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SUMMARY 

This work was set to investigate the effects of fiber spacing on the mechanical 
properties and strength of a model composite system with long well aligned fibers. 
Two fiber architectures were investigated: 

1. a'monolayer' fiber architecture in which the fiber spacing varied from specimen 
to specimen. Uniaxial tension experiments were performed on notched and 
unnotched specimens to examine the stress-strain response and the fracture 
properties. 

2. a 'multilayer' fiber array in which the fiber spacing in one direction was 
constant while the fiber spacing in the second direction was varied from specimen 
to specimen. Compact tension specimens were used to investigate the load- 
displacement response and fracture behavior. 

The experimental results on strength and fracture of the multilayer architecture 
were modeled numerically using a Boundary Element Method algorithm. 

Although the results reported in this paper and elsewhere are on a model composite 
system, they can provide a sound knowledge base for a better understanding of 
crack bridging in composites materials. In particular, for systems where it is not 
realistic to use a continuum approximation of the reinforcement in the bridging 
zone and ahead of the crack tip, the results of such studies can be very useful in 
understanding the influence of various length parameters. Furthermore it is the 
authors belief that results of studies in model composites can provide an important 
supplement to efforts aimed at predicting the response of real composite materials. 



IMPORTANT FINDINGS 

For the monolayer fiber architecture specimens, strength, oc, was found to depend 

on the inverse root of the fiber spacing, X, according to <JC = K/-JX where K is a 

constant related to the matrix properties. The elastic behavior of these specimens 

was also found to depend on fiber spacing, i.e. the linear portion of the stress-strain 

curves 'collapsed' when multiplied by the term -JX/Jw, where w is the specimen 

width. The stiffness of the specimens increased with a decrease in fiber spacing and 

through the use of acoustic emission methods, non-linear stress-strain behavior was 

found to coincide with damage of the fiber-matrix interface. 

For the multilayer fiber architecture, strength was also found to depend on fiber 

spacing but with a slightly different function, i.e. ac = K/^X~x+a0 where <r0 was a y- 

intercept of undetermined origin. No scaling of any portion of the stress-strain 

curves was observed. For this fiber architecture the stiffness of the specimens 

decreased with a decrease in fiber spacing while the toughness increased with a 

decrease in fiber spacing. This behavior was directly related to the increase in fiber- 

matrix interface area that accompanied the decrease in fiber spacing. Through the 

coupling of acoustic emission methods with in-situ crack-tip observations, the onset 

of non-linear stress-strain behavior in these specimens was found to coincide with 

crack tip extension as well as fiber-matrix interface damage. 

The BEM algorithm was used to investigate the crack tip stress behavior of a 2- 

dimensional representation of the reinforced compact tension specimens. Good 

correlation was found between the numerically modeled crack tip stress and the 

experimental stress at the onset of crack growth. 

in 
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1      INTRODUCTION 

1.1 Motivation 

Composites are becoming an increasingly important class of material. From state of the art 
aircraft to tennis rackets, composites are finding their way into all areas of engineering. What 
makes composites so desirable are their specific properties, i.e. property to weight ratios, and the 
ability to tailor make a material with properties superior to either of the constituent materials. 

Yet, unlike common engineering materials such as steel, glass and concrete, the behavior of 
composites are still not well understood. It is, however, well established that damage processes 
in composites, such as micro-cracking of the matrix, fiber-bridging and fiber debonding, 
sliding and pull-out, play major roles in energy absorption, hence increase the toughness. Still, 
the evolution and relative importance of these processes are the subject of intense research. 

Even less well understood are the parameters controlling strength in composites. This is a major 
limitation in the use of composites for engineering applications. The importance of 
understanding the strength behavior of a material is illustrated in the application of the 
engineering materials previously mentioned. For example, quality control of steel parts 
includes microstructural evaluation of only a small number of the parts from a given lot. This 
is due to the ability to predict a steel's strength based on its microstructure, specifically, by 
measuring its grain size. It is known that the strength of brittle materials, e.g. glass, are limited 
by a critical flaw size. The strength of concrete can also be predicted based on a 
microstructural characteristic, pore size. Astonishing then, perhaps, is the lack of models which 
can give quantitative predictions of composite strength based on its microstructure. 

While there have been many attempts to correlate the strength of a composite to it's 
microstructure, a model which can relate strength to a single characteristic scale does not exist. 
Most strength models neglect the exact distribution of fibers, instead using the 'generic' volume 
fraction term to relate the composite strength to fiber diameter, interfacial strength and other 
parameters. However, fiber distribution is rarely considered. A model which could predict the 
strength of a composite based on a characteristic length of the fiber architecture would be a 
great step forward in the understanding and application of composites. 

One way to investigate scale effects is to vary the specimen geometry in an appropriate manner. 
Another way is to maintain the specimen size the same and change the morphology (i.e., fiber 
spacing, grain or pore size) of the material in a controlled way. The latter approach may be 
useful in systems with characteristic morphological features. In this work, results of 
longitudinal strength on a specially made composite material are reported. The composite 
consisted of one or more layers of well - aligned fibers. The primary objective of the work 
reported herein was to relate the composite's loading response and strength with fiber spacing. 
Strength data were treated with the rule of mixture as well as with dimensional analysis 
arguments. 

1.2 Review 

There are three general classes of composites; ceramic-, metal- and polymer-matrix composites. 
There are also many, if not hundreds, of ways to construct the reinforcing fiber architecture 
(Ko, 1989; Prewo, 1989). Even the reinforcing fibers, from glass to carbon to Kevlar, and 
forms of these fibers, from short to continuous fibers and random to aligned to woven fiber 
orientations, are vast. The work presented here is exclusively concerned with a single polymer 
matrix reinforced with a monofilament glass fiber. In each case the reinforcing 'fibers' were 
continuous and aligned in the loading direction. The strength and fracture behavior as a 
function of the fiber spacing was studied. Therefore the subsequent review is dedicated to 
relevant work on similar systems. 



Strength may be the final or most extreme value which can describe the load bearing capacity 
of a composite (Rosen, 1964), or any material. From the synthesis of a composite one typically 
hopes to retain strength of the matrix while adding toughness via the reinforcing fibers as in a 
ceramic matrix composite, or conversely, to give a flexible matrix strength as in polymer matrix 
composites. However, it is important to realize that the many energy absorbing processes which 
give a composite toughness, including matrix and fiber cracking, fiber sliding and pull-out, 
delamination and even plastic deformation, may also have profound implications on the 
strength of the composite (Kerans et al., 1989; Shah and Ouyang, 1991; Aveston et al., 1971). 
Yet, a model which can predict strength of a composite as a function of the reinforcing fibers 
(with minimal as well as easy to measure parameters) has been difficult to formulate for 
composite materials. 

Perhaps the first model to express composite strength as a function of the reinforcing fibers was 
the rule of mixtures, ROM. This model attempted to predict a composite's strength based on 
the ultimate stress, or strain, of the constituent materials and their volume fractions. It was 
quickly realized that in a typical composite only one of the constituents actually reaches it's 
ultimate stress, or strain, at composite failure while the other constituent has not yet reached it's 
load bearing capacity. The ROM was then modified to handle the two possible relationships 
between the fiber and matrix ultimate properties. First, a matrix with a greater strain to failure 
than the fibers and second, fibers with a greater strain to failure than the matrix. As early as the 
mid sixties, investigators (Broutman and Krock, 1967) were finding that the ROM, while 
accurate for predicting the composite's Young's modulus, was inaccurate for calculating 
strength in many cases. Rosen had already begun to describe the research community's 
realization that different failure mechanisms existed for different systems. He proposed a model 
based on the weakest link theory of the fibers combined with the fiber volume fraction. Since 
then authors have continuously shown, and explained why, the ROM is the exception rather 
than the rule even for uniaxially reinforced composites using the iso-strain conditions on which 
the model was based (Warren and Sarin, 1989). 

Aveston, Cooper and Kelly, ACK, were among the first investigators to look critically at the 
ROM as a model for strength prediction and propose an alternate model (Aveston et al., 1971). 
For uniaxially aligned composites they addressed both cases of the strain to failure relationship 
between the fiber and matrix. Using the shear lag analysis model for stress transfer between the 
matrix and the fiber (Corten, 1967) they proposed a model to predict the failure morphology 
of the specimen based on measurable system parameters. Furthermore, they used energy 
balance arguments to predict composite strength and showed that the presence of a reinforcing 
material alters the ultimate properties of the matrix therefore limiting the validity of the ROM 
for strength predictions. 

Based on the ACK model, Marshall, Cox and Evans, MCE, took a closer look at the 'first' 
matrix crack which typically defines composite strength in brittle matrix systems,.(Marshall et 
al., 1985). This work assumed that a critical flaw will cause matrix cracking, revealed by non- 
linearity of the stress strain curve, before the failure point used by the ACK model. The model 
of MCE used stress intensity factor, SIF, methods to model crack growth of long bridged cracks 
and short cracks with no fiber bridging. 

A third model by Budiansky, Hutchinson and Evans, BHE, followed in the footsteps of the 
previous two works (Budiansky et al., 1986). Again, this model was based on the original ACK 
model but with different interfacial conditions, i.e. purely frictional fiber-matrix interfaces and 
weakly bonded fiber matrix interfaces. 

While all three of the previously mentioned models, ACK, MCE and BHE, give experimental 
evidence to back up their respective models, there have also been attempts to model composite 
strength based solely on numerical investigations. Rubinstein (1993) used a SIF approach 
along with fiber bridging, fiber spacing and toughness parameters to predict crack growth. 
Crack arrest has been modeled numerically based on the energy dissipation of sliding fibers 
bridging the crack (Shibata et al., 1988).   The use of SD? and energy release rate, from linear 



elastic fracture mechanics, LEFM, are often used in research dedicated to the understanding of 
delamination and crack growth in composite materials (Johannesson and Blikstad, 1985; 
Davidson, 1994; Kardomateas et al., 1994; Beldica, 1996). 

A common theme to all of the above models, is that the influence of the fibers on the crack is 
only considered after a crack has propagated past the fibers and the fibers are able to bridge the 
crack. This allows energy dissipation through fiber sliding and/or debonding. Very few authors 
have addressed the effect of fibers on crack propagation for fibers which lie in the uncracked 
matrix ahead of the crack tip. The earliest consideration of this type may have been by Parikh 
(1964) who showed that fiber distance in uniaxially aligned short fiber metal matrix composites 
resulted in a Orowan-Petch type relationship (Kingery et al., 1976), i.e. square root of end-to- 
end fiber spacing was the controlling parameter. Similarly, Wagner (1989) discussed a Griffith 
type dependence on strength based on the square root of fiber diameter. 

Recently, new models have returned to the idea that some characteristic length can be used to 
predict composite strength. These authors (Botsis et al., 1994; Botsis et al., 1995; Zhao, 1995) 
have proposed center-to-center fiber spacing as a characteristic strength for uniaxial 
continuously reinforced composites. For polymer matrix composites, attempts to correlate the 
shear and tensile bands ahead of the crack tip to strength have been made (Sou et al., 1994). 
This latter work is interesting due to the possible relationships among fiber spacing, shear band 
formation and fracture mechanics. 

To understand the processes that control strength and toughness, i.e. damage processes, in 
composites many techniques have been used. Perhaps the most prevalent method is the 
monitoring of stress waves released by damage processes which occur during loading. These 
stress waves are in the acoustic range, and hence are referred to as 'acoustic emissions', AE. A 
review of specific testing capabilities using AE methods is given by Vahaviolos (1995). One of 
the most important results to come from the use of AE methods was revealed by (Kim and 
Pagano, 1991) and also noted by (Czigany and Karger-Kocsis, 1993). In these works it was 
shown that initial matrix cracking in brittle systems and damage at the fiber-matrix interface, 
respectively, occur before the onset of stress-strain non-linearity. Therefore, the use of the 
proportional limit as an indication of crack initiation or growth may in fact overestimate the 
true critical stress. 

It is common practice to separate acoustic emission events into low-, mid-, and high-amplitude 
or energy events corresponding to matrix cracking, delamination or debonding and fiber 
fracture, respectively, (Sundaresan and E.G. Henneke II, 1988). However, it has been shown 
that AE signals are relative to each particular test set-up and unless the system is specifically 
calibrated, in general one cannot be sure of the acoustic emission sources, (Daniel, 1993). In 
addition, acoustic signals generated by friction can cause false signals in the form of 'event 
trains' and must be filtered out before conclusions on the presence and signature of other 
processes can be made, (Cohen and Awerbuch, 1988). 

Even if calibration is performed, the task of separating simultaneous AE signals is monumental 
at best, requiring highly specialized equipment (Bouden et al, 1995). Under ideal conditions, 
AE data can indicate regimes of various damage processes through changes in the AE signal 
characteristic (Priston et al., 1995). According to Vahaviolos, energy is the best indicator of 
various damage processes but also the most difficult to measure. Therefore, as one might 
expect, the characteristic easiest to measure, i.e. AE count rate and/or cumulative counts, has 
become the traditional AE parameter for reporting and describing damage in composites. 

Of course visual methods, when applicable, are invaluable for correlating damage processes 
'suggested' by other methods to observed processes. Photoelastic methods are still widely used 
along with both in-situ high-speed video recording (Rosakis et al., 1994), SEM observations 
(Sundaresan and Henneke II, 1988) and light microscopy. Other methods for damage 
investigation of composites structures include in-situ electric resistance measurements, 
thermography and radiography. 



Finally, dimensional analysis has been the basis for the explanation of many physical 
phenomenon, even those which have proven to be very complex, for instance fluid flow 
(Barrenblatt, 1987). Although the concept of dimensional analysis is itself simplistic, it is 
powerful and can give an investigator a new or fresh view of his or her approach that can 
greatly add to the understanding of the phenomenon being investigated. 

1.3   Definitions 

As stated previously the aim of this work is to describe the strength and fracture of a model 
composite system. Yet with the advent of composite materials and fracture mechanics the 
explanations of these intuitive concepts have become very system specific. In this section, a 
brief introduction to these topics is given as they relate to the subsequent. 

1.3.1  strength 

Strength is typically thought of as the stress at which a structure loses its ability to perform, i.e. 
bear load, as designed. This concept is easily understood for brittle materials, e.g. ceramics, 
which typically lose their load bearing capacity catastrophically. In ductile materials, e.g. mild 
steels, changes in load bearing capacity are usually not obvious to the naked eye and the use of 
a stress vs. strain curve is often called for. In addition, ductile materials often posses more than 
one point at which the load bearing behavior changes. These include; proportional limit, where 
deviation from Hooke's law is noted; yield point, where a significant increase in elongation 
occurs at an insignificant change in load; ultimate strength, which is the point of highest load 
bearing and fracture, where all load bearing ceases. The time frame from the proportional limit 
to fracture can be seconds to years. Typically strength in ductile materials is taken at 0.2% 
elongation even though this point may not correspond to a change in any material behavior. In 
polymeric materials load response can be elastic, plastic, viscoelastic or any combination 
thereof. Typically, these behaviors cannot be distinguished with the naked eye or even with a 
stress vs. strain diagram. The fact that these materials can undergo elongation of hundreds of 
percent makes the standardization of strength nearly impossible. Yet defining strength must be 
done for any material that is to be used in engineering applications. 

For composite materials combinations of one or more of the aforementioned materials are 
involved which means that one is no longer dealing with a simple monolithic material. Load 
bearing behavior of the composite may be as simple as the load bearing behavior of one of the 
constituent materials or the composite may behave in a unique manner. For example, in 
ceramic-ceramic composites, which consist of two brittle materials, the first decrease in load 
bearing capacity may not be catastrophic. Conversely, in polymer matrix composites 
reinforced with glass fibers, the onset of deformation in the matrix may not correspond to a 
decrease in load bearing ability. 

In addition, the damage processes which occur in a composite are complicated and typically 
vary from system to system and even geometry to geometry. The combination of more than 
one material necessitates the consideration of failure for each constituent. Furthermore, a 
composite necessarily possesses some interfacial area where shear stresses are introduced. 
Therefore, simply knowing the tensile strength of the weakest constituent may not be sufficient 
in determining the strength of the composite. Although shear strength and fiber strength are 
important for complete understanding of composite behavior, crack growth in the matrix is 
often assumed to be the phenomenon which defines composite strength in both experimental 
and numerical work (Aveston et al., 1971; Budiansky et al., 1986, Rubenstein, 1993). 

Through-out this work, 'strength' corresponds to the maximum stress sustained by the 
specimen. For most specimens this strength corresponded to dynamic failure, however, in a 
particular system, a complicated failure mode resulted in a decrease in load before dynamic 
failure. Nevertheless, it was the ultimate strength of these specimens that was analyzed. A 
change in compliance well before the ultimate strength was reached was also observed in some 



specimens. The stress at which this change in loading response occurred was termed the 
'critical stress.' 

For specimens with a monolayer fiber architecture a simple uniaxial tension geometry was used. 
For these specimens ultimate strength was calculated in the typical manner of '...dividing the 
maximum load on the specimen by the initial cross-sectional area (Timoshenko, 1956).' 
However, in the case of specimens with multilayer fiber architecture, a compact tension 
geometry was used. For this geometry calculation of stress, hence strength, is not so straight 
forward. Due to the compact tension geometry the stress distribution is not uniform and 
uniaxial. The specimen not only sees uniaxial tensile stresses but also undergoes bending over 
the ligament. A nominal stress, a n, (per unit thickness) at the crack tip of a compact tension 
specimen can be defined as (Tada, et.,al. 1973) 

 ,      I 2    )_          
tension^ »tending     {w_ a)

+ {w_ Q)2 J^^{^ J^äf') 
-        -                     \              ~      / _        • A 6a 

n ~ " tension^ ® bending- 7T7Ü    ZÄ 777.    !Ä2 / H ^+ (1.1) 

where 
P = load, 

w = specimen width 
a = crack length 

This equation takes into account stresses due to both tension and bending and assumes the axis 
of rotation of the ligament is located at the midpoint of the ligament. The 'strength' for 
compact tension specimens can then be calculated using the maximum load in equation ( 1.1 ). 

2      EXPERIMENTAL METHODS 

2.1   Materials and Properties 

2.1.1  matrix material 

One matrix material, a three part thermoset epoxy (Dow Chemical Corp.), was used for every 
composite system of this study. The matrix was prepared from three liquid epoxy precursors; a 
'hard' epoxy resin (D.E.R. 383), a 'soft' epoxy resin (D.E.R. 732) and an epoxy curing agent 
(D.E.H. 24). One unit of the epoxy mixture contained the three precursors in measures of 
35.2, 14 and 9.8 g, respectively. The unit mixture was mixed manually by a stirring rod. The 
mixture was stirred slowly, to reduce the amount of bubble formation, for approximately 5 
minutes until the liquid became clear. Depending on the specimen mold, monolayer or 
multilayer, one to three units, respectively, of mixture were required. The mixture cured at 
room temperature conditions, 22°C and 50-75% relative humidity, for a minimum of 15 hours. 
The as-cured mixture, referred to as the 'matrix', was transparent with negligible void 
formation and shrinkage under ideal conditions. However, curing of the epoxy was highly 
exothermic. It was observed that if too many units were used to prepare the specimen, the 
matrix was a deep amber color with severe void formation and shrinkage. Specimens which 
cured in this manner were discarded. 

Matrix strength and strain to failure data were measured from smooth uniaxial tension 
specimens loaded under displacement control at a cross-head speed, or 'ramp-rate', or 1 
mm/min. A typical stress-strain curve for the matrix is shown in Figure 2.1. A linear stress- 
strain relationship was observed until 2% strain where the behavior became non-linear. An 
ultimate strength of approximately 50 MPa was reached at which point unloading, in the range 
5 MPa, was observed. Fracture occurred randomly within the gauge section and was catastrophic 



with little or no fragmentation  of the specimen.    Table 2-1 gives pertinent data for each 
specimen. 

Table 2-1 Experimental data for uniaxial tension specimens. 
Specimen Ramp Rate Young's modulus Strength Load @ 2% Strain Strain to Failure 

Tmat3 1 mm/min 2.2 GPa 48MPa 2.0 kN 3.4 

Tmat4 1 2.2 GPa 50 2.0 4.2 

All polymeric materials posses certain viscoelastic properties of which non-linear stress-strain 
behavior is an indication. These properties may not be revealed under all test conditions, e.g. 
conditions which induce brittle failure. Non-linear behavior can also indicate material yield. 
Therefore, the exact source of the non-linear behavior of this material was unknown. Post 
failure inspection of the specimen under polarized light revealed the presence of localized shear 
deformation. This observation indicated that yielding of the epoxy had occurred and was most 
likely the source of unloading. However, the distinction between viscoelastic behavior and 
yielding in the non-linear region before the ultimate strength was reached was undetermined. 

Fracture toughness measurements for the matrix were made from ASTM Standard 399 E 
compact tension specimens with a characteristic length, w, of 36 mm and a width, B, of 8 mm. 
Figure 2.2 shows the load-displacement behavior for four specimens. The linear load- 
displacement and brittle fracture behavior of all specimens indicated that the plain strain 
conditions required by the standard had been met. Using the fracture load of the specimens in 
equation ( 1.1 ), a nominal strength of 33.7 ±1.0 MPa was calculated. From this nominal 
strength a fracture toughness of 3.3 + 0.1 MPaVm was obtained, Table 2-II. 

Table 2-II Experimental data for matrix compact tension specimens. 

Specimen Characteristic 
Length and 

Width, 
w, B 

Crack 
Length, 

a 

Fracture 
Toughness, 

K/c 

Strength, Fracture 
Load, 

Pc 

matrix-1 36 and 8 mm 16.5 mm 3-3 f/PaJm 34.3 MPa 660 N 

matrix-2 16.5 3.1 32.5 628 

matrix-3 16.4 3.4 34.8 682 

matrix-4 16.6 3.2 33.3 639 

Mean 16.5 3.3 33.7 652 

Std. Dev. 0.1 0.1 1.0 24 

Notice that  the   nominal strength for the compact tension specimens was over 15 MPa lower 
than that for the uniaxial tension specimens. 

2.1.2   reinforcing material 
The reinforcing material was monofilament glass fibers. These fibers, used in the fiber optics 
industry, consisted of a fused silica core, fluoride doped silica cladding and a polyamide jacket 
with a total diameter of 0.465 mm, Figure 2.3. Characteristic of the materials used in this work 
was the fact that, the interface was relatively weak as compared to other systems used in our 
laboratory (Botsis, et., al., 1995, Beldica, 1996) 

Important fiber data are given in Table 2-III. On the same table relevant data of glass and 
kevlar fibers, used in similar studies in our laboratory, are shown for comparison. 



Table 2-HI      Relevant data for three reinforcing materials. 
Fiber Manufacturer Diameter, Modulus, Strength, Strain to failure, 

Kevlar 29 (Akzo) Goodfellow ~ 0.350 mm 58 (100) n/a 3.7 (2.6) 
E-glass Mexico " 0.350 72.5 2100 2 
AnhydroGuide G 
Monofilament Glass 

FiberGuide 
Industries 

0.465 66 ~ 1.5 5-10 

2.2     Specimen Preparation 

2.2.1 monolayer specimens 

Figure 2.4 shows the uniaxial tension mold (with modifications) used in previous studies by this 
research group. The mold consists of two mold halves and a base. The first mold half is 
anchored to the base while the second mold half is attached to the first via a screw and nut 
located in each corner. This mold allowed rectangular tension specimens to be uniaxially 
reinforced with a single row, or 'monolayer', of well aligned fibers at virtually any fiber 
spacing. 

The mold consisted of machining grooves in each half of the mold ends to allow simple and 
accurate alignment of the fibers and also to allow the mold halves to come together flush to 
prevent leakage. Grooves 0.25 mm deep, 0.5 mm wide and 0.75 mm center-to-center were 
machined into each half of the mold ends. This allowed the 0.465 mm diameter fibers to be 
well aligned and held firmly in place in center-to-center increments of 0.75 mm. 

Before fiber alignment both mold halves were freed of any residual cured epoxy or mold 
release from previous sample preparations. Then the mold halves were wiped with methanol 
and a clean cloth and sprayed with Epoxy Mold Release (Crown 353). The alignment method 
was straightforward. With the mold halves separated, the mold base and anchored half were laid 
horizontal. Fibers approximately 5 cm longer than the mold were placed in the machined 
grooves at the desired fiber spacing. The free half of the mold was then joined to the anchored 
half, still in the horizontal position. Matching grooves on both halves allowed the halves to be 
tightened flush via the corner screws without crushing the glass fibers. 

A suitable method for clamping the fiber ends (recall that fibers were longer than the mold) was 
needed. Rubber gasket strips, 2.8 mm thick, were glued to both sides of the contact point of a 
2.5 cm capacity paper binding clip, one clip for each end of the mold. The clips were placed 
on the fiber ends in such a manner that the rubber gasket strips firmly gripped the fibers. One 
clip was then anchored while a dead load of approximately 2.5 N was applied to the other clip. 
The dead load resulted in an average pre-stress of 2 MPa on the fibers. This stress was 
neglected in subsequent analysis. Bending of the fibers was observed if the mold halves were 
over tightened, if the anchored clip, mold and dead weight were not collinear and/or if the clips 
were allowed to rotate. Precautions were taken to avoid these situations. 

To address the problem of leakage, silicone gel (General Electric), was used on all mold joints. 
Due to the alignment set-up, the gel had to be applied to the ends of the mold, i.e. on the 
grooves, before the fibers were gripped. Even though the gel was allowed to cure for at least an 
hour before the epoxy was poured into the mold, it began to set in only 15 minutes. Therefore, 
fiber 'straightening' had to be performed as soon as possible after the gel was applied to 
prevent breakage of the gel-mold seal near the grooves when tension was applied to the fibers. 
A subtle point about the use of the silicone gel was that it was found to be an excellent way of 
keeping the joining screw threads from becoming covered with epoxy that inevitably leaked 
from the inside of the mold. 



A small amount of gel was applied to the screws before they were screwed into the mold halves. 
The flexible nature of the as-cured gel offered no resistance to screw removal but at the same 
time prevented contact of the epoxy with the screw during epoxy curing. 

After the required epoxy cure time, the tension set-up was removed, the mold halves separated 
and the as-cured composite 'bar' was removed. The as-cured bar had a total length of 196 
mm, grip lengths of 25 mm, and a width of approximately 26 mm. The grip thickness was 
approximately 8 mm and the gauge thickness 2.3 mm. Each as-cured bar was machined into 
one of two uniaxial tension test geometries, dog-bone or notched, with the gauge width of as- 
machined specimens determined by the formula W= /TÄ + 3; where n was the number of 
fibers and X was the fiber spacing and 1.5 mm was allowed from the end fibers to the specimen 
edge. Figure 2.5 shows the dimensions of both the dog-bone and notched tensile specimens, 
note that only the width of the specimen was machined, the length as thickness remained at the 
as-cured dimensions. A machined notched, with an angle of 60°, was introduced into one side 
the 'notched' specimen such that the crack tip was approximately 0.5 mm from the 'leading' 
fiber. The machined surfaces, as well as angled section of the specimen between the grip and 
gauge section, were smoothed manually using water and 60 grit paper. 

2.2.2 multilayer specimens 

For the multilayer fiber architecture an entirely new mold had to be designed to build a fiber 
architecture with the monofilament glass fibers. 

The key to this new mold was the method by which the fibers were held in place and tightened. 
It should be stated here that the mold was completely disassembled and cleaned in the usual 
manner before each specimen preparation. This was absolutely critical with this mold to assure 
fluid movement and flush joining of all parts. The mold consisted of a skeleton with two end 
pieces, one of which was anchored to the base and the other which was movable along four 
guiding rods by means of a screw mechanism. Each end piece consisted of a frame-screen- 
frame sandwich, Figures 2.6 and 2.7. The brass screen (McMaster-Carr) had 0.5 mm diameter 
holes spaced 0.75 mm apart center-to-center in a square grid pattern. Two sections of the 
screen were precisely cut to identical dimensions. Four large holes were drilled in the screen, 
one at each corner, which matched screw holes drilled into frames. The screen was then placed 
between the frames and the sandwich secured with a nut and bolt combination in each corner. 

Again the dimensions of the desired compact tension specimens had to be calculated prior to 
fiber alignment. The first fiber was slipped through the appropriate hole in the screen, across 
the length of the mold and through the matching hole of the other screen. Because the fiber 
diameter was 0.465 mm and the screen hole diameter was 0.5 mm, the fibers were snug in the 
holes and fiber shifting was impossible. In theory, the fiber alignment should be as 'perfect' as 
the screen hole alignment. This process was repeated at the desired x- and y-direction fiber 
spacing until the fiber architecture was complete. Note that the fibers were cut approximately 
30 mm longer that the desired length of the bar at each end. 

Next, silicone gel was used to entirely seal both screens. The extra fiber lengths at each end of 
the mold were completely encased in a massive blob of gel. This step was critical because as the 
fiber spacing became smaller the capillary action of the gel between fibers tended to pull the 
fiber ends together causing additional curvature of the fibers across the length of the mold. At 
a 0.75 mm x-direction fiber spacing, the surface-to-surface fiber distance was only 0.25 mm. 
At such a fine fiber spacing, the force of the curing gel, as well as the curing epoxy, lead to 
unavoidable variations in fiber alignment. Once the gel had been applied it was allowed to cure 
for a minimum of 6 hours, due to the thickness of the gel blob on the ends of the fibers. 

After the gel cured, the mobile end of the mold was moved away from the anchored end. The 
gel blobs held firmly onto the fiber ends during movement of the frame, hence stretching the 



fibers straight. Once the mold ends were in the correct position, a bottom plate was slid 
underneath the bottom two guiding rods and two side plates were slid inside the side guiding 
rods. (Note that the lengths of the plates had been calculated a priori so that they slid into place 
leaving virtually no gaps.) Each side plate was joined to the base plate, as well as the frames, to 
form a trough around the fibers. The joints were then sealed with silicone gel which was 
allowed to cure for approximately one-half hour. The liquid epoxy was then poured into the 
trough and allowed to cure for the requisite 15 hours. After curing the mold was disassembled 
and the composite bar was removed. Compact tension specimens were cut from such bars with 
dimensions according to ASTM standards for fracture toughness, Figure 2.8. 

In all CT specimens, the machined 'crack' was brought to within 1.5 mm of the first fiber row 
then a razor blade was used to introduce a sharp crack tip to within approximately 0.5 mm of 
the first fiber row. 

The beauty of this mold was in the versatility of the fiber architecture which could be built. By 
replacing the screens, not only could many fiber diameters be used but the grid pattern of the 
fiber architecture could be customized. The possibilities are only limited by the screen 
geometry, of which there are many. 

2.3 Mechanical Testing 

An Instron 8500 hydraulic mechanical testing unit was used for the mechanical testing of all 
specimens. A PC with Instron Series IX software was used to collect load-displacement data. 
One compact tension specimen series was loaded using a loading-unloading, or dual-ramp, 
waveform. This testing consisted of loading the specimen to a prescribed actuator displacement 
then unloading the specimen to the initial displacement. The ramp-rate for both loading and 
unloading was constant. 

The loading loop was repeated, in increments of 0.5 mm, until the specimen fracture. Between 
each loop a downtime of approximately 1 to 2 minutes was required while the parameters for 
the next loading loop were set. 

The grip fixtures for the uniaxial tension specimens were identical for the top and bottom grips. 
Both were self-aligning grips in the plane parallel to the loading direction but perpendicular to 
the width direction of the specimen. For the CT specimens, pin loading fixtures were used. 

For the uniaxial tension specimens, no preload was applied. This resulted in a small region of 
an apparent increase in displacement under no load on the load-displacement curves. This was 
due to alignment of the grips and this region was removed from the analyzed data. For the CT 
specimens, rotation about the loading pins was removed manually by applying a small preload. 

2.4 In-Situ Observation 

The uniaxial tensile specimens were observed unaided during loading as well as with the aid of 
polarizers. Using a bright, but diffuse white light source and two polarizing plates, one behind 
the specimen and one in front, the stress patterns of the specimens were observed. No attempt 
was made to quantify the observations using the polarizers. 

Observations of the CT specimens tested with a single-ramp waveform were made only at the 
crack tip using an optical microscope, specially mounted for use horizontally. An image at 
80X magnification was piped through a CCD camera where the image was viewed on a monitor. 
The microscope traveled along all three axes in order to follow crack growth or other fracture 
processes. The in-situ loading response was recorded using standard VHS format video tapes at 
normal recording speeds. 



2.5  Acoustic Emission 

Acoustic emission is the term applied to a stress wave, in the acoustic range, which is released 
from damage phenomenon occurring in a specimen under loading. The method of acoustic 
emission is an active, but 'contact', method which involves joining sensors, with the proper 
acoustic properties based on the expected stress waveforms, to the specimen surface which 
record the released stress waves. A discussion of wave mechanics is beyond the scope of this 
paper. However, a few basic concepts of acoustic emission will be discussed to aid in the 
understanding of the methods employed in this work. 

First, the interface between a surface and the ambient atmosphere is a strong wave scatterer, 
therefore acoustic sensors require a coupling medium through which the stress waves can 
propagate relatively unimpeded. This medium may be as simple as a grease, with the sensor 
held in place by tape, or as complicated as a water medium which is contained by special 
attachments. The sensors can also be soldered to the surface if the application warrants and if 
the sensors are tolerant to this treatment. The important point about sensor coupling is that the 
medium should be distributed evenly across the sensor and no inclusions, which will scatter the 
stress wave, are present. 

Second is the fact that the acoustic emission equipment cannot record all stress wave which 
bombard the sensor. Beginning with the sensor, through the wave conditioner and into the data 
acquisition hardware, the system electronics are sensitive to the wave properties, especially the 
frequency, and rate of data flow. In addition, even in the case where the electronic set-up can 
capture a wide range of waveforms, the user must set certain parameters based on the type of 
stress waves of interest to the researcher. An example various waveform parameters that must be 
set by the user, e.g. peak definition time, PDT, hit definition time, HDT, and hit lock-out time, 
HLT, are shown in Figure 2.9. 

When a stress wave makes contact with the sensor it is called a 'hit'. For each hit one can 
measure the amplitude, duration and energy, as well as the hit rate. In addition to information 
on a hit, the location of the wave source can be found in two or three dimensions. 

Even though a wealth of information is available from this method, is common to concentrate 
only on a few aspects of the recorded data. The energy of a hit may be the most descriptive an 
informative piece of data one can get from a damage process. Yet, it is often the hardest to 
measure and calibrate. 

In composite research were the damage processes are many and varied, the quantitative values 
of hits, e.g. amplitude, duration and energy, are generally not indicative of particular damage 
mechanisms (Daniel, 1993). At any rate, it is commonly reported that matrix damage such as 
plastic deformation and shear-band formation, are sources of low acoustic energy while fiber- 
matrix separation, debonding and delamination are sources of medium acoustic energy and 
fiber and matrix fracture are sources of high acoustic energy. Yet, without specifically 
calibrating the acoustic emission behavior of each constituent material separately, as well as in 
composite form, one cannot make such general statements as to the source of acoustic activity. 
Also, these signals often overlap making it difficult to separate the data on the basis of 
amplitude, energy etc. 

With all this information available, yet difficult to interpret, it is no wonder that it has become 
common practice to report the easiest to measure and simplest to understand data available. 
Rate of acoustic activity and the cumulative number of hits is often the data reported, with these 
two quantities being qualitatively related to damage intensity and total damage, respectively. 
The data is then correlated to visual observations or mechanical data in a way that a 'critical' 
value for some condition, e.g. load, has been met or exceeded. The investigation that follows is 
no exception. Based on some simple acoustic emission data, visual observations were better 
understood and a complete picture of the composite behavior was then drawn. 
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A Physical Acoustics Corp. (PAC) Spartan 2000 and PAC SA-DAQ software were used to 
record acoustic emissions from in-situ testing of dog-bone and compact tension specimens. In 
both cases, two 6 mm diameter PAC S9220 sensors, connected to PAC 1220A preamplifiers 
with 40 dB gain, were attached to the specimens, Figure 2.10, with silicone gel as the couplant. 
The specimens laid flat and manual pressure was applied to the sensors while the gel was 
allowed to set. Upon setting the gel formed an adhesive bond between the sensor and specimen. 
Acoustic emission recording parameters were set at 40 dB threshold and Peak Definition, Hit 
Definition and Hit Lock-Out Times of 50, 200 and 300 ms, respectively. These values were 
based on data supplied in manufacturer literature for testing of composite materials. 

2.6      Post-Failure Analysis 

Three optical methods were used to conducted post-failure analysis of all specimens. First, a 
stereoscope was used between 0.8 and 6.4X magnification. Viewing the specimen with this 
piece of equipment allowed the observation of fracture behavior on a macroscale. Subtle 
surface textures and curves are visible that cannot be seen by the naked eye. Behavior that 
changed slowly or over a large area can easily be detected, as well as the change in behavior in 
relation to other specimens features. 

An optical microscope was used in the magnification ranges between 40 and 80X to make 
accurate measurements of microstructural features. These features included fiber radius, fiber 
spacing, sharp crack tip length, i.e. the crack introduced by a razor cut, and zones of different 
behaviors. Again, this equipment allowed one to see features that were difficult with other 
methods. For example, the initial steady-state crack growth region and the change to dynamic 
crack growth were very sharp at this magnification. 

Finally, scanning electron microscopy, SEM, was an invaluable tool for observing highly 
localized effects and fine structures. Through the use of this method information on bonding 
surfaces and interfaces can be gathered. Indeed, it will be shown that through the use of SEM, 
the origin of composite failure was located and the hypothesis about the type of interface 
present was validated. 
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Figure 2.1 Stress vs. strain for smooth uniaxial matrix specimens. 
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Figure 2.2 Load vs. Displacement for Matrix Compact Tension Specimens. 
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Figure 2.3 Schematic of monofilament glass fiber cross-section. 
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Figure 2.4 Modified monolayer fiber architecture fabrication mold. 
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Figure 2.5 Schematic of dog-bone and notched uniaxial tension specimens. 
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Figure 2.6 Compact tension mold for use with rigid monofilament fibers. 
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Figure 2.7 Schematic of rigid mold ends and fiber alignment methods. 
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Figure 2.8 ASTM Standard 399 compact tension specimen geometry and reinforced specimen. 
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Figure 2.9 Schematic of an acoustic waveform and various parameters. 
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Figure 2.10        Location of acoustic emission sensors for both dog-bone and compact tension specimens. 
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3       MONOLAYER FIBER ARCHITECTURE 

3.1 Introduction 

In this chapter the mechanical properties and fracture behavior of a model composite system 
with a monolayer fiber architecture are reported. Fiber spacing, X, of 0.75, 1.5 and 2.25 mm 
were used in the reinforcement of the notched specimens while fiber spacing of 1.5 and 2.25 
mm were used in the dog-bone specimens. 

The mechanical behavior of the specimens, i.e. the stress-strain curves, were investigated 
through visual observation and acoustic emission methods. It was found that the elastic 
response of the specimens, as well as the on-set of non-linear stress-strain behavior (referred to 
as the proportional limit) and the ultimate strength of the specimens, could be described as a 
function of the fiber spacing. 

Properties of the fiber-matrix interface were obtained from a dog-bone tensile specimen in 
which a matrix through crack occurred at a stress much lower than the strength of the fibers, 
hence allowing the fibers to remain intact across the matrix crack, simulating a fiber pull-out 
test. 

Post-failure analysis of the fracture surfaces showed that matrix fracture, which corresponded to 
composite failure, initiated in every case at the fiber-matrix interface. 

3.2 Experimental Observations 

Experimental stress-strain curves for uniaxial loading of the unreinforced matrix and the two 
composite geometries are shown in Figure 3.1 and Figure 3.2, respectively. The matrix material 
initially displayed a linear elastic behavior with a Young's modulus of 2.2 GPa. At 
approximately 2% strain the behavior of the matrix became non-linear with fracture occurring 
near 3.7% strain. The addition of reinforcing fibers increased the stiffness of the specimens. 
As the fiber spacing decreased, i.e. the number fibers increased, the material not only became 
stiffer but the range of linear elastic behavior also increased. Even at a low fiber volume 
fraction of 7.3%, linear elasticity almost completely dominated the composite behavior. Each 
of the composite specimens displayed a similar strain to failure, approximately 4.3%. This 
showed that the presence of the fibers modified the strain behavior of the matrix. However, the 
strain to failure of the composite specimens appeared to be independent of fiber spacing. 

The experimental stiffness of the composite specimens was compared to the stiffness predicted 
by the ROM, i.e. 

Erom = EmVm+ EfVf , (3.1) 

where 
Em and E,        = Young's modulus of the matrix and fiber, respectively, and 
Vm and Vf = volume fraction of the matrix and fiber, respectively. 

Excellent agreement was observed between the experimental and theoretical responses, 
Table 3-1. It was interesting to note that the presence of the notch had virtually no effect on the 
composite behavior. This was explained by the fact that bulk properties, such as Young's 
modulus, are typically not affected by a single flaw which is small, say less that 10%, compared 
to the dimensions of the specimen. Debonding of the first and second fibers directly ahead of 
the notch tip was observed. This indicated the presence of the Gordon mechanism (Cook and 
Gordon, 1964), whereby the increased stresses at the crack tip induce separation of the fiber 
from the matrix which in turn absorbed enough energy to arrest crack growth. This mechanism 
also helped the notched specimens retain a strength identical to the unnotched specimens. 
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The most interesting feature of the composite behavior was the onset of non-linear stress-strain 
behavior and the changes of this behavior as a function of fiber spacing. To investigate the 
processes controlling this behavior, acoustic emission methods were coupled with uniaxial 
testing. Figure 3.3 shows the number of hits, and the associated energies, superimposed on the 
load-displacement curve for a typical dog-bone specimen. Notice that acoustic activity began at 
the proportional limit of the stress-strain behavior. Both the number of hits and energy were 
observed to increase with loading. Qualitatively it appeared that the energy remained 
proportional to the hits up to fracture suggesting that only one damage process was occurring. 
However, at fracture the energy greatly increased while the number of hits decreased. 

Table 3-1. 
geometries. 

Testing conditions and results for uniaxial loaded monolayer model composite 

Specimen Ramp Rate Fiber 
Spacing, 

X 

Volume 
Fraction, 

Young's mod. 
experimental, 

F 

Young's modulus 
ROM, 

F 

Strength, 

TGMB -1 30 mm/min. 0.75 mm 7.3% 5.8 GPa 6.8 GPa 248 MPa 
TGMB -2 30 0.75 7.3 249 
TGMA -3 30 1.50 3.8 4.2 4.6 153 
TGMA -4 30 1.50 3.8 160 
TGMA -5 30 1.50 3.8 177 
TGMC -1 30 2.25 2.5 3.7 3.7 119 
TGMC -2 30 2.25 2.5 122 
91MB-a 1.50 4.1 4.6 4.8 164 
91MB -b 1.50 4.1 149 
91MB-c 1.50 4.1 172 
91MC -a 2.25 2.5 3.7 3.7 119 
9 IMC -b 2.25 2.5 120 
91MC -c 2.25 2.5 109 

It is commonly reported that matrix damage such as plastic deformation, shear-band formation, 
are sources of low acoustic energy while fiber-matrix separation, debonding, delamination and 
friction are sources of medium acoustic energy and fiber and matrix fracture are sources of 
high acoustic energy. Yet, without specifically calibrating the acoustic emission behavior of 
each constituent material separately as well as in composite form, one cannot make such general 
statements as to the source of acoustic activity. Although calibration of this system was not 
performed, based on the observation of fiber and matrix fracture only at composite failure, it 
was concluded that damage at the fiber matrix interface was the source of stress-strain non- 
linearity. 

3.3   Role of Fiber Spacing 

Based on the preceding discussion an attempt was made to correlate proportional limit, or on-set 
of non-linearity, with fiber spacing. A simple yet powerful method for this type of investigation 
is dimensional analysis (Barenblatt, 1987).    The first step in this analysis was to list all the 
parameters on which the proportional limit, or critical stress for the fiber-matrix interface, ö'c, 
was believed to depend on; 

dc = ®0(KlsXEm,E1lDt,w1bil), (3.2) 

where 
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K'c = fracture toughness of the fiber-matrix interface, 

"k = fiber spacing, 
Em, Ef = Young's modulus of the matrix and fiber, respectively, 

Df = fiber diameter and 
w,b, I = specimen width, thickness and length. 

If fiber spacing and interface fracture toughness are taken as the fundamental parameters, 
equation ( 3.2 ) can be rewritten as 

^f*' EmJX   EfJk £j_wb]_ 
K    K'c   '   K'c   ' X 'X"k'X, 
\     ° c j 

(3.3) 

where 

„     EmJk   „      EfJ\ D, w b I 

Note that in equation ( 3.3 ), once the fundamental parameters are chosen they must be 
combined in such a way that their product is dimensionally equal to the governed parameter. 
Now, according to dimensional analysis theory, any of the dimensionless 'pi' terms can be 
eliminated if they are much greater or much less than unity, provided they are not unbounded. 

Therefore, since  II, « 102, II2«103and   II5' = II6 / II5 «(100+2), these terms may be 
neglected. The remaining pi terms may be combined in any fashion for simplicity and 
convenience of expression.  The final expression is 

( 3.4 ) 

The only criteria necessary to validate the previous assumptions, and the form of equation ( 3.4 
), is that the experimental data fits the model. Although the exact form of <E>2 was not known, 
because the fiber diameter, specimen width and interface fracture toughness were constant, or 
assumed constant in the case of the interface fracture toughness, these terms were combined into 
a single constant, K. The equation, 

<=4=. (35) 

was applied to the proportional limits for each composite specimen. From Figure 3.4 it can be 
seen that the correlation between the experimental data for onset of non-linearity in the 
composites did indeed fit the proposed model, equation ( 3.5 ). 

The proposed model was also correlated to the composite fracture stress, also in Figure 3.4. 
When the linear relationship was forced through the origin, an increasing deviation from the 
linearity with increasing fiber spacing was observed. 

To investigate the deviation of the fracture stress from the model, the linear region of each 
stress-strain curve was extrapolated to the failure strain of the composite, approximately 4.3% in 
every case. This 'extrapolated' fracture stress was then compared to the model. Indeed, this 
'extrapolated' fracture stress, also in Figure 3.4, showed the same trend as the proportional 
limit, i.e. a linear relationship that extended through the origin.    The higher 'extrapolated' 
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fracture stresses for the dog-bone specimens were due to the slightly higher stiffness of these 
specimens. 

Following the success of describing the proportional limit and fracture stress with the model 
proposed in equation ( 3.5 ), the influence of fiber spacing over the entire range of stress-strain 
behavior was investigated. Again, starting with the root of fiber spacing as a critical parameter, 

it was found that the linear region of the stress-strain behavior scaled with the factor -fk/Jw 
for both the specimen geometries, Figure 3.5 and Figure 3.6. Note that the width of the 
specimens was constant for each geometry and was used simply to make the scaling parameter 
dimensionless. Again these scaled stress-strain curves deviated slightly from one another at the 
onset of non-linearity reminiscent of the fracture stress deviation from equation ( 3.5 ). 

3.4   Role of Fiber Volume Fraction 

The correlation of the proportional limit, fracture and extrapolated fracture stresses to fiber 
volume fraction was also investigated. The stresses as a function of fiber volume fraction are 
shown in Figure 3.7. However, the linear relationship of the stresses as a function of fiber 
volume fraction did not extend through the origin, but instead a unique intercept for each stress 
relationship was observed. 

The strength predicted from the ROM was then compared to the experimental fracture stress. 
Recall that the ROM for composite strength, Gc, for a fiber strain to failure greater than that of 
the matrix, is 

<*c = Om
Vm + °'fVf (3.6) 

where 

<5m       = fracture stress of the matrix, 

<3f       = stress on the fibers at the fracture strain of the matrix and 
Vm, Vf  = the volume fraction of matrix and fiber, respectively. 

The strain to failure of the matrix was taken from experimental values of the pure matrix under 
uniaxial loading. Then using Hooke's law and the manufactures data for fiber Young's 
modulus,   the   stress   carried   by   the   fibers   at   composite   failure   was   calculated,   i.e. 
df = EfEc =66 GPa * 0.037 = 2.4 GPa. The results from this model as a function of fiber 
volume fraction and fiber spacing were compared to the experimental fracture stresses. In both 
cases the strength predicted by the ROM was slightly lower than the experimental fracture stress. 
As expected from equation ( 3.6 ), when the ROM strength was plotted as a function of fiber 
volume fraction, the intercept was equal to the strength of the matrix. 

Although good correlation between the experimental fracture stress and the ROM strength was 
observed, the difference between the predicted and experimental fracture values, even though 
small for this composite system, raises two important issues. First is the use of matrix strain to 
failure for ROM strength calculations. Through reinforcing a material, one typically attempts 
to increase the strength of that material. However, the increase in strength is often accompanied 
by a change in the strain to failure properties of the reinforced material. As stated in the 
introduction, the ROM for strength does not take into consideration any change in matrix (or 
fiber) properties due to the presence of the fibers (or matrix). The ACK model (Aveston et al., 
1971) addressed this issue and presented a model that could be used to predict the changes in 
fracture strain of the matrix as a function of the fiber volume fraction. An attempt was made to 
apply this model to the present system but the behavior of the constituents was found to violate 
the applicability of the ACK model. 
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The second important limitation of the ROM is that it depends on volume dependent properties. 
While this is valid for transport, i.e. bulk, properties, such as Young's modulus, it is dangerous 
to apply such a model to a property, e.g. strength, that depends on local morphology. As has 
been shown for other systems, e.g. glass, concrete, ceramics (Griffith, 1921; Botsis et al., 1995), 
strength is more accurately modeled using parameters that describe the microstructurc of a 
material, such as flaw, pore or grain size or, as has been demonstrated here, fiber spacing. 

3.5   Interface Properties 

Damage of the fiber-matrix interface was observed during testing of the notched specimens. In 
addition, acoustic emissions were recorded at the onset of non-linearity in the dog-bone 
specimens. Important interface parameters controlling such processes, such as interfacial 
strength and the work of fiber debonding and sliding (Kerans et al., 1989) can be found from 
fiber pull-out testing. In this investigation a standardized pull-out test was not performed. 
However, qualitative fiber and interfacial strength data were obtained from a test specimen in 
which the matrix fractured at a load sufficiently low to leave the fibers intact across the matrix 
crack. 

In a dog-bone specimen with fiber spacing of 1.5 mm, 8 fibers, the matrix fractured at 
approximately 38 MPa. The fibers remained intact across the matrix crack until the ultimate 
stress of the fibers, approximately 1.5 GPa, was reached. Upon reaching this stress seven fibers 
fractured at the matrix crack but one fiber fractured in the gauge section of the specimen, 35 
mm from the matrix crack. Therefore, the specimen simulated a pull-out test with an embedded 
fiber length of 35 mm. Figure 3.8 shows the complete load-displacement curve for this 
specimen. Note the matrix fracture at 1400 N, fiber failure at 2100 N and pull-out behavior of 
the embedded fiber from 3 to 30 mm. 

For a system with a purely frictional interface, a simple load balance between tensile stress on 
the fiber and shear stress at the fiber-matrix interface can give a first approximation to the shear 
strength of the interface, T ■, i.e. 

_Cl* 
Xi    2nr ( 3.7 ) 

where 
O = tensile stress on the fiber, 
r = fiber radius and 
f = embedded fiber length. 

Typically only one peak, corresponding to some critical stress, is observed during a pull-out 
test. This critical stress can indicate the onset of debonding, for chemically bonded fibers, or 
sliding, for purely frictional interfaces. However, the load-displacement curve from this 
particular specimen showed two peaks, 469 and 357 N, during loading of the embedded fiber. 
Although the shape of the two loading curves were typical for fiber pull-out, the presence of 
two peaks was not. Due to the purely frictional interface the peaks were initially believed to be 
due to a "slip and catch' mechanism. However, upon inspection of the specimen it was found 
that the fiber had fractured three times, at depths (from the matrix crack) of 35 mm, 33 mm and 
27 mm. 

Although in-situ fiber fracture was not observed, the following process was hypothesized. At a 
load of 2100 N seven fibers fractured at the matrix crack with the eighth fiber fracturing 35 
mm deep in the matrix. The embedded fiber was at an exceptionally high strain rate in the 
instant after fiber fracture. This rate was sufficient to initiate fiber pull-out. A correction in 
strain rate by the Instron feedback loop, i.e. the displacement loop at 3 mm, allowed frictional 
forces at the fiber-matrix interface to take hold. Under continued loading of the fiber, at the 
programmed 1 mm/min. strain rate, the strength of the fiber was reached before the interfacial 
shear stress could overcome frictional bonding, resulting in fiber fracture instead of fiber pull- 
out.  Due to the large embedded length of the fiber, the tensile stress on the fiber built reached 
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the fiber strength again before friction was overcome and the fiber fractured a second time. 
Upon failing a second time the embedded fiber length was reduced below the critical value for 
pull-out and/or the interface had been degraded to such a degree that fiber pull-out ensued. 

The embedded fiber lengths at fracture were measured from the two fiber fragments left behind 
in the matrix. Using these embedded lengths (33 and 27 mm) and the tensile stresses present at 
the two peaks (2,775 and 2,112 MPa) following initial fiber failure, shear stress values of 9.78 
and 9.09 MPa were calculated from equation ( 3.7 ). 

3.6   Fracture Mechanisms 

In every composite specimen catastrophic failure occurred at the peak load. It was observed 
that composite failure initiated with matrix cracking. In the split seconds after total matrix 
failure, the fibers momentarily transferred the sudden increase in load thrust upon them to 
regions of the matrix away from the initial matrix crack inducing secondary matrix cracking 
and failure of the fiber at random weak spots before 'instantaneous' failure of the fibers across 
the initial matrix fracture occurred. Fragmentation and secondary matrix cracking was, 
qualitatively, inversely proportional to the fiber spacing, i.e. lower fiber spacing yielded more 
damage. Combining in-situ observations with acoustic emission and stress-strain data the 
fracture process shown in Figure 3.9 was hypothesized. 

Inspection of the fracture surfaces revealed that the fracture mechanism was identical in all 
specimens. Figure 3.10 shows a typical fracture surface for the monolayer specimens. A 
fracture morphology similar to the familiar mirror-mist-hackle morphology was observed. The 
mirror surface was centered around a single fiber and radiated outward. The mirror surface 
began to change to a 'mist' surface as it approached neighboring fibers. Far away from the 
mirror surface a 'hackle' surface (not shown), typical of dynamic fracture in polymers, was 
observed. This surface morphology pointed to a random defect at the fiber-matrix interface as 
the nucleation site for matrix, hence.composite, failure. 

Due to the observation that matrix fracture initiated at the fiber-matrix interface, it can be 
concluded that the distribution of the fibers was able to reduce the effect of stress concentrators, 
e.g. machined notches, voids, etc., located in the bulk of the matrix. The fact that strain to 
failure data of the composite specimens was consistent, yet greater than the unreinforced matrix, 
suggested that the presence of the fibers was able to modify the strain to failure behavior of the 
matrix but only to some critical value, 4.3% for this system. The increase in strength for 
successively decreasing fiber spacing suggested that not only did the fibers exert more of an 
influence on overall composite properties, e.g. stiffness, but that fiber-fiber interactions became 
increasingly important helping to reduce the stress concentrations introduced by defects at the 
fiber-matrix interfaces. 
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Figure 3.1 Stress-strain curves for notched monolayer specimens. 
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Figure 3.2 Stress-strain curves for dog-bone monolayer specimens. 
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Figure 3.3 Acoustic emission hits and energy for a dog-bone monolayer specimen. 
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4       MULTILAYER FIBER ARCHITECTURE 

4.1 Introduction 

In this chapter the results on the mechanical properties and fracture behavior of specimens with 
a multilayer fiber architecture, are reported. 

In a similar manner to the investigation of the previous chapter, the mechanical behavior of the 
specimens, in this case the load-displacement response, was investigated through visual 
observation and acoustic emission methods during a single-ramp loading conditions. Again, 
the elastic response of the specimens, as well as the on-set on non-linear stress-strain behavior, 
and the ultimate strength of the specimens were found to be a function of fiber spacing, yet with 
a slightly different model than was found for the monolayer fiber architecture. The fiber- 
matrix interface was found to play a more important role in the multilayer architecture than the 
monolayer architecture. 

To investigate the behavior of the interface more closely, two compact tension specimens with 
monofilament glass fibers at x-direction fiber spacing of 1.5 and 2.25 mm were tested using a 
dual-ramp loading loop and acoustic emission methods (Figure 2.8). 

Post-failure analysis of the fracture surfaces revealed evidence of an adhesive bond between the 
fiber and matrix, as well as a distinct transition from slow crack to dynamic crack growth. 

4.2 Experimental Observations 

For this system a more detailed investigation was conducted. As seen in the following 
paragraphs, two loading waveforms were investigated with this system. A single-ramp loading 
waveform of 1 mm/min. was used with CT specimens defined by a characteristic length, w, of 32 
mm and a thickness, B, of 8 mm. The fiber architecture of these specimens consisted of a 
constant y-direction fiber spacing of 1.5 mm and four x-direction spacing of 0.75, 1.5, 2.25 
and 3.0 mm. A second loading waveform, referred to as unloading-loading or dual-ramp, was 
used in conjunction with acoustic emission methods. These compact tension specimens were 
defined by a characteristic length of 24 mm and a thickness of 8 mm and two x-direction fiber 
spacing, 1.5 and 2.25 mm, were investigated. For the dual-ramp waveform, the displacement of 
the initial loop was 1mm and was increased in increments of 0.5 mm for each subsequent loop 
until fracture. 

4.2.1  in-situ  observations 

In-situ observation of the crack tip during single ramp loading was made using an optical 
microscope at 80X magnification. At approximately 400 N slow growth of the crack tip was 
observed, box I in Figure 4.1. As the crack tip extended, but before it reached the first fiber 
row, changes in the optical properties along the first row of fibers were observed. This change 
indicated the initiation of damage processes at the fiber-matrix interface. Damage of the 
interface began in the crack plane and gradually propagated in the z-direction along the fibers. 
As the crack reached the first fiber row, damage was initiated at the second row of fibers. Non- 
linear load-displacement behavior was noted during the damage process, region II in Figure 
4.1. 

Crack growth in the x-direction was arrested at, or within a few tenths of a millimeter after the 
first fiber row. As the load increased past the point of initial crack arrest the crack began to 
propagate in the z-direction. Bending of the specimen slowly opened the crack in the z- 
direction causing a 'peeling' action between the ligament and the 'front' section of the 
specimen. The load decreased slightly during this action, region III, before fast crack growth 
occurred in the z-direction. Fast fracture followed a curved path in the z-direction until the 
specimen separated into two or three pieces. 
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Damage at the fiber-matrix interface during loading was due to separation of the fiber and 
matrix. As the crack tip approached the first row of fibers, the stress state at the crack tip 
induced normal and shear stresses at the fiber-matrix interface. These normal and shear stresses 
induce fiber-matrix separation and sliding, respectively. This process was well explained by 
Gordon (Cook and Gordon, 1964), hence this process is referred to as the Gordon mechanism. 
In composites which possess an interface shear strength to composite tensile strength ratio less 
than 1:5, fiber-matrix separation is the dominate damage process, Figure 4.2 (Hull 1981). It 
has been shown in chapter 3 that this composite system does possess a weak interface. 
Therefore, it was concluded that the change in optical properties along the fibers during loading 
was due to fiber-matrix separation. 

Further evidence of a weak fiber-matrix interface, hence fiber-matrix separation, was found 
during SEM analysis. An adhesive bond is one in which no chemical interactions between two 
adjoining surfaces occurs. In this case the surfaces are held together by friction or residual 
stresses. When these surfaces separate, i.e. when adhesive failure occurs, there is little damage to 
either surface. Figure 4.3 shows evidence of an adhesive bond between the fiber and matrix. 

Post-mortem analysis of the fracture surfaces revealed a transition point from slow to dynamic 
crack growth on the y-z crack surface. Slow crack growth was characterized by a 'hackled' but 
planar surface while fast fracture was characterized by a relatively smooth but highly curved 
surface, Figure 4.4. This transition point was observed in all specimens, indicating that the 
fracture mechanism was independent of the fiber architecture. 

Other authors have observed similar fracture morphologies in epoxy matrix composites. A 
'scalloped' fracture morphology (Bradley and Cohen, 1985) can suggest coalescence of 
microcracks or a 'serrated' fracture morphology (Gustafson and Seiden, 1985) can suggest 
interlaminar shear and/or peeling stresses. It was concluded that the bending stresses, inherent 
to the compact tension geometry, caused microcracks, which were initiated by fiber-matrix 
separation, to coalesce along the y- and z-directions resulting in the hackled surface 
morphology. Once a critical threshold of microcrack coalescence was reached the crack 
propagated dynamically in the z-direction. 

4.2.2 mechanical properties 

Experimental load-displacement curves for single ramp loading of the unreinforced matrix and 
composite compact tension specimens are shown in Figure 4.5. Observation of brittle behavior, 
i.e. linearity to fracture, for the unreinforced matrix indicated that plain strain conditions were 
present in these specimens. The unreinforced matrix displayed the highest stiffness. The 
stiffness of the composite specimens decreased with decreased fiber spacing, i.e. an increased 
fiber volume fraction. While it initially appeared contradictory that addition of fibers with a 
stiffness 30 times that of the matrix would decrease the composite stiffness, in-situ observations 
helped to clarify this result. Recall that separation of the fiber-matrix interface was observed 
during loading. As the fiber spacing was decreased, the number of fibers, and therefore the 
amount of fiber-matrix interface, was increased. Not only did this increase in interfacial area 
help to decrease the stiffness of the composite but it also increased ductility and toughness of 
the composite. The increased ductility of the initially brittle matrix material was apparent from 
the increased non-linear load-displacement behavior as a function of fiber spacing. 

Toughness of the specimens, roughly 1/2 of the peak load times the displacement to failure, 
increased with a decreasing fiber spacing. This indicated that the composite indeed took 
advantage of the increased interface area by absorbing as much energy as possible through 
separation and/or sliding of the fiber-matrix interface. 

During estimation of specimen toughness it was noticed that the peak load carried by each 
composite was fairly constant with respect to fiber spacing.    This, again, was an  initially 
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suprising result. However, nominal stress calculations for the compact tension geometry take 
into consideration the crack length of the specimen (equation 1.1). 

4.2.3  acoustic emission evaluation 

Although visual observations suggested that separation, and possibly sliding, of the fiber-matrix 
interface was the controlling factor for the mechanical behavior of the composite specimens, a 
measure of the damage as a function of loading and the interplay of interface damage and 
crack growth was investigated using acoustic emission methods. 

While acoustic emission data can be used to locate the sources of acoustic activity in space as 
well as time, the quantitative values of this activity, e.g. amplitude, duration and energy, are 
generally not indicative of particular damage mechanisms (Daniel, 1993). Typically, friction, 
fiber debonding and fiber sliding are characterized by low energy events while delamination, 
crack growth and fiber fracture are characterized by higher energy events (Bunsell, 1979; 
Latishenko and Matiss, 1979). These signals often overlap making it difficult to separate the 
data on the basis of amplitude, energy, etc. Therefore, it is common practice to report acoustic 
activity qualitatively as cumulative acoustic events. The intensity of the activity is then taken as 
a proportional measure to the intensity of the damage. 

Figure 4.6 and Figure 4.7 show the dual-ramp test load-time curves superimposed on the 
acoustic emission activity for specimens with fiber spacing of 1.5 and 2.25 mm, respectively. 
As both specimens investigated displayed similar behaviors, only the results from specimen with 
a 1.5 mm fiber spacing will be discussed. 

In loading loop 'a' the maximum displacement was 1 mm. Low rate activity was observed at 
approximately 100, 450 and 800 N. The activity at 100 N was attributed to mechanical noise 
associated with the self-aligning specimen grips due to the presence of a similar peak when 
testing specimens of other geometries. Based on simultaneous visual observations, the activity at 
450 and 800 N was attributed to crack growth initiation. This conclusion was supported by the 
behavior in loading loop 'b'. 

In loop 'b' the maximum displacement was 1.5 mm. During this loop no activity was observed 
until 800 N. This was precisely the peak load reached in loop 'a'. This behavior, i.e. the 
absence of acoustic activity until some previous threshold load has been reached, is known as 
the Kaiser effect and is an important diagnostic tool for composite structures (Pollock, 1989). 
At this point the rate of activity was fairly constant until it ceased just after unloading. Note also 
that at approximately 800 N the load-displacement curve becomes non-linear. The onset of 
non-linearity at this load occurred in each subsequent loading loop. 

In loop 'c' the maximum displacement was 2.0 mm. Activity began at 800 N, 200 N less than 
maximum load of loop 'b'. This observation coupled with that in loop 'b' of continued activity 
after unloading suggested that friction and separation of the interface had begun. Yet the 
activity rate did not greatly increase until 1000 N, the maximum load of the previous loop, 
which suggested that crack growth was still the dominate source of acoustic activity. Again, 
activity continued until just after unloading began. 

A similar scenario was repeated in loop 'd' in which the maximum displacement was 2.5 mm. 
Activity attributed to interface friction and separation began at approximately 200 N and 
continued at a low rate until 1200 N where crack growth began. This loop again followed the 
typical pattern of no crack growth until the maximum load of was previous loading loop was 
reached. It was interesting to note in this loop that activity ceased prior to the maximum load. 
This may have been a sign of crack arrest at the first fiber row and possibly interface 
degradation to the point where the acoustic signals generated by friction and separation were 
now below the threshold level. 
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The acoustic behavior of loop 'e', in which fracture occurred, was quite unique. The 
programmed displacement was 2.5 mm but fracture occurred at 2.0 mm. At a load of only 200 
N the greatest amount of activity was observed. Based on the behavior of previous loading 
loops it was concluded that the intensity of this activity burst was too high to be attributed to 
interface separation and friction but occurred at a load too low to be crack growth. From visual 
observations it seemed that this activity may have corresponded to the microcrack coalescence 
of the damaged interfaces. The activity spike at 1200 N was due to fracture but it was 
interesting to note that the specimen unloaded itself prior to reaching the programmed 
maximum displacement. This correlated well to the previous observation that the peeling 
behavior just prior to fracture was accompanied by a slight decrease in load. 

As stated before the acoustic behavior of the specimen with a fiber spacing of 2.25 mm was 
similar to that just described with one interesting exception. Recall that the loading waveform 
during the dual-ramp testing was displacement controlled. Because of this, the higher stiffness 
of the specimen with a 2.25 mm fiber spacing resulted in a higher energy input into this 
specimen. Recall the energy input is equal to the area under the load-displacement curve. This 
higher energy resulted not only in higher levels of acoustic activity for equal displacements, 
relative to the specimen with a 1.5 mm fiber spacing, but also in fracture after only four loading 
loops, one less than for the 1.5 mm fiber spacing specimen. 

4.2.4 strength 

In § 3.3 it was shown that the critical stress for the onset of non-linear stress-strain behavior, or 
'proportional limit', and the fracture stress (for uniaxially reinforced specimens of the same 
composite system used here) were functions of fiber spacing. The model which correlated 
stress to fiber spacing was 

ac=X 
(3.5) 

This model was applied to the proportional limit and ultimate strength values of the multilayer 
specimens in the present investigation. Note that in the case of the multilayer specimens, the 
fiber spacing term, X, in equation ( 3.5 ) must be replaced with the x-direction fiber spacing 
term, Xx. 

From the load-displacement curves the load at the onset of non-linearity and the peak load were 
used to find the (nominal) proportional limit and ultimate strength. The results of these 
nominal stress calculations as a function of the fibers spacing are shown in Figure 4.8. Each 
datum represents the average value of stress from specimens with a characteristic length of 32 
mm and a particular fiber spacing. The error bars represent a +10% deviation from the 
average values. Also note that the ultimate strength appeared to be sensitive to small initial 
crack tip to fiber distances, specifically the 'B' series specimens, Table 4-II. 

It was observed that the previously proposed model described the multilayer data with the 
exception that for this geometry an intercept was observed. Hence, the model describing the 
two investigated stresses for the multilayer geometry is 

*c = o0+« (4.1) 

where   a0       = y-intercept, 
K = a constant term times fracture toughness for a given process, e.g. interface 

fracture toughness in the case of the critical stress, and 
Xx       = x-direction fiber spacing. 
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Table 4-II Experimental data for monofilament glass fiber multilayer specimens 
Specimen Fiber 

Spacing, 
Fiber 

Volume 
Percent, 

Vf 

Specimen 
length, 

w 

Initial 
Crack 
length, 

Crack Tip 
to Fiber, 

A 

Fracture 
Toughness, 

Kic 

Ultimate 
Strength, 

Cfc 

Matrix 1 n/a n/a 36 mm 16.5 mm n/a 3.31 
MPaVm 

34MPa 

Matrix2 n/a n/a 16.5 n/a 3.14 32 
Matrix3 n/a n/a 16.4 n/a 3.38 35 
Matrix4 n/a n/a 16.6 n/a 3.21 33 
A-a 0.75 mm 9.5% 32 18.5 0.45 mm 10.95 136 
A-b 0.75 18.3 0.50 10.73 137 
B-a 1.5 5.0 32 19.2 0.85 8.29 111 
B-b 1.5 19.0 0.30 11.14 148 
B2-b 1.5 19.4 0.16 10.59 143 
C-a 2.25 3.3 32 17.1 0.72 6.77 84 
C-b 2.25 16.9 0.62 8.91 107 
C-c 2.25 17.0 0.55 8.92 108 
D-b 3.00 2.5 32 16.1 0.57 8.51 98 
D-c 3.00 16.2 0.40 8.77 103 
MB-a 1.50 5.0 24 t t n/a n/a 

Dual 
Ramp 

MC-a 2.25 3.5 24 15.5 0.50 n/a n/a 
Dual 
Ramp 

t fracture morphology prevented postmortem measurements. 

While the physical significance of the intercepts, Figure 4.8, was unknown, the linear 
relationship describing the proportional limit as a function of fiber spacing extrapolated to 
approximately 35 MPa, only 2 MPa different than the nominal fracture stress found 
experimentally for the unreinforced matrix compact tension geometry. Even more interesting 
were previous results obtained for multilayer E-glass reinforced epoxy, Figure 4.9, which 
showed that the fracture stress depended on the fiber spacing according to equation (3.5 ), i.e. 
the line was observed to be through the origin (Zhao, 1996). The key to understanding the 
difference in behavior between the two systems was in the external geometry of the systems. In 
the previous work the external geometry of the compact tension specimens varied with fiber 
spacing, whereas for the present study the external geometry was kept constant. Indeed, it was 
shown through numerical modeling of the previous system that the linear relationship of 
equation ( 4.1 ) could be maintained while the intercept varied as a function of external 
geometry (Beldica, 1996). 

Investigations of strength as a function of a characteristic length in ceramic materials (Rice, 
1972; Carniglia, 1972) have also yielded relationships similar to equation (4.1 ), some with a 
zero and some with a non-zero intercept. For ceramic materials the important length scale is the 
grain size, G. Even for these well studied materials there are various theories as to the physical 
significance of the intercept. 

The ROM is a popular model used to predict properties of a composite material, e.g. modulus 
or strength, based on the properties of the individual constituent materials and their relative 
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volume fractions. This model is based on uniaxially reinforced specimens under iso-strain 
loading conditions and therefore is not applicable to the present system. However, for the sake 
of comparison, the proportional limit and ultimate strength of the multilayer specimens was 
plotted as a function of fiber volume fraction, Figure 4.10. Again, a linear relationship 
according to equation ( 4.1 ) was observed. Yet, for reasons discussed in § 3.4, the prediction 
of composite strength as a function of fiber volume fraction may be appear to be valid, it 
suffers from certain limitations. 

Finally, in § 3.3 it was observed that the stress-strain behavior of the monolayer geometry scaled 

with the fiber spacing according to -4kJ^W. An attempt to scale the load-displacement curves 
of the multilayer CT geometry by the same scaling factor did not lead to similar results. 

43 



1200 r- 

1000 

800 

•o 600 
(0 
o 

400 - 

200 

crack growth in 
z-direction; 

peeling behavior 

0      IC-i 1 t—i 1—I 1 1—I I 

12 3 4 
Displacment [mm] 

Figure 4.1 Damage regimes for loading of a monofilament glass fiber reinforced multilayer fiber 
architecture compact tension specimen. 
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Figure 4.2 Schematic of Gordon mechanism for composites with a weak fiber-matrix interface. 
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Figure 4.3 SEM photograph showing evidence of an adhesive bond between the fiber and matrix. 
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Figure 4.4 Photograph of y-z fracture surface for monofilament glass fiber compact tension specimens. 
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Figure 4.5 Load-displacement curves for monofilament glass fiber compact tension specimens. 
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Figure 4.6 Acoustic emission response of a monofilament glass fiber reinforced specimen with a 1.5 
mm fiber spacing under dual-ramp loading at 1 mm/min. 
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Figure 4.7 Acoustic emission response of a monofilament glass fiber reinforced specimen with a 2.25 
mm fiber spacing under dual-ramp loading at 1 rnm/min. 
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Figure 4.8 Average critical stress and ultimate strength values as a function of fiber spacing for 
monofilament glass fiber multilayer specimens. 
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Figure 4.9 Ultimate strength as a function of fiber spacing for an E-glass/epoxy multilayer system in 
which the external dimensions of the compact tension specimens changed with fiber spacing (Zhao, 1995). 
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Figure 4.10        Critical stress and ultimate strength as a function of fiber volume fraction for monofilament 
glass fiber reinforced specimens. 
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5       NUMERICAL ANALYSIS 

5.1 Boundary Element Method 

Finite Element Methods (FEM) are well known and often used numerical modeling procedures 
for stress distribution in two or three dimensions. However, these methods are often time 
consuming in mesh preparation and computing time. A second method, Boundary Element 
Method (BEM), has clear advantages over FEM in some respects. These include discretizing 
only the boundary of a body, fewer equations to solve (hence more efficient computing). The 
BEM is especially suited to handle linear elastic materials and 2-dimensional models (Wearing 
et al., 1990). In the BEM, tractions and displacements are the basic variables. One set of these 
variables is prescribed while the second set is solved for, usually via integration of the 
appropriate equations. 

A BEM simulation code was developed by this research group (Beldica, 1996) to numerically 
model the fiber architectures that have been investigated experimentally. Of particular interest 
was the potential to model the multilayer fiber architecture specimens. As stated, BEM is an 
efficient way to model a 2-dimensional representation of a body. By discretizing a CT 
specimen in two dimensions a large parametric study of the internal fiber architecture could be 
undertaken. After extensive initial studies, discussed by Beldica, the simulation was applied to 
the multilayer monofilament glass fiber reinforced specimens investigated in chapter 4. While 
the details of the working code are not discussed here, it will be shown that the initial simulation 
code proved not only to agree with the experimental results but also shed light on some 
experimental results that were previously unexplained. 

5.2 Simulation Method and Analysis 

The BEM simulation was performed on a 2-dimensional representation of a CT specimen with a 
multilayer fiber architecture. A representative schematic on which the BEM was based is shown 
in Figure 5.1. Notice that the three-dimensional fiber row was simulated using a single 
reinforcement 'layer.' Beside the reduction of a 3-dimensional specimen into two dimensions, 
a perfect fiber-matrix interface was chosen to reduce the complexity of the interaction between 
the elements. The nomenclature used in the schematic and also throughout this chapter are 
defined below: 

W = characteristic length of the specimen, 
a = initial crack length (note that both Wand aare defined by ATSM E 399), 
L = front edge to first fiber distance, 
A = crack tip to first fiber distance, 
X = reinforcement layer spacing, 
d = reinforcement layer thickness, 
N = number of reinforcement layers, 
Er/Em = ratio of reinforcement layer modulus to matrix modulus (in every case Em = \) 

V {,Vm = Poisson's ratio for the reinforcement and matrix material 
(in every case both are 0.3). 

The BEM was used to calculate the strain energy at two crack lengths. The first crack length, 
a,, corresponded to the initial crack length and the second crack length, a2, corresponded to 
the initial crack length plus a step increment, i.e. S^ = a, + step. In every case the step 
increment was chosen as 0.1 mm. From the crack lengths and calculated strain energies the 
energy release rate for mode I crack growth could be calculated, 
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where t/, and L^^6 me calculated strain energies at crack lengths a, and a2, respectively. 
Using LEFM, the SIF for mode I loading is defined as 

is2_       E (5.2) 

Assuming a plane strain condition, E' and Dare the Young's modulus and Poisson's ratio of 
the matrix, respectively. Note that the model assumed that crack growth occurred entirely in the 
matrix, as was observed experimentally, thus the use of the matrix elastic constants in equation ( 
5.2 ). The stress intensity factor at various reinforcement configurations, as well as with various 
reinforcement elastic constants, was calculated and denoted as Kr. For every change in the BEM 
mesh, a homogeneous SIF, Ka, corresponding to a reinforcement with identical elastic properties 
as the matrix, i.e. E/Em = 1, was also calculated. All calculated SIF values were normalized by 
the homogeneous SIF. 

Next, the calculated SIF was correlated to a critical stress. From the Griffith criteria, the 
following relationship can be deduced, 

-)(K)      =K <5-3) 

where 
P = load, 
B = specimen thickness, 
Kr = reinforced SIF, 
Kmc = fracture toughness of the matrix, 

The ratio Pi Bean be calculated from equation ( 5.3 ) because Kr, the simulated SIF value, and 
Kmc,the experimental fracture toughness value, are known. Now, P/B can be used in equation 

( 1.1 ) to calculate the 'critical' stress associated with the SIF calculated from the BEM 
simulations. 

5.3   Parametric Study of SIF 

5.3.1  single fiber reinforcement 
A 2-dimensional CT model with dimensions, w, a and d, of 24, 0.45w and 0.4 mm, respectively, 
was reinforced with a single layer at various distances from the crack tip, A. The SIF 
(normalized) calculated for each position of the single fiber within the ligament for various 
reinforcement layer modulus values, 1, 2, 5 and 10, is shown in Figure 5.2. Note that a 
simulation with a reinforcement modulus of one was run in every case to check the stability of 
the mesh and also to generate a normalizing constant. For every reinforcement layer with a 
modulus greater than the matrix, i.e. E/Em > 1, a similar reinforcing trend was observed. 

As the reinforcement layer was moved to the center of the ligament the influence almost 
dropped to zero. As the reinforcement layer was moved through the center and into the rear 
portion of the ligament, the SIF was observed to decrease again, although to a much lesser 
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extent than for a fiber in the front portion of the ligament. Also, the decrease in SIF was more 
pronounced with an increase in the reinforcing layer modulus, i.e. stiffness. 

Recalling previous discussions on the deformation behavior of a CT specimen under loading, 
the SIF behavior near the center of the ligament can be explained. It is known that during 
bending of a beam there exists a neutral axis at which the stresses and strains are zero. 
Apparently the bending of the CT ligament under loading created a neutral axis in the region 
between 40 and 60% of the ligament length. That is, the stiffness properties of the reinforcing 
layer could not be realized in this region due to the low stresses near the neutral axis. However, 
a slight decrease in SIF was still observed in this region as Er was increased due to the overall 
stiffening effect of the reinforcement layer. 

This general increase in ligament stiffness with Er was also observed when the reinforcement 
layer was moved into the rear of the ligament. In this region the effect of the reinforcement on 
SIF could only be realized through stiffening the ligament against compression, hence lowering 
the tension and therefore crack tip SIF at the front of the ligament. Note the large difference in 
SIF decrease. In the front of the crack tip, reduction of the SIF as explained by LEFM led to an 
almost a 30% reduction in SIF for the stiffest reinforcement. However, for a reinforcement with 
the same stiffness located near the specimen rear edge a less than 10% decrease in SIF was 
achieved. 

5.3.2 multiple fiber reinforcement at a variable layer spacing 

Naturally the next step was to increase the number of reinforcement layers in the ligament in 
order to understand the interaction and combined effect of the fibers on the SIF. At this point 
the possibilities for reinforcement architecture became very large. Although several 
architectures were investigated, only the simulations that related to the experimental systems 
investigated in this work will be discussed. Two simulations were run for specimens with five 
reinforcement layers at spacing of 1 and 2.25 mm. The results are shown in Figure 5.3. 

The interaction effect on SIF between the reinforcement layers for the multiple reinforcement 
architecture was investigated jointly with Beldica. Simulations were run with single 
reinforcement layers at increments of 2.25 mm starting from a position 3.2 mm from the crack 
tip. The individual effects on SIF from each of these simulations were added together and 
compared to the results already displayed in this section. Figure 5.4 shows the results of the 
superposition of these individual reinforcing effects on the SIF. It was observed that, up to a 
reinforcement modulus of 10, the effect of a five fiber reinforcement could be described by the 
superposition of the SIF effects of single reinforcement layers located at the same locations. It 
appeared that any interaction between the layers for a multiple reinforcement architecture 
would not become important, i.e. a deviation from the superposition of greater than 10%, until 
the reinforcement modulus became over 10 times greater than the matrix modulus. However, 
note that for glass-reinforced polymers, E/Em is typically on the order of 20, therefore 
interaction effects may become significant at this ratio. 

5.4   Simulation of the Experimental Results 

The next study involved the simulation of the experimental results on the monofilament glass 
fiber reinforced CT specimens. The experimental values of the fiber and matrix moduli, 66 and 
2.2 GPa, respectively, were used so that direct comparison to the experimental results could be 
made. Again the external dimensions of the specimen were based on a characteristic size, w, of 
24 mm. This simulation not only calculated the reduction in SIF due to the reinforcement but 
also used the method of §5.2 to calculate the critical stress at the crack tip for a crack extension 
of 0.1 mm. In addition, two possibilities for the way in which the crack tip may 'feel' the 
reinforcement layers were investigated. In the first case, the ligament was reinforced by 
'discrete' layers, physically similar to discrete fibers, in the second case, the discrete architecture 
was transformed into an 'effective' architecture in which the ligament was represented as a 
monolithic reinforcement with a stiffness found from the ROM. 
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5.4.1 discrete architecture 

In these simulations the E/Em ratio for each discrete layer was calculated based on the fiber rows 
of the experimental specimens. The experimental stiffness constants and the ROM were 
combined using the geometry of Figure 5.5. A discrete reinforcement layer E/Em value of 
13.85 GPa was calculated from the experimentally determined elastic constants. Recall that fiber 
spacing of 3.0, 2.25, 1.5 and 0.75 mm were investigated experimentally. However, due to BEM 
mesh construction limitations only discrete reinforcement spacing of 3.0, 2.25 and 1.5 could 
be simulated. 

Although the reinforcement layer modulus corresponding to the experimental geometry had 
been calculated, the first step of the simulation was to investigate the decrease in SIF over a 
range E/Em, Figure 5.6. Note that in this parametric study, a E/Em ratio of less than unity was 
also modeled. In the region of E/Em > 1 the expected trend was observed, the SIF decreased 
with reinforcement spacing for a given stiffness ratio and the decrease in SIF was greater for all 
reinforcement spacing as the stiffness ratio increased. In the region of E/Em < 1 the opposite 
trends were observed. This response was predicted by LEFM in that an inclusion less stiff than 
the matrix ahead of the crack tip would cause an increase in SIF. Also, in general the overall 
stiffness of the ligament would decrease for a less stiff 'reinforcing' layer causing an increase 
in SIF. 

Next the crack tip stress value at E/Em =13.85 was calculated for each reinforcement spacing. 
Using the resulting Kr value in equation ( 5.3 ), solving for P/B , then using equation ( 1.1 ), the 
nominal stress at the crack tip for the model with a crack length of a2 was found, Figure 5.7. 

5.4.2 effective architecture reinforcement 

Throughout this work the use of fiber spacing as a characteristic size for composite behavior 
has been argued. However, how the crack tip actually 'sees' the ligament is an interesting 
question. Are the reinforcements ahead of the crack tip truly discrete influences on the crack 
tip or is the ligament seen as a monolithic single phase with an overall or 'effective' stiffness?. 
The BEM analysis offered a simple way to compare the numerical results of these two possible 
types of influence. The first type, a discrete reinforcement architecture, was as discussed in the 
previous section. The second type, the ligament acting as a single phase with a modified or 
'effective' modulus, is the subject of this section. 

The effective modulus, Ee/Em, for this model corresponding to each reinforcement spacing was 
found by applying the ROM to the 2-D ligaments of the discretely reinforced models. The 
dimensions of the ligament were taken from crack length + A to the rear of the ligament, or 
12.4 mm, in the x-direction and the entire height of the specimen, i.e. w*1.2 = 28.8 mm, in the 
y-direction. In this way the effective architecture models could be correlated to discrete 
reinforcement spacing of 3.0, 2.25 and 1.5 mm. Recall that due to mesh generation limitations 
a discrete spacing of less than 1.5 mm could not be modeled. But due to the fact that only one 
reinforcement layer was present in the mesh for the effective architecture, the effective modulus 
corresponding to any fiber spacing, could be modeled. This allowed a reinforcement fiber 
spacing of 0.75 mm to be simulated. 

Again, the first step was to calculate the SIF over a range of Et/Em values, Figure 5.8. The trend 
of an exponentially decreasing SIF was observed. The large decrease in SIF, over 70%, is due 
to the fact that Ecj/Em corresponds to the modulus of stiffness of the entire ligament, not 
reinforcement layers from which the stiffness was calculated. 

The critical stresses for these simulations were calculated in the same manner as for the discrete 
architecture. Note that in the case of the discrete architecture, each Kr was taken at E/En =13.85, 
however, for the effective architecture the value of Eef/Em differed for each reinforcement 
spacing, Table 5-1. The critical stress results for this architecture are also shown in Figure 5.9. 
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5.4.3  comparison of simulation critical stress to experimental strength data 

The simulation parameters and critical stress results are summarized in Table 5-1.  Note that, for 
the effective architecture, the same mesh was used for each simulation, hence only one value for 

Table 5-1 Importanl BEM specimen parameters and results. 
Modeled Layer Specimen Crack Crack Tip E/Em SIFdue Critical 

Geometry Spacing Length, Length, to Fiber, or to mesh, Stress, 
and w a A Ee/Em K0 °c 

Number, 
A,,N 

Matrix only - 24 mm 10.8 
mm 

- - 1.6608 36 MPa 

Discrete 1.5   mm, 24 10.8 0.8 mm 13.85 1.7065 77 
Architecture 8 

2.25, 
6 
3.0, 
5 

1.7000 
1.6968 

72 
71 

'Effective' 0.75, 24 10.8 0.8 7.19 1.6608 80 
Architecture 12 

1.5, 
8 
2.25, 
6 
3.0, 
5 

5.15 
4.11 
3.59 

71 
64 
61 

Critical stress as a function of reinforcement spacing for each reinforcement architecture has 
been shown in Figure 5.9. For both architectures the critical stresses displayed a linear 
relationship with reinforcement spacing that could be described by the model proposed for the 
experimental critical stress or strength results, equation (4.1 ). Although slightly higher critical 
stress was achieved with the discrete architecture simulations, the main difference between the 
results of the two architectures appeared to be the slope of the linear relationship. 

The difference between the simulated and experimental critical stress values were found to be 
10% for discrete architecture simulation and less than 5% for the effective architecture 
simulation. Also, the slope of the strength vs. fiber spacing function for the effective 
architecture simulation was similar to that of the experimental relationship for strength. The 
correlation between the numerical model and experimental results was encouraging despite the 
fact that the simulation was performed using only a 2-dimensional model of the experimental 
compact tension specimens and that the model assumed a perfect fiber-matrix interface. 
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Figure 5.1 2-Dimensional representation of a compact tension specimen. 
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Figure 5.2 Normalized SIF as a function of reinforcement layer location for various E/Em ratios. 
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Figure 5.3 SIF reduction as a function of reinforcement modulus for two reinforcement spacing. 
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Figure 5.4 Superposition effect for SIF due to reinforcement of a single layer at different locations. 
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Figure 5.5 Experimental fiber row geometry used in combination with the ROM to calculate the 
modeled reinforcement strip. 
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Figure 5.6 Normalized SIF as a function of fiber modulus for discrete reinforcement geometries. 
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Figure 5.7 Critical stress calculations for discrete and effective simulations. 
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Figure 5.8 Normalized SIF as a function of fiber modulus for effective reinforcement geometry. 
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