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SECTION 1 
INTRODUCTION 

An analytical solution is presented for the stresses and strains around a circular 
hole in a Mohr-Coulomb material under conditions of plane strain when subjected to 

a hydrostatic free-field pressure. The so!ution is a direct extension of the solurion of 
Florence and Schwer (Florence, 1978) and (Florence, undated) to include arbitrary 

dilatancy and the case where out-of-plane yielding occurs in the free field. 

1.1 BACKGROUND. 

The basic approach to this problem was defined by (Newmark, 1969) in respons to 
the need for a method of designing underground structures to resist the effects of 
ground shock due to nuclear weapons. In the development of his solurion, Newmark 
assumed an elastic-perfectly-plastic medium with plastic volume constancy m a 
plane strain configuration. Newmark's work was expanded by Hendron and Aiyer 
(Hendron, 1972), who provided the solution for a dilatant material using an associ- 
ated flow rule. Both the Newmark and the Hendron and Aiyer solutions were based 
on the assumption that the out-of-plane stress was the intermediate pnncip^d 

stress   There are, however, certain combinations of applied load and material 
properties where the out-of-plane stress is not the intermediate principal stress. 

Florence and Schwer (Florence, 1978) and (Florence, undated) generalized the 
Hendron and Aiyer solution by eliminating the requirement that the out-of-plane 

stress be the intermediate principal stress. Their solution is considerably more 
complex, since it requires one to deal with multiple yield conditions in a single 
material. In fact, the solution is divided into two cases depending on the material 

properties and loads. 

Detoumay and others (Detonmay, 1983) presented a more general solution which 
allowed arbitrary dilatancy through the use of a nonassociative flow rule, Irt;**. 
solution maintained the requirement that the out-of-plane stress be the intermedi- 

ate principal stress. A similar solution was developed independently by (Merkle, 

1982), although we have not found it in published form. 



Wintergerst and others (Wintergerst, 1991) generalized both cases of the Florence 
and Schwer solution to allow arbitrary dilatancy through the use of a nonassociative 

flow rule, thus providing a solution with both arbitrary dilatancy and no limitation 

on the intermediacy of the out-of-plane stress. 

The analytical solutions developed by Florence and Schwer and by Wintergerst, et al 
for the plane strain, axisymmetric compression of a circular opening in a Mohr- 
Coulomb material make the assumption that out-of-plane yielding of the free-field 

does not occur. These solutions assume that an elastic zone always exists outside 

the plastic annulus and therefore do not apply to the free-field yielding case (i.e., an 

infinite outer radius of the plastic zone). However, as will be shown herein, certain 
combinations of friction angle, elastic properties, and free-field pressure can cause 

the free-field to yield before significant deformation of the opening has occurred, 
rendering these solutions incomplete. Yielding of the free-field does not necessarily 

translate into excessive closure of the tunnel. 

1.2 SCOPE AND ORGANIZATION OF THE REPORT. 

The earlier solutions, including the provision for arbitrary dilatancy, are extended in 

this report to include yielding of the free field. 

Section 2 contains a complete problem description, a discussion of the solution 
approach, the definitions of the Florence and Schwer solution cases, and a derivation 
of the conditions under which the free field will yield. In developing the solution it is 

convenient to separate the problem into two general cases based on how the 
concentric plastic zone(s) develops around the opening. These two cases were 
identified by Florence and Schwer as Case I and Case II. The difference between 
these two cases is that the initial plastic zone that develops at the edge of the open- 

ing is governed by two different yield conditions, depending on the specific 
combinations of material properties and loading. In Case I, the out-of-plane stress 

within the initial plastic zone is the intermediate principal stress. In Case II, 
however, the out-of-plane stress is the maximum (least compressive) principal 
stress. Section 2 also contains a derivation of the material and load parameters 
which demarcate Cases I and II. Since additional concentric plastic zones may form 

outside of this initial zone, these two cases are each subdivided into two subcases. 



For Case I there are conditions that cause only one initial plastic zone to form and 

no free-field yielding is possible. These conditions constitute Case la solutions. 
Cases where additional plastic zones develop with continued loading will constitute 

Case lb solutions. The free field may or may not yield depending on the material 

properties. The Case I solutions are described in Section 3. 

For Case II the order of the formation of the plastic zones differentiates the two 
solution subcases. In Case Ha, the initial plastic zone is followed by the formation 

of a second plastic zone, which also begins at the edge of the hole. Under certain 
conditions further loading will cause the free field to yield. In Case lib the free field 

yields after formation of the initial plastic zone. Further loading causes a thud 
plastic zone to form. This third plastic zone has the same stress conditions as the 
second plastic zone in Case Ha, and it also begins at the edge of the hole. The Case 

II solutions are described in Section 4. 

Tables summarizing the calculation^ procedures applicable to the various solution 

cases and radial zones are presented in Section 5. Numerical examples of the 
extended solutions to the tunnel problem are presented in Section 6. These exam- 
ples include comparisons with the results of finite element analyses. Finally, 

references are listed in Section 7. 

Frequently used symbols are defined in Table 1-1 which is adapted from 

(Wintergerst, 1991). 



Table 1-1.   Definitions of frequently used symbols. 

a - interior radius of the opening 
E - Young's modulus for medium 
f - yield surface definition 
g - plastic potential surface corresponding to yield surface f 
G - shear modulus for medium 
M - arbitrary dilatancy parameter 
N - friction parameter 
pa - internal pressure acting on hole boundary 
p* - negative of the radial stress at the elastic-plastic boundary 
pb - far-field pressure (compressive stress) at large radius 
pb - far-field pressure at initial yield 

pb - far-field pressure at which R = R 
p'b - far-field pressure when the inner plastic zone begins to form under 

Case II yield conditions 
pb - far-field yield pressure 
p* - pressure value used to discriminate Cases Ha and lib 
p;' - far-field pressure at which the third plastic zone forms in Case lib 
r - arbitrary radius to any point in the medium 
R - radius to the elastic-plastic boundary 
R - maximum radius at which the radial and out-of-plane stresses are equal 
R       - minimum radius at which the radial and out-of-plane stresses are equal 
R'       - radius to the elastic-plastic boundary when pb = p'b 

ou       - unconfined compressive strength of medium 
cr       - stress in radial direction 
a„       - stress in circumferential direction 
cz      - stress in out-of-plane direction 
Er       - strain in radial direction 
e0       - strain in circumferential direction 

u 

e - strain in out-of-plane direction 
Note:    Strains are further distinguished by the superscripts (e) to denote 

elastic component and (p) to denote plastic component, and overdots 
to denote derivatives with respect to time 

v        - Poisson's ratio for medium (0 < v < 0.5) 
0        - friction angle for medium 
\        -flow constant of proportionality 
oo        - dilatancy angle 



SECTION 2 
PROBLEM DESCRIPTION AND APPROACH 

The purpose ef this section is to furnish a complete description of toproblem and 
the applch taken to soive it. In addition, we present ovations winch: (1) define 

the two solution cases developed by Florence and Schwer; and (2, define the 
conditions under which the free field will yield. These derivations are mchaded n 
this section since they are a part of the free-field yielding solutions for both Case I 
and Case II presented in Sections 3 and 4, respectively. The problem geometry 

loading, material law, and solution restrictions are described m Section 2.1. The 
loaumg, .... „j ;„ «„-«„„ o 2  The Florence and Schwer Case 
overall solution approach is discussed m Section 2.2. ineriore 
I and Case II conditions are developed in Section 2.3. Finally, the conditions for 

free-field yielding are derived in Section 2.4. 

2.1 PROBLEM DESCRIPTION. 

The problem geometry consists of a circular hole with radius a in an infinite medium 
under conditions of plane strain. The loading of the material consists of: (1) a 
«ssive pressure, p., applied at the inside edge of the hole (r equals a), and (2) 
a compressive pressure, pb, applied at r equal to infinity (defined as the free fiel^ 
Tensile values of p. and pb are precluded. The loading is assumed to be monotonic, 

with p. equal to Pb until p. reaches its final value. Subsequently, p. is held 
constant while pk is increased to it, final value. The internal pressure, p   can be 

considered to represent the resistance provided by a structural liner. The final value 
of7 would then represent yielding of the liner. The loading is assumed to be 

apphed sufficiently slowly that inertial effects can be ignored. Finally, it is assumed 
thÄng&e initial loading phase with p. equal to pb, the material response is 

linear. 

The material is assumed to be governed by a Mohr-Coulomb elastic-plastic consti- 

tutive law with a failure surface defined by 
\Z.l) 

f = a3-Na1 + au 

where a, is the maximum (least compressive) principal stress and as is the 
•    ^ ™wi™l stress   Throughout this report we adopt the 



and pb, are positive in compression. The material parameter ou represents the 

unconfined compressive strength of the material. The material parameter N is 

related to the friction angle, cp, by 

N_l+sin((t>) (2.2) 
l-sin(<t>) 

The previous solutions developed for this problem are not valid for N equal to one, 
that is, it has been assumed that the friction angle was greater than zero. We make 

the same assumption for the solution presented herein. 

Plastic flow of the material is assumed to be governed by the nonassociative flow 

rule 

ecp) - l iM_ (2-3) 

where e^ represents the components of the plastic strain rate tensor, X, is the 

plastic multiplier (a scalar), g represents the plastic potential surface, and c^ 

represents the components of the stress tensor. The form of the plastic potential 

surface is taken to be 

g = o3-Ma1 + K (2-4^ 

where the material parameter M is related to the dilatation angle co by 

M_l+sin((o) (2.5) 
l-sin(co) 

and K is an arbitrary constant. The constant K is arbitrary since only the deriva- 

tives of g with respect to the stresses are used in the flow rule. Note that if co is 
equal to <|>, then M is equal to N and the flow rule becomes associative. 

Furthermore, the value of M is restricted by 

1<M<N (2-6a) 

or 

0 < CD < * (2-6b) 

A dilatancy angle of zero (M = 1) indicates a non-dilatant material. 

It should be noted that for the geometry and loading of this problem, the principal 
stresses coincide with the normal stresses or, oe, and cz, where the subscripts r, 6, 



and z represent the radial, circumferential, and out-of-plane components, 
respectively. The shear stress components, c,«, a9z, and ara, are all zero. 

Elastic material response is assumed to be isotropic and therefore governed by two 

independent elastic constants. Throughout this report we use Poisson s ratio, v, 
Young's modulus, E, and shear modulus G, depending on which is most convenient. 

The relationship between G, E, and v is given by 

E (2-7) 
G"2(l+v) 

We further restrict the value of Poisson's ratio to be greater than zero and less than 

one-half. 

2.2  APPROACH. 

The general solution strategy used by Florence and Schwer for nonassociative flow 

(Florence, 1978) and subsequently adopted by (Wintergerst, 1991) for arbitrary 
dilatancy is as follows. The medium is broken up into regions (zones) which depend 
on the stress state (both principal stress ordering and magnitudes) and hence on the 
governing yield condition (if any). The number of regions, and the stress state in 
each region is dependent on both the loading and material properties. The stress 
states include both those governed by elastic material response and those governed 

by plastic material response. 

Florence and Schwer used numerical analysis to guide their postulations about the 
existence and conditions of the various plastic zones. After deriving their analytical 
solutions, they performed finite element analyses and obtained excellent agreement 
between analytical and numerical results. We have adopted the same solution 
philosophy in extending the analytical solution to include yielding of the free field. 

Within each region, equilibrium conditions, strain-displacement compatibility, and 

the constitutive law (including yield conditions and flow rules, where applicable) 
were used to derive an ordinary differential equation (in terms of a primary 

unknown) which governs the response in that region. Depending on the region the 
primary solution variable was taken to be either the radial displacement or the 
radial stress. The choice was based on ease of formulation and solution. The other 



unknowns (i.e., the remaining stress and strain components, or the displacement) 

are written in terms of the primary unknown. 

A general solution for the governing differential equation in each region is then 
determined. These solutions typically contain unknown constants, which are 
determined either by applying continuity conditions at the region boundaries or by 

using applied loading conditions at the edge of the hole or at r equal to infinity. 

2.3   CASE I AND CASE II DEFINITIONS. 

In this section, the Florence and Schwer derivations of the Case I and Case II 

conditions (Florence, 1978) and (Florence, undated) are described. 

The derivation of the elastic solution for a hole in an infinite medium under condi- 

tions of plane strain is well documented, so only the results are presented here. 

/ \a2 (2.8) 
Or=-Pb+(Pb-Pa)^2- 

, ^a2 (2.9) 
Oe=-Pb-(Pb-Pa)^2- 

O (2.10) 
oz =-2vpb 

2 

2Ger=-(l-2v)pb+(pb-Pa)|r (2-11} 

2 

2G£e=-(l-2v)pb-(Pb-pa)^r (2'12) 

For pa equal to pb during the initial loading, Equations 2.8 and 2.9 reduce to 
ai = ce= -pb. For values of Poisson's ratio satisfying the inequality 0 < v < 0.5, the 
stress ordering is ar = a6 < az. With increased loading, yielding of the material will 

be governed by 
XT n (2.13a) 

XT n (2.13b) f2 = Gr-Noz + au=0 
Substitution of the stress components in terms of pb into the yield condition of 

Equation 2.13a gives 

8 



Pa = Pb = 
a u 

(2.14) 

1—2Nv 
For compressive values of pb (equal to p.), the material will not yield if 2Nv > 1. 

For the condition 2Nv < 1, the material will yield throughout when Equation 2.14 is 
satisfied  As discussed in Section 2.1, we assume that the internal pressure, Pa, 

does not cause yielding of the material, and thus we restrict the internal pressure to 

p <     g"     when 2Nv < 1 (2-15) 
Pa    l-2Nv 

So far, there is no restriction on Pa for 2Nv > 1, but one will be developed later. 

As discussed in Section 2.1, once the internal pressure reaches its maximum value, 

it is held constant, while the free-field pressure is increased. Once the external 
pressure is increased above the internal pressure, we have (according to Equations 
2 8 through 2.10) ae < or and oe < oz throughout the medium. At the edge of the 

hole (r equals a), cr(a) > cz(a) if   Pa < 2vPb and cr(a) < o.(a) if Pa > 2vpb. An 

inspection of Equations 2.8 through 2.10 shows that the maximum stress difference 

occurs at the edge of the hole, and therefore initial yielding will occur there. 

We will denote the external pressure at which yielding begins as pb. The stresses at 

the edge of the hole (r equals a) when yielding commences are evaluated using 

Equations 2.8 through 2.10. 
(2.16a) 

or(a) = -pa 

ce(a) = -2pb+pa 

t \      o - (2-16c) 

<*z(a) = -2VPb 

An inspection of Equations 2.16 indicates that if Pa < 2vpb, then the stress order is 

a < a < ar at r equals a, and therefore the governing yield condition is 
9 n (2-17) f = ae-Nar + Gu = 0 

Substitution of the stresses from Equations 2.16 into the yield condition of 

Equation 2.17 leads to the initial yield pressure 

lr, l (2-18) Pb=|[(N + l)Pa+^u] 

Substitution of Equation 2.18 for pb into the inequality Pa < 2vPb gives 



p <       vg"   x   when (N+ l)v < 1 <2-19) 
Pa    l-(N + l)v V        ' 

The restriction (N +1) v < 1 is imposed since we are only considering compressive 

values of pa. For (N +1) v > 1 there is no restriction on pa. The condition 

Ge < az < or at initial yielding constitutes Case I. 

Inspection of Equations 2.16 also indicates that if 2vpb < pa < pb, then the stress 
order at the edge of the hole is c6<cr< cz and therefore the governing yield condi- 

tion is given by 

f = ae_Naz + au=0 (2.20) 
Substitution of Equations 2.16 into Equation 2.20 leads to the initial yield pressure 

ph=   P»+(\ whenNv<l <2-21> Pb    2(1-Nv) 
The restriction Nv < 1 is imposed since we are only considering compressive values 
of pb. The condition öe < ar < <rz at initial yielding constitutes Case II. 

For the condition Nv > 1, yielding governed by Equation 2.20 will not occur for 
compressive values of pb. Instead, as pb is increased it will eventually reach a value 
where pa < 2vpb so that the stress ordering is c6<az< aT and yielding is governed 
by Equation 2.17. Thus, for Nv > 1, we have a Case I condition and therefore pb is 
given by Equation 2.18. Also, for the condition Nv > 1, it follows that (N + l)v > 1 so 

no restriction is placed on pa (as was done in Equation 2.19). 

For Case II with Nv < 1, the yield pressure of Equation 2.21 is substituted into the 
inequality 2vpb < Pa < Pb (for which ce<oT< oz at the edge of the hole) which gives 

2v(pa + qu) <_Pa±^u_ (2.22) 
2(1-Nv)      Pa    2(1-Nv) 

Equation 2.22 can be rearranged to give 

VGu <p  <_^_whenO<Nv<^ (2.23a) 
l-(N+l)v    Pa    l-2Nv 2 

vsu < pa when 1 < Nv < (N + l)v < 1 (2.23b). 
l_(N+l)v    ^a 2 

Equation 2.23b provides the restriction on pa for 2Nv > 1 alluded to in the 

discussion of Equation 2.15. 

10 



In summary, the conditions under which initial yielding is governed by the yield 

condition Equation 2.17 constitute Case I. ^«^J^^£*£ ^ 
yielding is governed by the yield condition of Equation 2.20 constxtute Case I. Thus 
The physical difference between Case I and Case II is the stress ordermg at the edge 
of the hole when yielding begins. The Case I and Case II conditions are summanzed 

in Table 2-1 (adapted from Table I of (Florence, 1978)). 

2.4 FREE-FIELD YIELDING CONDITIONS. 

Eauilibrium in the free field dictates that 
H (2.24) 

i e  the^-plane principal stresses are equal to the negative of the externally 
applied pressure. The negative sign comes from the convention that stresses are 

ta^en positive in tension, while the applied pressures (p. and Pb) are taken posxtwe 

in compression. For elastic conditions, the out-of-plane stress oz may be obtained 

from Hooke's law, the plane strain condition, and Equation 2.24. 
, v    n (2.25a) 

Eez = Gz-v(cr + Ge) = 0 
(2.23b) 

GZ =-2vpb 
where E is Young's modulus and ez is the out-of-plane strain (zero by definxtxon). 

For compressible materials (v < 0.5), the order of the principal stresses is 
(2.26) 

which kids to failure (yielding) being governed by the intersection of the following 

two failure surfaces. 
(2.27a) 

f1 = ar-Nc2 + au=0 
(2.27b) 

f„ = afl-Naz + au = 0 

The magnitude of the applied pressure at initial yield in the free field (Pb) is 

determined by substituting Equations 2.24 and 2.26 into either of Equations 2.27a 

or 2.27b, 
(2.28a) 

-pb + 2Nvpb + cu=0 

or 

11 



Table 2-1.   Case I and Case II conditions. 

Property Relations 

Nv<(N + l)v<l 

l<Nv<(N+l)v 
or 

Nv<l<(N + l)v 

-<Nv<(N+l)v<l 
2 

0 < Nv < - 
2 

Internal Pressure 

Pa< 
VOL 

l-(N+l)v 

Pa>0 

Pa> 
vc„ 

l-(N + l)v 

va„ 
<Pa< l-(N+l)v    r*    l-2Nv 

Case 

II 

II 
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c (2.28b) 
Pb    l-2Nv 

Note that if 1- 2Nv < 0, then free-field yielding can only occur for tensile values of 
piJLsed in Section 2.1, tensile values of pb and pa are precluded. 

Therefore, for 1- 2Nv < 0, the earlier solution (Wintergerst, 1991) is complete. 

13 



SECTION 3 
CASE I SOLUTION 

In this section, the arbitrary dilatancy solution for Case I is extended to include the 

effects of free-field yielding. It was shown in Section 2.2 that yielding of the free 

field occurs when 

Pl>     g"     = pb  for l-2Nv>0 (3-1} 

~ l-2Nv 
Although the earlier solution (Wintergerst, 1991) is valid for pb < p„, the entire Case 

I solution is presented below for completeness. 

As stated in Section 2.1, Pb is assumed equal to Pa (the internally applied pressure) 

until pa reaches its final value. The external pressure, pb, is then increased 
monotonically while pa is held constant. The initial material response is assumed 

to be elastic (Figure 3-1). As discussed in Section 2.3, initial yielding of the material 
begins at the edge of the hole (r equals a) when pb = [(N+ l)p. +o„]/2, with stress 

conditions ce < az < ar, and is governed by the failure surface 

f = oe-Nar+au=0 (3-2) 

After initial yielding, an inner plastic zone forms with outer boundary radius R. 
Outside of R, the material is elastic (as shown in Figure 3-2). For certain combi- 
nations of material properties, oz is always the intermediate principal stress 
(throughout the medium and regardless of the value of pb); thus, no additional 

plastic zones will form and the free field will not yield. In this report, the conditions 
under which az is always the intermediate principal stress will be termed Case la. 

For the case where the plastic flow rule is associative (M equal to N), the Case la 

solution is the Hendron and Aiyer solution (Hendron, 1972). 

The Case la solution can be considered to consist of two phases: 

Phase 1. Elastic solution 
Phase 2. One plastic zone with an outer elastic zone 

For other combinations of material properties, az is not always the intermediate 
principal stress throughout the medium. As pb increases, additional plastic zones 
can form where o2 is the maximum principal stress. As pb increases further, the 

14 
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Figure 3-1. Phase 1 conditions for Cases la and lb. 
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Figure 3-2. Phase 2 conditions for Cases la and lb. 
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free field may yield if 1- 2Nv > 0. The conditions where oz is not always the 

intermediate principal stress constitute Case lb. The demarcation between Case la 

and Case lb conditions is discussed in Section 3.1. 

For Case lb, the initial inner plastic zone increases in size as loading continues, 
untilitsboundaryreachesalimitingvalue R,where of(R)«o.(R). Thisinner 

plastic zone boundary, defined by r = R, remains fixed as Pb is increased. Continued 

loading causes the formation of two more plastic zones. In the middle plastic zone, 
the stress condition is c,<az = ar and yielding is governed by 

n <3-3a) 
f1 = oe-Nar+on=0 

(3.3b) 
f2 = ae-Naz + au=0 ,   . ^.     • A 

In the outer plastic zone, the stress condition is ce<cr< oz and yielding is governed 

by the single failure surface 
(3 4) f = ce-Ncz + cu=0 _ 

The boundary between the middle and outer plastic zones, defined by r = R, where 
c (R) = a (R). Outside of the plastic zones, the material response was assumed in 

the earlier solutions to be elastic. The boundary between the outer plastic zone and 

the elastic zone is defined by r = R. The three plastic zones and the elastic zone, 

with their boundaries and stress conditions are shown in Figure 3-3. 

With further loading, the free field may yield if 1- 2Nv > 0. If the free field yields, a 
fourth plastic zone (Figure 3-4) is postulated to exist. In subsequent discussions, 

the fourth zone is designated the "far outer plastic zone". This term is used 
throughout this report to indicate free-field yielding, even though there may be as 
few as two plastic zones. The stress condition in this zone is oT=c6< c2 and the 

yield conditions are 
<3-5a) f1 = aT-Noz + au=0 
(3.5b) 

f2 = ce-Ncz + ou=0 

Based on the progression of the formation of plastic zones, the solution for Case lb 
can be considered to consist of four phases: 

Phase 1. Elastic solution 
Phase 2. One plastic zone with an outer elastic zone 
Phase 3. Three plastic zones with an outer elastic zone 

17 



Figure 3-3. Phase 3 conditions for Case lb. 
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Figure 3-4. Phase 4 conditions for Case lb. 
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Phase 4. Four plastic zones (free field yielding) 
Note that Phase 1 and Phase 2 are identical for Cases la and lb. 

The elastic solution was presented in Section 2.3. The solutions for the phases with 

plastic zones are presented in Sections 3.1 through 3.3. 

3.1 CASE la AND lb, PHASE 2 SOLUTION. 

In this section, we develop the solution for Phase 2 of Case I. As discussed previ- 

ously, in Phase 2 there is a single (inner) plastic zone with an outer elastic zone 

(Figure 3-2). The derivation presented below closely follows those contained in 

(Florence, 1978) and (Wintergerst, 1991). The demarcation between Cases la and lb 

is also defined. 

Initial yielding of the material occurs at the edge of the hole (r = a) when pb is equal 
to pb (derived below). As discussed previously, for Case I conditions Ge < az < cr and 

the yield condition is 

f = ae-Nar+au=0 <3-2> 
Substitution of the elastic solution for cr and ae (presented in Section 2.3) evalu- 

ated at r equals a into the yield condition of Equation 3.2 leads to the following 
expression for the initial yield pressure, pb. 

pb=f[(N+l)p.+o„] (3.6) 

The equation of equilibrium is given by 

r^ + Or-5„=0 (3.7) 
dr . 

and is valid throughout the material. Using the yield condition of Equation 3.2, ce 

can be written in terms of Gr, 

ae = Nar-au 
(3-8) 

so the equilibrium Equation 3.7 can be rewritten as 

r*2«._„f(N-l> + «.-0 (3-9> 
dr 

The solution to Equation 3.9, with the boundary condition or(a) = -pa, is given by 
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cr = - 
N-l 

a (L)     ,-$L- (3-10) 

UJ       N-l 

The strain rates are determined by the nonassociative flow rule, discussed in 
Section 2.1. For the yield condition of Equation 3.2, the plastic strain rate compo- 

nents are given by 
ds       „„ (3.11a) 

(3.11b) 
68        3a 

-xit.o (3-llc) 

3a 

where 
(3.12) 

g = ae-Mar + K 
and X is the plastic multiplier. Since the loading is assumed to be monotomc and 
the material law is rate independent, the overdot in Equations 3.11 may be inter- 
preted to represent either differentiation with respect to time or differentiation wxth 
respect to pb. From the flow rule of Equations 3.11 it follows that 

(3.13a) 
e(

r
p)+ME(

e
p)=0 

', (3.13b) 
e<z

p> = 0 
which, when integrated with respect to time, give 

(3.14a) 
e^+Me^h^r) 

e*>=h2(r) 
(3-Ub) 

The strain expressions in Equations 3.14, evaluated at a fixed radius r, remain 
constant as loading proceeds (i.e., they are independent of time, or equivalent^ of 
3t)   ^hen the elastic-plastic radius R is initially at this radius r, the plastic 

strains are zero, which implies that hl(r) = 0 and h2(r) = 0, therefore 
(3.15a) 

e(p)+Me(
e
p) = 0 

(3.15b) 
e<p> = 0 

The strain rates are assumed to be decomposed into elastic and plastic parts 
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ä  _p(e)+e<p> (3-16a) 
er - er + er 

. t-e — fce   T fce 

ez = e« + ez» 
(3-16c) 

Integrating Equation 3.16a with respect to time gives er -(e
(

r
e) + e(

r
p)) = Mr). When r 

equals R, the strain is entirely elastic so er = E(
r
e) and e(

r
p) = 0 giving Mr) = 0. Using 

the same argument for the other two strain components leads to 

P _P(-).p(P) (3.17a) 

P _P(e).p(p) (3.17b) fce ~~ fce   T fce 

P   _p(e) + P(p) (3.17c) 
(   ) A 

The plane strain condition requires that ez = 0, and the flow rule led to ez
p =0, 

therefore e(
z
e)=0. 

The elastic strains are related to the stresses by Hooke's law. 

Ee«=ar-v(ce+az) <3-18a) 

Be.« =ae-v(ar + a2) (3.18b) 

Eez
e)=az-v(or + ce) (3.18c) 

From Equation 3.18c and the condition E
(

Z
6)
 = 0 

Substituting Equation 3.19 for az, and Equation 3.8 for o6 into Equations 3.18a 

and 3.18b leads to 

2Ge(
r
e) =[l-(N + l)v]ar+vau (3.20a) 

2Ge(
e
e)=[N-(N+l)v]ar-(l-v)au (3-20b) 

where aT is given by Equation 3.10. 

The strain-displacement relations (for small strains) are given by 

du (3.21a) 
£'=dr" 

u (3.21b) 

where u represents the radial displacement. The compatibility equation is derived 

by eliminating u from Equations 3.21. 
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r^ + ee-er = 0 
dr 

(3.22) 

,(P) 
Using the strain decomposition of Equation 3.17, Equation 3.15a to eliminate er , 
Equations 3.20 for the elastic strain components, and Equation 3.10 for or, the 

compatibility Equation 3.22 can be rewritten as 

de<p)     x.f»    1-V,XT , itfm_i^ +« lflT"1 (3.23) 
. + (N + 1)4P) = ^7T (N + X)[(N " X)P-+ G" 11 

1-v 

dr     v        ' "       2G 
The solution to Equation 3.23, with the boundary condition e(

e
p)(R) = 0 is 

,(P) 
2G M + Nlv        ; a       JU 

K-l VM+1 

Wii 
N-l 

(3.24) 

The remaining unknown is the elastic-plastic boundary radius R. Using R and p in 
place of a and p., respectively, in the elastic solution given in Section 2.3 (Equations 

2.8 through 2.10) gives 
(3.25a) 

or(R) = -p 
(3.25b) 

ae(R) = -2Pb + p 
(3.25c) 

az(R) = -2vpb 

This notation is used throughout the report. That is, when stress or strain com- 
ponents are immediately followed by a single variable in parentheses, that variable 

denotes the spatial location where the stress or strain component is being 
evaluated. For example, the notation or(R) denotes the stress function or evalu- 

ated at r equal to R. This rule will also apply to the radial displacement function, u. 

The yield condition of Equation 3.2 still holds at r equals R, so 

Pb=f[(N + l)P + <Tu] 

CT^R)-        N+l P •       oo*    • 
Setting r equal to R in Equation 3.10 and equating the result to Equation 3.27 gives 

(3.28a) 

(3.26) 

(3.27) 

Pa + N-l. aj        N-l 
2pb-gu 

N + l 

or 
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RY"
1
 = _2_ (N-l)pb+gu (3.28b) 

aj        N + l (N-l)pa+au 

The solution presented above is valid with continued loading as long as Gz < or in 

the plastic zone. From Equations 3.19 and 3.2 

or-az = [l-(N+l)v]or + vou <3-29) 

In Equation 3.29, az < Gr when the right hand side of the equation, 
[l-(N + l)v]or + VCTU, is greater than zero. If (N + l)v > 1, then [l-(N + l)v] is 

negative. Since ar is compressive (negative) and vau is positive, then 

[l-(N+ l)v]ar + vau is positive and thus az < ar. If (N+ l)v < 1, then 

[1-(N + l)v]or + vau is positive for ar < ~1_/N^1)v- ^ summary> 

(1)      az < ar when (N+ l)v > 1 

va. 
(2)      gz < qr when (N + l)v < 1 and ar < - 1_ ,^ u

+ ^ 

When (N + l)v > 1, the solution presented above is complete since no more plastic 
zones will form and the free field will not yield. This case will be referred to as Case 
la. In the second case, when (N + l)v < 1, the minimum value of Gr occurs at r equal 

to R, so that as loading proceeds the elastic-plastic boundary radius R attains a 

limiting value, denoted R, where 

"^-'•^-1=^ 
(3.30) 

and 

n /RL      (1-VK (3.31) 
GelR)-"l-(N+l)v 

The magnitude of the loading when R equals R is denoted as pb which is given by 

Equations 3.25, 3.26, and 3.30 

* <?u (3.32) 
Pb    2[l-(N + l)v] 

and the radius of the elastic-plastic interface can be determined from Equations 

3.28b and 3.32. 

'R V*"1 (l-2v)qu  (3.33) 
<a)        [l-(N+l)v][(N-l)p.+oB] 
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The relationship for R is independent of Pb, as is the stress field, and therefore both 

will remain constant with increased loading. 

3.2   CASE lb, PHASE 3 SOLUTION. 

The solution for Phase 3 of Case lb is developed in this section. As discussed previ- 
ously there are three plastic zones and an outer elastic zone in Phase 3 (Figure 3-3). 
Again, the derivation presented below closely follows those contained in (Florence, 

1978) and (Wintergerst, 1991). 

Florence and Schwer postulated that with increased loading (Pb > Pb), two addi- 

tional plastic zones are formed outside of the initial, inner plastic zone   In the outer 
plastic zone (R < r < R) the stress condition is c^a^ az, therefore the yield 

condition is 
(3-4) 

f = ae-Ncz+cu=0 

The plastic strain rates are obtained from the nonassociative flow rule. 

e-=0 (3'34a) 

(3'34b) 

,  1 w* <3'34C) 

e(p) = -MX 
Using similar arguments for integrating the plastic strain rates as presented in 

Section 3.1 leads to 
n    n (3.35a) 

e<p) + Me<p)=0 
(3.35b) 

e(rP)=° , 
Using the strain decomposition of Equation 3.17, the plane strain condition, and 

Equations 3.35 leads to the following strain expressions. 
(3.36a) 

er = 4e> 

P -p(e) +—e(e) 
68     M 

ez = 0 

1 _,., (3.36b) 

(3.36c) 
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Using Hooke's law (Equations 3.18), the strain Equations 3.36, and the yield condi- 

tion of Equation 3.4 gives the following expressions for the radial and tangential 

stress components in terms of the radial and tangential strain components. 

[MN+l-(M+l)(N + l)v]Gr=[MN+l-(M + N)v]2Ger 

+M(N+l)v2Gee + (M-l)vau (3.37a) 

[MN + l-(M+l)(N + l)v]ae=N(M + l)v2Ger 

+MN2Gee-[l-(M + l)v]au (3.37b) 

Substitution of the stress Equations 3.37 into the equilibrium Equation 3.7, and 

using the strain-displacement Equations 3.21, leads to the following ordinary 

differential equation in terms of the radial displacement u, 

(M-N)v  ,1   BV,K^-2vKr (3.38) 
77^     P       P u       ATM      on 

o d2u      du 
r 1- r — 

dr2       dr 

where 

1+'    MN MN      2G 

= MN (3.39) 
P      MN+1-(M + N)v 

The solution to Equation 3.38 is 

2Gu = A1r
Yl+A2r

_Y2+Ar 

where 

A = _ilz^)au=_(l-2v)pb (3.41) 

(3.40) 

l-2Nv 

_ß2(N-M)v     2IJN-M)V +J_ 
ri_ß     2MN       Pi   (2MN)2       ß2 

(3.42) 

(3.43) R2(M-N)v|R2 )(M-N)V     1 
Y2=ß     2MN      Pl|   (2MN)2      ß2 

and A, and A2 are constants that are yet to be determined. In Equation 3.41, the 
definition of pb from Equation 2.28b is used. The strains can be computed from the 

strain-displacement relations and the displacement Equation 3.40. 

2G8r=YlA1r
Yl-1-Y2A2r--

1 + A (3-44a) 

2Gee=A1r--
1 + A2r---

1 + A <3-44b> 

The strain Equations 3.44 can be substituted into the stress Equations 3.37 to yield 
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,,-i_Ä (3.45a) 
c=CTlA^-1 + Cl2A2r-"i- -pb 

,    ^   *    -„-I    * (3-45b) 
ae=C61A1

riri   +Ce2A2r       "Pb 

where 

Cri = 1{[MN +1- (M + N)v]Yl + M(N + l)v} <3-46a) 

Cr2=^{-[MN + l-(M + N)v]Y2 + M(N+l)v} <3-46b> 

Cel = I[N(M + l)v71 + MN] (3-46c) 

Ce2=^[_N(M+l)vY2 + MN] (3'46d) 

(3 46e) 
C = MN + l-(M+l)(N + l)v 

At this point the unknowns are the two constants A, and A2 and the plastic zone 

boundary radii R and R. Two of the conditions used to evaluate the unknowns are 

provided by enforcing continuity of radial stress and radial displacement (or, 
equivalents circumferential strain) at the boundary with the outer elastic zone (r 
equals R). The elastic zone stresses evaluated at r equals R can be substituted into 

the yield condition of Equation 3.4 to give 

ar(R) = -2(l-Nv)pb + cu 
(3'47) 

The circumferential strain at r equals R is given by 

2Gee(R) = -2(N- l)vp„ -o. (3'48) 

Continuity of radial stress at r equals R leads to 

CrlA1R
Yl"1 + Cr2A2R-T2-1 = 2(l-Nv)APb <3-49a) 

while continuity of circumferential strain at r equals R leads to 

A^"1 + A,ir'-1 = 2(N - l)vAPb 
(3-49b) 

WherG ä (3.50) 

Equation! 3.49 constitute a system of two equations in the two unknowns AXR^ 

and A2R-Y2_1, 

Crl   Cr2lf A^-11 = {2(l-Nv)APb 1 (3.51) 

1       1   1A9R
_T,

"
1
I     l2(N-l)vAPbJ 
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which can be inverted to give 

[BJ     fA^1-1! 1 
IB, LAaR^-\ Crl-C 

where Bx and B2 are constants. 

1    -C r2 

-i  cPl 

r2(l-Nv)Apb^ 

[2(N-l)vApb 

(3.52) 

Florence and Schwer postulated that at the inner radius R of the outer plastic zone, 
Gr(R~) = GZ(R~), SO that the yield condition of Equation 3.4 may be written as 

Ncr(R)-ce(R) = Gu _ <3-53) 

Using the stress expressions in Equation 3.45 evaluated at R and substituted into 

Equation 3.53 leads to 
(NCrl-C61)A1R^-1 + (NCr2-Ce2)A2R^-1-N(l-2v)Pb=0 (3.54) 

Substituting the results of Equation 3.52 into Equation 3.54 leads to the following 

nonlinear equation 

(NCrl-Cei)B1[|J
1"1 + (NCr2-Ce2)B2[|] Y2   -N(l-2v)Pb =0 

which can be solved for the radius ratio (R/R). Determination of the individual 

values of R and R requires a description of the state in the middle plastic zone. 

(3.55) 

As discussed earlier, Florence and Schwer postulated the existence of a middle 

plastic zone (R < r < R~) where a^a^a,, so that yielding is governed by 

fl = Cje-NGr+Gu=0 <3-3a) 

f2=Ge-Naz+cu=0 <3-3b) 

Solving for Ge in terms of Gr using Equation 3.3a, the equilibrium Equation 3.7 has 

the solution 

'—Kl + -'I 
N-l 

(3.56) 
N-l 

Substituting R and GF(R) from Equations 3.30 and 3.33, respectively, into 

Equation 3.56 gives 

Gr=- Pa + N-l 

\N-X      « (3.57) 
N-l 
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Note that Equation 3.57 is identical to Equation 3.10, so the rachal stress is^repre- 

sented by the same formula throughout the combined inner and middle plastic 

zones, a < r < R. Providing continuity of radial stress at the interface r equals R 

leads to 

(3.58a) 
CrxBx sT^ls 

RVY2" 
-Pb = - Pa + N-l 

*!     + 

-IV N-l 

or 
RV

I
- 

_.K-I    N(l-2v)Pb-(N-l)CrlB1k      +(N-l)Cr2B2 
'IP 
va; 

ir   - (3.58b) 
(N-l)pa + cu 

Using Equation 3.58b, R can be determined since we have previously solved for the 
ratio R/R from Equation 3.55 and the constants Bx and B2 from Equation 3.52. 
After solving for R, R can be computed from the ratio R/R and A1 and A2 can be 

computed using Equation 3.52. 

The plastic strain rates are given by the nonassociative flow rule. 

e<p> = ^|ii + ?t2|^ = -M^ 

:.(p) 

Ö(P) 

3ae      
i 3oe 

*   3gi    5,  ^12. _ _M^ 

(3.59a) 

(3.59b) 

(3.59c) 

(3.60) 

(3.61) 

so that 

[e(
r
p)+M4p) + e(

z
p)] = 0 

which, when integrated with respect to time, gives 

[e
(

r
p)+Me(

e
p)+elP)] = h(r) 

We designate the plastic strains at r equals R as e<r
p\ e?\ and e?\ so that 

[^p)
+Me<p) + BlP)] = h(R) _ (3'62) 

But in the outer plastic zone (and therefore at r equals R), the plastic strain rda-, 
tions of Equations 3.35 hold so h(5) must be zero. Since every point m the middle 

plastic zone will at some time be at R, then h(R) is equal to zero. Therefore, 

Equation 3.61 becomes 
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[e(
r
p)+M£<p) + e(

z
p)] = 0 (3-63) 

The plane strain condition, ez = £z
e) + e(

z
p) = 0, combined with Equation 3.63 gives 

er=-Mee + Me(
e
e)+e(

r
e)+e(

z
e) <3-64) 

With ar equal to az, and ae eliminated via the yield condition of Equation 3.3a, 

Hooke's law can be reduced to 

Ee(e) =Ee(.) =[i_(N + l)v]Gr+vau (3-65) 

Ee^e) = (N-2v)ar-au (3-66) 

where ar is given by Equation 3.57. Substitution of the elastic strains from 

Equations 3.65 and 3.66 into the radial strain expression of Equation 3.64, and 
using the resulting expression for er in the compatibility Equation 3.22 leads to the 

following differential equation. 

.M+N-l 

a1 2GA(rM+l£ x    _MN + 2-2(M + N+l)v[ pa+gu]l_- 
dr^      e) (N-l)(l+v) LV        ; J  QN 

(M + 2)(l-2v)aUrM 
(N-l)(l+v) 

(3.67) 

This differential equation is directly integrable. Integration over the limits from r to 
R results in the following expression for ee. 

,_XM+1 
— f R\ 

2Gee=2Ge6(R) - 

MN + 2-2(M + N + ljvrm   -x     . _ i 
+  (M + N)(N-l)(l+v) [(N-^+g"] 

an 
vry 

M+N 

-1 
N-l 

(M + 2)(l-2v)qn R 
sM+l 

-1 
"(N-l)(M+l)(l+v) 

The circumferential strain ee(R) is obtained from Equation 3.44b. The radial 

strain is obtained from Equations 3.64 through 3.66 giving 

MN + 2-2(M + N+l)v       M-2v 
2Ger=-2GMee + ^ *-a<—£Ta- 

(3.68) 

(3.69) 

For applied pressures greater than pb, the stresses in the inner plastic zone are still 

given by Equation 3.10 for or, Equation 3.8 for oe, and Equation 3.19 for cz. The 
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differential Equation 3.23 for the plastic strain e?> still holds with increased 

loading, but now must be integrated from r to it, instead of from r to R, wmch 

results in 

2Ge(
e
p)=2GeeP)(R)7 

vM+1 

JN + l)(l-v)[ K + gj] 
M + N 

'R^ 
N-l 

vay 

R 
r 

vM+l 

R. 

vN-l 

(3.70) 

The other plastic strain components are still given by Equations 3.15. In Equation 

3.70, e?»(R) is found by setting r equal to R in Equation 3.68 to obtain ee(R); then 

setting r equal to R in Equation 3.66, and using Equation 3.30 for o,(fi), to obtain 

«£>(£); and then using the strain decomposition given in Equation 3.16b. 

The solution developed above breaks down when the external pressure, pb> reaches 
the free-field yield pressure, Pb. We demonstrate this as follows. From Equation 

3.50, as pb approaches pb, Apb approaches zero. 

lim Apb= hm(pb-pbj = ü 
pb->pb Pb^Pb 

Substituting Equation 3.71 into Equation 3.52 leads to 
(3.72a) 

lim A^-^O 
Pb-*pb 

lim A,R"T2-1 = 0 
Pb-»pb 

(3.72b) 

It can be shown that both Yl and y2 are greater than zero. From Equaüon 3.72b, as 
pb approaches Pb, either A2 goes to zero or R goes to infinity, or both. Physically, 

one can argue that as the free-field pressure approaches Pb, the outer elasüc zone 

vanishes, with the result that R must go to infinity. 

As Pb approaches Pb, the circumferential strain at r equals R is computed from 

Equation 3.48 as 
lim 2Gee (R) =-2(N -1)vPb - au = A 

Pb-»pb 

where A = -(1- 2v)pb as defined in Equation (3.41). 
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From the strain-displacement relations, it follows that 

lim 2Gu(R) = AR (3-74) 

Pb->Pb 

Equation 3.40 for radial displacement in the outer plastic zone, evaluated at R, 

gives 

2Gu(R) = A^' + A2R"^ + AR (3-75) 

From Equations 3.74 and 3.75 it follows that as pb approaches pb, then 

lim[A1R
Yl+A2R-H = 0 (3-76) 

Pb->PbL . 

Using Equation 3.72b, we showed that either A2 goes to zero or R goes to infinity, or 

both. This implies that Equation 3.76 may be decomposed as follows 

lim[A2R-Y2l = 0 
Pb->PbL 

limfA^'Uo 
Pb->PbL J 

Equation 3.77b implies that A1 must be zero since y, is greater than zero 

(3.77a) 

(3.77b) 

(3.78a) 

(3.78b) 

For pb equal to pb (and Ax equals zero), Equation 3.45 can be rewritten as 

c^C^r-^-pb 

ae=Ce2A2r-
T2-1-pb 

Again, we postulate that at the inner radius R of the outer plastic zone, 
a (R)'= 0Z(R)? go Equation 3.53 still holds. Using the stress expressions in 

Equation 3.78 evaluated at R and substituted into Equation 3.53 leads to 

(NCr2-Ce2)A2R^-1-(N-l)pb =cu (3-79) 

which can be solved for 

R _ A R-,2-I _ N(l-2v)pb (3.80) 
B2-A2K NCr2-Ce2 

Continuity of radial stress at the boundary with the middle plastic zone (r equals 

R) using Equations 3.57, 3.78a and 3.80 gives 

Cr2B2-pb=- Pa + ^ N-l 
R 
a 

sN-l 
■    gu (3.81a) 
N-l 

or 

RY"
1
    N(l-2v)Pb-(N-l)Cr2B2 (3.81b) 

aj Pa(N-l) + au 
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After «for 5. A2 can be recovered from Equation 3.80. The remainder of the 

solution developed for pb < p„ still applies for p„ equal to,p„. 

3.3  CASE lb, PHASE 4 SOLUTION. 

The solution for Phase 4, which contains free-field yielding, is presented in this 

section. Note that for Nv > \, the free field will not yield and therefore this phase of 

the solution is not applicable. 

After the free field yields (Pb >pb), we postulate that afar outer plastic zone 

(it < r < °°) exists with conditions 
V (3.82) 

as shownLVguTe^^. Tins assumption was based on the results of numerical 
studies using this same Mohr-Coulomb material model. The stress condxtxon m tins 
far outer plastic zone is or = oe < cz, so the yield condition is given by 

(3.5a) 
f =ar-NG2 + cu=0 

(3.5b) 
f2=ae-Ncz + cu=0 

The expressions for stress in the outer plastic zone, discussed in Section (3.3) are 

repeated below 
i    ~   A    -Y,-I    - (3.45a) 

or=CrlA/'   +Cr2A2rT2   "Pb 
i    „   A    -Y,-I    - (3-45b) 

ae=CelA1r
Yl   +ce2A2r

Y2l-Pb 

At this point our unknowns are Al, A2, R, and R. As discussed earlier, R is the 
radius to the boundary between the middle and outer plastic zones. Atrequalto R, 

it is reasonable to postulate that o.(fi) = -A in the outer plastic zone. This 

condition, along with continuity of or at R, results in two equations for two 

unknowns, A^1"1 and A2R
_72~\ 

A^'-M     fAPbl (3.83) Crl     Cr2 

C91      ^82 AoR-72"1      lAP x2 b 

which can be inverted to give 
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BJ       AxR
Yl Yi-l 

IB, IAOR^-
1
      CrlCe2-Cr2C, ei 

^62        _^r2 

-Cel    Crl [Apb. 
(3.84) 

where Bx and B2 are constants. After solving for B, and B2, the stress expressions 

of Equation 3.45 can be written as 

( r Y1"1 

X 
-Y2-1 

ar = CrlBa 

^e = CeiBi 

V- 
+ Cr2B2| — 

j) +Ce2B2U 

R. 

r V2'1 

Pb 

-Pb 

(3.85a) 

(3.85b) 

As discussed in Section 3.2, at the boundary between the middle plastic zone and 

outer plastic zone we have 

No,(K)-c,(E)-o. (3-53) 

Substitution of the stress expressions from Equations 3.85 into Equation 3.53 

results in the following nonlinear equation 

'RV'"
1 

(NC^-CejB, f       +(NCr2-Ce2)B2 
vRy 

RV*-
1 

R 
-Npb(l-2v) = 0 

which can be solved for the radius ratio R/R. 

(3.86) 

As developed in Section 3.3, the radial stress in the middle plastic zone is 

a., 
ar = Pa+- 

' r ^ a„ 
VaJ     +N-1 a ■ N-l. 

Continuity of radial stress at the boundary R provides 

a. 
CMB, ir+c-A(ir-*k- Pa + N-l N-l 

or 
=^\Y,-l 
RY1 

,_.K-I    N(l-2v)Pb-(N-l)CrlB1 w       -(N-l)Cr2B2 

a 

^RV^-
1 

R 

(3.57) 

(3.87a) 

(3.87b) 
(N-l)Pa+cu 

from which we can solve for R, since Blf B2, and R/R have been determined 
previously. Once Bx, B2, and R are determined, the solution presented in Section 

3.2 is valid for the inner, middle, and outer plastic zones. 
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In the far outer plastic zene, Hooke's law can be rewritten using Equation 3.82 to 

obtain 

Ee(
r
e)=-pb(l-v)-voz 

Ee(
e
e)=-pb(l-v)-voz 

Ee(
z
e) = cz-2vpb 

The plastic strain rates are obtained from the nonassociative flow rule. 

(3.88a) 

(3.88b) 

(3.88c) 

*.-*£♦*.£-*. 

«•-^♦»■i-1- 
(3.89b) 

p(p) = ^+^ = -M(V« (3-89d 

9cz        oaz 

which implies that 

M(e(
r
p) + e(ep)) + ez

p)=0 

which, when integrated with respect to time, gives 

M(e(
r
p)+e(

e
p)) + e(

z
p)=h(r) 

However, the plastic strain relations of Equation 3.35 still hold in the outer plastic 

zone; hence at r equals R, h(r) must be zero. Therefore, Equation 3.91 can be 

rewritten as 

e?> =-M(e(
r
p) + er) (3'92) 

(3.90) 

(3.91) 

From the yield condition of Equation 3.5, the out-of-plane stress is given by 

1, x (3-93) 
az=-(-pb + au) 

From the plane strain condition, strain decomposition, Equations 3.92, 3.93 and 

3.88c 

Ee« = -Eez
p) = EM(e<p) We

p>) = -^ + ^ + 2vPb ( ^ i3M 

Therefore the sum of the radial and tangential plastic strains, e(
r
p) + e<p), is a con- 

stant throughout the far outer plastic zone, i.e., there is no spatial variation in that 

sum. We will denote that constant as C. 
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(P>+e(P>-   U-PL + ^ + 2vpl=
g»-^-'Nv^=C (3.95) 

r  +£e  "EM I   N    N        Pbj       2GMN(l+v) 

The compatibility Equation 3.22, using strain decomposition, can be written as 

J de£ + d^\ + ^ + 4p> _ £<e> _ E(p, = o (3.96) 
^ dr       dr ) 

From Equations 3.88a and 3.93, ^- is equal to zero , and e(
e
e) is equal to e(

r
e), so the 

compatibility equation reduces to 

rMU£<p>_£<p.=0 <3-97> 
dr 

Using Equation 3.95 to eliminate e(
r
p) leads to 

rMU2^-c = o <3-98> 
dr e 

which can be solved to give 

p(p)-C+Ar-2 (3.99) 
ee   - 2        3 

where A3 is a constant. The postulation that O6(R) = -pb in the outer plastic zone 

and the yield conditions of Equations 3.4 and 3.5 lead to all three normal-stress 

components being continuous across the plastic-plastic boundary at r = R. From 

Hooke's law, this implies that e^e) is also continuous at r = R. Continuity of 

tangential strain at r = R then implies that e(
e
p) must also be continuous at r = R. 

We invoke this condition to determine the constant A3. 

e(
e
p)(R) = § + A3R C , A £_2 (3.100a) 

2 

or 

A,-&•(.?(*)-§j (3'100b) 

where e(
e
p) (R) is computed from the solution in the outer plastic zone (Section 3.2). 

Equation 3.44, evaluated at R, gives the total strain 86(R). Equations 3.45 and 3.4 

can be used to compute or (Ä), a6 (R) and GZ (R) . After computing the stresses, 
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Hooke's law can be used to compute the elastic strain e.«(fi). Finally, the plastic 

strain e(
e
p)(il) is computed by subtracting e(

e
e)(R) from <J,(R). 
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SECTION 4 
CASE II SOLUTION 

In this section the arbitrary dilatancy solution for Case II is extended to include the 

effects of free-field yielding. Just as in the Case I solution, the earlier solution 
(Wintergerst, 1991) is valid only if the material response in the free field is elastic. 

Again, yielding of the free-field occurs when 

p  >_£u_ = Pb when (l-2Nv)>0 ^-U 
Pb~l-2Nv    Fb 

As with Case I, the earlier solution is valid for pb < pb but in the interest of com- 

pleteness, the entire solution is presented herein. 

As derived in Section 2.3, initial yielding for Case II begins at the edge of the hole (r 
equals a) with stress condition cs<oT< 0Z and is governed by the failure surface 

f = ae-Na, + au=0 (4"2) 

This initial plastic zone increases in size as loading continues until Gr is equal to az 

at the edge of the hole. At this point a second plastic zone begins to form. This 
second plastic zone also begins at the edge of the hole, and like the first plastic zone, 
increases in size as loading proceeds. The initial (now outer) plastic zone is still 
governed by Equation 4.2. The second (inner) plastic zone is governed by the 

following yield conditions 

f1 = ae-Nar+au=0 (4-3a> 

f2=ae-Naz+Gu = 0 _ <4'3b) 

The boundary between the inner and outer plastic zones, denoted as R, is defined by 

ar(R) = cz(R) (4-4) 

Outside of the plastic zones, the material response was assumed in earlier solutions 
to be elastic. The earlier solutions can therefore be considered to consist of three 

phases (in order of occurrence): 

Phase 1. Elastic solution. 
Phase 2. Elastic-plastic solution with one plastic zone and an outer elastic 

zone. 
Phase 3. Elastic-plastic solution with two plastic zones and an outer elastic 

zone. 
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In the extended schatten, free-field yielding can eccur either before er after the 
formation of the second plastic zone. However, it is assumed never to occur pnor to 

the formation of the first plastic zone. This assumption is «ri.4 waththe 
assumption that the application of the internal pressure, p. (with p. equal to Pb> 

dees not cause material yielding. The case where free-field yielding occurs after the 

formation of the second plastic zone will be denoted as Case Ha, whale the case 
where free-field yielding occurs before the formation of the second plastic zone wall 

be denoted as Case Hb. The demarcation between Cases Ila and lib will be 

discussed in detail in Section 4.1. 

When the free field yields, a far outer plastic zone is postulated to exist. The stress 
condition in this zone is c^o^ az and the yield conditions are 

(4.5a) 
fl = aI-Noz+ou=0 

(4.5b) 
f2=ae-Ncz + au=0 

This outer plastic zone occupies the domain ft < r < -, with the boundary between 

the initial plastic zone and the far outer plastic zone given by 
,M        ,Ax (4.6) 

ar(R) = c9(R) 

Based on the progression of formation of the plastic zones, the solution for Case Ila 

can be considered to consist of the following four phases: 

Phase 1. Elastic solution. 
Phase 2. Elastic-plastic solution with one plastic zone and an outer elastic 

zone. 
PW 3. Elastic-plastic solution with two plastic zones and an outer elastic 

zone. 
phase 4. Plastic solution with three plastic zones. The elastic zone is 

eliminated due to free-field yielding (i.e., it is replaced by a far outer 

plastic zone). 

For Case lib, the solution process consists of the following four phases: 

Phase 1. Elastic solution. . 
Phase 2. Elastic-plastic solution with one plastic zone and an outer elastic 

zone. 
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Phase 3. Plastic solution with two plastic zones. The outer elastic zone of 

Phase 2 is eliminated due to free-field yielding (i.e., it is replaced 

by a far outer plastic zone). 
Phase 4. Plastic solution with three plastic zones. 

Phases 1, 2, and 4 are each identical for Cases Ila and lib; only the conditions in 
Phase 3 differ. The conditions for each of the phases are depicted in Figures 4-1 

through 4-5. 

The elastic solution (Phase 1 for both Cases Ila and lib) was presented in Section 

2.3. The Phase 2 solution is identical for Cases Ila and lib, and is presented in 

Section 4.1. The Phase 3 solution for Case Ila is presented in Section 4.2. The 

Phase 3 solution for Case lib is presented in Section 4.3. Finally, the Phase 4 solu- 

tion (identical for Cases Ila and lib) is presented in Section 4.4. 

4.1 CASE Ila AND lib, PHASE 2 SOLUTION. 

In this section, the solution is presented for Phase 2 (initial yielding with one plastic 

zone and an outer elastic zone as shown in Figure 4-2). Following that, the 
conditions are derived for the formation of the second plastic zone. As will be shown, 
these conditions also define Cases Ila and lib. Finally, the solution for when pb is 
equal to pb for Case lib is presented. The solution presented closely follows both 

those of (Wintergerst, 1991) and (Florence, undated), but with slightly different 

notation. 

Initial yielding of the material occurs at the edge of the hole when pb is equal to pb 

(determined below). As discussed earlier, for Case II conditions, ce<cT< az at the 

edge of the hole, and therefore the yield condition is 

f = o0-Na,+a  =0 <4-2) J
6      x,v'z u 

Substitution of the elastic solution for cr and oz (presented in Section 2.3) evalu- 

ated at r = a into the yield condition of Equation 4.2 leads to the following 
expression for the initial yield pressure, pb: 

-        Pa + gu (4.7) 
Pb     2(1-Nv) 
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Figure 4-1. Phase 1 conditions for Case II (a and b). 
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Figure 4-2. Phase 2 conditions for Case II (a and b). 
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Figure 4-3. Phase 3 conditions for Case Ha. 
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Figure 4-4. Phase 3 conditions for Case lib. 
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Figure 4-5. Phase 4 conditions for Case II(a and b). 

45 



The plastic strain rates are given by the nonassociative flow rule (discussed in 

Section 2.1) 

äw = XM- = 0 (4-8a) 

da r 

3g     * (4.8b) 
"6      "da. 

where 

and A. is the plastic multiplier. As discussed in Section 3.1, the overdots in 
Equations 4.8 may be interpreted as either differentiation with respect to time or 
differentiation with respect to pb since monotonic loading is assumed. From the 

flow rule of Equations 4.8 it follows that 

elp)+M4P)=0 <4-9a) 

g(p) = 0 (4.9b) 

which, when integrated with respect to time, give 

e^+Me^h^r) <4-10a) 

e(
r»=h2(r) (4-10b> 

The strain expressions in Equations 4.10 evaluated at a fixed radius r remain con- 
stant as loading proceeds (i.e., they are independent of load pb). When the elastic- 

plastic radius, R, is initially at this radius r, the plastic strains are zero, which 
implies that h^r) = 0 and h2(r) = 0, and Equations 4.10 reduce to 

e(
z
p)+Me<p)=0 (4-lla) 

e(p)=0 (4.11b) 

The strain rates are decomposed into elastic and plastic parts: 

ö  _pW + p<p> (4.12a) 
tr   — fcr     T Cr 

P _p(e) + £(p) (4.12b) be — fce   T fce 

P   _A(e).A(p) (4.12c) 
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Integrating Equation 4.12a with respect to time (or Pb) gives er -(e
(

r
e) + e(

r
p)) - h(r), 

but when r equals R, the strain is entirely elastic so £r = e« and e?» = 0 giving 

h(r) = 0. Using the same argument for the other strain components leads to 

er = ee) + e(
r
p) 

n     (B) (4.13b) 

The plane strain condition dictates that ez = 0, so using Equations 4.11 and 4.13, 

the plastic and total strains are given by 

elp)=0 
(e) 

and 

M4P) = e! 

c<P> _ _p<e> 

er = e(
r
e) 

P -F(e)+—e(e) 
e~  e     M 

e =0 

(4.14a) 

(4.14b) 

(4.14c) 

(4.15a) 

(4.15b) 

(4.15c) 

Hooke's law relating the elastic strains to the stresses is given by 

Ee(
r
e)=cr-v(a9 + az) 

E4e) = ce-v(a2 + ar) 

Ee(
z
e) = az-v(cr + ae) 

(4.16a) 

(4.16b) 

(4.16c) 

EHminating az from Equations 4.16 via the yield condition, and substitution of the 

resulting elastic strains into Equations 4.15 gives the following expressions for the 
radial and circumferential stress components in terms of the radial and circum- 

ferential strain components. 
[MN + l-(M+l)(N + l)v]ar=[MN + l-(M + N)v]2GEr 

+M(N +1) v2Gee + (M -1) vou (4.17a) 
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[MN +1- (M + 1)(N +1) v]ae = N(M +1) v2Ger 

+MN2Gee-[l-(M + l)v]au (4.17b) 

As discussed in Section 3, the equation of equilibrium is given by 

dr 
and the strain-displacement equations are 

du (4.19a) 
e'=dr 

ee=- 
u (4.19b) 
r 

Substitution of the stress Equations 4.17 into the equilibrium Equation 4.18 and 
using the strain-displacement Equations 4.19, leads to the following differential 

equation in terms of the radial displacement u, 

_ß2u = _jL.^-^)g"r (4-20) a d2u      du 
dr2       dr 

where 

(M-N)v  2 

MN     P MN        2G 

2 MN  (4.21) R2 _.  
p      MN+1-(M + N)v 

The solution to Equation 4.20 is 

2Gu = A1r
Yl+A2r

_Y2+Ar 

where 

(4.22) 

A-^^=-^2^ 

(N-M)v     2 (ßLMjV^ 
ri_ß     2MN    +Pl|   (2MN)2       ß2 

p2(M-N)v     2 l(M-N)V     1 
f2=ß     2MN      Pi   (2MN)2       ß2 

(4.24) 

(4.25) 

The strains can be computed from the displacement Equation 4.22 and the strain- 

displacement Equations 4.19 
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2Ge, = Y1A1r"--72A2r-"-1 + A (4.26a) 

2G£e = AIr-' + A2r-- + A <426b) 

Substituting the strain Equations 4.26 into the stress Equations 4.17 yields 

a.-C^A^'-' + C^A^'-'-A (4-27a) 

^CA/'-' + C^-"-'-?» (4'27b) 

where 

Crl = ^{[MN + l-(M + N)v]Yl + M(N + l)v} <4-28a> 

Cr2 = I (_[MN +1 - (M+N) v] y2 + M(N +1) v} <*.28b) 

C^^NCM+l^ + MN] (4-28c) 

Ce2=^[-N(M + 1)VY2 + MN] (4'28d) 

C = MN + l-(M+l)(N+l)v (4-28e) 

At this point, the unknowns are the two constants, A1 and A2, and the elastic- 

plastic interface radius R. Two of the conditions used to evaluate the unknowns are 
provided by enforcing continuity of radial stress and radial displacement (or, 
equivalents circumferential strain) at R. The elastic zone stresses are given in the 

elastic solution presented in Section 2.3, with the substitutions a = R and 
Pa = -°r(R)- Applying the yield condition of Equation 4.2 at r equals R gives 

ar(R) = -2(l-Nv)Pb + au 
(4-29) 

The circumferential strain at r equals R is given by 

2Gee(R) = -2(N-l)vPb-ou 
(4-30) 

Using Equations 4.26, 4.27, 4.29 and 4.30, the continuity conditions are then given 

by 

.   CA^ + C^R^"1 = 2(l-Nv)APb (4-31a> 

A^1"1 + A^'-1 = 2(N - l)vApb 
(4'31b) 

where 
(4.32) 

Apb=Pb-Pb 
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Equations 4.31 constitute a system of two equations in terms of two unknowns 

A^1"1 and A2R-T'_1. 

[ A^1'11    j2(l-Nv)Apbl (4>33) 

lA^"1]    l2(N-l)vApbJ 1 1 

which can be inverted to give 

IB, IA,^»-
1
!   crl-cr2L-i  Crl 

1   -c r2 f2(l-Nv)Apb" 

|2(N-l)vApb 

(4.34) 

where B1 and B2 are constants. 

The elastic-plastic interface radius R is found by enforcing the pressure boundary 

condition at the edge of the hole 
, N (4.35) 

or(a) = -Pa 
which leads to the nonlinear equation 

xYi-l / - -\-V2-1 

CrlBl|  £ +C„BJ^ r21J2| ^"1 Pb ~     Pa 
(4.36) 

which can be solved for the radius ratio (a/R), which in turn gives R. Once R is 
determined, the constants Ax and A2 can be recovered from Bx and B2, respectively. 

The solution presented above is valid with continued loading as long as ar < oz in 

the plastic zone. Florence and Schwer performed numerical studies of the stress 
difference cz-cr and found that az-aT decreases as pb increases, and becomes 

zero first at the edge of the hole. We now derive the applied pressure, pb, and 

elastic-plastic radius, R, associated with zero stress difference at the edge of the 

hole. 

Substituting Equation 4.34 into Equations 4.27 gives 

a^CAl^l     +Cr2B5 

/ r V
2"1 

R Pb 

O°=C"BIIRT +Ce2B2(f' Pb 

(4.37a) 

(4.37b) 

The out-of-plane stress, o„ can be determined from the yield condition and 

Equations 4.37. 

50 



- N  AR)      N  2U 

V-T2-1 

-2vpt 

We now introduce two new constants, Bx and B2, defined by 

B^B^p, 

B2 = B2Apb 

or from Equation 4.34 

IB 

1    -C r2 '2(1-Nv)l 
I2(N-I)vj ^2J   crl-cr2|_-i   crlJ| 

Substituting Equations 4.39 into Equations 4.37a and 4.38 gives 

. r,   -o   A. o^CrtBjApJ^J      +Cr2B2APl üJ   ~Pb 

-Ti-l 

We denote as p'b and R', the applied pressure and radius to the elastic-plastic 

interface, respectively, when or(a) = a.(a). Using Equations 4.41, and setting 

cr(a) = oz(a) = -pa gives 

(4.38) 

(4.39a) 

(4.39b) 

(4.40) 

(4.41a) 

(4.41b) 

\Ti-l -Y2-1 c^M^\ +cAAp'bl^J   =^b"Pa 

t a ^2"1 

%Miü" +% M#J   =2V^P 

where 

Ap'b=Pb-P'b 
Equations 4.42 constitute a system of two equations in terms of unknowns 

Ap;( _LY
1_1

 and Ap'b[|;) '' ' which can be inverted to give 

(4.42a) 

(4.42b) 

(4.42c) 

AP;| i 

.Ti-1 1 

S-Y2-1 D 

Ce2B2    -NCr2B2 

.-CexBi    NCrlBx 

Pb-Pa 
I2vpb-pa 

(4.43a) 

where 

D = B\B2(CrlC92-Cr2Cei) 

Equation 4.43a can be rearranged to give 

(4.43b) 
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f a V
72-1 

^[yj        = _ B1[Cel(pb-pa)-NCrl(2vpb-Pa)] (4 44a) 

B2[Ce2(pb-Pa)-NCr2(2vpb-pa)] 

or 

a ^1_1 

AP;I i 

R'Y1+Y2        Bx 

aj B2 

C61(pb - Pa)-NCrl(2vpb-Pay 

Ce2(pb-Pa)-NCr2(2vpb-pa) 

Once — is determined, Ap'b can be obtained from Equation 4.43a. 
a 

.  , _ (Cfl2-2vNCr2)Pb-(Ce2-NCr2)Pa f E'V'"1 

Pb B1(CrlC.a-CraC.i) ^a) 

Using Equation 4.42c, p'b can be determined from Ap'b. 

(4.44b) 

(4.45) 

When the free field yields, R' goes to infinity implying that the denominator of the 

right side of Equation 4.44b must approach zero. Note that for Nv < -, the free field 

will not yield. Numerical studies indicated that the term B2 is nonzero for Case II 

material parameters. This implies that the term in the denominator of the right 

side of Equation 4.44b which can go to zero (for Nv < -) is 

Ce2(pb-Pa)-NCr2(2vpb-Pa) = 0 (4.46) 

Further numerical studies indicated that when 

^A 2NvCr2-Ce2 _A. (4.47) 
P*<Pb   NCr2-Ce2   "

Pb 

a solution for R' using Equation 4.44b is possible; thus yielding of the free field 
occurs after the formation of the second plastic zone. Therefore, the condition 
pa < pb defines Case Ha. Conversely, when pa > pb, a solution for R' using Equation 

4.44b is not possible, indicating that yielding occurs prior to the formation of the 
second plastic zone. Therefore, the condition pa > p*b defines Case lib. 

For Case lib, the solution presented above can be modified to include the case of pb 

equal to pb. Arguments similar to those presented in Section 3.4 may be used to 
show that as pb approaches pb, the constant A1 in Equations 4.22, 4.26, and 4.27 

must go to zero and that R must approach infinity. 
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Thus when Pb equals pb, the radial stress is given by 
_i    - (4.48) 

■ft. J£li?d be determined from the pressure beundary eondition at the 

edge of the hole, cr(a) = -pa 
(4.49a) 

Cr2A2a"ir2"1-pb=-Pa 

or 
6 -p (4.49b) 

A     _    Pb      Pa 

The remainder of the solution presented above for the plastic zone is valid for Pb 

equals pb. 

4.2   CASE Ha, PHASE 3 SOLUTION. 

In this section, we present the solution for Phase 3 of Case Ha which contains two 
plastic zones and an outer elastic zone (Figure 4-3). We also examine the case where 
pb is exactly equal to Pb and the elastic-plastic boundary goes to infinity. 

Florence and Schwer postulated that with increased loading (pb > p'b) a radius 

R > a exists where 

o,(K)-o,(E)-0- 

In the outer plastic zoue, we still have a9 < a, < a„ the same condition as in the 

Phase 2 solution presented in Section 4.1. In fact, the stress and strainfields 
developed in Section 4.1 still apply. For convenience, they are repeated below 

(Equations 4.26 and 4.27). 

2G£r=Y1A1r
Yl-1-Y2A2r

Y2l + A 

i    *    -T.-1    A <4-26b) 

2Gee=A1r
T'-1 + A^T' X + A 

. T-l       - (4-27a) 

o^CrtA^1 -1 + Cr2A2r-
Y2   -p„ 

, T-i    « (4.27b) 
ae=CelA1r

iri -1 + Ce2A2r-
T2   -pb 
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The continuity conditions at the elastic-plastic interface R developed in Section 4.1 

still apply. These conditions led to 

IB0 lAoR"72"1 Crl-CrS 

1   -c r2 

-1   c rl 

j2(l-Nv)Apbl 
i'2(N-l)vApbJ 

(4.34) 

However, the elastic-plastic interface R is no longer found by enforcing the pressure 
boundary condition at the edge of the hole (Equations 4.35 and 4.36). Instead, we 
use the condition of Equation 4.50. The out-of-plane stress Gz is determined (in 
terms of oe and ou) from the yield condition of Equation 4.2, and Equation 4.27b is 

substituted for Ge to yield the following nonlinear equation 

Crl   NJ a 'ITVC^-^IB -(l-2v)pb=0 (4.51) 

VRJ     V"    N . 
which can be solved for the radius ratio (5/Ä) • The solution in the inner plastic zone 

is required to define the individual values of R and R. 

In the inner plastic zone, Florence and Schwer postulated that the stress condition 
is ae<aT = az so that yielding is governed by 

fx = ae-Nar+au=0 

f2=ae-Naz+au=0 

From Equation 4.3a, 

G6=NCr-CJu 

so the equilibrium equation (Equation 4.18) can be written as 

r
d^_(N-l)ar + Gu=0 
dr 

The solution to Equation 4.53, with <yr(a) = -pa, is given by 

<*r=" Pa + N-1J 
r 
a; 

+ 
N-l 

(4.3a) 

(4.3b) 

(4.52) 

(4.53) 

(4.54) 

Continuity of the radial stress at the plastic-plastic interface (r equal to R) leads to 

CrfB, 
'IP7'"1 

vR; 
+ Cr2B2 

^RV^-
1 

VR; 
-Pb = Pa + 

VS^-1 

N-l \*J 
+ -°-- 

N-l 
(4.55a) 

or 
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wY'-1  .     ^ „(KV2'1 

.-MI-»    N(l-2v)pb-(N-l)CrlBl -       -(N-l)Cr2B2lR 
R 

(ä^-1    *M*-"'Jfb-v"   '/"'^R;        -       — -yit; (4>55b) 

J)     = (N-l)Pa+au 

which can be solved for R since Blf B2, and (R/R) have been determined previously. 

Once R is determined, R is computed from (R/R) and the constants A, and A2 can 

be recovered from Bx and B2, respectively. Thus the solution in the outer plastic 

zone is complete. 

In the inner plastic zone, the strain rates are given by 

^^fSL + ^-MX, (4"56a) 

•&+^&-^ 
.„....,,    ,   . , (4.56b) 

£e  " "' da. ' ."* 3o9 

tw.^ffc + X.ffc-M», (4'B6C) 

From the flow rule of Equation 4.56, it follows that 

e(
r
p)+M4p) + e(

z
p)=0 (4'57) 

which, when integrated with respect to time, gives 

E*>+Me(
e
p)+ez

p)=h(r) (4"*8) 

Let the plastic strains be e<p>, I?, and ez
p) at radius r when the load pb has placed 

the plastic-plastic radius at r. Then, when R equals r, 

e^+Mer + elP)=h(r) (4'59) 

In the outer plastic zone, the plastic strain relations of Equation 4.11 still hold so 
h(r) must be zero. Therefore Equation 4.58 becomes 

e(
r
p) + Mer + 4P)=° (4'60) 

Substituting Equation 4.60 into the plane strain condition (ez = e(
z
e) + e(

z
p) = 0) gives 

er = -Mee + ME<«>W;>W;> (4"61) 

Using Equation 4.52, and cr = o„ reduces Hooke's law to 

Ee(
r
e) = Ee(

z
e) = [l- (N + l)v]ar + vau 

(4-62a) 

,s, s (4.62b) Ee^e)=(N-2v)ar-au 
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where ar is given by Equation 4.54. Substitution of the elastic strains of Equation 

4.62 into Equation 4.61, followed by the substitution of the resulting er into the 

compatibility equation 

dsfi n r—2- + ee-er = 0 
dr 

(4.63) 

leads to the equation 

d_ 
dr 

2GA(rM+l£ x    ,MN + 2-2(M + N + l)v[ pa + gu]£^ 
2LrAr.\T    e°i (N-l)(l+v) LV        ' JaN1 

(4.64) (M + 2)(l-2v)gUrM 
+    (N-l)(l+v) 

The differential Equation 4.64 is directly integrable. Integration from r to R gives 

^M+1 

\v J 
2Gee=2Gee(R) 

(M + 2)(l-2v)ou 

JP 
M+N 

-1 
N-l 

r 
  (4.65) 
(N-l)(M+l)(l+v) 

where 2G£6(R) can be determined from Equation 4.26a. Substitution of the elastic 

strains from Equation 4.62 into Equation 4.61 results in 

„„      MN + 2-2(M + N + l)v       M-2v (4 66) 
2Ger =-2GMee+ ^ -^-J^-^ ^bb) 

where or is given by Equation 4.54 and 2Ge9 is given by Equation 4.65. 

When the increasing pb approaches pb (the load which initiates free-field yielding), 

we can use the same arguments as presented in Section 3.4 to show that the 
constant A, in Equations 4.22, 4.26, and 4.27 must go to zero, and that R must 

approach infinity. 

Thus, when pb approaches pb, our unknowns are reduced to A2 and R. The con- 

dition of Equation 4.50, with cz eliminated via the yield condition, and Equation 

4.27b substituted for ae (with Ax equal to zero), gives 
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rCr2_CM.JA2R--1-(l-2v)pb=0 (4-67) 

which can be solved for A^"1. Continuity of radial stress at R leads to 

Cr2A2R-Y2_1-pb = - *+£l 
— NN-1 
R\ ' +J^_ (4.68) 
"'      ' N-l a ) 

which can be solved for E since A2R-> was determined V«M^ *» 
unknowns are determined, the stress and strain expressions developed for Pb    Pb 

are still valid for pb = pb • 

4.3   CASE lib, PHASE 3 SOLUTION. 

The solution for Phase 3 of Case lib is presented in this section. A.i showr.in Figure 
4-4, in this phase we have an inner plastic zone with conditions ce < ar < a, 

governed by the yield condition 
6 (4.2) 

and a fer^uteiti^zone with conditions o, = oe < a, governed by the yield con- 

ditions 
(4.5a) 

i\=cr-Naz + au=0 
(4.5b) 

f2 = ae-Naz + cu=0 
The conditions in the far outer plastic zone were postulated to exist based on 
numerical studies. From the external pressure boundary condition and the yield 

condition of Equation 4.5, we have 
(4.69) 

cr = ce --pb 

In the inner plastic zone, the stress and strain fields developed in Section 4.1 still 
rPPJ. ^e equations representing these fields (Equations 4.26 and 4.27) are agmn 

repeated for convenience. 
i        *    -7,-1    A (4.26a) 

, VIA (4-26b) 

2Gee = A1r
Yl-1 + A2r-

T2-1 + A 
, Y   !    . (4.27a) 

a =CrA
rYl _1 + Cr2A2r-

1'2   -pb 
,   i    . (4.27b) 

oe=C61A1
rYl "1 + Ce2A2r-

72   -Pb 
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where A = -(l-2v)pb. 

At this point, the unknowns in the inner plastic zone are the constants A, and A2, 

and the radius of the boundary between the inner and far outer plastic zones, 
denoted as R. Based on the yield conditions of Equations 4.2 and 4.5, along with 

Equation 4.67, it is reasonable to postulate that CQ(R) = -pb in the inner plastic 

zone. This condition, along with continuity of ar at R, results in two equations in 

the two unknowns A^71"1 and A2R-Y2"\ which can be solved to yield 

CLo    -C 

IB, I     lAjr2-1 Cri^-C^CeiL 
'62 

-c 
'r2 

81        Crl  . 

[Apb 

lApb. 
(4.70) 

v.       " J V.Ä J 

where Bx and B2 are constants. After solving for Bx and B2, the stress expressions 

of Equation 4.27 can be rewritten as 
vYl-l / _ \-Y2-l 

cr = CrlBx V\     +Cr2B2 i 
R 

<*e = CeiBi| £ 
■ V 

R 

+ Ce2B2| £ 

"Pb 

-Y2-1 

-Pb 

(4.71a) 

(4.71b) 

At the edge of the hole, we have the pressure boundary condition Gr(a) = -pa which, 

when substituted into Equation 4.71a, leads to 

cr(a) = CrlBx OTM£ 
-Ti-l 

"Pb=-Pa (4.72) 

Equation 4.72 is a nonhnear equation which can be solved for Ur J, which in turn 

yields R. Once R is determined, the constants A1 and A2 can be recovered from Ba 

and B2. The stress and strain fields in the inner plastic zone are now completely 

determined. 

In the far outer plastic zone, the stress and strain fields developed in Section 3.4 

apply. The stress fields are given by 
(4.73a) 

or = -Pb 

tf e = "Pb 

<*. = jj(°u-Pb) 

(4.73b) 

(4.73c) 
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It was shown in Section 3.4 that the sum of the radial and circumferential plastic 

strains was a constant, C, given by 

P(p)+P<p) = _L_ 
£r   +£e       EM 

_Pb. + ^u. + 2vph 

_gii-(l-2Nv)pb_^ (474) 

2GMN(l+v) 

The equation of compatibility, strain decomposition, and Hooke's law lead to the 

following differential equation for e(
e
p) 

r*£ + e?>-.w-0 <4-76) 

dr 
which, using Equation 4.74, can be solved to give 

e(P)_C+Ar-2 (4.76) 
ee   - 2        3 

where A3 is a constant. It was also shown in Section 3.4 that the postulation 

GJB] = -pb, Hooke's law, and continuity of total circumferential strain require that 

e(p) must be continuous across R. This condition is used to determine A3. 

e(ep)(R) = f + A3R-2 C , A 6-2 (4.77a) 
2 

or 

A3 = R F(p)_£ 
£e      2 

(4.77b) 

where 4P)
(R) is computed from the solution in the inner plastic zone. Equation 

4.26b, evaluated at R, gives the total strain £6(R). Equations 4.27 and 4.2 can be 

used to compute the stresses at R. Hooke's law can then be applied to compute the 

elastic strain e<e)(R). Finally, the plastic strain #>(&) is computed by subtracting 

e^(R)fromee(R). 

The solution developed above is valid until cz equals cr at r equals a. When this 

occurs, a third plastic zone is formed which begins at the edge of the hole and 
migrates outward. When the third plastic zone is present, the Phase 4 solution 
(which will be presented in Section 4.4) applies. However, since the Phase 4 solution 
applies to both Cases Ha and lib, we present here the derivation for the load pb 

which will cause the formation of a third plastic zone for Case lib. The load Pb and 

plastic-plastic boundary radius R when the third plastic zone begins to form will be 
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denoted as Pb' and R", respectively, and are derived below. The derivation is 

similar to that given in Section 4.1 for p'b and R'. 

As before, we introduce two constants Bx and B2, defined by 

B, = BiAp,, 

B2=B2Apb 

From Equations 4.70 and 4.78, 

LB2j    CrlC,2-CrAil-cei + C,iJ 
The out-of-plane stress, cz, can be determined from the yield condition and 

Equation 4.71 
vTx-l 

"•"■NHI 
r '      ■ ^-B2|4-|       -2vpb 

N 
r 

R. 

-Y2-1 

Substituting Equation 4.79 into Equations 4.71a and 4.80 gives 

\Ti-l 

a^aAAPbl-l     +Cr2B2APt 

f r v**_1 

Ü1   -pt 

G, = 
yei 

N 
B,APbl 

r    ' ■   ^62 

N 
B2Apt 

f r VY2_1 

U 
-2vpb 

Using Equations 4.81 and setting cr(a) = o,(a) = -pa gives 

CrtB^pd 
a 

R" 

vTi-l 

+ Cr2B2APb' 
/ a V^-1 

U" 
vTi-l 

= Pb"Pa 

-Y2-1 

(4.78a) 

(4.78b) 

(4.79) 

^MF)"^*^)       =2vpb-p. 
where 

Apb' = pb-Pb 
Equations 4.82 constitute a system of two equations in terms of unknowns 

'       V1"1 ( a  VT2_1 a   '      and Apb -4- which can inverted to give 

(4.80) 

(4.81a) 

(4.81b) 

(4.82a) 

(4.82b) 

(4.82c) 

Ap'h 
R' R' 

A4F, 
».-11 

-Y2-1 

_ 1 Ce2B2    -NCr2B2 

-C.A    NCA 
Pb-Pa     I 

|2vpb-paj 

(4.83a) 
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where 

D = B1B2(CrlCe2-Cr2Cei) 

Equation 4.83a can be rearranged to give 

(4.83b) 

Ap't 

/ \-T2-1 

a  i 

R". Bx 

A4F, 
\7I-1 B< 

ai(ph-pJ-NCrl(2vpb-Pay 

Ce2(pb-Pa)-NCr2(2vPb-pa) 
(4.84a) 

or 

fR"Y1+Y2       B1[Cei(pb-pa)-NCrl(2vpb-Pa)] 
=   B2[Ce2(Pb-pa)-NCr2(2vpb-Pa)] 

(4.84b) 

Once 
Ka J 

IS 
determined, ApJ can be obtained from Equation 4.83a 

W 
va v 

(4.85) .    (C„-2vNCr;)pb-(C,2-NC,2)p. 
Apt_ B,(C,fi,2-CnC„) 

and p£ can be determined from Equation 4.82c. 

4.4   CASE na AND lib, PHASE 4 SOLUTION. 

In this section we present the solution for Phase 4, which contains three plastic 

zones (Figure 4-5). Again, this solution is only applicable for Nv < -. As discussed 

earlier, yielding begins in Case Ha at the edge of the hole with an inner plastic zone. 
With increased loading, a second plastic zone forms which also migrates outward 
from the edge of the hole. The initial plaatic zone is now the outer plastic zone, whole 
the outermost region is elastic. In Phase 4, the outermost region becomes plastic 
when pb becomes large enough to cause the free field to yield. 

In Case lib, yielding begins at the edge of the hole with an inner plastic zone, with 
the outermost region being elastic. This is followed by free-field yteldtng. In Phase 

4 a third plastic zone is formed which begins at the edge of the hole •<**•*•*- 
outward. So, although the path taken to get to Phase 4 differs m Cases la and Hb, 
the number of plastic zones and the conditions in each zone are tdentical, and thus 

the solution is identical for both. 
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The stress condition in the inner plastic zone (a < r < R)is o6<oT= °z with yielding 

governed by 

f2 = o.-N<rI + O„ = 0 _ _ <4-3b) 

The stress condition in the outer plastic zone (R < r < Ä) is <J„ < a, < a, so the yield 

condition is 

f = ae-Naz + au=0 _ (4-2) 

Finally, in the far outer plastic zone (R < r < °°), we postulate that the stress con- 

dition is tfe < ar = Gz so yielding is given by 

fl = ar-Naz + cu=0 <4-5a> 

f2 = a6-Noz + au = 0 <4-5b> 

The external pressure boundary condition and the yield condition of Equation 4.5 

lead to 
(4-69) 

<*r = <*e = "Pb 

As discussed in sections 4.1 and 4.2, the stress and strain fields in the outer plastic 

zone are give by 

2Ger = YlA1r
Yl-1-Y2A2r^-1 + A (4.26a) 

2Gee = A/""1 + A2r"^-X + A <4-26b) 

crr = C,^-1 + C^r-^"1 - Pb (4-27a> 

ae = CeAr*'-1 + C.^^'-1 - Pb 
(4"27b) 

where A = -(l-2v)pb. 

At this point the unknowns are the constants A, and A2 and the plastic zone 

boundary radii are R and R. Just as in Sections 3.4 and 4.3, we postulate that 

O9(R) = -Pbin the outer Plastic zone- This condition'alons with continuityof ar at 

R, results in two equations for two unknowns A^1'1 and AaR
T»-\ which can be 

solved to yield 

APbl (4.70) 
[ApJ 

Ti-l Bx 1       A RYl 

,Bj = Ui-^r crlce2-cr2ce 

^62        —^r2 
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where Bx and B2 are constants. After solving for B, and B2 , the stress expressions 

of Equation 4.27 can be rewritten as 

+ Cr2B2 
rrTY2_1     n 

7T ~Pb 

VB.J 
( r V1"1 (4.71a) 

(4.71b) 

In the inner plastic zone, the stress and strain fields developed in Section 4.2 apply. 

The radial stress in that zone is given by 
\N-1 

a =- Pa + aj        N-l 
(4.54) 

u       N-l_,v—        -     - 
In Section 4.2, we also postulated that at the inner boundary of the outer plastic 

zone (R) 

or(R)-oz(R>0 

Using Equation 4.50 and the yield condition Equation 4.2 gives 

Ncr(R)-ae(R)-cu=0 

Substituting Equation 4.71 into Equation 4.86 gives the following nonlinear 

expression 

(4.50) 

(4.86) 

(NCrt-CoOBi + (NCr2-C62)B2(|]V2l-N(l-2v)Pb=0 (4.87) 

which can be solved for the radius ratio (R/R) . Using Equations 4.54 and 4.71a to 

enforce continuity of ar at R gives 

ir»-1 
c'Af    +CJH5 

ST*'"' 
-Pb = p.+ N-lJl a N-l 

(4.88a) 

or 

_N„_x    N(l-2v)Pb-(N-l)CrlB1| 
R 
a 

R 
(N-l)Cr2B2 

R 
(N-l)pa+au 

(4.88b) 
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which can be solved for R since Blf B2, and | have been determined previously. 

After solving for R, R can be recovered from | and A, and A2 can be recovered 

from B1 and B2 respectively. 

The solution in the far outer plastic zone is identical to that given in Section 4.3, 

Equations 4.74 through 4.77. 
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SECTION 5 
PROCEDURES FOR APPLYING EXTENDED SOLUTIONS 

In this section, the procedures for applying the extended solutions are summarized 

in 13 tables. These tables are described briefly in the following paragraphs. 
Because of the large number of multi-page tables and the relatively small amount of 

accompanying text, all tables are placed at the end of the section. 

The first step in the solution process is to define the problem. The material and 
load parameters that must be known prior to solving the problem are listed m Table 

5-1. Restrictions on the known parameters (discussed in Section 2) are also 

included in that table. 

The second step is to determine which subcase (Case la, lb, Ha or lib) applies   The 
Case I and Case II definitions were developed in Section 2. The definitions of Cases 

la and lb were developed in Section 3.1, and the definitions of Cases Ha and lib 
were developed in Section 4.1. These definitions are summarized in Table 5-2. 
Using only the parameters listed in Table 5-1, one can use Table 5-2 to determine 
whether a particular problem falls into Case la, Case lb, or Case II. However, an 
additional parameter (p'b) is required to distinguish Case Ila from Case lib. 

A list of "computed parameters" (which can be calculated from the known 
parameters listed in Table 5-1 and are commonly used in the various solutions) is 
provided in Table 5-3. Equation numbers from the earlier derivations are listed. 
Where the same equation was used in Sections 3 and 4, both equation numbers are 
shown. Some ofthe parameters contained in Table 5-3 pertain to all plastic 

soMons; others pertain only to Case II (e.g., «); while still others pertain only to 

either Case Ila of lib. We have found it useful to compute and save these 

parameters at this point in the solution process. 

Once the appropriate subcase (Case la, lb, Ila, or lib) is determined the next step is 

to determine which phase ofthe solution is applicable. As discussed at the 

beginning of Section 3, Case la consists of two phases, while Case * ^ rf»* 
to four phases. Both Cases Ila and lib consist of up to four phases (Section 4). We 
;SI the terminology "up to four phases" since in the cases where l-2Nn <   , the free 

field will not yield and only the first three ofthe four phases are applicable. For all 
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cases, the applicable phase is simply a function of the value of the external pressure 

Pb- 

The process for determining the proper case and subcase is summarized in the 
flowchart shown in Figure 5-1. Each phase of each subcase constitutes a branch on 
the flow chart. The branch symbols used in the flow chart are defined in Table 5-4. 
Also contained in Table 5-4 are references to figures in Sections 3 and 4 that show 

the stress conditions in each region for each branch. 

Once the subcase and the value of the load pb are known, one can use Table 5-5 to 

determine which branch of the flowchart (i.e., which phase of the solution) is 
applicable. Tables 5-4 and 5-5 also contain references to a "solution table" for each 
branch. The solution tables (Tables 5-6 through 5-13) contain step-by-step solution 

procedures for each of the branches. Thus, once the branch is determined, the 

solution procedure may be found in the applicable solution table. 

The format of the solution tables is as follows. First, unknown coefficients and 
plastic boundary radii are computed where required. Next, stress and strain 
response quantities are given for each region in the solution. Finally, an expression 

for hole closure (referred to in the tables as "tunnel" closure) is given. If the only 
response quantity of interest is closure, one may skip the middle part of each 
solution table. That is, one can compute the required coefficients and boundaryradii 
and then proceed directly to the closure calculation. Equation numbers are again 
provided for reference. Primed equation numbers are used to indicate that the form 
of the equation has been modified from that shown in the derivation. In the solution 
tables, an equation denoted with multiple numbers is an algebraic combination of 

the equations bearing those numbers. 

Many of the solutions require solving a nonlinear equation of the form 

C^ + C^x-^ + C^O (5-1> 

where C0, Ci, C2, Yi and y2 are constants and x is the unknown. We have 
successfully used both linear iteration and Newton-Raphson techniques to solve 
nonlinear equations of this form. The linear iteration technique is summarized 

below. 

66 



lfNv<2'Pb=Ti^ 
else pb -> °° 

Yes 

Invalid Problem 
Stop! 

Figure 5-1. Flowchart for determining solution case. 
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Case 
I 

Yes 

Case 1-1 
(elastic) 

Yes 

Yes Case 1-2 

Yes 

Case Ib-4 Case Ib-3 

Figure 5-1. Flowchart for determining solution case (Continued). 
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Case IM 
(elastic) 

Branch Ha Branch lib 

Case II-2 

Case IIa-3 Case II-4 Case IIb-3 

Figure 5-1. Flowchart for determining solution case (Continued). 
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An initial guess for the unknown x is required. For most problems Yi and y2 are 

approximately one, so a reasonable initial guess for x can be obtained from 

C^Vc2(
(o)x)~2+Co=0 (5.2a) 

or 

(o) X = 
'c^+c. 

(5.2b) 

where the left superscript on x denotes the value of the iteration counter k. We then 

successively solve for (k+1)x using 

(k+Ux = 
-C0-<V"x (k)^Ti-l' -Y2-I (5.3) 

until acceptable convergence is achieved. Convergence is measured by 

(k+l)Y_W, 

(k+1). 
<8 (5.4) 

where 5 is a suitably small number (e.g., 1(H). 
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Table 5-1. Known parameters. 

Elastic parameters: 

Poisson's ratio n     I 0 < v < - 

Shear modulus G (or E = 2G(l+v)) 

Strength parameters 
Unconfined compressive strength cu      (au > 0) 

._    l+sinc))    /xr. -,\ 
Friction angled      (<t>>0),or N= ^.^    (N>1> 

Dilatancy angle co (0< co<(()),or M = ^i^|   (1<M<N) 

Loading: 

Internal pressure, Pa    (p. > 0 for Nv > |, or 0 < Pa < j^; forNv < - 

External pressure, pb    (pb > 0) 

Geometry 
Interior radius a (a=l to normalize results with respect to interior 

radius). 
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Table 5-2. Case la, lb, Ila, and lib conditions. 

Property Relations Internal Pressure Case 

Nv<(N + l)v<l 
u    -        V°u 

lb ^a " l-(N + l)v 

1 < Nv < (N+l) v Pa>0 lb 

Nv < 1 < (N+l) v Pa>0 la 

-<Nv<(N + l)v<l 
VOu 

Ila **' l-(N + l)v 

r,         XT               1 0 < Nv < - 
2 

VCTU          ^                 °u 
lib l-(N + l)v ~Pa ^l-2Nv 

n         XT              1 0 < Nv < - 
2 

va«         -TJ   -v Ila ,„      ,\       - Pa    " Pb 
l-(N+l)v 

Note: Pt is a function of several variables. See Equation 4.47. This 
equation and other contributing equations are summarized in 
Table 5-3. 
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Table 5-3. Computed parameters. 

MN (3.39), (4.21) 
^ "MN+1-(M + N)v 

(N-M)v     2 IfNzM   y   _L (3.42), (4.24) 
Yi = ß       OTV/TXT     

+P A     9.MN ß2 

Y 

2MN      H AJV2MN   J     ß2 

(3.43), (4.25) 
"P     2MN      P^2MN   )     ß2 

a       .^xr      ! (2.28b) 
nk = —^— if Nv < - Pb    l-2Nv 2 

pb = ooifNv>- 

A         l-2v ,  _   n.ov^D (3.41), (4.23) A=-rÄ0»-"(1 2v)Pb 

Crl = -i{[MN + l-(M + N)v]Yl + M(N+l)v} (3.46a), (4.28a) 
C 

Cr2 =i{-[MN + l-(M+N)v]T2 + M(N+l)vJ (3.46b), (4.28b) 

CeI = I[N(M + l)vv1 + MN] (3.460,(4.280 

Ce2=A[-N(M + l)vY2 + MN] (3.46d),(4.28d) 

C = MN + l-(M+l)(N + l)v (3.46e),(4.28e) 

A = P„-Pb(l-2Nv) (3.95), (4.74) 
EMN 

Apb=pb-Pb 

Case II only: 

'r2      ^82 

(3.50), (4.32) 

A,__A   2NvCr2-Ce2 (4.47) 
Pb_Pb NCU-CB 
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Table 5-3. Computed parameters (Continued). 

Case Ha only: 

IM_. 
B 

R 
a 

2 

/\Yi+Y2 

Cri-Cr2 

1    -C r2 '2(1-Nv)] 
i2(N-l)vJ 

B, 

Cfll(pb-pa)-NCrl(2vpb-Pa)] 

Ce2(pb-Pa)-NCr2(2vpb-Pa) 

a 
= (CM -2vNCr2)pb -(Ce2 -NCr2)Pa (R'f 

Bl(CriCe2) 

p'b = pb-Apb 

Ti-1 

Case lib only: 

Ce2 ~^ B11 1 
B2J     CrlCe2-Cr2Ceil-C6i + Crl 

R^Y1^       B1[Cel(pb-pa)-NCrl(2vpb-Pay 

B2[Ce2(pb-Pa)-NCr2(2vpb-Pa) 

APb = 

Pb = Pb"APb 

(C62 - 2 vNCr2 )pb - (Ce2 - NCr2 )p. 
Bi(CrlCe2) ^ a 

Yi-l 

(4.40) 

(4.44b) 

(4.45) 

(4.42c) 

(4.79) 

(4.84b) 

(4.85) 

(4.82c) 
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Table 5-4. Identification of flow chart solution branches. 

Case 

I (a orb) 

I (a or b) 

lb 

lb 

II (a or b) 

II (a orb) 

Ha 

lib 

Phase 

II (a orb) 

Branch 
Symbol 

1-1 

1-2 

Ib-3 

Ib-4 

II-l 

II-2 

IIa-3 

IIb-3 

II-4 

Solution 
Table 

5-6 

5-7 

5-8 

5-9 

5-6 

5-10 

5-11 

5-12 

5-13 

Solution 
Conditions 

Elastic throughout 
One plastic zone, 
free field elastic 
Three plastic zones, 
free field elastic 
Four plastic zones, 
(free field yielded) 

Elastic throughout 
One plastic zone, 
free field elastic 
Two plastic zones, 
free field elastic 
Two plastic zones, 
(free field yielded) 
Three plastic zones, 
(free field yielded) 

Figure 
Number 

3-1 

3-2 

3-3 

3-4 

4-1 

4-2 

4-3 

4-4 

4-5 
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Table 5-5. Procedure for determining applicable solution branch. 

Case la 

External Pressure, pb 

pb<|[(N+l)Pa+au] 

Pb>|[(N+l)Pa+au] 

Phase Branch Solution Table 

I-l 

1-2 

Table 5-6 

Table 5-7 

Case lb 

External Pressure, pb 

pb<i[(N + l)Pa+au] 

l[(N + l)pa + au]<Pb<2[l_(^+1)v] 

2[l-(N + l)v] 

Pb^Pb 

< Pb < Pb 

Phase Branch Solution Table 

1 I-l Table 5-6 

2 1-2 Table 5-7 

3 Ib-3 Table 5-8 

4 Ib-4 Table 5-9 

Case Ha 

External Pressure, pb 

Pa+°u 
Pb 2(1-Nv) 

< Pb s Pb 2(1-Nv) 

P'b < Pb < Pb 

Pb^Pb 

Phase Branch Solution Table 

II-l 

II-2 

IIa-3 

II-4 

Table 5-6 

Table 5-10 

Table 5-11 

Table 5-13 
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Table 5 

Case lib 

-5. Procedure for determining applicable solution branch (Continued). 

TCvtomal Pressure. ph 

Pa+<?u 

2(1-Nv) 

< Pb < Pb 
2(1-Nv) 

Pb ^ Pb < Pb 

Pb^Pb 

Phase Branch Solution Table 

pb ^ J?! +fT" N 1 n-1 Table 5-6 

2 II-2 Table 5-10 

3 IIb-3 Table 5-12 

A IT-4 Table 5-13 
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f = -ee(a) = -^[Pa-2(l-v)Pb] 

(2.11) 

Table 5-6. Procedure for elastic conditions (all cases). 

The strain and stress fields are given by 

a2 

2Ger=-(l-2v)pb + (pb-pa)^2- 

2Gee=-(l-2v)pb-(pb-Pa)^ = -2(l-2v)pb-2Ger (2.12) 

i \&2 (2.8) 
<yr = -Pb+(Pb-Pa)pr 

ae=-pb-(pb-pa)^- = -2pb-°r 
(2-9) 

oz=-2vpb 

Tunnel Closure 

(2.10) 

(2.12') 
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Table 5-7. Procedure for Case I (a or b), Phase 2 solution. 

Compute R from 

2     (N-l)pb+gu 
R = a 

i 
N-l 

N + l (N-l)pa+ou 

Plastic Zone Response      (a<r<R) 

(3.28b') 

or = Pa+" 
/     \N"1 «• 

N-l N-lJU 

ce = Ncr-cu 

^z=V(Gr+<Je) 

2Ge<e)=[N-(N + l)v]ar-(l-v)cu 

2Gee = 2Ge(
e
e)+2Ge(

e
p) 

2Ger =[l-(N+l)v]ar+vau-M2Ge^p) 

M+l N-l 

(3.10) 

(3.8) 

(3.19) 

(3.20b) 

(3.24') 

(3.17b) 

(3.15a), (3.20a) 

Elastic Zonp Response      (R<r<°°) 

V>-°A*) = Pa + N-l 
RV"

1
     C 

N-l 

R2 

2Ger=-(l-2v)pb + (pb-P*.)-r 

2Gee=-(l-2v)Pb-(pb-P;)f = -2(l-2v)pb-2Ger 

ar=-pb + (pb-Pl)^2" 

R2 

Ge=-pb-(Pb-Pl)72- = -2Pb-<Jr 

a7 =-2vpb 

(3.10') 

(2.11') 

(2.12') 

(2.8') 

(2.9') 

(2.10') 
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Table 5-7. Procedure for Case I (a or b), Phase 2 solution (Continued). 

Tunnel Closure 

^ = -e.(a) = -^[{N-(N + l)v}p.-(l-v)ou] 
2G1 

+- 
2G 

(N + l)(l-v){(N_1)pa+0u} 

M+N      u        ' J .a, 

M+N 

-1 (3.20b), (3.24), (3.17b) 
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Table 5-8. Procedure for Case lb, Phase 3 solution. 

Determine boundary radii R, R, and R, and coefficients Ai and A2. 

Compute R from 

R = a 
(l-2v)gu 

{l-(N+l)v}{(N-l)pa + ou} 

i 
N-l 

For pb<pb, compute 

IB,      Crl-C. r2 

1   -c [2(l-Nv)Apbl 
-1    Crl J\2(N-l)vApb 

.   R 
and solve the following nonlinear equation for the ratio -. 

RVl-1 RN 

(NC-CJB, |       +(NCr2-C82)B2^j       -N(l-2v)pb=0 

(3.33') 

(3.52) 

(3.55) 

Compute — from 

— \Yi-l 

,_y,-i    N(l-2v)Pb-(N-l)CrlB] 

va; 

fSY1 

RJ 
_(N-l)Cr2B2 

^RV^"
1 

R 

(N-l)Pa + a„ 
(3.58b) 

then R = a 
- — NN-1 

R 
N-l 

and R = j= 
R_ 
R 
R 

Compute coefficients from 

A=^- 

A2 - R-Y2-i 

(3.52') 

(3.52') 
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Table 5-8. Procedure for Case lb, Phase 3 solution (Continued). 

For the case where pb = pb, R -» °° and 

N(l-2v) 
b2-NCr2-Ce2

Pb 

^R^'1    N(l-2v)Ph-(N-l)Cr2B2 

(3.80) 

(3.81b) 

va; 
Ax = 0 

A  --?»- 

(N-l)Pa + au 

(3.80') 

If Pb < pb, the pressure at the internal edge of the elastic zone, p* = -or(R), is 

required. 

ar (R) = C^R71"1 + C^R^"1 - Pb 
(3-45a,) 

P:=-O,(R) 
Inner plastic zone strains depend on circumferential strains at r = R and r - R so 

those are computed next. 

2Gee (R) = A^"1 + A,^»-1 + A (3-44a"> 

/~\    MN + 2-2(M + N + l)vr,XT   1v    ^^ i 

«*■(»)■   (M + NVN-lXl+v   KN-1)P- + q°i 

, _ -* M+N 
R 
R 

-1 
,   _   N.N-1 (R> 

va; 

(M + 2)(l-2v)cu 

(N-l)(M+l)(l+v) 
flOM+1 

vRy 
-l ■2G8e(R) 

'RV*1 

vRy 
(3.68') 

The plastic component of ee(ü) is also required in the inner plastic zone. It may be 

determined as follows 

l-2v 
2Geee)(%-iq&a" 
2G8(

e
p)(R) = 2G8e(R)-2G£(

9
e)(R) 

(3.66'), (3.30') 

(3.17b') 

With the information developed as described above, stresses and strains at any 
point may be readily determined. For a point at any radius r > a, compare r to 
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Table 5-8. Procedure for Case lb, Phase 3 solution (Continued). 

R, R, and R to determine its location; then proceed to use the appropriate formulas 

below. 

Tnnpr Plastic 7"r.P Response       (a < r < R) 

°r=- Pa + N-l. 

NN-1 

äJ     +N^ 
ce = Nar-cu 

cJz = v(ar + Ge) 

2Ge(
r
e) = [ 1 - (N +1) v]cr + vau 

2Ge(
e
e) =[N-(N+l)v]ar-(l-v)av 

7 

M + N      L 

_ sM+l 

\*J R 

N-l 

2Gee = 2Ge(
e
e)+2Ge(

e
p) 

2Ge(
r
p) = -M2Ge(

e
p) 

2Ger=2Ge(
r
e) + 2Ge(

r
p) 

MiHHIe Pla^> 7™e Response        (R < r < R) 

_MN + 2-2(M + N + l)v[(N_1) ] 
2G€e_   (M + N)(N-l)(l+v) [K        ;Pa     uJ 

^_^M+N 

vr; 

(M + 2)(l-2v)gM R 1 + 2Gee(R)' 
(N-l)(M+l)(l+v) 

MN + 2-2(M + N + l)v^    M-2v 
2Ger=-M2Gee + £- ar"   1+v  G» 

-1 

^R^M+1 

vN-l 

a, =- Pa + N-l. 

NN-1 

iJ     +N^1 

(3.10) 

(3.8) 

(3.19) 

(3.15a) 

(3.20b) 

(3.70) 

(3.17b) 

(3.15a*) 

(3.17a) 

(3.68) 

(3.69) 

(3.57) 
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Table 5-8. Procedure for Case lb, Phase 3 solution (Continued). 

Ge=Nar-Gu 

Outer Plaste 7xmt-. Response       fR < r < R) 

2Ger=YxA1r
Yl-1-Y2A2r-

T2-1 + A 

2Gee=A1r
Yl-1 + A2r-

Y2-1 + A 

or=CrlA1r
Tl"1 + Cr2A2r"

Y,"1-Pb 

ae=CelA1r
Yl"1 + Ce2A2r-

Y2-1-pb 

oz = ^(ae+ou) 

(3.3a') 

(3.3a), (3.3b) 

(3.44a) 

(3.44b) 

(3.45a) 

(3.45b) 

(3.4') 

Elastic Zone Response      (R < r < °°) 

2Ger=-(l-2v)Pb + (pb-P;)fr (2-ir) 

2Gee=-(l-2v)pb-(pb-p;)^ = -2(l-2v)Pb-2Ger (2.12') 

/ .\R2 (2.81) 
or=-Pb + (Pb-Paj^2- 

/ *\R2 O rr (2.9') Oe=-Pb-(Pb-Pa)^r = -2Pb-^ 

(2.10') 
az =-2vpb 
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Table 5-8. Procedure for Case lb, Phase 3 solution (Continued). 

Ti.irmpl Closure 

Compute R, R, and R, followed by Ax and A2 as shown at the beginning of the table. 

Now compute circumferential strain components as follows. 

2Ge6(R) = A1R^-1 + A2R^-1 + A 
(3.44a') 

2Ge4K)      (M + N)(N-l)(l+v) LV ,RJ 

ffr" 

KaJ 

(M + 2)(l-2v)au 

(N-l)(M + l)(l+v) 

l-2v 

'R^+1 

RJ 
-i + 2Gee(R)- U' 

2Ge<;>(R) = -1_('+
V
l)v^ 

2Ge(
e
p)(R) = 2Gee(R)-2Ge(

e
e)(R) 

2Ge(
e
e)(a) = -[N-(N + l)v]pa-(l-v)au 

2Ger(a) = 2Ger(4fr-MF1[(N-1)P.-^] 

(3.68') 

(3.66'), (3.30') 

(3.17b') 

(3.20b') 

M+N 

-1 (3.70') 

Then 

AD / x _ J-[2Ge(
e
e)(a) + 2GE^(a)] (3.17b), (3.66'), (3.30'), (3.70') 
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Table 5-9. Procedure for Case lb, Phase 4 solution. 

Determine boundary radii R, R, and R, and coefficients Ai and A2. 

Compute R from 

R = a 
(l-2v)gu 

{l-(N + l)v}{(N-l)pa+au} 

N-l 
(3.33') 

Compute 

Ce2       Cr2 Apb 

[Bj   crlce2-cr2celL-cel   CrlJ[APbJ 

and solve the following nonlinear equation for the ratio ^-. 

'RVl-X R^ (NCrl-Cei)B^|J     +(NCr2-Ce2)B2^J       -N(l-2v)Pb =0 

(3.84) 

(3.86) 

Compute — from 

_.„.!    N(l-2v)Pb-(N-l)CrlB1 '10 
\aJ 

PTrl 

R 
-(N-l)Cr2B5 

RJ 
(N-l)pa+cu 

then R = a 
R^-1 

1 
N-l 

and R = j=^ 

vRy 

(3.87b) 

Compute coefficients from 

_E 
RY 

A = -^- 

A —^ 
R Y2-1 

(3.84') 

(3.84') 
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Table 5-9. Procedure for Case lb, Phase 4 solution (Continued). 

Inner plastic zone strains depend on circumferential strains at r - R and r - R, 
while far outer plastic zone strains depend on strains at r = R, so those are 

computed next. 

2Ge.(R) = A1R"-1
+A2R-- + A ^M^ 

(3.88a'), (3.5a') -r(R) = »S^ 
2G€(

e
p)(R) = 2Gee(R)-2Ge(

e
e)(R) 

2Gee-(R)-A1R*-1 + AaR-^-1 + A 

/-x    MN + 2-2(M + N+l)vr/XT   -v i 
2Gg*(R) =   (M + N)(N-l)(l+v) KN-1^^-! 

(3.17b') 

(3.44a') 

— xM+N 
R 

kR 
-1 

R 
a 

\N-1 

J 

(M + 2)(l-2v)ou 

"(N-l)(M + l)(l+v) VRJ 
-1 + 2Gee(R)- | 

— \M+1 

(3.68') 

The plastic component of E,(R) is also required in the inner plastic zone. It may be 

determined as follows 

l-2v 
2^W(Ä)--1=(Ä0- 
2Ge

(
e
p)(R) = 2Gee(R)-2Ge(

e
e)(R) 

(3.66'), (3.30') 

(3.17b') 

With the information developed as described above, stresses and strains at any 
point may be readily determined. For a point at any radius r > a, compare r to 
R, R, and R to determine its location; then proceed to use the appropriate formulas 

below. 
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Table 5-9. Procedure for Case lb, Phase 4 solution (Continued). 

Tnnfir Plastic Znnft Response        (a < r < RJ 

or=- *+£i 
' r i G. 

VaJ     +N-1 

ae=Nar-au 

2Ge(
r
e)=[l-(N + l)v]ar + vau 

2Ge(
e
e)=[N-(N + l)v]ar-(l-v)au 

2Ge(
e
p)=2Ge^(R)| 

R 
\M+1 

-fili^KH-DP,*«.] 'iO 
N-l 

VaJ M + N 

2Gee = 2Ge<e)+2Ge<p) 

2Ge{
r
p) = -M2GE^

P) 

2Ger=2G£(
r
e) + 2Ge(

r
p) 

Middle Plastic Zone Response (R<r<R) 

MN + 2-2(M + N + l)v 

/'-ftN\M+1      ,      NN-1 
R 

\r ) Ü. 

2<j£e      (M + N)(N-l)(l+v) lv       7Pa     uJ 

(M + 2)(l-2v)gu 

flO 
vr; 

M+N 

-1 
N-l 

(N-l)(M + l)(l+v) 

,      NM+1 

»1    -1 + 2GE6(R)- 7
] 

M+l 

MN + 2-2(M + N+l)v        M-2v 
2Ge =-M2Gee+ * —<*- o. 

1+v 1+v 

°T=- P
°
+

N31 

,N-1     « 

N-l 

ce=Nor-au 

(3.10) 

(3.8) 

(3.19) 

(3.15a) 

(3.20b) 

(3.70) 

(3.17b) 

(3.15a1) 

(3.17a) 

(3.68) 

(3.69) 

(3.57) 

(3.3a') 

(3.3a), (3.3b) 
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Table 5-9. Procedure for Case lb, Phase 4 solution (Continued). 

Outer Plaste 7.nnP Response (R<r<R) 

2Ger=Y1A1r
Yl-1-Y2A2i-

Y2-1 + A 

2Gee=A1r
Y>-1 + A2r-

Y2-1 + A 

ar=CrlA1r
Yl"1 + Cr2A2r-

Y2-1-pb 

ae=CelA1r
Y>-1 + Ce2A2r" "^"Pb 

<*z=^(°e+<*u) 

(3.44a) 

(3.44b) 

(3.45a) 

(3.45b) 

(3.4') 

Far Outer Plastic Zonp Response 

CJr = "Pb 

oe = ~Pb 

az=-(-pb + cru) 

_-,..    [(N + l)v-Nlpb-vau 
2(j£r  " (l+v)N 

,.,    [(N + l)v-N]Pb-vcu 

(l+v)N 

(R < r < oo) 

2Ge(
e
e) = 

2Ge?) = 2Ge*)(R) *- + GC 1- 
'RV 

vr/ 

2Ge(
r
p) = 2GC-2Ge(

e
p) = -2GB?» (ft)! 

R + GC 1+ 
R 

2G€e=2Gee
(e)+2Gel 

2Ger = 2Ger
(e)+2Ge 

(p) 

(p) 

(3.82) 

(3.82) 

(3.5a), (3.5b) 

(3.88a'), (3.5a') 

(3.88b'), (3.5a') 

(3.100a'), (3.100b) 

(3.95), (3.100a'), (3.100b) 

(3.17b') 

(3.17a') 
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Table 5-9. Procedure for Case lb, Phase 4 solution (Continued). 

Tnrmel Closure 
Compute R, R, and R, followed by Ax and A2 as shown at the beginning of the table. 

Now compute circumferential strain components as follows. 

2G£e(R) = A1R
Yl-1 + A2R-Y2-1 + A (3.44a') 

/-\    MN + 2-2(M + N+l)vr,XT   lA    __ i 
«*•(»)■   (M + N)(N-l)(l+v   KN-^ + g-l (M + N)(N-l)(l+v) 

(M + 2)(l-2v)qa 

/__NM+N 
'R^ 

R 
-1 

\n,j 

'RV" 

vay 

(N-l)(M+l)(l+v) 

l-2v 

vR; 
+ 2Gee(R)- | 

— NM+1 

2^W(Ä)--1=(Ä0- 
2G£<

P)
(R) = 2Gee(R)-2G£^e)(R) 

2Ge(
e
e) (a) = -[N - (N + l)v]pB - (1- v)au 

2Ger(a) = 2&r(4!r-M^[(N-l)P.-.] 

(3.68') 

(3.66'), (3.30') 

(3.17b') 

(3.20b') 

Then 

^ = -Be(a) = -^[2Ge
(;>(a) + 2Ge^(a)] 

'R^ 

\aJ 
-1 (3.70') 

(3.17b), (3.66'), (3.30'), (3.70') 

90 



Table 5-10. Procedure for Case II, Phase 2 solution. 

For pb < pb compute 

fBil 1 
iBaJ     Crl-Cr2 

'1    -Cr2l|2(l-Nv)APbl (4.34) 
-1    Crl Jl2(N-l)vApbJ 

Determine plastk boundary radius R by solving the following nonlinear equation for 

the ratio (a/R). 

c"B{t 
Then R = a/(a/R). 

V1" 
+ Cr2B2|R 

-Y2-1 

= Pb"Pa 
(4.36) 

Compute constants 

Al    R^"1 

(4.34') 

(4.34') 
R-ir2-i 

For Case lib and pb equals pb, 

R-»~ 
Ax = 0 

Pb-Pa 

(4.49b) 

A,= 
Cr2a Y2-l 

With the information developed as described above, stresses and strains at any 
point may be readily determined. For a point at any radius r > a, compare r to R to 

determine its location; then proceed to use the appropriate formulas below. 
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Table 5-10. Procedure for Case II, Phase 2 solution (Continued). 

Plastic Zone Response       (a<r<R) 

2Ger = TA/1"1 - Y2A2r-
Y2-1 + A 

2G£e=A1r^-1 + A2r-
Y*-1 + A 

ar=CrlA1
rYl_1 + Cr2A2r-

72-1-pb 

ae=CeiA1r
Yl_1 + Ce2A2r-

Y2-1-pb 

Elastic Zone Response      (R < r < °°) 

P;=-^(R) = 2(1-Nv)Pb+Gu 

e        - „     v- -    --/ r 

oz = -2vph 

Tunnel Closure 

f —e.(a)—^(A.a^ + A.a^ + A) 

(4.26a) 

(4.26b) 

(4.27a) 

(4.27b) 

(4.5b) 

(4.29) 

2G£r=-(l-2v)pb + (pb-p;)5r (2-ir) 

2Ge6=-(l-2v)pb-(pb-P;)^ = -2(l-2v)pb-2Ger (2.12') 

/         MR2 (2.8') 
CJr=-Pb+(Pb-Pa)^2- 

(2.10') 

(4.26b1) 
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Table 5-11. Procedure for Case Ha, Phase 3 solution. 

Determine plastic boundary radii E and E and coefficients A, and A,. For pb < P„, 

compute 

I Bo Crl_Cr2 

i  -cr2 

-1   crl 

f2(l-Nv)Apb 

l2(N-l)vAPb 

,       ..   R 
and then solve the following nonlinear equation for the ratio -. 

^RVl_1 R^2-1 

(NCrl-Cel)B/lV" +(NCr2-Ce2)B2 | -N(l-2v)Pb=0 

Then solve for the ratio R / a from 

'IP71"1 

,_V.-i    N(l-2v)pb-(N-l)CrlB1k       "(N-l)Cr2B2^ 
R 

\aJ 

'R^2-1 

(N-l)p.+oB 

Then 

R = a 
/ — \N-1 N-l 

and R = 7= 
R 

(R/R) 

Compute constants 

Al    R^"1 

For pb = pb, then R -> ~; first compute 

N(l-2v)Pb 
2     NCr2-Ce2 

and compute R from 

(K^-1    Nfl-2v)ph-(N-l)Cr2B2 

UJ (N-l)pa + au 

B2 A1 = 0 and A2 = R_72_i 

(4.34) 

(4.5D 

(4.55b) 

(4.34') 

(4.34') 

(4.67') 

(4.68') 
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Table 5-11. Procedure for Case Ha, Phase 3 solution (Continued). 

The pressure at the internal edge of the elastic zone, p*a is required when pb < pb. 
Therefore we compute the stress at r = R using the solution from the outer plastic 

zone. 

Pi = -o,(R) = -(CrtAjR"-1 + Cr2A2R-^'1 -p„) (4.27a') 

Trmer Plasfr>. 7.nnp. Response       (a < r < R) 

2Gee(R) = A1R
Yl-1 + A2R-T2-1 + A 

MN + 2-2(M + N + l)vrm     , i 
2G£° =   (M + N)(N-l)(l+v) [(N-1)Pa+G"] 

(4.26a') 

fir* 
Vr7 

-1 
V >N-1 

(M + 2)(l-2v)au (*\ 

V1 J 

M+l 

-1 2Gee(R) 
'IP 
\r J 

M+l 

(N-l)(M + l)(l+v) 

,™       MN + 2-2(M + N+1)V<T     M-2v„ 
2Ger=-M2Gee + ^ -<5^—^~G- 

or=- Pa + N-l 

N-l _ 

N-l 

ce=Nar-au 

Outer Plastic Zone Response       (R<r<R) 

2Ger = YiA^1"1 - Y2A2r-
Y2_1 + A 

2G£e=A1r
Yl-1 + A2r-

T2-1 + A 

Or = CrlA^1"1 + C^A^2"1 - pb 

Ge=CelA1r
Yl"1 + Ce2A2r-

Y2-1-pb 

oz=^K+ou) 

(4.65') 

(4.66) 

(4.54) 

(4.3a) 

(4.3a), (4.3b) 

(4.26a) 

(4.26b) 

(4.27a) 

(4.27b) 

(4.5b) 
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Table 5-11. Procedure for Case Ha, Phase 3 solution (Continued). 

reiflstif; Zonp Response      (R < r < °°) 

R2 

2Ger=-(l-2v)pb + (pb-p*a)^r 

2Gee=-(l-2v)Pb-(Pb-p;)^ = -2(l-2v)pb-2Ger 

CTr=-pb+(Pb-P*a)-3" r 

R2 

r2 ae = -Pb-(Pb-pl)7^ = -2Pb-, 

az =-2vpb 

(2.11') 

(2.12') 

(2.8') 

(2.9') 

(2.10') 

Tnnnftl Closure 

Compute boundary radii R and R, and coefficients Ai and A2 as shown at the 

beginning of the table. 

Then 

and 

2Gee(R) = A1R^-1 + A2R-1"-1 + A (4.26a) 

AD , v       MN + 2-2(M + N + l)vrfN_1x    +a l 
-D- = -£^a) = -2G(M + N)(N-l)(l+v)l(N   1)Pa     uJ 

Rr -i 
j 

(M + 2)(l-2v)ou 
+ 2G(N-l)(M+l)(l+v) ,aJ MMTT (4-65,) 
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Table 5-12. Procedure for Case lib, Phase 3 solution. 

Determine plastic boundary radius R, and coefficients Ai and A2. Begin by 
computing 

|Bi' Ce2    -Cr2 jApb 

[B2 J    CrlCe2 - Cr2Cel 

and then solving the following nonlinear equation for the ratio 
R, 

CrlB1 

then   R = 

f-T1"1 
,R> 

a 

-Y2-1 

+ C'2HR, Pb+Pa=° 

and 

R. 

Al" R--1 

A,=   *- 
R -7,-1 

(4.70) 

(4.72) 

(4.70') 

(4.70') 

Far outer plastic zone strains depend on the circumferential plastic strain at r - R. 

2Gee (R) = A.lK1 + A2R-^-x + A (4.26b«) 

2GeM(R) = KN+l)v-N]Pb-vau (4 73)> (4 16b) 
6 I   / N(l+v) 

2Gef,(R) = 2Ge6(R)-2Gef)(R) (4.13b) 

With the information developed as described above, stresses and strains at any^ 
point may be readily determined. For a point at any radius r > a, compare r to R to 
determine its location; then proceed to use the appropriate formulas below. 
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Table 5-12. Procedure for Case lib, Phase 3 solution (Continued). 

Trmpr Plast^ E™ift Response (a < r < R) 

2G8r=Y1A1r
Yl-1-Y2A2r^-1 + A 

2Gee=A1r
Yl-1 + A2r^-1 + A 

or=CrlA1r
1fl"1 + Cr2A2r' 

T2-l_f, Pb 

ae=CelA1r
Yl_1 + ce2A2r-

ir2-1-Pb 

<*z = = ^(°e+°u) 

ar Outer • Plastic ZoTifi ResDonse 

°r = "Pb 

<*e = -Pb 

O« = £(-?„+<*.) 
,    [(N + l)v-Nlpb-vau 

2Cl£r  ~ (l+v)N 

.,    KN + pv-Nfc-vc, 
2ü£e  " (l+v)N 

R^ 
2Ge?) = 2Ge?)(R) - + GC Hf 

(4.26a) 

(4.26b) 

(4.27a) 

(4.27b) 

(4.5b) 

2Ge<r
p) = 2GC - 2Ge?> = -2Ge?) (ft) f   + <& 1+ 

R 

2Gee = 2Gee
(e)+2Ge( 

2Ger = 2Ger
(e)+2Ge( 

(p) 

(p) 

(4.73a) 

(4.73b) 

(4.73c) 

(4.73), (4.16a) 

(4.73), (4.16b) 

(4.76'), (4.77b) 

(4.74), (4.76'), (4.77b) 

(4.13b') 

(4.13a') 
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Table 5-12. Procedure for Case lib, Phase 3 solution (Continued). 

Tnrmel Closure 

Compute R, Ab and A2 as shown at the beginning of the table. 

TT~«.W~iö[A*"",+A«B',,",+A] (4-26b,) 
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Table 5-13. Procedure for Case II, Phase 4 solution. 

Determine plastic boundary radii R and R. Begin by computing 

fB4= i  
[B2j    CrlCe2-Cr2Cei 

Ce2 Cr2 

-Cel    Crl 

fApb 

lApb. 
R 

and then solving the following nonlinear equation for the ratio ^. 

'RV
1_1 'RV*-

1 

Then solve for the ratio R / a from 

,_.„-i    N(l-2v)Pb-(N-l)CrlB1 
( R^ 

v*v 

rRY1-1 

R 
-(N-l)Cr2B5 

'RV
7
'"

1 

R 

Then 

a 

R = a 

(N-l)Pa+au 

fV?-* 
\*J 

i 
N-l 

and R = /_,»\ 
(R/R) 

Compute constants 

Al     fr-1 

A —^~ 

(4.70) 

(NO^-cWi       +(NCr2-C,2)Bj| -N(l-2v,pb=0 (4.87, 

         (4.88b) 

(4.70) 

(4.70) 

(4.73), (4.16b) 

Far outer plastic zone strains depend on the circumferential plastic strain at r - K. 

2G£e(R) = A1R--1 + A2R--1 + A (4-26b'> 

2GB^fR)-[(N+1)V"NlPb"V°U 
2Gee (Kj- N(i+v) 

2Ge^(R) = 2GB6(R)-2Ge^(R) <4'13b) 

With the information developed as described above, stresses and strains at any^ 
point may be readily determined. For a point at any radius r > a compare r to R to 
determine its location; then proceed to use the appropriate formulas below. 
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Table 5-13. Procedure for Case II, Phase 4 solution (Continued). 

Tnner Has*™ Zone Response        (a<r<R) 

2Gee (R) = A^1"1 + A,!"*"1 + A 

MN + 2-2(M + N + l)v[(XT   1} i 
2Gee"   (M + N)(N-l)(l+v) llJN     JPa      uJ 

, — s M+N 

*1     -i 
VN-1 

(M + 2)(l-2v)au 

(N-l)(M + l)(l+v) 

'RV+1 

vry 

-l + 2GE6(R)|- 

MN + 2-2(M + N + l)v       M-2v 
2Ger=-M2Gee + ^ ^"uT^ 

G=- Pa + N-l 

r 

a; 
^Jk 

N-l 

ae=Nar-au 

a, = a. 

(4.26a') 

(4.65') 

(4.66) 

(4.54) 

(4.3a) 

(4.3a), (4.3b) 

Outer Plastic Zone Response       (R<T<R) 

2Ger = YiA^1"1 - Y2A2r"
Y2_1 + A 

2Gee=A1r
iri-1 + A2r-

Y2-1 + A 

oT = C^A^1"1 + C^A^'-1 - pb 

ae = CeiA1r
Yl"1 + Ce2A2r-^-1-pb 

(4.26a) 

(4.26b) 

(4.27a) 

(4.27b) 

(4.5b) 
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Table 5-13. Procedure for Case II, Phase 4 solution (Continued). 

Far Outer P««ti" ?™* Response        (R < r < °°) 

<*r = -Pb 

ae = "Pb 

az=^(-pb + au) 

,    [(N-H)v-Nlpb-vau 
2G€'  " (l+v)N 

,.,    [(NH-l)v-Nlpb-vau 
ZU£e  " (l+v)N 

2G£Lp)=2GeLp)(R) 7 + GC 1- 
rRV 

vry 

(4.73a) 

(4.73b) 

(4.73c) 

(4.73), (4.16a) 

(4.73), (4.16b) 

(4.76'), (4.77b) 

2Ge(
r
p) = 2GC-2Ge<p) = -2Ge<p)(R) 

* \2 

5 I + GC 1+ 
vT; 

2Gee = 2Gee
(e)+2Ge( 

2Ge =2Ger
(e) + 2Ge1 

(p) 

(p) 

(4.74), (4.76*), (4.77b) 

(4.13b') 

(4.13a') 

Tiinnfil Closure 

Compute boundary radii R and R, and coefficients Ai and A2 as shown at the 

beginning of the table. Then 

2Gee(R) = A1R
lfl-1 + A2R-Y2-1 + A 

and 

(4.26a) 

AD . x       MN + 2-2(M + N+l)vr(N_1) i 
-5- = -Be(a) = -2G(M + N)(N_1)(1+v)U        ^      uj 

^_^M+N 

va/ 
-1 

(M + 2)(l-2v)au 
+ 2G(N-l)(M + l)(l+v) 

_NM+1 m 
UJ 

-i -«.(=)• f 
R^1 

(4.65') 
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SECTION 6 
NUMERICAL EXAMPLES 

Numerical comparisons of the results from finite element calculations with the 

results from the closed-form solutions discussed in the preceding sections are 
presented in this section. Two examples for each of the four cases (Cases la, lb, Ha, 
and lib) are presented: one example with M equal to N (associative flow rule) and 
one example with M equal to one (nonassociative flow rule). Results using the two 

solution techniques are presented in terms of: (1) a table of differences in computed 
closure for a given load level; (2) plots of external pressure, pb, versus closure; and 

(3) plots of stress and displacement versus normalized radius (r/a) at given load 

levels. The material properties and loads used for each example are provided in 

Table 6-1. The material properties were chosen to correspond to a soft rock. For 
each example, the radius of the hole was taken as unity and loading was applied 
until closure of approximately five percent was achieved. Except for the Case la 
examples, where free-field yielding cannot occur, the load levels were high enough to 

cause the free field to yield. 

Prior to performing the nonlinear finite element calculations, a mesh discretization 

study was performed using a linear material. The objective ofthat study was to 
determine: (1) the size of the mesh required to approximate an infinite medium; and 

(2) the number of elements required to achieve accurate results. For the linear 
problem, we used Young's modulus of one million psi, Poisson's ratio of 0.25, and a 
hole radius of one inch. Loading was applied in two steps. In the first step, the 

internal and external pressures were both equal to one thousand psi. In the second 
step, the internal pressure was held at one thousand psi, while the external pressure 
was increased to two thousand psi. A mesh containing four hundred elements with 
an external radius of two hundred inches gave displacement and stress results 

accurate to four decimal places. This level of mesh refinement may be overly 
conservative, but was selected to eliminate the possibility of a coarse mesh being a 
significant source of error in the nonlinear finite element calculations. The linear 
analysis results are presented in Figure 6-1. Note that the finite element results 
(dashed lines) are not distinguishable from the closed-form solution (solid lines). In 

Figure 6-1 and all subsequent figures, compression is shown positive. 
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1.   Comparisons of analytical and finite element analyses for linear 

material response. 
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6-1    Comparisons of analytical and finite element analyses for linear 

material response (Continued). 
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Closure results at the final load level for each of the eight nonlinear cases are pre- 
sented in Table 6-2. The maximum difference in closure between the finite element 

and the closed-form solutions was 0.337 percent. In performing these analyses, we 
found that the differences in computed closures could be lessened by reducing the 
load increment and tightening the convergence tolerances in the nonlinear finite 
element analyses. This was particularly true in the nonassociative flow examples, 
where the elastic-plastic constitutive matrix (required for implicit finite element 
analysis utilizing Newton-Raphson techniques for solving nonlinear equations) 
becomes nonsymmetric. Our finite element program utilized a symmetric equation 
solver, and thus an approximation to the true elastic-plastic constitutive matrix had 

to be used. Although we may have been able to achieve even closer matches between 

analytical and numerical results, the differences presented in Table 6-2 were judged 

to be small enough to convince us that the hypotheses used in developing the 

analytical solutions were justified. 

Plots of external pressure, pb, versus closure for the eight example problems are 

shown in Figures 6-2 through 6-9. There is no discernible difference between the 

closed-form and finite element results. 

Plots of stress (aT, ae, and az) versus normalized radius (r/a) and radial dis- 

placement versus normalized radius (r/a) for each of the eight cases are presented in 
Figures 6-10 through 6-17. Again, there is no discernible difference between the 

analytical and finite element results. 
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Table 6-2. Closure results. 

Example 
Number 

Applied External 
Pressure, pb (psi) 

Closure (%) 
(Finite Element) 

Closure (%) 
(Analytical) 

Difference (%) 
* 

1 1,100 5.7390 5.7481 -0.158 

2 675 5.0254 5.0347 -0.185 

3 750 5.0573 5.0744 -0.337 

4 1,200 4.9428 4.9479 -0.103 

5 1,500 5.0083 5.0222 -0.277 

6 930 4.9811 4.9976 -0.330 

7 1,000 4.9895 5.0021 -0.252 

8 1,425 

  

5.1112 5.1180 -0.117 

- 

Difference (in percent) is computed by subtracting the finite element solution from 
fh!fanXical solution, then dividing by the analytical solution, and multxplymg 

by 100. 
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Figure 6-5. Pressure versus closure (Example 4). 
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Figure 6-10. Example 1 response profiles. 
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Figure 6-11. Example 2 response profiles. 
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Figure 6-12. Example 3 response profiles. 
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Figure 6-13. Example 4 response profiles. 
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Figure 6-14. Example 5 response profiles. 
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Figure 6-16. Example 7 response profiles. 
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