Millimeter and Submillimeter Wavelength Studies of Nitric Acid's ν_6 , ν_7 and ν_8

ŧ.,

A Thesis

Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University

By

Sean Williams, B.S.,

* * * * *

The Ohio State University

1997

Master's Examination Committee:

Frank C. De Lucia, Adviser Eric Herbst

·李·陈州就学生是这个人,这些人的时代的时期,你们才知道的时来要帮助了了。""……""这些是一个的子们有个的事儿

19971006 083

Approved by

raul

Adviser Department of Physics

DESTREBUTION STATEMENT Approved for public release Distribution Unlimited DTIC QUALITY INSPECTED 4

ABSTRACT

Millimeter and submillimeter-wave studies have been performed on the

 HNO_3 molecule by means of a FAst Scan Submillimeter

Spectroscopic Technique (FASSST). An ISTOK

OB-30 BWO was used to take fast scans of the region 245–370 GHz.

Over 500 spectral lines due to rotational transitions have been

assigned for the HNO₃ or nitric acid in the ν_6 ,

 ν_7 , and ν_8 vibrational states.

A Watson S- and A- reduced Hamiltonian and non-linear least squares fitting procedures were used in the analysis of the measured HNO₃ lines.

The rotational constants and rms deviations for each vibrational mode are reported.

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Frank De Lucia, for his insight and guidance in my research and graduate studies.

Thanks to Dr. Paul Helminger, Doug, Lee, and Siggy for all the laboratory help and support. Also special thanks to Dr. Stith, my classmates, and the U.S. Air Force.

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 07040188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Bearations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.			
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DA	TES COVERED
	30-Sep 97		······································
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Millimeter and Submillimeter	• Wavelength Studies of Nitric A	ACIO S	
6. AUTHOR(S) Sean Williams			
·			
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
Ohio State University			97-030
9. SPONSORING/MONITORING AGENCY THE DEPARTMENT OF TH AFIT/CIA 2950 P STREET	NAME(S) AND ADDRESS(ES) IE AIR FORCE		10. SPONSORING/MONITORING AGENCY REPORT NUMBER
WPAFB OH 45433			
12a. DISTRIBUTION AVAILABILITY STA	TEMENT		12b. DISTRIBUTION CODE
13. ABSTRACT (Maximum 200 words)	· · · · · · · · · · · · · · · · · · ·		
14. SUBJECT TERMS			15. NUMBER OF PAGES
			70 16. price code
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATIO OF ABSTRACT	20. LIMITATION OF ABSTRACT
			Standard Form 200 (Day 2.00) (FC)

TABLE OF CONTENTS

.

	Page
List of Tables	iv
List of Figures	ix
Chapters:	
1. INTRODUCTION	1
2. Experimental	
3. Asymmetric Rotor Theory	7
3.1 Linear Polyatomic and Diatomic Molecules	8
3.2 Symmetric Rotor	10
3.3 Asymmetric Rotors	12
3.4 Vibrational States of Nitric Acid	13
ii	

4.	Analysis	16
	4.1 Results	21
5.	Summary	23
Bibli	iography	68

.

iii

LIST OF TABLES

Ta	ble	Page
3.1	Vibrational Modes of Nitric Acid	. 15
5.1	Observed and calculated microwave transition frequencies for the $n = 8$ vibrational state of nitric acid	s . 25
5.1	(Continued) \ldots	. 26
5.1	(Continued) \ldots \ldots \ldots \ldots \ldots \ldots \ldots	. 27
5.1	(Continued) \ldots	. 28
5.1	(Continued) \ldots	. 29
5.1	(Continued) \ldots	. 30

iv

5.1	(Continued) \ldots	31
5.1	(Continued) \ldots	32
5.1	(Continued) \ldots	33
5.1	(Continued) \ldots	34
5.1	(Continued) \ldots	35
5.1	(Continued) \ldots	36
5.1	(Continued) \ldots	37
5.2	Rotational Constants of ν_8 in the S reduced Watson Hamiltonian	38
5.3	Rotational Constants of $ u_8$ in the A reduced Watson Hamiltonian	39
5.4	Observed and calculated microwave transition frequencies for the $n = 7$ vibrational state of nitric acid	40
5.4	(Continued) \ldots	41

v

5.4	(Continued) \ldots	42
5.4	(Continued) \ldots	43
5.4	(Continued) \ldots	44
5.4	(Continued) \ldots	45
5.4	(Continued)	46
5.4	(Continued) \ldots	47
5.4	(Continued)	48
5.4	(Continued)	49
5.4	(Continued) \ldots	50
5.4	(Continued) \ldots	51
5.5	Rotational Constants of ν_7 in the S reduced Watson Hamiltonian	51
5.6	Rotational Constants of ν_7 in the A reduced Watson Hamiltonian	52

vi

5.7	Observed and calculated microwave transition frequencies for the $n = 6$ vibrational state of nitric acid	53
5.7	(Continued) \ldots	54
5.7	(Continued) \ldots	55
5.7	(Continued) \ldots	56
5.7	(Continued) \ldots	57
5.7	(Continued) \ldots	58
5.7	(Continued)	59
5.7	(Continued) \ldots	60
5.7	(Continued)	61
5.7	(Continued) \ldots	62
5.7	(Continued) \ldots	63

vii

5.7	(Continued) \ldots	64
5.7	(Continued) \ldots	65
5.8	Rotational Constants of ν_6 in the S reduced Watson Hamiltonian	66
5.9	Rotational Constants of ν_6 in the A reduced Watson Hamiltonian	67

.

viii

LIST OF FIGURES

Figure		Page
2.1	The FASSST Spectrometer	4
3.1	A Prolate Symmetric Rotor	10
3.2	The Asymmetric Rotor States Labeling	14
4.1	Structure of Nitric Acid	20

 $\mathbf{i}\mathbf{x}$

CHAPTER 1

INTRODUCTION

Nitric Acid has been the subject of a number of spectroscopic investigations because of its chemical significance and its presence in numerous physical systems of practical importance. It is both a common chemical species and an important minor constituent of the terrestrial atmosphere. Spectral features of nitric acid (HNO_3) were first discovered in the Earth's atmosphere by Murcay et al.(1), who initially detected the Q branch of the 7.5 um band. As a result HNO_3 has received considerable spectroscopic attention, both in the microwave and infrared spectral regions (1 - 14). For example, this laboratory has studied the complex spectra of this molecule for well over fifteen years. We have previously analyzed the rotational spectrum of HNO_3 ground vibrational state, ν_6 at $647cm^{-1}$, ν_7 at $579cm^{-1}$, and ν_8 at $762cm^{-1}(2,3,7-11)$. A new Fast Scan Submillimeter Spectroscopic Technique (FASSST) has been developed to replace the more traditional phase locked frequency techniques to measure lines. The advantage of the FASSST system is that it can measure literally thousands of lines in a matter of seconds. The FASSST system is based on the Backward Wave Oscillator (BWO) Tube as the coherent radiation source. In this report we shall add the FASSST spectra (240-370 GHz) to the previous measurements to compile a more complete and accurate tool for remote sensing of the upper

atmosphere. Also, this experiment will be a good barometer of how well the FASSST system acquires spectra. The ν_6 , ν_7 and ν_8 vibrational states have not shown any evidence of perturbation. In all cases, the theoretical fit to the experimental data has been exactly as we have expected.

Nitric acid is a near-oblate asymmetric rotor with strong *a*-type and weaker *b*type transitions. The large dipole moment and rotational constants of the order of 10 GHz and moderate centrifugal distortion contribute to a dense spectrum which is further complicated by the thermally populated vibrational states. The ground state rotational spectrum has been extensively investigated in the past and is well understood. It was studied in the centimeter-wave region by Millen *et al.*(4,5), and by Cox *et al.*(6). The ground state analysis has been extended into the millimeter and submillimeter wave regions by Cazzoli and De Lucia (7), Bowman, Helminger, and De Lucia (8), Messer, Helminger, and De Lucia (9). Recently, Goyette *et al.*(15–17) and Paulse *et al.*(18) studied the effects of pressure broadening on HNO_3 and torsional splitting of its excited vibrational states in the millimeter and submillimeter wave regions.

Each molecule has its own unique spectral signature which is dependent on intermolecular interactions. This makes mm/submm wave spectroscopy a valuable tool used to observe and identify molecules that exist in the atmosphere. Nitric acid has peak rotational absorption in the mm/submm wave region. The near degeneracy of many strong lines in each branch of the ground state provides easily identifiable spectroscopic features: airborne observations of stratospheric emission spectra have detected these features (9,19). This makes nitric acid a prime candidate for remote sensing.

CHAPTER 2

Experimental

Figure (2.1) shows the FASSST system, which uses a voltage tunable BWO as a primary source of radiation, is equipped with an ISTOK OB-30 to cover the 240-370 GHz region. There are two wire grid polarizers. The first polarizer is used to provide a well defined polarization from the output of the overmoded BWO waveguide. The second polarizer is used to split the power of the output of the BWO into the absorption cell and a folded 38.89 m Fabry-Perot (FP) cavity. The cavity is equipped with a mylar beamsplitter which provides fringes for frequency interpolation between reference spectral lines of known frequency. Also there are three InSb photoconduction detectors with three collecting horns to help focus the beam while it travels through the main cell, reference cell, and the FP cavity. These and other aspects of the FASSST system are discussed in detail by Petkie *et al.*(20). The focus here will be on the frequency calibration scheme (21).

The idea for frequency calibration is simple. A fraction of the BWO power is coupled into a FP cavity that generates sharp resonances when an integral number of half wavelengths exists in the cavity (22, 23). As the BWO frequency is swept, the

Figure 2.1: The FASSST Spectrometer.

FP cavity modes have a spacing in frequency of,

$$\Delta = \frac{c}{2nL},$$

where c is the speed of light, L is the length of the FP cavity, and n is the index of refraction (n = 1). For the current design of FASSST, $L \approx 39$ m, and the FP cavity mode spacing is $\Delta \approx 3.854$ MHz.

The frequency calibration scheme could be as simple as having two spectral lines of known frequency somewhere near the opposites ends of the range of frequencies measured and using linear interpolation. However, since the frequency of the BWO is not a linear function of voltage this, straightforward method is not applicable. The small scale structure of the frequency-voltage foundation of the BWO is complex and

creates the first obstacle to accurate calibrations. If the effects of small scale structure are not treated properly, the accurancy of the FASSST system will be approximately 1000 times worse than the required specifications for high resolution spectroscopy. One useful test of linearity is to remove every other FP mode and see how well predicted it is from the remaining modes assuming the frequency is linear between the remaining modes. One can also use every n^{th} mode to calculate the skipped modes in between FP modes and see how well predicted they are. These test show that nonlinearites introduced a << 0.1 MHz of measurement error into the FASSST system. However, with a small FP mode spacing a simple linear interpolation method can be used to measure line frequencies to $\sim \frac{1}{10}$ of the Doppler limited linewidth. If the linear interpolation frequency calibration is to be accurate two important assumptions must be made about the FP cavity:

- the FP mode spacing, Δ , does not vary with frequency,
- and the frequency between two adjacent FP modes can be calculated by a linear interpolation.

The first assumption is valid as long as the FP cavity is carefully designed and no dispersive effects such as water absorption exists. The second assumption depends on the small scale f/v characteristics of the BWO, which must be linear between the FP cavity mode spacing. A non-linearity between FP modes may originate from two different sources: non-linearities in the voltage sweep or a fundamental non-linearity of the f/v characteristics of the BWO. The first effect may be accounted for by scanning at a fast enough rate so that the time between FP modes is short compared to the fundamental frequency on the non-linear voltage. The effect is caused by power supply ripples induced from the 60 Hz AC line; however, when the sweep is

fast enough the BWO freezes the instabilities associated with the power supply and thermal drift. The second consideration involving the characteristics of the BWO can be accounted for by increasing the length of the FP cavity which decreases the distance in frequency between the FP modes. Based on these considerations, the basic FASSST scheme is to: (1) take a fast $(10^4 - 10^5 M Hz/sec)$ scan over the spectral region of interest, (2) include two or more (typically~ 50 are available) reference lines, (3) use the known frequencies of the reference lines to determine the FP cavity mode spacing and absolute frequency, (4) count FP modes to establish the frequency of each fringe, and (5) use linear interpolation between the two nearest FP modes to calculate the frequencies of the unknown lines (20).

.

CHAPTER 3

Asymmetric Rotor Theory

The rotational spectra of molecules are classified as arising from four different molecular structures: diatomic molecules, linear polyatomic molecules, symmetric top molecules, and asymmetric top molecules. It is essential when studying the rotational spectra of molecules that they are categorized according to their principal moments of inertia.

The moment of inertia I of any molecule about any axis through the center of mass is given by

$$I = \sum_{i} m_i r_i^2 \tag{3.1}$$

where m_i and r_i are the mass and distance of atom *i* from the axis. There are three principal axes of inertia *a*, *b*, and *c* with three corresponding moments of inertia I_a, I_b , and I_c . These axes are mutually perpendicular to one another. According to convention the *a* axis has the minimum value of the moment of inertia, while the *c* axis has the maximum value of the moment of inertia. The *b* axis is greater than the *a* axis, but smaller than the *c* axis, such that

$$I_c \ge I_b \ge I_a$$

3.1 Linear Polyatomic and Diatomic Molecules

Linear Polyatomic molecules and diatomic molecules can be treated with the same method. Namely, we shall consider rigid body rotation in space-fixed axes, then small internal vibrations of the nuclei in the ground electronic states, and finally all the degrees of freedom coupled together in electronic spectra. The rotational energy of a rigid body in free space is purely kinetic, so (24)

$$E_{rot} = \frac{1}{2} \sum_{i} m_i (\dot{x}_i^2 + \dot{y}_i^2 + \dot{z}_i^2).$$
(3.2)

This energy is equivalent to that for motion about the three principal axes, each with its associated moment of inertia, in space. The three axes intersect at the center of mass of the molecule. If w_j is the angular velocity about each of these axes, then the rotational energy is given by

$$E_{rot} = I_a \omega_a^2 + I_b \omega_b^2 + I_c \omega_c^2 \tag{3.3}$$

where I_a , I_b , and I_c are the moments of inertia as stated above.

The axis of rotation for diatomic and polyatomic molecule is taken to be the b-axis. The rigid rotor energy levels are given by

$$E_{rot} = BJ(J+1) \tag{3.4}$$

where J is the total angular momentum quantum number and may take on any positive integral value. The rotational constant B is equal to $\frac{\hbar^2}{2I_b}$ and the total angular

momentum is $P = [J(J+1)^{\frac{1}{2}}]\hbar$. Absorption or emission of microwave energy occurs for $\Delta J = +1$. Using Bohr's postulate (25)

$$E_{J'} - E_J = h\nu \tag{3.5}$$

and J' = J + 1, we conclude that the frequency absorbed by a transition between these two energy levels is given by

$$\nu = 2B(J+1) \tag{3.6}$$

The spacing between adjacent absorption lines is equal to 2B.

In diatomic molecules deviations from these equally spaced lines are well accounted for by a vibration-rotation interaction. This occurs when the molecular bond length is being stretch away from its equilibrium position by centrifugal force in a rotating molecule. The faster the molecule rotates the further the masses are displaced from the equilibrium position, leading to an increase in the moment of inertia. The rotation energy of the distorted molecule, including the displacement from equilibrium, is

$$E_{rot} = BJ(J+1) - DJ^2(J+1)^2$$
(3.7)

where D is the centrifugal distortion constant and is always positive for diatomic molecules. The corrected absorption frequency is

$$\nu = 2B(J+1) - 4D(J+1)^3.$$
(3.8)

(a) The rotational angular momentum vector P for a linear molecule

(b) Prolate symmetric rotor CH_3 where P_a is the component along the a axis

Figure 3.1: A Prolate Symmetric Rotor

3.2 Symmetric Rotor

The symmetric-top rotor has two of the principal moments of inertia that are equal and the third is non-zero. There exist two ways in which this can happen. The prolate symmetric top molecules are one solution, in which $I_a < I_b = I_c$ and A > B = C. A prolate top is of the general shape of a football or of a cigar. The other possibility is the oblate symmetric top, in which case $I_a = I_b < I_c$ and A = B > C. An oblate top is of the general shape of a hockey puck or a flying saucer.

In a diatomic or linear polyatomic molecule the rotational angular momentum vector \mathbf{P} lies along the axis of rotation. In a prolate (oblate) symmetric rotor, \mathbf{P} need not be perpendicular to the a(c) axis. In general, it takes up any direction in space and the molecule rotates around \mathbf{P} , pictured in Fig(3.1). The component of \mathbf{P} along the *a* axis is P_a which can only take the values $\hbar K$. This is the projection of

the total angular momentum on the symmetry axis. The rotational term values are given by (26)

$$E_{rot} = BJ(J+1) + (Z-B)K^2$$
(3.9)

where K is a second rotational quantum number. The variable Z corresponds to A and C for the prolate and oblate cases, respectively. The quantum number K, being a projection of J on the principal axis, can take on values ranging from J to -J in unit steps. Thus to find the total number of J sub levels, we first note that each J level has (2J + 1) K states, corresponding to the different possible projections of J on a molecule-fixed axis. Each(J, K) level then has the usual $(2J + 1)M_J$ levels, corresponding to the different possible projections of J on a space-fixed axis. Thus the statistical weight for each J level is $(2J + 1)^2$, rather than the (2J + 1) appropriate to a linear rotor. In a spherical top molecule, all of the $(2J + 1)^2$ levels are truly degenerate because (Z - B) is zero

When the centrifugal distortion effects are taken to account, we have

$$E_{rot} = BJ(J+1) + (Z-B)K^2 - D_J J^2 (J+1)^2 - D_{JK} J (J+1)K^2 - D_K K^4$$
(3.10)

where D_J, D_{JK} , and D_K are the centrifugal distortion constants which are small compared with A, B, and C. The D_J term results from the stretching caused by end-over-end rotation of the molecule, the D_K term results from distortion due to rotation about the symmetry axis, and the D_{JK} term results from the interaction of these two motions.

The selections rules for transitions between energy level for a symmetric rotor are $\Delta J = 0, \pm 1$. Rotational absorption transitions correspond to $\Delta J = +1$. Applying Bohr's postulate again, we derive the formula for the rotational absorption frequencies

$$\nu = 2B(J+1) - 4D_J(J+1)^3 - 2D_{JK}(J+1)K^2$$
(3.11)

where J is the quantum number of the lower transition level.

3.3 Asymmetric Rotors

An asymmetric rotor has all principal moments of inertia unequal.

$$I_c \neq I_b \neq I_a \tag{3.12}$$

However, many asymmetric rotors are near-oblate asymmetric

$$I_c > I_b \simeq I_a$$

or near-prolate asymmetric

$$I_c \simeq I_b > I_a$$

An asymmetric rotor can be characterized by a parameter

$$\kappa = \frac{2B - A - C}{A - C} \tag{3.13}$$

which can take on values between +1 and -1. If κ is near -1, then the rotor is near prolate, and we can use K_p as a good quantum number. The small asymmetry produces a splitting of energy levels for which $K_p > 0$. Similarly, if κ is near +1, then the rotor is near oblate, and we can use K_o as a quantum number: again, there will be an asymmetry doubling for $K_o > 0$. The rotation states are labeled as J_{K_p,K_o} , where K_o and K_p are the K values that the molecule would have in the limiting oblate

and prolate cases, respectively. Nevertheless, by connecting K levels for a given Jof the limiting prolate symmetric top with those of the limiting oblate symmetric top in the ordered sequence-highest to highest, next highest to next highest, and so on, as indicated in Fig(3.2) - one may obtain a qualitative indication of the levels of the asymmetric rotor. This chart also reveals the significance of the aforementioned King, Hainer, and Cross notation (27).

Basically asymmetric rotors can be split into three categories depending on the amount of asymmetry: very asymmetric, nearly prolate, and nearly oblate. There are no simple closed form expressions that can be written for asymmetric molecule due to the fact that the three moments of inertia are not equal to one another. However, the energy levels can be determined since the Schrodinger equation possesses non-trivial solutions for the expansion coefficients only for certain values of λ . The special values of λ , the allowed energy levels for an asymmetric rotor, are those for which the secular determinant vanishes $|H - \mathbf{I}\lambda| = 0$ where \mathbf{I} is a unit matrix. This eigenvalue problem can be solved by diagonalizing the Hamiltonian matrix (27). The resulting diagonal elements are then the energy eigenvalues associated with the rotational Hamiltonian H.

3.4 Vibrational States of Nitric Acid

A molecule has 3N-6 normal modes of vibration, where N is the number of constituent atomic species that comprise the molecule. HNO_3 is composed of 5 atomic species; giving N=5. Therefore there are 9 normal modes of vibration. These are labeled as V1 through V9. McGraw, Bernitt, and Hisatsume (28) mapped out the energies of these vibrational states, included overtones and combinations of these

1

-- · •

Figure 3.2: The Asymmetric Rotor States Labeling

states. A list of these vibrational states which include the structural motions that give rise to each state is given in Table (3.1).

We have previously investigated the millimeter-wave rotational transitions of V_6, V_7 , and V_8 . These are three of the lower lying vibrational states. The reasons these states were chosen are because they are unperturbed by other vibrational states and these levels are located lower in energy. As a result they are thermally populated by Boltzmann statistics at room temperature $e^{\frac{E_y}{kT}}$, thus giving rise to the strongest excited vibrational state rotational transitions.

Mode	$Energy(cm^{-1})$	description
ν_1	3550.0	OH stretch
$ u_2$	1705.6	NO antisymmetric
$ u_3$	1330.7	HON bend
$ u_4$	1324.9	NO symmetric stretch
$ u_5$	878.6	NO_2 deformation
ν_8	762.2	NO_2 out of plane
$ u_6$	646.6	NO' stretch
ν_7	579.0	ONO' bend
ν_9	455.8	NO_2 torsion

Table 3.1: Vibrational Modes of Nitric Acid.

CHAPTER 4

Analysis

We have used Watson's reduced centrifugal distortion Hamiltonian in its A and S form for all our analyses of the vibrational states of nitric acid (14). Through terms of the 8th order in the angular momentum, the Hamiltonian A form is

$$H^{(A)} = H_r + H_d^{(4)} + H_d^{(6)} + H_d^{(8)},$$
(4.1)

$$H_r = 1/2(C+A)P^2 + [B - 1/2(C+A)](P_z^2 - b_o P_-^2), \qquad (4.2)$$

$$H_d^{(4)} = -\Delta_J P^4 - \Delta_{JK} P^2 P_Z^2 - \Delta_K P_Z^4 - 2\delta_J P^2 P_-^2 - \delta_K (P_Z^2 P_-^2 + P_-^2 P_Z^2), \quad (4.3)$$

$$H_{d}^{(6)} = H_{J}P^{6} + H_{JK}P^{4}P_{Z}^{2} + H_{KJ}P^{2}P_{Z}^{4} + H_{K}P_{Z}^{6}$$
$$+2\phi_{J}P^{4}P_{-}^{2} + \phi_{JK}P^{2}(P_{Z}^{2}P_{-}^{2} + P_{-}^{2}P_{Z}^{2})$$
$$+\phi_{K}(P_{Z}^{4}P_{-}^{2} + P_{-}^{2}P_{Z}^{4}), \qquad (4.4)$$

$$H_d^{(8)} = L_J P^8 + L_{JJK} P^6 P_Z^2 + L_{JK} P^4 P_Z^4 + L_{KKJ} P^2 P_Z^6$$

$$+L_{K}P_{Z}^{8} + 2l_{J}P^{6}P_{-}^{2} + l_{JK}P^{4}(P_{Z}^{2}P_{-}^{2} + P^{2}P_{Z}^{2}) +l_{KJ}P^{2}(P_{Z}^{4}P_{-}^{2}P_{Z}^{4}) + l_{K}(P_{Z}^{6}P_{-}^{2} + P_{-}^{2}P_{Z}^{6}),$$
(4.5)

where Δ_J etc. are the quartic distortion coefficients; H_J and ϕ etc. are the sextic distortion coefficients: L_J etc. are the 8th order distortion coefficients; $b_o = \frac{(B_z - B_y)}{(2B_x - B_y - B_z)}$ is Wang's asymmetry parameter with $\kappa = \frac{-1}{b_o}$, and $P^2 = P_x^2 + P_y^2 + P_z^2$. Here, we have used the definition

$$P_{-}^2 = P_x^2 - P_y^2 \tag{4.6}$$

The S form of Watson's reduced centrifugal distortion Hamiltonian is

$$H^{(S)} = H_r + H_d^{(4)} + H_d^{(6)} + H_d^{(8)},$$
(4.7)

$$H_r = 1/2(B+C)P^2 + [A-1/2(B+C)](P_z^2 + 1/4(B-C)(P_+^2 + P_-^2)), \quad (4.8)$$

$$H_{d}^{(4)} = -D_{J}P^{4} - D_{JK}P^{2}P_{Z}^{2} - D_{K}P_{Z}^{4} + d_{1}P^{2}(P_{+}^{2} + P_{-}^{2}) + d_{2}(P_{+}^{4} + P_{-}^{4}), \quad (4.9)$$

$$H_{d}^{(6)} = H_{J}P^{6} + H_{JK}P^{4}P_{Z}^{2} + H_{KJ}P^{2}P_{Z}^{4} + H_{K}P_{Z}^{6} + h_{1}P^{4}(P_{+}^{2} + P_{-}^{2}) + h_{2}P^{2}(P_{+}^{4} + P_{-}^{4}) + h_{3}(P_{+}^{6} + P_{-}^{6}), \quad (4.10)$$

$$H_{d}^{(8)} = L_{J}P^{8} + L_{JJK}P^{6}P_{Z}^{2} + L_{JK}P^{4}P_{Z}^{4} + L_{KKJ}P^{2}P_{Z}^{6}$$
$$+ L_{K}P_{Z}^{8} + l_{1}P^{6}(P_{+}^{2} + P_{-}^{2}) + l_{2}P^{4}(P_{+}^{4} + P_{-}^{4})$$
$$+ l_{3}P^{2}(P_{+}^{6} + P_{-}^{6}) + l_{4}(P_{+}^{8} + P_{-}^{8}), \qquad (4.11)$$

Hillman compared the A- (asymmetric) and S-reduced (symmetric) Watson Hamiltonians in the I^r and III^r representations and determined that the A-reduced, I^r representation provided the lowest rms deviation to the observed spectra, converged

the fastest, and was numerically more stable than the other combinations (29). The program that we used to fit the HNO_3 was obtained from Jet Propulsion Laboratory (JPL). The multi-purpose program; calfit was developed by Pickett of JPL (30). It can fit asymmetric rotors with up to nine interacting states. The nitric acid data set was fit to the A and S reduced Watson Hamiltionians, using the III^l representation. However, we did not come up with conclusive evidence as to which Hamiltionian provides the most stability, speed, and the lowest rms value.

A bootstrap assignment-analysis procedure was used. At each step lines were selected for measurement that provided a maximum of new independent information for the analysis, while having minimum risk of assignment error (3). This amounted to the selection of lines whose prediction uncertainties were small, usually on the order of several megahertz. This procedure was duplicated until several hundred lines of significant strength below J = 60 were measured with an uncertainty of 1 MHz or less.

The strongest features in the nitric acid spectrum are due to

$$\Delta J = 1$$

transitions that are quadruply degenerate. These transitions are of the form

$$J' - n(n, J' - 2n) \to J' - 1 - n(n, J' - 1 - 2n)$$
(4.12)

$$J' - n(n+1, J' - 2n) \to J' - 1 - n(n+1, J' - 1 - 2n)$$
(4.13)

$$J' - n(n, J' - 2n) \to J' - 1 - n(n+1, J' - 1 - 2n)$$
(4.14)

$$J' - n(n+1, J' - 2n) \to J' - 1 - n(n, J' - 1 - 2n)$$
(4.15)

where J' is the maximum J value for the branch and where n = 0, 1, 2, ... These values occur in bands of lines which, in the near oblate asymmetric-rotor limit, are separated

A + B - 4C.

For vibrational states of nitric acid, this number is nearly zero and the bands are closely spaced. The spectra of the several states were initially assigned by using a broadband spectrometer, which made continuous scans of about 1 GHz centered on the frequencies of the strong ground state R-branch series. The spectra around the location of the band head being the most important. The different states then appear as families of equally-spaced lines that were identifiable on the basis of their relative strengths. As a result, the rotational spectra of several vibrational states were identified and assigned in a reasonably straightforward manner. The relative strengths of the absorption lines were used to correlate the different vibrational states with the several assigned spectra. For lines of reasonable strength, the intensity ratios agreed with expectations to about 10 percent (25).

In addition, the lower-order distortion constants are relatively constant among the vibrational states. Because of the extremely crowded nature of this spectrum and the large number of the states involved, we have made extensive use of the procedure in which observed lines are removed one at a time from the data set, the remaining lines were analyzed to predict the frequency of the removed line, and comparisons were then made between the predicted frequency, the calculated uncertainty in the predicted frequency, and the observed transition frequency. Although this procedure does not completely ensure against the inclusion of misassigned lines in the analyses of the several vibrational states, the procedure, combined with substantial redundancy of the data sets, does ensure that any possible misassignments will have no significant effect on the results, as explained by Crownover *et al.*(3)

4.1 Results

The ν_8 vibrational state, which is derived from the NO_2 out-of-plane vibration, lies $762cm^{-1}$ above the ground state and results in transition strengths that are reduced by a factor of about 50.(25) Although the mm/submm spectrum of nitric acid is very crowded, previous analyses of the lower-lying vibrational states allowed us to eliminate the large proportion of stronger lines that did not belong to ν_8 and greatly simplified the assignment. The previously reported analysis of ν_8 assigned 215 new transitions. These covered the range from J = 9 to 46 and from $K_p = 0$ to 21. The rms deviation from the fit of the 215 lines was 0.066 MHz. The additional information from the FASSST spectra provided 265 newly measured lines. The spectral constants that result from the combine analysis of the data are shown in Table (5.2), along with the rms deviation of the fit, 0.082 MHz. Because of correlations among the constants, it is necessary to retain more digits in the spectral constants than indicated by the uncertainties, so that the spectrum can be accurately calculated from the constants.

The ν_7 vibrational state, which is derived from the ONO' bend, lies 579.0cm⁻¹ above the ground state. We have previously reported an analysis of the ν_7 state which also used a phase locked, harmonic generation system (31). In that study about 140 rotational lines in the 100-600 GHz region were identified and fit to a Watson Hamiltonian with an rms deviation of 0.068 MHz (10). In the FASSST system, 510 lines were identified and measured in the 247-375 GHz region by Petkie 1996 (21). These were combined with earlier lines in a Watson analysis with an overall rms deviation of 0.081 KHz.

The ν_6 vibrational state, which is derived from the NO' stretching mode, is the third lowest lying, being centered $647 cm^{-1}$ above the ground state. Previous

measurements of data produced 188 transitions spanning the region from 100-700 GHz (11). These transitions have been combined with the assigned transition from the FASST spectral scan. Over 320 lines have been identified and measured in the 240-375 GHz region. The combined rms deviation of the two sources is 0.090631 MHz. The spectral constants that result from the combine analysis of the data are shown in Table(5.8).

CHAPTER 5

Summary

In this report we have measured the FASSST spectra data from 245 to 370 GHz which has been signaled average as opposed to the one scan taken previously. The analyses of the vibrational states of nitric acid were evaluated by using Watson's reduced centrifugal distortion Hamiltonian in both its A form and S form. The results for ν_7 and ν_8 had comparable rms values as expected; however, the ν_6 analyses did not reproduced the same results. At a quick glance it would seem that the S reduced form is much better than the A reduced form. The difference between the two Hamiltonian's rms values is about 34 KHz. The A reduced and the S reduced Hamiltionian both use commutation relations to constrain the number of coefficients that exist in their higher ordered terms. This reduction results in various P^6 coefficients being folded into other coefficients. How the 6th order distortion coefficients introduces itself into the lower degree terms in the A reduced form and S reduced form differ slightly. The mixing of the P^4 and P^6 terms in the S reduced Watson Hamiltionian does a better job of converging the analysis than the mixing of the A reduced form. It seems more equipped to handle the important higher order effects of the molecule; therefore, the S representation seems to be better suited for the ν_6 analysis. Although, at some limit you would expect the different linear combinations

of both the A and S reduced Watson Hamiltionian parameters to yield the same rms values. However, after further investigation we see that not all the constants in the S reduced form are well determined. The sextic distortion coefficients of the A form are better determined then those from the S form.

An average of 450 transitions was observed for each vibrational state using the FASSST system. These lines are consisted with the theoretical and experimental values of previous experiments using a broadband spectrometer. The analysis of ν_6 , ν_7 and ν_8 is part of a larger project that will compile a complete study of all the excited states of nitric acid in Table(3.1). However, it will include $2\nu_9$ and $3\nu_9$, which are perturbed states of HNO_3 , but exclude ν_1 because of its distance from the ground state. The FASSST system will be used to acquire all necessary spectra.
Table 5.1: Observed and calculated microwave
transition frequencies for the $n = 8$ vibrational
state of nitric acid.

$\overline{J'}$	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
7	5	3	\leftarrow	6	5	2	141377.470	9	0.101
7	5	2	\leftarrow	6	5	1	155636.044	56	0.101
8	3	5	←	7	3	4	143830.360	-13	0.100
9	1	8	\leftarrow	8	1	7	131352.490	-7	0.100
9	4	6	\leftarrow	8	4	5	156271.044	-9	0.100
10	0	10	\leftarrow	9	0	9	131430.908	-107	0.100
10	1	9	\leftarrow	9	1	8	143871.240	-109	0.100
10	2	8	\leftarrow	9	2	7	156315.927	-5	0.100
10	10	1	\leftarrow	9	9	0	257175.014	100	0.101
10	10	0	\leftarrow	9	9	1	257448.600	-22	0.101
11	0	11	\leftarrow	10	0	10	143950.599	6	0.101
11	1	10	←	10	1	9	156390.015	23	0.101
11	2	9	\leftarrow	10	2	8	168832.051	-6	0.100
11	4	7	←	10	4	6	193767.578	-32	0.100
11	5	7	\leftarrow	10	5	6	193764.941	-60	0.100
12	0	12	\leftarrow	11	0	11	156469.736	-64	0.100
12	1	11	←	11	1	10	168908.302	-17	0.100
12	2	10	←	11	2	9	181348.486	54	0.100
12	6	7	←	11	6	6	218773.640	60	0.100
12	10	3	\leftarrow	11	10	2	254807.557	41	0.101
12	11	2	\leftarrow	11	11	1	252759.725	-11	0.101
13	0	13	\leftarrow	12	0	12	168988.574	-29	0.100
13	2	11	\leftarrow	12	2	10	193864.697	-35	0.100
13	4	9	\leftarrow	12	4	8	218764.086	-78	0.100
13	5	8	←	12	5	7	231252.685	58	0.100
13	7	6	\leftarrow	12	7	5	256840.649	-50	0.101
13	8	5	\leftarrow	12	8	4	272070.832	-65	0.101
13	9	4	\leftarrow	12	9	3	287812.150	205	0.100
13	10	4	\leftarrow	12	10	3	275348.295	-65	0.101
13	10	3	\leftarrow	12	10	2	290177.462	-105	0.100
13	1	12	\leftarrow	13	1	13	155453.693	79	0.101
14	0	14	←-	13	0	13	181506.884	-84	0.100
14	1	13	←	13	1	12	193943.701	-63	0.100
14	2	12	\leftarrow	13	2	11	206380.850	77	0.100
14	3	11	\leftarrow	13	3	10	218820.996	-21	0.100
14	4	10	←-	13	4	9	231270.458	27	0.100
14	6	8	\leftarrow	13	6	7	256262.987	-135	0.100

Table 5.1: (Continued)

J'	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
14	7	8	\leftarrow	13	7	7	256260.155	-251	0.100
14	9	6	←	13	9	5	281411.519	13	0.100
14	3	11	\leftarrow	14	3	12	142855.181	26	0.101
14	1	13	\leftarrow	14	1	14	167890.430	21	0.101
15	0	15	\leftarrow	14	0	14	194024.853	-9	0.100
15	1	14	←	14	1	13	206460.742	-37	0.100
15	3	12	←	14	3	11	231334.243	21	0.100
15	4	11	\leftarrow	14	4	10	243778.655	61	0.100
15	5	10	\leftarrow	14	5	9	256238.196	24	0.100
15	8	7	←	14	8	6	294119.995	103	0.100
15	10	6	\leftarrow	14	10	5	306372.247	75	0.100
15	2	13	←	15	2	14	167816.145	56	0.101
16	0	16	←	15	0	15	206542.216	-36	0.100
16	1	15	←-	15	1	14	218977.197	-69	0.100
16	2	14	\leftarrow	15	2	13	231411.620	3	0.100
16	4	12	\leftarrow	15	4	11	256287.750	77	0.100
16	5	11	←-	15	5	10	268739.099	-23	0.100
16	4	13	\leftarrow	15	4	12	243847.323	52	0.105
16	6	10	\leftarrow	15	6	9	281213.808	16	0.100
16	8	8	\leftarrow	15	8	7	306375.647	19	0.100
16	14	2	\leftarrow	15	12	3	447382.455	-80	0.100
16	6	10	\leftarrow	16	6	11	130009.397	24	0.101
16	3	13	\leftarrow	16	3	14	167728.633	32	0.101
17	0	17	\leftarrow	16	0	16	219059.033	-71	0.100
17	1	16	←-	16	1	15	231493.208	20	0.100
17	2	15	←	16	2	14	243926.233	-30	0.100
17	3	14	\leftarrow	16	3	13	256359.912	-69	0.100
17	4	13	\leftarrow	16	4	12	268797.053	-38	0.100
17	5	12	\leftarrow	16	5	11	281242.366	-4	0.100
17	6	11	←	16	6	10	293704.638	111	0.100
17	9	8	\leftarrow	16	9	7	331502.247	86	0.100
17	10	8	←	16	10	7	331449.968	-138	0.100
17	11	7	←	16	11	6	344197.593	176	0.100
17	7	10	\leftarrow	17	7	11	129817.654	34	0.101
17	6	11	←	17	6	12	142471.550	21	0.101
18	2	16	←	17	2	15	256440.270	-45	0.100
18	3	15	\leftarrow	17	3	14	268872.213	-13	0.100
18	3	16	←-	17	3	15	256440.255	-60	0.100
18	4	14	<u>←</u>	17	4	13	281306.478	-8	0.100

Table 5.1: (Continued)

$\overline{J'}$	K'_A	K'_C		<i>J</i> ″	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
18	5	13	\leftarrow	17	5	12	293746.826	-8	0.100
18	7	11	\leftarrow	17	7	10	318676.966	-40	0.100
18	9	9	\leftarrow	17	9	8	343822.705	88	0.100
18	10	9	\leftarrow	17	10	8	343816.210	192	0.100
18	17	1	\leftarrow	17	16	2	459868.244	-22	0.100
18	17	2	\leftarrow	17	16	1	459813.127	2	0.100
18	2	17	←	17	2	16	244008.451	-54	0.105
18	7	11	\leftarrow	18	7	12	142294.880	5	0.101
19	1	18	←	18	1	17	256523.095	-89	0.100
19	2	17	\leftarrow	18	2	16	268953.776	51	0.100
19	3	16	\leftarrow	18	3	15	281383.876	-31	0.100
19	7	12	←	18	8	11	331161.394	-62	0.105
19	4	15	\leftarrow	18	4	14	293815.576	-38	0.100
19	6	13	\leftarrow	18	6	12	318697.568	-20	0.100
19	10	9	\leftarrow	18	10	8	368917.197	29	0.100
19	11	8	\leftarrow	18	11	7	382005.469	34	0.100
19	11	9	\leftarrow	18	11	8	368900.579	17	0.100
19	12	8	\leftarrow	18	12	7	381748.014	95	0.100
19	1	19	\leftarrow	18	1	18	244091.119	51	0.105
19	17	2	\leftarrow	19	15	5	142666.830	65	0.101
20	1	19	\leftarrow	20	1	20	242491.832	96	0.104
20	8	12	\leftarrow	19	9	11	356129.385	40	0.105
20	8	13	←	19	8	12	343650.513	-84	0.105
20	5	16	←	19	4	15	306324.353	47	0.105
20	0	20	\leftarrow	19	0	19	· 256606.005	-108	0.100
20	1	19	\leftarrow	19	1	18	269037.255	63	0.100
20	1	20	\leftarrow	19	1	19	256606.176	62	0.100
20	2	18	\leftarrow	19	2	17	281466.431	-13	0.100
20	5	15	←	19	5	14	318757.007	32	0.100
20	6	14	←	19	6	13	331196.837	-59	0.100
20	11	9	\leftarrow	19	11	8	394060.819	-91	0.100
20	17	3	\leftarrow	20	15	6	143035.195	-5	0.101
21	8	14	\leftarrow	20	8	13	356142.508	-76	0.105
21	7	15	←	20	7	14	343696.898	-43	0.105
21	1	20	\leftarrow	20	1	19	281550.390	-101	0.100
2 1	2	19	←	20	2	18	293978.454	16	0.100
21	4	17	←	20	4	16	318832.433	3	0.100
21	5	16	\leftarrow	20	5	15	331261.971	52	0.100
21	8	13	\leftarrow	20	8	12	368607.180	-86	0.100

ł

27

.

Table 5.1: (Continued)

J'	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
21	9	12	\leftarrow	20	9	11	381105.625	98	0.100
21	14	7	\leftarrow	20	14	6	450507.963	-20	0.100
21	15	7	←	20	15	6	443872.344	-7	0.100
21	16	5	\leftarrow	20	16	4	470529.270	93	0.100
21	16	6	\leftarrow	20	16	5	450926.531	48	0.100
21	17	4	←	20	17	3	457842.046	37	0.100
21	17	5	(20	17	4	451191.356	54	0.100
21	18	3	\leftarrow	20	18	2	448296.276	111	0.100
21	18	4	\leftarrow	20	18	3	447387.561	113	0.100
21	19	2	←	20	19	1	443214.733	100	0.100
21	1	20	\leftarrow	21	1	21	254921.643	-92	0.101
22	3	19	←	22	3	20	242304.935	-45	0.104
22	6	16	\leftarrow	21	6	15	356197.217	-16	0.105
22	0	22	\leftarrow	21	0	21	281634.159	-11	0.100
22	1	21	\leftarrow	21	1	20	294062.988	-62	0.100
22	4	18	←	21	4	17	331339.857	-31	0.100
22	5	17	\leftarrow	21	5	16	343766.438	-28	0.100
22	10	12	\leftarrow	21	10	11	406092.441	70	0.100
22	13	9	\leftarrow	21	13	8	444570.778	80	0.100
22	14	8	←	21	14	7	459130.123	83	0.100
22	14	9	\leftarrow	21	14	8	444385.264	-19	0.100
22	15	7	\leftarrow	21	15	6	477988.882	68	0.100
22	15	8	\leftarrow	21	15	7	457292.928	30	0.100
22	16	7	\leftarrow	21	16	6	468253.552	40	0.100
22	17	6	←-	21	17	5	473581.978	-8	0.100
22	18	4	\leftarrow	21	18	3	476895.452	7	0.100
22	18	5	←-	21	18	4	472340.032	52	0.100
22	20	2	\leftarrow	21	20	1	463852.096	-5	0.100
22	20	3	←-	21	20	2	463817.479	-11	0.100
22	2	20	\leftarrow	22	2	21	254829.744	68	0.101
22	19	4	\leftarrow	22	17	5	130231.509	75	0.101
22	1	21	\leftarrow	22	1	22	267350.458	-157	0.101
23	4	19	\leftarrow	23	4	20	242196.665	-78	0.104
23	6	18	\leftarrow	22	5	17	356270.433	-25	0.105
23	0	23	\leftarrow	22	0	22	294147.054	-62	0.100
23	2	21	\leftarrow	22	2	20	319000.142	57	0.100
23	3	20	\leftarrow	22	3	19	331423.541	-107	0.100
23	4	19	\leftarrow	22	4	18	343846.711	109	0.100
23	6	17	\leftarrow	22	6	16	368697.386	-39	0.100

L

Table 5.1: (Continued)

J'	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
23	9	14	\leftarrow	22	9	13	406040.328	11	0.100
23	13	10	\leftarrow	22	13	9	456600.703	-69	0.100
23	14	9	\leftarrow	22	14	8	469997.771	-20	0.100
23	14	10	\leftarrow	22	14	9	456571.990	-98	0.100
23	15	9	\leftarrow	22	15	8	469623.976	28	0.100
23	16	8	\leftarrow	22	16	7	482371.676	112	0.100
23	19	5	\leftarrow	22	19	4	493256.693	-7	0.100
23	20	3	\leftarrow	22	20	2	488972.598	-47	0.100
23	20	4	←	22	20	3	488662.546	-79	0.100
23	21	2	\leftarrow	22	21	1	484497.938	-111	0.100
23	21	3	\leftarrow	22	21	2	484479.657	60	0.100
23	3	20	\leftarrow	23	3	21	254728.635	90	0.101
23	1	22	←-	23	1	23	279778.193	-142	0.101
23	2	21	←	23	2	22	267254.691	-233	0.101
24	1	23	\leftarrow	23	1	22	319085.800	-15	0.100
24	2	22	\leftarrow	23	2	21	331509.618	-47	0.100
24	3	21	\leftarrow	23	3	20	343931.578	4	0.100
24	5	19	\leftarrow	23	5	18	368773.701	-70	0.100
24	6	18	\leftarrow	23	6	17	381197.301	32	0.100
24	11	13	\leftarrow	23	11	12	443516.076	· 10	0.100
24	14	11	\leftarrow	23	14	10	468826.338	-33	0.100
24	2	22	\leftarrow	24	2	23	279678.790	15	0.101
24	5	20	\leftarrow	24	3	21	254617.719	48	0.101
24	3	21	\leftarrow	24	3	22	267150.377	-74	0.101
25	0	25	←-	24	0	24	319170.731	47	0.100
25	1	24	\leftarrow	24	1	23	331595.970	15	0.100
25	3	22	\leftarrow	24	4	21	356438.512	-92	0.105
25	2	23	←-	24	2	22	344018.400	28	0.100
25	4	21	←-	24	4	20	368857.505	-20	0.100
25	10	15	\leftarrow	24	10	14	443459.055	42	0.100
25	12	13	\leftarrow	24	12	12	468505.238	-21	0.100
25	5	20	\leftarrow	25	5	21	254496.354	4	0.101
25	1	24	\leftarrow	25	1	25	304630.201	78	0.101
25	4	21	\leftarrow	25	4	22	267036.533	-57	0.101
25	3	22	\leftarrow	25	3	23	279570.629	-55	0.101
25	2	23	←-	25	2	24	292101.183	-9	0.101
26	0	26	←	25	1	25	331681.269	29	0.105
26	4	23	←	25	4	22	368944.729	25	0.105
26	1	25	\leftarrow	25	1	24	344105.191	-29	0.100

Table 5.1: (Continued)

$\overline{J'}$	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
$\overline{26}$	6	20	\leftarrow	25	6	19	406195.161	-30	0.100
26	10	16	←	25	10	15	455928.005	83	0.100
26	11	15	←	25	11	14	468405.077	31	0.100
26	6	20	←	26	6	21	254363.789	-51	0.101
26	1	25	←	26	1	26	317054.059	-45	0.101
26	3	24	\leftarrow	26	1	25	304522.166	26	0.101
26	4	22	\leftarrow	26	4	23	279453.499	-13	0.101
26	5	21	←	26	5	22	266912.866	161	0.101
26	3	23	\leftarrow	26	3	24	291989.135	-85	0.101
27	0	27	←	26	0	26	344190.937	4	0.100
27	2	25	\leftarrow	26	2	24	369033.039	19	0.100
27	8	19	\leftarrow	26	8	18	443530.217	175	0.100
27	10	17	\leftarrow	26	10	16	468400.014	11	0.100
27	11	16	←	26	11	15	480861.882	84	0.100
27	4	24	←-	27	2	25	304405.974	-58	0.101
27	1	26	\leftarrow	27	1	27	329476.846	93	0.101
27	2	25	←	27	2	26	316941.612	34	0.101
27	7	20	\leftarrow	27	7	21	254219.341	-25	0.101
27	6	21	←	27	6	22	266778.140	14	0.101
27	4	23	\leftarrow	27	4	24	291868.442	11	0.101
28	0	28	←	28	2	27	341898.064	40	0.100
28	9	20	\leftarrow	28	7	21	254062.048	-62	0.101
28	4	24	\leftarrow	28	4	25	304281.222	-114	0.101
28	7	21	\leftarrow	28	7	22	266632.292	139	0.101
28	6	22	\leftarrow	28	6	23	279189.838	261	0.101
28	5	23	←	28	5	2 4	291738.438	142	0.101
28	4	25	\leftarrow	28	2	26	316820.930	-160	0.101
28	2	26	\leftarrow	28	2	27	329359.468	0	0.101
28	1	27	\leftarrow	27	1	26	369121.034	30	0.100
28	2	26	\leftarrow	27	2	25	381538.927	34	0.100
28	4	24	\leftarrow	27	4	23	406366.809	-47	0.100
28	7	21	←-	27	7	20	443602.718	7	0.100
28	8	20	←	27	8	19	456018.958	76	0.100
28	10	18	←	27	10	17	480874.145	37	0.100
29	0	29	\leftarrow	28	0	28	369207.693	88	0.100
29	1	28	\leftarrow	29	3	27	341775.937	170	0.100
29	6	23	\leftarrow	28	6	22	443685.863	4	0.100
29	7	22	\leftarrow	28	7	21	456095.265	-15	0.100
29	8	21	\leftarrow	28	8	20	468507.232	11	0.100

Table 5.1: (Continued)

$\overline{J'}$	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
$\overline{29}$	11	18	\leftarrow	28	11	17	505787.970	-42	0.100
29	9	20	\leftarrow	29	9	21	253891.233	14	0.101
29	5	24	\leftarrow	29	5	25	304147.545	-23	0.101
29	1	28	\leftarrow	29	1	29	354318.035	162	0.101
29	5	25	\leftarrow	29	3	26	316692.191	-22	0.101
29	3	26	\leftarrow	29	3	27	329234.334	-27	0.101
29	7	22	\leftarrow	29	7	23	279041.515	-58	0.101
29	6	23	←	29	6	24	291598.145	-115	0.101
29	8	21	\leftarrow	29	8	22	266473.999	-52	0.101
30	0	30	←	29	0	29	381714.568	49	0.100
30	2	28	\leftarrow	30	4	27	341645.801	-9	0.100
30	5	25	←-	29	5	24	443774.777	0	0.100
30	8	22	\leftarrow	29	8	21	480994.901	31	0.100
30	7	23	\leftarrow	29	7	22	468586.829	-86	0.100
30	9	21	\leftarrow	29	9	20	493406.689	-17	0.100
30	11	20	←	30	9	21	253705.713	-77	0.101
30	7	24	←	30	5	25	304004.246	24	0.101
30	2	28	\leftarrow	30	2	29	354190.382	-52	0.101
30	5	25	\leftarrow	30	5	26	316554.540	37	0.101
30	9	21	\leftarrow	30	9	22	266303.068	12	0.101
30	8	22	\leftarrow	30	8	23	278882.057	51	0.101
30	7	23	\leftarrow	30	7	24	291447.566	-183	0.101
31	1	30	←	30	1	29	406637.337	25	0.100
31	3	28	\leftarrow	31	5	27	341507.832	43	0.100
31	4	27	←	30	4	26	443866.628	-18	0.100
31	5	26	\leftarrow	30	5	25	456271.133	-100	0.100
31	6	25	←	30	6	24	468674.518	15	0.100
31	7	24	←	30	7	23	481077.522	0	0.100
31	8	23	\leftarrow	30	8	22	493481.618	-58	0.100
31	9	22	←	30	9	21	505888.767	-33	0.100
31	7	24	\leftarrow	31	7	25	303850.907	138	0.101
31	11	20	\leftarrow	31	11	21	253504.715	-170	0.101
31	5	26	←	31	5	27	328959.014	-75	0.101
31	6	25	←-	31	6	26	316407.563	72	0.101
31	9	22	\leftarrow	31	9	23	278710.090	-89	0.101
31	8	23	\leftarrow	31	8	24	291286.167	6	0.101
31	10	21	\leftarrow	31	10	22	266118.359	0	0.101
31	4	28	\leftarrow	31	2	29	354055.510	108	0.101
32	0	32	\leftarrow	31	0	31	406725.337	-1	0.100

Table 5.1: (Continued)

J'	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
32	3	29	\leftarrow	31	3	28	443959.600	-24	0.100
32	4	28	\leftarrow	31	4	27	456364.167	-102	0.100
32	4	28	\leftarrow	32	6	27	341361.184	-135	0.100
32	9	24	←	32	7	25	303686.668	8	0.101
32	7	26	\leftarrow	32	5	27	328808.010	-73	0.101
32	7	25	\leftarrow	32	7	26	316250.740	45	0.101
32	11	21	\leftarrow	32	11	22	265919.034	-88	0.101
32	10	22	←-	32	10	23	278525.370	0	0.101
32	9	23	\leftarrow	32	9	24	291112.791	-72	0.101
32	4	28	\leftarrow	32	4	29	353912.509	75	0.101
32	5	27	\leftarrow	31	5	26	468766.428	-71	0.100
32	6	26	\leftarrow	31	6	25	481167.084	-7	0.100
33	2	31	←	32	2	30	444052.458	50	0.100
33	3	30	\leftarrow	32	3	29	456458.145	-22	0.100
33	5	28	\leftarrow	33	7	27	341206.033	27	0.100
33	14	20	\leftarrow	33	12	21	253052.777	134	0.101
33	7	26	←	33	7	27	328647.508	-65	0.101
33	9	24	←	33	9	25	303511.393	73	0.101
33	8	25	\leftarrow	33	8	26	316083.536	-74	0.101
33	11	22	\leftarrow	33	11	23	278326.774	-48	0.101
33	10	23	←	33	10	24	290927.341	137	0.101
33	12	21	\leftarrow	33	12	22	265704.378	-84	0.101
33	5	28	←-	33	5	29	353761.101	-73	0.101
33	6	27	\leftarrow	32	6	26	493658.453	-1	0.100
34	1	33	←	33	1	32	444143.990	-5	0.100
3 4	2	32	\leftarrow	33	2	31	456551.656	-51	0.100
34	3	31	←	33	3	30	468955.428	-63	0.100
34	9	25	←-	34	9	26	315905.481	-231	0.101
34	8	27	\leftarrow	34	6	28	341041.535	100	0.101
34	3	31	\leftarrow	34	5	30	378715.161	-120	0.100
3 4	10	24	←	34	10	25	303324.009	-144	0.101
34	13	21	←	34	13	22	265473.503	46	0.101
34	11	23	\leftarrow	34	11	24	290728.644	150	0.101
34	12	22	\leftarrow	34	12	23	278113.859	116	0.101
34	14	20	←	34	14	21	252799.229	51	0.101
34	6	28	\leftarrow	34	6	29	353601.272	15	0.101
35	0	35	\leftarrow	34	0	34	444233.557	-7	0.100
35	1	34	\leftarrow	34	1	33	456644.007	75	0.100
35	2	33	←-	3 4	2	32	469049.801	5	0.100

.

Table 5.1: (Continued)

$\overline{J'}$	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
35	4	31	\leftarrow	34	4	30	493849.601	-97	0.100
35	4	31	\leftarrow	35	6	30	378553.650	-21	0.100
35	13	22	\leftarrow	35	13	23	277885.486	181	0.101
35	9	26	←-	35	9	27	328296.023	-146	0.101
35	10	25	\leftarrow	35	10	26	315716.547	92	0.101
35	11	24	\leftarrow	35	11	25	303124.292	-244	0.101
35	12	23	\leftarrow	35	12	24	290515.936	-85	0.101
35	14	21	\leftarrow	35	14	22	265225.111	-26	0.101
35	7	28	\leftarrow	35	9	27	340867.147	-30	0.100
35	15	20	←	35	15	21	252526.057	80	0.101
36	1	35	\leftarrow	35	1	34	469142.689	21	0.100
36	2	34	←-	35	2	33	481546.584	-53	0.100
36	3	33	\leftarrow	35	3	32	493946.320	-27	0.100
36	5	31	←-	36	7	30	378383.668	-36	0.100
36	11	25	←	36	11	26	315515.272	3	0.101
36	12	24	←	36	12	25	302911.827	5	0.101
36	15	21	←	36	15	22	264958.337	-154	0.101
36	14	22	←	36	14	23	277640.487	-157	0.101
36	13	23	←	36	13	24	290289.058	18	0.101
36	8	28	\leftarrow	36	10	27	340682.793	3	0.100
36	16	20	\leftarrow	36	16	21	252231.794	-43	0.101
36	11	26	←-	36	9	27	328104.308	16	0.101
36	8	28	\leftarrow	36	8	29	353253.877	-20	0.101
37	0	37	\leftarrow	36	0	36	469233.402	67	0.100
37	1	36	\leftarrow	36	1	35	481640.115	-56	0.100
37	2	35	\leftarrow	36	2	34	494042.107	-95	0.100
37	11	26	\leftarrow	37	11	27	327900.982	41	0.101
37	12	25	←	37	12	26	315301.471	-90	0.101
37	13	24	\leftarrow	37	13	25	302685.351	18	0.101
37	9	28	\leftarrow	37	11	27	340487.888	79	0.100
37	9	28	\leftarrow	37	9	29	353065.587	-60	0.101
37	15	22	←	37	15	23	277378.854	-1	0.101
37	14	23	←	37	14	24	290046.709	-61	0.101
37	16	21	\leftarrow	37	16	22	264672.463	7	0.101
37	17	20	←	37	17	21	251915.463	-28	0.101
38	0	38	←-	37	0	37	481731.519	111	0.100
3 8	1	37	\leftarrow	37	1	36	494136.404	-5	0.100
38	13	26	←-	38	11	27	327685.618	44	0.101
38	14	24	←	3 8	14	25	302444.264	-100	0.101

Table 5.1: (Continued)

J'	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
38	13	25	\leftarrow	38	13	26	315074.654	-65	0.101
38	7	31	←	38	9	30	378017.405	42	0.100
38	10	28	\leftarrow	38	10	29	352867.189	70	0.101
38	16	22	\leftarrow	38	16	23	277098.824	-168	0.101
38	17	21	←	38	17	22	264365.895	-17	0.101
38	18	20	\leftarrow	38	18	21	251575.588	-18	0.101
3 8	15	23	←-	38	15	24	289788.303	-99	0.101
39	1	38	←-	38	1	37	506631.408	59	0.100
39	15	24	\leftarrow	39	15	25	302188.086	-97	0.101
39	12	27	←-	39	12	28	340064.241	114	0.101
39	14	25	\leftarrow	39	14	26	314834.185	84	0.101
39	13	26	←	39	13	27	327457.694	64	0.101
39	8	31	\leftarrow	39	10	30	377820.404	116	0.100
39	19	20	←	39	19	21	251210.852	78	0.101
39	11	28	\leftarrow	39	11	29	352657.852	-15	0.101
39	18	21	←	39	18	22	264037.762	69	0.101
39	16	23	\leftarrow	39	16	24	289513.107	21	0.101
40	0	40	\leftarrow	39	0	39	506723.766	0	0.100
40	1	39	\leftarrow	39	1	38	519125.009	51	0.100
40	16	24	\leftarrow	40	16	25	301916.045	20	0.101
40	15	25	\leftarrow	40	15	26	314579.128	88	0.101
40	12	28	\leftarrow	40	12	29	352437.419	-14	0.101
40	14	26	\leftarrow	40	14	27	327216.503	-19	0.101
40	20	20	\leftarrow	40	20	21	250819.558	50	0.101
40	18	22	←	40	18	23	276481.012	-17	0.101
40	17	23	←	40	17	24	289219.908	-24	0.101
40	19	21	\leftarrow	40	19	22	263686.475	-85	0.101
40	13	27	←	40	13	28	339834.377	-33	0.101
41	0	41	\leftarrow	40	0	40	519217.987	-1	0.100
41	17	24	\leftarrow	41	17	25	301626.942	-147	0.101
41	16	25	(41	16	26	314308.888	47	0.101
41	13	28	\leftarrow	41	13	29	352205.254	-86	0.101
41	21	20	\leftarrow	41	21	21	250400.168	-66	0.101
41	20	21	←-	41	20	22	263311.184	-35	0.101
41	19	22	\leftarrow	41	19	23	276140.723	-78	0.101
41	18	23	←	41	18	24	288908.049	31	0.101
41	14	27	\leftarrow	41	14	28	339592.094	26	0.101
42	5	37	←	42	7	36	452665.134	19	0.100
42	18	24	\leftarrow	42	18	25	301320.441	-102	0.101

Table 5.1: (Continued)

$\overline{J'}$	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
42	16	26	\leftarrow	42	16	27	326692.400	39	0.101
42	17	25	\leftarrow	42	17	26	314022.815	32	0.101
42	14	28	\leftarrow	42	14	29	351961.222	128	0.101
42	22	20	\leftarrow	42	22	21	249951.280	-7	0.101
42	21	21	←-	42	21	22	262910.179	-121	0.101
42	20	22	←	42	20	23	275778.369	133	0.101
42	19	23	\leftarrow	42	19	24	288576.460	91	0.101
42	15	27	←	42	15	28	339336.426	-116	0.101
43	19	24	\leftarrow	43	19	25	300995.661	143	0.101
43	17	26	\leftarrow	43	17	27	326408.133	118	0.101
43	18	25	\leftarrow	43	18	26	313720.046	-64	0.101
43	15	28	←-	43	15	29	351704.177	-3	0.101
43	21	22	\leftarrow	43	21	23	275392.291	161	0.101
43	22	21	←-	43	22	22	262482.397	35	0.101
43	23	20	\leftarrow	43	23	21	249471.012	112	0.101
43	20	23	\leftarrow	43	20	24	288224.015	44	0.101
43	16	27	\leftarrow	43	16	28	339067.379	125	0.101
44	24	20	\leftarrow	44	24	21	248957.201	13	0.104
44	19	25	←-	44	19	26	313399.776	-264	0.101
44	6	38	\leftarrow	44	8	37	464814.343	-27	0.100
44	16	28	\leftarrow	44	16	29	351434.071	2	0.101
44	23	21	\leftarrow	44	23	22	262026.040	165	0.101
44	7	37	\leftarrow	44	9	36	452228.372	79	0.100
44	22	22	\leftarrow	44	22	23	274981.190	-29	0.101
44	21	23	\leftarrow	44	21	24	287849.772	13	0.101
44	20	24	\leftarrow	44	20	25	300651.134	31	0.101
44	17	27	\leftarrow	44	17	28	338783.488	-113	0.101
44	19	26	\leftarrow	44	17	27	326107.817	-106	0.101
45	26	19	←	45	26	20	235109.616	-30	0.104
45	25	20	\leftarrow	45	25	21	248408.178	3 1	0.104
45	20	25	←	45	20	26	313061.752	0	0.101
45	8	37	\leftarrow	45	10	36	451997.265	70	0.100
45	17	28	\leftarrow	45	17	29	351150.172	-34	0.101
45	24	21	\leftarrow	45	24	22	261539.034	-189	0.101
45	19	26	\leftarrow	45	19	27	325791.337	-36	0.101
45	24	22	\leftarrow	45	22	23	274544.145	-27	0.101
45	21	24	\leftarrow	45	21	25	300286.337	-9	0.101
45	22	23	\leftarrow	45	22	24	287452.626	11	0.101
45	18	27	\leftarrow	45	18	28	338484.954	-6	0.101

35 ્

Table 5.1: (Continued)

$\overline{J'}$	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
$\overline{46}$	25	21	\leftarrow	46	25	22	261020.603	-91	0.101
46	21	25	←-	46	21	26	312704.387	-6	0.101
46	20	26	\leftarrow	46	20	27	325457.587	-36	0.101
46	25	22	\leftarrow	46	23	23	274079.527	-57	0.101
46	18	28	←-	46	18	29	350851.848	-172	0.101
46	8	38	\leftarrow	46	10	37	464347.390	48	0.100
46	23	23	←	46	23	24	287031.574	208	0.101
46	22	24	←	46	22	25	299900.469	213	0.101
46	19	27	\leftarrow	46	19	28	338170.812	130	0.101
47	27	20	\leftarrow	47	27	21	247195.428	70	0.104
47	22	25	←	47	22	26	312327.130	59	0.101
47	22	26	←	47	20	27	325105.921	20	0.101
47	25	22	\leftarrow	47	25	23	273585.905	-66	0.101
47	26	21	←	47	26	22	260468.258	-207	0.101
47	23	24	\leftarrow	47	23	25	299491.863	76	0.101
47	24	23	←	47	24	24	286584.858	80	0.101
47	20	27	\leftarrow	47	20	28	337840.036	-54	0.101
48	28	20	←	48	28	21	246526.902	50	0.104
48	23	25	\leftarrow	48	23	26	311928.888	37	0.101
48	21	27	\leftarrow	48	21	28	337492.511	27	0.101
48	22	26	←	48	22	27	324735.503	103	0.101
48	27	21	\leftarrow	48	27	22	259880.483	-113	0.101
48	26	22	\leftarrow	48	26	23	273061.741	-20	0.101
48	20	28	←	48	20	29	350210.312	34	0.101
48	25	23	\leftarrow	48	25	24	286111.627	75	0.101
48	24	24	\leftarrow	48	24	25	299059.724	-122	0.101
49	29	20	\leftarrow	49	29	21	245813.648	185	0.104
49	25	24	\leftarrow	49	25	25	298603.219	-68	0.101
49	22	27	\leftarrow	49	22	28	337127.005	-125	0.101
49	27	22	\leftarrow	49	27	23	272505.442	150	0.101
49	24	26	\leftarrow	49	22	27	324345.491	211	0.101
49	26	23	\leftarrow	49	26	24	285610.299	-18	0.101
49	28	21	\leftarrow	49	28	22	259254.867	-149	0.101
49	24	25	\leftarrow	49	24	26	311508.571	-185	0.101
50	30	20	\leftarrow	50	30	21	245052.133	-192	0.104
50	27	23	\leftarrow	50	27	24	285079.690	59	0.101
50	24	27	\leftarrow	50	22	28	336743.179	-91	0.101
50	29	22	\leftarrow	50	27	23	271915.052	259	0.101
50	26	24	~	50	26	25	298120.854	-49	0.101

Table 5.1: (Continued)

J'	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
$\overline{51}$	31	20	\leftarrow	51	31	21	244240.369	36	0.104
51	29	22	\leftarrow	51	29	23	271288.186	-198	0.101
51	28	23	\leftarrow	51	28	24	284518.130	169	0.101
51	27	24	\leftarrow	51	27	25	297611.698	271	0.101
51	23	28	\leftarrow	51	23	29	349124.429	-178	0.101
51	30	21	\leftarrow	51	30	22	257881.627	-75	0.101
52	2 4	28	\leftarrow	52	24	29	348727.258	101	0.101
52	30	22	←	52	30	23	270623.979	-81	0.101
52	28	24	\leftarrow	52	28	25	297073.553	33	0.101
52	30	23	\leftarrow	52	28	24	283923.651	-38	0.101
52	31	21	\leftarrow	52	31	22	257129.184	146	0.101
53	29	24	←	53	29	25	296505.665	-105	0.101
53	32	21	←	53	32	22	256328.861	102	0.101
54	32	23	←-	54	30	24	282630.244	-113	0.101
55	32	23	\leftarrow	55	32	24	281927.459	-63	0.101

·]	Results of Analysis $ u_8$ (MHz) S
Constants	Value	σ
A	12998.0287	0.00158
B	12005.5156	0.00130
C	6260.8157	0.00068
Δ_J	-0.014690	0.00000143
Δ_{JK}	0.023248	0.00000171
Δ_K	-0.009902	0.00000122
δ_1	-0.00124	0.00000173
δ_2	0.00036	0.00000162
$H_J \ge E-07$	0.2084	0.0081
$H_{JJK} \ge 06$	-0.6400	0.0158
$H_{JKK} \ge -06$	0.4236	0.021
$H_K \ge E-06$	0.052	0.125
$h_1 \ge -08$	0.294	0.195
$h_2 \ge E-07$	-0.503	0.337
$h_3 \ge E-06$	0.8	0.6
rms	0.082533	

Table 5.2: Rotational Constants of ν_8 in the S reduced Watson Hamiltonian.

	Results of Analysis ν_8 (MHz) A	
Constants	Value	σ
A	12998.0623	0.00174
B	12005.4781	0.00132
C	6260.8188	0.00071
Δ_J	-0.013980	0.00000175
Δ_{JK}	0.01899	0.0000065
Δ_K	-0.006354	0.0000056
δ_J	-0.00124	0.00000152
δ_K	0.01786	0.0000290
$H_J \ge E-07$	0.2536	0.0211
$H_{JK} \ge 0.06$	-0.1475	0.0161
$H_{KJ} \ge E-06$	0.26089	0.02852
$H_K \ge 06$	-0.13903	0.0173
$\phi_J \ge E-08$	-0.209	0.056
$\phi_{JK} \ge 0.07$	-0.7504	0.5687
$\phi_K \ge 06$	0.1984	0.0658
rms	0.082352	

ļ

Table 5.3: Rotational Constants of ν_8 in the A reduced Watson Hamiltonian.

Table 5.4: Observed and calculated microw	ave
transition frequencies for the $n = 7$ vibratic	nal
state of nitric acid.	

J'	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
5	5	0	\leftarrow	4	4	1	130293.756	85	0.101
8	2	6	\leftarrow	7	3	5	130957.665	-15	0.100
8	3	6	←	7	3	5	130957.665	-104	0.100
8	2	6	←	7	2	5	130959.130	111	0.100
8	3	6	\leftarrow	7	2	5	130959.130	23	0.100
8	3	5	\leftarrow	7	3	4	143728.955	55	0.100
8	5	4	\leftarrow	7	5	3	156051.636	25	0.101
9	1	8	\leftarrow	8	1	7	130660.288	35	0.101
9	2	7	\leftarrow	8	3	6	143354.443	39	0.100
9	2	7	←	8	2	6	143354.443	-49	0.100
9	3	7	\leftarrow	8	3	6	143354.443	33	0.100
9	3	7	\leftarrow	8	2	6	143354.443	-54	0.100
9	3	6	\leftarrow	8	3	5	156073.583	29	0.100
9	4	6	←	8	4	5	156068.212	-35	0.100
10	1	9	←-	9	1	8	143061.578	8	0.100
10	2	8	←-	9	2	7	155752.490	-17	0.100
10	4	6	\leftarrow	9	4	5	181212.939	32	0.100
10	6	5	←-	9	6	4	193893.017	66	0.100
10	8	2	←	9	6	3	271562.005	-55	0.101
11	0	11	←	10	0	10	142776.260	20	0.101
11	1	10	←-	10	1	9	155462.856	12	0.101
11	3	9	\leftarrow	10	3	8	168151.455	39	0.100
11	3	8	\leftarrow	10	3	7	180848.486	-32	0.100
11	4	7	\leftarrow	10	4	6	193571.826	182	0.100
11	5	7	\leftarrow	10	4	6	193571.826	45	0.100
11	5	6	\leftarrow	10	5	5	206393.935	21	0.100
11	8	3	\leftarrow	10	8	2	247597.744	14	0.100
11	9	2	\leftarrow	10	9	1	244305.611	51	0.100
12	2	10	\leftarrow	11	2	9	180550.703	26	0.100
12	3	9	\leftarrow	11	3	8	193242.919	-63	0.100
12	4	8	\leftarrow	11	5	7	205951.455	68	0.100
12	4	8	←	11	4	7	205951.455	-67	0.100
12	5	8	\leftarrow	11	5	7	205951.455	59	0.100
12	5	8	\leftarrow	11	4	7	205951.455	-77	0.100
12	6	6	\leftarrow	11	6	5	231642.842	-3	0.100
12	7	6	\leftarrow	11	7	5	231507.226	108	0.100
12	7	5	\leftarrow	11	7	4	245745.120	-15	0.100

Table 5.4: (Continued)

$\overline{J'}$	K'_A	K'_C		J''	$\overline{K_A''}$	K_C''	Observed(MHz)	O-C(kHz)	Weighting
12	9	3	\leftarrow	11	9	2	270925.443	-88	0.100
12	10	3	←	11	10	2	256962.852	6	0.100
12	10	2	\leftarrow	11	10	1	264418.941	-61	0.100
12	11	1	\leftarrow	11	11	0	256142.082	24	0.101
12	11	1	\leftarrow	11	9	2	338621.038	-46	0.100
13	1	12	\leftarrow	12	1	11	180264.990	4	0.100
13	3	10	←	12	3	9	205638.818	15	0.100
13	5	8	←	12	6	7	231064.910	-24	0.100
13	6	8	\leftarrow	12	6	7	231064.910	-65	0.100
13	6	7	\leftarrow	12	6	6	243867.304	-114	0.100
13	7	7	\leftarrow	12	7	6	243851.679	32	0.100
13	13	1	←	12	12	0	336085.154	32	0.100
13	8	5	\leftarrow	12	8	4	272002.215	-121	0.101
13	13	0	\leftarrow	12	12	1	336139.911	27	0.100
14	0	14	\leftarrow	13	0	13	179981.982	24	0.100
14	1	13	\leftarrow	13	1	12	192665.771	-2	0.100
14	2	12	←	13	2	11	205349.365	39	0.100
14	4	10	←	13	4	9	230728.779	-18	0.100
15	0	15	←	14	0	14	192383.495	15	0.100
15	1	14	\leftarrow	14	1	13	205066.357	19	0.100
15	3	12	\leftarrow	14	3	11	230432.099	65	0.100
15	5	11	\leftarrow	14	5	10	243120.957	62	0.100
15	6	10	\leftarrow	14	6	9	255822.307	-210	0.101
15	10	5	\leftarrow	14	10	4	325584.880	56	0.100
15	11	4	\leftarrow	14	11	3	338643.066	-34	0.100
15	12	4	←	14	12	3	322817.708	80	0.100
15	12	3	\leftarrow	14	12	2	334950.815	59	0.100
16	2	15	←	15	2	14	217466.671	18	0.100
16	2	14	\leftarrow	15	2	13	230147.216	-200	0.100
16	3	13	\leftarrow	15	3	12	242828.825	-15	0.105
16	9	7	\leftarrow	15	9	6	319691.633	20	0.100
16	10	7	\leftarrow	15	10	6	319468.730	9	0.100
16	10	6	\leftarrow	15	10	5	334428.798	88	0.100
16	11	6	\leftarrow	15	11	5	332050.687	-6	0.100
16°	11	6	←-	15	10	5	334972.546	-49	0.100
16	12	5	\leftarrow	15	12	4	341730.456	14	0.100
17	1	16	←	16	1	15	229866.611	-90	0.100
17	2	15	\leftarrow	16	2	14	242546.151	45	0.105
17	4	13	\leftarrow	16	4	12	267907.558	68	0.105

Table 5.4: (Continued)

$\overline{J'}$	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
17	3	14	←	16	3	13	255225.428	-129	0.101
17	9	8	\leftarrow	16	9	7	331748.254	31	0.100
17	10	8	←	16	10	7	331717.980	-4	0.100
17	13	4	←	16	11	5	461087.111	208	0.100
18	3	16	\leftarrow	17	3	15	254944.511	4	0.100
18	4	14	\leftarrow	17	4	13	280301.153	-57	0.105
18	1	17	\leftarrow	17	1	16	242266.357	-106	0.105
18	3	15	←	17	3	14	267622.071	-15	0.105
18	5	13	\leftarrow	17	5	12	292985.150	-7	0.105
18	17	2	\leftarrow	17	16	1	461081.013	-4	0.100
18	17	1	\leftarrow	17	16	2	461171.458	• 74	0.100
18	18	1	←	17	17	0	466225.257	90	0.100
18	18	0	\leftarrow	17	17	1	466227.012	-54	0.100
19	1	18	\leftarrow	19	1	19	234642.829	-6	0.104
19	1	18	←	18	1	17	254665.904	-18	0.100
19	2	17	\leftarrow	18	2	16	267342.563	-27	0.100
19	3	16	\leftarrow	18	3	15	280018.251	-108	0.105
19	4	15	\leftarrow	18	4	14	292694.938	19	0.105
19	6	13	\leftarrow	18	6	12	318062.711	8	0.105
19	7	12	←	18	7	11	330765.720	0	0.100
20	2	18	\leftarrow	20	2	19	234559.882	37	0.104
20	2	18	←	19	2	17	279740.309	-22	0.100
20	1	19	←-	19	1	18	267065.118	57	0.105
20	4	16	\leftarrow	19	4	15	305088.388	-90	0.105
20	5	15	\leftarrow	19	5	14	317764.979	-15	0.105
20	6	14	\leftarrow	19	6	13	330447.295	-23	0.100
21	0	21	\leftarrow	20	0	20	266787.453	-30	0.100
21	3	18	\leftarrow	20	3	17	304809.855	-78	0.105
21	4	17	\leftarrow	20	4	16	317481.692	-105	0.105
21	2	19	\leftarrow	21	2	20	247233.571	-122	0.104
21	1	20	←	20	1	19	279463.840	-19	0.100
21	5	16	\leftarrow	20	5	15	330155.096	-49	0.100
21	17	4	\leftarrow	20	17	3	464495.316	111	0.100
21	19	3	\leftarrow	21	17	4	143862.890	186	0.101
22	4	18	\leftarrow	22	4	19	234366.465	22	0.104
22	3	19	←	22	3	20	247138.377	-34	0.104
22	4	18	\leftarrow	21	4	17	329874.836	37	0.100
22	13	9	←	21	13	8	445043.710	-55	0.100
22	14	9	\leftarrow	21	14	8	444942.779	63	0.100

Table 5.4: (Continued)

$\overline{J'}$	$\overline{K'_A}$	$\overline{K'_C}$		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
22	14	8	←	21	14	7	459297.773	9	0.100
22	15	8	←-	21	15	7	458165.446	-17	0.100
22	17	5	←	21	17	4	496920.157	-26	0.100
22	18	4	←	21	18	3	483583.180	-39	0.100
22	19	4	\leftarrow	21	19	3	472899.657	78	0.100
22	19	3	\leftarrow	21	19	2	473787.461	48	0.100
22	21	2	\leftarrow	21	21	1	464705.541	28	0.100
22	21	1	\leftarrow	21	21	0	464707.777	-90	0.100
22	0	22	←	21	0	21	279187.137	-8	0.105
22	1	21	\leftarrow	21	1	20	291862.274	-28	0.105
22	2	20	\leftarrow	21	2	19	304534.735	36	0.105
22	1	21	\leftarrow	22	1	22	272672.037	114	0.101
23	5	18	←	23	5	19	234254.583	18	0.104
23	4	19	←	23	4	20	247033.782	-120	0.104
23	1	22	\leftarrow	23	1	23	285345.778	-41	0.104
23	2	21	\leftarrow	22	2	20	316931.317	34	0.105
23	3	20	←	22	3	19	329599.925	-41	0.100
23	4	19	←	22	4	18	342267.455	28	0.100
23	13	10	←-	22	13	9	457055.110	30	0.100
23	14	9	←	22	14	8	470481.471	84	0.100
23	15	9	←	22	15	8	470275.420	4	0.100
23	17	6	\leftarrow	22	17	5	520813.234	49	0.100
23	21	3	\leftarrow	22	21	2	489268.148	47	0.100
23	21	2	\leftarrow	22	21	1	489302.548	8	0.100
23	2	21	←	23	2	22	272577.123	120	0.101
24	2	22	\leftarrow	23	2	21	329327.451	12	0.100
24	6	18	\leftarrow	24	6	19	234131.569	45	0.104
24	1	23	\leftarrow	24	1	24	298018.392	-23	0.104
24	5	19	←-	24	5	20	246919.535	40	0.104
24	2	22	\leftarrow	24	2	23	285246.369	-25	0.104
24	0	24	←	23	0	23	303985.553	101	0.105
24	1	23	\leftarrow	23	1	22	316658.137	90	0.105
24	3	21	\leftarrow	23	3	20	341994.326	-6	0.100
24	13	12	\leftarrow	23	13	11	456296.738	-78	0.100
24	12	12	\leftarrow	23	12	11	456296.738	-153	0.100
24	13	12	\leftarrow	23	12	11	456296.738	-160	0.100
24	12	12	←	23	13	11	456296.738	-71	0.100
24	14	10	\leftarrow	23	14	9	482339.686	11	0.100
24	16	8	<u> </u>	23	16	7	512009.385	-205	0.100

Table 5.4: (Continued)

J'	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
24	21	4	\leftarrow	23	21	3	514520.614	-14	0.100
24	21	3	\leftarrow	23	21	2	514836.438	63	0.100
24	3	21	←-	24	3	22	272473.786	-202	0.101
25	12	14	\leftarrow	24	12	13	455819.348	-36	0.100
25	1	24	←-	24	1	23	329055.230	-82	0.105
25	1	24	\leftarrow	25	1	25	310689.619	-49	0.104
25	2	23	←-	25	2	24	297914.155	-76	0.104
25	6	19	\leftarrow	25	6	20	246794.623	141	0.104
25	3	22	\leftarrow	25	3	23	285139.018	-50	0.104
25	4	21	←-	25	4	22	272362.171	-189	0.101
26	1	25	←	25	2	24	341452.079	-69	0.100
26	10	17	←	25	10	16	442763.699	-3	0.100
26	11	16	\leftarrow	25	11	15	455450.901	-29	0.100
26	4	23	←	25	4	22	366781.698	64	0.105
26	5	21	\leftarrow	26	5	22	272241.543	-28	0.101
26	2	24	\leftarrow	26	2	25	310580.432	-44	0.104
26	1	25	4-	26	1	26	323359.717	177	0.104
26	8	18	\leftarrow	26	8	19	233848.452	-104	0.104
26	7	19	←	26	7	20	246658.081	-35	0.104
$\overline{26}$	4	22	←	26	4	23	285023.333	-34	0.104
26	3	23	←	26	3	24	297802.382	72	0.104
26	17	10	\leftarrow	26	15	11	129088.513	-16	0.101
26	17	10	\leftarrow	26	16	11	129087.161	-33	0.101
26	16	10	\leftarrow	26	15	11	129065.127	27	0.101
26	16	10	←-	26	16	11	129063.777	12	0.101
27	6	21	←-	27	6	22	272110.977	-71	0.101
27	3	24	←	27	3	25	310463.612	-71	0.104
27	9	18	\leftarrow	27	9	19	233686.762	-60	0.104
27	8	19	\leftarrow	27	8	20	246509.566	-52	0.104
27	5	22	←	27	5	23	284898.692	-104	0.104
27	4	23	\leftarrow	27	4	24	297682.353	135	0.104
27	3	25	\leftarrow	27	1	26	323245.109	18	0.100
27	18	10	←	27	16	11	128399.546	41	0.101
27	18	10	←	27	17	11	128396.230	-165	0.101
27	17	10	←-	27	16	11	128350.044	-25	0.101
27	17	10	\leftarrow	27	17	11	128346.966	5	0.101
27	1	26	←	27	1	27	336027.882	-103	0.104
27	9	19	←	26	9	18	442466.433	166	0.100
27	2	25	←	26	2	24	366513.065	-85	0.105

Table 5.4: (Continued)

J'	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
27	10	18	-	26	10	17	455133.635	84	0.100
27	11	16	←	26	11	15	480506.387	-3	0.100
28	9	19	\leftarrow	28	9	20	246348.171	4	0.104
28	5	23	\leftarrow	28	5	24	297553.650	148	0.104
28	6	22	←	28	6	23	284764.737	-95	0.104
28	4	25	\leftarrow	28	2	26	323123.077	-82	0.100
28	7	21	\leftarrow	28	7	22	271970.045	-148	0.101
28	19	10	\leftarrow	28	17	11	127627.804	14	0.101
$\overline{28}$	19	10	←-	28	18	11	127620.800	-21	0.101
28	18	10	\leftarrow	28	17	11	127527.175	79	0.101
28	18	10	\leftarrow	28	18	11	127520.188	60	0.101
28	8	21	←-	27	8	20	442186.164	-113	0.100
28	9	20	\leftarrow	27	9	19	454842.810	15	0.100
28	10	18	\leftarrow	27	10	17	480173.981	75	0.100
28	2	26	\leftarrow	28	2	27	335908.073	34	0.104
28	1	27	(—	28	1	28	348695.121	152	0.104
29	8	22	←-	28	8	21	454566.935	-17	0.100
29	9	21	\leftarrow	28	9	20	467219.220	28	0.100
29	10	20	←	28	10	19	479875.134	30	0.100
29	5	24	←	29	5	25	310205.541	-153	0.104
29	6	23	\leftarrow	29	6	24	297415.803	114	0.104
29	7	22	\leftarrow	29	7	23	284620.878	-58	0.104
29	10	19	←	29	10	20	246172.942	42	0.104
29	8	21	\leftarrow	29	8	22	271818.268	-107	0.101
29	18	11	\leftarrow	29	18	12	140975.220	52	0.101
29	18	11	←	29	17	12	140976.100	45	0.101
29	19	11	←-	29	18	12	140990.260	14	0.101
29	19	11	←-	29	17	12	140991.150	18	0.101
29	3	26	\leftarrow	29	3	27	335780.548	-157	0.104
29	2	27	\leftarrow	29	2	28	348569.443	162	0.104
29	1	28	\leftarrow	29	1	29	361360.678	230	0.104
30	9	21	\leftarrow	30	9	22	271654.859	-81	0.101
30	12	18	←-	30	12	19	233108.9 54	204	0.104
30	6	24	←	30	6	25	310063.688	38	0.104
30	8	22	←	30	8	23	284466.559	20	0.104
30	11	19	\leftarrow	30	11	20	245982.989	78	0.104
30	7	23	\leftarrow	30	7	24	297268.374	89	0.104
30	19	11	\leftarrow	30	19	12	140223.860	31	0.101
30	19	11	←	30	18	12	140225.850	-6	0.101

Table 5.4: (Continued)

J'	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
$\overline{30}$	20	11	~	30	18	12	140257.470	56	0.101
30	6	25	\leftarrow	30	4	26	322855.376	5	0.100
30	9	22	\leftarrow	29	9	21	479595.306	-4	0.100
30	4	26	←-	30	4	27	335645.455	-195	0.104
30	3	27	\leftarrow	30	2	28	348436.415	127	0.104
31	7	24	←	31	7	25	309912.409	99	0.104
31	9	22	←	31	9	23	284301.102	56	0.104
31	8	23	\leftarrow	31	8	24	297110.704	-71	0.104
31	12	19	←	31	12	20	245777.420	168	0.104
31	7	25	\leftarrow	31	5	26	322708.689	-43	0.100
31	10	21	←	31	10	22	271479.087	-110	0.101
31	5	26	\leftarrow	31	5	27	335502.476	-44	0.104
31	4	27	\leftarrow	31	4	28	348295.710	30	0.104
3 1	8	24	\leftarrow	30	8	23	479326.758	-34	0.100
32	6	27	←-	31	6	26	466422.817	-50	0.100
32	6	26	←	31	6	25	479065.073	-8	0.100
32	9	23	\leftarrow	32	9	24	296942.566	-54	0.104
32	8	24	←-	32	8	25	309751.239	38	0.104
32	10	22	\leftarrow	32	10	23	284123.879	39	0.104
32	13	19	\leftarrow	32	13	20	245555.099	175	0.104
32	8	25	\leftarrow	32	6	26	322553.087	33	0.100
32	11	21	\leftarrow	32	11	22	271290.272	-160	0.101
32	6	26	\leftarrow	32	6	27	335350.862	-85	0.104
32	5	27	←-	32	5	28	348147.181	53	0.104
33	4	29	\leftarrow	32	4	28	466165.238	-72	0.100
33	5	28	\leftarrow	32	5	27	478807.270	-86	0.100
33	8	25	\leftarrow	32	8	24	516720.849	-52	0.100
33	9	25	←-	33	7	26	322387.955	53	0.100
33	15	18	\leftarrow	33	15	19	232368.189	146	0.101
33	9	24	←	33	9	25	309579.811	-25	0.104
33	14	19	\leftarrow	33	14	20	245315.002	121	0.104
33	10	23	←	33	10	24	296763.201	-59	0.104
33	11	22	\leftarrow	33	11	23	283934.162	-111	0.104
33	12	21	←	33	12	22	271087.785	-105	0.101
33	13	20	\leftarrow	33	13	21	258217.494	-129	0.101
33	7	26	\leftarrow	33	7	27	335190.604	51	0.104
33	6	27	\leftarrow	33	6	28	347990.297	3	0.104
33	5	28	←	33	5	29	360789.370	196	0.104
34	3	31	\leftarrow	33	3	30	465908.481	-51	0.100

Table 5.4: (Continued)

J'	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
34	4	30	\leftarrow	33	4	29	478551.641	-22	0.100
34	7	27	←	33	7	26	516461.972	102	0.100
34	16	18	\leftarrow	34	16	19	232079.327	78	0.104
34	10	24	←	3 4	10	25	309397.795	89	0.104
34	11	23	\leftarrow	3 4	11	24	296572.024	-86	0.104
34	15	19	\leftarrow	34	15	20	245055.984	-35	0.104
34	12	22	←-	34	12	23	283731.607	-66	0.104
3 4	13	21	\leftarrow	34	13	22	270870.878	90	0.100
34	14	20	←	34	14	21	257982.174	32	0.100
3 4	9	25	←	34	9	26	322212.856	29	0.104
34	8	26	\leftarrow	34	8	27	335021.070	132	0.104
34	7	27	\leftarrow	34	7	28	347824.794	-32	0.104
34	6	28	\leftarrow	34	6	29	360626.921	157	0.104
35	2	33	\leftarrow	34	2	32	465651.310	24	0.100
35	3	32	←-	34	3	31	478296.575	46	0.100
35	6	29	\leftarrow	3 4	6	28	516207.921	185	0.100
35	14	21	\leftarrow	35	14	22	270638.113	-188	0.100
35	16	19	\leftarrow	35	16	20	244777.301	117	0.104
35	11	24	←-	35	11	25	309204.260	-14	0.104
35	13	22	←	35	13	23	283515.310	-22	0.104
35	12	23	←	35	12	24	296368.367	-193	0.104
35	15	20	\leftarrow	35	15	21	257729.108	-131	0.101
35	9	26	←	35	9	27	334841.693	0	0.104
35	8	27	\leftarrow	35	8	28	347650.285	-73	0.104
35	7	28	←	35	7	29	360455.952	69	0.104
36	1	35	←	35	1	3 4	465392.450	-37	0.100
36	15	21	\leftarrow	36	15	22	270389.637	65	0.100
36	17	19	←	36	17	20	244477.068	-85	0.104
36	12	24	\leftarrow	36	12	25	308998.948	-44	0.104
36	14	22	←	36	14	23	283284.425	-92	0.104
36	13	23	\leftarrow	36	13	24	296151.785	-191	0.104
36	16	20	\leftarrow	36	16	21	257457.827	-72	0.101
36	2	34	\leftarrow	35	2	33	478040.741	-2	0.100
36	11	25	←	36	11	26	321831.059	30	0.104
36	10	26	←-	36	10	27	334652.310	-76	0.104
36	9	27	←-	36	9	28	347466.464	-46	0.104
36	8	28	\leftarrow	36	8	29	360276.109	-81	0.104
37	0	37	←	36	0	36	465131.214	55	0.100
37	1	36	\leftarrow	36	1	35	477783.334	83	0.100

i

Table 5.4: (Continued)

$\overline{J'}$	K'_A	K'_C		J''	$K_A^{\prime\prime}$	K_C''	Observed(MHz)	O-C(kHz)	Weighting
$\overline{37}$	16	21	←	37	16	22	270123.617	-82	0.101
37	17	20	←	37	17	21	257167.140	83	0.101
37	13	24	\leftarrow	37	13	25	308781.226	-56	0.104
37	18	19	←	37	18	20	244154.578	-66	0.104
37	14	23	\leftarrow	37	14	24	295921.606	-89	0.104
37	15	22	\leftarrow	37	15	23	283038.445	-14	0.104
37	12	25	←	37	12	26	321623.351	36	0.104
37	11	26	←	37	11	27	334452.499	-77	0.104
37	10	27	←	37	10	28	347272.859	-30	0.104
37	9	28	←	37	9	29	360087.218	-119	0.104
38	16	22	\leftarrow	38	16	23	282776.286	-69	0.104
38	15	23	←-	38	15	24	295676.981	-44	0.104
38	14	24	\leftarrow	38	14	25	308550.522	-22	0.104
38	13	25	\leftarrow	38	13	26	321403.622	-76	0.104
38	11	27	\leftarrow	38	11	28	347069.073	-11	0.104
38	12	26	\leftarrow	38	12	27	334241.732	-69	0.104
38	10	28	←	38	10	29	359888.910	-50	0.104
38	0	38	←	37	0	37	477523.050	-20	0.100
39	20	19	←	39	20	20	243436.723	26	0.104
39	17	22	←	39	17	23	282497.397	29	0.104
39	15	24	←	39	15	25	308306.232	77	0.104
39	16	23	\leftarrow	39	16	24	295417.146	-102	0.104
39	14	25	\leftarrow	39	14	26	321171.649	15	0.104
39	13	26	←	39	13	27	334019.625	46	0.104
39	12	27	\leftarrow	39	12	28	346854.694	21	0.104
39	11	28	←	39	11	29	359680.516	-162	0.104
40	1	3 9	←-	39	1	38	514951.319	-18	0.100
40	6	34	\leftarrow	39	6	33	578096.110	-8	0.100
40	20	20	←-	40	20	21	256165.894	-103	0.100
40	21	19	←	40	21	20	243038.404	91	0.104
40	16	24	\leftarrow	40	16	25	308047.277	-187	0.104
40	18	22	←	40	18	23	282200.767	148	0.104
40	17	23	←	40	17	24	295141.695	83	0.104
40	15	25	←	40	15	26	320926.632	79	0.104
40	14	26	←	40	14	27	333785.478	65	0.104
40	13	27	\leftarrow	40	13	28	346629.271	58	0.104
40	12	28	←	40	12	29	359461.994	-108	0.104
41	0	41	\leftarrow	40	0	40	514694.779	112	0.100
41	5	36	\leftarrow	40	5	35	577855.272	-49	0.100

Table 5.4: (Continued)

$\overline{J'}$	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
41	22	20	←	41	21	21	255785.320	-7	0.101
41	22	19	\leftarrow	41	22	20	242611.579	29	0.104
41	17	24	\leftarrow	41	17	25	307773.966	172	0.104
41	19	22	\leftarrow	41	19	23	281885.343	152	0.104
41	16	25	\leftarrow	41	16	26	320668.049	181	0.104
41	15	26	\leftarrow	41	15	27	333538.983	199	0.104
41	14	27	\leftarrow	41	14	28	346392.204	-41	0.104
41	13	28	\leftarrow	41	13	29	359232.859	32	0.104
42	19	23	\leftarrow	42	19	24	294539.801	212	0.104
42	6	36	←-	42	6	37	461612.829	-66	0.100
42	18	24	\leftarrow	42	18	25	307484.554	115	0.104
42	22	20	\leftarrow	42	22	21	255378.903	-24	0.101
42	17	25	\leftarrow	42	17	26	320395.159	193	0.104
42	16	26	\leftarrow	42	16	27	333279.114	-39	0.104
42	15	27	←	42	15	28	346143.206	-93	0.104
42	14	28	←-	42	14	29	358992.553	124	0.104
43	2	41	\leftarrow	42	2	40	564746.161	8	0.100
43	3	40	←	42	3	39	577372.836	-203	0.100
43	21	22	\leftarrow	43	21	23	281194.224	-187	0.104
43	20	23	\leftarrow	43	20	24	294211.443	-86	0.104
43	8	36	\leftarrow	43	6	37	461387.711	6	0.100
43	18	25	\leftarrow	43	18	26	320107.398	193	0.104
43	17	26	\leftarrow	43	17	27	333005.844	-123	0.104
43	16	27	\leftarrow	43	16	28	345881.873	-9	0.104
43	15	28	\leftarrow	43	15	29	358740.469	-4	0.104
44	9	36	←	44	7	37	461154.521	8	0.100
44	22	22	\leftarrow	44	22	23	280816.875	-123	0.104
44	20	24	←-	44	20	25	306855.682	-21	0.104
44	21	23	\leftarrow	44	21	24	293864.320	61	0.104
44	24	20	\leftarrow	44	24	21	254483.018	-1	0.101
44	19	25	←	44	19	26	319803.760	-164	0.104
44	18	26	\leftarrow	44	18	27	332718.605	-37	0.104
44	17	27	\leftarrow	44	17	28	345607.361	-121	0.104
44	16	28	\leftarrow	44	16	29	358476.514	6	0.104
45	0	45	←	44	0	44	564246.220	16	0.100
45	10	36	\leftarrow	45	8	37	460913.198	81	0.100
45	21	24	←	45	21	25	306514.950	193	0.104
45	23	22	←	45	23	23	280416.670	-108	0.104
45	22	23	←	45	22	24	293496.662	-177	0.104

Table 5.4: (Continued)

$\overline{J'}$	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
45	25	20	\leftarrow	45	25	21	253990.418	83	0.101
45	20	25	←	45	20	26	319484.473	42	0.104
45	18	27	\leftarrow	45	18	28	345319.455	-114	0.104
46	0	46	\leftarrow	45	0	45	576632.087	54	0.100
46	26	20	\leftarrow	46	26	21	253465.390	-156	0.101
46	22	24	\leftarrow	46	22	25	306155.029	42	0.104
46	24	22	←	46	24	23	279992.602	18	0.104
46	23	23	←-	46	23	24	293108.167	-128	0.104
47	12	36	\leftarrow	47	10	37	460404.869	11	0.100
47	25	22	\leftarrow	47	25	23	279543.218	26	0.104
47	27	20	←-	47	27	21	252906.921	108	0.100
47	22	25	←-	47	22	26	318794.075	180	0.104
47	20	27	\leftarrow	47	20	28	344700.864	-122	0.104
47	19	28	\leftarrow	47	19	29	357607.869	91	0.104
48	13	36	\leftarrow	48	11	37	460137.636	85	0.100
48	28	20	←	48	28	21	252312.263	105	0.101
48	23	25	←	48	23	26	318421.449	130	0.104
48	22	26	←	48	22	27	331415.388	-140	0.104
49	29	20	\leftarrow	49	29	21	251679.480	0	0.101
49	26	23	\leftarrow	49	26	24	291805.230	-151	0.104
49	25	24	\leftarrow	49	25	25	304953.764	-53	0.104
49	27	22	\leftarrow	49	27	23	278563.563	-21	0.104
49	24	25	\leftarrow	49	24	26	318029.450	-9	0.104
50	26	24	←	50	26	25	304509.680	58	0.104
50	28	22	\leftarrow	50	28	23	278030.754	184	0.104
50	25	25	←	50	25	26	317617.343	-119	0.104
50	24	26	←	50	24	27	330662.325	60	0.104
51	29	22	\leftarrow	51	29	23	277466.615	-131	0.104
51	28	23	←-	51	28	24	290810.962	59	0.104
51	27	24	\leftarrow	51	27	25	304041.951	137	0.104
51	31	20	\leftarrow	51	31	21	250290.953	85	0.101
51	26	25	\leftarrow	51	26	26	317184.612	173	0.104
51	25	26	←	51	25	27	330257.507	-144	0.104
51	24	27	\leftarrow	51	24	28	343276.163	171	0.104
52	30	22	←	52	30	23	276870.533	30	0.104
52	28	24	←-	52	28	25	303549.457	162	0.104
52	29	23	\leftarrow	52	29	24	290271.931	-208	0.104
52	32	20	\leftarrow	52	32	21	249529.960	60	0.101
52	27	25	←	52	27	26	316729.469	16	0.104

Table 5.4: (Continued)

J'	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
$\overline{52}$	26	26	\leftarrow	52	26	27	329833.272	-57	0.104
53	31	22	\leftarrow	53	31	23	276240.058	-66	0.104
53	30	23	\leftarrow	53	30	24	289703.597	-265	0.104
53	29	24	\leftarrow	53	29	25	303030.988	82	0.104
53	27	26	\leftarrow	53	27	27	329388.483	19	0.104
54	30	24	\leftarrow	54	30	25	302485.642	210	0.104
54	29	25	←	54	29	26	315749.484	-162	0.104
56	31	25	\leftarrow	56	31	26	314669.556	-95	0.104
57	32	25	←-	57	32	26	314089.193	-33	0.104

Table 5.5: Rotational Constants of ν_7 in the S reduced Watson Hamiltonian.

	Results of Analysis ν_7 (MHz) S	
Constants	Value	σ
A	13028.9241	0.00144
В	12098.6285	0.00107
C	6201.6092	0.00104
Δ_J	-0.015574	0.00000137
Δ_{JK}	0.0261874	0.00000219
Δ_K	-0.011113	0.00000143
δ_1	-0.00128	0.00000141
δ_2	0.00051	0.00000171
$H_J \ge E-07$	0.2155	0.0072
$H_{JJK} \ge 0.06$	-0.16064	0.00157
$H_{JKK} \ge 0.06$	0.26394	0.00212
$H_K \ge 06$	-0.16508	0.00105
$h_1 \ge 0.07$	-0.114	0.018
$h_2 \ge E-06$	0.09	0.34
$h_3 \ge E-07$	0.12	0.05
rms	0.087414	

.

Res	sults of Analysis $ u_7$ (MH	z) A
Constants	Value	σ
A	13028.9757	0.00155
B	12098.5718	0.00107
C	6201.6147	0.00105
Δ_J	-0.014554	0.00000153
Δ_{JK}	0.020073	0.000049
Δ_K	-0.006021	0.000042
δ_{I}	-0.00128	0.00000119
δ_K	0.02787	0.0000237
$H_J \ge E-07$	0.3457	0.0124
$H_{JK} \ge 100$	-0.43389	0.01114
$H_{KJ} \ge E-06$	0.976667	0.018223
$H_K \ge -06$	-0.61682	0.00892
$\phi_J \ge E-07$	-0.131	0.006
$\phi_{JK} \ge -06$	0.111	0.042
$\phi_K \ge -07$	0.10	0.37
rms	0.089792	

Table 5.6: Rotational Constants of ν_7 in the A reduced Watson Hamiltonian.

Table 5.7: Observed and calculated mid	crowave
transition frequencies for the $n = 6$ vib:	$\operatorname{rational}$
state of nitric acid.	

J'	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
7	5	3	\leftarrow	6	5	2	141939.720	-31	0.101
8	2	6	\leftarrow	7	2	5	131682.587	167	0.100
8	3	6	\leftarrow	7	3	5	131680.830	-111	0.100
8	3	5	\leftarrow	7	3	4	144232.919	-14	0.100
8	4	5	\leftarrow	7	4	4	144166.757	36	0.100
8	5	4	←	7	5	3	156289.078	-9	0.101
9	1	8	←	8	1	7	131769.755	107	0.100
9	2	7	\leftarrow	8	2	6	144238.193	0	0.100
9	9	1	\leftarrow	8	8	0	231239.841	120	0.100
10	0	10	\leftarrow	9	0	9	131869.072	31	0.100
10	1	9	\leftarrow	9	1	8	144331.122	57	0.100
10	2	8	\leftarrow	9	2	7	156796.728	261	0.100
10	4	6	←	9	4	5	181811.158	-36	0.100
10	8	2	\leftarrow	9	6	3	270422.989	-142	0.101
11	0	11	←	10	0	10	144430.732	61	0.100
11	3	8	\leftarrow	10	3	7	181827.509	-33	0.100
11	4	7	\leftarrow	10	4	6	194327.197	-48	0.100
11	4	8	\leftarrow	10	4	7	181827.535	29	0.100
11	5	7	←	10	5	6	194325.244	-8	0.100
11	6	6	\leftarrow	10	6	5	206872.802	-36	0.100
11	8	4	\leftarrow	10	8	3	229542.324	50	0.100
11	1	10	\leftarrow	11	1	11	130803.439	-8	0.101
12	0	12	←	11	0	11	156991.728	12	0.100
12	2	10	\leftarrow	11	2	9	181914.355	-7	0.100
12	3	9	\leftarrow	11	3	8	194381.884	36	0.100
12	4	8	\leftarrow	11	4	7	206866.210	-143	0.100
12	1	12	\leftarrow	12	1	11	143264.257	-95	0.100
12	6	6	\leftarrow	11	6	5	232134.472	2	0.100
12	7	6	\leftarrow	11	7	5	231974.882	-50	0.100
12	8	5	\leftarrow	11	8	4	244127.016	39	0.100
12	11	1	\leftarrow	11	11	0	255272.667	-45	0.101
12	11	2	←	11	11	1	254437.067	3	0.101
12	3	10	←-	12	1	11	130735.316	-65	0.101
12	1	11	\leftarrow	12	1	12	143264.310	-42	0.101
13	1	12	\leftarrow	12	1	11	182012.548	-4	0.100
13	2	11	\leftarrow	12	2	10	194473.095	46	0.100
13	3	10	\leftarrow	12	3	9	206937.255	-4	0.100

.

Table 5.7: (Continued)

$\overline{J'}$	K'_A	K'_C		J''	$K_A^{\prime\prime}$	K_C''	Observed(MHz)	O-C(kHz)	Weighting
13	6	7	\leftarrow	12	6	6	244502.157	-130	0.100
13	6	8	\leftarrow	12	6	7	231916.526	-7	0.100
13	8	5	\leftarrow	12	8	4	272415.386	-162	0.101
13	7	6	\leftarrow	12	7	5	257455.297	61	0.101
13	1	13	\leftarrow	13	1	12	155724.706	-78	0.100
13	3	10	←	13	3	11	130651.091	-23	0.101
14	0	14	←	13	0	13	182111.816	-17	0.100
14	1	14	\leftarrow	13	1	13	182111.860	26	0.100
14	1	13	←	13	1	12	194571.826	8	0.100
14	5	10	\leftarrow	13	5	9	231962.539	45	0.100
14	8	6	←	13	8	5	282965.011	-13	0.100
14	2	12	\leftarrow	14	2	13	155655.344	23	0.101
14	3	11	←	14	3	12	143112.817	-30	0.101
14	1	13	\leftarrow	14	1	14	168184.742	-26	0.101
15	1	14	←	14	1	13	207130.419	68	0.100
15	3	12	\leftarrow	15	3	13	155572.659	65	0.101
15	5	10	\leftarrow	15	5	11	130423.281	-40	0.101
15	2	13	(–	15	2	14	168113.827	-7	0.101
15	4	12	←	14	4	11	232048.561	-48	0.105
15	6	10	←-	14	6	9	256992.109	34	0.100
15	9	6	\leftarrow	14	7	7	452955.244	61	0.100
16	1	16	\leftarrow	16	1	15	193103.417	-27	0.100
16	6	10	←	16	6	11	130273.785	-47	0.101
16	5	11	←	16	5	12	142894.401	-50	0.101
16	3	13	\leftarrow	16	3	14	168030.651	-16	0.101
16	3	13	←	15	3	12	244603.759	-71	0.100
16	3	14	\leftarrow	15	3	13	232145.751	-5	0.100
16	5	12	\leftarrow	15	4	11	257065.634	106	0.105
16	14	2	\leftarrow	15	12	3	445620.663	29	0.100
17	3	14	\leftarrow	16	3	13	257158.488	20	0.101
17	2	15	\leftarrow	16	2	14	244701.806	-46	0.100
17	7	10	\leftarrow	17	7	11	130096.121	-49	0.101
17	4	13	\leftarrow	17	4	14	167933.766	-12	0.101
17	6	11	\leftarrow	17	6	12	142754.230	-46	0.101
17	3	15	\leftarrow	17	3	14	180487.157	-126	0.100
17	5	13	\leftarrow	16	4	12	269617.355	-53	0.105
17	12	5	←	16	10	6	480520.193	37	0.100
17	13	4	\leftarrow	16	11	5	458422.301	59	0.100
17	14	3	<u> </u>	16	12	4	456925.378	-93	0.100

Table 5.7: (Continued)

J'	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
18	2	16	\leftarrow	17	2	15	257257.138	59	0.105
18	1	17	\leftarrow	17	1	16	244800.878	-92	0.100
18	7	11	\leftarrow	17	8	10	319596.322	-4	0.105
18	5	13	←	17	5	12	294630.351	-62	0.100
18	8	10	\leftarrow	18	8	11	129886.547	-56	0.101
18	5	13	\leftarrow	18	5	14	167821.684	121	0.101
18	3	16	\leftarrow	18	3	15	192942.480	-103	0.100
18	4	15	\leftarrow	18	4	14	180390.234	-162	0.100
18	15	3	\leftarrow	17	14	4	456147.433	106	0.100
18	16	3	←-	17	15	2	454362.220	-46	0.100
18	18	0	←	17	17	1	465416.776	-225	0.100
18	18	1	←-	17	17	0	465415.529	1	0.100
18	7	11	←	18	7	12	142589.840	-59	0.101
19	0	19	←	18	0	18	244898.118	-42	0.100
19	4	15	\leftarrow	18	4	14	294720.156	105	0.100
19	2	18	←	18	2	17	257355.992	-7	0.105
19	6	13	←	18	6	12	319643.707	-87	0.105
19	7	12	←	18	8	11	332125.423	-47	0.105
19	8	11	←-	18	9	10	344637.312	85	0.105
19	8	11	←	19	8	12	142398.360	-15	0.101
19	4	16	←	19	4	15	192844.873	-116	0.100
19	16	3	\leftarrow	18	15	4	479932.499	18	0.100
19	17	3	\leftarrow	18	16	2	480656.689	-51	0.100
20	0	20	\leftarrow	19	0	19	257452.562	-56	0.101
20	2	18	\leftarrow	19	2	17	282364.617	-45	0.100
20	3	17	\leftarrow	19	3	16	294817.698	89	0.100
20	4	16	\leftarrow	19	5	15	307270.329	-58	0.105
20	6	15	←	19	6	14	319725.193	-126	0.105
20	7	14	\leftarrow	19	7	13	332186.133	67	0.105
20	8	13	\leftarrow	19	8	12	344658.682	43	0.105
20	9	11	\leftarrow	20	9	12	142176.460	-40	0.101
20	8	12	←	20	8	13	154892.990	-99	0.101
20	6	15	\leftarrow	20	6	14	180153.027	-20	0.100
20	14	6	←	19	14	5	442954.400	90	0.100
20	15	5	←	19	15	4	451980.100	-17	0.100
20	16	4	\leftarrow	19	16	3	442859.520	-76	0.100
21	6	16	\leftarrow	21	6	15	192609.521	-47	0.100
21	7	15	\leftarrow	21	7	14	180009.716	151	0.100
21	3	19	\leftarrow	21	2	20	242848.405	-11	0.104

Table 5.7: (Continued)

$\overline{J'}$	K'_A	K'_C		J''	$\overline{K_A''}$	K_C''	Observed(MHz)	O-C(kHz)	Weighting
$\overline{21}$	10	11	\leftarrow	21	10	12	141920.730	-51	0.100
21	1	20	\leftarrow	20	1	19	282463.020	48	0.105
21	2	19	\leftarrow	20	2	18	294917.001	101	0.105
21	4	18	←	20	4	17	307368.731	-24	0.105
21	6	16	←	20	5	15	332272.251	47	0.105
21	14	7	\leftarrow	20	14	6	450745.773	47	0.100
21	14	7	←	20	15	6	443533.474	57	0.100
21	15	7	←	20	15	6	445257.531	50	0.100
21	16	6	\leftarrow	20	16	5	453048.382	44	0.100
21	17	4	\leftarrow	20	17	3	461891.293	18	0.100
21	18	4	\leftarrow	20	18	3	450473.441	8	0.100
2 1	19	2	\leftarrow	20	19	1	446271.326	26	0.100
21	19	3	\leftarrow	20	19	2	446185.019	96	0.100
21	20	1	\leftarrow	20	20	0	442590.874	38	0.100
21	20	2	←	20	20	1	442587.489	54	0.100
22	3	19	\leftarrow	22	2	20	242752.512	237	0.104
22	7	16	\leftarrow	22	7	15	192469.091	-57	0.100
22	2	20	←	22	2	21	255301.497	-133	0.102
22	1	22	\leftarrow	21	1	21	282558.291	-32	0.105
22	2	21	\leftarrow	21	2	20	295014.804	-7	0.105
22	3	20	←	21	3	19	307468.009	-15	0.105
22	5	18	←	21	5	17	332368.435	44	0.105
22	5	17	\leftarrow	21	6	16	344818.452	58	0.105
22	13	9	\leftarrow	21	13	8	445630.805	-80	0.100
22	13	9	←	21	14	8	445475.719	-46	0.100
22	14	8	←-	21	14	7	459871.706	47	0.100
22	14	9	←	21	13	8	445653.431	154	0.100
22	14	9	\leftarrow	21	14	8	445498.185	28	0.100
22	15	8	\leftarrow	21	15	7	458466.675	9	0.100
22	16	6	\leftarrow	21	17	5	459189.224	-16	0.100
22	20	2	\leftarrow	21	20	1	467035.967	-23	0.100
22	20	3	←	21	20	2	466988.464	-17	0.100
22	21	1	←	21	21	0	463441.320	-98	0.100
22	21	2	←-	21	21	1	463439.696	23	0.100
22	1	21	\leftarrow	22	1	22	267849.059	-33	0.101
23	1	23	←	22	1	22	295109.315	-156	0.100
23	2	22	←	22	2	21	307565.457	-29	0.100
23	4	20	\leftarrow	23	4	19	242646.630	84	0.100
23	13	10	<u>←</u>	22	13	9	457765.690	-42	0.100

Table 5.7: (Continued)

J'	K'_A	K'_C		J''	$\overline{K_A''}$	K_C''	Observed(MHz)	O-C(kHz)	Weighting
23	3	20	\leftarrow	22	3	19	332467.740	-13	0.105
23	13	10	\leftarrow	22	14	9	457743.259	-82	0.100
23	14	9	\leftarrow	22	14	8	471048.913	183	0.100
23	14	10	\leftarrow	22	13	9	457768.701	108	0.100
23	14	10	\leftarrow	22	14	9	457746.169	-33	0.100
23	15	9	←	22	15	8	470779.322	-45	0.100
23	21	3	\leftarrow	22	21	2	487785.918	-110	0.100
23	4	19	←-	22	4	18	344915.842	-6	0.105
23	2	21	←-	23	2	22	267754.114	-13	0.101
23	1	22	\leftarrow	23	1	23	280305.270	162	0.102
24	6	19	\leftarrow	24	5	20	242530.554	43	0.104
24	11	13	←-	23	11	12	444759.791	20	0.100
24	0	24	←	23	0	23	307659.428	10	0.105
24	2	23	←	23	2	22	320115.031	84	0.105
24	4	21	\leftarrow	23	4	20	345015.545	67	0.105
24	14	10	\leftarrow	23	14	9	483008.387	33	0.100
24	15	9	\leftarrow	23	15	8	496612.678	1	0.100
24	15	10	\leftarrow	23	15	9	482965.261	-183	0.100
24	16	9	\leftarrow	23	16	8	496090.342	3	0.100
24	1	23	\leftarrow	24	1	24	292760.726	89	0.101
24	2	22	\leftarrow	24	2	23	280206.028	124	0.102
24	4	20	\leftarrow	24	4	21	255093.360	129	0.102
24	3	21	\leftarrow	24	3	22	267650.522	-277	0.101
25	6	20	\leftarrow	25	6	19	242403.418	4	0.100
25	1	24	←	25	1	25	305215.757	91	0.102
25	4	21	←-	25	4	22	267538.470	-80	0.101
25	5	20	←	25	5	21	254974.571	27	0.102
25	2	23	←	25	2	24	292656.980	28	0.101
25	10	15	←	24	10	14	444737.532	25	0.100
25	2	23	\leftarrow	24	2	22	345114.256	66	0.105
25	3	22	\leftarrow	24	3	21	357561.977	37	0.105
25	11	14	←	24	11	13	457246.663	-7	0.100
26	8	19	←	26	7	20	242264.235	-220	0.104
26	10	16	←	25	10	15	457251.022	41	0.100
26	2	24	\leftarrow	25	3	23	357660.259	-75	0.105
26	6	20	←	26	6	21	254845.272	-29	0.101
26	1	25	←	26	1	26	317670.021	-158	0.102
26	4	22	←-	26	4	23	279982.557	20	0.102
26	3	23	\leftarrow	26	3	24	292545.347	48	0.101

Table 5.7: (Continued)

$\overline{J'}$	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
$\overline{26}$	2	24	\leftarrow	26	2	25	305107.202	-60	0.102
26	5	21	\leftarrow	26	5	22	267416.894	97	0.101
27	8	19	\leftarrow	26	8	18	444857.388	61	0.100
27	0	27	\leftarrow	26	0	26	345301.624	64	0.105
27	8	20	←-	27	8	19	242112.773	-25	0.100
27	4	23	←	27	4	24	292425.033	-178	0.101
27	7	20	←	27	7	21	254704.830	38	0.102
27	5	22	\leftarrow	27	5	23	279857.428	94	0.102
27	2	25	←-	27	2	26	317556.781	-45	0.102
27	3	24	←-	27	3	25	304991.200	153	0.102
27	6	21	←	27	6	22	267284.834	-87	0.101
27	2	26	\leftarrow	27	0	27	330124.285	121	0.101
27	10	18	←	26	10	17	457306.726	-58	0.100
$\overline{27}$	2	26	←	26	1	25	357755.527	-16	0.105
27	17	11	←	26	17	10	545635.273	223	0.100
28	8	20	\leftarrow	27	8	19	457387.885	17	0.100
$\overline{28}$	1	28	\leftarrow	27	0	27	357846.295	77	0.105
28	7	21	\leftarrow	27	7	20	444948.383	-20	0.100
28	14	15	\leftarrow	27	14	14	519764.447	-90	0.100
28	7	21	←	28	7	22	267142.047	-235	0.101
28	4	24	←	28	4	25	304866.653	62	0.102
28	1	27	←	28	1	28	342577.679	79	0.102
28	8	20	←	28	8	21	254552.368	105	0.102
28	5	23	←	28	5	24	292296.144	-61	0.101
28	6	22	\leftarrow	28	6	23	279722.267	-115	0.101
28	2	26	←-	28	2	27	330005.632	2	0.101
29	6	23	\leftarrow	28	6	22	445046.730	-61	0.100
29	8	22	\leftarrow	28	8	21	457481.540	-67	0.100
29	6	23	\leftarrow	29	6	24	292157.823	53	0.101
29	5	24	←	29	5	25	304733.485	38	0.102
29	10	20	←-	29	10	19	241768.046	228	0.100
29	4	25	\leftarrow	29	4	26	317306.841	159	0.102
29	4	26	\leftarrow	29	2	27	329879.509	-18	0.101
29	7	22	\leftarrow	29	7	23	279577.095	-3	0.101
29	2	27	\leftarrow	29	2	28	342453.756	96	0.102
29	1	28	\leftarrow	29	1	29	355030.640	169	0.102
29	8	21	←	29	8	22	266988.329	125	0.101
29	13	17	\leftarrow	28	13	16	519735.026	26	0.100
29	14	15	←	28	14	14	544783.723	56	0.100

Table 5.7: (Continued)

J'	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
30	1	29	\leftarrow	29	1	28	395383.419	-36	0.100
30	6	24	\leftarrow	29	6	23	457581.173	-67	0.100
30	11	20	\leftarrow	29	11	19	507321.424	43	0.100
30	11	20	←	30	11	19	241572.578	-14	0.100
30	10	20	\leftarrow	30	10	21	254207.952	-10	0.102
30	3	27	\leftarrow	30	3	28	342322.204	-40	0.102
30	5	25	\leftarrow	30	5	26	317169.163	78	0.102
30	6	24	\leftarrow	30	6	25	304591.170	20	0.102
30	7	23	\leftarrow	30	7	24	292009.218	-155	0.101
30	5	26	\leftarrow	30	3	27	329745.449	-41	0.101
30	9	21	\leftarrow	30	9	22	266822.106	126	0.101
30	8	22	\leftarrow	30	8	23	279420.704	-167	0.101
30	2	28	\leftarrow	30	2	29	354900.862	-38	0.102
30	12	19	\leftarrow	29	12	18	519770.431	37	0.100
3 1	4	27	\leftarrow	30	4	26	445248.670	-35	0.100
31	5	26	←	30	5	25	457682.771	11	0.100
31	9	22	←	31	11	21	266642.856	-13	0.100
31	8	23	\leftarrow	31	8	24	291850.587	125	0.101
31	3	28	←-	31	3	29	354763.969	35	0.102
31	4	27	\leftarrow	31	4	28	342183.116	100	0.102
31	6	25	←	31	6	26	317022.558	-13	0.102
31	7	24	←	31	7	25	304439.201	-10	0.102
3 1	9	22	\leftarrow	31	9	23	279253.062	-1	0.101
31	5	26	←-	31	5	27	329603.269	130	0.101
31	11	20	←	31	11	21	254014.346	-155	0.101
31	12	20	←	30	12	19	532281.476	-32	0.100
32	8	24	←	31	8	23	507499.548	-145	0.100
32	11	21	←	31	11	20	544792.806	-9	0.100
32	17	15	←-	31	17	14	619893.053	-109	0.100
32	11	21	\leftarrow	32	11	22	266449.979	-118	0.101
32	9	23	\leftarrow	32	9	24	291680.524	71	0.101
32	7	25	\leftarrow	32	7	26	316866.628	-67	0.102
32	5	27	\leftarrow	32	5	28	342035.769	149	0.102
32	8	24	←	32	8	25	304277.049	-76	0.102
32	6	26	\leftarrow	32	6	27	329452.032	-43	0.101
32	12	20	\leftarrow	32	12	21	253805.592	-42	0.102
32	10	22	←	32	10	23	279073.081	75	0.101
33	2	31	←	32	2	30	445442.119	-76	0.100
33	3	30	~	32	3	29	457881.830	41	0.100

Table 5.7: (Continued)

$\overline{J'}$	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
33	5	28	\leftarrow	33	7	27	341879.854	164	0.100
33	10	23	←	33	10	24	291498.642	-98	0.101
33	5	28	\leftarrow	33	5	29	354466.631	95	0.102
33	9	24	←	33	9	25	304104.402	39	0.102
33	8	25	\leftarrow	33	8	26	316700.839	-150	0.102
33	8	26	\leftarrow	33	6	27	329291.874	-14	0.101
33	13	20	\leftarrow	33	13	21	253580.359	-50	0.102
33	11	22	\leftarrow	33	11	23	278880.033	32	0.101
33	12	21	←-	33	12	22	266242.846	-7	0.101
33	11	23	←-	32	11	22	544873.953	-15	0.100
33	16	18	\leftarrow	32	16	17	607149.494	-29	0.100
33	17	16	\leftarrow	32	17	15	632272.855	20	0.100
3 4	6	28	←-	33	6	27	507703.203	-78	0.100
34	12	23	←	33	12	22	569814.092	-232	0.100
34	15	19	←-	34	17	18	227839.422	-40	0.100
34	10	24	←-	34	10	25	303920.534	164	0.102
34	6	28	\leftarrow	34	6	29	354305.399	-35	0.102
3 4	7	27	\leftarrow	34	7	28	341714.771	-72	0.102
3 4	9	25	\leftarrow	34	9	26	316525.027	58	0.102
34	11	23	\leftarrow	3 4	11	24	291304.731	35	0.101
34	14	20	\leftarrow	34	14	21	253337.847	23	0.102
34	13	21	←	34	13	22	266020.178	-108	0.101
34	9	26	\leftarrow	34	7	27	329122.228	78	0.101
34	12	22	←-	34	12	23	278673.155	-162	0.101
35	0	35	←	34	0	34	445615.989	5	0.100
35	5	30	←	34	5	29	507805.591	-51	0.100
35	5	31	\leftarrow	34	5	30	495377.781	-72	0.100
35	8	28	←-	34	8	27	532650.239	-46	0.100
35	16	19	←	35	18	18	227514.394	-59	0.100
35	15	20	\leftarrow	35	15	21	253076.824	-3	0.102
35	11	24	←	35	11	25	303724.666	95	0.102
35	8	27	\leftarrow	35	8	28	341540.843	159	0.102
35	10	25	←	35	10	26	316338.194	66	0.102
35	7	28	\leftarrow	35	7	29	354135.620	23	0.102
3 5	12	23	\leftarrow	35	12	24	291097.542	-113	0.101
35	9	26	←-	35	9	27	328942.343	-66	0.101
35	13	22	←	35	13	23	278452.129	-65	0.101
35	14	21	←	35	14	22	265781.429	-77	0.101
35	24	11	\leftarrow	35	24	12	130857.105	-62	0.100
Table 5.7: (Continued)

J'	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
35	18	18	\leftarrow	34	18	17	657096.366	-236	0.100
36	0	36	\leftarrow	35	0	35	458147.992	119	0.100
36	7	29	←	35	7	28	545172.576	30	0.100
36	8	28	←-	36	10	27	341356.906	109	0.100
36	12	24	←	36	12	25	303516.343	-23	0.102
36	11	25	←	36	11	26	316139.852	-86	0.102
36	16	20	\leftarrow	36	16	21	252796.287	-27	0.102
36	8	28	\leftarrow	36	8	29	353956.824	170	0.102
36	13	23	\leftarrow	36	13	24	290877.044	112	0.101
36	10	26	\leftarrow	36	10	27	328752.193	-11	0.101
36	15	21	\leftarrow	36	15	22	265525.636	57	0.101
36	14	22	\leftarrow	36	14	23	278215.869	35	0.101
36	17	19	\leftarrow	36	19	18	227163.145	16	0.100
37	1	36	←	36	1	35	483125.608	13	0.100
37	4	34	\leftarrow	36	4	33	508001.911	-95	0.100
37	9	28	\leftarrow	37	11	27	341162.714	-41	0.100
37	14	23	←-	37	14	24	290641.840	34	0.101
37	15	22	\leftarrow	37	15	23	277963.566	166	0.101
37	17	20	←-	37	17	21	252495.273	151	0.102
37	9	28	\leftarrow	37	9	29	353768.236	13	0.102
37	13	24	\leftarrow	37	13	25	303295.007	-125	0.102
37	11	26	\leftarrow	37	11	27	328551.021	-30	0.101
37	16	21	\leftarrow	37	16	22	265251.506	-18	0.101
37	18	19	←	37	20	18	226783.821	59	0.100
37	12	25	\leftarrow	37	12	26	315929.722	-133	0.101
3 8	3	35	\leftarrow	37	3	34	520527.486	63	0.100
38	10	28	\leftarrow	38	12	27	340958.075	-38	0.100
3 8	14	24	\leftarrow	38	14	25	303060.140	-74	0.101
3 8	15	23	\leftarrow	38	15	24	290391.476	-49	0.101
3 8	18	20	\leftarrow	38	18	21	252171.966	-57	0.102
3 8	13	26	\leftarrow	38	11	27	328338.432	-15	0.101
38	16	22	\leftarrow	38	16	23	277693.750	-268	0.101
38	19	19	\leftarrow	38	21	18	226374.492	-21	0.100
38	10	28	\leftarrow	38	10	29	353569.940	34	0.102
39	1	38	\leftarrow	39	3	37	466887.393	-151	0.100
39	2	37	←	38	2	36	520618.122	120	0.100
39	2	37	←	39	4	36	454258.617	-11	0.100
39	4	35	\leftarrow	3 8	4	34	545477.908	76	0.100
39	11	28	\leftarrow	39	13	27	340742.603	196	0.100

Table 5.7: (Continued)

$\overline{J'}$	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
39	16	23	-	39	16	24	290125.247	-58	0.101
39	15	24	\leftarrow	39	15	25	302810.947	13	0.102
3 9	13	26	←	39	13	27	328113.996	127	0.101
39	19	20	←-	39	19	21	251825.719	-10	0.102
39	18	21	←	39	18	22	264644.832	-44	0.101
39	17	22	\leftarrow	39	17	23	277406.811	34	0.101
3 9	11	28	←	39	11	29	353361.331	39	0.102
3 9	28	12	\leftarrow	39	26	13	142108.430	-71	0.101
40	3	37	←-	39	3	36	545572.514	131	0.100
40	3	37	←-	40	5	36	454061.581	-64	0.100
40	16	24	←	40	16	25	302546.526	-54	0.102
40	12	28	←	40	12	29	353141.933	-19	0.101
40	14	26	←	40	14	27	327876.741	-31	0.101
40	17	23	←-	40	17	24	289842.346	18	0.101
40	18	22	\leftarrow	40	18	23	277100.695	-18	0.101
40	19	21	←	40	19	22	264310.108	38	0.101
40	5	35	\leftarrow	39	5	34	570417.867	100	0.100
40	12	28	←-	40	14	27	340514.930	-225	0.100
40	20	20	\leftarrow	40	20	21	251454.958	81	0.101
41	2	39	\leftarrow	40	2	3 8	545661.356	1	0.100
41	13	28	\leftarrow	41	13	29	352911.435	-7	0.101
41	13	28	←	41	15	27	340275.900	41	0.100
41	17	24	←	41	17	25	302266.363	-51	0.102
41	18	23	←	41	18	24	289541.716	-14	0.101
41	15	26	\leftarrow	41	15	27	327626.681	87	0.101
41	20	21	←	41	20	22	263952.741	41	0.101
41	19	22	\leftarrow	41	19	23	276774.965	140	0.101
41	21	20	←	41	21	21	251058.014	-9	0.101
42	1	41	\leftarrow	41	1	40	545743.851	77	0.100
42	5	37	←	42	7	36	453644.788	-23	0.100
42	19	23	←-	42	19	24	289222.688	68	0.101
42	22	20	←	42	22	21	250633.712	66	0.101
42	16	26	\leftarrow	42	16	27	327362.650	-91	0.101
42	18	24	\leftarrow	42	18	25	301969.754	90	0.102
42	20	22	←	42	20	23	276428.050	-4	0.101
42	21	21	←	42	21	22	263571.677	165	0.101
42	15	27	\leftarrow	42	15	28	340024.153	154	0.101
43	1	43	←	42	1	42	545818.819	74	0.100
43	15	28	←	43	15	29	352415.067	15	0.101

Table 5.7: (Continued)

$\overline{J'}$	K'_A	K'_C		J''	$K_A^{\prime\prime}$	$\overline{K_C''}$	Observed(MHz)	O-C(kHz)	Weighting
43	2	41	←	42	2	40	570696.821	282	0.100
43	3	40	\leftarrow	43	5	39	491329.593	-90	0.100
43	19	24	←	43	19	25	301655.340	-179	0.102
43	20	23	\leftarrow	43	20	24	288883.922	-130	0.101
43	17	26	\leftarrow	43	17	27	327084.646	40	0.101
43	16	27	\leftarrow	43	16	28	339759.010	-23	0.101
43	22	21	\leftarrow	43	22	22	263165.228	50	0.101
43	21	22	\leftarrow	43	21	23	276059.208	-86	0.101
43	6	37	←	43	8	36	453424.546	8	0.100
43	23	20	\leftarrow	43	23	21	250180.179	52	0.101
43	18	25	\leftarrow	43	18	26	314385.715	-181	0.101
43	7	36	\leftarrow	42	7	35	632773.438	96	0.100
44	1	43	←-	43	1	42	570776.877	-67	0.100
44	7	37	\leftarrow	44	9	36	453195.992	-71	0.100
44	20	24	\leftarrow	44	20	25	301323.147	7	0.102
44	16	28	←	44	16	29	352148.220	25	0.101
44	19	26	\leftarrow	44	17	27	326791.739	191	0.101
44	21	23	\leftarrow	44	21	24	288525.212	168	0.101
44	22	22	←	44	22	23	275667.371	-6	0.101
44	23	21	←	44	23	22	262732.099	-196	0.101
44	24	20	←-	44	24	21	249695.665	-81	0.101
44	17	27	\leftarrow	44	17	28	339480.454	51	0.101
44	19	25	\leftarrow	44	19	26	314075.047	-124	0.101
45	25	20	←	45	25	21	249178.594	-85	0.104
45	0	45	←	44	0	44	570849.429	-159	0.100
45	7	38	\leftarrow	45	9	37	465590.059	-87	0.100
45	24	21	←	45	24	22	262271.295	-88	0.101
45	19	26	\leftarrow	45	19	27	326483.085	182	0.101
45	21	24	←-	45	21	25	300971.742	102	0.102
45	22	23	\leftarrow	45	22	24	288144.745	184	0.101
45	17	28	←	45	17	29	351868.218	4	0.100
45	8	37	←	45	10	36	452959.161	-1	0.100
45	23	22	\leftarrow	45	23	23	275250.911	-166	0.101
45	18	27	←-	45	18	28	339187.524	0	0.101
45	20	25	←	45	20	26	313747.268	7	0.101
46	26	20	\leftarrow	46	25	21	248626.938	-36	0.104
46	9	37	←-	46	11	36	452713.542	-53	0.100
46	18	28	\leftarrow	46	18	29	351574.516	-58	0.101
46	$\overline{23}$	23	<u> </u>	46	23	24	287741.533	16	0.101

Table 5.7: (Continued)

$\overline{J'}$	$\overline{K'_A}$	K'_C		J''	K_A''	$\overline{K_C''}$	Observed(MHz)	O-C(kHz)	Weighting
46	21	26	\leftarrow	46	19	27	326157.769	-211	0.101
46	22	24	←	46	22	25	300599.935	-162	0.101
46	25	21	←	46	25	22	261780.958	87	0.101
46	24	22	\leftarrow	46	24	23	274809.030	-69	0.101
46	21	25	\leftarrow	46	21	26	313401.271	-95	0.101
47	27	20	\leftarrow	47	26	21	248038.736	188	0.104
47	2	46	(. 	46	2	45	608310.693	30	0.100
47	10	37	←-	47	12	36	452459.106	-11	0.100
47	23	24	\leftarrow	47	23	25	300207.629	84	0.101
47	26	21	\leftarrow	47	26	22	261259.156	66	0.101
47	24	23	\leftarrow	47	24	24	287314.917	147	0.101
47	25	22	\leftarrow	47	25	23	274340.100	24	0.101
47	21	26	\leftarrow	47	21	27	325815.935	-125	0.101
47	19	28	4-	47	19	29	351266.778	58	0.101
47	22	25	←	47	22	26	313036.673	13	0.101
48	28	20	\leftarrow	48	27	21	247410.998	-168	0.104
48	1	48	\leftarrow	47	1	47	608379.614	-189	0.100
48	8	40	\leftarrow	48	10	39	490111.378	168	0.100
48	29	19	\leftarrow	48	29	20	233910.909	-48	0.104
48	24	24	\leftarrow	48	24	25	299793.041	74	0.101
48	25	23	\leftarrow	48	25	24	286863.080	-40	0.101
48	27	21	\leftarrow	48	27	22	260704.427	161	0.101
48	22	26	\leftarrow	48	22	27	325456.457	68	0.101
48	20	28	←	48	20	29	350944.035	-35	0.101
48	11	37	\leftarrow	48	13	36	452195.464	-13	0.100
48	26	22	←	48	26	23	273842.494	-68	0.101
48	21	27	\leftarrow	48	21	28	338217.354	146	0.101
48	23	25	←	48	23	26	312652.300	29	0.101
49	29	20	←	49	29	21	246742.546	115	0.104
49	12	37	\leftarrow	49	14	36	451922.467	54	0.100
49	21	28	\leftarrow	49	21	29	350605.868	-156	0.101
49	28	21	\leftarrow	49	28	22	260114.490	-19	0.101
49	27	22	\leftarrow	49	27	23	273315.155	126	0.101
49	24	26	\leftarrow	49	22	27	325078.125	-55	0.101
49	26	23	\leftarrow	49	26	24	286385.131	-171	0.101
49	25	24	\leftarrow	49	25	25	299355.290	-7	0.101
49	22	27	←-	49	22	28	337860.976	-39	0.101
49	24	25	←	49	24	26	312247.209	-81	0.101
50	30	20	←	50	30	21	246029.827	72	0.104

Table 5.7: (Continued)

J'	K'_A	K'_C		J''	K_A''	K_C''	Observed(MHz)	O-C(kHz)	Weighting
$\overline{50}$	27	23	\leftarrow	50	27	24	285879.875	-104	0.101
50	28	22	\leftarrow	50	28	23	272755.878	26	0.101
50	24	26	\leftarrow	50	$^{\circ}24$	27	324680.775	157	0.101
50	22	28	\leftarrow	50	22	29	350251.959	1	0.101
50	29	21	←	50	29	22	259487.852	49	0.101
50	23	27	←-	50	23	28	337487.416	132	0.101
50	25	25	←	50	25	26	311820.992	224	0.101
51	31	20	←	51	31	21	245270.407	62	0.104
51	14	37	←	51	16	36	451346.928	3	0.100
51	23	28	\leftarrow	51	23	29	349881.234	17	0.101
51	27	24	\leftarrow	51	27	25	298406.088	-64	0.101
51	30	21	←-	51	30	22	258822.016	31	0.101
51	29	22	\leftarrow	51	29	23	272163.285	-21	0.101
51	24	27	\leftarrow	51	24	28	337095.399	132	0.101
51	26	25	←	51	26	26	311371.534	-168	0.101
52	32	20	\leftarrow	52	32	21	244461.089	-80	0.104
52	15	37	\leftarrow	52	17	36	451043.960	24	0.100
52	31	21	\leftarrow	52	31	22	258114.721	-15	0.102
52	28	24	\leftarrow	52	28	25	297892.351	92	0.101
52	24	28	\leftarrow	52	24	29	349493.196	71	0.101
52	29	23	←	52	29	24	284781.057	-33	0.101
52	25	27	\leftarrow	52	25	28	336684.121	-67	0.101
53	15	38	←	53	17	37	463381.780	5	0.100
53	25	28	\leftarrow	53	25	29	349086.879	-96	0.101
53	30	23	\leftarrow	53	30	24	284184.417	-29	0.101
53	29	24	←	53	29	25	297350.543	115	0.101
53	26	27	\leftarrow	53	26	28	336253.358	117	0.101
53	32	21	\leftarrow	53	32	22	257363.559	-3	0.102
54	32	22	\leftarrow	54	32	23	270166.355	-106	0.102
54	16	38	\leftarrow	54	18	37	463061.846	10	0.100
54	31	23	\leftarrow	54	31	24	283553.919	-206	0.101
54	30	24	\leftarrow	54	- 30	25	296779.547	269	0.101
54	28	27	\leftarrow	54	26	28	335801.527	-48	0.101
55	29	27	←	55	27	28	335328.253	-54	0.101
56	34	22	\leftarrow	56	34	23	268631.271	114	0.102
56	29	27	\leftarrow	56	29	28	334832.290	-219	0.101
57	30	27	\leftarrow	57	30	28	334313.165	-46	0.101

.

Res	sults of Analysis $ u_6$ (MH	Iz) S
Constants	Value	σ
A	13006.2131	0.00119
B	12057.4905	0.00096
C	6282.3422	0.00057
Δ_J	-0.015010	0.0000093
Δ_{JK}	0.0249548	0.00000120
Δ_K	-0.012181	0.0000090
δ_1	-0.00146	0.00000114
δ_2	0.0003	0.0000089
$H_J \ge E-07$	0.1434	0.0043
$H_{JJK} \ge 07$	-0.5952	0.0091
$H_{JKK} \ge -07$	0.6259	0.0109
$H_K \ge -07$	0.1035	0.0061
$h_1 \ge -07$	-0.1218	0.0105
$h_2 \ge E-08$	-0.537	0.190
$h_3 \ge E-09$	0.2	0.4
rms	0.090631	

Table 5.8: Rotational Constants of ν_6 in the S reduced Watson Hamiltonian.

.

	Results of Analysis $ u_6$ (MHz	c) A
Constants	Value	σ
A	13006.2615	0.00162
В	12057.4482	0.00146
C	6282.3473	0.00060
Δ_J	-0.014496	0.00000214
Δ_{JK}	0.021802	0.0000094
Δ_K	-0.009550	0.000075
δ_J	-0.00144	0.00000201
δ_K	0.01404	0.000036
$H_J \ge E-07$	-0.91512	0.03108
$H_{JK} \ge 0.07$	-0.82537	0.30133
$H_{KJ} \ge 0.07$	0.168285	0.005921
$H_K \ge 07$	-0.147966	0.003277
$\phi_J \ge E-07$	0.665	0.078
$\phi_{JK} \ge -08$	-0.26627	0.00773
$\phi_K \ge 0.09$	-0.56478	0.01248
rms	.12479	

Table 5.9: Rotational Constants of ν_6 in the A reduced Watson Hamiltonian.

BIBLIOGRAPHY

- [1] D. G. Murcray, T. G. Kyle, F. H. Murcray, and W. J. Williams. J. Opt. Soc. Am., 59:483, 1969.
- [2] D. G. Murcray, T. G. Kyle, F. H. Murcray, and W. J. Williams. J. Opt. Soc. Am., 59:1131-1134, 1969.
- [3] R. L. Crownover, R. A. Booker, F. C. De Lucia, and P. Helminger. J. Quant. Spect. Rad. Trans., 40:39–46, 1988.
- [4] D. J. Millen, and J. R. Morton. Chem. Ind. (N.Y.), :954, 1956.
- [5] D. J. Millen, and J. R. Morton. J. Chem. Soc., :1523, 1960.
- [6] A. P. Cox, and J. M. Riveros. J. Chem. Phys., 42:3106, 1965.
- [7] G. Cazzoli, and F. C. De Lucia. J. Mol. Spectrosc., 76:131, 1979.
- [8] W. C. Bowman, F. C. De Lucia, and P. Helminger. J. Mol. Spectrosc., 88:431, 1981.
- [9] J. K. Messer, P. Helminger, and F. C. De Lucia. J. Mol. Spectrosc., 104:417, 1984
- [10] R. A. Booker, R. L. Crownover, and F. C. De Lucia. J. Mol. Spectrosc., 128:62– 67, 1988.
- [11] R. A. Booker, R. L. Crownover, and F. C. De Lucia. J. Mol. Spectrosc., 128:306– 308, 1988.
- [12] A. G. Maki and W. B. Olson. J. Mol. Spectrosc., 133:171-181, 1989.
- [13] A. G. Maki and J. S. Wells. J. Mol. Spectrosc., 108:17, 1984.

- [14] J. K. G. Watson. J. Chem. Phys., 45:1360, 1966.
- [15] T. M. Goyette, W. Guo, F. C. De Lucia, and P. Helminger. J. Quant. Spectrosc. Radiat. Transfer, 46: 293-297, 1991.
- [16] T. M. Goyette, L. C. Oesterling, C. D. Paulse, and F. C. De Lucia. J. Mol. Spectrosc., 167: 365-374, 1994.
- [17] T. M. Goyette, L. C. Oesterling, R. A. Booker, D. T. Petkie, F. C. De Lucia, and P. Helminger. J. Mol. Spectrosc., 175 1996.
- [18] C. D. Paulse, L. H. Coudert, T. M. Goyette, R. L. Crownover, F. C. De Lucia, and P. Helminger. J. Mol. Spectrosc., Submitted
- [19] B. Carli, F. Mencaraglia, and A. Bonetti. Int. J. Infrared Millimeter Wave, 1:263, 1980.
- [20] D. T. Petkie, T. M. Goyette, R. A. Bettens, S. Belov, S. Albert, P. Helminger, and F. C. De Lucia. *Rev. Sci. Inst.*, 68:1675-1683, 1997.
- [21] D. T. Petkie. Millimeter and Submillimeter Wavelength Studies of Atmospheric Molecules. PhD thesis, Ohio State University, 1996.
- [22] David M. Pozar. Microwave Engineering. Addison-Wesley, 1990.
- [23] A. E. Siegman. An Introduction to Lasers and Masers. McGraw-Hill, 1971.
- [24] J. I. Steinfeld. Molecules and Radiation: An Introduction to Modern Molecular Spectroscopy. MIT Press, 1993.
- [25] R. A. Booker. Millimeter Wave Spectroscopy using a Broadband Spectrometer. PhD thesis, Duke University, 1986.
- [26] J. M. Hollas. Modern Spectroscopy. John Wiley and Sons, 1992.
- [27] W. Gordy and R. L. Cook. Microwave Molecular Spectra. Wiley-Interscience, New York, 1984.
- [28] G. E. McGraw, D. L. Bernitt, and I. C. Hisatsune. J. Chem. Phys., 42:237, 1965.
- [29] J. J. Hillman. J. Mol. Spectrosc., 95:236-238, 1982.
- [30] H. M. Pickett. J. Mol. Spectrosc., 148:371-377, 1991.

- [31] W. J. King and W. Gordy. Phys. Rev., 90:319, 1953
- [32] A. G. Maki and J. S. Wells. J. Mol. Spectrosc., 82:427, 1980.
- [33] P. Helminger, R. L. Cook, and F. C. De Lucia. J. Mol. Spectrosc., 40:125, 1971.
- [34] F. C. De Lucia, P. Helminger, R. L. Cook, and W. Gordy. J. Chem. Phys., 55:5334, 1971.
- [35] R. L. Cook, F. C. De Lucia, and P. Helminger. J. Mol. Spectrosc., 41:123, 1972.