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Objectives (The same as in the original proposal)

In a large number of cases, we have to assess the risk of chemicals and predict the toxic
potential of molecules in the face of limited experimental data. Structural criteria and functional
criteria (if available) are routinely used to estimate the possible hazard posed by a chemical to
the environment and ecosystem. Frequently, no biological or relevant physicochemical
properties of the chemical species of interest are available to the risk assessor.

In the proposed project, we will develop and implement a number of methods of quantifying
molecular similarity of chemicals using techniques of computational and mathematical
chemistry. Some of the methods are new and will be based on our own research on the
theoretical development and implementation of molecular similarity methods. These techniques
will be implemented in a user friendly computer environment of the Silicon Graphics
workstation. The similarity methods will be used to select analogs of chemicals of interest to the
Air Force, viz., QUADRICYCLANE, FLUOROCARBON ETHERS AND THEIR ANALOGS, from
databases containing high quality physicochemical data and toxicity endpoints for large number
of chemicals. The databases used in the project will come from three sources: a) public domain

databases, b) our own in-house databases, and c) databases acquired from commercial
‘'vendors.

The set of selected analogs, called probe-induced subsets, will be used to: a) develop
structure-activity relationships (SAR), and b) carry out ranking of chemicals. Both of these
methods will be used to estimate the hazard of the chemicals of interest.

A set of chemicals (five to ten) will be chosen for experimental work with the purpose of
evaluating and refining computer models. The set will include quadricyclane and fluorocarbon
ethers of interest to the Air Force. It will also include a selection of analogs (probe-induced
subset) that are readily available, suitable for experimentation, and for which data are lacking.
Experiments will be performed to assess the biodegradability and photochemical degradability
of the members of the set. Their toxicity will be tested by MicroTox and MutaTox. In cases
where significant degradation is observed, the toxicity of the degradation products will also be
tested. Direct measurement of the hydrophobicity (octanol-water partition coefficient) will be
performed on the members of the set. '

Status of Effort

A number of novel molecular similarity methods have been developed using topostructural and
topochemical parameters which can be computed directly from molecular structure using
POLLY. Topological indices (Tls), atom pairs (APs), geometrical parameters, and semiempirical
quantum chemical parameters have been used for molecular similarity analysis and
development of hierarchical QSAR models. The relative effectiveness of the various similarity
techniques in selecting analogs and estimating properties of toxicological importance have been-
tested on a selected set of properties such as mutagenicity, acute toxicity, lipophilicity (logP,
octanol/water), etc. The K nearest neighbor (KNN) method, K=1, 2, ... 25, has been used in
generating probe-induced subsets from different databases. Results show that the KNN method
gives the best estimate of properties at K = 5-10 for the properties studied.

Seventy-five probe-induced subsets have been generated for Quadricyclane from three
different databases: a) STARLIST logP database of Daylight, Inc., containing more than 4,000
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high quality logP values, for b) the selection was restricted to C, cmpds Available Chemicals
Directory (ACD), containing over 180,000 chemicals which are currently available from
suppliers worldwide, and c) a Chemical Abstracts Service database containing about 120,000
diverse chemicals. Some of the selected analogs are being tested in the laboratory in order to

determine the utility of analogs in predicting properties of chemicals from the properties of their
neighbors in similarity spaces.

Accomplishments/New Findings

The following is a summary of accomplishments of the various tasks of the project during the
reporting period.

TASK 1: Development of data bases

A large number of databases relevant to toxicology have been developed from published
literature. These include properties like teratogenicity, inhibition of microsomal and
mitochondrial oxygen uptake in rat cerebellum by chemicals, minimum inhibitory concentration
of chemicals for DNA gyrase activity in E. Coli, EC,, for AHH receptor activation, Ames
mutagenicity, Ito’s test for carcinogenicity, liver carcinogenicity in rat/mice, acute toxicity of
various pollutants including pesticides, LCy, in guppy, LC,, in fathead minnow, skin permeability
of chemicals, lowest observed adverse effect levels (LOAELS), water solubility, soil sorption
coefficient, toxicity of organophosphate insecticides, and toxicity of respiratory uncouplers.

Many of these data have structural/mechanistic implications for toxicology. Some sets of
compounds contain a specific toxicophore which is responsible for their particular toxic action.
QSAR studies can show how the effect of the toxicophore is modulated by structural
maodifications. On the other hand, some toxicological data are collected on common biological
endpoints of diverse structural types. These data will be used to develop similarity and
hierarchical QSAR models. Mechanistic data developed by the toxicology group at the Air Force
labs will be used to validate the QSAR models generated from literature data.

TASK 2: Development of methods to quantify molecular similarity

New molecular similarity methods have been developed using topostructural indices,
topochemical parameters, atom pairs (APs) and geometrical parameters. A hierarchical
approach to the quantification of molecular similarity has been developed in a limited scale.

Principal components analysis (PCA) and variable clustering methods have been used to create
orthogonal structure spaces from POLLY parameters. AP based similarity methods have also
been compared with PCA based methods in the selection of analogs and prediction of
properties.

The following publications reported the result of molecular similarity analysis:

1) Use of graph-theoretic parameters in predicting inhibition of microsomal p-hydroxylation
of aniline by alcohols: a molecular similarity approach by Subhash C. Basak and Brian
D. Gute., pp. 492-504, In: Proceedings of the 2' International Congress on Hazardous
Waste: Impacts on Human and Ecological Health, B.L. Johnson, C. Xintaras, J.S.
Andrews, Jr., Eds., Princeton Scientific Publishing Co. Inc., Princeton, New Jersey.
1997.
This paper compares the relative effectiveness of the Euclidean distance (ED) and AP
methods in estimating the inhibition of microsomal p-hydroxylation of aniline by alcohols.
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2) Estimation of the normal boiling points of haloalkanes using molecular similarity by
Subhash C. Basak, Brian D. Gute, and Gregory D. Grunwald. Croatia Chemica Acta
69:1159-1173, 1996.

This paper estimated the normal boiling points of a set of 267 haloalkanes using
molecular similarity methods.

3) Use of graph-theoretic and geometrical molecular descriptors in structure-activity
relationships, by Subhash C. Basak, Gregory D. Grunwald, and Gerald J. Niemi. pp. 73-
116, In: From Chemical Topology to Three-Dimensional Geometry, ed. A.T. Balaban,
Plenum Press, New York, 1997.

This book chapter presents a comprehensive review of the utility of topological indices in
QSAR and the quantification of intermolecular similarity.

4) Characterization of the molecular similarity of chemicals using topological invariants, by
Subhash C. Basak, Brian D. Gute, and Gregory D. Grunwald. In: Advances in Molecular
Similarity, JAl Press, submitted, 1997.

This paper analyzed the utility of topostructural and topochemical indices in the
quantification of molecular similarity and selection of analogs.

Copies of the above mentioned papers are attached (Vide Infra, Publication Section)

TASK 3 Selection of analogs

Analogs or "probe-induced subsets" selected from databases with good quality experimental
data can be useful in predicting properties of probe chemicals. Taking Quadricyclane as the

probe, we selected 75 analogs using different search methods. The results of such analyses
have been previously reported. Various molecular similarity methods have also been used in
the selection of neighbors for KNN based property estimation.

TASK 4

A. Estimation of properties of the target chemical from the probe-induced subset

We studied the effectiveness of similarity methods developed in Task 2 above by applying
these methods in estimating various physicochemical and toxicological endpoints. To this end,
we carried out similarity-based estimation of physicochemical and toxicological properties.
Three papers were submitted out of the research carried out in this task. These results were
also presented in numerous national and international symposia and invited presentations.

a. Use of graph-theoretic parameters in predicting inhibition of microsomal p-
hydroxylation of aniline by alcohols: a molecular similarity approach, by Subhash C.
Basak and Brian D. Gute., pp. 492-504, In: Proceedings of the 2 International
Congress on Hazardous Waste: Impacts on Human and Ecological Health, B.L.
Johnson, C. Xintaras, J.S. Andrews, Jr., Eds., Princeton Scientific Publishing Co.
Inc., Princeton, New Jersey, 1997.

b. Estimation of the normal boiling points of haloalkanes using molecular similarity by
Subhash C. Basak, Brian D. Gute, and Gregory D. Grunwald. Croatia Chemica Acta,
69:1159-1173, 1996.

c. Characterization of the molecular similarity of chemicals using topological invariants,
by Subhash C. Basak, Brian D. Gute, and Gregory D. Grunwald., /n: Advances in
Molecular Similarity, JAl Press, submitted, 1997.




B. Hierarchical approach to toxicity estimation using topological, geometrical, and quantum
chemical parameters

We have also been developing a hierarchical approach to computational toxicology using
topostructural, topochemical, geometrical, and quantum chemical parameters which can be
calculated directly from molecular structure. This approach uses increasingly more complex
parameters to estimate properties of chemicals, as necessary for a particular situation. We

have listed below the book chapters/papers in peer-reviewed journals which have reported
these results.

5) A comparative study of topological and geometrical parameters in estimating normal
boiling point and octanol/water partition coefficient, Subhash C. Basak, Brian D. Gute,
and Gregory D. Grunwald. J. Chem. Inf. Comput. Sci. 36:1054-1060, 1996.

This paper used topostructural, topochemical and geometrical parameters in the
development of hierarchical QSAR models for predicting logP (octanol/water) and
boiling point.

6) Use of topostructural, topochemical and geometric parameters in the prediction of vapor
pressure: a hierarchical QSAR approach, S. C. Basak, B. D. Gute and G. D. Grunwald,
J. Chem. Inf. Comput. Sci., 37: 651-655, 1997.

This paper utilized a hierarchical QSAR approach in estimating vapor pressure of a
diverse set of 476 chemicals.

7) Predicting acute toxicity (LCsp) of benzene derivatives using theoretical molecular
descriptors: a hierarchical QSAR approach, B. D. Gute and S. C. Basak, SAR QSAR
Environ. Res., in press, 1997.

This paper used a hierarchical QSAR approach in the estimating acute toxicity of a set
69 of benzene derivatives. Topostructural, topochemical, geometrical and quantum
chemical parameters were used as independent variables.

8) Characterization of molecular structures using topological indices, S.C. Basak and B.D.
Gute, SAR QSAR Environ. Res., in press, 1997.
9) The relative effectiveness of topological, geometrical, and quantum chemical

parameters in estimating mutagenicity of chemicals, S. C. Basak, B. D. Gute and G. D.
Grunwald. In: Proceedings of the Seventh International Workshop on Quantitative
Structure-Activity Relationships in Environmental Sciences, SETAC Press, in press,
1997.

This paper used a hierarchical approach in estimating mutagenicity of chemicals.
Copies of the above papers are attached (Vide Infra, Publication Section)

Task 5 Measurement of hydrophobicity

We measured the octanol-water partition coefficient (P) for 15 analogs. Because the application
of the retention-time method (see the Annual Report for Year 2) gave values of logP about an
order-of-magnitude greater than those predicted by CLOGP, we considered it worthwhile to do
the measurements thoroughly. The results are shown in Table 1. For eight of the compounds
we used both a stirring method and a shake-flask method; the results from both methods agree
well. We filled a gap around logP = 2 with the compound 2-norbornane methanol (a mixture of

exo and endo). Figure 1 gives a plot of measured logP vs estimated logP (CLOGP) for the
analogs tested.




Task 6 Microbial degradation studies

Biodegradation and toxicity of quadricyclane and its six analogs selected by molecular similarity
methods have been determined (See Appendix 1 for details). Results indicate that both
quadricyclane and its selected analogs are readily degradable.

Task 7 Photochemical Degradation Studies

We carried out photochemical reactions with hydrogen peroxide on 6 additional compounds,
viz. endo-norborneol, exo-norborneol, 3,5-dihydroxytricyclo[2.2.1.0]heptane,
2,7-norbornanediol, dicyclopropylcarbinol and cis-exo-2,3-norbornanediol. (The experimental
details are given in the Annual Report for Year 2). We observed no significant reactions in
these cases; the data are not shown.

Personnel Supported

University of Minnesota, Duluth Subhash Basak, Keith Lodge, Greg
Grunwald, Gloria Bly, and A. Hayford

University of South Carolina Joseph Schubauer-Berigan, and Darcy
Wood

Publications

The following publications, which are currently either published, accepted for publication or in

submission, report results of QSAR/QMSA analyses which were supported by the AFOSR
grant:

1. Use of graph-theoretic parameters in predicting inhibition of microsomal p-hydroxylation
of aniline by alcohols: a molecular similarity approach, Subhash C. Basak and Brian D.
Gute., pp. 492-504, In: Proceedings of the 2 International Congress on Hazardous
Waste: Impacts on Human and Ecological Health, B.L. Johnson, C. Xintaras, J.S.
Andrews, Jr., Eds., Princeton Scientific Publishing Co. Inc., Princeton, New Jersey,
1997. '

2. Estimation of the normal boiling points of haloalkanes using molecular similarity,

Subhash C. Basak, Brian D. Gute, and Gregory D. Grunwald. Croatia Chemica Acta,
69:1159-1173, 1996.

3. Use of graph-theoretic and geometrical molecular descriptors in structure-activity
relationships, Subhash C. Basak, Gregory D. Grunwald, and Gerald J. Niemi. pp. 73-
116, In: From Chemical Topology to Three-Dimensional Geometry, ed. A.T. Balaban,
Plenum Press, New York, 1997.

4. Characterization of the molecular similarity of chemicals using topological invariants,
S. C. Basak, B. D. Gute, and G. D. Grunwald, In: Advances in Molecular Similarity, JAI
Press, submitted, 1997.

5. A comparative study of topological and geometrical parameters in estimating normal

boiling point and octanol/water partition coefficient, Subhash C. Basak, Brian D. Gute,
and Gregory D. Grunwald. J. Chem. Inf. Comput. Sci., 36:1054-1060, 1996.
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10.

Use of topostructural, topochemical and geometric parameters in the prediction of vapor
pressure: a hierarchical QSAR approach, S. C. Basak, B. D. Gute and G. D. Grunwald.
J. Chem. Inf. Comput. Sci., 37:651-655, 1997.

Predicting acute toxicity (LCsg) of benzene derivatives using theoretical molecular
descriptors: a hierarchical QSAR approach, B. D. Gute and S. C. Basak. SAR QSAR
Environ. Res., in press, 1997.

Characterization of molecular structures using topological indices, S.C. Basak and B.D.
Gute. SAR QSAR Environ. Res., in press, 1997.

The relative effectiveness of topological, geometrical, and quantum chemical
parameters in estimating mutagenicity of chemicals, S. C. Basak, B. D. Gute and G. D.
Grunwald. In: Proceedings of the Seventh International Workshop on Quantitative

Structure-Activity Relationships in Environmental Sciences, SETAC Press, in press,
1997.

On the relationship between the organic-carbon normalized sediment, or soil sorption
coefficient and the octanol-water partition coefficient. K. B. Lodge. Res. Notes,
submitted, 1997.

Interactions/transitions

A. Participation/Presentations

1.

Subhash C. Basak and Brian D. Gute presented an invited lecture at the international
symposium organized for the 1995 Herman Skolnick award in chemical information. The

symposium was part of the American Chemical Society meeting, Orlando, Florida,
August 25-29, 1996.

Subhash C. Basak and Brian D. Gute gave an invited presentation "Quantitative
Molecular Similarity Analysis (QMSA) and Toxicity Prediction" at the US Air Force
Conference "Chemistry and Toxicology of Candidate Deicers" organized by the
Materials Directorate of Wright Patterson Air Force Base (WPAFB), Dayton, OH. While
there, Dr. Basak also attended the Air Force Office of Scientific Research (AFOSR)
Dermal Focus Group Meeting organized at WPAFB, August 6-7, 1996.

Subhash C. Basak presented a seminar "“QSAR/QMSA using nonempirical parameters:

applications in predictive toxicology and drug discovery" at the Abbott Laboratories,
Chicago, September 22-23, 1996.

Brian D. Gute, Subhash C. Basak and Greg D. Grunwald gave a presentation entitied
“Development of QSARs of bioactive molecules using a hierarchical approach” at the
American Chemical Society 31% Midwest Regional meeting, November 6-8, 1996.

Subhash C. Basak gave a presentation entitled "“Development of QMSA and QSAR
methods for hazard assessment of chemicals: tools for computational toxicology" at the
Air Force Office of Scientific Research (AFOSR) Toxicology Program Review,
December 12-13, 1996, Fairborn, Ohio.




B

6. Subhash C. Basak presented a seminar "Computational chemical graph theory and its
practical applications" in the Scientific Computing Seminar Laboratory for Intelligent

Systems - ECE Dept. and CSc Dept., University of Minnesota, Duluth on January 29,
1997.

7. Subhash C. Basak, Brian D. Gute and Greg D. Grunwald presented an invited paper
entitled "Use of nonempirical structural descriptors in QSAR" in the session
- "Mathematical approaches to QSAR and predictive toxicology" of the 11™ International
Conference on Mathematical and Computer Modelling and Scientific Computing in
Washington, DC, March 27-April 3, 1997.

8. Subhash C. Basak, Brian D. Gute, and Greg D. Grunwald presented an invited paper
entitled "Use of theoretical molecular descriptors in structure-property and structure-
activity studies" at the 7" International Conference on Mathematical Chemistry and 3%
Girona Seminar on Molecular Similarity, Girona, Spain, May 26-31, 1997.

9. Subhash C. Basak presented an invited lecture entitled "Prediction of physicochemical
and toxicological properties of chemicals using theoretical molecular descriptors" at
Moscow State University, Moscow, Russia, June 30, 1997.

10. Subhash C. Basak, Brian D. Gute, and Greg D. Grunwald gave an invited lecture
entitled "Predicting bioactivity of chemicals from structure: a hierarchical QSAR
approach" to the Department of Biochemistry, University of Calcutta, Calcutta, India,
July 30, 1997.

B. Consultative and Advisory Functions

Subhash C. Basak was invited to become a member of the National Advisory Board of the
Association of Ayurvedic Doctors of India (AADI).

C. Transitions

1. Computational methods were applied in the design of new anti-epileptic compounds in
cooperation with Professor Alexandru T. Balaban, Vice President, Rumanian Academy
of Sciences.

2. Applied similarity and QSAR methods in the design of novel and benign deicing agents

working in cooperation with Professor George Mushrush, Department of Chemistry,
George Mason University, Washington D.C.

New Discoveries

1. Hierarchical QSAR research using topostructural, topochemical, and geometrical
parameters showed that the first two classes of parameters explain most of the variance
in the data of toxicological and physicochemical properties.

2. It was observed that similarity spaces derived from topostructural and topochemical
parameters have distinct analog selection characteristics.




Honors/Awards

1.

Subhash C. Basak was invited to become one of six invited speakers at the international
symposium organized for the 1995 Herman Skolnick Award in Chemical Information.
The symposium was held during the American Chemical Society Meeting, Orlando,

Florida, August 25-29, 1996, to honor Milan Randi¢, the recipient of 1995 Herman
Skolnic Award.

Subhash C. Basak was invited to ch‘air and organize two sessions at the 11"
International Conference on Mathematical and Modelling and Scientific Computing,
March 31-April 3, 1997, Georgetown University, Washington, DC.

Subhash C. Basak was invited to edit a special volume of the journal Mathematical

Modelling and Scientific Computing dealing with the mathematical aspects of QSAR and
predictive toxicology.

Subhash C. Basak was invited to become a member of the Organizing and Scientific
Committee for the International Conference on Mathematical and Computer Modelling
and Scientific Computing.

Subhash C. Basak was invited to present a lecture on molecular similarity at the 7"
International Conference on Mathematical Chemistry and 3™ Girona Seminar on
Molecular Similarity, Girona, Spain, May 26-31, 1997.

Subhash C. Basak has been invited to deliver a plenary lecture at the 17™ Annual
Convention of the Indian Association for Cancer Research and National Symposium on
Breast Cancer to be held in Calcutta, India, January 21-24, 1998.

APPENDIX 1.

Annual progress report of the University of South Carolina subcontract for the AFOSR grant F
49620-94-1401

APPENDIX 2.

Publications.
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Figure. Measurements of the octanol-water partition coefficient
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Annual Progress of Report for AFOSR/PKC Grant F49620-94-1-0401
To the University of Minnesota -
Subcontract 1613-189-6090-7901 To The University of South Carolina
Submitted By Dr. Joseph P. Schubauer-Berigan
August 24, 1997
Period Covered: (July 1, 1996 - August 24, 1997)

Task 6 Microbial degradation studies

i In past year we have. primarily focused on the quantifying
the biodegradation and toxicity of ODC and 6 of its analogs (identified by the work of
Dr. Basak). In correspondence. to the. AFOSR in March and May 1997 we.requested a
3 month no cost project extension and permission to reprogram some.our
remaining grant funds to buy a liquid autosampler and computer for the.gas
chromatograph to expedite. sample. analysis. Both requests were granted in June.
The equipment was purchased in June. and in place and functioning by the.end of
July 1997. This equipment has allowed us to complete.a substantial portion of the.
biodegradation work which is a major objective. of the.grant.

Biodegradation experiments We have. finished examining the aerobic
biodegradation of all seven compounds in fresh water wetland sediments and water,
in live.and dead incubations. The.degradation of each chemical was examined in
separate. time. course.experiments each run for 33 days. As we reported earlier, we.
went to great lengths to characterize. the. sediments used in these experiments for a
variety of parameters that could influence. the. rates of chemical degradation.
Preliminary analysis of the.experiments suggests very similar degradation rates
among the chemicals, but analysis of the.data from the.experiments is incomplete.
In September 1997 we will be.completing the. analysis of the experiments. We also
hope.to complete. a series of experiments examining the. anaerobic degradation of
QDC in fresh water and sediments and the.degradation of QDC in saline.water and
sediments. ‘ - :

Toxicity determinations- We have already assessed the toxicity of QDC and it’s
analogs using BOD's and natural bacterial CFU’s. This past year we.developed a new
and novel approach to assess the. toxicity and environmental risk of these. chemicals
to natural bacterial community function utilizing BIOLOG plates. Briefly, the.
method involves directly incubating natural water samples titrated with the.
chemical of interest in BIOLOG plates. The plates contain 95 different carbon
substrates. We. monitor the. resulting community-dependent substrate utilization
patterns by the irreversible. reduction of a tetrazolium dye. associated with each
substrate. In this way we.can quantify the effect or toxicity of a chemical on the.
metabolism of classes of substrates by natural microbial communities. By
examining the.intensity of the dye.reduction over a period of days we.can also assess
the effect the. chemical has on the. average rate. of substrate metabolism by the.
microbial community. This approach is exciting because it give us a way to rapidly,
directly and specifically assess the risk associated with these.chemicals to natural
ecosystem function. In comparison, one of the.other approaches we.are using to
assess the. toxicity of the.chemicals is Microtox. Although this approach works well
in comparing the. relative. toxicity of QDC and its analogs and potentially other




chemicals, one.of the major weaknesses of Microtox is its inability to directly relate
the results to environmental risk in the. field.

We.have now completed tests of all of the chemicals using the modified
BIOLOG approach we developed, but analysis of the data is not complete. The
toxicity assessment of the chemicals using the Microtox method is underway but not
completed. Preliminary results of modified BIOLOG tests suggest widespread
disruption of natural microbial community metabolism at concentrations greater
then approximately 250-300 mg/L for QDC and its analogs. Preliminary Microtox
assays also indicate. toxicity at similar concentrations. In comparison, previous
experiments showed no clear effect of the.chemicals on BOD's or bacterial species ox
numbers (CRU’s and direct counts).

Problems encountered One. continuing experimental problem we. are having
is directly related to the relatively low water solubilityyFclass of chemicals we. are
examining. This has prevented us from keeping the. chemicals in solution at the.
highest test levels (>300-400 mg/1). We have partially gotten around this by using
ethanol to carry the. chemicals. However at the highest concentrations we are also
limited by the toxicity of the. carrier solvents themselves which we have empirically
determined. '

In the time remaining on the. grant, we.plan to: 1) finish the.
Microtox toxicity tests; 2) finish the. biodegradation studies mentioned above; and
3) finish analyzing the.data from the toxicity and biodegradation studies. We expect
at least three. publications to come. from the Microbial experiments: 1) a synthesis
paper with the.other PI's of the study; 2) a paper describing the.degradation patterns
of QDC witif and the.analogs authored jointly with Dr. Lodge; and 3) a paper
comparing toxicity of QDC and its analogs, including a description of our modified
BIOLOG approach to assess chemical risk.

4) Accomplishments/New Findings: The research completed thus far indicates that
Quadricyclane.and it’s analogs (selected using QSAR-SAR methods) all appear to
degrade. rapidly, primarily abiotically, in water and sediment. Toxicity of QDC and
its analogs to natural microbial community function was noted using a newly
developed assessment method.

5) Personnel Supported: Dr. Joseph P. Schubauer-Berigan, Project Principal
Investigator, 22% effort; Ms. Darcy Wood, project technician, 100% effort.
6) Publications: None during this period.
7) Interactions/Transactions: None.during this period.
8) New discoveries, inventions or patent disclosuzes: None. during this period.
9) Honors and Awards:
R.A. Sheldon Scholarship, University of Georgia, 1986
Research Internship, University of Georgia Marine Institute, 1986
Regents Award for Outstanding Teaching and Research, U. GA., 1985
University-wide. Fellowships, University of Georgia, 1984,86,87
Research Fellowship, Savannah River Ecology Laboratory, SC, 1977-78
NSF/AEC Research Internship, Savannah River Ecology Laboratory, SC, 1976
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USE OF GRAPH—THEORETIC PARAMETERS IN PREDICTING INHIBITION
OF MICROSOMAL P-HYDROXYLATION OF ANILINE BY ALCOHOLS'
A MOLECULAR SIMILARITY A.PPROACH‘

Subhash C Basak, Brian D Gute, Natuml Resources Research Institute, Umvemty of
Minnesota, Duluth

INTRODUCTION

Environmental and human health risk assessment of chemicals is often carried out using insufficient
experimental data. This is true for-the large number of industrial chemicals, as well as for
substances identified -in industrial effluent, hazardous waste sites and environmental monitoring
surveys (Auer et al. 1990). In 1984, the National Research Council studied the availability of
toxicity data on industrial chemicals, and found that many of these chemicals have little or no test
data (NRC 1984). About 13 million distinct chemicals have been registered with Chemical Abstract -
Service (CAS), and the list is growing by nearly 500,000 per year. Out of these chemicals, about
1,000 enter into societal use every year (Arcos 1987). Few of these chemicals are submitted with
the empirical data necessary for risk assessment. In the United States, the Toxic Substances Control
Act (TSCA) Inventory has over 74,000 entries, and the list is growing by nearly 3,000 per year

* (Auer et al. 1990, TSCA 1976). Of the approximately 3,000 chemicals submitted yearly to the

United States Environmental Protection Agency (EPA) for the premanufacture notification (PMN)
process, more than 50% have no experimental data at all, less than 15% have empirical
mutagenicity data, and only about 6% have experimental ecotoxicological and environmental fate
data. This dearth of empirical data is also true for many of the over 700 chemicals found on the
Superfund list of hazardous substances (Auer et al. 1990). -

A large number of physicochemical and biological test data on chemicals are a prerequisite to
the proper estimation of the hazards posed by a chemical species. Table 1 gives a partial list of
such properties. As a result of this lack of relevant data, a variety of structural, physxcochemlcal
and biochemical properties are used in hazard estimation. For example, in assessing the
carcinogenic potential of chemicals, three classes of criteria have been used by experts:

Q Structural
‘ Q Functional’

Q Guilt by association -

! This paper is contribution number 154 from the Ceater for Water and the Environment of the Natural
Resources Research Institue. Research reported in this paper was supported, in part, by grant F49620-94-1-
0401 from the United States Air Force; Cooperative. Agreement CR-819621 from the United States
Environmental Protection Agency, Exxon Biomedical Sciences, Inc. and the Structure-Activity Relationship
Consortium (SARCON) of the Natural Resources Research Institut at the University of Minnesota. The
authors would also like to extend their thanks for Greg Grunwald’s helpful discussions.
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Structural criteria consist of structural analogy of a chemical species with known and well-
established chemical carcinogens. Structural factors considered could be molecular size, shape,
branching pattern, symmetry, and charge, to list just a few. Frequently, structural characteristics
of molecules are not enough for reliable estimation of carcinogenic risk. Functional criteria, that
is, results of short-term tests, may often supplement structural criteria to more reliably estimate the
hazard. Ames test, mammalian cell transformation, and unscheduled DNA synthesis or pattern of
regulation of gene expression are examples of frequently used functional criteria relevant to
carcinogenic risk assessment. The guilt-by-association criteria consider that, even though a chemical
may have been found to be inactive through normal testing (bioassays), it may need to be retested more
stringently if it belongs to-a class of compounds which contains potent carcinogens (Arcos 1987).
In the assessment of environmental hazards, often the physicochemical and biological test data
essential to hazard estimation are unavailable. In such cases, regulators use a two-ticred approach
to predict hazard from chemical structure: class-specific quantitative structure-activity relatlonshlp
(QSAR) models and chemical analogs (Auer et al. 1990).

Table 1. List of properties necessary for risk assessment of cheinicalg.

Physicochemical - Biological
Molar Volume : ; Receptor Binding (Kp)
‘Boiling Point Michaelis Constant (Km)
Melting Point ‘ Inhibitor Constant (Ki)
Vapor Pressure Biodegradation
Aqueous Solubility : Bioconcentration
Dissociation Constant (pKa) Alkylation Profile
Partition Coefficient Metabolic Profile:
:Octanol-water (log P) Chronic Toxicity
:Air-Water Carcinogenicity
:Sediment-Water : Mutagenicity
Reactivity (Electrophile) : AcutcL'g)xicity
Lso

LCy

QSARs are mathematical models that use various quantifiers of chemical structure and empirical -

parameters (or properties) in predicting physicochemical and biological properties of molecules
(Basak et al. 1990, Hansch 1976). In class-specific QSARs, a chemical is first assigned a specific
structural class and the QSAR of that partlcular class of chemicals is used to. predict the potential
toxicity of the molecule of interest.

If a chemical is very complex, that is, contains many functional groups, a simplistic attempt at
classification is almost certain to fail. The use of class-specific QSARs in hazard assessment of
such chemicals will be limited. In such cases, one resorts to the approach of selecting analogs of
the chemical of interest and estimating the hazardous potential of the chemical from the toxicity of
its analogs. Analogs of new chemicals are routinely used by regulatory agencies like EPA in hazard
assessment (Auer et al. 1990). Chemical X is considered to be an analog of (or similar t0) chemical

Y if X and Y resemble each other in one or more critical aspects, that is, structurally, stereo-

electronically, or physicochemically. The use of analogs is based on the tacit assumption that similar
structures have similar properties Johnson et al. 1988, Johnson and Maggiora 1990).

v o -‘-mﬁ. gorrer
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A perusal of approaches used in carcinogenic risk assessment and in environmental and:
ecotoxicological hazard estimation indicates that the candidate chemical is compared with known

toxicants, using structural or functional criteria. Experts often select these analogs .(structurally .

related chemicals) based on their individual judgements and a selected set of structural features..
Chemical analogs can be selected using.empirical descriptors or theoretical molecular descriptors
(Basak and Grunwald, In Press). The paucity of available cxperimental data for environmental
pollutants makes it desirable to develop methods for selecting chemical analogs, using nonempirical
variables, which are computed directly from molecular structure (Basak and Grunwald, In Press).
In recent years, we have developed several methods for quantifying intermolecular similarity.
Such methods are based on topological indices (TIs) and substructural variables, like atom pairs.
TIs are numerical graph invariants that encode information like size, shape, branching pattern,
symmetry and certain aspects of stereo-electronic factors associated with molecules (see TI symbols

and definitions in Table 3.) Topological parameters can be useful in predicting physicochemical as -

well as biological properties of many different congeneric sets of molecules (Basak 1988; Basak

and Grunwald 1993; Basak et al. 1982; 1983, 1984, 1986, 1987a, 1987b, 1990, 1991; Kier and -

Hall 1986; Niemi et al. 1992; Randi¢ 1975). Molecular similarity methods based on substructures

and TIs, have been used successfully in selecting analogs, in discovering novel drugs active against -

human immunodeficiency virus (HIV), and in estimating different physicochemical and toxicological
properties (Basak et al. 1988, 1994, In Press b; Basak and Grunwald 1994, 1995a, 1995b,
1995¢, 1995d, In Press a; Lajiness 1990; Wilkins and Randi¢ 1980).

In this paper, similarity methods based on topological indices and atom pairs have been used
to estimate the inhibitory effects (pICs) of a set of 19 aliphatic alcohols on microsomal
p-hydroxylation of anilines by cytochrome P.s,. o '

DATABASE

'Experimenmi pICs, values for inhibition of microsomal cytochrome P, p-hydroxylation of anilines
by nineteen alkanols are in Table 2 (Cohen and Mannering 1973). The original set contained 20

* compounds; one, methanol, was deleted. Because of its single, unique atom pair, similarity of

methanol to other compounds cannot be computed using the atom pair method.
COMPUTATION OF PARAMETERS

Topological Indices

The 64 TIs in this study were calculated using POLLY 2.3 (Tuble 4), which can calculate 98 TIs
from SMILES line notation input of chemical structures (Basak et al. 1988a). TIs include Wiener
index (Wiener 1947), connectivity indices (Kier and Hall 1986, Randi¢ 1975), information theoretic
indices defined on distance matrices of graphs (Bonchev and Trinajstic 1977, Raychaudhury et al.
1984), parameters derived on the neighborhood complexity of vertices in hydrogen-filled molecular
graphs (Basak 1987, Basak and Magnuson 1983, Basak et al. 1980, Roy et al. 1984), path lengths,
and Balaban’s J indices (1982, 1983, 1986).

Methods for calculating a few TIs used in this paper follow. The Wiener index W, the first
topological index reported in the chemical literature, may be calculated from the distance matrix
D(G) of a hydrogen-suppressed chemical graph G as the sum of the entries in the upper triangular
distance submatrix. The distance matrix D(G) of a nondirected graph G with n vertices is a
symmetric nxn matrix with elements d; equal to the distance between vertices v; and v; in G. Each

A
A
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Table 2. 19 Alkanols and their observed and predicted inhibition of microsomal
p-hydroxylation of anilines (pICs), by atom pair (AP) and Euclidean distance (ED) methods:

' obs. est. pICy, — AP method est. pICgy — ED method
Allazel PG ;2 3 4 s 1 2 3 4 5
Ml -1.10 048 -048 034 034 -0.15 048 048 033 034 022
1-Propanol 048 005 005 -0.15 020 -028 005 020 004 -0.13 -0.12
1-Butanol 005 027 027 . 002 011 002 048 -042 030 016 -0.16
1-Peatanol 027 054 054 034 025 031 . -007 006 -020 024 -0.08
1-Hexanol 054 068 068 054 048 026 . 025 - 026 002 '-001 -00I
l-Hepmﬁol 0.68 0.54 054 045 041 0.23 0.54 0.40 0.14 0.01 0.06 -
2-Methyl-1-propanol 039 0.5 -0.17 016 017 045 037 -028 030 024 -029
2-Methyl-1-butanol 015 005 022 016 022 027 007 -0.13 0.10 -0.17 -031
3-Methyl-1-butanol 0.9 007 007 0.8 023 '-0.10 037 026 030 024 021

- 2,2-Dimethyl-l-propanol ~ -0.67 039 039 042 035 052 047 043 040 024" -029
* 2-Propanol ' 047 - 039 037 054 ‘046 038 . 039 075 -0.66 -0.58 -0.47
2-Butanol 035 015 ‘0.5 0.2 011 018 007 006 005 008 -0.10
2-Peatanol 007 015 015 006 .-0.16 018 035 004 004 -007 0.5
2-Hexanol 015 025 025 0.4 009 001 047 010 009 -001 0.10
2-Heptanol 025 015 0.5 028 035 031 054 004 OI1 012 008
3-Peatanol 037 047 068 061 068 039 019 029 024 020 -023
3-Hexanol 047 007 022 -0.17 022 004 0.15 021 0.12 022 0.11
2-Methyl-3-pentanol . -0.89 -1.38 -138 -104 08 051 007 -0.I1 014 02 025

2,4 Dimethyl-3-peatancl  -138 -0.89 089 -0.72 -0.64 .-056 089 -0:89 058 045 -0.40

diagonal-glement d; of D(Q) is Zer0. We give below the distance matrix D(G;) of the labeled
hydrogen-suppressed graph G, of 1-butanol (Figure 1): » ‘

Figure 1. Hydrogen-suppressed graph of 1-butanol

1 2 3 4 .5
G, ,

‘r “n» @ & @ 6 _i

1 | 0 1 2 3 4 |

2 | 1 0 1 2 3 |

DG, = 3 | 2 1 0 1 2 |
4 | 3 2 1 0 1 [

5 | 4 3 2 1 0 [

L .
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| W is calculated as:

W=1%3d=3heg, )
ij h

where g, is the number of unordered pairs of vertices whose distance is h.
Information-theoretic topological indices are calculated by the application of information theory
on chemical graphs. An appropriate set A of n elements is derived from a molecular graph G,
& depending on certain structural characteristics. On the basis of an equivalence relation defined on
iR A, the set A is partitioned into disjoint subsets A, of order.o; i=1,2, ... ; >n; = n). A probability
g distribution is then assigned to the set of equivalence classes: C

Alr Az: ''''' ’ Ah
P1» P2, -.--- » P

where p; = ny/n is the probability that a randomly selected element of A will occur in the i subset.
| The mean information content of an element of A is defined by Shannon’s (1948) relation:
. . . . L P T .

IC =-3 plog, p; @

- i=l

i The logarithm taken at base 2 measures information content in bits, and set A is then n times IC.
i To account for the chemical nature of vertices and their bonding pattern, Sarkar et al. (1978)
calculated information content (IC) of chemical graphs on an equivalence relation, where two atoms
of the same element are considered equivalent if they possess an identical first-order topological
: neighborhood. Since propérties of atoms, or reaction centers, are often modulated by

PEE physicochemical characteristics of distant neighbors, that is, neighbors of neighbors, it was deemed
a i essential to extend this approach to account for higher-order meighbors of vertices. This can be

P U

{ i accomplished by defining open spheres for all vertices of a chemical graph. One can construct such
g " open spheres for higher integral values of r. For a particular value of r, the collection of all such
T ‘open spheres S(v,r), where v runs over the whole vertex set V, forms a neighborhood system of
the vertices of G. A suitably defined equivalence relation can then partition V' into disjoint subsets
consisting of topological neighborhoods of vertices of up to r* order neighbors.

This approach has been used to generate the indices of neighborhood symmetry. In this method,
chemical species are symbolized by weighted linear graphs. Two vertices u, and v, of a molecular
graph are said to be equivalent with respect to the r* order neighborhood if, and only if,
corresponding to'each path u,, u,, ..., u, of length r, there is a distinct path v,, vy, ..., V, of the
same length, such that the paths have similar edge weights, and both u, and v, are connected to the
same number and type of atoms up to the r* order bonded neighbors. The detailed equivalence
relation is described in our earlier studies (Roy et al. 1984).

Once partitioning of the vertex set for a particular order of neighborhood is completed, IC, is
calculated from Equation 2. Subsequent information theoretic invariants include structural
information content (SIC,) shown in Equation 3 (Basak et al. 1980) and complementary information

content (CIC,) shown in Equation 4 (Basak and Magnuson 1983). In both equations, n is the total
number of vertices of the graph:

SIC, = IC/log,n 3)
CIC, = log,n - IC, @)
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Table 3. Topological index symbols and definitions.
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¥
I
\
ID
H
HD
IC
0

Tors

SIC,
CIC,

"Xc

*Xrc
th
hxz:

v

e

. Jx
JY

Information index for the magnitudes of dxstancw between all possible pairs of vertices of a graph
Mean information index for the magnitude of distance

Wiener index = half-sum of the off-diagonal elements of the distance matrix of a graph

Degree complexity

Graph vertex complexity

Graph distance complexity

Information content of the distance matrix paxﬁtiox:led by frequency of occurrences of distance h

Order of neighborhood when IC, reaches its-maximum value for the hydrogen-filled graph

Information content or complexity of the hydrogen-suppressed graph at its maximum neighborhood of

vertices
Maximum order of neighborhood of vertices for Lygg within the hydrogen-suppressed graph

A Zagreb group pammeter = sum of squaxe of degree over all vertices

A Zagreb group para.mctcr = sum of cmss-pnoduct of degrees over all neighboring (conuectcd) vertices

Mean mformanon content ¢ or complexxty of 2 graph based on the * (r = 0—4) order neighborhood of

vertices in a hydmgen—ﬁlled graph

Structural information content for r* (r = 0-4) ordcr naghborhood of vertices in a hydrogen-filled graph |

Complcmenlary mformauon content for e = 0—4) order nclghborhood of verticesin a hydrogen—ﬁlled

graph
Paﬂ'leonneétivityindcxoforda'h = 0-6

Cluster connectivity i:;dex of order h = 3-5 .
Path-cluster oonnecﬁvxty mdcx of order h = 4-6

Valence path connectivity index of order h = 0-6
Valence cluster connectivity index of order h = 3-5
Valence path-cluster connectivity index of order h = 4-6
Number of paths of length h = 0-7

Balaban’s J index based on distance

Balaban's J index based on relative electronegativities

Balaban's J index based on relative covalent radii
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The information-theoretic index on graph distance, I} is calculated from the distance matrix
D(G) of a chemical graph G ‘by the method of Bonchev and Trinajsti¢ (1977):

I¥= W log, W - g, « hlog, h )
h

The mean information index, Iw is found by dividing the information index I¥ by W.

Indices developed by A.T. Balaban (1982, 1983, 1986) were calculated and used in this
analysis. Balaban denoted these as J indices, whlch are based upon the distance sums s; of a
chemical graph. J is defined as:

J=q+ ) Eij(gjgg"* (6)

where the cyclomatic number g (or number of rings in the graph). is p = q - n + 1, with.
adjacencies or edges and n vertices. In the original definition of J, the term s; referred to either the
row distance sum for vertex i in the distance matrix (D) or the multigraph distance matrix (M):

‘S—Ejd-ij )

For distance matrix D, eachmatrucelementd,j represents ﬁledlstanceﬁomvert@mto vertexj. The
diagonal entries are all zero, and the distance between any two adjacent vertices would be one. All

other entries in this matrix would be the number of edges.or bonds traversed in the shortest path

from i to j. To account for the periodicity of chemical properties for heteroatoms, Balaban proposed
two J variants: JX, which includes corrections for heteroatom electronegatlvm&e and JY, whxch has
comectlons for heteroatom oovalent radii (Balaban 1986).

MmPans

Atom paus were calculated using the method of Carhart et al (1985). An atom pair is defined as
a substructure. consxstmg of two non-hydrogen atoms i and j and their interatomic separation:

| <atom dwcnptor >- <separat10n> <atom dmxptor >

where <atom dw:nptor > contains mformauon about the element type, number of non-hydrogen

neighbors and the number of # electrons. Interatomic separation of two atoms is the number of
atoms traversed in the shortest bond-by-bond path containing both atoms.
Figure 2 demonstrates the calculation of atom pairs for 1-butanol. 1-Butanol has 10 total atom

pairs, 9 of which are unique. In Figure 2, X, (n = 1 or 3 in this example) represents the number

of non-hydrogen neighbors and the C and O.are atomic symbols. These are the elements of the atom

- descriptors. The “-k-", k = 2, 3, 4, and 5 are the separation values. .

The first atom pair (CX, - 2 - CX,) corresponds to path ab, a methyl carbon wnth 1 non-
hydrogen neighbor bonded and a methyl carbon with 2 non-iydrogen neighbors. The path length
of ab is 2. Path bc and cd are identical; each consists of a path of length 2 which joins two methyl
carbons, each of which has two non-hydrogen neighbors. Hence, this atom pair has a frequency of
2. Path de, involving a methyl carbon and the oxygen of the hydroxyl group, defines atom pair 3.

R 33 ,“_L'KP'H Vi W‘R‘V\"‘H ‘Y"" s w\.*"" ek ol nld g

3

::‘;3
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Figure 2. Determination of atom pairs for 1-butanol

' 1-Butanol
CH3—CH2—-CH2~-CH2~-OH
4 b c d e
Atom Pair - Freq. of Occurence. Path:
1. CX,-2-CX, 1 @b
2. CX,-2-CX, 2 ‘ be, ed
3. CX, -2 - 0X%, 1 de
4. CX,-3-CX, 1 abc
5.CX,-3-CX, 1 bed
6. CX, -3 - OX, 1 _ cde
7.CX,-4-CX, 1 abed
8. CX, - 4 - OX, 1 bede
9. CX, -5 - OX, 1 abede
STATISTICAL ANALYS[S AND SIMILARITY MEASURES
Data Reduction

Initially, all TIs were transformed by the natural logarithm of the value of the index plus one. This
was done because the scale of some TIs may be several orders of magnitude greater than others.

Principal Components Analysis (PCA)

The. data analyzed in this paper may be viewed as n (number of chemicals) vectors in p
(number of Tls) dimensions. The data for each set can be represented by a matrix X, which has n
rows and p columns. For each of the molecular structures, the number of calculated parameters
was 64 (TIs of Table 3). Each chemical is therefore represented by a point in R%. If each molecule
is represented in R?, then one could plot and investigate the extent of relationship between individual

* parameters. In R* such a simple analysis is not possible. However, since many of the TIs are highly
intercorrelated, the points in R* can likely be represented by a subspace of fewer dimensions. The. .

method of principal components analysis (PCA), or the Karhunen-Loeve transformation, is a
standard method for reduction of dimensionality (Gnanadesikan 1977). The first principal
component (PC) is the line which comes-closest to the points, in the sense of minimizing the sum
of the squared Euclidean distances from the points to the line. The second PC is given by
projections onto the basis vector orthogonal to the first PC. For points in RP, the first r principal
components give the subspace which comes closest to approximating the n points. The first PC is
the first axis of the points. Successive axes are major directions orthogonal to previous axes. The
PCs are the closest approximating hyperplane, and because they are calculated from Eigenvectors
of a pxp matrix, the computations are relatively accessible. But there are important scaling choices,

because PCs are scale dependent. To control this dependence, the most commonly used convention .
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is to rescale the variables sd tliit'each variable has mean zero and standard deviation one. The
covariance matrix for these rescaled variables is the correlation matrix. The PCA on the TIs has
been carried out using SAS software (SAS 1989). -

Similarity Measures

“Two measures of intetmolecular similarity were used in the study of the alkanols. The methods
have been described in detail previously (Basak and Grunwald 19954) and include an associative
measure using ator pairs (AP) and Euclidean distance (ED) within a five-dimensional PC space.

K-Neighbor Selection

. Using the topologically-based methods described above, the intermolecular similarity. of the
chemicals . was quantified. For each chemical, the K nearest neighbors (K=1-5) were then
determined using the two similarity techniques. The mean observed pICs, of the K-nearest neighbors
for a compound was used as the estimated pICs, for the compound. The correlation (r) of observed

pIC;, with estimated pICs, and the standard error (SE) of the estimates were used to assess the
relative efficacy of the two similarity methods. :

RESULTS

From the PCA of 64 TIs for 19 alkanols, five PCs were retained. These. five PCs explain,

cumulatively, 94.5% of the total. variation within the TI data. Table 4 lists the Eigenvalues of the

five PCs, the proportion of variance explained by each PC, the cumulative variance explained, and

. the two TIs most correlated with each PC. The first PC is strongly correlated with parameters which

characterize the size of the molecular graph such as, Py and °x. The second PC is highly correlated

~ with the higher order complexity indices including CIC, and SIC,. For the third PC, the highest

correlations occur with low order information theoretic complexity TIs such as IG, and IC,. The

. fourth PC was characterized by sixth order path-cluster and valence path-clustér connectivity

indices, “xec and *X'ec; the fifth PC, by parameters that characterize larger linear graphs, P; and

*Xec- These PC/TI correlations agree with our general expectations based on previous research

' (Basak and Grunwald 1994, 1995a, 1995c, 1995d). Generally, PCs and TIs correlate as follows:

PC, with the size of the molecular graph, PC, with higher order complexity indices, PC; with

“ cluster and path-cluster connectivity, and PC, with low order information theoretic indices. In this
particular case, We see PC, and PC, reversed. . ‘ . ’

Table 4. Summary of the principal component analysw (PCA) using 64 TIs for 19 alkanols.

PC . Eigenvalue .. % Variance.. Cumulative % st Correlated TI  2nd Correlated TI
1 34.7 54.2 54.2 Py 0.997 9% 0.997
2 16.3 255 79.7 cIc, 0.932 SIC, -0.931
3 4.9 1.1 87.4 1IG -0.603 1C, 0.595
4 3.5 5.5 92.9 S'c  -0.565 ?(rc -0.543
5 1.0 1.6 94.5 P, -0.444 e 0.265

TI: Topological indices
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Table 2 presents estimates of pICs, for each similarity method at each K-level (K=1-5). The

" atom pair method gave the best overall results. The AP standard errors fell within the range of the

PC standard errors, and the correlations were all 10% to 25% higher. The best correlation for the
atom pair method was 0.878 for K=1.- It should be noted that results for K of 1, 2., and 3 were
all very close, within 0.013 units for correlation and standard errors of within 0 01 —iog units.
Table 5 reports the correlation and standard errors of pIC, estimates. with observed values
for both the atom pair (AP) and the principal component (PC) methods. Each line of the table
represents a different K level. The standard.error for estimation was at its minimum of 0.17 -log

units for the PC method with K=5. The correlation, however, was at its maximum of 0.878 using
the AP method with K=1.

Table 5. -Log IC,, estimation for alkanols by K-nearest neighbors using atom pair (AP) and -
Euclidean distance (ED) similarity approaches

AP Method ' ED Method

K T SE . r SE

1 0.878 0.26 0.661 0.36

2 0.865 0.27 0.707 0.30

3 0.871 0.26 0.595 0.23

4 "~ 0.855 - 0.29 0.566 - -0.19
5 0.811 . _ 034 . 0.638 017

r Condaﬁon

SE: Standard error

DISCUSSION

The objectlve of this study. was to investigate the utility of nonempirically based molecular similarity
methods in estimating the inhibitory potency (pICs) of a group of aliphatic alcohols for microsomal
p-hydroxylamn of aniline. The result shows that the atom pair method of quanufymg similarity
gives a reasonable estimate of pICs, values of alkanols (Table 2).

It is evident from an analysis of results in Table 5 that the AP method is superior to the ED
method in predicting pICs, values. This is true for K = 1-5. This indicates that atom pairs quantify
structural aspects of alkanols, relevant to inhibition of aniline p-hydroxylation by microsomal
cytochrome Py, better than the Euclidean space derived from the calculated numerical graph
invariants. Further work is in progress to determine the relative effectiveness of AP vis-a-vis ED
methods in estimating physicochemical as well as toxicological properties of chemicals.
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A molecular similarity measure has been used to estimate the nor-
mal boiling points of a set of 267 haloalkanes with 1—4 carbon at-
oms. Molecular similarity/dissimilarity was quantified in terms of
Euclidean distances of molecules in the eight dimensional principal
component space derived from fifty-nine topological indices. Corre-
lation coefficients between the experimental and estimated boiling
points ranged from 0.854 to 0.943 in the K-nearest neighbor esti-
mation of boiling points using a different number of nearest neigh-
bors (K = 1-10, 15, 20, 25).

INTRODUCTION

The use of structural analogy as a tool to classify chemicals, as well as
predict the behaviour of chemical species, is as old as chemistry. In 1819,
Mitscherlich! described the phenomenon of isomorphism, in which substitu-
tion of one atom by another leads to similar lattice structures. At the turn
of this century, Langmuir? observed that isosteric chemical species, those
which contain the same total number of atoms and electrons, have very
similar properties. Members of isosteric pairs, like No-CO and Ny0-CO,,
have many similar physical constants.® The structural similarity of the isos-
teric amino acids valine and threonine poses some interesting problems in
the protein synthesis mechanism of cells. Being sterically similar, valine and
threonine may be charged to the same tRNA. The incorrectly formed ami-
noacyl adenylate and aminoacyl tRNA are discriminated and destroyed via
a »double sieve«, involving steric exclusion and ineffective binding, before
they are used in protein synthesis.*
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Similarity plays an important role in biological activity. The enzyme di-
hydrofolate reductase normally facilitates the reduction of dihydrofolate to
tetrahydrofolate. Methotrexate, a compound whose structure is similar to di-
hydrofolate, inhibits the action of the reductase.> Competitive inhibition of
enzymes can also result from interaction of the enzyme with transition state
analogs of the substrate. For example, proline racemase from Clostridium
sticklandii preferentially binds the transition state of proline. ‘As a result,
the racemase is subject to inhibition by compounds which are structural
analogs of the transition state of proline, such as pyrrole-2-carboxylate and
pyrroline-2-carboxylate, which bind to the enzyme with a much greater af-
finity than does proline.® Furthermore, the structural similarity between a
macromolecular biotarget and its antiidiotypic antibody is believed to be the
reason for the use of such antibodies as model receptors in the screening of
chemicals for drug discovery.’ ‘

The last decade has seen an upsurge of interest in the development of
similarity measures and their applications in chemical research, drug de-
sign, and toxicology.®~?® Such methods are based on different representations
of chemical species, viz., topological, geometrical, quantum chemical, etc. In
drug design, similarity searching of databases is used to identify potential
leads. Also, dissimilarity based methods are used to select chemicals for
screening in the drug discovery process.!! In toxicology, structural and func-
tional analogy are used to assess the ecological and human health risk of
the new and existing chemicals.26-28

In the United States, the majority of chemicals submitted to the Envi-
ronmental Protection Agency (USEPA) for registration do not have any test
data.?” One of the methods used by regulators for the hazard assessment of
such chemicals is to select their analogs and, subsequently, estimate the
hazard of the chemical of interest from the hazard of the analogs. Such se-
lection of analogs is often done subjectively by individual experts on the ba-
sis of an intuitive notion of similarity.?’” In USEPA’s approach to ecological
risk assessment, class specific QSARs are preferred over the use of analogs,
although in human health -hazard assessment, analog-based estimation of
toxic potential is still the most important factor.28

Rapid selection of analogs for drug design and hazard assessment re-
quires automated methods that are computationally feasible. Similarity
methods based on parameters that can be calculated directly from molecular
structure fall into this category.8-25 Topological indices derived from a mo-
lecular graph comprise a set of parameters which can be computed for any
chemical structure.?®

In some of our recent studies, we have developed novel methods of quan-
tifying molecular similarity using topological indices and substructural fea-
tures like atom pairs.'®-22 We have applied similarity techniques in the se-
lection of analogs and in the estimation of molecular properties such as
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boiling point, lipophilicity, and mutagenicity for different sets of chemicals.
In this paper, we have carried out a similarity based estimation of the nor-

DATABASES

The data analyzed in this study consist of the normal boiling points for
267 CFCs with 1—4 carbon atoms. These data were originally collected from
Beilstein’s Handbuch der Organischen Chemie, the CRC Handbook of Chem-
istry and Physics, Heilbron’s Dictionary of Organic Compounds and Smith

3

METHODS

Calculation of Topological Indices

The fifty-nine topological indices used in this study were calculated us-
ing POLLY 2.3 which uses the SMILES line notation input of chemical
structures.®? The TIs calculated are listed in Table IT and include the Wiener
index calculated by the method of Wiener,33 connectivity indices as calcu-
lated by Randi¢3* and by Kier and Hall,® information theoretic indices de-
fined on distance matrices of graphs using the methods of Bonchev and Tri-
najstic3® as well as those of Raychaudhury et al. 37 parameters derived on
the neighbourhood complexity of vertices in hydrogen-filled molecular
graphs,38-41 path lengths, and Balaban’s J indices.42-44

Data Reduction

Initially, all TIs were transformed by the natural log of the TI plus one.
The natural logarithm transformation was done because some TIs may be
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TABLE |
Normal boiling points of 267 haloalkanes with 1—4 carbon atoms

: . iF: ¥z 52
f=2 w=S-Zz BTS2

No. Chemical Name zs g S A g S gcg K
1 carbon tetrachloride 76.7 33.3 43.4
2 trichloromethane 61.2 28.6 32.6
3 dichloromethane 39.8 7.1 32.7
4 trichlorofluoromethane 23.7 1.3 22.4
5 dichlorotluoromethane 89 4.3 4.6
6 chlorotluoromethane -9.1 3.5 -12.6
7 chloromethane -24.3 -9.3 -15.0
8 dichlorodifluoromethane -29.8 6.9 -36.7
9 chlorodifluoromethane -40.8 -8.4 -32.4
10 ditfluoromethane -51.7 12.0 -63.7
11 hexachloroethane 184.4 146.6 37.8
12 1;1,1,2,2-pentachloro-2-ﬂuoroethane 137.9 136.2 1.7
13 1,1,1,2-tetrachloro-2-fluoroethane 1170 106.9 10.1
14 1,1,2,2-tetrachloro-1-fluroethane 116.6 97.7 189
15 1,1,2-trichloroethane 113.7 78.7 35.0
16 1,1.2-trichloro-2:tluoroethane 102.4 68.8 33.6
17 1.1.2,2-tetrachloro-1,2-difluoroethane 92.7 55.0 37.7
18 1,1,1-trichloroethane 74.0 25.2 48.8
19 1.2-dichloro-1-fluoroethane 73.8 71.4 2.4
20 1,1,2-trichloro-1,2-difluoroethane 72.5 60.4 12.1
21 1,2-dichloro-1,2-difluoroethane 58.5 33.9 24.6
22 1,1-dichloroethane 57.2 4.8 52.4
23 1,1,1-trichloro-2,2.2-trifluorcethane 45.8 57.5 -11.7
24 1,2-dichloro-1,1-difluoroethane 46.6 43.8 2.8
25  2-chloro-1,1-difluorcethane 35.1 57.6 -22.5
26 1,1-dichloro-1-fluoroethane 32.0 15.2 16.8
27 2,2-dichloro-1,1,1-trifluoroethane 28.7 42.3 -13.6
28 1-chloro-1-fluoroethane 16.1 32.6 -16.5
29 chloreethane 12.3 7.6 4.7
30 1-chloro-1,1,2-trifluoroethane 12.0 20.0 -8.0
31 2-chloro-1,1,1-trifluoroethane 6.9 21.1 -14.2
32 1,1,2-trifluoroethane 5.0 27.7 -22.7
33 1,2-dichloro-1,1,2,2-tetrafluoroethane 3.6 40.6 -37.0
34  2,2-dichloro-1,1,1.2-tetrafluoroethane 3.6 29.1 -25.5
35 1-chloro-1,1,2,2-tetrafluoroethane -12.0 24.1 -36.1
36 1,1,2,2-tetrafluoroethane -22.8 63.6 -86.4
37 1,1-difluoroethane ~25.8 27.8 -53.6
38 1,1,1,2-tetrafluoroethane ~26.1 -1.1 -25.0
39 fluoroethane -37.8 17.6 -55.4
40 1,1.1-trifluoroethane -47.3 -8.5 -38.8
41 1,1,1,2,2-pentafluoroethane 483 -14.4 -33.9
42 1,1,2,2,3,3-hexachloropropane 218.5 201.4 17.1
43 1,1,1,2.2,3-hexachloropropane 218.0 1999 18.1
44 1,1.1,2,3,3-hexachloro-2,3-diflucropropane 196.0  183.8 12.2
45 1934 1974 —4.0

1,1,1,2.2,3-hexachloro-3,3-difluoropropane

FE T N N N S
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TABLE 1
(continuing)
No. Chemical Name

1,1,1,2,2-pentach101'0-3.3-diﬂuoropl'opane
1,1,1,3,3-pentach101'0-2,2-dilluoropropane .
1,1,2,2-tetrachloropropane :

1, 1,3,3-tetrachloropropane
1,2.3-trichloropropane

1,1,2,3,3-pentachloro-1 ,2.3-trifluoropropane
1,1,2,2-tetrachloropropane

1, 1,2,2,3-pentachloro-1,3,3-triﬂuoropl'opane
1,1, 1,3-tetrachloro-2,2-diﬁuoropropane

1,1, 1,2-tetrachloropropane

1, 1,2,2-tetrachloro-3,3-dit1horoprbpane
1,1,3-trichloropropane

1, 1,2,2-tetrachloro-1,3.3~triﬂuoropropane
1,2,3-trichloro-2-fluoropropane
1,1,2,3-tetrachloro-2,3,3-triﬂuoropropane

1, 1,3-trichlox‘o~2,2-diﬂuoropropane

1, 1,2,2-tetrach101'0-3,3,3-triﬂuoropropane
1,1,2-trichloro-2-fluoropropane
1,1.3,3-tetl'achloro-1,2,2,3-tet.raﬂuoropropane
1,1, 1,3-tetrachloro-2,2,3,3-tetraﬂuoropropane
1,1,2-trichloro-1-fluoropropane

1,1, 1,2-tetrachloro—2,3,3,3-tetraﬂuoropropane
1, 1,2,2-tetrachloro—l.3,3,3-tetraﬂuoropx'opane
1,2,2 3-tetrachloro-1, 1,3,3-tetrafluoropropane
1, 1,3-trichloro-1,2,2-triﬂuoropropane
1,1,1-trichloropropane C
1,2,2-trichloro-3,3,3-triﬂuoropropane
1,3-dichloro-2,2-difluoropropane
1,3,3-trichloro-1, 1,2,2-tetratluoropropane
1,2,2-trichloro-1, 1-difluoropropane
1,2,3-trichloro-1, 1,2,3-tetrafluoropropane
2,3-dichloro-1, 1,2.3-tetrat1uoropropane
1,2,3-trichloro-1, 1,3,3-tetrafluoropropane
1-chloro-3-flucropropane

1,2,3-trichloro-1, 1,2,3,3-pentaﬂuoropropane
2,3,3-trichloro-1, 1,1.2.3-pentatluoropropane
1,3.3-trichloro-1, 1,2,2,3-pentaﬂuoropropane
2,2,3-trichloro-1,1, 1,3,3-pentaﬂuompropane
1,2-dichloro-1,1-difluoropropane
2,2-dichloropropane

1-chloro-2-fluoropropane

1,1-dichloro-1 -fluoropropane

1-chloro-2,2-d iftluoropropane
1-chloro-1,2-difluoropropane

2,2-dichloro-1,1,1-trifluoropro pane

28.1
-6.1
17.5
9.0
9.6
136
-8.7
-12.9
-1.2
22.3
2.1
-16.3
31
1.6
3.7
5.5
17.6
11.3
-20.7

8.0
7.5
-8.6
-12.1
35.0
-2.2
-11.0
11.1
-19.9
-23.2
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TABLE 1

(continuing)

TH. BL TW.

No. Chemical Name g }g ‘3 5’ I"é" 3 '?,; :-5 ‘3

Zzm® m& gm

91 1-chloropropane 46.6 43.8 2.8
92 3,3-dichloro-1,1,1,2,2-pentatluoropropane 45.5 58.8 -13.3
93 1,3-difluoropropane 41.6 888 472
94  2-chloropropane 35.7 31.3 4.4
95 1,3-dichloro-1,1,2,2,3,3-hexafluoropropane 35.7 338 1.9
96 2-chloro-2-fluoropropane 35.2 25.5 9.7
97 3,3-dichloro-1,1.1,2,2,3-hexafluoropropane 35.0 50.5 -15.5
98 3-chloro-1,1,1,2,2-pentafluoropropane 27.6 42.1 -14.5
99 1-chloro-1,1-difluoropropane 25.4 50.0 -24.6
100 1-chloro-1,1,2,2,3,3-hexatluoropropane 21.0 32.2 -11.2
101 1,1,1,2,3-pentafluoropropane 20.0 20.6 -0.6
102 1,1,2,2,3,3-hexafluoropropane 10.5 11.2 -0.7
103  1,1-difluoropropane 7.5 61.1 -53.6
104 1,1,1,2,3,3-hexafluoropropane - 5.0 9.0 —4.0
105 1,1,1,2,2,3-hexafluoropropane 1.2 5.3 —4.1
106 2-chloro-1,1,1,2,3,3,3-heptafluoropropane -2.0 12.6 -14.6
107  2-fluoropropane -9.7 18.1 -27.8
108 1,1,1-trifluoropropane -12.5 7.1 -19.6
109 1,1,1,2,3,3,3-heptafluoropropane -19.0 20.6 -39.6
110  1-chloro-2-fluoroethane 53.0 48.7 4.3
111  1-chloro-1,1-difluorocethane -9.8 -19 -7.9
112 1-chloroe-1,1,2,2,2-pentafluoroethane -38.0 4.8 -42.8
113  1,2-dichloroethane 83.5 50.5 33.0
114 1,1-dichloro-2,2-difluoroethane 60.0 57.1 2.9
115 1,1-dichloro-1,2,2-trifluoroethane 30.2 41.3 -11.1
116 1,2-dichloro-1,1,2-trifluoroethane 28.2 41.7 -13.5
117 1,1,2-trichloro-1-fluoroethane 88.5 56.5 32.0
118 1,1,1-trichloro-2,2-difluoroethane 73.0 68.1 4.9
119 1,1,2-trichloro-2,2-difluoroethane 71.2 62.3 8.9
120 1,1,2-trichloro-1,2,2-trifluoroethane 47.6 47.4 0.2
121 1,1,1,2-tetrachloroethane 130.5 98.3 32.2
122 1,1,2,2-tetrachloroethane 146.3 61.7 84.6
123 1,1,1,2-tetrachloro-2,2-difluoroethane 91.6 102.0 ~10.4
124 1,1,1,2,2-pentachloroethane 161.9 149.5 12.4
125 1,1,2,2,3-pentachloropropane 196.0. 193.0 3.0
126 1,1,2,3,3-pentachloropropane 199.0 184.4 14.6
127 1,1,2,2,3-pentachloro-3,3-difluoropropane 168.4 148.0 20.4
128 1,1,2,3,3-pentachloro-1,3-difluoropropane 167.4 130.5 36.9
129 1,1,1,2,2-pentachloro-3,3,3-trifluoropropane 153.0 172.7 -19.7
130 1,1,1,2,3-pentachloro-2,3,3-trifluoropropane 153.3 145.2 ‘8.1
131 1,1,1,3,3-pentachloro-2,2,3-trifluoropropane 153.0 137.3 15.7
132 1,1,1,2,3,3-hexachloropropane 217.0 207.2 9.8
133 1,1,1,3,3,3-hexachloropropane 206.0 151.7 54.3
134 1,1,1,2,2,3-hexachloro-3-tfluoropropane 210.0 201.5 8.5
135 1,1,1,2,3,3-hexachloro-3-fluoropropane 207.0 178.7 28.3
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136 1,1,2,2,3,3-hexachloro-1-fluoropropane 210.0 185.3 24.7
137 1,1,1,3,3,3-hexachloro-2,2-difluoropropane 194.2 148.5 45.7
138 1,1,2,2,3,3-hexachloro-1,3-difluoropropane 194.2 181.4 12.8
139 1,2-dichloro-1,1,2,3,3-pentafluoropropane 56.3 65.1 -8.8
140 2,3-dichloro-1,1,1,2,3-pentafluoropropane 56.0 65.6 -9.6
141 1,1,2-trichloropropane 133.0 94.7 38.3
142 1,2,2-trichloropropane 122.0 103.1 18.9
143  1,1,1-trichloro-2,2-difluoropropane 102.0 75.0 27.0
144 1,2,2-trichloro-1,1,3,3-tetrafluoropropane 92.0 99.4 -7.4
145 3,3,3-trichloro-1,1,1,2,2-pentafluoropropane 70.5 894 -18.9
146  1,1,2-trichloro-1,2-difluoropropane 97.7 74.0 23.7
147 1,1,3-trichloro-3,3-difluoropropane 107.8 70.3 37.5
148 3-chloro-1,1,1,3,3-pentafluoropropane 28.4 63.7 -35.3
149 2-chloro-1,1,1,3,3,3-hexatluoropropane 15.5 20.3 —4.8
150 3-chloro-1,1,1,2,2,3,3-heptafluoropropane -2.5 150 -17.5
151 3-chloro-1,1,1,2,2,3-hexatluoropropane 20.0 22.2 -2.2
152 1,1-dichloropropane 88.1 91.8 -3.7
153 1,2-dichloropropane 96.0 90.3 5.7
154 1,3-dichloropropane 120.8 105.4 15.4
155 1,2-dichloro-2-fluoropropane 88.6 57.5 31.1
156  1,2-dichloro-1-fluoropropane 93.0 64.8 28.2
157 1,1-dichloro-2,2-difluoropropane 79.0 80.3 -1.3
158 1,3-dichloro-1,1-difluoropropane 80.8 79.6 1.2
159 1,1-dichloro-1,2,2-trifluoropropane 60.2 . 624 -2.2
160 3,3-dichloro-1,1,1-trifluoropropane 72.4 81.3 -8.9
161 1,2-dichloro-1,1,2-trifluoropropane 55.6 63.1 -1.5
162 2,3-dichloro-,1,1-trifluoropropane 76.7 996 -229
163 1,3-dichloro-1,1,2,2-tetrafluoropropane 68.2 71.8 -3.6
164 2,3-dichloro-1,1,1,3,3-pentafluoropropane 50.4 703 -20.0
165 2,3-dichloro-1,1,1,2,3,3-hexafluoropropane 34.7 40.0 -53
166 1,2,3-trichloro-1,1-difluoropropane 114.3 102.0 12.3
167 1,1,1-trichloro-3,3,3-triﬂuoropi‘opane 95.1 109.6 -14.5
168 1,1,2-trichloro-3,3,3-trifluoropropane 106.8 103.0 3.8
169 2,3,3-trichloro-1,1,1,3-tetrafluoropropane 87.2 914 -4.2
170 1,1,3-trichloro-1,2,2,3-tetrafluoropropane 90.5 109.6 -19.1
171 1,1,1,3-tetrachloropropane 158.0 142.6 15.4
172 1,1,2,3-tetrachloropropane 180.0 156.6 23.4
173 1,1,1,2-tetrachloro-2-fluoropropane 139.6 113.5 26.1
174 1,1,2,2-tetrachloro-1-fluoropropane 135.0 114.4 20.6
175 1,1,1,3-tetrachloro-3,3-difluoropropane 132.0 112.1 19.9
176 1,1,1,2-tetrachloro-3,3,3-trifluoropropane 125.1 1414 -16.3
177 1,1,2,3-tetrachloro-1,3,3-trifluoropropane 128.7 111.9 16.8
178 1,1,3,3-tetrachloro-2,2,3-trifluoropropane 127.0 105.6 21.4
179 1,1,2,3-tetrachloro-1,2,3,3-tetrafluoropropane 112.5 97.0 15.5
180 1-fluoropropane -2.3 24.7 -270
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181 octafluoropropane -38.0 -0.5 -37.5
182 2,2-difluoropropane -0.5 11.3 -11.8
183 1,1,1,3-tetratluoropropane 29.4 23.3 6.1
184 1,1,1,3,3,3-hexafluoropropane 0.8 18.2 -17.4
185 1,1,1,2,2,3,3-heptafluoropropane -17.0 11.7 -28.7
186  1-chloro-1-fluoropropane 48.0 74.8 -26.8
187 3-chloro-1,1,1-tritfluoropropane 45.1 65.1 -19.0
188 2-chloro-1,1-ditluoropropane 52.0 74.7 -22.7
189 2-chloro-1,1,1-tritluoropropane 30.0 47.7 -17.7
190 1-fluorobutane 32.2 66.7 -34.5
191 2-fluorobutane 24.7 46.3 -21.6
192 1,1,1,2,2,4,4,4-octatfluorobutane 18.0 59.5 -41.5
193 1,1,2,2,3,3,4,4-octafluorobutane 43.0 38.1 4.9
194 1,1,1,2,2,3,3,4,4-nonafluorobutane 14.0 55.4 -41.4
195 decatluorobutane -2.0 43.0 -45.0
196 1l-chlorobutane 78.5 90.1 -11.6
197 2-chlorobutane 68.5 58.6 9.9
198 1-chloro-4-fluorobutane 115.0 109.7 5.3
199 1-chloro-],1-difluorobutane 55.5 56.1 -0.6
200 3-chloro-1,1,1-trifluorobutane 66.0 72.3 -6.3
201 1-chloro-1,1,3,3-tetrafluorobutane 70.5 78.0 -75
202 2-chloro-1,1,1,3,3,3-hexatluorobutane 51.0 74.2 -23.2
203 4-chloro-1,1,1,2,2,3,3-heptafluorobutane 54.0 49.3 4.7
204 4-chloro-1,1,1,2,2,3,3,4,4-nonafluorobutane 30.0 45.0 -15.0
205 1,1-dichlorobutane 115.0 145.0 -30.0
206 1,2-dichlorobutane 1235 150.2 -26.7
207 1,3-dichlorobutane 133.0 140.8 -7.8
208 1,4-dichlorobutane 155.0 1308 24.2
209 1,3-dichloro-1,1,3-trifluorobutane 129.0 80.9 48.1
210 3,4-dichloro-1,1,1,2,2,3-hexafluorobutane © 720 78.5 -6.5
211 1,4-dichloro-1,1,3-tritluorobutane 118.5 97.5 21.0
212 2,3-dichloro-1,1,1,4,4,4-hexafluorobutane 78.0 71.9 6.1
213- 4,4-dichloro-1,1,1,2,2,3,3-heptafluorobutane 76.5 72.0 4.5
214 4,4-dichloro-1,1,1,2,2,3,3,4-octatluorobutane 62.8 71.1 -8.3
215 3,4-dichloro-1,1,1,2,2,3,4,4-octafluorobutane 66.0 70.6 —-4.6
216 1,4-dichloro~1,1,2,2,-3,3,_4,4—octaﬂuorobutane 64.0 71.3 -7.3
217 2,2-dichloro-1,1,1,3,3,4,4,4-octaflucrobutane 64.0 70.5 -6.5
218 2,3-dichloro-1,1,1,2,3,4,4,4-octatluorobutane 64.0 76.3 -12.3
219 1,1,1-trichlorobutane 133.5 1379 —4.4
220 1,1,2-trichlorobutane 156.8 143.5 13.3
221 1,1,3-trichlorobutane 153.8 1433 10.5
222 1,14-trichlorobutane 183.8 1333 50.5
223 2,2 3-trichloro-1,1,1,4,4,4-hexatluorobutane 104.0 107.7 -3.7
9224 4,4 4-trichloro-1,1,1,2,2,3,3-heptafluorobutane 96.5 85.4 11.1
295 1,3,4-trichloro-1,1,2,2,3,4,4-heptatiuorobutane 99.0 91.3 7.7
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226  2,2,3-trichloro-1,1,1,3,4,4,4-heptatluorobutane 97.4 7.7 19.7
¢ 227 1,1,4,4-tetrachlorobutane ' 200.0 148.7 313
228 1,2,4,4-tetrachloro-1,1,2,3,3,4-hexafluorobutane 134.0 92.6 11.4
229 1,2,3 4-tetrachloro-1,1,2,3,4,4-hexafluorobutane 134.0 85.2 18.8
. 230 1,1,2,3,4,4-hexachloro-1,2,3,4-tetratluorobutane 208.0 113.2 94.8
231 1-chloroisobutane 68.3 60.5 7.8
232  2-chloroisobutane 50.7 38.5 12.2
233 1-chloro-1-fluoroisobutane 82.5 109.8 -273
234 1,1-dichloroisobutane 105.0 107.4 -2.4
235 1,2-dichloroiscbutane 106.5 99.1 74
236 1,3-dichloroisobutane 136.0 134.6 14
237 1,1-dichloro-1-fluoroisobutane 107.0 116.1 -9.1
238 1,2,3-trichloroisobutane 163.0 146.0 17.0
239 1,1,2,3-tetrachloroisobutane 191.0 185.2 5.8
240 1,2,3-trichloro-2-chloromethylpropane 211.0 183.3 27.7
241 1,1,2,3-tetrachloro-2-chloromethylpropane 227.0 204.3 22.7
242  1-fluoroisobutane 16.0 56.1 —40.1
243 2-fluoroisobutane . 12.0 38.1 -26.1
244 1,1,1,3,3,3-hexafluoroisobutane 21.5 256.5 -4.0
245 1,1,1,3,3,3-hexafluoro-2-fluoromethylpropane 40.0 18.9 21.1
246 1,1,1,3,33-hexafluoro-2-difluoromethylpropane 33.0 20.3 12.7
247 1,1,1,3,3,3-hexafluoro-2-triflucromethylpropane 12.0 6.0 6.0
248 decafluoroisobutane -0.3 3.6 -3.9
249 3-chloro-1,1,1,3,3-pentafluoroisobutane 59.0 68.6 -9.6
250 1,1,1,3,3,3-hexatluoro-2-chloromethylpropane 58.0 39.6 18.4
251 2,3-dichloro-1,1,1-trifluoroisobutane 93.5 101.0 -7.5
252 2,3-dichloro-1,1,1,3,3-pentafluoroisobutane 75.3 91.2 -15.9
253  2,3-dichloro-1,1,1,3,3-pentafluoro-2-trifluoromethylpropane 65.0 65.8 -0.8
254 1,1,2-trichloroisobutane 163.0 143.1 19.9
255 1,2,3-trichloro-1,1-difluoroisobutane 132.0 114.7 17.3
256 2,3,3-trichloro-1,1,1-trifluoroisobutane 123.7 124.6 -0.9
’ 267 1,1,1,3,3,3-hexatluoro-2-trichloromethylpropane 107.0 106.7 0.3
258 1,1,1,2-tetrachloro-3,3,3-trifluoroisobutane 148.5 148.7 -0.2
259 1,1,1,2,3-pentachloroisobutane 211.0 201.3 9.7
260 1-chloro-1,1,2,2-tetrafluoropropane 19.9 27.5 -7.6
261 1,1,1-trichloropropane 104.0 99.6 44
262 2,3-dichlorobutane 116.0 105.2 10.8
263 2,2,3-trichlorobutane 143.0 152.3 -9.3
264 1,2,3-trichlorobutane 166.0 141.7 24.3
265 1,4-difluorobutane 77.8 122.0 -44.2
266 2,2-difluorobutane 30.9 40.0 -9.1
267 1,2-difluoroethane 26.0 40.7 -14.7
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TABLE II

Topological index symbols and definitions

m

Iors
OoRrB

M

1C,
SIC,

CIC,

Information index for the magnitudes of distances between all possible
pairs of vertices of a graph
Mean information index for the magnitude of distance

Wiener index = half-sum of the off-diagonal elements of the distance
matrix of a graph
Degree complexity

Graph vertex complexity
Graph distance complexity

Information content of the distance matrix partitioned by the frequency
of occurrences of distance &

Order of neighbourhood when ICr reaches its maximum value for the
hydrogen-filled graph

Information content or complexity of the hydrogen-suppressed graph at its
maximum neighbourhood of vertices

Maximum order of neighbourhood of vertices for Iors within the
hydrogen-suppressed graph

A Zagreb group parameter = sum of the square of degree over all vertices

A Zagreb group parameter = sum of the cross-product of degrees over all
neighbouring (connected) vertices

Mean information content or complexity of a graph based on the rth
(r = 0-3) order neighbourhood of vertices in a hydrogen-filled graph

Structural information content for the r*" ( = 0-3) order neighbourhood of
vertices in a hydrogen-filled graph

Complementary information content for the M (r = 0-3) order
neighbourhood of vertices in a hydrogen-filled graph

Path connectivity index of the order i = 0-5

Cluster connectivity index of the order .= 3-6

Path-cluster connectivity index of the order A = 4—6

Valence path connectivity index of the order h = 0-5

Valence cluster connectivity index of the order & = 3-6

Valence path-cluster connectivity index of the order i = 4-6

Number of paths of length 2 = 0-5

Balaban’s J index based on distance

Balaban’s J index based on relative electronegativities

Balaban’s J index based on relative covalent radii
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Computation of Similarity ,

Intermolecular similarity was measured by the Euclidean distance (ED)
within an n-dimensional space. This n-dimensional Sspace consisted of or-
thogonal variables (PCs) derived from the TIs. ED between the molecule’s
¢ and j is defined as:

172
n

ED;=/>" (D - D;,)?

k=1

where 1 equals the number of dimensions retained from PCA. D;, and D,
are the data values of the Ath dimension for chemicals ; and j, respectively.

K-nearest Neighbour Selection and Boiling Point Estimation

Following the quantification of the intermolecular similarity of the
CFCs, the K-nearest neighbours (K = 1-10, 15, 20, 25) were determined on
the basis of ED. The mean observed boiling point of the K-nearest neigh-

P, (number of bonds). The second PC is highly correlated with higher order
complexity indices including SIC, and CIC,. For the third PC, the highest
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TABLE III

Summary of the principal components of 59 TIs for the 267 haloalkanes and the
correlation coefficients of the two most correlated with each principal component

PC  Eigenvalue Percent of Cumulative First Second
variance percent correlated TI correlated TI

1 31.9 54.0 54.0 Py 0.982 P, 0.982
2 8.7 14.8 68.8 SIC,  0.949 CIC, -0.922
3 5.2 8.8 © 716 4% -0.668 g -0.637
4 3.6 6.1 83.7 A 0.475 3y 0.440
5 2.1 3.6 87.3 Al 0.495 4y 0.482
6 1.9 3.2 90.5 P; - 0579 57 0.574
7 1.5 2.5 93.0 2y 0.282 31% 0.280
8 1.2 2.0 95.0 e 0.324 HY -0.313

correlations occur with the valence cluster connectivity TIs such as X and
3%%. The fourth PC was characterized by lower order valence path connec-
tivity indices such as 'X¥ and 3x¥ and the fifth PC by the higher order valence
path connectivity indices such as 5%v and 4X". Interpretation beyond the fifth
level PC becomes more difficult, as it can be seen in Table III. These PC/TI
correlations agree with our expectations based on previous research.16:17:19.20
Generally, PCs and TIs correlate as follows: PC; with the size of the
molecular graph, PC,
with higher order com-
plexity indices, PC3; with

TABLE IV
cluster and path-cluster con-
Summary of the K-nearest neighbour normal neCthiFY» and RC4 with 1°_W
boiling point estimation for 267 chlorofluoro- order information theoretic
hydrocarbons indices.
Table IV reports the
K il s.e. (°C) correlation and standard
1 0.854 33.2 errors of boiling point esti-
2 0.908 26.4 mates obtained by the K-
3 0.923 24.5 nearest neighour estimation
4 0.927 24.2 . o
with the observed boiling
5 0.933 23.7 . .
6 0.934 24.3 point values. Each line of
7 0.934 24.3 the table represents a dif-
8 0.936 24.3 ferent K level. The stand-
9 0.939 24.4 ard error for estimation was
10 0.939 24.7 at its minimum of 23.7 °C
15 0.936 26.2 for K = 5. The correlation,
20 0.936 21.7 however, continued an up-
25 0.943 28.0

ward trend as K increased.
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DISCUSSION

The goal of this paper was to investigate the usefulness of general simi-
larity methods based on graph invariants in the prediction of the boiling
points of a set of 267 chlorofluorocarbons. To this end, we used Euclidean
distance in an eight dimensional PC-space as the measure of structural
similarity/dissimilarity of CFCs. The results in Table IV show that the best
estimates of the normal boiling point are obtained at K = 5. Our previous'
studies on similarity-based prediction of properties like lipophilicity,'?, boil-
ing point,16-19 and mutagenicity!® ** 2° have shown that a small number of
neighbours (K = 5-10) will usually give the best results in property estima-
tion.

Comparison of the K-nearest neighbour estimates reported in this paper
with previous studies on the same set of CFCs shows that similarity-based
estimates are inferior to predictions derived by neural net models.?® In the
neural net model, parametrization was done with an eye to specific struc-
tural features of CFCs. In contrast, the PC-based similarity approach used
a set of general structural parameters which quantify such structural fea-
tures of chemical graphs as size, shape, degree of branching, etc. Yet, simi-
larity methods based on such graph theoretic parameters give a reasonably
good estimate of the normal boiling point of CFCs analyzed in this paper. -
The usefulness of the similarity approach depends on the context, i.e. what
level of accuracy is required.

In risk assessment, molecular similarity is used in the selection of ana-
logs of chemicals for hazard estimation. Very often, one has to do rapid es-
timation of a large number of properties. Such estimations should be based
on parameters that can be algorithmically derived, i.e., can be computed for
any chemical species directly from structure. The graph invariants used in
this paper fall into this category. The results reported here show that such
methods can be used as a first order estimation of properties.

The parameters used in this paper did not include any stereoelectronic
property that might influence the normal boiling points of CFCs. It would
be interesting to see whether similarity methods give better estimates of
boiling points when stereoelectronic variables are included in the set of pa-
rameters. Such studies are in progress and will be reported subsequently.
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SAZETAK

Procjena normalnih vrelita haloalkana na osnovi molekulske
sliénosti

Subhash C. Basak, Brian D. Gute i Gregory D. Grunwald

Molekulska sliénost upotrijebljena je za procjenu normalnih vrelista skupa od
haloalkana s 1 do 4 ugljikova atoma. Molekulska sliénost/razlicitost kvantifici-
a je Euklidovom udaljeno3éu molekula u osmerodimenzijskom prostoru glavnih

komponenti izvedenih iz 59 topologkih indeksa. Koeficijent korelacije izmedu ekspe-

rim

entalnih i procijenjenih vrelista iznosi izmedu 0.854 i 0.943 za procjene vrelista

pomoéu K najblizih susjeda, uz razlicite brojeve najblizih susjeda (K = 1, -, 10, 15,

20,

25). '
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Abstract
| Three similarity spaces were used in the selection of analogs and K-nearest
‘ néighbor (KNN) based estimation of normal boiling points for a diverse set of 2926
.chemicals. The similarity spaces consisted of principal components (PCs) derived from:
1) 40 topostructural indices, 2) 61 topochemicallparameters and 3) the full set 101
topostructural and topochemical indices. The three methods selected sets of analogs
with a substantial number of structurally analogous molecules. For the KNN method of
property estimation, the similarity space which used the full set of indices was superior
to either of the subsets (topostructural or topochemical). For all thrée methods, K= 6-10

gave the best estimated values for boiling point.




1. Introduction |
Interest in quantifying the similarity of molecules using computational methods
“has increaéed [1-8]. In particular, a recent trend in the characterization of similarity/v
dissimilarity of chemiéals makés use of graph invariants. Molecular structures can be
represented by planar graphs, G = [V,E], where the nonempty set V represents the set
of atoms and the set E generally represents covalent bonds [9]. These graphs can be
used to adequately represent the patfern of connectedness of atoms within a molecule.
Graph invariants, values derived from planar graphs, are graph theoretic properties
whiéh are identical for isomorphic graphs. A numerical graph invariant or topological
index.maps a chemical structure into the set of real numbers.

Various graph invariants have been used in ordering and partial ordering of sets
of molecules [1, 4-8]. Various topological indices (Tls) and principal components (PCs)
derived from Tls have been used in quantifying the similarity/dissimilarity of molecules
and in the similarity based estimation of physical and toxicological properties [4, 5, 10-
17]. Such Tis include those derived from simple planar graphs which contain adjacency
and distance information for vertices. These Tls.could be considered topostructural
indices. Other Tis, which are derived from weighted chemical graphs, could be called
topochemical indices because they contéin explicit information regarding the chemical
nature of the atoms (vertices) and bonds (edges) in the molecular structure, in additioﬁ
to quantifying the adjacency and distance relationships within the graph.

Our earlier studies made use of a combination of topostructural and

topochemical indices to select analogs of chemicals and estimate properties of




molecules in large and diverse databases using the K-nearest neighbor (KNN) method.
In this paper we have carried out a comparative analysis of similarity based analog
selection and KNN based estimation of normal boiling point using : a) a set of 40
topostructufal indices, b) a group of 61 topochémical indices, and ¢) the combined set

of 101 indices.

2. Methods
2.1 DATABASE

The nofmal boiling point database consi;sted of 2926 compounds taken from the
U.S. EPA ASTER [18] system. This data comprised a set for which chemical structures
and normal boiling valueé were available, and for which it was possible to compute all

101 Tls.

2.2 CALCULATION OF INDICES

The Tls calculated for this study are listed in table 1 and include Wiener number
[19], molecular connectivity indices as calculated by Randi¢ [20] and Kier and Hall [21],
frequency of path lengths of varying size, information theoretic indices defined on
- distance matrices of graphs using the methods of Bonchev and Trinajsti¢ [22] as well as
those of Raychaudhury et al. [23], parameters defined on the neighborhood complexity_
of vertices in hydrogen-filled molecular graphs [24-26], and Balaban's J indices [27-29].
The majority of the Tis were calculated using POLLY 2.3 [30]. The Jindices were

calculated using software developed by the authors.




The Wiener index (W), the first topological index reported in the chemical
literature [19], may be calculated from the distance matrix D(G) of a hydrogen-
suppressed chemical graph G as the sum of the entries in the upper triangular distance
submatrix. The distance matrix D(G) of a nondirected graph G with n vertices is a
symmetric n x n matrix (d;), where djis equal to the distance bet\;veen vertices v;and v,
in G. Each diagonal element d; of D(G) is zero. We give below the distance matrix

D(G,) of the unlabeled hydrogen-suppressed graph G, of n-propanol (figure 1).

M @ ©@ @

r 1
1 0 1 2 3
2 1 0 1 2
D(G)= 3 2 1 0 1
4 3 2 1 0
L 4
W is calculated as:
W=% ¥ d=%heg, (1) -

where g, is the number of unordered pairs of vertices whose distance is h. Thus for

D(G,), W has a value of ten.
[Insert Fig. 1 here]

Randié¢'s connectivity index [20], and higher-order connectivity path, cluster,

path-cluster and chain types of simple, bond and valence connectivity parameters were




calculated using the method of Kier and Hall [21]. The generalized form of the simple

path connectivity index is as follows:

"x=X (‘/i‘/j---V5+1)-% . (2)

paths

where v, V..., V,,, are the degrees of the vertices in 'the path of length h. The péth
length parameters (P,), number of paths 6f length h (h=0,1,...,10) in the hydrogen-
suppressed graph, are calculated using standard élgorithms.

lnformation-theoretic topological indices are calculated by the application of
information theory on chemical graphs. An appropriate set A of n elements is derived
from a molecular graph G dependingj upon certain structural characteristics. On the

_basis of an equivalence relation defined on A, the set A is partitioned into disjoint

subsets A of order n; (i=1, 2, ....., ¥n,. = n). A probability distribution is then

assigned to the set of equivalence classes:

where p;= n;/ nis the probability that a randomly selected element of A will occur in the
" subset.
The mean information content of an element of A is defined by Shannon's

relation [31]:




h
i=1 :

Thé logarithm is taken at base -2 for measuring the information content in bits. The total
information content of the set Ais then nx IC. |

To account for the chemical nature of vertices as well as their bonding pattern,
Sarkar et al. [32] calculated information content of chemical graphs on the basis of an
equivalen‘ce relation where two atoms of the same element are considered equivalent if
they possess an identical first-order topological neighborhood. Since properties of
atoms or reaction centers are often modulated by stereo-electronic characteristics of
distant neighbors, i.e., neighbors of neighbors, it Was deemed essential to extend this
approach to account for higher-order neighbors of vertices. This can be accomplished
by defining open spheres for all vertices of a chemical graph. If ris any non-negative
real number and vis la vertex of'the graph G, then the open sphere S(v, ) is defined as
the set consisting of all vertices v;in G such thai d(v,v) < r. Therefore, S(v, 0) = ¢, S(v,
) = vfor 0 < r< 1, and S(v,r) is the set consisting of v and all vertices v, of G situated at
unit-distance from v, if 1<r<2.

One can construct such open spheres for higher integral values of . For a
panicularAva|ue of r, the collection of all such open spheres S(v,r), where vruns over -
the whole vertex set V, forms a neighborhood system of the vertices of G. A suitably
defined equivalence relation can then partition Vinto disjoint subsets consisting of

vertices which are topologically equivalent for " order neighborhood. Such an




approach has been developed and the information-theoretic indices calculated based
on tﬁis idea are called indices of neighborhood symmetry [26]. |
In this method, chemicals are symbolized by weighted linear graphs. Two
vertices u, and v, of a molecular graph are said to be equivalent with respéct to ' order
neighborhood if and only if corresponding to each path u,, u;, ..., U, of length r, there is
a distinct path v, v,, ..., v, of the same__length such that the paths have similar edgve
weights, and both u, and v, are connected to the same nUmbér and type of atoms up to
the " order bonded neighbors. The detailed equivalence relation has been described in
earlier studies [26, 33].
Once paﬁitioning of the vertex set f;)r a particular order of neighborhood is
completed, /C, is calculated by eq. (2). Basak et al. defined another information;

theoretic measure, structural information content (SIC,), which is calculated as:

SIC,= IC, | log,n (4)
where IC, is calculated from eq. (2) and n is the total number of vertices of the graph
[24].

Another information-theoretic invariant, complementary information content

(CIC), is defined as:

CIC,=log,n - IC, (5)




CIC, represents the difference between maximum possible complexity of a graph
(where each‘vertex belongs to a separate equivalence class) and the realized

' topologicél information of a chemical species as defined by /C,[25]. |

In figure 2, thé calculation of IC,, SIC, and CIC, is demonstrated for the labeled

hydrogen-filled graph (G,) of n-propanol.
[Insert Fig. 2 here ]

The information-theoretic index on graph distance, 1)/ is calculated from the distance

matrix D(G) of a chemical graph G as follows [22]:
1Y = Wlog, W-X g, hlog, h (6)
h

The mean informatibn index, 1%, is found by dividing the information index /,' by W. The
information theoretic parameters defined on the distance matrix, H° and H", were
calculated by the method of Raychaudhury et a) [231. .

Balaban defined a series of indices based upon distance sums within the’
distance matrix for a chemical graph whiéh he designated as J indices [27-29]. These
indices are highly discriminating with low degeneracy. Unlike W, the J indices range of
values are independent of molecular size. The general form of the J index Calculation}is

as folliows:

J=qu+1)" X (S,-s_,-)"& (7)

ij, edges




where the cyclomatic number i (or number of rings in the graph) is 4 = g-n+1, with q

edges and n vertices and s; is the sum of the distances of atom ito all other atoms and
s;is the sum of the distances of atom j to all other atoms [27]. Variants were proposed
by Balaban .for incorporating information on bo'nd type, relative electrbnegativities, and

relative covalent radii [28-29].

2.3 CLASSIFICATION OF THE INDICES

The set of 101 Tls was partitioned into two distinct subsets: topostructural
~ indices and topochemical indices. Topostructur_al indices encode information about the
adjacenéy and distances of atoms (vertices) in molecular structures (graphs)
irrespective of atom type or factors such as hybridization states and number of core/
valence electrons in individual atoms. Topochemical indices quantify information
regarding specific chemical properties of the atoms comprising a molecule as Well as
the topology (connectivity of atoms). Topochemical indices are derived from weighted
molecular graphs whére each vertex (atom) is properly weighted with selected

chemical/physical properties. These subsets are shown in table 1.

2.4 STATISTICAL METHODS AND COMPUTATION OF SIMILARITY
Data Reduction
Initially, all Tls were transformed by the natural logarithm of the index plus one.

This was done since the scale of some Tls may be several orders of magnitude greater

than other Tls.




A principal component analysis (PCA) was used on the transformed indices to
‘minimize intercorrelation of indices. The PCA analysis was accomplished using the
SAS procedure PRINCOMP [34].-‘The PCA produces linear combinations of the Tls,
called principal components (PCs) which are derived from the correlation matrix. The
first PC has the largest variance, or eigenvalue, of the linear combination of Tls. Each
subsequent PC explains the maximal index variance orthogonal to the previous PCs,
eliminating any redundancies which could _bccur within the set of Tls. The maximum
number of PCs generated is equal to the number of Tls available. For the purposes of
this study, only PCs with eigenvalues greater than one were retained. A more detailed
explanation of this approach has been provided in a previous study by Basak et al[4].
These PCs were subsequenﬂy used in determining similarity scores as described

below.

Similarity Measures

Intermolecular similarity was measured by the Euclidean distance (ED) within an
n-dimensional space. This n-dimensional space.consisted of orthogonal variables (PCs)
derived from the TIS as described abdve. ED between the molecules iand jis defined
as:

1 %2
(Dik - Djk)2 J (8)

3

i
ED;= |

i

1

where n equals the number of dimensions or PCs retained from the PCA. D, and D,

are the data values of the k" dimension for chemicals i and j, respectively.

9




K-Nearest Neighbor Selection and Property Estimation

Following the quant.ification of intermqlecular similarity of the 2926 chemicals, the
K-nearest neighbors (K= 1-10, 15, 20, 25) were determined on the basis of ED. This
procedure ban be used to select structural analogs ('neighbors) of a probe combound or
the neighbors can be used in préperty estimation. In estimating the normal boiling point
of the probe compound, the mean observed normal boiling point of the K-nearest
neighbors was used as the estimate and the standard error (s) of the estimate was

- used to assess the efficacy of the set of indices.

3. Results
3.1  PRINCIPAL COMPONENT ANALYSIS

From the PCA of the 40 topostructural indices, seven PCs with eigenvalues
greater than one were retained. These seven PCs explained, cumulatively, 90.8% of
the total variance within the Tl data. Tablé 2 lists the eigenvalues of the seVen PCs, the
proportion of variance explained by each PC, thé cumulative variance explained, and
the three Tls most correlated with each individual PC.

The PCA of the 61 topochemical indices resulted in the selection of ten PCs, all
having eigenvalues greater than one. The ten PCs explain a total of 92.1% of the
variance within the Tl data. Table 3 presents a summary of the information regarding
these ten PCs.

Twelve PCs were retained from the PCA of the full set of 101 Tls. Each of these

10




PCs had an eigenvalue greater than one and, cumulatively, they explained 92.8% of

the variance within the full set of Tls. These PCs are summarized in table 4.

3.2 ANALOG SELECTION

Figure 3 shows an example of analog selectioh using PCs to derive a Euclidean
distance space. The first five analogs (neighbors) for the probe compound, 3-methyl-4-
chlorophenol, are presented for each of the three simiiarity spaces. The analogs
selected by the topostructural model show a repetition of the same skeletal structure,
ignoring substituents, throughout the first five analogs. In the topochemical model and
the full set model some variability in the skeletal structure arises (chemical analogs 2 &
5, full set analog 4). Also of interest is the repetition of chemicals between the sets of
analogs. While the ordering varies between the methods, the topostructural and
topochemical models select two.identical structures, the topostructural and the full set
have three analogé in common, and the topochemical and full set select four of the

same analogs. 2-chloro-5-methylphenol appears in all three sets, while there are only

three unique compounds (topostructural analogs 4 & 5, topochemical analog 5).

[Insert Fig. 3]

3.3 K-NEAREST NEIGHBOR PROPERTY ESTIMATION
Figure 4 presents the correlation (r) and the standard error (s) of the prediction of
the normal boiling points for the 2926 chemicals for the three groups of indices over the

full range of K'values examined (K= 1-10, 15, 20, 25). Table 5 shows the best normal

11




boiling point model for each set of indices. The best boiling point estimates for all three
sets were for Kin the range of 6 to 10. The full set of indices gave the best result,
however, there was only a small difference between models.

[Insert Fig. 4]

4. Discussion

The purpose ofv this paper was to study the relative effectiveness of three
similarity spaces derived from graph invariants in the selection of structural analogs and
in the KNN based estimation of properties. The similarity spaces were created using a
principal component analysis of calculatea graph invariants. Tables 2-4 summarize the
results of the PCA of the three sets of indices. The first PC is always correlated with
indices which quantify molecular size. In the case of the topostructural indices, the
second -PC is most correlated with branching indices. In the case of PCs derived from
either topochemical or the full set of topostructural and topochemical parameters, the
first PC was strongly correlated with molecular size, while the second PC was highly
associated with the molecular complexity indiceé. These results are in line with our
earlier studies on different sets of chemicals [4, 5, 11, 35, 36].

All three spaces were used in the selection of five analogs of a particular
structure (Figure 3). Perusal of the three sets of structures show that there is a
substantial degree of similarity among the three groups of five chemicals selected. It is
interesting to note that all five nearest neighbors of the probe selected by the

topostructural method had isomorphic skeletal graphs when hydrogen atoms are

12




suppressed. For the two similarity spaces created by topochemical indices alone and
the combined set of topostructural and topochemical indices, four of the five selected

: neighboré are cbmmon (Figure 3) although the ordering of the molecules is different.
This shows that thesé two similarity methods are not intrinsically very different. Our
earlier results showed that analogs selected by similarity methods derived from
experimental physical properties, atom pairs and topological indices select very similar
sets of analogs [10].

In the case of KNN based estimation of boiling points of chemicals from their
anal‘ogs, K was varied from 1 to 25. The best estimated value was obtained in the |
range of K= 6-10. This is in line with our earlier studies with different properties [11,
12].

In conclusion, the three similarity spaces derived in this paper have reasonable
power for selecting analogous molecules from a very diverse database of chemicals..
The KNN based esﬁmation shows that seléctedﬂanalogs can be used for the estimation

of boiling points of diverse chemicals if more accurate methods are not available.
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Figure Legend

Figure 1 The unlabeled hydrogen-suppressed graph (G,) of n-propanol.

Figure 2 Calculation of the indices IC,, SIC,, and CIC, for the hydrogen-fiiled,
labeled graph (G,) of n-propanol.

Figure 3 The five analogs selected for the probe 3-methyl-4-chlorophenol using
three molecular similarity spaces: topostructural, topochemical, and all
indices. The numbers under the structures indicate the ranking of the
analogs and the Euclidean distance to the probe.

Figure 4 Pattern of: (a) correlation (r) and (b) standard error (s) of the estimates
according to the K-nearest neighbor selection for 2926 normal boiling
points using three molecular similarity spaces.
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Table 1. Symbols, definitions and classifications of topological parameters.

| Topostructural
I‘[’)“ Information index for the magnitudes of distances between ail possible
' pairs of vertices of a graph '
ITg' Mean information index for the magnitude of distance
w Wiener index = half-sum of the off-diagonal elements of the distance matrix
of a graph
1° Degree complexity
HY Graph vertex complexity
HP Graph distance complexity
I—é Information content of the distance matrix partitioned by frequency of
occurrences of distance h
O Order of neighborhood when IC, reaches its maximum value for the
hydrogen-filled graph
M, A Zagreb group parameter = sum of square of degree over all vertices
M, A Zagreb group parameter = sum of cross-product of degrees over all
neighboring (connected) vertices
" Path connectivity index of order h =0-6
" Cluster connectivity index of order h = 3-6
"N pe Path-cluster connectivity index of order h = 4-6
Neh Chain connectivity index of order h = 3-6
Py Number of paths of length h = 0-10
J Balaban's J index based on distance
Topochemical
lors Information content or complexity of the hydrogen-suppressed graph at its
maximum neighborhood of vertices
IC, Mean information content or complexity of a graph based on the " (r = 0-6)
order neighborhood of vertices in a hydrogen-filled graph
SIC, Structural information content for " (r = 0-6) order neighborhood of vertices
in a hydrogen-filled graph
CIC, Complementary information content for ™ (r = 0-6) order neighborhood of

vertices in a hydrogen-filled graph




Bond path connectivity index of order h = 0-6

Bond cluster connectivity index of order h = 3-6
Bond chain conr_iectivity index of order h = 3-6
Bond path-cluster connectivity index of order h = 4-6

Valence path connectivity index of order h-= 0-6

Valence cluster connectivity index of order h = 3-6

Valence chain connectivity index of order h = 3-6

~ Valence path-cluster conhectivity index of order h = 4-6

Balaban's J index based on bond types
Balaban's J index based on relative electronegativities

Balaban's J index based on relative covalent radii




Table 2. Summary of principal component analysis of 40 topostructural indices for 2926

chemicals.
Proportion of Cumulative Top three
explained explained correlated
PC ~ Eigenvalue variance = variance indices

1 28.2 46.2 - 46.2 P, Po, 'X
2 11.0 18.0 64.3 eer Xeor Xec
3 5.9 9.6 73.9 *er Xor Xec
4 4.1 6.7 80.6 J, SXem Yo
5 2.8 4.6 852 *Xem Xow Xen
6 1.9 3.1 88.3 Nem Xem Xon
7

15 2.4 90.8 *cr P1or Pg




Table 3. Summary of principal component analysis of 61 topochemical indices for 2926

chemicals.
Proportion of Cumulative Top three
explained explained correlated
PC - Eigenvalue variance variance indices
1 20.4 33.5 33.5 5, 2, 3%°
2 10.8 17.8 51.2 SIC,, SIC,,
SIC,
b 4b 40
3 8.1 13.3_ 64.6 s X Xpc
b 5v 40
4 6.1 9.9 745 X X Xen
5 3.0 5.0 79.5 X X “Xon
6 2.4 3.9 83.4 IC,, SIC,, IC,
6,b 5b 6
-7 1.7 2.8 86.2 Xe, Xe» Xo
4,v 2 v 6 v
8 1.4 2.2 88.4 X5 2%, e
v 6 v 4b
9 1.2 2.0 90.4 5xc, Xe, Xo
10 1.1 1.8 92.1 R

o Xo» Xec
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We have used topological, topochemical and geometrical parameters in predicting: () normal boiling point
of a set of 1023 chemicals and (b) lipophilicity (log P, octanol/water) of 219 chemicals. The results show
that topological and topochemical variables can explain most of the variance in the data. The addition of
geometrical parameters to the models provide marginal improvement in the model’s predictive power. Among

. the three classes of descriptors, the topochemical indices were the most effective in predicting properties.

1. INTRODUCTION

A contemporary trend in theoretical chemistry, biome-
dicinal chemistry, drug design, and toxicology is the predic-
tion of relevant properties of chemicals using structure—
activity relationships (SARs)."~® A large number of SARs
published in recent literature use parameters which can be
calculated directly from molecular structure, as opposed to
experimentally derived properties or parameters.! %1930 The
principal motivating factor behind this trend is our need to
know many properties of a very large number of chemicals,
both for practical drug design and hazard assessment of

. chemicals.!*3! All these properties cannot be determined

experimentally due to limited resources. The modeling of
the properties of chemicals using SARs based on calculated
molecular descriptors has the following three major com-
ponents:1332

1. Optimal representation of the chemical species by a
chosen model object (structure representation).

2. Enumeration of relevant characteristics of the model
object (parameterization). '

-3. Development of qualitative or quantitative models to
predict properties using the selected structural characteristics
(property prediction).

The first step in the overall process is representation
(Figure 1). The term molecular structure represents a set of
nonequivalent concepts. There is no reason to belicve that
when discussing different topics, e.g., chemical synthesis,
reaction rates, spectroscopic transitions, reaction mechanisms,
and ab initio calculations, that the term “molecular structure”
represents the same fundamental reality.*3 In fact, the
various models of chemicals, e.g., classical valence bond
representation, different graph theoretic representations, ball
and spoke model of molecules, minimum energy conforma-
tion, and symbolic representation of molecules by Hamil-
tonian operators, are nothing but various representations of

‘the same chemical entity. Once the model object is chosen,

subsequent processes of parameterization and property
estimation can be done in more than one way. Consequently,
the field of theoretical SAR is comprised of a set of diverse
modeling activities.

* All correspondence to be addressed to: Dr. Subhash C. Basak, Natural

Resources Research Institute, University of Minnesota, Duluth, Duluth, MN
55811

© Abstract published in Advance ACS Abstracts, October 1, 1996.
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Figure 1. The processes of experimental determination vis-a-vis
theoretical prediction of properties from SARs. C represents the
sét of chemicals and R the set of real numbers.

A convenient method of representing chemical species is
by means of molecular graphs, where atoms are represented
by vertices and bonds are depicted by edges.3* Invariants
derived from graphs can be used to characterize chemical
structure. When a molecule is represented by a simple planar
graph which does not distinguish among atoms or bond types,
such invariants quantify molecular topology without being
sensitive to such important chemical features like presence
of heteroatoms or bond multiplicity. Such invariants may
be termed “topological”. On the other hand, when molecules
are represented by graphs which are properly weighted to
represent heterogeneity of atom types and bonding pattern,
invariants derived from such graphs are chemically more
realistic.3 Such invariants have been found to be more
useful as compared to the topological indices. We call such
indices “topochemical” parameters, because they quantify
both topology (connectivity) of atoms as well as the chemical
characteristics of the specific molecular structure.

Another set of descriptors which have been used in many
SARs are the geometrical or shape parameters, which encode
information about the spatial characteristics of atoms in the
molecule 3638

In practical drug design and hazard assessment, where it
is necessary to carry out very rapid estimation of a large

A 1O00L A cmncimnen Chaminal Qariste
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number of properties with no or very little empirical input,
SARs based on topological, topochemical, and geometrical
parameters can be of practical use. Therefore, in this paper,
we have carried out a comparative study of topological,
topochemical, and geometrical parameters in estimating (a)
boiling point of a subset of the Toxic Substances Control
Act (TSCA) Inventory comprising 1023 molecules and (b)
lipophilicity of a set of 219 diverse compounds. The results
are presented here with an analysis of the relative contribu-
‘tions of the three classes of indices in the development of
SAR models.

2. MATERIALS AND METHODS
2.1. Normal Boiling Point Database. We used a subset

- of the Toxic Substances Control Act (TSCA) Inventory3! -

for which measured normal boiling point values were
available and where HB, was equal to zero. HB, is a
measure of the hydrogen bonding potential of a chemical.

There were 1023 chemicals in the TSCA Inventory which

satisfied these two criteria. Because of the large number of
chemicals in this study, we are not listing the data for these
chemicals in this paper. An electronic copy of the data may
be obtained by contacting the authors. ’

~ '22. Log P Database. Measured values of log-P were
obtained from CLOGP,*® namely, the STARLIST group of
chemicals. For this study, we used only chemicals where
HB; was equal to zero. Also, the range of log P values for
the purpose of estimation was restricted to —2 t0 5.5. Actual
measurements for log P beyond this range have been shown

to be problematic.! Table 1 provides a listing of the 219

chemicals that met these conditions.

2.3. Calculation of Topological and Geometric Pa-
rameters. Most of the topological indices used for property
estimation were calculated by the computer program POL~
LY.“ These indices include the molecular connectivity

indices developed by Randié!® and Kier and Hall 3 Wiener .

number,*! and frequency of path lengths of varying size.
Information theoretic indices defined on the hydrogen-filled
and hydrogen-suppressed molecular graph were calculated
by POLLY using the methods of Basak et al.,**4* Roy et
al.,* Raychaudhury et al.,** and Bonchev and Trinajsti€.4
The J indices of Balaban*’~*? were calculated using software
developed by the authors. The hydrogen bonding parameter,
HB;, was calculated using a program developed by Basak™
and is based on the ideas of Ou ez al 5!

van der Waal’s volume (V) was calculated using Sybyl
6.252 The 3-D Wiener numbers®” were calculated using
Sybyl with an SPL (Sybyl Programming Language) program
developed by the authors. The calculation of the 3-D Wiener
number consists of summing the entries in the upper
triangular submatrix of the topographic Euclidean distance
matrix for a molecule. The 3-D coordinates of each atom,
needed for these computations, was determined using
CONCORD 3.2.1.5 For this paper, two variants of the 3-D
Wiener number have been calculated, 3°W and 3°Wy, where
the hydrogen atoms have been excluded and included in the
calculation, respectively.

In Table 2, the symbols for all topological and geometric
parameters have been listed. A brief definition of each
parameter is provided in Table 2 as well.

The parameters in Table 2 were then classified as being
topological, topochemical, or geometric. Table 2 is orga-
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nized to show where each parameter-was-classed. The
topological parameters consist of those indices in which atom
specific information and bonding type are ignored in calcula-
tion of the index.. The topochemical indices account for atom
and bond type information. The geometric parameters are
based upon 3-D coordinate information of the molecule.
2.4, Statistical Analyses. Since the difference in mag-
nitude for the topological and topochemical indices can vary
greatly, they were transformed by the natural logarithm of

- the index plus one. One was added since many of the indices

can be zero. The geometric parameters were transformed
by the natural logarithm of the parameter.

Two regression procedures were used in the development
of models. When the number of independent variables was
high, typically greater than 25, a stepwise regression
procedure to maximize improvement to R? was used. When
the number of independent variables was small, all possible
subsets regrcssion was used. All regression models were
developed using procedure REG of the SAS statistical
package. >4

For both data sets, we randomly split the chemicals into

approximately equal (50%/50%) training and test sets. For

the BP data, there were 512 chemicals in the training set
and 511 chemicals in the test set. For log P, there were 114
chemicals in the training set and 105 chemicals in the test
set. The training set and test set of chemicals are identified
in Table 1 for the log P data. Models were developed using
the training set of chemicals. These models were then used
to predict the property values of the test chemicals. Final
models were then developed using the combined training
and test set of chemicals.

Initial models for the dependent property (BP or log P)
were developed using only the topological class of indices.
Once the best topological model was determined, the
topological indices used in the model were added to the set
of topochemical indices. Then the best model from this
combined set of indices was - determined. Finally, the
topological and/or topochemical indices used in the best
model so far were added to the set of geometric parameters,
and ‘the best model using all of these parameters was
determined.

3. RESULTS

3.1. TSCA Boiling Point Estimation. Stepwise regres-
sion analyses for BP of the training set of chemicals is
summarized in Table 3. As is shown in Table 3, the
topological model using 11 parameters resulted in an
explained variance (R?) of 80.8% and standard error (s) of
40.9 °C. Addition of the topochemical parameters with the
11 topological parameters increased the effectiveness of the
model significantly. The resulting model used nine param-
eters, two topological parameters, and seven topochemical
parameters. This model had an R? of 96.5% and s of 17.4
°C. All subsets regression of the nine topological and

- topochemical parameters retained thus far and the three

geometric parameters resulted in a ten parameter model. This
model included the nine topological and topochemical
parameters and the geometric parameter 3®Wy. This model
represented a slight improvement with R? of 96.7% and s of
16.8 °C.

Application of the three models to the test set of chemicals
resulted in comparable R? and s and are listed in Table 3.
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Table 1. Observed and Estimated Lipophilicity (Log P, Octanol/Water) for 219 Chemicals with HB; Equal to Zero

BASAK ET AL.

est

est est est est est
obs logP logP logP obs logP logP logP
no. chemical name logP (eq4) (eqS5) (eq6) no. chemical name log P (eq4) (eq5) (eq6)
1¢ 1,4-dimethylnaphthalene 437 425 437 441 74° 124-trichlorobenzene 402 365 384 379
2 cyclopropane - 172 126 083 082 75 22,6-pcb 548 489 507 509
3  3,4-dimethylchlorobenzene 382 365 368 374 76 2-butyne 146 222 249 246
4 22-diphenyl-1,1,1-trichlorocthane 487 4.90 4.93 499 77 azlene 320 359 352 345
5 2,6-dimethylnaphthalene 431 415 424 4271 178 mﬂuommcxhylﬁuobenzenc 357 356 291 293
6 hexafluoroethane 200 263 259 233 79° 2,5-pch 516 462 490 489
7¢ l-iodoheptane 470 404 427 424 80° 1,2,3-mehlomcyclohexene(34) 284 360 357 358
8¢ allylbromide L79 222 204 206 81 Dbiphenyl 409 4.18 433 432
9@ 1,5-dimethylnaphthalene 438 423 438 441 82° p-xylene | 315 345 337 342
10  1,8-dimethylnaphthalene 426 431 441 443 83° cthylene 113 070 093 097
11¢ 1,2,3-trichlorobenzene 405 360 364 363 8 thiophenol 252 3.08 301 304
12% 2-ethylthiophene 287 320 269 273 85° bromotriflucromethane 186 220 212 197
13 methylchloride 091 070 086 079 86 9-methylanthracene 507 507 490 492
14  y-phenylpropylfiuoride 295 373 326 329 87¢ tichloroethylene 242 263 244 244
15 iodobenzene 325 308 3.68 368 88 ]4-dimethyltetrachlorocyclohexane 4.40 4.18 4.03 4.11
16 l-methylpentachlorocyclohennc 404 418 420 424 89 propylene 177 138 159 11
17¢ cthane 181 070 150 147 90 cyclohexene 28 255 272 274
18 ‘-pcb 502 471 499 497 91° methylthiobenzene 274 328 3.02 297
19 cyclopentane 3.00 219 235 237 92 methylfluoride S51 070 057 053
20 ethylchloride 143 138 148 152 93 y-phenylpropyliodide 390 373 406 4.06
21 2-phenylthiophene 374 388 401 396 94 234'-pc : 542 489 510 5.10
22  trichlorofluoromethane 253 220 234 229 95° fluoropentachlorocyclohexane 319 418 387 3.89
234 fluoroform 064 185 057 042 96 1,2,3,5-tetrachlorobenzene 492 391 4.08  4.04
24  dimethyldisulfide 177 222 157 139 97 22-pcb 490 465 4380 4.82
25¢ propane 236 138 197 206 98 1I-butene 240 222 196 205
26 hexamethylbenzene 511 418 494 497 99° 13-dimethylnaphthalene 442 429 443 446
27 butanethiol 228 280 281 287 100° 1,7-dimethylnaphthalenc 444 423 443 445
28¢ diethylsulfide 195 280 268 267 101° l-methylnaphthalene 3.87 395 4.08 4.07
29 cyclohexane 344 255 283 287 102 26-pch 493 470 483 4385
30° diphenyldisulfide 441 4.62 457 453 103 o-bromotoluene - 292 328 347 342
31 m-fluorobenzylchloride 277 355 295 299 104 2,2'3-trichlorobiphenyl 531 489 522 520
32 1-chloropropane 204 222 192 197 105 hexafluorcbenzene 222 418 320 297
33 2,4-dichlorobenzylchloride 382 401 3.67 369 106° 3-bromothiophene T 262 249 273 272
34 m-chlorotoluene 328 358 330 334 107¢ 123,5-tetramethylbenzene 4.17 391 427 432
35¢ butane . 289 222 239 243 108 halothane 230 301 - 216 219
36 1,2,3-trimethylbenzene 366. 360 3389 393 109 24,6-pcb 547 497 502 5.04
37 1,1difluoroethylene 124 185 072 079 110 1,1-dichloroethylene 213 18 189 197
38¢ 1-chlorobutane 264 280 267 270 111 o-dibromobenzene 364 329 394 3388
39 2,3-dibromothiophene 353 298 322 323 112 1,24,5-tetramethylbenzene 400 382 424 429
40° pentafluorethylbenzene 336 324 3.15 3.18 113 - l-hexene 339 325 317 321
41¢ 1,2,4,5-tetrabromobenzene 513 3.8 506 494 114* ncopentane 311 220 312 328
42  o-dichlorobenzene 338 329 319 3.9 115 chloroform - 197 18 211 206
43¢ 1,2,3,4-tetrachlorobenzene 464 381 401 397 116 Il-fluorobutane 258 280 215 220
44¢ tribromoethene 320 263 337 326 117° pyrene 488 546 490 4388
45 pentane 339 280 301 3.03 118 1,1-dichloro-2,2-diphenylethane 451 495 4838 494
46° isobutane 276 185 261 271 119 iscbutylene 234 185 247 261
47° mirex 528 5.10 526 5.18 120 diphenylmethane 414 440 451 454
48¢ 1,3-dichlorobenzene 360 358 324 323 121 isopropylbenzene 366 335 362 3.67
49* 1,2-dimethylnaphthalene 431 425 441 443 122° naphthalene 330 343 338 334
50¢ 2-ethylnaphthalene 438 432 423 424 123¢ l-heptene ' 399 38 348 350
51¢ cycloheptatriene 263 359 274 274 124 22-dimethylbutane 382 288 345 355
52¢ 3-chlorobiphenyl 458 442 465 464 125 1-fluoropentane . 233 325 279 282
53¢ 3-ethylthiophene - 28 320 272 275 126* o-xylene 312 329 344 349
54 1,3,5-tribromobenzene 451 400 454 448 127¢ ecthylbenzene 315 328 325 326
55¢ B-phenylethylchloride 295 350 331 333 128¢ trichloromethylthiobenzene 378 356 359 361
-56  acenaphthene 392 449 394 395 129° thiophene 181 219 164 162
57 m-dibromobenzene . 375 358 406 398 130 bromochloromethane 141 138 149 147
58 dichlorodifluoromethane 216 220 188 183 131°¢ 1.2-dichlorotetrafluoroethane 282 263 271 265
59 toluene 273" 3.08 3.04 3.05 132¢ 2-chlorobiphenyl 438 443 465 465
60° anthracene 445 485 462 459 133 24’-dichlorobiphenyl 510 4.68 4.83 -4.87
61¢ hexachlorocyclopentadiene 504 400 499 4386 134¢ 135-trichlorobenzene 415 400 348 350
62  3-phenyl-1-chloropropane 355 373 356 358 135 l-octene 457 404 377 378
637 bibenzyl _ 479 4.62 469 471 136  methylbromide 1.19 070 123 107
64¢ 1-chloroheptane 415 404 372 371 137¢ phenylethylsulfide 320 350 337 336
65° 2,4-dichlorotoluene 424 365 360 364 138 1l-cthyl-2-methylbenzene 353 354 381 384
66° 1,1-dichloroethane 179 185 193 202 1399 propylbenzene 372 350 356 358
67¢ (B)-benzothiophene 312 315 324 3.17 140° indane 318 315 306 3.04
68¢ 2-bromothiophene 275 249 262 261 141 2-chloropropane 190 185 222 233
69 chlorodifluoromethane 108 185 075 075 142¢ phenylazide 259 350 283 2.88
70° pentachlorobenzene 517 4.02 462 452 143 24-dibromotetrachlorocyclohexane 398 4.18 425 429
71  9,10-dihydroanthracene 425 4385 431 434 144° tetrachloroethylene 340 3.01 369 352
72 1,3-(bis-chloromethyl)benzene 272 385 349 351 145 1l-nonene 515 427 397 398
73  chlorobenzene 284 3.08 290 290 146 23-dimethylbutane 385 3.01 341 350
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" est

est est est est est

obs logP logP logP obs logP logP logP
no. chemical name logP (eq4) (eq5) (eq6) nmo. chemical name logP (eq4) (cq5) (eq6)
147¢ dichlorofluoromethane 155 185 125 130 184° 2.3,6-trimethylnaphthalenc 473 446 461 464
148° 1,1,22-tetrachloroethane 239 301 291 290 185¢ difluoromecthanc 20 138 020 0.11
149¢ 1.2 4-trimethylbenzene 378 .365 395 398 186 1,24-trifluorobenzene 252 365 263 255
150¢ fluorobenzene 227 308 239 240 187 bromobenzenc 299 308 338 333
151 butylbenzene 426 373 381 3.83 188 hexachloro-1,3-butadiene 478 426 500 486
152¢ .ethylbromide 161 138 198 195 189 vinylbromide 157 138 176 178
153¢ tetrafluoromethane 1.18 220 161 129 190° o-chlorotoluene 342 329 333 336
154 p-cymene 410 393 388 392 191¢ a-chlorotoluene 230 328 3.09 3.10
155¢ . p-chlorotoluene 333 345 317 322 192 1l4-<cyclohexadiene 230 255 242 246
156° 1-bromopropane 210 222 235 234 193 1-bromoheptane 436 404 406 400
157¢ bromocyclohexane 320 308 347 346 194 styrene 295 328 315 3.17
158¢ 2-methylthiophene 233 249 239 241 195 chlorotriflucromethane 1.65 220 156 145
159 diphenylsulfide 445 440 448 447 196° (dimethyl)phenylphosphine 257 335 299 292
160° 1,2,4,5-tetrachlorobenzene 4.82 382 393 391 197 cycloocta-1,5-diene 3.16 323 288 293
161  1,1,1-trichloroethane 249 220 243 252 198 tetrachlorocyclohexane 282 38 350 355
162¢ p-dichlorobenzene 352 345 308 3.10 199 1-bromooctane 489 427 423 417
163  1-bromobutane 275 280 3.15 314 200 2-methyinaphthalene 386 390 4.03 4.01
164¢ p-chlorobiphenyl 461 450 457 456 201 3-methylthiophene 234 249 244 246
165¢ cyclopropylbenzene 327 298 301 3.02 202¢ methylenechloride 125 138 138 135
166° 2,6-dichlorotoluene 429 360 348 354 203 hexachlorobenzene 531 418 509 493
167¢ allene 145 138 142 148 204 indenc 292 315 301 301
168¢ b-phenylethylbromide 309 350 366 3.64 205 terr-butylbenzene 411 326 392 39
169¢ 1,3-butadiene 199 222 188 197 206 1.2-dichlorocthane 148 222 192 191
170 2-chlorothiophene 254 249 214 216 207¢ 1.3,5-trimethylbenzene 342 400 3381 387
171  1-bromopentane 337 325 362 358 208° phenanthrene 446 488 4.69 4.8
172¢ y-phenylpropylbromide 372 373 387 384 209° benzene 213 255 240 239
173 1,3-cyciohexadiene 247 255 247 250 210 3,33-triflucropropylbenzene 331 380 3.19 324
174° . pentamethylbenzene 456 402 465 4.69 211° a-(2,22-trichloroethyl)styrene 456 393 404 413
175¢ p-dibromobenzene - 3.79 345 381 376 212¢ 23-dimethylnaphthalene 440 420 425 428
176 14-pentadicne 248 280 232 242 213 1,3-dichloropropane 200 280 247 247
177 methyliodide 151 070 148 142 214 1234-tetramethylbenzene 4.11 381 426 431
178¢ 1,1-difluoroethane J5 185 104 111 215 stilbene-t 481 462 479 478
179¢ 1-bromochexane 380 386 3.80 375 216 fluorene 4.18 465 422 421
180° m-xylene 320 358 344 349 217¢ 2-fluoro-3-bromotetrachlorocyclohexane 328 4.18 4.06 4.09
181 dibenzothiophene 438 465 444 440 218° allylbenzene 323 350 337 341
182 ethyliodide 200 138 228 234 219° carbontetrachloride 283 220 327 3.10
183 triflucromethylbenzene 301 326 277 280

¢ Training chemicals.

The largest difference in variance explained was for the
topological parameter model. For this model, R? decreased
from 80.8% to 79.5% or 1.3% less variance explained.
However, the standard error for the test chemicals was 0.1
°C lower. For the other two models, the R? of the test
chemicals was within 0.6% of that seen for the training
chemicals. Standard emors for the test chemicals were within
1 °C of the standard error for the training set of chemicals.

Regression analysis of the set of training and test chemicals
combined showed similar results as analysis of the training
set of chemicals. Using only the topological class of indices,
stepwise regression resulted in an eight parameter model to -
estimate boiling point:

BP = —21.9 + 30.6(W) — 21.5(0) + 69.9Cy) +
35.8(%) —106.5Cx0) — 96.1Cxq) — 17.7 Capd) +
' - 19.5(P,0) (1)

=1023, R*=812%, s=39.7°C, F=547

These eight parameters were added to the set of to-
pochemical parameters. Again, stepwise regression was used
to develop a model using the eight topological and all
topochemical indices. The best model to estimate boiling

point consisted of eight parameters again:

BP = —332.9 + 134.6(y) + 10.9(P,o) + 110.00C,) —
- 133.8¢¢™ — 80.2C%°0 + 176.5C") + 44.8(¢") +
16.8C¢"e0) )

n=1023, R*=961%, s=180°C, F=3151

Only two of the topological indices used in eq 1 were
retained by the regression procedure in eq 2: Sy and Piq.
The improvement in R? was very significant, going from

-81.2% for eq 1 to 96.1% for eq 2. Also, the model error
decreased by over half, dropping from 39.7 °C to 18.0 °C.

Using all subsets regression on the eight parameters of eq
2 and the three geometric parameters resulted in a ten
parameter model as follows:

BP = —285.7 + 125.3¢) + 10.6(P,o) + 74.5(0C,) —
125.0C%") — 86.3Cx"0) + 175.3(%") + 49.1%H +
18.7Cx'po) — 9.1C°W,) + 8.1C°W) 3)

n=1023, R®=963%, s=17.6°C, F=2650

Equation 3 contains all of the parameters from eq 2 plus
the two variants of the 3-D Wiener number. The addition
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Table 2. Symbols, Definitions, and Classifications of Topological and Geometrical Parameters s e

Topological

mean information index for the magnitude of distance

degree complexity
graph vertex complexity
graph distance complexity

path connectivity index of order k = 0—6
cluster connectivity index of order k = 3~5
path-cluster connectivity index of order h = 4—6
chain connectivity index of order h = 5—6
number of paths of length h = 0-10

Balaban's J index based on distance

information index for the magnitudes of distances between all possible pairs of vertices of a graph

Wiener index = half-sum of the off-dxagonal clements of the dxstancc matrix of a graph

information conteat of the distance matrix pamuoned by frequeacy of occurreaces of distance &

order of neighborhood when IC; reaches its maximum value for the hydrogen-filled graph

a Zagreb group parameter = sum of square of degree over all vertices

a Zagreb group parameter = sum of cross-product of dcgrm over all neighboring (connected) vertices

Topochemical
Iorn information content or complexity of the hydrogen-suppressed graph at its maximum neighborhood of vertices
IC, mean information content or complexity of a graph based on the rth (r = 0—6) order neighborhood of vertices in & hydrogen-filled graph
SIC,  structural information content for rth (r = 0—6) order neighborhood of vertices in a hydrogen-filled graph
CIC, complementary information content for rth (r = 0—6) order neighborhood of vertices in 2 hydrogen-filled graph

byb bond path connectivity index of order k =0—6

bbc  bond cluster connectivity index of order i =3—5
by bond chain connectivity index of order A=5—6 ..
Bybec  bond path-cluster connectivity index of order k= 4—6
Byv valence path connectivity index of order i = 0—6

bye  valence cluster connectivity index of order h =3—5
bYa  valence chain connectivity index of order h = 5—6
bvpe  valence path-cluster connectivity index of order h = 4—6
JB Balaban's J index based on bond types

Jx Balaban’s J index based on relative electronegativities
JX Balaban's J index based on relative covalent radii

Vw van der Waal's volume

Geometric

3dwW  3-D Wiener number for the hydrogen-suppressed geometric distance matrix
Wy  3-D Wiener number for the hydrogen-filled geometric distance matrix

Table 3. Summary of Regression Results for the Training Set of Chemicals and Predictions of Test Set of Chemicals for Dependent Variable

BP (°C) for Three Parameter Classes

training set (N = 512) test set (N =1511)
parameter class variables included F R? s R s
topological IC, 0, M2, %0, 5%, %% *xo ¢ St Pior I 191 808 409 795 4038
topological + topochemical &, Puo, ICo, 2, 3o, &, 47, Gc, “'ec 1547 965 114 960 180
topological + topochemical + geometric S, Pio, ICo, %%, 3% % 4™ e A "rcs °Wr 1486  96.7 16.8 9.1 - 177

Table 4, Summary of Regression Results for the Training Set of Chemicals and Predictions of Test Set of Chemicals for Dependent Variable

Log P for Three Parameter Classes
training set (N = 114) test set (N = 105)
parameter class variables included F . R s R s
topological IDW, 2y, 3, S, 3% cm Xcm rcs P2, Po 407 719 057 738 0.60
topological + topochemical Sya e SICL 3¢, “xPec, %%, TY 1226 89.0 0.40 85.6 045
topological + topochemical + geometric Syc e, SIC, 4%, &, ¥Y, W 1230 89.0 0.39 855 045

of the two 3D-Wiener numbers resulted in only a very skight
increase in the predictive power of the model. The standard
error (s) decreased by only 0.4 °C with the addition of the
geometric parameters and R? increased from 96.1% to 96.3%,
an increase of only 0.2% of the variance explained by eq 2
over eq 3. A scatterplot of observed boiling point vs
estimated boiling point using eq 3 is shown in Figure 2.

3.2. Log P Estimation. Stepwise regression analyses for
log P of the training set of chemicals is summarized in Table
4. The topological parameter model included nine variables.
These nine variables explained 77.9% of the variance with

a standard error of 0.57. Regression analysis of these nine

" topological parameters and the topochemical parameters

resulted in a better model with only seven parameters. This
model included two topological parameters and five to-
pochemical. The R? increased from 77.9% to 89.0% and s
decreased from 0.57 to 0.40. Adding the geometric param- -
eters provided a very minor increase. For this model, 3°W
replaced 3y®, the R? remained the same, and s decreased from
0.40 to 0.39.

Application of these models to the test set of chemicals
resulted in slightly decreased variance explained and slightly
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Figure 2. Scatterplot of observed boiling point us estimated boiling
point using eq 3 for 1023 diverse chemicals.
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increased standard error. All R? for the test set differed by

_ no more than 4.1% of the R? seen for the training set. The
standard error of the test set of chemicals was within 0.06
of the standard error of the training set. These results can
be seen in Table 4.

As with the BP data set, regression analyses of the

combined training and test sets was similar to the analyses

of the training sets. Starting with topological parameters

only, the following seven parameter model was developed

to estimate log P:

l'og.P = —1.42 + 1.08(W) — 1.58(2x) + 1.51(6 %) —
0.92(6)5(9 — 0.32(P,) + 020(P,¢) + 1.97Q) @

n=219, B=189%, s=054, F=112

The seven parameters of eq 4 were added to the set of
topochemical indices, and a new model was developed using

stepwise regression. This mew model consisted of ten .

parameters:

log P = —2.13 — 0.20(%) + 0.18(Po) — 1.86(ICy) +
1.33(CIC,) — 0.92(CIC,) — 1.36(%") + 5.76(%") —
2.98('%") +0.54(¢") — 039C¢' 0 )

n=219, R*=908%, s=036, F=206

As with the boiling point models, only two of the
topological parameters were retained in eq 5, 2y and Pyo.
Also, just like the boiling point models, the addition of the
topochemical parameters resulted in a significant increase
in the quality of log P estimation.

_All subsets regression using the ten parameters of eq 5
and the geometric parameters resulied in the following 11
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Figure 3. Scatterplot of observed log P vs estimated log P using
eq 6 for 219 diverse chemicals. :

parameter model:

log P = —5.60 + 0.19(Po) — 1.46(ICy) + 1.09(CIC,) —
0.77(CIC;) — 1.36¢¢") + 5.34C¢") — 3.41(%") +
0.55¢%") — 0.41Cx"0) + 1.10(Vy) — 0.17C°W) (6)

n=219, RR=912%, s=035 F=19%

Equation 6 differs fiom eq 5 with the removal of 2y and
the addition of Vi and 3°W. The addition of the geometric
parameters resulted in only slight improvement in the ability
to estimate log P.

Estimated log P values using eqs 4—6 may be found in

Table 1. Figure 3 shows a scatterplot of observed log P vs
estimated log P using eq 6. : . :

4. DISCUSSION

The objective of this paper was to carry out a comparative
study of the effectiveness of topological, topochemical, and
geometrical parameters in SAR. To this end, we used these
three classes of parameters in predicting normal boiling point
of a diverse set of 1023 chemicals and log P of a set of 219
chemicals. To further assess the utility of these models for
predictive purposes, the data sets were split into training and
test sets by randomly assigning chemicals to one or the other.
Models developed using the training sets of chemicals were
used to predict the relevant property of the test chemicals.

As can be seen in Tables 3 and Table 4, the models -
developed using the training sets of chemicals could predict
BP and log P of the test chemicals as accurately as they
could estimate these properties for the training chemicals.
Therefore, it seemed reasonable to combine the training and
test sets to develop the regression models.
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Both for boiling point and log P, topological variables gave
a reasonable predictive model. The addition of topochemical
parameters to the set of independent variables resulted in
substantial improvement in model performance. Further
addition of geometrical variables gave slight improvement
in explained variance in these data.

Our modeling approach in this paper was a hierarchical
one, beginning with parameters derived from the simplest
(topological) representation of molecules. Such indices are
derived from simple graphs which are unweighted and,

consequently, do not represent the reality of chemicals very .

well. The next tier of variables, topochemical indices,
quantify information both about topology as well as atom
types and bonding pattern. Finally, geometrical or 3-D
parameters were used for modeling. The results show that
the addition of chemical information makes a substantial

_ contribution to the predictive power of the models for both

boiling point and log P. It would be interesting to see
whether this trend is valid for other properties.
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Numerous quantitative structure—activity relationships (QSARs) have been developed using topostructural,
topochemical, and geometrical molecular descriptors. However, few systematic studies have been carried
out on the relative effectiveness of these three classes of parameters in predicting propertics. We have
carried out a systematic analysis of the relative utility of the three types of structural descriptors in developing
QSAR models for predicting vapor pressure at STP for a sct of 476 diverse chemicals. The hierarchical
technique has proven to be useful in illuminating the yelationships of different types of molecular description

- information to physicochemical property and is a useful tool for limiting the number of independent variables
in linear regression modeling to avoid the problems of chance correlations.

1. INTRODUCTION

. A large number of quantitative structure—activity relation-
ship (QSAR) studies have been reported in recent literature
using theoretical molecular descriptors in predicting physi-
cochemical, pharmacological, and toxicological properties
of molecules.1~15 Such descriptors comprise graph invari-

ants, geometrical or 3-D parameters, and quantum chemical

indices. One of the reasons for the current upsurge of interest
is the fact that such descriptors can be derived algorithmi-
cally, ie., can be computed for any molecule, real or
hypothetical, using standard software. Both in pharmaceuti-
cal drug design and in risk assessment of chemicals, one
has to evaluate potential biological effects of chemicals.

Evaluation schemes based on property—property correlation .

paradigms are not very uscful in practical situations, because,
for most of the candidate structures, the experimental data
necessary for proper evaluation are not available. This is
especially true for the thousands of chemicals rapidly
produced by methods of combinatoric chemistry'® as well
- as for the large number of chemicals present in the Toxic
Substances Control Act (TSCA) Iiventory.!?

A large number of physicochemical and biological end-
points are necessary for estimating the ecotoxicological fate,
transport, and effects of environmental pollutants.'’"!? The
vapor pressure of chemicals is important in determining the
partitioning of chemicals among different phases once they
are released in the environment. Many QSARs have been

reported for predicting normal vapor pressure of chemicals.
Such studies are usually carried out on small sets of

congeneric chemicals. Also, many QSARs use experimental

data as inputs in the model. Therefore, it becomes necessary
to develop QSARs based on nonempirical parameters which
can predict the vapor pressure for a heterogeneous collection

of chemicals so that such models are generally applicable.

With this end in mind, in the current paper we have carried
out a QSAR study of 476 diverse chemicals using three types
of nonempirical molecular descriptors.

* All correspondence should be addressed to Dr. Subhash C. Basak,
Natural Resources Research Institute, University of Minnesota, Duluth, 5013
Miller Trunk Highway, Duluth, MN 55811.

@ Abstract published in Advance ACS Abstracts, June 1, 1997.

2. MATERIALS AND METHODS

2.1. Normal Vapor Pressure Database. Measured
values for a subset of the Toxic Substances Control Act

_ (TSCA) Inventory'? were obtained from the ASTER (As-
- sessment Tools for the Evaluation of Risk) database.2® This
subset consisted of a diverse set of chemicals where vapor

pressure (pvp) Was measured at 25 °C and over a pressure

. range of approximately 3—10 000 mmHg. Due to the size

of the dataset being used in this study, data for these
chemicals will not be listed in this paper. An electronic copy

of the data may be obtained by contacting the authors.

2.2. Computation of Topological Indices. The majority
of the topological indices (TIs) used in this study have been

‘calculated by the computer program POLLY 232! These

indices include Wiener index,? the molecular connectivity
indices developed by Randi¢ and Kier and Hall,'® informa-
tion theoretic indices defined on distance matrices . of
graphs, %% and a set of parameters derived on the neighbor-
hood complexity of vertices in hydrogen-filled molecular
graphs.226-28 Balaban’s J indices?®3! were calculated using
software developed by the authors. :

_van der Waal's volume (V.)**~3 was calculated using
Sybyl 6.2.35 The 3-D Wiener numbers® were calculated by
Sybyl using an SPL (Sybyl Programming Language) program
developed by the authors. Calculation of 3-D Wiener
numbers consists of the summation of the entries in the upper
triangular submatrix of the topographic Euclidean distance
matrix for a2 molecule. The 3-D coordinates for the atoms
were determined using CONCORD 3.2.1.¥ Two variants
of the 3-D Wiener number were calculated, 3°Wy and 3PW,
where hydrogen atoms are included and excluded from the .
computations, respectively. :

Table 1 provides a complete listing of all of the topological

" and geometrical parameters which have been used in this

study.. The listing includes the symbols used to represent
the parameters and brief definitions for each of the param-

_ eters.

Two additional parameters were used in modeling normal
vapor pressure, HB;, and dipole moment (). HB, is a
simple hydrogen bonding parameter calculated using a
program developed by Basak,* which is based on the ideas
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Table 1. Symbols and Definitions of Topological and Geometrical
Parameters

BASAK ET AL.

Table 2. Classification of Parameters used in-Modeling Normal
Vapor Pressure [1ogio(pwp)]

information index for the magnitudes of distances
between all possible pairs of vertices of a graph
_mean information index for the magnitude of distance

Wiener index = half-sum of the off-diagonal elements
of the distance matrix of a graph

degree complexity

graph vertex complexity _

graph distance complexity :

information content of the distance matrix partitioned by
frequency of occurrences of distance k

information content or complexity of the hydrogen-
suppressed graph at its maximum neighborhood of
vertices

order of neighborhood when IC; reaches it maximum
value for the hydrogen-filled graph

M, aZagreb group parameter = sum of square of degree

over all vertices

(s}

M, a Zagreb group parameter = sum of cross-product of

degrees over all neighboring (connected) vertices

IC mean information content or complexity of a graph .
based on the r®(r = 0—5) order neighborhood of vertice:
in a hydrogen-filled graph

SIC,  structural information conteat for rth (r = 0—5) order
neighborhood of vertices in a hydrogen-filled graph

CIC, complmentary information content for rth (r = 0—5)
_order neighborhood of vertices in a hydrogen-filled grap!

by path connectivity index of order h = 0—6 .

Bye  cluster connectivity index of order k =3—6

bype  path-cluster connectivity index of order b = 4—6

%a  chain connectivity index of order k=5,6

beb bond path connectivity index of order k= 0—6

byb.  bond cluster connectivity index of order k =3—6

b5« bond chain connectivity index of order k=5, 6

bybpe  bond path-cluster connectivity index of order it = 4—6

by valence path connectivity index of order k= 0—6

By¥e  valence cluster connectivity index of order & = 3—6

byve  valence chain connectivity index of order b =5, 6

by¥e  valence path-cluster connectivity index of order h =4—6

Py number of paths of leagth h=0-10

J Balaban's J index based on distance

B Balaban's J index based on bond types

X Balaban's J index based on relative electronegativities

J¥ . Balaban's J index based on relative covalent radii

Vw  vander Waal’s volume '

3dW  3-D Wiener number for the hydrogen-suppressed
geometric distance matrix

Wy 3-D Wiener number for the hydrogen-filled geometric

of (gsu et al¥® Dipole moment was calculated using Sybyl
6.2.

23. Data Reduction. The set of 92 TIs was partitioned
into two distinct subsets: topostructural indices and to-
pochemical indices. The distinction was made as follows:
topostructural indices encode information about the adjacency
and distances of atoms (vertices) in molecular structures
(graphs) irrespective of the chemical nature of the atoms
involved in the bonding or factors like hybridization states
of atoms and number of core/valence electrons in individual
atoms, while topochemical indices quantify information
regarding the topology (connectivity of atoms) as well as
specific chemical properties of the atoms comprising a
molecule. Topochemical indices are derived from weighted
molecular graphs where each vertex (atom) is properly
weighted with selected chemical/physical properties. These
subsets are shown in Table 2.

The partitioning of the indices left 38 topostructural indices
and 54 topochemical indices. At this point no further data
reduction is called for, since the ratio of the number of

topological topochemical geometric  other parameters
LY Iors Vw HB;
'I_W ICo—1Cs ow U
W SICG-SICs ~ ®Wa

r CIC,—CICs

HY Y
H 2%

IC e and &

o Lo ec

M‘ oxv_sxv
M, vac_. Yo
%% 2’ and S’
3e—Sxc e~

Yoada P

PC

Po—Pso ¥
J

«observations in the training set (342) to the total number of
variables (92 maximum) falls well within the condition limits .
suggested by Topliss and Edwards® for reducing the
probability of -spurious correlations even at the more :
conservative R? > 0.7 level. '

~ 24. Statistical Analysis and Hierarchical QSAR.
Initially, all TIs were transformed by the natural logarithm
of the index plus one. This was done since the scale of some
indices may be several orders of magnitude greater than that
of other indices. The geometric parameters were transformed
by the natural logarithm of the parameter.

Two regression procedures were used in developing the
linear models. When the number of independent variables
was high, typically greater than 25, a stepwise regression
procedure was used to maximize the improvement of the -

. explained variance (R?). When the number of independent

‘variables was smaller, all possible subsets regression was
used. Models were then optimized to reduce problems of
variance inflation and collinearity. Regression modeling was
conducted using the REG procedure of the statistical package
SAS 4 A

The vapor pressure data (p.p) Was split into a training sct
(342 compounds) and a test set (134 compounds), an
approximately 75/25 split. Models were developed using
the training set of chemicals and then used to predict the

Pugp values of the test chemicals. Final models were then
developed using’ the combined training and test set of
chemicals. :

Five sets of indices were used in model development.
These sets were constructed as part of a hierarchical approach
to QSAR modeling. The hierarchy begins with the simplest
indices, the topostructural. After developing our initial model
utilizing the topostructural indices, we increase the level of
complexity. To the indices included in the best topostructural
model, we add all of the topochemical indices and procecd
to model py,, using these parameters. Likewise, the lﬂd}"“
included in the best model from this procedure are combincd
with the geometrical indices and modeling is conducted once
again. In addition to this hierarchical approach, models were
also constructed using the topochemical indices alone and

the geometrical indices alone for purposes of comparison.

3. RESULTS

Stepwise regression analyses for logio(Pusp) Of the trainix}g
set of chemicals is summarized in Table 3. As shown 1n
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Table 3. Summary of the Regression Results for the Training Set and the Prediction Results for the Test Set for the Hierarchical Analysis of

log10(Pap)

training set (N = 342) test set (N = 134)
parameter class variables included F R s R s

topostructural Ly, e, Py 1046 481 056 579 046
topochemical SIC,, SIC,, SIC;, CIC,, CIC:, 3¢%c, X% ", *"c J 126.3 792 036 85.8 027
geometrical DWW, OWy, Vr 168.9 518 0.53 622 0.44
topostructural + topochcmlal Ly, Pg, IC4, SIC;, CIC, 3, 4% 32" % X e 1125 804 035 84.7 028
" all indices HY, SIC;, SIC,, CIC,, CIC;, %c, ™ 3x" Gx , Pg, Py 1174 796 035 842 028
ttg -+ HB; +u ) lx P, Py, IC,, lxh, 3xbc, lx 3x' 3x 160.8 829 032 83.1 - 029

Table 3, the topostructural model using three parameters
resulted in an éxplained variance (R?) of 48.1% and a
standard error (s) of 0.56. Addition of the topochemical
parameters to the three topostructural parameters led to 2
significant increase in the effectiveness-of the model. The
resulting model used 12 parameters, two topostructural and
ten topochemical. This model had an R? of 80.4% and s of

0.35. All subsets regression of the two topostructural and
" .ten topochemical indices retained thus far and the three
geometrical indices resulted in the selection of the same 12
parameter model, thus the geometrical - indices did not
contribute significantly to model dcvclopmcnt. Several other
models were constructed for comparative purposes. Using
topochemical indices only, a ten parameter model was
developed which had an R? of 79.2% and s of 0.36.- A
geometrical model was developed which utilized all three
geometrical indices and resulted in an R? of 51.8% and s of
0.53. Finally, two additional stepwise models were devel-
oped. One model simply used all indices for a comparison

between a simple stepwise analysis of the data and the results

of the hierarchical procedure. This resulted in an 11
parameter model with R? of 79.6% and s of 0.35. The second
model added two new parameters, HB; and 4. We thought
that it might be possible to improve our modeling by adding
in some -other nonempirical parameters which could be
important to the determination of normal vapor pressure. We
selected the parameters HBy and y, since they would be
important in intermolecular interactions which could have a
dramatic effect on vapor pressure. .To look at the addition
of these parameters, we conducted a stepwise regression
analysis using all topostructural, topochemical, and geometric
indices so that we would be able to optimize our model,
just as we had done with the previous models. The addition
of these parameters led to the selection of a ten parameter
model which included three topostructural indices, nine
topochemical indices, and HB). This was the best model
yet, with an R? of 82.9% and s of 0.32.

Application of these six models to the test st of chemicals
resulted in comparable R? and s; actually all models improved
slightly on their predictions of the test set, and these values
are also listed in Table 3. Based on these results, we decided
that it was pointless to develop further models using only
geometrical parameters. Also, based on the findings that
the geometrical indices did not contribute significantly to
any of the training models, they were dropped from the
development of final models for the full set of 476 chemicals.
However, even though the topostructural indices did not
perform well in modeling vapor pressure by themselves, they
will be used in model development since they did contribute
significantly to most of the models.

Regression analyses of the combined set of 476 chemicals
showed similar results for estimating logio(Pvap) 2s analysis

.
.

of the training set. Using only thc topostructural indices,
stepwise regression analysis resulted in a five parameter
model to estimate vapor pressure: :

10g,(Pyap) = 4- 88 +0.20(0) — 2.56("%) + 0.49(*x0) +
y 0.79C%0) +0.98(y) (1)

n=476, R*=51.5%, s=053, F=99.7

_ Stepwise regression using the five topostructural param- .
‘eters and all topochemical parameters resulted in the selection
of the following seven parameter model:

10816(Pvap) = 844 — LT1(y) + 1.25(P,0) — 5.69(IC,) +
© 391(IC,) — 1.24(0C,) + 1.41C¢°9 — 1.70(%") )

=476, R®*=179.3%, s=0.34, F=2240

Only two of the topostructural indices used in eq 1 were
retained by the stepwise regression procedure used to produce
¢q 2: !y and Pyp. The improvement in'R? was significant,
increasing from 51.5% for e¢q 1 to 79.3% for eq 2. Also, .-
the model error-decreased significantly, dropping by. 0.19
logarithmic units. Since we have dropped the geometrical
indices, this becomes our final hierarchical model.

The stepwise regression analysis of only topochemical
parameters resulted in a 12 parameter model: -

10g,0(Ppp) = 6.65 — 3.44(IC,) — 1.33(1Cy) +
3.47(SIC,) +0.87(CIC,) — 0. 48(4)5") + 144G —
1.00('y") —0.41C¢") — 0.70C¢") — 108’9 +
' '1-42(‘x &) — 1230 3)

n=476, B*=1758%, s=038, F=1205

This model which is inferior to the topostructural +
topochemical model (eq 2), because its variance explained
is lower and, more importantly, it requires more independent
variables (parameters) to achieve this explanation of variance.

Stepwise regression of all indices resulted in the selection
of an 11 parameter model. This approach selected three

topostructural indices and eight topochcmwal indices to arrive
at the following model:

10g10(Pu) = 785 — 2.560") + 117¢%0) -
5.010C,) + 3.65(1C;) — 099(C,) + 0.51(CIC,)

1.54('") — 0.36C%") — 0.36("y") — 1.40C¢'0) (@)

n=476, R>=804%, s=0.33, F=173.4
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Figure 1. Scatterplot of observed logio(pvap) vs estimated logyo-
(Pvap) using eq 5 for 476 diverse compounds.

While eq 4 shows some slight improvements over eq 2,‘

the hierarchical model, eq 2 is preferred since it is a simpler
model using seven indices instead of 11 and based on a
companson of F values it is a more robust modcl than that
in eq 4.

Finally, we conducted the stepwise regression modeling

using all topostructural and topochemical indices with HB;
and y for the complete set of 476 chemicals. The resulting

ten parameter model used three topostructural indices, six-

topochemical indices, and HBy:

iog,o(p“p) = 9.67 — 3.66('y) + 0.35(P,) + 0.74(P,) —
1.78(IC,) — 3.33(SIC,) — 0.81(CIC,) + 2. 05(2x") -
1.73¢x") — 0.79Cy") - 0.29HB,) (5)

. n=476, R>=843%, s=029, F=2495

Equation 5 shows marked improvement over eq 2,
justifying the addition of indices to the model. Also, it meets
the criteria on which eq 4 was judged to be lacking. Overall,
there is an improvement in variance explained of 5%, with
a comparable decrease in standard deviation. A scatter plot
of observed logio(pvp) versus estimated logio(pvap) Using eq
5 is presented in Figure 1.

4. DISCUSSION

The purpose of this paper was 2-fold: (a) to study the
utility of algorithmically-derived molecular descriptors in
developing QSAR models for predicting the vapor pressure
of chemicals from structure and b) to investigate the relative

BASAK ET AL.

Table 4. Summary of the Chemical Class Composition of the
Normal Vapor Pressure Dataset

compd classification no. of compds pure substituted

total normal vapor pressure dataset 476

hydrocarbons 253

non-hydrocarbons* 223

nitro compounds 4 3 1
amines 20 17 3
nitriles 7 6 1
ketones 7 7 0
halogens 100 95 5
anhydrides 1 1 0
esters 18 16 2
carboxylic acids 2 2 0
alcohols 10 6 4
sulfides 39 38 1
thiols 4 4 0
imines 2 2 0
epoxides 1 1 0
aromatic compounds® 15 10 4
fused-ring compounds® 1 1 0

< The non-hydrocarbons are further broken down into the following
groups. ¢ The 15 aromatic compounds are a mixture of 11 aromatic
hydrocarbons and four aromatic halides. ¢ The only fused-ring com:
pound was a polycyclic aromatic hydrocarbon.

roles of topostrucmral. topochemical, and geometrical indices
in the estimation of standard vapor pressure. .
Results described in this paper (eqs 1—5) show that
nonempirical parameters derived predominantly from graph
theoretic models of molecules can estimate normal vapor
pressure of diverse chemicals reasonably well. The ex-
plained variance of data (R* = 84.3%) is excellent in view
of the fact that the database of chemicals analyzed in this

" paper is very diverse (see Table 4). It should be mentioned

that most published QSAR models for the estimation of vapor
pressure have dealt with much smaller data sets with limited
structural variety.4%43

The relative effectiveness of topostructural, topochemical,
and geomctrical indices in predicting normal vapor pressure
of chemicals is evident from the result prcscntcd above.
Equation 1 explains over 51% of variance in the data. All
parameters used to derive eq 1 are topostructural, i.e., they '
are parameters which encode information about the adjacency
and distance of vertices in skeletal molecular graphs without .
quantifying any explicit information about such chemical
aspects like bond order, electronic character of atoms, etc.
Yet, the high explained variance of the property indicates
that adjacency and distance in chemical graphs, being general
descriptors of molecular size, shape, and branching, are
important in predicting properties. This may explain the
success of parameters like simple connectivity indices in
estimating many diverse properties.!

Equation 3 is derived only from topochemical indices. The
explained variance of vapor pressure (75.8%) shows that
topochemical parameters, as a class, expldin a larger fraction
of the variance as compared to models derived from only
topostructural indices (eq 1). Geometrical parameters were
dropped from the set of descriptors after their limited success
in prediction for the training and test sets. This is in line
with our earlier studies with normal boiling point and
hydrophobicity, where it was reported that the addition of
geometrical indices could not significantly improve the
predictive power of QSAR models derived from a combined
set of topostructural and topochemical parameters.'S It would
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be interesting to see whether this pattern holds good for other
properties as well. Finally, the addition of the simple
nonempirical parameter, HB;, which contains information
relevant to intermolecular interactions further improves our
ability to estimate normal vapor pressure resulting in an
explained variance of 84.3% (eq 5).
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ABSTRACT

* Four classes of theo'retical structural parameters, viz., topoétructural, topochemical,
geometrical and quantum chemical descriptors, have been used in the development of
quantitative structure-activity relationship (QSAR) models for a set of sixty-nine
benzene derivatives. None of the individual classes of parameters was very effective in
predicting toxicity. A hierarchical approach was followed in using a combination of the
four classes of indices in QSAR model development. The results show that the
hierarchical QSAR approach using the algorithmically derived molecular descriptors can

estimate the LC,, values of the benzene derivatives reasonably well.

KEYWORDS
hierarchical QSAR; topological indices; geometrical indices; quantum chemical

parameters; aquatic toxicity; benzene derivatives




INTRODUCTION

| ‘Today s toxicdlogist is faced with a myriad of unknowns. In 1996 approximétely 1.26
mllllon new chemicals were registered W|th the Chemical Abstract Service (CAS),
bnngmg the total number of registered chemlcals to around 15.8 million [1]. With such a
large number of chemicals being registered yearly, it is impossible to test all of them
exhaustively for their effects on the environment and human health. Chemicals can only
be evaluated as they are called into questioﬁ, and for many of these compounds there
will be little or no test data available. Therefore, when the issue 6f hazard assessment
comes .up, it becomes difficult at best to prdvide any useful suggestions or analyses for
many of the regiétered chem.icals, including some which are in commerce today. To

- complete the battery of tests necessary for the proper hazard assessment of a single
compouhd is an extremely costly procedure and there is simply not enough time or
money to complete these test batteries for all compounds which ére registered today
[2]. As a result, when we need to evaluate the human health or ecological hazards
posed by a chemical it becomes ever more impoﬁant that we have accurate methods
for estimating the physicochemical and biological properties of molecules.

Quantitative structure-activity relationships (QSARs) have come into widespread
use for the prediction of various molecular properties and biological responses.
Traditional QSARs use empirical properties; e.g., boiling point, melting point, octanol-
water partition coefficient; or empirically derived parameters; e.g., linear free energy

related (LFER) and linear solvation energy related (LSER) parameters; for the




prediction of other endpoints [3-8]. However, due to the scarcity of available data for the
majority of chemicals fhat need to be evaluated for ecotoxicological risk assessment,
these phyéicochémical properties necessary for traditional QSAR model development
may not be known. When this is the case, it is imperative that we have methods thaf
make use of nonempirical parameters. One of the fundamental principles of
biochemistry is that activity is dictated by structure [9]. Following this principle, one can
use theoretical molecular descriptors which quantify structq(ai aspects of the molecular
structure [10-27]. These theoretical descriptors can be generated directly from the
molecular structure alone, without any input of 'experinﬁental data.

Topological indices (Tls) are numerical graph invariants that quantify certain
aspecfs. of molecular structure. Tls are sensitive to such structural features as size,
shape, bond order, branching, and neighborhood patterns of atoms in molecules. They

can be derived from simple linear graphs, muitigraphs, weighted graphs, and weighted

pseudographs. Tls derived from these different classes of graphs will encode different |

types of information about molecular architecture. The different classes of Tls provide
us with nonempirical, quantitative descriptors thét can be used in place of
experimentally derived descriptors in QSARSs for the prediction of properties.

Our recent studies have focused on the role of different classes of theoretical
descriptors of increasing levels of complexity and their utility in QSAR [28-31]. This
takes the form of a hierarchical approach which examines the relative contribﬁtions of
parameters of gradually increasing complexity; e.g., structural, chemical, shape, and

quantum chemical descriptors; in estimating physicochemical and biological properties.




In this paper we have reported the utility of this hierarchical approach in modeling the

acute aquatic toxicity (LCs,) of a congeneric set of sixty-nine benzene derivatives.

THEORETICAL METHODS

Database

Acute aquatic toxicity [-log(LCs)] in fathead minnow (Pimephales promelas) data was

taken from the work of Hall, Kier and Phipps [32]. Their data was compiled from eight

other sodrces, as well as some originail work which was conducted at the U.S.
Environmental Protection Agency (USEPA) Environmental Research Laboratory in .
Duluth, Minnesota. The complete set of fathead minnow data included 69 benzene
derivatives. According to the authors, the set of benzene derivatives were tested using
methodologies which were comparable to their 96-hour fathead minnow toxicity test
system. The derivatives chosen for this study have seven different substituent groups
that are all present in at least six of the molec_uléé. These groups consist of chloro,

bromo, nitro, methyl, methoxyl, hydroxyl, and amino substituents (Table ).
Computation of Indices

Four distinct sets of theoretical descriptors have been used in this study. These sets

include topostructural, topochemical, geometric, and quantum chemical indices. The




topostructural and topochemical indices fall into the category normally grouped together
as topological indices. The geometrical indices are three-dimensional Wiener number
for h'ydrogén—filled molecular structure, hydrogen-suppressed molecular structure, and
van der Waals volume.

Topostructural indices (TSls) are topological indices which only encode
information about the adjacency and distances of atoms (vertices) in molecular
structures (graphs), irrespective of the chemical nature of the atoms involved in bonding
or factors such as hybridization states and fhe number of core/valence electrons in
individual atoms. Topochemical indices (TCls) are parameters that quantify information
regarding the topology (connectivity of atoms), as well as specific chemical properties of
the atoms comprising a molecule. These indices are derived from weighted molecular
graphs where each vertex (atom) or edge (bond) is properly weighted with selected
chemical or physical property information. The sets of topostructural and topochemicél

indices are shown in Table Il
Topological Indices

The 102 topological indices used in this study, both the topostructural and the
topochemical, have been calculated by POLLY 2.3 [33] and software developed by the
authors. These indices include Wiener index [34], connectivity indices developed by
Randié [35] and higher order connectivity indices formulated by Kier and Hall [36],

bonding connectivity indices defined by Basak et al. [37], a set of information theoretic




indices defined on the distance matrices of simple molecular graphs [38,39] and
neighborhood complexity indices of hydrogen-filled molecular graphs [{40,41], and
Balaban's Jindices [42-44]. Table lll provides the list of the topostructural,

‘topochemical, and geometrical indices included in this study.
Geometrical Indices

Van der Waals volume, V,, [45-47], was calculated using Syby! 6.1 from Tripos
Associates, Inc [48]. The 3-D Wiener numbers were calculated by Syby/ using an SPL
(Syby! Programming Language) progfam developed in our lab [49]. Calculation of 3-D
‘Wiener numbers consists of the sum entries in the upper triangular submatrix of the
topographic Euclidean distance matrix for a molecule. The 3-D coordinates for the
atoms were determined using CONCORD 3.0.1 [50]. Two variants of the 3-D Wiener
number were calculated: W, and °W. For *W,, hydrogen atoms are included in the

computations and for W, hydrogen atoms are excluded from the computations.
Quantum Chemical Parameters

The following quantum chemical parameters were calculated using the Austin Model
version one (AM1) semi-empirical Hamiltonian: energy of the highest occupied’

molecular orbital (E.ouo), €nergy of the second highest occupied molecular orbital

(Evomor), €nergy of the lowest unoccupied molecular orbital (E uo), energy of the second




lowest unoccupied molecular orbital (Ewer), heat of formation (AH,), and dipole moment

(1). These parameters were calculated using MOPAC 6.00 in the SYBYL interface [51].

Data Reduction

Initially, all topological indices were transformed by the natural logarithm of the index
plus one. This was done to scale the indices, since some may be several orders of
magnitude greater than others, while other indices may equal zero. The geometric
indices were transformed by the natural logarithm of the index for consistency, the
addition of one was unnecessary.

The set of eighty-one topological indices was then partitioned into two distinct
vsets, the topostructural indices (thirty-four) and the topochemical indices (forty-seven).
To further reduce the number of independent variables for model construction, the sets
of topostructural and topochemical indices were further divided into subsets, or clusters,
based on the correlation matrix using the SAS procedure VARCLUS [52]. This
procedure divides the set of indices into disjoint élusters, such that each cluster is
éésehtially unidimensional.

| From each cluster we selected the index most correlated with the cluster, as well
as any indices which were poorly correlated with their cluster (R’ < 0.70). These indices
were then used in the modeling of the acute aquatic toxicity of benzene derivatives in
fathead minnow. The variable clustering and selection of indices was performed

independently for both the topostructural and topochemical indices. This procedure




result.ed in a set of five topostructural indices and a set of nine topochemical indices.
| Reducing the number of independent variables is critical when atterﬁpting to

" model small datasets. The sfnaller the dataset is, the greater the chance of spurious

error when using a large number of indepen_dent variables (descriptors). Tobliss and

Edwards have studied this issue of chance correlations [53]. For a set with about

seventy dependent variables (observations), to keep the probability of chance

correlations less than 0.01, we can use at most forty independent variables. This

number is dependent on the actual correlation achieved in the modeling process, with a

high correlation we have a better chance of using more variables with the same limited -

probability of chance correlations. In this study we are well below the cut-off of forty. In
fact, the total number of descriptors which will be used for model construction ahd
estimation is twenty-three, well within the bounds of the Topliss and Edwards criteria

[53].
Statistical Analysis and Hierarchical QSAR

Regression modeling was accomplished using the SAS procedure REG on seven
distinct sets of indices. These sets were constructed as part of a hierarchical approach
to QSAR model development. The hierarchy begins with the simplest parameters, the
TSls. After using the TSls to model the activity, the next level of complexity is added.
To the indices included in the best TSI model, we add all of the TCls and proceed fo

model the activity using these parameters. Likewise, the indices included in the best '




model from this procedure are combined with the indices from the next level, the
geometrical indices and modeling is conducted once again. Finally, the best model
utilizing TSls,.TCIs and geometrical indices is combined with the quantum chemical |
parameters. The regréssion analysis résults in the final selection of indices for each of
the models. The remaining three models which use TCls, geometric, and quantum
chemical parameters independently serve as a means of validating the utility of the

hierarchical approach and the need for varying types of theoretical descriptors.

RESULTS

The vaﬁable clustering of the topostructural indices resulted in the retention of five.
indices: M;, E, O, P, P,. All-possible subsets regression resulted in the selection of a
four-parameter model to estimate -log(LC,,) with-an explained variance (R’) of 45.3%
and a standard error'(s) of 0.58. While this is an unsatisfactory model, the indices will
still be retained and combined with the topochemical indices in the second step of
model development. Table 1V lists the indices uséd in each of the models.

The secoﬁd step of the hierarchical method combined the four indices used in
the first tier model with the nine topochemicalindices selected in the variable clustering
procedure: SIC,, SIC,, SIC,, CICy, ", *Y'es “¥'e» X ves J - Again, all-possible subsets
regression was conducted resulting in a four-parameter model with an explained
variance (R’) of 78.3% and a standard error (s) of 0.36. While this model retained two

parameters from the topostructural model, it is evident that the addition of two




topochemical indices made a significant contribution to the effectiveness of our model.
The four iﬁdices from the second tier model were then combined with the three
geometric parameters: W, W, V,,. The resulting model from this procedure retained
four indices, 'replacing the topochemical index CICo with the geometric parameter W,
This model had an explained variance (R ).of 79.2% and a stahdard error (s) of 0.36.

The final step in the hierarchical method combined the four parameters from the

third tier model with the quantum chemical (AM1) parameters: Euovo. Evovots Erumor Evumons”

AH, p. This set of ten indices led to a seven-parameter model with an explained
variance (R) of.86.3% and a standard error (s) of 0.30. This model retained all of the
indices ffom the third model and added three quantum chemical parameters.

Three other models were constructed for the purpose of comparison. These
include a five-parameter topochemical model, a three parameter geometric model, and
a four-parameter quantum chemical model. The indices used in these models and the

results of the models can be found in Table IV.

DISCUSSION

The goal of this paper was to investigate the utility of hierarchical QSAR using
algorithmically derived molecular descriptors in predicting LC,, values for a set of sixty-
nine benzene derives. vTo this end, we used four classes of parameters, viz.,
topostructural descriptors, topochemical indices, geometrical descriptors and semi-

empirical quantum chemical indices.




It is clear from the results described in Table IV that none of the individual
classes of parameters covrrelate weil with acute aquatic toxicity. The TSls, the simplest
of the four classes of parameters, explained about 45% of the variance in toxicity. The
inclusion of topochemical indices in the set of independent variables made substantial
improvemént in the predictive capacity of the QSAR models. This is understandable
since the benzene derivatives analyzed in this paper c;omprise a fairly congeneric set,
and while the number and size of substituents may be important, the chemical nature of
the substituents also plays an important rolé in determining the overall toxicity of the
molecule. This is shown by the dramatic increase in predictive power between
equations 1 and 2. Equation 2 replaces two TSI descriptors with two TCl indices that
are sensitive to the atom types in all zero-order neighborhoods. The addition of this
basic chemical information results in an irﬁprovement in the model. A similar
conclusion is bome out from the QSAR analysié of the same set of benzene derivatives
reported by Hall et al. where they found that the chémical nature of the substituent is in
important in determining toxicity [32].

In the next tier, equation 3 replaces one of the information content indices with
the three-dimensional Wiener number, a descriptor that characterizes the three-
dimensional aspects of molecular shape and size. This leads to refinement pf the model
developed in equation 2. Finally, the addition of the quantum chemical parameters;
energy of the second lowest unoccupied molecular orbital , heat of formation, and
dipole momeﬁt; leads to a marked improvement in the predictive power of the model

(equation 4).




As can be seen from equations 1 and 5-7 (Table 1V), none of the four classes of
indices do very well individually. The hierarchical QSAR approach using four classes of
parameters resulted in accéptable predictive models (equation 4). We.may conclude
from the results presented in this paper that each of the four classes.of theoretical
descriptors that were used are necessary for the devélopment of good QSARs for the

acute aquatic toxicity of benzene derivatives in fathead minnow.
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Table 1. Sixty-nine benzene derivatives and their fathead minnow toxicities, expressed as
-log(LC,,).

-|Og (LCSO) 'log(l—Cso)

No. Compound : {obs.) (est. eq. 4}  Residual
1 Benzene | 3.40 - 342 -0.02
2  Bromobenzene | 3.89 3.77 0.12
3 Chlorobenzene 3.77 3.75 0.02
4 Phenol 3.51 3.38 0.13
5 Toluene 3.32 3.66 -0.34
6 1,2-dichlorobenzene : 4.40 4.29 0.11
7 1,3-dichlorobenzene 4.30 4.37 -0.07
8 1,4-dichlorobenzene 4.62 4.51 0.11
9 2-chlorophenol | 4.02 3.79 | 0.23
10 3-chlorotoluene 3.84 3.88 -0.04
11 4-chlorotoluene 4.33 3.87 0.46
12  1,3-dihydroxybenzene 3.04 3.43 -0.39
13 3-hydroxyanisole 3.21 3.33 -0.12
14  2-methylphenol 3.77 3.64 0.13
15 3-methylphenol | 3.29 3.60 -0.31
16  4-methylphenol | " 358 3.53 0.05
17  4-nitrophenol : 3.36 3.61 -0.25
18 1,4-dimethoxybenzene 3.07 3.28 -0.21
19 1,2-dimethylbenzene 3.48 3.93 =045
20 1,4-dimethylbenzene 4.21 3.87 0.34
21 2-nitrotoluene ' 3.57 3.66 -0.09
22  3-nitrotoluene 3.63 3.53 0.10
23  A4-nitrotoluene 3.76 3.49 0.27
24 1,2-dinitrobenzene - 545 5.24 0.21
25 1,3-dinitrobenzene 4.38 4.18 0.20




26
27
28

29
30
31
32
33
34
35
36
37
38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

1,4-dinitrobenzene
2-methyl-3-nitroaniline
2-methyl-4-nitroaniline

2-methyl-5-nitroaniline

_ 2-méthyl-6-nitroani|ine

3-methyl-6-nitroaniline
4-methyl-2-nitroaniline
4-hydroxy-3-nitroaniline
4-methyl-3-nitroaniline
1,2,3-trichlorobenzene

1,2,4-trichlorobenzene

1,3,5-trichlorobenzene

2,4-dich|oropheno|
3,4-dichlorotoluene
2,4-dichlorotoluene
4-chloro-3-methylphenol
2,4-dimethylphenol
2,6-dimethylphenol
3,4-dimethylphenol
2,4-dinitrophenol
1,2,4-trimethylbenzene
2,3-dinitrotoluene

2 ,4-dinitrotoluene
2,5-dinitrotoluene
2,6-dinitrotoluene
3,4-dinitrotoluene
3,5-dinitrotoluene
1,3,5-trinitrobenzene

2-methyl-3,5-dinitroaniline

5.22
3.48
3.24

3.35

3.80
3.80
3.79
3.65

T 377

4.89
5.00
4.74
4.30
4.74
4.54
4.27

3.86

3.75
3.90
4.04
4.21
5.01
3.75

5.15

3.99
5.08

3.91

5.29
4.12

4.94
3.79
3.51
3.68
3.84
3.78
3.80
3.61
3.73
4.89
5.04
5.11
4.33
4.26
4.36
3.87
3.76
3.80
3.80
4.14
4.09
5.20
4.10
4.84
4.41
5.11
4.05
5.37
413

7028

-0.31
-0.27
-0.33
-0.04
0.02
-0.01
0.04
0.04

.0.00

-0.04
-0.37
-0.03
0.48
0.18
0.40
0.10
-0.05
0.10
-0.10
0.12
-0.19
-0.35
0.31
-0.42
-0.03
-0.14
-0.08
-0.01




55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

2-methyl-3,6-dinitroaniline
3-methyl-2,4-dinitroaniline
5-méthy|—2,4-dinitroaniline
4-methyl-2,6-dinitroaniline
5-methyl-2,6-dinitroaniline
4-methyl-3,5-dinitroaniline
2.4,6-tribromophenol
1,2,3,4-tetrachlorobenzene
1,2,4,5-tetrachlorobenzene
2.4.6-trichlorophenol
2-methyl-4,6-dinitrophenol

'2,3,6-trinitrotoluene

2.4 6-trinitrotoluene
2,3,4,5-tetrachlorophenol
2,3,4,5,6-pentachlorophenol

5.34
4.26

-4.92

4.21
4.18

4.46

4.70
5.43

5.85-

4.33
5.00
6.37

1 4.88

572
6.06

4.80
4.28
4.14
4.67

4.80

4.34
4.89
5.62
5.80
4.79
4.21
6.36
5.16
5.36
6.03

054

-0.02
0.78
-0.46
-0.62
0.12
-0.19
-0.19
0.05
-0.46
0.79
-0.01
-0.28
0.36
0.03




Table . Symbols and definitions of topological and geometrical parameters.

.-

I Information index for the magnitudes of distances between all possible
pairs of vertices of a graph :

!-‘{,V_ Mean information index for the magnitude of distance

W Wiener index = half-sum of the off-diagonal elements of the distance matrix

of a graph '

° Degree complexity

HY Graph vertex complexity

H° Graph distance complexity

Ic

occurrences of distance h

lors Information content or complexity of the hydrogen-suppressed graph at its

maximum neighborhood of vertices

O Order of neighborhood when IC, reaches its maximum value for the

hydrogen-filled graph

M, A Zagreb group parameter = sum of square of degree over all vertices

M, ~ A Zagreb group parameter = sum of cross-product of degrees over ali
neighboring (connected) vertices

IC, Mean information content or complexity of a graph based on the " (r = 0-5)
order neighborhood of vertices in a hydrogen-filled graph

SIC, Structural information content for " (r = 0-5) order neighborhood of vertices
in a hydrogen-filled graph .

CIC,  Complementary information content for " (r = 0-5) order neighborhood of
vertices in a hydrogen-filled graph .

"X Path connectivity index of order h = 0-6

"Xe Cluster connectivity index of orderh =3, 5

e Chain connectivity index of order h = 6

"o Path-cluster connectivity index of order h = 4-6

"y® Bond path connectivity index of order h = 0-6

"o Bond cluster connectivity index of orderh =3, 5

"o Bond chain connectivity index of order h = 6

Yec Bond path-cluster connectivity index of order h = 4-6

Information content of the distance matrix partitioned by frequency of
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Valénce path connectivity index of order h = 0-6
Valence cluster connectivity index of orderh =3, 5
Valence path-cluster connectivity i’ndlex of order h = 4-6
Number of paths of length h = 1-9

Balaban's J index based on distance

Balaban's J index based on bond types

Balaban's J index based on relative electronegativities
Balaban's J index based on relative covalent radii

van der Waals volume

3-D Wiener number for the hydrogen-suppressed geometric distance
matrix

3-D Wiener number for the hydrogen-filled geometric distance matrix




Table lil. Classification of parameters used in developing models for acute aquatic foxicity
(LC.)) in Pimephales promelas.

Quantum Chemical

_Topological | Topochemical Geometric AM1
I lore v, Erovo
" | IC, - IC, =" E,guor
w - sIc,-SIC, oW, Epuo
° CIC, - CIC, E unor
H - AHf
H (e and s o 1

IC sbeh '

O N

M, ARy A

M, *X'cand *x'c

- X *X'pe = A'ec

X and e J?

. P

“Xoc = Aeo J

P, -P,




Table IV. Summary of the regression results for all models for the full set of sixty-nine

benzene derivatives.

Variables Included

R

Eq. Parameter class F s
1. TSI M,, IC, P,, P, 13.3 0453  0.58
2 TSI+ TCI M,, P, SIC,, CIC, 57.9 0.783 0.36

'3 TSl + TCl + M,, P,, SIC,, W, 61.1 0.792 0.36
Geometric
4 - TSI+ TCl+ M,, P,, SIC,, *W,, 55.0 0.863 0.30
Geometric + Quantum E omon AH, 1
Chemical
5 TCl sic,, SIc,, CIC,, *x”, 34.3 0.731 0.41
JX
6 Geometric W, W, V,, 34.8 0.616 0.48
7 Quantum Chemical Eovorr Evomor Evomorr B 23.8 0.598 0.50




Table V. Calculated values for the topostructural, topochemical, geometric, and quantum
chemical parameters used in equation 4 (Table IV).

No. M, P, SIC, W, Euvor AH, M
1 3 0 0.246 5.21 0.5540 22.0240 0.005
2 3 | 0 0.315 5.25 - 0.2447 26.7581 1.449
3 3 0 0.315 5.25 0.2632 14.8214 1.299
4 3 0 0.304 - | 5.43 0.5095 -22.2334 1.233
5 3 0 0.227 579 0.5745 16.5004 0.279
6 4 0 0.341 5.28 -0.0203 ’ 9.2203 1.974
7 4 0 - 0.341 5.28 -0.0462 - 8.2544 1.218
8 4 0 0.341 5.28 -0.0988 10.4661 0.000
9 4 0 0.362 5.46 0.2406 -28.6621 0.934
10 4 0 0.284 5.81 0.2785 7.1915 1.478
11 4 0 0.284 5.82 0.3208 7.1066 1.623
12 4 0 0.323 5.64 0.3778 -66.4516 2.433
13 4 0 0.295 6.16 0.4618 -59.9961 2.338
14 4 0 0.276 5.95 0.5331 -28.9297 0.960
15 4 0 0.276 597  0.5610 -29.6368 -1.079
16 4 0 0.276 5.97 0.4880 -29.7869 1.333
17 4 0 0.376 5.84 -0.4095 -19.5199 5.261
18 4 0 0.274 6.59 0.5766 -52.9350 2.424
19 4 0 0.213 6.22 0.6180 . 7.5221 0.465
20 4 0 0.213 6.28 0.6450 6.8236 0.003
21 4 0 0.341 6.11 -0.2692 19.0823 5.015
22 4 0 0.341 6.14 -0.2921 17.6145 5.443
23 4 0 0.341 6.15 -0.2334 17.2948 5.728
24 4 2 0.389 5.99 -1.2793 38.6210 7.804
25 4 0 -0.389 6.01 -1 .5339 33.1466 4.845
26 4 0 0.389 6.02 -1.0875 33.2941 0.013
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ABSTRACT

The characterization of molecular structure using structural invariants has

~ increased greatly over the last ten years. Specifically, topological indices have

become .more widely in the quantification of molecular structure for use in
quantitative structure-activity relationship studies, chemical documentation, and
molecular similarity studies. The basis, calculation, and utility of topological
indices has been examined, with an eye to the specific advantages and
problems in their use. In addition, variable clustering and principal component
analysis are examined as two potential solutions to the problem of index

intercorrelation.

KEYWORDS

topological indices; molecular structure; graph theory; graph invariants; variable .
clustering; principal component analysis




INTRODUCTION

‘An important area of research in computational and mathematical chemistry is
the characterization of molecular structure using structural invariants.""* The
impetus for this research trend comes from various directions. Researchers in
chemical documentation have searshed for a set of invariants which will be more
convenient than the adjacency matrix (or connection table) tor the storage and
comparison of chemical .st.r-uc:tures.15 Invariants have been used to order sets of
molecules.> 8 1€ With the substantial increase in available databases of
chemical structures and properties, attempts have been made to develop
structure-activity relationships (SARs) whereby existing molecules can be
compared with other molecules (real or hypothetical) on the basis of these
structural invariants. The properties of the molecules of interest can then be
predicted baséd on molecular structure without the need for experimental data.
In this age of combinétorial chemistryithousands of molecules of known
structure can be produced rapidiy.’However. at the same time resources for
determining even the simplest properties of all of these molecules in the
laboratory are unavailable. In the USA, the Toxic Substances Control Act (TSCA)
Inventory includes nearly 74,000 chemicals and the list is growing at a rate of
more than 2,000 new submissions to the United States Environmental Protection
Agency (USEPA) for the Premanufacture Notification (PMN) process per year."”

2 At present, risk assessment of the PMN chemicals is carried out using limited




test data. For example, approximately 15% of PMN submissions have empirical
mutagenicity data. Under such circumstances, structural descriptors will play a
pivotal role in comparing molecules with one another and in predicting their

properties.
MOLECULAR STRUCTURE - Beauty in the Eye of the Beholder or Conundrum?

The main hurdle to the characterization of molecuiar structure is the lack of
unifénnity its the definition and quantiﬁcation. The term molecular structure
répresents a set of nonequivalent and probably disjoint concepts.?' For example,
the term “molecule” means different things when it represents an assembly of
identifiable atoms held together by fairly rigid bonds as compared to a collection
of delocalized nuclei and electrons in which all identical particles are
indistinguishable.' There is no reason to believe that when we dlscuss diverse
topics (e.g., chemical synthesis, reaction rates, spectroscopic transitions,
reaction méchanisms, and ab initio calculations) using the notion of molecular
structure, that the different meanings we attach to this term originate from the

same fundamental concept.?"? This fundamental problem has been described

succinctly by Woolley?

«_there is no reason to suppose that the same basic idea can

provide a basis for the discussion of all molecular experiments.



This is understandable if one recognizes that every physical and
chemical concept is only defined with respect to a certain class of
experiments, so that it is perfectly reasonable for different sets of
concepts, although mutually incompatible, to be applicable to

different experiments.”

In the context of molecular sciehoe, the various concepts of molecular
structure (e.g., classical valence bond representation, various chemical graph-
theoretic representations, the ball-and-stick model, representation by minimum
energy conformation, semi-symbolic contour maps, or symbolic representation
by Hamiltonian operators) are distinct molecular models derived through
different means of abstraction from the same chemical reality or molecule.Z In
each instance, the equivalence class (concept br model of molecular structure) is
generated by selecting certain aspects while ignoting other unique propetties of
those actual events. This explains the plurality of the concepts of molecular
structure and their autonomous nature, the word autonomous being used in the

sense that one concept is not logically derived from the other.

GRAPHS AND MOLECULAR STRUCTURE

At the most fundamental level, the structural model of an assembled entity (e.g.,

a molecule consisting of atoms) may be defined as the pattem of relationship



among its parts as distinct from the values associated with them.?* Constitutional

 formulae of molecules are graphs where vertices represent the set of atoms and

edges represent chemi_cal bonds.Z The pattern of connectedness of atoms in a
molecule is preserved by constitutional graphs. A graph (more correctly a non-
directed graph) G = [V, E] consists of a finite nonempty set V of points together
with a prescribed set E of unordered pairs of distinct points of V.® A structural
model assigns to the points of Ga reélization in some applied field and each
element of Eindicates a pair of entities (elements of the structural model) which
are in the finite nonempty irreflexive symmetric binary relation described by G.
For example, when elements of the set V symbolize atomic cores without
valence electrons and the elements of E represent covalent two-electron bonds,
G is the molecular graph or constitutional graph of a covalent chemical species.
Such a gréph can represent structural formulée of a large number of organic
compounds. Sinqe more than 90% of chemical compounds described so far are
eifher organic or contain otganic ligands, such a graph has been found to be
useful in chemistry.™ The edge set need not always represent a covalent bond.
In fact, elements of E may symbolize almost any type of bond (e.g., ionic,
coordinate, hydrogen, or weak bonds représenting transition states of an SN,
reaction, etc.).72 If the interaction between a pair of atoms is asymmetric (e.g.,
in case of sufﬁciéntly polar covalent bonds, hydrogen bond donor acidity,
hydrogen bond acceptor basicity, or charge transter complex formation) the

bonding pattern can be represented by a binary relation which is anti-reflexive



and asymmetric.® Further refinement could be achieved through the assignment
of weights to the vertices or edges,® and use of multiplé edges between a pairof
atoms held together both by sigma and pi bonds. The weiéhted pseudograph
appears to be the most general model capable of symbolizing the bonding
pattern of a large number of organic and inorganic chemicals.

For a long time, chemists ha\}e relied on visual perception to relate
various aspects of constitutional graphs to observable phenomena. The power of
graph-theoretic formalism in chemistry is evident frqm its successful applications

in éhemical documentation, isomer discrimination and characterization of‘
molecular branching, enumeration of constitutional isomers associated with a
particular empirical formula, calculation of quantum chemical parameters,

stmcture-physicqchemical property correlations, and chemical structure-

biological activity relationships. 3>
GRAPHS AS MOLECULAR MODELS

Any concept of molecular structure is a hypothetical sketch of the organization of
atoms within the molecute. Such a model object is a general theory énd remains
empirically untestable. A model object has to be grafted to a specific theory to
generate a theoretical model which can be empirically tested.* For example,
when it was suggested by Sylvester in 1878 that the structural formula of a

molecule is a special kind of graph, it was an innovative general theory without




any predictive potential.* Wheri the idea of combinatorics was applied on
chemical graphs (model object), it could be predicted that "there should be
exactly two isomers of butane (CH,,)" because "there are exactly two tree
graphs with four vertices” wheh one considers only the non-hydrogen atoms
present in CH,,.* This is a theoretical model of limited predictive potential.
Although it predicts the existence of Ehemiw species, given a set of molecules .
(e.g., isomers of hexane [C¢H, ) the model is incapable of predicting any
properties for these molecules. This is due to the fact that any empirical property
P maps a set of chemical structures into the set R of real numbers and thereby
orders the set empirically. Therefore, to predict the property from structure, we
need a nonempirical (structural) ordering scheme which closely resembles the
empirical ordering of structures as determined by P. This is a more specific
th_eoretical model based on the same model object (chemical graph) and can be -

accomplished by using specific graph invariant(s).
CHARACTERIZATION OF MOLECULAR GRAPHS

Molecular graphs can be characterized by graph invariants. A graph invariant ‘is
a graph-theoretic property which is preserved by isomorphism.?® A graph
invariant could be a polynomial, a sequence of numbers, or a single number.
The characteristic polynomial of a graph and the spectra of graphs are graph

invariants. Numerical graph invariants derived from molecular graphs are called



graph-theoretic indices or topological indices.? Topological indices quantitatively
describe molecular topology and are sensitive {0 such structural attributes as
size, shape, péttems of branching, bonding types, ar_td cyclicity of molecules.
Topological indices (Tls) can sometimes be derived conveniently from
different matrices such as the adjacency matrix and the distance matrix. The
origins of such Tls illuminate the fuﬁdamental structural features that they
quantify. On the other hand, some indices are derived to quantify a key structural
‘feature which is qualitative and only understood intuitively. In deriving his original
connectivity index ('x), Randi¢ asked the question: which of the two heptane
isomers, viz., 3-methylhexane and 3-ethyl pentane, is more branched.® Until that
time, branching was understood only intuitively; Randi¢ derived a quantitative
description of branching based on the graph-theoretic treatment of the
structures. In addition, information theoretic indices of chemical structures have
been derived to answer the question: whicﬁ of a collection of structures is more
complex or heterogeneous? Different measures of molecular complexity attempt
to answer this question from different points of view.“ In the following section we
- discuss the structural basis and method of calculation for some of the major

topological indices.

CALCULATION OF TOPOLOGICAL INDICES



literature, may be calculated from the distance matrix D(G) of a hydrogen-

suppressed chemical graph G as the sum of the entries in the upper triangular -

distance submatrix. The distance matrix D(G) of a nondirected graph G with n
vertices is 2 symmetric n x n matrix (dp), where d;is equal to the distance

between vettices v,and v;in G. Each diagonal element d; of D(G) is zero. We

give below the distance matrix D(G,) of the labelled hydrogen-suppressed graph

G, of 2,3-dimethylhexane (Fig.1):

The Wiener index (W),*' the first topological index reported in the chemical
i
(M @ @ (4) 5) ) (0 @
\
|
\
\
\

1 ‘ 0 1 2 2 3 3 4 5 ]
2 1 0 1 1 2 2 3 4
D(G,)) = 3 2 1 0 2 3 3 4 5
i 4 o 1 2 o0 1 1 2 3
5 3-2 3 1 0 2 3 4
6 3 2 3 1 2 o0 1 2
7 4 3 4 2 3 1 o0 1
8 5 4 5 3 4 2 1 0
L ]
Wis calculated as:
W=‘/a§d,7=§h-g,, (1)

where g, is the number of unordered pairs of vertices whose distance is h. Thus

for D(G,), W has a value of seventy.
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[insert Fig. 1 here]

Randié's connectivity index,® and higher-order connectivity path, clustér. path-
cluster and chain types of simple, bond and valence connectivity parameters
were calculated using the method of Kier and Hall.' P, parameters, number of
paths of length h (h=0,1,...,10) in tﬁe hydrogen-suppressed graph, are
calculated using standard algorithms. |
Balaban defined a series of indices based upon distance sums within the

distance matrix for a chemical graph Which he designated as Jindices.***
These indiées are highly discriminating with low degeneracy. Unlike W, the J
indices range of values are independent of molecular size.

| Information-theoretic topological indices are calculated by the application
of information theory on chemical graphs. An apprdptiate set Aof nelementsis
derived from a molecular graph G depending upon certain structural
characteristics. On the basis of an equivalence relation defined on A, the sét A
is partitioned into disjoint subsets A, of order n;(i=1, 2, ....., i; 2'3 n=n). A

probability distribution is then assigned to the set of equivalence classes:

P Pz ----- + Ph

11



where p,= n;/ nis the probability that a randomly selected element of A will occur

in the  subset.
The mean information content of an element of Ais defined by Shannon's

relation:*®
h
IC= 'E pilog, p; )

The logarithm is taken at base 2 for measuring the information content in bits.
The total information content of the set Ais then nx IC. |

| It is to be noted that the information content of a graph G is not uniquely
defined. It depends on how the set A is derived from G as well as on the
equivalence relation which partitions A into disjoint subsets A, For example,
when A constitutes the vertex set of a chemical graph G, two methods of
partitioning have been widely used: a) chromatic-number coioﬁng of Gwhere
two vertices of the same color are considered equivalent, and b) determination
of the otbits of the automorphism group of G thereafter vertices belonging to the
same orbit are considered equivalent.

Rashevsky was the first to calculate thévinformation content of graphs
where "topologically équivalent" vertices were placed in the same equivalence
class.* In Rashevsky's approach, two vetrtices u and-v of a graph are said to be
topologically equivalent if and only if for each neighboring vertex y; (i=1, 2, , K)
of the vertex u, there is a distinct neighboring vertex v, of the same degree for

the vertex v. While Rashevsky used simple linear graphs with indistinguishable

12



vertices to symbolize molecular structure, weighted linear graphs or multigraphs
are better models fqr conjugated or aromatic molecules because they more
properly reflect the actual bonding pattems, i.e., electron distribution.

To account for the chemical nature of vertices as well as their bonding
pattemn, Sarkar et al. calculated information content of chemical graphs on the
basis of an equivalence -relation whére two atoms of the same element are
considered equivalent if they possess an identical first-order topological
neighborhood.“” Since properties of atoms or reaction centers are often
moddlated by stereo-electronic characteristics of distant neighbors, ie.,
neighbors of neighbors, it was deemed eséential to extend this approach to
account for higher-order neighbors of vettices. This can be accomplished by
defining open spheres for all vertices of a chemical graph. If ris any non-
negative real number and vis a vertex of the graph‘G, then the open sphere S(v,
n ivs defined as the set covnsisting‘of all vertices v;in Gsuch that d(v,v) < .
Therefore, S{v,0) = ¢, S(v, ) =vior0 <r<i, and S(v,n is the set consisting of
vand all vertices v; of G situated at unit distance from v, if 1<r<2.

One can construct such open spheres for higher integral values of r. Fora
particulaf value of r, the collection of all such open spheres S(v,), where v I'UI‘IS
over the whole vertex set V, forms a neighborhood system of the vertices of G. A
suitably defined equivalence relation can then partition Vinto disjoint subsets
consisting of vertices which are topologically equivalent for " order

neighborhood. Such an approach has been developed and the information-

13



theoretic indices célculated based on this idea are called indices of
neighborhood symmetry. .

In this method, chemicals are symbolized by weighted linear graphs. Two
vertices u, énd v, of a molecular graph are said to be equivalent with respect to
™ order neighborhood if and only if corresponding to each path u,, Uy, -.., U, of
length r, there is a distinct path v, v;, ..., v, of the same length such that the
paths have similar edge weights, and both u, and v, are connected to the same
number and type of atoms up to the 1" order bonded neighbors. The detailed
equivalence relation has been described in earlier studies.***

Once pattitioning of the vertex set for a particular order of neighborhood is
completed, /C, is calculated by Eq. 2. Subsequently, Basak et al. defined another
information-theoretic measure, structural information content (SIC), whichis

calculated as:
SIC,= IC, | log,n ' (3)

where IC, is calculated from Eq. 2 and n s the total number of vettices of the

graph.‘é
Another information-theoretic invariant, complementary information

content (CIC), is defined as:

CIC,=log,n- IC, (4)

14



CIC, rep;resents the difference between maximum possible complexity of a graph.
~ (where each vertex belongs to a separate equivalence class) and the realized
topologiéal information of a chemical spedes as defined by IC.*°

In Fig. 2, the calculation of IC,, SIC, and CIC, is demonstrated for the

hydrogen-filled graph (G,) of 2,3-dimethylhexane.
[Insert Fig. 2 here ]

The information-theoretic index on graph distance, /" is calculated from the

distance matrix D(G) of a chemical graph G as follows:""

The mean _inforrnation index, 'I:W, is found by dividing the information
index I,¥ by W. The information theoretic parameters defined on the distance
matrix, H? and HY, were calculated by the method of Raychaudhury et al.*?

THEORETICAL METHODS

Databases and Calculations

Two data sets were used for this study: the first consists of the seventy-four

15



alkanes (C,-C,) and the second, more heterogeneous set was taken from the
STARLIST Qroup of chemicals.5! The STARLIST subset includes 219 chemicals
for which HB, was equal to zero and calculated log P values fell in the range of.-
2 t0 5.5. HB, is a measure of the hydrogen bonding potential of a chemical.
Chemical structures for these compounds were encoded using the SMILES line
notation for chemical structures and. entered into the computer program POLLY
version 2.3 for the calculation of indices.* Table | provides a comprehensive list

and brief descriptions for these indices.

Statistical Methods

Initially all Tls were transformed by the natural logarithm of the index plus one.
This is routinely done to scale thre indices since there may be a difference of
several orders of magnitude between indices and some may equal zero.

From the original sets of 102 indices calculated for both data sets, it was
neoessary. to remove some indices. Some of the indices for the set of alkanes
(e.g., the simple, valence, and bond connectivity indices) were completely
redundant. Other indices were removed because they had values of zero for all |
compounds. This “cleaning” of the sets of Tls left fifty-three indices for the
alkanes and ninety-eight indices for the STARLIST set.

Variable clustering and principal component analysis were used on the

remaining indices to minimize problems of intercorrelation amongst the indices.

16



The variable clustering was conducted using the SAS procedure VARCLUS
which divides the indices into disjoint clusters which are essentially
unidimensional based on the correlation matrix.> From each cluster, the index
which was most correlated with the cluster was selected as the best
representative of that cluster. In this way, individual indices are retained while
minimizing intercorrelations. This prboedure resulted in the retention of eight Tls
for the alkanes; HY, SIC,, SIC,, SIC,, °Xc, *%e» Pas Pe; and twelve Tls for the
STARLIST data; I°, IC,, SIC,, CIC,, *X. “Xen *X'cne e e Xec, Pe, J5. TI
values for a subset of the alkanes, the eighteen oétane isomers, are presented
in Table II.

The principal component analysis (PCA) was accomplished using the
SAS procedure PRINCOMP. The PCA produces linear combinations of the Tls,
called principal components (PCs) which are deﬁved from the correlation
matrix.>* The first PC has the largest variance, or eigenvalue, of the linear -
combination of Tls. Each subsequent PC explains the maximal index variance
orthogonal to previous PCs, eliminating the redundancy which can occur with
Tis. The maximum number of PCs generated is equal to the number of individual
Tis available. For the purposes of this study, only PCs with eigenvalues greatér
than one.v were retained. A more detailed explanation of this approach has been
provided in a previous study by Basak et al® The seven PCs with eigenvalues
greater than one and the ten PCs with eigenvalues greater than one were

retained for the alkanes and STARLIST set respectively. Table lll presents the
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PCs for the octane isomers, a subset of the seventy-four alkanes.

DISCRIMINATION OF ISOMERS USING TOPOLOGICAL INDICES AND |

PRINCIPAL COMPONENTS DERIVED FROM THEM

Topological aspects of chemicals héve been used in chemical documentation.
One line of research in this area has been the develop[nent of topological indices
which are more discriminatory. For example, the Jindex developed by Balaban
is one of the most discriminatofy indices. Randi¢ developed the concept of
molecular identification number (I.D. number) by combining a few topological
aspects of structures. Other authors have used more than one index for this
purpose. One example is the topological superindex proposed by Bonchev et al.
where they use a collection of indices as the s.‘uperindex.55 Two structures are
said to be distinct if the magnitudes of any one of the component indices differ-
for them.

In view of the intercorrelation of indices and the fact that a large number
of Tis have been defined in the literature, we have been interested in-deriving
orthogonal parameters from Tls. We have employed two statistical methods: |
variabl_e clustering and principal components analysis (PCA). In the former
method, we begin with the Tls calculated by POLLY and derive a small set of
original variables which are minimally intercorrelated. In the case of seventy-four

alkanes the method retained eight indices. In case of PCA, seven principal

18



components (PCs)_are derived from original variables and these PCs are linear
combinations of all the Tis. Forthe STARLIST set, twelve Tis were retained by
variable clustering, while ten PCs were derived. |

We were interested to see the discriminatory power of the Tis selected by
variable clustering vis-a-vis the PCs. Values of the Tls selected by the variable
clustering technique and the first seiren PCs with eigenvalue greater than 1.0 for
the set of eighteen octane isomers are presented in Tables Il and lli
respectively. It is clear from the data that some individual Tis are not sufficiently
_ discriminatory for the eighteen octane isomers. On the other hand, each PC is
unique for any given structure, making them more discriminatory than any
individual T1. In the interest of space, the values of the Tls and PCs for all of the
alkanes and for the STARLIST set were not included in the tables, however, this

information is available upon request from the authors.
TOPOLOGICAL INDEX SPACE VIS-A-VIS PC SPACE: What Do They Mean?

Each Tl quantifies certain aspects of molecular structure. Distinct indices
selected by the variable clustering procedure encode different information |
regarding molecular structure (model object). For example, indices like the
connectivity index or Wiener index quantify adjacency information of the simple
planar graph model of molecules. On the other hand, information theoretic graph

invariants quantify the degree of complexity of the molecular graph. Intuitively,
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these are distinct aspects of molecular structure and this notion is borne out by
the result of variable clustering analysis on the set of 102 Tis calcuiated by
POLLY. It is tempting to speculate that eéch index retained by variable cluéten‘ng
represents one distinct aspect of molecular architecture and that, collectively, the -
Tis form the structure space of the set of chemicals. Such a space can be used
for the discrimination of structures ahd structure-property correlation. The
magnitudes of eight Tis for the eighteen octane isomers show that the Tis

selected by variable clustering have reasonable power for discriminating

. isomeric structures.

At the level of PCs, we have derived a certain number of orthogonal
variables using PCA of the indices. For the alkanes we had seven PCs with
eigenvalues greater than 1.0 (Table Hll) whereas for the structurally diverse set of
219 compounds we had ten PCs with eigenvalues greater than 1.0. This result
indicates that the structure space for the set of 219 molecules is more complex
than that for the set of seventy-four alkanes. This is in agreement with our
intuitive notion that molecules with heteroatoms a_nd many functional groups are
more complex than molecules devoid of any heteroatom. Finally, the pattern of
correlation of the individual PCs with the Tls can help us in understanding thé

nature of the axes derived by PCA (Tables IV and V).

DISCUSSION
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The major objectives of this paper were: a) to illuminate the fundamental nature
of mathematical invariants of molecular structure, b) to study the utility of graph
invariants in thé characterization of molecular structure, and c) to study the
intercorrelation of indices and extraction of oArthogonal variables from Tls.

it is clear from the results presented in this paper that the various classes
of mathematical invariants quantify different aspects of molecular architecture.
They depend principally on the structural model (model object) used for the
calculation of the invariant as well as the intuitive aspect of molecular structure
they are used to quantify. For example, connectivity indices and neighbor
complexity indices were designed to quantify distinct aspects of molecutar
structure. The results of variable clustering of the congeneric set of alkanes and
the diverse set of 219 chemicals show that these indices encode largely
independent structural information about these molecules.

Many structural schemes have beeﬁ developed for the derivation of

numbers or sets of numbers which can discriminate closely related structures so

" . that they can be useful in chemical documentation. The results presented in this

paper show that both the collection of mdloes selected by variable elustenng as
well as the PCs can discriminate among the eighteen octane isomers (l' ables -
V). ltis also clear from the data that the PCs are more discriminatory than the
individual indices. For example, each PC has distinct values for all eighteen
octane isomers. PCs derived from Tls have also been used in the discrimination

of isospectral molecular graphs where individuél indices show a high degree of

21



R

degeneracy.%
Variable clustering of Tls for the set of seventy—tbur alkanes retained eight
parameters which can be classified into three subsets: a) HY, P,, and Pg which
represent generalized size and shape; b) SIC,, SIC,, and SIC, which quantify
molecular complexity; and c) *. and *xc which encode information about
molecular branching. In the case of.the more diverse set of 219 chemicals, the

indices retained after variable clustering fall into four subclasses: a) 1°y, Ps, and

4y (general shape and size); b) IC,, SIC,, and CIC, (complexity); c) “Yen @nd x'ch

(cydicity); and d) 3., *xCe, *XCec, and J° (branching). A perusal of results frbm
both the sets indicate that distinct indices quantify different intuitive aspects of
molecular structure.

A similar picture emerges from the principal component analysis of both
sets of molecules. The first PC ig strongly correlated with variables which
‘quantify shape and size. The next important factor is molecular complexity which
is encoded by the second PC (Tables IV and V). The higher order PCs (3-5) are
strongly correlated with invariants which quantify such subtle structural factors as
branching, cydlicity, etc. It may be mentioned that such a result emerged from
our earlier studies on a large, diverse set of 3,692 chemicals.®>¥ |

In conclusion, mathematical invariants derived from chemical topology
' duéhtify different aspects of molecular architecture which are intuitively
understood by the chemist. One can create a structure space from these

invariants taking uncorrelated structural information (indices or PCs). Such
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oﬁhogonal factors can be useful in the disctimination of closely related structures
like isomers and in the creation of structure spaces. Metrics defined on such
spaces have been useful in the quantification of molecular similaﬁty.“' 883
Orthogonal variables derived by PCA or.variable clustering can also be used in

QSAR studies pertaining to pharmacology and toxicology. ' % & 3396 40,4850, 6488
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FIGURE CAPTIONS

Figure 1. . Hydrogen-sUppressed graph of 2.3—dimethylhexane.

Figure 2.  The calculation of IC,, SIC, and CIC, based on the first order

neighborhoods for the labeled graph of 2,3-dimethylhexane.
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Table I. Symbols and definitions of fopological indices..

M Information index for the magnitudes of distances between all possibie
pairs of vertices of a graph

-lf Mean information index for the magnitude of distance

w Wiener index = half-sum of the off-diagonal elements of the distance
matrix of a graph

1° Degree complexity

HY Graph vertex complexity

HP Graph distance complexity

-1 information content of the distance matrix partitioned by frequency of
' occurrences of distance h ’

lors Information content or complexity of the hydrogen-suppressed graph at
its maximum neighborhood of vertices

0] Order of neighborhood when IC, reaches its maximum value for the
hydrogen-filled graph

M, A Zagreb group parameter = sum of square of degree over all vertices

M, A Zagreb group parameter = sum of cross-product of degrees over all
neighboring (connected) vertices:

IC, Mean information content or complexity of a graph based on the ™ (r=

0-6) order neighborhood of vertices in a hydrogen-filled graph

SIC, Structural information content for ™ (r = 0-6) order neighborhood of
vertices in a hydrogen-filled graph

CIC, Complementaly information content for ™ (r = 0-6) order nelghborhood
of vertices in a hydrogen-filled graph

"% Path connectivity index of order h = 0-6

"% Cluster connectivity index of order h = 3-6

e Path-cluster connectivity index of order h = 4-6
Pyen - Chain connectivity index of order h =3-6

e Bond path connectivity index of order h = 0-6
e Bond cluster connectivity index of order h = 3-6
e Bond chain connectivity index of order h = 3-6




Bond path-cluster connectivity index of order h = 4-6

Valence path connectivity index of order h = 0-6

- Valence cluster connectivity index of order h = 3-6

Valence chain connectivity index of order h = 3-6
Valence pathocluster connectivity index of order h = 4-6
Number of paths of length h =0-10

Balaban's J index based on distance

Balaban's J index based on bond types

Balaban's J index based on relative electronegativities

Balaban's J index based on relative covalent radii




Table II. Tis selected by variable clustering of the alkanes (octane isomers listed).

Isomer Name

HV

3

$

SIC, SIC, SIC, X Xe P« Pg
Octane 1.288 0.173 0.218 0.477 0.000 AO.OOO 2 0
.'2-methy|heptane 1.233 0.173 0.248 0.561 0.342 0.000 2 O
3-methylheptane 1.228 0.173 0.248 0.598 0.254 0.000 2 O
4-methylheptane 1.215 -0.173 0.248 0503 0.254 0.0000 2 O
~ 3-ethylhexane 1.477 0.173 0.248 0532 0.186 0.000 2 O
2,2-dimethylhexane 1.157 0.173 0.248 0.495 0.940 0.000 2 O
2,3-dimethylhexane 1.170 0.173 0.253 0557 0450 0212 2 O
2,4-dimethylhexane .1.171 0.173 0.253 0.557 0.529 0.000 2 O
2,5-dimethylhexane 1.183 0.173 0.253 0.384 0597 0000 2 O
3,3-dimethylhexane 1.137 0.173 0.248 0.548 0.792 0.000 2 O
3,4-dimethylhexane 1.157 0.173 0.253 0.469 0386 0.1564 2 0
3-ethyl-2-methylpentane 1.096 0.173 0.253 0.490 0.405 0.154 2 O
.3-ethy|-3-methy|pentane 1.073 0.173 0248 0.421 0.656 0.000 1 O
2,2,3-trimethylpentane 1075 0.173 0.255 0.490 0944 0477 1 O
2,2, 4-trimethylpentane 1.083 0.173 0.255 0.450 1.088 0.000 2 O
2,3,3-trimethylpentane 1.065 0.173 0.255 0.506 0.850 0529 1 O
2,3,4-trimethylpentane 1.097 0.173 0225 0413 0620 0326 2 0
2,2,3,3-tetramethylbutane 0.997 0.173 0.218 0.218 1253 1179 0 O




Table lil. Values of the first seven PCs for the eighteen octane isomers.

- Isomer Name PC, PC, Pc, PC, PC; PG PG
Octane 0.328 -1.744 5807 - 0.602 -0.320 -0.473 -0.433

‘ 2-methylheptane 2181 -4.236 1.097  0.386 1.100 0.300 -0.935
3-methylheptane 2.817 -4.857 -0.307 0921 0.368 0.366 -0.513

4-methylheptane 4338 -2.211 0.848 -0.821 0.005 -0.541 -0.904

. 3-ethylhexane 1553 -2.077 -0.348 -0.494 -0.817 -0.651 -0.290
2,2-dimethylhexane 1163 0.007 -0.436 -0.878 1.367 1.383 0.638

2,3-dimethylhexane 2422 -2.060 -1.546 0.502 -0.308 -0.253 -0.105

2,4-dimethylhexane 2089 -2.306 -1.372 -0.289 -0.205 0.004 0.291

2,5-d'imethylhexane 0769 1.340 1.473 -2659 0612 -0.387 -1.443

3,3-dimethylhéxane - 2.044 -0.573 -1.726 0.303 0.173 0582 1.163

_3,4-dimethylhexane 0.807 0.228 -0.825 -0.696 -0.730 -1.223 -0.545
3—ethy§-2-methy|pentane 0991 -0.035 -1.596 -0.672 -1.076 -1.438 0.110

3-ethy|-3-methylpentane -0.035 2.870 -0.614 -0.909 -0.497 -1.178 0.271

2,2,3-trimethylpentane 1.136° 2.191 -2.383 1.277 0465 -0.075 0.548

2,2,4-trimethylpentane 0377 2377 -1.284 -1.846 0.726 0.461 1.676

2,3,3-trimethylpentane 1.318 1.825 -2717 1.990 0.318 -0.400 . 0.251

2,3,4-trimethylpentane 0548 4168 1.329 0.020 -1.745 -1.140 -0.039

-4.473 12.522 2681 4256 1.345 -0.129 -2.627

2,2,3,3-tetramethylbutane
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Abstract - Adequate experimental data necessary for hazard assessment is not available for the
majority of environmental pollutants and chemicals in commerce. This has led to the increasing

~ use of theoretical structural ﬁarameters in the hazard estimation of such chemicals. In this paper
we have used a hierarchical QSAR approach involving topological indices, geometrical (3-D)
indices, and‘ quantum chemical indicg:s to estimate the mu£agenicity of a set of nincty—ﬁvé
aromatic and heteroaromatic amines. The results show that topological indices explain the major
part of the variance in mutagenicity. The addition of qﬁantum chémical indices to the set of

descriptors makes some improvement in the predictive models.

Keywords - prolo gical Indices Geometrical Parameters ~ Quantum Chemical Parameters

- Mutagenicity Hierarchical QSAR




INTRODUCTION

The assessment of the environmental and human health hazard posed by chemicals is
frequently carried out using insufficient experimental data. This is true for industrial chemicals, as
well as for substances identified in industrial effluent, hazardous waste sites and environmental
monitoring surveys (Auer et al. 1990). In 1984, the Natioﬁal Research Council (NRC) studied the
availability of toxicity data on industrial chemicals and found that many of these chemicals have
very little or no test data (1984). About 15 million distincf chemical entities have been registered
with the Chemical Abstract Service (CAS) and the list is growing by nearly 750,000 per year. Out
of these chemicals, about 1,000 enter into societal use every year (Arcos 1987). Very few of these
chemicals have empirical properties needed for hazard assessmﬁt. In the United States, the Toxic
Substances Control Act (TSCA) inventory has over 72,000 entries and the list is growing by
nearly 3,000 per year (GAO 1993). Of the some 3,000 chemicals submitted yearly to the United
States Environmental Protection Agency (USEPA) for the premanufacture notification (PMN)
process, less than 50% have any experimental data at all, less than 15% have empirical
mutagenicity data, and only about 6% have ecotoxicological and environmental fate data. The
Superfund list of hazardous substances has only limited data for many of the over 700 chemicals

as well (Auer et al. 1990).

This pervasive lack of empirical data shows the real need for the developmnt of methods
which can estimate environmental and toxic properties of chemicals using parameters which can
be calculated directly from molecular structure. In recent years we have been involved in the
development of such models (Basak and Magnuson 1983; Basak 1987, 1990; Basak et al. 1988,

1994; Balaban et al. 1994; Basak and Grunwald 1994a, 1994b, 1995a-1995e, 1996; Basak,




Bertelsen and others 1995; Basak, Gute and others 1995, 1996a-1996¢; Basak, Grunwald and
~ others 1996; Basak and Gute 1996). Specifically, we have used graph theoretic indices,
geometrical (3-D) parameters, and semi-empirical quanturh chemicz;l indice's in the development
" of quantitative s&uctme—acﬁvity relationship (QSAR) models pertinent to biomedicinal chemistry
and toxicology. In this paper we have used a hierarchical approach in the developmex.lt of QSARs
for a group of ninety-five aromatic and héteroaromatic amines using topological indicés, 3-D
parameters and a set of quantum chemical descriptors.

The purpose in using a hierarchical approach is to begin to Iook.at the importance of the
contribution of different clésses of parameters to modeling physicochemical or biologically
relevant properties. To this end we ask the question, what non-émpirical molecular information is
adequate for the estimation of mutagenic potency? Is specific chemical or quantum chemical
information necessary or do simple structural descriptors do an adequate job? These questions

should lead us to a deeper understanding of the principles and molecular basis for determining

mutagenic potency.

THEORETICAL METHODS

Database

A set of 95 aromatic and heteroaromatic amines, previously collected from the literature
by Debnath et al. (1992), were used to study mutagenic potency. The mutagénic activities of
these compounds in S. typhimurium TA98 + S9 microsomal preparation are expressed as the

mutation rate, In(R), in natural logarithm (revertants/nanomole). Table I lists the compounds used
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in this study and their experimentally measured mutation rates.
Computation of Topological Indices

Topological indices used in this study have been calculated by POLLY 2.3 (Basak et al.
1988) which can calculate a fotal of 102 indices. These indices include Wiener index (Wiener
1947), connectivity indices (Kier and Hall 1986; Randic 1975), information theoretic indices
defined on distance matrices of graphs (Raychaudhury et al. 1984; Bonchev and Trinajstic 1977),
a set of ‘parameters derived on the neighborhood comf)lexity of vertices in hydrogen-filled
molecular graphs (Basak 1987; Basak and Magnﬁson 1983; Basak et al. 1980; Roy et al. 1984),
as well as Bal;aban’s J indices (Balaban 1982, 1983, 1986). Tablé 10 provides brief deﬁnitiéns for

the topological indices included in this study.
Computation of Geometrical Indices

§an def Waal’s volume, Vw, (Bondi 1964; Morig‘uchi et al. 1975; Moriguchi and Kanada
1977) was calculated using Sybyl 6.2 from Tripos Associates, Inc (1994). The 3-D Wiener
numbers (Bogdanov et al. 1989) were calculated by Sybyl using an SPL (Sybyl Programming
Language) program developed in our laboratory. Calculation of 3-D Wiener numbers consists of
the sum entries m the upper triangular submatrix of the topographic Euclidean distance matrix for
a molecule. The 3-D coordinates for the atoms were determined using CONCORD 3.2.1 (Tripos

1993). Two variants of the 3-D Wiener number were calculated: 3DWy and *PW. For *PWy, |



hydrogen atoms are included in the computations and for 30w, hydrogen atoms are excluded from

the computations.

Computation of Quantum Chemical Parameters

The quantum chemicai parameters E;{ouo, Esomot, Erumo, ELumor, AHp, and L were
calculated for all of the following semi-empirical Hamiltonians: AM1, PM3, MNDO, MINDO/3.
These parameters were c;llculated by MOPAC 6.00 in the SYBYL interface (Stewart 1985). One
difﬁculfy was encountered in using the MINDO/3 Hamiltonian. This particular interface doés not
include the information necessary for handling broﬁﬁne, present in three of the ninety-five
molecules. To avoid omitting any compounds from one of the models, we accounted for tile
bromine by substituting dummy atoms which were assigned the Gasteiger-Huckel charges
calculated for the original bromine atoms. These molecules containing the dummy atoms with

assigned charges were then entered into M OPAC for calculation.

Data Reduction

Initially, all TIs were transformed by the natural logarithm of the index plus one. This was
done since the scale of some indices may be several orders of magnitude greater than that of other
indices and othel; indices may equal zero. The geometric indices were transformed by the natural
logarifhm of the index for consistency, the addition of one was unnecessary.

The set of 91 TIs was partitioned into two distinct sets: topostructural indices and




topochemical indices. Topostructural indices are indices which encode information about tﬁe
adjacency and distances of atoms (vertices) in molecular structures (éraphs) irrespective of the
éhenﬁcal nature of the atoms involved in the bonding or factors like hybridization states of atoms
and number of core/valence electrons in individual atoms. Topochemical indices are parameters
which quantify information regarding the topology (connectivity of atoms) as well as specific
chemical properties of the étoms comprising a molecule. Topochemical indices are derived from
weighted molecular graphs where each vertex (étom) is properly weighted with selected
chemical/physical properties. These sets of the indices are shown in Table IIL

According to Topliss and Edwards, in conducting QSAR studies it is important to bear in
mind that the indiscriminate use of too many independent variables can lead to spurious (chance)
correlations (1979). Using their findings, we have determined that for a set of 95 compounds no
more than 60 independent variables can be used in generating regression analyses with explained
variance (R) of 0.7 or greater. It must be kept in mind that this is the total number of variabies
initially used in modeling, not the final number of variables used in the model. This number of
independent variables should keep the probability of chance correlations below the 0.01 level.

To reduce the number of independent variables that we would use for model oonstruction,A
the sets of topostructural and topochemical indices were further divided into subsets, or clusters,
based on the correlation matrix using the SAS procedure VARCLUS (SAS 1988). The
VARCLUS procedure divides the set of indices into disjoint clusters so that each cluster is
essentially unidirhensional.

From each cluster we selected the index most correlated with the cluster, as well as any

indices which were poorly correlated with the cluster (r < 0.70). These indices were then used in



the modeling of mutagenic potency of aromatic and heteroaromatic amines. The variable
 clustering and selection of indices was performed independently for both the topostructural and

topochemical subsets.
Statistical Analysis and Hierarchical QSAR

Regression modeling was accomplished.using the SAS procedure REG on thirteen sets of .
indices. These sets were constructed as part of a hierarchical approach to QSAR model
development. The hierarchy begins with the simplest indices, the topostructural. After using the
topostructural indices to model the activity, we then proceed to add the next level of complexity,
the topochemical indices from the clustering procedure, and proceed to model the activity using
these parameters. Likewise, the indices included in the model selected &om this procedure are
combined with the indices from the next level, the geometrical indices, and modeling is condﬁcted
once againf Finally, the best model utilizing topostructural, topochemical and geometrical indices
is combined with the quantum chemical parameters and modeling is conducted. This final step was
repeated four times, each time using quantum chemical parameters from a different semi-empiricalv
Hamiltonian, ﬁamely, AM]1, PM3, MNDO, MINDO/3. Thus quantum chemical models are
developed individually, one using the AM1 parameters, one using the MNDO parameters, one
using the PM3 parameters, and one using the MINDO/3 parameters. The regression analysis

resulted in the final selection of indices for each of the models.




RESULTS AND DISCUSSION

The variable clustering of tobostmctm‘al and topochemical indices resulted in 8

: topoétrﬁctural and 13 topochemical indices being retained for model construction (see Table III).

The results for the all possible subsets regression analyses have been smm in Table IV.
Since all sets were well under 25 parameteré, all possible subsets regression was used for all
analyses.

As can be seen from Table IV,_ using only the topostructural class of indices resulted ina

four parameter model to estimate In(R) with a variance explained (Rz) of 72.1% and a standard
error (s) of 1.04 (equation 1). The Po and J indices are related to the size and shape of molecular
graphs; the 47@: encodes information about the degree of branching of molecular graphs; the O
parameter is related to the degree of symmetry of graphs (Basak et .al. 1987). Therefore, size,
branching, and symmetry (or complexity) of skeletal graphs corresponding to molecular su;uctures
seem to be the predominant factors in determining mutagenic potency of the set of 95 ammatié
amines.

The second step of the hierarchical method combined the four topostructural parameters
from equation 1 with the set of thirteen topochemical parameters. The resulting model for
estimation of In(R) included six parameters (equation 8) which had an R*of 75.2% and a s of
0.99. Thus we see that the addition of topochemical information does lead to an increase in the
explained variance, improving our model Qvithout greatly increasing the number of independent
variables. The independent variables of equation 8 quantify : a) shape and size of molecular

graphs (J, Po), b) branching (4xpc), ¢) molecular complexity / redundancy (SIC;, SIC,), and d)




degree of cyclicity (*x°). It may be mentioned that we have found very similar set of

topostructural and topochérrxical parameters useful in estimating normal boiling point, octanol

water partition coefficient (Basak, Gute and others 1996¢), and vapor pressure (Basak, Gute and

others 1996d) of diverse sets of molecules.

The next step of the hierarchical method takes this topostructural + topochemical model
and adds the three geometric indices, however, this actually led to a decrease in the explained
variance. As part of model construction, it became necessary to eliminate Po from the set of

indices when adding the hydrogen-suppressed 3-D Wiener number because of resulting problems

- with variance inflation between the two parameters. As a result, the model which retained the

geometric parameter had a slightly lower R? and s values than the model using topostructural and
topochemical only (equation 9). This being the case, we chose to use the parameters from
equation 8 in the following modeling with the quantum chemical parameters. Thus, the last four
models were all constructed with the six parameters fro{rx equation 8 and all six quantum chemical
parameters for the particular Hamiltonian methédology available for modeling.

As can be seen. from Table IV, the AM1 parameters made the most significant contribution
to our hierarchical modeling procedure (R*=79.1%, s = 0.92). The other three methods showqd
only minimal improvement over the topostructural + topochemical model.

Finally, individual models using onl); topochemical, only geometrical, and only quantum
chemical parameters were constructed to further our understanding of the individual contribution
of these different types of parameters. The topochemical model was the strongest of the three,
with the geometrical and quantum chemical models showing little effectiveness. The topochemical

model included six parameters and did show a slight increase in explained variance and standard




error over the topostructural model.

The goal of the péper was to investigate the mlaﬁve effectiveness of theoretical structural
parametcrs;l namely topostructural, topochemical, geometrical and quantum chemical parameters;
in predicting the mutagenicity of a set of aromatic and heteroaromatic amines. To this end, we
used a hierarchical approach in the development of QSARs using four classes of molecular
descriptors. |

" The results show that the topostructural para:ﬁetexs explain a large fraction of the variance
(R?) in the mutagenic potency of the amines. The best model in this area explained about 72% of
variance in mutagenicity using O, “ypc, Po, J. These indices do not contain any explicit chemical
information about the molecules. The large explained variance probably indicates that general
structural features like size, shape, symmetry, and branching play a major role in determining
mutagenic potency. The addition of topochemical variables made some improvement in the
explained variance. The best model using topostructural and topochemical indices explained about
75% of variance in mutagenicity. The addition of geometrical parameters, however, did not make
any improvement in estimation. Finally, the addition of quanturh chemical parameters was
attempted. Indices from AM1, PM3, MNDO and MINDO3 —were used separately in developing
the QSAR models. While addition of the heat of formation, dipole moment and Exomor
parameters calculated by the AM1 method provided some improvement in the estimation.o_f In(R),
parameters calculated by PM3, MINDO3 and MNDO did not make any significant improvement
in the estix.nation 'of mutagenic potency. The calculated values for the parameters used in the
hierarchical model which included the AM1 parameters (equation 10) are presented in Table V.

These values represent the original, non-transformed values for all indices used in equation 10.
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Using the same set of aromatic amines Debnath et al. (1992 ) developed various QSAR
models using hydrophobicity (logP, octanol/water), Exomo and Erumo calculated by the AM1
Hamiltoniaﬁ and some indicator variables. For the largest subset (n = 88), they derived the
following model:

In (R) = 7.20 + 1.08(log P) + 1.28(Exowmo) - 0.73(Erumo) + 1.46(I1)

s=0.860, F =12.6, R>=0.806

The model in equation 10 is comparable to the model developed by Debnath et al. and

uses all the 95 aromatic amines as compared to a smaller subset (n=88) used in their study.
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LEGEND FOR FIGURE:

Figure 1. - Scatterplot for observed In (R) vs. estimated In (R) using equation 10 for a set of
95 aromatic and heteroaromatic amines. )
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Table L Observed and estimated mutagenic potency {In(revertants/nmol)] for ninety-five

aromatic and heteroaromatic amines.

: Est. In(R)
" No. Compound Exp. In(R) (eq.10)
1 2—bromd—7-aminoﬂu6rene 2.62 1.10
2 2-methoxy-5-methylaniline (p-cresidine) 2,05 3.13
3 5-aminoquinoline -2.00 -2.30
4 4-ethoxyaniline (p-phenetidine) -2.30 -3.76
5 1-aminonaphthalene -0.60 -0.32
6 4-aminofluorene 1.13 0.44
7 2-aminoanthracene 2.62 1.61
8 7-aminofluoranthene 2.88 2.54
9 8-aminoquinoline -1.14 -1.66
10 1,7-diaminophenazine 0.75 1.36
11 2-aminbnaphthalene -0.67 -0.80
12 4-aminopyrene 3.16 3.10
13 3-amino-3"-nitrobiphenyl -0.55 -0.19
14 2.4 5-trimethylaniline -1.32 0.74
15  3-aminofluorene 0.89 0.74
16  3,3-dichlorobenzidine 0.81 0.24
17 2,A-dimethylaniline (2,4-xylidine) -2.22 -1.63
18  2,7-diaminofluorene 0.48 0.97
19  3-aminofluoranthene 3.31 257
20 2-aminofluorene 1.93 1.08
21  2-amino-4"-nitrobiphenyl -0.62 0.37
22 4-aminobiphenyl -0.14 - 0.06
23 3-methoxy-4-methylaniline (o-cresidine) -1.96 -3.27



24
25

26

27
28
29
30
31
32
33
34
35
36
37
38
39

41
42
43

45
46
47
48
49

2-aminocarbazole
2-amino-5-nitrophenol
2,2'-diaminobiphenyl
2-hydmxy-7-anﬁnoﬂliorenc

1-aminophenanthrene

2,5-dimethylaniline (2,5-xylidine) -

4~amino—2‘-nitrobi15hcnyl
2-amino-4-methylphenol
2-aminophenazine
4-aminophenylsulfide

2 4-dinitroaniline
2,4-diaminoisopropy1bchzenc
2 4-difluoroaniline
4.4'-methylenedianiline
3,3"-dimethylbenzidine
2-aminofluoranthene
2-amino-3"-nitrobiphenyl
1-aminofluoranthene

4 4'-ethylenebis (aniline)
4-chloroaniline
2—amiﬁophcnanthrcnc
4-fluoroaniline
9-aminophenanthrene
3,3'-diaminobiphenyl
2-aminopyrene

2,6-dichloro-1,4-phenylenediamine

0.60
252

2152

041
2.38
-2.40
-0.92
-2.10
0.55
0.31
-2.00
-3.00
-2.70
-1.60
0.01
3.23
-0.89
3.35
-2.15
-2.52
246
-3.32
298

-1.30

3.50
-0.69

0.60
2.01
-1.24

1.61

1.80
-1.55
.50
2.43

132
0.47
-0.75
-3.36
-1.29

097

-0.23
2:66
-0.42
2.23
092
-2.94
1.96
257
1.13
-0.20

258

-1.46




50

51

52

- 53

54
55
56
57
58
59

61
62
63

65
66
67
68
69
70
71
72
73
74
75

2-amino-7-acetamidofluorene
2,8-diaminophenazine

6-aminoquinoline

4-methoxy-2-methylaniline (m-Cresidine)

3-amino-2'-nitrobiphenyl

2 4'-diaminobiphenyl
1,6-diaminophenazine
4-aminophenyldisulfide
2-bromo-4,6-dinitroaniline
2,4-diamino-n-butylbenzene
4-aminophenylether
2-aminobiphenyl
1,9-diaminophenazine
1-aminofluorene
8-aminofluoranthene
2-chloroaniline
2-amino-a.,o,o-trifluorotoluene
2—anﬁno—1-niuonaphﬂ1alcﬁc
3-amino-4'-nitrobiphenyl
4—bromoanilinc
2-amino4—ch10rophcnol
3,3'-dimethoxybenzidine
4-cyclohexylaniline
¢phcnoxyani1ihe
4.4'-methylenebis (0-ethylaniline)

2-amino-7-nitrofluorene

1.18

. 1.12
267

-3.00
-1.30
-0.92
0.20
-1.03
-0.54
270
-1.14
-1.49
0.04
0.43
3.80
-3.00
-0.80
-1.17
0.69
270
-3.00
0.15
-1.24
0.38
0.99
3.00

0.89
1.55
-2.31
-2.44
-0.90
-0.40
0.20
-1.00
-1.25
-3.72
-0.76
-0.77
0.09
0.28
2:69
-2.37 |
-1.63
-0.90
0.14
-3.08
-2.39

0.05

-0.73
-0.50
-0.51

1.19



76

77

78
.79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

benzidine
1-amino-4-nitronaphthalene
4-amino-3"-nitrobiphenyl
4-amino-4'-nitrobiphenyl

1-aminophenazine.

4,4'-methylenebis (o-fluoroaniline) -

4-chloro-2-nitroaniline
3-aminoquinoline
3-aminocarbazole
4-chloro-1,2-phenylenediamine
3-aminophenanthrene
3,4'-diaminobiphenyl
1-aminoanthracene
1-aminocarbazole
9-aminoanthracene
4-aminocarbazole
6-aminochrysene

1-aminopyrene

4-4'-methylencbis (o-isopropyl-aniline)

2,7-diaminophenazine

-0.39

177
" 1.02

1.04
-0.01
0.23
2.22
3.14
-0.48
-0.49
3.77
0.20
1.18
-1.04
0.87
-1.42
1.83
143
177
397

-0.52
-0.95
047
0.73
1.28
041
-2.06
-2.22
0.60
201
1.79
-0.34
1.86
0.65
L.15
0.38
341
3.51
-1.13
1.93




Table IL. Symbols and definitions of topological and geometrical parameters.

'I‘;J)

I

A\

ID
HV
HD

IC

Iore

M,
M

IC

SIC,

CIC

Information index for the magnitudes of distances between all possible pairs of

wvertices of a grapn

Mean information index for the magnitude of distance

‘Wiener index = half-sum of the o_ff-diagonal elements of the distance matrix of a

graph

Degree complexity

Graph vertex complexity
Graph distance complexity

Information content of the distance matrix partitioned by frequency of occurrences
of distance h

Information content or complexity of the hydrogen-suppressed graph at its
maximum neighborhood of vertices

Order of neighborhood when IC; reaches its maximum value for the hydrogen-filled
graph '

A Zagreb group parameter = sum of square of degree over all vertices

A Zagreb group parameter = sum of cross-product of degrees over all neighboring
(connected) vertices

Mean information content or complexity of a graph based on the ™ (r = 0-6) order
neighborhood of vertices in a hydrogen-filled graph :

Structural information content for ™ (r = 0-6) order neighborhood of vertices ina
hydrogen-filled graph )

Complementary information content for r® (r = 0-6) order neighborhood of vertices
in a hydrogen-filled graph

Path connectivity index of order h = 0-6
Cluster connectivity index of order h =3-5
Path-cluster connectivity index of order h = 4-6
Chain connectivity index of orderh =5, 6
Bond path connectivity index of order h=0-6

Bond cluétcr connectivity index of order h =3, 5



AL A

A

Py

Bond chain connectivity index of orderh =35, 6

Bond path-cluster connectivity index of order h =4-6

‘Valence path connectivity index of order h =0-6

Valence cluster connectivity index of orderh =3, 5

VValence chain connectivity index of order h = 56

Valence path-cluster coﬁnectivity‘ index of order h = 4-6
Number of paths of length h =0-10

Balaban's J index based on distance

Balaban's J index based on bond types

Balaban's J index based on relative electronegativities
Balaban's J index based on rélative covalent radii

van der Waal’s volume

3-D Wiener number for the hydrogen-suppressed geometric distance matrix

. 3-D Wiener number for the hydrogen-filled geometric distance matrix




Table IIL Classification of parameters used in developing models for mutagenic potency (InR).

Quantum Chemical:
. AM1, PM3, MNDO,

Topological Topochemical Geometric MINDO/3

Iy Tore _ Vw Enomo
-ITD'V IC, - ICs Pw Enomot

w SICo - SICs - Wy Erumo

P CIC, - CICs Erumor

H' - AHf

H *Lead’Lc n

}E X e and Yo

10, . 4xbpc _ GXbPC

Ml Oxv _ éxv

M2 BXVC and vac

O -6y 5o and Sl |

3xc and SXC 4xbpc _ GXbPC

SX(}I and 6XCh JB

“tec - “Xec iy

Po-Pio i




Table IV. Summary of regression results for all classes of parameters.

eq. parameter class variables included F R* s
1  topostructural O, “¥pc, Po, J 58.1 0721 104
2 topochemical  ICq, SIC,, SICs, X', *Ce, “Xre 411 0737 102
3  geometric Pw 61.8 0399 150
4 QcI AM1 Enowmot, ELumo, 1 31.8 0512 1.37
5 Qc: MNDO Exomot, ELumo 547 0543 131
6 QcZ MINDO/3 EHOMO, ELUMQ, AI'I{ 324 0.517 1.36
7 Qc:PM3 Enomo, Exomor, ELumo 300 0497 1.39
8  topostructural + “xpc, Po, J, SICz, SICs, *X’c 445 0752 099
topochemical
9  topostructural +
topochemical +  “xpc, J, SICy, SICs, *X’c, W 429 0746 1.00 -
: _ geometric
10  topostructural +
topochemical +  “xpc, Po, J, SIC2, SICs, *(’c, Bromor, 358 0791 0.92
geometric + AH, 1
AM1
11  topostructural +
topochemical + - *¢pc, Po, J, SICs, SICs, °X°c, AHy 404 0765 097
geometric +
MNDO
12  topostructural + .
topochcmical + 4xpc, Po, J, SIC,, SIC4, Erumo 458 0758 098
geometric +
MINDO/3
13 topostructural +
. topochemical + “xpc, Po, J, SICz, SIC4, *x’c, AHy 39.7 0761 098
geometric +

PM3




Table V. Calculated values for the topostructural, topochemical, and AM1 quantum chemical
parameters used in equation 10. :

No.

4

Po

J

SIC,

©5.,b

.

Xpc SIC, y &= Enomot ;'

1 2482 15 1.722 0780 0966 0.080 -9.510998 57462489  3.246
2 1409 10 2356 0.824 0.875 0.059 -9.198889 -24.061979. 1.613
3 1440 11 1993 0.831 0975 0.058 -9.528133 51.959364 | 2.993
4 0.841 10 2.132 0.775 0.818 0.000 -9.761040 -22.045505  1.782
5 1440 11 1993 0.639 0931 0.058 -9.342732 40325881  1.549
6 2.209 14 1.800 0.697 0931 0.109 -9.019172 53.561923  1.377
7 2148 15 1673 0.613 0885 0.049 -8.752501 61.467301  1.686
8 3051 17 1.694 0616 0890 0.119 -8.883560 90.631004 1.061
9 1440 11 1993 0.807 0975 0.058 -9.4975 13 49496038  1.140
10 2650 16 1 701 0.703 0967 0.083 -8.759018 93.256750  2.202
11 1.292 11 1932 0.648 0907 0.025 -8.981140 39.152911 . 1.625
12 3.058 17 1.692 0.593 0.890 0.112 -9.017251 86.180524  1.025
13 2289 16 1.879 0.722 0951 0.065 -9.635184 49.692122 5.732
14 2154 10 2462 0.622. 0786 0.167 -9.195396 -1.1 16909 - 1.386
15 | 2136 14 1751 0704 0948 0.080 -8.880375 53383623  1.407
16 3.115 16 1.884 0.677 0755 0.194 -9.010987 29.747467  1.402
17 1.478 9 2346 0719 0867 0.083 -9.402700 5.680026 1423
18 2482 15 1722 0.692 0766 0.080 -9.008264 51.483002 0.749
19 3131 17 1679 0592 0890 0.128 -8.745169 113597721 1348
20 2132 14 1739 0.704 0948 0.080 -9.316509 53266008  1.795
21 2481 16 1.832 0.699 0902 0.103 -10.009252 50.464895  5.573
22 1351 13 1.789 0.570 0.836 0.028 -9.611345 - 45922022 1.682
23 1.418 10 2376 0.824 0.875 0.059 -9.233259 -23.899670 | 2.229



24

25
26
27
28
29
30
31
32

33 -

34
35
36
37
38
39

41
42
43

45
46
47
48
49

2132

2.126
1.945
2.482
2.332
1.478
2293
1.478
2.148
1.221

2499

1.838
1.478

- 1.630 -

3.115
2913
2437

-3.058

1.683
0.816
2.176
0.816
2.280
1.641
2.888
2.006

14
11
14
15
15

16

15
14
13
11

15
16

17

16
17
16

15

15

14
17
10

1.739
2.396
1.963
1.722
1.763
2.346
1.944
2.346
1.673
1.685
2.526
2437
2.346
1.681
1.884
1.674
1.921
1.700
1.601
2.192
1.722
2.192
1.787
1.861
1.654
2.487

0.715
0.874
0.591
0.791
0.600
0.696
0.699
0.847
0.651
0.593
0.777
0.722
0.836
0.603
0.656
0.604
0.716

0.616

0.606
0.737
0.606
0.737
0.603
0.624
0.569
0.719

0.981

*0.942

0.755
0.967
0.951
0.867
0.902
0.910
0.891
0.845
0.920
0.815
0.962
0.659
0.716
0.905
0.967
0.920
0.660
0.812
0.951
0.812
0.885
0.755
0.807
0.812

0.057
0.121
0.104

.0.080

0.091
0.083
0.075
0.083
0.049
0.000
0.107
0.131
0.083
0.000
0.194
0.093
0.103
0.119

0.000

0.000
0.057
0.000
0.091
0.028
0.077
0.144

-8.382162
10.236383

-8.411351

-9.366850
-8.782735
-9.229828
-9.850974
-9.261839
-9.205497
-9.510446
11.360524
-8.792416
10.029053
-8.406652
-8.782407
-8.844299
-9.940798
-8.657007
-8.707849
-9.948850
-8.807318
10.025071
-8.826091
-9.637290
-8.537199
-9.653936

66.295627
-21.118276

45.503434 ‘

8.492721
57.726120
5.699677
54.711440
-30.703134
91.251439
52.769884
25435777
3.913795
-69.256743
39.288132
29.805987
113.962366

79.401262
- 101911673

57.273517
13.095294
59.927756
-24.569648

57.985510

52.825739
81.775262

6.122184"

1.688

6.030

0.270
1.867
1.543

- 1431

5.793
1.260
1.882
1.912
7.257
2.561

2575

1.394
2.494
0.866
6.265
1.867
2.562
2.631
1.359
2.776
1.608

-0.355

1.644

0948




50
51
52
53
54
55
56
57
58
59

61
62
63

65 .

67

- 68

69
70
71
72
73
74
75

2721
2.497
1.292
1.574
2.234
1.848
2.802
1.683
3.074

'1.360

1.630
1.292
2.802
2.293
2972
1.138
2214
2274

2332

0.816
1.478
2.994
1.351
1.221
2.855
3.130

18

16

11
10
16
14
16
16
14
12
15
13
16
14
17

11
14
16

18

13

14
19
17

1.612

1.667
1.932

2.330

1.984
1.867

1739

1.601
2.661
2.246
1.681
1.833
1.744
1.786
1.656
2279
2.461
2.092
1.793
2.192
2.346
1913
1.789
1.685
1.809
1.674

0.786
0.644
0.831
0.824
0.716
0.628
0.677
0.584
0.813
0.740
0.579
0.588
0.677
0.697
0.613

. 0.775

0.788
0.732
0.699
0.737
0.885
0.670
0.633
0.593
0.670
0.786

0.920
0.;77 1
0.975
0.875
0.967
0.9Q2
0.755
0.643

0.920

0.890
0.642
0.884
0.771
0.931
0.896
0.962
0.903
0.939
0.902
0.812
0.966
0.725
0.783
0.845
0.738
0.953

0.080
0.049
0.025
0.083
0.075
0.066
0.117
0.000
0.174
0.059
0.000
0.028
0.117
0.127
0.093
0.083
0250
0.093
0.065
0.000
0.083
0.146

0.048°

0.000
0.118
0.117

-9.409869
-2.614724
-9.34575§
-9.524426
-9.701876
-8.529041
-8.724272
-8.694071

11.175279

-8.803533
-8.589188
9.075139
-8.760423
-8.809819
-8.672342
9.647217
10.328717
-9.498965
9707684
-9.958995
9512320
-8.597273
9618662
9519593
-8.322206
-9.907587

19.708295
124.753819
50.639120
-23.7457T7
55.625683
45.389658
87.859343
52.783142
33.261219
-7.047410
21.521611
46.291223
87.878976
52.914796
86.560420
13.148070

-135.798912

42.132738
49.439690
24.673699
-30.25713 1
-29.701343
-11.036978
24.038959
14.345758
57.088597

4954
2.050
2.728
1.831
6.167

1.889

1.995
3.652
6.162
2.543

2.589
1.526

2.958
1.658
1.569
1.773
4.070
5212
6.645
2.834
1.873

'0.593

1453
3243
1.347
7715



76
77
78
79
%0
81
82
83
84

85

86

87

88
89
90
91
92
93
94
95

1.759

2390

2.348
2391
2.300
2975
1.851
1292
2.136
1.478
2.180
1700
2300
2293
2357

2209

3.175
3.110
3.721
2.497

14

14

16
16
15
17
11
11
14

15
14
15
14
15
14
19
17

o 21

16

1.780
2.079
1.843
1.760
1.714
1.775
2471
1.932
1.751
2.346
1.741
1.820
1.714
1.786

1.760

1.800
1575
1677
1.867
1.664

0.558
0.760
0.699
0.656
0.655
0.705

- 0.863

0.807
0.715
0.738
0.606
0.611
0.617
0.708
0.587
0.708
0.553
0.577
0.638
0.644

0.624
0.939
0.902
0.836
0.884
0.773
0.938
0.975

0.981

0.875
0.935
0.869
0.896
0.962
0.787
0.962
0913
0.890
0.674
0.755

0.028
0.103
0.065
0.065
0.083
0.167
0.070
0.025
0.057
0.083
0.057
0.028
0.083
0.091
0.103
0.082
0.124
0.112
0.263
0.049

-8.898246
-9.995923

10.065351

10.153390
-9.466774
-8.668864
10.795945
-9.250508
-8.650669
;9.338439
-8.832492
-8.581538
-9.168383
-8.617125
-9.179235
-8.497152
-8.830777

-8.958369

-8.315255
-9.634497

44.312986
44945430
48.997787
48.597189
90.375028

-51.583170
14.958329
61.289442
70.561209
12.337686
56.103853
44.585899
66.520403
69.956608
64.230081
66.236222

100.875189
70.826740
10.633206

124.742897

2417
7318
5907
7.636
1.894
2233
5.163
2.564
2432

1.935

1.663
2.808

1216

1.276
1.689
1.21 1
1.130
1.287
1.225
0.004
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On the Relationship between the Organic-Carbon Normalized
Sediment, or Soil, Sorption Coefficient and the Octanol-Water Partition
. Coefficient

K.B. Lodge

Department of Chemical Engineering, University of Minnesota, 10 University Drive, Duluth, Minnesota
55812-2496

Abstract. If the organic carbon in sediment or soil has the same partitioning properties as
octanol, the relationship between the organic-carbon normalized sorption coefficient, K, with
units of L/Kg, and the octanol-water partition coefficient, K, , is log K,  =log K, +0.214 at
20 °C. Observations are well represented by log K, =log K, —0.289; this is calculated using
the data critically reviewed by Baker and coworkers (Water Environ. Res., 69(2), p136-145
(1997)). We conclude that partitioning properties of the organic carbon in sediment or soil are
not the same as octanol; experimental values of K, are about one third of those expected if the

organic carbon behaves identically to octanol.

When considering the distribution of hydrophobic nonionic organic compounds in aqueous
systems, are the partitioning properties of octanol the same as those of the organic carbon in soils
or sediments? If so, we may be tempted to suppose that

K, =K, [1]
where K, is the sediment, or soil, sorption coefficient and K, is the octanol-water partition
coefficient. These coefficients are defined as follows:

K, =C,/(F,-Cy)

K, =C../C, 2]
where C, is the mass of chemical per unit mass of dry sediment or soil, £, is the fraction of
organic carbon in the dry sediment or soil, C,,q is the mass of chemical per unit volume of
aqueous phase, and C,, is the mass of chemical per unit volume of octanol. There is ample
evidence to believe that eq 1 holds within an order of magnitude or so. Because the partitioning
of nonionic organic chemicals is a purely physical process, we may be tempted to believe that
the organic carbon in the sediment or soil is no different from that in octanol and so it is
reasonable to suppose that eq 1 holds.

Our purpose is to put eq 1 on a more formal footing and examine closely the ideas behind it.

We do not like the equation as it stands unless we clearly recognize it to be a dimensional

equation (units of K, are L/Kg here and throughout); the concentration basis on the left-hand
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side is not the same as the right-hand side . The concentration of the chemical in the sediment,
C,, is defined as the mass of chemical per unit mass of dry sediment or soil and the

concentration of the chemical in the octanol is defined as the mass chemical per unit volume of
octanol. However, we may develop a relationship between K, and K, , ensuring a consistent
concentration basis thereby.

To do this, we take the idea that the organic carbon in the sediment is no different from that
in the octanol and construct a model for which we consider the equilibrium. The model consists
of sediment, water and octanol in a container (see figure 1a) and we consider the distribution of a
chemical at equilibrium within the container. The octanol, being the least dense phase, is
uppermost. Now we assume that the distribution behavior is explained by considering the
sediment to behave like octanol. Practically,'we would have to prepare the system in the

configuration as shown in figure 1b because octanol is less dense than water.

At equilibrium
Coy =Cour 1 Ko = Coa 1 Ko,
or
K:w = C:cl /Caq = K:w = C:cl /Caq [3]

where the superscripts “o0” and “s” represent the octanol and the octanol phase representing the
sediment respectively. Now we consider the concentration of the chemical in the octanol phase

that represents the sediment.

C:cl =m / I/ncll [4]
where m is the mass of chemical in the volume of octanol,V,, . Now we express this
concentration in terms of the mass of chemical per unit mass of octanol.

C:cl = m.pocl / Mocl [5] .
where M, is the mass of octanol and p,,, is the density of octanol. This can be written as
Cotr =C+Po =(C 1 FF) - B - Py

where Fo is the fraction of organic carbon in octanol. Now, from eq 3,
' K:w = C:c! /Caq = [C.: / (E::c’ .Caq)]' Foc 'pocl

oct

The concentration term within the square brackets on the right-hand side is just K,

oc?

the organic-
carbon normalized sorption coefficient for the octanol phase representing the sediment. So
Ko, =Ko F - Pou

The units are now consistent. In the logarithmic form

log K, =logK,, —log(F,;  Poc) [6]
Here we have dropped the superscripts because the two phases are indistinguishable. The
relationship is weakly dependent upon temperature because of the density term. We calculate
the fraction of organic carbon in octanol from the relative molecular masses; F,,, = 0.738 ; the
density of octanol (1) at 20 °C is 0.827 g/mL. So, at 20 °C,
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logK, =logK, +0214 [7]

If the organic carbon in the sediment behaves identically to octanol, then we expect the
relationships in eq 6 and 7 to be observed. What is observed? From experimental data, many
workers have developed relationships of the general form :

logK, =a-logK,, +b . 1]
where values of @ and b are determined by linear regression. To make the essential point here,
we consider only the recent relationship developed by Baker and coworkers(2); they developed |
selection criteria and critically reviewed the available measurements. They found the following
values, for 1.7 <log K, < 7.0, using data for 72 chemicals:

a=0903+0.034; b=0094%0142; and r* =091
We wish to compare eq 7 with this result.

However, the equilibrium model that we used requires @ = 1; other values of a do not
have a physical meaning for the model considered here. Using the data of Baker and coworkers,
we applied a regression model in which a is forced to be unity(3). We obtain

' fora=1; b=-0289; and r* =090
If octanol and the organic carbon in the sediment or soil are indistinguishable, then we expect
b=+0214 (see eq 7). In other words, experimental values of K . are about one third of the
values expected if the sediment or soil organic carbon were to have the same partitioning
properties as octanol. Whereas eq 1 is a useful first approximation, it should not be concluded

therefrom that the partitioning properties of octanol and the organic carbon in sediment or soils

are the same.
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0
oct Cocl

CS

oct

A B

Figure. This shows the model used to examine the relationship between K, and K

oc”

In A octanol is placed on a aqueous phase that lies over the soil or sediment. Upon assuming
that the sediment behaves like octanol, the system would adopt the configuration shown in B.
The model considers the distribution of the chemical between the phases at equilibrium; the

symbols, representing the concentrations of chemical in the various phases, are defined in the
text.
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