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SECTION 1
INTRODUCTION

An analytical solution is presented for the stresses and strains around a circular
hole in a Mohr-Coulomb material under conditions of plane strain when subjected to
a hydrostatic free-field pressure. The solution is a direct extension of the solution of
Florence and Schwer (Florence, 1978) and (Florence, undated) to include arbitrary
dilatancy and the case where out-of-plane yielding occurs in the free field.

1.1 BACKGROUND.

The basic approach to this problem was defined by (Newmark, 1969) in response to
the need for a method of designing underground structures to resist the effects of
ground shock due to nuclear weapons. In the development of his solution, Newmark
assumed an elastic-perfectly-plastic medium with plastic volume constancy ina
plane strain configuration. Newmark's work was expanded by Hendron and Aiyer
(Hendron, 1972), who provided the solution for a dilatant material using an associ-
ated flow rule. Both the Newmark and the Hendron and Aiyer solutions were based
on the assumption that the out-of-plane stress was the intermediate principal
stress. There are, however, certain combinations of applied load and material
properties where the out-of-plane stress is not the intermediate principal stress.

Florence and Schwer (Florence, 1978) and (Florence, undated) generalized the
Hendron and Aiyer solution by eliminating the requirement that the out-of-plane
stress be the intermediate principal stress. Their solution is considerably more
complex, since it requires one to deal with multiple yield conditions in a single
material. In fact, the solution is divided into two cases depending on the material

properties and loads.

Detournay and others (Detournay, 1983) presented a more general solution which
allowed arbitrary dilatancy through the use of a nonassociative flow rule, but this
solution maintained the requirement that the out-of-plane stress be the intermedi-
ate principal stress. A similar solution was developed independently by (Merkle,
1982), although we have not found it in published form.




Wintergerst and others (Wintergerst, 1991) generalized both cases of the Florence
and Schwer solution to allow arbitrary dilatancy through the use of a nonassociative
flow rule, thus providing a solution with both arbitrary dilatancy and no limitation

on the intermediacy of the out-of-plane stress.

The analytical solutions developed by Florence and Schwer and by Wintergerst, et al
for the plane strain, axisymmetric compression of a circular opening in a Mohr-
Coulomb material make the assumption that out-of-plane yielding of the free-field
does not occur. These solutions assume that an elastic zone always exists outside
the plastic annulus and therefore do not apply to the free-field yielding case (i.e.,an
infinite outer radius of the plastic zone). However, as will be shown herein, certain
combinations of friction angle, elastic properties, and free-field pressure can cause
the free-field to yield before significant deformation of the opening has occurred,
rendering these solutions incomplete. Yielding of the free-field does not necessarily
translate into excessive closure of the tunnel.

1.2 SCOPE AND ORGANIZATION OF THE REPORT.

The earlier solutions, including the provision for arbitrary dilatancy, are extended iﬁ
this report to include yielding of the free field.

Section 2 contains a complete problem description, a discussion of the solution
approach, the definitions of the Florence and Schwer solution cases, and a derivation
of the conditions under which the free field will yield. In developing the solution it is
convenient to separate the problem into two general cases based on how the
concentric plastic zone(s) develops around the opening. These two cases were
identified by Florence and Schwer as Case I and Case II. The difference between
these two cases is that the initial plastic zone that develops at the edge of the open-
ing is governed by two different yield conditions, depending on the specific
combinations of material properties and loading. In Case I, the out-of-plane stress
within the initial plastic zone is the intermediate principal stress. In Case II,
however, the out-of-plane stress is the maximum (least compressive) principal
stress. Section 2 also contains a derivation of the material and load parameters
which demarcate Cases I and II. Since additional concentric plastic zones may form
outside of this initial zone, these two cases are each subdivided into two subcases.



For Case I, there are conditions that cause only one initial plastic zone to form and
no free-field yielding is possible. These conditions constitute Case Ia solutions.
Cases where additional plastic zones develop with continued loading will constitute
Case Ib solutions. The free field may or may not yield depending on the material
properties. The Case I solutions are described in Section 3.

For Case II the order of the formation of the plastic zones differentiates the two
solution subcases. In Case Ila, the initial plastic zone is followed by the formation
of a second plastic zone, which also begins at the edge of the hole. Under certain
conditions further loading will cause the free field to yield. In Case IIb the free field
yields after formation of the initial plastic zone. Further loading causes a third
plastic zone to form. This third plastic zone has the same stress conditions as the
second plastic zone in Case Ila, and it also begins at the edge of the hole. The Case

1I solutions are described in Section 4.

Tables summarizing the calculational procedures applicable to the various solution
cases and radial zones are presented in Section 5. Numerical examples of the
extended solutions to the tunnel problem are presented in Section 6. These exam-
ples include comparisons with the results of finite element analyses. Finally,

references are listed in Section 7.

Frequently used symbols are defined in Table 1-1 which is adapted from
(Wintergerst, 1991).




Table 1-1. Definitions of frequently used symbols.

- interior radius of the opening

- Young's modulus for medium

- yield surface definition

- plastic potential surface corresponding to yield surface f
- shear modulus for medium

- arbitrary dilatancy parameter

- friction parameter

- internal pressure acting on hole boundary

p. - negative of the radial stress at the elastic-plastic boundary
p, - far-field pressure (compressive stress) at large radius

o Z2Qm e

p, - far-field pressure at initial yield

p, - far-field pressure at which R=R
p, - far-field pressure when the inner plastic zone begins to form under

Case II yield conditions
p, - far-field yield pressure

p, - pressure value used to discriminate Cases IIa and IIb
p; - far-field pressure at which the third plastic zone forms in Case IIb

r - arbitrary radius to any point in the medium

R - radius to the elastic-plastic boundary

R - maximum radius at which the radial and out-of-plane stresses are equal
R - minimum radius at which the radial and out-of-plane stresses are equal
R’ - radius to the elastic-plastic boundary when p, = pj,

G, - unconfined compressive strength of medium

G, - stressin radial direction

6, - stress in circumferential direction

G, -stress in out-of-plane direction

€, - strain in radial direction

€q - strain in circumferential direction

£, - strain in out-of-plane direction

Note: Strains are further distinguished by the superscripts (e) to denote
elastic component and (p) to denote plastic component, and overdots
to denote derivatives with respect to time

Y - Poisson's ratio for medium (0 < v <0.5)
¢ - - friction angle for medium

A - flow constant of proportionality

® - dilatancy angle




SECTION 2
PROBLEM DESCRIPTION AND APPROACH

The purpose of this section is to furnish a complete description of the problem and
the approach taken to solve it. In addition, we present derivations which: (1) define
the two solution cases developed by Florence and Schwer; and (2) define the
conditions under which the free field will yield. These derivations are included in
this section since they are a part of the free-field yielding solutions for both Case 1
and Case II presented in Sections 3 and 4, respectively. The problem geometry,
loading, material law, and solution restrictions are described in Section 2.1. The
overall solution approach is discussed in Section 2.2. The Florence and Schwer Case
I and Case II conditions are developed in Section 2.3. Finally, the conditions for

free-field yielding are derived in Section 2.4.
2.1 PROBLEM DESCRIPTION.

The problem geometry consists of a circular hole with radius a in an infinite medium

under conditions of plane strain. The loading of the material consists of: (1) a
compressive pressure, Do, applied at the inside edge of the hole (r equals a); and (2)

a compressive pressure, Py, applied at r equal to infinity (defined as the free field).
Tensile values of p, and p, are precluded. The loading is assumed to be monotonic,
with p, equal to p, until p, reaches its final value. Subsequently, p, is held
constant while p, is increased to its final value. The internal pressure, p,, can be

considered to represent the resistance provided by a structural liner. The final value
of p, would then represent yielding of the liner. The loading is assumed to be

applied sufficiently slowly that inertial effects can be ignored. Finally, it is assumed
that during the initial loading phase with p, equal to py, the material response is

linear.

The material is assumed to be governed by a Mohr-Coulomb elastic-plastic consti-
tutive law with a failure surface defined by
f =0,—-No,+0, 2.1)

where o, is the maximum (least compressive) principal stress and o, is the

minimum (most compressive) principal stress. Throughout this report we adopt the
sign convention that stresses are positive in tension, while the applied pressures, P,




and p,, are positive in compression. The material parameter 6, represents the

unconfined compressive strength of the material. The material parameter N is
related to the friction angle, ¢, by
_ L1+sin(¢) 2.2)
1-sin(¢)
The previous solutions developed for this problem are not valid for N equal to one,
that is, it has been assumed that the friction angle was greater than zero. We make
the same assumption for the solution presented herein.

Plastic flow of the material is assumed to be governed by the nonassociative flow
rule

6w =1 2L (2.3)
d0;
where ég” represents the components of the plastic strain rate tensor, A, is the

plastic multiplier (a scalar), g represents the plastic potential surface, and o

represents the components of the stress tensor. The form of the plastic potential
surface is taken to be

g =0,—-Mo, +x (2.4)
where the material parameter M is related to the dilatation angle o by
M = 1+sTn((x)) 2.5)
1-sin(o)

and « is an arbitrary constant. The constant x is arbitrary since only the deriva-
tives of g with respect to the stresses are used in the flow rule. Note that if ® is
equal to ¢, then M is equal to N and the flow rule becomes associative.

Furthermore, the value of M is restricted by
1<M<N (2.6a)

or

0<w<o (2.6b)

A dilatancy angle of zero (M = 1) indicates a non-dilatant material.

It should be noted that for the geometry and loading of this problem, the principal
stresses coincide with the normal stresses o,, Gy, and ©,, where the subscripts r, 0,



and z represent the radial, circumferential, and out-of-plane components,
respectively. The shear stress components, G, G, and O, are all zero.

Elastic material response is assumed to be isotropic and therefore governed by two
independent elastic constants. Throughout this report we use Poisson's ratio, v,
Young's modulus, E, and shear modulus G, depending on which is most convenient.
The relationship between G, E, and v is given by

E A
G= 21+ ) 2.7

We further restrict the value of Poisson's ratio to be greater than zero and less than

one-half.
2.2 APPROACH.

The general solution strategy used by Florence and Schwer for nonassociative flow
(Florence, 1978) and subsequently adopted by (Wintergerst, 1991) for arbitrary
dilatancy is as follows. The medium is broken up into regions (zones) which depend
on the stress state (both principal stress ordering and magnitudes) and hence on the
governing yield condition (if any). The number of regions, and the stress state in
each region is dependent on both the loading and material properties. The stress
states include both those governed by elastic material response and those governed

by plastic material response.

Florence and Schwer used numerical analysis to guide their postulations about the
existence and conditions of the various plastic zones. After deriving their analytical
solutions, they performed finite element analyses and obtained excellent agréement
between analytical and numerical results. We have adopted the same solution
philosophy in extending the analytical solution to include yielding of the free field.

Within each region, equilibrium conditions, strain-displacement compatibility, and
the constitutive law (including yield conditions and flow rules, where applicable)
were used to derive an ordinary differential equation (in terms of a primary ' _
unknown) which governs the response in that region. Depending on the region, the
primary solution variable was taken to be either the radial displacement or the
radial stress. The choice was based on ease of formulation and solution. The other




unknowns (i.e., the remaining stress and strain components, or the displacement)

are written in terms of the primary unknown.

A'general solution for the governing differential equation in each region is then
determined. These solutions typically contain unknown constants, which are
determined either by applying continuity conditions at the region boundaries or by
using applied loading conditions at the edge of the hole or at r equal to infinity.

2.3 CASE I AND CASE II DEFINITIONS.

In this section, the Florence and Schwer derivations of the Case I and Case II
conditions (Florence, 1978) and (Florence, undated) are described.

The derivation of the elastic solution for a hole in an infinite medium under condi-
tions of plane strain is well documented, so only the results are presented here.

a2
o, =-Py+(Po~Pu) 7 (2.8)
a2
Gy =—Pp— (Pb - Pa)? ' (2.9
G, = -2Vp, (2.10)
2
2Ge, =—(1-2v)p, +(P, —-pa)% (2.11)
2
2Ge, = —(1-2v)p, = (Ps -—pa)% (2.12)

For p, equal to p, during the initial loading, Equations 2.8 and 2.9 reduce to
G, =6, =—p,. For values of Poisson's ratio satisfying the inequality 0 <v <0.5, the

stress ordering is 0, = 6, <0,. With increased loading, yielding of the material will

be governed by
f,=0,-No,+0,=0 (2.13a)
f,=0,-No,+0,=0 : (2.13b)

Substitution of the stress components in terms of p, into the yield condition of

Equation 2.13a gives



c

=p, = u (2.14)
For compressive values of p, (equal to p,), the material will not yield if 2Nv>1.

For the condition 2Nv < 1, the material will yield throughout when Equation 2.14 is
satisfied. As discussed in Section 2.1, we assume that the internal pressure, p,,

does not cause yielding of the material, and thus we restrict the internal pressure to

P, < 1_"2" - when 2Nv <1 (2.15)

So far, there is no restriction on p, for 2Nv > 1, but one will be developed later.

As discussed in Section 2.1, once the internal pressure reaches its maximum value,
it is held constant, while the free-field pressure is increased. Once the external

pressure is increased above the internal pressure, we have (according to Equations
2.8 through 2.10) 6, <o, and 6, <0, throughout the medium. At the edge of the

hole (r equals a), c,(a)>0c,(a) if P, <2VP, and o,(a)<o,(a) if p. >2VP,- An
inspection of Equations 2.8 through 2.10 shows that the maximum stress difference
occurs at the edge of the hole, and therefore initial yielding will occur there.

We will denote the external pressure at which yielding begins as P,. The stresses at
the edge of the hole (r equals a) when yielding commences are evaluated using
Equations 2.8 through 2.10.

c.(a)=-P. (2.16a)
c,(a)=-2P, +P. (2.16b)
c,(a)=-2vp, (2.16¢)

An inspection of Equations 2 16 indicates that if p, < 2VD,, then the stress order is
6, <G, <0, atr equals a, and therefore the governing yield condition is

f=0,-No,+0,=0 (2.17)
Substitution of the stresses from Equations 2.16 into the yield condition of
Equation 2.17 leads to the initial yield pressure :

By = %[(N +1)p, +6,] (2.18)
Substitution of Equation 2.18 for p, into the inequality p, < 2Vp, gives




Vo
< . when (N+1)v<1 (2.19)
P 1C (N+1)v ( )

The restriction (N+1)v<1lis imposed since we are only considering compressive
values of p,. For (N+1)v>1 thereis no restriction on p,. The condition

0, <0, <0, at initial yielding constitutes Case L.

Inspection of Equations 2.16 also indicates that if 2vp, < p, < Dy, then the stress
order at the edge of the hole is 6, <0, <0, and therefore the governing yield condi-
tion is given by

f=0,-No,+0,=0 (2.20)
Substitution of Equations 2.16 into Equation 2.20 leads to the initial yield pressure

- p,+O

=—2__—u_when Nv<1 (2.21)

Po = o(1-N)
The restriction Nv < 1 is imposed since we are only considering compressive values
of p,. The condition 6, <0, <0, at initial yielding constitutes Case II.

For the condition Nv > 1, yielding governed by Equation 2.20 will not occur for
compressive values of p,. Instead, as p, is increased it will eventually reach a value

where p, < 2vp, so that the stress ordering is 6, <6, <O, and yielding is governed
by Equation 2.17. Thus, for Nv > 1, we have a Case I condition and therefore P, is
given by Equation 2.18. Also, for the condition Nv > 1, it follows that (N +1)v>1so
no restriction is placed on p, (as was done in Equation 2.19).

For Case II with Nv < 1, the yield pressure of Equation 2.21 is substituted into the
inequality 2vp, < p, <P, (for which 6, < 0, <0, at the edge of the hole) which gives

2v(p, +0,) p,+0
2P u/ Po*0, 2.22
2(1-Nv) P S 2(1-N) (2:22)

Equation 2.22 can be rearranged to give

— Y% __<p. < %u__ when 0<Nv< 1 (2.23a)
1-(N+1)v 1-2Nv 2

Vo 1
_ hen —<Nv<(N+1)jv<1 2.23b
I-N+1v P2 (N+1) (2:23b) .

Equation 2.23b provides the restriction on p, for 2Nv > 1 alluded to in the

discussion of Equation 2.15.

10



In summary, the conditions under which initial yielding is governed by the yield
condition Equation 2.17 constitute Case I. The conditions under which initial
yielding is governed by the yield condition of Equation 2.20 constitute Case II. Thus
the physical difference between Case I and Case Il is the stress ordering at the edge
of the hole when yielding begins. The Case I and Case II conditions are summarized
in Table 2-1 (adapted from Table I of (Florence, 1978)).

2.4 FREE-FIELD YIELDING CONDITIONS.

Equilibrium in the free field dictates that
G, =0 =Py (2.24)
i.e., the in-plane principal stresses are equal to the negative of the externally

applied pressure. The negative sign comes from the convention that stresses are
taken positive in tension, while the applied pressures (p, and p,) are taken positive

in compression. For elastic conditions, the out-of-plane stress ¢, may be obtained

from ‘Hooke's law, the plane strain condition, and Equation 2.24.
Ee, =0, - V(0,+0,)=0 (2.25a)
c, =-2Vp, (2.23b)

where E is Young's modulus and ¢, is the out-of-plane strain (zero by definition).

For compressible materials (v<0.5), the order of the principal stresses is

G, =0, <0, (2.26)
which leads to failure (yielding) being governed by the intersection of the following
two failure surfaces.

f,=0,-No,+0, =0 (2.27a)
f,=0,-No,+0,=0 (2.27b)

The magnitude of the applied pressure at initial yield in the free field (Py) is
determined by substituting Equations 9 94 and 2.26 into either of Equations 2.27a
or 2.27b, : o

-p, +2Nvp, +0,=0 (2.28a)

or
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Table 2-1. Case I and Case II conditions.

Property Relations Internal Pressure Case
.o,
Nv<(N+Dv<1 Pe S TN+ Dv I
1<Nv<(N+Dv
or p, >0 I
Nv<1l<(N+Dv
1<Nv<(N+1)v<1 p >—0u
2 # 1-(N+Dv II
0<Nv< 1 — Y% . P, < u
2 1-(N+Dv % 1-2Nv II
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. __ Oy
Py = 79NV

Note that if 1-2Nv <0, then free-field yielding can
p,. As discussed in Section 2.1, tensile values of p,

for 1-2Nv < 0, the earlier solution (Wintergerst, 1991) is com

Therefore,

13

(2.28Db)

only occur for tensile values of
and p, are precluded.
plete.




SECTION 3
CASE I SOLUTION

In this section, the arbitrary dilatancy solution for Case I is extended to include the
effects of free-field yielding. It was shown in Section 2.2 that yielding of the free

field occurs when

P27 quNv:f"’ for 1-2Nv>0 (3.1)

Although the earlier solution (Wintergérst, 1991) is valid for p, < D, the entire Case

I solution is presented below for completeness.

As stated in Section 2.1, p, is assumed equal to p, (the internally applied pressure)
until p, reaches its final value. The external pressure, p,, is then increased
monotonically while p, is held constant. The initial material response is assumed
to be elastic (Figure 3-1). As discussed in Section 2.3, initial yielding of the material
begins at the edge of the hole (r equals a) when p, = [(N+1)p, + cu] /2, with stress

conditions 6, < G, < G,, and is governed by the failure surface

f=06,-No,+6,=0 3.2)
After initial yielding, an inner plastic zone forms with outer boundary radius R.
Outside of R, the material is elastic (as shown in Figure 3-2). For certain combi-
nations of material properties, o, is always the intermediate principal stress
(throughout the medium and regardless of the value of p,); thus, no additional

plastic zones will form and the free field will not yield. In this report, the conditions
under which o, is always the intermediate principal stress will be termed Case Ia.

For the case where the plastic flow rule is associative (M equal to N), the Case Ia
solution is the Hendron and Aiyer solution (Hendron, 1972).

The Case Ia solution can be considered to consist of two phases:

Phase 1. Elastic solution
Phase 2. One plastic zone with an outer elastic zone

For other combinations of material properties, o, is not always the intermediate

principal stress throughout the medium. As p, increases, additional plastic zones
can form where o, is the maximum principal stress. As p, increases further, the

14
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Figure 3-1. Phase 1 conditions for Cases Ia and Ib.
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Figure 3-2. Phase 2 conditions for Cases Ia and Ib.
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free field may yield if 1-2Nv>0. The conditions where o, is not always the
intermediate principal stress constitute Case Ib. The demarcation between Case Ia

and Case Ib conditions is discussed in Section 3.1.

For Case Ib, the initial inner plastic zone increases in size as loading continues,
until its boundary reaches a limiting value R, where o, (R) = oz(ﬁ). This inner
plastic zone boundary, defined by r = R, remains fixed as p, is increased. Continued

loading causes the formation of two more plastic zones. In the middle plastic zone,
the stress condition is 6, < ¢, =0, and yielding is governed by

f,=0,-No,+0,=0 (3.3a)

f,=0,-No,+0,=0 (3.3b)
In the outer plastic zone, the stress condition is 6, < 0, < 0, and yielding is governed
by the single failure surface

f=6,-No,+6,=0 (3.4)
The boundary between the middle and outer plastic zones, defined byr = R, where
c.(R)= 0,(R). Outside of the plastic zones, the material response was assumed in
the earlier solutions to be elastic. The boundary between the outer plastic zone and
the elastic zone is defined by r = R. The three plastic zones and the elastic zone,
with their boundaries and stress conditions are shown in Figure 3-3.

With further loading, the free field may yield if 1- 9Nv > 0. If the free field yields, a
fourth plastic zone (Figure 3-4) is postulated to exist. In subsequent discussions,
the fourth zone is designated the "far outer plastic zone". This term is used
throughout this report to indicate free-field yielding, even though there may be as
few as two plastic zones. The stress condition in this zone is 6, = 6, <0, and the
yield conditions are |
f1=(5,-A-N<sz+csu =0 (3.5a)

f,=0,-No,+0,=0 -~ (3.5b)

Based on the progression of the formation of plastic zones, the solution for Case Ib
can be considered to consist of four phases:

Phase 1. Elastic solution

Phase 2. One plastic zone with an outer elastic zone

Phase 3. Three plastic zones with an outer elastic zone

17
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Figure 3-4. Phase 4 conditions for Case Ib.
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Phase 4. Four plastic zones (free field yielding)
Note that Phase 1 and Phase 2 are identical for Cases Ia and Ib.

The elastic solution was presented in Section 2.3. The solutions for the phases with

plastic zones are presented in Sections 3.1 through 3.3.
3.1 CASE Ia AND Ib, PHASE 2 SOLUTION.

In this section, we develop the solution for Phase 2 of CaseI. As discussed pfevi-
ously, in Phase 2 there is a single (inner) plastic zone with an outer elastic zone
(Figure 3-2). The derivation presented below closely follows those contained in
(Florence, 1978) and (Wintergerst, 1991). The demarcation between Cases Ia and Ib

is also defined.

Initial yielding of the material occurs at the edge of the hole (r = a) when p, is equal
to P, (derived below). As discussed previously, for Case I conditions 6, <0, <G, and

the yield condition is
f=0,-No,+0,=0 (3.2)
Substitution of the elastic solution for o, and 6, (presented in Section 2.3) evalu-

ated at r equals a into the yield condition of Equation 3.2 leads to the following
expression for the initial yield pressure, P,

Py = -;—[(N+ 1)p, +0, ] (3.6)

The equation of equilibrium is given by
do
—L+0,—-C,=0 3.7
r dr ~r (¢} ( )
and is valid throughout the material. Using the yield condition of Equation 3.2, G,
can be written in terms of o,
o, =No, -0, (3.8)
so the equilibrium Equation 3.7 can be rewritten as '

dS, s (N-1+0, =0 39
r

r

The solution to Equation 3.9, with the boundary condition ©,(a) =-p,, is given by
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N-1
c r c
G. = L | 3.10
i [pa N—l](a) N-1 (8.10)

The strain rates are determined by the nonassociative flow rule, discussed in
Section 2.1. For the yield condition of Equation 3.2, the plastic strain rate compo-

nents are given by

§P = 98 _ M (3.11a)
a0, .
: og
(p) — =h 3.11b
89 ace ( )
£P = L (3.11¢)
do,
where
g=0,-Mo, +x (3.12)

and 2 is the plastic multiplier. Since the loading is assumed to be monotonic and
the material law is rate independent, the overdot in Equations 3.11 may be inter-

preted to represent either differentiation with respect to time or differentiation with
respect to p,. From the flow rule of Equations 3.11 it follows that

&P + Me® =0 (3.13a)

£ =0 (3.13b)
which, when integrated with respect to time, give

e® + MelP =h,(r) (3.14a)

e =h,(r) (3.14b)

The strain expressions in Equations 3.14, evaluated at a fixed radius r, remain

constant as loading proceeds (i.e., they are independent of time, or equivalehtly, of
load p,). When the elastic-plastic radius R is initially at this radius r, the plastic

strains are zero, which implies that h,(r)=0 and h,(r) =0, therefore
8(rp) + M&‘gp) =0 (8.15a)
P =0 - ~ (3.15b)

The strain rates are assumed to be decomposed into elastic and plastic parts
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g =@ +E® (3.16a)

g =0+ (3.16b)

g, =@ +EP (3.16¢)
Integrating Equation 3.16a with respect to time gives €, — (e + e?)=h(r). Whenr

equals R, the strain is entirely elastic so €, = @ and £ =0 giving h(r) =0. Using

the same argument for the other two strain components leads to

g, =2 +eP (3.17a)
g, =€+ . . (3.17b)
g, = +eP (8.17¢)

The plane strain condition requires that €, = 0, and the flow rule led to e =0,

therefore £ =0.

The elastic strains are related to the stresses by Hooke's law.

Ee® =0, -v(0,+0,) (3.18a)

Ee® =6, -Vv(0,+0,) (3.18b)

Ee® =0, - v(0,+0,) ; (8.18¢)
From Equation 3.18c and the condition & =0

o, =Vv(o,+0,) ' (8.19)

Substituting Equation 3.19 for o,, and Equation 3.8 for o, into Equations 3.18a
and 3.18b leads to
2Ge® =[1-(N+1)v]o, +vo, (3.202)
2Ge$’ =[N-(N+1)v]o, -(1-v)a, (3.20b)
where ©, is given by Equation 3.10.

The strain-displacement relations (for small strains) are given by

du

=== (3.21

e =1 _a)

£, = — (3.21b)
r

where u represents the radial displacement. The compatibility equation is derived

by eliminating u from Equations 3.21.
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de,

reye,—g, =0 (3.22)
dr

Using the strain decomposition of Equation 3.17, Equation 3.15a to eliminate £,
Equations 3.20 for the elastic strain components, and Equation 3.10 for &, the

compatibility Equation 3.22 can be rewritten as

P4 L (N1l = LIV (N+1)[(N-1)p, +o ](E)N-1 (3.23)
dr 2G 8 "Ra
The solution to Equation 3.23, with the boundary condition eP?(R)=0is
1-v N+1 RY[(RY\™ ()
® — _ N-1 (_.) (_) —(—) 3.24
T (AR LA [ ; R) (824

The remaining unknown is the elastic-plastic boundary radius R. UsingRand pin
place of a and p,, respectively, in the elastic solution given in Section 2.3 (Equations

9.8 through 2.10) gives

o, (R)=-p (3.25a)
6,(R)=-2p, +P (8.25b)
o, (R)=-2vp, (3.25c¢)

This notation is used throughout the report. That is, when stress or strain com-
ponents are immediately followed by a single variable in parentheses, that variable
denotes the spatial location where the stress or strain component is being -
evaluated. For example, the notation c,(R) denotes the stress function o, evalu-

ated at r equal to R. This rule will also apply to the radial displacement function, u.

The yield condition of Equation 3.2 still holds at r equals R, so

1

p, = 5[(N+p+0,] (3.26)
o,(R)=-22e"%u=p (3.27)

= N+1
Setting r equal to R in Equation 3.10 and equating the result to Equation 3.27 gives

c RY"' o 2p, — O

— u - + u = —_—=b___—u : 3.28a
[p“+N—1](a) N-1  N+1 (8.282)

or
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N-1
(E) __2 (N-lp+o, (3.28b)
a N+1 (N-1)p, +o,

The solution presented above is valid with continued loading as long as ¢, <6, in
the plastic zone. From Equations 3.19 and 3.2

6, -0, =[1-(N+1)v]o, +vo, (3.29)
In Equation 3.29, 6, <o, when the right hand side of the equation,
[1-(N+1)v]o, +vo,, is greater than zero. If (N+1)v>1, then [1-(N+1)v]is
negative. Since o, is compressive (negative) and vo, is positive, then
[1-(N+1)v]o, +vo, is positive and thus ¢, <o,. If (N+1)v<1,then

[1— (N+ 1)\/]0'r +vo, is positive for o, < —-1—_—(\-%’1—1)-;. In summary,
(1) o,<o, when (N+Dv>1
(2) o,<o, when (N+1v<lando,< —1—_%1\?“?1)—\’

When (N + 1)v > 1, the solution presented above is complete since no more plastic

zones will form and the free field will not yield. This case will be referred to as Case
Ia. In the second case, when (N + 1)v < 1, the minimum value of o, occurs at r equal

to R, so that as loading proceeds the elastic-plastic boundary radius R attains a
limiting value, denoted R, where

vO
_u 3.30
T (N+1)v (3:30)

o,(R)=0,(R)=-
and
1-v)o
f)=__(1-V)0u
oe( ) 1-(N+1)v
The magnitude of the loading when R equals R is denoted as p, which is given by

Equations 3.25, 3.26, and 3.30

(3.31)

~ C,
pb - 2[1—(N+ 1)\’] (3.32)

and the radius of the elastic-plastic interface can be determined from Equations
3.28b and 3.32.

(3.33)

(EJN-I _ (1-2v)o,
a) [1-(N+ )v][(N-1)p, +o,]
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The relationship for R is independent of p,, as is the stress field, and therefore both

will remain constant with increased loading.
3.2 CASE Ib, PHASE 3 SOLUTION.

The solution for Phase 3 of Case Ibis developed in this section. As discussed previ-
ously, there are three plastic zones and an outer elastic zone in Phase 3 (Figure 3-3).
Again, the derivation presented below closely follows those contained in (Florence,

1978) and (Wintergerst, 1991).

Florence and Schwer postulated that with increased loading (p, > Py ), two addi-

tional plastic zones are formed outside of the initial, inner plastic zone. In the outer
plastic zone (R <r< R) the stress condition is G, <G, <G, therefore the yield

condition is
f=0,-No,+6,=0 (3.4)

The plastic strain rates are obtained from the nonassociative flow rule.

é(rp) =0 (3.343)
ézp) - ;\' (334b)
£P = —MA 5 (3.34¢)

Using similar arguments for integrating the plastic strain rates as presented in
Section 3.1 leads to
£P + Mel =0 (3.35a)
£P =0 (3.35Db)
Using the strain decomposition of Equation 3.17, the plane strain condition, and

Equations 3.35 leads to the following strain expressions.

—c | (3.362)
1
e =@ +—¢ = (3.36b)
(] %] M z -
e =0 (8.36¢)
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Using Hooke's law (Equations 3.18), the strain Equations 3.36, and the yield condi-
tion of Equation 3.4 gives the following expressions for the radial and tangential
stress components in terms of the radial and tangential strain components.

[MN+1-(M+1)(N+1)v]o, =[MN+1- (M +N)v]2Ge,

+M(N +1)v2Ge, + (M -1)vo, (3.37a)
[MN +1-(M+1)(N+1)v]o, = N(M+ 1)v2Ge,

+MN2Ge, -[1-(M+1)v]o, (3.37b)

Substitution of the stress Equations 3.37 into the equilibrium Equation 3.7, and
using the strain-displacement Equations 3.21, leads to the following ordinary
differential equation in terms of the radial displacement u,

d>a _duf, (M-N)v B2 (1-2v)o
22 - == A - 21_R2 — u
T ar [“ MN ] Pu=-MN" 26 (3.38)
where
MN
2 _
P =N+ 1-(M+N)v (3.39)
The solution to Equation 3.38 is
2Gu=Ar" +A,r’" +Ar (3.40)
where
1-2 A
A= —(1_21\‘1’3 5, = —(1-2v)p, (3.41)
,(N=M)v o, [(N-MP’V 1
_ + o 3.42
, (M=N)v o [(M=N)'Vv? 1 |
_ + 2 3.43
=B P \f (2MN) B (343

and A, and A, are constants that are yet to be determined. In Equation 3.41, the
definition of p, from Equation 2.28b is used. The strains can be computed from the

strain-displacement relations and the displacement Equation 3.40.
2Ge, =Y, Ar" - YA, r T +A ) (3.44a)
2Ge, = A" '+ Ar i+ A (3.44Db)
The strain Equations 3.44 can be substituted into the stress Equations 3.37 to yield
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6, =C A" +C AT 7 =B, (3.45a)

6, = CoAr" 2 + CopAr ™" = B, (3.45b)
where

Cur = o {[ M+ 1= (M+ NV, + M(N+ 1)v} (3.462)

Cuo = S {-{MN+ 1= (M4 NV, + M(N + 1)v} (3.46b)

C,, = %[N(M +1)vy, + MN] (3.46¢)

C, = %[—N(M+ 1)vy, + MN] (3.46d)

C= MN+1-(M+1)(N+1)v (3.46¢)

At this point the unknowns are the two constants A, and A, and the plastic zone
boundary radii R and R. Two of the conditions used to evaluate the unknowns are
provided by enforcing continuity of radial stress and radial displacement (or,
equivalently, circumferential strain) at the boundary with the outer elastic zone (r
equals R). The elastic zone stresses evaluated at r equals R can be substituted into
the yield condition of Equation 3.4 to give

0,(R)=-2(1-Nv)p, +0, (3.47)
The circumferential strain at r equals R is given by

2Ge,(R) = —2(N-1)vp, -0, (3.48)
Continuity of radial stress at r equals R leads to

C,AR"+C,AR™ 7 =2(1- Nv)Ap, (3.49a)
while continuity of circumferential strain at r equals R leads to

ARV + AR =2(N-1)vAp, | (3.49b)
where

Ap,, =Py —Ps (3.50)

Equations 3.49 constitute a system of two equations in the two unknowns AR
and A,R™7,

Cn Cr2 AIRYI'I _ 2(1—NV)Apb (3 51)
11 ||aAR™Y T 2(N-1)vap, '

27




which can be inverted to give

B, _ AR 1 1 -C,1{2(1-Nv)Ap, _ (3.52)
B,/ |AR™? C,-C,[-1 C, J[2(N-DvAp, | ‘
where B, and B, are constants.’

Florence and Schwer postulated that at the inner radius R of the outer plastic zone,
cr(ﬁ) = cz(ﬁ), so that the yield condition of Equation 3.4 may be written as

No,(R)-0,(R) =0, | (3.53)
Using the stress expressions in Equation 3.45 evaluated at R and substituted into
Equation 3.53 leads to

(NC,, - C,,)AR" ' +(NC,, - Coz )A,R ™1 =N(1-2v)p, =0 (3.54)
Substituting the results of Equation 3.52 into Equation 3.54 leads to the following

nonlinear equation

R ¥1-1 ¥2-1 A
(NC“"’C‘“)BI(E] +(NC,2—092)B2(%] ~N(1-2v)p, =0 (3.55)

which can be solved for the radius ratio (R/R). Determination of the individual

values of R and R requires a description of the state in the middle plastic zone.

As discussed earlier, Florence and Schwer postulated the existence of a middle
plastic zone (R <r< ﬁ) where 6, < 6, = 0, so that yielding is governed by
f,=0,-No,+06,=0 (3.3a)

f,=0,-No,+c,=0 (3.3b)
Solving for G, in terms of o, using Equation 3.3a, the equilibrium Equation 3.7 has

the solution

G,=0 (R)(LJN_I +[1-(£)M]—E‘l— (3.56)
T r R R N _ 1
Substituting R and cr(f{) from Equations 3.30 and 3.33, respectively, into
Equatjon 3.56 gives

N-1 ‘ . .
o r (0} : .
__ o [[E) 4 % - 3.57
O: [p"+N—-1](a) *N-1 (3.57)
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Note that Equation 3.57 is identical to Equation 3.10, so the radial stress is repre-
sented by the same formula throughout the combined inner and middle plastic
zqnés, a <1 <R. Providing continuity of radial stress at the interface r equals R
leads to

R\ RY" . s, (RY . o
CrlBl[—R—) +Cr2B2 (—R_) -P = —[pa +_b—1-f_1] '—a- + N: 1 (3.583)
or
"R— Y11 R" =Y2-1
o N(1-2V)p, ~(N-1)C,By| = |  +(N-1)CuBy| &
L R R) (3.58b)
a (N-1)p, +0, '

Using Equation 3.58b, R can be determined since we have previously solved for the
ratio R/R from Equation 3.55 and the constants B, and B, from Equation 3.52.
After solving for R, R can be computed from the ratio R/R and A, and A, can be

computed using Equation 3.52.

The plastic strain rates are given by the nonassociative flow rule.

) og og
g® =), 2L+, =2 =-MA .
r 130, 90, 1 ; (3.59a)
. og )
6® = 7‘15§i'+ A gi_z =N, +A, (3.59b)
. og og
g® =), ==L+, =2 =-MA .
z 1 acz 2 acz 2 (3 590)
so that
[6® +Mep +£P]=0 (3.60)
which, when integrated with respect to time, gives
[g(rw +Me® + 8(:)] =h(r) (3.61)

We designate the plastic strains at r equals R as €, €7, and £®, so that
[6” + Mep +EP | = h(R) (3.62)

But in the outer plastic zone (and therefore at r equals R), the plastic strain rela- -
tions of Equations 3.35 hold so h(ﬁ) must be zero. Since every point in the middle

plastic zone will at some time be at R, then h(ﬁ) is equal to zero. Therefore,

Equation 3.61 becomes
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[S(rm +Me® + £<zp>] =0 (3.63)
The plane strain condition, €, = €5 + € =0, combined with Equation 3.63 gives

g, = —Me, + Mel” +€ +¢,” (3.64)
With o, equal to 6,, and o, eliminated via the yield condition of Equation 3.3a,
Hooke's law can be reduced to

Ee® = Eel® =[1-(N+1)v]o, +vo, (3.65)

Ee® =(N-2v)o, -0, (3.66)
where o, is given by Equation 3.57. Substitution of the elastic strains from

Equations 3.65 and 3.66 into the radial strain expression of Equation 3.64, and
using the resulting expression for ¢, in the compatibility Equation 3.22 leads to the

following differential equation.

_@_ M+l. \ _ _MN+2-2(M+N+ l)v _ pMN-1
2G dr (I' 89) - (N _ 1)(1+ V) [(N ].)pa + Gu] aN‘1
(M+2)(1-2v)o, u
(N-1)(1+v) T (3.67)

This differential equation is directly integrable. Integration over the limits from r to
R results in the following expression for &,.

r

* 1\%11:141;—)(21\(11\11 ;)E: 1))v [(N-1)p, +o, ]{(E)M - 1](1)“

(M+2)(1-2v)o, [(ET‘ ] (3.68)

T(N-)(M+1)(1+v) |\ T
The circumferential strain g, (ﬁ) is obtained from Equation 3.44b. The radial

2Ge, = 2Ge, (R’)(—E)m1

strain is obtained from Equations 3.64 through 3.66 giving

MN+2-2(M+N+1) _M-2v
1+v 1+v

Vo (3.69)

r u

2Ge, = —2GMg, +

For applied pressures greater than p,, the stresses in the inner plastic zone are still
given by Equation 3.10 for o, Equation 3.8 for 6,, and Equation 3.19 for o,. The
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differential Equation 3.23 for the plastic strain el still holds with increased
loading, but now must be integrated from r to R, instead of from r to R, which

results in

~ \M+1
=\ R
(p) _ (p)
2Ge® = 2Gel (R)(—r J

_(NJlrwll(Il\I—v)[(N_l)pﬁcu][%) K%J —(%)} (3.70)

The other plastic strain components are still given by Equations 3.15. In Equation
3.70, (f{) is found by setting r equal to R in Equation 3.68 to obtain &, (ﬁ), then

setting r equal to R in Equation 3.66, and using Equation 3.30 for o, (f{), to obtain

el (f{), and then using the strain decomposition given in Equation 3.16b.

The solution developed above breaks down when the external pressure, Py, reaches
the free-field yield pressure, p,. We demonstrate this as follows. From Equation
3.50, as p, approaches Pys AD approaches zero.

lim Ap, = lim (f)b —pb) =0 (3.71)
Pb—Pb Pp—Pb

Substituting Equation 3.71 into Equation 3.52 leads to
pli})% AR"'=0 (3.72a)
lim A,R™ =0 (3.72b)

Pb—Pb

It can be shown that both v, and v, are greater than zero. From Equation 3.72b, as
p, approaches p,, either A, goes to zero or R goes to infinity, or both. Physically,
one can argue that as the free-field pressure approaches p,, the outer elastic zone

vanishes, with the result that R must go to infinity.

As p, approaches Py, the circumferential strain at r equals R is computed from

Equation 3.48 as
lim 2Gg,(R)= -2(N-1)vp, -0, = A (8.73)

Pr—Pb

where A =—(1-2v)p, as defined in Equation (3.41).
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From the strain-displacement relations, it follows that

lim 2Gu(R)= AR (3.74)

Po—Ps

Equation 3.40 for radial displacement in the outer plastic zone, evaluated at R,

gives

2Gu(R)=AR" +A,R™ + AR (3.75)
From Equations 3.74 and 3.75 it follows that as p, approaches p,, then

lim [A.R" +AR™]=0 | (3.76)

Using Equation 3.72b, we showed that either A, goes to zero or R goes to infinity, or
both. This implies that Equation 3.76 may be decomposed as follows

lim [A,R]=0 (3.77a)

Pb—Pb

lim [A,R"]=0 (3.77b)

Pb—Pb

Equation 3.77b implies that A, must be zero since 7y, is greater than zero.

For p, equal to p, (and A, equals zero), Equation 3.45 can be rewritten as
6, =CppA,r ™ =By (3.78a)
= CpA,r 7 =P, (3.78b)

Again, we postulate that at the inner radius R of the outer plastic zone,
c,(R) = oz(R) SO Equatlon 3.53 still holds. Using the stress expressions in

Equation 3.78 evaluated at R and substituted into Equation 3.53 leads to

(NCr2 —Cy; )Azﬁ_h_l - (N - l)f)b =0, (3.79)
which can be solved for
.1 N(1-2v)p
B,=A, Ryl =20 .
NC., —Coy (3.80)

Continuity of radial stress at the boundary with the middle plastic zone (r equals
R) using Equations 3.57, 3.78a and 3.80 gives

s, (RY . o |
- CuBy -y = —[pa TR 1](-5} N 4 (3.81a)
or ' o
_E_ o - N(1-2v)p, —(N- 1)C,,B, (3.81b)
a p.(N-1)+0,
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After solving for R, A, can be recovered from Equation 3.80. The remainder of the
solution developed for p, < P, still applies for p, equal to p,.

3.3 CASE Ib, PHASE 4 SOLUTION.

The solution for Phase 4, which contains free-field yielding, is presented in this
section. Note that for Nv > —;—, the free field will not yield and therefore this phase of

the solution is not applicable.

After the free field yields (p, > p, ), we postulate that a far outer plastic zone

(f% <r< oo) exists with conditions

Gy =0, =P, (3.82)
as shown in Figure 3-4. This assumption was based on the results of numerical

studies using this same Mohr-Coulomb material model. The stress condition in this
far outer plastic zone is G, = G4 <O0,, SO the yield condition is given by

f,=c6,-No,+0,=0 (3.5a)
f,=0,-No,+0,=0 (3.5b)

The expressions for stress in the outer plastic zone, discussed in Section (3.3) are

repeated below
6, =C A"+ CA,r " -, (3.45a)
O, = Co A+ CooAr ™7 =Dy (3.45b)

At this point our unknowns are A;, A,, R, and R. As discussed earlier, R is the
radius to the boundary between the middle and outer plastic zones. Atr equal to R,

~

it is reasonable to postulate that G, (R) = —p, in the outer plastic zone. This

condition, along with continuity of o, at R, results in two equations for two

unknowns, AR and AR,

[Cl‘l Cl‘2} AI‘R‘YI-I ={Apb} , (3.83)
Cor Coz A2R-72-1 Ap, '

which can be inverted to give
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{B1} _ | Alf{h—ll _ 1 l: Cos —CrZ]{APb} (3.84)
B, AR C.1Cer = C.2Ca1 -Co;  C.1 11AP
where B, and B, are constants. After solving for B, and B,, the stress expressions

of Equation 3.45 can be written as

r ¥1-1 r ~Y2-1
o,=C,1B1(§) +C,2B2(§) ~D (3.85a)

r ¥1-1 r -Y2-1
Gy = CBIBI(-R—j +CBZB2(—§) —f)b (385b)

As discussed in Section 3.2, at the boundary between the middle plastic zone and
outer plastic zone we have

No,(R)-o,(R) =0, (3.53)
Substitution of the stress expressions from Equations 3.85 into Equation 3.53

results in the following nonlinear equation

R ¥1-1 ‘R’ ~Yg-1 )
(Nc,,—cel)Bl(-ﬁ) +(NC,2—092)B2(§) ~Np,(1-2v)=0 (3.86)

which can be solved for the radius ratio ﬁ/ R.

As developed in Section 3.3, the radial stress in the middle plastic zone is

N-1
- Oy r O,
Gr - [pa+N_1](a) +N—'1 (3.57)

Continuity of radial stress at the boundary R provides
ﬁ 71-1 E -¥2-1 . p -R—
C:1B1(§] +C,,B, (i’) —Pp = "[Pa + N : 1] a

By R
By N(1—2v)ﬁb-(N-1)c,lBl(-§) —(N-1)C,2B2(-§

(%) N (N-1)p, +0,

from which we can solve for R, since B,, B,, and R_/ R have been determined
previously. Once B,, B,, and R are determined, the solution presented in Section

N-1 .
u .8
) +N—1 | (3.87a)

or

)’Yz'l
(8.87b)

3.9 is valid for the inner, middle, and outer plastic zones.
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In the far outer plastic zone, Hooke's law can be rewritten using Equation 3.82 to

obtain
Ee® = -p,(1-Vv)-Vo, ~ (3.88a)
Ee® = -p,(1-Vv)-Vvo, (3.88b)-
Ee® =0, -2vp, (3.88c)
The plastic strain rates are obtained from the nonassociative flow rule.
) og ag .
=9 981,73 B2=) 3.89a
& =My, " %00, ¢ )
. og og
® 9 981,79 B2=) 3.89b)
b 30, 90, (
&P = x1§§;+ lﬁé = _M(x1+x2) (3.89¢)
¢ a0, do,
which implies that
M(® + £P)+EP =0 (3.90)
which, when integrated with respect to time, gives
M(s(rp) +e ) +&® =h(r) (3.91)

However, the plastic strain relations of Equation 3.35 still hold in the outer plastic
zone; hence at r equals R, h(r) must be zero. Therefore, Equation 3.91 can be

rewritten as
E(zp) — —M(E(,p) + egp)) (38.92)

From the yield condition of Equation 3.5, the out-of-plane stress is given by
1
o, = (-Pu+0.) (3.93)

From the plané strain condition, strain decomposition, Equations 3.92, 3.93 and
3.88¢c

e Py Ou |
Ee® = -Ee? = EM(S‘,") + e?)) = “—1\% tN T 2vp, (3°94)
Therefore, the sum of the radial and tangential plastic strains, e® +¢P, s a con-

stant‘throughout the far outer plastic zone, i.e., there is no spatial variation in that

sum. We will denote that constant as C.
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1{p o,-(1-2Nv)p, _A
(6] P _ b, Ou 2 u b - C 3.95
B T EM{ NN Vp"} 9GMN(1+V) (3.95)

The compatibility Equation 3.22, using strain decomposition, can be written as

(e) (p)
r(d;; + d;; )+£ge) +e® —g® —g® =0 (3.96)

(e)

From Equations 3.88a and 3.93, is equal to zero , and £ is equal to €, so the

compatibility equation reduces to

(p) ‘
P& Lo o (3.97)
dr

Using Equation 3.95 to eliminate e leads to

(p) A
rifl-e—+ 2e® -G =0 (3.98)
r .

which can be solved to give

A

e® = %+ A (3.99)
where A, is a constant. The postulation that (f{) = —p, in the outer plastic zone

and the yield conditions of Equations 3.4 and 3.5 lead to all three normal-stress
components being continuous across the plastic-plastic boundary at r = R. From
Hooke's law, this implies that €5 is also continuous at r = R. Continuity of

A

tangential strain at r = R then implies that £’ must also be continuous at r = R.
We invoke this condition to determine the constant A;.

A

e?(R)= 52:-+ AR (3.100a)
or
A, = fc2{sg’> (&)- 9} (3.100b)
2
where & (R) is computed from the solution in the outer plastic zone (Section 3.2).

Equation 3.44, evaluated at R, gives the total strain g, (R) Equations 3.45 and 3. 4

can be used to compute G,(f{) , G (R\) and cz(f{). After computmg the stresses,
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e elastic strain € (ﬁ.) Finally, the plastic

Hooke's law can be used to compute th o

strain & (f{) is computed by subtracting el (f{) from g, (f{)
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SECTION 4
CASE I1 SOLUTION

In this section the arbitrary dilatancy solution for Case Il is extended to include the
effects of free-field yielding. Just as in the Case I solution, the earlier solution B
(Wintergerst, 1991) is valid only if the material response in the free field is elastic.
Again, yielding of the free-field occurs when

Py 27 ";N —$, when (1-2Nv)>0 (4.1)
- A%

As with Case I, the earlier solution is valid for p, < p, but in the interest of com-

pleteness, the entire solution is presented herein.

As derived in Section 2.3, initial yielding for Case II begins at the edge of the hole (r
equals a) with stress condition 6, <G, <O, and is governed by the failure surface

f=0,-No,+6,=0 4.2)
This initial plastic zone increases in size as loading continues until o, is equal to o,
at the edge of the hole. At this point a second plastic zone begins to form. This
second plastic zone also begins at the edge of the hole, and like the first plastic zone,
increases in size as loading proceeds. The initial (now outer) plastic zone is still
governed by Equation 4.2. The second (inner) plastic zone is governed by the

following yield conditions

f, =0,—-No,+06,=0 (4.3a)
f,=0,-No,+c,=0 (4.3b)
The boundary between the inner and outer plastic zones, denoted as R, is defined by
5.(R)=0,(R) (4.4)

Outside of the plastic zones, the material response was assumed in earlier solutions
to be elastic. The earlier solutions can therefore be considered to consist of three

phases (in order of occurrence):

Phase 1. Elastic solution.
Phase 2. Elastic-plastic solution with one plastic zone and an outer elastic

zone.
Phase 3. Elastic-plastic solution with two plastic zones and an outer elastic -

zone.
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In the extended solution, free-field yielding can occur either before or after the
formation of the second plastic zone. However, it is assumed never to occur prior to

the formation of the first plastic zone. This assumption is consistent with the
assumption that the application of the internal pressure, p, (With p, equal to p,)

does not cause material yielding. The case where free-field yielding occurs after the
formation of the second plastic zone will be denoted as Case Ila, while the case
where free-field yielding occurs before the formation of the second plastic zone will
be denoted as Case ITb. The demarcation between Cases ITa and ITb will be

discussed in detail in Section 4.1.

When the free field yields, a far outer plastic zone is postulated to exist. The stress
condition in this zone is 6, =0, <O, and the yield conditions are

f,=0,-No,+0,=0 (4.5a)

f,=6,—-No,+0,=0 (4.5b)
This outer plastic zone occupies the domain R < r < e, with the boundary between
the initial plastic zone and the far outer plastic zone given by

c.(R)=0, (®) (4.6)

Based on the progression of formation of the plastic zones, the solution for Case Ila
can be considered to consist of the following four phases:

Phase 1. Elastic solution. »

Phase 2. Elastic-plastic solution with one plastic zone and an outer elastic

zone.
Phase 3. Elastic-plastic solution with two plastic zones and an outer elastic

zone.
Phase 4. Plastic solution with three plastic zones. The elastic zone is
eliminated due to free-field yielding (i.e., it is replaced by a far outer

plastic zone).

For Case IIb, the solution process consists of the following four phases:

Phase 1. Elastic solution. ' |
Phase 2. Elastic-plastic solution with one plastic zone and an outer elastic

zone.
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Phase 3. Plastic solution with two plastic zones. The outer elastic zone of
Phase 2 is eliminated due to free-field yielding (i.e., it is replaced
by a far outer plastic zone). |

Phase 4. Plastic solution with three plastic zones.

Phases 1, 2, and 4 are each identical for Cases IIa and ITb; only the conditions in
Phase 3 differ. The conditions for each of the phases are depicted in Figures 4-1
through 4-5.

The elastic solution (Phase 1 for both Cases IIa and IIb) was presented in Section
9.3 The Phase 2 solution is identical for Cases Ila and IIb, and is presented in
Section 4.1. The Phase 3 solution for Case Ila is presented in Section 4.2. The
Phase 3 solution for Case IIb is presented in Section 4.3. Finally, the Phase 4 solu-
tion (identical for Cases Ila and IIb) is presented in Section 4.4.

4.1 CASE IIa AND IIb, PHASE 2 SOLUTION.

In this section, the solution is presented for Phase 2 (initial yielding with one plastic
zone and an outer elastic zone as shown in Figure 4-2). Following that, the

conditions are derived for the formation of the second plastic zone. As will be shown,
these conditions also define Cases IIa and ITb. Finally, the solution for when p, is

equal to p, for Case IIb is presented. The solution presented closely follows both
those of (Wintergerst, 1991) and (Florence, undated), but with slightly different

notation.

Initial yielding of the material occurs at the edge of the hole when p, is equal to D,
(determined below). As discussed earlier, for Case II conditions, 6, <0, <0, at the

edge of the hole, and therefore the yield condition is
f=0,-No,+0,=0 (4.2)
Substitution of the elastic solution for 6, and o, (presented in Section 2.3) evalu-

ated at r = a into the yield condition of Equation 4.2 leads to the following
expression for the initial yield pressure, Py

S . | 4.7
Py = 51— Nv) @D
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. Figure 4-1. Phase 1l conditions for Case II (a and b).
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Figure 4-2. Phase 2 conditions for Case II (a and b).

42



«

Elastic

Plastic

Plastic

Figure 4-3. Phase 3 conditions for Case Ila.
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Figure 4-4. Phase 3 conditions for Case IIb.
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Figure 4-5. Phase 4 conditions for Case II(a and b).
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The plastic strain rates are given by the nonassociative flow rule (discussed in
Section 2.1) ‘

¢ =298 _o (4.8a)
ac,

ew =128 =), (4.8b)
06,

e» =298 _ (4.8¢)
a0, :

where
g=0,—Mo,+x (4.8d)

and A is the plastic multiplier. As discussed in Section 3.1, the overdots in

Equations 4.8 may be interpreted as either differentiation with respect to time or
differentiation with respect to p, since monotonic loading is assumed. From the

flow rule of Equations 4.8 it follows that

eP + MEP =0 (4.92)

eP =0 (4.9b)
which, when integrated with respect to time, give

e + Mel =h,(r) (4.10a)

e® =h,(r) (4.10b)

The strain expressions in Equations 4.10 evaluated at a fixed radius r remain con-
stant as loading proceeds (i.e., they are independent of load p,). When the elastic-

plastic radius, R, is initially at this radius r, the plastic strains are zero, which
implies that h,(r)=0 and h,(r) =0, and Equations 4.10 reduce to

e® + Me =0 (4.11a)
8?) =0 (411b)

The strain rates are decomposed into elastic and plastic parts:

g = &0 4@ (4.12a)
g, = 60+ (4.12b)
g, =£9 +¢® (4.12¢)
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Integrating Equation 4.12a with respect to time (or p,) gives & — (e‘f’ + e‘rp)) =h(r),

but when r equals R, the strain is entirely elastic so £, =€;> and e® =0 giving
h(r) =0. Using the same argument for the other strain components leads to

g, =e+eP (4.13a)
g, = €2 +£F (4.13b)
g, =e% +eP (4.13c¢)

The plane strain condition dictates that €, =0, so using Equations 4.11 and 4.13,

the plastic and total strains are given by

£P =0 (4.14a)

Me® =€ (4.14b)

gP =—¢ ‘ (4.14c)
and

g = gie) (4.15a)

g, =€+ ﬁe‘;‘) . (4.15b)

g, =0 (4.15c¢)

Hooke's law relating the elastic strains to the stresses is given by

Ee® =6, - v(0, +0,) (4.16a)
Ee® =0, -V(0,+0,) (4.16b)
Ee® =0, - V(0, + o) (4.16¢)

Eliminating o, from Equations 4.16 via the yield condition, and substitution of the
resulting elastic strains into Equations 4.15 gives the following expressions for the
radial and circumferential stress components in terms of the radial and circum-

ferential strain components.
[MN+1-(M+1)(N+ v]o, =[MN+1-(M+ N)v]|2Ge,
+M(N +1)v2Ge, + (M- 1)vo, (4.17a)
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[MN+1-(M+1)(N+ 1)v]o, = N(M+1)v2Ge,
+MN2Ge, -[1- (M +1)v]o, (4.17b)

As discussed in Section 3, the equation of equilibrium is given by

do,

r—=-+0,-06,=0 (4.18)
dr
and the strain-displacement equations are
g, =38 (4.192)
dr
£, = u _ (4.19b)
r

Substitution of the stress Equations 4.17 into the equilibrium Equation 4.18 and
using the strain-displacement Equations 4.19, leads to the following differential
equation in terms of the radial displacement u,

2 2 _
where
MN
2 _
b= 1-(M+N)v (4.21)
The solution to Equation 4.20 is
2Gu=Ar" +A,;r’ " +Ar (4.22)
where
(1- 2v)
= 2 .
A 1 2Nv =—(1-2v)p, (4.23)
2(N M)v , ((N=M)'V? 1
+— 4.24
2(M N)v . [((M=N)'v? 1
A Sl A ST S (4.25)

The strains can be computed from the displacement Equation 4.22 and the strain-

displacement Equations 4.19
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2Ge, = VA =1, Ar T +A (4.26a)
9Ge, = Axi T+ Ar I HA ~ (4.26b)

Substituting the strain Equations 4.26 into the stress Equations 4.17 yields

6,=C AT+ C,,A,r " —p, (4.27a)
6, =Co A r"™ +CpA,r " =Dy (4.27b)
where -
C. .= %{[MN +1=(M+N)v]y, + M(N+1)v} (4.28a)
C,,= é{—[MN +1-(M+N)V]y, + M(N+1)v} (4.28b)
C,, = —Cl—[N(M +1)vy, + MN] (4.28¢)
C,, = —é—[—N(M +1)vy, + MN] (4.284)
C=MN+1-(M+1)(N+1)v (4.28¢)

At this point, the unknowns are the two constants, A, and A,, and the elastic-
plastic interface radius R. Two of the conditions used to evaluate the unknowns are
provided by enforcing continuity of radial stress and radial displacement (or,
equivalently, circumferential strain) at R. The elastic zone stresses are given in the

elastic solution presented in Section 2.3, with the substitutions a = R and
p, =—0,(R). Applying the yield condition of Equation 4.2 at r equals R gives

o,(R)=-2(1-Nv)p, +0, - (4.29)
The circumferential strain at r equals R is given by
2Ge, (R)=-2(N-1)vp, -0, (4.30)

Using Equations 4.26, 4.27, 4.29 and 4.30, the continuity conditions are then given
by

| CLAR"+CARTT =2(1-Nv)Ap,  (431a)
AR+ AR =2(N-1)vAp, SR (4.31b)

where
Ap, =P, —Ps (4.32)
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Equations 4.31 constitute a system of two equations in terms of two unknowns
A R" and AR

| Crl Cr2 AIRYI—I = 2(1—Nv)Apb (4 33)
1 1 [|AR™? 2(N -1)vAp,
which can be inverted to give
B, _ AR"? _ 1 1 -C,71(2(1-Nv)Ap, (4.34)
B, AR C,-C,|-1 C., ||2(N-1)vAp, )
where B, and B, are constants.

The elastic-plastic interface radius R is found by enforcing the pressure boundary
condition at the edge of the hole

c.(a) =P, (4.35)
which leads to the nonlinear equation
Y11 ~Y2-1
CrlBl(%) + Cr2B2(%) Py =—Pa (4.36)

which can be solved for the radius ratio (a/R), which in turn gives R. Once Ris
determined, the constants A, and A, can be recovered from B, and B,, respectively.

The solution presented above is valid with continued loading as long as 6, <G, in

the plastic zone. Florence and Schwer performed numerical studies of the stress
difference 6, —o, and found that ¢, — o, decreases as p, increases, and becomes

zero first at the edge of the hole. We now derive the applied pressure, p,, and
elastic-plastic radius, R, associated with zero stress difference at the edge of the
hole.

Substituting Equation 4.34 into Equations 4.27 gives

r ¥1-1 r ¥z2-1
G, = Cr1B1(‘ﬁ) +Cr2B2(§) =Py (4.37a)
r Y1-1 r -¥2-1 a
Gy = Ca1B1('R') +CezB2('§) —f)b (437b)

The out-of-plane stress, o,, can be determined from the yield condition and
Equations 4.37.

50




C rY*' C r)"! .
o-Sn(F] +Sm(z) -

We now introduce two new constants, B, and B,, defined by

B, = B,Ap, (4.392)
B, = B,Ap, (4.39b)
or from Equation 4.34
: 1 -C_,|[2(1-N
Bl _ 1 _ | [20-1) (4.40)
B,] Cu- C,l-1 C, 2(N-1)v
Substituting Equations 4.39 into Equations 4.37a and 4.38 gives
R r ¥1-1 R r -y2-1 :
c, =C,;B.APy (—) +C,,B,Ap, (—) ~Pb (4.41a)
R R
Coi 4 rY'' . Corna r\Y"! .
c,= —IG—IBlAPb (ﬁ) +-I—fI'1'B Apb(ﬁ) -2vp, (4.41Db)

We denote as p, and R’, the applied pressure and radius to the elastic-plastic
interface, respectively, when © (a)=0,(a). Using Equations 4.41, and setting

o,(a)=0,(a)=—P, gives

- a 71-1 . a -¥2-1
c.boni(Z) roben(g)  ~hor. (4422
Coin avf @ 7171 Cos . a vz N
—ﬁ—BlApb -R-; +—I€_B2Apb E" -'—'2\’1)b-'pa (442b)
where
Ap} =Py — Ph (4.42¢)

Equations 4.42 constitute a system of two equations in terms of unknowns

¥1-1 Y2~
Ap;, (f;—,) and Ap,,( R’) which can be inverted to give

()
Po| 77 _1[ CyB, -NC.B, { ~P. (4.43a)
,(a)‘““ D|-c,B, NC.B, ||2vh.-P. '
Ap, i{—,
where
D =B,B,(C,:Cor — C.:Co1) (4.43Db)

Equation 4.43a can be rearranged to give
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-¥2-1
’ _a__ Kad ~
Apb(R/) _ Bl[Cel(pb —pa)_NCrI(zvpb Pa )] (4443)
Bz[Cez By~ Pa)~ NC,5(2VPs - “)]

or

(BBl n) M) (44
Bz[Cez(pb_pa) NC 2vpb ]

’

Once L is determined, Ap] can be obtained from Equation 4.43a.
a

_ L - 2\Y1-1
Ap;,___(cm 2VNCr2)pb (CG2 NCrz)Pa (E_) (445)

Bl(crlc(ﬂ - Cr2cal) a
Using Equation 4.42c, p; can be determined from Ap;.

When the free field yields, R’ goes to infinity implying that the denominator of the
right side of Equation 4.44b must approach zero. Note that for Nv < %, the free field

will not yield. Numerical studies indicated that the term ﬁ is nonzero for Case II

material parameters. This implies that the term in the denominator of the right

side of Equation 4.44b which can go to zero (for Nv < —) is

Coz(P, —P.)—NC,,(2VP, —p,) =0 (4.46)
Further numerical studies indicated that when
. 2NVC_,-Cy _ a»
< L = 4.47
a solution for R’ using Equation 4.44b is possible; thus yielding of the free field

occurs after the formation of the second plastic zone. Therefore, the condition
p, < P, defines Case Ila. Conversely, when p, = P, a solution for R’ using Equation

4.44b is not possible, indicating that yielding occurs prior to the formation of the
second plastic zone. Therefore, the condition p, 2 p, defines Case IIb.

For Case IIb, the solution presented above can be modified to include the case of p,
equal to p,. Arguments similar to those presented in Section 3.4 may be used to
show that as p, approaches p,, the constant A, in Equations 4.22, 4.26, and 4.27

must go to zero and that R must approach infinity.
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Thus when p, equals D, the radial stress is given by

0, =C, A" — Py (4.48)
The constant A, can be determined from the pressure boundary condition at the
edge of the hole, 6,(a) =P,

C,, A2 " =P, =—P. (4.49a)
or
f)b - pa B
A = Pa (4.49b)
2 Cr2a—72—1 :

The remainder of the solution presented above for the plastic zone is valid for p,

equals D,.
4.2 CASE IIa, PHASE 3 SOLUTION.

In this section, we present the solution for Phase 3 of Case Ila which contains two

plastic zones and an outer elastic zone (Figure 4-3). We also examine the case where
p, is exactly equal to p, and the elastic-plastic boundary goes to infinity.

Florence and Schwer postulated that with increased loading (p, > Py) @ radius

R > a exists where
o,(R)-o,(R)=0" (4.50)

In the outer plastic zone, we still have Gy <0, <O, the same condition as in the
Phase 2 solution presented in Section 4.1. In fact, the stress and strain fields
developed in Section 4.1 still apply. For convenience, they are repeated below
(Equations 4.26 and 4.27).

2Ge, = 'ylAlr““'1 - YZAZr'“'1 +A (4.262)
2Ge, = Arit+ Ar i +A (4_265)
G, =CL AT +CpA " =By - (4.27a)
Gy =Co A"+ CoA,r " ' =Dy | (4.27b)
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The continuity conditions at the elastic-plastic interface R developed in Section 4.1

still apply. These conditions led to

B, _ ARV ) 1 1 -C, ”2(1—NV)Apb (4.34)
B, AR C,-C,|-1 C., ||2(N-1)vAp, ’

However, the elastic-plastic interface R is no longer found by enforcing the pressure

boundary condition at the edge of the hole (Equations 4.35 and 4.36). Instead, we
use the condition of Equation 4.50. The out-of-plane stress ©, is determined (in
terms of 6, and ¢,) from the yield condition of Equation 4.2, and Equation 4.27b is

substituted for o, to yield the following nonlinear equation

=\71-1 —\—T2-1
A A

which can be solved for the radius ratio (ﬁ/ R). The solution in the inner plastic zone

is required to define the individual values of R and R.

In the inner plastic zone, Florence and Schwer postulated that the stress condition
is 6, < 6, = 0, so that yielding is governed by

f,=0,-No,+0,=0 (4.3a)

f,=0,—-No,+0,=0 (4.3b)
From Equation 4.3a,

o, =No, -0, (4.52)
so the equilibrium equation (Equation 4.18) can be written as

r%(i—"-—'(N—1)c5,+(5u =0 (4.53)
The solution to Equation 4.53, with o,(a) = —p,, is given by

c ' o

6, = -[Pa + N ~ 1](;) + N: 1 (4.54)

Continuity of the radial stress at the plastic-plastic interface (r equal to R) leads to
=~711-1 —\-7z2-1 —\N-1
C,IBI(%)Y +C,2B2(%) T oh- —[pa 2 1](%) #3n (@56a)

or
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—R— 71-1 —R Y2
N(1—2V)f>b _(N" l)CrlBl(_R—] —(N" l)C’sz(ﬁj

7\
i = (4.55b)
(a) (N-1)p, +0,

which can be solved for R since B,, B,, and (ﬁ/R) have been determined previously.
Once R is determined, R is computed from (1—2/ R) and the constants A, and A, can

be recovered from B, and B,, respectively. Thus the solution in the outer plastic

zone is complete.

In the inner plastic zone, the strain rates are given by

. og og
® =y 2814 82 =-M>\ 4.56a
g 130, ™30, 1 . ( )
e =2, 28142, %2 4, (4.56b)
' 9, E)oe
) d )
£P =\, ag LA, 5?’-5— =M, (4.56¢)
From the flow rule of Equation 4.56, it follows that
£P + M + P =0 (4.57)
which, when integrated with respect to time, gives
e® + Mel +eP =h(r) (4.58)

Let the plast1c strains be €, €, and £ at radius r when the load p, has placed
the plastic-plastic radius at r. Then, when R equalsr,
£ + MEP +EP =h(r) (4.59)

In the outer plastic zone, the plastic strain relations of Equation 4.11 still hold so
h(r) must be zero. Therefore Equation 4.58 becomes

g® + MeP +eP =0 (4.60)

Substituting Equation 4.60 into the plane strain condition (e =g +eP = 0) gives

g, = —Me, + Mey +€ + e® : (4.61)
Using Equation 4.52, and o, =G,, reduces Hooke's law to

Ec® = Ee® =[1-(N+1)v]o, + Vo, (4.62a)

Ee® =(N-2v)o, -0, (4.62b)
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where o, is given by Equation 4.54. Substitution of the elastic strains of Equation
4.62 into Equation 4.61, followed by the substitution of the resulting &, into the

compatibility equation

de :
r—d—;"—+ee—a,=0 (4.63)
leads to the equation
d MN+2-2(M+N+1)v M
2G — (Mg, )= - N-1
3 (%) N-1)(1+V) (N-T)p. +0.] 2=
(M+2)(1—2V)Gu I’M (464)
(N-1)(1+v)

The differential Equation 4.64 is directly integrable. Integration from r to R gives

2Ge, = 2G89(R-)(F—)MH

sy (8]

(M+2)(1-2v)o, |(R e
“IN-D(M+ 1)(1+v)[(—r—) - ] (4.65)

where 2Geg, (R_) can be determined from Equation 4.26a. Substitution of the elastic

strains from Equation 4.62 into Equation 4.61 results in

2Ge,=—2GMee+MN+2_2(M+N+1)Vc _M-2v (4.66)
1+v 1+v

T u

where o, is given by Equation 4.54 and 2Ge, is given by Equation 4.65.

When the increasing p, approaches P, (the load which initiates free-field yielding),

we can use the same arguments as presented in Section 3.4 to show that the
constant A, in Equations 4.22, 4.26, and 4.27 must go to zero, and that R must

approach infinity.

Thus, when p, approaches p,, our unknowns are reduced to A, and R. The con-
dition of Equation 4.50, with o, eliminated via the yield condition, and Equation
4.27b substituted for o, (with A, equal to zero), gives
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(Cﬂ—g——)A Rt (1-2v)p, = 0 (4.67)

N
whiéh can be solved. for A,R""*. Continuity of radial stress at R leads to
s. YR} . o
C AR P, =—p+=—o=| *Rx_3 4.68
r2fd2 Po [Pa N- 1](81) N-1 ( )

which can be solved for R since AR 12-1 was determined previously. Once the
unknowns are determined, the stress and strain expressions developed for p, < P,

are still valid for p, = Py-

4.3 CASE IIb, PHASE 3 SOLUTION.

The solution for Phase 3 of Case IIb is presented in this section. As shown in Figure
4-4, in this phase we have an inner plastic zone with conditions 0, <0, <O,

governed by the yield condition

f=0,-No,+0,=0 (4.2)
and a far outer plastic zone with conditions 6, =0, <O, governed by the yield con-

ditions
f,=0,-No,+0,=0 (4.5a)
f,=0,~-No,+0,=0 (4.5b)

The conditions in the far outer plastic zone were postulated to exist based on
numerical studies. From the external pressure boundary condition and the yield
condition of Equation 4.5, we have

G, =0y =P (4.69)

In the inner plastic zone, the stress and strain fields developed in Section 4.1 still
apply. The equations representing these fields (Equations 4.26 and 4.27) are again

repeated for convenience.

2Ge, =V, A" - YA A (4.26a)
2Ge, = A r" T+ Ar i +A (4.26Db)
6, = C Ar" " +C A =Dy . (4.27a)
G, = Co A" '+ CoA,r ' =Py (4.27b)
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where A = —(1-2v)p,,.

At this point, the unknowns in the inner plastic zone are the constants A, and A,,

and the radius of the boundary between the inner and far outer plastic zones,
denoted as R. Based on the yield conditions of Equations 4.2 and 4.5, along with

Equation 4.67, it is reasonable to postulate that ce(ﬁ) = —p, in the inner plastic

zone. This condition, along with continuity of ¢, at R, results in two equations in

the two unknowns Alft’“’1 and AZR'“'I , which can be solved to yield

{Bl}z Alf{h-l - 1 [Cez —CrZ]{Apb} (4 70)
B, AZR—W1 C.:Coz — C,2Ces -Co;  Ci1 11APy

where B, and B, are constants. After solving for B, and B,, the stress expressions

of Equation 4.27 can be rewritten as

r Y1-1 r -72-1
-2 e (Z] s

Y1-1 -v2-1
0'9=CelBl(%—) +cesz(-§-) D (4.71b)

At the edge of the hole, we have the pressure boundary condition 6, (a) =-p, which,
when substituted into Equation 4.71a, leads to

71-1 ~Y2-1
a a n
c.(a)= Cr1B1(’§) + Cr2B2(§) —Pp =~ Pa (4.72)
Equation 4.72 is a nonlinear equation which can be solved for %)9 which in turn

yields R. Once R is determined, the constants A, and A, can be recovered from B,
and B,. The stress and strain fields in the inner plastic zone are now completely

determined.

In the far outer plastic zone, the stress and strain fields developed in Section 3.4
apply. The stress fields are given by _
(4.73a)

Gr = —pb
G, =Dy (4.73b)
(4.73c)

1
cz =_ﬁ(cu—pb)
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It was shown in Section 3.4 that the sum of the radial and circumferential plastic
strains was a constant, C, given by
1] p,,0 o,-(1-2Nv)p, _ 2 :
e(p)+€(P)=__[_.._b.+_“_+2v ]: u b=C 4.74
F Y& SR TN NPT T2GMN(1+V) el

The equation of compatibility, strain decomposition, and Hooke's law lead to the

following differential equation for &

(p)
r—qg’—+eg” -eP =0 (4.75)
dr
which, using Equation 4.74, can be solved to give

el = -(22+ Ar? (4.76)
where A, is a constant. It was also shown in Section 3.4 that the postulation

G, (f() = —p,, Hooke's law, and continuity of total circumferential strain require that

¢ must be continuous across R. This condition is used to determine A,.

~

eg’)(ﬁ) = %+ AR " (4.77a)
or
A, = ﬁ“*[a‘v’ - g] (4.77b)

where eg”(ﬁ) is computed from the solution in the inner plastic zone. Equation

A

4.26b, evaluated at ﬁ, gives the total strain g, (R) Equations 4.27 and 4.2 can be

used to compute the stresses at R. Hooke's law can then be applied to compute the

A

elastic strain & (ﬁ) Finally, the plastic strain P (R) is computed by subtracting

A

e (R) from eo(f{).

The solution developed above is valid until o, equals o, at r equals a. When this
occurs, a third plastic zone is formed which begins at the edge of the hole and
migrates outward. When the third plastic zone is present, the Phase 4 solution

(which will be presented in Section 4.4) applies. However, since the Phase 4 solution
applies to both Cases Ila and ITb, we present here the derivation for the load p, '

which will cause the formation of a third plastic zone for Case ITb. The load p, and
plastic-plastic boundary radius R when the third plastic zone begins to form will be
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denoted as pj and R”, respectively, and are derived below. The derivation is

similar to that given in Section 4.1 for p; and R’.

As before, we introduce two constants ﬁl and f32, defined by

B, = B,Ap, (4.78a)
B, =B,Ap, (4.78b)
From Equations 4.70 and 4.78,
s C,,-C
?1 _ 1 { a2 r2 } (4.79)
B, C..Co; —C.:Co: -Co, +C,y

The out-of-plane stress, 6, can be determined from the yield condition and

Equation 4.71

C rY' C rY"! .
o, = —T\BTLBI(E\{—) +—§2B2(—AR-'-) —2Vpb (480)
Substituting Equation 4.79 into Equations 4.71a and 4.80 gives
a r ¥1-1 n r -Y2-1
G, = CﬂBlApb (T) + CrszApb (7’) - f)b (4813)
R R
Coi r ' Cyy g rY" -
C, = —N&}'BlApb ('ﬁ-) + —IG—?- B2Apb (-ﬁ—) - 2Vpb (481b)

Using Equations 4.81 and setting c,(a)=0,(a)=—p, gives

“ a v1-1 a -Y2-1
CrlBlAp:)’( L ) +Cr2B Ap ( ) = f)b _pa (4.823)
RII R/’
Coy & a ' . oz a Y
LB Apyl — B Apy = 2vp, — 4.82b
wheni(f] +Spbeni(g)  -non 452
where
Apy =D, — Py (4.82¢)

Equations 4.82 constitute a system of two equations in terms of unknowns

a Y1-1 4
AP“('ﬁ?) and Apy

—Y2-1
\R”) which can inverted to give

A ”(—a;—)h-l ) » )

Pb R” »=-1— CezB -NC, }3 { —Pa } (4.83a)
(aY"'l D|-c,B, NC,B 2vD, —P.

APl 7
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where
D=BB,(C..Co,~Ci:Car) L ‘ (4.83D)

Equation 4.83a can be rearranged to give

~Y2-1
AD”| — R ) .
pb(R") __ I?l[cel(pb —P.) ~NC,,(2vp, —Pa )] (4.842)
A ”(_i)h-l B [CGZ (f)b —pa)_NCﬂ(zvﬁb -Pa )] '

Po| R~

(_ﬁ;’:]hﬂz __ ﬁl[cm(f’b 'Pa)—NCr1(2V13b — P )] (4.84D)
Bz[Cez (f’b - Pa) -NC,, (2Vf)b —Pa )]

2

or

Once (E—) is determined, Ap] can be obtained from Equation 4.83a
a

A O 7 711
Ap! = (Cez - 2VNCr2)pb - (Cez -NC, )pa [_Ii_} (4.85)

1A31(Cr1cez> - Cr2C61) a

and p” can be determined from Equation 4.82c.

4.4 CASE Ila AND IIb, PHASE 4 SOLUTION.

In this section we present the solution for Phase 4, which contains three plastic

zones (Figure 4-5). Again, this solution is only applicable for Nv < % As discussed

earlier, yielding begins in Case IIa at the edge of the hole with an inner plastic zone.
With increased loading, a second plastic zone forms which also migrates outward
from the edge of the hole. The initial plastic zone is now the outer plastic zone, while

the outermost region is elastic. In Phase 4, the outermost region becomes plastic
when p, becomes large enough to cause the free field to yield.

In Case IIb, yielding begins at the edge of the hole with an inner plastic zone, with
the outermost region being elastic. This is followed by free-field yielding. In Phase
4, a third plastic zone is formed which begins at the edge of the hole and migrates
outward. So, although the path taken to get to Phase 4 differs in Cases Ila and IlIb,
the number of plastic zones and the conditions in each zone are identical, and thus

the solution is identical for both.
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The stress condition in the inner plastic zone (a <r< ﬁ)is o, <6, =0, with yielding

governed by
f,=0,-No,+0,=0 (4.3a)
f,=0,-No,+0,=0 (4.3b)

The stress condition in the outer plastic zone (_R_ <r< ﬁ) is 6, < 6, <0, so the yield
condition is

f=0,-No,+0,=0 4.2)
Finally, in the far outer plastic zone (ﬁ <r< oo), we postulate that the stress con-
dition is 6, < G, = 0, so yielding is given by

f,=0,-No,+0,=0 (4.5a)

f,=0,-No,+5,=0 (4.5b)
The external pressure boundary condition and the yield condition of Equation 4.5
lead to

G, =0, = —Py (4.69)

As discussed in sections 4.1 and 4.2, the stress and strain fields in the outer plastic
zone are give by

2Ge, = Y, A" —1,A,r T+ A (4.26a)
2Ge, = A" T+ AT +A (4.26b)
6, =C A" +CLA,r " -, (4.27a)
6y = CorA "+ CoAr ™7 = B, (4.27b)

where A = —(1-2V)p,.

At this point the unknowns are the constants A, and A, and the plastic zone
boundary radii are R and R. Just as in Sections 3.4 and 4.3, we postulate that
G, (f{) = —p, in the outer plastic zone. This condition, along with continuity of ¢, at

R, results in two equations for two unknowns Alﬁ“‘l and Azf{“'l, which can be

solved to yield
{Bl} - A1R71-1 - 1 [ Cez —Cr2]{Apb} (4 70)
B, Azf{_h_l C.,Cez = C12Ce: -Co; C.1 J1APs
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where B, and B, are constants. After solving for B, and B, , the stress expressions

of Equation 4.27 can be rewritten as

¥i-1 -¥2-1 ‘
r r PN :
o, = C,IBI(T{-) +C,2B2(—§) -P, (4.712)

¥1-1 ~Y2-1
oe=celBl(-I%) +09232(-I%) -P, (4.71b)

In the inner plastic zone, the stress and strain fields developed in Section 4.2 apply.

The radial stress in that zone is given by

N-1
c r c
G = p—u fl — +—u 4.54
r [p“ N—l](a) N-1 ( )

In Section 4.2, we also postulated that at the inner boundary of the outer plastic
zone (R)

o,(R)-o,(R)=0 (4.50)
Using Equation 4.50 and the yield condition Equation 4.2 gives
No, (R)-0,(R)-0,=0 (4.86)

Substituting Equation 4.71 into Equation 4.86 gives the following nonlinear

expression

’R‘ ¥1-1 —R- -Yg-1
(NC,, - Cel)Bl(ﬁ) +(NC,, —Cy;)B, [ﬁ) -N(1-2v)p, =0 (4.87)
which can be solved for the radius ratio (—R/ f{) . Using Equations 4.54 and 4.7 la to

enforce continuity of o, at R gives

AN BY"" . s, YR\ . o,
CnB1(§) +C,2B2(—ﬁ-) —pb—[pa+N_1] " + No1 (4.88a)

or

R 71-1 R
N(1-2v)p, —(N - 1)0,1131(7) ~(N- 1)0,2132(-ﬁ

)‘Yz'l .
—\N-1 g
. LR) = ‘ _ 3 (4.88b)

(N-1)p, +0,
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which can be solved for R since B;, B;, and %— have been determined previously.

Afcef solving for ﬁ, R can be recovered from %— and A, and A, can be recovered

from B, and B, respectively.

The solution in the far outer plastic zone is identical to that given in Section 4.3,
Equations 4.74 through 4.77.
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SECTION 5
PROCEDURES FOR APPLYING EXTENDED SOLUTIONS

In this section, the procedures for applying the extended solutions are summarized
in 13 tables. These tables are described briefly in the following paragraphs.
Because of the large number of multi-page tables and the relatively small amount of
accompanying text, all tables are placed at the end of the section.

The first step in the solution process is to define the problem. The material and
load parameters that must be known prior to solving the problem are listed in Table
5.1. Restrictions on the known parameters (discussed in Section 2) are also
included in that table. '

The second step is to determine which subcase (Case Ia, Ib, IIa or ITb) applies. The
Case I and Case II definitions were developed in Section 2. The definitions of Cases
Ia and Ib were developed in Section 3.1, and the definitions of Cases Ila and IIb
were developed in Section 4.1. These definitions are summarized in Table 5-2.
Using only the parameters listed in Table 5-1, one can use Table 5-2 to determine

whether a particular problem falls into Case Ia, Case Ib, or Case II. However, an
additional parameter (py) is required to distinguish Case Ila from Case IIb.

A list of "computed parameters" (which can be calculated from the known
parameters listed in Table 5-1 and are commonly used in the various solutions) is
provided in Table 5-3. Equation numbers from the earlier derivations are listed.
Where the same equation was used in Sections 8 and 4, both equation numbers are
shown. Some of the parameters contained in Table 5-3 pertain to all plastic
solutions; others pertain only to Case II (e.g., D;); while still others pertain only to
either Case Ila of ITb. We have found it useful to compute and save these
parameters at this point in the solution process.

Once the appropriate subcase (Case Ia, Ib, Ila, or IIb) is determined, the next step is
to determine which phase of the solution is applicable. As discussed at the R
beginning of Section 3, Case Ia consists of two phases, while Case Ib consists of up
to four phases. Both Cases IIa and IIb consist of up to four phases (Section 4). We
use the terminology "up to four phases" since in the cases where 1-2Nn < 0, the free
field will not yield and only the first three of the four phases are applicable. For all
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cases, the applicable phase is simply a function of the value of the external pressure
Pob-

The process for determining the proper case and subcase is summarized in the
flowchart shown in Figure 5-1. Each phase of each subcase constitutes a branch on
the flow chart. The branch symbols used in the flow chart are defined in Table 5-4.
Also contained in Table 5-4 are references to figures in Sections 3 and 4 that show

the stress conditions in each region for each branch.

Once the subcase and the value of the load p, are known, one can use Table 5-5 to
determine which branch of the flowchart (i.e., which phase of the solution) is
applicable. Tables 5-4 and 5-5 also contain references to a "solution table" for each
branch. The solution tables (Tables 5-6 through 5-13) contain step-by-step solution
procedures for each of the branches. Thus, once the branch is determined, the
solution procedure may be found in the applicable solution table.

The format of the solution tables is as follows. First, unknown coefficients and
plastic boundary radii are computed where required. Next, stress and strain
response quantities are given for each region in the solution. Finally, an expression
for hole closure (referred to in the tables as "tunnel” closure) is given. If the only
response quantity of interest is closure, one may skip the middle part of each
solution table. That is, one can compute the required coefficients and boundary radii
and then proceed directly to the closure calculation. Equation numbers are again
provided for reference. Primed equation numbers are used to indicate that the form
of the equation has been modified from that shown in the derivation. In the solution
tables, an equation denoted with multiple numbers is an algebraic combination of

the equations bearing those numbers.

Many of the solutions require solving a nonlinear equation of the form

Cl}c"'1+sz""2"1+Co =0 (5.1)
where C,, Cy, C2, ¥; and 7, are constants and x is the unknown. We have

successfully used both linear iteration and Newton-Raphson techniques to solve
nonlinear equations of this form. The linear iteration technique is summarized

below.
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Case

) 1 . 4]
fNv<—= = u
! V<2’ Po =1 oNv

else p, >

0<p, <P,and
No

O<v<§1 and p, >0

and N > 1

?

Yes

Invalid Problem
Stop !

(N+1v<1

VO,
~andp < 1-(N+1v

or 1< Nv
or Nv< 1< (N+ v

Case
II

Figure 5-1. Flowchart for determining solution case.
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Case I-1

(elastic)
Py > o (N+1)v]
Case I-2
Case Ib-4 Case Ib-3

Figure 5-1. Flowchart for determining solution case (Continuéd).
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Branch Ila

Case I1a-3

Case II-1
(elastic)

Branch IIb

Case II-2

No

Case 1I-4

Case IIb-3

Figure 5-1. Flowchart for determining solution case (Continued).
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An initial guess for the unknown x is required. For most problems v, and v, are

approximately one, so a reasonable initial guess for x can be obtained from

Cy(x) +Cy(x) " +C, =0 (5.2a)
or

Oy = |_=Co 5.2b

*=4¢,+C, (5.2b)

where the left -superscript on x denotes the value of the iteration counter k. We then

successively solve for (+1x using

1
IR o JLLI 750 N v
(k+D)y C,-C, 'k ? (5.3)
CZ .
until acceptable convergence is achieved. Convergence is measured by
(k+D)_(R)y
. <d (5.4)

where § is a suitably small number (e.g., 104).
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Table 5-1. Known parameters.

Elastic parameters:

Poisson's ration (0 <Vv< -;—)

Shear modulus G (or E = 2G(1+Vv))

Strength parameters
Unconfined compressive strength 6, (6, > 0)

o 1+sin¢
Frict 1 >0),or N= N>1
riction angle ¢ (¢ ), or 1—sin® ( )

Dilatancy angle ® (0S@£¢),0r M= 222 (1<M<N)
1-sin®

Loading:

1 c 1
Internal , >0for Nv2=,0or0<p, < v forNv<—
ernal pressure, p, (pa or 5 or 0 <P, < T 5Ny or Nv 2)
External pressure, p, (P, >0)
Geometry

Interior radius a (a=1 to normalize results with respect to interior
radius).
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Table 5-2. Case Ia, Ib, IIa, and IIb conditions.

Property Relations Internal Pressure Case
V¥,
Nv<(N+1)v<l Pe S T2 (N+1)v Ib
1<Nv<N+l)v p. >0 Ib
Nv<1l<N+1)v p. >0 Ia
1 \%¢]
—<Nv<(N+1jv<1 —_—
g <NV (N+1y Pa? T (N+Dv Ila
1 A%y c
O N - —_— u
V<3 -(N+Dv  P*“1-2Nv Iib
1 vo .
O0<Nv<— —_— <7
2 I-(N+Dy = P Ila

Note: P, is a function of several variables. See Equation 4.47. This

equation and other contributing equations are summarized in
Table 5-3.
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Table 5-3. Computed parameters.

B? = MN
MN +1-(M+N)v
g, =pr MY g (N -M )2+_1_
2MN 2MN B2
Bz(M -N)v (M N )2+_1_
MN 2MN B’
o c 1
Py =7C 2NV1va<-2-
- 1
=0 if Nv2—
Pu 1 \Y )
1-2v A
A=- Tonvo -(1-2v)p,

C,, = —é—{[MN +1-(M4+N)V]y, + M(N+1)v}
C,= %{—[MN +1-(M+N)v]y, +M(N+ 1)v}
Cy, = —(1—)[N(M+ 1)vy, + MN]

C,, = %[—N(M +1)vy, + MN]

C=MN+1-(M+1)(N+1v
A O, ‘—pb(l—ZNV)

C=
EMN
Ap, =Py —Ps
Case II only:

. . 2NVC,, - -Cq,
Py, =Ps NC,, - Cos
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(3.39), (4.21).
(3.42), (4.24)

(3.43), (4.25)

(2.28b)

(3.41), (4.23)
(3.46a), (4.28a)
(3.46b), (4.28b)

(3.46c¢), (4.28c¢)

(3.46d), (4.28d)

(8.46e), (4.28e)
(3.95), (4.74)

(3.50), (4.32)

(4.47) .




Table 5-3. Computed parameters (Continued).

Case Ila only:

(-etels o)
(&) B,[Con(Bs ~ o) ~NCa(2VB: = .)]
| (

a

Ap, = (Coz =2VNC,3 )by = (Cor ~NCss )P, (B_’)’“'l
Bl(CﬂCe‘z) a
Py = P, — AP,
Case IIb only:

{1‘31}: 1 {cw—cﬂ}
B2 Cr1Cez"'Crzcel —Cel+Cr1

[R"] T _ f3 [Ce1(13b pa) NC, (2V13b "Pa)]
a [ 2(Ps p.)-N C.(2vD, - Pa)]
)b

( 92—2VNC Py ( 82 NCrZ)pa (K)YI

B,(C.:Ce2) a

Ap, =

Py = P, — Apy
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(4.40)

(4.44b)

(4.45)

(4.42¢)

(4.79)

(4.84b)

(4.85)

(4.82¢)




Table 5-4. Identification of flow chart solution branches.

Branch Solution Solution Figure
Case Phase Symbol Table Conditions Number

I(aorb) 1 I-1 5-6 Elastic throughout 3-1
One plastic zone,

I(aorb) 2 I-2 5-7 free field elastic 3-2
Three plastic zones,

Ib 3 Ib-3 5-8 free field elastic 3-3
Four plastic zones,

Ib 4 Ib-4 5-9 (free field yielded) 3-4

II(aorb) 1 II-1 5-6 Elastic throughout 4-1
One plastic zone,

II(aorb) 2 11-2 5-10 free field elastic 4-2
Two plastic zones,

Ila 3 I1a-3 5-11 free field elastic 4-3
Two plastic zones,

IIb 3 11b-3 5-12 (free field yielded) 4-4
Three plastic zones,

II (a or b) 4 11-4 5-13 (free field yielded) 4-5
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Table 5-5. Procedure for determining applicable solution branch.

Case Ia

External Pressure, p,

Dy < -;-[(N+ 1)p, +0,]

Py > %[(N'F 1)pa +Gu]

Case Ib

External Pressure, p,

ms%ﬂN+Dm+0J

%[(N+1)pa+cu] <py S

2[1—((15~§+ 1)v]

<P, <P

Case Ila

External Pressure, p,
P, +0O
<—2—u_
Po = (1= Nv)
p +0 ’
S8 __~u_ <

P;<Pb<f)b

2[1-(§ +1)v]

Phase

Phase

Phase
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Branch

I-1

Branch
I-1
I-2

Ib-3

Ib-4

Branch
II-1
I1-2
IIa-3

II-4

Solution Table

Table 5-6

Table 5-7

Sclution Table

Table 5-6

Table 5-7

Table 5-8

Table 5-9

Solution Table

Table 5-6
Table 5-10
Table 5-11

Table 5-13




Table 5-5. Procedure for determining applicable solution branch (Continued).

Case ITb
External Pressure, p, Phase Branch Solution Table
I
Pr = 5(1-Nv) 1 II-1 Table 5-6
Pa +0, < < 2 .

2(1-Nv) Te P 2 11-2 Table 5-10
Py <Py <Py 3 I1b-3 Table 5-12
P, 2Py 4 11-4 Table 5-13

77




Table 5-6. Procedure for elastic conditions (all cases).

The strain and stress fields are given by
2

2Ge, = —(1-2v)p, +(ps —pa)%;

2
2Ge, = —(1-2v)p, - (Py —Pa)% =-2(1-2v)p, - 2Ge,

2
G, ="Pb+(Pb“Pa)%2'

a2
G =—Dy — (P —pa);; =-2p, -0,

C, = —2Vp,
Tunnel Closure

ED - e (a) =55 [P ~2(1-V)ps]
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(2.11)

(2.12)

(2.8)

(2.9)

(2.10)

(2.12)



Table 5-7. Procedure for Case I (a or b), Phase 2 solution.

Compute R from
1

- N-1
R=a 2 (N-1p,+o, 7
N+1 (N-1)p,+o,

Plastic Zone Response  (a<r<R)

N-1
o =_[p +&_](z) +- 0
r * N-1ja N-1

=No, -0,
6, =V(c, +0,)

2Ge® =[N-(N+1)v]o, —(1-V)o,

2Cef =~ Qi%al)fﬁ—_ [(N-1)p. +0 ](R)N_l[(

2Ge, = 2Ge +2Ge
2Ge, =[1-(N+1)v]o, +vo, -M2Gey

Elastic Zone Response  (R<r<e)

s. YRY ' o
*=_ R — + u —_— —_—
P, ==0:(R) [p*‘ N—l](a) N-1

.\ R?
2Ge, = —(1-2v)p, + (P ~PL) 7

2
2G€e=—(1—2V)pb-(pb-pZ)R -2(1-2v)p,
2
6,=—pb+(pb—p2)—fr{—2-
.\ R?
Gy =—Po (P~ Py) 7 = 2P~ O
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R

r

-2Ge,

-

(3.28b")

(3.10)

(3.8)
(3.19)
(3.20b)

N-1
] ] (3.24")

(3.17b)
(3.15a), (3.20a)

(3.10%)
(2.11)
(2.12"

(2.8"

(2.9

(2.109




Table 5-7. Procedure for Case I (a or b), Phase 2 solution (Continued).

Tunnel Closure

BD _ e, (a)=—5g (N-(N+Dv}p. ~(1-V)o.]

1 [(N+1)(1-V) f/nr_ (E)M‘“N_
+2G[ M+N {(~ l)pa+cu}][ - 1{(3.20b), (3.24), (3.17b)
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Table 5-8. Procedure for Case Ib, Phase 3 solution.

Determine boundary radii R, R,and R, and coefficients Aj and Ag.

Compute R from

1

- a{ (1-2v)o, }N‘l
- (N+ IV}{(N-Dp, +0.]

For p, < P,, compute
B, 1 1 -C,7(2(1-Nv)ap,
B,[ C,-C,|-1 C. J(2(N-1)vAp,

and solve the following nonlinear equation for the ratio %

R R

¥1-1 ~¥2-1
(NCr1 - Cel)Bl(——) + (NCr2 -Cy, )B2 (—} -N(1- 2v)p, =0

R R

Compute R from
a

AN R
N(1-2v)p, - (N - 1)0,1131&) ~(N- 1)0,232(§

[:) ) ] (N-Dp, +o,

Z N 5
then R = a[(—a-) :\ and R=

Compute coefficients from
B

1
R‘h-l

B

= 2
R"Yz"l

~—
wlwll b
N——’

A=

Ag
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(3.33")

(3.52)

(3.55)

(3.58Db)

(3.52")

(3.52")




Table 5-8. Procedure for Case Ib, Phase 3 solution (Continued).

For the case where p, = p,, R =« and

N(1-2v) .
B. = 3.80
2 NCr2 _ (392 pb ( )
——\N- A
RY " _ N(1-2v)p, -(N-1)C,;B, (3.81b)
a (N—l)pa +0,
A, =0
B 1
I (3.80")

If p, < Py, the pressure at the internal edge of the elastic zone, p, =—0,(R), is
required.

o.(R)= C.,AR" '+ C,, AR '-p, (3.45a")
p, =—0,(R)
Inner plastic zone strains depend on circumferential strains at r=R and r= R so
those are computed next.

2Ge,(R)=AR" 7 +AR™ 7 +A (3.44a"

2Ge, (f() _ MN+2-2(M+N+1)v (N-1)p, ¥, ][( )Mm i ][%T-l

T T (M+N)(N-1)(1+V)
_ (M+2)(1-2v)o, |(R e . i M1 |
(N-1)(M+ 1)(1+v)[(f{) 1}2@’ o(R) [R) (3.68")

| o

The plastic component of €, (ﬁ) is also required in the inner plastic zone. It may be

determined as follows

2Ge?(R) = ”T__l(ﬁ%}fﬁ"“ (3.66"), (3.30")
2Ge’ (R) = 2Ge, (R)-2Gey (R) (3.17b")

With the information developed as described above, stresses and strains at any
point may be readily determined. For a point at any radius r > a, compare r to
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Table 5-8. Procedure for Case Ib, Phase 3 solution (Continued).

R, R, and R to determine its location; then proceed to use the appropriate formulas

below.

Inner Plastic Zone Response (a <r< R)

o, = —[pa * ﬁcs—_—l](—g)lq P 4 (3.10)

=No, -0, (3.8)
6, = v(0, +0,) : (3.19)
2Ge® =[1-(N+1)v]o, +vo, (3.15a)
2Gel =[N~ (N+1)v]o, -(1-v)o, (3.20b)

~ \M+1
2Ge® = 2Ge (R)[-Ii]

r

_(N;/Ill(;r—'—V)[(N—l)paM"](_l}] - [(%) + —(%—)N_l] (3.70)

2Ge, = 2Gey + 2Ge® (3.17b)
2Ge® = -M2Ge? (3.152")
2Ge, = 2Ge!® +2Ge® (8.17a)

Middle Plastic Zone Response (f{ <r< R‘)

_MN+2- 2(M+N+1)v
26 = N NN - D) '”"”"“]K

= | &l

e

M+2 1 2V M+1 _ ﬁ M+1
(I(\I %VI+1 1+v[ ) —1}+2G89(R).(?) : (3'6_8)

2Gs,=—M2Gee+MN+2—2(M+N+1)V o, -M=2Vs  (3.69)
1+v 1+v
c Y o
R ) oo
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Table 5-8. Procedure for Case Ib, Phase 3 solution (Continued).

o, =No, -0,

G,=0,

Outer Plastic Zone Response ('ﬁ <r< R)

2Ge, =7, A" -1, A r T +A
2Ge, = A" +A,r T+ A
= 71-1 -¥2-1 5
o, = CrlAlr ' +Cr2A2r : —Pp
- v1-1 -Yo-1 __ &
0y = Co At +Coy AT ) -

1
o =I—\f(o°+c“)

z

Elastic Zone Response  (R<r <)

2

2Ge, =—(1-2v)p, +(Pb _P;)’I':T

.\ R?
2Ge, = —(1-2v)p, —(pb -pa)?‘,— = -2(1-2v)p, —2Ge,
. R2
6, =—py +(Po—Pa) =5

Gy = ~Pp "(Pb _P:)"_z'='2pb‘°r
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(3.3a")
(3.3a), (3.3b)

(3.44a)
(3.44b)
(3.45a)
(3.45b)

(3.4

(2.119
(2.12"
(2.8")

(2.99

(2.10Y)




Table 5-8. Procedure for Case Ib, Phase 3 solution (Continued).

Tunnel Closure

Compute R, R, and R, followed by A; and Ay as shown at the beginning of the table.

Now compute circumferential strain components as follows.

Then

2Ge,(R)= AR" I+ AR +A (3.44a)

- _MN 2—2(M N 1)V R M+N & N-1
2G£9(R)" (MiN)(N—;)(l-:v) [(N—l)pa+0'u]{(.ﬁ-) - }L_a_)

(M +2)(1-2v)o, {[E)Ml _ 1} +2Ge,(R): (%)M“ (3.68"

TINS)(M+1)(1+V)|(R
@(p)_— _ 1-2v | 1 '
2Gel” (R) = TR (3.66"), (3.30")
2Ge (R) = 2Ge,(R)- 2Ge” (R) (3.17b")
2Ge® (a) = [N -(N+1)v]p, -(1-V)o, - (3.20b")
~ \M+1 ~ \M+N

~-\[ R N+1)(1- R '

2Ge® (a) = 2Ge§,")(R)(;] - L—-M%%q——vl[(N -1)p, +0, ]{[;) - 1} (3.70)
éﬁQ =—¢g,(a)= —-2%}—[2Gege’(a) +2Gel (a)] (3.17b), (3.66"), (3.30", (3.70"
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Table 5-9. Procedure for Case Ib, Phase 4 solution.

Determine boundary radii R, R, and R , and coefficients A; and Ag.

Compute R from

R= a[ (1-2v)o, ]N_l (3.33)
L+ ou}

=N+ )VI{(N-Ip

Compute
{Bl} — 1 [ CB2 _CrZ]{APb} ' (3.84)
B,] C,Co;—C::Ca -Co; Gy [(AP,
and solve the following nonlinear equation for the ratio %
‘ R— ¥1-1 R‘ v2-1
(NC,, ‘Cel)B1('§) +(NC,, “Cez)Bz(‘ﬁ) -N(1-2v)p, =0 (3.86)

Compute R from
a

’ —R— ¥7:-1 ‘R— ~Y2-1
-R \N-1 N(l" 2V)Pb - (N - 1)Cr1B1(E) - (N - 1)C,2B2 ('ﬁ)

5 - (N-Dp, +o 387

—\N-11§1 —_
then§=aL(R] ] and IA{=-£—

Compute coefficients from

B .
A, = =02 (3.84)
R-Yz"l
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Table 5-9. Procedure for Case Ib, Phase 4 solution (Continued).

Inner plastic zone strains depend on circumferential strains at r = R and r=R,
while far outer plastic zone strains depend on strains at r= R so those are

computed next.
2Ge,(R)= AR"+ ARTT+A (3.442")
oia)_ [(N+ l)v N]p, - vo, , ,
2Ge” (R )_ N Y] (3.88a), (3.52")
2Ge<P)( ):2(}39( )- 2Ge(R) (3.17b")
Ge,(R)= AR+ AR +A (3.44a")

|

-y MN+ M+N+1)v
2Ge,(R) = (M+i1)(21\(1 I)(1:)) [(N'l)pﬂ‘”’“][(

e

(M+2)(1—2v)0-“ R M+1 _ (R M+1 |
T(N-(M+1)(1+ v)[L'ﬁ) - 1]* ZGﬁe(R)'(ﬁ) (3.68)

The plastic component of €, (R) is also required in the inner plastic zone. It may be

determined as follows

2Ge(R) = -;ﬁ%—)—;ou (3.66"), (3.30)
2Ge®P (R) = 2Ge, (R) -2Ge® (R) (3.17b;)

With the information developed as described above, stresses and strains at any
point may be readily determined. For a point at any radius r > a, compare r to

R, R, and R to determine its location; then proceed to use the appropriate formulas

below.
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Table 5-9. Procedure for Case Ib, Phase 4 solution (Continued).

N-1
c r G
=— u_ | = u 3.10
R O o0
o, =No, -0, (3.8)
o, =Vv(o, +0,) (3.19)
2Ge® =[1-(N+1)v]o, +vo, (3.15a)
2Ge® =[N -(N+1)v]o, -(1-v)o, (3.20b)
R M+1
2Ge® = 2Ge§,"’(R)(—;}
~ \N-1 ~ \M+1
(N+1)(1-v) R R ( r )N“
P NN- = EAJN R 5 70
N N-Dpte] 2 - = (3.70)
2Ge, = 2Ge¥ +2Ge? (3.17b)
2Ge® = ~M2Ge® (3.152")
2Ge, = 2Ge® +2GeP (8.17a)
Middle Plastic Zone Response (R <r< 'ﬁ)
MN+2-2(M+N+1)v RY rY
2Ge, = N-1 Ll Y
o = T MAN)(N-1)(1+V) [( )p‘**"“][( r) }(a)
(M+2)(1-2v)s, |(R) — (R
- u — -1[+2Gey(R)-| — .68
N-DM+ 1)+ V)| T +2Ge,(R) | (3.68)
2Gs,=—M2Gse+MN+2_2(M+N+.1)VG,—M—zvo“ (3.69)
1+v 1+v
o. (Y ', o
__ W [Z) 4 S 3.57
O [pa+N—1](a) N-1 (3.57)
o, =No,. -0, (3.3a")
G,=0 (3.3a), (3.3b)

z T
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Table 5-9. Procedure for Case Ib, Phase 4 solution (Continued).

Outer Plastic Zone Response (ﬁ <r< R)

2Ge, = T, A" = 1A T T A (3.44a)
2Ge, = A X"+ Ar T HA (3.44b)
o, = Cr1A1rh—1 + CrzAzr—Yz_l ~Pb (3.45a)
O = CelAlryr1 + CezAzr-h—l —Ps (3.45b)

1 '
oz=ﬁ—(oe+ou)_ (3.4

Far Outer Plastic Zone Response (f{ <r< oo)
G, =Py (3.82)
Ce =—Pp (8.82)
G, = —I}I'(“Pb +0,) (3.5a), (3.5b)
N+1)v-N]p, -vo

2G’ (e) _ [( b u ) ' ) i

€, )N (3.88a"), (3.5a")
N+1)v-N]p,-vo

2G£(e) = [( b u - . Ba'

0 (1+ V)N (3.88b", (3.5a")
: R 2 R 2
2Ge® = 2Ge? (R)(?J + GC[I-(—;) ] (3.100a"), (3.100b)
R 2 R 2
2Ge® = 2GC -2GeP = -2Ge” (f{)[?) + G@[1+ (—} ](3.95), (3.100a"), (3.100Db)
T

9Ge, = 2Ge,*) +2Ge,” (3.17b")
2Ge, = 2Ge,® +2Ge,” (3.17a"
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Table 5-9. Procedure for Case Ib, Phase 4 solution (Continued).

Tunnel Closure

Compute R, R, and R, followed by A; and Ag as shown at the beginning of the table.

Now compute circumferential strain components as follows.

2Ge,(R)=AR" 7+ AR +A (3.44a")

2Ge, (R) _ MN+2-2(M+N+ 1)v [(N—- I, +5, ]‘:(%)M«*N ) 1](2)}1_1

(M+N)(N-1)(1+v)

(M+2)(1-2v)o, |(RY = (R ,
"(N-1)(M+1)Z13v)[('f€) —1]+2G89(R)-(§-) (3.68")

2Gel” (R) = —111(1{1%)70“ (3.66"), (3.30)

2Gef (R) = 2Ge,(R)-2Ge{ (R) (3.17b")

2Ge$ (a) = -[N-(N+1)v]p, - (1-V)o, (3.20b")

206 () = 206 (R)(.ZE)M 1_ %"—)[(N- 1)p, + G“][[;}]M*“ . 1] (3.70)
Then

-ADB = —,(a) =~ 5 [2Gel (a) + 2Ge (2)] (3.17b), (3.66), (3.30), (3.70)
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Table 5-10. Procedure for Case II, Phase 2 solution.

For p, < p, compute

B,|__ 1 1 -C,7[{2(1-Nv)Ap, (434)'
B2 Crl—Cr2 -1 Crl 2(N_1)VApb .

Determine plastic boundary radius R by solving the following nonlinear equation for
the ratio (a/R).

a v3-1 a -y2-1
CrlBl(-ﬁ) + Crsz(‘ﬁ) = f)b —Pa (4-36)

Then R = a/(a/R).

Compute constants

B .
A= R,f_l (4.34")

B .
A, = -R—_Ti'_—f (4.34)

For Case IIb and p, equals Py»

R—ow
A =0 (4.49b)
_ P,—Ps

With the information developed as described above, stresses and strains at any
point may be readily determined. For a point at any radius r > a, compare r to R to

determine its location; then proceed to use the appropriate formulas below.
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Table 5-10. Procedure for Case II, Phase 2 solution (Continued).

Plastic Zone Response (asr< R)

2Ge, =v,A " - YA, r T A (4.26a)

2Geg, = Alr""1 + Azr"‘(""1 +A (4.26b)

G, = Crlerh_l + CrzAzr_h_l - Dy (4.27a)

O = Celerh—l + CezAzr—h_l -Dy (4-27b).
) .

o, = —ﬁ(ce +0,) (4.5b)

Elastic Zone Response (R <r <o)

p. =0, (R) = 2(1-Nv)p, +0, (4.29)
-\ R?
2Ge, = —(1-2v)p, +(Ps -pa)?; (2.11"
«\ R? :
2Ge, =—(1-2v)p, —(Pb Pa)';z_ = —2(1-2v)p, - 2Ge, (2.129)
«\R?
o, =P +(Pu—PM) 7 (2.8)
«\R?
Cp =Py~ (Pb - Pa);? =-2p, -0, (2.9
Gz = -2Vpb (2'10')
Tunnel Closure
AD 1 - —yq- .
o = E(@)= -5g(AR" T+ AR '+A) (4.26b")
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Table 5-11. Procedure for Case I1a, Phase 3 solution.

Determine plastic boundary radii R and R and coefficients A, and A,. For p, < Py»

compute
B,] 1 1 -C,,1(2(1-Nv)Ap,
B,[ C,-C,l-1 Cu Jl2(N-1)vAp,

and then solve the following nonlinear equation for the ratio B—

R
'R‘ ¥1-1 —R— -72-1
(NCrl - Cel)Bltﬁ) + (Ncrz - Cez )B2(§) - N(l" 2V)f3b =0
Then solve for the ratio R/a from
'R' ¥1-1 ﬁ Y21
B N1 N(1- 2v)f)b -(N- l)CﬂBl(ﬁ) - (N - 1)C,2B2(-ﬁ)
(Z) ) (N-1)p, +0,

Compute constants

B

A=gnT
B
Ay =g,
For p, = Py, then R — o; first compute
N(1-2v)p,
B,=—
NCr2 - Cez

and compute R from

Lﬁ )’“ _ N(1-2v)p, ~(N-1)C,sB,

a (N-1)p, +o,
B
A1=0 and A2 =—-ﬁ—:f-ifi'
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(4.34)
(4.51)

(4.55b)

(4.34)

(4.34)
(4.67")

(4.68")




Table 5-11. Procedure for Case I1a, Phase 3 solution (Continued).

The pressure at the internal edge of the elastic zone, p, is required when 'pb <P,
Therefore we compute the stress at r = R using the solution from the outer plastic

zone.

bt ==0,(R) = (CLARN T+ AR -By)

Inner Plastic Zone Response (a <r< R_)

2Ge,(R)= AR"7+A,R™7+A

2Ge, = MN+2-2(M+N+ l)v[(N—l)pa +ou]U.Rr;)M+N ] }(

(M+N)(N-1)(1+V)

(M+2)(1-2v)o, [LE )M+1 ] 1}+2Gee(§) | (;_I:_ ]Mﬂ

T(N-1)(M+1)(1+v)

r
2Ge, =—M2G89+MN+2—2(M+N+1)VG,—M—2Vo“
1+v 1+v

N-1
o2
r ® " N-1)\a N-1

6, =No, -0,

c,=0,

Outer Plastic Zone Response (R <r<R)
2Ge, =7, A" T —1,Ar T+ A
2Ge, = Ar" T+ A, T +A
6, =C AT +CLAr " - P,

Gy = CoA " '+ CoA,r 7 =D,

1
G,= ﬁ(ce +Gu)

z
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(4.27a")

(4.26a"

(4.65")

(4.66)

(4.54)

(4.3a)
(4.3a), (4.3b)

(4.26a)
(4.26b)
(4.27a)
(4.27Db)

(4.5b)




Table 5-11. Procedure for Case IIa, Phase 3 solution (Continued).

Elastic Zone Response  (R<Sr <)

2
2Ge, = —(1-2v)p, +(Ps —pl)%- (2.11")
.\ R?
2Ge, =—(1-2V)p, - (ps —p,);z— = -2(1-2v)p, - 2Ge, (2.12")
-\ R? \
o, =P, +(Po—P) 7 (2.8)
.\ R?
G =P~ (Pb —Pa )?2- =-2p, —~O; (2.9
6, =—2Vp, (2.10"

Tunnel Closure

Compute boundary radii R and R, and coefficients A; and Ay as shown at the
beginning of the table.

Then
2Ge,(R)= A,R"™ +ARTT+A (4.262)

and

AD _ _ MN+2-2(M+N+1)v AN
D = %)= e mN-1) 1+ (- p. *"“]KZ) B 1]

(M+2)(1-2v)o, AN _ (R |
+2G(N—1)(M+1)(1+v)[(—a_) ‘1]‘%(1‘)-(;) (4.65)

95




Table 5-12. Procedure for Case IIb, Phase 3 solution.

Détermine plastic boundary radius R, and coefficients A; and Ag. Begin by
computing

{Bl} - 1 |: Co, _CrziHAPb} (4.70)
B, C.1Ce -C,.Cq -Coy G (AP

and then solving the following nonlinear equation for the ratio (—%)

¥1-1 -¥2-1 ‘
a a A~
O O wm
then R=-2
a
3
and
A, = R?f-l (4.70)
B .
2 = Fi (4.70)

Ly

Far outer plastic zone strains depend on the circumferential plastic strain at r = R.

2G£9(f{) AR+ ARTTHA (4.26b"
2Ge® (R) _ [N+ I)I\VI(_ITLI;" ~ V% (4.73), (4.16b)
2Gel” (R) = 2Ge, (R)-2Ge! (R) (4.13b)

With the information developed as described above, stresses and strains at any

point may be readily determined. For a point at any radius r > a, compare r to R to
determine its location; then proceed to use the appropriate formulas below.
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Table 5-12. Procedure for Case IIb, Phase 3 solution (Continued).

Inner Plastic Zone Response (a <r< ﬁ)
2Ge, = YA - YA, r T +A | (4.26a)
2Ge, = A" T+ A T HA (4.26b)
6, =C, A"+ C,,A,r ' -p, (4.27a)
Gy = C(,lAlr"“1 + CmAzr"'z'1 -Dy (4.27b)
G, =~ (0, +0,) (4.5b)

Far Outer Plastic Zone Response (f{ <r< oo)

5, =Dy (4.73a)
Gy =Py (4.73b)
c,= -115(—1)" +0,) (4.73¢)
N+1)v-N]p,-vo
2G‘E(e) - [( b u i )
: AT vN (4.73), (4.16a)
N+1)v-N]p,-vo
2G£(e) - [( b u
o AT V)N (4.73), (4.16b)
ﬁ 2 f{ 2
2Ge® = 2Ge (R)(?) +G@[1_(?] } (4.76"), (4.77b)
&Y ” &Y
2Ge® = 2GC -2Gey = -2Ge” (f{)(-r-) +Gc‘:{1+[-r-) } (4.74), (4.76"), (4.77b)
92Ge, = 2Ge,*) +2Ge," (4.13b")
2Ge, = 2Ge,® +2Ge,” (4.13a")
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Table 5-12. Procedure for Case IIb, Phase 3 solution (Continued).

Tunnel Closure

Compute R, A;, and A; as shown at the beginning of the table.

AD _ e (a)=-—=[Aa" + A 4 Al (4.26b")

D 2G
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Table 5-13. Procedure for Case II, Phase 4 solution.

Determine plastic boundary radii R and R. Begin by computing

{B1} - 1 |: Ces "Crz]{Apb} (4.70)
B, C,:Co2 — C:2Ca1 -Ce, Ci1 J1APy _
and then solving the following nonlinear equation for the ratio %
Ry gy
(NCH—CM)BI(-ﬁ) +(NC,, - Cq, )Bz(ﬁ—] -N(1-2v)p, =0’ (4.87)

Then solve for the ratio R/a from

| o]

'R- 11-1 -¥2-1
- N(1—2v)f)b—(N—1)C,1B1(—§) -(N—1)c,2132( )
(_) = : (4.88b)

a (N-1)p, +0,

1
—\N-1 _NTi —
R=a (E) and R = —_-:137—
a (R/R

Compute constants

Then

B
B .
A, = 1‘{“73—1 (4.70)
Far outer plastic zone strains depend on the circumferential plastic strain at r = R.
2Ge,(R) = A,R" 7+ AR +A (4.26b")
A N+1)v-N]p,-vo
2Gel) (R) = [ b o 4.73), (4.16b
of)- XS 4,010
2Gel) (R) = 2Ge, (R)-2Ge (R) (4.13b)

With the information developed as described above, stresses and strains at any

point may be readily determined. For a point at any radius r 2 a, comparer to R to
determine its location; then proceed to use the appropriate formulas below.
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Table 5-13. Procedure for Case II, Phase 4 solution (Continued).

Inner Plastic Zone Response (a <r< ﬁ)

2Ge,(R)= AR +AR™ T+ A (4.26a")
MN +2-2(M+N+1)v RY (r)N'l
2Ge, = N-1)p, + — -1 —
®o = M+ N)(N-1)(1+V) [(N-1)p. +o. ][( r ) a
—\M+1 = \M+1
(M+2)(1-2v)o R =\ (R \
- = — —1{+2Gegy(R)-| — 4.65
IN= DM+ D)L+ v)| L T %(R)( 7 (4.65)
2Ge,=—M2G£9+MN+2—2(M+N+1)V6,—M—Zvﬁu (4.66)
1+v 1+v
c r¥' o
- = + u — + L) 4.54
O [p“ N—l](a) N-1 (459
o, =No, -0, (4.3a)
c, =0, (4.3a), (4.3b)
Outer Plastic Zone Response (‘R <r< ﬁ)

2Ge, = Y, A" —1,A,r T +A (4.26a)
2Ge, = Ar" M+ A,r T+ A (4.26b)
6, =C Ar"  +CLAr" 7 ~p, (4.27a)
0, = Co A" 1 + CoA,r 7 =Dy (4.27b)
: (4.5b)

z

c =-ﬁ(oe+ou)

100




Table 5-13. Procedure for Case 11, Phase 4 solution (Continued).

Far Outer Plastic Zone Response (f{ <r< oo)
(4.73a)

Gr = _pb

— (4.73b)

0, =5 (-Ps*+5) (4.73¢)

N+1)v-Nlp, -
2Ge® = [(N+1)v-N]p, -vo, (4.73), (4.162)
(1+v)N
o _[(N+1)v-Nlp, -vo, 4.73), (4.16b
2Gey AT vN (4.73), (4.16b)
R 2 R 2

2Ge® = 2GeP (R)[—;] +G@{1—[?] } (4.76"), (4.77b)
f{, 2 ﬁ 2

2Ge® = 2GC-2Gef = —2Ge® (f{)(_) +G@[1+[—} :\ (4.74), (4.76"), (4.77b)
Tr r

2Ge, = 2Ge,) +2Ge,” (4.13b")

2Ge, = 2Ge,® +2Ge,” (4.13a"

Tunnel Closure

Compute boundary radii R and R, and coefficients A; and A as shown at the
beginning of the table. Then

2Ge,(R)=AR"" +AR " +A (4.262)

)M+N ) 1] |

(M +2)(1-2v)o, - _ (R .
+2G(N—1)(M+ 1)(1+v)[(;) —1]_£°(R)'(;‘) (4.65")

and

o | |

AD _ _ MN +2-2(M+N+1)v
D =% = T2 eMN)(N-1)(1+V) [(N=1)p. +o. ]K
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SECTION 6
NUMERICAL EXAMPLES

Numerical comparisons of the results from finite element calculations with the
results from the closed-form solutions discussed in the preceding sections are
presented in this section. Two examples for each of the four cases (Cases Ia, Ib, Ila,
and ITb) are presented: one example with M equal to N (associative flow rule) and
one example with M equal to one (nonassociative flow rule). Results using the two
solution techniques are presented in terms of: (1) a table of differences in computed
closure for a given load level; (2) plots of external pressure, p,, versus closure; and
(3) plots of stress and displacement versus normalized radius (r/a) at given load
levels. The material properties and loads used for each example are provided in
Table 6-1. The material properties were chosen to correspond to a soft rock. For
each example, the radius of the hole was taken as unity and loading was applied
until closure of approximately five percent was achieved. Except for the Case Ia
examples, where free-field yielding cannot occur, the load levels were high enough to
cause the free field to yield.

Prior to performing the nonlinear finite element calculations, a mesh discretization
study was performed using a linear material. The objective of that study was to
determine: (1) the size of the mesh required to approximate an infinite medium; and
(2) the number of elements required to achieve accurate results. For the linear
problem, we used Young's modulus of one million psi, Poisson's ratio of 0.25, and a
hole radius of one inch. Loading was applied in two steps. In the first step, the
internal and external pressures were both equal to one thousand psi. In the second
step, the internal pressure was held at one thousand psi, while the external pressure
was increased to two thousand psi. A mesh containing four hundred elements with
an external radius of two hundred inches gave displacement and stress results
accurate to four decimal places. This level of mesh refinement may be overly
conservative, but was selected to eliminate the possibility of a coarse mesh being a
significant source of error in the nonlinear finite element calculations. The linear
analysis results are presented in Figure 6-1. Note that the finite element results
(dashed lines) are not distinguishable from the closed-form solution (solid lines). In
Figure 6-1 and all subsequent figures, compression is shown positive.
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Figure 6-1. Comparisons of analytical and finite element analyses for linear

material response.
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material response

alytical and finite element analyses for linear
(Continued).
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Closure results at the final load level for each of the eight nonlinear cases are pre-
sented in Table 6-2. The maximum difference in closure between the finite element
and ihe closed-form solutions was 0.337 percent. In performing these analyses, we
found that the differences in computed closures could be lessened by reducing the
load increment and tightening the convergence tolerances in the nonlinear finite
element analyses. This was particularly true in the nonassociative flow examples,
where the elastic-plastic constitutive matrix (required for implicit finite element
analysis utilizing Newton-Raphson techniques for solving nonlinear equations)
becomes nonsymmetric. Our finite element program utilized a symmetric equation
solver, and thus an approximation to the true elastic-plastic constitutive matrix had
to be used. Although we may have been able to achieve even closer matches between
analytical and numerical results, the differences presented in Table 6-2 were judged
to be small enough to convince us that the hypotheses used in developing the

analytical solutions were justified.

Plots of external pressure, p,, versus closure for the eight example problems are
shown in Figures 6-2 through 6-9. There is no discernible difference between the
closed-form and finite element results.

Plots of stress (0., G,, and ©,) versus normalized radius (r/a) and radial dis-

placement versus normalized radius (r/a) for each of the eight cases are presented in
Figures 6-10 through 6-17. Again, there is no discernible difference between the

analytical and finite element results.
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Table 6-2. Closure results.

Example | Applied External Closure (%) Closure (%) | Difference (%)
Number | Pressure, p, (psi) (Finite Element) (Analytical) *

1 1,100 5.7390 5.7481 -0.158

2 675 5.0254 5.0347 -0.185

3 750 5.0573 5.0744 -0.337

4 1,200 4.9428 4.9479 -0.103

5 1,500 5.0083 5.0222 -0.277

6 930 4.9811 4.9976 -0.330

7 1,000 4.9895 5.0021 -0.252

8 1,425 5.1112 5.1180 -0.117

* Difference (in percent) is computed by
the analytical solution, then dividing

by 100.
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Figure 6-2. Pressure versus closure (Example 1).
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Figure 6-3. Pressure versus closure (Example 2).
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Figure 6-4. Pressure versus closure (Example 3).
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Figure 6-5. Pressure versus closure (Example 4).
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Figure 6-6. Pressure versus closure (Example 5).
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Figure 6-7. Pressure versus closure (Example 6).
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Figure 6-8. Pressure versus closure (Example 7).
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Figure 6-9. Pressure versus closure (Example 8).
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Figure 6-10. Example 1 response profiles.
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Figure 6-12. Example 3 response profiles.
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Figure 6-13. Example 4 response profiles.
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Figure 6-14. Example 5 response profiles.
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Figure 6-15. Example 6 response profiles.
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Figure 6-16. Example 7 response profiles.
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