
COMPUTING
WORKSHOP

Proceedings

Sixth Heterogeneous
Computing Workshop

(HCW '97)

Proceedings

Sixth Heterogeneous
Computing Workshop

(HCW '97)

April 1, 1997 Geneva, Switzerland

Edited by
Debra Hensgen, Naval Postgraduate School

Sponsored by
The IEEE Computer Society

Office of Naval Research

19971006 082

DTIG QUALITY INSH&TÜIS 4

IEEE Computer Society Press
Los Alamitos, California

Washington • Brussels • Tokyo

IEEE Computer Society Press
10662 Los Vaqueros Circle

P.O.Box 3014
Los Alamitos, CA 90720-1264

Copyright © 1997 by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may
photocopy beyond the limits of US copyright law, for private use of patrons, those articles in this volume
that carry a code at the bottom of the first page, provided that the per-copy fee indicated in the code is paid
through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Other copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager, IEEE
Service Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They
reflect the authors' opinions and, in the interests of timely dissemination, are published as presented and
without change. Their inclusion in this publication does not necessarily constitute endorsement by the
editors, the IEEE Computer Society Press, or the Institute of Electrical and Electronics Engineers, Inc.

IEEE Computer Society Press Order Number PR07879
IEEE Order Plan Catalog Number 97TB100103

Library of Congress number 96-80211
ISBN 0-8186-7879-8

Microfiche ISBN 0-8186-7881-X

Additional copies may be ordered from:

IEEE Computer Society Press
Customer Service Center
10662 Los Vaqueros Circle
P.O. Box 3014
Los Alamitos, CA 90720-1314
Tel: +1-714-821-8380
Fax: +1-714-821-4641
Email: cs.books@computer.org

IEEE Service Center
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
Tel: +1-908-981-1393
Fax: +1-908-981-9667
misc.custserv@computer.org

IEEE Computer Society
13, Avenue de TAquilon
B-1200 Brussels
BELGIUM
Tel: +32-2-770-2198
Fax: +32-2-770-8505
euro.ofc @ computer.org

IEEE Computer Society
Ooshima Building
2-19-1 Minami-Aoyama
Minato-ku, Tokyo 107
JAPAN
Tel: +81-3-3408-3118
Fax:+81-3-3408-3553
tokyo.ofc@computer.org

Editorial production by Penny Storms

Cover by Alex Torres

Printed in the United States of America by Technical Communication Services

The Institute of Electrical and Electronics Engineers, Inc.

Table of Contents

Message from the General Chair vii
Message from the Program Committee Chair viii
Committees ix

Session 1: System Support for Heterogeneous Computing
Chair: Richard F. Freund, NRaD, San Diego, CA, USA

Dynamic Load Balancing of Distributed SPMD Computations with
Explicit Message-Passing 2

M. Cermele, M. Colajanni, and G. Necci

The MOL Project: An Open, Extensible Metacomputer 17
A. Reinefeld, R. Baraglia, T. Decker, J. Gehring,
D. Laforenza, F. Ramme, T. Römke, and J. Simon

A Programming Environment for Heterogeneous Distributed Memory Machines 32
D. Arapov, A. Kalinov, A. Lastovetsky, I. Ledvoskih, and T. Lewis

UbiWorld: An Environment Integrating Virtual Reality, Supercomputing,
and Design 46

T. Disz, M.E. Papka, and R. Stevens

Case Study
Mercury Computer Systems' Modular Heterogeneous RACE® Multicomputer 60

T.H. Einstein

Session 2: Mapping and Scheduling Systems
Chair: John Antonio, Texas Tech University, Lubbock, TX, USA

A Scheduling Expert Advisor for Heterogeneous Environments 74
M.G. Sirbu and D.C. Marinescu

Exploiting Multiple Heterogeneous Networks to Reduce Communication
Costs in Parallel Programs 83

J.S. Kim and D.J. Lilja
On-Line Use of Off-Line Derived Mappings for Iterative Automatic Target
Recognition Tasks and a Particular Class of Hardware Platforms 96

J.R. Budenske, R.S. Ramanujan, and H.J. Siegel

Case Study
Distributed Interactive Simulation for Synthetic Forces 112

P. Messina, S. Brünett, D. Davis, T. Gottschalk,
D. Curkendall, L. Ekroot, and H. Siegel

Session 3: Mapping and Scheduling Algorithms
Chair: Ranga S. Ramanujan, Architecture Technology Corporation,
Minneapolis, MN, USA

A Stochastic Model of a Dedicated Heterogeneous Computing System for
Establishing a Greedy Approach to Developing Data Relocation Heuristics 122

M. Tan and H.J. Siegel

Optimal Task Assignment in Heterogeneous Computing Systems 135
M. Kafil and I. Ahmad

Mapping Heterogeneous Task Graphs onto Heterogeneous System Graphs 147
MM. Eshaghian and Y.C. Wu

Case Study
Practical Issues in Heterogeneous Processing Systems for Military Applications 162

G.O. Ladd, Jr.

Session 4: Performance Evaluation and Reliability and Security
Chair: Domenico Laforenza, CNUCE - Institute of the Italian National
Research Council, Italy

Estimating the Execution Time Distribution for a Task Graph in a
Heterogeneous Computing System 172

Y.A. Li and J.K. Antonio
Stochastic Petri Nets Applied to the Performance Evaluation of Static
Task Allocations in Heterogeneous Computing Environments 185

A.R. McSpaddeti and N. Lopez-Benitez
Supporting Fault-Tolerance in Heterogeneous Distributed Applications 195

P. Maheshwari and J. Ouyang
The Hopping Ruse 208

M. Chen and J. Cowie

Case Study:
A Performance and Portability Study of Parallel Applications Using a
Distributed Computing Testbed 222

V. Morariu, M. Cunningham, and M. Letterman

Open Discussion
Topic: How Do We Know How Well We Are Doing?

Chair: Andrew Grimshaw, University of Virginia

Author Index 235

VI

Message from the General Chair

This is the 6th Heterogeneous Computing Workshop, also known as HCW '97. Heterogeneous
computing is a very important research area with great practical impact. The topic of
heterogeneous computing covers many types of systems. A heterogeneous system may be a set
of machines interconnected by a wide-area network and used to support the execution of jobs
submitted by a variety of users. A heterogeneous system may be a suite of high-performance
machines tightly interconnected by a fast dedicated local-area network and used to process a set
of production tasks, where the subtasks of each task may execute on different machines in the
suite. A heterogeneous system may also be a special-purpose embedded system, such as a set of
different types of processors used for automatic target recognition. In the extreme, a
heterogeneous system may consist of a single machine that can reconfigure itself to operate in
different ways (e.g., in different modes of parallelism). All of these types of heterogeneous
systems (as well as others) are appropriate topics for this workshop series. I hope you find the
contents of these proceedings informative and interesting, and encourage you to look also at the
proceedings of past and future HCWs.

Many people have worked very hard to make this workshop happen. I thank Richard F. Freund,
NRaD, for founding this workshop series, and guiding its continued success. Debbie Hensgen,
Naval Postgraduate School, was this year's Program Committee Chair, and she assembled the
excellent program and collection of papers in these proceedings. Debbie did this with the
assistance of her Program Committee, whose members are listed in these proceedings. The Vice-
General Chair was Dan Watson, Utah State University, who helped me in many ways, including
handling workshop publicity.

This workshop is held each year in conjunction with the International Parallel Processing
Symposium (IPPS). Viktor Prasanna, University of Southern California, is the Symposium Co-
Chair of IPPS '97. The HCW series is very appreciative of his constant cooperation and
assistance.

This year the workshop is cosponsored by the IEEE Computer Society and the Office of Naval
Research. I thank Dr. Andre M. van Tilborg, Director of the Math, Computer, & Information
Sciences Division of the Office of Naval Research, for arranging ONR support to fund
publication of the workshop proceedings (under grant number N00014-97-1-0121).

Penny Storms, IEEE Computer Society Press, was responsible for publishing these proceedings.
I have worked with Penny before, and as always she was very efficient, effective, professional,
and pleasant.

Richard F. Freund, Chair of the HCW Steering Committee, nominated me to be General Chair of
HCW '97, and my nomination was approved by the Steering Committee. I appreciate the trust
they had in me to accomplish this task.

I thank my secretary Carol Edmundson for her assistance with my duties for this workshop. I
thank my wife, Janet, for her advice on many workshop related matters, and for continuing to
teach me, by example, to be a kinder, gentler person. Finally, I apologize to my one-year-old
daughter Sky for letting my workshop responsibilities cut into our playtime.

H.J. Siegel
School of Electrical and Computer Engineering
Purdue University

Vll

Message from the Program Committee Chair

I am very pleased to have had the privilege of chairing this year's workshop and hope that you
will gain significantly from reading these proceedings, listening to our talks, and participating in
our closing discussion. The program committee and I are proud to have four outstanding case
studies along with 14 excellent regular papers. I wish to thank our large, hard-working program
committee for their enthusiasm and cooperative spirit as we each, along with external reviewers
Mike Zyda, Jon Weissman, Cynthia Irvine, and Geoffrey Xie, reviewed the numerous
submissions. Special thanks to Dan Watson for all of his work on publicity; to our Case Studies
co-chairs John Antonio and Taylor Kidd for finding the excellent projects we will hear about
today; to Viktor Prasanna for organizing the excellent conference to which this workshop
belongs; and to Penny Storms for her hard work in bringing these proceedings together. And
mostly, thanks to H. J. Siegel for keeping everything running on schedule and for his nearly
endless voice mail reminders.

Debra Hensgen
Naval Postgraduate School

vin

Committees

General Chair

Vice General Chair

Program Committee Chair

Case Studies Co-Chairs

Steering Committee

Program Committee Members

H. J. Siegel, Purdue University

Dan Watson, Utah State University

Debra Hensgen, Naval Postgraduate School

John K. Antonio, Texas Tech University
Taylor Kidd, Naval Postgraduate School

Richard F. Freund, Chair, NRaD
Francine Berman, UCSD
Jack Dongarra, University of Tennessee
Debra Hensgen, Naval Postgraduate School
Paul Messina, Caltech
Jerry Potter, Kent State University
Viktor Prasanna, USC
H. J. Siegel, Purdue University
Vaidy Sunderam, Emory University

Ishfaq Ahmad, Hong Kong U of Science & Tech.
Giovanni Aloisio, Universitä degli Studi di Lecce
Cosimo Anglano, Universitä di Torino
Francine Berman, UCSD
Steve Chapin, University of Virginia
Partha Dasgupta, Arizona State University
Hank Dietz, Purdue University
Mary Eshaghian, New Jersey Institute of Technology
Andrew Grimshaw, University of Virginia
Nayeem Islam, IBMT J. Watson Research Center
Gary Johnson, George Mason University
Domenico Laforenza, CNUCE - Institute of the

Italian NRC
David Lilja, University of Minnesota
Miron Livny, University of Wisconsin - Madison
Bob Lucas, DARPA
Richard C. Metzger, Rome Laboratory
Lantz Moore, University of Cincinnati
Jim Patterson, Boeing Info, and Support Services
Ranga S. Ramanujan, Architecture Technology Corp.
Rick Stevens, Argonne National Laboratory
Vaidy Sunderam, Emory University
Maria Uspenski, EcoSoftware, Inc.
Dan Watson, Utah State University
Chip Weems, University of Massachusetts - Amherst
Elizabeth Williams, Center for Computing Sciences
Albert Y. Zomaya, University of Western Australia

IX

Session 1

System Support for
Heterogeneous Computing

Session Chair

Richard F. Freund
NRaD, San Diego, CA, USA

Dynamic Load Balancing of Distributed SPMD Computations
with Explicit Message-Passing

M. Cermele, M. Colajanni, G. Necci
Dipartimento di Informatica, Sistemi e Produzione

Facoltä di Ingegneria

Universitä di Roma "Tor Vergata"

Roma, Italy 00133

{cermele, colajanni}@utovrm.it

Abstract
Distributed systems have the potentiality of becom-

ing an alternative platform for parallel computations.
However, there are still many obstacles to overcome,
one of the most serious is that distributed systems
typically consist of shared heterogeneous components
with highly variable computational power. In this pa-
per we present a load balancing support that checks
the load status and, if necessary, adapts the work-
load to dynamic platform conditions through data mi-
grations from overloaded to underloaded nodes. Un-
like task migration supports for task parallelism and
other data migration frameworks for master/slave-
based parallel applications, our support works for the
entire class of SPMD regular applications with ex-
plicit communications such as linear algebra problems,
partial differential equation solvers, image process-
ing algorithms. Although we considered several vari-
ants (three activation mechanisms, three load moni-
toring techniques and four decision policies), we im-
plemented only the protocols that guarantee program
consistency. The efficiency of the strategies is tested in
the instance of two SPMD algorithms that are based
on the PVM library enriched by special-purpose prim-
itives for data management. As additional contribu-
tion, our research keeps the entire support for dynamic
load balancing transparent to the programmer. Even
if the technical details are out of the scope of this pa-
per, we point out that the only visible interface of our
support is the activation phase.

1 Introduction
The widespread diffusion of distributed systems

motivates the attempts to exploit the potential par-
allelism intrinsic in these computing environments.
Their architecture and the autonomy of the clus-
ter components resemble the asynchronous activity
of MIMD distributed-memory machines. In addition,
frameworks such as PVM and MPI greatly help to fill
the gap between parallel and distributed platforms by

hiding the heterogeneity of cluster components to the
programmer. However, these libraries do not over-
come the inefficiencies caused by the unpredictable
variability of usually shared resources. Since any dy-
namic modification of the underlying platform deteri-
orates the performance of distributed parallel compu-
tations, a satisfactory efficiency can be achieved only
by keeping the workload proportional to the compu-
tational power of each processor.

In this paper, we address heterogeneity through the
notion that each node may have a different computa-
tional capacity. We propose a transparent support
which aims at dynamically balancing the workload of
Single Program Multiple Data (SPMD) regular com-
putations with near-neighbor and/or multicast com-
munications. A large number of parallel programs
belongs to this class: linear algebra problems, par-
tial differential equation solvers, image processing al-
gorithms. For these algorithms, the same code runs
on several nodes while the data space is partitioned
among the nodes. Since the workload on each pro-
cessing unit is a function of the number of elements
contained in its subdomain, we can keep the workload
balanced by means of data migrations from overloaded
to underloaded nodes. When data migration schemes
are feasible, they are preferable to task migration ap-
proaches for two main reasons: higher efficiency be-
cause the information to transmit is more limited and
a new process startup is not required, and more pre-
cise balancing thanks to the finer granularity of the
load that can be re-distributed.

In particular, we are interested in balancing strate-
gies which are efficient but, at the same time, guar-
antee full consistency of the parallel program's execu-
tion. Our strategy consists of periodically evaluating
the status of the platform and providing data recon-
figurations if the differences among old and new load
values pass a given threshold. We discuss three acti-
vation mechanisms, three load monitoring techniques,
four decision policies and implement all those that give

0-8186-7879-8/97 $10.00 © 1997 IEEE

adequate guarantees of correctness. In particular, our
support implements an explicitly activated protocol,
a distributed load status evaluation, a centralized de-
cision policy and a concurrent data reconfiguration.
Even if the proposed load balancing schemes are best
suited to SPMD parallelism, some of the methods can
be applied elsewhere. We compare under different sce-
narios four decision policies that decide to reconfig-
ure on the basis of parameters such as system average
imbalance, system maximum imbalance, current load,
current load combined with past information.

Both the SPMD applications and the dynamic sup-
port are written in C. They use PVM for the com-
munication and system inquiry primitives [9], and a
special-purpose library for the data inquiry primitives.
The dynamic balancing support described in this pa-
per is, in fact, part of a wider project named DAME
that aims at combining the simplicity of the SPMD
paradigm with the efficiency when this programming
style is adopted on distributed systems. For this rea-
son, the entire support for dynamic load balancing is
kept hidden from the programmer: the only visible in-
terface is the check_load() function which is provided
for the explicit activation of the framework. Since the
details about this project are out of the scope of this
paper, the reader can refer to [5, 6] for the technical is-
sues about heterogeneous data distribution, and data
inquiry primitives that keep this heterogeneity hidden
from the programmer. The goals of the entire project
and other experimental results are reported in [8].

This paper is organized as follows. Section 2 con-
tains a summary of the related work and the main
motivations for a new approach. Section 3 focuses on
the load balancing model that we adopt for SPMD
applications. Section 4 describes the load monitoring
and decision phases, and presents four decision poli-
cies that we compare in the experiments. Section 5
analyzes the activation and the data migration phases.
Moreover, it outlines the effects of the load balancer on
initial data distribution and application's processes.
Section 6 presents the experimental results that are
obtained for different load balancing schemes and sce-
narios. Section 7 gives some final remarks and outlines
future work.

2 Related work and motivation
The increasing interest in distributed parallel com-

puting has opened new problems in dynamic load bal-
ancing that is a well studied subject in other areas.
While much attention has been devoted to develop ef-
ficient reconfiguration schemes for task parallel pro-
grams running on parallel or distributed platforms
[1, 7, 17, 3, 4, 18], the results in the area of data paral-
lelism are more limited. These computations allow a
reconfiguration protocol based on data migration that
is more efficient than task migration. On the other

hand, there are higher risks of incorrect execution be-
cause data migration affects the initial domain par-
tition on which the SPMD implementation has been
based. The necessity of dynamic data redistribution
can be caused by internal factors, such as for irreg-
ular data parallel computations, or external factors,
such as in distributed systems that provide inherently
dynamic platforms. Data migration techniques have
been adopted for irregular algorithms [11, 14, 15] and
for regular applications running on distributed plat-
forms [13, 3, 16, 10]. The load balancing strategies
proposed in this paper were designed to face the prob-
lems related to these latter environments. To the best
of our knowledge, none of the results achieved in this
area yet refers to SPMD algorithms with explicit com-
munications that are the most common parallel com-
putations. Therefore, our contribution represents an
important step to facilitate the portability of these
programs on distributed platforms.

Related works that consider programming models
very distant from SPMD programs with communica-
tions are Dataparallel C [13] and Piranha [2]. Data-
parallel C is a run-time support which allows SIMD
shared memory applications to run efficiently on clus-
ters of workstations. Its programming environment
and the migration support are based on the virtual
processor concept. Piranha dynamically adapts Linda
computations to the available workstations. However,
these programs are implemented on the basis of a vir-
tual shared memory paradigm.

On the other hand, there are two recent results
that concern a paradigm closer to ours that is, SPMD
master/slave computations without communications
[3, 10]. The Application Data Movement described in
[3] is a run-time support that furnishes a set of func-
tions that help the programmer to implement adap-
tive workload distribution of master/slave programs
through data migration. Hamdi and Lee [10] propose
a data redistribution method for parallel image pro-
cessing. The main novelty of this support with respect
to other load balancing strategies, which are activated
only at the end of fixed intervals or phases [14, 7, 16],
is that data migration can occur even within an it-
eration. This method is indispensable especially if we
consider computations, such as image processing, that
are characterized by few very long iterations.

As main contributions, we provide a support that
works for regular SPMD applications containing near-
neighbor and/or multicast communications, allows the
programmer to activate the dynamic balancer at any
computation point (as well as in [10]), guarantees the
transparency of the load balancing phases.

3 Load balancing model
As computing model, we consider a regular SPMD

application with explicit communications. Moreover,

we assume a simple machine model consisting of p
nodes. Each node executes one internal process of the
SPMD application, and may execute other external
processes. By analogy, we call external workload the
load represented by other (sequential or parallel) jobs
that run on the same workstation used by our parallel
application that causes internal workload. The nodes
are fully connected as in an Ethernet-based or token-
ring network. Each internal process has its own ad-
dress space, and the need for any data entry placed in
the memory of other nodes requires explicit message
passing. The dynamic load balancing model we are
proposing for SPMD computations is similar to that
given in [17], and it is based on the following phases,
that can be implemented in different ways:

1. Activation mechanism: This phase represents
one of the possible points of interaction be-
tween the load balancing support and the inter-
nal processes. The load balancer can be activated
explicitly (by some function called by the applica-
tion) or implicitly (without any application's in-
tervention). In addition, this activation can de-
termine a barrier for the internal processes (syn-
chronous) or not (asynchronous).

2. Load monitoring: Once the support has been
activated, each process evaluates the status of the
external workload on the respective node. This
phase is usually executed in a distributed way.
The alternatives regard the ways in which the
load parameter can be evaluated: by adopting
some external functions (active) or by using the
evolution of the parallel application itself (pas-
sive).

3. Decision: This phase determines, on the basis
of the load parameters, whether the workload
should be reconfigured or not, and how to re-
distribute it. Several centralized and distributed
policies have been proposed in literature. More-
over, the decision can be taken on the basis of the
last evaluated parameters or using a combination
of present and past information.

4. Reconfiguration (Data migration): This
phase represents another main point of interac-
tion between the load balancer and the appli-
cation. Therefore, we may have the same al-
ternatives described for the phase 1: synchro-
nous/asynchronous, implicit/explicit. Moreover,
the migration strategy can be centralized or dis-
tributed.

At present, our framework follows a centralized
policy and is activated explicitly by a call to the
check_load() function which we provide together

with the run-time support. The following alterna-
tives are available: the activation mechanism is ex-
plicit with two alternatives for the internal process
(synchronous or asynchronous); the load monitoring is
active with two available schemes (micro-benchmarks
or Unix functions); the decision is centralized with
four available policies; the reconfiguration is implicit,
distributed and synchronous.

Without the aim of considering all of the feasible
alternatives, we illustrate the adopted choices and give
some motivations for each of them. Let us first focus
on the two phases which are independent of the par-
allel application (load monitoring and decision) and
postpone the discussion about activation and recon-
figuration phases to Section 5.

4 Application independent phases

4.1 Load monitoring

In a heterogeneous system with different worksta-
tion speeds, each node has a nominal power, and a
duty cycle rji that is, the fraction of node process-
ing capacity which is consumed by local tasks. We
call available capacity Ci the computing power that re-
mains for executing the distributed parallel program.
When we normalize each c; to the cumulative capacity
of all the nodes, we obtain a relative available capacity
Xi, where YZ=\Xi = 1- Since in a distributed system
the duty cycle may change during the execution of the
parallel application, we denote rn(t), Ci(t) and Xi(t) as
functions of time. The goal of the load monitoring
phase is to determine a measure for C{(t). There are
two main alternatives for estimating this value: by
means of external functions (active methods) or by
using the application itself (passive methods). This
latter is an ideal solution that aims at avoiding extra-
overheads caused by the active methods. See for ex-
ample [13, 10].

Our first idea for implementing a load monitoring
was to use a passive method in which the load pa-
rameter was extrapolated by the time difference for
executing a significative portion of code without com-
munications or synchronizations among the processes.
However, in the present version of the support, we dis-
carded the hypothesis of adopting a passive method
for three main reasons: 1) the programmer would
have been required to select this portion of 'test' code,
thus contradicting the aim of transparency; 2) we
could have no guarantee about the quantity of in-
volved operations to give a precise estimate about
Ci(t); 3) although active methods are more time wast-
ing, they guarantee transparency, application indepen-
dency, and a more accurate estimate of the actual load.

Therefore, we adopt two active methods for load
monitoring. The first uses the Unix system call that
gives different kinds of information about current com-

putational power (number of tasks in the run queue,
1-minute load average, rate of CPU context switches,
etc.). Following the results reported in [12], we adopt
the number of tasks in the run queue of each node
as basis for measuring the external workload rji(t).
The second possibility is to estimate the current load
through a synthetic micro-benchmark that is, a pur-
posely implemented function which gives an immedi-
ate estimate about the available capacity Cj(i) for ex-
ecuting scientific-based programs. Due to space limi-
tations, we could not include the code of the adopted
micro-benchmark, however it is to be noted that a
different class of parallel applications would require a
different micro-benchmark. The Unix call is faster in
the evaluation of the load (between 80 and 100 mil-
liseconds) but requires some additional computations
to estimate the available capacity Ci(t). Moreover, this
estimate causes some approximation in the load infor-
mation. On the other hand, the micro-benchmark is a
slower technique (between 0.5 and 2 seconds, depend-
ing on the machine power) but gives an immediate
estimate about Ci(t).

Both methods are available in our support. For
example, in our experiments, we adopt the Unix func-
tion for the LU factorization algorithm, and the micro-
benchmark for the heat equation solver. In both in-
stances, the load information Ci(t) is sent to the re-
configuration master that executes the decision policy.
Typically, the most powerful node of the platform is
chosen as the master.

4.2 Decision policies
This phase takes two important decisions: whether

to redistribute and how to redistribute. We discuss
four policies that are based on a centralized approach.
The master process is responsible for collecting the
load parameters, executing one decision policy, and
broadcasting the decisions to the internal processes.
This message consists of three parts: operation (to re-
configure or not), node information (map of sender
and receiver nodes), data information (map of data
to transmit). Even if centralized approaches tend to
be more time consuming and less feasible than dis-
tributed strategies as the number of processors in the
system becomes large, we preferred them because they
better guarantee the consistency of a generic SPMD
application, and allow the master to keep track of
global load situation.

Once the master has received the available capac-
ities Ci(t), at check-load time t, from all the nodes
i = 1,.. .,p, the first step of our decision policies is to
evaluate the relative values Xi(*)- Then, each node es-
timates Ai(t) =| Xi(*) — Xi{ti) I that is, the difference
between the current capacity X»(^) anc^ the relative
power Xi{tl) which was available at the time of the last
data redistribution £;. Thereafter, each decision policy
implements a different strategy to determine the over-

all imbalance factor A(t). Our intention is to compare
decision policies that are focused on the average im-
balance vs. strategies oriented to check the maximum
node imbalance; policies using instantaneous informa-
tion vs. policies using also historical information. In
general, the reconfiguration is carried out when the
imbalance factor passes a threshold i9. The following
criteria were implemented:

a) System Average Imbalance (SAI)

This policy decides to reconfigure when the over-
all system is considered imbalanced that is, when

A(i) = l/pEAi(<)>^

b) System Maximum Imbalance (SMI)

This policy assumes that, once the available ca-
pacity of a node changes more than the threshold
i?j, any reconfiguration will improve program effi-
ciency. Therefore, it decides to reconfigure when
at least one node i has

Ai(t)=|x<(*)-Xi(*i)l>*»

c) Number of Imbalanced Nodes on the basis of Cur-
rent load (NINC)

p _
It reconfigures when A(t) = 1/p ^ Aj(i) > tfc

t=i

where Ai(t) = { J *j* (*) - Xi{U) |> A
otherwise

This policy is similar to SMI. However, NINC
tends to reduce the reconfigurations to the in-
stances in which more than one node is imbal-
anced. In our experiments, a node is consid-
ered imbalanced when its relative capacity has
changed more than A = 0.4, which is the default
threshold value. Therefore, the behavior of this
policy is more sensitive to i9c that is, the fraction
of imbalanced nodes in the system.

d) Number of Imbalanced Nodes on the basis of cur-
rent and Past load (NINP)

v
It reconfigures when A(t) = 1/p £) A,(t) > #<*

»=i

where

A.(t-} = / 1 ^ E/C0 I Xi(t) - Xi(tj) |> A
l^ 0 otherwise

and Xi(Jj)i f°r 3 = l,---,h, denote the relative
powers that were available at the last h check-
load points.
This method measuring the load imbalance in all
check-load points from the last reconfiguration is
similar to the NINC criterion. However, the new

policy measures the load imbalance of a node over
a period of time rather than using only the most
recent information. The goal of this criterion is to
reduce the effects of temporary power variations.
In our experiments we set h = 4 and A = 0.4,
while the function f(j) = e~^2/G is a decay fac-
tor that assigns a smaller weight to the older load
parameters, and G is the normalizing factor.

It is to be noted that the four policies have the same
linear complexity 0(p). Since this phase is much faster
than any other phase of the balancing process, the de-
cision does not represent a big bottleneck even if it is
centralized. The choice of the most suitable threshold
for any kind of SPMD application and platform con-
dition is one of the theoretical issues (the other is the
optimal frequency of check-load points) that deserves
further study. The experiments are carried out by em-
pirically choosing policy thresholds that work fine for
the kind of considered applications.

The second basic issue in the decision policy is how
to redistribute data. An optimal solution to this prob-
lem is very hard to find if we consider task parallel
programs, because it involves integer programming so-
lution. Conversely, in the instance of data parallel
computations, the possibility of partitioning the data
space into different size portions allows us to assign
to each node a computational workload which is pro-
portional to its speed. This simple optimal technique
can be achieved because we redistribute a workload
(data) that has a much finer granularity than a task
load. Since our framework works under the hypothesis
that the internal workload is a function of the quantity
of owned data, we can suppose that the complexity of
the algorithm executed by each node is approximated
by a law such as 0(nc) where n is the one dimensional
size of the local domain. For example, if the data do-
main is M x N, the local domain of a node i at time t
should be kept as close as possible to (balancing equa-
tion)

rm x m = (M x N)[Xi(i)]2/c.
To allow the run-time support to automatically de-

termine the right data size to assign to each node i
(that is, computing m; and rii), the programmer has
to specify the average computation complexity C and
the basic grain. This latter denotes the minimum por-
tion of data domain that can be moved during dy-
namic reconfigurations. Depending on the chosen do-
main decomposition, the basic grain can be a single
element, or a multiple of a row or column.

For a ID decomposition, the basic grain can only
be a multiple of row or column. As example, if it is
set to a single row, we have tii = JV, and we assign to
each node i a number of rows equal to

rm = M[Xi{t)?
IC.

For a 2D decomposition, the most common basic
grain is a single element because this choice allows us
to achieve best load balancing. Our data distribution
support obtains a 2D decomposition by virtually parti-
tioning the nodes in horizontal subnets, and assigning
the same set of rows to the nodes of the same subnet
(see nodes 1-3 and 4-6 in Figure l.b). Since the nodes
of a subnet <S have the same number of rows, each TOj,
for i £ S, has the following identical value

mi = M[j:xj(t)}2/C-

Once evaluated the variables rrn, we can use the
balancing equation to obtain each n; value, that is,

ni = (N/[Exj(t)?
/C)[Xi(t)]2/C.

5 Application dependent phases
5.1 Activation and reconfiguration

The activation and reconfiguration phases are the
interface between the load balancing support and the
application. Several protocols could be chosen on the
basis of the degree of interference that one allows be-
tween the support and internal processes. We propose
a partial transparent framework that does not put any
responsibility for data reconfiguration on the program-
mer, however it requires the programmer to specify the
points of the application where the support has to be
activated and the frequency of the activation. To this
purpose, we furnish a check-load () primitive that the
programmer can insert into one or more point of the
SPMD code. Since no control is done by the compiler,
the entire responsibility for the check J.oad() inser-
tion is left to the programmer. For this reason, instead
of using 'unsafe' transparent protocols, we adopt so-
lutions that have partial or total interference with the
application. Let us briefly discuss three protocols with
explicit activation.

• Synchronous activation - Synchronous reconfigu-
ration (SASR)
In this case, each call to the check_load() prim-
itive interrupts the execution of the parallel ap-
plication and activates the load balancing sup-
port. The information about current computa-
tional power is then evaluated and sent to the re-
configuration master. All the internal processes
wait until the decision phase is completed. This
choice has many advantages: the protocol is easy
to implement, there is maximum safety because
the entire load balancing process is carried out
while the internal processes are blocked, and the
information about the platform load is the most
updated possible. However, the drawback of this
protocol is that every time the reconfiguration is
not necessary, the check_load() call represents
an unuseful barrier. For this reason, it can be

adopted for highly-coupled applications and/or
when the probability of reconfiguration is high.

• Asynchronous activation - Synchronous reconfig-
uration (AASR)
A way for mitigating the overhead of SASR is to
synchronize the internal processes only when nec-
essary. To this purpose, we adopt a different pro-
tocol that is based on a couple of check_load(l)
and checkJLoad(2) calls. The former call ac-
tivates on each node i an independent evalua-
tion of the capacity Ci(t) which is then sent to
the reconfiguration master. While the internal
processes continue their operations, the master
decides about the convenience of reconfiguration.
The best point for calling checkJLoad(2) de-
pends on the following trade-off: it should not
occur too late in order to avoid obsolescence of
load parameters, and not too soon to guaran-
tee that almost all of the nodes have sent their
load parameters and the decision is completed
with high probability. At the occurrence of the
check_load(2) call, each node waits for the mes-
sage about the reconfiguration. However, this call
causes a global barrier only when the master de-
cides that the reconfiguration is necessary.
This protocol limits the overheads to the nec-
essary points and guarantees the same safety of
SASR because the reconfiguration is carried out
while the internal processes are blocked. On the
other hand, AASR does not work on the same
precise information as the SASR because the load
parameters do not exactly refer to the same in-
stant. We mitigate the effects due to this problem
by using higher thresholds that take into account
the probability of some error about the node ca-
pacity estimation.

• Asynchronous activation - Asynchronous recon-
figuration (AAAR)
The AASR protocol aims at avoiding any interfer-
ence between the support and internal processes,
thereby allowing asynchronous activations and
data reconfigurations. However, we discarded this
protocol because of the serious risks of inconsis-
tency that may affect an SPMD algorithm with
explicit communications running on our support.
The main reason is that most parallel instructions
of these programs work on the basis of a data par-
tition. Since any data reconfiguration modifies
this representation, it is very risky and, most of
the time, impossible to allow asynchronous data
migrations. Additional details about the recon-
figuration phase will clarify this issue in Section
5.2.2.

Therefore, even if the synchronous reconfiguration
protocols do not seem optimal from the efficiency

point of view, they augment the simplicity and correct-
ness of the reconfiguration strategy. Since all processes
are blocked in the same execution point, data migra-
tions can be easily carried out in a distributed and
transparent way.

5.2 Implementation issues
The explicit management of the load balancing

phases makes distributed parallel programming very
difficult. Hence, it was our main intention to keep this
framework as hidden as possible from the programmer.
In this section, we outline the guidelines adopted for
designing a transparent data migration support which
is explicitly activated by the check_load() primitive.

5.2.1 The checkJLoadO function

This function represents the only explicit interface be-
tween the load balancing support and the application.
It can be called at any point of the parallel program
which is considered safe by the programmer. This
task is not as complicated as it seems, because we
are in the context of SPMD algorithms. The basic
rule is to avoid check_load() calls between send()
and receive () primitives, and in branches of the al-
gorithm that could not be executed by some node.
However, since no control is carried out by the com-
piler, the entire responsibility for the check-load()
insertion is left to the programmer. This function has
seven parameters: activation, interval, load, decision,
threshold, grain, complexity.

Let us first focus on the activation and interval pa-
rameters that concern the interface between the ap-
plication and load balancing support. There are three
basic ways of using the check_load() primitive that
depend on the activation protocol, and the number
of activations that the programmer wants in a main
iteration. We distinguish the following instances: a
check-load(0,0) denotes one synchronous activation
for each call; a check_load(0,0 denotes one synchro-
nous activation every i main iteration steps; a cou-
ple of checkJLoad(l,i) and check_load(2,i) denotes
one asynchronous activation every i main iteration
steps. It is to be noted that the AASR protocol does
not admit more than one activation during a main
iteration step. If for certain algorithms it is prefer-
able to execute more than one iterations before wait-
ing for the decision, the programmer has to use values
greater than two in the first parameter of the second
check.loadO call.

The parameters of the check_load() function are
as follows,

Activation: For the SASR protocol, use 0. For the
AASR protocol, use 1 in the activation call, 2
for waiting the decision from the reconfiguration

master in the same iteration step, and k > 2 for
waiting the decision after k — 2 iteration steps.

Interval: This parameter denotes the frequency of
activation of the load balancing support. Any
value greater than 0 is expressed as number of
main iterations, while the 0 value means that
each check_load() call causes the activation of
the framework. If the programmer wants to ac-
tivate the support more times during the same
iteration, he has to use more check_load(0,0)
calls in the same program. These multiple calls
are allowed for the SASR protocol only.

Load: The two available active methods are micro-
benchmark and Unix system call

Decision: The available decision policies are SAI,
SMI, NINC, NINP (see Section 4.2).

Threshold: This parameter depends on the adopted
decision policy. We use a real number, in which
the value before the point denotes the chosen A,
and the value after the point corresponds to i9.
For example, a 35.60 parameter denotes A = 0.35
and 1? = 0.6. A null value in either camp is
adopted when a policy requires a single thresh-
old or to specify the default parameter.

Grain: This parameter represents the basic grain
that can be redistributed. The programmer can
choose among point, row, column, taking into ac-
count the adopted data distribution. As example,
for 1-dimensional decompositions, the basic grain
has to be a multiple of one row/column, while a
2-dimensional decomposition allows even a single
point as basic grain.

Complexity: This value describes the average com-
putational complexity that the application has on
its data domain for each iteration step, and is cru-
cial to determine the right amount of data that
has to be transmitted in case of reconfiguration
(see Section 4.2).

5.2.2 Data management

The data distribution choice is the first step in the
implementation of any SPMD program. It determines
the mapping of data entries onto nodes, and strongly
influences load balancing because in SPMD computa-
tions the internal workload is usually proportional to
the data assigned to each node. In the instance of
regular problems solved onto homogeneous platforms,
the choice of the best data distribution is not a partic-
ularly difficult task because all the nodes are assumed
to have identical and static power. On the other hand,
the quality of data distribution on heterogeneous and

variable platforms, even for regular algorithms, de-
pends on dynamic factors that cannot be anticipated
during implementation. Since the program should po-
tentially run for several kinds of data distributions, it
should be decomposition-independent. For this reason
our load balancing support is part of a wider frame-
work, called DAME, that provides the programmer
with the tools for adopting the SPMD paradigm on
a distributed system as on a parallel platform. Even
if a detailed description of DAME is out of the scope
of this paper, we give some details about the adaptive
data distribution support (ADD) because it is related
to the dynamic load balancer. For more details, you
can refer to [6].

• At implementation-time, ADD allows the pro-
grammer to choose the regular data distribution
(data partition image) that is most appropriate
for the application without caring about the plat-
form irregularities. As common rule, many stud-
ies have evidenced that, for distributed parallel
computing, 1-dimensional decompositions work
better than 2-dimensional decompositions. More-
over, a block distribution is usually suitable to
regular computations, while a fine-grain scatter
distribution is preferable for irregular computa-
tions.
In addition, ADD provides the programmer with
a set of data inquiry primitives (such as data
owner identifiers, local data extractors, index con-
versions, local loop ranges) that have to be used
in any operation which is related to the data par-
tition image.

• At load-time, ADD achieves initial load balanc-
ing by automatically determining the heteroge-
neous data distribution (actual data partition)
which best adapts itself to the computational sta-
tus of the platform. Figure l.a and l.b show
a 1-dimensional and 2-dimensional block decom-
position of a 2-dimensional data structure on a
computing platform consisting of six heteroge-
neous nodes having relative capacities equal to
x(to) = (0.19,0.09,0.17,0.15,0.29,0.11).

• At run-time, ADD translates the data inquiry
primitives referring to the data partition image
into accesses to the actual data partition. This
latter, in fact, can be dynamically modified by
the load balancer support.

When the master decides that the initial data par-
tition has to be reconfigured, both the load balancer
and ADD are involved. On the basis of the results of
the decision policy, the load balancer carries out data
migrations that modifies the actual data partition only.
The application is indirectly informed about the new

12 3 4 5 6 1 • 2 3 4 5 6

t-ifr-.^tn rrl

Figure 1: j4ctua/ data partition for ID and 2D block de-
composition of a 2D data domain.

data distribution through the results of the data in-
quiry primitives. In fact, they are used at implemen-
tation time with respect to the data partition image
which is not subject to dynamic modifications, but re-
fer to the actual data partition when they are called
at run-time.

All the data structures that describe the actual data
partition have to be updated before allowing ADD to
access them. This inter-dependence prevents us from
using asynchronous reconfiguration protocols such as
AAAR. When the master decides about the recon-
figuration, each internal process has to be blocked.
In such a way, the master process can inform each
node about the data entries that have to be transmit-
ted and received. Data migrations occur in a distrib-
uted way among the nodes that own parts of neigh-
bor data domain. If a 1-dimensional data distribu-
tion is adopted, each node may communicate with the
two neighbor nodes. Figure 2.a shows the data mi-
gration occurring in the same platform of Figures 1
under the hypothesis that the relative capacities be-
come x(f) = (0.11,0.18,0.21,0.18,0.14,0.18). If a 2-
dimensional data distribution is adopted and the basic
grain is a point, data exchange occurs first horizon-
tally and then, if necessary, vertically (Figure 2.b). If
one excludes the worst cases, that are very rare, the
total number of send() for a node usually does not
overcome six and is much less in average.

6 Experimental results
We carried out a set of experiments to measure

the performance of our load balancing framework
when applied to SPMD applications with explicit
communications. The focus is mainly on the deci-
sion policies. The platform consists of six hetero-
geneous workstations which are connected through
an Ethernet-based network. The initial relative ca-

Figure 2: Actual data partition after a data reconfigura-
tion. Dotted lines denote subdomain boundaries before
reconfiguration.

pacities are given by the following vector x(*o) =
(0.19,0.09,0.17,0.15,0.29,0.11).

Experiments were performed during night hours
when we had 'dedicated' workstations and we could as-
sume almost exclusive access to the network. In order
to emulate external workload, we loaded some node
with special processes. Since even during night hours a
distributed system cannot be considered a stable plat-
form, we reduced the variability of the execution times
by carrying out six repeated runs for each experiment.
The results shown in this section are the average mea-
surements of these six runs. We implemented two pop-
ular SPMD algorithms in C using PVM 3.3 primitives
and the library provided by DAME:

1) LU factorization. This algorithm contains mul-
ticast communications and is partly irregular in the
sense that, at each iteration step, it works on a smaller
data domain. We consider a domain consisting of a
square dense matrix that is row partitioned in a cyclic
way. The basic redistribution grain is fixed to a row,
while the complexity coefficient C is equal to 2.

2) Heat equation solver. This algorithm evaluates
the temperature of each grid point by means of a suit-
able linear combination of the temperature of its ad-
jacent points at the previous time step according to
the finite difference method. It is a regular algorithm
that contains only near-neighbor communications. We
consider a 2-dimensional domain that is partitioned in
blocks. Even for this algorithm, the complexity coef-
ficient C is equal to 2.

The system variability is reflected through a set of
four scenarios. In scenario A, two nodes are loaded
by external processes that have an interval of activa-
tion and disactivation equal to 300 seconds (average
variability). In scenario B, the external workload is

on five nodes with same average interval of activa-
tion and disactivation as scenario A. In scenario C,
the external workload is on half nodes with activa-
tion/disactivation interval equal to 400 seconds (low
variability). In scenario D, the external workload is
on half nodes with interval equal to 120 seconds (high
variability).

3000

2500

2000

1500

1000

500

0

3000

2500

2000

1500

1000

500

0

Scenario A

-

1 1
Equ-Stat -+--
Bal-Stat -X--
Bal-Dyn -0—

1 1 1

-

,-''..x-"'"

-

1 1 1
500 1000 1500 2000

Domain Size

Scenario B

2500 3000

1 1 1
Equ-Stat -+--

i i r
> - Bal-Stat -X■-

Bal-Dyn -0— ,'' -X

-+' •-•" ^ - „''.X' ^^-

— xx--*' ^******^ —
s$r^

i i i 1 1 1
500 1000 1500 2000

Domain Size
2500 3000

Figure 3: Execution times of the parallel solution of the
2-dimensional heat equation after 100 iteration steps with
variable domain size. The platform consists of 6 machines
that are subject to workload variations according to sce-
nario A and scenario B.

The first set of experiments aims at evaluating the
advantages of our load balancing support. To this pur-
pose, we compared the performance of the heat equa-
tion algorithm with actual data partition equal to data
partition image and no checkJ.oad() call (equ-stat),
the same algorithm with actual data partition propor-
tional to initial node capacities and no check-loadQ
call (bal-stat), and the algorithm using dynamic actual
data partition and checkJ.oad(0,7,bench,SMI, .45)
calls (bal-dyn). Figures 3 show the execution times
(in seconds) of one hundred iteration steps of the heat
equation solver for a rectangular data domain in which
one dimension is fixed to 300 and the other is vari-
able (see values on the ascissa). In particular, Figure

e
P

180

160

140

120

100

80

60

40

20

0

180

160

140

120

100

80

60

40

20

01

check_load(*,200)
"i—r
Bal-Stat

SASR -E-
AASR -0—

100 200 300 400 500 600 700 800
Iteration Step

check_load(*,100)

1 1 1 1 1
Bal-Stat H—

SASR -Q-
AASR -0- X7P'

Q'

C-.i i i i i

-■+■
-B

I 1

--t—f-

1

1

1

1

1

0 100 200 300 400 500 600 700 800
Iteration Step

Figure 4: Execution times (cumulative) of LU factoriza-
tion of a 800 x 800 dense matrix solved on four worksta-
tions without dynamic balancing (no balan), with synchro-
nously (SASR) and asynchronously activated load balanc-
ing (AASR). Each node of the platform is subject to very
frequent workload variations (every 40 sees). The first set
of runs adopts check_load(*,200) while the second uses
check -load(*, 100).

3.a refers to the scenario A, while Figure 3.b to the
scenario B. We can see that our support guarantees
a better efficiency for any dimension of the data do-
main, even when it adopts a simple policy such as
the SMI, and the protocol SASR which is affected by
many overheads due to synchronous activations and
micro-benchmarks.

The second set of experiments compares the syn-
chronous with the asynchronous activation protocol.
Figures 4 show the performance of these policies run-
ning on a platform subject to frequent workload vari-
ations for different activation intervals. As expected,
AASR behaves better than SASR in both cases. The
difference in favor of AASR is even larger if we con-
sider parallel applications that have less intrinsic syn-
chronizations than LU factorization algorithm.

In the third set of experiments, we test the sensitiv-

10

1800
Scenario C

1 1 1 1 1 1

..-"
_ 1600

/'-'..--■"""'

"■--- •''' /

E
1400

c o a 1200
D

UJ SAI
1000 SMI

NINC ---
NINP

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Threshold

Scenario D
1800

E

1600 - .

1400 -

1200 -

1000 -

800

-

1 1 "1"

v^ •

1

•

1 i

' / / / / / / -

SAI
SMI

NINC ---
NINP

1 1 | 1 i 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7

Threshold

Figure 5: Execution times of 100 iterations of the heat
equation solver on a 300 x 3000 domain by using dynamic
load balancing every 7 iteration steps with different deci-
sion policies and variable thresholds.

ity of the decision policies to the threshold i9. This is
a key parameter for the performance of the load bal-.
ancer because we have to solve the trade-off between
low thresholds that allow a more balanced workload
at the price of higher overheads, and high thresholds
that reduce overheads, but have major risks of long
imbalanced executions. Since the choice of the best
threshold depends on many variables, among which
the application characteristics and platform conditions
are the most important, a global solution is out of
the scope of this paper. For this reason, we carried
out only an empirical analysis within our test algo-
rithms and scenarios. Figures 5 show the execution
times of 100 iterations of the heat equation solver on
a 300 x 3000 domain running under scenarios C and D
as a function of the threshold. It is to be noted that
each decision policy performs best in correspondence
of a rather large interval of threshold values. Hence,
any value in this interval can be considered acceptable.

The last set of experiments aims at comparing the
decision policies applied to the same heat equation

solver used in the third set of experiments under the
four scenarios A-D. The checkJ.oad() adopts the
AASR protocol with interval parameter set to 7, while
the thresholds for each decision strategy are set to
the best values found in the previous experiments. In
particular, the Figures 6-9 show the execution times
required to complete each iteration step by the slow-
est node of the platform, without considering the costs
due to the check_load() calls. Each graph reports the
execution times as sum of application time and over-
heads due to the load balancing support. The peaks
in each curve denote an imbalanced situation created
by the activation of synthetic workloads. All the ex-
periments are subject to the same external workloads,
however they can occur at different iteration steps de-
pending on the speed of the processes. In faster (that
is, more balanced) executions, the peaks that denote
external workloads appear in correspondence of higher
iteration steps.

Figure 6 compares the strategies SAI, SMI and
NINC under the scenario A. SAI and SMI reduce the
global execution time of more than 20% with respect
to the algorithm without check-load(), while NINC
(and NUNC that for these experiments behaves very
similarly to NINC) provides more limited improve-
ments. In particular, SMI recognizes any consistent
power variation and reacts immediately (all the peaks
but one are smaller than in other strategies). SAI is
less reactive than SMI because it considers the global
imbalance: it does not react to single variations, while
it soon reconfigures when the entire system is imbal-
anced. On the other hand, NINC, that in our platform
requires at least two nodes to be imbalanced, is insen-
sitive to variations occurring in one node only.

Figure 7 compares the same decision strategies un-
der the scenario B that provides a more imbalanced
platform than A. In this instance, the strategies SAI
and NINC perform best, while SMI is very poor. The
problems of this strategy are due to the fact that it al-
ways reconfigures, thus causing more overheads (344
seconds compared to 206 and 256 of the other two
strategies) without reducing the execution time of the
algorithm (compare 1543 seconds to 1470 and 1408).
This demonstrates that, in highly variable platforms,
it is not convenient to always reconfigure, because the
new actual data partition may soon be invalidated.
The curves SAI and NINC have less skews and per-
form generally better than SMI. However, the long
peaks around iterations 45-65 denote their inability to
react to a serious imbalance which is due, with high
probability, to only one node.

Figures 8 and 9 evaluate the trade-off between a
strategy using only the last information and a policy
using even past information about the node capacities.
The comparison between NINC and NINP is carried
out on a low and highly variable platform (that is, sce-

11

nario C and scenario D, respectively). We can antici-
pate that in both instances, the policy using past infor-
mation does not achieve better results than the strat-
egy without memory. In particular, in the scenario C,
NINC suddenly reacts to each variation, while NINP
usually reacts at the successive checkJ.oad() call.
Therefore, NINP causes more iterations to be executed
in an imbalanced condition. Figure 8 shows that the
NINP peaks are always longer than the NINC peaks,
while in a low variable scenario there is not a great
difference between NINC and NINP overheads. The
results in case of highly imbalanced platform (Figure
9) have a more difficult interpretation. NINC always
reconfigures but, being a myopic policy, it often has
to reconfigure again at the successive checkJLoad()
call. This causes a greater overhead for NINC than
for NINP (266 vs. 246 seconds) which is due to the
higher number of data migration for the former pol-
icy. NINP, being sensitive to long fluctuations only,
performs well when it avoids following any brief vari-
ation of the platform, and performs poorly when it
reacts too late to an imbalanced situation.

Even if it is difficult to deduct any global conclu-
sion, because there are many other system and appli-
cation parameters that could be considered, our ex-
periments indicate the following.

• AASR is usually more advantageous than SASR.

• SMI and NINC with low thresholds are prefer-
able when most of the machines are stable and
just one-two workstations are subject to high load
variations (for example, some machines of the
pool are used occasionally for external jobs). In
this case, NINP performs poorly, while SAI is ac-
ceptable even if it is sensible to overall variations
only and we are considering load variations on a
small subset of nodes.

• The global policies such as SAI and NINP are
preferable when the platform is highly unstable.
Moreover, SAI seems usually more stable than
NINP, while NINC and SMI do not improve much
the algorithm performance.

• Using past information is rarely convenient. Typ-
ically, NINC does not perform worse than NINP
and it is often better. We observed the NINP
policy to give better results than NINC only in
a (not reported) scenario characterized by long
periods of load variations and some critical situ-
ations of short duration, to which it was usually
more convenient not to react.

7 Conclusions
The problem of load balancing distributed parallel

computations touches on many theoretical and prac-
tical issues. In this paper, we have presented some

methods that work for regular SPMD algorithms con-
taining near-neighbor and/or multicast communica-
tions. Even if our framework does not implement all
the possible strategies, it achieves two important re-
sults: it shows the feasibility of dynamically adapting
data distribution for this wide class of parallel applica-
tions, it hides from the programmer the entire recon-
figuration process but the activation phase. In addi-
tion, the experiments demonstrate this framework to
be an efficacious support for balancing SPMD compu-
tations and to maintain the efficiency even when the
platform is subject to highly dynamic variations. In
particular, our results show that the asynchronous ac-
tivation protocol is usually preferable to the synchro-
nous strategy, while an asynchronous reconfiguration
is unfeasible for our framework. No one decision pol-
icy proved best for all the applications and scenarios
used in our experiments, however the SAI, that looks
at the global system imbalance, seems to be the most
stable.

This paper leaves open two interesting problems,
such as the choice of the best threshold value and the
optimal checkpoint frequency, that are currently un-
der study. We intend to provide the programmer with
a support that, on the basis of the chosen decision pol-
icy, class of applications (independent tasks, moderate
synchronous tasks, highly synchronous tasks) and sta-
tus of the platform (quiet, moderately variable, highly
variable), sets autonomously the threshold and inter-
val parameters of the checkJLoadQ function.

Acknowledgements

The authors thank the anonymous reviewers for
their comments that helped improve the quality of this
presentation.

References
[1] F. Bonomi, and A. Kumar, "Adaptive optimal load

balancing in a nonhomogeneous multiserver system
with a central job scheduler", IEEE Trans, on Com-
puters, v. 39, n. 10, Oct. 1990, pp. 1232-1250.

[2] N. Carriero, and D. Kaminsky, "Adaptive parallelism
and Piranha", IEEE Computers, v. 28, n. 1, Jan.
1995, pp. 40-49.

[3] J. Casas, R. Konuru, S.W. Otto, R. Prouty, and
J. Walpole, "Adaptive load migration systems for
PVM", Proc. of Supercomputing '94, Washington,
DC, Nov. 1994, pp. 390-399.

[4] J. Casas, D.L. Clark, R. Konuru, S.W. Otto, R.M.
Prouty, and J. Walpole, "MPVM: A migration trans-
parent version of PVM", Usenix Computing Systems,
v. 8, n. 2, Spring 1995, pp. 171-216.

[5] M. Cermele, and M. Colajanni, "Supporting irregular
data distribution for heterogeneous clusters", Proc. of
9th Int. Conf. on Par. and Distr. Comp. Sys., Dijon,
France, Sept. 1996.

12

[6] M. Cermele, and M. Colajanni, "Nonuniform and
dynamic domain decomposition for hypercomput-
ing", to appear in Parallel Computing, 1997;
(available as Tech. Rep. RI.95.19 via anonymous
ftp://ftp.info.utovrm.it/pub/projects/Ri95-15.ps).

[7] A.N. Choudhary, B. Narahari, and R. Krishnamurti,
"An efficient heuristic scheme for dynamic remapping
of parallel computations", Parallel Computing, v. 19,
1993, pp. 621-632.

[8] M. Colajanni, and M. Cermele, "DAME: An environ-
ment for preserving efficiency of data parallel compu-
tations on distributed systems", IEEE Concurrency,
1997.

[9] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R.
Manchek, and V. Sunderam, PVM: Parallel Virtual
Machine - A Users's Guide and Tutorial for Net-
worked Parallel Computing. Cambridge: MIT Press,
1994.

[10] M. Hamdi, and C.-K. Lee, "Dynamic load balanc-
ing of data parallel applications on a distributed net-
work", Proc. of 1995 Int. Conf. on Supercomputing,
Barcelona, July 1995, pp. 170-179.

[11] R. von Hanxleden, and L.R. Scott, "Load balancing
on message passing architectures", Journal of Parallel
and Distributed Computing, v. 13, 1991, pp. 312-324.

[12] T. Kunz, "The influence of different workload descrip-
tions on a heuristic load balancing scheme", IEEE
Trans, on Software Engineering, v. 17, n. 7, July 1991,
pp. 725-730.

[13] N. Nedeijkovic, and M.J. Quinn, "Data-parallel pro-
gramming on a network of heterogeneous workstation-
s'', Concurrency: Practice and Experience, v. 5, n. 4,
June 1993, pp. 257-268.

[14] D.M. Nicol, and J.H. Saltz, "Dynamic remapping of
parallel computations with varying resource demand-
s'', IEEE Trans, on Computers, v. 37, n. 9, Sept. 1988,.
pp. 1077-1087.

[15] R. Ponnusamy, J. Saltz, A. Choudary, Y.-S. Hwang,
and G. Fox, "Runtime support and compilation
methods for user-specified data distributions", IEEE
Trans, on Parallel and Distributed Systems, v. 6, n.
8, Aug. 1995, pp. 815-831.

[16] Schnekenburger, and M. Huber, "Heterogeneous par-
titioning in a workstation network", Proc. of 1994
Heterogeneous Computing Workshop, 1994, pp. 72-77.

[17] M.H. Willebeek-LeMair, and A.P. Reeves, "Strategies
for dynamic load balancing on highly parallel comput-
ers", IEEE Trans, on Parallel and Distributed Sys-
tems, v. 4, n. 9, Sept. 1993, pp. 979-993.

[18] S. Zhou, X. Zheng, J. Wang, and P. Delisle, "Utopia:
a load sharing facility for large, heterogeneous dis-
tributed computer systems", Software - Practice and
Experience, v. 23, n. 12, Dec. 1993, pp. 1305-1336.

Michele Cermele is pursuing its PhD in computer sci-
ence at the University of Roma "Tor Vergata", Italy.
His research interests are in the area of parallel process-
ing, network-based computing, and performance evalua-
tion methods for computer systems and networks. He re-
ceived the Laurea degree in computer engineering summa
cum laude from the University of Roma "Tor Vergata",
in 1994. From January 1997, he is a visiting scholar at
the Department of Electrical and Computer Engineering
of Duke University, NC.

Michele Colajanni is a Researcher at the Department
of Computer Science, Systems and Management of the
University of Roma "Tor Vergata", Italy. His research
interests include adaptive distributed computing, paral-
lel algorithms, and performance modeling and analysis.
He received the Laurea degree in computer science from
the University of Pisa, in 1987, and the PhD in computer
engineering from the University of Roma "Tor Vergata",
in 1991. In 1992 and 1993, he received two grants from
the Italian National Research Council (CNR) for conduct-
ing researches on high performance computing. In 1996,
he was a visiting scientist at the IBM T.J. Watson Re-
search Center in Yorktown Heights, NY. Dr Colajanni is a
member of the Association for Computing Machinery, and
IEEE Computer Society.

Giovanni Necci received the Laurea degree in Computer
Engineering from the University of Roma "Tor Vergata",
in 1996. He is currently a candidate to the PhD course
in Computer Science at the University of Roma "Tor Ver-
gata" . His research interests are in load balancing for par-
allel and distributed systems, and stochastic methods for
performance analysis.

13

Scenario A

20 - 1 1 1 1

18 - lk

16 \

14 \ l\
12

10 -

8 •* V

6
Bal-Stat(Ex.Time=1415)
SAI (Ex.Time=975+161)

1 1 1 1
20 40 60

Iteration Step
80 100

20 - 1
1

-

18 K '' -

16 _

14

r~*T- .— ,„ ._,, — 1 » \ .. ,. ! .- / \ i *

-

12
\ 1 v i

\
[\ 10

8

\j-^s-'^'J V—--—.-^J v-\r~--^ \ - \

6
Bal-Stat(Ex.Time=1415)
SMI (Ex.Time=911+209)

1 1 i i
-

20 40 60
Iteration Step

80 100

1 i

Bal-Stat(Ex.Time=1415)
NINC (Ex.Time=1076+180)

 I
20 40

Iteration Step
60 80 100

Figure 6: Iteration times of the heat equation solver on a 300 x 3000 domain without dynamic balancing and with
check_load(*,7) calls using three decision policies which are based on current load information. The platform is subject
to workload variations according to scenario A.

14

Scenario B

£

40 60
Iteration Step

E
P

Bal-Stat (Ex.Time=1967)
SMI (Ex.Time=l 543+344)

20 40 60
Iteration Step

80 100

E

30 -

25 -

20

10

Bal-Stat (Ex.Time=l 967)
NINC (Ex.Time=1408+256)

I
20 40

Iteration Step
60 80 100

Figure 7: Iteration times of the heat equation solver without dynamic balancing and with checkJ.oad(*,7) calls using
three decision policies which are based on current load. The platform is subject to workload variations according to scenario

B.

15

20

18

16

14

12

10

Scenario C

8 - Bal-Stat (Ex.Time=1510)
NINC(Ex.Time=1013+196)
NINP (Ex.Time=l 115+206)

20 40 60
Iteration Step

80 100

Figure 8: Iteration times of the heat equation solver without dynamic balancing (no bal), with a decision policy which is
based on current load information (NINC), and a decision policy which adopts past and current information (NINP). The
platform is subject to workload variations according to scenario C.

E
H

30
Scenario D

1

T'"

1 1

25 " f .' i; N \
'il i; J \

1 \< I \
V-/

20 / / i v 1 ' \ ; i \ 1

1 \J ' ' w N

;4-../,:-y r-.\.
h1 •/ \-\

r' * L^ N A'l

L-^^ • yi ,*

\. \

15 /

10

Bal-Stat (Ex.1
NINC (Ex.Time=

- NINP (Ex.Time=

rime=2370)
=1653+266) ---
=1675+246)

''

20 40 60
Iteration Step

100

Figure 9: Iteration times of the heat equation solver without dynamic balancing (no bal), with a decision policy which i
based on current load information (NINC), and a decision policy which adopts past and current information (NINP). Th
platform is subject to workload variations according to scenario D.

16

The MOL Project: An Open, Extensible Metacomputer*

A. Reinefeld, R. Baraglia^ T. Decker, J. Gehring,
D. Laforenzat, F. Ramme, T. Römke, J. Simon

PC2 - Paderborn Center for Parallel Computing, Germany
t CNUCE - Institute of the Italian National Research Council

Abstract
Distributed high-performance computing—so-called

metacomputing—refers to the coordinated use of a pool
of geographically distributed high-performance comput-
ers. The user's view of an ideal metacomputer is that
of a powerful monolithic virtual machine. The imple-
mentor's view, on the other hand, is that of a variety
of interacting services implemented in a scalable and
extensible manner.

In this paper, we present MOL, the Metacomputer
Online environment. In contrast to other metcomput-
ing environments, MOL is not based on specific pro-
gramming models or tools. It has rather been designed
as an open, extensible software system comprising a
variety of software modules, each of them specialized in
serving one specific task such as resource scheduling,
job control, task communication, task migration, user
interface, and much more. All of these modules exist
and are working. The main challenge in the design of
MOL lies in the specification of suitable, generic in-
terfaces for the effective interaction between the mod-
ules.

1 Metacomputing
"Eventually, users will be unaware they are using

any computer but the one on their desk, because it will
have the capabilities to reach out across the national
network and obtain whatever computational resources
are necessary" [41]. This vision, published by Larry
Smarr and Charles Catlett in their seminal CACM ar-
ticle on metacomputing, sets high expectations: "The
metacomputer is a network of heterogeneous, compu-
tational resources linked by software in such a way that
they can be used as easily as a personal computer."

»This work is partly supported by the EU ESPRIT
Long Term Research Project 20244 (ALCOM-IT) and by
the Northrhine Westphalian Initiative "Metacomputing: Dis-
tributed Supercomputing"

The advantages of metacomputing are obvious:
Metacomputers provide true supercomputing power
at little extra cost, they allow better utilization of
the available high-performance computers, and they
can be flexibly upgraded to include the latest tech-
nology. It seems, however, that up to now no sys-
tem has been built that rightfully deserves the name
'metacomputer' in the above sense. From the user's
point of view, the main obstacles are seen at the sys-
tem software level, where non-standardized resource
access environments and incompatible programming
models make it difficult for non-experts to exploit the
available heterogeneous systems. Many obstacles in
the cooperative use of distributed computing systems
can be overcome by providing a homogeneous, user-
friendly access to a reliable and secure virtual meta-
computing environment that is used in a similar way
as a conventional monolithic computer today.

Some of these issues are addressed by "Metacom-
puter Online (MOL)", an initiative that has been
founded with the goal to design and implement the nu-
cleus of a practical distributed metacomputer. MOL
is part of the Northrhine-Westphalian Metacomputer
Inititiative that has been established in 1995, and it is
embedded in several other European initiatives [31].

The MOL group has implemented a first, incom-
plete 'condensation point' of a practical metacom-
puter, which is now being extended and improved.
Clearly, we could not tackle all relevant obstacles at
the same time. We initially concentrated on the fol-
lowing issues that are deemed most important in the
design of a first prototype:

• provision of a generic, user-friendly resource ac-
cess interface,

• support of interoperability of existing codes using
different message passing standards,

0-8186-7879-8/97 $10.00 © 1997 IEEE
17

• effective global scheduling of the subsystems for
high throughput and reduced waiting times,

• support of concurrent use in interactive and batch
mode,

• mechanisms for automatic remote source code
compilation and transparent data distribution,

• automatic selection of adequate compute nodes
from a pool of resources to be assigned to the
tasks of a parallel application,

• dynamic re-placement of user tasks by means of
performance prediction of the source code on the
heterogeneous nodes,

• provision of data management libraries and pro-
gramming frames to help non-expert users in pro-
gram design and optimal system utilization.

Clearly, this list is not complete. Further items can
and should be added for a full metacomputing environ-
ment. Depending on their attitude and current task,
users might have different expectations on the services
a metacomputer should provide. As a consequence, a
metacomputer cannot be regarded as a closed entity,
but it is rather a highly dynamical software system
that needs continuous adaptation to the current user
demands.

The MOL project aims at integrating existing
software modules in an open, extensible environ-
ment. Our current implementation supports PVM,
MPI and PARIX applications running on LAN- or
WAN-connected high-performance computers, such as
Parsytec GC, Intel Paragon, IBM SP2, and UNIX
workstation clusters.

This paper presents the current status of MOL. It
gives an overview about the system architecture and
it illustrates how the separate modules interact with
each other. Section 2 reviews related work which in-
fluenced the design of MOL or which can be integrated
into MOL at a later time. Section 3 gives a concep-
tual view and discusses the general MOL architecture.
In Section 4, we elaborate on the interface design and
show how the MOL components interact with each
other. Section 5 to 7 describe the MOL components
in more detail, and Section 8 gives a brief summary
and outlook.

2 Previous Work
In the past few years, several research projects have

been initiated with the goal to design a metacomputer

environment. Some of them follow the top-down ap-
proach, starting with a concrete metacomputing con-
cept in mind. While this approach seems compelling,
it usually results in a "closed world metacomputer"
that provides a fixed set of services for a well-defined
user community.

The second category of projects follow the bottom-
up approach, initially focusing on some selected as-
pects which are subsequently extended towards a full
metacomputing environment. In the following, we re-
view some projects falling into this category.

Parallel programming models have been a popular
starting point. Many research projects targeted at ex-
tending existing programming models towards a full
metacomputing environment. One such example is
the Local Area Multicomputer LAM developed at the
Ohio Supercomputer Center [13]. LAM provides a sys-
tem development and execution environment for het-
erogeneous networked computers based on the MPI
standard. This has the advantage that LAM applica-
tions are source code portable to other MPI systems.
The wide-area metacomputer manager WAMM devel-
oped at CNUCE, Italy, is a similar approach based
on PVM [5, 6]. Here, the PVM programming envi-
ronment has been extended by mechanisms for par-
allel task control, remote compilation and a graphical
user interface. Later, WAMM has been integrated into
MOL and extended to the support of other program-
ming environments, as shown below.

Object oriented languages have also been proposed
as a means to alleviate the difficulties of developing
architecture independent parallel applications. Charm
[26], Trapper [38], Legion and Mentat [25] for example,
support the development of portable applications by
object oriented parallel programming environments.
In a similar approach, the Dome project [2] at CMU
uses a C++ object library to facilitate parallel pro-
gramming in a heterogeneous multi-user environment.
Note, however, that such systems can hardly be used
in an industrial setting, where large existing codes
(usually written in Fortran) are to be executed on par-
allel environments.

Projects originating in the management of work-
station clusters usually emphasize on topics such as
resource management, task mapping, checkpointing
and migration. Existing workstation cluster manage-
ment systems like Condor, Codine, or LSFaxe adapted
for managing large, geographically distributed 'flocks'
of clusters. This approach is taken by the Iowa
State University project Batrun [42], the Yale Uni-
versity Piranha project [14], and the Dutch Polder
initiative [34], both emphasizing on the utilization of

18

idle workstations for large-scale computing and high-
throughput computing. Complex simulation applica-
tions, such as air pollution and laser atom simulations
have been run in the Nimrod project [1] that supports
multiple executions of the same sequential task with
different parameter sets.

These projects could benefit by the use of special
metacomputing schedulers, such as the Application-
Level Scheduler AppLeS developed at the University
of California in San Diego [9]. Here, each applica-
tion has its own AppLeS scheduler to determine a
performance-efficient schedule and to implement that
schedule in coordination with the underlying local re-
source scheduler.

Networking is also an important issue, giving impe-
tus to still another class of research projects. I-WAY
[22], as an example, is a large-scale wide area com-
puting testbed connecting several U.S. supercomput-
ing sites with more than a hundred users. Aspects
of security, usability and network protocol are among
the primary research issues. Distributed resource bro-
kerage is currently investigated in the follow-up I-Soft
project. In a bilateral project, Sandia's massively par-
allel Intel Paragon is linked with the Paragons located
at Oak Ridge National Laboratories using GigaNet
ATM technology. While also termed a metacomput-
ing environment, the consortium initially targets at
running specific multi-site applications (e.g., climate
model) in distributed mode.

The well-known Berkeley NOW project [33] empha-
sizes on using networks of workstations mainly for im-
proving virtual memory and file system performance
by using the aggregate main memory of the network
as a giant cache. Moreover, highly available and scal-
able file storage is provided by using the redundant
arrays of workstation disks, and—of course—the mul-
tiple CPUs are used for parallel computing.

3 MOL Architecture
We regard a metacomputer as a dynamic entity of

interacting modules. Consequently, interface specifi-
cations play a central role in the MOL architecture,
as illustrated in Figure 1. There exist three general
module classes:

1. programming environments,

2. resource management & access systems,

3. supporting tools.

(1) Programming environments provide mecha-
nisms for communicating between threads and they
allow the use of specific system resources. MPI and

ft

: . ■ '■*• , '

;_. • '.":M:;-f-

*•:;■;. CCS

$ fi
NQS and
related / s : • $ £ J-

/
**

• •• WARP MARS WAMM DAISY FRAMES •••

Supporting Tools

Figure 1: MOL architecture

PVM, for example, are popular programming environ-
ments supported by MOL. More important, MOL also
supports the communication and process management
of heterogeneous applications comprising software us-
ing different programming environments. The MOL
library "PLUS" makes it possible, for example, to es-
tablish communication links between MPI- and PVM-
code that are part of one large application. PLUS is
almost transparent to the application, requiring only
a few modifications in the source code (see Sec. 5).

(2) Resource management & access systems provide
services for starting an application and for controlling
its execution until completion. Currently there exists
a large number of different resource management sys-
tems, each with its specific advantage [3]. Codine, for
example, is well suited for managing (parallel) jobs on
workstation clusters, while NQS is specialized on serv-
ing HPC systems in batch mode. Because the specific
advantages of these systems supplement each other,
we have developed an abstract interface layer with a
high-level resource description language that provides
a unified access to several (possibly overlapping) re-
source management systems.

(3) Supporting tools provide optional services to
metacomputer applications. Currently, the MOL
toolset includes software modules for dynamic task mi-
gration (MARS), for easy program development by us-
ing programming templates (FRAMES), and also data
libraries for virtual shared memory and load balanc-
ing (DAISY). The wide-area metacomputer manager
WAMM plays a special role in MOL: On the one hand,
it may be used just as a resource management system
for assigning tasks to resources, and on the other hand,

19

it also provides automatic source code compilation and
cleanup after task execution.

4 Interface Layers
As described, MOL facilitates the interaction be-

tween different resource management systems and dif-
ferent programming environments. However, this is
not enough: A metacomputer application may also re-
quire some interaction between these two groups. As
an example, consider a PVM application running on
a workstation cluster that is about to spawn a pro-
cess on a parallel computer. For this purpose, the
application makes a call to the parallel system's man-
agement software in order to allocate the necessary
resources. Likewise, a metacomputer application may
need a mechanism to inform the communication envi-
ronment about the temporary location of the partici-
pating processes.

In addition, tools are needed for efficient task map-
ping, load balancing, performance prediction, program
development, etc. There is a wealth of supporting
tools available to cover most aspects of metacomput-
ing. However, as these tools are typically very com-
plex, it is hard to adapt their interfaces for our specific
needs. In the MOL framework shown in Figure 1,
the supporting tools only need to interact with two
abstract interface layers rather than with all systems
below. Thus, new software must be integrated only
once, and updates to new releases affect only the tool
in question.

4.1 MOL User Interface
Metacomputing services will be typically accessed

via Internet or Intranet world-wide-web browsers, such
as the Netscape Navigator or the Microsoft Explorer.
MOL provides a generic graphical user interface (GUI)
based on HTML and Java for interactive use and for
submitting batch jobs. At the top level, the GUI dis-
plays general information on status and availability of
the system services. Users may select from a num-
ber of alternatives by push-down buttons. In doing
so, context sensitive windows are opened to ask for
context specific parameters required by the requested
services. Figure 2 shows the MOL window used for
submitting interactive or batch jobs.

This concept is called 'interface hosting': The
generic interface acts as a host for the sub-interfaces
of the underlying modules. Interface hosting gives
the user control over the complete system without the
need to change the environment when the user wants
to deal with another feature or service of the meta-
computer.

ßatei bearbeiten ansieht Eg*»« favoriten 2

Ufa

\ ; •-- © Q ö @ a- m £ 1
1 . ' At*r«K.. Aktuehi.. Startle« Suchen Favoriten Drucker. SchriV. |j

;Adr«je|H\pub\Sut)nn_job.htrt _»]

Submit a job

• 1

Job Name: [plioenics

Project Nam» |HPCM

Destination System- jt90 zam kia-iuefich de jj

JobPritJBly: |.o

Start Time (dimruHH:MMt |oi:0100 00

Duration Tine (HH:MM:SSJ |oftOOOO

Standait Output |Phoenics.oul

Stand« Input |/dev/nu»

Enot-Messaoes: j

Required Resources; |

E-MalAöoVess: [user@höst

Sendmai |coinplete 2J

C Bel* r Metadrra

App*| Cancel | He|p|

Information Area

WV/W-Servan ' ' _£j

Id ■ ■ J1

! ! S *„

Figure 2: Prototype GUI of Paragon/Parsytec meta-
computer

The different skills of users are met by a Java-based
graphical interface and a shell-based command ori-
ented interface. In addition, an API library allows
applications to directly interact with the metacom-
puter services. All three interfaces,

• the graphical user interface (Java)
• the shell-based command line interface
• the API library

provide the same functions.
Figure 2 illustrates the graphical user interface used

to submit a job to a Parsytec/GC and a Paragon lo-
cated in Paderborn and Jiilich. The two machines
are installed 300 kilometers apart. They are intercon-
nected via the 34Mbps German Research WAN. Note
that the same interface is used for submitting batch
jobs as well as for starting interactive sessions.

A later version of the interface will include a graph
editor, allowing the user to describe more complex in-
terconnection topologies and hierarchical structures.

20

MC„appl

Figure 3: Simple heterogeneous computing example

When the actual system configuration has been deter-
mined by the resource scheduler, the resulting topol-
ogy will be presented to the user by a graph-drawing
tool [32].

4.2 A MOL User Session
In this section, we describe the specification and ex-

ecution of a example user application that is executed
in the MOL environment. Suppose that a large grid
structured application shall be run on a massively par-
allel system with 64 PowerPC 601 nodes, each of them
having at least 16 MB of main memory. As shown
in Figure 3, the result of this computation shall be
post-processed by another application with a pipeline
structure. Depending on the available resources, the
resource management system may decide to collapse
the pipeline structure to be run on a single proces-
sor, or to run the grid and the pipeline on the same
machine. For interactive control, the user terminal is
linked to the first node of the grid part of the appli-
cation. For the concrete resource description used to
specify this metacomputer scenario see Figure 6 below.

Within MOL, such resource specifications are gen-
erated by tools that are integrated into the GUI. When
submitting a resource request, the request data is
translated into the internal format used by the ab-
stract resource management (RM) interface layer. The
result is then handed over to the scheduler and config-
urator. The RM interface layer schedules this request
and chooses a time slot when all resources are avail-
able. It contacts the target management systems and
takes care that all three programs will be started at
the same time. Furthermore, it generates a descrip-
tion file informing the abstract programming environ-
ment interface where the programs will be run and
which addresses to be used for establishing the first
communication links. At program run time, the pro-
gramming environment interface layer establishes the

interconnection between the application domains and
takes care of necessary data conversion.

Though this example is not yet completely realized,
it gives an idea on how the modules would interact
with each other by means of abstract layers and how
the results are presented to the user by the generic
interface.

5 Programming Environments Layer
In contrast to many other heterogeneous comput-

ing environments, MOL is not restricted to a spe-
cific programming environment. Applications may use
any programming model supported by the underly-
ing hardware platforms. This could be either a ven-
dor supplied library or a standard programming model
such as PVM and MPI.

However, many programming models are homo-
geneous, that is, applications can only be executed
on the system architecture they have been compiled
(linked) for. While there also exist some heteroge-
neous programming libaries, they usually incur signif-
icant performance losses due to the high level of ab-
straction. Portable environments are typically imple-
mented on top of the vendor's libraries, making them
an order of magnitude slower than the vendor supplied
environments. Clearly, users are not willing to accept
any slow-downs in their applications, just because the
application might need some infrequent communica-
tion with some remote system. This problem is ad-
dressed by PLUS.

5.1 PLUS - A Linkage Between Pro-
gramming Models

PLUS stands for Programming Environment
Linkage by Universal Software Interfaces [12]. It pro-
vides a lightweight interface between different pro-
gramming environments which are only used for com-
municating with remote hosts. The efficiency of the
native environment remains untouched.

The interfaces are embedded into the various envi-
ronments. A PVM application, for example, uses or-
dinary PVM-IDs for addressing non-PVM processes.
Consequently, a PARIX process reachable via PLUS
is represented within a PVM application by an ordi-
nary PVM-ID. Of course, PLUS takes care that these
'pseudo PVM-IDs' do not conflict with the real PVM-
IDs.

Furthermore, PLUS allows to create processes by
overlaying existing routines (PVM) or by extending
the available function set with its own procedure (in
the case of MPI). Thereby, PLUS adds a dynamic pro-
cess model to programming environments like MPI1,

21

PVM Workstation Cluster PARIX MPP System

User Program

Homogeneous Task IDs

libpvm.a libplus.a

PVM-inieraa] communicaiion

User Program

libplus.a libmpi.a

PARIX-internal

Figure 4: PLUS architecture

which do not provide such facilities. PLUS has no in-
ternal resource management functionality, but it for-
wards the requests to the abstract resource manage-
ment layer, which offers more powerful methods than
could be integrated into PLUS.

With this concept, PLUS allows program develop-
ers to integrate existing codes into the metacomputer
environment, thereby lowering barriers in the use of
metacomputers.

PLUS Architecture. Fig. 4 depicts the architec-
ture of the abstract interface layer for programming
environments developed in the PLUS project. Note
that the regular PVM communication is not affected
by PLUS. Only when accessing a PVM-ID that actu-
ally represents an external process (a PARIX process
in this example), the corresponding PLUS routine is
invoked. This routine performs the requested commu-
nication via the fastest available protocol between the
PVM cluster and the PARIX system. Usually, com-
munication will be done via UDP.

PLUS libraries are linked to each other via one or
more PLUS server. Since most of the PLUS code is
contained in these servers, the link library could be
kept rather small. The servers manage the translation
of different data representations, the message routing
along the fastest network links, the dynamic creation
of new processes, and much more. The number of ac-
tive PLUS servers and their configuration may change
dynamically at run time according to the needs of the
user's application.

PLUS Performance. On a 34 Mb/s WAN inter-
connection, the PLUS communication has been shown
to be even faster than TCP [12]. This is because the
UDP based communication protocol of PLUS builds
a virtual channel on which the messages are multi-
plexed. A sliding window technique allows to assem-
ble and re-order the acknowledgements in the correct
sequence.

 • j^_

* y
 * y^

-PVM

-PLUS

2 4

Packetslze in KByte

Figure 5: PLUS versus PVM on a 10Mb/s LAN

Figure 5 shows a less favorable case where the PLUS
communication is outperformed by PVM. A parallel
Parsytec CC system under AIX has been intercon-
nected to a SUN-20 via 10Mb/s Ethernet. In both
runs, the same PVM code has been used: once com-
municating via the internal PVM protocol, and the
other time via the PLUS protocol. Here, PLUS is
about 10 to 20% slower, because the PLUS communi-
cation needs two Internet hops, one hop from the CC
to the PLUS daemon, and another from the daemon
to the target SUN. The PVM tasks, in contrast, need
only one Internet hop for communicating between the
two corresponding PVM daemons. Moreover, since
the PLUS communication libraries are designed in an
open and extensible way, they do not contain routing
information.

Note, that the example shows a worst case, because
PLUS would only be used to communicate between
different programming environments. Any internal
communication, e.g. within PVM, is not affected by
PLUS.

Extending PLUS. The current version of PLUS
supports PVM, MPI and PARIX, where the latter is
available on Parsytec systems only.

The PLUS library consists of two parts: a generic,
protocol-independent module, and a translation mod-
ule. The translation module contains a small set of
abstract communication routines for the specific pro-
tocols. These routines are quite small, typically com-
prising less then one hundred lines of code.

New programming environments can be integrated
to PLUS by implementing a new translation mod-
ule. This allows applications to communicate with
any other programming model for which translation
modules are available in PLUS.

22

6 Resource Management Layer
Resource management is a central task in meta-

computing environments, permitting oversubscribed
resources to be fairly and efficiently shared. Histor-
ically, supercomputer centers have been using batch
queuing systems such as NQS [28] for managing their
machines and for scheduling the available computing
time. Distributed memory systems employ more com-
plex resource scheduling mechanisms, because a large
number of constraints must be considered in the exe-
cution of parallel applications. As an example, inter-
active applications may compete with batch jobs, and
requests for the use of non-timeshared components or
for special I/O facilities may delay other jobs.

On a metacomputer, the scheduler is responsible
for assigning appropriate resources to parallel applica-
tions. Scheduling is done by the resource management
system that allocates a particular CPU at a particu-
lar time instance for a given application, and by the
operating system running on a certain compute node.
In parallel environments, we distinguish two levels of
scheduling:

• At the task level, the scheduling of tasks and
threads (possibly of different jobs) is performed
by the operating system on the single MPP nodes.
The scheduling strategy may be uncoordinated,
as in the traditional time-sharing systems, or it
can be synchronized, as in gang-scheduling. The
latter, however, is only available on a few parallel
systems.

• At the job level, the scheduling is usually ar-
chitecture independent. A request may specify
the CPU type, memory requirements, I/O fa-
cilities, software requirements, special intercon-
nection structures, required occupation time and
some attributes for distinguishing batch from in-
teractive jobs. Here, the request scheduler is re-
sponsible for re-ordering and assigning the sub-
mitted requests to the most appropriate ma-
chines.

With few exceptions [9], the existing schedulers
were originally designed for scheduling serial jobs
[27, 3]. As a consequence, many of them do not obey
the 'concept' of parallel programs [37]. Typically, a
stater (master) process is launched that is responsible
for starting the rest of the parallel program. Thus,
the management has limited knowledge about the dis-
tributed structure of the application. When the mas-
ter process dies unexpectedly (or has been exempted
because the granted time is expired) the rest of the

parallel program is still existent. Such orphaned pro-
cesses can cause serious server problems, and in case of
MPP systems (like the SP2) they can even lock parts
of the machine.

With its open architecture, MOL is not restricted
to the usage of specific management systems. Rather,
we distinguish three types of management systems,
each of them specialized to a certain administration
strategy and usage profile:

The first group of applications comprise sequential
and client-server programs. The management software
packages of this group have emerged from the tradi-
tional vector-computing domain. Examples are Con-
dor, Codine, DQS and LSF.

The second group contains resource management
systems tailored to the needs of parallel applications.
Some of them have their roots in the NQS develop-
ment (like PBS), while others were developed to over-
come problems with existing vendor solutions (like
EASY) or do focus on the transparent access to par-
titionable MPP systems (like CCS described below).

The last group consists of resource management
systems for multi-site applications, exploiting the
whole power of a metacomputing environment. Cur-
rently, only few multi-site applications exists, and the
development of corresponding resource management
systems is still in its infancy. But with increasing net-
work performance such applications and their need for
a uniform and optimizing management layer is gaining
importance.

6.1 Computing Center Software CCS
CCS [15] provides transparent access to a pool of

massively parallel computers with different architec-
tures [35]. Today, parallel machines ranging from 4
to 1024 nodes are managed by CCS. CCS provides
user authorization, accounting, and for scheduling ar-
bitrary mixtures of interactive and batch jobs [23].
Furthermore, it features an automatic reservation sys-
tem and allows to re-connect to a parallel application
in the case of a breakdown in the WAN connection—
an important feature for remote access to a metacom-
puter.

Specification Language for Resource Requests.
Current management systems use a variety of
command-line (or batch script) options at the user
interface, and hundreds of environment variables (or
configuration files) at the operator interface. Extend-
ing such concepts to a metacomputing environment
can result in a nightmare for users and operators.

Clearly, we need a general resource description lan-
guage equipped with a powerful generation and anima-

23

IHCLUDE <default.defs.rdl> default definitions and constant declarations

DECLARATIOI
BEGII UIIT HC.appl;

DECLARATIOI
BEGII SECTIOI main;

EXCLUSIVE;
DECLARATIOI

FOR i=0 TO (main.x * main.y

main computation on grid
use separate processors for each item

1) DO
{ PROC i; compute = pbl.size; CPU = HPC601; MEMORY =16; }; OD

COIIECTIOI
FOR i=0 TO (main_x - 1) DO

FOR j = i * main.y TO (i * main.y + main_y-2) DO
PROC j LIIK 0 <=> PROC j+1 LIIK 2; OD OD

FOR i=0 TO (main.y - 1) DO
FOR j=0 TO (main.x - 2) DO

PROC (j * main.y + i) LIIK 1 <=> PROC (main.y * (j + 1) + i)

ASSIGI LIIK 1 <=> PROC 0 LIIK 3; — from user terminal
ASSIGI LIIK 2 <== PROC (main.x * main_y-l) LIIK 1; —to postprocessing

LIIK 3; OD OD

OD

EID SECTIOI

BEGII SECTIOI post;
SHARED;
DECLARATIOI

FOR i=l TO post.len DO
{ PROC i; filter = post; CPU = HPC601; }

{ PORT Ausgabe; DISK; };
COIIECTIOI

FOR i=l TO (post.len - 1) DO
i LIIK 0 ==> i + 1 LIIK 1; OD

PROC post.len LIIK 0 ==> PORT Ausgabe LIIK 0;
ASSIGI PROC 1 LIIK 1 <== LIIK 0; — link to higher level

EID SECTIOI

— user control section

pipelined post-processing
the items of this section may be run on a single node

BEGIB SECTIOI user;
DECLARATIOI

{ PORT 10; TERMIIAL
COIIECTIOI

ASSIGI 10 LIIK 0
EID SECTIOI

; >;

<=> LIIK 0;

COIIECTIOI
user LIIK 0 <=>
main LIIK 2 ==>

EID UIIT — HC.appl

main LIIK 1;
post LIIK 0;

— connecting the modules

Figure 6: Specification of the system shown in Figure 3 using the Resource Description Language RDL

tion tool. Metacomputer users and metacomputer ad-
ministrators should not have to deal directly with this
language but only with a high-level interface. Ana-
loguously to the popular postscript language used for
the device-independent representation of documents,
a metacomputer resource description language is a
means to specify the resources needed for a metacom-
puter application. Administrators should be able to
use the same language for specifying the available re-
sources in the virtual machine room.

In a broad sense, resource representations must be
specified on three different abstraction levels: The
vendor-level for describing the internal structure of a
machine. The operator-level, which is the metacom-
puter itself, for describing the interconnections of the
machines within the network and their general proper-
ties. And the user-level, for specifying a logical topol-
ogy to be configured for a given application.

Within MOL, we use the Resource Description Lan-
guage RDL [4], that has been developed as part of the
CCS resource management software [35]. RDL is used

• at the administrator's level for describing type
and topology of the participating metacomputer
components, and

• at the user's level for specifying the required sys-
tem configuration for a given application.

Figure 6 shows an RDL specification for the example
discussed in Figure 3. It is the task of the resource
scheduler to determine an optimal mapping between
the two specifications: The specification of the appli-
cation structure on the one hand, and the specification
of the system components on the other hand. Better
mapping results are obtained when the user requests
are less specific, i.e., when classes of resources are spec-
ified instead of specific computers.

24

f USER j

mm \X~Y&

Y

IBM "

:.- •-...• : -■ . ■

5äM**e'BSLS!.'I*SSK,l!r* '*^?,??,*!^y*ff^W

PVM local hos(

WAMM graphical interface

r PVMhosler >-*lPVMdaemon»

ill

Figure 7: Snapshot of WAMM user interface

7 Supporting Tools
The MOL toolset contains a number of useful tools

for launching and executing distributed applications
on the metacomputer. We first describe the "wide area
metacomputer manager" WAMM, which provides re-
source management functionality as well as automatic
source code compilation and cleanup after task execu-
tion.

Another class of tools allows for dynamic task mi-
gration at execution time (MARS), which makes use
of the performance prediction tool WARP.

Data libraries for virtual shared memory and load
balancing (DAISY) provide a more abstract program-
ming level and program templates (FRAMES) facili-
tate the design of efficient parallel applications, even
for non-experts.

7.1 Graphical Interface WAMM
The Wide Area Metacomputer Manager WAMM

[43, 5, 6] supports the user in the management of the
computing nodes that take part in a parallel compu-
tation. It controls the virtual machine configuration,
issues remote commands and remote source code com-
pilations, and it provides task management. While
ealier releases of WAMM [5, 6] were limited to sys-
tems running PVM only, with the PLUS library it is
now possible to use WAMM on arbitrary systems [7].

Figure 8: WAMM architecture

WAMM can be seen as a mediator between the
top user access level and the local resource man-
agement. It simplifies the use of a metacomputer
by adopting a "geographical" view, where the hosts
are grouped in tree structured sub-networks (LANs,
MANs or WANs). Each item in the tree is shown in
an OSF/Motif window, using geographical maps for
networks and icons for hosts as shown in Figure 7.
The user can move through the tree and explore the
resources by selecting push buttons on the maps. It
is possible to zoom from a wide-area map to a sin-
gle host of a particular site. A traditional list with
Internet host addresses is also available.

Metacomputer Configuration. The metacom-
puter can be configured by writing a configuration file
which contains the description of the nodes that make
up the metacomputer, i.e. all the machines that users
can access. This file will be read by WAMM at startup
time.

Application Development. The development and
execution of an application requires some preparatory
operations such as source code editing, remote com-
pilation and execution. In WAMM, programmers de-
velop their code on a local machine. For remote com-
pilation, they only have to select hosts where they
want to do the compilation and to issue a single Make
command from the popup menu. In a dialog box the
local directories containing the source files and corre-
sponding Makefiles can be specified along with the
necessary parameters.

WAMM supports remote compilation by grouping
all source files into a single, compressed tar file. A

25

(User Process!
^—-~—-^^ [Network V

/ff, : :: rN"^—*-l Monitor I *-MNetwork) \ v>^j

Figure 9: MARS System Architecture

PVMMaker task, which deals with the remote compila-
tion, is spawned on each participating node and the
compressed tar file is sent to all these tasks. The rest
of the work is carried out in parallel by the PVMMakers.
Each PVMMaker receives the compressed file, extracts
the sources in a temporary working directory, and ex-
ecutes the make command. WAMM is notified about
the operations that have been executed, and the result
is displayed in a control window to show the user the
status of the compilation.

Tasks Execution and Control. Application are
started by selecting the Spawn pushbutton from the
Apps popup menu. A dialog box is opened for the user
to insert parameters, such as number of copies, com-
mand line arguments, etc. The output of the processes
is displayed in separate windows and/or saved in files.
When the output windows are open, new messages
from the tasks are shown immediately (Fig. 7). A
Tasks control window can be opened to control some
status information on all the PVM tasks being exe-
cuted in the virtual machine.

7.2 MARS Task Migrator
The Metacomputer Adaptive Runtime System

MARS [24] is a software module for the transparent
migration of tasks during runtime. Task migrations
may become necessary when single compute nodes or
sub-networks exhibit changing load due to concurrent
use by other applications. MARS uses previously ac-
quired knowledge about a program's runtime behavior
to improve its task migration strategy. The knowledge
is collected during execution time without increasing
the overall execution time significantly. The core idea
is to keep all information gathered in a previous exe-
cution of the same program and to use it as a basis for
the next run. By combining information from several
runs, it is possible to find regularities in the charac-
teristic program behavior as well as in the network
profile. Future migration decisions are likely to bene-
fit by the acquired information.

The MARS runtime system comprises two types
of instances (Fig. 9): Monitors for gathering statisti-
cal data on the CPU work-load, the network perfor-
mance and the applications' communication behavior,
and Managers for exploiting the data for computing
an improved task-to-processor mapping and task mi-
gration strategy.

As MARS is designed for heterogeneous metacom-
puters, we cannot simply migrate machine-dependent
core images. Instead, the application code must be
modified by a preprocessor to include calls to the run-
time system at certain points where task migration is
allowed. The user's object code is linked to the MARS
runtime library which notifies an Application Monitor
and a Network Monitor each time a send or receive
operation is executed.

The Network Monitor collects long-term statistics
on the network load. The Application Monitor mon-
itors the communication patterns of the single appli-
cations and builds a task dependency graph for each
execution. Dependency graphs from successive execu-
tion runs are consolidated by a Program Information
Manager. The resulting information is used by the
Migration Manager to decide about task migrations
whenever a checkpoint is reached in the application.

In summary, two kinds of data are maintained: ap-
plication specific information (in dependency graphs)
and system specific information (in system tables) for
predicting the long-term performance of the network
and CPU work-load. Further information on MARS
can be found in [24].

7.3 Runtime Predictor WARP
WARP is a Workload Analyzer and Runtime

Predictor [39, 40]. Performance prediction tools pro-
vide performance data to compilers, programmers and
system architects to assist in the design of more effi-
cient implementations. While being an important as-
pect of high-performance computing, there exist only
few projects that address performance prediction for
clusters of workstations and no project targets the
metacomputing scenery.

WARP is used within MOL to advise the resource
management systems for better hardware exploitation
by maximizing the through-put or by minimizing the
response time. More specifically, the performance pre-
diction figures of WARP provide valuable input for
the initial mapping and dynamical task migration per-
formed by MARS. The WARP system [39, 40] includes
modules for

• compiling resource descriptions into a suitable in-
ternal representation,

26

Figure 10: WARP architecture

flow depends on the execution sequence of the sequen-
tial blocks or on the communication pattern, stochas-
tic graphs are be used. Moreover, detailed event trac-
ing can result in extremely large task graphs, depend-
ing on the size of the system. Fortunately, most par-
allel applications are written in SPMD or data par-
allel mode, executing the same code on all proces-
sors with local, data-dependent branches. Only a few
equivalence classes of processor behavior are modeled
by WARP, with statistical clustering used as a stan-
dard technique for identifying data equivalence classes.
Also regular structures derived by loops and subrou-
tines are used for a task graph relaxation.

• analyzing resource requests of parallel programs,
and

• predicting the execution time of parallel pro-
grams.

Architectural Model. In WARP, a parallel ma-
chine is described by a hierarchical graph. The nodes
in the graph denote processors or machines with local
memory. The edges denote interconnections between
the machines. The nodes are weighted with the rel-
ative execution speed of the corresponding machines,
which have been measured by small benchmark pro-
grams or routines for testing the functional units of
the CPU (floating-point pipelines, load & store oper-
ations in the memory hierarchy, etc.). The edges are
weighted with the latency and bandwidth of the cor-
responding communication performance between the
two nodes, which can be either a local mechanism
(e.g., shared memory) or a network communication.
A monitoring tool in WARP detects the basic load of
time-sharing systems, that is used to model the sta-
tistical load reducing the potential performance of the
machine or interconnection.

Task Graph Construction. WARP models the
execution of a parallel program by a task graph con-
sisting of a set of sequential blocks with correspond-
ing interdependencies. The nodes and edges of a task
graph are weighted with their computation and com-
munication loads. Task graphs are constructed either
by static program analysis or by executing the code
on a reference system. In the latter case, the load fac-
tors are reconstructed from the execution time of the
sequential blocks and communications.

Clearly, the task graphs - representing execution
traces - must not be unique. In cases where the control

Task Graph Evaluation. Task graph are evalu-
ated for predicting the execution time under modi-
fied task allocation schemes and/or changed resources.
The task graph evaluation is done by a discrete event
simulator which constructs the behavior of the parallel
program running on a hardware with a given resource
description. Resource contention is modeled by queu-
ing models. The execution times and communication
times are then adjusted to the relative speed of the
participating resource and the expected contention.

7.4 Data Management Library DAISY
The data management library DAISY (Fig. 11)

comprises tools for the simulation of shared memory
(DIVA) and for load balancing (VDS) in a single com-
prehensive library. A beta release of DAISY is avail-
able for Parsytec's PARIX and PowerMPI program-
ming models. With the improved thread support of
MPI-2, DAISY will also become available on worksta-
tion clusters.

Load Balancing with VDS. The virtual data
space tool VDS simulates a global data space for struc-
tured objects stored in distributed heaps, stacks, and
other abstract data types. The work packets are
spread over the distributed processors as evenly as
possible with respect to the incurred balancing over-
head [19]. Objects are differentiated by their corre-
sponding class, depicted in Figure 11 by their differ-
ent shape. Depending on the object type, one of three
distribution strategies is used:

• Normal objects are weighted by a load measure
given by the expense of processing the object.
VDS attempts to distribute the object such that
all processors have about the same load. A pro-
cessor's load is defined as the sum of the load-
weights of all placed objects.

27

:D

/m[l,3!

read(m[1,3)) request(&o) writefy,5) generate(n)

Figure 11: : The two DA IS Y tools: Distributed shared
memory (Diva) and the load-balancing layer VDS.

• In some applications, such as best-first branch-
and-bound, the execution time is not only affected
by the number of objects, but also by the order
in which the objects are processed. In addition to
the above described quantitative load balancing,
some form of qualitative load balancing is per-
formed to ensure that all processors are working
on promising objects. VDS provides qualitative
load balancing by means of the weighted objects.
Besides their load-weight, these objects possess a
quality tag used to select the next suitable object
from several alternatives.

• The third kind of object, thread objects, pro-
vide an easy and intuitive way to model multi-
threaded computations as done in CILK [10]. In
this computational model, threads may send mes-
sages (results) to their parents. With later ver-
sions it will be possible to send data across more
than one generation (e.g. to grandparents) [21].

In the current VDS release, we implemented a work-
stealing method [11] for thread objects as well as dif-
fusive load balancing for normal and weighted objects.

Shared Memory Simulation with DIVA. The
distributed variables library DIVA provides functions
for simulating shared memory on distributed systems.
The core idea is to provide an access mechanism to
distributed variables rather than to memory pages or
single memory cells. The variables can be created and
released at runtime. Once a global variable is created,
each participating processor in the system has access
to it.

For latency hiding, reads and writes can be per-
formed in two separate function calls. The first call
initiates the variable access, and the second call waits

Figure 12: The frame model

for its completion. The time between initiation and
completion of a variable access can be hidden by other
local instructions or variable accesses.

7.5 Programming Frames

Programming frames facilitate the development of
efficient parallel code for distributed memory systems.
Programming frames are intended to be used by non-
experts, who are either unfamiliar with parallel sys-
tems or unwilling to cope with new machines, environ-
ments and languages. Several projects [16, 8, 17, 18]
have been initiated to develop new and more sophis-
ticated ways for supporting the programming of dis-
tributed memory systems via libraries of basic algo-
rithms, data structures and programming frameworks
(templates). Like LEDA for the sequential case [30],
each of these approaches provides non-experts with
tools to program and exploit parallel machines effi-
ciently.

Our frames are like black boxes with problem de-
pendent holes. The basic idea is to comprise expert
knowledge about the problem and its parallelization
into the black box and to let the users specify the
holes, i.e. the parts that are different at each instan-
tiation. The black boxes are either constructed us-
ing efficient basic primitives, standard parallel data

28

types, communication schemes, load balancing and
mapping facilities, or they are derived from well opti-
mized, complete applications. In any case, frames con-
tain efficient state-of-the-art techniques focusing on re-
usability and portability - both important aspects in
metacomputing. This will save software development
costs and improve the reliability of the target code.

Figure 12 depicts our frame model. Each generated
target executable is built from three different specifi-
cations. The abstract specification defines the param-
eters of the problem (the holes in the black box). It
remains the same for all instances of that frame, and
is generally given by an expert. Furthermore, the ab-
stract specification is used to generate a graphical user
interface (GUI) and for the type consistency check in
the instance level.

At the instance level, values are assigned to the pa-
rameters specified in the abstract level. New problem
instances are generated by the user by giving new in-
stance specifications via the GUI.

The implementation level contains a number of im-
plemented sources, e.g. for MPI or PVM, with respect
to a given abstract frame. An implementation speci-
fication consists of a list of source files and rules for
modifying those sources to get new ones that com-
ply with the values given in the instance level. The
rules are best described as replacements and genera-
tions. New frames can also be composed by modifying
and/or composing existing basic frames.

Three major tools are used to process the frame
specifications. The first checks the abstract specifica-
tion. The second one checks the instance specification
against the abstract specification. The build tool, fi-
nally, generates the target executables taking the spec-
ifications for both an instance and an implementation.
Our preliminary versions of these tools and the GUI
are portable across systems with POSIX compliant C
compilers. As GUIs are considered vital for the accep-
tance of the programming frames, our implementation
is based on the graphical TCL/TK toolkit. The inter-
face reads the abstract specification and prompts the
user for the frame parameters. The output is an in-
stance specification according to our model. A Java
interface to the frames will be available in the near
future.

8 Summary
We have presented an open metacomputer environ-

ment that has been designed and implemented in a col-
laborative effort in the Metacomputer Online (MOL)
initiative. Due to the diversity in the participating
hard- and software on the one hand, and due to the

heterogeneous spectrum of potential users on the other
hand, we believe that a metacomputer cannot be re-
garded as a closed entity. It should rather be designed
in an open, extensible manner that allows for con-
tinuous adjustment to meet the user's demands by a
dynamically changing HW/SW environment.

With the MOL framework, we have linked exist-
ing software packages by generic, extensible interface
layers, allowing future updates and inclusion of new
soft- and hardware. There are three general classes of
metacomputer modules:

• programming environments (e.g., PVM, MPI,
PARIX, and the PLUS linkage module),

• resource management & access systems (Codine,
NQS, PBS, CCS),

• supporting tools (GUIs, task migrator MARS,
programming frames, data library DAISY,
WAMM, WARP performance predictor,...).

All of these modules exist. Linked by appropriate
generic interfaces, the modules became an integral
part of the MOL environment. From the hardware
perspective, MOL currently supports geographically
distributed high-performance systems like Parsytec
GC, Intel Paragon, and UNIX workstation clusters
that are run in a dedicated compute cluster mode.

As a positive side-effect, the collaboration within
the MOL group has resulted in a considerable amount
of (originally unexpected) synergy. Separate projects,
that have been started as disjoint research work, now
fit together in a new framework. As an example, the
task migration manager MARS derives better migra-
tion decisions when being combined with the perfor-
mance predictor WARP. An even more striking exam-
ple is the linkage of WAMM with PLUS [7]. Previ-
ously, the WAMM metacomputer manager was lim-
ited to PVM only. The PLUS library now extends
the application of WAMM to a much larger base of
platforms.

Acknowledgements
MOL is the colaborative effort of many individu-

als. We are indebted to the members of the Metacom-
puter Online Group, the members of the Northrhine-
Westphalian Initiative Metacomputing, and to the
members of ALCOM-IT, especially Jordi Petit i Sil-
vestre (UPC).

29

References
[1] D. Abramson, R. Sosic, J. Giddy, B. Hall. Nim-

rod: A tool for performing parameterized simu-
lations using distributed workstations. 4th IEEE
Symp. High-Perf. Distr. Comp. (August 1995).

[2] J.N.C. Ärabe, A.B.B. Lowekamp, E. Seligman,
M. Starkey, P. Stephan. Dome: Parallel program-
ming environment in a heterogeneous multi-user
environment. Supercomputing 1995.

[3] M.A Baker, G.C. Fox, H.W. Yau. Cluster comput-
ing review. Techn. Report, Syracuse Univ., Nov.
1995.

[4] B. Bauer, F. Ramme. A general purpose Resource
Description Language. Reihe Informatik aktuell,
Hrsg R. Grebe, M. Baumann, Parallel Datenver-
arbeitung mit dem Transputer, Springer-Verlag,
(Berlin), 1991, 68-75.

[5] R. Baraglia, G. Faieta, M. Formica, D. Laforenza.
WAMM: A Visual Interface for Managing
Metacomputers. EuroPVM'95, Ecole Normale
Superieure de Lyon, Lyon, France, September 14-
15, 1995, 137-142.

[6] R. Baraglia, G. Faieta, M. Formica, D. Laforenza.
Experiences with a Wide Area Network Metacom-
puting Management Tool using IBM SP-2 Paral-
lel Systems. Concurrency: Practice and Experi-
ence, John Wiley k Sons, Ltd., Vol.8, 1996, in
press.

[7] R. Baraglia, D. Laforenza. WAMM integration
into the MOL Project. CNUCE Inst. of the Ital-
ian Nat. Research Council, Pisa, Internal Rep.,
1996.

[8] R. Barret, M. Berry, T. Chan, J. Demmel,
J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, H. van der Vorst. TEMPLATES
for the Solution of Linear Systems: Building
Blocks for Iterative Methods. Tech. Rep., CS-
Dept., Univ. of Tennessee, 1993.

[9] F. Berman, R. Wolski, S. Figueira, J. Schopf, G.
Shao. Application-level scheduling on distributed
heterogeneous networks. Tech. Rep., Univ. Cali-
fornia, San Diego, http://www-cse.ucsd.edu/-
groups/hpcl/apples.

[10] R.D. Blumhofe, C.F. Joerg, B.C. Kuszmaul,
C.E. Leiserson, K.H. Randall, Y. Zhou. Cilk:
An Efficient Multithreaded Runtime System. Pro-
ceedings of the Fifth ACM SIGPLAN Symposium

on Principles and Practice of Parallel Program-
ming, July 19-21, 1995, Santa Barbara, Califor-
nia, 207-216.

[11] R.D. Blumhofe, C.E. Leiserson. Scheduling Mul-
tithreaded Computations by Work Stealing. Proc.
of the 36th Ann. Symposium on Foundations of
Computer Science (FOCS '95), 356-368, 1995.

[12] M. Brune, J. Gehring, A. Reinefeld. A
Lightweight Communication Interface Between
Parallel Programming Environments. HPCN'97,
Springer LNCS.

[13] G. D. Burns, R. B. Daoud, J. .R. Vaigl. LAM: An
Open Cluster Environment for MPI. Supercom-
puting Symposium '94, Toronto, Canada, June
1994

[14] N. Carriero, E. Freeman, D. Gelernter, D. Kamin-
sky. Adaptive Parallelism and Piranha. IEEE
Computer 28,1 (1995), 40-49.

[15] Computing Center Soßware CCS. Paderborn
Center for Parallel Computing, http://www.-
uni-paderborn.de/pc2/projects/ccs

[16] M. Cole. Algorithmic Skeletons: Structured Man-
agement of Parallel Computation. PhD, Research
Monographs in Par. and Distr. Computing, MIT
Press.

[17] M. Danelutto, R. Di Meglio, S. Orlando, S. Pela-
gatti, M. Vanneschi. A Methodology for the De-
velopment and the Support of Massively Paral-
lel Programs. J. on Future Generation Computer
Systems (FCGS), Vol. 8, 1992.

[18] J. Darlington, A.J. Field, P.G. Harrison,
P.H.J. Kelly, D.W.N. Sharp, Q. Wu. Parallel
Programming Using Skeleton Functions. Proc.
of Par. Arch, and Lang. Europe (PARLE '93),
Lecture Notes in Computer Science No. 694,
Springer-Verlag, 1993.

[19] T. Decker, R. Diekmann, R. Lüling, B. Monien.
Towards Developing Universal Dynamic Mapping
Algorithms. Proc. of the 7th IEEE Symposium
on Parallel and Distributed Processing, SPDP'95,
1995, 456-459.

[20] J.J. Dongarra, S.W. Otto, M. Snir. D. Walker. A
message passing standard for MPP and Worksta-
tions. CACM 39,7(July 1996), 84-90.

30

[21] P. Fatourou, P. Spirakis. Scheduling Algorithms
for Strict Multithreaded Computations. Proc. of
the 7th Annual International Symposium on Al-
gorithms and Computation (ISAAC '96), 1996,
to appear.

[22] I. Foster. High-performance distributed comput-
ing: The I- Way experiment and beyond. Procs. of
the EURO-PAR'96, Lyon, 1996, Springer LNCS
1124, 3-10.

[23] J. Gehring, F. Ramme. Architecture-Independent
Request-Scheduling with Tight Waiting-Time Es-
timations, IPPS Workshop on Job Scheduling
Strategies for Parallel Processing, Lecture Notes
in Computer Science 1162, 1996.

[24] J. Gehring, A. Reinefeld. MARS - A Frame-
work for Minimizing the Job Execution Time in
a Metacomputing Environment. Future Genera-
tion Computer Systems (FGCS), Elsevier Science
B. V., Spring 1996.

[25] A. Grimshaw, J.B. Weissman, E.A. West, E.C.
Loyot. Metasystems: An approach combining
parallel processing and heterogeneous distributed
computing systems. J. Par. Distr. Comp. 21
(1994), 257-270.

[26] L. V. Kale, S. Krishnan. CHARM++: A
Portable Concurrent Object Oriented System
Based On C++. Conference on Object Oriented
Programming, Systems, Languages and Applica-
tions (OOPSLA), September 1993

[27] J.A. Kaplan, MX. Nelson. A Comparison of
Queuing, Cluster and Distributed Computing Sys-
tems. NASA Technical Memo, June 1994.

[28] B.A. Kinsbury. The Network Queuing System.
Cosmic Software, NASA Ames Research Center,
1986.

[29] M.J. Litzkow, M. Livny. Condor-A hunter of idle
workstations. Procs. 8th IEEE Int. Conf. Distr.
Computing Systems, June 1988, 104-111.

[30] K. Mehlhorn, S. Näher. LEDA, a Library of Ef-
ficient Data Types and Algorithms. MFCS 89,
LNCS Vol. 379, 88-106

[31] Metacomputer Online (MOL), http://www.-
uni-paderborn.de/pc2/projects/mol/

[32] B. Monien, F. Ramme, H. Salmen : A Paral-
lel Simulated Annealing Algorithm for Generat-
ing 3D Layouts of Undirected Graphs. Proc. of

Graph Drawing '95, Springer LNCS, Vol. 1027,
pp. 396-408.

[33] David Patterson et al. A Case for Net-
works of Workstations: NOW. IEEE Micro.
http://now.CS.Berkeley.EDU/Case/case.html

[34] Polder, http://www.wins.uva.nl/projects/-
polder/

[35] F. Ramme, T. Römke, K. Kremer. A Distributed
Computing Center Software for the Efficient Use
of Parallel Computer Systems. HPCN Europe,
Springer LNCS 797, Vol. II, 129-136 (1994).

[36] F. Ramme, K. Kremer. Scheduling a Metacom-
puter by an Implicit Voting System. 3rd IEEE Int.
Symposium on High-Performance Distributed
Computing, San Francisco, 1994, 106-113.

[37] W. Saphir, L.A. Tanner, B. Traversat. Job Man-
agement Requirements for NAS Parallel Systems
and Clusters. IPPS Workshop on Job Scheduling
Strategies for Parallel Processing, Lecture Notes
in Computer Science 949, 319-336, 1995.

[38] L. Schäfers, C. Scheidler, O. Krämer-Fuhrmann.
Software Engineering for Parallel Systems: The
TRAPPER Approach. 28th Hawaiian Interna-
tional Conference on System Sciences, January
1995, Hawaii, USA

[39] J. Simon, J.-M. Wierum. Performance Prediction
of Benchmark Programs for Massively Parallel
Architecture. 10th Annual Intl. Conf. on High-
Performance Computer HPCS'96, June 1996.

[40] J. Simon, J.-M. Wierum. Accurate Performance
Prediction for Massively Parallel Systems and
its Applications. Euro-Par'96 Parallel Processing,
August 1996, LNCS 1124, 675-688.

[41] L. Smarr, C.E. Catlett. Metacomputing. Commu-
nications of the ACM 35,6(1992), 45-52.

[42] F. Tandiary, S.C. Kothari, A. Dixit, E.W. Ander-
son. Batrun: Utilizing ilde workstations for large-
scale computing. IEEE Parallel and Distr. Techn.,
Summer 1996, 41-48.

[43] WAMM - Wide Area Metacomputer Manager.
Available at http: //miles. cnuce. cnr. it or via
ftp at ftp.cnr.it in the directory /pub/wamm.

31

A Programming Environment for Heterogenous Distributed Memory Machines

Dmitry Arapov, Alexey Kalinov, Alexey Lastovetsky, Ilya Ledovskih
Institute for System Programming, Russian Academy of Sciences
25, Bolshaya Kommunisticheskaya str., Moscow 109004, Russia

lastov@ispras.ru

Ted Lewis
Naval Postgraduate School, Code CS, Monterey, CA 93943-5118

lewis@cs.nps.navy.mil

Abstract
mpC is a programming language of medium level for

distributed memory machines (DMM). The language is an
ANSI C superset based on the notion of network compris-
ing virtual processors of different types and performances
connected with links of different bandwidths. It allows the
user to describe a network topology, create and discard
networks, distribute data and computations over the net-
works. In other words, the user can specify (dynamically)
the topology of his application, and the mpC programming
environment will use this (topological) information in run
time to ensure the efficient execution of the application on
any particular DMM. The paper outlines the most princi-
pal features of mpC and its programming environment
making them suitable tools to write efficient and portable
parallel programs for heterogenous DMMs.

1. Introduction

The mpC language and its programming environment
was initially developed to support programming for mas-
sively parallel computers, first of all for high-performance
distributed memory machines (DMMs). In brief, our moti-
vation of mpC was as follows.

Programming for DMMs is based mostly on message-
passing function extensions of C or Fortran, such as PVM
[1] and MPI [2]. But it is tedious and error-prone to pro-
gram in a message-passing language, because of its low
level. Therefore, high-level languages that facilitate paral-
lel programming have been developed for DMMs. They
can be divided into two classes depending on the parallel
programming paradigm - task parallelism or data parallel-
ism - underlying them. Task parallel [3-4] and data parallel
[5-11] programming languages allow the user to imple-
ment different classes of parallel algorithms. But efficient

implementation of many problems needs parallel algo-
rithms that can not be implemented in pure data parallel or
task parallel styles. We have developed the mpC language
(as an ANSI C superset) which supports both task and data
parallelism, allows both static and dynamic process and
communication structures, enables optimizations aimed at
both communication and computation, and supports mod-
ular parallel programming and the development of a
library of parallel programs.

The mpC language is based on the notion of network
consisting of virtual processors of different types and per-
formances connected with links of different bandwidths.
The user can describe network topology, create and dis-
card networks, and distribute data and computations over
the networks. That is, the user can specify (dynamically!)
in details virtual parallel machine which performs his
application.

In other words, the user can specify the topology of his
application, and the programming environment will use
this (topological) information in run time to ensure the
efficient execution of the application on any particular
DMM.

Currently, the mpC programming environment includes
a compiler, a run-time support system, a library, and a
command-line user interface.

The compiler translates a source mpC program into
ANSI C code with calls to functions of the run-time sup-
port system.

Run-time support system manages the computing space
which consists of a number of processes running over tar-
get DMM as well as provides communications. It has a
precisely specified interface and encapsulates a particular
communication package (currently, a small subset of
MPI). It ensures platform-independence of the rest of sys-
tem components.

The library consists of a number of functions which sup-

0-8186-7879-8/97 $10.00 © 1997 IEEE
32

port debugging mpC programs as well as provide some
low-level efficient facilities.

The command-line user interface consists of a number of
shell commands supporting the creation of a virtual DMM
and the execution of mpC programs on the machine. While
creating the machine, its topology is detected by a topol-
ogy detector running a special benchmark and saved in a
file used by the run-time support system.

When developing the mpC programming environment,
we used a network of workstations running MPI as a target
parallel machine and found, that the principles, on which
mpC is based, make this programming language and its
programming environment be very convenient tools for
development of efficient and portable parallel programs for
heterogenous networks of workstations.

The point is that all programming environments for
DMMs which we know of have one common property.
Namely, when developing a parallel program, either the
user has no facilities to describe the virtual parallel system
executing the program, or such facilities are too poor to
specify an efficient distribution of computations and com-
munications over the target DMM. Even topological facili-
ties of MPI (as well as MPI-2) have turned out insufficient
to solve the problem. So, to ensure the efficient execution
of the program on a particular DMM, the user must use
facilities which are external to the program, such as boot
schemes and application schemes [12]. If the user is famil-
iar with both the topology of target DMM and the topology
of the application, then, by using such configurational files,
he can map the processes which constitute the program
onto processors which make up DMM, to provide the most
efficient execution of the program. But if the application
topology is defined in run time (that is, if it depends on
input data), it won't be successful.

The mpC language allows the user to specify an applica-
tion topology, and its programming environment uses the
information in run time to map processes onto processors
of target DMM resulting in efficient execution of the appli-
cation.

Section 2 of the paper outlines the mpC language. Sec-
tion 3 sketches the mpC programming environment. Sec-
tion 4 demonstrates how mpC may be used to develop
efficient and portable irregular applications for DMMs.
Section 5 demonstrates how mpC may be used to develop
efficient and portable regular applications for heteroge-
neous DMMs. In addition, sections 4 and 5 tell more about
the mpC language.

More about the language and its programming environ-
ment may be found in [13-17] as well as at http://
www.ispras.ru/~mpc. In addition, the corresponding free
software is available at http://www.ispras.ru/~mpc.

2. Outline of the mpC language

In mpC, the notion of computing space is defined as a set
of typed virtual processors of different performance con-
nected with links of different bandwidth accessible to the
user for management. There are several processor types,
but most common virtual processors are of the scalar
type. A virtual processor has an attribute characterizing its
relative performance. A directed link connecting two vir-
tual processors is a one-way channel for transferring data
from source processor to the processor of destination.

The basic notion of the mpC language is network object
or simply network. Network comprises virtual processors
of different types and performances connected with links
of different bandwidths. Network is a region of the com-
puting space which can be used to compute expressions
and execute statements.

Allocating network objects in the computing space and
discarding them is performed in similar fashion to allocat-
ing data objects in the storage and discarding them. Con-
ceptually, creation of new network is initiated by a virtual
processor of some network already created. This virtual
processor is called a parent of the created network. The
parent belongs to the created network. The only virtual
processor defined from the beginning of program execu-
tion till program termination is the pre-defined virtual host-
processor of the scalar type.

Every network declared in an mpC program has a type.
The type specifies the number and types and performances
of virtual processors, links between these processors and
their lengths characterizing bandwidths, as well as sepa-
rates the parent. For example, the type declaration
/*!*/ nettype Rectangle {
1*2*1 coord 1=4;
/*3*/ node {
/*4*/ I<2 : fast scalar;
/*5*/ I>=2: slow scalar;
/*6*/ };
1*1*1 link {
/*8*/ I>0: [I]<->[I-1];
/*9*/ I==0: [I]<->[3];
/*10*/ };
l**l parent [0];
/*12*/ };
introduces network type Rectangle that corresponds to
networks consisting of 4 virtual processors of the scalar
type and different performances interconnected with undi-
rected links of the normal length in a rectangular structure.

In this example, line 1 is a header of the network-type
declaration. It introduces the name of the network type.

Line 2 is a coordinate declaration declaring the coordi-
nate system to which virtual processors are related. It intro-
duces integer coordinate variable I ranging from 0 to 3.

Lines 3-6 are a node declaration. It relates virtual proces-

33

sors to the coordinate system declared and declares their
types and performances. Line 4 stands for the predicate/or
all I<4 if I<2 then fast virtual processor of the scalar
type is related to the point with coordinate [I]. Line 5
stands for the predicate for all I<4 if I>=2 then slow vir-
tual processor of the scalar type is related to the point
with coordinate [I]. Performance specifiers fast and
slow specify relative performances of virtual processors
of the same type. For any network of this type, this infor-
mation allows the compiler to associate a weight with each
virtual processor of the network normalizing it in respect
to the weight of the parent. Note, that the virtual host-pro-
cessor is always of the scalar type and normal perfor-
mance.

Lines 7-10 are a link declaration. It specifies links
between virtual processors. Line 8 stands for the predicate
for all I<4 if I> 0 then there exists undirected link of nor-
mal length connecting virtual processors with coordinates
[I] and [1-1], and line 9 stands for the predicate/or all
I<4 if I==0 then there exists undirected link of normal
length connecting virtual processors with coordinates
[I] and [3]. Note, that if a link between two virtual pro-
cessors is not specified explicitly, it is meant not absence
of a link but existence of a very long link.

Line 11 is a parent declaration. It specifies that the par-
ent has coordinate [0].

With the network type declaration, the user can declare a
network identifier of this type. For example, the declara-
tion

net Rectangle rl;
introduces identifier rl of network.

The notion of distributed data object is introduced in the
spirit of C* [9] and Dataparallel C [10]. Namely, a data
object distributed over a region of the computing space
comprises a set of components of any one type so that
each virtual processor of the region holds one component.
For example, the declarations

net Rectangle r2;
int [*]Derror, [r2]Da[10];
float [host]f, [r2:K2]Df;
repl [*]Di;

declare:
- integer variable Derror distributed over the entire

computing space;
- integer 10-member array Da distributed over the net-

work r2;
- undistributed floating variable f belonging to the vir-

tual host-processor;
- floating variable Df distributed over a subnetwork of

network r2;
- integer variable Di replicated over the entire comput-

ing space.
By definition, a distributed object is replicated if all its

components is equal to each other.
The notion of distributed value is introduced similarly.

In addition to a network type, the user can declare a
parametrized family of network types called topology or
generic network type. For example, the declaration
1*1*1 nettype Ring(n, p[n]) {
1*2*1 coord I=n;
/*3*/ node {
/*4*/ I>=0: fast*p[I] scalar;
/*5*/ };
/*&*/ link {
1*1*1 I>0: [I]<->[I-1] ;
/*8*/ I==0: [I]<->[n-l];
/*9*/ };
/*10*/ parent [0] ;
/*11*/ };
introduces topology Ring that corresponds to networks
consisting of n virtual processors of the scalar type
interconnected with undirected links of normal length in a
ring structure.

The header (line 1) introduces parameters of topology
Ring, namely, integer parameter n and vector parameter
p consisting of n integers.

Correspondingly, coordinate variable I ranges from 0 to
n-1, line 4 stands for the predicate for all Kn if I>=0
then fast virtual processor of the scalar type, whose rel-
ative performance is specified by the value of p[I], is
related to the point with coordinate [I], and so on.

Here, performance specifier fast*p[I] includes so-
called power specifier *p [I]. In general, the value of the
expression in a power specifier shall be positive integer.
Any operand in the expression should consist only of
coordinate variables, constants and generic parameters. If
the value of the expression is equal to 1, the power speci-
fier may be omitted.

It is meant that in the framework of the same network-
type declaration any performance specifier with the fast
keyword specifies more powerful virtual processor than a
performance specifier with the slow keyword. It is meant
also that the greater value of the expression in a power
specifier the more performance is specified.

With the topology declaration, the user can declare a net-
work identifier of a proper type. For example, the frag-
ment

repl m, n[100];
/* Computing m, n[0],...,n[m-l] */
{
net Ring(m,n) rr;

}
introduces identifier rr of the network, the type of which
is defined completely only in run time. Network rr con-
sists of m virtual processors the relative performance of i-
th virtual processor being characterized by the value of

34

n[i].
A network has a computing space duration that deter-

mines its lifetime. There are 2 computing space durations:
static, and automatic. A network declared with static com-
puting space duration is created only once and exists till
termination of the entire program. A new instance of a net-
work declared with automatic computing space duration is
created on each entry into the block in which it is declared.
The network is discarded when execution of the block
ends.

Now, let us consider a simple mpC program computing
the dot product of two vectors. The program is correct but
not good in the sense of efficiency.
1*1*1 nettype Star(n) {
1*2*1 coord I=n;
/*3*/ node { default: scalar;};
/*4*/ link { I>0: [0]<-> [i];};
/*5*/ parent [0];
/*6*/ };

1*1*1 #define N 100
/*8*/ void [*]main()
/*9*/ {
/*10*/ double [host]x[N];
/*11*/ double [host]y[N];
/*12*/ double [host]z;
/*13*/ double sqrtO ;
/*14*/ .../»Input of x and y */
/*15*/ {
/*16*/ net Star(N) s;
l*\l*l double [s]dx, [s]dy, [s]dz;
/*18*/ dx=x[];
/*19*/ dy=y[];
/*20*/ dz=dx*dy;
/*21*/ z=[host]dz[+];
1*22*1 z=([host]sqrt)(z);
/*23*/ }
/*24*/ .../* Output of z */
/*25*/ }

The program includes 2 functions - main defined here
and library function sqrt. Lines 8-25 contain a definition
of main. Lines 10-12 contain definitions of arrays x, y
and variable z all belonging to the virtual host-processor.
Line 13 contains a declaration of function identifier sqrt.

In general, mpC allows 3 kinds of functions. Here, func-
tions of two kinds are used: main is a basic function, and
sqrt is a nodal function.

A call to basic function is executed on the entire comput-
ing space. Its arguments should either belong to the virtual
host-processor or be distributed over the entire computing
space, and its value should be distributed over the entire
computing space. In contrast to other kinds of function, a
basic function can define networks. In line 8, construct
[*], placed just before the function identifier, specifies
that main is an identifier of basic function.

Nodal function can be executed completely by any one

virtual processor. Only local data objects of the executing
virtual processor may be defined in such a function. In
addition, the corresponding component of an externally-
defined distributed data object can be used in the function.
A declaration of nodal function (e.g., in line 13) does not
need any additional specifiers.

Line 16 defines the automatic network s with the virtual
host-processor as a parent.

Line 17 defines 3 automatic variables dx, dy, and dz all
distributed over s.

Line 18 contains unusual unary postfix operator []. In
general, its operand should either designate an array or be a
pointer. In this case, expression x [] designates array x as
a whole, and the statement in line 18 scatters elements of
array x to components of distributed variable dx.

Similarly, the statement in line 19 scatters elements of
array y to components of distributed variable dy.

The statement in line 20 is also executed on network s.
But unlike 2 previous statements, its execution does not
need any communications between virtual processors con-
stituting network s. In fact, this statement is divided into a
set of independent undistributed statements each of which
is executed by the corresponding virtual processor using
the corresponding data components. Such statement are
called asynchronous statements. In particular, this state-
ment multiplies (in parallel) components of dx and dy and
assigns the result to components of dz.

In line 21, the result of postfix unary operator [+] is dis-
tributed over s. All its components are equal to the sum of
all components of operand dz. Here, the result of prefix
unary operator [host] is the component of its operand
belonging to the virtual host-processor. So, the statement
in line 21 assigns the sum of all components of dz to z.

Finally, line 22 calls to nodal function sqrt on the vir-
tual host-processor and assigns the value returned to z.

To support modular parallel programming as well as the
writing of libraries of parallel programs, so-called network
functions are introduced in addition to basic and nodal
functions.

3. The mpC programming environment

Currently, the mpC programming environment includes a
compiler, a run-time support system (RTSS), a library, and
a command-line user interface.

The compiler translates a source mpC program into the
ANSI C program with calls to functions of RTSS.

RTSS manages the computing space which consists of a
number of processes running over target DMM as well as
provides communications. It has a precisely specified
interface and encapsulates a particular communication
package (currently, a small subset of MPI). It ensures plat-

35

form-independence of the rest of system components.
The library consists of a number of functions that sup-

port debugging mpC programs as well as provide some
low-level efficient facilities.

The command-line user interface consists of a number of
shell commands supporting the creation of a virtual paral-
lel machine and the execution of mpC programs on the
machine. While creating the machine, its topology is
detected by a topology detector running a special bench-
mark and saved in a file used by RTSS.

Our compiler uses optionally either the SPMD model of
target code, when all processes constituting a target mes-
sage-passing program run identical code, or a quasi-
SPMD model, when it translates a source mpC file into 2
separate target files - the first for the virtual host-processor
and the second for the rest of virtual processors.

All processes constituting the target program are divided
into 2 groups - the special process called dispatcher play-
ing the role of the computing space manager, and general
processes called nodes playing the role of virtual proces-
sors of the computing space. The special node called host
is separated. The dispatcher works as a server accepting
requests from nodes. The dispatcher does not belong to the
computing space.

In the target program, every network or subnetwork of
the source mpC program is represented by a set of nodes
called region. At any time of the target program running,
any node is either free or hired in one or several regions.
Hiring nodes in created regions and dismissing them are
responsibility of the dispatcher. The only exception is the
pre-hired host-node representing the mpC pre-defined vir-
tual host-processor. Thus, just after initialization, the com-
puting space is represented by the host and a set of
temporarily free (unemployed) nodes.

Creation of the network region involves the parent node,
the dispatcher and all free nodes. The parent node sends a
creation request containing the necessary information
about the network topology to the dispatcher. Based on
this information and the information about the topology of
the virtual parallel machine, the dispatcher selects the
most appropriate set of free nodes. After that, it sends to
every free node a message saying whether the node is
hired in the created region or not. Deallocation of network
region involves all its members as well as the dispatcher.

The dispatcher keeps a queue of creation requests that
cannot be satisfied immediately but can be served in the
future. It implements some strategy of serving the requests
aimed at minimization of the probability of occurring a
deadlock. The dispatcher detects such a situation when the
sum of the number of free nodes and the number of such
hired nodes that could be released is less than the mini-
mum number of free nodes required by a request in the
queue. In this case, it terminates the program abnormally

specifying a deadlock.

4. Irregular applications

4.1 Programming in mpC

Let us consider an irregular application simulating the
evolution of a system of stars in a galaxy (or set of galax-
ies) under the influence of Newtonian gravitational attrac-
tion.

Let our system consist of a number of large groups of
bodies. It is known, that since the magnitude of interaction
between bodies falls off rapidly with distance, the effect of
a large group of bodies may be approximated by a single
equivalent body, if the group of bodies is far enough away
from the point at which the effect is being evaluated. Let it
be true in our case. So, we can parallelize the problem, and
our application will use a few virtual processors, each of
which updates data characterizing a single group of bod-
ies. Each virtual processor holds attributes of all the bodies
constituting the corresponding group as well as masses
and centers of gravity of other groups. The attributes char-
acterizing a body include its position, velocity and mass.

Finally, let our application allow both the number of
groups and the number of bodies in each group to be
defined in run time.

The application implements the following scheme:
Initializing- the galaxy

on the virtual host-processor
Creation of the network
Scattering groups over

virtual processors
Parallel computing masses of groups
Interchanging the masses among

virtual processors
while(1) {

Visualization of the galaxy
on the virtual host-processor

Parallel computation of centers of
gravity of groups

Interchanging the centers among
virtual processors

Parallel updating groups
Gathering groups

on the virtual host-processor
}

The corresponding mpC program looks as follows:

♦define DELTA 3600.0
#define INTERVAL 3

/*The maximum number of groups*/
#define MaxGs 3 0

36

/*The maximum number of bodies in a group*/
»define MaxBs 600

typedef double Triplet[3];;
typedef
struct {Triplet pos; Triplet v; double m;}
Body;

/*The number of groups*/
int [host]M;

/*The numbers of bodies in groups*/
int [host]N[MaxGs];

repl dM, dN[MaxGs];

/*The galaxy timer*/
double [host]t;

/*Bodies of a galaxy*/
Body (*[host]Galaxy[MaxGs])[MaxBs];

nettype GalaxyNet(m, n[m]) {
coord I=m;
node { I>=0: fast*n[I] scalar;};
link (J=m){

J>0: length*(-1) [J]->[0];
J>0: length*1 [I]->[J];

};
};

void [host]Input(), UpdateGroup();
void [host]VisualizeGalaxyO ;

void [*]Nbody(char *[host]infile)

{
^Initializing Galaxy, M and N*/
Input(infile);

/*Broadcasting the number of groups*/
dM=M;

/*Broadcasting the numbers of bodies*/
/*in groups*/
dN[]=N[];
{
net GalaxyNet(dM,dN) g;
int [g]myN, [g]mycoord;
Body [g]Group[MaxBs];
Triplet [g]Centers[MaxGs];
double [g]Masses[MaxGs];
repl [g]i;
void [net GalaxyNet(m, n[m])]Mintegrity

(double (*)[MaxGs]);
void [net GalaxyNet(m, n[m])]Cintegrity

(Triplet (*)[MaxGs]);

mycoord = I coordof body_count;

myN = dN[mycoord];

/♦Scattering groups*/
for(i=0; i<[g]dM; i++)

[g:I==i]Group[] = (*Galaxy[i])[];

for(i=0; i<myN; i++)
Masses[mycoord]+=Group[i].m;

([([g]dM,[g]dN)g])Mintegrity(Masses);
while(1) {

if(((int)(t/DELTA))%INTERVAL==0)
VisualizeGalaxyO ;

Centers[mycoord][]=0.0;
for(i=0; i<myN; i++)
Centers[mycoord][] +=

(Group[i].m/Masses[mycoord])*
(Group[i].pos)[];

([([g]dM,[g]dN)g])Cintegrity(Centers);
([g]UpdateGroup)(Centers, Masses,

Group, [g]dM);
t+=DELTA;
if(((int)(t/DELTA))%INTERVAL==0)

/*Gathering groups*/
for(i=0; i<[g]dM; i++)

(*Galaxy[i])[]=[g:I==i]Group[];

}

}

void [net GalaxyNet(m,n[m]) p] Mintegrity
(double (*Masses)[MaxGs])

{
double MassOfMyGroup;
repl i, j;
MassOfMyGroup=(*Masses)[I coordof i];
for(i=0; i<m; i++)

for(j=0; j<m; j++)
[p:I==i](*Masses)[j] =

[p:I==j]MassOfMyGroup;

}

void [net GalaxyNet(m,n[m]) p] Cintegrity
(Triplet (*Centers)[MaxGs])

{
Triplet MyCenter;
repl i, j;
MyCenter[] = (*Centers)[I coordof i][];
for(i=0; i<m; i++)

for(j=0; j<m; j++)
[p:I==i](*Centers)[j][] =

[p:I==j]MyCenter[];

}

This mpC source file contains the following external def-
initions:

- definitions of variables M, t and arrays N, Galaxy all
belonging to the virtual host-processor;

37

- a definition of variable dM and array dN both replicated
over the entire computing space;

- a definition of network type GalaxyNet;
- a definition of basic function Nbody with one formal

parameter infile belonging to the virtual host-proces-
sor;

- definitions of network functions Mintegrity and
Cintegrity.

In general, a network function is called and executed on
some network or subnetwork, and its value is also distrib-
uted over this region of the computing space. The header
of the definition of the network function either specifies an
identifier of a global static network or subnetwork, or
declares an identifier of the network being a special formal
parameter of the function. In the first case, the function
can be called only on the specified region of the comput-
ing space. In the second case, it can be called on any net-
work or subnetwork of a suitable type. In any case, only
the network specified in the header of the function defini-
tion may be used in the function body. No network can be
declared in the body. Only data objects belonging to the
network specified in the header may be defined in the
body. In addition, corresponding components of an exter-
nally-defined distributed data object may be used. Unlike
basic functions, network functions (as well as nodal func-
tions) can be called in parallel.

Network functions Input and VisualizeGalaxy,
both associated with the virtual host-processor, as well as
the nodal function UpdateGroup are declared and called
here.

Automatic network g, executing most of computations
and communications, is defined in such a way, that it con-
sists of M virtual processors, and the relative performance
of each processor is characterized by the number of bodies
in the group which it computes.

So, the more powerful is the virtual processor, the larger
group of bodies it computes, and the more intensive is the
data transfer between two virtual processors, the shorter
link connects them (length specifier length* (-1) speci-
fies a shorter link than length* 1 does).

The mpC programming environment bases on this infor-
mation to map the virtual processors constituting network
g into the processes constituting the entire computing
space in the most appropriate way. Since it does it in run
time, the user does not need to recompile this mpC pro-
gram, to port it to another DMM.

The result of the binary operator coordof (in the first
statement of the inner block of function Nbody) is an inte-
ger value distributed over g, each component of which is
equal to the value of coordinate I of the virtual processor
to which the component belongs. The right operand of
operator coordof is not evaluated and used only to spec-
ify a region of the computing space. Note, that coordinate

variable I is treated as an integer variable distributed over
the region.

Call expression ([g]UpdateGroup) (....) causes
parallel execution of nodal function UpdateGroup on
each of virtual processors of network g. It is meant, that
function name UpdateGroup is converted to a pointer-
to-function distributed over the entire computing space,
and operator [g] cuts from this pointer a pointer distrib-
uted over g. So, the value of expression [g] Update-
Group is a pointer-to-function distributed over g.
Therefore, expression ([g]UpdateGroup) (....)
denotes a distributed call to a set of undistributed func-
tions.

Network functions Mintegrity and Cintegrity
have 3 special formal parameters. Network parameter p
denotes the network executing the function. Parameter m is
treated as a replicated over p integer variable, and param-
eter n is treated as a pointer to the initial member of an
integer unmodifiable m-member array replicated over p.
The syntactic construct ([(dM, dN) g]), placed on the
left of the name of the function called in the call expres-
sions in function Nbody, just specifies the actual argu-
ments corresponding to the special formal parameters.

4.2 Experimental results

We compared the running time of our mpC program to
its carefully written MPI counterpart. We use 3 worksta-
tions - SPARCstation 5 (hostname gamma), SPARCclassic
(omega), and SPARCstation 20 (alpha), connected via
lOMbits Ethernet. There were 23 other computers in the
same segment of the local network. We used LAM MPI
version 5.2 [12] as a particular communication platform.

The computing space of the mpC programming environ-
ment consists of 15 processes, 5 processes running on each
workstation. The dispatcher runs on gamma and uses the
following relative performances of the workstations
obtained automatically upon the creation of the virtual
parallel machine: 1150 (gamma), 331 (omega), 1662
(alpha).

The MPI program is written in such a way to minimize
communication overheads. All our experiments deal with
9 groups of bodies. We map 3 MPI processes to gamma, 1
process to omega, and 5 processes to alpha, providing
the optimal mapping if the numbers of bodies in these
groups are equal to each other.

The first experiment compares the mpC and MPI pro-
grams for homogeneous input data when all groups consist
of the same number of bodies. Figure 1 shows the running
time of both programs simulating 15 hours of the galaxy
evolution depending on the number of bodies in groups.

38

A WAmpC
4h

3

100 200 300 400 500 n
Figure 1. Running time of the MPI and mpC

programs for homogenous input data.

In fact, it shows how much we pay for the usage of mpC
instead of pure MPI. One can see that the running time of
the MPI program consists about 95-97% of the running
time of the mpC program. That is, in this case we loose 3-
5% of performance.

The second experiment compares these programs for het-
erogeneous input data. Let our groups consist of 10,10,10,
100, 100, 100, 600, 600, and 600 bodies correspondingly.

The running time of the mpC program does not depend
on the order of the numbers. In any case, the dispatcher
selects:

- 4 processes on gamma for virtual processors of network
g computing two 10-body groups, one 100-body group,
and one 600-body group;

- 3 processes on omega for virtual processors computing
one 10-body group and two 100-body groups;

- 2 processes on alpha for virtual processors computing
two 600-body groups.

The mpC program takes 94 seconds to simulate 15 hours
of the galaxy evolution.

The running time of the MPI program essentially
depends on the order of these numbers. It takes from 88 to
391 seconds to simulate 15 hours of the galaxy evolution
depending on the particular order. Figure 2 shows the rela-
tive running time of the MPI and mpC programs for differ-
ent permutations of these numbers. All possible
permutations can be broken down into 24 disjoint subsets
of the same power in such a way that if two permutations
belong to the same subset, the corresponding running time
is equal to each other. Let these subsets be numerated so
that the greater number the subset has, the longer time the
MPI program takes. In figure 2, each such a subset is repre-
sented by a bar, the height of which is equal to the corre-
sponding value of tMPi/tmpC-

1 24 N
Figure 2. The relative running time for different

permutations of the numbers of bodies in groups.

One can see that almost for all input data the running
time of the MPI program exceeds (and often, essentially)
the running time of the mpC program.

5. Regular applications

5.1 Programming in mpC

Let us consider a regular application multiplying 2 dense
square nxn matrices X and Y.

Our mpC program will use a number of virtual proces-
sors, each of which computes a number of rows of the
resulting matrix Z. Both dimension n of matrices and the
number of virtual processors involved in computations are
defined in run time. So, our application implements the fol-
lowing scheme:

Initializing X and Y
on the virtual host-processor

Creating a network
Scattering rows of X over

virtual processors of the network
Broadcasting Y over

virtual processors of the network
Parallel computing submatrices of Z
Gathering the resulting matrix Z

on the virtual host-processor

The corresponding mpC program looks as follows:

/*!*/ nettype SimpleNet(n) {
1*1*I coord I=n;
/*3*/ };

/*4*/ nettype Star(m, n[m]) {
/*5*/ coord I=m;
/*6*/ node {I>=0: fast*n[I] scalar;};

39

1*1*1 link {I>0: [I]->[0], [0]->[I];};
/*8*/ parent [0];
/*9*/ };

void [*]MxM(float *x, float *y,
float *z, repl n) {

repl double *powers;
repl nprocs, nrows[MAXNPROCS], n;

MPC_Processors_static_info
(&nprocs,&powers);

Partition(nprocs,powers,nrows,n) ;
{
net Star(nprocs, nrows) w;
([([w]nprocs)w])ParMult(
[w]x,[w]y,[w]z,[w]nrows,[w]n);

}
}

void [net SimpleNet(p)v] ParMult(
float *dx, float *dy, float *dz,
repl *r, repl n)

{
repl s=0;
int myn, i;
int *d, *1, c;

myn=r[l coordof r];
([(p)v])MPC_Bcast(&s, dy, 1,

n*n, dy, 1);
d=calloc(p, sizeof(int));
l=calloc(p, sizeof(int));
for(i=0, d[0]=0; i<p; i++) {

l[i]=r[i]*n;
if(i+l<p) d[i+l]=l[i]+d[i];

}
c=l[I coordof c];
([(p)v])MPC_Scatter(&s, dx ,d,

1, c, dx) ;
SeqMult(dx, dy, dz, myn, n);
([(p)v])MPC_Gather(&s,dz,d,l,c,dz);
}

1*11*1 void SeqMult(float *a, float *b,
/*48*/ float *c, int m, int n)
/*49*/ {
/*50*/ int i, j, k, ixn;

double s;

/*10*/
/*11*/
1*12*1
/*13*/
/*14*/
/*15*/
/*16*/
/*!!*/
/*18*/
/*19*/
/*20*/
/*21*/
1*22*1
/*23*/

1*21*1
/*25*/
/*26*/
1*21*/
/*28*/
/*29*/
/*30*/
/*31*/
/*32*/
/*33*/
/*34*/
/*35*/
/*36*/
/*37*/
/*38*/
/*39*/
/*40*/
/*41*/
/*42*/
/*43*/
/*44*/
/*45*/
/*46*/

/*51*/
/*52*/
/*53*/
/*54*/
/*55*/
/*56*/
/*57*/
/*58*/
/*59*/ }

for(i=0; i<m; i++)
for(j=0, ixn=i*n; j<n; j++) {
for(k=0, s=0.0; k<n; k++)
s+=a[ixn+k]*(double)(b[k*n+j]);

c[ixn+j]=s;
}

/*60*/
/*61*/
/*62*/
/*63*/
/*64*/
/*65*/
/*66*/
/*67*/
/*68*/
/*69*/
/*70*/
/*!!*/
1*12*1
1*11*1

void Partition(int p, double
int *r, int n)

{
int sr, i;
double sv;

for(i=0, sv=0.0; i<p; i++)
sv+=v[i];

for(i=0, sr=0; i<p; i++) {
r[i]=(int)(v[i]/sv*n);
sr+=r[i];

}
if(sr!=n) r[0]+=n-sr;

}

Formal parameters x, y, and z of basic function MxM are
distributed over the entire computing space, and parameter
n is replicated over the entire computing space. It is meant
that n holds the dimension of matrices. It is also meant
that x points to nxn-member array, and the component of
this distributed array belonging to the virtual host-proces-
sor holds matrix X. Similarly, [host] y points to an array
holding matrix Y, and [host] z points to an array holding
resulting matrix Z.

Lines 15-16 calls to library nodal function
MPC_Processors_static_inf o on the entire com-
puting space returning the number of actual processors
and their relative performances. So, after this call repli-
cated variable nprocs will hold the number of actual
processors, and replicated array powers will hold their
relative performances.

Line 17 calls to nodal function Partition on the
entire computing space. Based on relative performances of
actual processors, this function computes how many rows
of the resulting matrix will be computed by every actual
processor. So, after this call nrows [i] will hold the
number of rows computed by i-th actual processor.

Line 19 defines automatic network w. Its type is defined
completely only in run time. Network w, which executes
the rest of computations and communications, is defined in
such a way, that the more powerful the virtual processor,
the greater number of rows it computes. The mpC environ-
ment will ensure the optimal mapping of the virtual pro-
cessors constituting w into a set of processes constituting
the entire computing space. So, just one process from pro-
cesses running on each of actual processors will be
involved in multiplication of matrices, and the more pow-
erful the actual processor, the greater number of rows its
process will compute.

Lines 20-21 call to network function ParMult on net-
work w. In this call, topological argument [w] nprocs
specifies a network type as an instance of parametrized
network type SimpleNet, and network argument w
specifies a region of the computing space treated by func-

40

tion ParMult as a network of this type.
In lines 24-26, the header of the definition of function

ParMult declares identifier v of a network being a spe-
cial network formal parameter of the function. Since net-
work v has a parametrized type, topological parameter p is
also declared in this header. In the function body, special
formal parameter p is treated as an unmodifiable variable
of type int replicated over network formal parameter v.
The rest of formal parameters (regular formal parameters)
of the function are also distributed over v.

Actually, p holds the number of virtual processors in net-
work v, n holds the dimension of matrices, r points to p-
member array, i-th element of which holds the number of
rows of the resulting matrix that i-th virtual processor of
network v computes. Each component of dy points to an
array to contain nxn matrix Y. Each component of dz
points to an array to contain the rows of Z computed on the
corresponding virtual processor of v. Each component of
dx points to an array to contain the rows of X used in com-
putations on the corresponding virtual processor. In addi-
tion, throughout the function execution the components of
dx, dy, dz belonging to the parent of network v are
reputed to point to arrays holding matrices X, Y and Z cor-
respondingly.

Line 28 defines variable s replicated over v. Lines 29-30
define variables myn, i, d, 1 and c all distributed over v.

After execution of the asynchronous statement in line 32,
each component of myn will contain the number of rows of
the resulting matrix that computes the corresponding vir-
tual processor.

Lines 33-34 call to so-called embedded network function
MPC_Bcast which is declared in a standard mpC header
as follows:

int [net SimpleNet(n)] MPC_Bcast(
repl const *coordinates_of_source,
void *source_buffer,
const source_step,
repl const count,
void *destination_buffer,
const destination_step);

This call broadcasts matrix Y from the parent of v to all
virtual processors of v. As a result, each component of the
distributed array pointed by dy will contain this matrix.

An embedded network function looks like a library net-
work function, but a compiler knows its semantics. In par-
ticular, it will generate different code for different types of
arguments corresponding to source and destination buffers.

Statements in lines 35-40 are asynchronous. They form
two p-member arrays d and 1 distributed over v. After
their execution, 1 [i] will hold the number of elements in
the portion of the resulting matrix which is computed by
the i-th virtual processor of v, and d [i] will hold the dis-
placement which corresponds to this portion in the result-
ing matrix. Equivalently, 1 [i] will hold the number of

elements in the portion of matrix X which is used by i-th
virtual processor of v, and d [i] will hold the displace-
ment which corresponds to this portion in matrix X.

The statement in line 41 is also asynchronous. After its
execution, each component of c will hold the number of
elements in the portion of the resulting matrix which is
computed by the corresponding virtual processor (equiva-
lently, the number of elements in the portion of matrix X
which is used by this virtual processor).

Lines 42-43 call to embedded network function
MPC_Scatter which is declared as follows:

int [net SimpleNet(n) w] MPC_Scatter(
repl const *coordinates_of_source,
void *source_buffer,
const *displacements,
const *sendcounts,
const receivecount,
void *destination_buffer);

This call scatters matrix X from the parent of v to all vir-
tual processors of v. As a result, each component of dx will
point to an array containing the corresponding portion of
matrix X.

Line 44 calls to nodal function SeqMult on v, comput-
ing the corresponding portions of the resulting matrix on
each of its virtual processors in parallel (SeqMult imple-
ments traditional sequential algorithm of matrix multipli-
cation).

Finally, line 45 calls to embedded network function
MPC_Gather which is declared as follows:

int [net SimpleNet(n) w] MPC_Gather(
repl const *coordinates_of_destination,
void *destination_buffer,
const *displacements,
const *receivecounts,
const sendcount,
void *source_buffer);

This call gathers resulting matrix Z each virtual processor
of v sending its portion of the result to the parent of v.

5.2 Experimental results

We measured the running time of our mpC program mul-
tiplying two dense square matrices. We used three Sun
SPARCstations 5 (hostnames gamma, beta, and
delta), SPARCclassic (omega), and HP 9000-712
(zeta) connected via lOMbits Ethernet. There were more
than 20 other computers in the same segment of the local
network.

We used LAM MPI Version 6.0 as a particular communi-
cation platform as well as a new improved benchmark for
detecting relative performances of workstations. In addi-
tion, all executables, which took part in the experiment,
were generated by GNU C compiler with optimization
option -02.

41

Eight virtual parallel machines were created:
g consisting of gamma (its relative performance
detected during the creation of this virtual parallel
machine was equal to 324);
gd consisting of gamma (323), and delta (330);
gbd consisting of gamma (324), beta (331), and
delta (331);
gbdz consisting of gamma (324), beta (327),
delta (330), and zeta (510);
zg consisting of zeta (510), and gamma (323);
zgb consisting of zeta (509), gamma (321), and
beta (325);
zgbd consisting of zeta (466), gamma (328), beta
(327), and delta (329);
zo consisting of zeta (506), and omega (147).

The computing space of each of these virtual parallel
machines was constituted by 5 processes running on each
of workstations (that is, for example, the computing space
of gbdz was constituted by 20 processes). As a base of
the comparison we used the running time of a sequential C
program implementing the same algorithm which was
used in function SeqMult.

Table 1 gives the time of running the mpC program on
four virtual parallel machines (g, gd, gbd, and gbdz)
dependent on the dimension of multiplied matrices, and
compares it to the time of running the sequential C pro-
gram on workstation gamma. Machines g, gd, and gbd
are homogeneous ones, meantime machine gbdz is heter-
ogeneous.

Figure 3 illustrates how the mpC program allows to
speed up the multiplication of two dense square matrices,
if the user starts from single workstation gamma and
enhances his computing facilities step by step by means of
adding workstations delta, beta and zeta.

Table 1: Time to multiply two nxn matrices (sec)

collisions resulted in visible degradation of the network
bandwidth.

n g g gd gbd gbdz
c mpC mpC mpC mpC

100 0.32 0.40 0.53 0.61 0.70
200 2.55 2.61 2.00 1.91 2.05
300 9.33 9.66 6.11 5.25 4.96
400 31.2 32.2 17.9 13.9 11.6
500 54.7 55.6 31.0 23.4 19.0
600 125. 125. 68.0 49.0 37.0
700 196. 196. 106. 75.0 58.0
800 320. 323. 172. 123.0 88.

Note, that the running time of the mpC program substan-
tially depends on the network load. We monitored the net-
work activity during our experiments. We have observed
up to 32 collisions per second. The collisions occurred
more often during broadcasting large data portions. The

speedup
k « g A -gbd

gb ♦ - gbdz

^♦*
iF™-

J L J L
100 200 300 400 500 600 700 800n

Figure 3. Speedups computed relative to sequen-
tial code running on workstation gamma.

Table 2 compares contribution of communications and
computations in the total running time of the mpC pro-
gram (results for gbdz are presented). The first column
shows matrix dimensions, an the second one shows per-
centage of communications in the total running time.

Table 2: Contribution of communications in the total
running time (gbdz)

n Communications (%)
100 40
200 55
300 48
400 38
500 35
600 26
700 24
800 21

Communications in our mpC program consist of three
parts: scattering matrix X, broadcasting matrix Y, and gath-
ering the resulting matrix. Table 3 compares contribution
of each of these parts in the total communication time (for
the gbdz virtual parallel machine).

While analyzing the presented results, it is necessary to
take into account some peculiarities of both the implemen-
tation of MPI, which we used, and our local network.

Our local network does not support fast communica-
tions. It is based on lOMbits Ethernet and uses old-fash-
ioned network equipment. In addition, there are 26
computers in our segment of the network connected via
cascade of 4 hubs. To characterize our network, it is
enough to say that ftp transfers data from gamma to

42

alpha at the rate of 300-400Kbytes/s. It means that real
bandwidth of our network is about 25-30% of its maxi-
mum bandwidth.

Table 3:Contribution of broadcast, scatter, and gather
in the total communication time (gbdz)

In addition, the table compares the mpC program and its
manually written MPI counterpart on machine zo.

n beast scatter gather
100 70% 18% 12%
200 78% 11% 11%
300 78% 10% 12%
400 79% 10% 11%
500 79% 10% 11%
600 79% 10% 11%
700 79% 10% 11%
800 76% 13% 11%

On the other hand, LAM MPI Version 6.0 ensures send-
ing large floating arrays at the rate of 50-60Kbytes/s. In
addition, it doesn't use multicasting facilities of our net-
work when broadcasting.

Nevertheless, even under these conditions, our mpC pro-
gram has demonstrated good speedup comparing with the
sequential C program.

If the implementation of MPI ensured the communica-
tion rate comparable with the real bandwidth of the local
network and used its multicasting facilities, contribution of
communications in the total running time of our mpC pro-
gram would not exceed 5-7%. If, in addition, we used
lOOMbits Ethernet and up-to-date network technologies
(for example, replaced hubs with switching devices), con-
tribution of communications in the total running time of
the mpC program would not exceed 1-2%. That is, the
mpC programming environment can ensure practically
ideal speedup of the presented mpC program for up-to-date
heterogeneous networks of workstations.

Table 4 gives the time of running the mpC program on
four heterogeneous virtual parallel machines (zg, zgb,
zgbd, and zo) dependent on the dimension of multiplied
matrices, and compares it to the time of running the
sequential C program on workstation zeta.

Table 4: Time to multiply two nxn matrices (sec)

n z zg zgb zgbd zo zo

C mpC mpC mpC mpC MPI
100 0.18 0.43 0.52 0.57 0.67 0.91

200 1.52 1.67 1.70 1.79 2.36 4.29

300 6.80 5.66 5.08 4.90 7.09 14.2

400 17.3 14.2 11.7 11.1 16.4 33.0

500 36.2 26.0 21.0 19.0 32.8 68.0

600 66.8 53.0 41.0 37.0 58.5 120.

700 113. 83.0 64.0 56.0 97.0 200.

800 180. 134. 102. 88.0 152. 306.

speedup
• -zg A - zgbd

zgb

100 200 300 400 500 600 700 800 n

Figure 4. Speedups computed relative to sequen-
tial code running on workstation zeta.

Figure 4 illustrates how the mpC program allows to
speed up the multiplication of two dense square matrices,
if the user starts from single powerful workstation zeta
and enhances his computing facilities step by step by
means of adding less powerful workstations gamma,
beta, and delta. One can see that the mpC program-
ming environment ensures good speedup in this case also.

Another interesting result can be extracted from tables 1
and 4. One can see that the slow network consisting of
workstations gamma and delta (virtual parallel machine
gd), the performance each of which is about 60% of the
performance of workstation zeta, demonstrates a little bit
higher performance (when multiplying two dense square
matrices) than single workstation zeta.

Finally, figure 5 shows clearly, that even for very hetero-
geneous distributed memory machine consisting of high-
performance HP workstation zeta and low-performance
Sun workstation omega, the mpC program allows to uti-
lize its parallel potential, speeding up the multiplication of
two dense square matrices (comparing to the sequential C
program running on zeta). At the same time, the use of
its MPI counterpart, which distributes the workload
equally, does not allow to do it slowing down the matrix
multiplication essentially.

43

speedup
4 • - mpC

■ -MPI

1.2

0.9

0.6

0 3/

/""

/

/

_L _L _L
100 200 300 400 500 600 700 800n

Figure 5. Speedups for MPI and mpC programs
both running on machine zo.

6. Summary

The key peculiarity of mpC is its advanced facilities for
managing such resources of DMMs as processors and
links between them. They allow to develop parallel pro-
grams for DMMs that once compiled will run efficiently
on any particular DMM, because the mpC programming
environment ensures optimal distribution of computations
and communications over DMM in run time.

The mpC language is a medium-level one. It demands
from the user more than high-level parallel languages (say,
Fortran D), but much less than MPI or PVM.

Like MPI and PVM, mpC supports efficient program-
ming a particular DMM. Like MPI, the user does not need
to rewrite (and, moreover, to recompile) an mpC program
to port it to other DMMs.

At the same time, MPI (as well as MPI-2) does not
ensure efficient porting to other DMMs, that is, it does not
ensure, that a program, running efficiently on a particular
DMM, will run efficiently after porting to other DMM.
The mpC language and its programming environment do
it.

Advantages of mpC are especially clear when program-
ming heterogeneous (irregular) applications or/and pro-
gramming for heterogeneous DMM.

It makes mpC and its programming environment suitable
tools for development of libraries of parallel programs,
especially for heterogeneous DMMs.

The paradigm of parallel programming, supported by
mpC, foresees explicit specification of a virtual parallel
machine executing computations and communications. At

the same time, mpC also supports implicit parallel pro-
gramming, when parallelism is reduced to calls to library

ictions (like function Nbody from section 4.1)
gianuiimg, wiien paiaiieiism is reuuceu 10 cans to lie
basic functions (like function Nbody from section
that just encapsulate parallelism.

Acknowledgments

The work was supported by Office of Naval Research
(USA) and partially by Russian Basic Research Founda-
tion.

References

[1] V. Sunderam, "PVM: A framework for parallel distributed
computing", Concurrency: Practice and Experience, 2(4), 1990,
pp.315-339.
[2] Message Passing Interface Forum, "MPI: A Message-passing
Interface Standard", International Journal of Supercomputer
Applications, 8(3/4), 1994.
[3] I. Foster, and K. M. Chandy, Fortran M: a language for mod-
ular parallel programming. Preprint MCS-P327-0992, Argonne
National Lab, 1992.
[4] K. M. Chandy, and C. Kesselman, CC++: A Declarative
Concurrent Object Oriented Programming Language. Technical
Report CS-TR-92-01, California Institute of Technology, Pasa-
dena, California, 1992.
[5] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer,
C.-W. Tseng, and M.-Y. Wu, Fortran D Language Specification.
Center for Research on Parallel Computation, Rice University,
Houston, TX, October 1993.
[6] B. Chapman, P. Mehrotra, and H. Zima, "Programming in
Vienna Fortran", Scientific Programming, 1(1), 1992, pp.31-50.
[7] High Performance Fortran Forum., High Performance For-
tran language specification, version 1.0. Rice University, Hous-
ton, TX, May 1993.
[8] CMS Technical Summary. The CM Fortran Programming
Language, Thinking Machines Corp., November. 1992.
[9] CM-5 Technical Summary. The C* Programming Language,
Thinking Machines Corporation, November 1992.
[10] P. J. Hatcher, and M. J. Quinn, Data-Parallel Programming
on M1MD Computers. The MIT Press, Cambridge, MA, 1991.
[11] M. Philippsen, and W. Tichy, "Modula-2* and its compila-
tion", First International Conference of the Austrian Center for
Parallel Computation, Salzburg, Austria, 1991.
[12] Trollius LAM MPI Version 5.2. Ohio State University, 1994.
[13] A. Lastovetsky, The mpC Programming Language Specifi-
cation. Technical Report, Institute for System Programming,
Russian Academy of Sciences, Moscow, December 1994.
[14] A. Lastovetsky, "mpC - a Multi-Paradigm Programming
Language for Massively Parallel Computers", ACM SIGPLAN
Notices, 31(2), February 1996, pp. 13-20.
[15] D. Arapov, A. Kalinov, and A. Lastovetsky, "Managing the
Computing Space in the mpC Compiler", Proceedings of the
1996 Parallel Architectures and Compilation Techniques
(PACT'96) conference, Boston, October 1996.
[16] D. Arapov, A. Kalinov, and A. Lastovetsky, "Resource Man-

44

agement in the mpC Programming Environment", Proceedings of
the 30th Hawaii International Conference on System. Sciences
(HICSS'30), IEEE Computer Society Press, Maui, HI, January
1997.
[17] D. Arapov, A. Kalinov, A. Lastovetsky, I. Ledovskih, and T.
Lewis, "A Parallel Language for Modular Distributed Program-
ming", Proceedings of the 2nd Aizu International Symposium on
Parallel Algorithms/Architectures Synthesis (pAs'97), IEEE
Computer Society Press, Aizu-Wakamatsu, Japan, March 1997.

Dmitry M.Arapov works for the Institute for System Pro-
gramming, Russian Academy of Sciences. His research
interests include parallel and distributed programming,
compilers, object-oriented programming. He received his
MS in mathematics from the Moscow State University in
1984. He teaches at the Moscow State University. Previ-
ously, he worked for the Keldysh Institute, Russian Acad-
emy of Sciences, where he took part in the development of
software for Russian aerospace project "Buran".

Alexey Ya. Kalinov is a senior researcher at the Institute
for System Programming, Russian Academy of Sciences.
His research interests are in parallel and distributed pro-
gramming and computer modelling man-steering vehicles.
He received his MS in mathematics and engineering from
the Moscow Aviation Institute in 1980, and his PhD in
engineering from the Heavy-Machinery Research Institute
in 1990. Previously, he took part in the implementation of
the SDL language under a contract with BNR (Canada).

Alexey L. Lastovetsky is a leading researcher at the Insti-
tute for System Programming, Russian Academy of Sci-
ences. His research interests include parallel and
distributed programming, programming languages, com-
pilers, and theory of programming languages. He received.

his MS in mathematics and engineering and PhD in com-
puter science from the Moscow Aviation Institute in 1980
and 1985, respectively. Earlier, he has developed an alge-
braic approach to semantics of programming languages
and an ANSI C superset for vector and superscalar com-
puters. He teaches at the Moscow State University and at
the Moscow Institute of Physics and Technology. He is on
the editorial board of Programmirovanie (a journal of Rus-
sian Academy Sciences on computer science translated as
Programming and Computer Software). He is on the advi-
sory committee of the software track of 30th and 31st
Hawaii International Conferences on System Sciences.

Ilya N. Ledovskih is a researcher at the Institute for Sys-
tem Programming, Russian Academy of Sciences. His
research interests include programming languages and
compilers. He received his MS in mathematics and engi-
neering from the Moscow Aviation Institute in 1990. Pre-
viously, he took part in implementation of Fortran 77 for
Russian Cray-like supercomputer "Elektronika SSBIS" as
well as was one of most principal contributors in the
implementation of an ANSI C superset for vector and
superscalar computers.

Theodor G. Lewis is professor and chair of computer sci-
ence at the Naval Postgraduate School in Monterey, Cali-
fornia. A past editor-in-chief of both IEEE Computer and
IEEE Software, he has published extensively in the areas
of parallel computing and real-time software engineering.
He received a BS in mathematics from Oregon State Uni-
versity in 1966 and MS and PhD degrees from Washington
State University in 1970 and 1971, respectively. He is a
member of the IEEE Computer Society.

45

UbiWorld: An Environment Integrating Virtual Reality,
Supercomputing, and Design

Terrence Disz, Michael E. Papka, and Rick Stevens
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439

{disz,papka,stevens}@mcs.anl.gov

Abstract
UbiWorld is a concept being developed by the Fu-

tures Laboratory group at Argonne National Labora-
tory that ties together the notion of ubiquitous com-
puting (Ubicomp) with that of using virtual reality
for rapid prototyping. The goal is to develop an en-
vironment where one can explore Ubicomp-type con-
cepts without having to build real Ubicomp hardware.
The basic notion is to extend object models in a vir-
tual world by using distributed wide area heterogeneous
computing technology to provide complex networking
and processing capabilities to virtual reality objects.

1 Introduction
In the Futures Laboratory [1] in the Mathematics

and Computer Science (MCS) Division at Argonne
National Laboratory (ANL), our research agenda is
driven partly by discussions of advanced computing
scenarios. We find that by suspending disbelief mo-
mentarily and by engaging in serious discussion of such
topics as off-planet infrastructure, green nomadic com-
puting, and molecular nanotechnology, we are able to
project beyond the current set of problems and to con-
ceptualize innovative solutions.

UbiWorld is a result of this fertile ground where
concepts converge and evolve. This convergence is ev-
ident in the off-planet infrastructure problem, or Peo-
ple to Mars scenario. It's a safe assumption that sup-
port for people on Mars will be primarily computing,
that the computing will be ubiquitous and nearly in-
visible, and that "green" technology will be used to
minimize power consumption will be important, as
will the deployment of nanotechnology to manufac-
ture devices. On Mars, computers will always outnum-
ber people. Computers will undoubtedly be heteroge-
neous, it being hard to imagine a single architecture
deployed in devices from gloves and boots to landers,
flight control decks, and mining machines. Computers
will need to be transparently interconnected; reliabil-

ity and fault tolerance will be critical; and program-
ming and code maintenance will be significant activi-
ties. Everything of value will be available on mars.net
from anywhere on the planet. Immersive telepresence
will be a critical capability to overcome the obstacle
of distance.

These requirements push the boundaries of comput-
ing and networking as we know them and as we can
imagine them in the near future. Today, we don't even
have the tools to experiment with implementations of
some of these ideas. We can, however, conduct exper-
iments in a virtual world, creating and designing ob-
jects out of "pure thought-stuff," to borrow a phrase
from Frederick Brooks. This is the concept behind
UbiWorld.

2 Ubiquitous Computing
In the beginning, there were mainframe computers.

Access to mainframes has historically been character-
ized by many people per computer, batch operations,
text input, and paper output. Today, we are living in
the era of the personal computer. Personal computer
use is characterized by one person per computer, mul-
tithreaded interactive use, multimedia, windows, and
mouse interface. The next wave of computing will
be ubiquitous computing, characterized by many com-
puters per person and a transparent interface, used to
amplify one's powers, not replace them. Ubiquitous
computing means computers will become as invisible
to us today as text is [2]. There was a time when
the written word was the sole province of the experts,
guarded and used sparingly, much as computing has
been. Text technology has undergone a transforma-
tion from being written on clay tablets, then coarse
paper, up to today's refined paper and display tech-
nology. Believers in ubiquitous computing see a day
when the same transformation will occur with respect
to computing; users will not be any more aware of the
computers in their lives than we are aware today of

U.S. Government Work Not Protected by U.S. Copyright
46

the text in which this document is written. We are
already beginning to see this happen with the integra-
tion of computers in automobiles: the driver is really
unaware of the computer and its function.

The ubiquitous computing philosophy originated at
Xerox Pare in 1988 [3], pioneered by Mark Weiser. He
conceived of Ubicomp as nonintrusive, mobile, flexible
computing, highly integrated into the working and liv-
ing environment. Ubicomp is not virtual reality (VR).
VR techniques, which put people into artificial worlds,
primarily pose a computing and graphics horsepower
problem. Ubicomp forces the computer to live in the
real world with people. It is the integration of human
factors, computer science, engineering, and social sci-
ence. The human factors issues go well beyond yet an-
other human computer interface problem and will not
be solved with another windowing system. The com-
puter science issues span all areas—networking, oper-
ating systems, distribution of memory and processing,
naming, resource management, etc. A general discus-
sion of these issues can be found in [4]. Engineering
will have to make advances in nanotechnology to man-
ufacture the devices we can foresee. No one knows the
social implications of everyone's having full-time com-
puting and network access.

An example of an Ubicomp object is intelligent cur-
tains that contain light and temperature sensors and
control room lighting and temperature. As develop-
ers of UbiWorld, we talk about binoculars with image
processing software to detect and highlight objects in
a scene, to track eyes and vary the focus, or to per-
form other image transformations. We imagine scrap
paper that will be aware of the identity of the user,
will auto connect to the user's environment, and will
automatically store and retrieve all notes made in a
personal database accessed via contact with a table or
desk. We discuss many other examples, limited only
by our imagination.

Research in ubiquitous computing conducted at Xe-
rox Pare followed standard experimental science pro-
tocols [5]. Devices were conceived and prototypes con-
structed and tried out on willing subjects. There were
three prototypes of note: the Xerox ParcTab, a palm-
sized device; the Pad, a notebook-sized device; and the
Liveboard, a wall hanging device. Applications were
constructed to perform e-mail, take notes, schedule
meetings, check weather, etc. [6]. The primary les-
son we take from the work, however, is that technol-
ogy today is nowhere near what is required to design
and perform experiments in truly ubiquitous comput-
ing. A discussion of the many compromises that Xerox
had to make in the development of the ParcTab can

be found in [6].

3 UbiWorld
UbiWorld is an experimental system combining vir-

tual reality, advanced networking, and supercomput-
ing to explore the implications of ubiquitous comput-
ing. We use a virtual reality system as a design and
evaluation environment. Instead of actually building
devices, we use VR techniques to model the represen-
tation of devices. We use advanced networking to link
VR objects with computational servers to represent
the behavior of the objects. Using these techniques,
we can explore devices that are not yet possible to
build.

Today's hardware capabilities fall short of what
ubiquitous computing will need in terms of power con-
sumption, miniaturization, network bandwidth, and
computing power. Until these capabilities can be met,
we feel that experimenting in virtual spaces is a pro-
ductive method of exploring the concepts in ubiqui-
tous computing. The UbiWorld project builds on ex-
isting software and projects in MCS. It serves to focus
those efforts and leverages our long-standing expertise
in software engineering and our strong development
environment.

Starting with the CAVE™ family of display de-
vices we integrate tools for the construction of 3D ob-
jects into the existing library [7]. Using these objects
as models, we can then imbed new information tech-
nology within them. These products might be hand-
held computers, intelligent paper, image-processing
binoculars, desks, clothing, jewelry, cups, eyeglasses,
or carpeting. The plan is to couple the virtual ob-
jects with remote computers via fine-grained heteroge-
neous computing technology and to provide Ubicomp
behavior and functionality to the models. The 3D ob-
jects will be placed in virtual rooms, thereby creating
a shared virtual world (in a collection of CAVEs, Im-
mersaDesks, or whatever) where users can experiment
with using the virtual devices.

Each object in the world has behavior controlled
by a program running on the network. The behav-
ior could be one that, in the real object, would be
provided by a local computer or by a combination
of local computer and network connection to remote
processors or databases. These "behavior" processes
are able to communicate with each other by using a
shared protocol (UbiWorldcomm). The objects also
react and are influenced directly by interactions with
the virtual world and its users. If someone picks up an
object in the UbiWorld, that object knows it has been
picked up and then "does the right thing," which may
mean communicating with other objects or computing

47

something or displaying some network stream. For ex-
ample, one's coffee cup could be displaying live video,
or one could talk to an earring and make a phone call.

UbiWorld will let us debug Ubicomp years before
we have the technology to build it. It will enable us to
change specifications without changing hardware and
to identify software requirements. Through UbiWorld
we can explore the boundaries of embedded computing
and network computing. It serves as a testbed for
heterogeneous computing tools and systems such as
fine-grained networking protocols, image composition
mechanisms, and agent integration.

4 UbiWorld Design
A fundamental principle in the design of UbiWorld

is the separation of an object's representation from
its behavior. As shown in Figure 1, the user inter-
acts with the representation of an object. The be-
havior of the object is specified independently of the
representation. The actual computation of the be-
havior is performed on a simulation server, separate
from the representation computing. Furthermore, as
seen in Figure 2, the world in which the object inter-
acts is viewed as an orthogonal issue from the object
itself. The virtual world, its representation, and its
properties (such as light and gravity) are computed,
stored, and rendered separately from the objects we
choose to place in the world. In Figure 2, we show a
virtual world record-and-playback engine that builds
on work in progress at MCS. This engine, which we
call VR Voyager, can be thought of as a virtual world
server, storing virtual worlds, serving them to clients,
recording VR experiences, and playing them back on
demand.

In addition, we introduce the concept of "dis-
tributed rendering." This is an attempt to overcome
the bottlenecks introduced into today's VR systems by
lack of graphics rendering power. By employing ren-
dering engines in distributed machines, we can bring
much greater rendering power to bear than would oth-
erwise be possible. Also, it gives us the ability to bring
the rendering closer to the source of the data gener-
ated in the simulations. Distributed rendering is a new
research area introduced into the Futures Lab by the
UbiWorld project. We are studying ways to composite
the separately rendered images into a single image in
the VR theater, by tapping into the OpenGL pipeline,
for instance. Along with distributed rendering, we also
introduce the concept of "aware networking." Aware
networking means that networking resources are not
precisely known at all times and implies an adaptive
nature imbedded in the objects as they seek to join
networks. Objects can join networks by using a vari-

ety of bandwidths and protocols.
UbiWorld is a classic example of using the power

of virtual reality systems to prototype devices that
are impossible or too expensive to build. To accom-
plish our goals, we must construct tools that simplify
the connection of physical representations to computer
simulations that are prototyping the hardware. This
then gives us the ability to construct and test the use-
fulness of hardware that is impossible to build with
today's technology.

5 UbiWorld Development Environ-
ment

The UbiWorld development environment is a com-
bination of hardware and software environments. The
hardware is a combination of supercomputers, net-
works, and display devices. The software covers all
major areas of software development from the low-
level network code all the way up to high-level script-
ing languages that allow users to configure the envi-
ronment.

5.1 Hardware
The following two subsections will address the dis-

play environments in which the UbiWorld system will
be tested, and the various hardware limitations.

5.1.1 Display Environments

The current display environment is comprised of three
virtual reality devices.

• CAVE

The CAVE™ (CAVE Automatic Virtual Envi-
ronment) is a 10 x 10 x 9 foot room that uses
rear-projected high-resolution projectors to pro-
duce an immersive 3D environment (Figure 3).
The CAVE environment, originally developed by
the Electronic Visualization Laboratory (EVL) at
the University of Illinois at Chicago, produces a
3D stereo effect by displaying in alternating suc-
cession the left and right eye views of the scene as
rendered from the viewer's perspective [7]. These
views are then seen by the user through a pair
of LCD shutter glasses whose lenses open and
close forty-eight times a second in synchronization
with the left- and right-eye views. The correct
viewer-centered projection is calculated based on
the viewer's position and orientation as deter-
mined by a electromagnetic tracking system. The
position and orientation of a 3D wand are also
tracked; this wand allows for navigation of and in-
put into the virtual world. Along with the visual

48

Figure 1: The Connections of Behavior, Representation, Simulation, and the User within the UbiWorld model.

feedback of the CAVE environment, a complete
3D audio environment is available to the user.

• ImmersaDesk

The ImmersaDesk is based on the same rear-
projection technology as the CAVE (Figure 4). It
is a fully interactive, 3D immersive environment
that is about the size of a large drafting table.
The ImmersaDesk allows for one tracked viewer,
along with two to three passive viewers.

• InfinityWall

The InfinityWall is a large rear-projected system
that is created from compositing four standard
1280 x 1024 screens together to create one large
high-resolution screen. The InfinityWall can be
used as a large ImmersaDesk, where the images
are projected in stereo and the viewer is tracked,
or can substitute for a large high-resolution work-
station. The Nil/Wall was developed by EVL,
the National Center for Supercomputing Appli-
cations, and the University of Minnesota, with
support from Silicon Graphics, Inc.

5.1.2 Hardware Limitations

Although this development environment is satisfac-
tory for early experiments, we believe that several
improvements will need to be made in virtual tech-
nologies to fully realize the benefits of the UbiWorld
project.

• Resolution

The current resolution of the CAVE is 1280 x 768
on each wall. If we were to attempt a resolu-
tion close to the capabilities of the human eye, we
would need a resolution of 4,800 x 3,800 [8]. That
resolution is not available at this time, but we be-
lieve we can achieve that resolution on selected
areas of the screen by using a "high-resolution
window." By using a separate projector and ren-
dering engine and by driving the location of the
projector based on gaze direction, we can provide
an area of high resolution at the place where the
user is looking. This high-resolution window is
another of the research projects in the Futures
Lab that is motivated by the UbiWorld project.

• Tracking

The resolution of the tracking system is another
weakness of the current environment. Today, our
effective sampling rate is approximately 100 ms,
with a spatial resolution of approximately 1 inch.
In the future, for fine-grained manipulation of ob-
jects, we expect a sampling rate closer to 1 ms and
a spatial resolution of 1 mm.

• Haptics

Today, our CAVE environment has no haptic de-
vices. The UbiWorld project requires that we
bring these devices into the CAVE and learn to
register their actions with virtual representations.

49

Behavior Simulation
of Objects

World
Rendering
VB Control

Virtual
Reality

Theather \

Model World
Record

Playback
Storage

Distributed
Rendering

Figure 2: Separation of UbiWorld Spaces

Force and feedback will be required to fully pro-
totype actions of devices in our virtual world.

• Control Interfaces

Software in the CAVE today is programmed as
an extension of current windows-based systems.
We use menus, visual displays of pick lists, radio
buttons, dials, etc. We believe these interfaces
are wholly inadequate for use in UbiWorld. De-
vices and objects represented in UbiWorld may be
activated by voice, by absolute position or prox-
imity to other objects, by proximity to or by sens-
ing features in the virtual world, or by any other
means that we haven't thought of yet. We need
a new paradigm to allow freedom and innovation
in control interfaces. This is yet another active
research project spawned by requirements of the
UbiWorld project.

5.2 Software
Although more tools are required, we have a good

group of software already available to us for use in the
UbiWorld project.

5.2.1 CAVElib

The CAVE library [7], developed at EVL to work with
the CAVE family of display devices, provides basic VR
functionality and viewer-centered perspective trans-
forms automatically. This frees the VR programmer to
focus on the graphics of the problem at hand, not the
viewer perspective problem. The CAVE library pro-
vides basic navigation functions, tracking of the user
and wand, and interaction with the wand buttons and
joystick.

5.2.2 CAVEcomm

The CAVEcomm library is a communications library
that aids developers of virtual reality applications in
the area of remote communications [9, 10]. The remote
communications can be either virtual reality device to
virtual reality device or virtual reality device to super-
computer. Using the CAVEcomm library, users regis-
ter their virtual reality applications and/or supercom-
puting simulations with a broker. The broker process
handles the connections of separate entities. The bro-
ker manages resources and connections but does not
handle data traffic. Once the broker has set up the
connection between the entities, they send the actual
data traffic only between each other. CAVEcomm is
specifically designed to work with the CAVE group of
virtual reality devices, namely, the CAVE, the Imm-
ersaDesk, the CAVE simulator, and the T~finityWall.
The ideas of CAVEcomm can be extena however,
to any virtual reality-based system.

CAVEcomm has been used to connect virtual re-
ality applications to supercomputing simualtions that
are running in real time. It has been used to con-
nect two CAVEs that are geographically separated,
allowing the users to collaborate on a joint task or
to demonstrate something in one CAVE to users in
another.

5.2.3 CAVEav

The CAVEav library brings multimedia capabilities to
the CAVE. Using the library, programmers can con-
nect to video sources on the network and texture map
the resulting video stream onto objects in the CAVE.
Live video streams from other CAVE, for instance, can

50

Figure 3: CAVE Virtual Environment (Milana Huang, EVL, 1994)

be texture mapped onto avatars showing remote users.
Live streams from robots or instruments are used to
provide an immersive telepresence capability. Prere-
corded streams can be used to provide instruction or
backgrounds.

A prototype system demonstrating these features
has been developed at ANL. A small robot mounted
with a variety of video and audio components is con-
nected to the CAVE; from within the CAVE, a user
can navigate the robot and interact with the environ-
ment within which the robot lives [11]. This system is
being used to test the requirements and to expose the
difficult problems within a toolkit of this nature.

5.2.4 CAVE-VRML Modeler

Three-dimensional virtual computer environments
such as the CAVE should have the capacity to be a
working development environment, not just an inter-
active display environment. One aspect of a develop-
ment environment is 3D modeling. Currently, no 3D
modelers work well in conjunction with the CAVE. Of-
ten, in going from the modeler to the CAVE, "what
you see is what you get" is not always true. Frequently,
objects modeled on a workstation look quite different
in the CAVE, particulary with respect to the object's
scale, color, and lighting. One of the new projects
in the Futures Lab is the development of an interac-

tive modeling system to be used in the CAVE. This
system will allow users to create objects in the native
environment and will import/export VRML-based ob-
jects that can be used in or taken from other VR en-
vironments. Users will be able to affect the trans-
formations (rotate, scale, translate) of the object as
well as its material properties (ambience, diffusivity,
shininess, specularity, etc.). The ability to edit ma-
terials and lighting is significant given the fact that
many objects look very different in the CAVE due to
the physical components of the CAVE, (i.e., projec-
tors and screens). This CAVE modeling tool will also
have the ability to edit the object's shape, not just its
extraneous properties. Users will be able to edit the
polygons of the object; adding, deleting, and mov-
ing vertices will give users the ability to redefine and
combine existing shapes or create new objects from
scratch. The created worlds and environments will be
exportable to VRML.

5.2.5 VR Voyager

The Voyager multimedia recording and playback sys-
tem has been under development in the Futures Lab
for the past two years [12]. It uses an IBM SP2
for multistream, multimedia record and playback of
network-based sources. We propose to use the Voy-
ager system as the basis for a new virtual world server,

51

Figure 4: ImmersaDesk Virtual Environment (Jason Leigh, EVL, 1995)

providing record and playback of VR experiences.

6 UbiWorld Goals and Requirements

Our goal is to test UbiWorld objects and worlds in
a task-based manner, under different scenarios. We
will provide several different environments, for exam-
ple, a home, office, airplane, hotel, car, field, restau-
rant, laboratory, and shop. Each of these environ-
ments must be rendered with high-resolution textures,
complex spaces and lighting, and varying degress of
scene complexity. Each of these models is different,
but the requirements of ubiquitous computing span all
of these environments. In each different environment,
Ubicomp objects must behave appropriately. Scenario
spaces will be used for experimenting with device func-
tionality and interaction by requiring task-based ex-
plorations. For instance, users may be required to or-
der a meal, prepare a talk, negotiate a contract, drive
to an unknown destination, or buy groceries.

6.1 Virtual Device Requirements

To accomplish this goal, we believe that computing
objects in the UbiWorld must possess or make use of
at least the following features.

6.1.1 Innovative Representational Design

Current thinking, as evidenced by the ParcTab, is too
restricted by technology limitations to create truly in-
novative design. We would like to be able to take the
best from advanced industrial design and apply it to
the design of future Ubicomp devices in UbiWorld.
The type of advanced design philosophy we have in
mind is embodied in publications such as Arbitare
magazine and the book The Art Factory, Design in
Italy Towards the Third Millenium [13]. In this latter
text, the author analyzes the birth of virtual industry,
links between the fashion system and the media sys-
tem, the rediscovery of art and craft traditions, and
renewed ecological awareness of materials in terms of
contemporary and New Wave design.

6.1.2 Novel Information Technology Compo-
nents

Using supercomputer and external multimedia servers
and resources, designers in the UbiWorld will be able
to specify and simulate behavior associated with ad-
vanced CPU capabilities, imaging technology, sensors,
actuators, multimedia components, communications
capabilities, etc.

52

Figure 5: InfinityWall Virtual Environment (Jason Leigh, EVL, 1995)

6.1.3 Transparent Networking

Transparent, or "aware," networking is assumed to be
a fundamental capability in the UbiWorld. The net-
work in this case is transparent to the user. UbiWorld
devices automatically connect to whatever other de-
vice is appropriate, using mutually acceptable band-
widths and protocols.

6.1.4 Device/Space Awareness

Devices in the UbiWorld must exhibit awareness of
other devices and of the space in which they are op-
erating. If a user carries a device to a different space,
the device must automatically be aware of the new
space context and take appropriate action.

6.1.5 Reactive/Proactive/Proxy Behavior

UbiWorld devices should, of course, react properly
to users requests, but beyond that, they should be
proactive as necessary. An example is the loading of a
new context when the user enters a new space or the
proactive downloading of news or information known
to be of interest to the user. Based on current research
within the artificial intelligence community on agent
based systems, one can already see a trend emerging.

Agents are being constructed that passively view the
behaviors of users and learn about their interests. Us-
ing methods similiar to these techniques, we hope to
construct within the UbiWorld a framework that al-
lows the Ubicomp devices to be reactive and proactive.

6.1.6 Integration Functions

In the UbiWorld, we believe the network really is the
computer. As devices near other devices or objects
in the space, they should be able to interrogate the
devices and perform acts of spontaneous integration
if it is of benefit to do so. Benefit in this case could
be defined as access to greater bandwidth, computing
power or advanced capabilities. The intelligent scrap
paper idea fully embodies this idea, since the scrap
paper integrates with desktops for greater bandwidth
or with imaging devices to capture multimedia infor-
mation.
6.2 UbiWorld Design Problems

We see four critical design problems in the Ubi-
World project:

• Object shape, form, and representation

• Computing and communications internals

• Functional behavior

53

• Integration with and awareness of environment

In the UbiWorld project, we believe it is important
that these design problems be separated. We want to
feel free to experiment with the form and shape of an
object independent of its other attributes. Since the
object is virtual, we can experiment with communica-
tions and computing internals without being encum-
bered by physical packaging or power problems. Func-
tional behavior is simulated via the computational
servers and can be varied at will, independent of the
packaging or other factors. Finally, integration with
and awareness of the environment are accomplished
via simulated sensors and connection interfaces. For
instance, when an object such as a piece of intelligent
paper is placed on a table, we expect it to perform
the above mentioned "spontaneous integration" with
the table. Through its sensors, it must become aware
of the table and its capabilities. By using an aware
networking approach, the intelligent paper negotiates
with the table to establish a connection, thereby inte-
grating its functionality with that of the table.

For each of these design problems, appropriate tools
are essential. Where existing tools are inadequate, it
will be necessary to build or invent more robust tools.

6.3 Technical Challenges
The scope of the UbiWorld project pushes the

bounds of current VR and networking technology and
gives rise to a host of technical challenges. The follow-
ing list is not meant to be comprehensive but serves
to enumerate those problems we feel are most impor-
tant to focus on now in the implementation of the
UbiWorld.

• Scalability

Adding objects into a UbiWorld environment
stresses protocols, bandwidths, computing, and
rendering power. Important research issues re-
garding scalability of these components and their
interactions must be investigated.

• Latency

We know that there are limits on the user-
perceived latencies in an interactive system. The
latency of the total system (including latency
from the graphics system, the tracking systems,
the networks and the computation engines) can-
not exceed 100 ms - 1000 ms, depending on the
user's experience level [14]. Taylor et al. studied

this phenomenon in multiple-tracked, network-
connected VR systems and offered data and re-
search issues to be investigated to mitigate the
latencies in the system [15].

Object Representation

The representation of objects within the Ubi-
World model must be flexible, so that they can
be changed easily, without affecting the underly-
ing simulation of the objects. It is important to
allow for a variety of different representations to
be attached to the simulation, to allow users to
experiment with different interfaces. This compo-
nent is one of the true strengths of the connection
of Ubicomp devices to VR, since expensive pro-
totypes do not need to be built to try out a new
device.

Behavior Specification

An open question is how best to specify the be-
havior of an object. For our purposes, there are
three categories of behavior:

— Representation Dynamics

— Functional Mechanics

— Computational and Communication

It is not likely that the same tools will be appro-
priate for each of these tasks. A suite of tools
will need to be developed to enable specification
of each of these behaviors and their interactions.

Object Binding and Brokering

Resource brokering is the use of computationally
enhanced entities to aid in the requesting, allo-
cation, and management of remote capabilities.
Much in the same way that data hiding is used in
object-oriented programming to make the inter-
faces easier to use and understand, wide-area re-
source brokering can be used to simplify the user
interaction with a large-complex set of computa-
tional and collaborative resources. One approach
can be attacked by expanding on what we have
learned from traditional system management soft-
ware and current work in cluster management.
Through the use of resource brokering, the level
of complexity needed to configure and control a
large virtual world is reduced to a manageable
state for the user.

54

Process Mapping and Execution Control Security

The management and control of processes become
important in the UbiWorld model. The ability
to map a new process into an existing computa-
tional framework is an essential component of the
UbiWorld model. As a new user enters the Ubi-
World or a new Ubicomp device is introduced, the
process controlling the simulation will have to be
seamlessly integrated. At the computational level
that will require mapping the new process onto a
computational resource and then controling the
execution from startup to termination.

Evaluation and Measurement

As in any scientific endeavor, we desire to mea-
sure, evaluate, and report on our work in a rigor-
ous manner. Tools are required to enable instru-
mentation of all the computational and commu-
nications processes and their relationships. Eval-
uation and reporting tools are essential to reduce
and analyze the data generated by instrumented
codes.

Distribution

Distribution covers a whole set of problems re-
lated to using networked resources: the map-
ping of processes to processors; the distribution of
databases over networked resources; the issues of
redundancy, failure recovery, and the other prob-
lems usually associated with distributed comput-
ing — all are present in the UbiWorld project.

Naming and Identification

The current Internet provides mechanisms for
naming computers and Web pages. Future envi-
ronments will require the ability to name a much
wider variety of objects with varying degrees of
persistence and scope [16]. Mechanisms are also
required for locating objects based on different
criteria. Proposals for Universal Resource Names
are a step in this direction but are designed for
long-lived objects. We believe that a new class of
naming mechanism will be needed that can refer
to much shorter-lived objects that would be the
topic of communication between user agents and
simulation spaces. Brokering and name trans-
lations mechanisms are also needed. These will
need to be high performance and scalable and to
incorporate hooks for security and access rights.

Fine-grained, scalable authentication, authoriza-
tion, and accounting mechanisms will be required
to control access to information and computa-
tional resources by both users and computational
entities. Complex issues include secure communi-
cation of high-bandwidth multimedia data, access
control of dynamically created entities, multi-
entity interactions, security of archived data,
object-level security in virtual environments, and
delegation of authority between users and associ-
ated computational entities.

7 Tools
The underlying infrastructure for the construction

of UbiWorld requires the combination of a wide area
of computer science disciplines. Techniques and tools
need to be borrowed from the fields of computer graph-
ics, artificial intelligence, and systems to name but a
few.

We have identified a set of existing tools for use
in implementing the UbiWorld concept. These tools
will not be sufficient in the long term, but most rep-
resent a suitable beginning for work on the UbiWorld
requirements.

7.1 Representation

The physical representation of the objects within
UbiWorld, such as intelligent paper or image-
processing glasses, needs to modeled in such a way
that the objects can be easily changed and modified.
Currently one can use a wide variety of desktop mod-
eling and CAD packages to physically design the ob-
jects. These packages are not sufficient to develop
•UbiWorld objects to final state. While it is impor-
tant to separate the representation from the function,
the modelers require the ability to provide hooks or
connections to a behavior toolkit. We believe that the
Open Inventor™ and VMRL modeling formats lend
themselves most to this goal.

7.2 Behavior Specification

For the representational dynamics of an object, the
tools such as VRML or Openlnventor come to mind.
For the functional (or mechanical) behavior, procedu-
ral systems such as Java or C++ are available today,
but they are too low level to use in the long term.
For the specification of the computational and com-
munications behavior, we can also use Java or C++,
or other still too low-level systems such as nperl or
Nexus.

55

7.3 Object Binding/Brokering
Binding of objects to resources can currently be

accomplished by hard-wiring the connection or soft-
wiring the connection through the use of a brokering
system such as CORBA or the LabSpace broker.

7.4 Process Mapping and Execution Con-
trol

The design of UbiWorld calls for object behavior to
be computed on separate computational servers. The
mapping of many object processes to computational
servers and control of the execution is a problem we
have been examining for some time. For SC'95, a team
at ANL developed custom software for scheduling and
mapping processes to network-based processors. The
system deployed at SC'95 was the I-WAY Point of
Presence (I-POP) machine. The I-POP machine was
specifically set up to manage security issues and was
configured specifically for the I-WAY [17]. It allowed
use of process mapping and control software such as
Nexus and MPI. Subsequent to the I-WAY project,
a team at ANL has been integrating the Adaptive
Communication Environment (ACE) [18] system into
a parallel message-passing toolkit.

Each of these solutions has shortcomings, and we
fully expect that UbiWorld requirements will force the
design or evolution of a new, more sophisticated sys-
tem for process mapping and control.

7.5 Evaluation and Measurement
It is important to be able to measure and quantify

the progress that is being made. Since UbiWorld re-
quires the combination of such a wide variety of differ-
ent aspects of the field of computing, we are required
to connect various areas that are only now beginning
to be tested. The connection of supercomputers to im-
mersive virtual reality display devices is just one area.
For the first time, issues such as latency, for example,
need to be looked at outside their normal meanings
to supercomputer users and to graphics programmers.
Therefore, as UbiWorld is constructed, measurements
and evaluation need to be done. Currently, we are us-
ing PABLO from the University of Illinois for instru-
menting VR and simulation programs. We use MPI
logging and the Upshot display system for tracing and
evaluating MPI programs.

8 Conclusion
UbiWorld is a project that pushes beyond the

bounds of current technology and forces us to think
of heterogeneous computing in new terms. Rather
than making incremental changes in existing technol-
ogy, UbiWorld gives us a chance to leapfrog into a new
problem space where heterogeneous computing is the

norm, not the exception. In this space, we can more
clearly see the technical challenges that await us, and
we can proceed to invent solutions well ahead of tech-
nological progress that can implement these solutions.

The scope of UbiWorld is very broad and invites
research on many fronts. We have identified some of
these issues, such as network latency, scalability, ob-
ject representation and specification, process and data
mapping, object brokering and binding, security, and
measurement. Each of these issues is deserving of a
focused research effort in the futures-oriented ubiqui-
tous computing scenario, and we invite the heteroge-
neous computing community to engage in discussions
and research in this rich problem space.

Acknowledgments
We thank Ian Foster, Ivan Judson, Bill Nickless,

Bob Olson, and Matt Szymanski for all their help and
input. This work was supported by the Mathemat-
ical, Information, and Computational Sciences Divi-
sion subprogram of the Office of Computational and
Technology Research, U.S. Department of Energy, un-
der Contract W-31-109-Eng-38.

References
[1] Terrence L. Disz, Remy Evard, Mark W. Hender-

son, William Nickless, Robert Olson, Michael E.
Papka, and Rick Stevens, "Designing the future
of collaborative science: Argonne's futures labo-
ratory," IEEE Parallel and Distributed Technol-
ogy Systems and Applications, vol. 3, no. 2, pp.
14-21, Summer 1995.

[2] Mark Weiser, "The computer for the 21st cen-
tury," Scientific American, vol. 265, no. 3, pp.
94-104, September 1991.

[3] Mark Weiser, "The world is not a desktop," In-
teractions, vol. 1, no. 1, pp. 7-8, January 1994.

[4] Ian Foster, Michael E. Papka, and Rick Stevens,
"Tools for distributed collaborative environ-
ments: A research agenda," in Proceedings of
the Fifth IEEE International Symposium on High
Performance Distributed Compututing. IEEE,
1996, pp. 23-29, IEEE Computer Society Press.

[5] Mark Weiser, "Some computer science issues in
ubiquitous computing," Communications of the
ACM, vol. 36, no. 7, pp. 74-83, July 1993.

[6] Roy Want, Bill N. Schilit, Norman I. Adams, Rich
Gold, Karin Petersen, David Goldberg, John R.
Ellis, and Mark Weiser, "The parctab ubiquitous
computing experiment," Tech. Rep. CSL-95-1,

56

Xerox PARC, Xerox Palo Alto Research Center,
March 1995.

[7] C. Cruz-Neira, D. J. Sandin, and T. A. De-
Fanti, "Surround-screen projection-based vir-
tual reality: The design and implementation of
the CAVE," in Computer Graphics (Proceedings
of SIGGRAPH '93). ACM SIGGRAPH, August
1993, pp. 135-142, Addison Wesley.

[8] M. McKenna and David Zeltzer, "Three dimen-
sional visual display systems for virtual environ-
ments," Presence, vol. 1, no. 4, pp. 421-458,1992.

[9] T. L. Disz, M. E. Papka, M. Pellegrino, and
R. Stevens, "Sharing visualization experiences
among remote virtual environments," in Inter-
national Workshop on High Performance Com-
puting for Computer Graphics and Visualization.
1995, pp. 217-237, Springer-Verlag.

[10] Terrence L. Disz, Michael E. Papka, Michael Pel-
legrino, and Matthew Szymanski, CAVEcomm
Users Manual vl.O, Mathematics and Computer
Science Division, Argonne National Laboratory,
1.0 edition, August 1996, ANL/MCS-TM-218.

[11] Ivan Judson and Rick Stevens, "Architecture of
an immersive virtual reality telepresence system,"
Private Communication, Argonne National Lab-
oratory, April 1997.

[12] Rick Stevens, Terrence Disz, Robert Olson,
Michael E. Papka, and Remy Evard, "Voyager:
A next generation hypermedia server to support
the construction of virtual organizastions," 1995,
Grant Proposal, Submitted to DOE 1995.

[13] Stefano Casciani, The Art Factory Disgn in Italy
Towards the Third Millennium, Springer-Verlag,
1996.

[14] A. Liu, G. Tharp, L. French, S. Lai, and L. Stark,
"Some of what one needs to know about using
head-monunted displays to imporve teleoperator
performance," IEEE Transactions on robotics
and Automation, vol. 9, no. 5, pp. 638-648, 1993.

[15] Valerie E. Taylor, Milana Huang, Thomas Can-
field, Rick Stevens, Daniel Reed, and Stephen
Lamm, "Performance modeling of interactive,
immersive virtual envrionments for finite element
simulations," The International Journal of Su-
percomputing Applications and High Performance
Computing, vol. 10, no. 2/3, pp. 141-151, Novem-
ber 1996.

[16] John Kunze, "Functional recommendations for
Internet resource locators," Febuary 1995, Net-
work Working Group, RFC 1738.

[17] Ian Foster, Jonathan Geisler, William Nickless,
Warren Smith, and Steve Tuecke, "Software in-
frastructure for the i-way high-performance dis-
tributed computing experiment," in 5th IEEE
Symposium on High Performance Distributed
Computing. IEEE, 1996.

[18] Douglas C. Schmidt, "The adaptive communica-
tion environment an object-oriented network pro-
gramming toolkit for developing communication
software," in Sun Users Group Conference, De-
cember 1993.

57

Case Study

Mercury Computer Systems' Modular Heterogeneous
RACE® Multicomputer

Thomas H. Einstein
Mercury Computer Systems, Chelmsford, MA, USA

Mercury Computer Systems' Modular Heterogeneous
RACE® Multicomputer

Thomas H. Einstein
Mercury Computer Systems, Inc.

199 Riverneck Road
Chelmsford, MA 01824-2820

USA

Abstract

A heterogeneous multicomputer is a
multicomputer composed of two or more
different types of processors. This paper describes
the rationale for heterogeneity in a
multicomputer and gives a typical example of a
heterogeneous system in the form of a RACE
multicomputer composed of a mixture of Analog
Devices' SHARC 21060 and the
IBM/Motorola/Apple PowerPC 603p processors.
These two processors have complementary
attributes, and the advantages and limitations of
each are described.

Multicomputers generally implement a sequence
of different processing algorithms. The "optimal"
processor that maximizes throughput at each step
in the processing flow is generally a function of
the algorithm to be executed at that step. Other
factors that also influence the optimal mix of
processors in a heterogeneous multicomputer
include physical processing density, hardware
cost, and ease of programmability.

1.0 Introduction

A multicomputer is defined as a computing
system composed of multiple, independent but
cooperating processors. The different processors
in a multicomputer communicate with each other
over a common data communication fabric. In its
simplest form, this communication fabric may
consist of a single common bus, such as VME
or PCI, that is shared by all of the
multicomputer's processors. Another high-
performance example of such a fabric is a
crossbar switching network that consists of
multiple independent data paths over which
several independent data transactions can be in
process concurrently. The principal purpose of a
multicomputer is to satisfy the processing
requirements of applications that require the
processing throughput exceeding that of a single
processor.

A modular multicomputer employs component
processors designed to be modular, much like the
building blocks in a Lego™ set. This enables
expandability by literally "plugging" additional
processors into the common interprocessor
communication fabric.

There are both physical and logical implications
to this configuration. The physical implication is
merely that the processor modules be constructed
on individual circuit boards or cards that plug
into a standard connector on the communication
fabric. VME circuit boards and connectors are an
example of such a standard connector interface.
The logical implication of this modularity is in
the multicomputer's operating system software.
Each processor must use a common
interprocessor communication system that can
support data communication with any other
processor or group of processors in the
multicomputer. Multicomputer software will be
discussed in more detail in a subsequent section.

Finally, a heterogeneous multicomputer is
defined as a multicomputer composed of two or
more different types of processors. One example
of such a system is Mercury Computer Systems'
RACE multicomputer. In addition to being
heterogeneous, the Mercury system is also
modular and may be configured to contain from
four to several hundred processors, consisting of
any combination of the following processors:
Intel i860, IBM/Motorola/Apple PowerPC 603p,
Analog Devices SHARC 21060, and Texas
Instruments C80.

Why heterogeneous multicomputing? Even when
several different processors have comparable
MFLOP throughput ratings, each processor type
may have particular attributes that make it ideally
matched to certain applications. For example, the
SHARC 21060 is ideally matched to vector
signal processing applications such as FFTs, as
well as for embedded applications that require
high processing densities in terms of both
MFLOPS/volume and/or MFLOPS/watt. In

0-8186-7879-8/97 $10.00 © 1997 IEEE
60

contrast, the PowerPC is ideal for executing
scalar (non-DSP) applications characterized by
arbitrary C code.

In general, algorithms that have a high ratio of
computation-to-data accesses will execute more
efficiently on the PowerPC than on the SHARC,
whereas the converse is true for algorithms
having a low ratio of computation-to-data
accesses. A more detailed comparison of the
SHARC and PowerPC processors, together with
the relative advantages and disadvantages of each,
will be given in a subsequent section. It will be
shown that the SHARC and PowerPC are truly
complementary processors that justify the
concept of heterogeneous multicomputing.

The remainder of this paper will discuss a
Mercury modular heterogeneous RACE
multicomputer composed of the following two
processor types: SHARC and PowerPC 603p.

This paper is organized as follows: Section 2
briefly introduces the following basic logical
components of Mercury's RACE multicomputer:
Compute Elements (CEs), Compute Nodes
(CNs), CN RACEway interface ASICs, RACE
crossbars, and the RACEway crossbar switching
network. Also described in Section 2 is how
these modules can be physically interconnected to
form a RACE multicomputer.

The only components in this multicomputer that
are unique to a given processor type are the CEs
themselves and the CN RACEway interface
ASICs. The CN RACEway Interface ASIC for a
given processor type provides a common
interface to RACEway communication from that
processor. The interface commonality provided
by these ASICs is the hardware key that enables
a RACE multicomputer to be heterogeneously
configured from a number of different processor
types.

The RACEway crossbar switching network is an
essential element of the RACE multicomputer's
scalability. This crossbar network provides
multiple concurrent paths between different CEs
of the multicomputer. Much like in a modern
digital telephone switching network, a number of
independent messages can be transferred
concurrently over different paths between CEs,
and/or CEs and I/O interfaces, at data rates of up
to 160 MB/s per path. Each path is dynamically
switchable in less than two microseconds.
As additional processors are added to a
multicomputer, the interprocessor
communication bandwidth requirements naturally

increase. Unlike a bus, whose bandwidth capacity
is fixed, as more processor nodes are added to a
RACE multicomputer, the crossbar network
automatically expands to provide the additional
bandwidth required. This expansion is realized by
adding crossbar sub-network modules to an
existing crossbar network to accommodate the
added nodes.

Section 3 presents a very-high level overview of
the software in a Mercury RACE multicomputer.
A separate copy of Mercury's real-time runtime
environment, MC/OS, executes in every CE of
the multicomputer.

The MC/OS runtime environment consists
primarily of the following three components:
MCexec™, Interprocessor Communication
System (ICS) and Hardware Abstraction Layer
(HAL). MCexec is a standard, single-processor
real-time operating system that handles task
scheduling, context switching, timer services,
etc. for the processor on which it resides. ICS is
a set of Application Programming Interfaces
(APIs) that handles all interprocessor
communication. ICS allocates and manages
shared memory buffers, performs address
mapping of remote nodes, and manages all
interprocess data transfers, both DMA and
programmed I/O.

HAL is a set of processor-specific software that
provides the interface between both MCexec and
ICS and each processor's unique hardware (i.e.
DMA controllers, interrupt registers and vectors,
address mapping registers, etc.). The purpose of
HAL is to make the MCexec and ICS
components of MC/OS as processor-independent
as possible. Thus, most of the processor-specific
elements of MC/OS have been encapsulated in
the HAL.

Section 4 introduces the concept of
heterogeneous processing, using a system
composed of SHARC and PowerPC processors
as a specific example. The unique attributes of
the SHARC and PowerPC processor chips are
described as well as which chip is best suited to
which kind of application. In a nutshell, the
PowerPC is best suited for the execution of
algorithms that are characterized by a high ratio
of computation-to-data accesses. Typical
algorithms in this category include those that
involve the evaluation of transcendental functions
such as sine, cosine, sqrt, atan, log, etc., as well
as long FIR filters, matrix inversion and multi-
point data interpolation. In contrast, the SHARC
is best suited for vector operations characterized

61

by a relatively low ratio of computation-to-data
accesses, as well as for computation of large-size
(i.e. >512-point)FFTs.

Other important considerations that effect
processor choice include physical processing
density, ease of coding, and code portability. The
SHARC is one of the densest (in terms of
MFLOPS/volume and MFLOPS/watt)
processing chips available today. This factor is
an especially important issue in embedded
systems for military applications. On the other
hand, coding SHARC applications generally
requires an extra level of learning if the chip's
full processing potential is to be realized. In
particular, the SHARC user should make use of
Mercury's hand-coded Scientific Algorithm
Library (SAL) and multibuffering routines
wherever possible, using C code only as 'glue.'

In contrast, compiled C code runs extremely
efficiently on the PowerPC, and in some cases
even more so than on corresponding SAL
functions. Thus, if the user has already written a
large application in C that the user wants to port
to a Mercury RACE multicomputer, porting that
application to the PowerPC will usually be
significantly easier than to the SHARC. Section
4 enumerates the various pros and cons of each
chip. It is up to the user to make the trade-offs
between conflicting goals in deciding which chip
to use for which processing step in the
application.

fabric may be a bus, a series of separate buses
connected by bridges, a set of fixed point-point
links, or a configurable multi-transaction
interconnect network such as Mercury's
RACEway. The individual paths that comprise
this fabric may be either serial or parallel links.

A corresponding high-level diagram of a typical
Mercury RACE multicomputer is illustrated in
Fig. 2. The system consists of a variety of
processor, I/O, and bridge nodes connected to the
terminal ports of the RACEway interconnect.
The salient features of this system are as follows:

• Use of Mercury's RACEway high-bandwidth
crossbar switching network as the
multiprocessor interconnect fabric.

• Self-contained CNs with local DRAM
DMA controllers.

and

Ability to include different processor types
in the multicomputer (heterogeneous CNs).

Use of bridges between RACEway and
standard buses such as VME, VSB, and PCI.

Complete modularity and scalability. The
system is modular in that any type of node
(i.e., CN, I/O, etc.) can be connected to any
terminal port on RACEway. All nodes
present the same interface to RACEway.

To: External
I/O Device

Multiple Processors

To: External
I/O Device

CPU DRAM

DMA
1

I/O
Intfc.

CPU - DRAM

DMA

CPU r DRAM

DMA
ZT-

CPU DRAM

DMA
1

CPU DRAM

DMA
 1

I/O
Intfc.

Multiprocessor Interconnect: (Bus, Point-Point Links, Switching Fabric, etc.)

Fig. 1. Typical Multicomputer System

2.0 Mercury's RACE
Multicomputer

Fig. 1 illustrates a high-level block diagram of a
typical multicomputer. The system portrayed in
Fig. 1 is composed of three generic-node types:
processor nodes, I/O nodes, and bridge nodes, all
of which are interconnected by a common data
communication fabric. This interconnection

The system is scalable in that it can be expanded
merely by expanding the RACEway interconnect
to provide more terminal ports and then
populating them with additional CN, I/O, or
bridge nodes.

All nodes in the multicomputer have a common
interface to the RACEway crossbar switching
network consisting of 32 parallel data lines and 8
control lines. Data is transferred between each
node and the crossbar network synchronously at a

62

RACEway,,
Extension

D

Custorr
Device

High-Speed Data
Input

(120 MB/s)

High-Speed Data
Input

AB/s)

32*f

I/O CN CN* CN

(120 MB

32<

CN I/O CN* CN'

32^ Z2\- 32^ 32-p 32-^ 32-j- 32^ 32^
RACEway

Crossbar Interconnection Network
(160 MB/s per path)

RACEway
Extension

Std.
Bus
Intfc.

Std. Bus
(e.g.. VME. VSB)

CN" CN

32'' 32'' 32'' 32'' 32'' 32'' 32'' 32''

CN' I/O
32"F

CN* CN*

32-
PCI
Bus
Intfc.

High-Speed Data
Output

(120 MB/s)

Stand
alone

Atemoc

Std. Bus: PCI

'Compute Nodes (CNs) may be i860, SHARC, PowerPC or C80

Fig. 2. RACE Multicomputer

clock rate of 40 MHz, providing a data bandwidth
of 160 MB/s per path.

A RACE crossbar switching network is
composed of six-port crossbar switches. Each
switch can either interconnect any three port pairs
from among the six crossbar ports to each other,
providing an aggregate data transfer bandwidth of
480 MB/s, or can cause data entering one of the
six ports to be broadcast to some subset of the
remaining five ports on that crossbar. A large
number of different network topologies may be
configured from these switches. The aggregate
data bandwidth of a given network is equal to 160
MB/s, times the number of independent parallel
paths provided by that network. For large
networks, this aggregate network bandwidth can
reach several GB/s. Furthermore, the resulting
crossbar networks are easily expandable to
accommodate the addition of more CNs to a
given multicomputer.

Expansion of a given crossbar network not only
provides more node ports to which additional
CNs may be connected, but also increases the
aggregate network bandwidth by adding more
transaction paths that can be used concurrently.
Further details on the operation and capabilities
of Mercury's RACEway crossbar switching
network may be found in Refs [1], [2].

Fig. 3 shows a "thinned" Fat -Tree architecture of
the generic RACEway interconnect that was
illustrated in Fig. 2. The various compute, I/O
and bridge nodes that comprise the
multicomputer illustrated in Fig. 2 are shown

connected to the bottom level of this inverted tree
architecture.

The "thinned" Fat -Tree architecture illustrated in
Fig. 3. is not the only network interconnect
topology that can be constructed with the
currently available six-port RACE crossbar
switches. Other network topologies that could be
constructed with these switches include two-
dimensional (2-D) and three-dimensional (3-D)
meshes and rings.

Note that the scalability of the RACE
multicomputer derives from the following two
attributes of the RACE architecture.

• Scalability of the RACEway crossbar
interconnection network. A given network
may be expanded either by adding additional
crossbars or by interconnecting sub-networks
of crossbars.

• Modularity of the system nodes. The system
nodes (CNs, I/O, and bridges) may be
considered both physical and logical building
blocks that can be plugged into any terminal
port of the crossbar network. This is
somewhat analogous to plugging a
telephone or FAX machine into any port of
a telephone network.

Of particular interest with regard to
heterogeneous computing are the CNs illustrated
in Figs. 2 and 3. Each CN consists of the
following basic items: from one to three CPUs,
all of the same type; DRAM memory of between

63

Expansion Expansion

CE

PCI Bus

PCI

6-port
Crossbar Switch

6-port
Crossbar Switch J

I/O CE CE :usi CE CE I/O

Input
120 MB/s

I
I

Input
120 MB/s

I I I I I I I I
CE CE CE CE CUS1 CE CE CE

I I | I
CE CE CE CE

6-port
^Crossbar Switch

CEJCE
LA

J
10
Output

120 MB/s

Fig. 3. Thinned Fat-Tree Crossbar Switching Network

8 and 64 MBs; and a RACE way CN interface
ASIC.

The principal components of the CN ASIC
are: address mapping logic that enables the
local CN to access any DRAM location in
any remotely located CN on RACEway; a
DMA controller for performing rapid
transfers between local DRAM and any other
remote CN, I/O, or bridge node on
RACEway; processor-support functions such
as timers; and finally, interfacing logic for
effecting RACEway transfers.

Clearly, there is a unique CN for each processor
type. However, every CN ASIC, regardless of
type, has the same interface to RACEway.
Currently, RACE CNs are available for the i860,
SHARC, and PowerPC.

Fig. 4 describes the architecture of the CNs for
the SHARC and PowerPC. The SHARC CN
consists of one to three SHARC CPUs sharing a
common RACEway interface and DRAM.
Multiple SHARC CPUs are connected together
on a common internal bus. In contrast, the CN
for the PowerPC consists of only a single CPU,
together with a DRAM and CN RACEway
Interface.

Each CPU in a multi-CPU CN functions as an
autonomous CE that executes independently of
any other CE. Therefore, each CE operates under
control of its own copy of Mercury's MC/OS

Triple SHARC Compute Node

SHARC
CPU
(CE)

SHARC
CPU
(CE)

SHARC Bus.

Node
DRAM
8-64 MB

SHARC
CPU
(CE)

PowerPC Compute Node

•32

SHARC
—|CN

ASIC

T

PowerPC
CPU
(CE)

-32

Node
DRAM
8-64 MB

SHARC
CN
ASIC

F
To: RACEway

Crossbar Port
To: RACEway

Crossbar Port

Fig. 4. SHARC and PowerPC Compute Notes

runtime environment. Thus, the SHARC CN
consists of three independently executing CEs
that happen to share a common DRAM and
RACEway interface.

In contrast, the PowerPC CN consists of only a
single CE, making the distinction between a CE
and CN somewhat moot in that case. In
summary, a CN is defined as a computational
node that attaches to RACEway, whereas a CE is
defined as an independent processing element. In
the case of multiple CEs that are connected to a
common node, as in the case of a multiple
SHARC node, each CE operates under control of
its own copy of the operating system and does
not necessarily have to execute the same
application code as the other CEs at that node.

64

3.0 Mercury's Multicomputing
Software

The basic software components of the Mercury
RACE multicomputer are:

• The MC/OS runtime environment
• The Scientific Algorithm Library (SAL)
• Cross-compilers and cross-assemblers for

each supported processor type

A different version of each of these software
components is required for each supported CE
type; however, the APIs to these components are
identical across all CE-specific versions. This
makes the user's application code nearly
independent of processor type. However, to get
optimal performance on a given processor, the
user should be aware of each processor's features
and limitations, and tailor the code accordingly.
In most cases, execution of the user's application
code on any given processor will be optimized by
using the SAL functions wherever possible. All
functions in the SAL library have been assembly
language coded individually for each processor, to
provide optimal performance on that processor.

A separate copy of MC/OS executes in each CE
of the multicomputer. These copies are
functionally identical; however, as was
mentioned earlier, a different version is used for
each processor type.

MC/OS consists of the following three principal
components.

• MCexec
A standard, uniprocessor multitasking real-
time OS that handles task scheduling, timers,
and interrupt servicing.

• ICS
A component that handles all interprocess
communications. It allocates and manages
shared-memory buffers in both local and
remote CNs, does address mapping of remote
nodes, and manages all data transfers between
local and remote shared-memory buffers using
either the local CE's DMA controller or
programmed I/O, as appropriate.

• HAL
This is the processor-specific code that forms
the interface between MCexec, ICS and the
given processor's DMA controller, timer,
interrupt control and other internal registers.

MCexec and ICS both operate on top of the
HAL. While the HAL code varies from processor
to processor, the implementations of MCexec
and ICS are largely processor-independent.
Therefore, although a new version of HAL must
be supplied for each new processor type
implemented in the RACE multicomputer,
existing versions of both MCexec and ICS are
largely portable between different types of
processors. Fig. 5 illustrates how the different
components of MC/OS relate to each other and
to the hardware of the host processor.

Composition of Mercury's MC/OS Runtime Environment

Interprocessor Communication System
(ICS)

'DX' Data Transfer
Facility

POSIX
API

MCexec

Loadable
Device Drivers

HARDWARE ABSTRACTION LAYER "
CN ASIC Registers:
Timers, interrupts,
Remote Node Mapping,

DMA
Controller

CPU
Registers

Fig. 5. MC/OS Organization

The basic size of MC/OS varies between 550 and
700 KBs, depending on the CE type. Additional
memory is also required at each CE for the
Configuration Data Base (CDB) and any
temporary buffers that may be dynamically
allocated by MC/OS. The CDB is a table in each
CE's DRAM that contains the crossbar routing
information from that CE to every other CE in
the system; clearly, the size of the CDB increases
in proportion to the number of nodes in the
multicomputer. The total memory consumed by
each copy of MC/OS and its associated tables is
approximatley 700 KBs to 1.2 MBs, depending
on the CE type and size (i.e., number of CEs) in
the multicomputer. The copy of MC/OS and its
associated tables for a given CE is stored in that
CE's local-node DRAM memory. Recall that in
the case of CNs that consist of multiple CEs, a
separate copy of MC/OS is stored in the
common CN DRAM, for each CE.

65

4.0 Heterogeneous Computing
with SHARC and PowerPC CEs

A currently popular multicomputer configuration
is one based on a mixture of the SHARC 21060
and PowerPC 603p processing chips.
Architecturally, these are two very different
processors. The PowerPC is a RISC chip, and
the SHARC is a DSP chip. The principal
functional differences between these two chips
are:

• type of fast, on-chip memory used
• processor clock speed

The 200 MHz PowerPC uses a 16 KB write-back
cache having a bandwidth of 800 MB/s, while the
SHARC uses a 512 KB on-chip SRAM having
an effective bandwidth of up to 480 MB/s. With
regard to clock speed, the PowerPC 603p
operates at a clock speed of 200 MHz, while the
SHARC operates at a clock speed of only 40
MHz. In addition, the SHARCs architecture has
been optimized for the computation of FFTs,
with the ability to execute the following three
instructions, in parallel, in one clock cycle:

• (a+b)
• (a-b)
• c*d

However, the 5:1 clock-speed ratio between the
PowerPC and the SHARC does not necessarily
mean that the PowerPC has five times the
throughput of the SHARC. For some DSP
operations, such as large FFTs, the SHARC can
execute up to twice as fast as the PowerPC,
despite its considerably lower clock speed.

Furthermore, the choice of "best" processor for a
given application depends not only on the
specific algorithm to be implemented, but also
on power and space contraints imposed by the
application. The latter is an especially important
issue in embedded systems. For these and other
reasons, a heterogeneous multicomputer
comprised of both SHARCs and PowerPCs, is
often the optimal (in terms of size and cost)
solution for many applications.

4.1 Processing Attributes of the
PowerPC

Specifically, the PowerPC is best suited for
executing algorithms that have a high ratio of
computation-to-DRAM memory accesses, (>10
operations per floating point data access), such as
transcendental functions, matrix inversion, and

FFTs etc., with the exception of large-size FFTs.
The PowerPC is also the processor of choice for
scalar processing applications written in C and
for performing double-precision arithmetic.

The reason is that the PowerPC can execute a
floating-point instruction between 1.3 and 3.0
clock cycles, resulting in throughputs of between
67 and 167 MFLOPS, provided that all operands
and results were previously cached. Even higher
throughputs are possible for compound
operations in which the intermediate results can
be retained in the CPU's internal registers rather
than being written to and then read back from
cache between successive operations. Indeed, the
C compiler for the PowerPC takes maximum
advantage of the CPU's internal registers to
produce highly efficient code. In general,
however, the principal limitation on the
PowerPC's floating-point execution speed is the
single-precision cache bandwidth of 800 MB/s
(200 M combined single-precision floating-point
operand and result cache accesses per second).

Eventually, however, new data must be accessed
from, and the corresponding results written back
to, DRAM. When this occurs things can slow
down dramatically. For sake of argument, assume
a 160 MB/s DRAM. Because of the operation of
the write-back cache, the effective DRAM access
rate of the PowerPC is reduced from 160 MB/s to
between 50 and 80 MB/s — more than an order
of magnitude less than the cache bandwidth of
800 MB/s. As a result, operations characterized
by a low ratio of computation-to-DRAM
accesses (< 10 operations/floating-point operand
accessed) become I/O-bound by the above-cited
DRAM-cache access limit. This causes the
effective throughput to decrease dramatically. For
example, in the case of three-access floating-
point operations, (i.e. those that produce a single
result from a pair of operands), the
aforementioned DRAM/cache access bandwidth
constraint can reduce the sustainable throughput
to a value as low as 4 MFLOPS.

However, computationally intensive operations
such as those cited earlier, tend to be compute-
bound, and are thus less effected by the decrease
in DRAM data access bandwidth associated with
the operation of the write-back cache.

As mentioned earlier, an exception to the above
occurs for complex FFTs (in-place) longer than
1024 points (512 points for out-of-place FFTs).
Although the ratio of computation-to-data
accesses for FFTs increases with FFT size, the
limited size (i.e., 16 KB) of the PowerPC cache

66

now places a new limit on performance. A
complex input data stream longer than 1024
elements (8 KBs), together with the required FFT
weights, will not fit into a 16 KB cache. Thus,
complex FFTs of length 2048 or greater must be
decomposed into a 2-D array whose maximum
row length is less than or equal to 1024. Each
row of this array is then accessed, its FFT
computed, and the transformed rows written back
to DRAM. The resulting columns of this 2-D
array are then accessed from DRAM, multiplied
by a complex "twiddle factor" vector, and the
corresponding column FFTs are computed.
Although this process is handled automatically
by the SAL and is transparent to the user, the
DRAM accesses associated with this 2-D FFT
decomposition process slow down FFT
throughput significantly.

In summary, the PowerPC is best suited for
computation of the following types of
algorithms:

• Algorithms (with the exception of large
FFTs) that have a ratio of computation to
data accessed in excess of 10 floating-point
operations per data item accessed
from/written to DRAM.

• C-coded scalar processing algorithms.

• Algorithms or procedures whose
implementation requires more than 50 KBs
of code.

• Computations requiring double-precision
arithmetic.

In contrast, the PowerPC is poorly suited for
processing long vectors (including large FFTs)
whose length is such that the combination of all
vector operands and results exceeds the size of the
16 KB cache.

4.2 Processing Attributes of the
SHARC

The SHARC is ideally suited for processing of
vectors of any length, including FFTs of all
sizes. Indeed, the SHARC has been customized
for efficient computation of FFTs, as it can
perform the following two additions and a
multiply (i.e., three operations) in one clock
cycle:

• (a+b)
. (a-b)
• c*d

This gives the SHARC a throughput rate for
FFTs of nearly 120 MFLOPS. In general, the
throughput limits for the SHARC are as follows:

• 120 MFLOPS for FFTs
• 80 MFLOPS for multiply-accumulate

operations (e.g. dot products)
• 40 MFLOPS for most other floating-point

operations

To realize the above rates, all operands and
results must be accessed from/written to the
SHARC's 512 KB SRAM. This on-chip SRAM
effectively plays the role of a cache. However,
unlike the PowerPC, the operation of the
SHARC rarely becomes I/O-limited.

The SHARC's 512 KB SRAM is divided into
two independent banks of 256 KBs each.
Furthermore, each of these two banks is dual-
ported; each bank having both a processor and an
I/O port. These dual ports enable either SRAM
bank to be simultaneously accessed by both the
processor and external DRAM memory at
combined access rates of up to 320 MB/s (i.e.
160 MB/s through each of the two ports). In
addition, the SHARC CPU also has two
independent buses that are connected to both
SRAM banks through a multiplexor, enabling
the CPU to make separate data accesses to both
memory banks simultaneously, at rates of 160
MB/s from each bank.

In summary, the SHARC has three internal data
buses that can each simultaneously make
accesses to this SRAM, two CPU buses and an
external I/O bus to DRAM. Simultaneous
accesses can be made to either of the two SRAM
banks by the external I/O bus and one of the two
CPU buses. Simultaneously, the other CPU bus
can also access data from the other SRAM bank.
Each of these three buses has a bandwidth of
160 MB/s. Therefore, data can be transferred
between external DRAM and the on-chip SRAM
at 160 MB/s, while the CPU is simultaneously
accessing (read and/or write) data from/to SRAM
over its two internal buses at an aggregate rate of
320 MB/s.

The bottom line is that on the SHARC, data can
always be moved between DRAM and SRAM at
rates of up to 160 MB/s without impacting
CPU activity. As a result, the SHARC has a
better balance of processing and I/O throughput
for operations that are characterized by a low ratio
of processing to data accesses (i.e., less than 10
floating-point operations per DRAM data access).
On the PowerPC, the processor throughput for

67

such operations becomes throttled to rates of
between 4 and 10 MFLOPS by the effective
cache-DRAM access bandwidth limit of 50 to 80
MB/s. However, on the SHARC, because of the
greater DRAM access bandwidth available, such
operations can potentially execute two to three
times faster than on the PowerPC, despite the
SHARC's slower clock speed.

In summary, the SHARC is best suited for the
following types of applications.

• Computation of FFTs of any length.
Effective throughput rates in excess of
100 MFLOPS can be sustained for all FFT
sizes. Complex FFTs larger than 4K must
be decomposed into a 2-D array and the
intermediate results written back to DRAM,
as described previously for the PowerPC.
However, in the case of the SHARC, much
of the requisite I/O between SRAM and
DRAM can be overlapped with ongoing
computation so that the associated
computations never become I/O-bound.

• Processing of long vectors. Because I/O and
computation can be overlapped on the
SHARC, long vectors can be strip-mined
without incurring a performance penalty.

• Executing algorithms that are characterized
by a low ratio of computation-to-memory
accesses.

• Applications in which there is a premium on
physical density (MFLOP/volume,
MFLOP/watt).

The above attributes make the SHARC ideal for
repetitive, FFT-intensive, embedded signal
processing applications such radar, sonar,
communications and medical imaging.

In contrast, the SHARC is poorly suited for
execution of user application programs whose
executable code occupies more than 50 KBs of
memory, involve the use of double-precision
arithmetic, and/or programs that make frequent
use of MC/OS services. The reason is that the
SHARC can execute only code located in SRAM
and does not have double-precision hardware.
However, only about 50 KBs of the 512 KBs in
SRAM are allocated to the storage of user code.
The remainder is allocated to segments of
MC/OS and data. A map of SRAM memory
allocations for a Mercury SHARC CN is
illustrated in Fig. 6.

SHARC On-chip SRAM (512 KB)

BankO
(0-256 KB)

MCexec kernel
(52,960 bytes)

User Executable Code
(Wired and Overlay)

(49,152 bytes)

Allocable Data Memory
(28,960 bytes)

Unusable Area*
(3808 bytes) jj

Allocable Data Memory
(127,264 bytes)

Bankl
(256-512 KB)

MG/OS Overlay Area
(24,576 bytes)

Allocable Data Memory
(16,384 bytes)
Unusable Area
(8192 bytes)

User Stack
(32,768 bytes (default))

Allocable Data Memory
(179,774 bytes)

Fig. 6. SHARC SRAM Allocations

Note that not even all of MC/OS can fit into
SRAM! Consequently, only the MCexec kernel
is loaded into SRAM. All other MC/OS
services, such as the ICS routines, are loaded into
SRAM as overlays on an as-needed basis.
Similarly, only 50 KBs of SRAM are allocated
to storage of the user's application code. User
programs consisting of more than 50 KB of code
must be broken up into multiple overlay
segments, each smaller than 50 KBs, that can be
subsequently loaded, as needed, from DRAM into
the allocated 50 KBs segment of SRAM.

Although this overlay mechanism does allow
user code that extends over more than 50 KBs to
be run on the SHARC, each overlay takes up to
333 usec to complete, during which time the
CPU is idled. Although this amount of overhead
may be tolerable in certain applications, it
usually is unacceptable in most high-performance
real-time signal processing applications.
Consequently, execution of application programs
that contain more than 50 KBs should generally
be avoided unless it is determined that the
overhead associated with bringing in each new
overlay can be tolerated. Similarly, the execution
of software such as I/O drivers, that may cause
MC/OS overlays to be invoked, should also be
avoided on the SHARC.

Another potential limitation of the SHARC
relative to the PowerPC is that the SHARC is
somewhat more difficult to program than the
PowerPC. This is primarily so for two reasons.

First, in order to get maximum performance from
the SHARC, the user should write the code in
terms of calls to Mercury's SAL functions to the
greatest degree possible. Use of SAL functions is

68

much more efficient than executing compiled C
code on the SHARC.

Second, unlike the case of cache, the user must
explicitly manage all data transfers between
DRAM and SRAM, as well as being aware of
which SRAM memory banks his data is stored
in. For optimum performance, the results of an
operation (i.e., a SAL call) should generally be
stored in the opposite SRAM memory bank from
the operands. Furthermore, the user should also
arrange all data transfers between SRAM and
DRAM so they are performed concurrently with
program execution, using either the on-chip or
the external DMA controller. Generally, the on-
chip DMA controller should be used to write data
from SRAM to DRAM, while the external (on
the CN ASIC) DMA controller is used to write
data from DRAM to SRAM. Mercury supplies a
set of data transfer routines for the SHARC,
called the Multi-buffering Facility, that largely
automates this process and makes use of these
two DMA controllers transparent to the user.
However, the user is still responsible for
assigning the data buffers to the proper SRAM
memory banks and for making sure that the
SRAM-DRAM I/O operations are overlapped
with program execution as much as possible.
Failure to do so will result in sub-optimal
performance.

5.0 A Sample Heterogeneous
Processing Application

The processor topology of a multicomputer 1
typical dataflow processing application
illustrated in Fig. 7.

for a
is

The processing operations to be performed are
first partitioned into a number of sequential sub-
process processing stages. At each stage, the data
to be processed is subdivided into segments that
are distributed over a corresponding number of
processors, each of which executes the same sub-
process independently and in parallel, on its
associated data segment.

A processing stage is defined as a sequence of
processing steps that can be performed in parallel
on different segments of data, without requiring
communication with any other processors at that
stage. A new processing stage is defined
whenever the nature of the data segments to be
processed changes. Therefore, a redistribution of
data always occurs between any two adjacent
processing stages. The number of stages into
which a given process is partitioned is a function
of the application.

A 2-D FFT is a simple example of a simple two-
stage processing application. The data to be
processed by a 2-D FFT may be considered to be
a 2-D array, or matrix. The first processing stage
consists of performing the row FFTs, in which
the rows of the matrix are distributed over the
processors assigned to that stage. The
transformed row output(s) of each processor in
this first stage, are then redistributed among the
processors in the second stage so that each
second-stage processor receives an integer number
of matrix columns. The second-stage processors
then perform the requisite column FFTs to
complete the computation of the 2-D FFT.

In the multicomputer dataflow model of Fig. 7,

Processing Stage 1
(P-l processors)

Processing Stage 2
(P2 processors)

Processing Stage M
(PM processors)

Data»
Inpuf

Interface
Control

Prorassoi

Proc1.1 Proc2.1

Input] h. Proc 1 3 »jRe-distributd ^- Proc 2-3 _^JHe-distnbuti
Interface) II Data J\ | V Data „

Proc M.1

Proc M.2

Proc 1 .P 'roc 2.P2

Proc M.3

Proc M.Pi W

Fig. 7. Multicomputer Processor Topology for an M-Stage Dataflow Application

69

all processors used within a given stage would be
the same type. This makes sense because all
processors used at a given stage execute the same
algorithm in parallel, albeit on different data.
However, the processor type used at a given stage
may vary from one stage to the next, depending
upon the nature of the algorithm being
implemented at each stage.

The general rules for choosing the optimum
processor for a given processing stage, as a
function of the algorithm being implemented to
maximize throughput, were described in the
preceding section. In general, FFT-intensive
processing algorithms and those algorithms
characterized by a low ratio of processing-to-data
accesses are more efficiently implemented using
the SHARC processor. In contrast, algorithms
that are highly computationally intensive -i.e.,
those characterized by a high ratio of
computation to data accesses — such as those
involving transcendental functions, iterative
procedures, or complex multi-point interpolation
— are usually more efficiently implemented
using the PowerPC. The PowerPC would also be
the processor of choice for algorithms or
processes whose implementation entails more
than 50 KBs of code, or that require extensive
interaction with the operating system. Typical
applications include I/O drivers, system-name
servers, system control programs, etc.

6.0 Conclusion

The rationale for a heterogeneous multicomputer
has been described. A specific example of such a
system, a Mercury RACE multicomputer
composed of SHARC and PowerPC processors,
has been presented. It was shown that each of
these processors is ideally suited for different
types of algorithms.

Briefly, the SHARC is optimized for execution
of vector-oriented signal processing algorithms,
especially those involving FFTs. One of the
principal limitations of the SHARC is that in
order to realize maximum processing throughput,
the compiled code to be executed should not
exceed 50 KBs in length. Observance of this
constraint avoids the need for code overlays. In
addition, to obtain peak performance from the
SHARC, the user's code should make use of
Mercury's SAL routines wherever possible.

In contrast, the PowerPC is generally superior
for execution of algorithms or processes that are
characterized by a high ratio of computation to
data accesses, such as those involving

transcendental functions, iterative procedures or
complex multi-point interpolation. The
PowerPC would also be the processor of choice
for algorithms or processes whose executable
code is more than 50 KBs in length, that involve
double-precision arithmetic, or those that require
extensive interaction with the operating system.

A typical multicomputing application generally
consists of a sequence of different types of
algorithms, the execution of each of which may
be optimized by one or the other of the above
two processor types. When each algorithm is
implemented on its corresponding optimal
processor type, the result is a heterogeneous
multicomputer.

The above preferences are only general guidelines
that assume maximum performance per processor
is the only parameter to be optimized. However,
in a practical, real-world application, other factors

such as processor density (i.e. MFLOP/m^
and/or MFLOP/watt) and ease of programming
may be of equal or greater importance than just
minimizing the total number of processors. In
this regard, the SHARC usually offers the
highest processing density, while the PowerPC
is easier to program.

In summary, although processor heterogeneity
provides a means of optimizing a multicomputer
configuration for a given application, there are
usually a number of different optimization
criteria that should be considered such as:

• Minimization of processor count
• Minimization of total system hardware cost
• Maximization of processor density

(especially in embedded systems)
• Minimization of software development costs

(i.e. ease of programming)

In general, each of the above objectives, taken
alone, results in a different optimal
heterogeneous solution. Every situation is
different, and it is up to the user to make trade-
offs between the various optimization criteria
listed above that are appropriate to a specific
situation.

References
[1] "The RACE Multicomputer" Vol. 1, Hardware
Theory of Operation - Processors, I/O Interfaces,
and the RACEway Interconnect,
Mercury Computer Systems, Inc., 1995.
[2] Einstein, Tom, "RACEway Interlink - A Real-
Time Multicomputing Interconnect Fabric for High-
Performance VMEbus Systems," VMEbus Systems
magazine, February, 1996.

70

Dr. Thomas Einstein is a consulting systems
engineer at Mercury Computer Systems, Inc.,
where he serves as a technical consultant on radar
and other defense signal processing applications
of Mercury's high-performance multicomputers.

Prior to joining Mercury in 1993, Dr. Einstein
was a systems engineer at Atlantic Aerospace
Electronics Corporation, where he served as the
chief systems engineer on the company's
milimeter wave radar program. Previously, he
was a staff member at MIT Lincoln Laboratory
for 24 years where he was involved in the
development of a number of ground-based and
airborne radar systems. He began his career in
defense electronics while serving in the U.S.
Navy as a shipboard electronics officer on the
destroyer USS Borie, DD-704.

Dr. Einstein holds a ScD in mechanical
engineering from MIT, a MS in instrumentation
engineering from the Case Institute of
Technology, and a BS in mechanical engineering
from the University of New Hampshire.

71

Session 2

Mapping and Scheduling Systems

Session Chair

John Antonio
Texas Tech University, Lubbock, TX, USA

A Scheduling Expert Advisor for Heterogeneous Environments

Mihai G.Sirbu and Dan C. Marinescu
Computer Sciences Department

Purdue University, West Lafayette, IN 47906, USA
{sirbu, dem}@cs.purdue.edu

Abstract

In this paper we discuss intelligent agent support for
parallel and distributed computing in a heterogeneous
environment. We provide an overview of the Bond environ-
ment and of services provided by a network on intelligent
agents, then we discuss in depth the Scheduling Expert
Advisor, SEA. The SEA processes a high level description
of a computational task provided by a user and converts it
into a set of facts and rules. An expert system starts the
execution of one program or a group of programs based on
the scheduling information compiled earlier.

Intelligent agent support for heterogeneous
parallel and distributed computing

While intelligent agents [5, 6, 7] are used extensively
for information retrieval and data mining, there are virtu-
ally no reports of their application in the area of parallel
and distributed computing. In this paper we discuss an
environment for parallel and distributed computing and
present one of it major components, the Scheduling Expert
Advisor. A feature distinguishing the Bond environment
from other efforts in this area is the extensive use of
knowledge processing. It seems natural that in a distrib-
uted environment based upon the client-server paradigm,
at least some of the services be provided by intelligent
agents.

The task of accommodating heterogeneity poses chal-
lenges difficult to carry out by less sophisticated means
then knowledge processing. Take for example data and
program migration, one of the activities needed in such an
environment. Data migration can be accomplished by a
script including commands to tar, compress, ftp,
rlogin, etc. But each of the steps mentioned above may
fail and a script able to handle such errors is likely to be
very complex. When one adds the requirement to move
data among systems with different operating systems e.g.

Unix and NT, this solution becomes impractical. For
example, the task of finding if enough space is available on
the target system, one of the low level actions performed
during data and program migration is considerably easier
to implement as a set of facts and rules than as a script.

The intelligent agents in the Bond environment are
specialized expert systems acting as servers able to per-
form tasks like program migration, data migration, sched-
uling, mapping, exporting objects, and so on. At the heart
of the Bond systems are resource databases, which provide
information about all the objects available to individual
members of a group. Programs, data, and hardware objects
are shared or used exclusively by the members of the
group. The information about the services available in the
system is provided by a name server, the oracle, running at
a known port. All services including those provided by
intelligent agents register themselves with the oracle.

The Scheduling Expert Advisor works in a network of
expert advisors to accomplish its task. The Mapping
Expert Advisor selects a target system, the Data Replica-
tion and the Program Migration Expert Advisors make the
programs and data objects needed for the computation
available at the target system.

To exploit the benefits of knowledge processing we
had to provide effective mechanism for the intelligent
agents to collaborate with one another, and to adapt their
behavior according to the feedback provided by the envi-
ronment as a result of their action. The major contributions
of this paper are such mechanisms. In the Bond environ-
ment, the facts and the rules used by an inference engine
are modified dynamically as a result of user interactions,
actions of other intelligent agents as well as feedback from
the environment.

The Scheduling Expert Advisor, SEA, is developed in
Clips [1-3]. Additional functions for socket communica-
tion are written in C. SEA interacts with clients through
TCP sockets using ASCII strings. We consider using a
KQML [4, 11] interface for the expert advisors. Clients
and test programs are written in Tk [12] and Expect [10].

0-8186-7879-8/97 $10.00 © 1997 IEEE
74

Rule-based expert systems

This section gives artificial intelligence background
and provides some insight into the operation of expert sys-
tems. An expert system starts with information about an
abstract universe model and then infers additional knowl-
edge [9]. The new knowledge can be stored in the form of
both facts and rules. The following discussion follows
loosely the CLIPS language [1-3, 8], but the presented
concepts are valid for any rule-based system. In an expert
system, information is stored as facts (individual items)
and rules (algorithmic knowledge). A fact stores knowl-
edge about the problem universe, and is represented as an
n-tuple (« > 1), in which the first element is a fact identi-
fier and the other optional elements are fact arguments. A
rule represents procedural information, and is a construct
of the type:
IF (antecedent) THEN (consequent)

Alternative component names are Left Hand Side,
LHS, for the antecedent, and Right Hand Side, RHS, for
the consequent. If all the terms of the antecedent are true,
the rule is activated. The system triggers one of the acti-
vated rules, and evaluates the expressions of the RHS in
sequential order.

Figure 1 illustrates the block architecture of a rule-
based expert system. The facts are stored in the working
memory and the rules are stored in the production memory.
The Inference Engine (IE) runs a three-step infinite cycle
of matching, selecting and execution. The first step
matches the available facts against all rules. This is done
by special algorithms to improve efficiency and avoid
combinatorial complexity. The activated rules are placed
on a list called the system's agenda. Next, the IE sorts the
agenda and selects the top rule for execution. The sorting
criteria is central to the operation of the expert system. In
the third step, the RHS actions of the triggered rule are
executed. As side effects, changes in the working and pro-
duction memory can occur. Usually only facts are
changed, although the mechanism for dynamic rule
changes is present. The original rule is then removed from
the agenda to prevent repeated activation by the same
facts. The IE cycle continues with a new matching step,
and stops if no rule is activated.

The Bond environment

The Bond environment [14] currently under develop-
ment at Purdue University is designed to support concur-
rent execution of parallel and/or sequential programs on
computing platforms with different architecture and sys-
tem software, interconnected by a high speed network. We
consider a model of parallel and distributed computing
which allows an individual working in a group to provide a

I 1
Working memory

(facts)
Production memory \
(rules, implications)J

Inference engine

1 [> Match

*
(Agenda j

V
Select

J
Execute

1

Figure 1: Architecture of a Rule-based Expert
System

high level description of the problem to be solved and let
an intelligent environment determine a sequence of actions
optimal in some sense leading to the desired result. To
accomplish this goal the environment has several inference
engines and maintains a set of resource databases contain-
ing the description of the computing platforms and net-
works, information about the programs, the services, and
the data available to the group, and to each individual
within the group.

Bond is a groupware system which supports batch as
well as interactive execution. It is designed to run on top of
different operating systems, makes no assumptions con-
cerning the communication libraries used by the parallel
programs, and supports the management of hardware and
software objects. It consists of a kernel, resource data-
bases, remote services including Expert Advisors, and a
user interface. The user interface provides access to a set
of computing engines interconnected by a high speed net-
work. The environment allows a user to provide a high
level description of the problem to be solved, including
execution and data dependencies. The Scheduling Expert
Advisor converts this description into a set of complex
tasks and returns a task schedule to the kernel. The Bond

75

kernel uses other agents e.g. Program and Data Replica-
tion Advisors, the Mapping Expert Advisor, etc. to execute
simple tasks. Each simple task implies running a program
with a particular data set on a target system under the
supervision of a Bond process. This supervisory process
informs the environment about the outcome of the execu-
tion and allows the Scheduling Advisor to proceed with
the scheduling of the next task or to attempt an error
recovery procedure.

When activated, Bond creates a user environment,
reflecting information from shared and private resource
databases. The services and the Expert Advisors invoked
in behalf of a user share the same view of the environment.
The set of services and Expert Advisors are distributed and
they can be accessed via an oracle. The system is open-
ended, as new services are added they are registered with
the oracle. Some of the services are replicated and the ora-
cle directs a request for service to the server capable of
providing the service in an optimal way.

Other Expert Advisors use facts stored in shared
knowledge bases to determine if similar tasks have been
carried out previously, and based upon the size of the cur-
rent problem suggest alternative ways to carry out the
computations, provide estimates of the execution time on
different configurations. The Data Replication Advisor
determines if the data needed for the computation is avail-
able at the execution site and performs a variety of opera-

tions related to data staging. For example it determines if
enough storage space is available at the execution site,
then establishes if data conversion is necessary, if so
decides where it should take place, compresses and even-
tually encrypts the data and finally makes a copy of the
data at the execution site. The Program Movement Advi-
sor provides similar functionality for program staging.
When the remote execution completes, the EA extracts the
relevant facts and stores them into shared knowledge
bases.

Overview of the scheduling expert advisor

This paper shows the use of an expert advisor for the
scheduling of complex program execution sequences. The
data and execution dependencies of the component pro-
grams are encoded in a set of facts and rules which control
the expert system. Rule activation models the scheduling
of programs which have all their dependencies satisfied.
The process is simple and has significant advantages over
the static approach using scripts.

The Scheduling Expert Advisor, SEA, is a layer posi-
tioned between the problem description provided by the
user and the Bond execution environment, as shown in
Figure 2. The SEA processes the High Level Description,

HLD

Scheduling Expert A dvisor

scheduling
requests
 £> Control

Information
Bond Execution

Environment
-O Preprocessor 1> <H

execution
results

i

i

■
i

■

 4L.
Expert

Control
i T
i

Figure 2: The Scheduling2 Expert Advisor processes a high level description of the problem and con-
verts it into Scheduling Control Information (facts and rules). Then it sends scheduling
requests to the environment.

HLD, and generates a knowledge-based representation of
the problem. Next, the SEA submits program scheduling
requests to the Bond execution environment. The exit sta-
tus of the executed programs is returned to the SEA, which
updates its internal state. Successful executions validate
conditions for the other programs, which are then sched-
uled. The user can program actions to be taken in case of

program failure, for example start an expert advisor spe-
cific for error recovery or take direct control of the execu-
tion.

The High Level Description, is processed by the SEA
and converted into a set of rules and facts called Scheduler
Control Information, SCI. The process is similar to com-
piling a source program into intermediate code. The SCI is

76

in fact an independent expert system which automatically
schedules programs in the Bond environment according to
the input HLD. The design principle follows the inference
engine algorithm described in Section . In a rule-based
expert system, the antecedents of each rule are matched
with all the available facts. If all the conditions of a rule
are satisfied, the rule is activated. One active rule is exe-
cuted based on the selection mechanism. The scheduling
of a program in a complex processing follows the same
principle. Some conditions have to be satisfied before the
program can be started. The most common conditions are
data and execution dependencies. Data dependencies
appear when a previous program has to terminate success-

Scheduling Expert Advisor

Control Information

Rules

 1~
Facts

A

scheduling
information blocks

Communication
Monitor

fully to provide input data for the next step. An example of
execution dependency arises when the programs in a
group have to be co-scheduled to exchange intermediate
results. A group is scheduled only when all the component
programs are ready for execution. The basic idea behind
the Scheduling Expert Advisor is to associate rules with
the scheduling of programs, and antecedent conditions
with execution and data dependencies. When all the
dependencies are satisfied, the rule is activated and the
program is scheduled.

An important difference between the SEA and an
usual expert system is the asynchronous nature of the SEA
program scheduling, presented in Figure 3. The schedul-

Mapping

Expert Advisor

asynchronous

execution results

Figure 3: Asynchronous Communication with the SEA. The SEA sends requests to the MEA which in
turn generates mappings. The Bond execution environment responds when a mapped activ-
ity completes. The MEA informs the SEA that the request was satisfied. The result is entered
as a new fact of the SCI.

ing information is sent to the execution environment, but it
is unknown how long the execution will take. Some pro-
grams might take hours or even days to complete. As such,
scheduling of a program is a complete rule by itself. While
an expert system normally runs only one active rule at a
time, the SEA can schedule all ready programs at the same
time, providing an added superconcurency bonus. The
downside is that a connection has to be open to receive
asynchronous return codes when an individual program
terminates. The return codes are converted into facts
which are placed in the working memory, activating in
turn processing rules.

When a program is scheduled by the SEA, the neces-
sary information is passed to the Mapping Expert Advisor,
MEA, which selects an execution target, starts the pro-
gram in the control environment, and monitors its execu-

tion. The completion code, OK/Error, is reported to the
SEA. Only after a successful completion of a program its
output files are available as input for other programs. The
process continues until all available programs are exe-
cuted. In case of a program failure additional information
can be reported to the SEA for diagnostic and recovery
purposes.

The SEA is loosely coupled with the user interface
and with the Bond Execution Environment, BEE. Any
interface able to generate the HLD of a problem workflow
is acceptable. On the BEE side, SEA generates scheduling
information blocks used by the Mapping Expert Advisor.
Any program able to parse such a block can be used for
scheduling execution, if it returns valid completion infor-
mation.

77

Task execution specification

A graphical interface allows the user to specify the
workflow of a given problem. The sequence of programs,
with associated input and output files is described. Parallel
execution of program groups are specified. Links are
established between output and input files of various pro-
grams. The GUI translates this description into an interme-
diate representation which is parsed by the Scheduling

Expert Advisor. We have named the graphical presentation
of the workflow High Level Description, or HLD. This
description is similar to different module interconnection
languages [13].

The central HLD concept is the Execution Block, or
Block for short. There are basic execution blocks and com-
posite ones.The basic execution block is an executable
program and its internal structure is presented in Figure 4.

Input Data

Filel

Input Data

File n

Program Name

Output Data
Filel

Control

Input File

Command Line Arguments

Supervisor

Output Data
Filem

Execution Report

Verify Filterj -O Yes/No Verify Filterk -!> Yes/No

Figure 4: A basic execution block and its internal structure

Each basic block may have 0 to n Input Files. The Control
Input File guides execution with specific options, so it is
processed separately from the other input files. Command
line arguments for the program are provided, although in
most cases the information is in the control input file. The
user can select a Target System for the program execution,
or this decision can be left to the Mapping EA. A Supervi-
sor program monitors the execution of the program, and
determines if the execution was successful or not. The
supervisor returns the Execution Report to the MEA. The
program generates a number of Output Data Files, and the
output results are validated by Verify Filters (VFrVFk).
The VFs are started by the supervisor in case of successful
execution, and report if the output complies with their

requirements or not. The verify filters are similar to asser-
tions in various programming languages.

Composite execution blocks are created by recursive
application of composition rules on basic blocks. The list
of control composition rules contains: (1) block sequence,
(2) loop, (3) forced alternative, (4) computed alternative,
and (5) group with parallel execution of component
blocks. In a block sequence, individual blocks are executed
only after the previous block in the sequence has success-
fully terminated. It is similar to sequential execution of the
statements in a programming language. The loops are
composed of an execution block and a decision program,
as shown in Figure 5. The structures are similar to tradi-
tional programming language. The role of a logical

78

Execution
Block

False

—O

V
Execution

Block

False / Decision
Program

True

a) Initial Test Loop: While-Do

Figure 5: HLD Loop Structures

expression is taken by a Decision Program, which controls
the execution flow. A. forced alternative arises when there
are a number of equivalent programs that have the same
processing effect, and the user manually selects one before
execution. The computed alternative involves a Decision
Program which selects one of the available paths in the
description. A parallel group contains programs that must
be scheduled at the same time due to communication
dependencies.

By combining multiple blocks we can use combina-
tion techniques to group any number of subblocks into a
higher level block. Usually each program has a number of
additional elements associated with it, such as names of
input and output files.

The scheduling expert advisor

The Scheduling Expert Advisor has the following
functions:

• Parse a new HLD and convert it into rules and facts
(pre-processing).

• Determine the programs available for execution at
any time.

• Schedule the program that can be run in the current
step. A scheduling request is passed to the Mapping
Expert Advisor for each individual program or
group of programs.

• Run in asynchronous or synchronous mode. In the
first case each program is scheduled when all the
conditions are fulfilled. In the second case all pro-
grams available for execution in one step are co-

b) Final Test Loop: Repeat-Until

scheduled; whenever a program terminates, a new
scheduling cycle is started.

• Report programs that have not been executed and
might never be, due to a possible HLD program-
ming error.

• Clear the working and production memory of the
current HLD, and prepare for a new script.

Generation of the new rules and facts for a HLD and
the scheduling of programs are the most important func-
tions of the SEA.

The program scheduling results from the interaction
of the new generated rules. The state transition diagram of
a generic program is presented in Figure 6. Each arrow in
the transition diagram represents a single rule or a set of
rules in the Scheduler Control Information. The rules are
named after the destination state, for example the rules
leading to the Valid State are called Valid Rules. Most
states are represented by SEA facts, named as in the transi-
tion diagram. Initially, the programs are in the Start State,
when partial dependencies are satisfied. There is no spe-
cific fact associated with a program in the Start State.
When all data dependencies are satisfied, the Ready Rule
executes, and the program enters the Ready State, which is
marked by a corresponding fact. The Ready Rule triggers
asynchronously, whenever all the data dependencies of a
program are satisfied. Each target program has its unique
Ready Rule in the SCI rule base.

Valid Rules control the HLD execution flow. In Run
Mode, a program can be scheduled at any time, so the tran-
sition from the Ready state to the Valid state is immediate
and asynchronous. In Step Mode, the programs can be

79

Start

data dependencies are satisfied

Ready the program is ready for independent execution

i. execution mode is validated (single step or run)

Valid the program can be scheduled in the current
execution step

execution dependencies are satisfied

groups and individual programs are scheduled

handle error condition or fail script

Figure 6: State Transition Diagram of a Program in the Scheduling Expert Advisor

scheduled only at predetermined events (steps). All the
programs holding in the Ready State during the previous
cycle are validated synchronously. Programs entering
Ready State after the validation transition have to wait
there until the next validation cycle. There is a Valid Rule
for the Run Mode, and a Valid Rule for the Step Mode.
These rules are common for all programs. If only the Run
Mode is desired, the Valid Rules and the Valid state are
eliminated from the transition diagram, and the Schedul-
ing Rules respond to the Ready facts and not to the Valid
facts. The execution mode is selected by the initial execu-
tion request and can be changed at any time. The same SCI
rule base is used in all execution modes.

The Scheduling Rules differ for groups of programs
that must be co-scheduled and for individual programs
which are executed alone. An independent program is
scheduled as soon as it enters the Valid state. Groups of
programs are scheduled when all their execution depen-

dencies are satisfied, in most cases when all the programs
in the group are in the Valid state. Each Scheduling Rule
creates a Scheduling Block of information which is passed
to the Mapping Expert Advisor and an internal hook for
the execution result. The Scheduling Rules are triggered
asynchronously. Once a program has executed, the results
are entered as specific Success or Failure facts in the
knowledge base. In case of success, the output files are
marked as valid, and can satisfy data dependencies of
other programs. In case of failure, the SEA tries to recover
from the error or lets the user handle the error.

Example

The preprocessing step of the Scheduling Expert
Advisor converts the text or graphic HLD description into
a set of facts and rules used to control the SEA. In this sec-
tion we present a possible structure of the SCI facts and

80

rules, the structure actually used by the Bond SEA.
The facts represent the status of various input files or

control conditions. The preprocessor determines the set of
Absolute Input Files, AIF, not generated by HLD programs
and used as input for one of the HLD blocks. Bond checks
if AIFs exist in the system. For the available AIF, the pre-
processor adds a "file file-name valid" fact to
the SCI. A fact "file file-name invalid" marks
the missing AIF files.

The following rule types are generated by the prepro-
cessor, as seen in Figure 6: (1) ready rule, (2) program or
group scheduling rule, (3) successful execution rule, and
(4) failed execution rule. In the following examples we
ignore the Valid state which is controlled by shared rules.

The ready rules detect when a program has all the
execution conditions satisfied. For example, program_N
depends only on its input files:
(defrule ready_program_N

(file input_data_file_l valid)

(file input_data_file_k valid)
=>

(assert (ready program_N
input_data_file_l ...
input_data_file_k)

)
)

The step control changes the program state from
Ready to Valid. If the program has no other execution con-
strains, the generated scheduling rule is:

(defrule schedule_program_N
factx <- (valid program_N args)

=>
(retract factx)
(schedulef program_N args)

)
A group of programs (program_A to program_J)

which execute concurrently has a single scheduling rule:
(defrule schedule_group_M

fact_a <- (Valid program_A args_a)

fact_j <- (valid program_J args_j)
=>

(retract fact_a)

(retract fact_j)
(schedulef program_A args_a)

(schedulef program_J args_j)
)

The schedulef function passes the execution
request to the Mapping Expert Advisor, and prepares a
hook to insert the execution results in the working mem-

ory. The generated facts are:
(result program_N OK)
(result program_N error)

The rule for a successful execution validates the out-
put files of the current program:

(defrule success_program_N
factq <- (result program_N OK)

=>
(retract factq)
(validate output_data_file_l)

(validate output_data_file_m)

)
The validation procedure removes a possible invalid

fact for the file name and generates a valid fact for the file
(file file_name valid). The scheduling process
continues with the new facts (valid files), which can trig-
ger execution of the next programs.

The execution failure rule triggers an error recovery
procedure or fails the entire process:

(defrule error_program_N
factq <- (result program_N error)

=>
(... report and process error)
(... revalidate program_N | ignore

j STOP)
)

Conclusions

There are major differences between an execution
controlled by a program or a script and one controlled by
an expert advisor, (a) A program or a script has limited
adaptability properties, it needs to invoke error recovery
routines to handle error conditions. An expert advisor can
provide recovery rules invoked automatically when an
error condition occurs, (b) In an expert system environ-
ment individual operations can be enhanced without
changing the entire system. Rules in an expert system are
loosely coupled. Changes to one rule generator will not
propagate to other generators or control rules, (c) In an
expert advisor, the dependencies can be specified in any
order. A number of conditions must be valid before a pro-
gram can be started. There is no order in which these con-
ditions have to be entered or fulfilled. Programs are
scheduled for execution only when all conditions are satis-
fied. Several unrelated programs that can be executed con-
currently. If dependencies have to be satisfied in a specific
order, we generate a chain of ready rules. The first rule
checks the first dependency and then activates the second
ready rule. The second rule checks the next dependency
and so on, until all conditions have been satisfied, (d)
Scheduler Control Information can be saved to a file and

81

loaded in a separate expert system. This expert system can
work independently to create a specialized Scheduling
Expert Advisor to control execution of a particular work-
flow, (e) A simple deadlock detection mechanism is avail-
able. If programs are placed into a circular dependency
list, none of them can be executed. SEA recognizes the
condition and informs the user of the fact. Dead sequences
of program which cannot be executed are also reported by
the SEA.

Acknowledgments

This work is supported in part by a grant from the
Scalable I/O Initiative, by Intel Corporation, by National
Science Foundation through grants BIR-9301210 and
MCR-9527131, and by a grant from Purdue Research
Foundation. We thank Chris Bonham who wrote the proto-
type of the user interface.

References

[1] CLIPS Reference Manual. Volume 1: Basic Programming
Guide. Clips version 6.0, Software Technology Branch,
Lyndon B. Johnson Space Center, June 2nd 1993.

[2] CLIPS Reference Manual. Volume II: Advanced Pro-
gramming Guide. Clips version 6.0, Software Technology
Branch, Lyndon B. Johnson Space Center, June 2nd
1993.

[3] CLIPS Reference Manual. Volume III: Interfaces Guide.
Clips version 6.0, Software Technology Branch, Lyndon
B. Johnson Space Center, June 2nd 1993.

[4] DARPA Knowledge Sharing Initiative. Specification of
the KQML Agent Communication Language. DARPA
Knowledge Sharing Initiative, External Interfaces Work-
ing Group Draft. June 15,1993. WWW URL:
http://www.cs.umbc.edu/kqml/papers/
kqmlspec.ps

[5] Oren Etzioni and Daniel Weld, A Softbot-Based Interface
to the Internet. Communications of the ACM, 37(7):72-
76, July 1994.

[6] Stan Franklin and Art Graesser. Is it an Agent, or just a
Program?: A Taxonomy for Autonomous Agents. WWW
URL:
http://www.msci.memphis.edu/-franklin/
AgentProg.html

[7] Don Gilbert, Manny Aparicio, Betty Atkinson, Steve
Brady, Joe Ciccarino, Benjamin Grosof, Pat O'Connor,
Damian Osisek, Steve Pritko, Rich Spagana, Les Wilson.
IBM Intelligent Agents White Paper. WWW URL:
http://activist.gpl.ibm.com:81/White-
Paper/ptc2.htm

[8] Joseph Giarratano. CLIPS User's Guide. Clips version

6.0. Software Technology Branch, Lyndon B. Johnson
Space Center. May 28th, 1993.

[9] Joseph Giarratano and Gary Riley. Expert Systems, Prin-
ciples and Programming. PWS publishing Company,
1994. ISBN 0-534-93744-6.

[10] Don Libes. Exploring Expect: A Tcl-based Toolkit for
Automating Interactive Programs. O'Reilly and Associ-
ates, Inc., 1995. ISBN 1-56592-090-2.

[11] James Mayfield, Yannis Labrou, and Tim Finin. Evalua-
tion of KQML as an Agent Communication Language. In
[WMT96], pages 347-360.

[12] John K. Ousterhout. Tel and the Tk toolkit. Addison-Wes-
ley Publishing Company, 1994. ISBN 0-201-63337-X.

[13] M. D. Rice and S. B. Seidman. A Formal Model for Mod-
ule Interconnection Languages. IEEE Transactions on
Software Engeneering 20(1):88-101, January 1994.

[14] Mihai G. Sirbu and Dan C. Marinescu. Bond - A Parallel
Virtual Environment. In Proceedings of HPCN Europe
'96, pages 722-728. Lecture Notes in Computer Science,
Volume 1067, Springer Verlag, 1996. ISBN 3-540-
61142-8.

[15] Michael Wooldridge, Jorg P. Müller, and Milind Tambe.
Intelligent Agents II - Agent Theories, Architectures, and
Languages. Lecture Notes in Artificial Intelligence, Vol-
ume 1037, Springer Verlag, 1996. ISBN 3-540-60805-2.

Mihai G. Sirbu is a Ph.D. candidate in Computer Sci-
ences at Purdue University. He received an Electronics
Engineering degree in 1987 form Timisoara Polytechnic
Institute, Romania. After working for 4 years in industry
and academia, he earned in 1993 a M.S. in Computer Sci-
ence from University of Missouri at Rolla. His research
interests are user environments for parallel and distributed
computing, intelligent agents, and computer security. He is
a member of ACM and UPE.

Dan C. Marinescu is Professor in the Computer Sci-
ences Department. He joined Purdue University in 1984.
He had visiting appointments at IBM Research, Yorktown
Heights, and the Supercomputer Systems Division of Intel.
He is conducting research in: distributed systems, parallel
processing and scientific computing.

He has co-authored more than 90 papers in research
journals, conference proceedings or chapters of books in
these areas. He was the chief architect of a distributed,
real-time data acquisition and analysis system used for
nuclear and high energy physics experiments. He is cur-
rently a principal investigator of a NSF funded Grand
Challenge project to compute macromolecular structures
using parallel and distributed systems.

82

Exploiting Multiple Heterogeneous Networks
to Reduce Communication Costs in Parallel Programs

JunSeong Kim
jskim@ee.umn.edu

David J. Lilja
lilja@ee.umn.edu

Department of Electrical Engineering
University of Minnesota

200 Union St. SE
Minneapolis, MN 55455

Abstract

The different types of messages used by a parallel
application program executing in a distributed system
can each have unique characteristics so that no single
communication network can produce the lowest latency
for all messages. For instance, short control messages
may be sent with the lowest overhead on one type of
network, such as Ethernet, while bulk data transfers
may be better suited to a different type of network,
such as Fibre Channel or HiPPI. In this paper, we
investigate how to exploit multiple heterogeneous com-
munication networks that interconnect the same set
of processing nodes by dynamically selecting the best
(lowest latency) network for each message based on the
message size. We also show how to aggregate these
multiple parallel networks into a single virtual net-
work to further reduce the latency and increase the
available bandwidth. We test this multiplexing and ag-
gregation on a cluster of SGI multiprocessors intercon-
nected with both Fibre Channel and Ethernet. We find
that multiplexing between Ethernet and Fibre Channel
can substantially reduce communication overhead in
a synthetic benchmark compared to using either net-
work alone. Aggregating these two networks into a
single virtual network can further reduce communica-
tion delays for applications with many large messages.
The best choice of either multiplexing or aggregation
depends on the mix of message sizes in the applica-
tion program and the relative overheads of the two net-
works.

Keywords: heterogeneous networks; multiplexing;
aggregation; virtual networks; communication over-
head.

1 Introduction

The importance of efficient communication in dis-
tributed parallel systems cannot be overemphasized
since communication overhead restricts the sphere of
applications that can be efficiently parallelized on
these systems. Additionally, communication delays
are typically large compared to computation time, so
that communication often becomes the performance
bottleneck. While an obvious technique for reducing
communication overhead is to use a higher bandwidth
network, latency-limited applications, as opposed to
bandwidth-limited applications, may not benefit from
the increased network speed. In fact, several different
types of messages are typically used in a single ap-
plication program, some of which are latency-limited,
while others are bandwidth-limited.

These different types of messages each may be bet-
ter suited to a different type of communication net-
work so that no single network can provide the best
performance for all types of communication within a
single program. For instance, short control messages
sent between processing nodes, such as synchroniza-
tion or load information, require low-latency connec-
tions. Bulk data transfers, such as the transfer of large
matrices, on the other hand, require high-bandwidth,
but can often tolerate higher latency. As a result,
since each type of network makes different trade-offs
in latency and bandwidth [10,12,13], each of these dif-
ferent types of data transfers may be best suited for
transmission on a different type of communication net-
work. Fortunately, many networked parallel comput-
ing systems are being assembled with several different
types of communication links between the same pro-
cessing nodes. A common configuration, for instance,
is a network of workstations interconnected with both

0-8186-7879-8/97 $10.00 © 1997 IEEE
83

Ethernet plus some higher-bandwidth network, such
as Fibre Channel, ATM, or HiPPI.

This paper presents some of our preliminary inves-
tigations into how to effectively utilize these multiple
heterogeneous networks to reduce the communication
overhead in parallel application programs. Specifi-
cally, we examine three different approaches imple-
mented on a cluster of Silicon Graphics Challenge
L multiprocessors interconnected with both Ethernet
and Fibre Channel communication networks. The first
approach is a simple multiplexing strategy that dy-
namically selects one of the two networks on which
to send each message based on the size of each indi-
vidual message to minimize the total communication
latency. This approach introduces a small amount of
overhead to select between the networks compared to
using only a single network. The second approach
aggregates the two separate networks into a single vir-
tual network whose bandwidth is approximately the
sum of the bandwidth of the two individual networks.
This approach introduces some additional latency over
simple multiplexing due to the segmentation and re-
assembly required to send a single message over par-
allel communication paths. Finally, we evaluate the
next level of multiplexing that dynamically selects be-
tween the Ethernet, the Fibre Channel, or the single
virtual network.

In the remainder of the paper, Section 2 provides
additional background on communication overheads,
and measures the performance characteristics of the
networks in our testbed. Section 3 then describes how
the multiplexing and aggregation strategies are im-
plemented, and compares their raw performance as a
function of message size. Section 4 characterizes the
communication patterns of several of the NAS bench-
marks which are then used to create a synthetic bench-
mark for evaluating the performance of our new com-
munication strategies at the application level. Finally,
Section 5 summarizes our results and conclusions.

2 Background and Network Charac-
teristics

2.1 Communication Overhead

Communication overhead can be decomposed into
both hardware and software overhead. Hardware over-
head includes both the host interface delay and the
signal propagation delay. Software overhead, on the
other hand, is incurred by interactions with the host
operating system, the actual device driver routines,
and the high-level network communication protocols.

Applications

I
Message Passing Interface(PVM, MPI, P4 etc.)

I
Socket Interface

TCP

~T~
UDP

~r~
ip

I

Low
Overhead
Protocols

Network dependent protocols

 1
Network

Figure 1: Communication network protocol hierarchy.

Software communication overhead can be reduced
by eliminating the overhead of high-level protocols
[4, 13] as shown in the conceptual protocol hierarchy
of Figure 1. The overhead of the high-level protocols,
and the operating system overhead, can be changed
by using different Application Programming Interfaces
(APIs). The APIs in the left-hand side of the figure
are typical interfaces that pass through the TCP/IP
or UDP/IP protocol stack from the application level
to the physical level. The right-hand side of the figure
shows that special-purpose protocols that reduce the
software overhead can be used instead. For example,
a 66% throughput improvement and 30% reduction in
round-trip latency, compared to using a typical API,
has been demonstrated by using PVM as the message
passing interface with HiPPI as the communication
link [4]. Hewlett Packard's Link Level Access (LLA)
was the alternative API. The cost of these low over-
head protocols, however, is that they may depend on
specific hardware implementations of the network in-
terface.

In addition to reducing the software overhead, there
are also system-level techniques for reducing commu-
nication latency [12]. For example, there are two
common techniques for transferring data between the
host processor and the network controller. One tech-
nique uses the host memory as a packet buffer with
the host and the controller sharing descriptors in the
memory. The other technique uses a simple FIFO for
buffering packets. The FIFO-based controller is better
for small packets than the shared-descriptor technique

84

Ethernet
10Mbps

/ /
888

t

6SJ.V

' Fibre Channel

266Mbps

/ \
AnnnDnDDnniA

yrw na mm mm mm mm19 (f SmmmisDODiDDQ
i) AnnmaiaoDDiDnJI

es««»

SGI Challenge L

1\

/ / f 988

<

Bräs?

Figure 2: Multiple heterogeneous network configura-
tion used in the experiments.

since it reduces the interrupt handling overhead. The
descriptor-based controller is better for large packets
in which the memory-to-memory copy time dominates
the interrupt handling execution time. A hybrid con-
troller is possible that supports both types of inter-
faces on the same controller.

2.2 Network Characteristics

There are several different communication net-
works, such as ATM, Fibre Channel, HiPPI and
FDDI, that have been proposed to be used as a com-
munication channel between independent processing
nodes to thereby create a scalable parallel computing
system [4, 6, 12]. Each of these networks has different
latency and bandwidth characteristics. In addition,
the different types of communications used by a par-
allel application have different latency and bandwidth
requirements. As a result, we expect that it may be
possible to reduce communication overhead in paral-
lel applications by having multiple heterogeneous net-
works between processing nodes and then matching
each message to the most appropriate network.

To demonstrate the differences in network charac-
teristics, we compare an Ethernet and a Fibre Channel
network in a system consisting of four Silicon Graphics
Challenge L shared-memory multiprocessors, as shown
in Figure 2. Each of the nodes in this system contain
four or eight R10000 processors running at 196 MHz
on a shared bus. The nodes can communicate with
each other via either an Ethernet running at a peak

transfer rate of 10 Mbps, or a Fibre Channel network,
using an Ancor CXT250 16 port switch, running at
266 Mbps. All nodes run version 6.2 of the IRIX op-
erating system.

We measured the latency and bandwidth character-
istics of both these networks using the echo program
shown in Figure 3. All measurements were made on
a dedicated system with no other users to minimize
the interference from external traffic. The sending
and receiving buffer sizes for both Ethernet and Fibre
Channel were set at 61,440 bytes. We repeated the
test 3 times, running N=100 iterations of each send
and receive, and then chose the best values for Figure
4. The variance in these.measurements was minimal
since the system was dedicated to these experiments.
The average bandwidth is calculated as avera

2
g*™atency

since there are two m-byte messages transferred, one
in the forward direction, and one in the reverse.

Figure 4 shows the measured latency and band-
width characteristics of these two networks as a func-
tion of the message size transferred. The character-
istics are compared using both the TCP and UDP
transport protocols. As expected, there is little perfor-
mance difference between the two transport protocols
for messages smaller than approximately 32,000 bytes
[11]. Comparing Ethernet and Fibre Channel in Fig-
ure 4(a), we see that the slope of the latency curve
for Ethernet is much steeper than the curve for Fi-
bre Channel, although Ethernet has a lower latency
than Fibre Channel for small messages. In fact, Eth-
ernet outperforms Fibre Channel for messages smaller
than approximately 900 bytes while Fibre Channel
produces a lower total latency for larger messages.
The bandwidth of the Ethernet begins to saturate with
messages larger than approximately 1,500 bytes while
the Fibre Channel bandwidth continues to increase
with increases in the message size.

3 Multiplexing and Aggregating Mul-
tiple Heterogeneous Networks

The network comparisons in the previous section
suggest that there may be some benefit to multiplex-
ing between the two networks as a function of the
message size. It is possible to select an appropriate
network for a given message using some characteristic
other than message size, such as the message type (e.g.
synchronization or bulk data transfer), or the network
traffic load, but, to demonstrate the basic idea, we
focus on selecting an appropriate network based only
on the message size. In particular, we extend our net-

85

Machine A Machine B

{
Initial setup {
Prepare buffer Initial setup

Start TIMER
Prepare buffer

for(i=0;i<N;i++) while(l)

{ m byte {
Send message
Receive message 4

}
m byte }

Stop TIMER
}

■

}

■

Figure 3: Echo program for network latency and bandwidth measurements.

- Fibre ChanneWDP

— o- Ethernet-TCP

—-a- Fibre Channel-TCP

500 1000 1500 2000 2500 3000 3500 4000

Bytes

(a) Latency

Ethemet-UDP

Fibre Channel-UDP

— O- - Elhernot-TCP

— U- - Fibre Channel-TCP

2000 2500 3000

Bytes

(b) Bandwidth

Figure 4: Communication performance of Ethernet and Fibre Channel using TCP and UDP transport protocols.

86

work characterization echo program described in the
previous section to dynamically select for each indi-
vidual message the Ethernet network if the message
is smaller than 900 bytes. Otherwise, the message is
sent via the Fibre Channel network. The additional
overhead required for this multiplexing compared to
using only one network by itself is approximately the
time required to execute one conditional statement to
compare the message size to the multiplexing thresh-
old.

In addition to multiplexing, we also investigate ag-
gregating the two networks into a single virtual net-
work. With this approach, the original message is di-
vided into two smaller submessages. One of these sub-
messages is then transferred over the Ethernet while
the other submessage is transferred simultaneously
over the Fibre Channel. From the point-of-view of the
application program, this aggregated network appears
to be a single (virtual) network whose bandwidth is
approximately the sum of the bandwidths of the indi-
vidual component networks.

One of the most important considerations for this
network aggregation is determining the size of the sub-
messages that should be sent over each of the net-
works. The original message must be divided into two
submessages with the goal of having the two submes-
sages be completely received at the destination at the
same time. More precisely, assume that a message
consisting of me bytes can be sent and received at the
destination in time te on the Ethernet. Similarly, a
message consisting of m/c bytes requires time tfc to
be sent and received on the Fibre Channel network.
Then me and m/c must be chosen so that te = tfc

and me + rrifc = m, where m is the size of the orig-
inal message. Given any message of size m, the la-
tency characteristic curves shown in Figure 4 can be
used to empirically determine appropriate values for
me and m/c to minimize the total communication la-
tency. The specific values used in this study are shown
in Table 1.

In addition to the two conditional statements re-
quired to determine the values of me and m/c, this
aggregation requires a special message segmentation
and reassembly step to first divide the message into
the two submessages at the sender, and then reassem-
ble them into a single message at the receiver. As a
result, the overhead of this aggregation is considerably
higher than the simple multiplexing approach.

We implemented the multiplexing and aggregation
using UDP as the application program interface to the

transport level protocol. Since UDP does not guaran-
tee delivery, sequencing, or duplicate packet protec-
tion [11], we added these services on top of the basic
datagram service. We then measured the latency and
bandwidth of these communication approaches using
the same hardware configuration as shown in Figure
2.

Figure 5 shows the overall latency for multiplexing
and aggregation as well as that for Ethernet and Fibre
Channel. Figure 5(a) is a magnified version of Fig-
ure 5(b) for messages smaller than 10K bytes. These
figures show that the latency of the multiplexing ap-
proach follows the smaller of both Ethernet and Fibre
Channel as the message size increases. Also, this sim-
ple multiplexing shows better performance than that
of the aggregation until the message size is greater
than 9,500 bytes because of the software overhead nec-
essary for the segmentation and reassembly of mes-
sages with aggregation. However, we can see as much
as an 11% improvement with aggregation over simple
multiplexing with 55K byte messages. The intersec-
tions of aggregation and multiplexing at 30K bytes
and 45K bytes are due to the coarse choices of me

and rrifc in Table 1. We expect that they can be
eliminated with a finer granularity of message divi-
sions.

Comparing the bandwidth of the different ap-
proaches in Figures 5(c) and 5(d), we see that the
bandwidth of the multiplexing approach follows the
best of Ethernet and Fibre Channel as the message
size increases. The bandwidth of the aggregated vir-
tual network is almost the sum of the bandwidth of
the two networks individually for large message sizes.
The slightly reduced bandwidth of this approach is
due to the segmentation and reassembly overhead re-
quired for the aggregation. These measurements show
that, by multiplexing between the two networks based
simply on message size, we can obtain a network la-
tency that follows the best of both. Furthermore, we
can aggregate the two networks into a single virtual
network to increase the total bandwidth available to
an application when sending large messages.

Application-Level
Performance

Communication

The performance characterizations shown in the
previous section demonstrate that multiplexing and
aggregating heterogeneous networks can reduce the
overall communication latency when sending messages
of a specific size. However, it is important to deter-

87

Message size
(m bytes)

Message size sent on
Ethernet (me) Fibre Channel (m/c)

0 < m < 900
900 < m < 1800

1800 < m < 4000
4000 < m < 6000
6000 < m < 15000

15000 < m < 25000
25000 < m < 40000
40000 < m < 60000
60000 < m

m
m-1000

900
1200
1500
2400
3900
5500
8500

0
1000

m-900
m-1200
m-1500
m-2400
m-3900
m-5500
m-8500

Table 1: Empirically-derived values used to determine the size of the submessages to be sent on the Ethernet
(me) and the Fibre Channel (m/c) when aggregating the networks into a single virtual network. Note that
m = me + rrifc.

-»-Em.

-*-F.C.

-fi-Mux.

-X-Agg.

100O200O30004O0050006000700080009000 10000

Bylei

(a) Latency (b) Latency

(c) Bandwidth (d) Bandwidth

Figure 5: Latency and bandwidth measurements of multiplexing and aggregation. The left figure is a magnification
of the right figure in the range from 0 - 10,000 bytes.

88

Sample code Class A Class B

CG Conjugate 1400 14000 75000
IS Integer Sort 216x211 223x219 225x22i

MG Multigrid 323, 4 iters 2563, 4 iters 2563, 20 iters
BT BT Simulated CFD application 12x12x12 64x64x64 102x102x102
LU LU Simulated CFD application 12x12x12 64x64x64 102x102x102

Table 2: Problem sizes for the NAS parallel benchmarks.

mine how these approaches can reduce the total com-
munication time at the application level. To investi-
gate the application-level performance of these latency
reduction strategies, we first characterize the program
communication patterns of several of the NAS bench-
marks [1]. We use these patterns to generate a syn-
thetic benchmark program in which we can vary the
mix of message sizes. We then use this synthetic
benchmark to determine how the total communication
time is affected by our multiplexing and aggregating
strategies.

4.1 Characteristics of Program Commu-
nication Patterns

This subsection characterizes the communication
patterns of several of the NAS benchmarks [1] run-
ning on the four-node SGI Challenge system shown in
Figure 2. The results provide interesting insights into
communication patterns of parallel applications. We
chose five of the benchmarks that represent a range of
communication characteristics of highly parallel ap-
plications. Three of them, CG, IS, and MG, are rel-
atively compact kernel benchmarks that emphasize
some particular type of computation. The remaining
two benchmarks, BT and LU, are computational fluid
dynamics applications that have more data movement
than the kernel benchmarks. There are one sample
and two standard problem sizes for the NAS Parallel
Benchmarks, as shown in Table 2.

In the CG benchmark, a conjugate gradient method
is used to compute an approximation to the small-
est eigenvalue of a large, sparse, symmetric, positive-
definite matrix. This kernel tests irregular long-
distance communication, employing unstructured ma-
trix vector multiplication. The IS benchmark is a
large integer sort with no floating point arithmetic. It
tests both integer computation speed and communica-
tion performance. The MG benchmark is a simplified
multigrid kernel with a constant coefficient. It solves a
3-D Poisson partial differential equation. This kernel

is a good test of both short- and long-distance data
communication. The LU code is the lower-upper di-
agonal benchmark. It does not perform an LU factor-
ization, but instead employs a symmetric successive
over-relaxation numerical scheme to solve a regular,
sparse, block 5x5 lower and upper triangular system.
The block tridiagonal benchmark, BT, solves multi-
ple independent systems of non-diagonally dominant,
block tridiagonal equations with a 5x5 block size.

We extend PVM versions of the five NAS bench-
marks by inserting monitor operations at points in
the programs where message-related activities are ex-
ecuted. This instrumentation allowed us to observe
the programs' communication patterns. We tested
the Class A problem sizes for the CG, IS, and MG
codes, and the Sample problem sizes for the LU and
BT codes. However, we believe our results below are
somewhat independent of the problem size. For the
optional setup of PVM [3], we used the default mode,
that is, normal routing using UDP connections, reg-
ular pvmsend(), pvm-receive(), and pvm-initsend()
commands, and the default XDR (external Data Rep-
resentation) encoding, which is an Internet standard
data encoding.

Figure 6 shows the distribution of processors that
are message destinations. In the CG, IS, and MG
codes, all of the processors perform the same types of
tasks. In the BT and LU codes, however, the master
processor plays the role of a central controller while
the slave processors perform the actual work. From
the viewpoint of the individual processors, the desti-
nation distribution does not appear to have any spe-
cial or characteristic pattern. For example, in the CG
program, processors 0 and 3 send messages to all of
the other processors, while processor 2 sends only to
processor 0. Since the distribution of message destina-
tions has a spatial locality which favors nearest neigh-
bors, the destination distribution strongly depends on
the algorithm and the network topology[8]. However,
we can see that the overall destination distribution is

89

itoPi ntoP2 ntoP3

I MT 111
JBLAJII..J-,)JBI I ,1 L-IJBLJ-JK.

I

D. H?

CG IS MG LU

Figure 6: Distribution of processors that are the destinations of messages.

10

P0 5

0

X X «ii XX II II II II II II II MS

' 'nC " T£ " if" - a£ »JüK» Z iu Z •£, Z ml, " •£ " i£ "

10

PI 5

0

xi xaxc xxm mat xoci zxi mat ixz mat mat *

10 i

n 5

0

10 i

P3 5

0-

0

XI XXX XXS XXX XXX XXX »X XXX »X XXX X

, v.Yr .'K. .'n. .*. ,'*. .*..!*. .». .af. .i^. *

50000 100000 150000 200000 250000 300000 350000 400 DO0

X X w x—x—x- X " X X X^ XXX Xj=-X X X :Xfl-"X—x-

X X,

P -x- ■■x-x-j m ? ?:■? * p* * -x—X »' x x--x" -x-
PI : : ,» : ; ; P : I ; '■: P tr " • •

0
: x >« [:: i, ! ! : P; ■ £ 1 • ■ :x

TT -x- -xr -x- ~x-x —(X" -x- X X m~*~ -TT -x—X =pr -x- -x- -x-
4

P2
2

0

; fin
+^—

• • !:: • sü i • |
'"i '

•x

x—x=r—x—X X XXX X--, X X""X x—XXX

(a) IS benchmark (b) MG benchmartc

Figure 7: Relative times of communication events for the IS and MG benchmarks.

10OO0O 150000 200000 250000

uniformly distributed among the processors.

Figure 7 shows the occurences in time of commu-
nication events for two of the test benchmarks, IS and
MG. The X axis represents elapsed time from the be-
ginning of the program execution and the Y axis shows
the message size of the corresponding communication
event. Note that the Y axis is the log of the actual
message size. In both applications, all of the proces-
sors show similar communication patterns, except at
the beginning of the execution. Specifically, each pro-
cessor tends to alternate computation and communi-
cation at the same time so that they all are likely to
communicate at the same time. As a result, commu-
nication congestion is likely to occur among the pro-
cessors even when the system is dedicated to a single
application. We also saw similar results from the other

three benchmarks.

Figure 8 shows the distribution of message sizes for
all five applications. It is clear from the figure that,
except for the MG program, all of the messages within
an application are one of two distinct sizes. In partic-
ular, some fraction of the messages within an appli-
cation tend to be very large while the remainder tend
to be very small. For instance, approximately 70% of
the messages in the CG program are 8 bytes in length
while the remainder are around 56Ä" bytes. Similarly,
approximately 40% of the messages in the BT program
are 480 bytes, while the remaining 60% are around
2K bytes. Similar distributions were also found for
the LU and IS programs. Previous researchers' mea-
surements of CAD and numeric applications [5] and
scientific applications [2] have shown similar bimodal

90

Figure 8: The cumulative distribution of message sizes.

distributions.

■ M WIIM ill "I

-eg

-is

-mg

-bt

-lu

1000 1500 2000

Interarrival time (msec)

Figure 9: The percentage of messages with a given interarrival time.

Figure 9 shows the distribution of the time inter-
vals between two successive communication events in
one processor. As is often assumed in analytic stud-
ies of network performance [7], these interarrival times
tend to look exponentially distributed. However, we
can see multiple peaks in the IS and CG benchmarks.
These multiple peaks make it difficult to model the
distributions with a simple exponential distribution
function. Consequently, we need to use a combination
of several distribution functions, or multi-stage prob-
ability density functions [5], to model the interarrival
times more accurately.

4.2 Communication Performance with
the Synthetic Benchmark

To estimate the improvement in communication
performance that could be obtained at the applica-
tion level by multiplexing and aggregating the two
networks, we develop a synthetic benchmark to exe-
cute on the testbed system. This synthetic benchmark
is based on the communication patterns observed in
the NAS benchmarks and is parameterized so that we
may simulate the communication patterns of a variety
of different application programs. As shown in Fig-
ure 10, the benchmark configures the system into one
master processor and p — 1 slave processors. For each
communication event, the master processor generates

91

Communication Event:
exponential distribution

4 Byte, .(

M l-T—IHHH I IHHH H
T T T exponential distribution

Figure 10: Synthetic benchmark modeling with p=4 processing nodes.

several random numbers. The first of these numbers
determines the destination processor number, x. This
value is uniformly distributed from 1 to p — 1 so that
each slave processor has an equal chance of becoming
the destination of the current message. The second
random number follows a Boolean distribution with
probability b to select one of two Poisson distribu-
tions, one with a mean value of l\ and the other with
a mean value of l2. The third random number then is
used to generate a random value that follows the Pois-
son distribution selected by b. This value is used as
the size of the message that is actually sent, m. The
final random number, g, determines the computation
time until the next communication event. It also is
exponentially distributed.

After generating these random values, the m-byte
message is sent to the destination processor using the
chosen communication strategy. The receiving proces-
sor responds to the sending processor with a four-byte
acknowledgement message after it has completely re-
ceived the message. The master (i.e. sending) pro-
cessor then idles for a random amount of time, g, to
simulate the processors' computation. In these experi-
ments, we set the value of g to zero since the communi-
cation behavior is the main focus of this study. Thus,
when this synthetic benchmark is executed, the master
processor will send an m-byte message to a randomly
selected slave processor. The size of the message, m,
will follow a Poisson distribution such that (b * 100)%
of the time the mean will be h and the remainder of
the time the mean will be l2. These steps are repeated
N = 10,000 times for each run of the benchmark pro-

gram. A pseudocode description of the benchmark is
shown in Figure 11.

By appropriately choosing the above parameters,
we can approximate the communication patterns of
several different types of benchmarks. Table 3 shows
the parameters actually used in our simulations. The
Type A parameters, for instance, simulate an appli-
cation program in which 50 percent (i.e. b = 0.5) of
its messages are Poisson distributed with a mean of
h = 8 bytes, and 50 percent of its messages are Pois-
son distributed with a mean of h = IK bytes.

Figure 12 shows the results of executing this syn-
thetic benchmark with the different parameter values
shown in Table 3 on the same SGI test system used for
the previous experiments. Each data point is the aver-
age of 3 different runs of the benchmark with different
random seed values. Since we used a dedicated system
with no other users when executing the benchmark,
and since the loop count, N, was large, the variance in
execution times for a specific parameter set was quite
small. The different communication network options
are: 1) Ethernet (Etn) alone, 2) Fibre Channel (FC)
alone, 3) simple multiplexing (Mux) between Ether-
net and Fibre Channel, 4) aggregating (Agg) Ethernet
and Fibre Channel into a single virtual network, or 5)
the combination of both multiplexing and aggregating
(Mux-Agg). The raw execution times are normalized
to the execution time of the benchmark when using
only the Ethernet connection.

Figure 12 shows that the simple multiplexing
scheme is better than both Ethernet alone and Fibre

92

Application
Type

small message large message
mean l\ = 8 byte mean l2 = IK byte mean l2 = 20K byte

A 50% 50% -
B 10% 90% -
C 90% 10% -
D 50% - 50%
E 10% - 90%
F 90% - 10%

Table 3: Parameter values used in the synthetic benchmark.

Master Slave

{
Initial setup
Start TIMER
for(i=0;i<N;i++)

{
Message generation

Destination: Uniform, x
Size: Poisson, m {

with P(mean=/j) = b;
P(mean=;j) = I-b

Multiplexing/Aggregation
m byte

Initial setup
while(l)

{

Idle time: Exponential, g

}
Stop TIMER

)

4 byte
}

}

Figure 11: Synthetic benchmark.

Channel alone for all types of communication patterns,
except type E. This set of parameters simulates a pro-
gram with mostly 20K byte messages. When an appli-
cation consists primarily of large messages, however,
there is little benefit to multiplexing. In fact, in this
case, the overhead of multiplexing can cause its perfor-
mance to be worse than no multiplexing. Multiplexing
also shows little benefit for the type B communication
pattern since it too has mostly large messages.

The aggregation scheme always outperforms both
Ethernet and Fibre Channel used alone. However,
it is worse than simple multiplexing for the type C
and F communication patterns. Both of these bench-
marks consist mainly of 8 byte messages with a rel-
atively small fraction (10%) of large messages. Since
the overhead of aggregation is too high to be of any
benefit for small messages, simple multiplexing is the
best solution for these two parameter sets.

For the combination of multiplexing and aggrega-
tion (Mux-Agg), the Ethernet is chosen for messages
less than 900 bytes, the Fibre Channel is chosen for
messages greater than 900 bytes, but less than 9,500
bytes, and the aggregation of both networks is used
for messages larger than 9,500 bytes. Since the type
A and B parameter sets have essentially no messages
larger than 2K bytes, aggregation is almost never used
with this combined approach. However, these appli-
cations do get penalized by the additional overhead of
the combined approach. As a result, the combination
of multiplexing and aggregation is worse than aggrega-
tion alone for these parameter sets. Almost all of the
messages in type C are small with only 10% having a
mean of 2K bytes, so that the combined approach al-
most always selects the Ethernet with no aggregating.
Since aggregating alone has higher overhead than the
combined approach for small messages, the combined

93

Type A Type B Type C Type D Type E Type F

Figure 12: Communication time comparisons for the synthetic benchmark.

approach actually outperforms aggregating alone for
this parameter set. For the remaining three param-
eter sets, multiplexing between Ethernet and Fibre
Channel for the small messages ensures that they are
always sent on the best of the two available networks.
At the same time, the large messages (mean message
size = 20K bytes) take advantage of the benefit of ag-
gregating the two networks. The net result is that the
combined approach can provide the best performance
for applications with a high fraction of large messages.

5 Conclusion

The importance of reducing communication over-
head in network computing cannot be overempha-
sized since the communication delays in standardized
interconnection networks can often become the per-
formance bottleneck in parallel application programs.
Furthermore, the different types of messages used in
parallel application programs, such as short control
information or bulk data transfers, have affinities for
different types of networks. For instance, short mes-
sages, such as synchronization, typically require very
low latency, while larger messages need high band-
width, although these larger messages often can toler-
ate higher latencies.

In this study, we take advantage of these differ-
ent network and message characteristics to reduce the
overall communication delay experienced by parallel
application programs by exploiting multiple heteroge-
neous networks between the same processing nodes.
Using a cluster of Silicon Graphics Challenge L multi-
processors interconnected with both Ethernet and Fi-
bre Channel networks, we demonstrated how simple
multiplexing can select the best network for each mes-

sage based on the message size. We also presented an
aggregation scheme that combines both networks into
a single virtual network by dividing a single message
into two submessages that are sent on each network
simultaneously. Measurements of communication la-
tency versus message size showed that the overhead
of the simple multiplexing approach is low enough
to allow it to track the performance of the network
with the lowest latency. The need for message seg-
mentation and reassembly causes the overhead of the
aggregation approach to be significantly higher than
the simple multiplexing approach. For messages larger
than about 9,500 bytes, however, this aggregation re-
duces the overall latency to be less than that of using
either network alone, and less than multiplexing be-
tween them.

Finally, we used a synthetic benchmark to study the
effectiveness of these approaches in reducing the com-
munication latency from the perspective of the appli-
cation program. We modeled the synthetic communi-
cation patterns after the communication patterns we
measured in the NAS parallel benchmarks. Our ex-
perimental measurements show that a combination of
aggregation and multiplexing produces the best per-
formance for applications that have a mix of very large
messages and small messages. For applications dom-
inated by small messages, however, the simple mul-
tiplexing approach is best due to the relatively high
overhead of aggregating. Our future work will more
precisely evaluate the trade-offs in these various ap-
proaches, and will develop approaches for further re-
ducing their overhead. We also plan to investigate
characteristics other than the message size for multi-
plexing between networks, and to develop approaches

94

for adjusting to dynamically varying network loads.

Acknowledgments

This work was supported in part by National Science
Foundation Grant No. CDA-9414015, and by a Uni-
versity of Minnesota McKnight Land-Grant Professor-
ship.

References

[1] D. Bailey, E. Barszcz, J. Barton, D. Browning,
R. Carter, L. Darum, R. Fatoohi, S. Fineberg, P.
Frederickson, T. Lasinski, R. Schreiber, H. Simon,
V. Venkatakrishnan, and S. Weeratunga, "The
NAS Parallel Benchmarks," NAS Report RNR-94-
007, March 1994.

[2] R. Cypher, A. Ho, S. Konstantinidou, and P.
Messina, "Architectural Requirements of Parallel
Scientific Applications with Explicit Communica-
tion," Intl Symp on Computer Architecture, 1993,
pp. 2-13.

[3] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R.
Manchek and V. Sunderam, PVM: Parallel Virtual
Machine - A Users' Guide and Tutorial for Net-
worked Parallel Computing, The MIT Press, 1994.

[4] J. Hsieh, D. H. C. Du, N. J. Troullier, and M. Lin,
"Enhanced PVM Communications over a HIPPI
Networks," Proceedings of the Second Interna-
tional Workshop on High-Speed Network Comput-
ing, April 1996.

[5] J.-M. Hsu, and P. Banerjee, "Performance Mea-
surement and Trace Driven Simulation of Parallel
CAD and Numeric Applications on a Hypercube
Multicomputer," Intl Symp on Computer Archi-
tecture, 1990, pp. 260-269.

[6] C. Huang, E. P. Kasten, and P. K. McKinley, "De-
sign and Implementation of Multicast Operations
for ATM-Based High Performance Computing,"
Proceedings of Supercomputing'94, August 1994,
pp. 164-173.

[7] P. Kermani, and L. Kleinrock, "Virtual Cut-
Through : A New Computer Communica-
tion Switching Technique," Computer Networks,
September 1979, pp. 267-286.

[8] V. Kumar, A. Grama, A. Gupta, and G. Karypis,
Introduction to Parallel Computing - Design and
Analysis of Algorithms, The Benjamin/Cummings
Publishing Company, 1994.

[9] D. J. Lilja, "Partitioning Tasks Between a Pair of
Interconnected Heterogeneous Processors: A Case
Study," Concurrency: Practice and Experience,
May 1995, pp. 209-223.

[10] S. Nog, and D. Kotz, "A Performance Compari-
son of TCP/IP and MPI on FDDI, Fast Ethernet,
and Ethernet," Dep't of Computer Science, Dart-
mouth College, PCS-TR95-273, 1995.

[11] W. R. Stevens, UNIX Network Programming,
Prentice Hall, 1994.

[12] C. A. Thekkath, and H. M. Levy, "Limits to
Low-Latency Communication on High-Speed Net-
works," ACM Transactions on Computer Systems,
May 1993, pp. 179-203.

[13] A. Wolman, G. Voelker, and C. A. Thekkath,
"Latency Analysis of TCP on an ATM Network,"
Proceedings of USENIX, 1994, pp. 167-179.

JunSeong Kim received an M.S. and a B.S., both
in Electronics Engineering, from the Chung-Ang Uni-
versity, Seoul, Korea. He is a Ph.D. student in Elec-
trical Engineering at the University of Minnesota in
Minneapolis. His research interests are in computer
architecture, computer networks, parallel processing,
and high-performance computing.

David J. Lilja received a Ph.D. and an M.S., both
in Electrical Engineering, from the University of Illi-
nois at Urbana-Champaign, and a B.S. in Computer
Engineering from Iowa State University in Ames. He
is currently an Associate Professor of Electrical Engi-
neering and the Director of Graduate Studies in Com-
puter Engineering at the University of Minnesota in
Minneapolis. Previously, he worked as a research as-
sistant at the Center for Supercomputing Research
and Development at the University of Illinois, and as a
development engineer at Tandem Computers Incorpo-
rated in Cupertino, California. His main research in-
terests are in computer architecture, parallel process-
ing, and high-performance computing, with a special
emphasis on the interaction of compilation technology
and computer architecture. He is a Senior member of
the IEEE Computer Society, a member of the ACM,
and is a registered Professional Engineer.

95

On-Line Use of Off-Line Derived Mappings
for Iterative Automatic Target Recognition Tasks

and a Particular Class of Hardware Platforms

John R. Budenske
Ranga S. Ramanujan

Architecture Technology Corporation
Minneapolis, MN 55424, USA
{budenske, ranga} @atcorp.com

Howard Jay Siegel
Parallel Processing Laboratory

School of Electrical and Computer Engineering
Purdue University

West Lafayette, IN 47907-1285, USA
hj@purdue.edu

Abstract
Heterogeneous computing covers a great variety of

situations. This study focuses on a particular application
domain (iterative automatic target recognition tasks) and
an associated specific class of dedicated heterogeneous
hardware platforms. The contribution of this paper is
that, for the computational environment considered, it
presents a methodology for real-time on-line input-data
dependent remappings of the application subtasks to the
processors in the heterogeneous hardware platform using
previously stored off-line statically determined mappings.
That is, the operating system will be able to decide during
the execution of the application whether or not to perform
a remapping based on information generated by the
application from its input data. If the decision is to
remap, the operating system will be able to select a previ-
ously derived and stored mapping that is appropriate for
the given state of the application (e.g., the number of
objects it is currently tracking).

This research is supported by the Department of Defense,
Small Business Innovative (SBIR) Program, funded by the
Army Research Laboratory, under contract number
DAAL01-96-C-0031.
H. J. Siegel is a consultant for Architecture Technology
Corporation.

Keywords: algorithm mapping, automatic target recogni-
tion, distributed computing, genetic algorithms, hetero-
geneous computing, parallel processing, real-time pro-
cessing, special-purpose systems.

1: Introduction

Heterogeneous computing (HC) covers a great
variety of situations (e.g., see [14], [19], [20]). This study
focuses on a particular application domain (iterative
automatic target recognition (ATR) tasks) and an associ-
ated specific class of dedicated heterogeneous hardware
platforms. The contribution of this paper is that, for the
computational environment considered, it presents a
methodology for real-time on-line input-data dependent
remapping of the application subtasks to the processors in
the heterogeneous hardware platform using a previously
stored off-line statically determined mapping (i.e., a
matching of application subtasks to processors and a
scheduling for the execution order of these subtasks).
That is, the operating system will be able to decide during
the execution of the application whether or not to perform
a remapping based on information generated by the
application from its input data. If the decision is to
remap, the operating system will be able to select a previ-
ously derived and stored mapping that is appropriate for

0-8186-7879-8/97 $10.00 © 1997 IEEE
96

the given state of the application (e.g., the number of
objects it is currently tracking).

The high-level operating system approach presented
here for enabling the on-line use of off-line mappings is
called the IOS (Intelligent Operating System). The IOS
conceptual design, on-line components, and off-line com-
ponents are depicted in Figures 1, 2, and 3, respectively.
Consider the conceptual design (Figure 1). The ATR
Kernel makes decisions on how a given ATR application
task should be accomplished, including determining the
partial ordering of subtasks and which algorithms should
be used to accomplish each subtask. The HC Kernel
decides how the partially ordered algorithmic suggestions
should be implemented and mapped onto the heterogene-
ous parallel platform. Also, the HC Kernel interacts with
the Basic Kernel to execute the application and monitor
its execution. Thus, the ATR Kernel deals with
application issues, while the HC Kernel deals with imple-
mentation issues. Information from the Algorithm
Database and the Knowledge Base is used to support the
ATR and HC Kernels. This design has its roots in the
high-level model presented in [3] for automatic dynamic
processor allocation in a partitionable parallel machine
with homogeneous processors.

This paper concentrates on the operation of the HC
Kernel; the other components will be discussed only to
the extent needed for describing the HC Kernel (addi-
tional information on the other components is in [2]). In
particular, this paper focuses on (1) the application and
hardware platform characteristics that are needed to
enable the use of the HC Kernel, (2) the overall IOS
structure that will include the HC Kernel, (3) the tech-
niques that comprise the HC Kernel, and (4) how to col-
lect the information needed for the HC Kernel to operate.
The IOS has not been implemented; such an implementa-
tion is a major undertaking and outside the scope of this
paper, which is the design concepts for the HC Kernel.

The IOS differs from other real-time HC mapping
techniques in that it allows on-line real-time use of off-
line precomputed mappings. This is significant because
off-line heuristics can produce better mappings because
they can have much longer execution times to search for a
good solution than what is practical for an on-line heuris-
tic. Thus, the mapping quality of an off-line time-
consuming heuristic can be approached at real-time
speeds.

The IOS ideas can also be used for other application
domains and classes of hardware platforms whose
characteristics are similar to those of the iterative ATR
applications and platforms considered here. Examples of
other such application domains are sensor-based robotics,
intelligent vehicle highway systems, air traffic control,

nuclear facility maintenance, weather prediction, intruder
detection, and manufacturing inspection.

The paper is organized as follows. Section 2
describes the application domain and Section 3 the
heterogeneous hardware platform. Overviews of the off-
line and on-line components of the IOS are presented in
Sections 4 and 5, respectively. More information about
the HC Kernel off-line and on-line components are pro-
vided in Sections 6 and 7, respectively.

2: Application domain

Simply stated, an ATR system takes a set of images
from a group of sensors and produces a description of the
scene. The various types of processing required in an
ATR system can be broadly classified into three groups:
numeric computation, quasi-symbolic computation (e.g.,
where numeric and symbolic types of operations are used
to describe surfaces and shapes of objects in the scene),
and symbolic computation (e.g., used to produce the
scene description). Heterogeneous parallel architectures
are ideal computing platforms for efficiently handling
computational tasks with such diverse requirements.

A key technical issue that must be addressed to
exploit the inherent potential of heterogeneous parallel
computing systems to efficiently implement ATR
applications is the development of a high-level operating
system that can fully use the architectural flexibility of
such a system. Such a high-level operating system must
be able to assign each ATR application subtask to the pro-
cessors where it is best suited for execution. Often, sub-
tasks can execute concurrently, sharing resources.
Because the execution time of application subtasks in an
ATR system is highly input data dependent (e.g., number
of currently located objects), this matching and schedul-
ing of application subtasks to processors must be per-
formed dynamically at run time.

This work is being developed for a class of ATR
applications each of which can be modeled as an iterative
execution of a set of partially ordered subtasks. Each
ATR application in this class is a production job that is
executed repeatedly. Thus, it is worthwhile to invest off-
line time in preparing an effective mapping of the
application onto the hardware platform used to execute it.
The ATA (automatic target acquisition) system described
in [4] is an example of such an iterative ATR application.

Each application task will be an instantiation of a
DDG (data dependency graph), whose nodes are the sub-
tasks that need to be executed to perform the application
and whose arcs are the the data dependencies between
subtasks. The expected number of subtasks is ten to 50.
The DDG will be structured as a directed acyclic graph
(DAG). The IOS is being designed for applications that

97

will iteratively execute such a DDG. Note that while the
subtasks' dependencies are represented as a DAG, sub-
tasks themselves may contain loops.

For the initial iteration through the set of subtasks,
the IOS will use information about the processing
environment in its selection of algorithms for the sub-
tasks, and their associated implementations. As part of
this, the IOS will decide how to assign processing
resources (processors) to the subtasks.

After each execution iteration through the set of sub-
tasks, the values of certain dynamic parameters of the
application may change, such as the number of objects
detected in the current frame of a real-time image stream
being processed. It is expected that the values of these
parameters will change slowly. After all subtasks have
completed execution for a given iteration, and before the
next iteration begins, the latest values of these dynamic
parameters will be reported to the on-line HC Kernel. The
HC Kernel will use the most recent values of such
dynamic parameters to estimate if it is worthwhile to
reconfigure the assignment of processing resources to
subtasks to reduce execution time of the next iteration. If
it is desirable, the HC Kernel will select a new assignment
to use for the next execution iteration through the sub-
tasks. If not, the same assignment will continue to be
used.

3: Heterogeneous hardware platform

The type of target hardware platforms considered for
this study are driven by the expected needs of the kinds of
ATR applications that are of interest to the U.S. Army
Research Laboratory. Thus, for the intended application
environment of the IOS, it is assumed that there will be
up to four different types of processors, and up to a total
of 64 processors (of all types combined). For example,
two types may be SHARC processors and PowerPCs.
These processors will comprise the heterogeneous parallel
architecture onto which application tasks will be mapped.
A system of this size should provide the real-time com-
puting power needed for the intended application domain.
The IOS approach is appropriate for larger HC platforms
as well.

A small-scale example of the type of hardware plat-
form being considering is the one described in [5]. This
system was developed by the Army Research Laboratory
for a real-time ATR relational template matching algo-
rithm. Another example, although outdated, is [1], which
describes a heterogeneous hardware platform designed to
perform ATR research and prototyping.

All the processors of all types will have communica-
tion paths to one another. Communications among pro-
cessors of the same type is assumed to be symmetric in

the sense that the conflict-free time for any pair of proces-
sors to communicate is the same. For example, a Mercury
daughter board can be populated with six SHARC proces-
sors that physically share a DRAM. To connect proces-
sors of different types, a VME bus can be used to provide
communications among different collections of proces-
sors. In addition, the hardware platform will include (1) a
workstation, for off-line IOS operations to develop an
application implementation and for use as the Application
User interface, and (2) a Host Processor, which will
monitor the application implementation during its execu-
tion and implement the on-line HC Kernel.

For simplicity, it is assumed that if an implementa-
tion of a given subtask uses multiple processors, all pro-
cessors will be of the same type. Given this and the sym-
metry property of the inter-processor communications
among processors of the same type, the expected execu-
tion time of a particular multiprocessor implementation of
a subtask is independent of which fixed-size subset of the
processors of a given type are assigned to execute the
subtask.

The IOS design should be capable of working with
any hardware platform of the type described above. A
given hardware platform may be used for many different
ATR applications. It is assumed that when a given ATR
application is executing on a platform, that platform is
dedicated to that application.

4: Overview of IOS off-line components

Figure 3 shows the off-line components of the IOS.
The Knowledge Base contains a collection of DDGs. The
Algorithm Database contains information about algo-
rithms that can be used to perform the subtasks in the
DDGs. The DDGs and algorithm information is supplied
by the application domain expert, the Application
Developer. The Application Developer, who is responsi-
ble for developing the application software, will typically
be a different person (or people) from the Application
User(s), who may know nothing about software develop-
ment and may just use the ATR system as a prepackaged
tool. An analogy to this in the personal computing field is
the programmer who develops a software package for
graphics versus the package user who draws figures with
the tool without any knowledge of the details of the actual
code in the software package.

To design a particular application, the Application
Developer first selects a DDG. (The Application
Developer can also specify a particular set of DDGs that
can execute simultaneously and be treated as a single
DDG [2].) Each DDG has associated with it a list of
Application Characteristic and Input Data Characteristic

98

names, whose values must be filled in when the DDG is
instantiated for a given application and associated
environment. (The SmartNet project uses a similar set of
characteristics called "Compute Characteristics," whose
values when an application is invoked are called the
"Compute Characteristics Operating Point" [9].) Each
subtask in the DDG is assigned one or more algorithms
whose image processing performance for that subtask and
its associated Application and Input Data Characteristics
are above some threshold (note that execution time is not
considered by the ATR Kernel). Performing this assign-
ment transforms a DDG into an ODDG (over-instantiated
DDG). The ODDG is constructed by the ATR Kernel
ODDG Generator.

Each of these sets of Application and Input Data
Characteristics can be divided into static and dynamic
parameters. Static parameters are those Input Data
Characteristics, such as image size, and Application
Characteristics, such as type of object of interest (e.g.,
tank), that will not change during the execution of the
application task. Dynamic parameters, in contrast, are
those Input Data Characteristics, such as amount of
clutter, and Application Characteristics, such as number
of located objects to be identified, that will change during
run time and can be computed by the application as it
executes. When an Application Developer instantiates a
DDG to implement an application in a given environment,
the values for the static characteristics are known and pro-
vided by the Application Developer. For the dynamic
characteristics, the Application Developer is expected to
provide ranges for these values (i.e., the minimum and
maximum value each given dynamic parameter can
have). It is the job of the Scenario Generator to use these
ranges to derive representative values for the dynamic
parameters.

The Scenario Generator subdivides the range of each
dynamic parameter into C equal sized intervals (i.e., each
dynamic parameter range is transformed into a set of C
choices of representative values for that parameter, and
these C choices are equally distributed across the range).
Assume there are D dynamic parameters. Each set of D
values for these D dynamic parameters, one per parame-
ter, is called a scenario. The number of different
scenarios that can be generated is S = CD.

For a given application, the ATR Kernel ODDG
Generator creates a distinct ODDG for each scenario.
Thus, for a single application and associated static
environment, one DDG is selected by the Application
Developer, which is the basis for S ODDGs generated by
the ATR Kernel ODDG Generator, one for each scenario.
For each ODDG, only one MDDG (mapped DDG) is gen-
erated by the HC Kernel MDDG Generator. The MDDG

specifies how the corresponding ODDG will be imple-
mented and mapped onto the HC platform, as discussed
further in later sections.

Therefore, the number of MDDGs generated by the
HC Kernel MDDG Generator for a given application and
its associated static environment is S. These are the S
MDDGs that will compose the MDDG Table constructed
by the MDDG Table Builder for that application and
static environment (the HC Kernel MDDG Generator
passes the MDDGs to the MDDG Table Builder). The
MDDG Table will be indexed as a D-dimensional array,
where each dimension is of size C, i.e., an MDDG Table
entry will be accessed by a list of D indices (correspond-
ing to a scenario), where the i-th index corresponds to an
allowable representative value for the i-th dynamic
parameter. MDDG Tables are stored in the Knowledge
Base, as are the associated Application Menus con-
structed by the Application Menu Builder.

A question that arises is what the value of S should
be. The larger S is, the closer a given scenario in the
MDDG Table may match a given set of actual dynamic
parameter values calculated during execution of the
application. It is expected that the closer this match is,
the better the mapping specified by the corresponding
MDDG Table entry will be. However, the larger S is, the
larger the MDDG Table will be and the larger the number
of ODDGs and MDDGs for a given application and
environment will be, resulting in longer off-line execution
time for the ATR Kernel ODDG Generator and HC
Kernel MDDG Generator. Thus, the IOS implementor
will need to select a value for S that balances these factors
based on experience with applications in the intended
operating domain.

A variation on the scheme described above (where
each dynamic parameter is divided into C equidistant
choices) is to allow the Application Developer to specify
the number of choices for a given dynamic parameter and
do this for all or some subset of the dynamic parameters.
Additionally, the Application Developer may wish to
specify the exact choices of representative values to use
for one or more of the dynamic parameters. To imple-
ment such variations, the Scenario Generator would need
to be designed to interact with the Application Developer
to enforce the given value selected for S.

Three items of information about the hardware plat-
form will be needed by the HC Kernel MDDG Generator:
(1) algorithm implementation execution time, (2) number
of each type of processor available, and (3) inter-
processor communication time. The HC Kernel MDDG
Generator uses this information when it applies the
heuristic for determining an effective assignment of sub-
task implementations to processors.

99

The Algorithm Database will include one or more
implementations of each algorithm (e.g., one for each
processor type). The Algorithm Database must also con-
tain the expected execution time of each algorithm imple-
mentation, typically specified as a function of type and
number of processors assigned, interprocessor communi-
cation time, and certain static and dynamic Input Data and
Application Characteristics. This is an expected time,
rather than a definite time, because it may vary depending
on the actual values of the input data being processed.
This expected execution time information must be pro-
vided by the Application Developer, who also supplies
the code for each implementation of a given algorithm. It
is expected that algorithm implementations will be written
using the number of processors (of a given type) as an
input parameter whenever possible. The assumption of
the availability of expected implementation execution
time for each type of processor (or set of processors of the
same type) is typically made for the current state of the
art in HC systems (e.g., [8], [13], [17], [21]). The
Application Developer can determine this information
empirically. The HC Kernel MDDG Generator needs to
use this information (in conjunction with the other infor-
mation below) to determine the expected total application
task execution time.

The second item needed is the total number and type
of the processors in the platform. The HC Kernel MDDG
Generator needs this to know how many processors of
each type it has available to assign. This is specified by
the Platform Architect, who is responsible for the
hardware design of the system. Typically, this person (or
people) is distinct from the Application Developer(s) and
Application User(s), although it is assumed that the Plat-
form Architect(s) will consult with the Application
Developer(s). Referring to the earlier analogy with per-
sonal computing, the people responsible for designing the
system hardware configuration will typically not be the
same people who develop the graphics package.

The last item needed is a communication matrix
indicating the time it takes for each processor in the plat-
form to communicate with every other processor in the
platform. This is also specified by the Platform Architect.
Entry (i,j) in this matrix is the information needed to cal-
culate the conflict-free time for processor i to send data to
processor j. The communication time for a given pair of
processors typically will have two components: a fixed
latency time for the first byte to arrive, and a variable time
that depends on the length of the message being transmit-
ted (that is based on the bandwidth of the communication
path). This type of matrix is used by other researchers in
HC (e.g., [13], [17], [21]). This matrix is needed for the
HC Kernel MDDG Generator to determine the expected
inter-subtask communication times for possible mappings

of subtasks onto the platform.
The Platform Architect can also specify faulty varia-

tions of a given platform as additional separate platforms.
By doing this, the HC Kernel MDDG Generator will con-
struct mappings that can be accessed and used in real time
should a potential hardware fault occur. Each MDDG
Table will correspond to a given platform variation and a
given application with its associated static environment.

5: Overview of IOS on-line components

Figure 2 shows the on-line components of the IOS.
Once in the field, the Application User interacts with the
ATR Kernel User Interface, including the Application
Menus. The Application Menus will be used on-line by
the Application User to select a particular initial MDDG
to use to invoke an application (with an associated set of
Application User specified values for static parameters
and initial choices of allowable representative dynamic
parameters). That MDDG is passed to the HC Kernel
Monitor to use as the initial mapping. Then, as the
application is executing, the HC Kernel Monitor monitors
the run time values of the dynamic parameters at the end
of each iteration through the underlying DDG to decide
whether to continue with the current mapping, or to select
and instantiate a new mapping (for the next iteration)
from among the entries of the relevant MDDG Table
(which were determined off-line). Thus, the off-line pro-
cessing provides a set of predetermined mappings that the
on-line processing can index in real time.

6: HC Kernel MDDG Generator

The HC Kernel MDDG Generator is the component
of the off-line IOS (Figure 3) that is responsible for map-
ping each ODDG onto the heterogeneous hardware plat-
form creating a corresponding MDDG. Each MDDG is
isomorphic to a given ODDG. For each node in the
ODDG, there is a corresponding node in the MDDG that
includes: (1) which implementation (stored in the Algo-
rithm Database) will be used for one of the algorithms in
that ODDG node; (2) pointers to the needed object code
for that implementation; (3) any additional information
needed for loading that implementation onto the hetero-
geneous parallel system; (4) any needed inter-subtask
(i.e., inter-node) communications between that given
MDDG node and any other node in the MDDG (which
will also enforce data-dependency constraints among the
subtasks); and (5) the specific set of processors that will
be used to execute that MDDG node. In addition to this
node specific information, global MDDG information is
stored with each MDDG, including: (1) the schedule for

100

the execution order of the MDDG nodes and inter-subtask
data transfers; and (2) the expected execution time for one
iteration through the MDDG for the scenario (values of
dynamic parameters) that was specified along with (and is
the basis of) the corresponding ODDG. The execution
time information in (2) above is used by the HC Kernel
Monitor when deciding whether to change the mapping
(i.e., reconfigure), as discussed in the next section. As dis-
cussed earlier, the HC Kernel MDDG Generator passes
this MDDG to the MDDG Table Builder, to be stored as
part of the MDDG Table for the given application and
static environment characteristics.

The Application Developer can also specify an esti-
mate of the average overhead time to reconfigure the
mapping of the given application (and associated static
environment) on the hardware platform. This estimate
will represent the time needed to remap the application
during execution as a result of changes to the values of
the dynamic parameters. The estimated average
reconfiguration overhead time will be sent from the
Application Developer to the HC Kernel MDDG Genera-
tor through the IOS-App Builder software. If the
Application Developer does not know how to estimate
this value, the Application Developer can provide the
IOS-App Builder with a set of scenarios that are expected
to occur frequently, and the IOS-App Builder can use
these to actually perform remappings among these
scenarios to calculate an overhead estimate. Alterna-
tively, the IOS-App Builder can generate a relatively
small random subset of scenarios to use to calculate the
estimate. Rather than derive a single estimated average
overhead value, the reconfiguration time could be calcu-
lated for each of the S2 possible old and new
configuration pairs, and stored in the Knowledge Base;
however, this would require an excessive amount of space
to store and an excessive amount of off-line time to calcu-
late, and, thus, it is not advisable.

The HC Kernel MDDG Generator will pass the aver-
age reconfiguration overhead time estimate to the MDDG
Table Builder to be stored as part of the MDDG Table for
this application. This overhead time will be used by the
HC Kernel Monitor when deciding whether or not to per-
form a reconfiguration.

Thus, the HC Kernel MDDG Generator gets from
the ATR Kernel ODDG Generator an ODDG and an
associated scenario, it creates an MDDG containing the
information specified above, and then passes this MDDG
to the MDDG Table Builder that constructs a complete
table and stores it in the Knowledge Base. The rest of this
section will examine how the HC Kernel MDDG Genera-
tor can derive the information that comprises the MDDG.

In the HC field, the node specific items (1), (4), and
(5) defined at the beginning of this section are part of the

process of matching subtasks in a task graph to processors
in the heterogeneous system. The node specific items (3)
and (4) above are adaptations of standard operating sys-
tem functions that will need to be implemented, but will
not be discussed further here. The global MDDG item (1)
is referred to as the scheduling component of a mapping
in an HC environment.

For general HC, deriving an optimal matching and
scheduling is intractable (i.e., it is known to be an NP-
complete problem that requires exponential execution
time to perform an exhaustive search of the space of pos-
sible solutions [7]). This is true even when all execution
and communication times can be determined statically
(i.e., they are not input-data dependent). For the intended
application domain and hardware platforms, an exhaus-
tive search will take time proportional to the number of
processors in the hardware platform to the power of the
number of subtasks in the application. Thus, a heuristic is
used, as is common in the heterogeneous field [19], [20].

The structure of the HC Kernel MDDG Generator is
such that any good heuristic could be employed. The
heuristic that is used could be one that can be executed
during run time, such as a levelized-min-time heuristic
(e.g., [12]), or an off-line heuristic, such as a genetic algo-
rithm (e.g., [17], [21], [25]). In general, an off-line
heuristic can find a better mapping than an on-line run-
time heuristic because its execution time can be orders of
magnitude longer than that of the run-time algorithm. An
example of this difference in quality of matchings is pro-
vided in [25]. However, because of the longer execution
times of genetic-algorithm-based heuristics, it would not
be appropriate to execute a genetic algorithm while a
real-time application is running in order to decide how to
reconfigure resources based on the actual values of the
dynamic parameters at the end of a given iteration
through the underlying DDG.

For this application domain, it is possible to use off-
line precomputed mappings to reconfigure resources in
real time. In particular, the IOS will: (1) allow the HC
Kernel MDDG Generator to use genetic algorithms (or
other off-line heuristics) to determine a matching and
scheduling (i.e., MDDG) off-line for each scenario asso-
ciated with a production ATR application task; (2) allow
the user to select an initial MDDG when the application's
execution is initiated (through the ATR Kernel User Inter-
face); and (3) allow the HC Kernel Monitor to select a
new MDDG during execution if desired based on the
actual values of the dynamic parameters at the end of an
iteration through the corresponding DDG. Item (1) above
is the subject of this section, item (2) is part of the ATR
Kernel User Interface (not the HC Kernel), and item (3)
will be covered in the next section.

While the HC Kernel MDDG Generator can incor-

101

porate any appropriate off-line mapping heuristic, to
describe the design ideas involved in the HC Kernel it
will be assumed that a genetic algorithm is used. In this
environment, the genetic algorithm is a guided heuristic
search through the space of possible matchings and
schedulings (called solutions). The genetic algorithm in
[25] was found to be very successful, and used an HC
model that is quite compatible with the situation here.
However, in [25] each subtask was assigned a single
machine, so, for the type of platforms described in Sec-
tion 3, the "chromosome" representing the matching will
have to be adapted to allow for multiple processors of the
same type to be assigned to a subtask. This genetic algo-
rithm and a method for adapting it for use in the ATR
environment are summarized in the appendix.

The approach in [25] differs from other genetic algo-
rithm approaches to matching and scheduling for hetero-
geneous systems in the literature ([17], [21], [23]) in
many ways. The most significant difference from [17] and
[21] is that the [25] model of a heterogeneous system is
more realistic (e.g., [21] assumes an unlimited number of
machines). The main difference between [25] and [23] is
that in [25] it is assumed that there is a given target
hardware platform, whereas [23] selects processors to be
included in the platform and uses processor cost as a co-
metric. Thus, for the HC Kernel for the application and
platform environments discussed in Sections 2 and 3, it is
most appropriate to build on the [25] genetic approach.

For the intended application domain here, the genetic
algorithm needs the following information to create a
matching and scheduling, i.e., to transform an ODDG into
an MDDG: (1) the structure of the underlying DDG; (2)
the expected execution time of each subtask on a set of
processors (of the same type) assigned, as a function of
the type of the processors and the number of processors;
(3) the inter-subtask data transfers needed, in terms of
formats and expected sizes of the data items to be
transferred; (4) the expected time to send data from one
processor to another as a function of the size of the data
item to be transferred; and (5) the number of each type of
processor that is in the hardware platform. The genetic
algorithm selects a subset of possible solutions and then
evaluates them using the information in items (1) to (5)
above. The genetic algorithm uses the results of the
evaluations of these possible solutions to generate a new
set of possible solutions. This process iterates until some
stopping criteria is met (e.g., no improvement in solution
quality after a given fixed number of iterations within the
genetic algorithm). When the genetic algorithm stops
iterating, the best solution found is used as the mapping
for the MDDG.

How the HC Kernel MDDG Generator gets each of
the above information items is now considered. Much of

the relevant information flow is depicted in Figure 3.
The HC Kernel MDDG Generator gets the item (1)

from the ODDG that is passed to it from the ATR Kernel
ODDG Generator. The genetic algorithm uses a topologi-
cal sort (i.e., a valid total ordering) of the subtasks in the
ODDG to establish the order in which it evaluates the
nodes of the ODDG.

Item (2) is provided by the Application Developer
and stored in the Algorithm Database. Information about
static characteristics may be needed in some cases (e.g.,
the size of subtask input and output data blocks). The HC
Kernel MDDG Generator will receive this from the IOS-
App Builder. The expected execution times for subtasks
calculated from this information are used by the genetic
algorithm in its evaluation of possible solutions.

Recall that each subtask of the underlying DDG
corresponds to a node of the ODDG that may contain
more than one possible algorithm to perform the subtask.
For each of these algorithms, there is at least one imple-
mentation that can execute on the hardware platform, and
possibly more than one. When the genetic algorithm
evaluates a given possible mapping solution (i.e., assign-
ment of resources), it selects the implementation for the
subtask that has the smallest expected execution time for
the resources assigned to that subtask. If no implementa-
tion is available for that assignment, that mapping is con-
sidered invalid by the genetic algorithm and is discarded
from the set of possible mappings.

There may be cases when there are inter-subtask
implementation interactions that must be considered when
selecting the implementation for a given subtask. One
example of how this can occur is when some subtask A
sends a data block, e.g., an image, to a subtask B, and the
image is stored using different formats for the two sub-
tasks' implementations selected (e.g., assigning rectangu-
lar subimages to processors in a multiprocessor imple-
mentation for subtask A and row striping of subimages in
a multiprocessor implementation for subtask B). When
this occurs, overall implementations based on each data
format are considered, and the one with the smallest exe-
cution time is used as a basis for selecting the implemen-
tations for subtasks A and B for this possible solution
mapping. For the intended application domain, this
should not cause a significant time penalty relative to the
total execution time for the genetic algorithm to generate
a mapping for the MDDG being constructed.

An alternate approach for handling mismatched data
block storage organizations is to allow each subtask
implementation to use its own choice of organization and
convert between organizations during run time. For the
intended real-time ATR applications, this option will not
be considered; however, if it becomes desirable to con-
sider this option in the future, the genetic algorithm

102

framework of [25] will allow it to be included.
Item (3) is provided by the Application Developer

and stored in the Algorithm Database as part of the
input/output parameter descriptions (see [2]). This inter-
subtask data transfer information is used by the genetic
algorithm (in conjunction with the information in item
(4)) in its evaluation of possible solutions.

Item (4) is provided by the Platform Architect and
stored in the Knowledge Base as part of the hardware
description. Together with the information from item (3),
the genetic algorithm can evaluate the expected inter-
subtask communication times for a given possible map-
ping solution.

Item (5) is provided by the Platform Architect and
stored in the Knowledge Base as part of the hardware
description. It is used by the genetic algorithm to know
the upper bound on the number of each type of processor
that can be assigned. It should be noted that in some
cases the optimal mapping (in terms of total execution
time for an iteration through the ODDG) may not use all
available processors (i.e., in some cases the overhead
involved in using all of the processors may make it better
to use only a subset of the available processors, as dis-
cussed in [18]).

Thus, using all of this information, the genetic algo-
rithm can create a matching and scheduling to be included
in the MDDG for the given ODDG. As part of the
evaluation for the potential solutions, the genetic algo-
rithm computes the expected total execution time per
iteration for each solution. For the mapping solution
chosen, this expected total time is stored with the MDDG,
as mentioned earlier. The completed MDDG is sent to
the MDDG Table Builder.

7: HC Kernel Monitor

The HC Kernel Monitor is the on-line component of
the IOS (Figure 2) responsible for (1) establishing the ini-
tial mapping of the given application onto the hardware
platform, and (2) monitoring the execution of the
application and at the end of each iteration through the
corresponding DDG deciding if and how the mapping of
the application onto the hardware platform should be
changed based on information about the actual values of
the dynamic parameters. To establish the initial mapping,
the HC Kernel Monitor uses the MDDG index (scenario)
and associated MDDG Table identifier passed to it from
the ATR Kernel User Interface. With this index and
identifier, the HC Kernel Monitor can access from the
appropriate MDDG Table in the Knowledge Base the
MDDG entry selected by the Application User (see Fig-
ure 2). The HC Kernel Monitor then passes the relevant
information to the Basic Kernel (i.e., loading, configuring,

and scheduling information). The Basic Kernel accesses
the implementation code directly from the Algorithm
Database using pointers provided with the loading infor-
mation. The Basic Kernel can then begin execution of the
application task.

During execution of the application, the HC Kernel
Monitor receives updated actual values of the dynamic
parameters at the end of each iteration through the
corresponding DDG. Specifically, after all subtasks'
implementations have completed execution for a given
iteration of the DDG corresponding to the application,
and before the next iteration begins, the latest values of
these dynamic parameters will be sent to the HC Kernel
Monitor from the Basic Kernel. The HC Kernel Monitor
will use the most recent values of these dynamic parame-
ters to estimate if changing the matching and scheduling
will reduce the expected execution time of the next itera-
tion through the corresponding DDG. Thus, this decision
is made in real time after all subtasks' implementations
for the current iteration have finished executing and
before any subtask implementations begin to execute for
the next iteration.

If it is desirable to change the mapping, then it is the
responsibility of the HC Kernel Monitor to select a new
matching and scheduling (i.e., a new MDDG entry from
the given MDDG Table) to use for the next execution
iteration through the corresponding DDG. If not, the
same mapping will continue to be used.

To determine if the current mapping should be
changed, the HC Kernel Monitor performs the following
sequence of steps.
(1) For each dynamic parameter, the representative value
included in the allowable choices for that parameter (as
specified by the Scenario Generator) is found that is
closest in absolute difference to the current actual value
for that parameter. This is done for all D dynamic param-
eters for this application. The resulting vector of D
representative values is used as the approximation of the
set of current actual dynamic parameters in terms of a
precomputed scenario (MDDG Table index). Call this
new MDDG Table index A. If MDDG Table index A is
the same MDDG Table index as the one used for the
current iteration, the next iteration of the application
proceeds with the same mapping as the current iteration.
If MDDG Table index A is not the same as the one used
for the current iteration, then steps (2) through (5) are per-
formed.
(2) The HC Kernel Monitor then accesses the MDDG
Table for this application, using A as the index. The
expected execution time for an iteration through the
MDDG Table entry corresponding to MDDG Table index
A is used as an estimate of what the expected execution
time will be for the actual dynamic parameters for the

103

next iteration of the application if the remapping occurs.
Call this time TI-
CS) The actual execution time of the last (current) iteration
through the application's corresponding DDG is used as
an estimate for the time to execute the next iteration with
the current actual dynamic parameters with the current
mapping (this is only an estimate because some or all of
these parameter values may have been different at the
beginning of the current iteration and changed sometime
during the execution of this iteration). Call the actual
execution time for the current iteration T2.
(4) When making the decision to reconfigure the
resources, in addition to comparing Tl and T2, the HC
Kernel Monitor must also consider the time required to
perform the reconfiguration (e.g., any code and data
movements that the reconfiguration will require). The
average reconfiguration overhead time estimate stored
with the MDDG Table is used. Call this overhead time
TO. (The HC Kernel Monitor could start with the esti-
mate provided with the MDDG Table and then, for each
time a reconfiguration is performed for this application,
measure the actual overhead time and use this experiential
information to modify the most recent estimate in some
weighted way.)
(5) If (Tl+TO)<T2, then the HC Kernel Montior
instructs the Basic Kernel to change the mapping to the
one corresponding to the MDDG Table entry for MDDG
Table index A.

Thus, the HC Kernel Monitor can use the actual
values of dynamic parameters at the end of each execu-
tion iteration of the application to make remapping deci-
sions and select new mappings derived by a time-
consuming off-line heuristic. As can be observed, the
execution of the computationally simple steps (1) to (5)
above can be done in real time, causing relatively negligi-
ble overhead compared to the expected execution time of
an iteration through an ATR DDG.

The decisions made by the HC Kernel Monitor are
based on heuristics and approximations. Thus, pathologi-
cal cases could cause a bad decision to be made. In gen-
eral, the ideas underlying the HC Kernel Monitor will
lead to reduced overall application execution time for the
environment under consideration.

As an example of a possible pathological case that
could occur, if T1=T2-/ and TO = r'+l, then
(Tl + TO) > T2, and reconfiguration would not be done.
If the values of the dynamic parameters do not change for
the next 20 iterations, the execution time for those itera-
tions will total approximately 20xT2. If reconfiguration
had been done, the execution time for those iterations
would total approximately 20xTl = 20*T2 - 20XJ.

Because the values of dynamic parameters depend on the

input data, the number of iterations that will occur with no
changes to the dynamic parameter values can never be
predicted with certainty. If situations such as the above
do appear to occur frequently for a given application, it
would be possible to instrument the HC Kernel Monitor
to collect the relevant statistics and then develop and add
special rules. For this example, a new rule may be that if
after so many iterations with no change to the dynamic
parameter values, if the relationship between TO and
(T2-T1) is smaller than some threshold, perform the
remapping. However, there is no guarantee that the
dynamic parameter values will not change during the next
iteration, so the decision to include such rules must be
made carefully.

Thus, by studying properties of the application
domain, the IOS builder may decide to fine tune the HC
Kernel Monitor in different ways. The HC Kernel design
has the flexibility to allow such tuning.

8: Summary

This study focused on a design for an IOS for itera-
tive ATR tasks and an associated specific class of dedi-
cated heterogeneous hardware platforms. For the compu-
tational environment considered, an HC Kernel was
presented for making real-time on-line input-data depen-
dent remappings of the application subtasks to the proces-
sors in the heterogeneous hardware platform using previ-
ously stored off-line statically determined mappings. In
particular, it was shown that the HC Kernel can be used to
create the MDDG Table off-line and then use it to make
real-time on-line decisions and selections of mappings. In
addition to the HC Kernel, the relevant parts of other
components of the IOS were briefly discussed. The
overall strategy of the IOS and the interactions of the IOS
components are summarized in Figures 1 to 3. The IOS
ideas introduced here can also be used for other
application domains and classes of hardware platforms
whose characteristics are similar to those of the
applications and platforms considered here.

Acknowledgments: The authors thank Janet M. Siegel,
Min Tan, and Lee Wang for their comments.

References

[1] S. Brandt and J. R. Budenske, "Starcon~a reconfigurable
fieldable signal processing system," SPIE Conf. on Image
Understanding in the '90s: Building Systems that Work,
SPIE Vol. 1406, pp. 122-126, Oct. 1990.

[2] J. R. Budenske, H. J. Siegel, R. S. Ramanujan, K. J.
Thurber, and M. D. Pritt, Intelligent Operating System
Final Technical Report, Technical Report ATC-RD-96-

104

04, Architecture Technology Corp., Minneapolis, MN,
1996.

[3] C. H. Chu, E. J. Delp, L. H. Jamieson, H. J. Siegel, F. J.
Weil, and A. B. Whinston, "A model for an intelligent
operating system for executing image understanding tasks
on a reconfigurable parallel architecture," Journal of
Parallel and Distributed Computing, Vol. 6, No. 3, pp.
598-622, June 1989.

[4] P. David, S. Balakirsky, and D. Hillis, "A real-time
automatic target acquisition system," Conf. on Unmanned
Vehicle Systems, pp. 183-198, July 1990.

[5] P. David, P. Emmerman, and S. Ho, "A scalable architec-
ture system for automatic target recognition," 13th
AIAA/IEEE Digital Avionics Systems Conf., pp. 414-420,
Oct. 1994.

[6] L. Davis, ed., Handbook of Genetic Algorithms, Van Nos-
trand Reinhold, New York, NY, 1991.

[7] D. Fernandez-Baca, "Allocating modules to processors in
a distributed system," IEEE Transactions on Software
Engineering, Vol. SE-15, No. 11, pp. 1427-1436, Nov.
1989.

[8] R. F. Freund, "The challenges of heterogeneous comput-
ing," Parallel Systems Fair at the 8th Int'l Parallel Pro-
cessing Symp., pp. 84-91, Apr. 1994.

[9] R. F. Freund, T. Kidd, D. Hensgen, and L. Moore,
"SmartNet: A scheduling framework for heterogeneous
computing," 2nd Int'l Symp. on Parallel Architectures,
Algorithms, and Networks (I-SPAN '96), pp. 514-521,
June 1996.

[10] D. E. Goldberg, Genetic Algorithms in Search, Optimiza-
tion and Machine Learning, Addison-Wesley, Reading,
MA, 1989.

[11] J. H. Holland, Adaptation in Natural and Artificial Sys-
tems, Univ. of Michigan Press, Ann Arbor, MI, 1975.

[12] M. A. Iverson, F. Ozguner, and G. J. Folien, "Paralleliz-
ing existing applications in a distributed heterogeneous
environment," 1995 Heterogeneous Computing Workshop
(HCW '95), pp. 93-100, Apr. 1995.

[13] A. Ghafoor and J. Yang, "Distributed heterogeneous
supercomputing management system," IEEE Computer,
Vol. 26, No. 6, pp. 78-86, June 1993.

[14] A. Khokhar, V. K. Prasanna, M. Shaaban, and C. L.
Wang, "Heterogeneous computing: Challenges and
opportunities," IEEE Computer, Vol. 26, No. 6, pp. 18-
27, June 1993.

[15] J. L. Ribeiro Filho and P. C. Treleaven, "Genetic-
algorithm programming environments," IEEE Computer,
Vol. 27, No. 6, pp. 28-43, June 1994.

[16] G. Rudolph, "Convergence analysis of canonical genetic
algorithms," IEEE Trans. Neural Networks, Vol. 5, No. 1,
pp. 96-101, Jan. 1994.

[17] P. Shroff, D. W. Watson, N. S. Flann, and R. F. Freund,
"Generic simulated annealing for scheduling data-

dependent tasks in heterogeneous environments," 5th
Heterogeneous Computing Workshop (HCW '96), pp. 98-
117, Apr. 1996.

[18] H. J. Siegel, J. B. Armstrong, and D. W. Watson, "Map-
ping computer-vision-related tasks onto reconfigurable
parallel processing systems," IEEE Computer, Vol. 25,
No. 2, pp. 54-63, Feb. 1992.

[19] H. J. Siegel, J. K. Antonio, R. C. Metzger, M. Tan, and Y.
Alexander Li, "Heterogeneous computing," in Parallel
and Distributed Computing Handbook, ed. A. Y. Zomaya,
McGraw-Hill, New York, NY, pp. 725-761,1996.

[20] H. J. Siegel, H. G. Dietz, and J. K. Antonio, "Software
support for heterogeneous computing," in The Computer
Science and Engineering Handbook, ed. A. B. Tucker, Jr.,
CRC Press, Boca Raton, FL, pp. 1886-1909,1997.

[21] H. Singh and A. Youssef, "Mapping and scheduling
heterogeneous task graphs using genetic algorithms," 5th
Heterogeneous Computing Workshop (HCW '96), pp. 86-
97, Apr. 1996.

[22] M. Srinivas and L. M. Patnaik, "Genetic algorithms: A
survey," IEEE Computer, Vol. 27, No. 6, pp. 17-26, June
1994.

[23] Y. G. Tirat-Gefen and A. C. Parker, "MEGA: An
approach to system-level design of application specific
heterogeneous multiprocessors," 5th Heterogeneous Com-
puting Workshop (HCW '96), pp. 105-117, Apr. 1996.

[24] D. Tolmie and J. Renwick, "HiPPI: Simplicity yields suc-
cess," IEEE Network, Vol. 7, No. 1, pp. 28-32, Jan. 1993.

[25] L. Wang, H. J. Siegel, and V. Roychowdhury, "A
genetic-algorithm-based approach for task matching and
scheduling in heterogeneous environments" 5th Hetero-
geneous Computing Workshop (HCW '96), pp. 72-85,
Apr. 1996.

AUTHOR BIOGRAPHIES

John R. Budenske was born in Faribault, Minnesota. He
earned his B.S. in Computer Science at the University of
Minnesota in 1983. From 1982 to 1992, John worked at
the Honeywell Systems and Research Center (later to
become the Alliant Techsystems Research and Technol-
ogy Center) and was involved in research in artificial
intelligence, signal image processing, robotics, simula-
tion, and database systems. During that time, in 1987, he
received his M.S. in Computer Science from the Univer-
sity of Minnesota. From 1992 to 1996, John worked on
advanced methods for software reengineering and object
oriented programming at Loral Defense Systems in
Eagan, Minnesota. In 1993, he earned his Ph.D. in Com-
puter Science, also from the University of Minnesota,
where he researched methods for intelligent plan execu-
tion for robotic systems. Currently, he is performing

105

research in intelligent control, software engineering, elec-
tronic collaboration, and intelligent agents for Architec-
ture Technology Corporation in Minneapolis, Minnesota.
In intelligent control he is investigating methods for con-
trolling heterogeneous (multi-processor, multi-sensor,
multi-driver) systems to execute tasks that require infor-
mation sensed from the current environment, as well as
domain knowledge, in order determine subsequent pro-
cessing steps (e.g., complex robotics tasks).

Ranga S. Ramanujan is the Director of Research and
Development at Architecture Technology Corporation.
He received the B.S. degree from Annamalai University,
India, the M.S. degree from Clarkson University, New
York, and the Ph.D. degree from the University of Iowa,
all in Electrical Engineering. He has over 12 years of
industrial research and development experience in the
areas of parallel and distributed computing, software
engineering, networking, and fault-tolerant computing.
Dr. Ramanujan has served as the principal investigator of
several research efforts sponsored by the US Department
of Defense, the National Science Foundation (NSF), and
the National Aeronautics and Space Administration
(NASA) covering the areas of real-time embedded sys-
tems, parallel processing, distributed computing, and net-
work architectures.

Howard Jay Siegel is a Professor and Coordinator of the
Parallel Processing Laboratory in the School of Electrical
and Computer Engineering at Purdue University. He
received two BS degrees from the Massachusetts Institute
of Technology (MIT), and the MA, MSE, and PhD
degrees from Princeton University. He has coauthored
over 230 technical papers, has coedited seven volumes,
and wrote the book Interconnection Networks for Large-
Scale Parallel Processing (second edition 1990). He is a
Fellow of the IEEE, was a Coeditor-in-Chief of the Jour-
nal of Parallel and Distributed Computing, and is
currently on the Editorial Boards of both the IEEE Tran-
sactions on Parallel and Distributed Systems and the
IEEE Transactions on Computers. He is an international
keynote speaker and tutorial lecturer. Prof. Siegel's
research and consulting interests include heterogeneous
computing, parallel algorithms, interconnection networks,
and reconfigurable parallel computer systems. In the area
of heterogeneous computing, he is examining ways to
match segments of a task to different machines in a
heterogeneous suite to exploit the varied computational
capabilities available. His algorithm work explores the
factors involved in mapping a problem onto a parallel
processing system to minimize execution time. Topologi-
cal properties and fault tolerance are the focus of his
research on interconnection networks for large-scale

parallel machines. He is analytically and experimentally
investigating the utility of the three dimensions of
dynamic reconfigurability supported by the PASM design
ideas and the small-scale proof-of-concept prototype:
mixed-mode parallelism, switchable inter- processor com-
munications, and system partitionability. Prof. Siegel has
been Program Chair/Co-Chair or General Chair/Co-Chair
of seven international conferences and Chair/Co-Chair of
four workshops.

APPENDIX:

This appendix summarizes the genetic-algorithm-
based approach for subtask matching and scheduling in
HC environments that was presented in [25]. It is fol-
lowed by a discussion of modifications needed to make it
suitable for dealing with multiple processors of the same
type being assigned to a given subtask. In the summary
below, a machine corresponds to a processor type in the
ATR environment.

An application task is decomposed into a set of sub-
tasks B of size | B |. Let b; be the i-th subtask. An HC

suite consists of a set of machines M of size | M |. Let nij

be the j-th machine. Each machine can be a different
type. The estimated expected execution time of subtask
bj on machine nij is Ty. The global data items (gdis), i.e.,

data items that need to be transferred between subtasks,
form a set G of size | G |. Let gdik be the k-th global data

item. The following assumptions about the applications
and HC environment are made. The data dependencies
among the subtasks are known and are represented by a
directed acyclic graph (DAG). For each global data item,
there is a single subtask that produces it (producer) and
there are some subtasks that need this data item
(consumers). Each edge goes from a producer to a
consumer and is labeled by the global data item that is
transferred over it. This application task has exclusive
use of the HC environment, and the genetic-algorithm-
based matcher/scheduler controls the HC machine suite
(hardware platform). Subtask execution is non-
preemptive. The heuristic assumes that all input data
items of a subtask must be received before its execution
can begin, and none of its output data items is available
until the execution of this subtask is finished.

Genetic algorithms (GAs) are a promising heuristic
approach to optimization problems that are intractable [6],
[10], [11]. There are a great variety of approaches to
GAs; many are surveyed in [15], [22]. The first step is to
encode some of the possible solutions as chromosomes,
the set of which is referred to as a population. In the [25]

106

approach, each chromosome consists of two parts: the
matching string and the scheduling string.

Let mat be the matching string, which is a vector of
length |B|, where mat(i) = nij (i.e., subtask b; is assigned
to machine irij). Typically, multiple subtasks will be
assigned to the same machine, and then executed in a
non-preemptive manner based on an ordering that obeys
the precedence constraints (data dependencies) specified
in the application task DAG.

The scheduling string is a topological sort of the
DAG (i.e., a valid total ordering of the partially orered
DAG). Define ss to be the scheduling string, which is a
vector of length |B|, where ss(k) = bj, 0^i,k< |B| (i.e.,
subtask bj is the k-th subtask in the scheduling string).
Because it is a topological sort, if ss(k) is a consumer of a
gdi produced by ss(j), then j < k. The scheduling string
gives an ordering of subtasks that is used by the
evaluation step. Thus, in this approach, each chromo-
some is a two-tuple <mat, ss>.

In the initial population generation step, a predefined
number of chromosomes are created. A new matching
string is obtained by assigning each subtask to a machine
randomly. The DAG is first topologically sorted to form
a basis scheduling string. Then, for each chromosome to
be generated, this basis string is mutated multiple times
using the scheduling string mutation operator (defined
below) to generate a valid ss vector. The solution from a
non-evolutionary baseline (BL) heuristic is also included
in the initial population. It is common in GA applications
to incorporate solutions from some non-evolutionary
heuristics into the initial population, which may reduce
the time needed for finding a satisfactory solution [6]. It
is guaranteed that the chromosomes in the initial popula-
tion are distinct from each other.

After the initial population is determined, the genetic
algorithm iterates until a predefined termination criteria is
met. Each iteration consists of the selection, crossover,
mutation, and evaluation steps.

Each chromosome is associated with a fitness value,
which is the completion time of the solution (i.e., match-
ing and scheduling) represented by this chromosome (i.e.,
the expected execution time of the application task if the
matching and scheduling specified by this chromosome
were used). Overlapping among all of the computations
and communications performed is limited only by inter-
subtask data dependencies and the availability of the
machines and the inter-machine network. The fitness
values are determined in the evaluation step (discussed
later).

In the selection step, all of the chromosomes in the
population are ordered (ranked) by their fitness values.
Then a rank-based roulette wheel selection scheme is

used to implement proportionate selection [11]. The
population size is kept constant and a chromosome
representing a better solution has a higher probability of
having one or more copies in the next generation popula-
tion. This GA-based approach also incorporates elitism,
i.e., the best solution found so far is always maintained in
the population [16].

The selection step is followed by the crossover step,
where some chromosomes are paired and corresponding
components of the paired chromosomes are exchanged.
The crossover operator for the scheduling strings ran-
domly chooses some pairs of the scheduling strings in the
current population. For each pair, it randomly generates a
cutoff point, and divides the scheduling strings of the pair
into top and bottom parts. Then, the subtasks in each bot-
tom part are reordered. The new ordering of the subtasks
in the bottom part of one string is the relative positions of
these subtasks in the other original scheduling string, thus
guaranteeing that the newly generated scheduling strings
are valid schedules. The crossover operator for the
matching strings randomly chooses some pairs of the
matching strings in the current population. For each pair,
it randomly generates a cutoff point, and divides both
matching strings of the pair into two parts. Then the
machine assignments of the bottom parts are exchanged.

The next step is mutation. The scheduling string
mutation operator randomly chooses some scheduling
strings in the current population. Then for each chosen
scheduling string, it randomly selects a victim subtask.
The valid range of the victim subtask is the set of the
positions in the scheduling string at which this victim sub-
task can be placed and still have a valid topological sort
of the DAG. After a victim subtask is chosen, it is moved
randomly to another position in the scheduling string
within its valid range. The matching string mutation
operator randomly chooses some matching strings in the
current population. For each chosen matching string, it
randomly selects a subtask entry. Then the machine
assignment for the selected entry is changed randomly to
another machine.

The last step of an evolution iteration is the
evaluation step to determine the fitness value of each
chromosome in the current population (discussed earlier).
The computation characteristics of the subtasks are
obtained from the array T described above. The com-
munication characteristics of the given HC system are
also needed. To demonstrate the evaluation process, a
communication subsystem that is modeled after a HiPPI
LAN with a central crossbar switch [24] was assumed for
the tests that were conducted (discussed further below).
(For the ATR environment, the inter-processor communi-
cation matrix described in Section 4 will be used in the

107

evaluation of the fitness value for each chromosome in
the current population.) As stated earlier, the above steps
of selection, crossover, mutation, and evaluation are
repeated until one of the stopping criteria are met: (1) the
number of iterations reaches some limit (e.g., 1000), (2)
the population converged (all the chromosomes had the
same fitness value), or (3) the best solution found was not
improved after some number of iterations (e.g., 150).

In the tests of this GA approach in [25], simulated
program behaviors were used. GA simulation studies
were conducted using the following parameters. The pro-
babilities for scheduling and matching string crossovers
and scheduling and matching string mutations were 0.4,
0.4, 0.1, 0.1, respectively. This set of numbers was
selected by experimentation. Small-scale tests were con-
ducted with up to ten subtasks, three machines, seven glo-
bal data items, and population size 50. For each test, the
GA-based approach found a solution (matching and
scheduling) that had the same expected completion time
for the task as that of the optimal solution found by
exhaustive search. Larger tests with up to 100 subtasks
and 20 machines were conducted. Each of them had its
number of global data items in the range (2/3)*|B| < |G| <
|B|. The population size for these larger tests was chosen
to be 200. This GA approach produced solutions (match-
ings and schedulings) that averaged from 150% to 200%
better than those produced by the non-evolutionary level-
ized min-time (LMT) heuristic proposed in [12]. The
heuristic in [12] was selected for comparison because it
used a similar model of HC.

Now consider one way to adapt this GA heuristic for
the case of allowing multiple processors to be assigned to
a subtask. There are different ways in which this can be
done; the method discussed below is just one example.

Recall that each machine nij will represent a proces-
sor type in the ATR environment. After the initial popu-
lation is generated, for each subtask the following is done.
If the subtask is assigned to machine nij, then a random
number is generated that is from one to the total number
of processors corresponding to type nij that are in the
hardware platform. This will be the number of processors
of type irij that are assigned to this subtask. As described
earlier, in the case for [25], if multiple subtasks are
assigned to the same machine, then the subtasks are exe-
cuted on that machine is some order. In the ATR environ-
ment, if multiple subtasks are assigned to a total number
of processors of type nij that exceeds the number of that
type that are in the hardware platform, then the subtasks
that are assigned to the same processors must be executed
on those processors in the order specified by the schedul-
ing string. Because of the symmetry assumption about
the communications among processors of the same type

(see Section 3), it does not matter which processors of the
same type are used for a subtask. If the Algorithm
Database implementation information (Section 6) does
not contain an implementation for some algorithm associ-
ated with that subtask in the ODDG that will execute on
the number of type nij processors assigned to that subtask,
then that assignment is considered invalid, and another
choice for number of processors is made (or processor
type if necessary). Thus, each matching string now
matches a subtask with one or more processors of the
same type.

Performing mutations on the matching strings is
done as specified earlier, except now in addition to ran-
domly selecting a new machine (processor type), a
number of processors of that type is randomly assigned
(in the same manner as done for the initial population).
Crossovers are done in the same way as before, except
now instead of swapping machine assignments, the pro-
cessor type and number of processors are swapped
together.

Thus, with these modifications, the successful GA in
[25] can be used in the ATR environment. The various
GA parameters, such as population size and probability of
performing a mutation, will be set based on experiments
conducted with the ATR problem domain.

108

'Application
\ User

ATR
Kernel

HC
Kernel < -

Basic
Kernel

Heterogeneous
Parallel
System

^ Task Flow

-► System & Application State Information Flow

->• Algorithm Database and Knowledge Base Information Flow

► Platform Specification

Z) Data I/O

M V
Sensors

A
vii

Figure 1: IOS Conceptual Design

Selected DDG
&

Characteristics

4pp|lcation\ f*,om Menu fc

User /* w

ATR
Kernel
User

Interface

MDDG
Index
 ►

HC
Kernel
Monitor

N*
Loading

Configuring
& Scheduling
Information Basic

Kernel

f
i

Heterogeneous
Parallel
System

C—^ Sensors
V"l/

A
--JI

Figure 2: IOS On-line Components

109

CD
£ T3 XI
.2 C « to

ts <° l- V

^ =o !2
Q. d) Q _>
5-2 Q LU

~A
3
O

?l E

C? (0
m"- CO

o
Q.
E
o u
0)
c

O
(0 g

0)
i.
3
D)
il

110

Case Study

Distributed Interactive Simulation for Synthetic Forces

Paul Messina, Sharon Brünett, Dan Davis, Tom Gottschalk
California Institute of Technology, Pasadena, CA, USA

David Curkendall, Laura Ekroot, Herb Siegel
Jet Propulsion Laboratory, Pasadena, CA, USA

Distributed Interactive Simulation for Synthetic Forces

P. Messina, S. Brünett, D. Davis, T. Gottschalk
Center for Advanced Computing Research

California Institute of Technology
Pasadena, California 91125

D. Curkendall, L. Ekroot, and H. Siegel
The ALPHA Group

Jet Propulsion Laboratory-
Pasadena, California 91109

Abstract
Interactive simulation of battles is a valuable tool

for training. The behavior and movement of hundreds
or thousands of entities (tanks, trucks, airplanes, mis-
siles, etc.) is currently simulated using dozens or more
workstations on geographically distributed LANs con-
nected by WANs. The simulated entities can move,
fire weapons, receive "radio" messages, etc. The ter-
rain that they traverse may change dynamically, for
example due to rains turning dirt roads into mud or
bombs forming craters. Thus the entities need to re-
ceive frequent information about the state of the ter-
rain and the location and state of other entities. Typ-
ically, information is updated several times a second.
As the number of simulated entities grows, the num-
ber of messages that need to be sent per unit of time
can grow to unmanageable numbers. One approach to
reducing the number of messages is to keep track of
what entities need to know about which other entities
and only send information to the entities that need to
know. For example, tanks in Germany need not know
about a change of course of a ship in the Pacific. This
technique for reducing messages is known as interest
management.

Caltech and its Jet Propulsion Laboratory have im-
plemented a simulation of this type on several large-
scale parallel computers, exploiting both the compute
power and the fast messaging fabric of such systems.
The application is implemented using a heterogeneous
approach. Some nodes are used to simulate entities,
some to manage a database of terrain information,
some to provide interest management functions, and
some to route messages to the entities that do need
to receive the information. Some of these tasks re-
quire more memory than others, some require faster
processing capability. Thus the application is hetero-
geneous both in its functional decomposition and to a

'Support for this research was supplied by the Informa-
tion Technology Office, DARPA, with contract and technical
monitoring via Naval Research and Development Laboratory
(NRaD)

smaller extent in the characteristics of the hardware
that is used to run each function. In addition, work-
stations are used to run the Graphical User Interface
(GUI) that is used to control the simulation and to vi-
sualize the simulation as it is running. This approach
has been used to run an exercise with over twice the
previous record number of vehicles simulated.

A near-term goal is to simulate 50,000 entities. To
do so, it will be necessary to run the simulation on
several geographically distributed SPPs. For pragmatic
reasons (availability of sufficiently large systems), the
machines employed will have different architectures.

1 Introduction
Simulation of synthetic environments and activi-

ties for training of military personnel is routinely car-
ried out on distributed, homogeneous computing as-
sets. Caltech has undertaken a project whose goal is
to increase substantially the size and fidelity of these
simulations. Our approach of using large-scale parallel
computers has led to a heterogeneous computing strat-
egy. This paper describes our software architecture,
our motivation for using a heterogeneous approach,
and preliminary experience with the implementation
of the simulation program on parallel systems.

2 Background
The United States Department of Defense has

found it increasingly useful to train individuals and
commands using simulated environments. These sim-
ulations have become more realistic and effective with
the advent of computer-generated scenarios, visual-
izations, and battlefield entity behaviors. Of partic-
ular importance has been the development and use
of Distributed Interactive Simulation (DIS). A large
implementation of the DIS was conducted by several
units located in Europe in November of 1994. It was
called Synthetic Theater of War—Europe (STOW-
E). It combined the classic manned simulator entities
(as originally developed under SIMNET) with Modu-
lar SemiAutomated Forces (ModSAF) simulation soft-

0-8186-7879-8/97 $10.00 © 1997 IEEE
112

ware executing on networks of workstations; the in-
dividual ethernet networks were themselves intercon-
nected by Wide Area Network (WAN) links. The to-
tal number of simulators and ModSAF entities used in
this exercise was about 2,000. Stimulated in part by
this successful exercise, current simulation initiatives
have vehicle count goals in the 10,000-50,000 range.
A vehicle is defined in the military argot to be any
substantial entity—ground, air vehicles, autonomous
personnel, etc. In addition to a desire to simulate
more entities, the trainers and the trainees are con-
stantly asking for more resolution, faster refresh rates,
higher fidelity, more automatic behaviors, increased
training environment responsiveness, and overall im-
provements in the training environment. Finally, there
is the emergent realization that faster than real-time
analytic simulations will be required in the future to
support the operational use of simulations in the bat-
tlefield itself. This latter capability is essential if the
simulation software is to be used for planning as op-
posed to training. It should be noted that this class of
simulation has applications in other fields, for example
for emergency response to natural disasters.

These demands for increased capability and capac-
ity lead one naturally to consider devising a software
architecture and computer platform strategy that will
support a wide range of requirements. In other words,
a scalable approach is needed.

Caltech and its Jet Propulsion Laboratory (JPL)
have a long history of using parallel computer ar-
chitectures for scalability of scientific and engineer-
ing simulations, including discrete event simulations.
In addition, in the CASA gigabit testbed project [1],
we performed experiments with distributed, hetero-
geneous implementations of several applications ex-
ecuting on parallel supercomputers connected by a
high-speed wide-area network. Hence when we de-
cided to tackle the challenge of supporting more am-
bitious simulations, we quickly decided to apply the
large-scale capabilities of High Performance Comput-
ing and Communications (HPCC) assets as an alter-
native to WAN-linked sub networks of workstations in
order to develop and demonstrate the software archi-
tectures needed to reach these goals.

The Caltech/JPL project, called Synthetic Forces
Express (SF Express), selected ModSAF as the base
software to enhance and use to carry out scaling ex-
periments. The SF Express project has a two-year
goal to achieve a 50,000 vehicle count simulation via:

The efficient operation of the ModSAF software on
individual, large, SPP platforms and, the networking
of two or more of these large platforms together as

a single metacomputer for the largest runs. These
WAN's will include connectivity to more conventional
ModSAF assets of workstations and simulators.

At present, the SF Express Team has pilot versions
of its emerging software architecture operational on
Intel Paragon platforms at Caltech and Oak Ridge Na-
tional Laboratory (ORNL) and on IBM SP2 systems
at Caltech and Ames Research Center (ARC). Use of
the much larger SP2 at the Cornell Theory Center's
SP2 is about to begin. Efforts are also underway to
port the SF Express software to the CRAY T3D and
T3E class of machines.

At this writing a full 10,000 vehicle scenario, ap-
proximately twice the size achieved previously, has
been demonstrated on several occasions using the
1,024-node ORNL machine. Indeed, one of these
demonstrations took place live during Supercomput-
ing '96 from the floor of the Pittsburgh Convention
Center. Software adapted to the SP2 has achieved
runs of up to 8,000 vehicles on the 143-node SP2 at
ARC.

To date, these simulations have been run using sce-
narios created by NRAD and executed using the sim-
ulated ground environment of that of the Fort Knox
Terrain Database. Larger scenarios—up to 50,000
vehicles—are actively being constructed, this time on
the much larger playing field afforded by Southwest
USA Terrain Database (SWUSA), centered near 29
Palms and spanning much of the surrounding terri-
tory of Southern California.

Based on measured performance of our variant of
the ModSAF code, we have determined that no sin-
gle available SPP can execute the full 50,000 vehicle
scenario; indeed, the near term 50,000 goal was se-
lected in part so as to require the involvement of two
or more supercomputers. Accordingly, our SPP ar-
chitecture includes provisions for networking several
large SPPs together, creating a meta-supercomputing
network.

In what follows, we discuss some of the key ar-
chitectural concepts being explored to make ModSAF
suitable for SPP machines and to improve its overall
scalability. While ModSAF is the basis for all of our
current work, we intend that the applicability of this
research to be much broader. ModSAF, then, is the
current focus serving both as a convenient tool and as
a familiar yardstick for measuring progress familiar to
a large community.

3 Interest Management
We take as axiomatic that to enable dramatic scal-

ability of entity level simulations, "interest manage-
ment" must be central to the software architecture.

113

Using the language of ModSAF, beyond a certain
(rather small) limit, it is necessary to abandon broad-
cast style inter-entity messaging schemes and insert
rather precise interest management techniques. This
arises because of two separate but related notions:

An entity's behavior is shaped partly by an aware-
ness of other entities around it (local perceived ground
truth). Since not all entities of interest are computed
by the same local CPU, the need arises for "remote
entities" to signal their presence and activities to that
local CPU via messaging. But if each individual CPU
attempts to deal with all of these incoming messages
(global ground truth), all CPU's will be overwhelmed
both in memory and in performing bookkeeping du-
ties. Interest management must be performed more
globally to permit scalability.

As the number of entities increases, an all to all pro-
tocol eventually overwhelms the physical SPP messag-
ing fabric. The same conclusion is obtained: a global
interest management scheme is critical.

Accordingly, the SF Express Team has been exper-
imenting with two variants of global interest manage-
ment: one a server based notion and a second router
based scheme.

Space does not permit their detailed exposition here
[2] but the main ideas are easily grasped. See Figure 1.

In Figure 1, the top squares represent nodes exe-
cuting the ModSAF entity behavior codes known as
SAFSIMs. As part of this behavior, each vehicle as-
serts its interest in what in effect are "regions of inter-
est spaces." There are several of these—e.g., a high
and a low resolution terrain space, vehicle i.d., signal
frequency—but to grasp the basic ideas it suffices to
consider interest to be a function of geographic loca-
tion. In the server interest management scheme, this
interest is registered in one of the interest management
nodes, nodes which themselves are decomposed over
the index of that interest space. Messages (known as
PDUs in ModSAF) generated by any vehicle are sent
(registered) to the coordinate of that interest space
corresponding to the coordinate of the sending vehi-
cle. For example, if a PDU is sent from a vehicle whose
location is (x,y), it is sent to the (x,y) coordinate of
the Interest Management (IM) nodes. The IM node
then forwards the message back to each SAFSIM that
has registered an interest in that coordinate.

Looking at the process from the point of view of the
IM nodes, each maintains queues of messages to be
sent to each SAFSIM, looping over all SAFSIMS, and
sending a single bundled message for each traversal of
that loop. In this relatively straightforward manner,
messages arrive at only the SAFSIMs that have explic-

itly asserted interest. The remote entities represented
at each SAFSIM node and the volume of individual
PDUs processed are thus kept to a minimum.

In this IM scheme, communications channels are
associated with interest classes, and a single simula-
tor node will generally exchange data with more than
one IM node. In the alternative Router model, each
simulator node has a single communications channel
to the "outside world."

The basic building block of the Router architec-
ture is a fixed collection of SAFSIM nodes associ-
ated with a Primary Router, as seen in the bot-
tom of Figure 2. The SAFSIM nodes send data
and interest declarations up to their associated Pri-
mary Routers, and only the appropriate, interest se-
lected data flow back down. Data communications
among the (SAFSIMs+Primary) building blocks are
accomplished through additional layers of data col-
lection and data distribution router nodes shown in
the top part of Figure 2. Communications within
the upper layers occur in parallel with those in the
PrimaryoSAFSIM layer. This means that there are
no significant additional time costs for data messages
which take the longer (5 hop) path through the full
communications network.

The use of (few) fixed communications chan-
nels in the Router architecture allows extremely
efficient bundling of data messages. During
the communications-intensive initialization phases of
ModSAF, individual messages flowing down to the
SAFSIM nodes routinely contain 40 or more PDUs,
and total data rates through the Primary Routers
in excess of 16K PDU/second have been observed.
Once initializations are completed, the "steady-state"
Primary-H-SAFSIM communications account for only
about 3% of a SAFSIM's (wall clock) time.

A system-wide evolving picture of interest declara-
tions and payloads can be obtained from the Router
architecture. Tracing performance and program be-
havior, along with general purpose logging capabili-
ties, are facilitated by the very nature of the Router
clusters.

4 Functional Decomposition
Vanilla ModSAF normally executes completely

within a single workstation, replicating workstations
until enough are employed to execute the desired size
of the simulation. There are two basic modules in
ModSAF: the SAFSIM, already identified, and the
GUI which is only activated on a workstation if it is
desired to input to the scenario or observe the sim-
ulation's progress. In building SF Express, we have
already migrated some of the sub elements away from

114

SAFSIM Nodes

[\J Interest Expression

0 PDU'sTolnterestSpace

© PDU's Returned to
Interested SAFSIMs

0 ©

* t

\mm=

Interest Management
Nodes

Figure 1: Interest Management Server

4
©

Figure 2: Router-Based Interest Management

115

the SAFSIM and are planning to migrate others. In
addition, we add others, such as the interest manage-
ment just discussed, as separate and new functions not
present in vanilla ModSAF.

Functional decomposition is natural in the quest
for scalability. When a resource (such as a terrain
data base) must be accessed simultaneously by hun-
dreds or thousands of processors, one replicates it. If
the data base is large, computers with large memories
should be used. If the computational cost of simulat-
ing a complex type of vehicle is high, one spins off that
task to separate nodes; if to achieve fidelity the sim-
ulation requires a lot of floating-point computation,
nodes with suitable CPUs should be chosen. Router
nodes on the other hand will do few if any floating-
point computations to carry out their role; routers can
therefore be hosted on systems that excel at logic and
integer operations. Data logging for subsequent replay
of the simulation might require processors with ample
attached disk storage.

The need to keep up with real time also dictates a
functional decomposition. Furthermore, in some simu-
lations sensor data from real instruments must be read
and processed to guide parts of the simulation. Visu-
alization of the ongoing simulation is essential and it
also requires a different type of computer resource.

An indication of how this approach is used in prac-
tice can be gleaned from our experience with a 10,174
Vehicle synthetic forces simulation that was run by on
the Oak Ridge National Lab 1024-node Intel Paragon.
The run, approximately twice as large as the largest
previous such simulation, utilized a scenario set on the
Ft. Knox Compact Terrain Data Base, with "blue and
red" forces made up of battle tanks, fighting vehicles,
armored personnel carriers and trucks. This run em-
ployed 784 Paragon processors, of which 640 were de-
voted to simulating vehicles, 48 processors acted as
routers in a communications network that provides
the good scalability demonstrated; 90 processors were
used as terrain data base servers; and six processors
were used as servers to load the program and data. In
addition, a GUI proxy node was used, as is described
in the next section.

In short, heterogeneous functional decomposition is
a natural strategy for coping with the evolving needs
of synthetic forces simulations.

4.1 Graphics user interface and visualiza-
tion

We have experimented with a number of approaches
to providing GUI functionality. The most straightfor-
ward method on the SP2 is simply to take advantage
of its X Windowing system and devote one or more

nodes hosting a complete ModSAF with an X Window
output being sent to a remote workstation. This is an
attractive option, particularly when it is desired to in-
teract with the simulation during its progress: e.g.,
vehicles can be created and instantiated on the GUI
node as in workstation based ModSAF, a function not
otherwise readily available with the SPPs. It is also
easy to "interest manage" the display, by attaching
the GUI node directly to the Interest Management
nodes. Interest is geographically expressed by turning
the screen display corner coordinates into an interest
expression. PDUs only from vehicles within the cov-
ered region will be transmitted to the GUI node, a key
circumscription if that node is not to be overwhelmed
with irrelevant information.

A second technique removes the GUI from the SPP
entirely, substituting there instead a GUI Proxy, and
executing a workstation GUI as a stand-alone unit on
the outside. This workstation then transmits inter-
est declarations to the Proxy, which in turn interfaces
with the interest management machinery in a manner
similar to a SAFSIM. This technique is less demand-
ing of connection bandwidth but sacrifices some of the
portability of the X Windows approach.

A third approach, and one which ultimately may
prove more powerful, is to send the PDUs themselves
out of the SPP to external devices. These data can be
compressed and limited in various ways, but current
experience indicates that the entire PDU stream can
be issued by the SPP and assimilated by a high perfor-
mance workstation in real time. A current experiment
[3] describes progress in processing the PDU stream on
external devices either for more scalable real time dis-
play or for after action analysis. The post processing
can subdivide the PDU stream, redirecting the PDUs
to multiple processes and to, for example, a matrix
of coordinated screens, giving an overall view of the
battlefield.

4.2 Replacing routine disk access
Frequent retrieval of data from disk storage is too

slow to be practical on the SPPs. Instead, reader files
common to all SAFSIMs are held in RAM in one or
more file server nodes. Supplying each SAFSIM with
its required information then takes place at RAM ac-
cess and SPP messaging rates, greatly reducing ini-
tialization time. We are currently experimenting with
compiling these reader files into binary prior to any
single simulation. This compacts the files and fur-
ther speeds up their delivery to the individual SAF-
SIM nodes.

The simulation terrain in ModSAF is represented
through a fairly elaborate, memory-efficient scheme

116

built from small terrain elements ("pages" and "patch-
es"). Arbitrarily large terrains are supported through
a caching scheme in which a SAFSIM maintains only
a modest fraction of the full terrain in memory, re-
questing new pages and patches as they are needed.

In the parallel implementation, the disk-read data
retrievals of conventional ModSAF are replaced by
message exchanges with database server partitions.
Each partition consists of a sufficient number of nodes
to hold the entire terrain database in memory. Multi-
ple replicas of the database partition are used for runs
with large numbers of SAFSIM nodes.

4.3 Some future possibilities
While not currently implemented, the above terrain

serving scheme is consistent with ultimately providing
for dynamic terrain. Since only a few terrain servers
are needed, it is practical to keep these synchronously
updated with terrain changes and, via cache coherence
methods, ensure that the SAFSIMs receive cached up-
dates as well.

In the future we expect to migrate more function-
ality away from the individual SAFSIMs. Terrain rea-
soning is a good candidate. High level and complex
functions such as path planning are currently handled
within the SAFSIMs on a lower priority basis than the
fundamental activity loops. The computation takes
many cycles to complete and its performance is hard to
predict. Migrating that function to the terrain server
nodes has great appeal.

It may even be helpful to migrate lower level func-
tions like intervisibility calculations there as well. In
workstation based ModSAF many intervisibility cal-
culations are unnecessarily duplicated. Vehicle A cal-
culates its visibility to remote vehicle B, while in B's
local workstation, the reciprocal calculation is being
made to its remote vehicle A. Doing this calculation
once in a server can gain important economies.

Finally, decomposing the ModSAF functionalities
and switching to a server perspective paves the way
for higher fidelity reasoning and environmental calcu-
lations, since more CPU power can be deployed to
any one function when it is needed without interfering
with the tightly controlled and repetitive tasks within
each SAFSIM.

5 SPP Portability
SF Express has been built around MPI messaging

libraries, a necessary but by no means sufficient con-
dition to ensure portability. Machines that have been
addressed so far with various degrees of completeness

are:

Intel Paragon
IBM SP2
Cray T3D The codes
SGI Origin 2000
SGI Power Onyx/Challenge Series
Beowulf

on the Paragon and SP2 are by far the most mature.
The major difficulty encountered with the Paragon
was the reversed endianess as compared to all other
machines on the list, save Beowulf. The port to the
SP2 was smooth and uneventful. Unfortunately the
Cray T3D has proved the most difficult of all, almost
entirely because of the lack of a 32 bit Cray C com-
piler. ModSAF was definitely not written with porta-
bility to 64 bit machines-in mind. Our current ap-
proach is to work with the AC compiler authored by
Bill Carlson and available on both the T3D and the
T3E. Success here would give the Project access to
this important class of machines.

An informal port to the SGI Origin 2000 was
performed and demonstrated during the Supercom-
puting '96 Convention in Pittsburgh. The Power
Onyx/Challenge Series of machines are listed, even
though they are shared memory machines, because
they offer an MPI library. The shared memory ma-
chines, then, emulate the message passing architec-
tures and the SF Express concepts port without diffi-
culty. Since ModSAF itself is native to the SGFs, the
port was uneventful.

A Beowulf "pile of PCs" cluster, has been built
by the California Institute of Technology and the
Jet Propulsion Laboratory. The cluster consists of
16 Intel Pentium Pro (200MHz) processors running
Parallel Linux connected via a 100Mb/sec ethernet
switch. Out of the box ModSAF has been ported to
Beowulf. We are experimenting various MPI exten-
sions and profiling libraries to maximize efficiency and
properly characterize the performance of the SF Ex-
press port .This kind of cluster shows very good price-
performance ratios and may be a viable platform for
future uses of SF Express.

In summary, we are pleased with the considerable—
but incomplete—progress made towards our portabil-
ity goals. We believe that offering options to be an
important aspect of enabling the continuing applica-
bility of this research.

6 Interoperability and Meta-
supercomputing

Implementing SF Express on multiple machines is
additionally important to achieving the project goal
of 50,000 entities. As mentioned in the introduction,
no single SPP is likely to be able to achieve this goal

117

and it will be necessary to utilize two or more SPPs
together connected by wide area networks to achieve
this result.

Fortunately, the essential information that needs to
be shared among the participating SPPs is exchanged
using ModSAF PDUs and their data structures were
designed to interoperate with different machines. En-
dianess and machine word lengths will not pose diffi-
cult problems.

Also, the key to scalability is once again, precise
interest management. And this can be accomplished
between SPPs as an extension of the interest schemes
already described.

In an unconstrained world, a uniform messaging
structure would be established across the whole meta-
supercomputer and the structures we have been dis-
cussing would need no modifications at all—a node
on a distant machine would be different only in that
it had a unique node identification. Unfortunately,
this would require the WAN network to be as high in
bandwidth and message handling capabilities as the
SPP messaging fabrics themselves. Since we will at-
tempt the metacomputing runs with at best OC-3 net-
works, an approach more parsimonious of bandwidth
resources is required.

Referring to Figure 2, one can think of the interface
between the geographically-distributed SPPs as being
done by connecting the Pop-Up routers with WAN
connections. The time delays for PDUs sent through
the upper router layer are modest (e.g., less than 50
msec) and thus likely to be small compared to the
delays introduced by WAN access.

This approach has not been fully implemented but
its broad outlines are clear. To establish a global in-
terest manager, each SPP would need to create peri-
odically (once every ~l-5 sec) a complete interest ex-
pression across the entire range of interest coordinates.
The remote SPP returns only the PDUs responsive to
those interests.

7 Conclusions and Plans for '97
At this writing, the project is consolidating the

progress made thus far which culminated in the 10,000
and 8,000 vehicle runs at ORNL and ARC respec-
tively. Implementations are being cleaned up and
more comprehensive attention paid to instrumentation
and measurement.

Near term developments include the design of the
meta-supercomputing interfaces to enable the employ-
ment of two or more SPPs in a single exercise.

In addition, little attention has been paid thus far
to how to make the large simulations thus enabled

available to conventional ModSAF cluster worksta-
tion networks and simulators. In the sense that ev-
eryone speaks DIS protocol, the interface is easy and
assured. But once again, interest management must
be enabled as a two way interface between the parties,
else the workstations will be overwhelmed and the in-
fluence of the entities modeled within the conventional
workstations will not be properly represented to the
SF Express Forces within the SPP. There are several
choices available; perhaps the best is to treat the SF
Express as an HLA federate and implement a standard
HLA/RTI interface to the outside world.

We are being asked to reach the 50,000 goal this
year and in pursuit of this are setting up the necessary
cooperations between several major national SPP as-
sets. In addition to the assets at JPL/CIT, we are en-
listing support in pursuit of the meta-supercomputing
goals from ORNL, ARC, CTC, and the San Diego Su-
percomputing Center (SDSC).

Acknowledgments
Access to various computational facilities was es-

sential to the work performed. The Intel Paragon and
SP2 at Caltech were made available by the Caltech
Center for Advanced Computing Research and the
Oak Ridge Intel Paragon by the Oak Ridge Center for
Computational Sciences. The Cray T3D at JPL and
the JPL Dual SGI Power Onyx Visualization Labora-
tory were made available by the JPL/Caltech Super-
computing Project. Finally, access to the IBM SP2
at ARC was provided by the Numerical Aerodynamic
Simulation Systems Division at NASA Ames Research
Center.

References
[1] Messina, P., and Mihaly-Pauna, T., "CASA Gi-

gabit Network Testbed: Final Report." California
Institute of Technology Technical Report CACR-
123, July 1996.

[2] Craymer, L. and Lawson, C. "A Scalable, RTI
Compatible Interest Manager for Parallel Pro-
cessors." 1997 Spring Simulation Interoperability
Workshop.

[3] Plesea, L. and Ekroot, L., "Data Logging and
Visualization of Large Scale Simulations (SF Ex-
press)." 1997 Spring Simulation Interoperability
Workshop.

Sharon Brünett is a computing analyst for Caltech's
Center for Advanced Computing Research. She is cur-
rently involved with optimization and characteriza-
tion of applications on shared and distributed memory

118

MPPs. She is also involved with modifying applica-
tion programs to exploit new systems software and
language features. Current interests include analyz-
ing the various I/O requirements and interfaces nec-
essary for applications communicating across multiple
MPPs. She received her B.S. in Computer Science and
Applied Mathematics from the University of Califor-
nia Riverside in 1983.

David W. Curkendall received a BS in electrical en-
gineering from Cornell University and a PhD in engi-
neering and science from University of California, Los
Angeles. He is manager of the Advanced Parallel Pro-
cessing program at the Jet Propulsion Laboratory. His
early technical specialization were in interplanetary
navigation and the development of radiometric and
optical tracking system technology. For the past sev-
eral years, he has been active in all areas of computa-
tional science, including the leadership of the technol-
ogy teams that developed the early Hypercube Con-
current Computers, their software and applications.
He is currently active in several applications of MPP
machines including parallel rendering, military simula-
tion, and leads a NASA multidisciplinary Grand Chal-
lenge Science team in spaceborne Synthetic Aperture
Radar processing.

Dan Davis received a B.A. in Quantitative Psychol-
ogy from the University of Colorado in Boulder in
1973. He entered graduate study there in Business
Administration, but transferred to the University of
Colorado School of Law. He received his Juris Doc-
tors degree in December of 1975 and was admitted to
the bar of the Supreme Court of Colorado and the U.S.
Supreme Court, among others. He is currently the As-
sistant Director of The Center for Advanced Comput-
ing Research at Caltech. He is currently involved in
implementing large scale simulations on Scalable Par-
allel Processing computers. These simulations range
from military battlefields to VLSI designs. His com-
puter research activities have run from his early work
in computational analyses for the behavioral sciences
at C.U., Boulder through defense work in the U.S.
Navy, in which he holds a reserve commission as a
Commander, Cryptologic Specialty.

Laura L. Ekroot received the B.S. degree in electri-
cal engineering from the California Institute of Tech-
nology, Pasadena, in 1986, and the M.S. and Ph.D.
degrees in electrical engineering from Stanford Uni-
versity, Stanford, CA, in 1988 and 1991 respectively.
She is currently working as a Member of the Technical
Staff at the Jet Propulsion Laboratory in Pasadena,
CA. Her research interests include Shannon theory,
coding theory, image compression, and parallel simu-

lation.
Tom Gottschalk is a Lecturer in Physics and a Mem-
ber of the Professional Staff at the California Institute
of Technology. In 1978 he received a Ph.D. in Theo-
retical Physics' from the University of Wisconsin. In
1974, he received a BS. in Astrophysics from Michi-
gan State University. He is currently researching new
architectures and algorithms for parallel processing of
various simulations. His work is directed at applying
the power of large computers, capable of computing
in the range of tens of GigaFLOPS. In the electronics
area, he has developed a new tool for analyzing VLSI
design verification on very large circuits, VLSIs of 5
million transistors or more. In the defense area, he has
worked on battlefield simulators and missile defense
tracking algorithms. His early work was in simulating
sub-atomic particles using Monte Carlo models. He
is a frequent speaker on the subject of computer and
internet usage at primary and secondary schools.

Paul Messina is Assistant Vice President for Scien-
tific Computing at Caltech, Faculty Associate in Sci-
entific Computing, Director of Caltech's Center for
Advanced Computing Research, and serves on the
executive committee of the Center for Research on
Parallel Computation. His recent interests focus on
advanced computer architectures, especially their ap-
plication to large-scale computations in science and
engineering. He also is interested in high-speed net-
works and computer performance evaluation. He
heads the Scalable I/O Initiative, a multi-institution,
multi-agency project aimed at making I/O scalable for
high-performance computing environments. Messina
has a joint appointment at the Jet Propulsion Labo-
ratory as Manager of High-Performance Computing.
Messina received his PhD in mathematics in 1972 and
his MS in applied mathematics in 1967, both from the
University of Cincinnati, and his BA in mathematics
in 1965 from the College of Wooster.

Herb Siegel received a B.A. in mathematics from
the University of California at Berkeley in 1962 and
an MA in mathematics from the California State Uni-
versity at Los Angeles in 1965. His early work at
the Jet Propulsion Laboratory included the calibra-
tion of interplanetary radiometric range and devel-
opment of high performance software correlators for
VLBI. He led the development of a commercial multi-
processor for Action Computer Enterprise. Currently
he is the computational leader for a NASA Grand
Challenge effort in high performance computing and
Earth-Space science to processes interferometric SAR
over high performance networks and using national
assets of MPP machines.

119

Session 3

Mapping and Scheduling Algorithms

Session Chair

Ranga S. Ramanujan
Architecture Technology Corporation,

Minneapolis, MN, USA

A Stochastic Model of a Dedicated Heterogeneous Computing System for

Establishing a Greedy Approach to Developing Data Relocation Heuristics

Min Tan and Howard Jay Siegel

Parallel Processing Laboratory

School of Electrical and Computer Engineering

Purdue University

West Lafayette, IN 47907-1285, USA

{mtan, hj} @ecn.purdue.edu

Abstract

In a dedicated mixed-machine heterogeneous com-
puting (HC) system, an application program may be

decomposed into subtasks, then each subtask assigned to

the machine where it is best suited for execution. Subtask

data relocation is defined as selecting the sources for
their needed data items. This study focuses on theoreti-

cal issues for data relocation using a stochastic HC

model. It is assumed that multiple independent subtasks

of an application program can be executed concurrently

on different machines whenever possible. A stochastic

model for HC is proposed, in which the computation

times of subtasks and communication times for inter-

machine data transfers can be random variables. The

optimization problem for finding the optimal matching,

scheduling, and data relocation schemes to minimize the

total execution time of an application program is defined

based on this stochastic HC model. The optimization cri-

teria and search space for the above optimization prob-

lem are described. It is proven that a greedy algorithm

based approach will generate the optimal data relocation

scheme with respect to any fixed matching and schedul-

ing schemes. This result indicates that a greedy algo-

rithm based approach is the best strategy for developing
data relocation heuristics in practice.

This research was supported in part by NRaD under contract
number N66001-96-M-2277.

Keywords: data relocation, greedy algorithm, hetero-
geneous computing, mapping, matching, optimization,
scheduling, stochastic modeling.

1: Introduction

A single application program often requires many
different types of computation that result in different
needs for machine capabilities. Heterogeneous comput-
ing (HC) is the effective use of the diverse hardware and

software components in a heterogeneous suite of
machines connected by a high-speed network to meet the

varied computational requirements of a given application

[8]. One goal of HC is to decompose an application pro-
gram into subtasks, each of which is computationally

homogeneous, and then assign each subtask to the
machine where it is best suited for execution.

Subtask matching, scheduling, and data relocation

are three critical steps for implementing an HC applica-
tion on an HC system. Matching involves assigning sub-
tasks to machines. Scheduling includes ordering the exe-

cution of the subtasks assigned to each machine and ord-

ering the inter-machine communication steps for data

transfers. Data relocation is the scheme for selecting the

sources for needed data items. This study focuses on

theoretical issues for data relocation using a stochastic

HC model. It is assumed that multiple independent sub-
tasks of an application program can be executed con-

currently on different machines whenever possible (e.g.,

0-8186-7879-8/97 $10.00 © 1997 IEEE
122

when the machines are available for subtask execution).

The contribution of this paper can be summarized

as follows. A general stochastic HC model is proposed,

in which the computation times of subtasks and

communication times for inter-machine data transfers are

random variables. The optimization problem for finding

the optimal matching, scheduling, and data relocation

schemes to minimize the total execution time of an

application program executed in a dedicated HC system

is defined based on this proposed stochastic HC model.

The optimization criterion and search space for the above

optimization problem in HC are described. It is proven

that a greedy algorithm based approach will generate the

optimal data relocation scheme with respect to any fixed
matching and scheduling schemes. This result indicates

that a greedy algorithm based approach is the best
strategy for developing data relocation heuristics in

practice.
The inter-machine communication time between

subtasks can be substantial and is one of the major fac-
tors that degrade the performance of an HC system. This
paper focuses on potential methods for minimizing the

inter-machine communication time of an application pro-
gram when the concurrent execution of different subtasks

on different machines is considered whenever possible.
In particular, the impact of the data relocation scheme on
the total execution time of the subtasks executed in a
dedicated HC system is examined.

In most of the mathematical models for HC in the
literature (e.g., [5, 9]), the computation times and inter-
machine data transfer times of data items for different
subtasks in the application program are assumed to be

deterministic quantities. This is valid when the inter-
machine network is completely controlled by the

scheduler and all execution times and inter-machine
communication needs are known a priori (not dependent

on input data). However, there are elements of uncer-

tainty (e.g., input data dependent looping and conditional
constructs) that impact the deterministic nature of both

the computation and inter-machine communication times

for different subtasks. Such uncertainties can create oth-
ers, e.g., network contention among different inter-

machine data transfer steps. They are unpredictable pri-

or to execution time. An approach to modeling these
computation and communication times is to represent

them as random variables with assumed probability dis-

tribution functions.

To use a dedicated HC system to execute an appli-

cation program efficiently, the optimization problem of

using matching, scheduling, and data relocation schemes
to minimize the total execution time must be defined.

Section 2 provides the background and terminology

needed for the rest of this paper. In Section 3, a stochas-

tic HC model for matching, scheduling, and data reloca-

tion is introduced. A topological sort based procedure is

presented in Section 4 for defining the execution time of

an application program executed in a dedicated HC sys-

tem where the execution of the subtasks is partially or-

dered, and when matching, scheduling, and data reloca-

tion schemes are known. In Section 5, a method is dev-

ised to enumerate all the valid options in choosing the

data relocation scheme for a given arbitrary matching.
Thus, Sections 3, 4, and 5 collectively define the above
optimization problem in HC with a stochastic model.
Because of the complexity of this defined optimization
problem in HC, guidelines for devising heuristics must
be provided. It is proven in Section 6 that a greedy algo-
rithm based approach will generate the optimal data relo-

cation scheme with respect to any fixed matching and
scheduling schemes. This result indicates that a greedy
algorithm based approach is the best strategy for
developing data relocation heuristics in practice.

Most of the literature for HC has concentrated on
addressing the practical aspects and heuristics for match-
ing and scheduling. This paper emphasizes instead the

theoretical issues involved in data relocation using a sto-
chastic HC model. The practical implication on data re-
location heuristic design of the theoretical result derived

is explained.

2: Background and terminology

The material in this subsection is summarized from

[9]. It provides the background and terminology needed
for the rest of this paper. In general, the goal for HC is

to assign each subtask to one of the machines in the

system such that the total execution time (computation
time and inter-machine communication time) of the

application program is minimized [3]. The subtask to

machine assignment problem is referred to as matching

in HC. When a subset of subtasks can be executed in
any order, varying the order of the computation of these

subtasks (while maintaining the data dependencies

123

Figure 1: Subtask flow graph for the example application program.

among all subtasks) can impact the total execution time
of the application program. Determining the order of
computation for the subtasks is referred to as scheduling

in this paper. In most of the literature for HC, a subtask

flow graph is used to describe the data dependencies

among subtasks in an application program (e.g., [5, 9]).
In Figure 1, each vertex of the subtask flow graph

represents a subtask. Let S\k] denote the Jt-th subtask.

For each data element that S[k] transfers to S\fl during

execution, there is an edge from S[k] to S[j] labeled with

the corresponding variable name. An extra vertex labeled

Source denotes the locations where the initial data

elements of the program are stored.

Let a data item be a block of information that can

be transferred between subtasks. Using information
from the subtask flow graph, a data item is denoted by
the two-tuple Is, d), where s > 0 is the number of the sub-

task that generates the needed value of variable d upon
completion of computation of that subtask. If the needed

value of d is an initial data element to the program, then s

= -1. Two data items are the same if and only if they are
both associated with the same variable name in an appli-

cation program and the corresponding value of the data is

generated by the same subtask (which implies that the
two data items have the same value).

In general, most of the graph-based algorithms for
matching-related problems assume that the pattern of
data transfers among subtasks is known a priori and can
be illustrated using a subtask flow graph (e.g., [5, 10]).
Thus, no matter which machine is used for executing
each subtask of a specific application program, the loca-

tions (subtasks) from which each subtask obtains its
corresponding input data items are determined by the

subtask flow graph and are independent of any particular

matching scheme between machines and subtasks.

The above assumption generally needs refinement

in the case of HC. In [9], two data-distribution situa-
tions, namely data locality and multiple data-copies, are
identified for addressing refinements of the above as-

sumption. It is assumed that each subtask S[i] keeps a
copy of each of its individual input data items and output
data items on the machine to which S[i] is assigned by

the matching scheme. Furthermore, it is also assumed
that all input data items are received for a subtask prior
to that subtask's computation.

Data locality arises when two subtasks, S\j] and

S[k] that are assigned to the same machine, need the

same data item e from S[i] (assigned to a different

machine). Because a machine can fetch a data item from
its local storage faster than fetching it from other

machines, if S[j] is executed after S[k], then £[/] should
obtain e locally from S[k] instead of from the machine

124

assigned to S[i]. If a subtask flow graph is used to com-

pute inter-subtask communication cost, then without con-

sidering machine assignments, the impact of data locality

might be ignored.
The multiple data-copies situation arises when two

subtasks, S\j] and S[k], need the same data item e from
S[i], where S[i\, S[f], and S[k] are assigned to three dif-

ferent machines. If S[k] is executed after S\j] obtains e,

then the machine assigned to S[k] can get data item e

from either the machine assigned to S[i] or the machine

assigned to S\j]. The choice that results in the shorter

time should be selected. Selecting the sources for need-

ed data items is referred to as data relocation (because

the data relocation scheme determines the source

machines from which the data items will be relocated to
the destination machines). In general, when using infor-

mation only from the subtask flow graph, the possibility

of having multiple sources for a needed data item is not
considered. Data locality can be viewed as a special case
of having multiple data copies (i.e., one copy is on the

machine to which the receiving subtask is assigned by

the matching scheme).
In [9], it is assumed that, at any instant in time dur-

ing the execution of an application program, only one
computation or inter-machine data transfer step for a
specific subtask is being executed. Based on this assump-
tion, a minimum spanning tree based algorithm is
presented in [9] that finds, for a given matching, the op-
timal scheduling scheme for inter-machine data transfer
steps and the optimal data relocation scheme for each
subtask. Data locality and multiple data-copies are all

considered in the above algorithm. The mathematical
model for HC presented in this paper differs from the

one in [9] in that the possible concurrent execution of
both the computation and inter-machine communication

steps of different subtasks in an application program is

considered. Also, the computation times of subtasks and
communication times for inter-machine data transfers

can be random variables. It is proven in this paper that a
greedy algorithm based approach will generate the op-

timal data relocation scheme with respect to any fixed

matching and scheduling schemes. This result indicates

that a greedy algorithm based approach is the best stra-

tegy for developing data relocation heuristics in practice

and attempts to solve a much more general problem in

HC than addressed in [9].

3: A stochastic model for matching,
scheduling, and data relocation in HC

A stochastic model of matching, scheduling, and

data relocation for HC is formalized in this section. This

model is an extension of the one presented in [9]. The
possible concurrent execution of both the computation of

subtasks and inter-machine communication steps in an

application program is considered. The issues related to
using a stochastic HC model are addressed. When the

computation time of each subtask on each machine and

the communication times of transferring data items have

stochastic properties, those timing parameters must be

modeled as random variables. This paper examines an

underlying theoretical issue with respect to data reloca-
tion. Due to the theoretical nature of the proof of the
main result in this paper, it is not necessary to know the

actual distribution functions of those random variables.
The mathematical model presented in this section allows

the material in the rest of this paper to be given in unam-

biguous terms.

(1) An application program P is composed of a set of n

subtasks
S={S[0],S[l],...,S[n-l]}.

There are a set of Q initial data elements

{dQ, d\,..., rfg-i).

(2) The set of NI\i\ input data items required by S[i] is

M = {Id[i, 0], Id[i, 1] Id[i, NI[i]-l]},

and the set of NG\i\ output data items generated by S[i]

is

GUI = {Gd[i, 0], Gd[i, 1],..., Gd[i, NG[i]-l]}.

The program structure of P is specified by a subtask flow

graph.

In this paper, the subtask flow graph of any appli-

cation program P is assumed to be acyclic. A cycle in a
graph represents a loop containing one or more subtasks.

With the presence of looping constructs, an appropriate

statistical approach can be used to determine the distribu-

tion for the number of iterations each looping construct

will execute and the maximum number of iterations each
looping construct has [10]. Then, the existent subtask

flow graph can be transformed into an acyclic one by un-

125

rolling each looping construct with the known or estimat-

ed maximum number of iterations. The above approach

potentially will increase the number of subtasks present

in the acyclic subtask flow graph significantly. Also, the

distribution for the number of iterations each looping

construct will execute and the maximum number of itera-

tions each looping construct has can be difficult to esti-

mate in reality. A possibly more practical approach is to

group a fixed number of consecutive iterations of the un-

rolled looping constructs together to decrease the number

of subtasks present. Another approach is to view each

looping construct as part of a single subtask and the

boundaries for decomposing an application program into

subtasks are not allowed to be in the middle of a looping

construct.

(3) An HC system consists of a heterogeneous suite of m

machines

M = [M[0], M[l],..., M[m - 1]},

M includes the devices where all the initial data elements
are stored before the execution of P.

(4) There is a computation matrix C = [C[i, j]}, where

C[i, j] denotes the computation time of S[i] on machine

M\j] (e-g- [4]). For the reason stated in Section 1, C[i,j]
is assumed to be a random variable with a known distri-
bution. It can be computed from empirical information

or by applying two characterization techniques in HC,
namely task profiling and analytical benchmarking (see
[8] for a survey of these techniques). In [7], a methodolo-

gy is introduced for estimating the distribution of execu-
tion time for a given data parallel program that is to be
executed on a single hybrid SIMD/SPMD mixed-mode
machine. However, as mentioned earlier, for the results

mentioned here, it is not necessary to determine the dis-
tribution functions for the random variables.

(5) An assignment (matching) function Af S —> M is

such that if Afii) = j, then S[i] is assigned to be executed
on machine M\j]. NS[j] is defined as the number of sub-

tasks assigned to be executed on machine M\J\. Thus,
m-\
£Atf [/] = «.
;=0

(6) A scheduling function Sf indicates the execution ord-

er of a subtask with respect to the other subtasks assigned

to the same machine. If Sfii) - k, then S[i] is the k-th

subtask whose computation is executed on machine

M[Af(i)], where 0 < k < NS[Af(i)]. Readers should notice

that the scheduling function Sf schedules only the order

of the computation for different subtasks (not the order

for executing the inter-machine communication steps).

(7) The set of data-source functions is

DS = [DS[0], DS[l],.... DS[n - 1]},

where DS[i](j) = [*,, k2] (0 < i < n, 0 <; < NI[i], 0<kx

< n, and 0 < k2 < m) means that S[i] obtains the input

data item Id[i,j] from S[jfcj] and k2 = Af{kx). If DS[i](f)

= [ku k2] and kx = -1, then Id[i,j] = (-1, dx) and S[i]

obtains the associated initial data element from machine

M[k2] where dx is initially stored. Readers should notice

that, when k\ * -1, the augmented information k2 can be

obtained with the known Af and is redundant. But the in-

formation from k2 is necessary to specify the source of

an initial data element when k\ = —1. The above
definition of DS gives a unified way of specifying the

values of a data-source function. For different assign-
ment and scheduling functions, with consideration of the
impact of data locality and multiple data-copies, there are
different choices for sets of the data-source functions.
This choice of DS corresponds to the data relocation
problem discussed in Section 2.

It is assumed that each subtask S[i] will submit a
copy of its input data item Id[i, j] to the network for for-
warding to other destination machines (based on DS) im-
mediately after Id[i,j] is available on machine M[Afii)].

Each subtask will also submit copies of all of its output

data items to the network to be transferred to the proper
destination machines (based on DS) after the completion
of its entire computation. Thus, Af Sf and DS together

completely specify the computation and inter-machine
communication steps needed at any time to execute the

application program P in a dedicated HC system.

(8) The communication time estimator D\s, r, e] denotes

the length of the communication time interval between

the time when a data item e is available on M[s] and the

time when e is obtained by M[r] (assuming this transfer
is required for the given Af, Sf and DS). For the reason
stated in Section 1, D[s,r, e] is assumed to be a random

variable (again recall that the distribution of this random

variable is not needed to derive the results of this paper).
D[s, r, e] includes all the various hardware and software

126

related times of the inter-machine communication

process (e.g., network latency and the time for data

format conversion between M[s] and M[r] when

necessary).

Most of the literature for HC (e.g., [4, 9]) assumes

that the inter-machine communication time for sending a

data item e from M[s] to M[r] is only a function of s, r,

and e. But in reality, even in a dedicated HC system,
when an application program is executed, the traffic pat-

tern for inter-machine communication can be impacted

by subtask computation and other inter-machine com-

munication times that are all input data dependent (and

represented as random variables). The choice of Af, Sf,

and DS impacts all of these computation and communi-
cation times and, hence, the communication time interval
between the time when e is available on M[s] and the
time when e is obtained by M[r\. Thus, the communica-
tion time estimator D[s, r, e] is dependent on Af, Sf, DS,

s, r, and e.
In general, it will be extremely difficult (if not im-

possible) to estimate the distribution function of D[s, r, e]

as a function of Af, Sf, DS, s, r, and e. The purpose of
defining D[s, r, e] here is to address the factors that im-
pact the inter-machine communication times for the ap-
plication programs executed in a dedicated HC system. It
also helps to establish a theoretical model for defining

the optimization criterion of the optimization problem for
HC. With this well-defined theoretical model and optim-
ization criterion, the greedy algorithm based approach in-
troduced in Section 6 can provide potential data reloca-
tion heuristics with a sound local optimization strategy
based on a solid theoretical derivation. Future data relo-

cation heuristics can follow the local optimization stra-
tegy in Section 6 to achieve a reasonable level of global
optimization without the information about the exact dis-

tribution function of D[s, r, e\.

4: A topological sort based algorithm for
calculating the execution time of an
application program in an HC system

For a given computation matrix C and

communication time estimator D[s, r, e], the total

execution time of the application program P associated
with an assignment function Af, a scheduling function Sf,

and a set of data-source functions DS is defined by the

following procedure. A data relocation graph (denoted

as Gf) corresponding to a particular Af, Sf, and DS is

generated using the steps specified below. When the
impact of data locality and multiple data-copies is

considered, the concept of a valid set of data-source

functions DS of the application program P can be defined

according to the properties of Gr. There may be many

valid sets for P, each corresponding to a unique graph for

P, and each resulting in possibly different execution time

of P. An invalid DS would correspond to a set of data-

source functions that does not result in an operational

program.
The steps for constructing Gr are as follows.

Step 1: A Source vertex is generated that represents the

locations of all the initial data elements (which may be

on different machines).

Step 2: For each S[i], NI[i] + 1 vertices are created, one
for each of the NI[i] input data items and one for all of

the generated output data items of S[i]. These are the set

of input data vertices, labeled V[i, f\ (0<j< NI[i\) and

the output data vertex Vg[i]. V[i, j] represents the opera-

tion for subtask S[i] to receive its j-th input data item.
Vg[i] represents the computation for S[i] to generate all
of its output data items. V is a set that contains all of the

above vertices associated with the application program P
in Steps 1 and 2. Each V[i,j] is associated with a weight

zero and each Vg[i] is associated with a weight C[i,

Af(i)], the computation time of subtask S[i] on the

machine assigned by the assignment function Af.

Step 3: For any input data vertex WiJih suppose that
DS[ii](Ji) = [i2, k2] where -1 <i2<n and 0 < k2 < m,

and if 0 < i2 < n, then k2 = Af(i2).

Case A: £[/]] obtains its required input-data item Id[ix,

j{\ by copying it from the Source vertex if Id[i\, ji] =

(-1, dk) and dk is one of the initial data elements.
If i2 = -1, then there exists k (0 < k < Q), such that Id[ix,

;',] = (-1, dk), and a directed edge with weight D[k2,

Af(ii), ld[ix, ji]] is added from the Source vertex to

V[i\J\] (recall that £>S[M](/I) = \h, k2] implies that dk

is received from machine M[k2]). That is, if subtask
S[i!] 's j j -th input data item Id[i i, j i] is one of the initial

data elements and is obtained from one of the initial loca-
tions where dk is stored before program execution, then

add an edge from the Source vertex to V[ilt j\] whose
weight is the communication time interval needed to

127

transfer that initial data element from the initial location

M[k2] where it is stored to the machine assigned to S[i]].

Case B: S[i i] obtains its required input-data item Id[i i,

j\] by copying it from the subtask that generates Id[i\,

If 0 < 12 <n and there isy2, such that Id[i-[,j\\ = Gd[i2,

j2], then a directed edge with weight D[k2, 4/0i)> Id[i\,

j\]\ is added from Vg[i2] to V[i\,j\]. That is, if subtask
S[ii]'s 7'1-th input data item Id[iu j^] is subtask S[i2]'s
j2-th output data item Gd[i2, j2], then add an edge from

Vg[i2] to Vfi], j]] whose weight is the communication

time interval needed to transfer that data item from

M[k2] to the machine assigned to S[i\].

Case C: S[i]] obtains its required input-data item Id[i\,

Ji] by copying it from one of the other subtasks that have

obtained that input-data item already.

If 0 < i2 < n, and there is a j2, such that Id[iu j\] -

Id[i2, j2], then a directed edge with weight D[k2, Af[i}),

Id[il> j\]] is added from V[i2, j2] to V[ii,ji]. That is, if
subtask S[ij]'s jx-th input data item Id[i\,j\] is obtained
by copying subtask S[i2]'s j'2-th input data item Id[i2,
j2], then add an edge from V[i2, j2] to V[ilt j\] whose
weight is the communication time interval needed to
transfer that data item from M[k2] to the machine as-
signed to 5[/]].

For any input data vertex V{i\, j\] (0 < i] < n and
0 <ji < NI[ii]) for a given DS, one and only one case of

A, B, or C can occur. Thus, any vertex V[ij, j j] has one

and only one parent vertex, which is specified by the

given DS. Also, the weight of the edge between V[ij, jj]

and its unique parent vertex is the communication time
interval needed for £[;']] to obtain Id[iu jx] from its
source with respect to the given Af, Sf, and DS.

Step 4: For every 0 < i < n, a directed edge with weight
zero is added from V[i,j] to Vg[i] (0 <j < NI[i]).

If the Gr generated above is an acyclic graph, then
the corresponding DS is defined as a valid set of

data-source functions for the application program P. If

the graph had a cycle, then deadlock would arise in the

application program P, which makes P unschedulable.

Readers should notice that the weight of each edge or

vertex depends on Af, Sf, and DS. The validity of a par-

ticular DS is based on the subtask flow graph and is in-

dependent of the underlying Af and Sf for generating the

specific Gr. For the rest of this paper, only valid sets of
data-source functions will be considered.

Step 5: For each ij and i2 (0 < i\ <n and 0 < i2 < n), if

AAii) = Af{i2) and Sfti,) = Sf(i2) - 1 (i.e., SV^ and
S[i2] are assigned to the same machine and Sfij] is exe-

cuted immediately before S[i2]), a directed edge with

weight zero is added from Vg[i'i] to Vg[i2]- The extended
graph based on Gr and Sf after this step is defined as the

execution graph Ex of P. If the generated execution

graph Ex is acyclic, then the corresponding scheduling

function generates an operational program and is defined

as a valid scheduling function. For the rest of this paper,

only valid scheduling functions will be considered.

Step 6: Each vertex v of Ex is associated with a starting

time ST(v) and a finishing time FT(v) (ST(v) and FT(v)

are random variables). From the definitions in Steps 4

and 5, the execution graph Ex generated is acyclic. Thus,

there exists a topological sort [2] of the vertices in V. Set
ST(Source) = 0. W(v) is the weight of v (recall that each

V[i, j] is associated with a weight zero and each Vg[i] is
associated with a weight C[i, Af(i)]). Suppose that v,- is

one of the immediate predecessors of v, W(vh v) is the

weight of the direct edge from v, to v. Then ST(v) and
FT(v) can be derived inductively one by one in the order
specified by the topological sort according to the follow-
ing formula:

ST(v) = max {FT(Vj) + W(yh v)}

FT(v) = ST(v) + W(y).

(1)

(2)

Step 7: The total execution time of the application pro-
gram P associated with an assignment function Af, a
valid scheduling function Sf, and a valid set of data-
source functions DS is defined by the following formula:

Execution_time/J(A/, Sf, DS) = max{FT(v)}. (3)
V E V

Suppose that E{x] denotes the expected value of a ran-

dom variable x. The objective of matching, scheduling,

and data relocation for HC is to find an assignment func-

tion Af*, a valid scheduling function Sf*, and a valid set

of data-source functions DS*, such that

E{Execution_timef(Af*, Sf*, DS*)} =

128

min E{Execution_timep04/,S/,AS)}. (4)
Af,Sf,DS

Thus, the minimization of the expected value of the total

execution time of an application program is the optimiza-

tion criterion of the optimization problem for HC

described in Section 1 with respect to the stochastic

model defined in Section 3.

It is assumed in this mathematical model that, if

there is no data dependency between two subtasks S[i]

and S{j], and they are assigned to be executed on two dif-

ferent machines by the assignment function Af, then S[i]

and S\j] can be executed concurrently. Furthermore, the

inter-machine communication step for one subtask to ob-

tain one of its input data items can be overlapped with (a)

inter-machine communication step(s) to obtain its other
input data item(s), (b) the inter-machine communication
steps of other subtasks to obtain their input data items,
and (c) the computation steps of other subtasks. The dis-
tribution of each random variable D[s, r, e] indicates any

time delay resulting from network or machine I/O

conflicts.
As stated in Section 3, it is extremely difficult to

obtain the exact distribution of D[s, r, e]. The purpose of
the above topological sort based procedure is not for cal-

culating Execution_time/>(A/, Sf, DS) in practice due to

this difficulty. Rather it is to define the optimization cri-
terion theoretically for the optimization problem of HC.
The theorem presented in Section 6 is based on this
defined Execution^imepCA/, Sf, DS) with a known Af, Sf,

and DS and provides a practical local optimization stra-

tegy for future data relocation heuristics.

5: A procedure for enumerating the valid
options in choosing data relocation
schemes

In this subsection, a procedure for enumerating all

the valid options available in choosing data relocation

schemes (with respect to an arbitrary matching) is

described for subtask flow graphs without data-
dependent conditional and looping constructs. Due to

space limitations, the case of having data-dependent con-

ditional and looping constructs inside the subtask flow

graph is not described in this paper. When data-
dependent conditional and looping constructs are present

inside the subtask flow graph, the same procedure

presented in this section can be modified to enumerate

the valid options in choosing data relocation schemes as

well. The material presented in this section defines the

search space for the optimization problem of HC men-
tioned in Section 1. This defined search space also helps

future data relocation heuristic developers to know all
the valid options in choosing a data relocation scheme.

A directed graph Dg[Af\ corresponding to a

specific assignment function Af can be generated by con-

necting the vertices in V as follows (recall that V is a set

that contains all the vertices generated for any specific
application program P according to Steps 1 and 2

described in Section 4):

(a) For every i\,ji, i2, and j2, where 0 < ij < n, 0 < i2 <

n,0< jx < Nl[i\\, 0<j2< NI[i2], and ij * i2, such that
Id[i\,j\] = Id[i2, j2] = e, a directed edge from V[i\,ji]

to V[i2, j2] and a directed edge from V[i2, j2] to V[ilt

ji] are added.

(b) For every i\,j\, i2, and j2, where 0 < ij < n, 0 < i2 <

n,0< j1 < NG[iil and 0 <j2 < NI[i2], such that Gd[iu

ji] = Id[i2, j2] - e, a directed edge from Vg[ix] to V[i2,

j2] is added.
After (a) and (b), each generated data item Gd[i i,

ji] of P corresponds to a fully connected graph of the set

of vertices VG [iuj\] = {Vfo. J2] I Gd[ix, j,] = Id[i2,

j2], 0<i2<n,0< j2 < NI[i2]}. This corresponds to the

set of input data vertices that need the generated data

item Gdtfi, jj. Also, Vg[«i] is connected uni-
directionally (i.e., VÄ[i'i] is the starting point of each
directed edge) to all the vertices in VG[i\, j\\.

(c) For every i, j, and k, such that Id[i, j] = (-1, dk),

where 0 < i < n, 0 < j < NI[i], and 0 < k < Q, a directed
edge from the Source vertex to V[i,f\ is added.

After (c), each initial data item (-1, dk) (0<k<Q)

of P corresponds to a fully connected graph of the set of

vertices V7H1 = {V[i,f\ I Id[i,j] = (-1, dk)} (i.e., the input

data vertices that need the initial data element dk). There

is also a directed edge from the Source vertex to each
vertex in VI[k]. All the edges generated in (a), (b), and

(c) are called fetch edges.

Figure 2 illustrates components of Dg[Af\ for the

subtask flow graph shown in Figure 1 (d0 is an initial
data element and X0 and Z0 are generated data items).

The notation relevant to d0,X0, and Z0 is as follows.

129

(Vpjj)

Figure 2: The d0, X0, and Z0 components of Dg[Af], based on the subtask flow graph in Figure 1.

S[0]: NI[0] = 1, W[0, 0] = (-1, d0); NG[0] = 2, Gd[0, 0]

= (0,X0)-
5[1]: M[l] = 2, W[l, 0] = (-1, dQ), Ml, 1] = (0, X0).
Sffl: NI[2] = 2, Id[2, 0] = (0, X0); NG[2] = 2, Gd[2, 0] =

(2,Z0).
S[3]: M[3] = 3, W[3, 2] = (2, Z„).

5[5]: NI[5] = 2, Id[5, 1] = (2, Z0); and M7[5] = 0.
Suppose that the assignment function Af for this current

example is defined such that: AßO) = 1, Aßl) = 2, A/(2) =

2, Aß?) = 1, A/(4) = 3, and Aß5) = 0. After applying
above Steps (a), (b), and (c), the edges (both solid and

dashed lines) of Dg[Af] in Figure 2 are fetch edges

corresponding to the initial data elements d0 and the gen-
erated data items X0 and Z0.

A directed graph Dg[Af] can be generated by

knowing only P and Af. After generating Dg[Af], any
algorithm for enumerating the spanning trees of a

directed graph [2] can be applied to the subgraphs of
Dg[Af] for (1) the set of vertices {Vg[i]} u VG[i,j] (0 < i
< n and 0 < j < NG[i]) and (2) the set of vertices

{Source} u VI[k] (0 < k < Q). The roots of all possible
spanning trees are VM] (0 < i < n) or the Source vertex,

respectively. Each spanning tree corresponding to the set
of vertices {V^D']} u VG[i,j] specifies a valid data relo-
cation scheme for the generated data item Gd[i, j].

Because the Source vertex can denote multiple locations
where each initial data element dk is stored before the

execution of P, each spanning tree corresponding to the
set of vertices {Source} u VI[k] can specify a suite of
valid data relocation schemes for the initial data element

dk. In the above generated spanning trees, if the parent

vertex of V[i\,j\\ is Wi, ji\ or Vg[i2l then £>S[;,](/i)
= [*2> A.fi.h)]> a"d iftne parent vertex of Vf/j, j{\ is the
Source vertex, then DS[ix](j{) = [-1, q], where M[q] is
one of the initial locations of the corresponding initial

data element. The solid lines in Figure 2 illustrate one

spanning tree for each of d0, X0, and Z0, respectively.

6: A greedy algorithm based approach to
developing data relocation heuristics

In this section, a greedy algorithm based approach
to developing data relocation heuristics is presented. This
greedy strategy is established based on the mathematical

model, optimization criterion, and search space described

130

in Sections 3, 4, and 5, respectively, for the optimization

problem in HC. Choosing Af, Sf, and DS to minimize the

expected value of the total execution time based on a sto-

chastic HC model is a complex optimization problem.

However, developing heuristics to find suboptimal Af, Sf,

and DS is necessary to use HC systems efficiently.
A greedy algorithm based approach to developing

data relocation heuristics is to find a data relocation

scheme DS*, such that for the same Af and Sf, each sub-

task can obtain its individual input data item as early as
possible in terms of its expected receiving time. Readers

should recall that, based on a stochastic HC model, the

receiving time of each input data item of a subtask is a
random variable. In general, it is difficult to compare two
random variables without referring to a particular statis-

tic (e.g., the expected value). The following theorem
shows that, if the expected receiving time for each input

data item of a subtask can be minimized, then the
expected time when each subtask has received all of its

input data items can be minimized based on the assump-
tions of the distributions of those receiving times stated

later. This conclusion demonstrated by the following
theorem is not obvious because the expected value of the
maximum of a set of random variables is not necessarily
equal to the maximum of the corresponding expected

values of the same set of random variables.
Suppose that rt(V[i, j]) and rt'(V[i, j]) are the ran-

dom variables that specify the receiving times of input
data item Id[i, j] for subtask S[i], corresponding to two
different data relocation schemes DS and DS for the
same Af and Sf. The following assumptions about rt(V[i,

j\) and rt'(V[i,j]) are made:

(1) rt(V[i, j]) + k and rt'(V[i, j]) + k for a fixed i and j

(where k and k are arbitrary constants) belong to the
same two-parameter family of random variables [1] such

that their probability distribution functions can be com-

pletely determined by their corresponding means and
variances. Most of the common families of distributions
for random variables, such as normal distribution,

Gamma distribution, and Beta distribution, have this pro-

perty.

(2) The variance of rt(V[i, j]) is equal to the variance of

rt'(V[i,j\) for fixed i andj.

(3) For any data relocation scheme DS, rt(V[i, jx]) + cx

is independent of rt{V[i, j2]) + c2 Oi *h and c, and c2

are arbitrary constants).

Readers should notice that assumptions (1), (2),

and (3) are all related to the statistical properties of

rt(V[i, j]) and rt'(V[i, ;']). As long as they are approxi-

mately satisfied in reality, the theorem that follows based

on those assumptions still has practical as well as

theoretical significance. The following discussion pro-

vides the rationale behind the above three assumptions.

For assumptions (1) and (2), because rt(V[i, j\) and

rt'(V[i,J]) are two random variables for specifying the

receiving times of the same data item (i.e., Id[i, j]) for
S[i\ corresponding to two different data relocation

schemes and the same Af and Sf, it is quite reasonable to
assume that they have certain similar statistical proper-

ties (e.g., their variances, their families of distribution).

For assumption (3), although rt(V[i, ji]) and rt{V[U j2])
are defined for two different data items, but if the inter-

machine data transfer steps for Id[i,jx] and Id[i, j2] will
impact each other or those two data items are generated
by the same subtask, their corresponding receiving times

by S[i] can be correlated to each other. However, condi-
tions exist under which the random variables can be
treated as independent with each other despite this type

of correlation. The Kleinrock independence approxima-
tion for a data network in which there are many interact-
ing transmission queues [6] is a well-known condition
for describing this situation. This Kleinrock indepen-
dence approximation is used here as the basis for assum-
ing independence between rt(V[i,f\) + cx and rt (V[t,/|)

+ c2 that may technically be correlated.

Theorem: For two different data relocation schemes DS

and DS , with the same Af and Sf, and a fixed i (0 < i <

n), suppose Xj = rt(V[i, j]), Y± = rt'(V[i, f\), X = max[Xy],

and Y = max[F;] (0 < ; < M[i]), where X and Y are ran-
j

dorn variables for specifying the times when S[i] receives

all of its input data items with respect to DS and DS . If

E{Xj} < E{ Yj} for 0 <j < NI[i], then E{X} < E{ Y}.

Proof: Suppose that the distribution function of a random

variable w is Fw. Because E{X,} < EfF,-} for all;, there

exists cj > 0, such that E{X,} + c,- = E{ Yj}. It is true that

E{Xj+Cj)=B{Yj)

and

131

Var{Xj + cj}= Var{X,} = Var{ Y}}

due to assumption (2). Then, because of assumption (1),

Xj +c .- =FY

From assumption (3),

{Xj + cj \0<j<NI[i]}

is a set of independent random variables and

{Yj \0<j<NI[i]}

is another set of independent random variables. With the

properties associated with the ' 'max'' operator over mul-

tiple independent random variables [1], it can be shown
that

NI[i] - 1 NI[i] - 1
Fmax[Xj+Cj}= Ft FXj+Cj = El FYj = Fmax[Yj}-

j=0 j=0

Therefore,

E{Y}=E{meLx[Yj]}=E{max[Xj + Cj]}.

Without loss of generality, suppose c0 = min[c,-], then

E{Y)=E{m?x[Xj+Cj]}

>E{max[Z, +c0]}

>E{max[Xj]}

= E{X}.

Thus, E{X}<E{y}.

Based on the above theorem, the greedy algorithm
based approach that finds DS* to minimize E{rt(V[i, j])}

for S[i] to obtain Id[i, j] with respect to the same Af and

Sf for all 0 < i < n can also minimize the expected time

when each subtask receives all of its input data items
(i.e., E{X}) and is ready for its computation. The exact

starting time and the cost of the computation for S[i] (i.e.,

ST(Vg[i]) and C[i, Af(i)]) depend on the choice of Af and

Sf But with respect to the same given Af and Sf DS* is

the optimal data relocation scheme that minimizes the

expected value of the probability distribution of the exe-
cution time (as defined in Section 4).

The significance of the above theorem is that it

shows a greedy algorithm based approach is the best for
data relocation heuristics. Based on the above conclu-

sion, in order to minimize the expected total execution

time of an application program executed in a dedicated
HC system, data relocation heuristics should select the

source for each input data item of S[i], among all the

valid options described in Section 5, such that its receiv-

ing time by S[i] is as small as possible. Referring to the

above theorem, for a specific subtask, there exists a DS

that is better than all other DS'. But the inter-machine

communication steps specified by the selected DS for one

subtask may impact the expected receiving time of input
data items for other subtasks. Thus, the DS* that minim-

izes E{rt(V[i, j])} for every S[i] may be hard to find or

may not exist. Trade-offs must be made to choose a

suboptimal data relocation scheme, such that more input

data items can be obtained by more subtasks as quickly
as possible.

6: Summary

In an HC system, the subtasks of an application

program P must be assigned to a suite of heterogeneous

machines (the matching problem) and ordered (the

scheduling problem) to utilize computational resources

effectively. The matching and scheduling solutions
presented in the literature, in general, concentrate on
decreasing the computation time of P. The inter-machine
communication time of P is impacted by the scheme for
distributing the initial data elements and the generated
data items of P to different subtasks (the data relocation
problem).

The inter-machine communication time in an HC
system can have a significant impact on overall system
performance, so that any technique that can be used to
reduce this time is important. This paper focused on the

data relocation scheme to decrease the inter-machine
communication time for given matching and scheduling

schemes, when the possible concurrent execution of mul-
tiple subtasks on different machines is considered.

This paper concentrates on theoretical aspects of

matching, scheduling, and data relocation for stochastic

HC. The optimization problem for minimizing the total
execution time of an application program executed in a

dedicated HC system with respect to the above three fac-
tors is completely defined based on a stochastic

mathematical model, optimization criterion, and the

search space described in Sections 3, 4, and 5. The prac-

tical application of the above theoretical results is
demonstrated by the theorem shown in Section 6 that

proves a greedy algorithm based approach is the best

strategy for developing data relocation heuristics. The

132

greedy local optimization strategy, coupled with the

search space defined for choosing the data relocation

schemes, can help developers of future data relocation

heuristics.

Acknowledgments: The authors thank J. K. Antonio, M.

B. Kulaczewski, Y. A. Li, and J. M. Siegel for their valu-

able comments.

References:

[1] G. Casella and R. L. Berger, Statistical Inference,
Wads worth & Brooks/Cole Advanced Books &
Software, Pacific Grove, CA, 1990.

[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,
Introduction to Algorithms, MIT Press, Cambridge,
MA, 1992.

[3] R. F. Freund, "Optimal selection theory for super-
concurrency," Supercomputing '89, Nov. 1989, pp.
699-703.

[4] A. Ghafoor and J. Yang, "Distributed heterogene-
ous supercomputing management system," IEEE
Computer, Vol. 26, No. 6, June 1993, pp. 78-86.

[5] M. A. Iverson, F. Ozguner, and G. J. Folien, ' 'Paral-
lelizing existing applications in a distributed hetero-
geneous environment," Heterogeneous Computing
Workshop, Apr. 1995, pp. 93-100.

[6] L. Kleinrock, Communication Nets: Stochastic Mes-
sage Flow and Delay, McGraw-Hill, New York,
NY, 1964.

[7] Y. A. Li, J. K. Antonio, H. J. Siegel, and M. Tan, D.
W. Watson, "Estimating the distribution of execu-
tion times for SIMD/SPMD mixed-mode pro-
grams," Heterogeneous Computing Workshop, Apr.
1995, pp. 35-46.

[8] H. J. Siegel, J. K. Antonio, R. C. Metzger, M. Tan,
and Y. A. Li, "Heterogeneous computing," in
Parallel and Distributed Computing Handbook, A.
Y. Zomaya, ed., McGraw-Hill, New York, NY,
1996, pp. 725-761.

[9] M. Tan, J. K. Antonio, H. J. Siegel, and Y. A. Li,
"Scheduling and data relocation for sequentially
executed subtasks in a heterogeneous computing
system," Heterogeneous Computing Workshop,
Apr. 1995, pp. 109-120.

[10] D. Towsley, "Allocating programs containing
branches and loops within a multiple processor sys-
tem," IEEE Transactions on Software Engineering,
Vol. SE-12, No. 10, Oct. 1986, pp. 1018-1024.

AUTHOR BIOGRAPHIES

Min Tan is a Ph.D. candidate in the School of Electrical

and Computer Engineering at Purdue University, West

Lafayette, Indiana, USA. His research interests include
data source management in heterogeneous computing,
data staging issues for network communication, video

compression and financial applications on parallel and

distributed systems, and dynamic partitionability for

reconfigurable parallel processing machines. He has

authored or coauthored ten conference papers, one book

chapter, and two technical reports.

Mr. Tan attended Shanghai Jiao Tong University,

Shanghai, People's Republic of China, in 1988. In 1991,

he went to Western Maryland College, Maryland, USA,

and received a BA degree in Mathematics and Physics in
1993. In 1994, he received an MS degree in Electrical

Engineering from Purdue University. While at Purdue,

he received the "Estus H. and Vashti L. Magoon Out-

standing Teaching Assistant Award" in 1996. He also

worked as a software engineer for Dupont Photomasks,

Inc., and for Hughes Network Systems, Inc., during the

summers of 1995 and 1996, respectively. Mr. Tan is a
member of IEEE, the IEEE Computer Society, and the

Eta Kappa Nu honorary society.

Howard Jay Siegel is a Professor and Coordinator of the
Parallel Processing Laboratory in the School of Electrical
and Computer Engineering at Purdue University. He

received two B.S. degrees from the Massachusetts Insti-
tute of Technology (MIT), and the M.A., M.S.E., and
Ph.D. degrees from Princeton University. He has coau-
thored over 230 technical papers, has coedited seven
volumes, and wrote the book ' 'Interconnection Networks
for Large-Scale Parallel Processing" (second edition
1990). He is a Fellow of the IEEE, was a Coeditor-in-
Chief of the Journal of Parallel and Distributed Comput-

ing, and is currently on the Editorial Boards of both the
IEEE Transactions on Parallel and Distributed Systems
and the IEEE Transactions on Computers. He is an inter-

national keynote speaker and tutorial lecturer, as well as

a consultant.

Prof. Siegel's research interests include hetero-
geneous computing, parallel algorithms, interconnection

networks, and the PASM reconfigurable parallel com-

puter system. In the area of heterogeneous computing,

he is examining ways to match segments of a task to dif-

ferent machines in a heterogeneous suite to exploit the

varied computational capabilities available. His algo-
rithm work explores the factors involved in mapping a

problem onto a parallel processing system to minimize

133

execution time. Topological properties and fault toler-
ance are the focus of his research on interconnection net-

works for large-scale parallel machines. He is analyti-

cally and experimentally investigating the utility of the

three dimensions of dynamic reconfigurability supported

by the PASM design ideas and the small-scale proof-of-

concept prototype: mixed-mode parallelism, switchable
inter-processor communications, and system partitiona-
bility.

Prof. Siegel was Program Co-Chair of the "1983
International Conference on Parallel Processing," Pro-

gram Chair of ' 'Frontiers '92: The 4th Symposium on the

Frontiers of Massively Parallel Computation," and Pro-

gram Chair of the "8th International Parallel Processing

Symposium." In addition, he has been General

Chair/Co-Chair of four international conferences and
Chair/Co-Chair of four workshops.

134

Optimal Task Assignment in Heterogeneous Computing Systems

Muhammad Kafil and Ishfaq Ahmad

Department of Computer Science
The Hong Kong University of Science and Technology, Hong Kong.

Abstract1

Distributed systems comprising networked
heterogeneous workstations are now considered to be a
viable choice for high-performance computing. For
achieving a fast response time from such systems, an
efficient assignment of the application tasks to the
processors is imperative. The general assignment problem
is known to be NP-hard, except in a few special cases with
strict assumptions. While a large number of heuristic
techniques have been suggested in the literature that can
yield sub-optimal solutions in a reasonable amount of
time, we aim to develop techniques for optimal solutions
under relaxed assumptions. The basis of our research is a
best-first search technique known as the A * algorithm from
the area of artificial intelligence. The original search
technique guarantees an optimal solution but is not
feasible for problems of practically large sizes due to its
high time and space complexity. We propose a number of
algorithms based around the A* technique. The proposed
algorithms also yield optimal solutions but are
considerably faster. The first algorithm solves the
assignment problem by using parallel processing.
Parallelizing the assignment algorithm is a natural way to
lower the time complexity, and we believe our algorithm to
be novel in this regard. The second algorithm is based on
a clustering based pre-processing technique that merges
the high affinity tasks. Clustering reduces the problem size,
which in turn reduces the state-space for the assignment
algorithm. We also propose three heuristics which do not
guarantee optimal solutions but provide near-optimal
solutions and are considerably faster. By using our
parallel formulation, the proposed clustering technique
and the heuristics can also be parallelized to further
improve their time complexity.

Keywords: Best-first search, parallel processing, task
assignment, mapping, distributed systems.

1 Introduction
The fast progress of network technologies and

sequential processors has made distributed computing
systems, such as networks of heterogeneous workstations
or PCs, an attractive alternative to massively parallel
machines. To exploit the capabilities of these systems for
an effective parallelism, the tasks of an application must be
properly assigned to the processors.

Given a parallel program represented by a task graph
and a network of processors also represented as a graph,

1. This research was supported by the Hong Kong Research Grants
Council under contract number HKUST 619/94E.

the assignment problem is to find an allocation of the tasks
to the processors that results in the minimum turnaround
time. This is usually done by assigning an equal amount of
load to all processors and by reducing the overhead of
interaction among them. An assignment can be static or
dynamic, depending upon on the time at which the
allocation or assignment decisions are made. In a static
assignment the information about the tasks and processors
in the systems is assumed to be known in advance, and the
tasks are allocated to the processors before starting the
execution. The task assignment problem, also known as
the allocation problem or the mapping problem [4], is well
known to be NP-hard [6], but continues to be regarded as
an interesting and important problem.

Most of the algorithms proposed in the past yield sub-
optimal solutions while optimal algorithms exist only for
restricted cases or small problem sizes. Optimal solutions,
however, are required in many situations where
performance is the primary goal. Also, once an optimal
assignment of a program is determined, one can reuse this
information for future mappings.

The simplest approach to finding an optimal solution is
an exhaustive search. But since there are nm ways for
assigning m tasks to n processors, an exhaustive search is
impractical. Another possibility is to reduce the size of the
state-space using an informed search. The A* algorithm
from the area of artificial intelligence is one such informed
search algorithm. The algorithm, despite guaranteeing an
optimal solution, is not feasible for problems of practically
large sizes because of its high time and space complexity.
Thus, we need ways to either further reduce the size of the
state-space, or speedup the search process using parallel
processing — or do both.

Since a parallel program is executed on multiple
processors, it is natural to utilize the same processors to
speedup the mapping of the program. Parallel processing
can help in reducing the search time and allows to find
optimal assignments for larger problem sizes, as compared
to the serial algorithms. Even for a sub-optimal solution,
parallel processing can help in solving a problem of larger
size. However, very little work has been done on using
parallel processing in solving the assignment problem; a
few exceptions are the parallel heuristic for the scheduling
problem proposed by Ahmad and Kwok [2] and the
parallel heuristics for the assignment problem proposed by
Bultan and Akyanat [5]. To the best of our knowledge, no
prior work on finding an optimal assignment using parallel
processing has been reported.

0-8186-7879-8/97 $10.00 © 1997 IEEE
135

We propose a parallel algorithm that generates an
optimal solution for assigning an arbitrary task graph to an
arbitrary network of heterogeneous processors. The
algorithm, running on the Intel Paragon parallel machine,
gives optimal assignments for small to medium size
problems, with a reasonable speedup. We also propose a
clustering based pre-processing algorithm that merges the
high affinity tasks before starting the search. This reduces
the problem size which in turn reduces the size of the state-
space for the assignment algorithm. We also propose three
heuristics which do not guarantee optimal solutions but
yield near-optimal solutions and take considerably less
execution time. The proposed heuristics and the
clustering-based approach can also be parallelized using
the proposed parallel formulation.

2 Problem Definition
A parallel program can be partitioned into a set of m

communicating tasks represented by an undirected graph
GT = (Vj, ET) where VT is the set of vertices, {tb t2,.., tm),
and ET is a set of edges labelled by the communication
costs between the vertices. The interconnection network of
n processors, {p/,p2,..,p,,}, is represented by an n*n matrix
L, where an entry L,y is 1 if the processors i and j are
connected, and 0 otherwise.

A task tj from the set VT can be executed on any one of
the n processors of the system. In a heterogeneous system
[16], each task has an execution cost associated with it on
a given processor. The execution costs of tasks are given
by a matrix X, where the matrix entry X^ is the execution
cost of task i on processor p. When two tasks tt and t,
executing on two different processors need to exchange
data, a communication cost is incurred. Communication
among the tasks is represented by a matrix C, where C,-.- is
the communication cost between task i andy if they reside
on two different processors. The load on a processor is the
combination of all the execution and communication costs
associated with the tasks assigned to it. The total
completion time of the entire program will be the time
needed by the heaviest loaded processor.

Task assignment problem is to find a mapping of the set
of m tasks to n processors such that the total completion
time is minimized. The mapping or assignment of tasks to
processors is given by a matrix A, where Aip is 1 if task i is
assigned to processor p and 0 otherwise. The load on a
processor p is given by

m n m m

~ZxinmA;„+ y y y (CA.A.L)
' = 1 q=\i=]j=\

(P*1)

The first part of the equation represents the total
execution cost of the tasks assigned to processor/;, and the
second part is the communication overhead on p. To find
the processor with the heaviest load, the load on each of the
n processors needs to be computed. The optimal
assignment is the one that results in the minimum load on
the heaviest loaded processor among all the assignments.

3 Related Work
A large number of task assignment algorithms have

been proposed using various techniques such as network
flow [17], integer programming [12], state-space search
[14, 15, 18], clustering [3], bin-packing [19], randomized
optimization [1, 5, 7, 8], etc. Most of these algorithms can
be classified according to the taxonomy given in Figure 1.
At the first level of the hierarchy these algorithms can be
classified as optimal and sub-optimal categories, where the
optimal algorithms can be further classified as restricted or
non-restricted categories. Restricted algorithms yield
optimal solutions in a polynomial time by restricting the
structure of the program and/or the multicomputer system.
Non-restricted algorithms, on the other hand, consider the
problem in a more general context; they give optimal
solutions but not necessarily in a polynomial time.

Sub-optimal algorithms can be divided into
approximate or heuristics classes. Approximate
algorithms [9] assume the same computational model used
by the optimal algorithm. But instead of searching the
complete solution space for optimal solution, approximate
algorithms guarantee a solution that is within a certain
range from the optimal solution. Heuristic algorithms
make use of special parameters which affect the system in
indirect ways, for example, clustering the groups of
heavily communicating tasks together. A greedy heuristic
starts from a partial assignment and assigns one task at
each step until a complete assignment is obtained; in
general, backtracking is not allowed. Bin-packing
techniques use a sizing policy, an ordering policy, and a
placement policy for the tasks to be assigned. Randomize
optimization methods start from a complete assignment
and search for an improvement in the assignment by
exchanging and moving tasks among different processors.

Because of the intractable nature of the problem most
of the research is focused on the development of heuristic
algorithms. There are also some optimal algorithms
available either for restricted cases of the problem or for
very small problem sizes.

4 Overview of the A* Technique
The A* algorithm is a best first search algorithm [13].

It has been extensively used for problem solving in
artificial intelligence. The algorithm is used to search
efficiently in a search-space (which is a tree in our case but
can be some other type of graph). It searches the nodes of
the tree starting from the root called the start node (usually
a null solution of the problem). Intermediate nodes
represent the partial solutions while the leaf nodes
represent the complete solutions or goals.

Associated with each node is a cost which is computed
by a cost function /. The nodes are ordered for search
according to this cost, that is, the node with the minimum
cost is searched first. The value of / for a node n is
computed as:

fin) = g(n) + h(n)

136

Static
Task Assignment

Restricted

Graph
Theory

Mathematical
Programming

State-space
Search

Randomized Task" Greedy
Optimization Clustering

Genetic Simulated Mean Field
Algorithms Annealing Annealing

Figure 6: A classification of task assignment algorithms.

where g(n) is the cost of the search path from the start node
to the current node n; h(n) is a lower bound estimate of the
path cost from node n to the goal node (solution).
Expansion of a node is to generate all of its successors or
children and compute the / value for each of them. The
algorithm maintains a sorted list, called OPEN, of nodes
(according to their/values) and always selects a node with
the best cost for expansion. Since the algorithm always
selects the best cost node, it guarantees an optimal solution.
Since for a leaf node n, h(n) is 0, we will set the value of
fin) equal to g(n) for all leaf nodes.

4.1 Application to Task Assignment
For the task assignment problem under consideration,

the search space is a tree. The initial node (the root) is a
node with null assignment, i.e., no task is assigned;
intermediate nodes are nodes with partial assignments, i.e.,
some tasks are assigned while others are still unassigned at
this stage. A solution (goal) node is a node with a complete
assignment (all task are assigned). For the computation of
the cost function, g(n) is the cost of partial assignment (A)
at node n, that is, the load on the heaviest loaded processor.
For the computation of h(n), two sets Tp (the set of tasks
which are assigned to the heaviest loaded processor/?) and
U (the set of tasks which are unassigned at this stage of the
search and have a communication link with any task in set
T„) are defined. Now each task t,- in U will be assigned to
either processor p or any other processor q which has a
direct communication link with p. Thus, there can be two
kinds of costs associated with the assignment of each t,-:
X,-„ (the execution cost of t(- on processor/?) and the sum of
communication cost with all the tasks in set Tp. Let cost (t,-)
be the minimum of these two costs, then h(n) is computed
as;

h(n) = X cosf(r,)
tfiV

The algorithm A* is described as follows:

The A* Algorithm

(1) Build the initial node s and insert it into the list OPEN
(2) Set/W = 0
(3) Repeat
(4) Select the node n with the smallest/ value.
(5) if (n is not a solution)
(6) Generate successors of n
(7) for each successor node n' do
(8) if (n' is not at the last level in the search tree)
(9) fin') = g(n') + h(n')
(10) elsefin') = g(n')
(11) Insert n' into OPEN
(12) end for
(13) end if
(14)if (n is a solution)
(15) Report the Solution and stop
(16)Until (n is a Solution) or (OPEN is empty)

A study by Ramakrishnan et cd. [14] showed that the
order in which the tasks are considered for allocation has
a great impact on the performance of the algorithm (for the
same cost function used). Their study indicated that a
significant performance improvement could be achieved
by first considering the tasks with larger weights in the
computation of the optimal cost at the shallow levels of the
tree. They proposed a number of heuristics for ordering the
tasks. Out of these heuristics the so called minimax
sequencing heuristic has been shown to perform the best.
The minimax sequencing works as follows. Consider a
matrix Hofm rows and n columns where m is the number
of tasks and n is the number of processors. The entry H (i,
k) of the matrix is given by

H(i,k) =Xik + h(v),

where h(v) is given by

A(v) = I miniX^dj),
ye V

where [/is the set of unassigned tasks which communicate

137

with tt. The minimax value, mm (r,) of task tt is defined as

mm(ti) = min{H(i,k),l<k<n}.

The minimax sequence is then defined as:

n = {T,,T2, ...,xm},/nm(t,.) >wrm(t. +]),V/.

4.2 An Illustrative Example
Given a set of 5 tasks, {t0, t„ t2, t3, t4) and a set of 3

processors {p0, p,, p2} as shown in Figure 2, the algorithm
first generates the minimax sequence {tg, t,, 12, t4, t3}.

Processor graph 2

Po PJ P2

to 15 11 9

tj 14 12 8

t* 16 13 6

t3 5 4 3

U 10 9 7

Execution cost matrix

Task graph

Figure 2: An example task graph and a processor and the network,
execution costs of the tasks on various processors.

Figure 2 illustrates the search tree for finding the
assignment for this example.

A node in the search tree includes the partial
assignment of tasks to processors as well as the value of/
(the cost of partial assignment). The assignment of m tasks
to n processors is indicated by an m digit string 'aga,...am_
/, where a, (0 < i < m - 1) represents the processor (0 to
n -1) to which rth task has been assigned. A partial
assignment means that some tasks are unassigned; the
value of a,- equal to 'X' indicates that ith task has not been
assigned yet. Each level of the tree corresponds to a task,
thus replacing an 'X' value in the assignment string with
some processor number. Node expansion is to add the
assignment of a new task to the partial assignment. Thus
the depth (d) of the search tree is equal to the number of
tasks m, and any node of the tree can have a maximum of
n (no of processors) successors.

The root node includes the set of all unassigned tasks
'XXXXX'. For example in Figure 2, the allocations of t0 to

Po ('OXXXX'), t0 top, (' 1XXXX'), and t0 top2 ('2XXXX')
are considered by determining the costs of assignments at
the first level of the tree. The assignment of t0 to p0

('OXXXX') results in the total cost/(n) being equal to 30.
The g(ri) in this case equals 15 which is the cost of
executing t0 on p0. The h{ri) in this case also equals 15
which is the sum of minimum of the execution or
communication costs of t, and t4 (tasks communicating

with t0). The costs of assigning t0 top, (26) and t0 top2 (24)
are calculated in a similar fashion. These three nodes are
inserted to the list OPEN. Since 24 is the minimum cost,
the node '2XXXX' is selected for expansion. The search
continues until the node with the complete assignment
('20112') is selected for expansion

At this point since this is the node with a complete
assignment and the minimum cost, it is the goal node.
Notice that all assignment strings are unique. A total of 39
nodes are generated and 13 nodes are expanded. In
comparison, an exhaustive search will generate nm = 243
nodes in order to find the optimal solution.

5 The Proposed Algorithms
In this section, we describe our proposed parallel and

clustering algorithms for optimal solutions. The sub-
optimal algorithms are also explained in this section.

5.1 The Parallel Algorithm
The objective of the parallel algorithm is to divide the

search tree among the processing elements (PEs) as evenly
as possible and to avoid the expansions of non-essential
nodes, that is, the nodes which are not expanded by the
sequential algorithm. A good overview of parallel depth-
first and best-first search algorithms are given in [10] [11].
To distinguish the processors on which the parallel task
assignment algorithm is running from the processors in the
problem domain, we will denote the former with the
abbreviation PE (processing element which in our case is
the Intel Paragon processor). We call this parallel
algorithm the Optimal Assignment with Parallel Search
(OAPS) algorithm.

The OAPS Algorithm:
(1) Init- PartitionO
(2) SetUp-NeighborhoodO
(3) Repeat
(4) Expand the best cost node from OPEN
(5) if (a solution found)
(6) if (it's better than previously received Solutions)
(7) Broadcast the Solution to all PEs
(8) else
(9) Inform neighbors that I am done
(10) end if
(11) Record the solution and stop
(12) end if
(13) If (OPEN's length increases by a threshold u)
(14) Select a neighbor PE j using RR
(15) Send the current best node from OPEN to j
(16) end if
(17) If (Received a node from a neighbor)
(18) Insert it to OPEN
(19) if (Received a solution from a PE)
(20) Insert it to OPEN
(21) if (Sender is a neighbor)
(22) Remove this from neighborhood list
(23) end if
(24)UntiI (OPEN is empty) OR (OPEN is full)

138

xxxxx
(0)

oxxxx
(30)

100XX
(47)

22XXX
(30)

Final Assignment

V ->p2

ti- ->Po
V ->P;
V ->P;
U —>P2

201X0
(49)

201X1
(39)

201X2
(28)

20102
(38)

/j\®r$^®
210X0
(44)

210X1
(46)

210X2
(28)

&
20112
(28)

20122
(36)

21002
(31)

21012
(35)

21022
(36)

Goal)

Figure 3: The search tree for the example problem
(nodes generated = 39, nodes expanded =13).

Initially the search tree is divided statically based on
the number of processing elements (PEs) P in the system
and the maximum number of successors, S, of a node in the
search tree. There could be three situations:

Case 1) P< S: Each PE will expand only the initial
node which results in S new nodes. Each PE will get one
node and additional nodes are distributed in a round robin
(RR) fashion.

Case 2) P = S: Only the initial node will be expanded
and each PE will get one node.

Case 3) P > S: Each PE will keep expanding nodes
starting from the initial node (the null assignment) until the
number of nodes in the list is greater than or equal to P. List
is sorted in an increasing order of cost values of the nodes.
The first node in the list will go to PEJ; the second node
will go to PEp, the third node goes to PE2, the fourth node
goes to PE„.;, and so on. Extra nodes will be distributed in
RR fashion. Although there is no guarantee that a best cost
node at the initial levels of the tree will lead to a good cost
node after some expansions, the algorithm still tries to
distribute the good nodes as evenly as possible among all
the PEs.

If a solution is found during the search, the algorithm
terminates. Note that there is no master PE which is
responsible for generating and distributing nodes among
the PEs. Therefore, the overhead of the static node
assignment is negligible as compared to the host-node
style because the whole process is done in parallel. To
illustrate this, we consider the example of the task

assignment problem of assigning 10 tasks to 4 processors
using 2 PEs (PE1 and PE2). Here S is 4 since a node in the
search tree can have a maximum of 4 successors. Each PE,
therefore, generates 4 nodes numbered from 1 to 4 (as
shown in Figure 4 where the number in a box is the/value
of the node). PE1 will then get the first and third node 3,
while PE2 will get the second and fourth node.

PE1.

30

30 35 45 55

/ 1 JP> <^3 \4
s^PE2

45 35 55

Figure 4: An initial static assignment.

If there is no communication among the PEs after the
initial static assignment (i.e., every PE just searches its
own tree), some of them may work on a good part of the
search space, while others may expand unnecessary nodes
(i.e., the nodes which the serial algorithm will not expand).
This can result in a poor speedup. To avoid this, PEs need
to communicate to share the best part of the search space
and to avoid unnecessary work. This communication can
be global (a PE broadcast its nodes to all other PEs) or
local (a PE communicates only with its neighbors).

In our formulation we have used a round robin (RR)
within neighborhood communication strategy. With this
communication strategy a PE can share the best part of the

139

PEO PE1 PE2

(24)

Initial partitioning

expansion

10XXX I I 11XXX I I 12XXX I
(28) I I (36) Jl (26) I

communication

20XXX
(28)

22XXX
(30)

210XX
(26)

200XX
(47) r\

202XX
(39)

22XXX
(30)

I 21UXU II WUxl If
I (44) ii r4Rr ii

u
7mr

(28)

200XX
(47)

202XX
(39)

210X0
(44)

21UX1

(46)
200XX
(47)

202XX
*-■ (39)

22XXX
(30)

expansion

Stop

21XXX
(26)

12XXX
(26)

00XXX
(42

01XXX
(30)

02XXX
(3o;

10XXX
(28)

I210XX || 211XX II212XX I
(26) || (41) || (39) h

 7^ — '

[W2XXX
(26)

ooxxx
(42;

oixxx
(30)

201XX
(28)

L|12X^X
(26)

communication

102XX
_[28J

OOXXX
(42)

I l<Wxx I ll/Dui II l^JUi. I
| (31) H (51) || (29) || (30)J-

11XXX
(36)

communication

ooxxx
Ü2J

oixxx
(30)

T

021XX
(30)

expansion

nxxx
PfiJ

expansion

communication

expansion

Broadcast solution
and stop. ___

Figure 5: The operation of the parallel assignment algorithm using three PEs.
Stop

140

search space. Further, a PE can avoid unnecessary work
explicitly by communicating with its neighbors and
implicitly by broadcasting its solution to all other PEs.
Since the Paragon PEs are connected together with a mesh
topology, a PE can have a maximum of 4 neighbors. Since
most of the time a PE communicates only with its neighbor,
a low communication overhead is incurred making the
algorithm more scalable as compared to a global
communication strategy.

A PE periodically (when OPEN increases beyond a
threshold u) selects a neighbor in a RR fashion and then
sends its best node to that neighbor. As a result, the load is
balanced and the best part of the search space is shared
within the neighborhood of a PE. At finding a solution, a PE
broadcasts it to all the PEs, thus helping in avoiding the
unnecessary work for a PE that is working on the bad part
of the search space. Once a node receives a better cost
solution than its current best node, it stops expanding the
unnecessary nodes. The PE that finds the first solution
broadcasts its result to all other PEs, and from that point
each PE broadcasts its solution only if its cost is better than
a previously received solution.

With an initial partitioning, every PE has one or more
nodes in its list OPEN. Each PE then determines the PEs in
its neighbor by using its own position in the mesh (topology
of the Intel Paragon). A PE starts expanding new nodes
starting from the initial nodes. PEs then interact with each
other for exchanging their best nodes and to broadcast their
solutions. When a PE finds a solution, it records it in a
common file (opened by all PEs) and stops. The optimal
solution is the solution with the minimum costs among all
PEs.

To illustrate the operation (see Figure 5) of the OAPS
algorithm, we consider the example used earlier for the
sequential assignment algorithm. Here we assume that the
parallel algorithm runs on three PEs connected together as
a linear chain. Initially three nodes are generated as in the
sequential case. Then, through the initial partitioning, these
nodes are assigned to the three PEs. Each PE then goes
through a number of steps. In each step, there are two
phases: the expansion phase and the communication
phase1. In the expansion phase, a PE sequentially expands
its nodes (the newly created nodes are shown with thick
borders). It will keep on expanding until it reaches the
threshold (M) (which is set to be 3 in this example). In the
communication phase, a PE selects a neighbor and then
sends its best cost node to it. The selection of the neighbors
is done in a RR fashion. In Figure 5, the exchange of the
best cost nodes among the neighbors is shown by dashed
arrows. In the 5th step, PE1 finds its solution, broadcasts it
to other PEs, and then stops. In the final step, PEO also
broadcasts (not shown here for the sake of simplicity) its
solution to PE2 which finally records its solution and stops.

1. The synchronous operation of PEs shown here is just to
illustrate the concept; the actual algorithm is fully
asynchronous and thus may follow a different sequence —
the final result will of course be the same.

5.2 The Preprocessing Clustering Algorithm
The algorithm starts by clustering (or merging) the

tasks in the task graph. Two tasks are merged if the
communication cost among them is so high that they will
never be assigned to two different processors in the
optimal assignment; Equations 5.1 and 5.2 given below
ensure that the two tasks under consideration are never
assigned to two different processors. Clustering reduces
the size of the task graph and hence the depth (d) of the
resulting search tree.

The algorithm first sorts the edges of the task graph,
and then selects the largest edge (i, j), where task i and; are
the tasks connected with the edge. The cost of an edge
when mapped onto an edge of the processor graph is
defined as the sum of the edge cost and the minimum
execution cost of task i or j on the processors of the
processor edge. The cost is computed using the following
equation:

(min { (Xip + C;.) • Lpq, (Xjq + Ci}) • Lpq}\
mm Urn { (Xjp + Cy) • Lpq, (Xiq + Cy) • Lpq}) (5.1)
p, q = 1 to n

The cost of assigning tasks i and j to the same
processor is the minimum execution cost of two tasks on
either of the two processors of the processor edge. This
cost is given by the following equation.

min {(Xip + Xjq)AXiq + Xjq)) (5.2)
p, q = 1 to n

A selected edge is merged if the cost of mapping it onto
all of the processor edges is higher than the cost of
assigning the two tasks on the same processor. The
clustering process is repeated for all the edges of the
processor graph.

The clustering process is illustrated by an example,
given in Figure 6, where the largest edges selected are
shown as thick edges. In the first iteration the edge (t2, t4)
is selected and task t4 is merged with t2 and its
communication links with other tasks are added to t2. In
the second iteration tj is merged. In the third iteration, the
selected edge is not merged, and the algorithm stops.

After clustering, the tasks are reordered using the
minimax sequencing as discussed in Section 4.1. Now the
tasks are selected for the assignment using this sequence.

The clustering procedure guarantees an optimal
assignment only when the processors are fully-connected
since the searching algorithm assigns two communicating
tasks only to the directly connected processors.

5.3 Sub-optimal Algorithm
The sub-optimal algorithm, henceforth referred to as

the Sub-Optimal Assignments (SA) algorithm, is designed
to obtain the solution faster and to overcome the high
memory requirements of A*. The basic idea in this
algorithm is that when the search process reaches a certain
level deep in the search tree, some search can be avoided
(some tree nodes can be discarded) without moving far
from the optimal solution. Based on this reasoning, we

141

Pi Pi Ps

t; 10 20 30

h 40 5 10

tj 70 50 80

u 50 80 20

Task graph
Processor graph

Execution cost matrix

Iteration 2

Figure 6: Illustration of the clustering procedure.

G^^-©
Iteration 3

propose three heuristics, SA1, SA2 and SA3. The first
heuristic (SA1) is explained as follows. When the
algorithm selects a node for expansion and that node
belongs to a level R or deeper than that in the search tree,
it generates only its best successor instead of generating all
the successors (i.e., it discards all successors except the
best one). The second heuristic (SA2) is similar to the first:
when the search reaches at level R for the first time, the
algorithm starts discarding all successors except the best
node among all the nodes selected for expansion. The third
heuristic (S A3) is similar to the second heuristic except the
nodes are discarded from the global list (OPEN). For
example, if n nodes are generated, then all of them are
inserted to OPEN and n - 1 high cost nodes are discarded.

There is a little chance of running out of memory for
the above mentioned heuristics. This is because when a
node at level R is selected, the algorithm inserts only one
node to OPEN for expansion and takes one node from it.
Thus, no extra memory is required. Moreover, the running
time of the algorithm is reduced by a large factor since the
algorithm explores fewer nodes once it reaches the level R.

6 Experimental Results
We first discuss the workload used in our study and

then present the experimental results obtained by the
proposed algorithms.

6.1 Workload Generation
A realistic workload is important to validate an

assignment algorithm but very little information is
available about process communication patterns
encountered in distributed systems. In distributed systems,

there is usually a number of process groups with heavy
interaction within the group, and almost no interaction
with the processes outside the group [3]. With this
intuition, we first generated a number of primitive task
graph structures such as the pipeline, the ring, the server,
and the interference graphs, all consisting of 2 to 8 nodes.
The complete task graphs, consisting of 10-28 nodes, were
generated by randomly selecting these primitives
structures and combining them until the desired number of
tasks was reached. This was done by first selecting a
primitive graph and then combining it with a newly
selected graph through a link labelled with cost 1; the last
node was connected back to the first node.

Since we assume the processors to be heterogeneous (a
homogeneous processor system is a special case of a
heterogeneous processor system), the execution cost varies
from processor to processor in the execution cost matrix
(X); the average value, however, remains the same. To
generate the execution costs for the nodes and the
communication costs for the edges, we used a parameter
called the communication-to-cost ratio (CCR) which is the
value of the average computation cost divide by the
average communication cost per node. For example, if the
total communication cost (sum of the cost of all of the
edges connected to this task) of task i is equal to 16.0 and
the CCR is equal to 0.2, then the average execution cost of
i will be given by: 16.0 /0.2 = 80. We used the following
values of CCR: 0.1, 0.2, 1.0, 5.0, and 10.0.

For the processor graphs, we used 3 topologies each
comprising 4 nodes. For the parallel algorithm OAPS, we
used 2, 4, 8, and 16 Paragon PEs.

142

6.2 Running Times of the Serial Algorithm
In this section we present the running times of various

versions of the serial assignment algorithm. Table 1 and 2
include the running times for different variations of the
serial algorithm for the fully-connected topology
comprising 4 processors. The running times of the serial
algorithm without any task ordering or clustering are given
in column 2; we will refer to it as A* in these tables. An
entry '**' in a column means the algorithm could not
generate the solution for this case using 50 MB of memory,
i.e., it ran out of memory after a few hours (usually 5 to 6
hours). The third column shows the running times of the
algorithm with the task ordering; we will refer to this
technique as A*R. The fourth column shows the running
times of the algorithm with clustering and then ordering;
we will refer to this technique as A*C. The fifth column is
the ratio of the running times of the two algorithms.

For the fully-connected topology of 4 processors and
with CCR equal to 1.0 (see Table 1), the clustering
algorithm is on the average 3.95 times faster than A*R.
Table 2 presents the running times for the same topology
but with CCR equal to 5.0. The clustering algorithm is on
the average 281 times faster. The clustering algorithm
performs well when the value of CCR is high because for
these cases the optimal algorithm also assi^/i highly
communicating tasks to the same processor. For lower
values of CCR the algorithm does no merging for most of
the cases.

It is observed that for most of the cases, task graphs
with CCR equal to 0.1 and 0.2 result in larger search trees
as compared to the graphs with CCR equal to 1.0, 5.0, and
10. The task graphs with CCR equal to 10.0 take the lowest
running times. This is because the cost of the optimal
solution for a higher CCR is less than a lower CCR and
thus the algorithm finds the optimal solution quickly
starting from an initial cost 0. For example, a task graph
consisting of 10 tasks with the CCR equal to 10.0 has the
solution cost equal to 7.36, while the same graph with the
CCR equal to 0.1 has the solution cost equal to 374.00.
Thus, the former takes only 0.40 seconds to find the
solution while the latter takes 4.30 seconds.

The processor topology also has a great impact on the
size of the search tree as well as on the running time. This
is because the algorithm assigns two communicating task
to two different processors only if the processors are
directly connected. So, in case of the line or ring topology,
the algorithm prunes some of the nodes in the search tree
based on this constraint. On the other hand, no such
pruning is done for the fully-connected case.

6.3 Speedup Using the Parallel Algorithm
In this section, we present the speedup of the parallel

algorithm using various number of processors. The
speedup is defined as the running time of the serial
algorithm over the running time of the parallel algorithm.

Table 3 presents the speedup data for the fully-
connected topology comprising 4 processors and the task

graphs with CCR equal to 0.1. The second column
includes the running time of the serial algorithm while the
third, fourth, fifth, and sixth columns include the speedup
of the parallel algorithm over the serial algorithm using 2,
4, 8 and 16 Paragon PEs, respectively. The bottom row of
the table indicates the average speedup of all the task
graphs.

We can observe that the speedup increases with an
increase in the problem size. Also the problems with a
lower value of CCR yield a better speedup in most of the
cases, since the running times of the serial algorithm in
those cases are much longer compared to the parallel
algorithm.

Table 1: The running times using the fully-connected
topology (CCR =1.0)

No. of
Tasks

T(A*)
(sec)

T(A*R)
(sec)

T(A*C)
(sec)

T(A*R)
T(A*C)

10 3.35 0.87 0.17 5.12
12 139.54 0.73 0.77 0.95

14 270.70 4.82 3.77 1.28

16 822.08 36.08 1.67 21.60

IS ** 31.62 30.76 1.03

20 ** 55.78 22.19 2.51

22 ** 67.70 67.78 1.00

24 ** 191.27 55.21 3.46

26 ** 206.63 143.06 1.44

28 ** 2451.56 2124.08 1.15

Avg 3.95

Table 2: The running times using the fully-connected
topology (CCR=5.0).

No. of
Tasks

T(A*)
(sec)

T(A*R)
(sec)

T(A*C)
(sec)

TfA*Rl
T(A*C)

10 0.24 Ö.27 Ö.Ö8 3.37
12 1.53 0.49 0.12 4.08

14 35.98 1.73 0.25 6.92

16 10.29 1.67 0.27 6.19

18 6195.63 29.79 0.55 54.16

20 ** 21.96 1.14 19.26

22 ** 3.98 3.18 1.25

24 ** 3387.58 4.15 816.28

26 ** 4134.28 2.19 1887.80

28 ** 52.86 3.87 13.66

Avg 281.30

The values of the average speedup for the fully-
connected, ring, and line topologies are shown graphically
in Figure 7.

6.4 Results of the Heuristics
In this section, we present the result of comparing the

three proposed heuristics (SA1, SA2, SA3) with the
optimal algorithm. We make two kinds of comparisons.
First, we compare the percentage deviation of the solution
produced by SA1, SA2 and SA3 from that of OASS. This

143

deviation is defined as follows:

%D = (Cost(SA) - Cost(OASS) * 100) / Cost(OASS)

Second, we compare ratios of the running times of
SA1, SA2 and SA3 to those of OASS. Optimal solutions
are first obtained for the five task sets discussed in Section
5.2 and then sub-optimal solution are obtained using SA1,
SA2 and SA3 for the same task sets. Heuristic tree level
used is:

R =

where d is the maximum depth of the search tree. Table 4
presents the results for the ring topology with 4 processors
and the task graphs with CCR equal to 0.2. Each entry in
the table is the average of five runs of each algorithm for 5
task graphs generated using various permutations of the
pipeline, the ring, the server and the interference sub-
graphs. The average values of the percentage deviation in
the solution and the ratios of the running times are
indicated in the bottom row.

The results indicate that SA3 always gives good
solutions in terms of the percentage cost deviation from the
optimal. This is because SA3 discards high cost nodes
from the global list OPEN, so good nodes are always
prevented from deletion. SA2 deviates more than SA3 but
is faster.

The average cost deviation and the ratio of time
improvement for the fully-connected topology (with
different values of CCR) is shown in Figure 8. It can be
noted that the average percentage cost deviation for the
cases with CCR equal to 5.0 and 10.0 is quite high as
compared to the cases with lower values of CCR. This is
because when the task graph has a larger value of CCR the
optimal algorithm assigns more tasks to a single processor
(for some cases all the tasks goes to one processor).
Therefore, the optimal algorithm follows a rather straight
path in the search tree considering less options. If the sub-
optimal algorithm discards a node on this path, it will
deviate far from the optimal.

The availability of the optimal algorithm, sub-optimal
heuristics, and the parallel algorithm gives a choice to the
user to select a suitable algorithm depending upon the
objective. If the objective is to find a solution in a short
time, then SA2 can be used. To obtain a near-optimal
assignments for a task graphs with higher values of CCR,
SA3 can be used. If finding the optimal solution is the main
objective without any regard to the algorithm running
time, then the sequential A* can be used. If the resources,
such as a parallel machine, are available, then OAPS can
be used to speedup the running time of the optimal
algorithm.

7 Conclusions and Future Work
We proposed algorithms for optimal and sub-optimal

assignments of tasks to processors. We considered the

problem under relaxed assumptions such as an arbitrary
task graph with arbitrary costs on the nodes and edges of
the graph, and processors connected through an
interconnection network. Our algorithms can be used for
homogeneous as well as heterogeneous processors,
although in this paper we considered only the
heterogeneous cases. We believe that to the best of our
knowledge, ours is the first attempt in proposing a parallel
algorithm for the optimal task-to-processor assignment
problem. Although we kept the mapping of the algorithm
on the Paragon PEs simple, some fine refinements are
possible to further improve the performance.

A further study is required to understand the behavior
of the parallel algorithm. One possibility is to implement
quantitative load balancing of the tree nodes after a
processor finds its solution, i.e., let the processor find more
than one solution. Also, additional experimentation is
required to find the ideal value of the threshold u. The
clustering algorithm and the sub-optimal heuristic SA3
may be combined in order to obtain faster and close-to-
optimal assignments for task graphs with high values of
CCR. Our future plans also include a parallelization and
analysis of the heuristic algorithms (for an ideal tree level
R) to start applying the heuristics would also require more
future works.

References
[1] I. Ahmad and M. K. Dhodhi, "Task Assignment using

Problem-Space Genetic Algorithm," Concurrency:
Practice and Experience, vol. 7, no. 5. pp. 411-428,
August 1995.

[2] I. Ahmad and Yu-Kwong Kwok, "A Parallel
Approach to Multiprocessor Scheduling,"
International Parallel Processing Symposium, Santa
Barbra, CA, April 1995, pp. 289-293.

[3] N. S. Bowen, C. N. Nikolaou, and A. Ghafoor, "On
the Assignment Problem of Arbitrary Process
Systems to Heterogeneous Distributed Computer
Systems," IEEE Trans on Computers, vol. 41, no. 3,
pp. 197-203, March 1992.

[4] S. H. Bokhari, "On the Mapping Problem," IEEE
Trans, on Computers vol. c-30, March 1981, pp. 207-
214.

[5] T. Bultan and C. Aykanat, "A New Heuristic Based on
Mean Field Annealing," Journal of Parallel and
Distributed Computing, vol. 16, no. 4, pp. 292-305,
Dec 1992.

[6] M. R. Garey and D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-
Completeness, (Freeman, San Francisco, CA, 1979).

[7] D. E. Goldberg, "Genetic Algorithms in Search,
Optimization, and Machine Learning," (Addison,
Wesely, Reading, MA 1989)

[8] S. M. Hart and Chuen-Lung S. Chen, "Simulated
Annealing and the Mapping Problem: A

144

Computational Study," Computers and Operations
Research, vol. 21, no. 4, pp 455-461, 1994.

[9] M. A. Iqbal and S. H. Bokhari, "Efficient Algorithms
for a Class of Partitioning Problems," IEEE Trans, on
Parallel and Distributed Systems, vol. 6, no. 2, Feb.
1995.

[10] A. Grama and Vipin Kumar, "Parallel Search
Algorithms for Discrete Optimization Problems,"
ORSA Journal on Computing, vol.7, no.4 (Fall 1995)
pp 365-385.

[11]V. Kumar, K. Ramesh, and V. Nageshwara Rao.
"Parallel best-first search of state-space graphs: A
summary of results," Proceedings of the 1988
National Conference on Artificial Intelligence, pp.
122-126, Aug. 1988.

[12] P.-Yio R. Ma, E. Y. S Lee, "A Task Allocation Model
for Distributed Computing Systems," IEEE Trans, on
Computers, vol. c-31, no. 1, Jan. 1982.

[13]N. J. Nilson, Problem Solving Methods in Artificial
Intelligence. New York: McGraw-Hill, 1971.

[14] S. Ramakrishnan, H. Chao, and L.A. Dunning, "A
Close Look at Task Assignment in Distributed

Systems," IEEE INFOCOM '91, pp. 806-812, 1991.

[15]C.-Ch. Shen and W.-H. Tsai, "A Graph Matching
Approach to Optimal Task Assignment in Distributed
Computing System Using a Minimax Criterion,"
IEEE Trans, on Computers, vol. c-34, no. 3, pp. 197-
203, March 1985.

[16] H. J Siegel, J. K. Antonio, R. C. Metzger, Min Tan,
and Yan A Li, "Heterogeneous Computing", Parallel
and Distributed Computing Handbook, pp. 725-761,
McGraw-Hill, New York.

[17] H. S. Stone, "Multiprocessor Scheduling with the Aid
of Network Flow Algorithms," IEEE Trans, on
Software Engineering, SE-3, vol. 1, pp. 85-93, Jan.
1977.

[18] J. B. Sinclair, "Efficient Computation of Optimal
Assignments for Distributed Tasks," Journal of
Parallel and Distributed Computing, vol. 4, 1987, pp.
342-362.

[19] C. Woodside and G. Monforton, "Fast Allocation of
Processes in Distributed and Parallel Systems," IEEE
Transactions on Parallel and Distributed Systems,
vol. 4, no. 2, Feb. 1993.

Table 3: The speedup using the ully-connected topology (CCR=0.1)

No. of
Tasks

T(A*R)
(sec)

T(A*R)
T(OPAS)

PEs=2 PEs=4 PEs=8 PEs=16

10 30.14 1.87 3.48 5.72 7.63

12 58.96 1.96 3.68 3.60 12.85

14 105.05 1.70 2.02 4.58 4.64

16 1550.46 2.00 2.94 4.72 6.71

18 3839.00 2.00 3.86 7.59 13.16

20 3191.86 1.78 3.72 5.62 9.97

Avg 1.89 3.28 5.30 9.13

Table 4: The time and cost comparison using the ring topology (CCR=0.2).

No. of
Tasks

cfSAn—aoAssi*ioo
aoAss)

aSA31 —C(OASS)*100
aoAss

CfSA3) —CfOASS)*100
CfOASS

TfO)
T(SA1)

TYP)
TCSA2)

TYP)
TYSA3)

10 7.2Ö Ml Ö.Ö0 1.72 168 1.95

12 1.96 2.24 1.49 1.54 3.18 1.90

14 4.08 4.21 0.55 1.75 3.94 2.48

16 2.68 3.41 0.55 4.17 8.65 4.24

18 1.86 2.07 1.15 3.53 7.22 2.81

20 6.04 6.31 2.30 2.35 5.11 2.91

22 2.81 4.15 3.27 7.13 37.97 22.59

24 1.53 2.51 0.94 6.19 25.89 10.19

26 3.52 4.39 3.88 15.72 108.75 40.81

Avg 3.52 3.53 1.67 4.90 22.60 9.99

145

Proc topology = fully
connected

Q.
3
i

■a
CD
CD
Q.
to

u- *
f

8-

b-

4-

2

n- i —
■ PEs=2

UPEs=4

■ PEs=8

OPEs=16

0.1 0.2 1 5 10

CCR

Proc topology = line

■a
CD
CD a.

1- f

b

b

4

3-

2

1
0

Nil iimi

■ PEs=2

BPEs=4

■ PEs=8

□ PEs=16

0.1 0.2 1 5

CCR

10

Figure 7: The average speedup of the parallel algorithm.

Proc topology = fully connected

BSA1
■ SA2
QSA3

Figure 8: The percentage cost deviation and speedup of the sub-optimal algorithms over the optimal algorithm.

146

Mapping Heterogeneous Task Graphs onto Heterogeneous System
Graphs *

M. M. Eshaghian

Dept. of Computer and Information Science
New Jersey Institute of Technology

Newark, NJ 07102

Y. C. Wu

SyncSort, Inc.
Woodcliff Lake, NJ 07675

Abstract
In this paper, a generic technique for mapping

heterogeneous task graphs onto heterogeneous system
graphs is presented. The task and system graphs stud-
ied in this paper have nonuniform computation and
communication weights associated with the nodes and
the edges. Two clustering algorithms have been pro-
posed which can be used to obtain a multilayer clus-
tered graph called a Spec graph from a given task graph
and a multilayer clustered graph called a Rep graph
from a given system graph. We present a mapping
algorithm which produces a suboptimal matching of a
given Spec graph containing M task modules, onto a
Rep graph of N processors, in 0(MP) time, where
P = mzx(M,N). Our experimental results indicate
that our mapping algorithm is the fastest one and
generates results which are better than, or similar to,
those of other leading techniques which work only for
restricted task or system graphs.

1 Introduction
The mapping problem is one of the most challeng-

ing problems in parallel and distributed computing.
It is known to be NP-complete in its general form as
well as several restricted forms [7]. In the mapping
problem, a program task is divided into a number of
task modules and these task modules are to be as-
signed to a parallel computer system with a set of ho-
mogeneous or heterogeneous processors for execution.
A program task can be represented by a task graph,
with each node representing a task module and each
edge representing data communication between two
modules. In the task graph, each node is associated
with a weight representing the computation amount of
the corresponding task module, while the weight of an
edge represents the communication amount between
the two task modules it is connecting. Similarly, a par-
allel computer system can be modeled as a weighted,
undirected system graph with each node representing

a processing unit and each edge representing a com-
munication channel. In the system graph, each node
is associated with a weight representing the computa-
tion speed of the corresponding processing unit while
the weight of an edge represents the transmission rate
of the two processing units which it connects.

In static mapping, the assignments of the nodes of
the task graphs onto the system graphs are determined
prior to the execution and are not changed until the
end of the execution. Static mapping can be classified
in two general ways. The first classification is based
on the topology of task and/or system graphs [3].
Based on this, the mappings can be classified into four
groups: (1) mapping specialized tasks onto specialized
systems, (2) mapping specialized tasks onto arbitrary
systems, (3) mapping arbitrary tasks onto specialized
systems and (4) mapping arbitrary tasks onto arbi-
trary systems. The second classification can be based
on the uniformity of the weights of the nodes and the
edges of the task and/or the system graphs. Based
on this, the mappings can be categorized into the fol-
lowing four groups: (1) mapping uniform tasks onto
uniform systems [3, 2, 12, 1, 8], (2) mapping uniform
tasks onto nonuniform systems, (3) mapping nonuni-
form tasks onto uniform systems [17, 14, 15, 6, 18],
and (4) mapping nonuniform tasks onto nonuniform
systems [16, 13].

In this paper, we concentrate on static mapping
of arbitrary nonuniform task graphs onto arbitrary
nonuniform system graphs. The existing mapping
techniques in this group include El-Rewini and Lewis'
mapping heuristic algorithm [6] and Lo's max flow
min cut mapping heuristic [13]. The time com-
plexity of these two heuristics are 0(M2N3) and
0(M4NlogM), respectively, where M is the num-
ber of task modules and N is the number of proces-
sors. In this paper, we present an algorithm which
can map arbitrary, nonuniform, architecturally inde-

0-8186-7879-8/97 $10.00 © 1997 IEEE
147

pendent task graphs onto arbitrary, nonuniform, task-
independent system graphs in O(MP) time, where
P = max(M, N). This technique is based on the map-
ping methodology used in the Cluster-M portable par-
allel programming tool and consists of two clustering
algorithms and a mapping algorithm, which are ex-
tensions to those presented in [3]. The experimental
studies indicate that our mapping results are better
than or similar to those of other leading techniques.

The rest of the paper is organized as follows. We
present the Cluster-M preliminaries in Section 2. In
Section 3, we present two clustering algorithms. The
mapping algorithm is detailed in Section 4. We show
our experimental results in comparing our algorithm
with several other existing mapping algorithms in Sec-
tion 5. A brief conclusion is given in Section 6.

2 Cluster-M Preliminaries
The nonuniform clustering and mapping algorithms

presented in this paper are part of the mapping mod-
ule of the Cluster-M portable parallel programming
tool [4, 9]. In an earlier publication [3] a set of clus-
tering and mapping algorithms was presented for the
preliminary version of the Cluster-M mapping module.
Those algorithms can handle only "uniform" arbitrary
task and system graphs. The algorithms presented in
this paper are nontrivial extensions of the Cluster-M
uniform algorithms for mapping "nonuniform" arbi-
trary task graphs onto "nonuniform" arbitrary system
graphs. In the following, we first give an overview of
the Cluster-M tool and then present basic concepts
used both in uniform and nonuniform Cluster-M clus-
tering and mapping algorithms. A set of parameters
used in the nonuniform clustering and mapping algo-
rithms is presented in Section 2.3.
2.1 Cluster-M

Cluster-M is a programming tool that facilitates the
design and mapping of portable parallel programs [3].
Cluster-M has three main components: the specifica-
tion module, the representation module and the map-
ping module. In the specification module, machine-
independent algorithms are specified and coded using
the Program Composition Notation (PCN [11]) pro-
gramming language [9]. Cluster-M specifications are
represented in the form of a multilayer clustered task
graph called Spec graph. Each clustering layer in the
Spec graph represents a set of concurrent computa-
tions, called Spec clusters. A Cluster-M Representa-
tion represents a multilayer partitioning of a system
graph called Rep graph. At every partitioning layer of
the Rep graph, there are a number of clusters called
Rep clusters. Each Rep cluster represents a set of pro-
cessors with a certain degree of connectivity. Given a

task (system) graph, a Spec (Rep) graph can be gener-
ated using one of the Cluster-M clustering algorithms.
The clustering is done only once for a given task (sys-
tem) graph independent of any system (task) graphs.
It is a machine-independent (application-independent)
clustering, therefore it is not necessary to be repeated
for different mappings. For this reason, the time com-
plexities of the clustering algorithms are not included
in the time complexity of the Cluster-M mapping algo-
rithm. In the mapping module, a given Spec graph is
mapped onto a given Rep graph. This process is shown
in Figure 1. In an earlier publication [3] two Cluster-M
clustering algorithms and a mapping algorithm were
presented for uniform graphs. Next, the basic con-
cepts used in Cluster-M clustering and mapping will
be explained. Using these concepts we present a set of
parameters which is going to be used in the nonuni-
form clustering and mapping algorithms presented in
Sections 3 and 4.

Task graph System graph

Specification
module

Representation
module

Spec graph Rep graph

Mapping Mapping module

Mapping of a Spec graph onto a Rep graph

Figure 1: Cluster-M mapping process.

2.2 Basic Concepts
There are a number of reasons and benefits in

clustering task and system graphs in the Cluster-M
fashion. Basically Cluster-M clustering causes both
task and system graphs be partitioned so that the
complexity of the mapping problem is simplified and
good mapping results can be obtained. In clustering
an undirected graph, completely connected nodes are
grouped together forming a set of clusters [3, 9]. Clus-
ters are then grouped together again if they are com-
pletely connected. This is continued until no more
clustering is possible. When an undirected graph is
a task graph, then doing this clustering essentially
identifies and groups communication-intensive sets of
task nodes into a number of clusters called Spec clus-
ters. Similarly for a system graph, doing the clus-
tering identifies well-connected sets of processors into
a number of clusters called Rep clusters. In the map-
ping process, each of the communication intensive sets
of task nodes (Spec clusters) is to be mapped onto

148

a communication-efficient subsystem (Rep cluster) of
suitable size. Note that mapping of undirected task
graphs onto undirected system graphs is referred to
as the allocation problem. An earlier publication [3]
showed that Cluster-M clustering and mapping algo-
rithms can lead to good allocation results. It com-
pared its results with Bokhari's 0(N3) algorithm and
showed that its algorithm has a lower time complexity
of 0(MN), where M and N are the number of nodes
in the task and system graphs, respectively.

Clustering directed graphs (i.e., directed task
graphs) produces two types of graph partitioning: hor-
izontal and vertical. Horizontal partitioning is ob-
tained because, as part of clustering, we divide a di-
rected graph into a layered graph such that each layer
consists of a number of computation nodes that can
be executed in parallel and a number of communica-
tion edges incoming to these nodes. This is shown in
Figure 2(a). The layers are to be executed one at a
time. Therefore, the mapping is done one layer at a
time. This significantly reduces the complexity of the
mapping problem since the entire task graph need not
to be matched against the entire system graph.

(a) Horizontal (b) Vertical

Figure 2: Horizontal and vertical partitioning of a task
graph.

Vertical graph partitioning is obtained because as
part of the clustering the nodes from consecutive lay-
ers are merged or embedded. All the nodes in a layer
are merged to form a cluster if they have a common
parent node in the layer above or a common child node
in the layer below. Doing this traces the flow of data.
This information will be used later as part of the map-
ping so that the tasks are placed onto the processors
in a way that total communication overhead is mini-
mized. For example, to avoid unnecessary communi-
cation overhead, the task nodes along a path may be
embedded into one another so that they are assigned
to the same processor. The effect of this type of par-

titioning is shown in Figure 2(b).
Both horizontal and vertical graph partitionings

are accomplished by performing the clustering in a
bottom-up fashion. The Cluster-M mapping will then
be performed in a top-down fashion by mapping the
Spec clusters one layer at a time onto the Rep clus-
ters. The next two sections show how these clustering
and mapping ideas work for nonuniformly weighted
graphs. The nonuniform algorithms shown in this
chapter are nontrivial extensions of the Cluster-M uni-
form algorithms presented in an earlier publication [3].

2.3 Clustering Parameters
In the following, we present a set of parameters

needed for nonuniform version of Cluster-M cluster-
ing and mapping. The first set is for representing a
portable parallel program and the other for specify-
ing the organization of the underlying heterogeneous
architecture or suite.

2.3.1 Machine-Independent Program Param-
eters

A given parallel program consists of a sequence of
steps such that in each step a number of computa-
tions can be done concurrently. Each step is called a
layer. These concurrent computations for a given step
(layer) can each be presented by a cluster called a Spec
cluster. The mth Spec cluster at layer u is denoted by
S^ and associated with the following parameters.

aS^ The size of S^ which is the maximum number
of nodes in this cluster that can be computed in
parallel.

SS^ The maximum sequential computation amounts
(i.e., the maximum number of clock cycles re-
quired to execute all the instructions sequentially
using a baseline computer) in 5^.

IIS^, The total amount of communication from layer
1 to layer u of S^.

■KS^ The average communication amount at the layer
u in S£.

pS^ The computational type of 5^. Its value is set
to 0 for single instruction stream, multiple data
stream (SIMD) type and 1 for multiple instruc-
tion stream, multiple data stream (MIMD) type1.

XA11 the examples of the problems and systems studied in
this paper are assumed to be of MIMD-type. However, in het-
erogeneous computing, it is possible to have a mix of SIMD and
MIMD nodes both in the task and the system.

149

2.3.2 Program-Independent Machine Param-
eters

Any heterogeneous architecture can similarly be rep-
resented in a multilayered format such that each layer
presents a set of processing units which are completely
connected. Each processing unit is represented by a
cluster called a Rep cluster. The nth Rep cluster at
layer v is denoted by R?n and associated with the fol-
lowing parameters.

aR°n The number of processors contained in R„.

6R% The average computation speed of the processors
mRZ.

UR„ The total data transmission rate including the
transmission rate over the links (communication
bandwidth) and over the nodes (switching la-
tency) from layer 1 to v in Rv

n.

■KRv
n The average data transmission rate at layer v of
nv

pRv
n The computational type of the Rep cluster. Its
value is set to 0 for SIMD type and 1 for MIMD
type.

3 Non-Uniform Clustering
This section first presents a clustering algorithm to

be used for directed task graphs independent of any
system graphs and then present another one for undi-
rected system graphs independent of any task graphs.
Both algorithms are done only once for any given task
or system graph and are not repeated as part of the
mapping process.
3.1 Clustering Directed Task Graphs

A task can be represented by a directed graph
Gt(Vt,Et), where Vt = {<i, ..., tM} is a set of task
modules to be executed and Et is a set of edges rep-
resenting the partial orders and communication direc-
tions between task modules. A directed edge (ti,tj)
represents that a data communication exists from
module ti to t, and that U must be completed be-
fore tj can begin, where 1 < i,j < M. Each edge
(ti,tj) is associated with D^, the amount of data re-
quired to be transmitted from module ti to module tj,
where D^ > 1. Each task module ti is associated with
its amount of computation Ai, that is, the number of
instructions contained in ti. Note that Ai > 1 and
Dij > 1 if there exits an edge (U,tj), for 1 < i, j < M.
If a directed edge (ti,tj) exists, ti is called a parent
node (module) of tj and tj a child node (module) of ij.
If a node has more than one child, it is called a fork-
node. If a node has more than one parent, it is called

a join-node. A task graph is divided into a number
of layers, so that all nodes in a layer can be executed
concurrently.

Algorithm CNDG
Divide the directed graph into a number of layers
for each node at layer 1 do

Make it into a cluster and calculate its parameters
For each of the other layers do
begin

for all edges (ti,tj) do
begin if t; is a fork-node then

begin Embed the child node with the largest edge
weight to ti

if the child nodes of i; are not in a cluster then
begin Merge them with f; into a cluster

Calculate parameters of the new cluster
end

end
if tj is a join-node then
begin Embed the child node with the largest edge

weight to ti
if the parent nodes of tj are not in a cluster then
begin Merge them with tj into a cluster

Calculate parameters of the new cluster
end

end
end

end

Figure 3: Clustering Nonuniform Directed Graphs
(CNDG) algorithm.

A clustering algorithm called clustering nonuniform
directed graphs (CNDG) is shown in detail in Figure 3.
This nonuniform algorithm is designed as an extension
to the uniform clustering algorithm presented in an
earlier publication [3]. The nonuniform algorithm has
been designed in such a way that it is a generalization
of the uniform algorithm. For clustering nonuniform
directed graphs, a quintuple of parameters (aS^, SS^,
IIS^, TTS^, pS^) from the Cluster-M model described
in Section 2.3 is associated with the mth Spec cluster
at layer u denoted by 5^. The clustering is done layer
by layer. At layer 1, a node with computation amount
Ai is a cluster by itself with parameters (1, Ai, 0,0,0)
for SIMD type or (1, Au 0,0,1) for MIMD type. Then
for other layers, the nodes are clustered as follows. If
a node is a join-node, we first embed it onto one of
its parent nodes that has the largest weighted edge
connecting to this join-node. If multiple parent nodes
have edges with the same largest weight, we randomly
select one of them. When a node with a computation
amount A is to be embedded to S^, then these pa-
rameters are updated to aS^, SS^ + Ai, US^, itS^,
and pS^. We then merge all its parent nodes into a
new cluster denoted by S"+1. This is shown in Figure
4, where a join-node at layer (u + 1) with computa-

150

tion amount A has n parent nodes 5", S%, • • •, S% at
layer u. The communication amount between the join-
node and one of its parent nodes Sf is denoted by A,
where 1 < i < n. Also, Di = maxi<i<„ A- The new
cluster 5"+1 is generated by embedding the join-node
to S? and merging it with all the other parent nodes.
The first four parameters of 5"+1 can be computed as
follows.

aS?+1 = £*s? (1)

ÖS?+1 = max(8S? + A,6S%,-- Ä) (2)

US^+1 = Y^i^ST + Di) - Dl (3)

nS?+1 =
n-l

(4)

If a node is a fork-node, we will embed one of its child
nodes to this fork-node. The child node is selected
so that it has the largest weighted edge connecting
to the fork-node. If multiple child nodes have edges
with the same largest weight, we randomly select one
of them. We then merge the rest of the child nodes
with the fork-node into a new cluster. As shown in
Figure 5, a fork-node 5f at layer u has n child nodes
at layer (u + 1). These child nodes have computa-
tion amounts A\, A2, ■ ■ ■ ,An, and the communication
amounts between the fork-node and each of them are
Di,D2,-- -,Dn, respectively. Similar to the case of
join-node, £>i = maxi<,<n.Dj- Then the node with
the computation amount A\ is embedded to the fork-
node before we merge the fork-node with all the other
child nodes to generate the new cluster 5"+1. The first
four parameters of 5"+1 is then computed as follows.

max(«7SJ,,n-l) + l (5)

max(6S? + A1,A2,---,An) (6)

TrS? u+1

ILSr + ^A
i=2

n-l

(7)

(8)

For both fork and join nodes, the fifth parameter,
pS^, is determined as follows. As an MIMD cluster
is merged with an SIMD or MIMD cluster, the com-
putation type of the new generated cluster is MIMD.
When two SIMD clusters are merged then the com-
putation type of the new cluster is decided by their
computational form (addition, subtraction, multipli-
cation, etc.). If the two SIMD clusters have exact the
same computation form then the computational type

of the new cluster is SIMD, otherwise, it is MIMD. We
denote the computation form of S£ by CF(S^). Then
the computational type of a new cluster 5^ generated
from embedding or merging n clusters, S%,S%,---,S%,
can be formulated as follows.

0 if {pSf = 0, for all i) and (CF[S?) =
pS^ = { CF(SZ) = - = CF(SZ))

1 otherwise
(9)

Note that since our task graphs are independent of
any system graphs (unlike [17, 15, 18]), they do not
contain the information about computation time and
communication delay. Therefore, we can only embed
one node into another as part of clustering for reducing
communication overhead. The embedding of multiple
nodes onto one node is done as part of the mapping,
as explained in the next section.

sr (csi&s-.nsiKS-rPs-,) s; (os;,&sjnsjiis;.Ps» s; (os:,ssins"„ns:,ps"n)
layer «

layer (u+1)

sr'(&5r,max(8S>A, 8S2" 8«), ffflS'+DJ-D, W. -PS?')
iT; i=/ n-l

Figure 4: Clustering on a join-node: a general case.

sr, (oyj^ns^psp
layer u

layer (u+1)

" yn
^'(max(a^,nA max(8S> A„A2,-,An), nS>£D,-, j^i >pO

t—2 n-l

Figure 5: Clustering on a fork-node: a general case.

151

(1.2,0,0. 1)

Spec graph
(1,2.0,0,1)

©

Spec graph
(2,12.2.2.1)

(1.12.O.0,1)(1.2.0.0,I)

©

Layer 1 Layer 2

Spec graph

(3, 12, 8, 6, 1)

(2,12,2,2,1)

(1,12,0,0,1) (1,6,0,0,1) (1,4,0,0,1)

. .

Layer 3

Spec graph

(3,12,11,9,1)

(2.12,2,2,1)

(1,12,0,0,1) (1,8,0,0,1) 1
(1,4,0,0,1)

© . :

Layer 4

Spec graph

(3,12,11,9,1)

(2,12,2,2,1)

(1,14,0,0,1) (1,8,0,0,1)

(l,,t2,t7)(l3,t4,t6)

(1.4,0,0,1)

© . .

Layer 5

Figure 6: A task graph and steps for obtaining the
Spec graph.

The time complexity of the CNDG algorithm is
bounded by the number of edges in the task graph,
which is 0(\Et\). For the worst case, we have an upper
bound for this algorithm, that is, 0(M2), where M is
the number of nodes. However, note that most graphs
are not completely connected, therefore, in practice,
the time complexity of this algorithm will be O(M) if
the number of edges is proportional to the number of
nodes. To illustrate this algorithm, consider the task
graph of seven modules and its Spec graph, as shown
in Figure 6. Each module is labeled with its com-
putation amount and each edge is labeled with the
amount of data communication. The Spec graph is
constructed by embedding/merging the clusters layer
by layer and is a multi-layer clustered graph as shown.

3.2 Clustering Undirected System
Graphs

A parallel system that can be modeled as an
undirected system graph GP(VP,EP). In Gp, Vp =
{PI,---,PN} is the set of processors forming the under-
lying architecture, while Ep is the set of edges rep-
resenting the interconnection topology of the parallel
system. We assume that the connections between ad-
jacent processors are bidirectional. Therefore, an edge
(pi,Pj) represents that there is a direct connection be-
tween processor pt and pj. The computational speed
of processor pt is denoted by B{, and the communi-
cation bandwidth between two processors pt and pj is
denoted by Cy. The transmission rate is a function
of the communication bandwidth between pt and pj
and the node latencies at pt and pj. Both the compu-
tational speeds of different processors and the trans-
mission rates of different communication links may
be nonuniform. This makes the Cluster-M approach
more general than approaches such as PYRROS, Hy-
pertool, and PARSA, which assume fully connected
uniform systems.

Similar to Spec clusters, the nth Rep cluster
at layer v, Rv

n, is associated with the quintuple
(aRv

n,6Rv
n,URv

n,nRv
n,pRv

n) defined as part of the
Cluster-M model in Section 2.3. To construct a Rep
graph from an undirected system graph, initially, ev-
ery node with computation speed of Bi forms a clus-
ter by itself with parameters (1, B{, 0, 0, 1), assuming
that these nodes are all MIMD type. Then clusters
that are completely connected are merged to form a
new cluster, and the parameters of the new cluster
are calculated, as explained below. This process is
repeated until no further merging is possible. Three
clusters Rv

x,R
v

y, and Rv
z are completely connected if

Rv
x contains a node px, R% contains a node py, and

Rv
z contains a node pz, so that nodes px,Py, and pz

152

form a clique. This definition can be extended for N
completed connected clusters. To calculate the values
of the first four parameters for a new cluster, con-
sider a new cluster i?£+1, which is generated at layer
(v + 1) by merging N completely connected clusters
R\, R%, ■ ■ ■, RV

N at layer v. Then the values of oR^1

and SR„+1 can be easily computed as follows.

N

*K+1

6R1+1

= E aRV; (10)
»=1

„P«+l ~ ^N „Dv V-'
crR^i Er=i^

We denote the transmission rate between R\ and Rj
to be Cfj, which is defined as the sum of the transmis-
sion rate (as a function of communication bandwidth
and switching latency) of each pair of processors (sub-
clusters) pi and pj such that pi is in R% and pj is in
Rl that is, Cfj = £w6ÄyiWeÄ. Cij. Then IU^''

and TtRn+1 can be calculated as follows.

+i

UR.

*K+1

v+l _
N N-l N

En^ + E E^ (12)
i=l
EJV-1 T-^N f~,v

i=\ 2sj=i+l ^ij
N(N-l)

2(EilT1 EJUi cy
N(N - 1)

(13)

The fifth parameter, pRn+1, is computed per (9).
The algorithm for clustering undirected graphs is

shown in Figure 7. Instead of using an optimal algo-
rithm for finding cliques, we use a heuristic so that, for
every cluster, we examine the set of edges connected
to it in the following manner. The edges are sorted
in descending order based on the value of Cy. The
edges are then examined one at a time from this list.
If more than one of the edges have the same weight,
then an arbitrary one is selected. A simple example is
shown in Figure 8.

We now analyze the running time of this implemen-
tation. For each layer, we first sort all the edges be-
tween clusters that take 0(\Ep\log\Ep\), where \EP\
is the number of edges in the system graph. Then,
we keep merging clusters into the next layers. Sup-
pose at a certain layer, there are m clusters c\, • • ■, cm.
The time for finding cliques among these clusters is at
most mxm < N2, where N is the number of proces-
sors in the system graph. The most number of layers
there can be is N - 1. Therefore the total time com-
plexity of this algorithm is 0(N{\Ep\ log \EP\ + N2)).

Algorithm CNUG
for all nodes p* do
begin Make a cluster for p; at clustering layer 1

Set the parameters of the cluster to be (1, Bi, 0, 0)
end
Set cluster layer to be 1
while there is at least one edge linking two clusters do
begin Sort all edges linking any two clusters

while sorted edge list is not empty, do
begin Take the first edge (CJ,C,) from sorted edge list

Delete the edge from the list
Merge c,- and Cj into cluster d at next layer
Calculate the parameters of c'
Delete clusters C{ and Cj from current layer
for each edge (c^Cj,) in sorted edge list
if Cx is a sub-cluster of c' and
cy is not a sub-cluster of any cluster and
cy is connected to all other sub-clusters of c', then
begin Merge cy into c'

Recalculate the parameters of c'
Delete (cx,cy) from edge list

end
else if cx and cv are sub-clusters of
two different clusters at next layer, then
begin Add the weight of (cj;,Cj,) to

the edge between the two super-clusters
Delete (cx,cy) from edge list

end
end
Increment clustering layer by 1

end

Figure 7: Clustering Nonuniform Undirected Graphs
(CNUG) algorithm.

(3,5/3,3,1,1)

Rep graph
(3,5/3,3,1,1)

(2,2,2,2,1)
f(l,2,0,0,l) (1,2,0,0,1)

[© ©
(1,1,0,0,1)

©
^)

Figure 8: A nonuniform system graph and its Rep
graph.

153

Consider the worst case, where the system graph is
completely connected (i.e., \EP\ = 0(N2)), then the
time complexity of this algorithm will be 0(N3 logN).
Note that most system graphs are not completed con-
nected. Therefore, in practice the time complexity of
this algorithm will be 0(N3) if the number of edges is
proportional to the number of nodes.

4 Cluster-M Mapping Algorithm
A Spec graph and a Rep graph can be generated

directly from a given task graph and system graph,
using the clustering algorithms presented in the previ-
ous section. Given a Spec graph and a Rep graph, this
section presents an efficient mapping algorithm that
produces a suboptimal matching of the two graphs in
O(MP) time, where P = max(M, JV). Note that the
mapping algorithm maps the Spec graph one layer at
a time as explained in Section 2.2. Every layer of the
Spec graph represents a computational step in which a
number of concurrent computations are represented by
a number of Spec clusters. These clusters are formed
by tracing the data dependency of other subcomputa-
tions from a previous step. We are interested in map-
ping the Spec clusters at each layer to the appropriate
Rep clusters. In the following, we first present a set of
preliminaries and then give a high-level description of
the mapping algorithm. In Section 4.3, a few examples
are given to illustrate the mapping algorithm.

4.1 Preliminaries

We first define the mapping function fm : Vt ^-4
Vp. Following the precedence constraints and the
computation and communication requirements of the
original task graph, a schedule can be obtained
by assigning each task module U to the proces-
sor fm(ti). We assume that the communication
time for a task graph edge (U,tj) is equal to

^(p*,Py)€vzthUm(u)jm(tj)) -c^T> where Pathfo,^) is
the shortest path between processor pi and pj.

A schedule can be illustrated with a Gantt chart
that consists of a list of all processors and a list of
all task modules allocated to each of the processors
ordered by their execution time [7]. We define the
total execution time of a schedule, Tm, to be the latest
finishing computation time of the last scheduled task
module on any processor. Obviously, Tm is equal to
the total execution time of a given task on a given
system. As we consider the shortest execution time of
a given task on a system to be the ultimate goal in
scheduling, we take Tm as our measure of quality to
scale how good a mapping is.

4.2 The Algorithm
A detailed description of the mapping algorithm

is presented in Figure 9. In the following, we give
an overview of the algorithm. The mapping is done
recursively at each clustering layer, where we try to
find the best matching between Spec clusters and Rep
clusters. Assume that at a certain step of mapping,
m Spec clusters of layer u, 5", 5£, ■ ■ •, S£, are to be
mapped onto n Rep clusters of layer v, R^,R^,-■ ■ ,R^.
We denote the estimated total execution time of map-
ping the Spec cluster 5" onto the Rep cluster Rv- by
r{Sf, Rj), which includes computation time and com-
munication time. The total computation amount of
Sf is estimated to be aSf x 8Sf, and the total com-
putation power of i?| can be calculated as aRj x 5RV,.
Therefore, the computation time for executing 5" on
R] is estimated to be (pS? x 5S?)/(aRVj x 6R]). Sim-
ilarly, the total communication requirement of 5" is
115" and the total communication capacity of Rv, is
HRj, hence the estimated communication time for
mapping Sf on fiv will be ILSf/MVj. A slow-down
factor, d, is defined that indicates the factor of slow
down due to mismatch of the computation type be-
tween 5" and Rj. This leads to an estimated exe-
cution time in (14). Note that the estimated execu-
tion time does not take into consideration the mem-
ory requirements of a given problem and the memory
space available in the underlying organization. This is
mainly due to the fact that the model does not con-
tain any parameters for memory size requirements and
availabilities.

r(Sr,BS)

d- {f
, aSf x 8Sf
dx —-* H- +

aR] x OR]
usi
ILRJ'

if pS? = 1 and pR] = 0
otherwise

(14)

Then the mapping process at each layer can be viewed
as an optimization problem as follows.

Min J2r(Sr,fm(Sr)) (15)

The time complexity of finding an optimal solution
to the above formula can be costly [10]. Therefore,
we propose the following greedy algorithm for find-
ing a near-optimal solution to the formula for each
layer. In this greedy algorithm, we assume that all
the computations are MIMD. Therefore, we only deal
with four of the five parameters in the process. The
greedy algorithm continues as follows. First, the Spec
and Rep clusters are sorted in descending order with
respect to the order of the four parameters (a, 6, II,

154

7r). For example, Spec clusters with larger sizes are
sorted before those with smaller sizes, and for Spec
clusters with the same size, those with larger amount
of sequential computation are sorted first.

Secondly, we compute a reduction factor denoted
by /(„,„), which is the ratio of the total size of the Rep
clusters over the total size of the Spec clusters and
is used to estimate how many computation nodes to
share a processor. This is essential for mapping task
graphs of size M onto system graphs of size N, where
M > N. The value of /(„,„) is computed as:

J(u,v) (16)

Third, we map each of the Spec clusters 5", 1 <
i < m, as follows. We first search for a Rep cluster iJJ,
I <j <n, with the best matched size, that is, closest
to /(„,„) x aSf. Therefore, we try to minimize the
function in Equation (17). If multiple Rep clusters
with the matching size are found, we select the one
with the minimum estimated execution time. If no
Rep cluster with a matching size can be found for a
Spec cluster, we either merge or split (unmerge) Rep
clusters until a matching Rep cluster is found.

m

\fm\ = £ |/(U,„) x *S? - a[fm(Sm (17)
i=l

Finally, for every matched pair of the Spec and Rep
clusters, we do the following to embed communica-
tion intensive nodes together. This is similar to the
clustering process in [17, 15, 18]. However, in this
chapter, we only do it in the mapping step so that
the clustering of the task graph is kept independent
of the system graph, as described in the previous sec-
tion. Assume that a Spec cluster Sf having k sub-
clusters, 51

u-1,52"-1,---,5^-1, is mapped to a Rep
cluster Rj. If the communication overhead for pro-
cessing the subclusters in parallel is greater than the
computation overhead for processing the subclusters
sequentially, then we embed all subclusters into one
subcluster having the largest size so that they will be
executed sequentially. We then calculate the parame-
ter quadruple for the new cluster. In Inequality (18),
irSf/nltf is the communication time if the subclusters
are executed in parallel and

back in the proper position in the sorted list of Spec
clusters for mapping, and the matching process is re-
peated for the remaining Spec clusters in the list. If
no embedding is necessary, then the mapping of this
Spec cluster onto a Rep cluster is done for this layer,
and, therefore, this Spec cluster is removed from the
list.

7TÄV

1 min^Sjf- M5PV5I ^-MSa-1, ■,aS\
u-iSSu-is

h u,v) 6R»

is the computation time for executing the subclusters
sequentially on i?J. The embedded cluster is inserted

min(crSj'-1<5Sj'-1,o-S; rl*srl,---,*sr1*sr
J(u,v) 6R]

(18)

In the above mapping algorithm, the worst case of
the time complexity of the mapping algorithm at layer
i occurs in one of the following two cases. In case 1,
for each Spec cluster, all the remaining Rep clusters
have the matching size, thus (14) is used to select the
best Rep cluster. In case 2, for each Spec cluster, no
Rep cluster of matching size is found, thus Rep clus-
ters are merged or split recursively until a Rep cluster
of matching size is obtained. Suppose the number of
Spec clusters at layer iis Kt. In both cases described
above, or in any combination of the two cases, it takes
0(KtN) time to find the best matches for all Ki Spec
clusters, as the total number of clusters in the Rep
graph is 0{N), where N is the number of processors.
For each pair of matching Spec and Rep clusters, if In-
equality (18) is satisfied, then an extra 0{M) time for
embedding will be needed. The total number of Spec
clusters is O(M), that is, ^ Ki = O(M), where M is
the number of nodes in original task graph. Therefore,
the total time complexity of this mapping algorithm is
Y,i(KiN + M) = 0(MN) + 0(M2) = O(MP), where
P = max(M,iV).

4.3 A Mapping Example
In Section 3, we constructed a Spec graph and a

Rep graph from the original task graph and system
graph, as shown in Figure 6 and 8. Figure 10 shows
the snapshot of the mapping process. Figure 11 shows
the final schedule obtained from the above mapping by
following the data and operational precedence of the
task graph. As shown in the Gantt chart, Tm = 10.

To show that the same task graph can be mapped
onto various system graphs, three different system
graphs are chosen and shown in Figure 12. Figure
12(a) is the same task graph as shown in Figure 6.
Figure 12(b) shows a uniform, fully connected sys-
tem graph and its clustering. The computation speed
of each processor and communication bandwidth of
each communication link are equal to 2. The result of
Cluster-M mapping onto this graph is shown in Fig-
ure 12(c). In Figure 12(d), the system is fully con-
nected with computation speed of 1 at each processor,
but the communication bandwidths are nonuniform.

155

Mapping Algorithm
for each layer of Spec graph do
begin

Sort all Spec clusters at top layer in descending order of
aSf, ÖS?, US?, and irSf.
Sort all Rep clusters at top layer in descending order of
crR) SR), nflV, and TTHJ.

Calculate /(„,„), if /(„,„) > 1> let /(„,„> = 1.
Calculate the required size of the Rep cluster matching
S" to be /(„,„) x aS™
for each Spec cluster at top layer sorted list, do
begin if the cluster has only one sub-cluster, then

Go to a lower layer containing multiple or no
sub-clusters
if at least a Rep cluster of required size is found, then
begin Select the Rep cluster of required size with

minimum estimated execution time according
to Equation (14)
Match the Spec cluster to the Rep cluster
Delete the Spec and Rep clusters from Spec
and Rep lists

end
end
for each unmatched Spec cluster, do
begin if size of the first Rep cluster > than required size

begin Split the Rep cluster into two parts with one
part of the required size
Match the Spec cluster to this part
Insert the other part to proper position of the
sorted Rep cluster list

end
else begin

Merge Rep clusters until sum of sizes > the
required size
if =, then
Match the Spec cluster to merged Rep cluster
else
begin Split the merged Rep cluster into two

parts with one of required size
match the Spec cluster to this part
Insert the other part to sorted Rep list

end
end

end
for each matching pair of Spec cluster and Rep cluster, do
begin if the Rep cluster contains only one processor, then

Map all modules in the Spec cluster to the processor
else if Inequality (18) is satisfied, then

begin Select the sub-cluster of the Spec cluster
with the largest size
Embed the nodes of other sub-clusters to
connected nodes of selected sub-cluster
Calculate parameters of the new cluster
Insert it into the sorted Spec cluster list

end
else
begin Delete the Spec cluster from Spec list

Delete the Rep cluster from Rep list
Go to sub-clusters of the Spec and Rep
clusters (so they are pushed to top layer)
Call the same mapping algorithm for
these clusters

end
end

end

(3,12, 11,9,1)

(2,12,2,2,1)

(1,14,0,0,1) (1,8,0,0,1)

C'1''2-'T)C'3''4.'6)

(1,4,0,0,1)

©
L .

(1,4,0,0,1)

(3,5/3,3,1,1)

(2,2,2,2,1)

((1,2,0,0,1) (1,2,0,0,1p

| © ©
(1,1,0,0,1)

©
I .

(2, 12,2,2,1)

Inequality (3) is satisfied, embed \£s onto

(2,14,4,4,1)

(1,14,0,0,1) (1,8,0,0,1)

(3,5/3,3,1,1)

(1,14,0,0,1) (1,12,0,0,1)

(V'2''7)[WS^)

(2,2,2,2,1)
(1,2,0,0,1) (U.O.O.l)1

© ©
(1.1,0,0,1)

©
.

(2,14,4,4,1) (2,2,2,2,1)

(1,14,0,0,1) (1,12,0,0,1)

(<i,f2,>7)(f3,(4,r5,>6)

(1,2,0,0,1) (1,2,0,0,1)

(1,14,0,0,1) (1,2,0,0,1) (1,12,0,0,1)

i'l-h-'l) 3- © {h''4-'5'l6}
(1,2,0,0,1)

Result: 'l •'! ■'! -3»- PI '3 .'4 .'5.'6 5»- P2

Figure 10: A mapping example.

0123456789 10

P\ t\ '2 '7

P2 '3 '4 '5 '6

Pi,

Figure 11: Gantt chart of the obtained schedule.

Figure 9: Mapping algorithm.

156

(3,2,6,2,1)

r^1

P2^ i ^M

0123456789 10

<ll '2 1 l'7
UL*_ '5 l'.i

(c)

0 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

'11 <2 Ji 1 'v
1 * 1 '4 1 .-■■ >* 1

1 „ 1: :/:■: ■

(e)

c 12 3 4 5 6

P\ '1 '2 '1 '4 '5 '6 '7

p?

Pi

(0 <*>

Figure 12: Mappings on different system graphs.

In this case, the Cluster-M algorithm distributes the
task modules to all three processors, as shown in Fig-
ure 12(e), to utilize the relatively high communication
bandwidth available. If the system is fully connected
with uniform communication bandwidth and nonuni-
form computation speeds as shown in Figure 12(f),
Cluster-M mapping algorithm maps all the task mod-
ules onto the processor with the highest speed to avoid
the relatively expensive communication cost. This is
shown in Figure 12(g). For more examples, see the
full version of the paper [5].

5 Comparison Results
In the full version of the paper [5], we present a

set of experimental results we have obtained in com-
paring our algorithm with other leading techniques.
The comparisons presented in the full version of the
paper [5], are classified into two categories: (1) map-
ping arbitrary nonuniform task graphs onto arbitrary
nonuniform system graphs, and (2) mapping arbitrary
nonuniform task graphs onto uniform fully connected
system graphs. We first present the comparison for the
first category and then the second one. The following
three criteria are used for comparing the performance
of our algorithm with other leading techniques: (1)
the total time complexity of executing the mapping
algorithm, Tc; (2) the total execution time of the gen-
erated mappings, Tm; and (3) the number of proces-
sors used, Nm. From (2) and (3), we can obtain the
speedup Sm = ^ and efficiency 77 = |^, where Ts

is the sequential execution time of the task. In this
paper, we present a summary of our results for map-
ping arbitrary nonuniform task graphs onto arbitrary
nonuniform system graphs, only.

The mapping techniques in this category include
El-Rewini and Lewis' mapping heuristic (MH) [6] and
Lo's Max Flow/Min Cut (MFMC) algorithm [13]. To
the best of our knowledge, they are the only known
efficient mapping techniques that can map arbitrary
nonuniform task graphs onto arbitrary nonuniform
system graphs in polynomial time. The experimen-
tal results shown in this section are obtained by run-
ning a set of simulations on a SUN SPARCstation 20
workstation, and all running times are measured in
second on this machine. The nonuniform task graphs
are randomly generated. In the full version of the
paper [5], we map these task graphs onto four dif-
ferent nonuniform systems2: (1) a randomly gener-

2For comparing against MFMC, we use three system con-
figurations, system (2)-(4). The time complexity of MFMC in
practice is too high and for the first system configuration, each
experiment takes several days. For more detail, see Section
5.1.2.

157

ated system graph with 100 nodes, where the com-
putation speed of the nodes and the communication
bandwidth of the edges range from 1 to 5, (2) a ran-
domly generated system graph with five nodes, where
the computation speed of the nodes and the commu-
nication bandwidth of the edges range from 1 to 5, (3)
a completely connected system graph with four nodes
as shown in Figure 13, and (4) a hypercube with eight
nodes as shown in Figure 14. In the following, we
present a summary of our comparison results using
system configuration 2, system configuration 3, and
system configuration 4. As shown in Tables 1, 2, and
3, Cluster-M produces similarly good results but in
significantly less time.

Figure 13: System (2): A completedly connected sys-
tem.

Figure 14: System (3): A hypercube system.

6 Conclusion
In this paper, we have presented a generic algo-

rithm for mapping non-uniform arbitrary task graphs
onto non-uniform arbitrary system graphs. Given a
task graph and system graph, we have shown efficient
techniques for producing two clustered graphs called
Spec graph and Rep graph, which are the input to the
mapping algorithm. The clustering is done only once
for a given task graph (system graph) independent of
any system graphs (task graphs). It is a machine-
independent (application-independent) clustering and
is not repeated for different mappings. The complexity
of the mapping algorithm is O(MP), where M is the

number of task modules, N is the number of proces-
sors, and P = max(M,N). We presented our exper-
imental results in comparing the performance of our
generic algorithm with other leading ones. We have
shown that we can obtain similar results in less time.
The presented mapping algorithm can be efficiently
integrated as part of portable parallel programming
tools.

References
[1] F. Berman and L. Snyder. On mapping parallel

algorithms into parallel architectures. Journal of
Parallel and Distributed Computing, pages 439-
458, April 1987.

[2] S. H. Bokhari. On the mapping problem. IEEE
Trans, on Computers, c-30(3):207-214, March
1981.

[3] S. Chen and M. Eshaghian. A fast recursive map-
ping algorithm. Concurrency: Practice and Ex-
perience, 7(5):391-409, August 1995.

[4] S. Chen, M. M. Eshaghian, R. F. Freund, J. L.
Potter, and Y. Wu. Evaluation of two program-
ming paradigms for heterogeneous computing.
Journal of Parallel and Distributed Computing,
31(l):41-55, November 1995.

[5] S. Chen, M. M. Eshaghian, and Y. Wu. Mapping
arbitrary nonuniform task graphs onto arbitrary
nonuniform system graphs, in revision for possi-
ble publication at IEEE Transactions on Parallel
and Distributed Systems, 1996.

[6] H. El-Rewini and T. G. Lewis. Scheduling paral-
lel program tasks onto arbitrary target machines.
Journal of Parallel and Distributed Computing,
pages 138-153, September 1990.

[7] H. El-Rewini, T. G. Lewis, and H. H. Ali. Task
Scheduling in Parallel and Distributed Systems.
Prentice Hall, Englewood Cliffs, NJ, 1994.

[8] F. Ercal, J. Ramanujam, and P. Sadayappan.
Task allocation onto a hypercube by recursive
mincut bipartitioning. Journal of Parallel and
Distributed Computing, pages 33-44, October
1990.

[9] M. Eshaghian and M. Shaaban. Cluster-M par-
allel programming paradigm. International Jour-
nal of High Speed Computing, 6(2):287-309, June
1994.

158

[10] M. A. Driscoll et al. Sensitivity analysis and map-
ping programs to parallel architectures. In 1991
International Conference on Parallel Processing,
volume II, pages 272-273, August 1991.

[11] I. Foster and S. Tuecke. Parallel programming
with PCN. Technical report, Argonne National
Laboratory, University of Chicago, January 1993.

[12] S. Lee and J. K. Aggarwal. A mapping strategy
for parallel processing. IEEE Trans, on Comput-
ers, 36:433-442, April 1987.

[13] V. M. Lo. Heuristic algorithms for task assign-
ment in distributed systems. IEEE Trans, on
Computers, C-37(ll):1384-1397, November 1988.

[14] C. McCreary and H. Gill. Automatic determi-
nation of grain size for efficient parallel process-
ing. Communications of ACM, 32(9):1073-1078,
September 1989.

[15] V. Sarkar. Partitioning and Scheduling Parallel
Programs for Execution on Multiprocessors. The
MIT Press, Cambridge, MA, 1989.

[16] C. Shen and W. Tsai. A graph matching approach
to optimal task assignment in distributed com-
puting systems using a minmax criterion. IEEE
Trans, on Computers, c-34(3):197-203, March
1985.

[17] M. Y. Wu and D. Gajski. Hypertool: A
programming aid for message-passing systems.
IEEE Trans, on Parallel and Distributed Systems,
1(3):101-119, 1990.

[18] T. Yang and A. Gerasoulis. DSC: Scheduling par-
allel tasks on an unbounded number of processors.
IEEE Trans, on Parallel and Distributed Systems,
5(9):951-967, September 1994.

159

Table 1: Comparison of Cluster-M; MFMC, and MH on system (2).

Size of
Random Graph Ts

Cluster-M [O(MJV)] MFMC [0(M4iV log M)] MH [0(MzN0)]

Tm bm Tc i-in &m Tc Tm ^m Tc

10 27 7.93 3.40 0.01 8.10 3.33 0.8 11.13 2.43 0.1

12 33 8.23 4.00 0.01 16.85 1.96 4.1 9.03 3.65 0.1

14 45 8.20 5.49 0.01 18.25 2.47 23.9 16.87 2.67 0.1

16 46 12.50 3.68 0.01 23.70 1.94 109.1 14.05 3.27 0.1

18 54 20.33 2.66 0.01 27.90 1.94 556.3 19.98 2.70 0.1

20 64 19.00 3.37 0.01 34.70 1.84 2762.3 26.33 2.43 0.1

22 60 23.40 2.56 0.01 33.20 1.80 13430.0 28.29 2.12 0.1

24 86 16.00 5.38 0.01 39.65 2.17 21323.0 32.75 2.63 0.1

Table 2: Comparison of Cluster-M, MFMC, and MH on system (3).

Size of
Random Graph Ts

Cluster-M [O(MiV)] MFMC [0(M4W log M)] MH [0(M2Na)}
Tm bm Tc 1-rn &m Tc Tm im Tc

10 27 9.00 3.00 0.01 15.33 1.76 0.8 17.33 1.56 0.1

12 33 13.50 2.44 0.01 17.83 1.85 3.7 17.00 1.94 0.1

14 45 13.67 3.29 0.01 19.00 2.37 21.8 20.67 2.18 0.1

16 46 21.00 2.19 0.01 22.50 2.04 99.6 20.50 2.24 0.1

18 54 19.33 2.79 0.01 26.83 2.01 503.8 32.00 1.69 0.1

20 64 19.00 3.37 0.01 31.17 2.05 2504.8 33.83 1.89 0.1

22 60 24.50 2.45 0.01 35.83 1.67 13445.3 39.17 1.53 0.1

24 86 26.67 3.23 0.01 39.83 2.16 15225.2 48.17 1.79 0.1

Table 3: Comparison of Cluster-M, MFMC, and MH on system (4).

Size of
Random Graph Ts

Cluster-M [O(MN)} MFMC [0(M4N log M)} MH [0{M'2NA)\

Tm ■5m Tc J-m &7TI Tc Irn &m Tc

10 27 9.83 2.75 0.01 18.66 1.45 1.1 17.92 1.51 0.1

12 33 21.33 1.54 0.01 19.33 1.71 5.3 17.08 1.93 0.1

14 45 13.67 3.29 0.01 39.00 1.15 29.3 16.17 2.78 0.1

16 46 21.00 2.19 0.01 45.83 1.00 141.2 25.83 1.78 0.1

18 54 19.33 2.79 0.01 29.50 1.83 715.4 33.58 1.61 0.1

20 64 19.00 3.37 0.01 60.17 1.06 3579.5 44.83 1.43 0.1

22 60 26.00 2.31 0.01 40.83 1.47 17298.8 51.00 1.18 0.2

24 86 26.67 3.23 0.01 71.83 1.20 30081.7 41.17 2.09 0.2

160

Case Study

Practical Issues in Heterogeneous Processing Systems
for Military Applications

Glenn O. Ladd, Jr.
Hughes Aircraft Company, El Segundo, CA, USA

Practical Issues in Heterogeneous Processing Systems for
Military Applications

Glenn O. Ladd, Jr.
Hughes Aircraft Company, El Segundo, CA

Abstract

Heterogeneous parallel processing systems have been
extensively used in embedded military applications due to
their advantages in size, weight, power, and hardware
cost. This paper reviews the evolution of some of these
systems and discusses design factors and tradeoffs which
affect their application. As military systems have become
more cost sensitive, and initial development more
common than long term production, the use of
commercial hardware and software has become more
common. The rapid advances of computer technology
seem likely to accelerate that trend in the future.

Introduction

This paper was motivated by observations by the
author that heterogeneous processing design for many
military applications is significantly different than is
generally treated in the literature. There are many
publications on the types of embedded military
applications that are discussed herein, but a review of the
practical considerations that have driven the design of
fielded military processing systems may be of value to the
reader. For our purposes, the term embedded is used in
the sense of a focused, mission critical system design as
opposed to a system for multiple user programming. The
term is not intended to denote anything with respect to
physical configuration. This paper reviews the more
obvious features of several types of fielded systems,
including more recent systems based on parallel
processing architectures, sometimes termed embedded
high performance computing designs after the work
sponsored by DARPA in this area.

Motivation

The heterogeneous processing technical area is very
broad, as is well developed in a recent paper by Ekmecic,
et aUU The heterogeneity of the basic application, with
respect to execution mode, is of great importance in
developing the algorithms and application design for a

specific compute problem. The concerns include detection
of fine grain and course grain parallelism, the choice of a
specific machine type to run each part of the application,
and the allocation of the application code among various
numbers of heterogeneous processing nodes. This
statement already assumes the concept of parallelism,
which one may observe is a consequence of the use of
different machine or node types in the system, or of the
use of a homogeneous machine on multiple execution
modes at different times, i.e., temporal parallelism. The
paper cited covers this discussion in some detail.

In this paper, the focus is on the development of a
practical heterogeneous processing system for military
applications and the tradeoffs that must be made for an
optimal system platform solution. The basic design of the
applications that will be used is assumed to have been
determined, though this is by no means an obvious step in
the overall software system or software architecture
design. The application design can have a profound effect
on the hardware efficiency achieved and the choice of
heterogeneous elements to incorporate in the system. The
focus here is on the implications of such application
designs for the processing system design rather than on
the details of application algorithms and partitioning.

The designs of practical embedded military
processing systems tend to be driven strongly by
considerations of platform system cost and required
functionality. This is contrasted with decisions that might
be made for a heterogeneous processing system for
support of scientific or so-called "grand challenge"
applications. A key notion for all embedded military
processing systems is resource constraints: size, weight,
volume; recurring cost; available memory and numbers of
compute nodes and types, leading to throughput, latency,
memory, interconnect bandwidth and similar constraints;
application development cost; upgrade costs, etc. The
notion of resource constraints pervades the entire system
design and system application behavior, leading to
demanding requirements for all levels of the hardware and
software in the embedded processing system, and the
hardware and software which supports application
development and system integration.

162
0-8186-7879-8/97 $10.00 © 1997 IEEE

Heterogeneous processing categorization

Reference 1 develops a taxonomy of machine types
which, when applied to military systems, reveals that such
systems have embraced heterogeneous processing from
fairly early designs. It also serves to focus attention on the
diversity of heterogeneous processing system designs, and
the on the resulting complexity of these systems. The
taxonomy is described as follows, with the interpretations
used in this paper:

1. SESM: Single Execution Mode/Single Machine
Model (Single application execution mode,
single processing element/machine design)

2. SEMM: Single Execution Mode/Multiple
Machine Model (Single execution mode per
processing element, multiple processing
element/machine designs)

3. MESM: Multiple Execution Mode/Single
Machine Model (Multiple execution modes on
any single processing element type, single
processing element/machine design)

4. MEMM: Multiple Execution Mode/Multiple
Machines (Multiple execution modes, Multiple
processing element/machine designs)

The execution mode as interpreted here refers to the
type of parallelism exhibited by the application, not the
processing node or processing element (PE), and assumes
that various execution modes can be implemented through
software on a variety of machine models. The machine
model refers to the fundamental design of the processing
node or element. Examples of different execution modes
for applications include vector, scalar, dataflow, systolic,
SIMD, MIMD, etc. Examples of PE types, that is,
hardware architectures, include general purpose
microprocessors, digital signal processing (DSP)
microprocessors, systolic array PEs, vector processing
machines, and unique digital processing machine designs
(common in military systems). Different machine models
also include machines which are operated at different
clock rates such that applications running on them execute
with different performance and timing.

The purpose of Table 1 is to show not only how high
a degree of heterogeneity has been used in military
processing, but also to show how long it has been a part
of military systems. This observation will, of course,
come as no surprise to those involved in these systems
over the years, but the evolving complexity of some of the
recent systems may be of some interest. The most early
digital processing systems were uniprocessors which did
some signal processing and some control and/or display
functions. SESM was the paradigm of examples 1 and 2
in the table. Example 3 is a surprisingly early example of
an MEMM system—the digital signal processor did both

vector and scalar computations for digital filtering,
Kahlman filtering, and control synchronization. The
general purpose processor was a unique design of the day
used for sensor control and display and post processing on
the radar mode applications. This was one of the very
earliest programmable digital signal processing systems,
and was motivated by the need for tuning the signal
processing applications in response to actual flight data
and the need to support multiple mode applications within
severe hardware constraints. The hardware design was
tailored to the application need. At that time, no
commercial DSP machines existed, and funding for
unique machines was available. Now we see this type of
architecture used widely, but the programmable DSP and
the GP are commercially available items.

Example 5 in the table represents a generic type of
integrated processing system. This system is uniquely
designed to support the requirements of the platform.
Further in this paper the type of requirements that such a
system may need to support are reviewed, but as an
example of an embedded heterogeneous processing
system, this is of high complexity, yet highly unified in
concept. Six machine types are suggested. The lower case
n is some multiplier below 10 for practical cases. Each
machine type supports one or more execution modes. The
nodes might be connected by one or more communication
paths including a bus, high bandwidth interconnect such
as a switched network, and perhaps even a multiport
memory. The system may support several sensors as well
as mission management applications and user control
console displays. Not only is the system hard real-time,
but is also required to be multi-level secure, supporting
applications at multiple security levels. This property
fortunately supports separation within a complex
application program suite which runs on the
heterogeneous machine resources. This processing system
serves as an example of a type of highly complex
heterogeneous, parallel processing system of custom
design.

By contrast, current embedded military systems are
beginning to be fielded with parallel processing systems
that are commercially available from a number of
companies. The most compact of these are supplied in the
VME format by companies such as Mercury, SKY, and
CSPI, while some military platforms are using parallel
systems from IBM (SP-2), SGI, Digital, and others. While
the IBM and similar systems would be classified as
MESM, the Mercury, etc. systems are supplying multiple
node types and are being operated as MEMM, as noted in
the table.

A final word regarding Table 1 - there are numerous
other examples of the types of processing systems shown
from multiple military suppliers. The author hopes to be

163

Table 1. Examples of military heterogeneous processing systems which have been or are planned
to be fielded

No.

Heterog.
Arch.
Type

Architecture
Description

Computing
Commun.

Control
Commun.

Processing Element
Types: Typical
number used

Application, Developer and
Approx. Dates

1 SESM Bus-Oriented Multidrop
Bus

Same GPtype: 1-3 Typical Airborne, Naval
Mission Computers of 70s,
80s

2 SESM In-line hardwired
preprocessor
andGP

Unique
parallel
interfaces

Unique
Interfaces

One GP and one
preprocessor

Typical radar processor of
70s and early 80s.

3 MEMM In-line
Programmable
Signal
Processor and
GP

Internal to
PES

Unique
Interfaces

One GP and one Signal
Processor

Hughes programmable
signal processor for
airborne radar, mid-70s.

4 MEMM Bus and Multi-
Port Memory

Multiport
Memory

Bus PES: 1-4
MPM: 4 way
1750A: 1-2

Hughes Aircraft processors
forF-14, F-15andF/A-18
airborne radars of 1980s

5 MEMM Bus, MPM, and
SWN

MPM, SWN Bus PES-Radar: 4n
PES-Communic: n
PES-EO: n
PES-Display/Graphics: n
PES-Encryption: n
GP: 10n

Integrated avionics or
integrated sensor systems
processing complex

6 MEMM Bus, SWN SWN Bus and
SWN

Intel I860: 32-128
GP: 1-2

Mercury RACE systems,
1995

7 MESM Commercial
High-End
Server,
Multiprocessor

Various
parallel
network
designs

Usually the
network

GPSMP: 1-32
(SMP = 2-4, or up to 8)

Recent parallel commercial
servers by DEC, H-P, Sun,
SGI, etc.

Glossary for Table 1
PES - PE for digital Signal Processing, unique design.
MD Bus - Multi-drop bus, e.g., VME, PI bus, etc.
GP - General Purpose uniprocessor design, e.g., 1750A, Commodity microprocessors of 80s.
MPM - Multiport memory.
SWN - Switched Network (not differentiated as to type of switching or message protocol).
SMP - Symmetric Multi-Processor.

forgiven for not providing a comprehensive list, and does
not intend to imply by omission that the examples cited
are necessarily the best that might be cited!

Application requirements issues and drivers

The demands (and opportunities) of military platform
requirements have had a high impact on the
implementation of embedded heterogeneous processing
systems. Table 2 adds information about the application
and software requirements for systems shown in Table 1.

The purpose of Table 2 is to add information about
application or military platform/system requirements that
add complexity to the system design and/or support of
embedded heterogeneous systems. The focus is on the

complexity of the system software architecture. Note that
with example 3, the requirement for low latency,
preemptive, deadline scheduled operating systems
appeared. This was driven by the fact that sensor control
loops began to be handled by the digital processing
system. Synchronization of the sensor input with data
availability for starting the application was required in
some systems.

By the time systems such as example 4 appeared, the
use of multiple parallel signal PEs and multiple
application programs which could be preempted by the
operator resulted in the requirement for support for
preemption of running programs in the operating systems
(OS). This requirement alone begins to divide the practice
of heterogeneous computing in embedded military

164

Table 2. Comparison of military system application latency and control requirements

Application Interrupt- Hard Real-
Application, Principle Heterog. Program Driven Time Special Run-

Developer and System Arch. Support Computing Control Time SW
No. Approximate Dates Application Type Reqmnts. Reqmnts. Reqmnts. Reqmnts.

1 Typical Airborne,
Naval Mission
Computers of 70s,
80s

General
purpose
processing and
control

SESM Single program NO NO Custom RT OS
design

2 Typical radar Single sensor, SESM 1-3 programs NO NO. Synch Custom RT OS
processor of 70s and few modes to sensor design
early 80s. front-end

3 Hughes Single sensor, MEMM Multi-program, YES YES Custom RT OS
programmable signal few modes. sensor control design
processor for airborne loops
radar, mid-70s.

4 Hughes Aircraft Single sensor, MEMM Multi-program, YES YES Custom RT OS
processors for F-14, multiple, interrupt driven design
F-15andF/A-18 interrupt driven
airborne radars of modes
1980s

5 Integrated avionics or Multiple sensor, MEMM Multi-program, YES YES RT OS design
integrated sensor multiple, interrupt with MLS, fault-
systems processing interrupt driven driven, toler. support,
complex modes per

sensor
reconfigurable,
fault-tolerant,
secure

resource
mgmnt.

6 Mercury RACE Various system MESM Multi-program, YES YES Custom RT OS
systems, 1995 applications interrupt driven design, POSIX

interface.
7 Recent parallel Military MESM Multiple NO NO High

commercial servers command and programs, not performance
by DEC, H-P, Sun, control, ground hard RT UNIX OS,
SGI, etc. processing

stations
commercial
middleware

8 Future integrated Fully integrated MESM Multi-program, YES YES RT OS with
heterog. parallel sensor & C4I interrupt POSIX API,
processing systems systems/

platforms
driven,
dynamically
scaling and
repartitioning,
reconfigurable,
fault-tolerant,
secure |

MLS, fault-
toler., high
performance
resource
management,
interface to
DISA COE.

Glossary for Table 2:
RT OS - Real-Time Operating System
MLS - Multi-Level Security: Separation of applications and files as well as message separation, audit and logging, etc.
DISA COE - Defense Information Security Agency, Common Operating Environment

systems from heterogeneous applications in scientific
processing.

Example 5 exhibits the most demanding application
and software requirements in this table. Sensor control
loops must be supported with low latencies. Applications
and files must be protected while supporting hard real-

time, preemptive priority interrupt and context switching
performance. Special maintenance hardware may be
available to report failures at run time, in much the same
manner as for commercial mainframes, and run-time
software can reconfigure the applications to hot spare
modules. Error logging and instrumentation must be

165

supported at run-time. Run-time management of
application faults must be supported, with restart. All of
these capabilities place high demands on the hardware
and software design, as stringent as may be found in
today's military systems.

In the past few years, the application of systems like
example 6 has become popular because of the high
performance per watt-cubic inch-pound-dollar. The
Mercury and similar systems provide a high performance
real-time OS but with significantly less robust application
support than those in example 7. On the other hand, the
technical community that grew up with the systems in
examples 1-5 are quite able to design and field systems
with high efficiency for parallel application code, though
at higher cost. Highly complex, multiprogram
applications similar to example 5 have not appeared
publicly at this time, but may be anticipated. The only
barriers are sufficiently capable operating systems and
middleware similar to what has been developed for
example 5.

With example 7 in the table, the requirement for
preemption is usually a soft requirement, in that system
operation can be achieved within the capabilities of
modern high performance UNIX operating systems, and
modified commercial middleware. These systems are not
operating with typical commercial client-server
performance parameters, however. They do operate with
commercial application programming interfaces (API).
The commercial parallel server hardware is very cost-
effective and offers high value when size/weight/power
requirements are not demanding. Typical installations are
in ground, ship, and cabin-mounted aircraft environments.

Example 8 suggests what may be expected in future
heterogeneous parallel processing systems. The hardware
designs to support these systems exists in part in several
existing commercial products, but not all in one product.
This is discussed further in the conclusion section.

Design trades for heterogeneous systems

While the design of a heterogeneous system will be
greatly affected by the nature of the applications and their
performance on specific PEs or machine types, the
practical requirements play such large role that they
cannot be ignored. The figure of merit [Performance +
[Watt * Cubic Inch * Pound * Cost ($)]] is always a
strong consideration for any embedded military
processing system. The impact can cause large differences
in the choice of hardware, run-time software, and
application design. This section attempts to illustrate these
issues in order to highlight their importance.

Table 3 shows three systems configured with up to
three different PE or machine types. The prototype for
such systems are those processors being supplied

commercially by VME-based suppliers such as CSPI,
Mercury, SKY, and others. The example PEs are the
popular Motorola PowerPC and Analog Devices 21060
devices, which are typically supplied in the configurations
shown. Other configurations, such as 9U VME format,
are available, and offer other possibilities in a design
trade. An assumption is also made as to the replacement
of PowerPC code in system 1 with PE-B code in
system 2, specifically, that the source lines of code
(SLOC) will be the same in either processor, which is a
simplification. The performance replacement is as noted
in the table, and is confirmed by actual benchmark results.
Again, this replacement ratio can be quite different for
different applications. The point, however, is that the use
of special purpose PEs can significantly increase the FOM
defined above. For systems which demand the lowest
recurring cost, volume and power, heterogeneous systems
are highly advantageous.

The downside of heterogeneous systems is the
additional complexity and software cost. Table 4 attempts
to demonstrate the impact of software costs on the system
design trades. The table assumes an application base of
100,000 SLOC, which is not atypical of such systems, and
can be much larger. Software development costs vary
widely from place to place but the figure is at least
illustrative. As in Table 3, the DSPs replace GP PE code
on a one-one basis, and the cost of developing such code
is considered to be about 25% higher. The Software
Development Environment (SDE) cost is higher for the
GP due to it's richness, and that for the DSP is less
expensive. Note that DSP SDE costs can ultimately be
much higher if the developer chooses to add and support
unique tools. Running the numbers shows that that the
total expense is about the same for the three example
systems, while the volume from Table 3 is much smaller
as the DSP nodes are added.

Note, however, that SW costs greatly dominate the
total system cost for the first article, validated system. At
this point, considerations as to how this cost will be
recovered become paramount. If the system is for
development only, then the example would tend to
support the homogeneous case, because the application
should be more portable to upgraded hardware later. If the
system is for reasonable production volumes, then the
lower recurring cost of system 3 is desired. If the military
platform requires minimum size, system 3 is also favored
by a large margin. But what of other considerations?

Table 5 presents a list of design factors that affect the
choice of a processing system design or supplier. Each of
these factors, if not more, will be evaluated by a system
architect, or will be a factor in the cost and performance
that a supplier can provide. To somewhat better
appreciate the effect of architecture layout on application
partitioning, reconfiguration, resource management, etc.,

166

Table 3. Notional illustration of a heterogeneous parallel system design tradeoff

Cost/ Total Total Volume = Approximate
CPU No. of No. of Module, Module Cost, Total Ratios, $K-

System Type Typical example CPUs Modules $K Cost, $K $K Modules Vol

1 A PPC 604, 200 MHz 144 36 45 1620 1620 36 1-1

2 A PPC 604, 200 MHz 96 24 45 1080 1142 25 0.70-0.69

B AD21060, 40 MHz 12 1 62 62

3 A PPC 604, 200 MHz 48 12 45 540 672 14 0.41-0.39

B AD21060, 40 MHz 12 1 62 62

C Like AD21060,
different ISA

12 1 62 62

NOTES: Assumes 12 AD21060s are about 4X faster than 4 PPCs (127 MOPS/SHARC, 91 MOPS/PPC on FFTs).

Table 4. Notional illustration of a heterogeneous parallel system design tradeoff—software
costs added

System
CPU
Type Typical Example

No. of
Modules

No. of
Applic.
SLOCs,

K

SW
Devel.
Cost,
$K(2)

SDE
Fixed
Cost,
$K

Total
SW

Costs,
$M

Total
HW

Cost,
$M

Grand
Total
Cost,
$M

Approx.
Ratios, Total

$K-Vol

1 A PPC 604, 200 MHz 36 100(1) 10,000 1000 10.1 1.620 11.7 1-1

2 A
B

PPC 604, 200 MHz
AD21060, 40 MHz

24
1

90
10

9,000
1,250

1000
300

11.5 1.142 12.6 1.1-0.69

3 A
B
C

PPC 604, 200 MHz
AD21060,40MHz

Like SHARC,
different ISA

12
1
1

80
10
10

8,000
1,250
1,250

1000
300
300

12.1 0.672 12.7 1.1-0.39

NOTES:
1. The estimate of 100,000 SLOCs for this problem is on the low side; practical systems could be 3 times as large.
2. Development cost: GP code - 100 SLOC/MM divided by 10K/MM = 10 SLOC/1K. DSP code - 8 SLOC/1K.

consider Figure 1. Three types of nodes are shown—two
DSPs and one GP node type. In the table (row 7 and 8),
the application is assumed to support scaling from a few
to many nodes either at design or at run-time. The degree
of scaling is limited by the number of physical nodes per
type, which will be fewer for the heterogeneous system,
though percentage scaling will be similar. For
reconfiguration on detected faults, there is less flexibility
for the heterogeneous case.

Another consideration for the choice of PEs is the life
cycle costs of upgrading and replacing both the hardware
and software. GP microprocessors tend to be upgraded
every 18 months and are generally instruction set
architecture (ISA) compatible. DSPs evolve on something
more like a 3 year cycle, and are not necessarily ISA
compatible. For military systems, upgrades tend to be
costly and complex due to the need to validate correct
system operation, a process which has usually required
field trials involving expensive equipment, instrumented
test ranges, and months of effort. ISA compatibility is a
typical measure of reduced risk in such upgrades. In the

past, such "DSP" machines were uniquely built and were
designed to be ISA compatible. This factor alone should
be enough to mitigate against heterogeneous designs
using current commercial DSPs. The fact that such
designs are nevertheless being widely used may be
attributed to the high impact of the small footprint of the
heterogeneous designs.

Summary

The use of heterogeneous processing systems in
embedded military systems is well entrenched and will
continue. The key driver is the need to conserve size,
weight, and power for many military systems. A key
supporting capability which is little acknowledged is that
a pool of highly capable analysts and programmer exists
in the defense industry for whom the programming of
high performance DSP machines is a known art, albeit
more expensive. This allows designers to choose
heterogeneous machines in some cases where they might
otherwise be rejected.

167

Table 5. Comparison of heterogeneous and homogeneous parallel system design factors

No. Comparison Factors
Homogeneous

Parallel Heterogeneous Parallel
Life Cycle Cost

Impact
Heterog.

Advantage

1 Hardware Arch Design Baseline, simplest Complicated by PE type placement
in net

Initial None

2 HW Interfaces Baseline Multiple network and I/O interfaces Upgrade None
3 Software Architecture

Design
Least Complex Partitioning of applications, multiple

PE targets for middleware, resource
management, etc.

Design,
Maintenance

None

4 SW Interface Drivers Fewer types Increased due to more PE types Design None
5 SW Engineering

Environment
Single PE target Multiple SDE Upgrade None

6 SW Programmer
Training

Single PE target Multiple types Upgrade,
Maintenance

None

7 Applic. Behavior:
Scaling

Most simple case Complicated by multiple types Design None

8 Applic. Behavior:
Reconfiguration.

Most simple case Complicated by multiple types Design None

9 Multilevel Security Most simple case Harder- DSPs do not host secure
OS, must be protected by GP-
hosted OS

Design None

10 Fault Tolerance
Implementation

Most simple case Complicated by multiple PE types Design None

11 Upgradeability: HW
Cost

Baseline Multiple PE types = multiple
generations, not concurrent

Upgrade,
Maintenance

None

12 Upgradeability: SW
Cost

Baseline Portability less likely on DSP
designs

Upgrade None

13 Perform.-HW: Unit
Cost

Baseline Lower due to DSP efficiencies Recurring Cost Significant

14 Perform.-HW:
W*cu.in.*lb.

Baseline Lower due to DSP efficiencies High FOM Significant

15 Perform. - SW: Devel.
Cost

Baseline Higher due to more difficult DSP
programmability

Design,
Maintenance

None

16 Perform.-SW: SDE
Cost

Single PE target Multiple SDE types for multiple PE
types

Design,
Maintenance,
Upgrades

None

17 HW Spares Cost Most simple, least
costly

Higher cost, less commonality, more
types of spares

Recurring None

In addition, technology is emerging which will make
the development of systems noted in line 8 of Table 2
readily achievable. The major computer industry suppliers
are moving to parallel systems for high end servers, and
will incorporate high bandwidth networks. Industry
standard high bandwidth networks, if adopted would
allow DSP modules to be attached or incorporated for
some military systems. As these new servers mature, the
maintenance capabilities and run-time software will
become more powerful in response to commercial
application drivers such as telecommunications and video
on demand. Unfortunately, internal network standards are
the exception in current machines, not the norm.

At the same time, those companies specializing in the
embedded market will add PE types and more powerful
software to their offerings, thus maintaining the
advantages of performance per power/size/weight/cost
that they have historically enjoyed. The introduction of
new network concepts such as System Area Network
(SAN), of which the Myrinet currently being supplied by
Myricom, Incorporated is an example, will also allow
such systems to achieve large numbers of nodes which
can include both commercial workstations and highly
compact, high performance heterogeneous rack systems.

168

\EE7 'S? GPPE GPPE

COMMUNICATIONS NETWORK

Figure 1. Illustrative heterogeneous parallel processing system

Acknowledgments

The author would like to acknowledge contributions
and discussions with his many colleagues at Hughes,
where much of the work reported has been done, as well
as support of the management of the Electronics Division
of the Sensor & Communications Systems Segment.

Biography

Glenn Ladd is a Program Manager at Hughes Aircraft
Company, where most recently he leads various projects

in development of advanced parallel processing systems
and software. He has also developed VLSI chips and
design tools, digital and analog GaAs device technology,
and sensor systems. He received a Ph.D. in Electrical
Engineering from Carnegie-Mellon University.

References

1. "A Survey of Heterogeneous Computing: Concepts and
Systems," Ilija Ekmecic, Igor Tartalja, and Veljko
Milutinovic, Proceedings of IEEE, Vol. 84, No. 8, August
1996

169

Session 4

Performance Evaluation and
Reliability and Security

Session Chair

Domenico Laforenza,
CNUCE - Institute of the Italian National

Research Council, Italy

Estimating the Execution Time Distribution
for a Task Graph

in a Heterogeneous Computing System*

Yan Alexander Li
Intel Corporation, SC9-15
2200 Mission College Blvd.

Santa Clara, CA 95052-8119 USA
ali2@mipos3.intel.com

John K. Antonio
Department of Computer Science

Texas Tech University
Lubbock, TX 79409-3104 USA

antonio@cs.ttu.edu

Abstract

The problem of statically estimating the execution
time distribution for a task graph consisting of a col-
lection of subtasks to be executed in a heterogeneous
computing (HC) system is considered. Execution time
distributions for the individual subtasks are assumed
to be known. A mathematical model for the communi-
cation network that interconnects the machines of the
HC system is introduced, and a probabilistic approach
is developed to estimate the overall execution time dis-
tribution of the task graph. It is shown that, for a given
matching and scheduling, computing the exact distri-
bution of the overall execution time of a task graph
is very difficult, and thus impractical. The proposed
approach approximates the exact distribution and re-
quires a relatively small amount of calculation time.
The accuracy of the proposed approach is demonstrated
mathematically through the derivation of bounds that
quantify the difference between the exact distribution
and that provided by the proposed approach. Numer-
ical studies are also included to further validate the
utility of the proposed methodology.

1 Introduction

A heterogeneous computing (HC) system provides
a variety of architectural capabilities, orchestrated to
perform an application whose subtasks have diverse
execution requirements [1]. HC has become a sub-
ject of intensive research within the high-performance
computing community in the quest of systems that
are versatile and provide good performance. For a
description of example HC applications and a list of
related references, refer to [1].

"This work was supported by Rome Laboratory under grant
number F30602-96-1-0098.

Throughout this paper, an HC system is assumed
to consist of a suite of independent machines of differ-
ent types interconnected by a high-speed network. HC
requires the effective use of diverse hardware and soft-
ware components to meet the distinct and varied com-
putational requirements of a given application. Im-
plicit in the concept of HC is the idea that subtasks
with different machine architectural requirements are
embedded in the applications executed by the HC sys-
tem. The concept of HC is to decompose a task into
computationally homogeneous subtasks, and then as-
sign each subtask to the machine where it is best suited
for execution [1].

Unlike in distributed homogeneous systems (e.g., a
network of workstations of the same type and configu-
ration), it is generally difficult and impractical to sus-
pend the execution of a subtask on one machine and
resume that subtask's execution on another machine
of a different type in an HC system. Thus, a challenge
in making effective use of an HC system is to minimize
the need for such dynamic subtask migration, which
implies an increased importance on the static prob-
lems of assigning subtasks to machines (matching)
and ordering the execution of subtasks assigned to the
same machine (scheduling).

Performance prediction is the basis of matching and
scheduling techniques for HC systems. Many match-
ing and scheduling algorithms make the simplifying
assumption that the execution time for each subtask
is a known constant for each machine in the system
(e.g., [2, 3]). However, there are elements of uncer-
tainty, such as the uncertainty in input data values
or in inter-machine communication time, which can
impact the execution times. Machine choices for exe-
cuting subtasks can also affect the execution time and
its degree of uncertainty.

In this paper, the task to be executed on the HC
system is modeled as a task graph consisting of a col-
lection of subtasks. A mathematical model for the

172
0-8186-7879-8/97 $10.00 © 1997 IEEE

communication network that interconnects the ma-
chines of the HC system is introduced, and a prob-
abilistic approach is developed to estimate the overall
execution time distribution of the task graph. This
overall distribution depends on the individual subtask
execution time distributions, the inter-machine com-
munication time distributions, the data dependency
structure among the subtasks, the matching of sub-
tasks to machines, and the scheduling of subtasks
matched to a common machine. It is shown that,
for a given matching and scheduling, computing the
exact distribution of the overall execution time of a
task graph is very difficult, and thus impractical. The
proposed approach approximates the exact distribu-
tion and requires a relatively small amount of calcula-
tion time. The accuracy of the proposed approach is
demonstrated mathematically through the derivation
of bounds that quantify the difference between the ex-
act distribution and that provided by the proposed
approach. Numerical studies are also included to fur-
ther validate the utility of the proposed methodology.

Section 2 presents the basic assumptions and an
overview of the approach. A mathematical framework
for the approach is presented in Section 3. Section 4
demonstrates the generic difficulty associated with cal-
culating the exact execution time distribution for a
task graph. An approximate approach is then pro-
posed based on the conditions set forth by the Klein-
rock independence approximation [4]. Section 4 con-
cludes with a mathematical derivation of a bound for
quantifying the difference between the exact distribu-
tion and that associated with the proposed approach.
In Section 5, execution time distributions determined
using the proposed approach are compared with corre-
sponding distributions obtained by simulation of ex-
ample task graphs. These studies indicate that the
proposed approach predicts the execution time distri-
bution for a large class of practical task graphs with
high accuracy.

2 Assumptions and Overview

It is assumed that the HC system consists of a dedi-
cated network of machines under the control of a single
matching/scheduling mechanism. The type of appli-
cation task considered is composed of a number of
subtasks, each of which is to be executed on a partic-
ular machine in the HC system. The execution time
distribution for each individual subtask is assumed to
be known or estimated for the machine on which it is
to be executed. Previous approaches for determining
the execution time distribution of (parallel) programs

(e.g., [5, 6]) could be applied for estimating the execu-
tion time distribution of subtasks. Estimates of sub-
task execution time distributions based on empirical
measurements could also be utilized in the framework
assumed here.

The subtask-to-machine matching and the order of
execution for multiple subtasks assigned to the same
machine (i.e., the subtask scheduling for each ma-
chine) are assumed to be static and known. The prob-
lems of optimal matching and scheduling represent
large bodies of research in the field of HC, e.g., see
[3, 7]. How to determine good solutions to the match-
ing and scheduling problems is beyond the scope of
this paper. The goal here is to develop a new prob-
abilistic approach for analyzing the overall task exe-
cution time for given matching and scheduling poli-
cies. From this probabilistic modeling foundation, fu-
ture matching and scheduling techniques may be de-
veloped that are based on probabilistic metrics for per-
formance.

For each subtask, all input data items must be
present at the subtask's designated machine before
computation starts, and output data items can be
transferred to other machines only after computa-
tion of the subtask is completed. Data-dependencies
among the subtasks are represented by a task graph.
A task graph is a directed acyclic graph in which
nodes represent subtasks and arcs represent the data-
dependencies among the subtasks.

To compute the execution time distribution of the
entire task, the assumed execution time distributions
of all subtasks (on their designated machines) are uti-
lized. These distributions correspond to the compu-
tation time of the subtasks only; distributions for the
times required to input and output any data structures
are defined separately.

For each subtask, the machine from which each re-
quired input data item is fetched is assumed to be
specified. In general, these machines will depend on
the subtask-to-machine matching that is used. For ex-
ample, fetching a data item from the machine at which
it was first generated (or was initially stored) is a sim-
ple rule that is often assumed for this type of analysis.
However, the model devised here allows for more gen-
eral refinements in how the data is distributed and
retrieved. For example, the model is general enough
to account for the data-reuse and multiple data-copies
situations [8], which allow the fetching of data items
from a machine other than the one where it was gen-
erated.

Network I/O at each machine is assumed to be non-
blocking (e.g., handled by a stand-alone I/O proces-

173

sor). Therefore, computation and inter-machine com-
munication can be overlapped in time. Each subtask is
assumed to start computation when its designated ma-
chine is ready and all its input data items are available
on this machine. Immediately after computation for a
subtask completes, the machine is made available for
executing the next subtask scheduled for execution on
that machine. Also, the output data items produced
by the completed subtask are made available for all
subsequent subtasks to be executed on that machine.
If multiple data items produced by a subtask are to be
transferred to other machines, the order in which they
are sent is assumed to be specified. All outgoing data
items at a given machine are assumed to be buffered
when the machine is transmitting another data item.

In general, the network transmission time for a
given data item (including the uncertain delay caused
by network contention) depends on factors such as the
size of the data item being transferred, the topology
and bandwidth of the network, the type of switching
used, the types of machine-network interfaces used,
and the overall network load. For the purpose of this
analysis, a network model in which the transmission
time is modeled according to a probabilistic distribu-
tion is assumed. In this model, the shape of the dis-
tribution is fixed (e.g., the variance is fixed), and the
mean of the distribution is defined to be the sum of a
fixed overhead and a term proportional to the size of
data item transfered. The fixed overhead corresponds
to the latency of the network, and the coefficient for
the second term corresponds to the inverse of the chan-
nel bandwidth. This represents one possible model
for the transmission time for a network. Other net-
work models are possible and could be used in place of
the one assumed here. Furthermore, the transmission
time can be source-destination dependent. The only
requirement is that the transmission time be modeled
according to a probabilistic distribution.

Three separate random variables are used to rep-
resent the start time, execution time, and completion
time for each subtask. The values of the start and fin-
ish times are defined with respect to a global time-line,
and the subtask execution time represents the length
of an interval on this time-line. The task is assumed
to start execution at time 0. A subtask is called a
terminal subtask if it corresponds to a node with no
successors in the task graph and is the last subtask
executed on its designated machine. The maximum of
the completion times over all terminal subtasks defines
the finish time of the entire task.

3 Mathematical Model of Task Graph Exe-
cution in an HC System

In this section, random variables are used to model
the data communication times among the machines
and the start time, execution time, and finish time
for each subtask. The relationships among these ran-
dom variables are derived. These are used in the next
section to compute the overall task execution time dis-
tribution by performing appropriate operations to the
distribution functions of these random variables.

It is assumed that there are m machines in the HC
system, labeled M, i = 0, l,...,m - 1. The task
consists of n subtasks, labeled Sj_, j = 0,1,...,n - 1.
The subtask-to-machine matching is defined by the
function

Al:{0,...,n-l}->{0,...,m-l}. (1)

Thus, subtask Sj is to be executed on machine MM(J) ■
For each machine Mi, the number of subtasks assigned
to Mi is denoted as a*, and the execution schedule
for these a» subtasks is defined by the function X^ :
{0,... ,(Xi - 1} -> M-1(i), which is a bijection. Thus,
Xi{k), 0 < k < at, defines the (k + l)-th task to be
executed; the sequence of execution on machine Mi is
from subtask S;t,(o) to 5^(Qi_i).

For each subtask Sj, 0 < j < n, define n] and n£
to be the number of associated input and output data
items, respectively. Input data items of Sj are labeled
Dj v, 0 < v < nj. Output data items of Sj are labeled

Dfu, 0 < u < nf. If multiple output data items of a

subtask need to be transmitted to other machine(s),
then they are transmitted serially in ascending index
order, i.e., Dfu is transmitted before Dft, for u < L

For each subtask Sj, the times at which computa-
tion starts and finishes is modeled by random vari-
ables Tf and Tf, respectively. The execution time

of Sj is modeled by random variable rf, defined as

T? = Tf - Tf. Note that throughout this paper, val-
ues of random variables involving the letter "T" corre-
spond to points on the global time-line, and those that
use "T" represent lengths of intervals on this time-line.
It is assumed that the execution times of all subtasks
are independent, i.e., rf, 0<j<n, form a set of mu-
tually independent random variables. This has been
an assumption made by other researchers as well, e.g.,
[9]. Based on the definition of rf, a useful expression
for Tf is given by:

j j Ti
E (2)

174

For each subtask Sj, the time at which input data
item DT

jv, 0 < v < nj, becomes available on machine
MM{]) is defined by Tjv. It is assumed that all initial
data items are pre-loaded to the machines that will
first use them, i.e., the time required to load these
data items is not considered in the analysis. Thus,
the available time for all pre-loaded data items is de-
fined as 0. The sum of the queuing time, denoted by

rfu, and the network time, denoted by T£U, defines

the time period starting at time Tf and ending when
data item D9„ is available at its destination subtask.
If the destination subtask of Dfu is on the same ma-

chine as Sj, then both rfu and T£U are defined to be

0. Otherwise, rfu represents the time Dfu waits in
the queue before machine MM(J) begins to transmit
it, and T^ represents the amount of time (including
any delay caused by network contention) to transfer
Dfu through the network to its destination. Network
times for different output data items are assumed to
be independent (i.e., the random variables T£U are in-
dependent).

In the following discussion, let output data item u
of Sj (i.e., Dfu) be input data item v of subtask Sg

(i.e., Dfu = D1). Also, if Sj and Sg are assigned to
o

the same machine, i.e., M(g) = M(j), then Tju = 0
for all u. If u = 0 (i.e., D<?u = Dffi is the first data
item transmitted), then the queuing time is zero, i.e.,
TQ Q 0. Hence, the general expression for T^U is:

TQ =

(0 if u = 0

or M(j) = M{g),

T9U_! + rj^i otherwise.
(3)

It is assumed that Dfu is available to Sg immediately
upon arriving at machine MM^gy Let T£u define this

arrival time, then

rpA rpj
j,u ~ ±g,v Tf+TQ

3,u ~ '],u- (4)

Assume now that subtask Sj is to be executed on
machine M*, i.e., M(j) = i, and is the (k + l)-th
subtask scheduled for execution, i.e., Xi(k) = j. Let
Tj1 denote the time that Mi becomes available for
executing Sj. If A; = 0, i.e., Sj is the first subtask
scheduled to execute on Mi, then Tf1 is defined to be
0. Otherwise, Sx^k-x) is the previous subtask that
executes on Mi, and Tf1 is defined to be the finish
time of Sxi(k-i)- Therefore, the general relation for
the time when machine Mi becomes available for exe-

cuting subtask Sxi(k) is:

'0

*i(k) \Tx.ik-i) otherwise.
(5)

The start time of a subtask is the maximum of the
available time of the designated machine and the max-
imum of all arrival times of its input data items:

if = max l T, M max
v=0 M»} (6)

Equations (2) through (6) establish the relation-
ships among the defined random variables, and are
used to derive their associated probability distribution
and/or density functions. In particular, distributions
for the random variables rf and T^U are assumed to be
specified, and distributions for the other random vari-
ables are defined based on the relationships derived in
this section. The overall execution time distribution
of a task graph is analyzed in the next section.

4 Calculating the Execution Time Distribu-
tion for a Task Graph

4.1 Difficulty with exact calculation

In a task graph, subtasks that require input data
items from a common subtask have correlated start
and finish times, and thus their associated random
variables are not independent. This correlation can
propagate to the start and finish times of subsequent
subtasks that get data from these subtasks. All such
subtasks correspond to nodes in the task graph that
have a common ancestor. It is shown in this subsection
that this type of correlation generally makes the exact
derivation of the overall execution time distribution of
a task graph difficult and impractical.

Before demonstrating the difficulty of performing
basic operations on correlated random variables, the
summation and maximum operations for independent
random variables are first reviewed. From basic prob-
ability theory, recall that the density function of the
summation of independent random variables is the
convolution of the density functions of the individ-
ual random variables [10]. Thus, for two independent
random variables, say R and V with density functions
fn(-) and /v(-)> the density function of Y = R + V is
given by the convolution of /R(-) and /y(-)> denoted
by /VO = /«(•) */v(Q, which is defined by:

fi
,0,

'(</) = /
J—c

fR(y-t)fv(t)dt. (7)

175

Also recall that the distribution function of the maxi-
mum of independent discrete random variables is the
product of the distribution functions of the individual
random variables [10]. Thus, for two independent dis-
crete random variables, say R and V with distribution
functions FR(-) and Fy(-), the distribution function of
Z = maxji?, V} is given by

Fz(z) = FR(z) ■ Fv(z). (8)

Figure 1: An example task graph whose overall exe-
cution time distribution is difficult to derive.

Consider the task graph with five subtasks shown in
Fig. 1. Assume there are two machines in the HC sys-
tem. Subtasks So, «S2 and 54 are assigned to machine
Mo, and subtasks Si and S3 are assigned to machine
Mi. To simplify the presentation, the network com-
munication times are assumed to be zero, i.e., T^U = 0
for all j and u. Recall that rf denotes the given execu-
tion time distribution of Sj on its designated machine.
The start time of subtask 54 can be derived by using
Equations (2)-(6) as follows.

rpF

TF
To*,

— 1o — T0

T3
S = max{Tf,T?} = max^ ,rf},

= Tn

JS „El .3 = max{-r^,T^} + Tf,

T4
5=max{T2

F,T3
F}

= max{7-0
B + if, max{r0

£, rf} + T?}. (9)

Because T% and TF are not independent, Equa-
tion (8) is not applicable for computing the distribu-
tion of Tf. The only way to compute the exact dis-
tribution for Tf is to consider Tf as a function of r<f,
rf, T%, and rf (which are assumed to be indepen-
dent random variables) and use direct integration. To
simplify the notation, let TQ = A, rf = B, rf = C,
rf = D, and Tf = X. With these substitutions,

Equation (9) is

X = max{yl + C, max{,4, B} + D}.

An exact derivation of the distribution function for
X (i.e., T4

S) based on basic probability theory is as
follows.

Fx(x)

= Pr[max{(yl + C), max{i, B} + D} < x]

= Pi[A + C < x, m&x{A, B) + D < x]

= / Pr[A + C < x, max{A, B} + D < x\D = d]

dFD{d)

= / Px[A + C <x,max{A,B} < x - d] dFD{d)

"//

■//

■///

■///

Pr[A + C < x, max{A, B) < x - d\B = b]

dFB{b) dFD(d)

Pr[A + C < x, max{A, b} < x - d]

dFB(b) dFD{d)

Vv[A + C < x, max{A, b} < x - d\A = a]

dFA{a) dFB(b) dFD(d)

Pr[C < x — a, max{a, b} < x — d]

dFA(a) dFB{b) dFD(d)

Fc(x — a)/(max{a, b} < x — d)

dFA(a) dFB{b) dFD{d), (10)

where /(•) is the "indicator function," defined for
this case as follows: if max{a,6} < x — d, then
I(max{a, b} < x — d) = 1; otherwise J(max{a, b} <
x-d) = 0.

The above example illustrates that even for a sim-
plified model (i.e., ignoring the communication over-
head) of the considered task graph, the derivation of
the exact execution time distribution is non-trivial. In
particular, the production of a string of equalities is
required (based on basic principles of probability the-
ory) in order to derive the final expression given in
Equation (10). Thus, although the final expression
can be evaluated in this case, it was not straightfor-
ward to derive.

Practical task graphs will be more complicated than
that of Fig. 1, and dependencies imposed by machine
availability could further complicate the relationships
among the start and finish times of subtasks. Al-
though exact derivation for general task graphs may

176

be possible, there is no clear systematic approach for
automating such a derivation. A goal of this paper is
to devise an approach for systematically determining
(or suitably approximating) the execution time dis-
tribution of a task graph. In the remainder of this
section, such a technique is proposed for estimating
the overall execution time distribution based on the
Kleinrock independence approximation. This approx-
imation enables the usage of the simple formulas for
summation and maximum of random variables (i.e.,
Equations (7) and (8)).

4.2 Independence assumption

As demonstrated in the previous subsection, sub-
tasks corresponding to nodes in the task graph that
have a common ancestor can have correlated random
variables associated with the start and finish times. In
such cases, deriving an expression for the exact distri-
bution of the overall execution time distribution can
become unrealistic for general task graphs. However,
conditions exist for which the associated random vari-
ables can nevertheless be treated as uncorrelated de-
spite this type of interaction. The Kleinrock indepen-
dence approximation [4] is a well-known condition for
describing this situation, and is used here as the basis
for assuming independence among random variables
that may technically be correlated.

To understand the original rationale of the Klein-
rock independence approximation, consider a data
network in which there are many interacting trans-
mission queues. A traffic stream departing from one
queue enters one or more other queues, perhaps af-
ter merging with portions of other traffic streams
departing from yet other queues. Although packet
inter-arrival times of data packets can become de-
pendent (i.e., correlated) after a traffic stream leaves
the first queue, the Kleinrock independence approxi-
mation concludes that the merging of many different
packet streams on a transmission line has an effect
similar to restoring the independence of inter-arrival
times and packet lengths [11].

Similarly, in a task graph, a subtask may take input
from many other subtasks, and multiple subtasks may
be assigned to the same machine, where they must
wait for the machine to become available before ex-
ecution. The effect is analogous to that of merging
many traffic streams in a data network. Thus, it is
assumed that the input of data from many other sub-
tasks has the effect of restoring independence among
the start and finish times of subtasks that have a com-
mon ancestor in the task graph. This approximation
of independence is the basis for justifying the use of

Equations (7) and (8) to compute the distribution of
start and finish times of subtasks. The degree to which
this independence approximation is violated (or not)
will influence the resulting accuracy of the calculated
distribution. The estimation error is analyzed mathe-
matically in Subsection 4.4, and is investigated further
in Section 5 through numerical simulation studies.

4.3 Proposed approach for calculating the exe-
cution time distribution

Subtask start and finish time distributions are cal-
culated in an order determined by the data depen-
dency structure of the task graph and machine avail-
ability, which depends on the given matching of sub-
tasks to machines and local scheduling for each ma-
chine. The key to calculating the start and finish time
distributions is to partition the subtasks into layers,
which requires the definition of an immediate prede-
cessor. Subtask Sj is an immediate predecessor of sub-
task Sg if either of the following conditions is satisfied:
(1) Sg requires data from Sj (i.e., there is an arc in
the task graph from Sj to Sg) or (2) Sj and Sg are
assigned to the same machine and Sj is scheduled to
execute immediately before Sg. Those subtasks with-
out an immediate predecessor are put into layer 1. A
subtask is put into layer k +1 if the highest layer num-
ber of its immediate predecessors is k. Based on this
definition (which implies a constructive procedure),
there is no data dependence among subtasks of the
same layer. The main difference between this layer-
ing approach and those found in the literature (e.g.,
Cluster-M model in [12]) is the resource dependence
determined by scheduling is also considered, i.e., con-
dition (2) above, is also considered.

Subtask start and finish time distributions are first
computed for subtasks in layer 1. Distributions for
the time each output data item is available on its tar-
get machine are then calculated. These steps are re-
peated for subtasks in layer 2, and so on. In this
way, when the start time distribution of each subtask
is computed, the distributions for available times of
the designated machine and all input data items are
known.

For each subtask Sj considered in the "layered" or-
der, the following four calculations are performed.

1. Compute distribution function for subtask start
time:

FTS(-) = FTM(-)1[FT! (■). (11)
v=0

177

2. Compute density function for subtask completion
time:

/r/-(-) = /r/(0*/rf(-)- (12)

3. Let the next subtask to be executed on machine
MM(j) be Sg. Define the density function for ma-
chine available time for Sg:

/TM(.) = fTF (•). (13)

4. For each u from 0 to nf - 1, let output data
item D? be the input data item h of subtask Sg

(i.e., D1 h). Compute the distributions for queu-
ing time, arrival time for Dfu, and the available

time for D1 h.

fr« (0

(5() if u = 0 or M(j)=M(g),

I fTQ (•) * /TN , (•) otherwise.
(14)

/T£,(-) = /T<„(-)

= /T?(-)*/r0(-)*/r»0- (15)

(<5(-) represents the Dirac delta function [13].)

After completing the above four steps for each sub-
task (ordered according to the layer numbers), the
overall distribution of the task execution time is com-
puted. Let cf> be the number of terminal subtasks, and
let {Sj0,Sj1,...,Sj4,_l} be the set of terminal sub-
tasks. Then the probability distribution function of
the completion time of the entire task is:

FTC(-)=1[FTF(-). (16)

4.4 Error analysis

In this subsection, the difference between the dis-
tribution computed by the proposed approach (Sub-
section 4.3) and the exact distribution is analyzed for
a special class of task graphs for which the Kleinrock
independence assumption is (apparently) violated. An
analytical expression for the difference of the means of
these distributions is derived. Based on this expres-
sion, it is shown that the proposed approach always
overestimates the actual mean of the execution time.
A bound for the difference of the means is also de-
rived that depends on the parameters of the assumed
subtask distributions involved. Finally, conditions are
determined for which the distribution of the proposed

approach equals the exact distribution for this class of
task graph.

In a task graph, a fork-join structure between two
subtasks Sf and Sj contains a set of two or more dis-
joint paths from Sf to Sj ("f" is for fork and "j"
is for join). Let W denote the set of subtasks in a
fork-join structure, excluding Sf and Sj. For a given
subtask-to-machine matching and a given scheduling
for each machine, a fork-join structure is called an
isolated fork-join structure if every immediate prede-
cessor of a subtask in W belongs to W U {Sf}. Ex-
amples of isolated fork-join structures are shown in
Fig. 2, in which each subtask is assumed to be as-
signed to a distinct machine. The conditions of the
Kleinrock independence approximation are clearly vi-
olated in an isolated fork-join structure. This is be-
cause the data that flows from Sf to Sj (e.g., So to
S3 in Fig. 2(a)) does not merge with other data origi-
nating from subtasks outside that fork-join structure.
Therefore, the effect of restoring independence of ar-
rival times of input data items for Sj by merging data
flows from different subtasks/machines does not oc-
cur. Perhaps surprisingly, it is shown that even for
this "worst case" structure (i.e., the isolated fork-join
structure), the proposed approach still can provide
reasonably accurate estimate of the exact distribution.
Under certain conditions, it is shown that the distri-
bution from the proposed approach actually coincides
with the exact distribution.

Figure 2: Examples of isolated fork-join structures.
Each subtask is assumed to be assigned to a distinct
machine for each example.

Isolated fork-join structures are characterized by
the number of disjoint paths that connect Sf to Sj.
In Fig. 2(b), note that the chains Si -> S3 ->• S5 and
S2 —> S4 can each be reduced to a single subtask, re-
sulting in a structure identical to that in Fig. 2(a).

178

Therefore, without loss of generality, only structures
in which there is exactly one subtask on each path
between S{ and Sj (such as Figs. 2(a) and (c)) are
studied here.

In general, for multiple subtasks matched to the
same machine, a fork-join structure may not be an
isolated fork-join structure. For example, consider
Fig. 3 in which the subtasks are matched to machines
as indicated by the ovals. Although 50 through 53
form a fork-join structure, the scheduling of 5i and
55 on Mi determines whether it is an isolated fork-
join structure. In particular, if 5s is scheduled be-
fore Si, then it is not an isolated fork-join structure,
because S§ is an immediate predecessor of Si and
S6tW\J{So} = {So,S1,S2}.

M0 (

Mx

Figure 3: Example task graph in which its character-
ization as an isolated fork-join structure depends on
the scheduling.

Consider the isolated fork-join structure shown in
Fig. 2(a). For clarity of presentation and without loss
of generality, network communication times are ig-
nored. Let A, B, and C denote the execution time
distribution of So, Si, and S2 on their designated ma-
chines, respectively. The start time of 53 can be de-
rived as:

Tf = T? = Tf = A,
Tf = A + B,

Tf = A + C,
T§ = max{lf, Tf} = max{A + B, A + C}.

Note that the distributions for Tf and Tf are ob-
tained by convolving the appropriate density functions
(i.e., /,.,(■) = /A(-)*/B(0 and /T,(.) = fA{-)*fc(-)).
The proposed approach estimates the distribution of
T3

S as FTF(-)FTF(-). For notational convenience, let
X denote the random variable with distribution func-
tion FTF(-)FTF(-), and let X* = T3

S, i.e., X and X*

represent the estimated and exact value of T3
S, respec-

tively.

In [6], the exact distribution for X* is derived and
the difference between X and X* is analyzed mathe-
matically. Due to space limitations, only the results
of this analysis is included here (refer to [6] for the de-
tailed derivation). To state the results, some notation
is needed for quantifying the ranges of the random
variables A, B, and C. Because these random rep-
resent the execution times of So, Si, and 52, it is as-
sumed that they are finite and have finite range. Thus,
there exists constants 0 < ai < 02, 0 < &i < 62, and
0 < ci < c2) such that Pi[A < 01] = Pi[A > a2] = 0,
Pr[S < 61] = Pr[B > b2] = 0, Pr[C < a] = Pr[C >
c2] = 0.

The following is a summary of the results proven in
[6].

1. The proposed approach always overestimates the
mean, and the estimation error for the mean is
upper-bounded by the length of the range of A:

OKEX-EX* <a2-ai, (17)

where EX and EX* denote the expected values
(i.e., means) of the approximate and exact distri-
butions, respectively.

2. The proposed approach yields the exact distri-
bution if the length of the range of A is shorter
than the length of combined range of B and C.
Mathematically, this condition on the length of
the range of A is stated as:

a-i — ai < max{Ö2,C2} — min{6i,Ci}.

Thus, if the above inequality is satisfied, then the
distribution produced by the proposed approach
equals the exact distribution (i.e., X = X*).

These two results share a common theme - the
smaller the range of possible values for A, the smaller
the estimation error. The second result is most inter-
esting, and perhaps most surprising. It states that if
the range of values for A is sufficiently small (with re-
spect to the corresponding ranges for B and C), then
the estimated distribution actually equals the exact
distribution (i.e., there is no estimation error). An
important key in deriving these results is the finite
range assumption for the random variables A, B, and
C.

5 Numerical Studies

5.1 Overview

In this section, the accuracy of the execution time
distributions determined from the proposed approach

179

(Subsection 4.3) is evaluated through numerical stud-
ies. Due to the size and complexity of the task graphs
considered, derivation of the exact distributions (as
done for the simple task graphs considered in the pre-
vious section) is not feasible. Thus, detailed simu-
lations of the task graphs are performed as a means
of determining the actual distributions. The results
show that the proposed approach predicts simulated
task graph execution time distribution with high ac-
curacy. Task graph structures for which the indepen-
dence among the random variables is apparently vio-
lated to a substantial degree are also studied. Even
for these task graph structures, the distributions com-
puted by the proposed approach match those from the
simulation reasonably well. On a Sun SPARCstation
5, the time required to compute distributions based
on the proposed approach is about 10 times less than
that based on simulating the task graph over 4000 in-
stances.

For this study, each subtask execution time distri-
bution (associated with the random variable rf for
subtask Sj) is assumed to be either a uniform or a
normal distribution. (This is for convenience only;
any distribution could be used in this framework.)
Each network transmission time distribution (associ-
ated with the random variable rj^J is assumed to be
a normal distribution with a fixed standard deviation,
and the mean defined as the sum of a fixed overhead
and a term proportional to the size of data item to be
transfered. (Each normal distribution N(fj,,cr) with
mean ß and standard deviation a is discretized in the
range of (max{^ — 4a, 0}, fi + 4er).) The parameters of
these distributions are included in an input file. Also
included in this file is the subtask-to-machine match-
ing and execution schedule of each individual machine.
A program was written in C to parse this input file and
output a Matlab program for simulating the execution
time of task graph (see [6] for details).

For each instance of the simulation, the execution
time of a subtask is determined by generating a ran-
dom number according to its assumed distribution,
and network transmission times are determined sim-
ilarly. The overall execution time of the task graph
is calculated according to data dependency structure
of the task graph and execution schedule of the indi-
vidual machines. Subtask start and finish times are
first computed for subtasks in layer 1. The time each
output data item of layer 1 subtasks is available on its
target machine are then calculated. These steps are
repeated for subtasks in layer 2, and so on. In this
way, when the start time of each subtask is computed,
the available times of the designated machine and all

,(1.0)

Key for arc labels (d, k):
d: amount of data to be transfered

k: order index of output data item

Figure 4: Example task graph.

input data items are known. The overall execution
time of the task graph is the maximum of the finish
times over all terminal subtasks. For each task graph
studied, 4000 simulation instances were performed to
collect the sample distribution of the overall execution
time of the task graph.

5.2 Comparison of estimated distribution and
simulated sample distribution

The first task graph studied is shown in Fig. 4.
There are 12 subtasks in the graph, labeled from 50 to
Sn. Each arc is labeled with an ordered paired (d, k),
where d is the amount of data to be transfered and k
is the output data index for the source subtask. (Re-
call if a subtask has multiple output data items to be
transmitted to other machine(s), they are transmitted
in ascending index order.) It is assumed that there are
four machines in the HC system, labeled from Mo to
M3. The assumed subtask-to-machine matching, exe-
cution schedule of each machine, and execution time
distribution of each subtask on its designated machine
are defined in Table 1. Three subtasks are assigned to
each machine. Each row corresponds to parameters
for a subtask; the first column is the label of the sub-
task, the second column is the label of its designated
machine, the third column is the order of execution on
that machine, and the forth column parameterizes its
execution time distribution.

The network transmission time is modeled by a nor-
mal distribution with a standard deviation of 3. Two
separate models for the mean of the network network
transmission time were used. In the first, the mean is
equal to 10 + (5 x d), and in the second, the mean is
equal to 20 + (30 x d). These two models represent
different computation to communication ratios. For

180

subtask machine schedule exe. time distr.

0 0 0 «7(125,146)

1 1 0 iV(203,10.3)

2 2 0 C/(244, 325)

3 0 1 iV(301, 24.3)

4 3 0 1/(203,248)
5 1 1 7V(350, 27.3)

6 2 1 1/(271,324)

7 0 2 7V(283,26.1)

8 3 1 /V(201, 34.1)

9 1 2 1/(278,321)

10 2 2 1/(130,183)
11 3 2 JV(231,29.4)

Table 1: Assumed matching, scheduling, and execu-
tion time distribution for subtasks of Fig. 4. U(a,b):
uniform distribution between a and 6. N(fi,a): nor-
mal distribution with mean ß and standard deviation
a.

each model, the distribution for the execution time of
the entire task graph are obtained through simulation,
and the corresponding distribution is also computed
by the proposed approach.

The results of these studies are shown in Figs. 5
and 6. For each study, the difference between the sim-
ulated mean execution time and the estimated mean
execution time is less than 0.4%, and the difference for
standard deviation is less than 6.3%. From this, it is
concluded that the proposed approach accurately es-
timates the distribution of execution time for the task
graph considered.

Simulation was also performed for the task graph
shown in Fig. 7. The task graph is nearly the same
structure as that of Fig. 4. The only difference is the
arc 54 -» 56 (in Fig. 4) has been changed to become
arc 56 —► 5n (in Fig. 7). However, this small change
in the structure of the task graph creates an isolated
fork-join structure (52, 56, 57, 5n). The subtask-to-
machine matching, subtask execution time distribu-
tion, and execution schedules of individual machines
remain unchanged. Simulations are performed using
the same two network communication models as used
for Fig. 4. The resulting distributions are compared
with estimates in Figs. 8 and 9. Still, the proposed
approach provides a good approximation for the task
graph execution time distribution. The error between
estimated and simulated results is less than 1.08% for
the mean execution time and less than 10.4% for the
standard deviation. This example demonstrates the
robustness of the proposed approach when some as-
sumptions are violated. (Recall that even for isolated

mean=989.65

standard deviation=42.19

650 900 950 1000 1050 1100 1150 1200 1250 1300
task graph execution time

mean=992.97

standard deviation=39.56

650 900 950 1000 1050 1100 1150 1200 1250 1300
task graph execution time

(b)

Figure 5: Distributions of execution time for task
graph in Fig. 4 where the mean of network transmis-
sion time is equal to 10 + (5 x d). (a) Sample distri-
bution, (b) Estimated distribution.

fork-join structure, the estimation error for the mean
execution time is upper-bounded by the width of the
density of execution time of the fork node, and con-
ditions exists under which exact results could be ob-
tained.)

6 Summary

In this paper, a methodology for estimating the ex-
ecution time distribution for a task graph executed in
an HC system is introduced. Individual subtask ex-
ecution time distributions are assumed to be known
or estimated using analytical or empirical techniques.
A probabilistic model for the data transmission time
is developed. Random variables are used to represent

181

5 0.006

*

mean=1085.0

standard devlation=45.46

850 900 950 1000 1050 1100 1150 1200 1250 1300
task graph execution time

(a)

0.014

mean=997.05

0.012 standard daviatlon=41.20

«D 0.01 .
§
8 0.008

HIK'.Q
.£■
5 0.006

a.

a

0.004 JT

0.002 MM

■KHAfc«*«.
850 900 950 1000 1050 1100 1150 1200 1250 1300

task graph execution time

(a)

0.014
mean=1085.1

0.012 standard deviation=44.76

„, 0.01

8 0.008

o ^ ^
5 0.006 ^k ^
1
tX jfl mk

0.004 M ^
0.002 J^^^.

850 900 950 1000 1050 1100 1150 1200 1250 1300
task graph execution time

(b)

Figure 6: Distributions of execution time for task
graph in Fig. 4 where the mean of network trans-
mission time is equal to 20 + (30 x d). (a) Sample
distribution, (b) Estimated distribution.

Key for arc labels (d, k):

d: amount of data to be transferee!

k: order index of output data item

Figure 7: Example task graph in Fig. 4 with arc S4 ->
Sß moved to Se -*■ Sn-

mean=1008.4

standard deviation=36.93

850 900 950 1000 1050 1100 1150 1200 1250 1300
task graph execution time

(b)

Figure 8: Distributions of execution time for task
graph in Fig. 7 where the mean of network transmis-
sion time is equal to 10 + (5 x d). (a) Sample distri-
bution, (b) Estimated distribution.

the duration of subtask executions and network trans-
missions, as well as the start and finish times. Data
dependency and machine availability are used to de-
rive the relationships among these random variables.

It is demonstrated that deriving the exact execution
time distribution for general task graphs is extremely
difficult. The Kleinrock independence approximation
is applied to make the computation of associated prob-
ability distributions tractable. Graph structures for
which the independence assumption is violated are
identified, and an upper bound of the estimation error
for the mean execution time is derived for this case.
Simulations were performed for various task graphs.
The simulation results indicate.that the proposed ap-
proach provides accurate estimates for execution time
distribution.

182

0.014
'

mean=1086.2

"

0.012 standard davialion=45.22

?
9

« 0.01

2

1 0.008

o< jL

1 0.006

(> IflH
■

0.004

0.002 ■

QO&HNH HtKih o 9
850 900 950 1000 1050 1100 1150 1200 1250 1300

task graph execution time

(a)

:§ 0.006

•8

mean= 1093.1

standard deviation=40.88

850 900 950 1000 1050 1100 1150 1200 1250 1300
task graph execution time

(b)

Figure 9: Distributions of execution time for task
graph in Fig. 7 where the mean of network trans-
mission time is equal to 20 + (30 x d). (a) Sample
distribution, (b) Estimated distribution.

References

[1] H. J. Siegel, J. K. Antonio, R. C. Metzger,
M. Tan, and Y. A. Li, "Heterogeneous Com-
puting," in Handbook of Parallel and Distributed
Computing, A. Y. Zomaya, ed., pp. 725-761,
McGraw-Hill, New York, NY, 1996, (also Purdue
EE School technical report TR-EE 94-37).

[2] D. W. Watson, J. K. Antonio, H. J. Siegel, and
M. J. Atallah, "Static Program Decomposition
Among Machines in an SIMD/SPMD Hetero-
geneous Environment with Non-Constant Mode
Switching Costs," in Proceedings of the Heteroge-
neous Computing Workshop (HCW '94), pp. 58-
65, Apr. 1994.

[3] R. F. Freund, "Optimal Selection Theory for Su-
perconcurrency," in Proceedings of Supercomput-
ing '89, pp. 47-50, Nov. 1989.

[4] L. Kleinrock, Communication Nets: Stochastic
Message Flow and Delay, McGraw-Hill, New
York, NY, 1964.

[5] Y. A. Li, J. K. Antonio, H. J. Siegel, M. Tan,
D. W. Watson, "Estimating the Distribution of
Execution Times for SIMD/SPMD Mixed-Mode
Programs," in Proceedings of the Heterogeneous
Computing Workshop (HCW '95), pp. 35-46,
Apr. 1995.

[6] Y. A. Li, A Probabilistic Framework for Estima-
tion of Execution Time in Heterogeneous Com-
puting Systems, Ph.D. Dissertation, School of
Electrical and Computer Engineering, Purdue
University, Aug. 1996.

[7] S. Chen, M. M. Eshaghian, A. Khokhar, and
M. E. Shaaban, "A Selection Theory and
Methodology for Heterogeneous Supercomput-
ing," in Proceedings of the Workshop on Hetero-
geneous Processing, pp. 15-22, Apr. 1993.

[8] M. Tan, J. K. Antonio, H. J. Siegel, and Y. A. Li,
"Scheduling and Data Relocation for Sequentially
Executed Subtasks in a Heterogeneous Comput-
ing System," in Proceedings of the Heterogeneous
Computing Workshop (HCW '95), pp. 109-120,
Apr. 1995.

[9] A. B. Tayyab and J. G. Kuhl, "Stochastic Perfor-
mance Models of Parallel Task Systems," in Pro-
ceedings of the 1994 ACM SIGMETRICS Confer-
ence on Measurement and Modeling of Computer
Systems, pp. 284-285, May 1994.

[10] A. M. Mood, F. A. Graybill, and D. C. Boes,
Introduction to the Theory of Statistics, McGraw-
Hill, New York, NY, 1974.

[11] D. Bertsekas and R. Gallager, Data Networks,
Prentice-Hall, Englewood Cliffs, NJ, 1987.

[12] M. M. Eshaghian and R. F. Freund, "Cluster-M
Paradigms for High-Order Heterogeneous Proce-
dural Specification Computing," in Proceedings of
the Workshop on Heterogeneous Processing, pp.
47-49, May 1992.

[13] J. B. Thomas, An Introduction to Applied Prob-
ability and Random Processes, Robert E. Krieger
Publishing Company, Huntington, NY, 1981.

183

Biographies

Yan A. Li received his B.E. degree from Tsinghua
University, Beijing, China, in 1991, and his MSEE
and Ph.D. degrees, both from Purdue University, West
Lafayette, Indiana, U.S.A., in 1993 and 1996, respec-
tively. He is currently a Senior System Architect at
Intel Corporation. He is a member of IEEE and Eta
Kappa Nu. His major research interest includes par-
allel processing, high-performance heterogeneous com-
puting, computer architecture, and computer systems
simulation.

John K. Antonio received the B.S., M.S., and Ph.D.
degrees in electrical engineering from Texas A&M Uni-
versity, College Station, TX. He currently holds the
position of Associate Professor of Computer Science
within the College of Engineering at Texas Tech Uni-
versity. Before joining Texas Tech, he was with the
School of Electrical and Computer Engineering at Pur-
due University. During the summers of 1991-94 he
participated in a faculty research program at Rome
Laboratory, Rome, NY, where he conducted research
in the area of high performance computing. His cur-
rent research interests include heterogeneous systems,
configuration techniques for embedded parallel sys-
tems, and computational aspects of control and opti-
mization. He has co-authored over 50 publications in
these and related areas. For the past four years, he has
organized the Industrial Track and Commercial Ex-
hibits portions of the International Parallel Processing
Symposium. He is a member of the IEEE computer
society and is also a member of the Tau Beta Pi, Eta
Kappa Nu, and Phi Kappa Phi honorary societies. Or-
ganizations that have supported his research include
the Air Force Office of Scientific Research, National
Science Foundation, Naval Research Laboratory, Or-
incon, Inc., and Rome Laboratory.

184

Stochastic Petri Nets Applied to the Performance Evaluation
of Static Task Allocations in Heterogeneous Computing Environments

Albert R. McSpadden and Noe Lopez-Benitez
Department of Computer Science

College of Engineering
Texas Tech University

Lubbock, Texas 79409-3104
{nib, amcspadd}@cs.ttu.edu

Abstract

A Stochastic Petri Net (SPN) is systematically con-
structed from a task graph whose component subtasks are
statically allocated onto the processor suite of a Hetero-
geneous Computing System (HCS). Given that subtask
execution times are exponentially distributed, an exponen-
tial distribution can be generated for the overall comple-
tion time. In particular, the enabling functions and rate
functions used to specify the SPN model provide needed
versatility to integrate processor heterogeneity, task prior-
ities, allocation schemes, communication costs, and other
factors characteristic of a HCS into a comprehensive per-
formance analysis. The manner in which these parame-
ters are incorporated into the SPN allows the model to be
transformed into a testbed for optimization schemes and
heuristics. The proposed approach can be applied to
arbitrary task graphs including non-series-parallel.

1. Introduction

Stochastic Petri Nets (SPN's) can be used as a versa-
tile analytic tool for evaluating task graphs composed of
tasks with exponentially distributed execution times allo-
cated onto a finite set of heterogeneous distributed proces-
sors, i.e. Heterogeneous Computing System (HCS).
HCS's are complex systems exhibiting diverse architec-
tural capabilities which perform applications composed of
subtasks with diverse execution paradigms [1]. In HCS
theory, the motivation of qualitative matching of machine
type with task type can be more important than the quanti-
tative balancing of the load of tasks among the processors
[2]. Optimally allocating application subtasks to HCS
components as well as the specification of initiation times
is known as the task scheduling problem. Hence, HCS is
a rich field requiring qualitative and quantitative analysis
of both the task at hand and the processing resources

available to achieve an optimal allocation of tasks to the
system. In this paper, a SPN-based methodology, aug-
mented with enabling and rate functions, is discussed; it is
shown that the modeling approach presented provides the
flexibility and versatility necessary to meet the challenge
of representing and analyzing complex HCS's.

Task graphs represent general computation jobs
which have been decomposed into modules called tasks
which must be executed according to some precedence
constraints. Direct evaluation of task graphs provides an
average completion time of the overall job assuming no
restrictions exist on the number and architecture of pro-
cessing units and with no regard to allocation schemes.
When the task graph is executed on the processing ele-
ments of a HCS, estimating overall completion time
becomes an optimization problem involving allocation of
tasks to processors such that completion time is mini-
mized. Before the problem of optimal allocations can be
discussed, a method must be available for computing an
expected completion time and deriving a probability dis-
tribution of the completion time for any given task graph,
HCS, and allocation. A solution technique for series-
parallel graphs relying on multiplication/convolution of
parallel/series tasks is reported in [3]. Execution times of
fork-join parallel programs in multiprocessor environ-
ments is discussed in [4]. The multiplication/convolution
approach is applied to HCS at coarse and fine levels of
granularity [5]. Also, in [6] performance prediction of
fork-join task graphs is addressed, where the residence
times of each task are estimated in terms of service
demands and queuing delays; based on these estimations,
the task graph is then systematically reduced. This
approach is attractive because it avoids the state explosion
encountered in Markov-based solutions. However, since
only tightly coupled systems are addressed, there is no
regard for preallocation schemes and communication
costs are ignored.

185
0-8186-7879-8/97 $10.00 © 1997 IEEE

begin

end

Figure 1. A simple task graph

A Markov-based solution technique of task graph
systems has been reported in [7]; though limited to rela-
tively small task graphs, this technique is used for the
analysis of scheduling policies in [8]. SPN's directly
incorporate the topological information of the input task
graph and provide a systematic means for applying factors
such as allocation schemes, processor heterogeneity, com-
munication costs, and random execution times. Also, an
analytical approach based on SPN's can be applied to
arbitrary graphs which are acyclic, but not necessarily
series-parallel. SPN tools can automatically generate
Markov chains which are then solved to compute system
performance characteristics such as a distribution of the
overall completion time. Although the methodology
described in this paper is not in itself an optimization
technique, it can be used in conjunction with optimization
techniques which attempt to search a space of completion
time distributions [9]. Furthermore, the implementation
of the proposed methodology can be easily adapted to
become a testbed for various optimization heuristics.

2. HCS Model Parameters and Notation

Several formal definitions of the task scheduling
problem in the context of HCS have been proposed [10, 1,
2]. The goal of such definitions is to express the prece-
dence constraints and computational requirements of the
application as well as the diverse processing capabilities
of the HCS in a way such that performance evaluation and
optimization can be mathematically formulated and
resolved. For the analytical method of this paper, a HCS
is assumed to be completely described by the following:

• a task graph G(T,E) where the vertex set
T = {T\Ti,...,Tk} consists of k tasks which compose
some overall job and the edge set E consists of ordered
pairs from T which correspond to data or control depen-
dencies.

The topology of T is described in detail by the fol-
lowing:

- an in-degree vector D = [d1d2,...,dk] where dt is
the number of tasks which must complete before Tj
may initiate execution.

- an out-degree vector H = [h\Ji2, ■ ■ ■, hk] where Ä,-
is the number of tasks which are spawned after the
completion of Tt.

- a task graph structure TG[i][j], 1 < i < k,
1 < j < hj where TG[i] is an array specifying the ht

tasks which are spawned by the completion of T,;
thus, the ordered pair (Tt, TG[i, j])eE.

• a kxk matrix pkt[i,j], \<i,j<k where pkt[i,j] is
the average number of data packets of standard size that is
sent from Tt to Tj. Alternatively, these can be specified as
edge weights for the elements of E.

• a priority vector W = [wx w2,...,wk] which induces a
sequential ordering of any ready tasks assigned to the
same processor; these priorities may be taken from the
indices of the tasks, e.g. wt = k- i, or they may be ran-
domly or heuristically determined.

• a set P = {PxP2,...,Pn} consisting of n processors
composing a heterogeneous suite.

• a kxn execution time matrix B[i, j],
1 < i < k, 1 < j < n where by is the average execution

186

a) PN before transition fires b)PN after transition fires

Figure 2. Simple Petri net

time of Tj on P j.

• an n x n communication time matrix C[r, s],l<r,s<n
where each entry c„ is the average communication time
to transfer a data packet of standard size from Pr to Ps.

• a kxn static allocation matrix A[i,j],
I <i <k,l < j <n where entry ay = 1 if 7, has been
allocated to Pj, and 0 otherwise.

Task graphs are assumed to be series-parallel for sev-
eral approaches to performance evaluation [11] and opti-
mization [9]; however, this limitation is avoided in the
SPN-based methodology of this work. Fig. 1 shows a
simple task graph which will be used to illustrate the
transformation of task graphs into SPNs.

3. Review of Basic Petri Net Concepts

A Petri net is a directed graph whose underlying
graph N is directed, weighted, and bipartite [12]. Petri
nets are bipartite in that nodes are of two types, places
and transitions, with arcs occurring either from places to
transitions or from transitions to places. When an arc is
from a place p to a transition t, then p is an input place of
/; a place p is an output place of t if an arc proceeds from
t to p. Places and transitions are represented pictorially
by circles and thin rectangles, respectively.

A third component of any PN are tokens which reside
in places; pictorially, tokens are represented by dots
within the perimeters of places. Tokens are transferred
from one place to another by the firing of transitions.
When a transition t fires, tokens are removed from all
input places of t and placed in the output places of t.
PN's enforce a logical flow of activity via the rule for
enabling and firing of transitions. According to this rule,
a transition can fire if it has been enabled, and it is
enabled if all of its input places possess at least one token.
An arc may be weighted where the weight specifies the
number of tokens which must reside in an input place in
order for a transition to be enabled, or the number of

tokens placed in an output place by the appropriate transi-
tion; if weight is unspecified then it is assumed to be one.
The PN in Fig. 2a depicts a system state in which both
preconditions for an event have been fulfilled; Fig. 2b
shows the resulting state after the occurrence of the event.

PN's and their dynamic behavior can be captured in
mathematical notation via state vectors. Given a PN with
k places, a marking q of the PN is denoted by Mq\ a
marking is described by a k - vector whose ith compo-
nent denotes the number of tokens in place pt; an initial
marking of the PN is denoted by M0. A particular PN
with an underlying graph N is denoted (N, Af0). For the
simple example in Fig. 2, the associated markings are
M0 = [1 2 0] and Mx = [0 0 1]. The reachability graph of
a PN is a graph GR(M, A) where the vertex set M is the
set of all possible markings for the PN and the edge set A
consists of all possible transition firings transforming one
marking to another.

Stochastic Petri nets are PN's in which there is an
exponentially distributed delay time between the enabling
and firing of transitions. The reachability graph of a
bounded SPN is isomorphic to a finite Markov chain
(MC) [13]; in particular, the markings of the reachability
graph comprise the state space of a MC, and the transition
rate between any two states Xt and Xj is the sum of all fir-
ing delays for transitions transforming M, into Mr Gen-
eralized stochastic Petri nets (GSPN) have been proposed
[14] in which transitions are of two types: timed transi-
tions which have the exponentially determined firing rates
and immediate transitions which have no firing delay and
have priority over any timed transition. Enabling func-
tions are marking dependent functions which can be
defined on each transition as a switching mechanism.
Transition priorities (timed vs. immediate), and enabling
functions are logically equivalent extensions of SPN
which endow them with the full computational power of
Turing machines [15].

187

Figure 3. SPN model of the task graph from Fig. 1

4. Stochastic Petri Nets Applied to Task
Graph Analysis

The transformation of a task graph into a SPN begins
with the association of each task T, with a place/timed
transition pair, pt and f,-. Fig. 3 shows the SPN corre-
sponding to the task graph in Fig. 1. Auxiliary places xp0

and xpx and immediate transitions it0 and itt are used to
enforce initiation and completion conditions, respectively,
for the overall job. The presence of at least one token in a
place may represent the fulfillment of all preconditions for
the initiation of the task. The firing of a timed transition
represents the completion of execution of the correspond-
ing task. The delay time of each transition corresponds to
the exponentially distributed execution time of the task. A
place Pi can be associated with the in-degree d-, to enforce
precedence constraints. Initially, the presence of a token
in xp0 enables it0; the firing of it0 represents the initiation
of an execution cycle. The presence of three tokens in
xpi and the firing of it] indicates that an execution cycle
has been completed.

Timed transitions in the SPN model in Fig. 3 will fire
once enabled according to an exponentially distributed
delay. The markings generated correspond to the possible
execution states of the system, where a system state is
defined by the tasks which are executing concurrently.
The reachability graph generated by the SPN reflects the
space of potential execution paths for the task graph.
Depending on the number of processing units, different
reachability graphs can be generated with the same model
if different enabling functions are associated with the
timed transitions. Fig. 4 depicts a partial reachability
graph for the SPN model shown in Fig. 3 under the

assumption of an unlimited number of homogeneous pro-
cessors.

Let M, = [Xj(pj)], 1 < j < k denote a partial descrip-
tion of the j'th marking, where Xj(pj) is the number of
tokens in place j. Note that this description of a marking
sets up a one-to-one correspondence between markings
and system states. Consider the firing of the immediate
transition itx from the initial marking M0. A token is
removed from xp\ and one token is placed in places plt

p2, and p3, respectively. The resulting marking is a tangi-
ble marking M] =[1 1 100 0]. Then, depending on
restrictions due to the number of available processors,
some or all of transitions tu t2, and ?3 are enabled and can
fire from Mi. Note that the initial marking indicates the
presence of a token in xpi, but it is shown in Fig. 4 as
M0 = [000000] because it is only described in terms of
places corresponding to actual tasks of the original task
graph.

Consider some marking Mt in which task T6 should
be ready to run. To make this possible, both T2 and T3

must have completed; this will be indicated by the pres-
ence of two tokens in p6, i.e. xt(p6) = 2. To capture this
precedence constraint it suffices to associate each input
arc into a timed transition with a weight corresponding to
the in- degree of each node in the task graph.

Given that the execution times of the tasks are expo-
nentially distributed, then the firing rates of the transitions
in the SPN are exponentially distributed. This makes the
reachability graph of Fig. 4 equivalent to a continuous
time MC (CTMC). Therefore, once the topological prop-
erties of the task graph have been used to build the SPN
and the timed transition firing rates have been identified
with the task execution rates, a CTMC can be generated.

188

Figure 4. Partial reachability graph assuming unlimited number of processors

The CTMC model is then used to conduct a complete
stochastic analysis of the underlying system. Since SPNs
provide a natural representation of parallelism and syn-
chronization, SPN models have been used to represent
queuing networks, failure/repair models, and task graphs
[16]. SPNs have been used to analyze specific multi-
processor systems and individual parallel or concurrent
programs [17, 18, 19]. Dependability and performance
analysis of systems characterized by distributed programs,
distributed files and remote processing has also been mod-
elled using SPN's [20]. The methodology of this paper
was implemented with the SPNP software tool to system-
atically construct the SPN and conduct CTMC analysis
[21]. In [22], SHARPE [3] is used to validate results
obtained using SPN-based models similar to the models
reported in this paper.

5. Incorporating HCS Parameters into SPN
Models

Thus far, two systematic steps have been mentioned
in the construction of a SPN model from the HCS param-
eters in Section 2: 1) the association of a place/timed-
transition pair with each Tt in the vertex set of G and 2)
weighting the input arc into each timed transition, th with
dt. The result is that the SPN so constructed is topologi-

cally equivalent to G and fully captures the precedence
relationships inherent in G. The dynamic behavior of the
system resulting from factors not specified in the topology
of G can be modeled by means of enabling functions and
rate functions. Both types of functions manipulate the fir-
ing rate of transitions by incorporating dynamic informa-
tion drawn from the evolution of the reachability graph as
well as non-task-graph information concerning the pro-
cessing system. Enabling functions act as switching
mechanisms to turn timed-transitions on and off based on
the availability or unavailability of processors to which
tasks have been allocated. Rate functions can specify the
appropriate rate of timed-transitions based on the
task/processor combinations and processor-to-processor
communication costs. Referring to the parameters pro-
posed for a HCS in Section 2, let F = [/;], 1 < i < k
define a vector of enabling functions such that for the jth
column of A:

This condition asserts that no more than one timed transi-
tion is ever enabled, i.e., no more than one task per pro-
cessor is ever executing. The vector F can be defined in
terms of another enabling vector E = [c,], 1 < i < k whose

189

components are marking-dependent values for a marking
Mq where I is the indicator function:

e, = I(xg(pi) = di)

Thus, E captures the precedence relations in the original
task graph. However, when two or more tasks could run
concurrently but have been allocated to the same proces-
sor, they must be serialized and selected for execution
according to some predefined priority scheme. To
account for this necessity, let A = [ay] define a weighted
allocation where:

Let V = [vy] denote another kxn matrix which is deter-
mined by examining A such that for the y'th column of V:

vy = /(w, = max {ägj, i<q< k})

Effectively, Vy = 1 if T, is the ready task with the highest
priority on Pj and is 0 otherwise. Finally, using matrix V
the enabling vector F can be obtained as follows:

/; = /|uvl7 = i

As a result vector F accounts for the restriction on the
number of processors and the allocation scheme.

Matrix V can also be utilized to determine a marking-
dependent transition rate for the timed transitions corre-
sponding to each Tt. Let B(t) = [fc,(r)], 1 ^i ^ k denote a
column vector such that £,(?) = by if Tt is allocated to Pj
and enabled at Mq, and is 0 otherwise. Then B(t) can be
computed such that B(t) = [bjV?], 1 < i < k where b;

denotes the ith row of B and vj denotes the transpose of
the ith row of V. Let A = [A,], 1 < i < k denote a column
vector specifying the effective firing rates for the k timed
transitions at the marking Mq, where:

X; =

1
if bi(t)*0

undefined otherwise

However, the above development of enabling and rate
functions does not involve any consideration of network
communication costs. Incorporation of communication
costs into the SPN model of the HCS can be approached
in different ways depending on the assumptions made
about underlying network capabilities and the nature of
task/network interaction. As with task execution times,
the communication times are assumed to be exponentially
distributed. Here two approaches are presented based on
two types of interconnection networks: (a) a high-
performance network characterized by high-connectivity
and parallel communications and (b) a bus-oriented net-

work with low-connectivity. In both cases, output data is
assumed to be accumulated in a buffer during task execu-
tion and transmitted after task completion.

5.1. Case 1: Modeling High-performance Com-
munication Networks

High-performance communication networks can be
characterized as expensive systems in which inter-node
communication takes place on dedicated, point-to-point
links. Data intended for each successor is written to a
separate buffer. Furthermore, each processor may be cou-
pled with a front-end communication processor which
enables parallel communication. In terms of a task graph,
once a given task completes, successor tasks experience
initiation delay equal to the data transfer time for all
intended packets; ideally, any successor task allocated to
the same processor as the parent task should be able to
begin execution immediately after the completion of the
parent. The properties of such a high-performance net-
work can be modeled in an SPN by inserting additional
place/timed-transitions to represent each individual com-
munication; augmentation of the task graph with commu-
nication nodes has been proposed for CTMC- based anal-
ysis [23]. Each timed-transition inserted is associated
with an exponentially distributed delay whose parameter
is the average communication time between the host pro-
cessors. Thus, given a completed task T{ allocated to pro-
cessor Pr and a successor task Tj allocated to Ps, the
average communication rate assigned to the transition
modeling the transfer of data is given by:

Sy= l

crspkt[i,j]

Fig. 5a illustrates a segment of some task graph in
which Task A spawns tasks B, C, and D. Suppose the
four tasks are allocated to three processors such that A
and C are allocated to one processor, and B and D are
allocated to the other two processors, then the resulting
SPN for Case 1 would be as shown in Fig. 5b. Note the
insertion of place/transition pairs between A and B and A
and D to represent the individual communications
involved.

5.2. Case 2: Modeling Bus-Oriented Networks

In interconnection networks characterized by low-
connectivity, groups of processors may have to share com-
mon communication links, as is the case with a bus-
oriented architecture. Also, in lower cost systems proces-
sors may be forced to expend computation cycles on com-
munication processing. If, additionally, output data pack-
ets for successor tasks are queued up in a single buffer in

190

a) Segment of a task graph b) SPN with communication nodes

Figure 5. SPN model assuming a high-performance network

some random ordering and transmitted on a FIFO basis,
then it is highly unlikely that a successor task will receive
all of its packets before any other successor task. In terms
of the example in Fig. 5a, if the processor to which task A
is allocated must broadcast packets in random order to the
processors associated with tasks B, C, and D , then it is
reasonable to assume that on average B, C, and D will
experience uniform initiation delay. Such behavior can be
reflected in the SPN simply by modifying the rate func-
tion governing the firing of the transitions associated with
each task. In this case, no extra nodes are inserted in the
SPN model. Rather, the firing delay of each transition is
increased by the sum of communication costs associated
with each successor task. Let T, be allocated to Pj where
completion of r, spawns m = hi tasks Tqi,Tq2,...,Tqm

which are allocated to processors PyvPyi, ■■■, Pym

a modified firing rate for transition f,- is given by:
Then

1
A,- =

*/; + Hl
cjytP

kt\-i^k\

It should be noted that in reality a given network may
be heterogeneous with respect to interconnection capabili-
ties. In this case the SPN model can be systematically
constructed to appropriately model each segment of the
network, reflecting the different sets of assumptions men-
tioned above.

The net result is that an SPN with dynamically deter-
mined transition rates and enabling functions can repre-
sent the full interplay of task precedence relationships,
allocations specifications, availability of idle processors,

diverse execution rates across a heterogeneous suite, and
communication costs. Assuming exponentially dis-
tributed execution and communication times, an overall
completion time distribution can be generated which is
itself exponentially distributed. In addition, the Mean
Time To Completion (MTTC) for the overall graph is
computed.

6. Numerical Example

To reinforce the concepts and notation involved in the
methodology proposed, a straightforward numerical
example follows which is based on the 13-node non-
series-parallel task graph of Fig. 6. Although the example
is simple, it illustrates the versatility of the method and
the direct manner in which the space of task allocations
and prioritizations can be traversed. As mentioned above,
this method is not an optimization scheme but an analyti-
cal tool which can be readily harnessed to implement the
objective function of optimization approaches.

The edge weights indicated in Fig. 6 are the number
pkt of standard size packets transmitted from one task to
its successor. The following matrix specifies an arbitrary
allocation of the tasks of this graph onto a network of 6
processors:

100000000010 0'
0100000001010
0010000010001
000 1 0001 00000
0000 1 01000000
00000 10000000

Ar =

191

begin
-*»•■

end

Figure 6. A 13-node complex task graph

The matrix B specifies the spectrum of execution
times for each task across all processors of the system in
standard time units per execution:

".9 2 .3 1 .3 4 2 1 3 2 .3 .2 .1"
.3 4 .3 1 .3 5 2 1 3 4 .5 .5 .1

BT =
.5 1 .5 1 .3 5 2 1 4 2 5 .2 .3
.5 2 .2 2 .3 5 2 2 2 2 .5 .2 .1
.5 2 .3 1 .6 5 3 1 3 2 .5 .2 .1

.5 2 .3 1 .3 7 1 1 3 2 .3 .2 .1

The communication delays per data packet in the
interconnection network between the six processors are
characterized by the matrix C in terms of standard time
units per packet:

0 .1 .1 .2 .2 . r

.1 0 .4 .3 .2 .1

.1 .4 0 .2 .3 .3

.2 .3 .2 0 .3 .2

.2 .2 .3 .3 0 .1

.1 .1 .3 .2 .1 0

C =

Relative priorities among the 13 tasks are specified
thus:

W = [13 12 11 8 9 1076543 1 2]

It should be noted that this priority scheme is entirely
arbitrary as is the initial allocation.

The plots in Fig. 7 correspond to the probability of
completion at time t, P(X < t) of the overall job based on
two possible allocations; also, three communication sce-
narios are considered: a) there are no communication
costs, b) communication occurs over a high- performance
network (Case 1 outlined above) , and c) communication
takes place over a low-performance network (Case 2
above). The M7TC in each case is 16.2272, 21.6014, and
26.3359, respectively.

Obviously, it is easy to find a better allocation than
the one specified by A. A better matching is derived from
the first allocation by moving each 7, from the current
processor /' to (j + 1) mod 6. With the new allocation the
MTTCs are reduced to 7.7928, 11.7537, and 15.0375.

One further important numerical result relates to the
size of the reachability graph generated by each approach
to modeling communication costs. When communication
costs are modeled by modified transition rates without the
insertion of new nodes into the SPN, the reachability
graph consisted of 122 markings and 305 marking-to-
marking transitions; if new place/transition pairs are
inserted into the SPN to model communication effects,
then the reachabilty graph grows to 2576 markings and
9922 marking-to-marking transitions, indicating the state-
space limitations of this approach.

192

1

0.9

0.8

0.7

0.6

P(x < t) 0.5

0.4

0.3

0.2

0.1

0

_ / ■/^ ^'"'

s s"'

. / ■/ ,-■■" /'

- 1 / ,'

■■' ' ■/ / / _ / / /
/ /

; / 7
i ■/ /

/ 7
- / .'/ /

/ •/
- / 7 ■' 7

/ • / / Alloc. 1, no comm.
/ / ■' ' case i

. / / case 2 —
7 / Alloc. 2, no comm ■ • -

/ '/ / ' case 1
/ 7 ■' / case 2 ■ • ■

- ■; 7 7
/ .7 / / / _

/y ■■ /

7/ ./*' ^■r _-'T i i i i i i i

0 5 10 15 20 25 30 35 40 45 50
Time

Figure 7. CDF of completion time given static allocation and network type

7. Conclusions

A direct method for analyzing static allocation
schemes of task graphs in the context of HC environments
has been presented. Task graphs can be systematically
translated into unique SPN models which are then modi-
fied to account for the parameters of a HCS. A direct
evaluation of the SPN model estimates the average execu-
tion time of the job represented and generates an exponen-
tial distribution for completion time. Further areas of
investigation include incorporation of multiple data copies
and task replication into the model. Also, the number of
system states increases with the complexity of the task
system, indicating the need for approximate solutions
using state reduction techniques. The manner in which
HCS parameters are incorporated into the SPN suggests
the potential of joining this methodology with heuristics
for optimization by means of perturbing or otherwise
exploring allocations and priority schemes.

8. Acknowledgements

The authors wish to aknowledge the comments of
several anonymous reviewers which greatly improved this

paper. This work was partially supported by the National
Science Foundation under Grant No. CCR-9520226.

References

[1] H. J. Siegel, J. K. Antonio, R. Metzger, M. Tan, and Y. Li,
"Heterogeneous Computing," in Parallel and Distributed
Computing Handbook, A. Zomaya, ed., McGraw-Hill,
New York, 1996.

[2] H. J. Siegel, H. Dietz, and J. K. Antonio, "Software Sup-
port for Heterogeneous Computing," in CRC Handbook of
Computer Science and Engineering, Tucker Jr. A. B., ed.,
CRC Press, 1997.

[3] R. A. Sahner and K. S. Trivedi, "Reliability modeling
using SHARPE," IEEE Trans. Reliability, Vol. R-36 No.
5, June 1987, pp. 186-193.

[4] D. Towsley, C. G. Rommel, and J. A. Stankovic, "Analy-
sis of Fork-Join Program Response Times on Multiproces-
sors," IEEE Trans. Parallel and Distributed Systems, Vol.
1, No. 3, July 1990, pp. 586-303.

[5] Y. A. Li, A Probabilistic Framework for the Estimation of
Execution Times in Heterogeneous Computing Systems,
Ph.D. dissertation, Purdue University, School of Electrical
Engineering, 1996.

[6] V. W. Mak and S. F. Lundstrom, "Predicting Performance
of Parallel Computations," IEEE Trans. Parallel and Dis-

193

tributed Systems, Vol. 1, No. 3, July 1990, pp. 557-270.

[7] A. Thomasian and P. F. Bay, "Analytic Queueing Network
Models for Parallel Processing of Task Systems," IEEE
Trans. Comp., Vol. C-35, No. 12, Dec. 1986, pp.
1045-1054.

[8] D. A. Menasce, D. Saha, S. C. Da Silva Porto, V. A. F.
Almeida, and S. K. Tripathi, "Static and Dynamic Proces-
sor Scheduling Disciplines in Heterogeneous Parallel
Architectures," Parallel and Distributed Computing, Vol.
58, 1995, pp. 1-18.

[9] P. Shroff, D. Watson, N. Flann, and R. Freund, "Genetic
Simulated Annealing for Scheduling Data-Dependent
Tasks in Heterogeneous Environments," Proceedings Het-
erogeneous Computing Workshop 96, 1996, pp. 98-103.

[10] B. Narahari, A. Youssef, and H. Choi, "Matching and
Scheduling in a Generalized Optimal Selection Theory,"
Proc. Heterogeneous Comp. Workshop, 1994, pp. 3-8.

[11] R. A. Sahner and K. S. Trivedi, "Performance and Relia-
bility Analysis Using Directed Acyclic Graphs," IEEE
Trans. Software Engineering, Vol. SE-13 No. 10, Oct.
1987, pp. 1105-1114.

[12] T. Murata, "Petri Nets: Properties, Analysis and Applica-
tions," Proc. IEEE, Vol. 77, No. 4, Apr. 1989, pp.
541-580.

[13] M.K. Molloy, "Performance Analysis Using Stochastic
Petri Nets," IEEE Trans. Comp., Vol. C-39 No. 9, Sept.
1982, pp. 913-917.

[14] M. A. Marsan, G. Conte, and G. Balbo, "A Class of Gen-
eralized Stochastic Petri Nets for the Performance Evalua-
tion of Multiprocessor Systems," ACM Trans. Computer
Systems, Vol. 5 No.2, May 1984, pp. 93-122.

[15] G. Ciardo, "Toward a Definition of Modeling Power of
Stochastic Petri Net Models," Proceeding Intn 'I Workshop
on Petri Nets and Performance Models,

[16] C. G. Cassandras, Discrete Event Systems, Modeling and
Performance Analysis, Irwin Inc. and Aksen Associates,
Inc., 1993.

[17] Balbo G., S. Donatelli, and G. Franceshinis, "Understand-
ing Parallel Program Behavior through Petri Net Models,"
J. Parallel and Distributed Comp., Vol. 15, 1992, pp.
171-187.

[18] Balbo G., S. Donatelli, G. Franceshinis, A. Mazzeo, N.
Mazzocca, and M. Ribaudo, "On the Computation of
Performance Characteristics of Concurrent Programs
using GSPNs," Performance Evaluation, Vol. 19, 1994,
pp. 195-222.

[19] Q. Jin and Y. Sugasawa, "Representation and Analysis of
Behavior for Multiprocess Systems using Stochastic Petri
Nets," Math and Comp. Modelling, Vol. 52, 1995, pp.
109-118.

[20] N. Lopez-Benitez, "Dependability Modeling and Analysis
of Distributed Programs," IEEE Trans. Software Engi-
neering, Vol. 50 No. 5, May 1994, pp. 345-352.

[21] G. Ciardo, Fricks R. M., J. K. Muppala, and K. S. Trivedi,
SPNP User's Manual , Version 3.1, Duke University.
Dept. of Electrical Engineering, 1993.

[22] J. F. Decker, Systematic Generation and Evaluation of
Stochastic Petri Net Models for the Performance Analysis
of Task Graphs, Master Thesis, Dept. of Comp. Sei.,

Texas Tech University, 1995.

[23] K. C. -Y. Kung, Concurrency in Parallel Processing Sys-
tems, Ph.D. Dissertation, Dept. of Comp. Sei., University
of California, 1984.

Author Biographies

Albert R. McSpadden is currently pursuing graduate
study in Applied Mathematics at Texas Tech University.
He completed his M.S. in Computer Science from Texas
Tech in December 1996. During his graduate study he
conducted research in the areas of performance evalua-
tion, stochastic processes, and applications of Petri Net
theory. His research interests in addition include dis-
tributed computing, applied linear algebra and computa-
tional methods.

Noe Lopez-Benitez received the BS degree in Communi-
cations and Electronics from the University of Guadala-
jara, Guadalajara, Mexico. The MS degree in Electrical
Engineering from the University of Kentucky, and the
PhD in Electrical Engineering from Purdue University in
1989. From 1980 to 1983, he was with the HE (Electrical
Research Institute) in Cuernavaca, Mexico. From 1989 to
1993, he served in the Dept. of Electrical Engineering at
Louisiana Tech University. He is now a Faculty member
in the Dept. of Computer Science at Texas Tech Univer-
sity. His research interests include fault-tolerant comput-
ing systems, reliability and performance modeling and
distributed processing. He is a member of the IEEE,
ACM and The Society for Computer Simulation.

194

Supporting Fault-Tolerance in Heterogeneous Distributed Applications

Piyush Maheshwari and Jinsong Ouyang
School of Computer Science and Engineering

The University of New South Wales, Sydney, NSW, Australia 2052
{piyush, jinsong} @cse.unsw.edu.au

Abstract

Heterogeneous computing opens up new challenges and
opportunities in fields such as parallel and distributed
processing, design of algorithms for applications,
scheduling of parallel tasks, interconnection network
technology and support for reliable distributed
heterogeneous computing. A trend of supporting fault-
tolerance in distributed computing systems is to
incorporate fault-tolerance into applications at low cost, in
terms of both run time performance and programming
effort required to construct reliable application software.
We present an approach for developing efficient reliable
distributed applications for heterogeneous computing
systems. In this paper we propose a library prototype,
called H-Libra, to support fault-tolerance in heterogeneous
systems with low run-time cost. Fault-tolerance is based on
distributed consistent checkpointing and rollback-recovery
integrated with a user-level network communication
protocol. By employing novel mechanisms, minimum
communication overhead is involved for taking a
consistent distributed checkpoint and catching messages in
transit during a checkpoint. By providing fault-tolerance
transparency and a simple, easy to use high-level message-
passing interface, H-Libra simplifies the development of
reliable heterogeneous distributed applications.

1: Introduction

Hardware and software heterogeneity arises in many
computing environments, for example, in an academic
department with different experimental research
machines and software systems. A distributed
heterogeneous computing system (DHCS) consists of a
connected set of traditional computer systems. Open
architectures, workstations and multicomputers are a
natural environment for heterogeneity. A simple
heterogeneous computing environment is a departmental
network with some SUN workstations, some DEC

workstations and a high-performance graphics
workstation. Heterogeneous computing (HC) is also a
promising cost-effective approach to the design of high-
performance parallel computers, which generally
incorporates proven technology and existing designs
and reduces new design risks from scratch [5, 8].

In recent years the abundance of variety of
workstations and networked computers has established
distributed computing as a mainstream paradigm
suitable to achieve high utilisation of available
computing resources. In a setting consisting of a
potentially large number of heterogeneous computers
connected by an unreliable network, fault-tolerance
becomes a major issue. Naturally the new challenge is to
incorporate fault-tolerance into applications at low cost
in terms of both run-time performance and
programming effort required to construct the application
software. The combined complexity of dealing with
network communications and fault-tolerance makes the
development of efficient reliable distributed software on
heterogeneous systems difficult.

There are basically three types of approaches that can
be used to support fault-tolerance in distributed
applications. 1. Coding within applications to explicitly
deal with the potential failures during program
execution. For distributed heterogeneous applications, it
is tremendously complex to do so and software
development costs are simply too high. 2. Replication.
By running n instances of an application on different
processing resources, the computation can still proceed
even if n— 1 instances fail. This is a very useful
approach especially in real-time systems while, for
general-purpose distributed applications, the cost of
replication is too expensive. In fact, for a DHCS it may
not be feasible at all, if individual processes are meant
to be run on specific machines. 3. Checkpointing and
rollback-recovery. It has been widely considered as a

195
0-8186-7879-8/97 $10.00 © 1997 IEEE

Pi

Pi

Pi

PA-

application message

cuts

Figure 1: Consistent and inconsistent system states

general way to provide fault-tolerance in distributed
systems. Our approach integrates distributed
checkpointing and rollback-recovery protocols with a
network communication protocol, called the user-level
reliable transmission protocol (URTP).

The rest of the paper is organised as follows. Section
2 provides some background to distributed
checkpointing and rollback-recovery mechanisms.
Section 3 describes our checkpointing and rollback-
recovery protocols including the URTP protocol.
Section 4 describes the architecture and implementation
of our library prototype, called H-Libra, which supports
reliable heterogeneous distributed computing at low
run-time cost. Section 5 concludes the paper.

2: Background

Though a distributed heterogeneous computing
system provides a cost-effective approach to parallel
and distributed processing, its reliable use depends on
careful planning and design. The key issue of supporting
fault-tolerance in distributed systems using
checkpointing and rollback-recovery is how to obtain a
consistent state of a distributed system. Chandy and
Lamport [2] formally define the concept of a consistent
distributed system state, and introduce an algorithm by
which a process in a distributed system determines a
global state of the system during a computation.

Briefly, a set of process states forms a consistent
distributed system state if it satisfies the following
condition: For each message among the processes, if it
is recorded in the state of the receiving process, it must
also be recorded in the state of the sending process.

Informally, we can use a time diagram to describe a
system's execution, where horizontal lines are time axes
of executing processes, and messages are represented by
arrows. For example, in Figure 1, p\, p2, P3, and p4 are
four processes, and a, b, and c are cuts (sets of process
states) each of which forms a distributed system state.
According to the definition, cuts b and c are consistent
cuts, while cut a is an inconsistent cut, as process p^
recorded its state after it received the message while
process p3 recorded its state before it sent the message.
If the system restarts from system state a, process pi
restarts from a point where it already received the
message from p3, but p3 restarts from a point where it
has not sent the message to /?j, so process p\ will
actually receive the message from p3 twice. This
incorrect execution results from the inconsistency of cut
a. Another important fact is that although cut b is a
consistent distributed system state, the messages to
processes /»j, p3 and p4 must be recorded in some way,
otherwise message losses will occur if the system
restarts from state b.

A variety of approaches to checkpointing and
rollback-recovery have been proposed in the literature.
Some are based on independent checkpointing [7, 18,
19, 21], while others use consistent or coordinated
checkpointing [1, 2, 4, 9-11, 17]. Processes, using an
independent checkpointing protocol, perform their
message logging and checkpointing independently. With
message logging, every process can detect its
dependency on the states of other processes with which
it communicates, and the dependency control
information enables a reconstruction of a consistent
distributed system state following a failure, using

196

process rollback and message replay. By using
consistent checkpointing, checkpointing of processes is
synchronised in such a way that the resulting distributed
checkpoint forms a consistent system state.

Our approach of checkpointing is basically a
consistent checkpointing scheme which is different from
other schemes in many sense. A message is in transit if
it was sent within the previous checkpoint interval and is
received within the current checkpoint interval. Our
checkpointing protocol involves minimum
communication overhead for constructing a consistent
distributed checkpoint in a distributed system and
catching messages in transit. It provides tolerance to
message losses due to site failures or unreliable non-
FIFO networks. The protocol reduces the run-time
overhead, thus enhances the efficiency of reliable
distributed applications [13].

Incorporating efficient checkpointing and rollback-
recovery, we propose a library prototype, called H-Libra
which transparently supports fault-tolerance in
distributed heterogeneous applications. H-Libra is an
extension of our previous library (called Libra) for
homogeneous distributed systems [13, 14] which
implements our distributed consistent checkpointing and
rollback-recovery protocols, including a user-level
network communication protocol [12]. The library
exports high-level message-passing primitives which
hide the complexity of fault-tolerant network
communications from the application. This approach,
besides significantly simplifying the application
programmer's task, allows us to interweave message-
passing tightly with distributed checkpointing and
rollback-recovery, and thus implement them efficiently.

The same motivations drove the work of other
researchers who developed reusable components for
reliable systems. Some [15, 16] do not deal with
distributed fault-tolerance while others [6] address fault-
tolerant network communications by providing low-
level primitives, by which it is still difficult to construct
reliable distributed applications. H-Libra differs from
these not only by the underlying mechanisms, but also
by offering fault-tolerance transparency together with a
simple, high-level message-passing interface. H-Libra
also differs from other message-passing systems, such
as PVM [20], which do not support fault-tolerance at the
application level.

3: Distributed checkpointing and rollback-
recovery

3.1: The system model

Our system model consists of heterogeneous
computing nodes connected by a high-speed
communication network. Without going into the
implemenation issues of supporting communication, we
assume that each node is able to communicate with any
other node in the system though all nodes may not be
fully connected. Nodes can fail by stopping. When a
recovery is performed, the process states can be restored
from the checkpoint stored on stable storage of the
respective node. We assume that each node shares a
reliable network file server. Processes communicate by
passing the messages over the communication network.
The network channels are unreliable non-FIFO channels
which may loose or reorder messages, and may
temporarily be broken. For simplicity, we also assume
that all processes involved in a consistent checkpoint or
a rollback-recovery belong to a single distributed
heterogeneous application, checkpointing or recovery of
different applications does not interfere with each other.

In the following section we describe our
checkpointing and rollback-recovery protocols which
basically works for any generalized distributed system.
Our library prototype H-Libra incorporates these
protocols to help the user to develop reliable
applications.

3.2: The protocols

In our distributed consistent checkpointing protocol,
each distributed checkpoint is uniquely identified by an
increasing checkpoint sequence number (CSN) and a
status bit. CSNs are also used by other researchers [4,
10-12, 17]. The status bit on a node is set when the local
checkpoint is part of the latest committed distributed
checkpoint. Synchronised by the coordinator, a variant
of a two-phase commit protocol is employed, where the
second phase proceeds lazily and therefore does not
require extra messages. The protocol tags each normal
(i.e., application-level) message with the current CSN
and status bit of the sender. If any message is received
with a CSN greater than the local one, a local
checkpoint is taken. If the message's CSN is less than
the local one, the message was in transit during the
checkpoint and must be logged. If the CSNs agree but

197

P\

Pi

/v

PA

application message

checkpointing message

Figure 2: Consistent checkpointing with URTP and ACs

the message's status bit is set while the local one is not,
the local checkpoint is committed. Communication
overhead for a distributed checkpoint is thus reduced to
that of systems using a one-phase commit, while stable
storage is utilised more efficiently, as previous
checkpoints can be discarded once the present
checkpoint is committed.

To prevent message loss following a rollback,
messages in transit during a distributed checkpoint need
to be discovered and logged as part of the current
checkpoint. While other approaches, for example, due to
Chandy and Lamport [2] and Mattern [11], require
additional messages to catch such messages in transit,
we avoid this overhead by integrating the checkpointing
algorithms with the network communication protocol.
We employ a novel user-level reliable transmission
protocol (URTP) having the following features. The
details of URTP will be discussed in Section 4.2.

• It provides user-level reliable message-passing. A
reliable message delivery is realized by
retransmitting a message a number of times until
an acknowledgement is received from the
destination process. If no acknowledgement is
received after a certain number of retransmissions,
URTP assumes an error due to a node failure or a
temporarily partitioned channel, and informs the
rollback-recovery coordinator of the failure.

• Threads are used to provide non-blocking
asynchronous communications amongst
heterogeneous nodes.

• The protocol cooperates with the checkpointing
and rollback-recovery algorithms (i.e., the logging
of messages in transit) to transparently handle

distributed checkpointing and rollback-recovery.

A second novelty of our approach is the use of an
acknowledgement counter (AC) to record the number of
message packets originating from the local node
between two checkpoints that have not been
acknowledged. Each node in the system maintains two
ACs: previous AC (PAC) and current AC (CAC). An AC
is incremented by the number of packets used when
sending a message, and is decremented by the same
amount once the last packet of that message has been
acknowledged. The PAC is updated while there exists no
uncommitted local checkpoint, otherwise the CAC is
updated when sending or receiving a message. On
commit, the PAC is set equal to the value of the CAC,
and then the CAC is initialized to zero. The local node
does not inform the coordinator of the local checkpoint
having been taken until its PAC becomes zero
(indicating that all messages originating at that node
between the last two checkpoints have arrived at their
destinations and have been logged if necessary). This
guarantees that all messages in transit have been logged
and no message losses due to site failures or unreliable
non-FIFO networks have occurred once the coordinator
commits. The coordinator assumes a failure and initiates
a rollback-recovery if some nodes fail to respond within
a timeout interval. Other failures, such as
unacknowledged messages, are detected by the URTP
protocol (Section 4.2).

Figure 2 shows how a consistent distributed
checkpoint is taken within an application of four
processes on different nodes. Coordinator pi initiates at
point t\ the ith distributed checkpoint. As informed
either by a checkpointing request or by an application
message, other processes take their local checkpoints,

198

A process of the User Program

A 1

R
ol

lb
ac

k-
re

co
ve

ry

T
hr

ea
d

M e

© s

U

H-Libra Library

* 1
SUN Solaris

4» # #

Another process of the User Program

▲ 1
■fr

00 c ►

o -g
-o « •? w

*1 H-Libra Library ■sl
■SS JH
J5 "3 u .«

I I
SGIIrix

Communication Network

Figure 3: H-Libra runtime configuration on a Distributed Heterogeneous Computing System

and will not send the acknowledgements topi until their
local PACs become zero, pi knows at point t2, after
receiving all the acknowledgements, that not only all the
processes within the application have been
checkpointed, but also no messages originating in the
last checkpoint interval are in transit or lost. /7j can set
its local status bit and commit the rth checkpoint. As
described above, the commit decision is delivered to
other processes lazily by tagging the status bit on each
application message.

Rollbacks are also uniquely identified, by a recovery
sequence number (RSN), to avoid livelocks and
maximise parallelism during recovery. The RSN is also
tagged on every message. A one-phase commit protocol
is used for the distributed rollback. If a message (either
a specific rollback request or a normal message) is
received with a RSN greater than the local RSN, a local
rollback-recovery is performed and an acknowledge-
ment is sent to the coordinator. If a RSN is received
which is less than the local one, the message was sent
before the sender performed its rollback and is therefore
discarded.

4: Library prototype

4.1: Library architecture

Based on the checkpointing and rollback-recovery
protocols described in the previous section, we have
developed a library prototype called Libra which
transparently provides fault-tolerance to distributed

applications on homogeneous systems [14]. The library
prototype has been built on an Ethernet network of Sun
workstations running SunOS 4.1 and Solaris 2.5. In the
following discussion we propose how it can be
implemented on a heterogeneous systems.

Figure 3 shows the overall H-Libra run-time
configuration on a DHCS where each participating node
uses the local instance of H-Libra on its operating
system. Distributed applications use threads and H-
Libra's message-passing and memory allocation
primitives; the checkpointing thread and rollback-
recovery thread are created by H-Libra when the user
program starts; fault-tolerance is then automatically
provided by the library. Table 1 shows the library
interface (functions for configuring parameters, such as
the number of participating nodes, checkpoint frequency
and timeout intervals, have been omitted from the table
for simplicity).

The functions f t_send and f t_recv provide basic
message passing. Threads are created by the library to
perform the actual send operation without blocking the
application. The tasks of initiating and committing
checkpoints and rollbacks, and handling the message
logs, are performed transparently by H-Libra (through
background threads and the application's calls to
ft_send and ft_recv). The functions ft_malloc
and ft_free, exported by H-Libra, are used for
memory management at the user-level. Their use by the
application ensures that ft_malloc arena is
checkpointed.

199

Table 1: Important functions provided by H-Libra mesg.right = mesg.left = DONE;

Message-passing primitives
int ft_send(char *msg, int size,

int dest)

int ft_recv(char *msg, int size,
int *sender)

Memory allocation primitives
char *ft_malloc(int size)

int ft_free(char *addr)

Initialization

int ft_init(int my_ide, ...)

The application needs to call ft_init so H-Libra
can initialise its internal data structures. This call, when
executed on the coordinator node (node 0) will create a
coordinator thread, cp_coor, which initiates
distributed checkpoints, and commits or aborts them. On
other nodes a cp_node thread is set up. This thread
performs local checkpoints, as requested by the
coordinator. On the coordinator node, a separate thread
rr_coor is responsible for rollback-recoveries; this
thread initiates, coordinates and commits or aborts the
recovery as appropriate. Local recovery action is
performed by thread rr_node running on non-
coordinator nodes.

Note that the functions presented in Table 1 are
exported for constructing application software while the
other internal functions such as checkpoint,
msg_log, restart, msend and mrecv are
transparent to the user code. They are used by thread
cp_coor, cp_node, rr_coor and rr_node to
transparently handle checkpointing, message logging
and rollback-recovery. As a simple, easy to use high-
level message-passing interface is provided and fault-
tolerance is completely transparent to the user, H-Libra
can significantly simplifies the development of reliable
distributed applications. The following example is part
of the client code of Quicksort program. It demonstrates
that, using H-Libra, little programming effort is required
to construct a reliable version of a distributed
heterogeneous program.

void Client()
{

QSmsg mesg;
int bytes, recvid;

for (;;) {
mesg.sender = locid;
mesg.type = WORKER_REQ;
if (mesg.left != DONE) {
bytes = (mesg.right - mesg.left + 1)

* sizeof(int);
bcopy((char *)data, mesg.buf, bytes);

}
/* send a message to the server */
ft_send((char *)&mesg, sizeof(mesg),

toid);
/* wait for a message from the server */
ft_recv((char *)&mesg, sizeof(mesg),

(int *)&recvid);

if (mesg.type == MASTER_DON) {
printf("Node %d done!", locid);
exit(O);

}
if (mesg.type != WORKER_ACK) {
printf("Some error from master %d.",

mesg.type);
exit(l);

}
bytes = (mesg.right - mesg.left +1) *

sizeof(int);
bcopy((char *)mesg.buf, (char *)data,

bytes);
printf("Received [%d, %d] from server.

sorting.", mesg.left, mesg.right);
Bubblesort(0, mesg.right - mesg.left);

}
}

main(arge, argv)
unsigned arge;
char **argv;
{
/* initialisation operations */

/* create the client thread */

ft_init(my_id, ...);

Figure 4 presents an example which demonstrates
how a reliable distributed computation proceeds by
using H-Libra. The picture depicts the interactions
between the user code and the library functions as well
as those between the library functions themselves.
Suppose that two threads exchange messages across
networks: thread 7} on node i sends message My to
thread Tj on node j, meanwhile Tj sends message M,,- to
T; (as indicated by the heavy dashed arrow). The shaded

200

M,

Mtj

M»

Mß

Figure 4: An example of reliable distributed computation using H-Libra

functions are used by user threads for message passing.
Each light dashed arrow is an interaction between two
library functions or between a library function and the
user code. Each light solid arrow is a message delivered
across networks. The heavy solid arrows indicate the
user-code/library relationship. The sequence number
associated with each light arrow represents the logical
time when the corresponding interaction or event
occurs.

According to the logical time when each interaction
or event occurs, we go through a scenario as follows. (1)
Tj sends 7\- message M„- by calling f t_send. Suppose
that, at this point, the state of 7j has been saved as part
of the latest consistent distributed checkpoint (its local
CSN is n and local status bit is 0) while Tj has not been
checkpointed (its local CSN is n— 1 and local status bit is
1). (2) ft_send starts a separate thread and then
returns. The created thread sends My- to Tj by using the
URTP protocol. (3) After returning from f t_send, 7}
waits for message M, from 7} by calling f t_recv. (4)
At this point Tj calls f t_send to send message M,-,-. (5)
ft_send creates a thread which sends M,(- by using
URTP protocol. (6) After returning from f t_send, re-
calls f t_recv to receive message M„- which has arrived
at node,/. (7) Suppose that the CSN on node j is still n—\
when f t_recv is called. Because the CSN (n) tagged
on My is greater than the local one («— 1), f t_recv
performs a call to checkpoint to save the local state
as part of the latest distributed checkpoint. (8) M,-,-
arrives at node i and is received by f t_recv. Since the
CSN (n— 1) tagged on A/,-,- is less than the local one («),
Mji is a message in transit and f t_recv performs a call

to msg_log to log this message. (9) After logging My,-,
msg_log returns to ft_recv. (10) ft_recv returns
to the user code after receiving M,,-. (11) checkpoint
takes the local checkpoint and returns to f t_recv. (12)
After receiving the last packet of M„- ft_recv
reassembles the message and then returns to the user
code.

4.2: Library implementation

This section describes the main features of the
implementation of the library prototype, which is built
up on the mechanisms described in Section 2. In
particular we emphasise on the following issues: how to
implement the high-level message-passing interface by
using URTP which interweaves tightly with the
distributed checkpointing and rollback-recovery
protocols, and how to reduce the latency and disk usage
resulted from checkpointing. Note that we do not go into
any implementation details specific to the underlying
operating systems.

4.2.1: The message-passing interface and the
underlying URTP

We model a network of heterogeneous workstations,
on which H-Libra is running, as an array of nodes —
Node_Array [n] where n is the number of nodes in
the network. Each node associated with an element of
the array is represented by the following structure,
comprising of its network address and port numbers.
Different port numbers are used for message passing,
distributed checkpointing, and rollback-recovery. A

201

copy of the array is made available on each node.

typedef struct node {
char *hostaddr;
unsigned ap_port;
unsigned cp_port;
unsigned rr_port;

} node_t;
node_t Node_Array[n];

Functions ft_send and ft_recv provide basic
message-passing according to the URTP protocol. When
sending a message, it is essential to efficiently address
the following issues: 1. detecting missing, duplicate and
other unexpected message packets for reliable message
passing; 2. synchronisation between threads when more
than one thread on a node simultaneously send messages
to the same remote node; 3. providing control
information required by distributed checkpointing and
rollback-recovery; and 4. implementing non-blocking
communications.

H-Libra maintains on each node a sending sequence
number vector (SSV) of length n, the number of nodes
in the distributed system. When sending a packet to
node./, SSV[/'] on sender i is incremented and tagged on
the packet. The receiver will use SSV[/] tagged on the
packet for detecting missing, duplicate and other
unexpected packets.

When more than one thread on a node simultaneously
send messages to the same remote node, the threads
must be synchronised properly to ensure that messages
to the same destination are delivered sequentially. To
achieve this, the library maintains on each node a
sending lock vector (SLV) as well as a next sequence
number vector (NSV) with the same length as a SSV. A
thread on node i can send a message to node j only when
it has acquired the lock — SLV[/], and SSV[/'] tagged on
the first packet of the message is equal to NSV[/']. When
the last packet of the message is acknowledged, NSV[/]
is incremented by the number of packets used for the
message, and SLV[/] is released.

According to the mechanisms described in Section 2,
ft_send tags each outgoing packet with the local
RSN, CSN and status bit. When a packet is sent or
acknowledged, the corresponding AC must be updated
accordingly. In order to achieve efficient message
passing, non-blocking communications is supported
such that f t_send starts a separate thread which sends
the message by using the URTP protocol, and it can
return without waiting for the acknowledgements.

When ft_send is called, the following self-
explanatory operations are performed.

1) tags the message with the identifier of the local node
and the sending sequence number, then increments
the sending sequence number by the number of
packets needed for this message;

2) tags the message with RSN, CSN, and status bit;

3) increments the value of the corresponding AC by the
number of packets needed for this message;

4) creates a thread to send the message, and then
returns.

The created thread then performs the following
operations based on the URTP protocol.

1) acquires the lock associated with the destination;

2) if SSV[dest] is equal to NSV[dest], goes to the next
step; otherwise, releases the lock and goes to step
1;

3) opens and binds a UDP socket;

4) loads the predefined number of bytes into a packet
tagged with the local id, number of packets used for
the message, sending sequence number, RSN,
CSN, and status bit;

5) sends the packet through the socket and waits for
the acknowledgment;

6) if the acknowledgment arrives within the timeout
interval, goes to the next step, if the
acknowledgment has not arrived and the packet has
been retransmitted for a certain number of times,
goes to step 9, otherwise, goes to step 5 for
retransmission;

7) decrements the RAC while there exists no
uncommitted local checkpoint, otherwise the CAC;

8) if the last packet of the message is acknowledged,
the sending thread increments NSV[dest] by the
number of packets used for the message, releases
the lock, and exits normally, otherwise goes to step 4
for the next packet;

9) at this point a failure is assumed to have occurred,
and a rollback request is sent to thread rr_coor,
the rollback-recovery coordinator.

The implementation of f t_recv is more complex.
When receiving a message the following issues must be
addressed: 1. detecting missing, duplicate and other
unexpected message packets at the receiving end; 2.
synchronisation when message packets from different
source nodes arrive simultaneously; 3. checkpointing
(when needed) at a correct point within f t_recv; 4.
retrieving messages from the message log if any; 5.
dealing with an incoming message from a different
checkpoint interval whose CSN is greater or less than
the local one; 6. dealing with an incoming message from

202

a different rollback-recovery interval whose RSN is
greater or less than the local one.

In order to detect missing, duplicate and other
unexpected packets at the receiving end, H-Libra
maintains on each node a receiving sequence number
vector (RSV) with the same length as a SSV. When a
packet from sender i is received by a call to f t_recv
on node j, the SSV[/] tagged on the packet is compared
with the local value of RSV[i]. If these agree, the packet
is valid and RSV[i] is incremented. If
SSV[/'] = RSV[i]-l, a duplicate packet has been
received and is ignored, as are unexpected packets
recognised by other cases of non-matching sequence
numbers.

When message packets from different source nodes
arrive simultaneously, it must be ensured that messages
are received sequentially. For instance, after f t_recv
first receives the packets of message Mj from node i, a
packet of message A/2 from node j arrives before the last
packet of Mj is received, and the packets of message M2

cannot be received until Mj has been reassembled. This
is done by that, when the first packet is received,
f t_recv records the source id tagged on the packet
and then only receives the packets from the same source
node until it returns and another call to f t_recv is
performed.

When a call to ft_recv is performed, it is
impossible to know in advance the CSN of an incoming
message packet. In order to construct a consistent
checkpoint, ft_recv, before receiving an incoming
message, pre-saves the machine-dependent context of
the receiving thread to a buffer. When a local checkpoint
needs to be taken before f t_recv returns, the saved
context indicates a correct point where the checkpoint is
constructed, and the local state including the saved
context is written to stable storage; otherwise the
context is discarded right before f t_recv returns.

When a normal message packet is received with a
RSN greater than the local one, a local rollback-
recovery must be taken, and the packet is saved to the
suspended packet buffer and will be replayed by a call to
f t_recv after the rollback. Messages in the message
log are retrieved to the logged message buffer when a
rollback is done. Before receiving a message from
networks, f t_recv needs to check whether the logged
message buffer and suspended packet buffer are empty.
If the logged message buffer is not empty, ft_recv

removes a message from the buffer and returns it to the
caller. If the suspended packet buffer is not empty,
ft_recv removes the suspended packet from the
buffer, if the packet is the last packet of a message,
f t_recv reassembles the message and returns it to the
caller; otherwise waits for receiving the next packet of
the same message.

When receiving a message packet either from a
different checkpoint interval or from a different
rollback-recovery interval, the corresponding
operations, according to the distributed checkpointing
and rollback-recovery protocols (see Section 2), are
performed.

With the techniques as described above, the
following self-explanatory operations are performed
when f t_recv is called.

1) pre-saves the machine-dependent context of the
receiving thread;

2) if the logged message buffer is not empty, removes a
message from the buffer and returns it to the caller,
otherwise goes to the next step;

3) if the suspended packet buffer is not empty, removes
the packet from the buffer and goes to step 5,
otherwise goes to the next step;

4) waits for an incoming packet from networks;

5) when receiving the first packet, records the source
node id tagged on the packet, if, when receiving the
next packet, it is from the same source node, goes to
the next step, otherwise goes to step 4;

6) if the packet is a duplicate, acknowledges it and
goes to step 4;

7) if the packet is an unexpected one, ignores it and
goes to step 4;

8) if the sending sequence number tagged the packet
is equal to the local receiving sequence number,
compares the incoming RSN, CSN and status bit
with the local ones, and the corresponding
operations are performed as appropriate;

9) acknowledges the packet;

10) if the packet is the last of a message, reassembles
the message and returns it to the caller, otherwise
goes to step 4 for the next packet.

4.2.2: Efficient checkpointing

In this section we describe what is necessary to be
included in a checkpoint and how to reduce the latency
and disk usage due to checkpointing. When
checkpointing, H-Libra saves the state of the local
process within the distributed application which
contains, the states of user threads (not H-Libra threads)

203

iK A HEAP _lbound

TEXT STATIC CHECKPOINTING BUFFERS STK STK

ubound

STK

Figure 5: An address space of a multithreaded process

including the machine-dependent contexts and stacks,
global/static and heap data.

H-Libra maintains on each node thr_list, as
defined below, each element of which records the state
of a local thread such as thread identifier, machine-
dependent context, stack top, stack pointer, the location
and size of the stack buffer, and names of its message
logs (a thread has no message logs if merely doing local
processing).

struct thr_stat {
thread_t tid;
machstat_t machstat
caddr_t Stacktop;
caddr_t stackptr;
caddr_t s tkbu f_addr;
int stacksz,-
unsigned pre_ctx;
char prev_log[nmlen]
char curr_log[nmlen]

} thr_list [thrnum] ,-

gdb_list records the control information for
checkpointing global/static data, comprising of their
addresses, sizes, and the locations of the associated
buffers. The buffers are used to buffer global/static data
before written to stable storage.

struct gdb_stat {
caddr_t addr;
int len;
caddr_t gdbbuf_addr ;

} gdb_list[gdbnum];

It is common for applications to use heap space so
that heap state should be saved as part of a checkpoint.
Figure 5 shows an address space of a multithreaded
process. The heap is divided into several segments:
checkpointing buffers where checkpointed data are
saved before written to stable storage, red-zone
protected stacks of threads, and normal malloc arena
(unshaded) which need to be checkpointed. Although it
is feasible to checkpoint the separated unshaded heap
areas, there are two serious problems: 1. the locations,
sizes, and number of unshaded areas may change

dynamically when red-zone protected stacks are
allocated or freed due to the creation and termination of
threads, and it is complicated to keep the trace of the
unshaded areas; 2. checkpointing all of the unshaded
heap areas unnecessarily increases the size of a
checkpoint and therefore increases the checkpointing
overhead because the thread library and H-Libra use a
large part of heap space which is irrelevant to a
checkpoint.

H-Libra uses another approach which guarantees that
only relevant heap data are checkpointed. As indicated
by an application, H-Libra, when program starts,
allocates a dedicated memory segment which is large
enough to contain the heap data requested by the user
code. As described in Section 4.1, ft_malloc and
ft_free are provided to manage the dedicated
memory segment. The user code allocates or frees
memory by calling f t_malloc and f t_free. It is the
user's responsibility to guarantee that ft_malloc
arena contains all of the heap data which need to be
checkpointed. In order to manage the memory segment
and correctly checkpoint its state, H-Libra maintains the
following control data structure used by ft_malloc,
ft_free, and other checkpointing related library
functions, meraseg recodes, the base and size of the
segment, the highest segment location currently used by
the program, and the location of the associated buffer
which is used to buffer heap data before written to stable
storage. It also records the pointers to the allocation list
and free list which are used by ft_malloc and
ft_free for memory management. When
checkpointing, f t_malloc arena from meraseg_base
to memseg_ptr as well as memseg are saved.

struct memseg_stat {
caddr_t
int
caddr_t
caddr_t
memblk_t
memblk_t
memblk_t

memseg_base;
memseg_size;
memseg_ptr;
segbuf_addr;
*mlist_bptr;
*mlist_eptr;
*flist_bptr;

204

memblk_t *flist_eptr;
} memseg;

The latency and disk usage due to checkpointing can
be significantly reduced by using copy on write and
incremental checkpointing [4]. The techniques are
implemented in H-Libra as follows: First, H-Libra freezes
user threads, saves the machine-dependent contexts, and
changes the access protections, to be "read-only", on the
pages within the address space which contain what
should be checkpointed. Next it unfreezes user threads
and starts a separate writer thread that copies, to the
checkpointing buffers, the pages which have been
modified since the last checkpoint. If a user thread
generates a page access violation, the page fault handler
writes that page to the buffer only if the writer thread
has not done this, then it sets the page's protection to
"read-write", sets the page as modified since the last
checkpoint, and restarts the user thread. After copying
the local state to the checkpointing buffers the writer
thread writes, to stable storage, the pages which have
been modified since the last checkpoint.

4.2.3: Implementation issues related to
heterogeneous environment

The implementation of H-Libra in a heterogeneous
environment is different from the implementation of
Libra in a homogeneous system. Note that we assume
sockets are supported by all nodes as sockets are used to
handle message-passing in heterogeneous environments.
We think that a heterogeneous environment can affect
the implementation and efficiency of H-Libra due to the
following reasons:

1. Different types of threads are supported by
operating systems. For instance, SunOS 4.1 and the
OSF's Distributed Computing Environment (DCE)
support user-level threads, where threads
management is done in user time and the operating
system has no control of the threaded evironment
except to make resources available to the entire
process. However, Solaris and Ultrix support
kernel-level threads, which are visible to the
operating system. The type of thread supported
largely decide whether H-Libra can take full
advantage of the underlying mechanisms (i.e., copy
on write checkpointing, URTP) which maximise
the concurrency and parallelism, and reduce the
overhead and latency of checkpointing.

2. Different operating systems provide different
policies for scheduling and resource allocation
which may also affect the efficency of our
checkpointing and rollback-recovery algorithms.

3. The implementation techiques for checkpointing
and recovering threads on different operating
systems may be diferent from one to another. For
instance, checkpointing threads are straightforward
in SunOS 4.1 by simply calling lwp_getregs,
and executions of threads can be resumed by
calling lwp_setregs after restoring the states of
threads. However, checkpointing and recovering
threads in Solaris are mainly based on signal
handling. The target threads are interrupted by
signals, and checkpointed and recovered by the
corresponding signal handlers. Again, different
degrees of invasiveness of H-Libra result.

5: Performance evaluation

We present in this section the performance of Libra
with respect to communication, and running time
overheads. We expect that the communication overheads
for H-Libra should be comparable to that of Libra as both
use the same underlying protocols. We also compare the
run-time performance of Libra implemented on SunOS
4.1 and Solaris 2.5. For this purpose, we choose three
message-passing applications with quite different
communication patterns: CST, a program for
maintaining a balanced concurrent search tree 2 — 2
search tree [3]; QSORT, a distributed quicksort
implementation; and FFT, the Fast Fourier Transform of
64k to 2M data points. CST exchanges many small
messages, while FFT and QSORT is somewhere in
between these two extremes. Each application is
distributed by using a number of client and one or more
server processes.

5.1: Communication overhead

We classified the existing approaches based on
consistent checkpointing into five categories according
to how consistent checkpoints are taken and how
messages in transit are caught. We chose a typical
representative from each category to compare
communication overhead in terms of the number and
size of messages for fault-tolerance. The choices are: 1.
a variant of Chandy and Lamport's one-phase commit
snapshot algorithm [2] for non-FIFO systems; 2.

205

Table 2: Communication overheads due to checkpointing

Programs

Benchmark Statistics Communication overheads

Number of
Processes

Number of
Checpoints

Number of
Messages

Chandy
Lamport

DCTD
(Mattern)

VCP
(Mattern)

Elnozahy URTP
&ACs

CST

QSORT

FFT

110

101

65

9

9

5

114

100

45

435

400

256

332

300

173

288

321

192

436

400

256

218

200

128

Mattern's one-phase commit snapshot algorithm with
the deficiency counting termination detection method
(DCTD) for catching messages in transit [11]; 3.
Mattern's one-phase commit algorithm with the vector
counter principle (VCP) for catching messages in transit
[11]; 4. Elnozahy et al.'s two-phase commit algorithm
[4] (which does not catch messages in transit); 5. our
algorithm based on URTP and ACs.

We simulated the three programs on a single
machine, using the light-weight process library provided
in Sun OS 4.1. Each program was implemented in five
versions, one for each of the checkpointing algorithms
examined. The message overheads for the five
algorithms for the three benchmarks are shown in Table
2. There are two types of overhead messages: overhead
for checkpointing and overhead for catching messags in
transit. The major benefit of our algorithm (URTP &
ACs) is that it does not cause any further message
passing for catching messages in transit, and hence it
exhibits the lowest communication overhead.

5.2: Time overhead

All the benchmark programs were run on a network
of four Sun workstations, running SunOS 4.1 and
Solaris 2.5. Figure 6 presents a comparison between the
running overheads on the two systems. All times are
averages of three runs on an otherwise essentially empty
system. The overhead is generally quite low, below 10%
even with the shortest checkpointing interval on SunOS
4.1 where over 30 checkpoints were written. This
version of library has no kernel support for threads. As a
result, in the implementation user threads are blocked
when a write system call is performed during
checkpoints. This even occurs when the so-called "non-
blocking I/O library" is used. The implementation of
Libra on Solaris 2.5 is more efficient than that on SunOS
4.1 because Solaris 2.5 supports threads at kernel-level.

6: Conclusions

We have described in this paper an approach for
supporting the development of reliable heterogeneous

10% 10% 10%

2-min 5-min 10-min

Checkpoint interval —*■
2-min 5-min 10-min 2-min 5-min 10-min

HI SunOS 4.1 version

I I Solaris 2.5 version

Figure 6: Checkpointing overhead comparison between two versions of Libra

206

distributed applications. The approach meets two

objectives: to simplify the development of reliable

distributed applications, and to achieve fault-tolerance

at low run-time cost. The first objective is met by the

provision of fault-tolerance transparency and a simple,

easy to use high-level message-passing interface. Fault-

tolerance is provided to applications transparently and is

based on the distributed consistent checkpointing and

rollback-recovery protocols integrated with a user-level

network communication protocol. The second objective

is met by the use of protocols which minimise

communication overhead for taking a consistent

distributed checkpoint and catching messages in transit,

and impose low overhead in terms of running times.

Our benchmarks have shown that it can achieve high

efficiency and be used as a practical tool to construct

reliable distributed applications. We are now

implementing H-Libra on a real heterogeneous

environment comprising of other operating systems such

as SGI Irix and Digital Ultrix. The performance and

overheads due to both checkpointing and rollback-

recovery will be analyzed on such a heterogeneous

system.

References
1. G. Cabillic, G. Müller, and I. Puaut. The performance of

consistent checkpointing in distributed shared memory
system. Proc. 14th Symp. on Reliable Distributed
Systems, pages 96-105, October 1995.

2. K. Chandy and L. Lamport. Distributed snapshots:
Determining global states of distributed systems. ACM
Trans, on Computer Systems, 3(l):63-75, February 1985.

3. A. Colbrook, E. Brewer, C. Dellarocas, and W. Weihl. An
algorithm for concurrent search trees. Proc. 1991 Int.
Conf. on Parallel Processing, volume 3, pages 138-141,
August 1991.

4. E.N. Elnozahy, D.B. Johnson, and W. Zwaenepoel. The
performance of consistent checkpointing. Proc. 11th
Symp. on Reliable Distributed Systems, pages 39-47,
October 1992.

5. R.F. Freund and H.J. Siegel, "Heterogeneous
Processing," IEEE Computer, Vol. 26, No. 6, June 1993,
pp. 13-17.

6. Y. Huang, C. Kintala, and Y..M. Wang. Software tools
and libraries for fault tolerance. IEEE Bulletin of the
Technical Committee on Operating Systems and
Application Environments, 7(4):5-9, 1995.

7. D.B. Johnson and W. Zwaenepoel. Recovery in
distributed systems using optimistic message logging and
checkpointing. Journal of Algorithms, 11:462-491, 1990.

8. A.A. Khokhar, V.K. Prasanna, M.E. Shaaban, and C.-L.
Wang, "Heterogeneous computing: Challenges and
opportunities," IEEE Computer, Vol. 26, No. 6, June
1993, pp. 18-27.

9. R. Koo and S. Toueg. Checkpointing and rollback-
recovery for distributed systems. IEEE Trans, on
Software Engineering, 13(1):23-31, January 1987.

10. K. Li, J.F Naughton, and J.S. Plank. Checkpointing
multicomputer applications. Proc. 10th Symp. on
Reliable Distributed Systems, pages 66-75, September
1991.

11. F. Mattern. Efficient algorithms for distributed snapshots
and global virtual time approximation. Journal of
Parallel and Distributed Computing, 18:423-434, August
1993.

12. J. Ouyang and G. Heiser. Checkpointing and recovery for
distributed shared memory applications. Proc. 4th Int.
Workshop on Object Orientation in Operating Systems,
IEEE Computer Society Press, pages 191-199, Lund,
Sweden, August 1995.

13. J. Ouyang and G. Heiser. Libra: A library for reliable
distributed applications. Proc. 1996 Int. Conf. on Parallel
and Distributed Processing Techniques and Applications,
pages 801-810, Sunnyvale, California, August 1996.

14. J. Ouyang and P. Maheshwari. Architecture and
implementation of Libra — a library for reliable
distributed applications. Proc. IEEE 2nd Int. Conf. on
Algorithms and Architectures for Parallel Processing,
pages 263-270, Singapore, June 1996.

15. J.S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt:
Transparent checkpointing under UNIX. Proc. 1995
Winter USENIX Conference, pages 213-223, January
1995.

16. J.S. Plank, M. Beck, and G. Kingsley. Compiler-assisted
memory exclusion for fast checkpointing. IEEE Bulletin
of the Technical Committee on Operating Systems and
Application Environments, 7(4): 10-14, 1995.

17. J.S. Plank and K. Li. Ickp — a consistent checkpointer
for multicomputers. IEEE Parallel and Distributed
Technology, 2(2):62-67, 1994.

18. S.W. Smith, D.B. Johnson, and J.D. Tygar. Completely
asynchronous optimistic recovery with minimal
rollbacks. Proc. 25th Int. Symp. on Fault-Tolerant
Computing, pages 361-370, June 1995.

19. R. Strom and S. Yemini. Optimistic recovery in
distributed systems. ACM Trans, on Computer Systems,
3(3):204-226, 1985.

20. VS. Sunderam. PVM: A framework for parallel and
distributed computing. Concurrency: Practice and
Experience, 2(4):315-339, December 1990.

21. Y.M. Wang and W.K. Fuchs. Lazy checkpoint
coordination for bounding rollback propagation. Proc.
12th Symposium on Reliable Distributed Systems, pages
78-85, October 1993.

207

The Hopping Ruse

Marina Chen James Cowie

Cooperating Systems Corporation
Chestnut Hill, MA 02167

Abstract
We describe a novel framework for early detection

and isolation of security violations in heterogeneous
environments, based on realtime service hopping. In
distributed client-server systems, service hopping fills
a role analogous to frequency-hopping spread-spectrum
techniques for secure wireless communication.

The framework incorporates design principles for
secure hopping, as well as engineering principles for
improving throughput in the presence of a statistically
noisy interconnection network. We describe potential
large-scale applications of the hopping techniques, and
present some initial experimental results with a hop-
ping client-server system.

1 Motivation
For many widely deployed applications with broad

commercial appeal, security from attack and confiden-
tiality of content are pre-requisites. These systems in-
clude electronic stock exchanges, electronic commer-
cial banking, telemedicine, medical informatics, man-
ufacturing design, and defense applications. The het-
erogeneous computing base upon which these widely
distributed applications rely poses special challenges
from the perspective of security. Waging or defending
against information warfare in such a system requires
detection of intrusion in any component, and insula-
tion of the system from those components' effects until
countermeasures can be brought to bear.

Perils of Homogenization Traditional strate-
gies for managing and exploiting heterogeneity have
focused on portable implementations of standard
transport- and application-level protocols. These pro-
tocols allow heterogeneous hardware to support a
more homogeneous software base, so that diverse sys-
tems can cooperate to carry out large-scale coordi-
nated computation.

With this homogenization of software tools, how-
ever, have come some serious potential security prob-
lems. When every system honors a common mecha-

nism for access, any flaw in those mechanisms can be
universally exploited. When systems are configured
to support transparent migration of code or live pro-
cesses from one heterogeneous host to another, one
compromised host can "infect" all the hosts that trust
it. Worst of all are common implementations of com-
mon access mechanisms (using portable source or ob-
ject code). In such cases, designers of heterogeneous
software must warrantee as bug-free not only the ac-
cess mechanisms, but their universally accepted im-
plementations as well, to feel certain that there are no
exploitable vulnerabilities.

Transport-level Security To date, the security
of the distributed heterogeneous computing base has
largely relied on basic access control and authen-
tication of communication partners, coupled with
transport-level protocols for packet encryption and
data integrity [3]. Encryption-based approaches are
both effective at protecting content and access, and
predictable in their effect on the performance of net-
work applications.

However, by eliminating cleartext network traffic,
transport-level encryption protocols make it signifi-
cantly harder for network managers to tell successful
intruders from legitimate users at a glance, and to spot
the emergent traffic patterns of probing and spoof-
ing that signal impending trouble. Worse, encryption-
based approaches by themselves fail to give adminis-
trators a complete picture of the security of a hetero-
geneous distributed computing environment. To scale
beyond a handful of nodes, network security must rely
on data collection, recognition of patterns, and clas-
sification of security threats as they emerge from the
noise of legitimate network use.

1.1 Application-level Security
We are interested in developing higher-level struc-

tural security techniques for heterogeneous comput-
ing systems, to complement simple access control and
protocol-level encryption. These techniques exploit

208
0-8186-7879-8/97 $10.00 © 1997 IEEE

or modify the structure of a heterogeneous computa-
tion — the mapping of tasks to processors throughout
the system — to help quantify security risks, identify
emergent threats, and contain intrusions.

By re-injecting an element of software heterogeneity
into an increasingly homogeneous software base, and
being creative (if not unpredictable) in our mapping of
tasks to heterogeneous resources, we hope to improve
the overall resistance of large distributed systems to
attack. In this paper, we propose service hopping, a
realtime application-level scheme that allows early de-
tection and monitoring of unauthorized access to sen-
sitive resources within a heterogeneous computational
environment.

Frequency hopping. The basic concept of service
hopping uses an analogue of the frequency-hopping
strategies used in secure radio transmission. Fre-
quency hopping is one of several spread-spectrum
techniques originally used to secure military radio traf-
fic against interception and jamming. A frequency-
hopping radio transmitter changes the broadcast fre-
quency synchronously many times each second; the
pattern of "hopping" is controlled by bits sampled
from a periodic pseudorandom signal. Authorized
client radio receivers can follow the hop sequence, but
potential eavesdroppers and jammers are frustrated.

Service hopping. In a service hopping system,
several real and false instances of each sensitive net-
work service are active at any given moment, spread
out across the nodes and ports of a heterogeneous
computing system. Rather than migrate the services
themselves, the "token of legitimacy" changes hands
periodically, following a random walk over the in-
dividual service instances within the heterogeneous
workspace. True instances periodically cease to func-
tion, becoming false instances, and vice versa.

Using one of a number of alternative schemes for
distribution of secret data, legitimate network clients
are provided with secure access to the same hopping
sequence data. In an environment where only legit-
imate clients (those who know the dance) can fol-
low the dynamic host/port binding of legitimate net-
work services, unauthorized accesses to false services
are instantly identifiable. False instances can assume
that any requests for service are intrusive probes, and
report them to the security monitoring layer. Net-
work administrators can take security countermea-
sures, while the intruder wastes precious minutes at-
tempting to compromise a compartmentalized dummy
resource.

Organization In the sections that follow, we dis-
cuss some design strategies for constructing a hopping
service system that will betray intruders while pre-
serving throughput within the heterogeneous environ-
ment. We then address some of the practical engineer-
ing issues — how to construct and distribute hopping
information to clients, minimize throughput overhead
due to hopping, and maintain hopping connections in
the face of network noise. Finally, we sketch applica-
tions for hopping techniques, and describe our proto-
type implementation of a hopping web server.

2 Design Issues for Secure Hopping
Designing network services that implement secure

realtime service hopping requires attention to several

• First, standard network services and clients
should be extended with false versions to frus-
trate a traffic analysis attack on the hopping
scheme.

• Second, the problem requires mechanisms for
secure generation and propagation of hop se-
quence data to clients and servers, and provi-
sions for invalidating and reissuing that sequence
in case of attack.

• Finally, the true versions of clients and servers
require extra logic for implementing the "hop-
ping cycle" under less-than-ideal network con-
ditions.

Hopping clients and network services must act, in
effect, as coupled, phase-locked oscillators. Mecha-
nisms for carrying out clock synchronization at the
hardware or ICMP network levels are well known [6].
Tracking a server's hop phase over a statistically noisy
Internet, at user level, creates some additional compli-
cations.
2.1 The Bait

The first component of the hopping ruse is to de-
rive a false service that offers some simulated behavior
which is subjectively similar to the actual behavior of
the base service. That is, it offers the same interface to
network clients, simulating both the overt content and
side effects of the legitimate network service, including
contributions to load average and network traffic gen-
eration. In general, the higher the fidelity of the false
data, the longer an unauthorized browser can be held
on the hook while countermeasures are put in motion.

For example, a network service that provides a
realtime interface to a stream of video frame data

209

might have a false version that returns frames of
static, simulating a temporarily broken connection,
or even frames of video captured from an older ses-
sion. A false database application may return inocu-
ous dummy data in response to queries. We supply
an ersatz Web server which points to a distinct docu-
ment tree of interesting, but sanitized content. Figure
1 presents a snapshot of a hopping collection of real
and false service instances.

As an optional extension, we also implement a false
client to exercise the false service interface. Without
false clients, an intruder capable of monitoring net-
work traffic patterns would readily discern the bona
fide services from the false versions. These clients
make periodic requests for service which mimic those
of real users. A video server client might simply re-
quest playback of a few seconds of video; a database
client might make periodic queries and discard the re-
sults, and so forth. One prototype we built, a hopping
version of a Web server, has "false browsers" which
replay random sequences of requests directly from the
server log.

2.2 The Swap
When a hop takes place, all legitimate clients pause

in their interaction with the legitimate services. True
services become false services, and vice versa. Legit-
imate clients are privy to the secret host and port of
the next "true" service instance in the hop sequence.
Throughout the heterogeneous computing space, com-
putation between hops takes place in phases, sepa-
rated by short "hop windows."

Some of the performance overhead of hopping tech-
niques can be minimized by careful engineering: the
time spent in the global synchronization/migration
phase of the hop window, and the overhead required
to avoid false security violations due to network noise
and server load. In the following sections, we con-
sider techniques to address these two factors, as well
as the additional (administrator-configurable) execu-
tion overhead of multiple false clients and servers.

3 Engineering Issues for Effective Hop-
ping

How long it takes to synchronize the various clients
and service instances in order to effect a hop (the
transfer of legitimacy from one point in the hetero-
geneous workspace to another) depends in large part
on the strategy used for derivation and distribution of
hop sequence data. All legitimate entities in the sys-
tem must know the answer to two questions: where
and when the network service should hop.

3.1 Where to Hop?

Figure 2 shows a schematic snapshot of events
within the next hop window of the system shown in fig-
ure 1. Two true service instances have stopped offer-
ing true service; their jobs are taken over by two pre-
viously false service instances. The authorized client
must use its knowledge of the hopping sequence to syn-
chronously close connections to the newly invalidated
instance, and direct future connections to a newly val-
idated instance, whereever that may be.

To carry out the migration of legitimacy from one
service to another, all network clients and services in
the "hop group" are effectively globally synchronized.
During this synchronization period (called the "hop
window"), secure network services may be briefly un-
available while the transfer of legitimacy takes place.
Our goal is to make those services maximally available
by minimzing that window.

Encrypted, embedded hop information. In one
design, every burst of content produced by the true
network service might include an embedded trigger
for a global hop, plus the encrypted target of the hop.
Since we already contemplate significant modifications
to the service and client code to support service hop-
ping, extending the service interface to include this
field would not be unreasonable. This would eliminate
the need to distribute pregenerated blocks of hop se-
quence information to clients, the least trusted links in
a heterogeneous client-server system. It also has some
significant drawbacks, however. Primarily, it adds sig-
nificant overhead by forcing clients to issue extra pe-
riodic traffic (at least one transaction per hop cycle, if
only to receive the target of the next hop).

Out-of-band sequence generation. A better
strategy for hop sequence propagation is to generate a
large personalized cache of hop sequence information.
A hop sequence generator presamples a sequence of n
hops from a random distribution, or chooses a seed for
a deterministic random number sequence generator.
This sequence will represent the global "hop map" for
some number n of computational phases, and consists
of a list of valid service host/port addresses following
each transition H\..Hn.

This dataset, valid for N hop cycles, may then be
transmitted to clients through existing secure chan-
nels; for example, using public-key cryptography to
verify the client to the hop sequence generator, and

210

Private Network
Resource Hosts

Hop Sequence
Generator

Legitimate

Client

H2:P3

Shared Network

Resource

Security Monitor Layer

Figure 1: Service-hopping system snapshot between hop windows. Service instances are identified by Host and Port. One
client has found a legitimate service instance at H2:P3, designated by a T, relaying sensitive data from a shared resource
in a secure subnet. The other client has stumbled across a false service instance at H3:P4; this service gives out dummy
data while alerting the security layer to the presence of an intruder.

211

H1:P1->H2:P1
H2:P3->H3:P3
H3:P4 invalid

Hop Sequence
Generator

Shared Networ

Resource

Legitimate
Client

H2-.P3

Synthetic
(False)
Network
Resource

H3:P4 invalid

Figure 2: Service-hopping system snapshot of events within one hop window. Two true service instances have stopped
offering true service; their jobs are taken over by two previously false service instances. The false service instance which
registered a possible intrusion in the previous phase has been marked invalid and removed from the hopping sequence. The
authorized client uses its knowledge of the hopping sequence to synchronously close its connections to the newly invalidated
instance, and direct future connections to a newly validated instance.

212

vice versa. The hop sequence itself may be transmit-
ted, or just the random sequence seed (if the generator
is known to both servers and clients).

Servers get their hop sequence information through
a slightly different mechanism. The hop sequence gen-
erator sends each service instance an encrypted, per-
sonalized projection of the global hop sequence. The
primary component of this projection, the veracity se-
quence, is simply a bitsequence in which a 1 represents
a scheduled phase of local real service, and a 0 repre-
sents a phase of local false service.

In a system that used hop signals embedded in
server content, the hop sequence projection would in-
clude a second component: the target sequence. This
bytestream represents the host and port of the next
hop target following each phase, including apparently
reasonable, but meaningless target data during phases
when a false service is called for.

Yet another variant might distribute a synchronized
token stream generator (like those found in authenti-
cation smart cards) to each client and server. In the
last case, the token generator could provide the global
timing information for each hop, as well as the dy-
namic host/port target information for the legitimate
service in the current hop cycle. Out-of-band sequence
propagation has the benefit of reducing or eliminating
the synchronization time required in each hop window,
and strengthens the system against eavesdropping at-
tacks.

Invalidating and Reissuing the Hop Sequence.
At some point before the expiration of TV hop cy-
cles, all clients and servers must receive a refresher se-
quence. This refresh may be forced early, if a false ser-
vice detects a security violation. For example, the false
service instance in figure 2 which registered a possible
intrusion in the previous phase has been marked in-
valid and removed from the hopping sequence. The re-
maining hops in that sequence are therefore discarded
and globally replaced by new data — an expensive,
but hopefully infrequent operation.

The security of the hopping ruse derives from two
sources: the encryption of the hop sequence data in
transit, and the requirement that an eavesdropper
must intercept, decrypt, and merge many indepen-
dent subsequences in order to reliably reconstruct even
a partial consecutive hop sequence. Presampling the
random hop information allows us to improve the per-
formance of service-hopping computations by elimi-
nating the time spent determining a destination in the
synchronized hop window.

3.2 When to Hop?
Having answered the question of where legitimate

services can be found, there are at least two ways of
defining the intervals at which a hop is to take place
in a client-server system.

An asynchronous hopping scheme keys the hop
times to the underlying structure of the data being
served. Many important network services, including
servers for audio and video data, are "fronts" for an
underlying marked-stream resource. Marked streams
allow the hop points to be keyed to marks within the
data itself. For example, a video stream server may
be keyed to "hop" every 30 frames.

For other network applications, including trans-
actional services such as' databases and web servers,
there may be no appropriate structural clue to guide
the placement of a hop. A synchronous hop scheme
uses a generalized coupled-oscillator method to bring
client clocks into synchrony with service clocks, and
then hop on the rising edge of each common clock
phase.

Making this work across a less-than-ideal network
can be tricky; figure 3 illustrates the problem schemat-
ically. If T/j is the server's hop window delay, and Tt

is the total hop cycle time (S.), then only the time
Tc = Tt — T/, is available for accepting transactions.
From the client's perspective, this available window
is phase-shifted by the minimum transit time of ser-
vice requests across the network, and then muddied by
the introduction of network timing noise. As a result,
there are three regions of network conditions clients
must consider when timing their transactions with a
hopping server.

Region A. Constant Latencies and Infinite
Server Capacity. In an ideal client/server network,
the time for a transaction to travel from the client to
the server and enter into service will be a well-behaved
constant. We discuss some design elements of such a
system in [1]. In this idealized region of the problem
space, a remote client synchronizes once, and subse-
quently observes a fixed phase correction Td to the
server to determine the next hop time.

Region B. Variable Latencies and Server Loads.
When server load, clock skew, and network propaga-
tion delay variance are taken into account, the effec-
tive window Te within which a client can confidently
issue a transaction without risking an inadvertant se-
curity false alarm begins to shrink. Under these cir-
cumstances, the client will be forced to delay some

213

Hop Window Time Th

I*- M

Idealized Network Delay T&
H H

a.

Effective Compute Window

,.r'!*>„

Figure 3: Schematic illustration of the problem of synchronizing the effective computation windows of a hopping client and
hopping server separated by a less-than-ideal network. The collection of hopping services (S) stops accepting transactions
during the hop window TV Remote clients (A, B) try to get their requests into service with the correct service instance
within this window, subject to transmission delays, server load, clock skew, and unreliable links. In the worst case [C],
clients have no guaranteed window for issuing transactions.

214

transactions until the rise of the next hop window.
This is a problem shared with all coupled-oscillator
methods across a network containing multiple gate-
ways, routers, and unreliable links; the best that can
be hoped for is a graceful degradation of throughput
as the noise between clients and servers increases.

Region C. Unstable Network and Service
Times. In this region, the probability of a successful
(non-security-violating) transaction never reaches one
at any point in the hop cycle. In such an extreme net-
work environment, hopping clients have no guaranteed
effective window Te within which to issue transactions.
Under these circumstances, the user can apply a prob-
abilistic filter which allows tentative progress during
all times t within Tc when the probability <j>t of a suc-
cessful transaction exceeds a trigger 0/.

In our prototype, for example, the client tracks the
average and variance of its historical service times, and
waits for the next window whenever a service time out-
side a specified probability tolerance would result in a
false security violation. This event (a "hop stutter")
adds to document retrieval time by as much as the
length of the hop window, in practice, the overhead
is much less, precisely because the stuttering client
believes that the time to be spent sleeping until the
rising edge of the next hop window is small.

Safety Margin Considerations. The safety mar-
gin can be computed via a number of strategies, from
simple conservative calculations (1/2 or 3/4 of the to-
tal hop window) to elaborate statistical estimates that
factor in the variance in the round trip time between
document request and header receipt. In the most con-
servative strategies, clients may experience as much as
a 95% stutter rate per document request. This can
add nearly one hop window of worst-case latency to
each document fetch (1 to 3 seconds), which is a sig-
nificant subjective delay.

To minimize this delay, hopping service clients can
use alternative strategies, with less conservative safety
margins. Rather than simply issuing a stutter within
a fixed percentage of the end of the window, more
intelligent strategies factor in information about the
noise of the link and server load, by maintaining a
history of document fetch time variances. These im-
proved safety margins cause stutter rates to drop, and
improve document fetch throughput, at the expense
of increasing the number of false security alarms. In
the next section, we describe the role of the security

manager in managing real and false alarms in a het-
erogeneous hopping system.

4 Security vs Performance
Realistic networks of heterogeneous processors are

noisy places. Sometimes, despite a client's best efforts
to remain synchronized with a hopping server at a rea-
sonable stutter rate, a legitimate client will access a
stale server (one which is no longer legitimate). The
stale server must assume that the request for service is
an intrusive probe, and report it to the security mon-
itoring layer.

This network management layer, in turn, must im-
plement a policy for filtering incoming alarms. By
themselves, single alarms may indicate a transient
problem resulting from congestion or server overload;
beyond some sequence threshold, however, false server
accesses from a given site or domain should be ab-
stracted into a single intrusion warning that draws at-
tention from an administrator. Our experience with
a hopping Web server prototype indicates that a few
observed fault behaviors are typical, and should be
factored into the design of this filtering system.

Single-step violations. In order to practically
eliminate false accesses, the hop window length must
be extremely long (on the order of tens of seconds for
an intranet, minutes across a noisy internet) and the
client must agree to suffer some hop stutter due to con-
servative safety margins. It's not necessary to actually
eliminate all errors, however; with proper alarm filter-
ing and context information, more generous strategies
can still provide adequate security guarantees.

We observed that a very high percentage of inad-
vertant false accesses (90% for 500ms hop windows,
99% for 2500ms hop windows) are only out-of-step by
one hop. That is, the failed access attempt would have
been valid in the immediately previous hop window.

This confirms that the security layer has an im-
portant role to play in maintaining a good tradeoff of
security for performance. Rather than expand safety
margins on the client side, or expand hop windows on
the server side, the security layer can choose to selec-
tively classify one-hop errors as stale accesses, and ig-
nore them. This enables the use of short (1-2 second)
hop windows, and liberal safety margin calculations
that reduce stutter rates by 70% or more.

Malignant patterns. The probability of falsely
categorizing a true illegal access as a benign stale hop
is 1/N, where there are N hop servers. For a rea-
sonable number of hop service instances (in our trials,
4-8), this still leaves a reasonable chance for a single il-

215

500 1000 1500 2000
Hop window width (ms)

2500 3000

Figure 4: Percentage of false alarms due to a single-hop error in a prototype hopping Web server implementation.
The vast majority of the inadvertant security violations, regardless of safety margin strategy or traffic load, are
due to single-hop errors and can be distinguished from sequences of intrusive probes.

legal access to be accidentally silenced by the security
layer.

In general, however, intrusive probes can be ex-
pected to repeat, obeying spatial and temporal pat-
terns that can be detected. The security layer might
reasonably maintain a history of all hopping violations
from a given host or domain, and flag those alarm
sequences whose length exceeds some small expected
threshold value for the hopping server parameters that
are in force.

Intrusion Containment. Once such an intru-
sion is detected, the administrators of heterogeneous
network environments must regard all system services
which may have been compromised as suspect. The se-
curity layer therefore has the power to invalidate out-
standing hopping codes and force them to be reissued.
This new hop sequence may exclude service hosts that
may have been the target of an intrusion, or which are
consistently overloaded, resulting in false alarms due
to missed hop windows. (The security layer may also
log and filter future requests from the domain that
originated the offending request, to frustrate denial-
of-service attacks based on a flood of indiscriminate
accesses to known false services.)

Beyond first contact, the false services' bogus con-

tent may help administrators keep an intruder online
long enough to log and trace their actions. This gives
time to identify the mode of attack and assess the ex-
tent of damage to system components, a key require-
ment for closing holes and warding off future intrusions
[2].

4.1 Mitigating Hopping Overhead

Minimizing the additional server load and net-
work bandwidth required to support a secure hop-
ping scheme is a key concern. Like any other secu-
rity measure, the implementation of service hopping
trades away some performance; how much and what
kind depend on several design factors. As we have
already described, two of these design factors can be
minimized by careful engineering: the time spent in
the global synchronization/migration phase of the hop
window, and the overhead required to avoid false se-
curity violations due to network noise and server load.
The server administrator must make locally appropri-
ate decisions for the other two factors: the fidelity of
the content provided by false services, and the relative
population of true and false instances throughout the
heterogeneous computer.

False server overhead. The number of false hop-
ping services alone does not affect network bandwidth

216

consumption; legitimate service requests are simply
"smeared" over the available services, following the
hopping sequence. Instead, server load may become
an issue, especially if there are not enough spare nodes
willing to host false server instances, and multiple hop-
ping services must be mapped to the same processor.

If server load, and not local network bandwidth, is
the limiting factor, a system of lightweight "hopping
proxies" can pass through content from two hidden,
centralized services, one providing real content and the
other false content. This strategy restricts the num-
ber of full servers to 2 (or even 1 if the difference is
precomputed; e.g., a different document root for true
and false HTML content). Of course, there's a price
for protecting the anonymity of the underlying server
from its clients: up to twice the local bandwidth re-
quirement, to support the hopping server proxies that
relay content.

False client overhead. Similarly, maintaining
false clients can have a considerable effect on resource
consumption. Incoming network traffic and server
load scales linearly with the false client count, a fun-
damental restriction if network bandwidth is scarce,
or servers are inadequately sized.

Recall, however, that hopping service schemes work
entirely well without the presence of false clients,
which only serve to confuse traffic analysis. If secure
out-of-band hop sequence generation is available, ad-
ministrators can combine extremely long, nonrepeat-
ing hop sequences with relatively short hop windows.
That effectively eliminates an eavesdropper's advan-
tage, since snooped hop sequence data goes stale be-
fore it can be used, and never becomes useful again to
derive the identity of the true servers. Under such cir-
cumstances, administrators may elect to live without
the smokescreen of false clients, and eliminate their
additional bandwidth requirements and server load.

5 Applications
Consider a heterogeneous environment consisting of

three corporate campuses, each protected by its own
firewall from casual attack from the Internet. (This
network configuration will become increasingly com-
mon with the advent of global-scale design and manu-
facturing operations, as industrial espionage motivates
concerted attacks on proprietary data.) Each of the
three campuses needs to publish certain information
services for the benefit of the others, but wishes to
exercise control over the distribution of sensitive con-
tent. In figure 5, site A offers realtime video and audio
content, site B offers access to the corporate database,

and site C stores the corporation's master Web docu-
ment tree. A high-speed interconnect links individual
hosts within each campus, and there are two alterna-
tives for links between campuses. Internet routes that
share bandwidth with strangers' traffic offer an inex-
pensive solution for connectivity, but dedicated pri-
vate lines offer physical security.

One solution is to use a combination of structure-
based (hopping) and content-based (encryption) tech-
niques to secure client-server resources against attack
over insecure networks. Consider site A, the cam-
pus that needs to offer secure streaming video service.
Without hopping, site A would probably dedicate one
port to video, configure the firewall to pass traffic on
that port, authenticate clients using a public or pri-
vate key scheme, and encrypt each video transmission.
Adding hopping to the picture, site A could dedicate
one port for hop sequence data, plus 4 ports for video
service. They might run four video servers on each of
four hosts within the campus network, giving a false-
true server ratio of 15:1, while continuing to authen-
ticate clients and encrypt content as before.

The true services and clients in such a hopping sys-
tem use roughly the same amount of server time and
network bandwidth as if only a single non-hopping
server were involved. The performance tradeoff actu-
ally involves an orthogonal issue: paying for deception.
False servers can be configured to produce a common
load average across campus C's four hosts (true and
false) to prevent a casual observer from narrowing the
odds. False clients multiply bandwidth requirements a
fewfold, but only enough to mask the relatively small
number of legitimate clients who are likely to connect
to a secure network service. These parameters are
user-specified, according to the sensitive nature of the
application.

If we can rewrite the video client code to implement
hopping directly, then users from campuses B and C
will use a modified multimedia client to authenticate
themselves to A, receiving authenticated hop sequence
data in return. An alternative that avoids rewriting
client code involves the use of a "hopping proxy" video
server installed at B and C, which handles the authen-
tication steps and hopping logic. In their spare time,
these proxy servers also launch false database clients
to confuse eavesdroppers. In figure 5, campus B is of-
fering hopping database service, and proxy database
servers have been installed at campuses A and C.

5.1 Prototype System
As a proof of concept, we constructed a web client-

server system implementing a service-hopping proto-

217

Campus A. Video Serviceire wail

Campus C. Web Service

dbaseclients videoclient?

dbaseclienti Oh

wx Wo w3 WA

Internet

firewall

Campus B. Database Service

videoclienti

D« D4

Internet

Figure 5: Large, heterogeneous service-hopping system consisting of three campuses, four hosts per campus, using four
ports to implement a total of 45 false and 3 true services. Campus A publishes video data, campus B offers database
access, and campus C hosts the corporate Web document tree. Clients of the video server interact directly with the remote
service instances; campuses A and C offer their users a simpler proxy interface to B's database, handling authentication
and hopping mechanics transparently.

218

col, like that of campus C in figure 5. Web server se-
curity rangf om simple username/password authen-
tication for individual subtrees within the document
space, to complex schemes that encrypt and authen-
ticate client-server traffic [4, 5, 7]. A hopping scheme
can add an extra measure of security to such a system,
even in cases where the passwords for a page have been
compromised.

For the "bait" portion of the ruse, we built Java
application classes that serve HTML content to Web
browsers using the HTTP/1.0 protocol. The distinc-
tion between a real service and a false service, in this
simplified case, lies in the document tree. We provided
a hierarchy of convincing fake documents for the false
servers to provide to clients; true servers reference the
standard document tree. We also constructed Java
application classes that, given a fragment of repre-
sentative access log, stage periodic accesses to HTTP
server documents, replicating the activity of a human
browser to defeat traffic-based identification of the real
web server of the moment.

We then constructed a proxy Web server, also in
Java, which redirected all document requests to the
currently legitimate Web server on a remote host. In
our scenario, the proxy server runs at a selected remote
site, giving users within that site access to a sensitive
document tree through the hopping mechanism. An
intruder who sniffed the page passwords from the net
would nonetheless be locked out without the proxy
server's private hopping information.

We had no trouble keeping the proxy locked in sync
with the hopping servers, using hop windows of 1 to
2 seconds, as long as the interval between submission
of a document request by the proxy and the approval
of the request within the current window on the re-
mote server was relatively stable. If the proxy issues
a request which takes too long to enter service on the
remote host, it may miss the current hop window, re-
sulting in a false security alarm. The alternative is to
delay service requests until the rise of the next win-
dow, reducing throughput. The proxy server must
start with a conservative estimate of the width of its
effective compute window, and then work to expand
that window to improve performance.

Initial Synchronization First, during initial au-
thentication with the remote server, the proxy down-
loads its initial hop sequence. Each line in that se-
quence is timestamped as it is generated by the hop
sequence server and downloaded (byte-at-a-time) by
the proxy. This gives the proxy a rough estimate of the

average and variance of the phase offset Td between its
clock and the server clock, including the transit time
for short messages. If the hop window exceeds this
average transit time by less than several standard de-
viations, the proxy server attempts resynchronization
periodically until the network has quieted down.

This process only attempts to synchronize the
proxy, or client, with the distant collection of hopping
servers. Because the service hosts and the sequence
server are all assumed to be within the same admin-
istrative domain, we assume that their system clocks
could be trivially presynchronized using, for example,
NTP[6].

Once the servers have synchronized successfully, the
proxy then makes document requests within Te of the
rising edge of the remote hop window. Te starts off as
Tc — Td — 2(TTd — the compute window time less the
clock offset and two standard deviations.

Periodic Adjustment Because some variable de-
lay arises from load on the remote server (to begin to
locate and transmit the document), and because mes-
sage transit times may vary, each document served by
the hopping server includes a header line for clock ad-
justment. This line contains the server clock state at
the moment the document began transmission, and
allows the proxy to compute the time which remained
in the current hop cycle. The proxy uses a sliding
window of these times to recompute the variance and
adjust its estimate of the phase correction to arrive at
a new effective window Te. If the network becomes
quieter, Te expands; if the network becomes noisier,
Te shrinks.

Conclusion. All these measures are necessary be-
cause above some moderate noise level, hopping
strategies break down due to sporadic missed hop
windows, resulting in nuisance security alarms. For
this reason, hopping techniques will be of most value
in contexts where the network links between clients
and hopping servers are relatively low-latency, when
servers are adequately sized to avoid service delays due
to load, and when the time required to initiate each
service is relatively constant.

Application-level structural techniques such as ser-
vice hopping help balance security, performance, and
convenience: three primary design criteria for hetero-
geneous network management tools. The hopping ruse
provides a new way to map tasks to heterogeneous re-
sources, in order to augment the security provided by
more traditional content-based encryption techniques.

219

Service hopping has the dual advantages of com-
plicating the intruder's job, while giving administra-
tors early warning of a potential breakin attempt and
isolation of the affected component. We expect that
the general techniques presented will be applicable
to many heterogeneous distributed application con-
texts of commercial and military significance, includ-
ing databases, multimedia, signal processing, and dis-
tributed control.

References
[1] A. Bestavros, M. Chen, M. Crovella, A. Heddaya,

S. Sclaroff, and J. Cowie. TR96-008. Responsive
Web Computing: resource management, protocol
techniques, and applications. Technical report,
Boston University and Cooperating Systems Cor-
poration, 1996.

[2] W. Cheswick and S. Bellovin. Firewalls and In-
ternet Security. Professional Computing Series.
Addison-Wesley, 1994.

[3] The Open Group. DCE security. Technical report,
http://www.opengroup.org/tech/dce/security,
1997.

[4] S. Kent. RFC-1421. privacy enhancement for in-
ternet electronic mail. Technical report, Network
Working Group, 1993.

[5] J. Kohl and C. Neuman. RFC-1510. the kerberos
authentication service (V5). Technical report, Net-
work Working Group, 1993.

[6] D. Mills. RFC-1305. network time protocol (ver-
sion 3). Technical report, Network Working Group,
1992.

[7] E. Rescorla and A. Schiffman. Secure hypertext
transfer protocol (working draft). Technical re-
port, Enterprise Integration Technologies, 1995.

Marina Chen received the B.S. degree in Electrical
Engineering from National Taiwan University in 1978,
and the Ph.D. degree in Computer Science from Cali-
fornia Institute of Technology in 1983. She is currently
Professor and Chair of the Computer Science Depart-
ment at Boston University, where she serves on the
Council of the Center for Computational Science at
Boston University. She is President of Cooperating
Systems Corporation, and Secretary of the Associa-
tion of Computing Machinery.

James Cowie received the B.S. degree in Computer
Science from Yale University in 1991. He is cur-
rently the Director of Technology Development at Co-
operating Systems Corporation. His FAFNER pack-
age for Web-based distributed computing brought the
RSA130 team the "Most Heterogeneous/Most Geo-
graphically Distributed" award in the HPC Challenge
at Supercomputing '95. His current research interests
include software support for secure wide-area collabo-
ration, distributed simulation, and computer-assisted
financial engineering.

220

Case Study

A Performance and Portability Study of Parallel
Applications Using a Distributed Computing Testbed

Viorel Morariu, Matt Cunningham, Mark Letterman
Concurrent Technologies Corporation,

Johnstown, PA, USA

A Performance and Portability Study of Parallel Applications
Using a Distributed Computing Testbed

Viorel Morariu, Matthew Cunningham, and Mark Letterman
National Applied Software Engineering Center (NASEC)1

Concurrent Technologies Corporation (CTQ
1450 Scalp Avenue

Johnstown, Pennsylvania, U.S.A.

ABSTRACT

A case study was conducted to examine the per-
formance and portability of parallel applications, with
an emphasis on data transfer among the processors in
heterogeneous environments. Several parallel test pro-
grams using MPICH, a Message Passing Interface
(MPI) library, and the Linda parallel environment
were developed to analyze communication perform-
ance and portability. These programs implement
loosely and tightly synchronized communication mod-
els in which each processor exchanges data with two
other processors. This data-exchange pattern mimics
communication in certain parallel applications using
striped partitioning of the computational domain.
Tests were performed on an isolated, distributed com-
puting testbed, a live development network, and a
symmetrical multi-processing computer system. All
network configurations used asynchronous transfer
mode (ATM) network technologies. The testbed used in
the study was a heterogeneous network consisting of
various workstations and networking equipment. This
paper presents an analysis of the results and recom-
mendations for designing and implementing course-
grained, parallel, scientific applications.

1.0 Introduction

Solving today's complex, scientific and techno-
logical problems requires powerful computer platforms.
Currently, many high-end computational systems fea-
ture parallel architectures. Consequently, parallel im-
plementations of scientific applications are becoming

more important. In addition to using high-end com-
puter platforms, a growing number of organizations are
using distributed, networked resources to run parallel
applications. The use of networked computers presents
additional challenges to the application developer.
Among these challenges are the relatively limited
communication performance of the existing networking
technologies and the difficulty in using the available
bandwidth and processing power consistently.

Parallel implementations enable us to solve more
complex problems and to reduce execution time; how-
ever, the increase in performance depends on the type
of application, algorithms, and hardware characteris-
tics. Powerful processors found in today's parallel
systems and limitations in networking technology favor
coarse-grained parallel implementations, in which a
high number of operations per byte transferred mini-
mize communication requirements. Coarse-grained
parallelism [1] allows more computation to be per-
formed locally between two synchronization events. It
reduces the number of messages and the volume of data
that processors exchange. Due to its suitability for sev-
eral parallel architectures, coarse-grained parallelism
also enables the development of portable applications.
One can develop a parallel application in any parallel
environment, such as a network of workstations
(NOW), and subsequently port it to shared-memory
multiprocessors or distributed-memory parallel ma-
chines.

Test programs were developed to evaluate com-
munication performance using several communication
patterns. The results of these tests can be used in de-
signing and implementing parallel algorithms and
communication techniques. Two scientific applications

NASEC is operated by Concurrent Technologies Corporation
(CTQ and is sponsored by the Defense Applied Research Projects
Agency (DARPA). The content of this information does not neces-
sarily reflect the position or the policy of the government, and no of-
ficial endorsement should be inferred.

0-8186-7879-8/97 $10.00 © 1997 IEEE
222

were used as references for this study: a finite-
differences time-domain (FDTD) electromagnetic
simulation and a viscous fluid flow simulation. The
electromagnetic simulation is based on solving a re-
duced set of the Maxwell equations for the electromag-
netic field. The implementation is an explicit, multi-
domain model, suitable for parallel execution, that re-
quires data to be exchanged at each time step. For the
viscous fluid-flow simulation, the single-domain nu-
merical solution requires large systems of equations to
be solved (implicit implementation). In the multi-
domain model, an iteration by subdomains method that
requires local solvers and interface conditions is con-
sidered. The computational domain is partitioned into
subdomains, and each subdomain is allocated to a
processor. Multiple subdomains can coexist on the
same processor. For both applications, each processor
communicates with at least two other processors. The
partitioning of the domain into subdomains and the
allocation of subdomains to participating processors
induce certain communication patterns that were cap-
tured in the test programs.

In most implementations, the programs running on
multiple processors are synchronized periodically, and
messages are sent within each cycle (timestep or itera-
tion on the complete domain); however, the developer
has the latitude to implement either tightly or loosely
synchronized models. In this paper, we have analyzed
the network response to both tightly and loosely syn-
chronized models. Low computation for each byte
transferred implies that computation and communica-
tion must be overlapped to provide good performance
for parallel execution of the application.

The test programs implement data-exchange pat-
terns that mimic communication in parallel applica-
tions similar to the electromagnetic and viscous fluid
flow simulations presented above, using striped parti-
tioning of the computational domain. The main hard-
ware target for the tests is a heterogeneous network of
workstations. Test results on the heterogeneous net-
work are compared to those on homogeneous, isolated
and active networks and on a symmetrical, multi-
processing platform. MPICH [2,3], a public domain
Message Passing Interface (MPI) implementation, was
used in the parallel test programs. In addition, compa-
rable implementations using Linda [4], a Scientific
Computing Associates, Inc. (SCA)2 product, were used

in some tests to complement or reinforce the conclu-
sions.3

2.0 Test environment

MPICH (version 1.0.12) and Linda (version 3.1)
were used in the tests. Several implementations of
MPI are available in the public domain or from com-
mercial vendors. Linda is a commercially available
parallel programming environment. MPI and Linda are
accepted in the high-performance computing industry
and are reported to have good performance and port-
ability. The two environments are very different in
their level of abstraction and programming complexity.
MPI is based on the message passing programming
paradigm, while Linda is based on the distributed data
paradigm (virtual shared memory). When using MPI,
the programmer can perform fine tuning of communi-
cation [5]. Explicit communication among processors
and a wide range of message passing capabilities make
this possible. Fine tuning, however, requires extensive
knowledge of the MPI environment and parallel archi-
tectures, making the programmer's job more challeng-
ing.

Performance testing was conducted on heterogene-
ous and homogeneous NOWs and on a Silicon Graph-
ics, Inc. (SGI) Onyx symmetric multiprocessor (SMP).
Tests were performed on an isolated local area network
(LAN) removed from user activity, as well as on an
active LAN with varied traffic load. Both networks
employed ATM technology. The Andrew File System
(AFS V3.4) was used as the distributed shared file sys-
tem in all configurations employed by the study.

The isolated NOW testing used an established,
heterogeneous, distributed computing testbed environ-
ment. System resources within the testbed included:

• SGI Indy workstations, each equipped with
one MIPS R4000 100 MHz microprocessor
and 48 Mbytes of RAM

• SGI Indigo II workstations equipped with a
MIPS R4400 200 MHz microprocessor and
96 Mbytes of RAM

• Sun Ultra 1 workstations, each equipped with
one UltraSPARC 167 MHz microprocessor
and 96-128 Mbytes of RAM

• IRIX 5.3 operating system on all SGI work-
stations

• Sun OS 5.5.1 (Solaris 2.5) operating system
on all Sun platforms.

Linda is a registered trademark of Scientific Computing Associ-
ates, Inc.

This paper does not choose between Linda or MPICH for the de-
velopment of parallel applications.

223

The testbed also provided several network tech-
nology and protocol options such as Ethernet, Classical
IP (Internet Protocol) over ATM, and FORE IP over
ATM. Based on network communication benchmark-
ing [6], it was determined that the standard Classical IP
protocol over ATM results are very similar to FORE IP
over ATM. We chose to use the FORE IP over ATM
for this study. Figure 1 shows the heterogeneous testbed
environment that was used for this study.

SUN Ultra 1
Workstation

SUN Ultra 1
Workstation

SGI Indy
Workstation

SGI Indy
Workstation

SGI Indy
Workstation

SGI Indy
Workstation
SGI Indigo II
Workstation

Legend:

 100 Mb ATM (TAXI)
 155 Mb ATM (0C3)

Figure 1. Heterogeneous Testbed Environment

The testbed network configuration consisted of a
two-switch ATM work group with an OC3 (155 Mbits
per second) connection between the switches. The
ATM switches used were the FORE Systems
ASX200BX models with a combination of 100 Mbits
per second Taxi interfaces for SGI Indys, and 155
Mbits per second OC3 interfaces for SGI Indigo II and
Sun Ultra 1. All ATM equipment used FORE Systems
software version 4.0. Because the testbed was com-
pletely isolated during the tests, the results represent
ideal or best case situations.

The NOW on the active LAN featured similar
characteristics to that of the isolated NOW, including
similar workstations and network configurations. The
active LAN supported approximately 50 users. Work-
stations with low computational load were selected for
the test. Therefore, we assumed that the pre-existing
computational load would not affect the test results
significantly. The goal was to reveal the impact of the
pre-existing network traffic on the communication-
intensive, parallel applications.

The SGI Onyx featured eight (200 MHz) micro-
processors with a main memory of 1 Gbyte. Except
for choosing a time period when the Onyx had low
computation load, no special measures were taken to
control the SMP.

3.0 Test programs

The performance tests target communication as-
pects of parallel applications, such as FDTD electro-
magnetic simulations and fluid flow simulations, using
an iteration by subdomains method, described in sec-
tion 1.0. Two synchronization models are consid-
ered—a loosely synchronized model and a tightly syn-
chronized model. Communication using the loosely
synchronized model has the advantage of smoother,
non-burst transfers. When all senders use the network
or memory bus at one time (tight synchronization), ar-
bitration delays may limit the performance. Within the
loosely synchronized model, requests for network or
bus access occur at a more uniform rate. In general,
better execution times are expected for the loosely syn-
chronized model.

Figure 2. Generic Performance Testing Model

To determine practical and obtainable performance
expectations, it was necessary to devise tests that
closely simulate parallel application behavior with re-
gard to data exchange. The test software configuration
consists of a master process and multiple slave proc-
esses, as shown in Figure 2. The master process man-
ages the slave processes and reports the results. The
slave processes perform data transfers without proc-
essing the data received. Each participating processor
executes only one process (master or slave).

The test software begins execution by examining
input parameters and performing various overhead op-
erations. Once the network topology and test environ-
ment parameters are known and distributed throughout
the configuration, the test programs measure communi-
cation performance, specifically, data transfer times.
Transfers are performed repeatedly to generate valid
statistics.

The loosely synchronized model relies on slave-
slave communication for minimal synchronization, and

224

the tightly synchronized model uses slave-master com-
munication for more rigid synchronization. Table 1
shows the main design characteristics of the two mod-
els. The total execution time is used to compare the
models.

Each test was executed three times. The execution
time average was then used for analysis. Each test con-
sisted of 100 iterations. Within one iteration, each of
the four slave processes sends the specified size mes-
sage to two partners. Using execution time and mes-

sage size, one can approximate the application band-
width (total amount of data exchanged for 100 itera-
tions divided by execution time). In configurations
with four processors running slave programs, the total
amount of data exchanged over the network for 100
iterations is 8*100*(message size). The bandwidth
defined above depends on the characteristics of both
the test program and the parallel environment
(hardware and software).

Test Model Loosely Synchronized Tightly Synchronized
Specific

Characteristics
• Master only communicates with slaves

on initialization and termination
• Slaves can only send successive mes-

sages after receiving a message from
each partner

• Master communicates with all slaves in
each iteration to start slave-slave trans-
fer

• Each slave-slave transfer is acknowl-
edged

Generic
Characteristics

• Number of slaves in configuration is variable
• Each slave sends and receives from two slave partners
• Message transfer size is variable
• Number of iterations for testing is variable
• Master determines total execution time (all iterations)

Table 1. Performance Testing Software Model Characteristics

4.0 Performance tests on NOWs

For the MPICH implementations, loosely and
tightly synchronized models were developed using the
blocking standard communication mode. (MPI may
buffer outgoing messages.) Other variations, such as
user buffering and nonblocking, were considered but
not studied due to time constraints. Test results are
presented for heterogeneous and quasi-homogeneous,
isolated NOWs and for an active, homogeneous NOW.
Several data types were used (byte, char, and double)
for tests on the isolated NOW, but no significant differ-
ences in performance were found. Transfers using
MPI_BYTE data type are discussed in this paper.

Additionally, the models were implemented using
Linda, and the test results for a quasi-homogeneous,
isolated NOW are discussed in this paper.

The quasi-homogeneous configuration employed
four Indy workstations running the slave programs and
an Indigo II running the master program. For the per-
formance tests described in the previous section, this
configuration can be considered homogeneous because
the amount of data communicated to and from the
master processor is very small compared to the amount
of data exchanged among the slaves. The heterogene-
ous configuration employed two INDY workstations,
two Ultra 1 workstations running the slave programs,
and an Indigo II running the master program. The Ul-
tra 1 workstations were equipped with a faster micro-

processor, more memory, and a faster ATM card; how-
ever, the allocated workload and the data transfer vol-
ume were the same.

4.1 Tests using MPICH on isolated
NOWs

This section compares the performance results of
the MPI test programs for loosely and tightly synchro-
nized communication on isolated NOWs in quasi-
homogeneous and heterogeneous configurations.

In heterogeneous environments, the loosely syn-
chronized model performed significantly better than the
tightly synchronized model for messages up to 1
Mbyte. For messages larger than 1 Mbyte, the tightly
synchronized model yielded better performance results.
Note that for some tests in the heterogeneous configu-
ration, the results varied significantly among the three
executions. (As mentioned in section 3.0, each test was
executed three times.) This variation was not exhibited
in the homogeneous configuration.

On the homogeneous NOW (Figure 3a), the differ-
ence in the execution times for loosely and tightly syn-
chronized models was even greater for very large mes-
sages. For the tightly synchronized tests, the execution
times were up to three and one-half times longer.

A sharp decrease in the transfer rate for messages
between 200 Kbytes and 500 Kbytes was common for
both the homogeneous and the heterogeneous environ-

225

ments when the tightly synchronized model was used.
In the tightly synchronized model, the network bottle-
necks became critical due to data bursts. Performance
of the tightly synchronized model improves relative to
the performance of the loosely synchronized model
when large messages are passed on a heterogeneous
NOW. This result was not anticipated and is opposite
to the result on the homogenous NOW; however, the
absolute values of execution times were shorter in the
homogeneous environment. In the loosely synchronized
model, the execution time on the homogeneous NOW
was more than five times smaller than the execution
time on the heterogeneous NOW.

(a) Large Messages

500 1000 1500

Message Size (Kbytes)

2000

(b) Small Messages

-Het. LS

Het. TS

- ^ - -Horn. LS

—K Hom.TS

Message Size (Kbytes)

Figure 3. Tests using MPICH in heterogeneous
(Het.) and homogeneous (Horn.), isolated NOW
configurations. Loosely Synchronized (LS)
implementations are compared to Tightly Syn-
chronized (TS) implementations.

For small messages (to 8 Kbytes), the tests showed
similar performance in both homogeneous and hetero-
geneous environments (Figure 3b). Loosely synchro-

nized model implementations executed up to two times
faster than the tightly synchronized model implementa-
tions for very small messages (100 bytes). Synchroni-
zation overhead and communication with the master
could have caused this behavior.

Even though the cumulative computational power
and network bandwidth were superior for the heteroge-
neous NOW, tests on the homogeneous NOW yielded
better performance results. As expected, additional
tests with two and three slaves on homogeneous NOWs
showed better results on Ultra 1 NOWs than on Indy
NOWs (30 percent shorter execution time). In general,
for equal load, one would expect that the performance
in a heterogeneous NOW should be at least the same as
the performance in a homogeneous NOW using the
least powerful workstation type in the heterogeneous
NOW; however, additional measurement without MPI
showed smaller throughput on a communication line
connecting two different machines (Ultra 1 and Indy)
than between two Ultra 1 or two Indy workstations.
Also, a significant difference was noticed between the
two directions of communication (from SUN worksta-
tions to SGI workstations and from SGI workstations to
SUN workstations). We conclude that each platform's
communication layers have been optimized for best
communication in a homogeneous configuration. This
behavior is consistent with the results of the MPI tests.

4.2 Tests using MPICH on an active NOW

Figure 4 and Figure 5 compare results obtained on
the active, homogeneous NOW to results measured on
the isolated, homogeneous and heterogeneous NOWs.
The workstations and network hardware on the active
network were similar to the workstations and network
hardware on the isolated network.

As expected, the execution times for the active
network were longer than they were for the isolated
network (homogeneous NOW), as shown in Figure 4,
due to varied, active network load. The execution
times of the loosely synchronized tests were three to
four times faster on the homogeneous, isolated net-
work. In contrast, the execution times of the tightly
synchronized implementations on the isolated network
were comparable to the execution times of the test pro-
grams on the active network (Figure 5). Overall, tightly
synchronized implementations for large messages
yielded poor performance results on both active and
isolated, homogeneous networks.

For large messages, the execution times on the
isolated, heterogeneous network were longer than the
execution times on the active network in a homogene-
ous configuration for both loose and tight synchroniza-
tion. Relatively low, pre-existing communication load

226

on the active network and the behavior of communica-
tion in heterogeneous versus homogeneous environ-
ments (section 4.1) contributed to these results.

(a) Large Messages

o
0)
«2-
v
E

c
o
13
3
U
0)
x

UJ

500 1000 1500 2000

Message Size (Kbytes)

(b) Small Messages

u

■2-
0)
E
F
c
o

'•S3
3
O
0)
x

UJ

2 4 6 8

Message Size (Kbytes)

Figure 4. Loosely Synchronized (LS) tests
using MPICH on an active, homogeneous
(A. Horn.) NOW. The results of tests on the
A. Horn. NOW are compared to the results on
isolated, homogeneous (I. Horn.) and isolated,
heterogeneous (I. Het.) NOWs.

The application bandwidth computed from the
graphs shows values of up to 11.4 Mbytes per second
for loosely synchronized tests on the isolated, homo-
geneous NOW. The maximum application bandwidth
for tests on the active network is approximately 3.6
Mbytes per second (large messages).

For small messages, the execution times for the
tightly synchronized tests (Figure 5b) on the active net-
work were significantly higher (20 times) than the exe-
cution times for the loosely synchronized tests (Figure
4b). Given that on the isolated NOW the difference
between the tightly and loosely synchronized imple-
mentations was significantly smaller, it can be con-
cluded that the behavior was caused by network loading

on the active network. The behavior of the loosely
synchronized implementations (Figure 4b) seems to con-
firm this hypothesis. In this case, the execution times

a) Large Messages

u
a

o>
E

c
o
'■&
3
U
V
x

UJ

500 1000 1500 2000

Message Size (Kbytes)

(b) Small Messages

ü
(D

.52.
a»
E

c
o
*5
3
O
0)
x

UJ

35

30 f

25

20 t
15

10

5 t
0

-A

A

- ♦- - I. Horn.

—■— I. Het.

- A- - A. Horn.

it-—*- 3-
2 4 6 8

Message Size (Kbytes)

10

Figure 5. Tightly Synchronized (TS) tests
using MPICH on an active, homogeneous
(A. Horn.) NOW. The results of tests on the
A. Horn. NOW are compared to the results on
isolated, homogeneous (I. Horn.) and iso-
lated, heterogeneous (I. Het.) NOWs.

on the active network were only slightly higher than the
execution times for similar tests on the isolated net-
work.

A drop in the execution time can be noticed at
8 Kbytes for both the isolated and the active NOWs
(Figure 4b and 5b), possibly due to the packet size used
at one of the multiple layers of communication.

As noted in section 3.0, four of the less utilized
workstations on a LAN of 50 were used for the tests.
The network equipment provided communication sup-
port to other applications, also. The results on the ac-
tive NOW show that the un-utilized computing power
can be harnessed to solve large problems; however, a
proper jobs distribution tool based on the actual load

227

and usage profile of the workstations should be used.
Reliable, application-driven load balancing and check-
pointing are also desirable.

4.3 Tests using Linda on an isolated NOW

This section presents the performance results of the
Linda (version 3.1) test programs for loosely and
tightly synchronized implementations on an isolated,
homogeneous NOW. Results for the heterogeneous
NOW are not available. Tests were also performed on
an active network; however, only the results gathered
on the isolated NOW are discussed here. (Results on
the active NOW depended on the network load; the
conclusions drawn from the tests using MPICH apply
here, also.)

(a) Large Messages

- ♦- - Linda LS

—K— Linda TS

- A- - MPI LS

———MPITS

500 1000 1500 2000

Message Size (Kbytes)

(b) Small Messages

♦- - Linda LS

-s—Linda TS

A- - MPI LS

 MPITS

Message Size (Kbytes)

Figure 6. Tests using MPICH and Linda on an
isolated, homogeneous NOW. Execution
times of Loosely Synchronized (LS) and
Tightly Synchronized (TS) tests using MPICH
are compared to the execution times of LS and
TS tests using Linda.

For small messages (from 100 bytes to 8 Kbytes),
as shown in Figure 6b, the execution times for the
tightly synchronized tests were longer than the execu-
tion times for the loosely synchronized tests. This can
be attributed to the communication overhead in the
tightly synchronized tests and is consistent with the
general behavior of loosely and tightly synchronized
implementations. As in the tests using MPICH, a
change in bandwidth is noticed around 8 Kbytes for
tests using Linda. This could have resulted from a
change in Linda's internal mechanism, such as different
handling procedures for small and large messages or
the discrete behavior of a lower-level communication
layer (or a combination of both).

Figure 6 shows that the execution times for the
loosely and tightly synchronized test programs using
Linda were nearly the same for larger messages (from
500 Kbytes to 2 Mbytes). The differences can barely
be noticed from the graph. These results are situated
between the performance results of the loosely and
tightly synchronized test programs using MPICH. It can
be concluded that Linda smoothes out data bursts in
such a manner that execution times for tightly and
loosely synchronized tests are comparable, especially
for larger messages. Also, note that test programs us-
ing Linda and test programs using MPICH are compa-
rable, but not identical. This could have impacted the
behavior of the loosely and tightly synchronized mod-
els, as well as the results.

5.0 Portability

As mentioned in section 1.0, applications can be
developed and fine tuned on NOW and subsequently
ported to other parallel environments. MPI defines the
user interface and functionality for a wide range of
message-passing capabilities. Although the MPI envi-
ronment management may vary, the functionality, se-
mantics, and syntax are the same for all implementa-
tions. MPI supplies a portable and efficient method for
process communication, providing flexibility and con-
trol to the application developer. By using a standard
method of message passing, the burden of low-level
communication is lifted from the application developer.
Programs based on both the Single Program Multiple
Data (SPMD) paradigm and Multiple Program Multiple
Data (MPMD) paradigm are supported, although the
startup procedure and configuration may vary for dif-
ferent MPI implementations.

MPICH supports a wide range of systems, from
NOWs to shared-memory and distributed-memory sys-
tems (such as IBM, SGI, HP, and CRAY products).
Other MPI libraries are available in the public domain
(LAM, CHIMP). Platform-specific MPI implementa-

228

tions are also available and provide the same function-
ality with better performance levels, since they are
written and tuned for a particular platform.

Linda is available on a large number of parallel
computing systems, including NOW, shared-memory
computers, and distributed-memory computers, such as
IBM, CRAY, HP, and SGI products. Most applications
run on different machines without any source code
changes.

Very little investigation was conducted on porting
MPICH programs to other MPI environments. (Some
programs were executed in a LAM environment.) The
study's emphasis was on porting test programs from
NOW to shared-memory multiprocessors, using
MPICH in both cases. The test programs using Linda
were also ported to the shared-memory multiprocessor
platform. The following section discusses a few port-
ability issues, including changes in data transfer per-
formance.

5.1 Porting test programs using MPICH to
anSMP

The test programs were executed in both NOW
and SMP environments. To obtain optimum results on
the SMP, only the SPMD paradigm was used. Cur-
rently, MPICH does not have a shared memory-based
implementation for MPMD. MPMD parallel programs
can be executed on an SMP, but the performance is
poor.

Figure 7a shows that there is little difference in the
execution times for the loosely and tightly synchronized
test results on the SMP, whereas there is significant
difference between loosely and tightly synchronized
tests on the NOWs. It appears that SMPs handle data
bursts more effectively. The reasons for this behavior
include a high bus bandwidth per processor and the
implementation of the message passing through a
shared-memory library. In a network, data bursts can
cause packets to be dropped and, thus, trigger delays.

For message sizes above 500 Kbytes, the tightly
synchronized tests had execution times that were four
to six times longer than those of the loosely synchro-
nized tests. For the loosely synchronized model, the
total application bandwidth was approximately 11.4
Mbytes per second (isolated homogeneous NOW) ver-
sus 28 to 40 Mbytes per second (SMP) for large mes-
sages. When comparing the results on NOWs to those
on the SMP, one should also consider that the SMP had
processors with a clock rate two times greater than that
of the workstations (200 MHz compared to 100 MHz
on workstations). In addition, the memory available to
each processor was more than three times greater on the
SMP.

Figure 7b shows that on the SMP, for small mes-
sages, test programs had an execution time proportional
to the message size, while the isolated network did not.
When message size exceeded 4 Kbytes, the isolated
network's loosely and tightly synchronized slope dou-
bled on the graphs. This could be due to the discrete
behavior of low-level communication software
(dependent on the message size). For small messages,
the loosely synchronized model yielded better perform-
ance results than the tightly synchronized model, simi-
lar to the behavior on the NOWs.

(a) Large Messages

- ♦- - I. Horn. LS

—m—I. Horn. TS

- A- - I. Het. LS

 1. Het. TS

 SMPLS

—•—SMPTS

500 1000 1500 2000

Message Size (Kbytes)

(b) Small Messages

- - ♦- - I. Horn. LS

—■—I. Hom.TS

- - A- - I. Het. LS

 1. Het.TS

 SMP LS

-• SMPTS

Message Size (Kbytes)

Figure 7. Tests using MPICH on the SMP and
NOWs. Execution times of Loosely Synchro-
nized (LS) and Tightly Synchronized (TS) tests
using MPICH on an SMP are compared to the
execution times of LS and TS tests on an iso-
lated NOW in homogeneous (I. Horn.) and het-
erogeneous (I. Het.) environments.

It is evident that testing conducted on the SMP
resulted in better data exchange performance compared
to testing on the NOWs (Figure 7). Because data ex-
change on an SMP does not require network access,
SMP transfers should be faster, as long as there is suffi-
cient processing power to handle both data processing

229

and communication. The data exchange performance
on the SMP and NOW may change if processing or
simulation is included in the experiment.

5.2 Porting test programs using Linda to
an SMP environment

The loosely and tightly synchronized test programs
using Linda were ported easily from a NOW to an SMP
environment. It was only necessary to recompile the
source code. A comparison of results on the isolated,
homogeneous NOW and SMP follows.

(a) Large Messages

u
0)
CO

£
F
c
o

Ü
0)
X
HI

♦ - -SMP LS

350 ■ ■—B—SMP TS

300 -p - ■A1 ■ -I. Horn. LS
-X 1. Horn. TS

500 1000 1500 2000

Message Size (Kbytes)

(b) Small Messages

. + SMP LS

-8 SMPTS
.I. Horn. LS

2 4 6 8

Message Size (Kbytes)

10

Figure 8. Tests using Linda on the SMP and
isolated, homogeneous NOW. Execution
times of Loosely Synchronized (LS) and
Tightly Synchronized (TS) tests using Linda
on the SMP are compared to the execution
times on an isolated, homogeneous NOW (I.
Horn. LS and I. Horn. TS).

Figure 8a shows very little difference between
loosely and tightly synchronized tests on the SMP.
Most comments on tests using MPICH with regard to

NOW versus SMP execution times apply to tests using
Linda for both large and small messages (Figure 8b);
however, for large messages, the results of tests using
Linda show an almost linear increase in execution time
with the message size for both environments discussed
(isolated NOW and SMP). This is not the case for tests
using MPICH, especially on the NOW (Figure 6a).

6.0 Conclusions

The tests presented in this paper targeted perform-
ance and portability in three environments—the iso-
lated NOW, active NOW, and SMP. Most of the tests
used four slave processors and one master processor.
Various message sizes were tested, from 100 bytes to 2
Mbytes. Fine tuning of the environments to improve
performance was not part of the scope of this study.
Instead, design aspects, mainly related to inter-
processor communication, were investigated. These
aspects need to be considered when developing parallel
applications. Overall results are reviewed in this sec-
tion.

Environment. As expected, when a limited number
of processors (four in these tests) were used, the tests
yielded better performance results on the SMP than on
the NOWs. On the NOWs, environment control
(workstations and network) was more important than
the tools and methods employed in the applications.
Adapting to the environment (i.e., load balancing)
would be beneficial; however, the additional communi-
cation generated by dynamic load balancing needs to be
monitored.

Synchronization. In tests using MPICH on NOWs,
the loosely synchronized model performed significantly
better than the tightly synchronized model. In the
tightly synchronized model, data bursts occurred, and
certain components of the communication chain were
overloaded. Thus, the preferred model for applications
exhibiting an inter-processor data exchange pattern
similar to that described in this paper is the loosely
synchronized model. Use of the loosely synchronized
model in MPICH implementations, especially on ho-
mogeneous NOWs, is essential for good performance.
The execution time was three to five times longer for
tightly synchronized implementations with large mes-
sages and could be up to two times longer for very
small messages. For small messages, the overhead
caused the difference in performance, while for large
messages, the difference was due to burst transfers that
were not handled efficiently by the network. Imple-
mentations using Linda did not show important differ-
ences between the two models, except in the case of
small messages. On the SMP, the loosely synchronized
tests (using MPICH or Linda) yielded better results,

230

also; however, the relative gap between the results of
the two models was smaller, especially for large mes-
sages.

Portability and Programming Paradigm. In gen-
eral, coarse-grained MPI and Linda parallel programs
can be ported among parallel environments. The SMP
implementation of MPICH, however, did not fully sup-
port the MPMD programming paradigm. MPICH
could be configured to accept MPMD, but it did not
use the shared-memory library. For a portable imple-
mentation that preserves good performance, an SPMD
approach should be used.

Bandwidth. The isolated network in a homogene-
ous configuration supported a maximum application
bandwidth of 11.4 Mbytes per second when test pro-
grams used the loosely synchronized model. For the
tightly synchronized model, the bandwidth was less
than 4.3 Mbytes per second. Bandwidth measurements
in tests using MPICH, when only one sender and one
receiver were active, showed an application perform-
ance of 6 Mbytes per second. These measurements
confirm the conclusion recommending loose synchro-
nization for optimum performance. The number of
processors involved, network configuration, message
size, and communication load of each processor and
network switch are also important points to be consid-
ered. Tests on the SMP, using either MPICH or Linda,
yielded an application bandwidth up to 40 Mbytes per
second.

Message Size. All the tests yielded low perform-
ance results for small messages. This behavior is at-
tributed to synchronization overhead, communication
latency, and non-homogeneity. For larger messages,
the bandwidth increased considerably. Tests using
MPICH on the SMP, however, displayed a decrease in
performance for messages larger than 500 Kbytes (from
40 Mbytes per second to 28 Mbytes per second).

Heterogeneity. The performance in a heterogene-
ous environment was notably lower than the perform-
ance in a homogeneous one. Additional measurement,
without MPICH, exhibited smaller throughput on a
connection between workstations of a different type,
than on a connection between two workstations of the
same type. In addition, a significant difference was
noticed between the two directions of communication.
The conclusion is that each platform's communication
layers are optimized for best communication in a ho-
mogeneous configuration. This behavior is consistent
with the results of tests using MPICH.

Scalability. The application bandwidth supported
by the network increased with the number of processors
involved in the parallel execution (from two to four
processors). It is expected that, with the appropriate
configuration, an ATM network can support additional
processors efficiently.

References

[1] V. Morariu, "Manufacturing Process Simulation on
a Cluster of Workstations," NASEC Technical
Report, pp.3,6-10, Concurrent Technologies
Corporation, June 15,1994.

[2] W. Gropp and E. Lusk, "Installation Guide to
MPICH, a Portable Implementation of MPI,"
Argonne National Laboratory, ANL/MCS-TM-
ANL-96/5

[3] W. Gropp and E. Lusk, "User's Guide for MPICH,
a Portable Implementation of MPI," Argonne Na-
tional Laboratory, ANL/MCS-TM-000

[4] Linda User's Guide and Reference Manual: v 3.0,
Scientific Computing Associates Inc., 1995.

[5] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J.
Dongarra, "MPI: The Complete Reference," The
MIT Press, Cambridge, Massachusetts, 1996

[6] M. Cunningham and B. Wechtenhiser, "Achievable
System and Network Performance," NASEC Tech-
nical Report, Concurrent Technologies Corpora-
tion, 1996

Biographies

Viorel Morariu is a Senior Software Engineer at Con-
current Technologies Corporation, where he develops high-
performance computing applications and tools. Previously,
Mr. Morariu held Research Staff and Principal Research Staff
positions at the Institute of Automation, Bucharest. His in-
terests include applied parallel and distributed computing,
parallel algorithms and performance, domain decomposition
methods, and real-time multiprocessor applications. Mr.
Morariu holds an M.S. degree in Electrical Engineering from
Bucharest Polytechnic Institute. He is a member of the IEEE
and IEEE Computer Society.
(E-mail address: morariu@ctc.com)

Matthew Cunningham is a Software Engineer at Con-
current Technologies Corporation, where he develops net-
work communication tools and network-intensive software
applications. His interests include high-speed networking
and communication analysis. He is a member of the IEEE
and IEEE Computer Society.
(E-mail address: cunning@ctc.com)

Mark Letterman is a Computer Engineer at Concurrent
Technologies Corporation where he works on the High-
Performance Computing project. He received a B.S. degree
in Electrical Engineering Technology from Rochester Insti-
tute of Technology, Rochester New York.
(E-mail address: letterma@ctc.com)

231

Open Discussion

How Do We Know How Well We Are Doing?

Chair:
Andrew Grimshaw

University of Virginia, Charlottesville, VA, USA

An open discussion of how we can best evaluate and compare
heterogeneous computing techniques and tools, covering topics such
as benchmark applications, benchmark systems, performance metrics,
and quality of service issues. The community needs to establish
guidelines for analyzing the goodness of our own work - what should
these guidelines be?

Author Index

Ahmad, 1 135
Antonio, J.K 172
Arapov, D 32
Baraglia, R 17
Brünett, S 112
Budenske, J.R 96
Cermele, M 2
Chen, M 208
Colajanni, M 2
Cowie, J 208
Cunningham, M 222
Curkendall, D 112
Davis, D 112
Decker, T 17
Disz, T 46
Einstein, T.H 60
Ekroot, L 112
Eshaghian, M.M 147
Gehring, J 17
Gottschalk, T 112
Kafd, M 135
Kahnov, A 32
Kim, J.S 83
Ladd, G.O., Jr 162
Laforenza, D 17
Lastovetsky, A 32

Ledvoskih, 1 32
Letterman, M 222
Lewis, T 32
Li, YA 172
Lilja, D.J 83
Lopez-Benitez, N 185
Maheshwari, P 195
Marinescu, D.C 74
McSpadden, A.R 185
Messina, P 112
Morariu, V 222
Necci, G 2
Ouyang, J 195
Papka, M.E 46
Ramanujan, R.S 96
Ramme, F 17
Reinefeld, A 17
Römke, T 17
Siegel, H 112
Siegel, H.J 96, 122
Simon, J 17
Sirbu, M.G 74
Stevens, R 46
Tan, M 122
Wu, Y.C 147

235

Notes

IEEE COMPUTER SOCIETY

http://computer.org

Press Activities Board

Vice President:
I. Mark Haas
Managing Partner
Haas Associates
P.O. Box 451177
Garland, TX 75045-1177
m.haas@computer.org

Jon T. Butler, Naval Postgraduate School
James J. Farrell III, Motorola
Mohamed E. Fayad, University of Nevada
I. Mark Haas, Haas Associates
Ronald G. Hoelzeman, University of Pittsburgh
Gene F. Hoffnagle, IBM Corporation
John R. Nicol, GTE Laboratories
Yale N. Patt, University of Michigan
Benjamin W. Wah, University of Illinois
Ronald D. Williams, University of Virginia

Editor-in-Chief
Advances in Computer Science and Engineering Board
Pradip Srimani
Colorado State University
Dept. of Computer Science
601 South Hows Lane
Fort Collins, CO 80525
Phone: 970-491-5862 FAX: 970-491-2466
srimani@cs.colostate.edu

Editor-in-Chief
Practices for Computer Science and Engineering Board
Mohamed E. Fayad
Computer Science, MS/171
Bldg. LME, Room 308
University of Nevada
Reno, NV 89557
Phone: 702-784-4356 FAX: 702-784-1833
fayad@cs.unr.edu

IEEE Computer Society Executive Staff
T. Michael Elliott, Executive Director

Matthew S. Loeb, Publisher

IEEE Computer Society Press Publications
The world-renowned Computer Society Press publishes, promotes, and distributes a wide variety of
authoritative computer science and engineering texts. These books are available in two formats:
100 percent original material by authors preeminent in their field who focus on relevant topics and
cutting-edge research, and reprint collections consisting of carefully selected groups of previously
published papers with accompanying original introductory and explanatory text.

Submission of proposals: For guidelines and information on CS Press books, send e-mail to
cs.books@computer.org or write to the Acquisitions Editor, IEEE Computer Society Press, P.O. Box
3014, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720-1314. Telephone +1 714-821-8380. FAX +1
714-761-1784.

IEEE Computer Society Press Proceedings
The Computer Society Press also produces and actively promotes the proceedings of more than 130
acclaimed international conferences each year in multimedia formats that include hard and softcover
books, CD-ROMs, videos, and on-line publications.

For information on CS Press proceedings, send e-mail to cs.books@computer.org or write to Proceed-
ings, IEEE Computer Society Press, P.O. Box 3014, 10662 Los Vaqueros Circle, Los Alamitos, CA
90720-1314. Telephone +1 714-821-8380. FAX +1 714-761-1784.

Additional information regarding the Computer Society, conferences and proceedings,
CD-ROMs, videos, and books can also be accessed from our web site at
www.computer.org.

12/12/96

