34) 

The expression for the average convective heat transfer coefficient can then be written, 

from Eq. (3.31): 

~hc = zT- hx6Bdx* 
U
LN)   o (3.35) 
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We had obtained the following result previously in Eq. (3.28): 

h**  =-lf(^^ = i 

and 

„=i    D       dr*      y L Gz J (3.36) 

Making this substitution into Eq. (3.35) and integrating, we obtain the following result 

for the average Nusselt number: 

Nu  =H£ 

Nu = -a       Gz  2Sn_ dGn{\) 2^2^« (1 + 8 Ah).. 
0^1 +SKri),?! (fa!    dr*   {l~exPl Gl ])     (33?) 

The expression for the average Nusselt number may be written in a somewhat more 

compact form, as follows. At the inlet of the tube, the temperature of the fluid is uniform, 

T(r,0) = T0,   eBt0 = l. 

Using Eq. (3.24), we obtain: 

0™ = 1 = 4 V  Cn    dGn{\) 
B'° (1 + SKn) „ti ÖJ2 ~dT*~ (3.38) 

and, 
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B     - 4 V  C„    dGn{\) 2 (Xn)ix* (1 + 8 Kn) 6** ~ -JT+mrut (ÄJ2 ~dPr exp[ -i 1 ]        (3.39) 

By comparison with the expression given in Eq. (3.37) and using Eq. (3.34), we obtain: 

-      Gz ( 1 -eRI ) 
Nu= Te^— = -ljGzln{eB^ (3.40) 

The expressions for both local and average Nusselt number are summed as follows: 

(l + 8Ah)l  cJ£M±expl- 2 a-)'^ (1+8 Ah) 
Afar = 

„ = ! ~»   Jr*   ^ i GT 

2i:-^-^m«nr  2^)'** (i+8 Ah), (3-29> tL^a.Y    dr*   exp l TT-r  1 n^{Xny    dr*   ^L Gz~ 

e^i + sm^a^  dr* {l~e^ öl ]}   (3>37) 

( eB,IT  1   ) 

ln ( eBj, ) (3.34) 

**        (l + 8Ah)n%an)2    dr*    exp[ cl  ] 
(3.39) 

Gn(r*)  = Sa2j an) r*2J n   = i,2,3, 
j = 0    J ' (3.15) 
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C   = 2. 

aA   Vr*=i (3.20) 

[(f)]    -i& 

^„(1)   _^(r*) _   f,      ' 
dr *     ~     dr*      ' ^ = 1 ~ ^2/ a2; 

From these expressions we can see that the coefficient a2j and ^ must be predetermined 

in order to calculate the Nusselt numbers. 

3.3 Summary 

In this chapter, a series solution for the mathematical model of temperature 

distribution in slip flow in circular geometries has been obtained by the method of 

Frobenius. Considering the given boundary condition, a temperature distribution in 

terms of a generalized Fourier series has been derived. Also, expressions for the local 

and overall Nusselt numbers have been obtained. All these expressions can be taken as 

functions of the Knudsen number and the Graetz number. In order to calculate either the 

temperature or the Nusselt numbers, the coefficient a2j and K must be predetermined. 



CHAPTER 4 

EVALUATION OF EIGENVALUES 

In the last chapter, we obtained a series solution for the temperature distribution. 

Also, expressions for the local and overall Nusselt numbers have been obtained, as func- 

tions of the Knudsen number and the Graetz number. In this chapter we presents a tech- 

nique for expansion of the coefficient a2j and evaluation of eigenvalues for the solution of 

the Graetz Problem in slip-flow, since the coefficient a2j and eigenvalues K must be pre- 

determined for the calculation of either the temperature distribution or the Nusselt num- 

bers. A matrix will be constructed and a formulation described to find the coefficients a2j 

directly as well as 4. Based on these 4, the eigenvalues ^ can be calculated easily. 

4.1. Introduction 

The series solution of Eq. (3.8) can be expressed as Eq. (3.16), which required the 

solution of Eq. (3.10). 

Letting ß = ( l+4Kn ), Eq. (3.10 ) can be rewritten as follows: 

^+<7^)+A2(/8-r*>)G==0 (4.D 

with boundary conditions: 

G(0)   =   1 

G(l)   =   0 

A particular solution of Equation (4.1) satisfying condition (4.2) is 

(4.2) 

(4.3) 

G(r*)   =   Zap*" (4.4) *=o 

32 
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Substituting; = 2k, the recursion relationship Eq.(3.10) can be rewritten as follows: 

a0   =   1 ,     4ai + ßX2=0 

} (4-5) 
4k2ak+X2fßak_i-ak_2J = 0 

for k= 2,3,4,.... 

From Eq. (4.5) we can see that the expansion of ^ involves A with different powers. 

In order to satisfy Eq. (4.3), the parameter A must take on an infinite number of discrete 

values^, and GW can be taken as a function of A. Then, an eigenfunction is obtained by 

rearranging terms according to A2*: 

<*■•) l, = , = G(1,A) = Zd^ = l  + dlX2 + d^ + ^ + m_Q (46) 

One of the procedures employed in determining the values of A is to (1) expand each 

coefficient a, to a large * by relationship Eq. (4.5); (2) add up all the terms with the same 

order of A in determining the coefficients dk in Eq. (4.6); and, (3) determine the values of 

A„. This technique is computationally inefficient for large k because the expansion of a, 

for large k is very complicated and makes the determination of A„ from the eigenfunction 

G(l,X) = 0 extremely difficult It is the purpose of this chapter to obtain a formulation for 

calculation of ak in Eq. (4.5) as well as forX» in the eigenfunction expansion (Eq. (4.6)) in 

a more effective way. 

4.2. Formulation of *& 

4.2.1 Expansion of av {Kn - p nr p = ^ 

First of all, let us expand the coefficients «. For simplification, let coefficients ak be 

expanded from the recursion relationship Eq. (4.5) for/J = 1 (or Kn = 0) as follows: 
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a0=     1 

en = - l2/[2W(l\uy-] 

a2=    [l222+l4]/[2^2\2\)2] 

a3 = -[X4(22+42)+X6]/[2(2)(3)(3!)2 

a4 =    [ X42262+X6(22+42+62)+X8]/[2(2)(4)(4!)2] 

a5 = -{ X6[2i62+&fI22+42ja+^(22+42+62+82)+X10}/[2(2)(5)(5!)2] 

a6 =    U62262102+ X8[2262+82(22+42)+102(22+42+62)] +X10(22+42+...+l02)+ 

+X12}/[2(2K6)(6!)2] 

a7 = "{ X8[2262102+122[2262 + 82(22+42)] +Xl0[2262+82(22+42)+102(22+42+62) 

+122(22+42+62+82)]+Xl2(22+42+...+122)+}i14}/[2(2K7)(7!)2] 

a8=    {X82262102142
+X10r2262102

+122r2262 + 82r72
+42-)i+i42r2262

+R2r92^V 

+ 102(22+42+62)H+Xl2[2262+82(22+42)+102(22+42+62)+122(22+42+62+82)+ 

+142(22+42+...+102)]+X14(22+42+...+142)+X16}/[2(2)(8)(8!)2] 

  (4.7) 

The underlines are explained in examples 1 and 2 below. 

From these expansions of Ok, we can see the complexity of the expressions with large 

k.  Both the number of terms and the constants increase with increasing jfc. Because the 
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denominator increases very rapidly, it will be extremely difficult to find the ak's we need 

for evaluation of eigenvalues Xn. 

To see more clearly the relationship between ak and dk, let us construct a matrix from 

the expansions of a^. 

4.2.2 Construction of the b.j Matriv 

Since we need to add up the numbers related to the order of A2in a* the expansions of 

ak can be rearranged as 

k     l       2 3 4 5 6 

'   &2)  a4)      a6) a8) a^ ^2) 

0 0 o 

a14) 

1 1 
4 0 0 

2 4 
64 

1 
64 0 

3 0 -20 
2304 

-1 
2304 

4 0 144 56 I 
147456  147456      147456 

0   0    ~1424 -120  _i 
14745600 14745600 14745600 

0   0   1440° 7024         220 
2123366400 2123366400 2123366400    5123366400' 

1 

0   0      0      -219456       -24304        -364 _, 
416579814400   416579814400   416579814400 416579814400 

0   0      0     2822400 1596160 67424 560 
106542032486400 106542032486400 106542032486400 106542032486400 



so a matrix B is constructed: 
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B = 

'bhl    0 0 0     0     0 

b2l   b22 0 0     0     0 
0     ^3,2 ^3,3 0       0       0 
0   b4>2 b43 b44   0     0 
0      ° ^5,3 b5A b5tS   0 
0      ° ^6,3 b6A b6,5 b6<6 

From the matrix and the expansions ak, we observe that 

bU = 

b-,-, = 

(-D] 

2(2)(D(1!)2 

(-1)2 

2.2 2(2X2)(2!)2 

*2.1  = *2,2 22 = b2<2 2™H2 = b22 2^2 (5,)2 
*,=1 

b?i = (-1)2 

33       2(2)(3)(3!)2 

^3.2 = ^3,3 (22 + 42) = &33 2(2)(3-2)(l2 + 22) = bX3 2™>Z (Sl)2 
2 

•"4,4 
_ (-1)4 

2(2)(4)(4!)2 

^4,3 = ^4,4 (22 + 42 + 62) = b44 2^4-3>(l2 + 22 + 32) 

= b4<4 2PXD(l2 + 22 + 32) = fc       2(2)(l>^ (      2 

'1-1 

*4,2 = *4,4 (2262) = b4A 2(2X«>(3212) = b44 2(2)(2> fi {Si + 1)2[ J (,i)2]] 

•r2 = l 

52-l 

I 
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where we define the summation for the upper limit of zero as follows: 

o 
2 is,)2 = 0 

From these observations, we can deduce a formulation to calculate bi<k directly re- 

lated to the index instead of from the expansion of each term Ok. The formulation is: 

2*(i!)2 

and for / > it 

b,k = bu 2"2(sA + A-\)\   I    (s^ + A-2)\..{l (s2 + 1)*[Z sfl)...]] 

(4.8) 
where A = i - k, and then the coefficients in the eigenfunction can be found from 

2k 

d«   =   £k
bi* (4.9) 

Example 1: 

b5,3 = b^22^[I(s2+l)2[Zs2] j 
^2 = 2 J,=l 

(-1) 5 J. 2 

RTiböö 24[3212 + 4V + 2*)] 

-1,424 
14,745,600 
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Example 2: 

*8,5 = *8,8 22(8~5)   [X  (S3 + 2)2[2 (,2 + lftZsfi    ]    ] 
J3 = 3 ^2 = 2 s,=l 

= ^L 26[52i;>2 + D*[5 ,,*] + 625 (,2 + iftSsfl + 

+ 722,(.2 + i)2[i:512] ] 

= 2iö^!)2 26/5232l2 + 62[3212 + 42(12 + 2
2)] + 

+ 72[3212 + 42(12 + 22) + 52(12 + 22 + 32)]} 

1,596,160 
106,542,032,486,400 

These two examples are also shown as the underlined parts in expansion, Eq. (4.7); 

when applying the recursion relationship, Eq. (4.5) and the procedures described in part 

4.1, the computations are not easy but rather are complex and time^onsuming. For ex- 

ample, the computation ofb8,5 involves the expansions of a;,, a2,..., as and addition of all 

term with A10 in those expansions. Thus, these examples also show that the computation 

by the formulation in Eq. (4.8) is much more effective than that found by the recursion 

relationship, Eq. (4.5). 

4.2.3 Expansion of av (Kn > (\) 

From the above two examples, we can see the correctness and effectiveness of Eq. 

(4.8) and, based on it, the formulation for Kn>0 also can be derived. 

For ß >1 the corresponding expansion of Ok are as follows: 
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fli = -X2ß/[2(2)(1)(l!)2] 

a2=   [X222+X4ß2]/[2(2X2)(2!)2] 

a3 = -[ X4ß(22+42)+X6ß3]/[2(2)(3)(3!)2] 

aA =   [ X42262+X6ß2(22442+62)+X8ß4]/[2(2)(4)(4!)2] 

a5 = -{ X6ß[2262+82(22+42)]+),8ß3(22442+62+82)+X10ß5}/[2(2)(5)(5!)2] 

a6 =    { X62262102+X8ß2[2262+82(22+42)+102(22+42+62)]+X10ß4(22442+...+102) 

+X12ß6}/[2(2X6)(6!)2] 

ai = -{ X8ß[2262102+122[2262 + 82(22442)] + X10ß3[2262+82(22+42)+ 

+102(22+42+62)+122(22+42+62+82)]+X12ß5(22442+...+122)+ 

+X14ß7}/[2(2)(7)(7!)2] 

a8=   { ^82262102142+X10ß2[2262102+122[2262 + 82(22+42)]+ 

+142[2262+ 82(22+42)+102(22+42+62)]]+ X12ß4[2262+82(22+42)+ 

+102(22+42+62)+122(22+42+62+82)+142(22+42+...+102)]+ 

+X14ß6(22+42+...+142)+X16ß8}/[2(2X8)(8!)2] 

  (4.10) 



so the matrix is modified as follows: 
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Let 

B' = 

M 0        0        0        0 0 
b2,\ b2rf2     0        0        0 0 

0 hjß h,sß3     0        0 0 
0 *4,2      l>4,3ß2  b4<4ß

4       0 0 
0 0      M £5,/

3 65i5/?5 0 
0 0      ^,    h* £2 h, ,ß4 i h. t 

then 
hk  = M /-2J (4.11) 

<4    =    J£fc 
i=* 

•Jfe (4.12) 

All the expressions for evaluation of eigenvalues of the Graetz Problem in slip-fl 

are summed as follows: 
ow 

G(r*) |„ = 1 = G(1,A) = Id^ = 1  + dlX
2 + d^ + d^ 

k=0 3/
D + ...   =0   (4.6) 

22'(/!)2 

6« = *„ 2»Ijs, +A-m   2(J^ + A-2)X..l2 (,, + Irtl,,^..]] I 

(4.8) 

V   =   M i-Zd (4.11) 
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2k 

dk   =   ZbiJc> (4.12) 
i=k 

where A =i-k. 

From these expressions one can see that the summation notation greatly simplifies 

the evaluation of eigenvalues. 

4.3. Summary 

In this chapter, a technique for calculation of the eigenvalues occurring in the Graetz 

Problem in slip-flow has been derived by constructing a matrix. The two examples show 

that the computation of the biik by the formulation in Eq. (4.8) is much more effective than 

when found by the recursion relationship, Eq. (4.5). With the formulation, any number of 

eigenvalues can be theoretically determined. The next chapter will deal with the algo- 

rithms, the computational program, and will carry out the calculation of the eigenvalues. 



CHAPTER 5 

COMPUTATIONAL RESULTS 

In the previous chapter, the formulation for the calculation of the coefficients occur- 

ring in the eigenfunction was determined. In this chapter, we will develop the codes for 

the evaluation of eigenvalues for the Graetz Problem in slip-flow. We will calculate the 

eigenvalues and discuss the computational results. 

5.1 Treatment of Very Large Numbers in the Computations 

By using Eq. (4.8), the calculation of the coefficient bi>k involves the constant 

22i(i!)2, which can become a very large number. For example, if i = 30 (or k = 15), then 

2 W =2«f30!)2 = (1.15 x 10^(7.04 x 10<*) = 8.11 x 70«, which will overflow on 

the computer. Therefore, to reduce the effect of very large numbers in the computation, 

the eigenfunction must be treated as follows. 

(1) We can combine 22,into the summation in Eq. (4.8) as 

b* = lw 2\^ +A~l)\ 4L<^-i +^-2)2r...[5cs2 + mSsftu 
^-1=^-1 52 = 2     - ,, = 1 

]] 

So for i = 30 (or k = 15), the largest number in the term b2k,k can be reduced to (30!)2 = 

7.04 xlO64. 

42 
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(2) Letting A' = X/g and dk'.= g2kdk and allowing the magnification coefficient, g, 

be any given number greater than 1, we have 

00 

G{X)   =   Hxndk = 1 + X2d, + X% + X% + ... 
A=0 12 3 

- i + aw1 J + «»<£ + a-^-f +... . ia>^ 

= 1 +A'2J/ +A'4J2' +A'6J3' + ... 

00 

= Z*'"^' = w> = o (5.D 

For example, when we let g be 10, then from Eq. (4.9) and Eq. (4.8) we have 

2(1) 2(1) 

J=l     M 1 = 1 U 

= 102<%(1 + 10*%2A 

2(2) 2(2) 

«V = S2(2)d2 = I02^d2 = \02^lbi2 = SltfMb-r, 
i=2    ' i = 2 '' 

= io2%i2 + 102%>2 + io2^4j2 

2(3) 2(3) 

d3' = g2(3)d3 = io2^3 = iow2bi3 = lao2^., 

=  lO2«3)^ +  102(3)*4,3 + 102(3)^5,3 + 102(3)fc6)3 
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In general then, 

2k 2k 

dt  = Ä = g*Zb,k = 2g*b. 
i=k -      ,-«r     *'•* 

For the example in which it = 15, we have 

2(15) 2(15) 

dl5' = io2^15 = io^)2; fc,.13 = I IO
2
^.,, 

i=15    ' / = 15 '-l:5 

Thus, combining 10*15) into the term £,Jft75 , the largest number in this term reduces to 

(i!)2/102k=(30!)2/1030= 7.04xl034. 

(3) The magnitude of the term I bu I can be reduced for computational purposes by 

taking the logarithm of both sides and later reversing this computation by taking the expo- 

nential function of both sides. That is, 

kSi<A\i   =   -2/ logw2-2 I hgwk {52) 

This method can reduce the number greatly. For example, for i = 30, then, 

l°Si(p303Q   =   -2(30) log W2-2Z log 10jfc 
K — X 

=   -(60) (0.301)-64.847   = -82.907 

All three of these methods were used in the computer code to accommodate the in- 

herently large numbers. 

5.2 Flow Chart of Computation 

A block diagram for computation of the eigenvalues is shown in Figure 5.1. The 

input data includes the number of terms, *, the magnification coefficient, g, in EG, (5.1), 

and the Knudsen number, Kn oryS in Eq. (4.11). 
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input: 
k 
Kn, 

ao=U aj =-l/2-- $=l+4Kn; i=l;    jIÖ] 

no A = i-j; 
call summation b; v 

solver with A , j; 

l=U    do=l;   ab'=l; 
j=j+l 

4 = 0;     J/'=0; 

calculate fyy' 

1=1+1 

di = di + bi,i;di'=di'+bu'; 

call A solver with 4' 

output: 
^n/ dk'; bij/ 

C     Era     ) 

calculate 4' 

calculate A„ 

Fig. 5.1 Flow chart of computation of eigenvalues 
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The calculation procedure can be broken down into three steps: 

1) calculation of coefficient bij (which requires a summation solver for Eq. (4.8) 

for bij and Eq. (4.11) for hj'); 

2) calculation of 4 by Eq. (4.9) and dk' by Eq. (4.12); and 

3) calculation of eigenvalues Xn, or A'„ by Eq. (5.1). 

Based on the flow chart, the codes for computation of the eigenvalues have been de- 

veloped and are listed in Appendix A. The codes need as input the value of the Knudsen 

number, Kn, and the number of coefficients dk, ork, and the magnification coefficient, g. 

The output of the calculation includes the coefficient bitj , dk, and eigenvalues, Xn. 

From Examples 1 and 2 in Chapter 4 for the formulation of Eq. (4.8), we can see the 

feature of the calculation of the *-th term: the calculation involves all the previous (*-l) 

terms, that is, the summations of parameters S], s2,..., *_,, and further expanded summa- 

tions of si, s2,..., Sfe_i, for the present/:. This concept can be illustrated using the following 

triangles in Fig. 5.2. 

k=l 

^r- 

-Sj_ X 
k=2 k=3 

Fig. 5.2 DIustration of the growth of s,, s2,..., sfc.j as functions of k 

5.3 Results 

5.3.1 Comparison of the First Tpn 
dt (Kn = 0) 

5.3.1.1 Accuracy. Because the evaluation of eigenvalues involves the determination of 

an infinite number of terms, it is extremely difficult to determine directly the accuracy of 
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the approximate numerical eigenvalues. All we have to do is to find the consistencies 

existing in the results by different methods instead to determine the relative accuracy. 

In order to assess the accuracy of the computation of Eq. (4.8), a comparison of the 

first ten dk using Mathcad 5.0 was made, as shown in Table 5.1. In the table, the data in the 

second column are the computational coefficients 4 ( with g = 10) using Eq. (4.8); the 

data in the fourth column are the absolutely exact coefficients dk calculated by expansions 

using the symbolic processor in Mathcad 5.0; the third column gives the equivalent deci- 

mal values of the fourth column. The differences between Eq. (4.8) and the exact values 

are shown in Table 5.2. 

Table 5.1 Comparison of Coefficients 4 (g= 10) 

Eq. (4.9) 

1.0000 

-18.7500 

79.2101 

-144.043 

145.080 

-92.6715 

40.8619 

-13.1812 

3.24941 

-0.646315 

Numeric 
equivalent 

1.00000 

-18.75000E-02 

79.210069E-O4 

-144.04297E-06 

145.07980E-08 

-92.67144E-10 

40.861856E-12 

-13.181156E-14 

3.2451315E-16 

-0.62971547E-18 

Simulation by Mathcad Version 5.0 

Symbolic solution 

-3/16 

73/9,216 

-59/409,600 

603,793/416,197,814,400 

-555,379/59,929,893,273,600 

4.266,870,481/104,421,846,039,920,640,000 

-37,217,872,147/282,356,671,691,945,410,560.000 

41,377,942,693,441/127,507,755,229,335,476.282,327.040, ,000 

-9,281,940,782,645,851/14,739,896,504,51 l,181,058,237.005.824E-)-6 
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Table 5.2 Differences of 4 Between Two Methods 

k 0 1 2 3 4 5 6 7 8 9 
Difference 0 l 3.1E-9 3.0E-11 2.0E-12 5.5E-15 1.4E-17 4.4E-19 4.3E-19 1.7E-20 

From the comparison, we can see that the coefficient dk computed by Eq. (4.8) is 

always a little larger than that found by Mathcad, but the differences are rather small. 

Based on the comparison, it is evident that the computational results have enough accura- 

cy for an accurate determination of the eigenvalues. 

5,3,1,2 Efficiency In order to assess the efficiency of the computation of Eq. (4.8), we 

can compare the computational efficiencies using Mathcad and a calculation of Eq. (4.8) 

using a Fortran code for k = 9. 

Using Mathcad 5.0, three steps were implemented to solve for the eigenvalues: 

1) Expand a0, a\, a2,..., a18, as shown in Chapter 4; 

2) Add up the terms in the expansions with respect to I2 for dj, I4 for d2,..., 

k18 for d9; and 

3) Solve the eigenfunction equation for the eigenvalues 

1 + djX2 + d2X4 + d3X6 + ... + d9X18 = 0 

Procedure 1) took about ten hours and 2) about five hours to accomplish. For large 

*, for example k = 25, it would be too time-consuming and complex to use those methods. 

Using the computer code given in Appendix A, which uses Eq. (4.8) to determine all 

dk for k = 1 to 9, the process took approximately one minute. Therefore, the latter proce- 

dure is an effective and efficient technique for the calculation of eigenvalues. 
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5.3.2 Behavior of the Eipenfnnc tinn 

In practice, the number of terras used in the eigenfunction expression must be lim- 

ited. In order to see how the eigenfunction behaves with respect to the number of coeffi- 

cient terms, a number of calculations have been carried out and plotted. 

Figure 5.3 shows the behavior of the eigenfunction as a function of the number of 

coefficient terms. The numbers of the curves indicate the number of terms dk used in the 

computations. At least six terms are needed to obtain the two lowest eigenvalues, shown 

as the curve numbered 6. 

G(X') 

1.0 

Kn = 0 
k = 25 
8=10 

0.5 

0.0 

-0.5  - 

Fig.5.3 Behavior of the eigenfunction as the number of coefficient terms increases 

Graetz found the first two values, Xj =2.7043 and X2 = 6.50 from the following eigen- 
function: 

0 = 1 - X2 0.1875 + X4 0.007921 - X6 0.00014404 + X8 145.92xl0~8 + 

- X1094.938xl0-10+ ... (5.3) 
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Comparing the coefficients dk from Eq. (5.3) with those given in Table 5.1 we can see 

significant differences exist from the 5th term on, revealing why Graetz's second eigen- 

value is not accurate. 

Obviously, the second eigenvalue determined by curve 6 is less than the "accurate 

value," which is slightly greater than 6.6 (see Table 5.3), shown as curves 7,8, and 9 etc., 

in Figure 5.4. 

In Figure 5.4, we can see that the true second eigenvalue lies between those obtained 

by curves 7 and 8. It is clear that the second eigenvalue obtained initially by curve 6 is 

rather rough; with one more term, the value is larger than the first one as shown by curve 7, 

but closer to the "accurate value"; the second eigenvalue given by curve 8 is a little less 

than that given by curve 7 but is even closer to the "accurate value." The same holds true 

for the case with nine terms, ten terms, and so on. 

From this discussion we can conclude: 

(1) that the eigenvalues initially obtained with the minimum number of coeffi- 

cients is always rather rough, such as the second eigenvalue obtained by curve 

6 and the third eigenvalue obtained by curve 9; 

(2) that the next to the last available eigenvalue that can be determined for a certain 

number of coefficients is always correct and sufficiently accurate. For instance, 

for curve 7, the second eigenvalue can be assumed to be reasonably accurate and 

correct; and 

(3) that the eigenvalues and the convergence of the eigenfunction are sensitive to the 

accuracy of the coefficients dk. 

Figure 5.5 shows the plot of the eigenfunction with 25 terms. There are six eigenva- 

lues shown in the plot. From the above discussion, we conclude thatthe firstfive eigenva- 

lues are correct, but the last one, or the sixth, is somewhat inaccurate due to the truncation 
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Fig. 5.5 Plot of eigenfunction with 25 coefficient terms 

of the eigenfunction expression. The plot also shows that the eigenfunction is oscillating 

with decreasing magnitude. 

5.3.3 Comparison With Previously Known 
Eigenvalues With Kn = 0 

Table 5.3 shows the comparison with previously known eigenvalues for the classical 

"Graetz Problem" (ß = 1 or Kn = 0) as presented by Seilars et al. (1956). As seen in Table 

5.3, the first four eigenvalues are in excellent agreement. Therefore, we can apply this 

technique to the Graetz Problem in slip-flow for evaluation of the eigenvalues. 

5.3.4 Eigenvalues for Kn •> n 

Table 5.4 shows the first five eigenvalues for slip-flow with different Knudsen num- 

bers, Kn. 
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Table 5.3 Comparison with Previously Known Eigenvalues 

Sellar et al. Jakob Analog computer Present paper 

n K K K K 
1 2.667 2.705 2.71 2.704 

2 6.667 6.66 6.69 6.679 

3 10.667 10.3 10.62 10.670 

4 14.667 14.67 14.58 14.761 

5 18.667 17.255 

Kn 

0.00 

0.005 

0.01 

0.02 

0.04 

0.06 

0.08 

0.10 

0.12 

Table 5.4 Eigenvalues for Different Kn 

2.704 

2.671 

2.639 

2.578 

2.468 

2.371 

2.284 

2.206 

h 
6.679 

6.584 

6.493 

6.320 

6.013 

5.747 

5.513 

5.305 

2.136        5.119 

^3 

10.670 

10.512 

10.359 

10.071 

9.561 

9.120 

8.737 

8.396 

8.096 

A4 

14.761 

14.220 

14.209 

13.815 

13.099 

12.560 

11.963 

11.514 

11.074 

h 
17.255 

16.576 

15.836 

14.646 

14.573 

13.938 

14.273 
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G(X') 

1.0 

-0.5 - 

-1.5 

-2.0 

Kn =0.04      Kn =0.02     Kn =0.00 

^ = 25 
£=10 

0.000 
-i 1—1 ■       ■       »       I 

0.500 1.000 1.500 

Figure 5.6 Plots of the eigenfunction as a function of Knudsen number 

V 

Figure 5.6 shows the behavior of the eigenfunction for various Kn under slip-flow condi- 

tions. It shows that the eigenvalues decrease as Kn increases. For Kn > 0, the plots appear 

unstable after the fifth root so that only the first four values are reliable. The possible 

cause for this instability is that the truncation errors are magnified by the factor (1 +4Kny 

on bu in the modified matrix B. The coefficients dk' forKn from 0.00 to 0.12areshown 

in Appendix B. 

5.3.5 Influence of Kn nn the Nnssrit Number 

5.3.5.1 Local heat transfer coefficient. Using Eq. (3.29) and Eq. (3.20), the local heat 

transfer coefficient Nux has been calculated. 
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Figure 5.7 shows the local Nux value as a function of x*/Gzfor Kn = 0.02 and with the 

number of eigenvalues as a parameter. The value of the local Nusselt number converges 

dramatically with the increase in the number of eigenvalues in the computation. When 

x*/Gz is 0.02, the error in Nux is 0.7 percent when two eigenvalues are used and compar- 

ing to the straight line (using one eigenvalue), theerroris 14percent. It can be concluded 

that the results using four eigenvalues are sufficiently accurate for x*/Gz > 0.02. When 

x*/Gz is greater than 0.05, the error is at most 1.3 percent - that is, all three plots become 

nearly flat, indicating a thermally fully-developed condition. 

n: number of eigenvalues used in calculation 

R: radius of tube 

Kn-0.02 

0.00 0.02 0.04   (0.05)     0.0B 0.08 

Fig. 5.7 The local Nusselt number As a function of x*/Gz 

Figure 5.8 shows the local Nusselt numbers as a function of Ah. It is obvious that Kn 

has an influence on the Nusselt number. All the plots in Fig. 5.8 show that the Nusselt 
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number increases as Kn increases, and that this effect is magnified near the entrance. 

When x*/Gz is greater than 0.05, all the plots become nearly flat, indicating a thermally 

fully-developed condition. 

0.12 
0.10 
0.08 
0.06 
0.04 

Fig. 5.8 The local Nusselt numbers as functions of x*/Gz and Kn for n = 4 

Table 5.5 shows the values of the Nusselt number for fully-developed conditions 

(where x*/Gz > 0.05) for different Kn and the ratios of these values to those with Kn = 0. 

This ratio increases with an increase of Kn. The data show that when Kn is 0.01, the value 

of the Nusselt number increases about 3 percent, and when Kn is 0.02, the increase is 

greater than 5 percent. Thus, we can conclude that when Kn is greater than 0.01, the effect 



0.00 0.02 0.04 0.06 

Kn 
0.08 
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0.10 0.12 

Fig. 5.9 Fully developed Nu as a function of Kn 

5.3.5.2 Overall heat transfer coefficient. Using Eqs. (3.37), (3.34), and (3.39), the over- 

all heat transfer coefficient Nu" can be calculated. Fig. 5.10 shows the plots of NU, Nux, 

and (Nü~- Nu°°), or A as functions of x*/Gz. 

From Fig. 5.10, we can see that the overall heat transfer coefficient Nu" is greater than 

the local heat transfer coefficient Nux: that the entrance has a greater effect on Nu" than 

on Nux: and that when x*/Gz is greater than 0.05, Nux becomes nearly flat, indicating a 

thermally fully-developed condition. However, Nu" does not becomes flat, so that it can 

not be considered as a fully-developed condition until x*/Gz greater than 0.20. 

From the above discussion, we can see that: 

(1) slip-flow has a positive influence on the heat transfer coefficient and can enhance 

the heat transfer efficiency; 
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r 

0.05 0.10 
x*/Gz 

0.15 0.20 

Fig. 5.10 Plots of Nu, Nux and A as functions of dimensionless axial location 

(2) the influence depends on the Knudsen number and increases as Kn increases; 

(3) when Kn is equal or greater than 0.02, the increase in the fully-developed Nu is 

greater than 5 percent so that the effect of slip-flow should be taken into consider- 

ation in the computations of the heat transfer coefficient; and 

(4) that the influence of Kn on Nu°° will decrease as Kn increases. 

5.4 Simplified Eigenvalue Relationships 
with/fa 

Figure 5.11 shows that ^ are functions of Kn. For practical purposes, a simplified 

expression for calculation of the eigenvalues is needed. By using a least-squares curve 

fit program, the foUowing exponential expressions as given in Table 5.4 were found to 

yield the best fit. The general form may be expressed as 
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0.12 

Fig.5.11 The first four eigenvalues as a function of Kn 

K = C\+ CiKn exp(C3 Kn) (5.4) 

The constants Ch C2, C3 and the correlation coefficient R2 are listed in Table 5.6, as func- 

tions of Kn. 

Table 5.6 Coefficients in Eq. (5.4) as Functions of X 

n K Ci c2 c3 R2 
1 2.704 2.704 -6.6236 -2.8482 0.9997 

2 6.679 6.679 -18.9118 -3.2003 0.9997 

3 10.670 10.670 -31.7454 -3.3293 0.9972 

4 14.761 14.761 -49.5056 -4.2066 0.9637 
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5.5 Summary 

In this chapter, the codes were developed for the evaluation of eigenvalues. The first 

six eigenvalues were found, and the behavior of the eigenfunction was plotted. From the 

comparison and discussion, it is evident that the new technique using Eq. (4.8) for evalua- 

tion of the eigenvalues of the Graetz Problem in slip-flow is computionally effective and 

efficient; the Nusselt number increases as the Knudsen number increases; and the simpli- 

fied relationship of the eigenvalues as a function of the Knudsen number is reliable and 

convenient for calculation purposes. 



CHAPTER 6 

CONCLUSIONS AND FURTHER RESEARCH 

6.1 Conclusions 

In the previous chapters, the mathematical models of velocity distribution and tem- 

perature distribution were established, and the expression for the series solution shows 

the importance of the eigenvalues. Since those eigenvalues were extremely difficult to 

evaluate directly from the original expansion, a formulation was derived based on a spe- 

cially constructed matrix of coefficients bitj. The formulation can be used to find any giv- 

en bhj using only the indices i and/ This fact makes it possible to evaluate the eigenvalues 

by computer. The computer codes were developed and some results were obtained. From 

the discussions and analysis of the computational results, the following conclusions can 

be drawn: 

1. The technique for evaluation of the eigenvalues of the Graetz Problem in slip-flow 

is computational effective; 

2. The Nusselt number increases as Kn increases, or the heat transfer is enhanced 

under slip-flow conditions; 

3. When Kn is equal to or greater than 0.02, the increase in fully developed Nusselt 

number is greater than 5 percent so that the effect of slip flow conditions should 

be taken into consideration in the computations of the heat transfer coeffient; and 

4. The simplified relationship between the eigenvalues and the Knudsen number is 

reliable and convenient for calculation purposes. 
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6.2 Further Research 

The evaluation of the eigenvalues is very important for the solution of the Graetz 

Problem in slip-flow. Although the technique is effective for n < 5, it is extremely time- 

consuming, and the computational error is a problem for large k. Based on this work, 

the following future research is suggested: 

1. Develop computer codes for calculating the heat transfer coefficient and Nusselt 

number, which involves the computation of Q and differentiation of eigenfunction 

G„atr*=l; 

2. Obtain a simplified relationship between the overall Nusselt number and the 

Knudsen number; 

3. Develop a more effective technique to deal with very large numbers in computa- 

tions; 

4. Improve the codes to reduce the computing time; and/or 

5. Develop a more effective technique to reduce the computing time. 



APPENDIX A 

PROGRAMS FOR COMPUTATION OF EIGENVALUES 
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* THIS PROGRAM FOR CALCULATION OF COEFFICIENT a; j and dk 
aiJ a:  ai,j * 

* at initial of ajj * 
* d: dk * 

* g: magnification coefficient * 
* kn: Knudsen number * 
* bb:sqrt(l.+4.*kn) * 
* s:  A = i-j * 

reala(1000,1000),d(0:1000),r,u,at,sum)g,kn,bb 
integer s 

C INPUT Kn,g 
read *,kn, g 
bb=sqrt(l.+4.*kn) 

C CALCULATING a;j 
dol0i=l,26 

a(i,iM-l)**i*(((g/2)**(i)/(funtl(i)))**2)*bb**(2*i) 
10 continue 

C CALCULATING a;j 
do50j=l,25 

at=l 
print *,****'j 

do40i=j+l,2*j 
s=i-j 
summ(i,j,s,at) 

a(i>j)=at*(-D**i*(((b/2)**(j)/((funtl(i)/10.**(s/2.)/(2**s))))**2)*bb**(2*i-4*s) 

C OUTPUT aij 

write(*,110)i,j,a(i,j) 
110 format(i5,5x,i5,5x,el0.4) 

at=l 
40 continue 
* print*,a(i,j) 
50 continue 

C INTnATING dk zreo 
do55j=0,25 

d(j)=0 
55 continue 
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C  CALCULATING dk BY SUMMATION akj 
d(0)=l 
do 60 j=1,25 

do 70 i=j,2*j 
d(j)=d(j)+a(i,j) 

70 continue 
60 continue 

C OUTPUT k,Kn,dk 

open(3) 
write(3,*)'k = 25  Kn = \kn 

do 100 i=0,25 
print *,d(i) 
write(3,*)d(i) 

100 continue 

C CALCULATING THE VALUES OF EIGENFUNCTION AT EACH POINT 
du=0.0001 
open(3) 
do 200 i= 1,30000 

u=du*(i-l) 

writeC3,*)u,f(u,25,d),df(u,25,d) 
200 continue 

call newton(d,25) 
end 

C FUNCTION OF n! 
function funtl(n) 
funtl=l 
dol0i=l,n 
funtl=funtl*i 

10 continue 
return 
end 

(1) FUNCTION OF THE LOWEST SUMMATION 
function sum l(jj) 
real suml 

suml=0 
dol0i=l,jj 

suml=suml+i**2/10. 
10 continue 

suml=suml/4. 
return 
end 

* 
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**********************************************,„+#++lt,^ 
*(2) FUNCTION OF THE 2ND LOWEST SUMMATION 

function sum2(jj) 
realsum2 
integer ss 
sum2=0 

do 10 ss=2,jj 

sum2=sum2+suml(ss-l)*(ss+l)**2/10. 
10 continue 

sum2=sum2/4. 
return 
end 

*********************************************,,, ^.^^^ 

*(3) 
function sum3(jj) 
realsum3 
integer ss 

sum3=0 
do 10 ss=3jj 
sum3=sum3+(ss+2)**2*sum2(ss-l)/10. 

10 continue 
sum3=sum3/4. 
return 
end 

********************** ** *********************„„,„„*,« 
*(4) 

function sum4(jj) 
real suin4 
integer ss 

sum4=0 
do 10ss=4,jj 

sum4=sum4+(ss+3)**2*sum3(ss-l)/10. 
10 continue 

sum4=sum4/4. 
return 
end 

********************* 

*(5) 
function sum5(jj) 
realsum5 
integer ss 

sum5=0 
do 10 ss=5,jj 

sum5=sum5+(ss+4)**2*sum4(ss-l)/10. 
10 continue 
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sum5=sum5/4. 
return 
end 

*****************************„,„, *„*********************** 
*(6) 

function sum6(jj) 
real sum6 
integer ss 
sum 6=0 

do 10ss=6,jj 

sum6=sum6+sum5(ss-l )*(ss+5)* *2/l 0. 
10 continue 

sum6=sum6/4. 
return 
end 

*(7) 

function sum7(jj) 
real sum7 
integer ss 

sum7=0 
do 10ss=7,jj 

sum7=sum7+(ss+6)* *2*sum6(ss-l )/l 0. 
10 continue 

sum7=sum7/4. 
return 
end 

^^♦fr***********************************^^^ 

*(8) 

function sum8(jj) 
real sum8 
integer ss 

sum8=0 
do 10ss=8,jj 

sum8=sum8+(ss+7)**2*sum7(ss-l)/10. 
10 continue 

sum4=sum4/4. 
remm 
end 

*(9) 

function sum9(jj) 
real sum9 
integer ss 
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sum9=0 
do 10 ss=9,jj 

sum9=sum9+(ss+8)**2*sum8(ss-l)/10. 
10 continue 

sum9=sum9/4. 
return 
end 

*(10) 

function suml0(jj) 
real sum 10 
integer ss 

sum 10=0 
do 10 ss=10,jj 

sumlO=sumlO+(ss+9)**2*sum9(ss-l)/10. 
10 continue 

sum 10=sum 10/4. 
return 
end 

*(11) 
function sum ll(jj) 
real sum 11 
integer ss 

sumll=0 
do 10ss=lljj 

sum 11 =sum 11 +(ss+10)* *2*sum 10(ss-l )/l 0. 
10 continue 

sumll=sumll/4. 
return 
end 

*(12) 

function sum 12(jj) 
real sum 12 
integer ss 

sum 12=0 
do 10 ss=12,jj 

suml2=suml2+(ss+ll)**2*sumll(ss-l)/10. 
10 continue 

sum 12=sum 12/4. 
return 
end 

*«**«««WM»ttttttttMW„„MWMMttTOMttMMM 

*(13) 
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function sum 13(jj) 
realsuml3 
integer ss 

sum 13=0 
do 10 ss=13jj 

suml3=suml3+(ss+12)**2*suml2(ss-l)/10. 
10 continue 

sum 13=sum 13/4. 
return 
end 

*(14) 
function suml4(jj) 
real sum 14 
integer ss 

suml4=0 
do 10 ss=14jj 

suml4=suml4+(ss+13)**2*suml3(ss-l)/10. 
10 continue 

sum 14=sum 14/4. 
return 
end 

*(15) 
function suml5(jj) 
real sum 15 
integer ss 
sum 15=0 
do 10 SS=15,Jü 

suml5=suml5+(ss+14)**2*suml4(ss-l)/10. 
10 continue 

sum 15=sum 15/4. 
return 
end 

*(16) 

function sum 16(jj) 
real sum 16 
integer ss 

sum 16=0 
do 10 ss=16jj 

suml6=suml6+(ss+15)**2*suml5(ss-l)/10. 
10 continue 

sum 16=sum 16/4. 
return 
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*(17) 
function sum 17(jj) 
real sum 17 
integer ss 

sum 17=0 
dol0ss=17jj 
suml7=suml7+(ss+16)**2*suml6(ss-l)/10. 

10 continue 
sum 17=sum 17/4. 
return 
end 

*(18) 
function suml8(jj) 
real suml8 
integer ss 

sum 18=0 
dol0ss=18,jj 

suml8=suml8+(ss+17)**2*suml7(ss-l)/10. 
10 continue 

sum 18=sum 18/4. 
return 
end 

*(19) 
function sum 19(jj) 
real sum 19 
integer ss 

sum 19=0 
do 10 ss=19jj 

suml9=suml9+(ss+18)**2*suml8(ss-l)/10. 
10 continue 

suml9=suml9/4. 
return 
end 

*(20) 
function sum20(jj) 
real sum20 
integer ss 

sum20=0 
do 10 ss=20,jj 

sum20=sum20+(ss+19)**2*suml9(ss-l)/10. 
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c print*,'sum20=',sum20 
10 continue 

sum20=sum20/4. 
return 
end 

*(21) 
function sum21(jj) 
real sum21 
integer ss 

sum21=0 
do 10ss=21,jj 

sum21=sum21+(ss+20)**2*sum20(ss-l)/10. 
c printVsum21=' ,sum21 
10 continue 

sum21=sum21/4. 
return 
end 

♦ ♦♦»♦»»♦♦t***********************************,,,*,,,^ 

*(22) 

function sum22(jj) 
real sum22 
integer ss 

sum22=0 
do 10 ss=22,jj 

sum22=sum22+(ss+21)**2*sum21(ss-l)/10. 
c print*,'sum22',sum22 
10 continue 

sum22=sum22/4. 
return 
end 

*************************************************:).:)I,|1,).++ 

*(23) 
function sum23(jj) 
real sum23 
integer ss 

sum23=0 
do 10 ss=23,jj 

sum23=sum23+(ss+22)**2*sum22(ss-l)/10. 
10 continue 

sum23=sum23/4. 
return 
end 

************************************************** 

*(24) 
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function sum24(jj) 
real sum24 
integer ss 

sum24=0 
do 10 ss=24,jj 

sum24=sum24+(ss+23)**2*sum23(ss-l)/10. 
10 continue 

sum24=sum24/4. 
return 
end 

*(25) 

function sum25(jj) 
real sum25 
integer ss 
sum25=0 
do 10 ss=25 jj 

sum25=sum25+(ss+24)**2*sum24(ss-l)/10. 
10 continue 

sum25=sum25/4. 
return 
end 

subroutine newton(para,k) 
realpara(0:1000),k 
read*,ul,pr 

10 u2=ul-f(ul,k,para)/df(ul,k,para) 
error=abs((u2-ul)/u2) 
if(error.gtpr) then 
ul=u2 
print *,ul,error 
goto 10 
endif 
u2=b*u2 

print *,u2,f(u2/2,k,para) 
return 
end 

function f(u,k,para) 
real para(0:1000) 
f=0. 
dol0i=0Jc 

f=f+para(i)*u**(2*i) 
10 continue 

return 
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end 

function df(u4c,para) 
real para(0:l 000) 
df=0. 
do20i=ljc+l 

df=df+para(i)*u**(2*i-l)*2*i 
20 continue 

return 

C FUNCTION OF SUMMATION 
function summ(i,j,s,at) 
real at 

if (s .eq. 24) then 
at=sum24(j) 
goto 30 

endif 
if (s .eq. 25) then 

at=sum25(j) 
goto 30 

endif if (s .eq. 23 ) then 
at=sum23(j) 
goto 30 

endif 
if (s .eq. 22) then 

at=sum22(j) 
goto 30 

endif 
if(s.eq. 21) then 

at=sum21(j) 
goto 30 

endif 
if (s .eq. 20) then 

at=sum20(j) 
goto 30 

endif 
if(s.eq. 19) then 

at=suml9(j) 
goto 30 

endif if (s.eq. 18 ) then 
at=suml8(j) 
goto 30 

endif 
if(s .eq. 17) then 

at=suml7(j) 
goto 30 
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endif 
if (s.eq. 16) then 

at=suml6(j) 
goto 30 

endif 
if (s .eq. 14) then 

at=suml4(j) 
goto 30 

endif 
if (s.eq. 15) then 

at=suml5(j) 
goto 30 

endif if (s .eq. 13 ) then 
at=suml3(j) 
goto 30 

endif 
if (s.eq. 12) then 

at=suml2(j) 
goto 30 

endif 
if (s.eq. 11) then 

at=sumll(j) 
goto 30 

endif 
if (s.eq. 10) then 

at=suml0(j) 
goto 30 

endif 
if (s .eq. 9) then 

at=sum9(j) 
goto 30 

endif if (s .eq. 8 ) then 
at=sum8(j) 
goto 30 

endif 
if(s .eq. 7) then 

at=sum7(j) 
goto 30 

endif 
if (s.eq. 6) then 

at=sum6(j) 
goto 30 

endif 
if (s .eq. 4) then 

at=sum4(j) 
goto 30 
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endif 
if (s .eq. 5) then 

at=sum5(j) 
goto 30 

endif if (s .eq. 3 ) then 
at=sum3(j) 
goto 30 

endif 
if(s .eq. 2) then 

at=sum2(j) 
goto 30 

else 

at=suml(j) 
endif 

30 returen 
end 
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THE COEFFICIENT dk' OF EIGENFUNCTION FOR DIFFERENT Kn 

k 0.00 0.02 0.04 0.06 0.08 

0 1.000000 1.000000 1.000000 1.000000 1.000000 
1 -18.750000 -20.750000 -22.750000 -24.750000 -26.750000 
2 79.210100 98.265600 119.321000 142.377000 167.432000 
3 -144.043000 -201.296000 -271.689000 -356.553000 -457.224000 
4 145.080000 229.024000 344.257000 497.614000 696.594000 
5 -92.671500 -165.560000 -277.502000 -442.200000 -676.202000 
6 40.861900 82.728000 54.757000 272.024000 454.598000 
7 -13.181200 -30.273700 -63.245900 -122.683000 -224.130000 
8 3.249410 8.466540 19.757500 42.302900 84.501400 
9 -0.646315 -1.883630 -4.887290 -11.531000 -25.168400 
10 0.124692 0.363041 1.005790 2.575100 6.103080 
11 -3.58121E-02 -7.81416E-02 -0.196144 -0.505606 -1.259180 
12 1.48968E-02 2.45660E-02 4.68932E-02 1.02985E-01 0.243432 
13 -5.81835E-03 -9.07529E-03 -1.47620E-02 -2.62552E-02 -5.21826E-02 
14 1.82761E-03 2.97430E-O3 4.78575E-03 7.83189E-03 1.34943E-02 
15 -4.58083E-O4 -7.98782E-04 -1.34809E-03 -2.23449E-03 -3.71120E-O3 
16 9.33666E-05 1.75660E-04 3.16460E-O4 5.51241E-04 9.39192E-04 
17 -1.57875E-05 -3.21078E-05 -6.20691E-05 -1.15009E-04 -2.05969E-04 
18 2.25303E-06 4.95574E-06 1.02964E-05 2.03759E-05 3.86913E-05 
19 -2.75302E-07 -6.55009E-07 -1.46339E-06 -3.09708E-O6 -6.25517E-06 
20 2.91544E-08 7.50298E-O8 1.80276E-07 4.08225E-07 8.77967E-07 
21 -2.70262E-O9 -7.52384E-09 -1.94436E-08 -4.71180E-08 -1.07959E-O7 
22 2.22204E-10 6.68238E-10 1.85579E-09 4.81032E-09 1.17395E-08 
23 -1.57586E-11 -5.16599E-11 -1.55104E-10 -4.31820E-10 -1.12584E-09 
24 1.17557E-12 4.04916E-12 1.28004E-11 3.75388E-11 1.03039E-10 
25 -3.96765E-14 -1.63832E-13 -6.01195E-13 -2.00029E-12 -6.12443E-12 
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THECOEFnCffiNTdk'OFEIGENFUNCTIONFORDIFFERENT^(continued) 

0.005 

0 1.000000000000 
1 -19.249999755282 
2 83.786455012016 
3 -157.19747929320 
4 163.48101833927 
5 -107.88202195819 
6 49.163092053819 
7 -16.395674045065 
8 4.1785060393633 
9 -0.85474908176110 

10 0.16295069004395 
11 -4.2678849965781D-02 
12 1.6696073164466D-02 

13 -6.4933580354236D-03 
14 2.0688881265729IM)3 
15 -5.2835960492763D-O4 
16 1.0984968315700D-04 

17 -1.8952355167967D-05 
18 2.7599126784909D-06 
19 -3.4412736954670D-07 
20 3.7186482821050D-08 
21 -3.5185593897498D-09 
22 2.9411030829215D-10 
23 -2.1886373955472D-11 
24 1.4598270425440D-12 
25 -8.7801704962411D-14 

0.10 

1.000000000000 
-28.750000000000 
194.48784722222 

-575.03255208333 
949.36357393887 

-999.17322697416 
728.53075977812 

-389.65391363012 
159.38657434817 
-51.472458492094 

13.456265606584 
-2.9059588237375 
0.52713284089290 

-8.1451719510272D-02 
1.0849459119075D-O2 

-1.2586480084747D-03 
1.2831332514336D-04 

-1.1585667342762D-05 
9.3297867024356D-O7 

-6.7424213213213D-08 
4.3971254994017D-09 

-2.6008164814639D-10 
1.4015685304521D-11 

-6.9100732439231D-13 
3.1286794400673D-14 

-1.3054533728857D-15 

0.12 

1.000000000000 
-30.750000000000 
223.54340277778 

-711.31380208333 
1264.7562007813 

-1434.1592495969 
1126.9391090331 
-649.68941116624 
286.48984269996 

-99.748319034885 
28.116494799992 
-6.5472351852919 

1.2806819641796 
-0.21339847213796 
3.0653718130602D-O2 

-3.8350878281171D-03 
4.2164684557941D-04 

^.1059428596368D-05 
3.5660366873094D-06 

-2.7794492323325D-07 
1.9549974662813D-08 

-1.2471725946634IM)9 
7.2489509368086D-11 

-3.8547073869455D-12 
1.8824408023026D-13 

-8.4718119683390D-15 
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I. bij for Kr l = 0(ß=l) 

j 1 i=j,j+l,j+2,...,2*j-l, 2*j 

1 -.2500E+02 0.6250E+01 

2 0.1562E+03 -.8681E+02 0.9766E+01 

3 -.4340E+03 0.3798E+03 -.9657E+02 0.6782E+01 

4 0.6782E+03 -.8138E+03 0.3308E+03 -.5273E+02 0.2649E+01 

5 -.6782E+03 0.1036E+O4 -.5840E+03 0.1498E+03 -.1709E+02 0.6623E+00 

6 0.4710E+03 -.8746E+03 0.6328E+03 -.2265E+03 0.4173E+02 -.3668E+01 0.1150E+00 

7 -.2403E+03 0.5256E+03 
0.1467E-01 

-.4653E+03 0.2148E+03 -.5541E+02 0.7881E+01 -.5597E+00 

8 0.9386E+02 
-.6381E-01 

-.2364E+03 0.2477E+03 • 
0.5729E-O2 

-.1405E+03 0.4692E+02 -.9363E+01 0.1077E+01 

9 -.2897E+02 0.8256E+02 -.1000E+03 0.6740E+02 - 
0.1114E+00 -.2258E-01 0.4420E-03 

-.2773E+02 0.7179E+01 -.1160E+01 

10 0.7242E+01 -.2304E+02 0.3170E+02 
-.1100E+00 0.3612E-O1 -.1594E-02 

-.2477E+02 0.1213E+02 
D.2763E-04 

-.3878E+01 0.8143E+00 

11 -.1496E+01 
0.7132E-O1 

0.5258E+01 -.8098E+01 0.7202E+01 -.4100E+01 

-.3297E-01 0.2357E-03 -.9193E-04 0.1427E-05 
0.1564E+01 -.4059E+00 

12  0.2598E+00 
-.3305E-O1 

-.9992E+00 0.1704E+01 -.1700E+01 
0.1989E-O1   -.2002E-O2 0.1265E-03 

0.1104E+01 
-.4412E-05 

-.4899E+00 0.1520E+00 
0.6194E-07 

13  -.3843E-01 
0.1156E-01 

0.1606E+00 -.3003E+00 0.3324E+00 -.2425E+00 0.1230E+00 -.4445E-01 
-.8622E-02 0.1131E-02 -.1006E-03 0.5681E-O5  -.1790E-06 0.2291E-08 

14   0.4902E-02 
-.3176E-02 
0.7304E-10 

-.2211E-01 

0.2S35E-O2 
0.4501E-01 -.5473E-01 

-.4609E-03 0.5345E-04 
0.4436E-01 

-.4252E-05 
-.2531E-01 

0.2167E-06 
0.1046E-01 

-.6216E-08 

15  -.5446E-03  0.2638E-O2 -.5806E-O2 0.7696E-02 -.6862E-02 

0.7045E-03  -.7343E-03 0.1430E-03 -.2057E-04 0.2134E-05 
-.1869E-09 0.2029E-11 

0.4355E-02 -.2028E-O2 

-.1532E-06 0.7109E-08 

16   0.5319E-04 
-.1291E-03 

0.2027E-09 - 

-.2753E-03 0.6516E-O3 -.9350E-O3 0.9099E-03 -.6359E-03 0.3297E-O3 
0.1542E-O3 -.3509E-O4 0.6051E-O5 -.7788E-06 0.7293E-07 -.4767E-08 
-.4916E-11    0.4953E-13 

17 -.4601E-05  0.2535E-04 -.6419E-04 0.9916E-04 -.1046E-03 

0.1991E-04 -.2683E-04 0.7000E-05 -.1411E-05 0.2178E-06 - 
-.1293E-09 0.5068E-11   -.1140E-12 0.1071E-14 

0.7984E-O4 
-.2532E-07 

-.4563E-04 

0.2158E-08 

18   0.3550E-06 

-.2622E-05 

0.5585E-10 

-.2074E-05 0.5596E-05 -.9260E-05 0.1052E-O4 -.8716E-05 0.5446E-05 

0.3938E-05 -.1160E-05 0.2682E-06 -.4842E-07 0.6753E-08 -.7148E-09 
-.3084E-11   .1121E-12 -.2348E-14 0.2066E-16 



19 -.2459E-07 0.1518E-06 -.4348E-06 0.7674E-06 -.9350E-06 
0.8351E-O6 -.5665E-06 0.2984E-06 -.4947E-06 0.1626E-06 
-.4246E-07 0.8795E-08 -.1435E-08 0.1823E-O9 -.1769E-10 
0.1274E-11 -.6523E-13 0.2207E-14 -.4326E-16 0.3578E-18 

20 0.1537E-08 -.lOOOE-07 0.303OE-O7 -.5681E-07 0.7389E-O7 

-.7080E-07 0.5183E-07 -.2966E-07 0.5383E-07 -.1954E-07 

0.5695E-08 -.1333E-08 0.2498E-09 -.3713E-10 0.4325E-11 

-.3871E-12 0.2584E-13 -.1231E-14 0.3896E-16 -.7169E-18 
0.5590E-20 

21 -.8711E-10 0.5959E-09 -.1905E-08 0.3781E-08 -.5228E-08 
0.5351E-08 -.4206E-O8 0.2599E-08 -.5127E-08 0.2038E-08 
-.6564E-09 0.1716E-09 -.3634E-10 0.6204E-11 -.8461E-12 

0.9090E-13 -.7540E-14 0.4687E-15 -.2088E-16 0.6200E-18 
-.1075E-19 0.7922E-22 

22 0.4499E-11 -.3228E-10 0.1085E-09 -.2274E-09 0.3332E-09 

-.3628E-09 0.3047E-O9 -.2023E-09 0.4311E-09 -.1864E-09 
0.6578E-10 -.1901E-10 0.4497E-11 -.8683E-12 0.1360E-12 

-.1711E-13 0.1704E-14 -.1316E-15 0.7650E-17 -.3198E-18 
0.8939E-20 -.1464E-21 0.1023E-23 

23 -.2126E-12 0.1596E-11 -.5632E-11 0.1242E-10 -.1922E-10 

0.2219E-10 -.1984E-10 0.1408E-10 -.3226E-10 0.1508E-10 
-.5789E-11 0.1834E-11 -.4797E-12 0.1035E-12 -.1834E-13 

0.2651E-14 -.3093E-15 0.2869E-16 -.2071E-17 0.1130E-18 
-.4444E-20 0.1173E-21 -.1820&-23 0.1209E-25 

24 0.9229E-14 -.7235E-13 0.2673E-12 -.6192E-12 0.1009E-11 
-.1231E-11 0.1168E-11 -.8826E-12 0.2163E-11 -.1087E-11 

0.4512E-12 -.1556E-12 0.4463E-13 -.1065E-13 0.2109E-14 

-.3450E-15 0.4625E-16 -.5026E-17 0.4359E-18 -.2954E-19 

0.1516E-20 -.5632E-22 0.1408E-23 -.2073E-25 0.1312E-27 

25 -.3692E-15 0.3017E-14 -.1165E-13 0.2827E-13 -.4841E-13 

0.6223E-13 -.6241E-13 0.5006E-13 -.1307E-12 0.7028E-13 
-.3139E-13 0.1171E-13 -.3656E-14 0.9570E-15 -.2097E-15 

0.3835E-16 -.5819E-17 0.7267E-18 -.7385E-19 0.6011E-20 
-.3834E-21 0.1858E-22 -.6533E-24 0.1550E-25 -.2172E-27 
0.1312E-29 
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The constant Q in the solution 

0(r*,x*)=  ZCnGn(r*)exp[-   2 ^)2 x* (I + S Kn) 
n = l Gz J (DA) 

must satisfy the following condition for all r* 

00 

1 =  I CnGn 
n = \ (D.2) 

To determine Q, two theorems must first be proved for the functions Gn, like those 

for Bessel's function. 

Theorem I. Let G, and Gj be two functions satisfying 

d2G; j dG- 
-JP^T + ( 7*^ ) + A,-2( l-r*

2 + 4Kn )Gt = 0 

d2Gj j JG, 

5^2"+ ( 7* dj* ) + V( 1_r *2 + 4Kn )Gj = 0 

if A; and Ay- are the roots of equation G(l) = 0, and A; ^A;, then 

Gfij r*{ l-r*2 + AKn ) <fr* = 0 
J   o 

(D.3a) 

(D.3b) 

(D.4) 

Let A; and A; be the first two eigenvalues. Multiplying Eq. (D.3a) with Gjdr*, Eq. 

(D.3b) with G,dr* and integrating from 0 to 1, and subtracting each other, we obtain 

a«H2) I   '  Gfijr*{ l-r*2 +4Kn ) dr*= ( G- -^L-G *L ) 
J   o        J K    ' dr*    UJdr*   }^ = i     (D.5) 

Because both G, (1) = 0 and G,- (1) = 0, A; # A,-, therefore, Eq. (D.4) must be true. 
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Theorem EL The value of the integral in Eq. (D.4) for i =j can be determined by 

Gflt r*( l-r*2 + AKn ) dr* = -U   ^i^L ) 
Jo ' 2V   dkidr*   j^ = i (D.6) 

Let A; and A; be the first two eigenvalues again, and the Eq. (D.5) is true. Now let 

*i = A,- + dX.t   , -Gj = G, + ^dX.t 
dX{ 

and 

(D.8) 

2A/ I   lGfii r*( l-r*2 + AKn ) dr* = ( *£ Ü?L _ G._f^i_ } 
J   o ÖA,.   Ör*       ^'aA,. 3r*   j^ = 1    (D.7) 

Since the special A, is one of the roots of equation G (1) = 0, we have 

f   '  GA r*( l-r*2 + 4tf/z ) rfr* = -L(   ££*£ ) 
Jo 2V   aA,dr*   ;^ = i 

With the help of these two theorems, multiplying the Eq. (D.2) 

00 

1 =  Z CnGn 
w = l 

with Gi r*(l- r*2) dr* and integrating, we obtain 

J   o G(. r*( l-r*2 + AKn ) dr* = Q J ^ Gfij r*( l-r*2 + 4A>i ) dr*    (D 9) 

From the differential equation (Eq. (D.3a)), the left side of the integration equals to 

X2 K dr*   ;^ = i 
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Therefore, 

C =     2 1 
*i ( ML ) (D.10) 

1   dk;     ^ = 1 
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