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Message from the General Chair 

This is the 6th Heterogeneous Computing Workshop, also known as HCW '97. Heterogeneous 
computing is a very important research area with great practical impact. The topic of 
heterogeneous computing covers many types of systems. A heterogeneous system may be a set 
of machines interconnected by a wide-area network and used to support the execution of jobs 
submitted by a variety of users. A heterogeneous system may be a suite of high-performance 
machines tightly interconnected by a fast dedicated local-area network and used to process a set 
of production tasks, where the subtasks of each task may execute on different machines in the 
suite. A heterogeneous system may also be a special-purpose embedded system, such as a set of 
different types of processors used for automatic target recognition. In the extreme, a 
heterogeneous system may consist of a single machine that can reconfigure itself to operate in 
different ways (e.g., in different modes of parallelism). All of these types of heterogeneous 
systems (as well as others) are appropriate topics for this workshop series. I hope you find the 
contents of these proceedings informative and interesting, and encourage you to look also at the 
proceedings of past and future HCWs. 

Many people have worked very hard to make this workshop happen. I thank Richard F. Freund, 
NRaD, for founding this workshop series, and guiding its continued success. Debbie Hensgen, 
Naval Postgraduate School, was this year's Program Committee Chair, and she assembled the 
excellent program and collection of papers in these proceedings. Debbie did this with the 
assistance of her Program Committee, whose members are listed in these proceedings. The Vice- 
General Chair was Dan Watson, Utah State University, who helped me in many ways, including 
handling workshop publicity. 

This workshop is held each year in conjunction with the International Parallel Processing 
Symposium (IPPS). Viktor Prasanna, University of Southern California, is the Symposium Co- 
Chair of IPPS '97. The HCW series is very appreciative of his constant cooperation and 
assistance. 

This year the workshop is cosponsored by the IEEE Computer Society and the Office of Naval 
Research. I thank Dr. Andre M. van Tilborg, Director of the Math, Computer, & Information 
Sciences Division of the Office of Naval Research, for arranging ONR support to fund 
publication of the workshop proceedings (under grant number N00014-97-1-0121). 

Penny Storms, IEEE Computer Society Press, was responsible for publishing these proceedings. 
I have worked with Penny before, and as always she was very efficient, effective, professional, 
and pleasant. 

Richard F. Freund, Chair of the HCW Steering Committee, nominated me to be General Chair of 
HCW '97, and my nomination was approved by the Steering Committee. I appreciate the trust 
they had in me to accomplish this task. 

I thank my secretary Carol Edmundson for her assistance with my duties for this workshop. I 
thank my wife, Janet, for her advice on many workshop related matters, and for continuing to 
teach me, by example, to be a kinder, gentler person. Finally, I apologize to my one-year-old 
daughter Sky for letting my workshop responsibilities cut into our playtime. 

H.J. Siegel 
School of Electrical and Computer Engineering 
Purdue University 

Vll 



Message from the Program Committee Chair 

I am very pleased to have had the privilege of chairing this year's workshop and hope that you 
will gain significantly from reading these proceedings, listening to our talks, and participating in 
our closing discussion. The program committee and I are proud to have four outstanding case 
studies along with 14 excellent regular papers. I wish to thank our large, hard-working program 
committee for their enthusiasm and cooperative spirit as we each, along with external reviewers 
Mike Zyda, Jon Weissman, Cynthia Irvine, and Geoffrey Xie, reviewed the numerous 
submissions. Special thanks to Dan Watson for all of his work on publicity; to our Case Studies 
co-chairs John Antonio and Taylor Kidd for finding the excellent projects we will hear about 
today; to Viktor Prasanna for organizing the excellent conference to which this workshop 
belongs; and to Penny Storms for her hard work in bringing these proceedings together. And 
mostly, thanks to H. J. Siegel for keeping everything running on schedule and for his nearly 
endless voice mail reminders. 

Debra Hensgen 
Naval Postgraduate School 

vin 
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Abstract 
Distributed systems have the potentiality of becom- 

ing an alternative platform for parallel computations. 
However, there are still many obstacles to overcome, 
one of the most serious is that distributed systems 
typically consist of shared heterogeneous components 
with highly variable computational power. In this pa- 
per we present a load balancing support that checks 
the load status and, if necessary, adapts the work- 
load to dynamic platform conditions through data mi- 
grations from overloaded to underloaded nodes. Un- 
like task migration supports for task parallelism and 
other data migration frameworks for master/slave- 
based parallel applications, our support works for the 
entire class of SPMD regular applications with ex- 
plicit communications such as linear algebra problems, 
partial differential equation solvers, image process- 
ing algorithms. Although we considered several vari- 
ants (three activation mechanisms, three load moni- 
toring techniques and four decision policies), we im- 
plemented only the protocols that guarantee program 
consistency. The efficiency of the strategies is tested in 
the instance of two SPMD algorithms that are based 
on the PVM library enriched by special-purpose prim- 
itives for data management. As additional contribu- 
tion, our research keeps the entire support for dynamic 
load balancing transparent to the programmer. Even 
if the technical details are out of the scope of this pa- 
per, we point out that the only visible interface of our 
support is the activation phase. 

1    Introduction 
The widespread diffusion of distributed systems 

motivates the attempts to exploit the potential par- 
allelism intrinsic in these computing environments. 
Their architecture and the autonomy of the clus- 
ter components resemble the asynchronous activity 
of MIMD distributed-memory machines. In addition, 
frameworks such as PVM and MPI greatly help to fill 
the gap between parallel and distributed platforms by 

hiding the heterogeneity of cluster components to the 
programmer. However, these libraries do not over- 
come the inefficiencies caused by the unpredictable 
variability of usually shared resources. Since any dy- 
namic modification of the underlying platform deteri- 
orates the performance of distributed parallel compu- 
tations, a satisfactory efficiency can be achieved only 
by keeping the workload proportional to the compu- 
tational power of each processor. 

In this paper, we address heterogeneity through the 
notion that each node may have a different computa- 
tional capacity. We propose a transparent support 
which aims at dynamically balancing the workload of 
Single Program Multiple Data (SPMD) regular com- 
putations with near-neighbor and/or multicast com- 
munications. A large number of parallel programs 
belongs to this class: linear algebra problems, par- 
tial differential equation solvers, image processing al- 
gorithms. For these algorithms, the same code runs 
on several nodes while the data space is partitioned 
among the nodes. Since the workload on each pro- 
cessing unit is a function of the number of elements 
contained in its subdomain, we can keep the workload 
balanced by means of data migrations from overloaded 
to underloaded nodes. When data migration schemes 
are feasible, they are preferable to task migration ap- 
proaches for two main reasons: higher efficiency be- 
cause the information to transmit is more limited and 
a new process startup is not required, and more pre- 
cise balancing thanks to the finer granularity of the 
load that can be re-distributed. 

In particular, we are interested in balancing strate- 
gies which are efficient but, at the same time, guar- 
antee full consistency of the parallel program's execu- 
tion. Our strategy consists of periodically evaluating 
the status of the platform and providing data recon- 
figurations if the differences among old and new load 
values pass a given threshold. We discuss three acti- 
vation mechanisms, three load monitoring techniques, 
four decision policies and implement all those that give 

0-8186-7879-8/97 $10.00 © 1997 IEEE 



adequate guarantees of correctness. In particular, our 
support implements an explicitly activated protocol, 
a distributed load status evaluation, a centralized de- 
cision policy and a concurrent data reconfiguration. 
Even if the proposed load balancing schemes are best 
suited to SPMD parallelism, some of the methods can 
be applied elsewhere. We compare under different sce- 
narios four decision policies that decide to reconfig- 
ure on the basis of parameters such as system average 
imbalance, system maximum imbalance, current load, 
current load combined with past information. 

Both the SPMD applications and the dynamic sup- 
port are written in C. They use PVM for the com- 
munication and system inquiry primitives [9], and a 
special-purpose library for the data inquiry primitives. 
The dynamic balancing support described in this pa- 
per is, in fact, part of a wider project named DAME 
that aims at combining the simplicity of the SPMD 
paradigm with the efficiency when this programming 
style is adopted on distributed systems. For this rea- 
son, the entire support for dynamic load balancing is 
kept hidden from the programmer: the only visible in- 
terface is the check_load() function which is provided 
for the explicit activation of the framework. Since the 
details about this project are out of the scope of this 
paper, the reader can refer to [5, 6] for the technical is- 
sues about heterogeneous data distribution, and data 
inquiry primitives that keep this heterogeneity hidden 
from the programmer. The goals of the entire project 
and other experimental results are reported in [8]. 

This paper is organized as follows. Section 2 con- 
tains a summary of the related work and the main 
motivations for a new approach. Section 3 focuses on 
the load balancing model that we adopt for SPMD 
applications. Section 4 describes the load monitoring 
and decision phases, and presents four decision poli- 
cies that we compare in the experiments. Section 5 
analyzes the activation and the data migration phases. 
Moreover, it outlines the effects of the load balancer on 
initial data distribution and application's processes. 
Section 6 presents the experimental results that are 
obtained for different load balancing schemes and sce- 
narios. Section 7 gives some final remarks and outlines 
future work. 

2    Related work and motivation 
The increasing interest in distributed parallel com- 

puting has opened new problems in dynamic load bal- 
ancing that is a well studied subject in other areas. 
While much attention has been devoted to develop ef- 
ficient reconfiguration schemes for task parallel pro- 
grams running on parallel or distributed platforms 
[1, 7, 17, 3, 4, 18], the results in the area of data paral- 
lelism are more limited. These computations allow a 
reconfiguration protocol based on data migration that 
is more efficient than task migration.   On the other 

hand, there are higher risks of incorrect execution be- 
cause data migration affects the initial domain par- 
tition on which the SPMD implementation has been 
based. The necessity of dynamic data redistribution 
can be caused by internal factors, such as for irreg- 
ular data parallel computations, or external factors, 
such as in distributed systems that provide inherently 
dynamic platforms. Data migration techniques have 
been adopted for irregular algorithms [11, 14, 15] and 
for regular applications running on distributed plat- 
forms [13, 3, 16, 10]. The load balancing strategies 
proposed in this paper were designed to face the prob- 
lems related to these latter environments. To the best 
of our knowledge, none of the results achieved in this 
area yet refers to SPMD algorithms with explicit com- 
munications that are the most common parallel com- 
putations. Therefore, our contribution represents an 
important step to facilitate the portability of these 
programs on distributed platforms. 

Related works that consider programming models 
very distant from SPMD programs with communica- 
tions are Dataparallel C [13] and Piranha [2]. Data- 
parallel C is a run-time support which allows SIMD 
shared memory applications to run efficiently on clus- 
ters of workstations. Its programming environment 
and the migration support are based on the virtual 
processor concept. Piranha dynamically adapts Linda 
computations to the available workstations. However, 
these programs are implemented on the basis of a vir- 
tual shared memory paradigm. 

On the other hand, there are two recent results 
that concern a paradigm closer to ours that is, SPMD 
master/slave computations without communications 
[3, 10]. The Application Data Movement described in 
[3] is a run-time support that furnishes a set of func- 
tions that help the programmer to implement adap- 
tive workload distribution of master/slave programs 
through data migration. Hamdi and Lee [10] propose 
a data redistribution method for parallel image pro- 
cessing. The main novelty of this support with respect 
to other load balancing strategies, which are activated 
only at the end of fixed intervals or phases [14, 7, 16], 
is that data migration can occur even within an it- 
eration. This method is indispensable especially if we 
consider computations, such as image processing, that 
are characterized by few very long iterations. 

As main contributions, we provide a support that 
works for regular SPMD applications containing near- 
neighbor and/or multicast communications, allows the 
programmer to activate the dynamic balancer at any 
computation point (as well as in [10]), guarantees the 
transparency of the load balancing phases. 

3    Load balancing model 
As computing model, we consider a regular SPMD 

application with explicit communications. Moreover, 



we assume a simple machine model consisting of p 
nodes. Each node executes one internal process of the 
SPMD application, and may execute other external 
processes. By analogy, we call external workload the 
load represented by other (sequential or parallel) jobs 
that run on the same workstation used by our parallel 
application that causes internal workload. The nodes 
are fully connected as in an Ethernet-based or token- 
ring network. Each internal process has its own ad- 
dress space, and the need for any data entry placed in 
the memory of other nodes requires explicit message 
passing. The dynamic load balancing model we are 
proposing for SPMD computations is similar to that 
given in [17], and it is based on the following phases, 
that can be implemented in different ways: 

1. Activation mechanism: This phase represents 
one of the possible points of interaction be- 
tween the load balancing support and the inter- 
nal processes. The load balancer can be activated 
explicitly (by some function called by the applica- 
tion) or implicitly (without any application's in- 
tervention). In addition, this activation can de- 
termine a barrier for the internal processes (syn- 
chronous) or not (asynchronous). 

2. Load monitoring: Once the support has been 
activated, each process evaluates the status of the 
external workload on the respective node. This 
phase is usually executed in a distributed way. 
The alternatives regard the ways in which the 
load parameter can be evaluated: by adopting 
some external functions (active) or by using the 
evolution of the parallel application itself (pas- 
sive). 

3. Decision: This phase determines, on the basis 
of the load parameters, whether the workload 
should be reconfigured or not, and how to re- 
distribute it. Several centralized and distributed 
policies have been proposed in literature. More- 
over, the decision can be taken on the basis of the 
last evaluated parameters or using a combination 
of present and past information. 

4. Reconfiguration (Data migration): This 
phase represents another main point of interac- 
tion between the load balancer and the appli- 
cation. Therefore, we may have the same al- 
ternatives described for the phase 1: synchro- 
nous/asynchronous, implicit/explicit. Moreover, 
the migration strategy can be centralized or dis- 
tributed. 

At present, our framework follows a centralized 
policy and is activated explicitly by a call to the 
check_load()  function  which  we  provide  together 

with the run-time support. The following alterna- 
tives are available: the activation mechanism is ex- 
plicit with two alternatives for the internal process 
(synchronous or asynchronous); the load monitoring is 
active with two available schemes (micro-benchmarks 
or Unix functions); the decision is centralized with 
four available policies; the reconfiguration is implicit, 
distributed and synchronous. 

Without the aim of considering all of the feasible 
alternatives, we illustrate the adopted choices and give 
some motivations for each of them. Let us first focus 
on the two phases which are independent of the par- 
allel application (load monitoring and decision) and 
postpone the discussion about activation and recon- 
figuration phases to Section 5. 

4    Application independent phases 

4.1    Load monitoring 

In a heterogeneous system with different worksta- 
tion speeds, each node has a nominal power, and a 
duty cycle rji that is, the fraction of node process- 
ing capacity which is consumed by local tasks. We 
call available capacity Ci the computing power that re- 
mains for executing the distributed parallel program. 
When we normalize each c; to the cumulative capacity 
of all the nodes, we obtain a relative available capacity 
Xi, where YZ=\Xi = 1- Since in a distributed system 
the duty cycle may change during the execution of the 
parallel application, we denote rn(t), Ci(t) and Xi(t) as 
functions of time. The goal of the load monitoring 
phase is to determine a measure for C{(t). There are 
two main alternatives for estimating this value: by 
means of external functions (active methods) or by 
using the application itself (passive methods). This 
latter is an ideal solution that aims at avoiding extra- 
overheads caused by the active methods. See for ex- 
ample [13, 10]. 

Our first idea for implementing a load monitoring 
was to use a passive method in which the load pa- 
rameter was extrapolated by the time difference for 
executing a significative portion of code without com- 
munications or synchronizations among the processes. 
However, in the present version of the support, we dis- 
carded the hypothesis of adopting a passive method 
for three main reasons: 1) the programmer would 
have been required to select this portion of 'test' code, 
thus contradicting the aim of transparency; 2) we 
could have no guarantee about the quantity of in- 
volved operations to give a precise estimate about 
Ci(t); 3) although active methods are more time wast- 
ing, they guarantee transparency, application indepen- 
dency, and a more accurate estimate of the actual load. 

Therefore, we adopt two active methods for load 
monitoring. The first uses the Unix system call that 
gives different kinds of information about current com- 



putational power (number of tasks in the run queue, 
1-minute load average, rate of CPU context switches, 
etc.). Following the results reported in [12], we adopt 
the number of tasks in the run queue of each node 
as basis for measuring the external workload rji(t). 
The second possibility is to estimate the current load 
through a synthetic micro-benchmark that is, a pur- 
posely implemented function which gives an immedi- 
ate estimate about the available capacity Cj(i) for ex- 
ecuting scientific-based programs. Due to space limi- 
tations, we could not include the code of the adopted 
micro-benchmark, however it is to be noted that a 
different class of parallel applications would require a 
different micro-benchmark. The Unix call is faster in 
the evaluation of the load (between 80 and 100 mil- 
liseconds) but requires some additional computations 
to estimate the available capacity Ci(t). Moreover, this 
estimate causes some approximation in the load infor- 
mation. On the other hand, the micro-benchmark is a 
slower technique (between 0.5 and 2 seconds, depend- 
ing on the machine power) but gives an immediate 
estimate about Ci(t). 

Both methods are available in our support. For 
example, in our experiments, we adopt the Unix func- 
tion for the LU factorization algorithm, and the micro- 
benchmark for the heat equation solver. In both in- 
stances, the load information Ci(t) is sent to the re- 
configuration master that executes the decision policy. 
Typically, the most powerful node of the platform is 
chosen as the master. 

4.2     Decision policies 
This phase takes two important decisions: whether 

to redistribute and how to redistribute. We discuss 
four policies that are based on a centralized approach. 
The master process is responsible for collecting the 
load parameters, executing one decision policy, and 
broadcasting the decisions to the internal processes. 
This message consists of three parts: operation (to re- 
configure or not), node information (map of sender 
and receiver nodes), data information (map of data 
to transmit). Even if centralized approaches tend to 
be more time consuming and less feasible than dis- 
tributed strategies as the number of processors in the 
system becomes large, we preferred them because they 
better guarantee the consistency of a generic SPMD 
application, and allow the master to keep track of 
global load situation. 

Once the master has received the available capac- 
ities Ci(t), at check-load time t, from all the nodes 
i = 1,.. .,p, the first step of our decision policies is to 
evaluate the relative values Xi(*)- Then, each node es- 
timates Ai(t) =| Xi(*) — Xi{ti) I that is, the difference 
between the current capacity X»(^) anc^ the relative 
power Xi{tl) which was available at the time of the last 
data redistribution £;. Thereafter, each decision policy 
implements a different strategy to determine the over- 

all imbalance factor A(t). Our intention is to compare 
decision policies that are focused on the average im- 
balance vs. strategies oriented to check the maximum 
node imbalance; policies using instantaneous informa- 
tion vs. policies using also historical information. In 
general, the reconfiguration is carried out when the 
imbalance factor passes a threshold i9. The following 
criteria were implemented: 

a) System Average Imbalance (SAI) 

This policy decides to reconfigure when the over- 
all system is considered imbalanced that is, when 

A(i) = l/pEAi(<)>^ 

b) System Maximum Imbalance (SMI) 

This policy assumes that, once the available ca- 
pacity of a node changes more than the threshold 
i?j, any reconfiguration will improve program effi- 
ciency. Therefore, it decides to reconfigure when 
at least one node i has 

Ai(t)=|x<(*)-Xi(*i)l>*» 

c) Number of Imbalanced Nodes on the basis of Cur- 
rent load (NINC) 

p        _ 
It reconfigures when A(t) = 1/p ^ Aj(i) > tfc 

t=i 

where Ai(t) = {  J    *j* (*) - Xi{U) |> A 
otherwise 

This policy is similar to SMI. However, NINC 
tends to reduce the reconfigurations to the in- 
stances in which more than one node is imbal- 
anced. In our experiments, a node is consid- 
ered imbalanced when its relative capacity has 
changed more than A = 0.4, which is the default 
threshold value. Therefore, the behavior of this 
policy is more sensitive to i9c that is, the fraction 
of imbalanced nodes in the system. 

d) Number of Imbalanced Nodes on the basis of cur- 
rent and Past load (NINP) 

v 
It reconfigures when A(t) = 1/p £) A,(t) > #<* 

»=i 

where 

A.(t-} = /  1    ^ E/C0 I Xi(t) - Xi(tj) |> A 
l^  0    otherwise 

and Xi(Jj)i f°r 3 = l,---,h, denote the relative 
powers that were available at the last h check- 
load points. 
This method measuring the load imbalance in all 
check-load points from the last reconfiguration is 
similar to the NINC criterion. However, the new 



policy measures the load imbalance of a node over 
a period of time rather than using only the most 
recent information. The goal of this criterion is to 
reduce the effects of temporary power variations. 
In our experiments we set h = 4 and A = 0.4, 
while the function f(j) = e~^2/G is a decay fac- 
tor that assigns a smaller weight to the older load 
parameters, and G is the normalizing factor. 

It is to be noted that the four policies have the same 
linear complexity 0(p). Since this phase is much faster 
than any other phase of the balancing process, the de- 
cision does not represent a big bottleneck even if it is 
centralized. The choice of the most suitable threshold 
for any kind of SPMD application and platform con- 
dition is one of the theoretical issues (the other is the 
optimal frequency of check-load points) that deserves 
further study. The experiments are carried out by em- 
pirically choosing policy thresholds that work fine for 
the kind of considered applications. 

The second basic issue in the decision policy is how 
to redistribute data. An optimal solution to this prob- 
lem is very hard to find if we consider task parallel 
programs, because it involves integer programming so- 
lution. Conversely, in the instance of data parallel 
computations, the possibility of partitioning the data 
space into different size portions allows us to assign 
to each node a computational workload which is pro- 
portional to its speed. This simple optimal technique 
can be achieved because we redistribute a workload 
(data) that has a much finer granularity than a task 
load. Since our framework works under the hypothesis 
that the internal workload is a function of the quantity 
of owned data, we can suppose that the complexity of 
the algorithm executed by each node is approximated 
by a law such as 0(nc) where n is the one dimensional 
size of the local domain. For example, if the data do- 
main is M x N, the local domain of a node i at time t 
should be kept as close as possible to (balancing equa- 
tion) 

rm x m = (M x N)[Xi(i)]2/c. 
To allow the run-time support to automatically de- 

termine the right data size to assign to each node i 
(that is, computing m; and rii), the programmer has 
to specify the average computation complexity C and 
the basic grain. This latter denotes the minimum por- 
tion of data domain that can be moved during dy- 
namic reconfigurations. Depending on the chosen do- 
main decomposition, the basic grain can be a single 
element, or a multiple of a row or column. 

For a ID decomposition, the basic grain can only 
be a multiple of row or column. As example, if it is 
set to a single row, we have tii = JV, and we assign to 
each node i a number of rows equal to 

rm = M[Xi{t)?
IC. 

For a 2D decomposition, the most common basic 
grain is a single element because this choice allows us 
to achieve best load balancing. Our data distribution 
support obtains a 2D decomposition by virtually parti- 
tioning the nodes in horizontal subnets, and assigning 
the same set of rows to the nodes of the same subnet 
(see nodes 1-3 and 4-6 in Figure l.b). Since the nodes 
of a subnet <S have the same number of rows, each TOj, 
for i £ S, has the following identical value 

mi = M[j:xj(t)}2/C- 

Once evaluated the variables rrn, we can use the 
balancing equation to obtain each n; value, that is, 

ni = (N/[Exj(t)?
/C)[Xi(t)]2/C. 

5    Application dependent phases 
5.1    Activation and reconfiguration 

The activation and reconfiguration phases are the 
interface between the load balancing support and the 
application. Several protocols could be chosen on the 
basis of the degree of interference that one allows be- 
tween the support and internal processes. We propose 
a partial transparent framework that does not put any 
responsibility for data reconfiguration on the program- 
mer, however it requires the programmer to specify the 
points of the application where the support has to be 
activated and the frequency of the activation. To this 
purpose, we furnish a check-load () primitive that the 
programmer can insert into one or more point of the 
SPMD code. Since no control is done by the compiler, 
the entire responsibility for the check J.oad() inser- 
tion is left to the programmer. For this reason, instead 
of using 'unsafe' transparent protocols, we adopt so- 
lutions that have partial or total interference with the 
application. Let us briefly discuss three protocols with 
explicit activation. 

• Synchronous activation - Synchronous reconfigu- 
ration (SASR) 
In this case, each call to the check_load() prim- 
itive interrupts the execution of the parallel ap- 
plication and activates the load balancing sup- 
port. The information about current computa- 
tional power is then evaluated and sent to the re- 
configuration master. All the internal processes 
wait until the decision phase is completed. This 
choice has many advantages: the protocol is easy 
to implement, there is maximum safety because 
the entire load balancing process is carried out 
while the internal processes are blocked, and the 
information about the platform load is the most 
updated possible. However, the drawback of this 
protocol is that every time the reconfiguration is 
not necessary, the check_load() call represents 
an unuseful barrier.   For this reason, it can be 



adopted for highly-coupled applications and/or 
when the probability of reconfiguration is high. 

• Asynchronous activation - Synchronous reconfig- 
uration (AASR) 
A way for mitigating the overhead of SASR is to 
synchronize the internal processes only when nec- 
essary. To this purpose, we adopt a different pro- 
tocol that is based on a couple of check_load(l) 
and checkJLoad(2) calls. The former call ac- 
tivates on each node i an independent evalua- 
tion of the capacity Ci(t) which is then sent to 
the reconfiguration master. While the internal 
processes continue their operations, the master 
decides about the convenience of reconfiguration. 
The best point for calling checkJLoad(2) de- 
pends on the following trade-off: it should not 
occur too late in order to avoid obsolescence of 
load parameters, and not too soon to guaran- 
tee that almost all of the nodes have sent their 
load parameters and the decision is completed 
with high probability. At the occurrence of the 
check_load(2) call, each node waits for the mes- 
sage about the reconfiguration. However, this call 
causes a global barrier only when the master de- 
cides that the reconfiguration is necessary. 
This protocol limits the overheads to the nec- 
essary points and guarantees the same safety of 
SASR because the reconfiguration is carried out 
while the internal processes are blocked. On the 
other hand, AASR does not work on the same 
precise information as the SASR because the load 
parameters do not exactly refer to the same in- 
stant. We mitigate the effects due to this problem 
by using higher thresholds that take into account 
the probability of some error about the node ca- 
pacity estimation. 

• Asynchronous activation - Asynchronous recon- 
figuration (AAAR) 
The AASR protocol aims at avoiding any interfer- 
ence between the support and internal processes, 
thereby allowing asynchronous activations and 
data reconfigurations. However, we discarded this 
protocol because of the serious risks of inconsis- 
tency that may affect an SPMD algorithm with 
explicit communications running on our support. 
The main reason is that most parallel instructions 
of these programs work on the basis of a data par- 
tition. Since any data reconfiguration modifies 
this representation, it is very risky and, most of 
the time, impossible to allow asynchronous data 
migrations. Additional details about the recon- 
figuration phase will clarify this issue in Section 
5.2.2. 

Therefore, even if the synchronous reconfiguration 
protocols do not seem optimal from the efficiency 

point of view, they augment the simplicity and correct- 
ness of the reconfiguration strategy. Since all processes 
are blocked in the same execution point, data migra- 
tions can be easily carried out in a distributed and 
transparent way. 

5.2    Implementation issues 
The explicit management of the load balancing 

phases makes distributed parallel programming very 
difficult. Hence, it was our main intention to keep this 
framework as hidden as possible from the programmer. 
In this section, we outline the guidelines adopted for 
designing a transparent data migration support which 
is explicitly activated by the check_load() primitive. 

5.2.1     The checkJLoadO function 

This function represents the only explicit interface be- 
tween the load balancing support and the application. 
It can be called at any point of the parallel program 
which is considered safe by the programmer. This 
task is not as complicated as it seems, because we 
are in the context of SPMD algorithms. The basic 
rule is to avoid check_load() calls between send() 
and receive () primitives, and in branches of the al- 
gorithm that could not be executed by some node. 
However, since no control is carried out by the com- 
piler, the entire responsibility for the check-load() 
insertion is left to the programmer. This function has 
seven parameters: activation, interval, load, decision, 
threshold, grain, complexity. 

Let us first focus on the activation and interval pa- 
rameters that concern the interface between the ap- 
plication and load balancing support. There are three 
basic ways of using the check_load() primitive that 
depend on the activation protocol, and the number 
of activations that the programmer wants in a main 
iteration. We distinguish the following instances: a 
check-load(0,0) denotes one synchronous activation 
for each call; a check_load(0,0 denotes one synchro- 
nous activation every i main iteration steps; a cou- 
ple of checkJLoad(l,i) and check_load(2,i) denotes 
one asynchronous activation every i main iteration 
steps. It is to be noted that the AASR protocol does 
not admit more than one activation during a main 
iteration step. If for certain algorithms it is prefer- 
able to execute more than one iterations before wait- 
ing for the decision, the programmer has to use values 
greater than two in the first parameter of the second 
check.loadO call. 

The parameters of the check_load() function are 
as follows, 

Activation: For the SASR protocol, use 0. For the 
AASR protocol, use 1 in the activation call, 2 
for waiting the decision from the reconfiguration 



master in the same iteration step, and k > 2 for 
waiting the decision after k — 2 iteration steps. 

Interval: This parameter denotes the frequency of 
activation of the load balancing support. Any 
value greater than 0 is expressed as number of 
main iterations, while the 0 value means that 
each check_load() call causes the activation of 
the framework. If the programmer wants to ac- 
tivate the support more times during the same 
iteration, he has to use more check_load(0,0) 
calls in the same program. These multiple calls 
are allowed for the SASR protocol only. 

Load: The two available active methods are micro- 
benchmark and Unix system call 

Decision: The available decision policies are SAI, 
SMI, NINC, NINP (see Section 4.2). 

Threshold: This parameter depends on the adopted 
decision policy. We use a real number, in which 
the value before the point denotes the chosen A, 
and the value after the point corresponds to i9. 
For example, a 35.60 parameter denotes A = 0.35 
and 1? = 0.6. A null value in either camp is 
adopted when a policy requires a single thresh- 
old or to specify the default parameter. 

Grain: This parameter represents the basic grain 
that can be redistributed. The programmer can 
choose among point, row, column, taking into ac- 
count the adopted data distribution. As example, 
for 1-dimensional decompositions, the basic grain 
has to be a multiple of one row/column, while a 
2-dimensional decomposition allows even a single 
point as basic grain. 

Complexity: This value describes the average com- 
putational complexity that the application has on 
its data domain for each iteration step, and is cru- 
cial to determine the right amount of data that 
has to be transmitted in case of reconfiguration 
(see Section 4.2). 

5.2.2     Data management 

The data distribution choice is the first step in the 
implementation of any SPMD program. It determines 
the mapping of data entries onto nodes, and strongly 
influences load balancing because in SPMD computa- 
tions the internal workload is usually proportional to 
the data assigned to each node. In the instance of 
regular problems solved onto homogeneous platforms, 
the choice of the best data distribution is not a partic- 
ularly difficult task because all the nodes are assumed 
to have identical and static power. On the other hand, 
the quality of data distribution on heterogeneous and 

variable platforms, even for regular algorithms, de- 
pends on dynamic factors that cannot be anticipated 
during implementation. Since the program should po- 
tentially run for several kinds of data distributions, it 
should be decomposition-independent. For this reason 
our load balancing support is part of a wider frame- 
work, called DAME, that provides the programmer 
with the tools for adopting the SPMD paradigm on 
a distributed system as on a parallel platform. Even 
if a detailed description of DAME is out of the scope 
of this paper, we give some details about the adaptive 
data distribution support (ADD) because it is related 
to the dynamic load balancer. For more details, you 
can refer to [6]. 

• At implementation-time, ADD allows the pro- 
grammer to choose the regular data distribution 
(data partition image) that is most appropriate 
for the application without caring about the plat- 
form irregularities. As common rule, many stud- 
ies have evidenced that, for distributed parallel 
computing, 1-dimensional decompositions work 
better than 2-dimensional decompositions. More- 
over, a block distribution is usually suitable to 
regular computations, while a fine-grain scatter 
distribution is preferable for irregular computa- 
tions. 
In addition, ADD provides the programmer with 
a set of data inquiry primitives (such as data 
owner identifiers, local data extractors, index con- 
versions, local loop ranges) that have to be used 
in any operation which is related to the data par- 
tition image. 

• At load-time, ADD achieves initial load balanc- 
ing by automatically determining the heteroge- 
neous data distribution (actual data partition) 
which best adapts itself to the computational sta- 
tus of the platform. Figure l.a and l.b show 
a 1-dimensional and 2-dimensional block decom- 
position of a 2-dimensional data structure on a 
computing platform consisting of six heteroge- 
neous nodes having relative capacities equal to 
x(to) = (0.19,0.09,0.17,0.15,0.29,0.11). 

• At run-time, ADD translates the data inquiry 
primitives referring to the data partition image 
into accesses to the actual data partition. This 
latter, in fact, can be dynamically modified by 
the load balancer support. 

When the master decides that the initial data par- 
tition has to be reconfigured, both the load balancer 
and ADD are involved. On the basis of the results of 
the decision policy, the load balancer carries out data 
migrations that modifies the actual data partition only. 
The application is indirectly informed about the new 
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Figure 1: j4ctua/ data partition for ID and 2D block de- 
composition of a 2D data domain. 

data distribution through the results of the data in- 
quiry primitives. In fact, they are used at implemen- 
tation time with respect to the data partition image 
which is not subject to dynamic modifications, but re- 
fer to the actual data partition when they are called 
at run-time. 

All the data structures that describe the actual data 
partition have to be updated before allowing ADD to 
access them. This inter-dependence prevents us from 
using asynchronous reconfiguration protocols such as 
AAAR. When the master decides about the recon- 
figuration, each internal process has to be blocked. 
In such a way, the master process can inform each 
node about the data entries that have to be transmit- 
ted and received. Data migrations occur in a distrib- 
uted way among the nodes that own parts of neigh- 
bor data domain. If a 1-dimensional data distribu- 
tion is adopted, each node may communicate with the 
two neighbor nodes. Figure 2.a shows the data mi- 
gration occurring in the same platform of Figures 1 
under the hypothesis that the relative capacities be- 
come x(f) = (0.11,0.18,0.21,0.18,0.14,0.18). If a 2- 
dimensional data distribution is adopted and the basic 
grain is a point, data exchange occurs first horizon- 
tally and then, if necessary, vertically (Figure 2.b). If 
one excludes the worst cases, that are very rare, the 
total number of send() for a node usually does not 
overcome six and is much less in average. 

6    Experimental results 
We carried out a set of experiments to measure 

the performance of our load balancing framework 
when applied to SPMD applications with explicit 
communications. The focus is mainly on the deci- 
sion policies. The platform consists of six hetero- 
geneous workstations which are connected through 
an Ethernet-based network.   The initial relative ca- 

Figure 2: Actual data partition after a data reconfigura- 
tion. Dotted lines denote subdomain boundaries before 
reconfiguration. 

pacities are given by the following vector x(*o)   = 
(0.19,0.09,0.17,0.15,0.29,0.11). 

Experiments were performed during night hours 
when we had 'dedicated' workstations and we could as- 
sume almost exclusive access to the network. In order 
to emulate external workload, we loaded some node 
with special processes. Since even during night hours a 
distributed system cannot be considered a stable plat- 
form, we reduced the variability of the execution times 
by carrying out six repeated runs for each experiment. 
The results shown in this section are the average mea- 
surements of these six runs. We implemented two pop- 
ular SPMD algorithms in C using PVM 3.3 primitives 
and the library provided by DAME: 

1) LU factorization. This algorithm contains mul- 
ticast communications and is partly irregular in the 
sense that, at each iteration step, it works on a smaller 
data domain. We consider a domain consisting of a 
square dense matrix that is row partitioned in a cyclic 
way. The basic redistribution grain is fixed to a row, 
while the complexity coefficient C is equal to 2. 

2) Heat equation solver. This algorithm evaluates 
the temperature of each grid point by means of a suit- 
able linear combination of the temperature of its ad- 
jacent points at the previous time step according to 
the finite difference method. It is a regular algorithm 
that contains only near-neighbor communications. We 
consider a 2-dimensional domain that is partitioned in 
blocks. Even for this algorithm, the complexity coef- 
ficient C is equal to 2. 

The system variability is reflected through a set of 
four scenarios. In scenario A, two nodes are loaded 
by external processes that have an interval of activa- 
tion and disactivation equal to 300 seconds (average 
variability).   In scenario B, the external workload is 



on five nodes with same average interval of activa- 
tion and disactivation as scenario A. In scenario C, 
the external workload is on half nodes with activa- 
tion/disactivation interval equal to 400 seconds (low 
variability). In scenario D, the external workload is 
on half nodes with interval equal to 120 seconds (high 
variability). 
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Figure 3: Execution times of the parallel solution of the 
2-dimensional heat equation after 100 iteration steps with 
variable domain size. The platform consists of 6 machines 
that are subject to workload variations according to sce- 
nario A and scenario B. 

The first set of experiments aims at evaluating the 
advantages of our load balancing support. To this pur- 
pose, we compared the performance of the heat equa- 
tion algorithm with actual data partition equal to data 
partition image and no checkJ.oad() call (equ-stat), 
the same algorithm with actual data partition propor- 
tional to initial node capacities and no check-loadQ 
call (bal-stat), and the algorithm using dynamic actual 
data partition and checkJ.oad(0,7,bench,SMI, .45) 
calls (bal-dyn). Figures 3 show the execution times 
(in seconds) of one hundred iteration steps of the heat 
equation solver for a rectangular data domain in which 
one dimension is fixed to 300 and the other is vari- 
able (see values on the ascissa). In particular, Figure 
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Figure 4: Execution times (cumulative) of LU factoriza- 
tion of a 800 x 800 dense matrix solved on four worksta- 
tions without dynamic balancing (no balan), with synchro- 
nously (SASR) and asynchronously activated load balanc- 
ing (AASR). Each node of the platform is subject to very 
frequent workload variations (every 40 sees). The first set 
of runs adopts check_load(*,200) while the second uses 
check -load(*, 100). 

3.a refers to the scenario A, while Figure 3.b to the 
scenario B. We can see that our support guarantees 
a better efficiency for any dimension of the data do- 
main, even when it adopts a simple policy such as 
the SMI, and the protocol SASR which is affected by 
many overheads due to synchronous activations and 
micro-benchmarks. 

The second set of experiments compares the syn- 
chronous with the asynchronous activation protocol. 
Figures 4 show the performance of these policies run- 
ning on a platform subject to frequent workload vari- 
ations for different activation intervals. As expected, 
AASR behaves better than SASR in both cases. The 
difference in favor of AASR is even larger if we con- 
sider parallel applications that have less intrinsic syn- 
chronizations than LU factorization algorithm. 

In the third set of experiments, we test the sensitiv- 
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Figure 5: Execution times of 100 iterations of the heat 
equation solver on a 300 x 3000 domain by using dynamic 
load balancing every 7 iteration steps with different deci- 
sion policies and variable thresholds. 

ity of the decision policies to the threshold i9. This is 
a key parameter for the performance of the load bal-. 
ancer because we have to solve the trade-off between 
low thresholds that allow a more balanced workload 
at the price of higher overheads, and high thresholds 
that reduce overheads, but have major risks of long 
imbalanced executions. Since the choice of the best 
threshold depends on many variables, among which 
the application characteristics and platform conditions 
are the most important, a global solution is out of 
the scope of this paper. For this reason, we carried 
out only an empirical analysis within our test algo- 
rithms and scenarios. Figures 5 show the execution 
times of 100 iterations of the heat equation solver on 
a 300 x 3000 domain running under scenarios C and D 
as a function of the threshold. It is to be noted that 
each decision policy performs best in correspondence 
of a rather large interval of threshold values. Hence, 
any value in this interval can be considered acceptable. 

The last set of experiments aims at comparing the 
decision policies applied to the same heat equation 

solver used in the third set of experiments under the 
four scenarios A-D. The checkJ.oad() adopts the 
AASR protocol with interval parameter set to 7, while 
the thresholds for each decision strategy are set to 
the best values found in the previous experiments. In 
particular, the Figures 6-9 show the execution times 
required to complete each iteration step by the slow- 
est node of the platform, without considering the costs 
due to the check_load() calls. Each graph reports the 
execution times as sum of application time and over- 
heads due to the load balancing support. The peaks 
in each curve denote an imbalanced situation created 
by the activation of synthetic workloads. All the ex- 
periments are subject to the same external workloads, 
however they can occur at different iteration steps de- 
pending on the speed of the processes. In faster (that 
is, more balanced) executions, the peaks that denote 
external workloads appear in correspondence of higher 
iteration steps. 

Figure 6 compares the strategies SAI, SMI and 
NINC under the scenario A. SAI and SMI reduce the 
global execution time of more than 20% with respect 
to the algorithm without check-load(), while NINC 
(and NUNC that for these experiments behaves very 
similarly to NINC) provides more limited improve- 
ments. In particular, SMI recognizes any consistent 
power variation and reacts immediately (all the peaks 
but one are smaller than in other strategies). SAI is 
less reactive than SMI because it considers the global 
imbalance: it does not react to single variations, while 
it soon reconfigures when the entire system is imbal- 
anced. On the other hand, NINC, that in our platform 
requires at least two nodes to be imbalanced, is insen- 
sitive to variations occurring in one node only. 

Figure 7 compares the same decision strategies un- 
der the scenario B that provides a more imbalanced 
platform than A. In this instance, the strategies SAI 
and NINC perform best, while SMI is very poor. The 
problems of this strategy are due to the fact that it al- 
ways reconfigures, thus causing more overheads (344 
seconds compared to 206 and 256 of the other two 
strategies) without reducing the execution time of the 
algorithm (compare 1543 seconds to 1470 and 1408). 
This demonstrates that, in highly variable platforms, 
it is not convenient to always reconfigure, because the 
new actual data partition may soon be invalidated. 
The curves SAI and NINC have less skews and per- 
form generally better than SMI. However, the long 
peaks around iterations 45-65 denote their inability to 
react to a serious imbalance which is due, with high 
probability, to only one node. 

Figures 8 and 9 evaluate the trade-off between a 
strategy using only the last information and a policy 
using even past information about the node capacities. 
The comparison between NINC and NINP is carried 
out on a low and highly variable platform (that is, sce- 
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nario C and scenario D, respectively). We can antici- 
pate that in both instances, the policy using past infor- 
mation does not achieve better results than the strat- 
egy without memory. In particular, in the scenario C, 
NINC suddenly reacts to each variation, while NINP 
usually reacts at the successive checkJ.oad() call. 
Therefore, NINP causes more iterations to be executed 
in an imbalanced condition. Figure 8 shows that the 
NINP peaks are always longer than the NINC peaks, 
while in a low variable scenario there is not a great 
difference between NINC and NINP overheads. The 
results in case of highly imbalanced platform (Figure 
9) have a more difficult interpretation. NINC always 
reconfigures but, being a myopic policy, it often has 
to reconfigure again at the successive checkJLoad() 
call. This causes a greater overhead for NINC than 
for NINP (266 vs. 246 seconds) which is due to the 
higher number of data migration for the former pol- 
icy. NINP, being sensitive to long fluctuations only, 
performs well when it avoids following any brief vari- 
ation of the platform, and performs poorly when it 
reacts too late to an imbalanced situation. 

Even if it is difficult to deduct any global conclu- 
sion, because there are many other system and appli- 
cation parameters that could be considered, our ex- 
periments indicate the following. 

• AASR is usually more advantageous than SASR. 

• SMI and NINC with low thresholds are prefer- 
able when most of the machines are stable and 
just one-two workstations are subject to high load 
variations (for example, some machines of the 
pool are used occasionally for external jobs). In 
this case, NINP performs poorly, while SAI is ac- 
ceptable even if it is sensible to overall variations 
only and we are considering load variations on a 
small subset of nodes. 

• The global policies such as SAI and NINP are 
preferable when the platform is highly unstable. 
Moreover, SAI seems usually more stable than 
NINP, while NINC and SMI do not improve much 
the algorithm performance. 

• Using past information is rarely convenient. Typ- 
ically, NINC does not perform worse than NINP 
and it is often better. We observed the NINP 
policy to give better results than NINC only in 
a (not reported) scenario characterized by long 
periods of load variations and some critical situ- 
ations of short duration, to which it was usually 
more convenient not to react. 

7    Conclusions 
The problem of load balancing distributed parallel 

computations touches on many theoretical and prac- 
tical issues.   In this paper, we have presented some 

methods that work for regular SPMD algorithms con- 
taining near-neighbor and/or multicast communica- 
tions. Even if our framework does not implement all 
the possible strategies, it achieves two important re- 
sults: it shows the feasibility of dynamically adapting 
data distribution for this wide class of parallel applica- 
tions, it hides from the programmer the entire recon- 
figuration process but the activation phase. In addi- 
tion, the experiments demonstrate this framework to 
be an efficacious support for balancing SPMD compu- 
tations and to maintain the efficiency even when the 
platform is subject to highly dynamic variations. In 
particular, our results show that the asynchronous ac- 
tivation protocol is usually preferable to the synchro- 
nous strategy, while an asynchronous reconfiguration 
is unfeasible for our framework. No one decision pol- 
icy proved best for all the applications and scenarios 
used in our experiments, however the SAI, that looks 
at the global system imbalance, seems to be the most 
stable. 

This paper leaves open two interesting problems, 
such as the choice of the best threshold value and the 
optimal checkpoint frequency, that are currently un- 
der study. We intend to provide the programmer with 
a support that, on the basis of the chosen decision pol- 
icy, class of applications (independent tasks, moderate 
synchronous tasks, highly synchronous tasks) and sta- 
tus of the platform (quiet, moderately variable, highly 
variable), sets autonomously the threshold and inter- 
val parameters of the checkJLoadQ function. 
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Figure 6: Iteration times of the heat equation solver on a 300 x 3000 domain without dynamic balancing and with 
check_load(*,7) calls using three decision policies which are based on current load information. The platform is subject 
to workload variations according to scenario A. 
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Abstract 
Distributed high-performance computing—so-called 

metacomputing—refers to the coordinated use of a pool 
of geographically distributed high-performance comput- 
ers. The user's view of an ideal metacomputer is that 
of a powerful monolithic virtual machine. The imple- 
mentor's view, on the other hand, is that of a variety 
of interacting services implemented in a scalable and 
extensible manner. 

In this paper, we present MOL, the Metacomputer 
Online environment. In contrast to other metcomput- 
ing environments, MOL is not based on specific pro- 
gramming models or tools. It has rather been designed 
as an open, extensible software system comprising a 
variety of software modules, each of them specialized in 
serving one specific task such as resource scheduling, 
job control, task communication, task migration, user 
interface, and much more. All of these modules exist 
and are working. The main challenge in the design of 
MOL lies in the specification of suitable, generic in- 
terfaces for the effective interaction between the mod- 
ules. 

1     Metacomputing 
"Eventually, users will be unaware they are using 

any computer but the one on their desk, because it will 
have the capabilities to reach out across the national 
network and obtain whatever computational resources 
are necessary" [41]. This vision, published by Larry 
Smarr and Charles Catlett in their seminal CACM ar- 
ticle on metacomputing, sets high expectations: "The 
metacomputer is a network of heterogeneous, compu- 
tational resources linked by software in such a way that 
they can be used as easily as a personal computer." 

»This   work   is   partly   supported by   the   EU   ESPRIT 
Long  Term   Research   Project   20244 (ALCOM-IT)   and   by 
the Northrhine Westphalian Initiative "Metacomputing:   Dis- 
tributed Supercomputing" 

The advantages of metacomputing are obvious: 
Metacomputers provide true supercomputing power 
at little extra cost, they allow better utilization of 
the available high-performance computers, and they 
can be flexibly upgraded to include the latest tech- 
nology. It seems, however, that up to now no sys- 
tem has been built that rightfully deserves the name 
'metacomputer' in the above sense. From the user's 
point of view, the main obstacles are seen at the sys- 
tem software level, where non-standardized resource 
access environments and incompatible programming 
models make it difficult for non-experts to exploit the 
available heterogeneous systems. Many obstacles in 
the cooperative use of distributed computing systems 
can be overcome by providing a homogeneous, user- 
friendly access to a reliable and secure virtual meta- 
computing environment that is used in a similar way 
as a conventional monolithic computer today. 

Some of these issues are addressed by "Metacom- 
puter Online (MOL)", an initiative that has been 
founded with the goal to design and implement the nu- 
cleus of a practical distributed metacomputer. MOL 
is part of the Northrhine-Westphalian Metacomputer 
Inititiative that has been established in 1995, and it is 
embedded in several other European initiatives [31]. 

The MOL group has implemented a first, incom- 
plete 'condensation point' of a practical metacom- 
puter, which is now being extended and improved. 
Clearly, we could not tackle all relevant obstacles at 
the same time. We initially concentrated on the fol- 
lowing issues that are deemed most important in the 
design of a first prototype: 

• provision of a generic, user-friendly resource ac- 
cess interface, 

• support of interoperability of existing codes using 
different message passing standards, 

0-8186-7879-8/97 $10.00 © 1997 IEEE 
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• effective global scheduling of the subsystems for 
high throughput and reduced waiting times, 

• support of concurrent use in interactive and batch 
mode, 

• mechanisms for automatic remote source code 
compilation and transparent data distribution, 

• automatic selection of adequate compute nodes 
from a pool of resources to be assigned to the 
tasks of a parallel application, 

• dynamic re-placement of user tasks by means of 
performance prediction of the source code on the 
heterogeneous nodes, 

• provision of data management libraries and pro- 
gramming frames to help non-expert users in pro- 
gram design and optimal system utilization. 

Clearly, this list is not complete. Further items can 
and should be added for a full metacomputing environ- 
ment. Depending on their attitude and current task, 
users might have different expectations on the services 
a metacomputer should provide. As a consequence, a 
metacomputer cannot be regarded as a closed entity, 
but it is rather a highly dynamical software system 
that needs continuous adaptation to the current user 
demands. 

The MOL project aims at integrating existing 
software modules in an open, extensible environ- 
ment. Our current implementation supports PVM, 
MPI and PARIX applications running on LAN- or 
WAN-connected high-performance computers, such as 
Parsytec GC, Intel Paragon, IBM SP2, and UNIX 
workstation clusters. 

This paper presents the current status of MOL. It 
gives an overview about the system architecture and 
it illustrates how the separate modules interact with 
each other. Section 2 reviews related work which in- 
fluenced the design of MOL or which can be integrated 
into MOL at a later time. Section 3 gives a concep- 
tual view and discusses the general MOL architecture. 
In Section 4, we elaborate on the interface design and 
show how the MOL components interact with each 
other. Section 5 to 7 describe the MOL components 
in more detail, and Section 8 gives a brief summary 
and outlook. 

2    Previous Work 
In the past few years, several research projects have 

been initiated with the goal to design a metacomputer 

environment. Some of them follow the top-down ap- 
proach, starting with a concrete metacomputing con- 
cept in mind. While this approach seems compelling, 
it usually results in a "closed world metacomputer" 
that provides a fixed set of services for a well-defined 
user community. 

The second category of projects follow the bottom- 
up approach, initially focusing on some selected as- 
pects which are subsequently extended towards a full 
metacomputing environment. In the following, we re- 
view some projects falling into this category. 

Parallel programming models have been a popular 
starting point. Many research projects targeted at ex- 
tending existing programming models towards a full 
metacomputing environment. One such example is 
the Local Area Multicomputer LAM developed at the 
Ohio Supercomputer Center [13]. LAM provides a sys- 
tem development and execution environment for het- 
erogeneous networked computers based on the MPI 
standard. This has the advantage that LAM applica- 
tions are source code portable to other MPI systems. 
The wide-area metacomputer manager WAMM devel- 
oped at CNUCE, Italy, is a similar approach based 
on PVM [5, 6]. Here, the PVM programming envi- 
ronment has been extended by mechanisms for par- 
allel task control, remote compilation and a graphical 
user interface. Later, WAMM has been integrated into 
MOL and extended to the support of other program- 
ming environments, as shown below. 

Object oriented languages have also been proposed 
as a means to alleviate the difficulties of developing 
architecture independent parallel applications. Charm 
[26], Trapper [38], Legion and Mentat [25] for example, 
support the development of portable applications by 
object oriented parallel programming environments. 
In a similar approach, the Dome project [2] at CMU 
uses a C++ object library to facilitate parallel pro- 
gramming in a heterogeneous multi-user environment. 
Note, however, that such systems can hardly be used 
in an industrial setting, where large existing codes 
(usually written in Fortran) are to be executed on par- 
allel environments. 

Projects originating in the management of work- 
station clusters usually emphasize on topics such as 
resource management, task mapping, checkpointing 
and migration. Existing workstation cluster manage- 
ment systems like Condor, Codine, or LSFaxe adapted 
for managing large, geographically distributed 'flocks' 
of clusters. This approach is taken by the Iowa 
State University project Batrun [42], the Yale Uni- 
versity Piranha project [14], and the Dutch Polder 
initiative [34], both emphasizing on the utilization of 
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idle workstations for large-scale computing and high- 
throughput computing. Complex simulation applica- 
tions, such as air pollution and laser atom simulations 
have been run in the Nimrod project [1] that supports 
multiple executions of the same sequential task with 
different parameter sets. 

These projects could benefit by the use of special 
metacomputing schedulers, such as the Application- 
Level Scheduler AppLeS developed at the University 
of California in San Diego [9]. Here, each applica- 
tion has its own AppLeS scheduler to determine a 
performance-efficient schedule and to implement that 
schedule in coordination with the underlying local re- 
source scheduler. 

Networking is also an important issue, giving impe- 
tus to still another class of research projects. I-WAY 
[22], as an example, is a large-scale wide area com- 
puting testbed connecting several U.S. supercomput- 
ing sites with more than a hundred users. Aspects 
of security, usability and network protocol are among 
the primary research issues. Distributed resource bro- 
kerage is currently investigated in the follow-up I-Soft 
project. In a bilateral project, Sandia's massively par- 
allel Intel Paragon is linked with the Paragons located 
at Oak Ridge National Laboratories using GigaNet 
ATM technology. While also termed a metacomput- 
ing environment, the consortium initially targets at 
running specific multi-site applications (e.g., climate 
model) in distributed mode. 

The well-known Berkeley NOW project [33] empha- 
sizes on using networks of workstations mainly for im- 
proving virtual memory and file system performance 
by using the aggregate main memory of the network 
as a giant cache. Moreover, highly available and scal- 
able file storage is provided by using the redundant 
arrays of workstation disks, and—of course—the mul- 
tiple CPUs are used for parallel computing. 

3    MOL Architecture 
We regard a metacomputer as a dynamic entity of 

interacting modules. Consequently, interface specifi- 
cations play a central role in the MOL architecture, 
as illustrated in Figure 1. There exist three general 
module classes: 

1. programming environments, 

2. resource management & access systems, 

3. supporting tools. 

(1) Programming environments provide mecha- 
nisms for communicating between threads and they 
allow the use of specific system resources.   MPI and 
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Figure 1: MOL architecture 

PVM, for example, are popular programming environ- 
ments supported by MOL. More important, MOL also 
supports the communication and process management 
of heterogeneous applications comprising software us- 
ing different programming environments. The MOL 
library "PLUS" makes it possible, for example, to es- 
tablish communication links between MPI- and PVM- 
code that are part of one large application. PLUS is 
almost transparent to the application, requiring only 
a few modifications in the source code (see Sec. 5). 

(2) Resource management & access systems provide 
services for starting an application and for controlling 
its execution until completion. Currently there exists 
a large number of different resource management sys- 
tems, each with its specific advantage [3]. Codine, for 
example, is well suited for managing (parallel) jobs on 
workstation clusters, while NQS is specialized on serv- 
ing HPC systems in batch mode. Because the specific 
advantages of these systems supplement each other, 
we have developed an abstract interface layer with a 
high-level resource description language that provides 
a unified access to several (possibly overlapping) re- 
source management systems. 

(3) Supporting tools provide optional services to 
metacomputer applications. Currently, the MOL 
toolset includes software modules for dynamic task mi- 
gration (MARS), for easy program development by us- 
ing programming templates (FRAMES), and also data 
libraries for virtual shared memory and load balanc- 
ing (DAISY). The wide-area metacomputer manager 
WAMM plays a special role in MOL: On the one hand, 
it may be used just as a resource management system 
for assigning tasks to resources, and on the other hand, 
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it also provides automatic source code compilation and 
cleanup after task execution. 

4      Interface Layers 
As described, MOL facilitates the interaction be- 

tween different resource management systems and dif- 
ferent programming environments. However, this is 
not enough: A metacomputer application may also re- 
quire some interaction between these two groups. As 
an example, consider a PVM application running on 
a workstation cluster that is about to spawn a pro- 
cess on a parallel computer. For this purpose, the 
application makes a call to the parallel system's man- 
agement software in order to allocate the necessary 
resources. Likewise, a metacomputer application may 
need a mechanism to inform the communication envi- 
ronment about the temporary location of the partici- 
pating processes. 

In addition, tools are needed for efficient task map- 
ping, load balancing, performance prediction, program 
development, etc. There is a wealth of supporting 
tools available to cover most aspects of metacomput- 
ing. However, as these tools are typically very com- 
plex, it is hard to adapt their interfaces for our specific 
needs. In the MOL framework shown in Figure 1, 
the supporting tools only need to interact with two 
abstract interface layers rather than with all systems 
below. Thus, new software must be integrated only 
once, and updates to new releases affect only the tool 
in question. 

4.1     MOL User Interface 
Metacomputing services will be typically accessed 

via Internet or Intranet world-wide-web browsers, such 
as the Netscape Navigator or the Microsoft Explorer. 
MOL provides a generic graphical user interface (GUI) 
based on HTML and Java for interactive use and for 
submitting batch jobs. At the top level, the GUI dis- 
plays general information on status and availability of 
the system services. Users may select from a num- 
ber of alternatives by push-down buttons. In doing 
so, context sensitive windows are opened to ask for 
context specific parameters required by the requested 
services. Figure 2 shows the MOL window used for 
submitting interactive or batch jobs. 

This concept is called 'interface hosting': The 
generic interface acts as a host for the sub-interfaces 
of the underlying modules. Interface hosting gives 
the user control over the complete system without the 
need to change the environment when the user wants 
to deal with another feature or service of the meta- 
computer. 
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Figure 2: Prototype GUI of Paragon/Parsytec meta- 
computer 

The different skills of users are met by a Java-based 
graphical interface and a shell-based command ori- 
ented interface. In addition, an API library allows 
applications to directly interact with the metacom- 
puter services. All three interfaces, 

• the graphical user interface (Java) 
• the shell-based command line interface 
• the API library 

provide the same functions. 
Figure 2 illustrates the graphical user interface used 

to submit a job to a Parsytec/GC and a Paragon lo- 
cated in Paderborn and Jiilich. The two machines 
are installed 300 kilometers apart. They are intercon- 
nected via the 34Mbps German Research WAN. Note 
that the same interface is used for submitting batch 
jobs as well as for starting interactive sessions. 

A later version of the interface will include a graph 
editor, allowing the user to describe more complex in- 
terconnection topologies and hierarchical structures. 
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Figure 3: Simple heterogeneous computing example 

When the actual system configuration has been deter- 
mined by the resource scheduler, the resulting topol- 
ogy will be presented to the user by a graph-drawing 
tool [32]. 

4.2    A MOL User Session 
In this section, we describe the specification and ex- 

ecution of a example user application that is executed 
in the MOL environment. Suppose that a large grid 
structured application shall be run on a massively par- 
allel system with 64 PowerPC 601 nodes, each of them 
having at least 16 MB of main memory. As shown 
in Figure 3, the result of this computation shall be 
post-processed by another application with a pipeline 
structure. Depending on the available resources, the 
resource management system may decide to collapse 
the pipeline structure to be run on a single proces- 
sor, or to run the grid and the pipeline on the same 
machine. For interactive control, the user terminal is 
linked to the first node of the grid part of the appli- 
cation. For the concrete resource description used to 
specify this metacomputer scenario see Figure 6 below. 

Within MOL, such resource specifications are gen- 
erated by tools that are integrated into the GUI. When 
submitting a resource request, the request data is 
translated into the internal format used by the ab- 
stract resource management (RM) interface layer. The 
result is then handed over to the scheduler and config- 
urator. The RM interface layer schedules this request 
and chooses a time slot when all resources are avail- 
able. It contacts the target management systems and 
takes care that all three programs will be started at 
the same time. Furthermore, it generates a descrip- 
tion file informing the abstract programming environ- 
ment interface where the programs will be run and 
which addresses to be used for establishing the first 
communication links. At program run time, the pro- 
gramming environment interface layer establishes the 

interconnection between the application domains and 
takes care of necessary data conversion. 

Though this example is not yet completely realized, 
it gives an idea on how the modules would interact 
with each other by means of abstract layers and how 
the results are presented to the user by the generic 
interface. 

5    Programming Environments Layer 
In contrast to many other heterogeneous comput- 

ing environments, MOL is not restricted to a spe- 
cific programming environment. Applications may use 
any programming model supported by the underly- 
ing hardware platforms. This could be either a ven- 
dor supplied library or a standard programming model 
such as PVM and MPI. 

However, many programming models are homo- 
geneous, that is, applications can only be executed 
on the system architecture they have been compiled 
(linked) for. While there also exist some heteroge- 
neous programming libaries, they usually incur signif- 
icant performance losses due to the high level of ab- 
straction. Portable environments are typically imple- 
mented on top of the vendor's libraries, making them 
an order of magnitude slower than the vendor supplied 
environments. Clearly, users are not willing to accept 
any slow-downs in their applications, just because the 
application might need some infrequent communica- 
tion with some remote system. This problem is ad- 
dressed by PLUS. 

5.1       PLUS  -  A   Linkage  Between  Pro- 
gramming Models 

PLUS stands for Programming Environment 
Linkage by Universal Software Interfaces [12]. It pro- 
vides a lightweight interface between different pro- 
gramming environments which are only used for com- 
municating with remote hosts. The efficiency of the 
native environment remains untouched. 

The interfaces are embedded into the various envi- 
ronments. A PVM application, for example, uses or- 
dinary PVM-IDs for addressing non-PVM processes. 
Consequently, a PARIX process reachable via PLUS 
is represented within a PVM application by an ordi- 
nary PVM-ID. Of course, PLUS takes care that these 
'pseudo PVM-IDs' do not conflict with the real PVM- 
IDs. 

Furthermore, PLUS allows to create processes by 
overlaying existing routines (PVM) or by extending 
the available function set with its own procedure (in 
the case of MPI). Thereby, PLUS adds a dynamic pro- 
cess model to programming environments like MPI1, 
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Figure 4: PLUS architecture 

which do not provide such facilities. PLUS has no in- 
ternal resource management functionality, but it for- 
wards the requests to the abstract resource manage- 
ment layer, which offers more powerful methods than 
could be integrated into PLUS. 

With this concept, PLUS allows program develop- 
ers to integrate existing codes into the metacomputer 
environment, thereby lowering barriers in the use of 
metacomputers. 

PLUS Architecture. Fig. 4 depicts the architec- 
ture of the abstract interface layer for programming 
environments developed in the PLUS project. Note 
that the regular PVM communication is not affected 
by PLUS. Only when accessing a PVM-ID that actu- 
ally represents an external process (a PARIX process 
in this example), the corresponding PLUS routine is 
invoked. This routine performs the requested commu- 
nication via the fastest available protocol between the 
PVM cluster and the PARIX system. Usually, com- 
munication will be done via UDP. 

PLUS libraries are linked to each other via one or 
more PLUS server. Since most of the PLUS code is 
contained in these servers, the link library could be 
kept rather small. The servers manage the translation 
of different data representations, the message routing 
along the fastest network links, the dynamic creation 
of new processes, and much more. The number of ac- 
tive PLUS servers and their configuration may change 
dynamically at run time according to the needs of the 
user's application. 

PLUS Performance. On a 34 Mb/s WAN inter- 
connection, the PLUS communication has been shown 
to be even faster than TCP [12]. This is because the 
UDP based communication protocol of PLUS builds 
a virtual channel on which the messages are multi- 
plexed. A sliding window technique allows to assem- 
ble and re-order the acknowledgements in the correct 
sequence. 

 • j^_  

*   y 
 * y^  
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Figure 5: PLUS versus PVM on a 10Mb/s LAN 

Figure 5 shows a less favorable case where the PLUS 
communication is outperformed by PVM. A parallel 
Parsytec CC system under AIX has been intercon- 
nected to a SUN-20 via 10Mb/s Ethernet. In both 
runs, the same PVM code has been used: once com- 
municating via the internal PVM protocol, and the 
other time via the PLUS protocol. Here, PLUS is 
about 10 to 20% slower, because the PLUS communi- 
cation needs two Internet hops, one hop from the CC 
to the PLUS daemon, and another from the daemon 
to the target SUN. The PVM tasks, in contrast, need 
only one Internet hop for communicating between the 
two corresponding PVM daemons. Moreover, since 
the PLUS communication libraries are designed in an 
open and extensible way, they do not contain routing 
information. 

Note, that the example shows a worst case, because 
PLUS would only be used to communicate between 
different programming environments. Any internal 
communication, e.g. within PVM, is not affected by 
PLUS. 

Extending PLUS. The current version of PLUS 
supports PVM, MPI and PARIX, where the latter is 
available on Parsytec systems only. 

The PLUS library consists of two parts: a generic, 
protocol-independent module, and a translation mod- 
ule. The translation module contains a small set of 
abstract communication routines for the specific pro- 
tocols. These routines are quite small, typically com- 
prising less then one hundred lines of code. 

New programming environments can be integrated 
to PLUS by implementing a new translation mod- 
ule. This allows applications to communicate with 
any other programming model for which translation 
modules are available in PLUS. 
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6    Resource Management Layer 
Resource management is a central task in meta- 

computing environments, permitting oversubscribed 
resources to be fairly and efficiently shared. Histor- 
ically, supercomputer centers have been using batch 
queuing systems such as NQS [28] for managing their 
machines and for scheduling the available computing 
time. Distributed memory systems employ more com- 
plex resource scheduling mechanisms, because a large 
number of constraints must be considered in the exe- 
cution of parallel applications. As an example, inter- 
active applications may compete with batch jobs, and 
requests for the use of non-timeshared components or 
for special I/O facilities may delay other jobs. 

On a metacomputer, the scheduler is responsible 
for assigning appropriate resources to parallel applica- 
tions. Scheduling is done by the resource management 
system that allocates a particular CPU at a particu- 
lar time instance for a given application, and by the 
operating system running on a certain compute node. 
In parallel environments, we distinguish two levels of 
scheduling: 

• At the task level, the scheduling of tasks and 
threads (possibly of different jobs) is performed 
by the operating system on the single MPP nodes. 
The scheduling strategy may be uncoordinated, 
as in the traditional time-sharing systems, or it 
can be synchronized, as in gang-scheduling. The 
latter, however, is only available on a few parallel 
systems. 

• At the job level, the scheduling is usually ar- 
chitecture independent. A request may specify 
the CPU type, memory requirements, I/O fa- 
cilities, software requirements, special intercon- 
nection structures, required occupation time and 
some attributes for distinguishing batch from in- 
teractive jobs. Here, the request scheduler is re- 
sponsible for re-ordering and assigning the sub- 
mitted requests to the most appropriate ma- 
chines. 

With few exceptions [9], the existing schedulers 
were originally designed for scheduling serial jobs 
[27, 3]. As a consequence, many of them do not obey 
the 'concept' of parallel programs [37]. Typically, a 
stater (master) process is launched that is responsible 
for starting the rest of the parallel program. Thus, 
the management has limited knowledge about the dis- 
tributed structure of the application. When the mas- 
ter process dies unexpectedly (or has been exempted 
because the granted time is expired) the rest of the 

parallel program is still existent. Such orphaned pro- 
cesses can cause serious server problems, and in case of 
MPP systems (like the SP2) they can even lock parts 
of the machine. 

With its open architecture, MOL is not restricted 
to the usage of specific management systems. Rather, 
we distinguish three types of management systems, 
each of them specialized to a certain administration 
strategy and usage profile: 

The first group of applications comprise sequential 
and client-server programs. The management software 
packages of this group have emerged from the tradi- 
tional vector-computing domain. Examples are Con- 
dor, Codine, DQS and LSF. 

The second group contains resource management 
systems tailored to the needs of parallel applications. 
Some of them have their roots in the NQS develop- 
ment (like PBS), while others were developed to over- 
come problems with existing vendor solutions (like 
EASY) or do focus on the transparent access to par- 
titionable MPP systems (like CCS described below). 

The last group consists of resource management 
systems for multi-site applications, exploiting the 
whole power of a metacomputing environment. Cur- 
rently, only few multi-site applications exists, and the 
development of corresponding resource management 
systems is still in its infancy. But with increasing net- 
work performance such applications and their need for 
a uniform and optimizing management layer is gaining 
importance. 

6.1     Computing Center Software CCS 
CCS [15] provides transparent access to a pool of 

massively parallel computers with different architec- 
tures [35]. Today, parallel machines ranging from 4 
to 1024 nodes are managed by CCS. CCS provides 
user authorization, accounting, and for scheduling ar- 
bitrary mixtures of interactive and batch jobs [23]. 
Furthermore, it features an automatic reservation sys- 
tem and allows to re-connect to a parallel application 
in the case of a breakdown in the WAN connection— 
an important feature for remote access to a metacom- 
puter. 

Specification Language for Resource Requests. 
Current management systems use a variety of 
command-line (or batch script) options at the user 
interface, and hundreds of environment variables (or 
configuration files) at the operator interface. Extend- 
ing such concepts to a metacomputing environment 
can result in a nightmare for users and operators. 

Clearly, we need a general resource description lan- 
guage equipped with a powerful generation and anima- 
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IHCLUDE <default.defs.rdl> default definitions and constant declarations 

DECLARATIOI 
BEGII UIIT HC.appl; 

DECLARATIOI 
BEGII SECTIOI main; 

EXCLUSIVE; 
DECLARATIOI 

FOR i=0 TO  (main.x * main.y 

main computation on grid 
use separate processors for each item 

1) DO 
{ PROC i; compute = pbl.size; CPU = HPC601; MEMORY =16; }; OD 

COIIECTIOI 
FOR i=0 TO  (main_x - 1) DO 

FOR j = i * main.y TO (i * main.y + main_y-2) DO 
PROC j LIIK 0  <=>  PROC j+1 LIIK 2; OD OD 

FOR i=0 TO  (main.y - 1) DO 
FOR j=0 TO (main.x - 2) DO 

PROC (j * main.y + i) LIIK 1 <=> PROC (main.y * (j + 1) + i) 

ASSIGI LIIK 1 <=> PROC 0 LIIK 3;      — from user terminal 
ASSIGI LIIK 2 <== PROC (main.x * main_y-l) LIIK 1; —to postprocessing 

LIIK 3; OD OD 

OD 

EID SECTIOI 

BEGII SECTIOI post; 
SHARED; 
DECLARATIOI 

FOR i=l TO post.len DO 
{ PROC i; filter = post; CPU = HPC601; } 

{ PORT Ausgabe; DISK; }; 
COIIECTIOI 

FOR i=l TO  (post.len - 1) DO 
i LIIK 0  ==>  i + 1 LIIK 1; OD 

PROC post.len LIIK 0 ==>  PORT Ausgabe LIIK 0; 
ASSIGI PROC 1   LIIK 1 <==  LIIK 0;   — link to higher level 

EID SECTIOI 

— user control section 

pipelined post-processing 
the items of this section may be run on a single node 

BEGIB SECTIOI user; 
DECLARATIOI 

{ PORT 10; TERMIIAL 
COIIECTIOI 

ASSIGI  10 LIIK 0 
EID SECTIOI 

; >; 

<=>  LIIK 0; 

COIIECTIOI 
user LIIK 0    <=> 
main LIIK 2    ==> 

EID UIIT — HC.appl 

main LIIK 1; 
post LIIK 0; 

— connecting the modules 

Figure 6: Specification of the system shown in Figure 3 using the Resource Description Language RDL 

tion tool. Metacomputer users and metacomputer ad- 
ministrators should not have to deal directly with this 
language but only with a high-level interface. Ana- 
loguously to the popular postscript language used for 
the device-independent representation of documents, 
a metacomputer resource description language is a 
means to specify the resources needed for a metacom- 
puter application. Administrators should be able to 
use the same language for specifying the available re- 
sources in the virtual machine room. 

In a broad sense, resource representations must be 
specified on three different abstraction levels: The 
vendor-level for describing the internal structure of a 
machine. The operator-level, which is the metacom- 
puter itself, for describing the interconnections of the 
machines within the network and their general proper- 
ties. And the user-level, for specifying a logical topol- 
ogy to be configured for a given application. 

Within MOL, we use the Resource Description Lan- 
guage RDL [4], that has been developed as part of the 
CCS resource management software [35]. RDL is used 

• at the administrator's level for describing type 
and topology of the participating metacomputer 
components, and 

• at the user's level for specifying the required sys- 
tem configuration for a given application. 

Figure 6 shows an RDL specification for the example 
discussed in Figure 3. It is the task of the resource 
scheduler to determine an optimal mapping between 
the two specifications: The specification of the appli- 
cation structure on the one hand, and the specification 
of the system components on the other hand. Better 
mapping results are obtained when the user requests 
are less specific, i.e., when classes of resources are spec- 
ified instead of specific computers. 
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Figure 7: Snapshot of WAMM user interface 

7      Supporting Tools 
The MOL toolset contains a number of useful tools 

for launching and executing distributed applications 
on the metacomputer. We first describe the "wide area 
metacomputer manager" WAMM, which provides re- 
source management functionality as well as automatic 
source code compilation and cleanup after task execu- 
tion. 

Another class of tools allows for dynamic task mi- 
gration at execution time (MARS), which makes use 
of the performance prediction tool WARP. 

Data libraries for virtual shared memory and load 
balancing (DAISY) provide a more abstract program- 
ming level and program templates (FRAMES) facili- 
tate the design of efficient parallel applications, even 
for non-experts. 

7.1     Graphical Interface WAMM 
The Wide Area Metacomputer Manager WAMM 

[43, 5, 6] supports the user in the management of the 
computing nodes that take part in a parallel compu- 
tation. It controls the virtual machine configuration, 
issues remote commands and remote source code com- 
pilations, and it provides task management. While 
ealier releases of WAMM [5, 6] were limited to sys- 
tems running PVM only, with the PLUS library it is 
now possible to use WAMM on arbitrary systems [7]. 

Figure 8: WAMM architecture 

WAMM can be seen as a mediator between the 
top user access level and the local resource man- 
agement. It simplifies the use of a metacomputer 
by adopting a "geographical" view, where the hosts 
are grouped in tree structured sub-networks (LANs, 
MANs or WANs). Each item in the tree is shown in 
an OSF/Motif window, using geographical maps for 
networks and icons for hosts as shown in Figure 7. 
The user can move through the tree and explore the 
resources by selecting push buttons on the maps. It 
is possible to zoom from a wide-area map to a sin- 
gle host of a particular site. A traditional list with 
Internet host addresses is also available. 

Metacomputer Configuration. The metacom- 
puter can be configured by writing a configuration file 
which contains the description of the nodes that make 
up the metacomputer, i.e. all the machines that users 
can access. This file will be read by WAMM at startup 
time. 

Application Development. The development and 
execution of an application requires some preparatory 
operations such as source code editing, remote com- 
pilation and execution. In WAMM, programmers de- 
velop their code on a local machine. For remote com- 
pilation, they only have to select hosts where they 
want to do the compilation and to issue a single Make 
command from the popup menu. In a dialog box the 
local directories containing the source files and corre- 
sponding Makefiles can be specified along with the 
necessary parameters. 

WAMM supports remote compilation by grouping 
all source files into a single, compressed tar file.   A 
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Figure 9: MARS System Architecture 

PVMMaker task, which deals with the remote compila- 
tion, is spawned on each participating node and the 
compressed tar file is sent to all these tasks. The rest 
of the work is carried out in parallel by the PVMMakers. 
Each PVMMaker receives the compressed file, extracts 
the sources in a temporary working directory, and ex- 
ecutes the make command. WAMM is notified about 
the operations that have been executed, and the result 
is displayed in a control window to show the user the 
status of the compilation. 

Tasks Execution and Control. Application are 
started by selecting the Spawn pushbutton from the 
Apps popup menu. A dialog box is opened for the user 
to insert parameters, such as number of copies, com- 
mand line arguments, etc. The output of the processes 
is displayed in separate windows and/or saved in files. 
When the output windows are open, new messages 
from the tasks are shown immediately (Fig. 7). A 
Tasks control window can be opened to control some 
status information on all the PVM tasks being exe- 
cuted in the virtual machine. 

7.2    MARS Task Migrator 
The Metacomputer Adaptive Runtime System 

MARS [24] is a software module for the transparent 
migration of tasks during runtime. Task migrations 
may become necessary when single compute nodes or 
sub-networks exhibit changing load due to concurrent 
use by other applications. MARS uses previously ac- 
quired knowledge about a program's runtime behavior 
to improve its task migration strategy. The knowledge 
is collected during execution time without increasing 
the overall execution time significantly. The core idea 
is to keep all information gathered in a previous exe- 
cution of the same program and to use it as a basis for 
the next run. By combining information from several 
runs, it is possible to find regularities in the charac- 
teristic program behavior as well as in the network 
profile. Future migration decisions are likely to bene- 
fit by the acquired information. 

The MARS runtime system comprises two types 
of instances (Fig. 9): Monitors for gathering statisti- 
cal data on the CPU work-load, the network perfor- 
mance and the applications' communication behavior, 
and Managers for exploiting the data for computing 
an improved task-to-processor mapping and task mi- 
gration strategy. 

As MARS is designed for heterogeneous metacom- 
puters, we cannot simply migrate machine-dependent 
core images. Instead, the application code must be 
modified by a preprocessor to include calls to the run- 
time system at certain points where task migration is 
allowed. The user's object code is linked to the MARS 
runtime library which notifies an Application Monitor 
and a Network Monitor each time a send or receive 
operation is executed. 

The Network Monitor collects long-term statistics 
on the network load. The Application Monitor mon- 
itors the communication patterns of the single appli- 
cations and builds a task dependency graph for each 
execution. Dependency graphs from successive execu- 
tion runs are consolidated by a Program Information 
Manager. The resulting information is used by the 
Migration Manager to decide about task migrations 
whenever a checkpoint is reached in the application. 

In summary, two kinds of data are maintained: ap- 
plication specific information (in dependency graphs) 
and system specific information (in system tables) for 
predicting the long-term performance of the network 
and CPU work-load. Further information on MARS 
can be found in [24]. 

7.3     Runtime Predictor WARP 
WARP is a Workload Analyzer and Runtime 

Predictor [39, 40]. Performance prediction tools pro- 
vide performance data to compilers, programmers and 
system architects to assist in the design of more effi- 
cient implementations. While being an important as- 
pect of high-performance computing, there exist only 
few projects that address performance prediction for 
clusters of workstations and no project targets the 
metacomputing scenery. 

WARP is used within MOL to advise the resource 
management systems for better hardware exploitation 
by maximizing the through-put or by minimizing the 
response time. More specifically, the performance pre- 
diction figures of WARP provide valuable input for 
the initial mapping and dynamical task migration per- 
formed by MARS. The WARP system [39, 40] includes 
modules for 

• compiling resource descriptions into a suitable in- 
ternal representation, 
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Figure 10: WARP architecture 

flow depends on the execution sequence of the sequen- 
tial blocks or on the communication pattern, stochas- 
tic graphs are be used. Moreover, detailed event trac- 
ing can result in extremely large task graphs, depend- 
ing on the size of the system. Fortunately, most par- 
allel applications are written in SPMD or data par- 
allel mode, executing the same code on all proces- 
sors with local, data-dependent branches. Only a few 
equivalence classes of processor behavior are modeled 
by WARP, with statistical clustering used as a stan- 
dard technique for identifying data equivalence classes. 
Also regular structures derived by loops and subrou- 
tines are used for a task graph relaxation. 

• analyzing resource requests of parallel programs, 
and 

• predicting  the  execution  time of parallel pro- 
grams. 

Architectural Model. In WARP, a parallel ma- 
chine is described by a hierarchical graph. The nodes 
in the graph denote processors or machines with local 
memory. The edges denote interconnections between 
the machines. The nodes are weighted with the rel- 
ative execution speed of the corresponding machines, 
which have been measured by small benchmark pro- 
grams or routines for testing the functional units of 
the CPU (floating-point pipelines, load & store oper- 
ations in the memory hierarchy, etc.). The edges are 
weighted with the latency and bandwidth of the cor- 
responding communication performance between the 
two nodes, which can be either a local mechanism 
(e.g., shared memory) or a network communication. 
A monitoring tool in WARP detects the basic load of 
time-sharing systems, that is used to model the sta- 
tistical load reducing the potential performance of the 
machine or interconnection. 

Task Graph Construction. WARP models the 
execution of a parallel program by a task graph con- 
sisting of a set of sequential blocks with correspond- 
ing interdependencies. The nodes and edges of a task 
graph are weighted with their computation and com- 
munication loads. Task graphs are constructed either 
by static program analysis or by executing the code 
on a reference system. In the latter case, the load fac- 
tors are reconstructed from the execution time of the 
sequential blocks and communications. 

Clearly, the task graphs - representing execution 
traces - must not be unique. In cases where the control 

Task Graph Evaluation. Task graph are evalu- 
ated for predicting the execution time under modi- 
fied task allocation schemes and/or changed resources. 
The task graph evaluation is done by a discrete event 
simulator which constructs the behavior of the parallel 
program running on a hardware with a given resource 
description. Resource contention is modeled by queu- 
ing models. The execution times and communication 
times are then adjusted to the relative speed of the 
participating resource and the expected contention. 

7.4    Data Management Library DAISY 
The data management library DAISY (Fig. 11) 

comprises tools for the simulation of shared memory 
(DIVA) and for load balancing (VDS) in a single com- 
prehensive library. A beta release of DAISY is avail- 
able for Parsytec's PARIX and PowerMPI program- 
ming models. With the improved thread support of 
MPI-2, DAISY will also become available on worksta- 
tion clusters. 

Load Balancing with VDS. The virtual data 
space tool VDS simulates a global data space for struc- 
tured objects stored in distributed heaps, stacks, and 
other abstract data types. The work packets are 
spread over the distributed processors as evenly as 
possible with respect to the incurred balancing over- 
head [19]. Objects are differentiated by their corre- 
sponding class, depicted in Figure 11 by their differ- 
ent shape. Depending on the object type, one of three 
distribution strategies is used: 

• Normal objects are weighted by a load measure 
given by the expense of processing the object. 
VDS attempts to distribute the object such that 
all processors have about the same load. A pro- 
cessor's load is defined as the sum of the load- 
weights of all placed objects. 
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Figure 11:   : The two DA IS Y tools:  Distributed shared 
memory (Diva) and the load-balancing layer VDS. 

• In some applications, such as best-first branch- 
and-bound, the execution time is not only affected 
by the number of objects, but also by the order 
in which the objects are processed. In addition to 
the above described quantitative load balancing, 
some form of qualitative load balancing is per- 
formed to ensure that all processors are working 
on promising objects. VDS provides qualitative 
load balancing by means of the weighted objects. 
Besides their load-weight, these objects possess a 
quality tag used to select the next suitable object 
from several alternatives. 

• The third kind of object, thread objects, pro- 
vide an easy and intuitive way to model multi- 
threaded computations as done in CILK [10]. In 
this computational model, threads may send mes- 
sages (results) to their parents. With later ver- 
sions it will be possible to send data across more 
than one generation (e.g. to grandparents) [21]. 

In the current VDS release, we implemented a work- 
stealing method [11] for thread objects as well as dif- 
fusive load balancing for normal and weighted objects. 

Shared Memory Simulation with DIVA.    The 
distributed variables library DIVA provides functions 
for simulating shared memory on distributed systems. 
The core idea is to provide an access mechanism to 
distributed variables rather than to memory pages or 
single memory cells. The variables can be created and 
released at runtime. Once a global variable is created, 
each participating processor in the system has access 
to it. 

For latency hiding, reads and writes can be per- 
formed in two separate function calls. The first call 
initiates the variable access, and the second call waits 

Figure 12: The frame model 

for its completion. The time between initiation and 
completion of a variable access can be hidden by other 
local instructions or variable accesses. 

7.5     Programming Frames 

Programming frames facilitate the development of 
efficient parallel code for distributed memory systems. 
Programming frames are intended to be used by non- 
experts, who are either unfamiliar with parallel sys- 
tems or unwilling to cope with new machines, environ- 
ments and languages. Several projects [16, 8, 17, 18] 
have been initiated to develop new and more sophis- 
ticated ways for supporting the programming of dis- 
tributed memory systems via libraries of basic algo- 
rithms, data structures and programming frameworks 
(templates). Like LEDA for the sequential case [30], 
each of these approaches provides non-experts with 
tools to program and exploit parallel machines effi- 
ciently. 

Our frames are like black boxes with problem de- 
pendent holes. The basic idea is to comprise expert 
knowledge about the problem and its parallelization 
into the black box and to let the users specify the 
holes, i.e. the parts that are different at each instan- 
tiation. The black boxes are either constructed us- 
ing efficient basic primitives, standard parallel data 
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types, communication schemes, load balancing and 
mapping facilities, or they are derived from well opti- 
mized, complete applications. In any case, frames con- 
tain efficient state-of-the-art techniques focusing on re- 
usability and portability - both important aspects in 
metacomputing. This will save software development 
costs and improve the reliability of the target code. 

Figure 12 depicts our frame model. Each generated 
target executable is built from three different specifi- 
cations. The abstract specification defines the param- 
eters of the problem (the holes in the black box). It 
remains the same for all instances of that frame, and 
is generally given by an expert. Furthermore, the ab- 
stract specification is used to generate a graphical user 
interface (GUI) and for the type consistency check in 
the instance level. 

At the instance level, values are assigned to the pa- 
rameters specified in the abstract level. New problem 
instances are generated by the user by giving new in- 
stance specifications via the GUI. 

The implementation level contains a number of im- 
plemented sources, e.g. for MPI or PVM, with respect 
to a given abstract frame. An implementation speci- 
fication consists of a list of source files and rules for 
modifying those sources to get new ones that com- 
ply with the values given in the instance level. The 
rules are best described as replacements and genera- 
tions. New frames can also be composed by modifying 
and/or composing existing basic frames. 

Three major tools are used to process the frame 
specifications. The first checks the abstract specifica- 
tion. The second one checks the instance specification 
against the abstract specification. The build tool, fi- 
nally, generates the target executables taking the spec- 
ifications for both an instance and an implementation. 
Our preliminary versions of these tools and the GUI 
are portable across systems with POSIX compliant C 
compilers. As GUIs are considered vital for the accep- 
tance of the programming frames, our implementation 
is based on the graphical TCL/TK toolkit. The inter- 
face reads the abstract specification and prompts the 
user for the frame parameters. The output is an in- 
stance specification according to our model. A Java 
interface to the frames will be available in the near 
future. 

8    Summary 
We have presented an open metacomputer environ- 

ment that has been designed and implemented in a col- 
laborative effort in the Metacomputer Online (MOL) 
initiative. Due to the diversity in the participating 
hard- and software on the one hand, and due to the 

heterogeneous spectrum of potential users on the other 
hand, we believe that a metacomputer cannot be re- 
garded as a closed entity. It should rather be designed 
in an open, extensible manner that allows for con- 
tinuous adjustment to meet the user's demands by a 
dynamically changing HW/SW environment. 

With the MOL framework, we have linked exist- 
ing software packages by generic, extensible interface 
layers, allowing future updates and inclusion of new 
soft- and hardware. There are three general classes of 
metacomputer modules: 

• programming environments (e.g., PVM, MPI, 
PARIX, and the PLUS linkage module), 

• resource management & access systems (Codine, 
NQS, PBS, CCS), 

• supporting tools (GUIs, task migrator MARS, 
programming frames, data library DAISY, 
WAMM, WARP performance predictor,...). 

All of these modules exist. Linked by appropriate 
generic interfaces, the modules became an integral 
part of the MOL environment. From the hardware 
perspective, MOL currently supports geographically 
distributed high-performance systems like Parsytec 
GC, Intel Paragon, and UNIX workstation clusters 
that are run in a dedicated compute cluster mode. 

As a positive side-effect, the collaboration within 
the MOL group has resulted in a considerable amount 
of (originally unexpected) synergy. Separate projects, 
that have been started as disjoint research work, now 
fit together in a new framework. As an example, the 
task migration manager MARS derives better migra- 
tion decisions when being combined with the perfor- 
mance predictor WARP. An even more striking exam- 
ple is the linkage of WAMM with PLUS [7]. Previ- 
ously, the WAMM metacomputer manager was lim- 
ited to PVM only. The PLUS library now extends 
the application of WAMM to a much larger base of 
platforms. 
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Abstract 
mpC is a programming language of medium level for 

distributed memory machines (DMM). The language is an 
ANSI C superset based on the notion of network compris- 
ing virtual processors of different types and performances 
connected with links of different bandwidths. It allows the 
user to describe a network topology, create and discard 
networks, distribute data and computations over the net- 
works. In other words, the user can specify (dynamically) 
the topology of his application, and the mpC programming 
environment will use this (topological) information in run 
time to ensure the efficient execution of the application on 
any particular DMM. The paper outlines the most princi- 
pal features of mpC and its programming environment 
making them suitable tools to write efficient and portable 
parallel programs for heterogenous DMMs. 

1. Introduction 

The mpC language and its programming environment 
was initially developed to support programming for mas- 
sively parallel computers, first of all for high-performance 
distributed memory machines (DMMs). In brief, our moti- 
vation of mpC was as follows. 

Programming for DMMs is based mostly on message- 
passing function extensions of C or Fortran, such as PVM 
[1] and MPI [2]. But it is tedious and error-prone to pro- 
gram in a message-passing language, because of its low 
level. Therefore, high-level languages that facilitate paral- 
lel programming have been developed for DMMs. They 
can be divided into two classes depending on the parallel 
programming paradigm - task parallelism or data parallel- 
ism - underlying them. Task parallel [3-4] and data parallel 
[5-11] programming languages allow the user to imple- 
ment different classes of parallel algorithms. But efficient 

implementation of many problems needs parallel algo- 
rithms that can not be implemented in pure data parallel or 
task parallel styles. We have developed the mpC language 
(as an ANSI C superset) which supports both task and data 
parallelism, allows both static and dynamic process and 
communication structures, enables optimizations aimed at 
both communication and computation, and supports mod- 
ular parallel programming and the development of a 
library of parallel programs. 

The mpC language is based on the notion of network 
consisting of virtual processors of different types and per- 
formances connected with links of different bandwidths. 
The user can describe network topology, create and dis- 
card networks, and distribute data and computations over 
the networks. That is, the user can specify (dynamically!) 
in details virtual parallel machine which performs his 
application. 

In other words, the user can specify the topology of his 
application, and the programming environment will use 
this (topological) information in run time to ensure the 
efficient execution of the application on any particular 
DMM. 

Currently, the mpC programming environment includes 
a compiler, a run-time support system, a library, and a 
command-line user interface. 

The compiler translates a source mpC program into 
ANSI C code with calls to functions of the run-time sup- 
port system. 

Run-time support system manages the computing space 
which consists of a number of processes running over tar- 
get DMM as well as provides communications. It has a 
precisely specified interface and encapsulates a particular 
communication package (currently, a small subset of 
MPI). It ensures platform-independence of the rest of sys- 
tem components. 

The library consists of a number of functions which sup- 
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port debugging mpC programs as well as provide some 
low-level efficient facilities. 

The command-line user interface consists of a number of 
shell commands supporting the creation of a virtual DMM 
and the execution of mpC programs on the machine. While 
creating the machine, its topology is detected by a topol- 
ogy detector running a special benchmark and saved in a 
file used by the run-time support system. 

When developing the mpC programming environment, 
we used a network of workstations running MPI as a target 
parallel machine and found, that the principles, on which 
mpC is based, make this programming language and its 
programming environment be very convenient tools for 
development of efficient and portable parallel programs for 
heterogenous networks of workstations. 

The point is that all programming environments for 
DMMs which we know of have one common property. 
Namely, when developing a parallel program, either the 
user has no facilities to describe the virtual parallel system 
executing the program, or such facilities are too poor to 
specify an efficient distribution of computations and com- 
munications over the target DMM. Even topological facili- 
ties of MPI (as well as MPI-2) have turned out insufficient 
to solve the problem. So, to ensure the efficient execution 
of the program on a particular DMM, the user must use 
facilities which are external to the program, such as boot 
schemes and application schemes [12]. If the user is famil- 
iar with both the topology of target DMM and the topology 
of the application, then, by using such configurational files, 
he can map the processes which constitute the program 
onto processors which make up DMM, to provide the most 
efficient execution of the program. But if the application 
topology is defined in run time (that is, if it depends on 
input data), it won't be successful. 

The mpC language allows the user to specify an applica- 
tion topology, and its programming environment uses the 
information in run time to map processes onto processors 
of target DMM resulting in efficient execution of the appli- 
cation. 

Section 2 of the paper outlines the mpC language. Sec- 
tion 3 sketches the mpC programming environment. Sec- 
tion 4 demonstrates how mpC may be used to develop 
efficient and portable irregular applications for DMMs. 
Section 5 demonstrates how mpC may be used to develop 
efficient and portable regular applications for heteroge- 
neous DMMs. In addition, sections 4 and 5 tell more about 
the mpC language. 

More about the language and its programming environ- 
ment may be found in [13-17] as well as at http:// 
www.ispras.ru/~mpc. In addition, the corresponding free 
software is available at http://www.ispras.ru/~mpc. 

2. Outline of the mpC language 

In mpC, the notion of computing space is defined as a set 
of typed virtual processors of different performance con- 
nected with links of different bandwidth accessible to the 
user for management. There are several processor types, 
but most common virtual processors are of the scalar 
type. A virtual processor has an attribute characterizing its 
relative performance. A directed link connecting two vir- 
tual processors is a one-way channel for transferring data 
from source processor to the processor of destination. 

The basic notion of the mpC language is network object 
or simply network. Network comprises virtual processors 
of different types and performances connected with links 
of different bandwidths. Network is a region of the com- 
puting space which can be used to compute expressions 
and execute statements. 

Allocating network objects in the computing space and 
discarding them is performed in similar fashion to allocat- 
ing data objects in the storage and discarding them. Con- 
ceptually, creation of new network is initiated by a virtual 
processor of some network already created. This virtual 
processor is called a parent of the created network. The 
parent belongs to the created network. The only virtual 
processor defined from the beginning of program execu- 
tion till program termination is the pre-defined virtual host- 
processor of the scalar type. 

Every network declared in an mpC program has a type. 
The type specifies the number and types and performances 
of virtual processors, links between these processors and 
their lengths characterizing bandwidths, as well as sepa- 
rates the parent. For example, the type declaration 
/*!*/ nettype  Rectangle   { 
1*2*1 coord  1=4; 
/*3*/ node   { 
/*4*/ I<2   :   fast  scalar; 
/*5*/ I>=2:   slow  scalar; 
/*6*/ }; 
1*1*1 link  { 
/*8*/ I>0:      [I]<->[I-1]; 
/*9*/ I==0:    [I]<->[3]; 
/*10*/ }; 
l*\\*l parent   [0]; 
/*12*/ }; 
introduces network type Rectangle that corresponds to 
networks consisting of 4 virtual processors of the scalar 
type and different performances interconnected with undi- 
rected links of the normal length in a rectangular structure. 

In this example, line 1 is a header of the network-type 
declaration. It introduces the name of the network type. 

Line 2 is a coordinate declaration declaring the coordi- 
nate system to which virtual processors are related. It intro- 
duces integer coordinate variable I ranging from 0 to 3. 

Lines 3-6 are a node declaration. It relates virtual proces- 
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sors to the coordinate system declared and declares their 
types and performances. Line 4 stands for the predicate/or 
all I<4 if I<2 then fast virtual processor of the scalar 
type is related to the point with coordinate [I]. Line 5 
stands for the predicate for all I<4 if I>=2 then slow vir- 
tual processor of the scalar type is related to the point 
with coordinate [I]. Performance specifiers fast and 
slow specify relative performances of virtual processors 
of the same type. For any network of this type, this infor- 
mation allows the compiler to associate a weight with each 
virtual processor of the network normalizing it in respect 
to the weight of the parent. Note, that the virtual host-pro- 
cessor is always of the scalar type and normal perfor- 
mance. 

Lines 7-10 are a link declaration. It specifies links 
between virtual processors. Line 8 stands for the predicate 
for all I<4 if I> 0 then there exists undirected link of nor- 
mal length connecting virtual processors with coordinates 
[I] and [1-1 ], and line 9 stands for the predicate/or all 
I<4 if I==0 then there exists undirected link of normal 
length connecting virtual processors with coordinates 
[I] and [3]. Note, that if a link between two virtual pro- 
cessors is not specified explicitly, it is meant not absence 
of a link but existence of a very long link. 

Line 11 is a parent declaration. It specifies that the par- 
ent has coordinate [0]. 

With the network type declaration, the user can declare a 
network identifier of this type. For example, the declara- 
tion 

net  Rectangle  rl; 
introduces identifier rl of network. 

The notion of distributed data object is introduced in the 
spirit of C* [9] and Dataparallel C [10]. Namely, a data 
object distributed over a region of the computing space 
comprises a set of components of any one type so that 
each virtual processor of the region holds one component. 
For example, the declarations 

net  Rectangle  r2; 
int   [*]Derror,    [r2]Da[10]; 
float   [host]f,    [r2:K2]Df; 
repl   [*]Di; 

declare: 
- integer variable Derror distributed over the entire 

computing space; 
- integer 10-member array Da distributed over the net- 

work r2; 
- undistributed floating variable f belonging to the vir- 

tual host-processor; 
- floating variable Df distributed over a subnetwork of 

network r2; 
- integer variable Di replicated over the entire comput- 

ing space. 
By definition, a distributed object is replicated if all its 

components is equal to each other. 
The notion of distributed value is introduced similarly. 

In addition to a network type, the user can declare a 
parametrized family of network types called topology or 
generic network type. For example, the declaration 
1*1*1 nettype Ring(n,   p[n])   { 
1*2*1 coord  I=n; 
/*3*/ node   { 
/*4*/ I>=0:   fast*p[I]   scalar; 
/*5*/ }; 
/*&*/ link   { 
1*1*1 I>0:       [I]<->[I-1] ; 
/*8*/ I==0:    [I]<->[n-l]; 
/*9*/ }; 
/*10*/ parent   [0] ; 
/*11*/ }; 
introduces topology Ring that corresponds to networks 
consisting of n virtual processors of the scalar type 
interconnected with undirected links of normal length in a 
ring structure. 

The header (line 1) introduces parameters of topology 
Ring, namely, integer parameter n and vector parameter 
p consisting of n integers. 

Correspondingly, coordinate variable I ranges from 0 to 
n-1, line 4 stands for the predicate for all Kn if I>=0 
then fast virtual processor of the scalar type, whose rel- 
ative performance is specified by the value of p[I], is 
related to the point with coordinate [I], and so on. 

Here, performance specifier fast*p[I] includes so- 
called power specifier *p [ I ]. In general, the value of the 
expression in a power specifier shall be positive integer. 
Any operand in the expression should consist only of 
coordinate variables, constants and generic parameters. If 
the value of the expression is equal to 1, the power speci- 
fier may be omitted. 

It is meant that in the framework of the same network- 
type declaration any performance specifier with the fast 
keyword specifies more powerful virtual processor than a 
performance specifier with the slow keyword. It is meant 
also that the greater value of the expression in a power 
specifier the more performance is specified. 

With the topology declaration, the user can declare a net- 
work identifier of a proper type. For example, the frag- 
ment 

repl  m,   n[100]; 
/* Computing m, n[0],...,n[m-l] */ 
{ 
net Ring(m,n) rr; 

} 
introduces identifier rr of the network, the type of which 
is defined completely only in run time. Network rr con- 
sists of m virtual processors the relative performance of i- 
th virtual processor being characterized by the value of 
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n[i]. 
A network has a computing space duration that deter- 

mines its lifetime. There are 2 computing space durations: 
static, and automatic. A network declared with static com- 
puting space duration is created only once and exists till 
termination of the entire program. A new instance of a net- 
work declared with automatic computing space duration is 
created on each entry into the block in which it is declared. 
The network is discarded when execution of the block 
ends. 

Now, let us consider a simple mpC program computing 
the dot product of two vectors. The program is correct but 
not good in the sense of efficiency. 
1*1*1     nettype  Star(n)   { 
1*2*1 coord  I=n; 
/*3*/ node   {   default:   scalar;}; 
/*4*/ link   {   I>0:    [0]<-> [i];}; 
/*5*/ parent   [0]; 
/*6*/     }; 

1*1*1     #define N 100 
/*8*/  void [*]main() 
/*9*/  { 
/*10*/    double [host]x[N]; 
/*11*/   double [host]y[N]; 
/*12*/    double [host]z; 
/*13*/    double sqrtO ; 
/*14*/    .../»Input of x and y */ 
/*15*/    { 
/*16*/      net Star(N) s; 
l*\l*l double [s]dx, [s]dy, [s]dz; 
/*18*/      dx=x[]; 
/*19*/     dy=y[]; 
/*20*/      dz=dx*dy; 
/*21*/      z=[host]dz[+]; 
1*22*1 z=([host]sqrt)(z); 
/*23*/    } 
/*24*/    .../* Output of z */ 
/*25*/  } 

The program includes 2 functions - main defined here 
and library function sqrt. Lines 8-25 contain a definition 
of main. Lines 10-12 contain definitions of arrays x, y 
and variable z all belonging to the virtual host-processor. 
Line 13 contains a declaration of function identifier sqrt. 

In general, mpC allows 3 kinds of functions. Here, func- 
tions of two kinds are used: main is a basic function, and 
sqrt is a nodal function. 

A call to basic function is executed on the entire comput- 
ing space. Its arguments should either belong to the virtual 
host-processor or be distributed over the entire computing 
space, and its value should be distributed over the entire 
computing space. In contrast to other kinds of function, a 
basic function can define networks. In line 8, construct 
[ * ], placed just before the function identifier, specifies 
that main is an identifier of basic function. 

Nodal function can be executed completely by any one 

virtual processor. Only local data objects of the executing 
virtual processor may be defined in such a function. In 
addition, the corresponding component of an externally- 
defined distributed data object can be used in the function. 
A declaration of nodal function (e.g., in line 13) does not 
need any additional specifiers. 

Line 16 defines the automatic network s with the virtual 
host-processor as a parent. 

Line 17 defines 3 automatic variables dx, dy, and dz all 
distributed over s. 

Line 18 contains unusual unary postfix operator []. In 
general, its operand should either designate an array or be a 
pointer. In this case, expression x [ ] designates array x as 
a whole, and the statement in line 18 scatters elements of 
array x to components of distributed variable dx. 

Similarly, the statement in line 19 scatters elements of 
array y to components of distributed variable dy. 

The statement in line 20 is also executed on network s. 
But unlike 2 previous statements, its execution does not 
need any communications between virtual processors con- 
stituting network s. In fact, this statement is divided into a 
set of independent undistributed statements each of which 
is executed by the corresponding virtual processor using 
the corresponding data components. Such statement are 
called asynchronous statements. In particular, this state- 
ment multiplies (in parallel) components of dx and dy and 
assigns the result to components of dz. 

In line 21, the result of postfix unary operator [ + ] is dis- 
tributed over s. All its components are equal to the sum of 
all components of operand dz. Here, the result of prefix 
unary operator [host] is the component of its operand 
belonging to the virtual host-processor. So, the statement 
in line 21 assigns the sum of all components of dz to z. 

Finally, line 22 calls to nodal function sqrt on the vir- 
tual host-processor and assigns the value returned to z. 

To support modular parallel programming as well as the 
writing of libraries of parallel programs, so-called network 
functions are introduced in addition to basic and nodal 
functions. 

3. The mpC programming environment 

Currently, the mpC programming environment includes a 
compiler, a run-time support system (RTSS), a library, and 
a command-line user interface. 

The compiler translates a source mpC program into the 
ANSI C program with calls to functions of RTSS. 

RTSS manages the computing space which consists of a 
number of processes running over target DMM as well as 
provides communications. It has a precisely specified 
interface and encapsulates a particular communication 
package (currently, a small subset of MPI). It ensures plat- 
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form-independence of the rest of system components. 
The library consists of a number of functions that sup- 

port debugging mpC programs as well as provide some 
low-level efficient facilities. 

The command-line user interface consists of a number of 
shell commands supporting the creation of a virtual paral- 
lel machine and the execution of mpC programs on the 
machine. While creating the machine, its topology is 
detected by a topology detector running a special bench- 
mark and saved in a file used by RTSS. 

Our compiler uses optionally either the SPMD model of 
target code, when all processes constituting a target mes- 
sage-passing program run identical code, or a quasi- 
SPMD model, when it translates a source mpC file into 2 
separate target files - the first for the virtual host-processor 
and the second for the rest of virtual processors. 

All processes constituting the target program are divided 
into 2 groups - the special process called dispatcher play- 
ing the role of the computing space manager, and general 
processes called nodes playing the role of virtual proces- 
sors of the computing space. The special node called host 
is separated. The dispatcher works as a server accepting 
requests from nodes. The dispatcher does not belong to the 
computing space. 

In the target program, every network or subnetwork of 
the source mpC program is represented by a set of nodes 
called region. At any time of the target program running, 
any node is either free or hired in one or several regions. 
Hiring nodes in created regions and dismissing them are 
responsibility of the dispatcher. The only exception is the 
pre-hired host-node representing the mpC pre-defined vir- 
tual host-processor. Thus, just after initialization, the com- 
puting space is represented by the host and a set of 
temporarily free (unemployed) nodes. 

Creation of the network region involves the parent node, 
the dispatcher and all free nodes. The parent node sends a 
creation request containing the necessary information 
about the network topology to the dispatcher. Based on 
this information and the information about the topology of 
the virtual parallel machine, the dispatcher selects the 
most appropriate set of free nodes. After that, it sends to 
every free node a message saying whether the node is 
hired in the created region or not. Deallocation of network 
region involves all its members as well as the dispatcher. 

The dispatcher keeps a queue of creation requests that 
cannot be satisfied immediately but can be served in the 
future. It implements some strategy of serving the requests 
aimed at minimization of the probability of occurring a 
deadlock. The dispatcher detects such a situation when the 
sum of the number of free nodes and the number of such 
hired nodes that could be released is less than the mini- 
mum number of free nodes required by a request in the 
queue. In this case, it terminates the program abnormally 

specifying a deadlock. 

4. Irregular applications 

4.1 Programming in mpC 

Let us consider an irregular application simulating the 
evolution of a system of stars in a galaxy (or set of galax- 
ies) under the influence of Newtonian gravitational attrac- 
tion. 

Let our system consist of a number of large groups of 
bodies. It is known, that since the magnitude of interaction 
between bodies falls off rapidly with distance, the effect of 
a large group of bodies may be approximated by a single 
equivalent body, if the group of bodies is far enough away 
from the point at which the effect is being evaluated. Let it 
be true in our case. So, we can parallelize the problem, and 
our application will use a few virtual processors, each of 
which updates data characterizing a single group of bod- 
ies. Each virtual processor holds attributes of all the bodies 
constituting the corresponding group as well as masses 
and centers of gravity of other groups. The attributes char- 
acterizing a body include its position, velocity and mass. 

Finally, let our application allow both the number of 
groups and the number of bodies in each group to be 
defined in run time. 

The application implements the following scheme: 
Initializing-  the galaxy 

on   the virtual  host-processor 
Creation  of the network 
Scattering groups  over 

virtual processors 
Parallel   computing masses  of groups 
Interchanging  the masses  among 

virtual processors 
while(1)    { 

Visualization  of  the galaxy 
on   the virtual  host-processor 

Parallel  computation of centers  of 
gravity of groups 

Interchanging the centers among 
virtual processors 

Parallel  updating groups 
Gathering groups 

on  the virtual host-processor 
} 

The corresponding mpC program looks as follows: 

♦define DELTA 3600.0 
#define INTERVAL 3 

/*The maximum number of groups*/ 
#define MaxGs 3 0 
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/*The maximum number of bodies in a group*/ 
»define MaxBs 600 

typedef double Triplet[3];; 
typedef 
struct {Triplet pos; Triplet v; double m;} 
Body; 

/*The number of groups*/ 
int [host]M; 

/*The numbers of bodies in groups*/ 
int [host]N[MaxGs]; 

repl dM, dN[MaxGs]; 

/*The galaxy timer*/ 
double [host]t; 

/*Bodies of a galaxy*/ 
Body (*[host]Galaxy[MaxGs])[MaxBs]; 

nettype GalaxyNet(m, n[m]) { 
coord I=m; 
node { I>=0: fast*n[I] scalar;}; 
link (J=m){ 

J>0: length*(-1) [J]->[0]; 
J>0: length*1    [I]->[J]; 

}; 
}; 

void [host]Input(), UpdateGroup(); 
void [host]VisualizeGalaxyO ; 

void [*]Nbody(char *[host]infile) 

{ 
^Initializing Galaxy, M and N*/ 
Input(infile); 

/*Broadcasting the number of groups*/ 
dM=M; 

/*Broadcasting the numbers of bodies*/ 
/*in groups*/ 
dN[]=N[]; 
{ 
net GalaxyNet(dM,dN) g; 
int [g]myN, [g]mycoord; 
Body [g]Group[MaxBs]; 
Triplet [g]Centers[MaxGs]; 
double [g]Masses[MaxGs]; 
repl [g]i; 
void [net GalaxyNet(m, n[m])]Mintegrity 

(double (*)[MaxGs]); 
void [net GalaxyNet(m, n[m])]Cintegrity 

(Triplet (*)[MaxGs]); 

mycoord = I coordof body_count; 

myN = dN[mycoord]; 

/♦Scattering groups*/ 
for(i=0; i<[g]dM; i++) 

[g:I==i]Group[] = (*Galaxy[i])[]; 

for(i=0; i<myN; i++) 
Masses[mycoord]+=Group[i].m; 

([([g]dM,[g]dN)g])Mintegrity(Masses); 
while(1) { 

if(((int)(t/DELTA))%INTERVAL==0) 
VisualizeGalaxyO ; 

Centers[mycoord][]=0.0; 
for(i=0; i<myN; i++) 
Centers[mycoord][] += 

(Group[i].m/Masses[mycoord])* 
(Group[i].pos)[]; 

([([g]dM,[g]dN)g])Cintegrity(Centers); 
([g]UpdateGroup)(Centers, Masses, 

Group, [g]dM); 
t+=DELTA; 
if(((int)(t/DELTA))%INTERVAL==0) 

/*Gathering groups*/ 
for(i=0; i<[g]dM; i++) 

(*Galaxy[i])[]=[g:I==i]Group[]; 

} 

} 

void [net GalaxyNet(m,n[m]) p] Mintegrity 
(double (*Masses)[MaxGs]) 

{ 
double MassOfMyGroup; 
repl i, j; 
MassOfMyGroup=(*Masses)[I coordof i]; 
for(i=0; i<m; i++) 

for(j=0; j<m; j++) 
[p:I==i](*Masses)[j] = 

[p:I==j]MassOfMyGroup; 

} 

void [net GalaxyNet(m,n[m]) p] Cintegrity 
(Triplet (*Centers)[MaxGs]) 

{ 
Triplet MyCenter; 
repl i, j; 
MyCenter[] = (*Centers)[I coordof i][]; 
for(i=0; i<m; i++) 

for(j=0; j<m; j++) 
[p:I==i](*Centers)[j][] = 

[p:I==j]MyCenter[]; 

} 

This mpC source file contains the following external def- 
initions: 

- definitions of variables M, t and arrays N, Galaxy all 
belonging to the virtual host-processor; 
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- a definition of variable dM and array dN both replicated 
over the entire computing space; 

- a definition of network type GalaxyNet; 
- a definition of basic function Nbody with one formal 

parameter infile belonging to the virtual host-proces- 
sor; 

- definitions of network functions Mintegrity and 
Cintegrity. 

In general, a network function is called and executed on 
some network or subnetwork, and its value is also distrib- 
uted over this region of the computing space. The header 
of the definition of the network function either specifies an 
identifier of a global static network or subnetwork, or 
declares an identifier of the network being a special formal 
parameter of the function. In the first case, the function 
can be called only on the specified region of the comput- 
ing space. In the second case, it can be called on any net- 
work or subnetwork of a suitable type. In any case, only 
the network specified in the header of the function defini- 
tion may be used in the function body. No network can be 
declared in the body. Only data objects belonging to the 
network specified in the header may be defined in the 
body. In addition, corresponding components of an exter- 
nally-defined distributed data object may be used. Unlike 
basic functions, network functions (as well as nodal func- 
tions) can be called in parallel. 

Network functions Input and VisualizeGalaxy, 
both associated with the virtual host-processor, as well as 
the nodal function UpdateGroup are declared and called 
here. 

Automatic network g, executing most of computations 
and communications, is defined in such a way, that it con- 
sists of M virtual processors, and the relative performance 
of each processor is characterized by the number of bodies 
in the group which it computes. 

So, the more powerful is the virtual processor, the larger 
group of bodies it computes, and the more intensive is the 
data transfer between two virtual processors, the shorter 
link connects them (length specifier length* (-1) speci- 
fies a shorter link than length* 1 does). 

The mpC programming environment bases on this infor- 
mation to map the virtual processors constituting network 
g into the processes constituting the entire computing 
space in the most appropriate way. Since it does it in run 
time, the user does not need to recompile this mpC pro- 
gram, to port it to another DMM. 

The result of the binary operator coordof (in the first 
statement of the inner block of function Nbody) is an inte- 
ger value distributed over g, each component of which is 
equal to the value of coordinate I of the virtual processor 
to which the component belongs. The right operand of 
operator coordof is not evaluated and used only to spec- 
ify a region of the computing space. Note, that coordinate 

variable I is treated as an integer variable distributed over 
the region. 

Call expression ( [g]UpdateGroup) (....) causes 
parallel execution of nodal function UpdateGroup on 
each of virtual processors of network g. It is meant, that 
function name UpdateGroup is converted to a pointer- 
to-function distributed over the entire computing space, 
and operator [g] cuts from this pointer a pointer distrib- 
uted over g. So, the value of expression [g] Update- 
Group is a pointer-to-function distributed over g. 
Therefore, expression ( [g]UpdateGroup) (....) 
denotes a distributed call to a set of undistributed func- 
tions. 

Network functions Mintegrity and Cintegrity 
have 3 special formal parameters. Network parameter p 
denotes the network executing the function. Parameter m is 
treated as a replicated over p integer variable, and param- 
eter n is treated as a pointer to the initial member of an 
integer unmodifiable m-member array replicated over p. 
The syntactic construct ( [ (dM, dN) g] ), placed on the 
left of the name of the function called in the call expres- 
sions in function Nbody, just specifies the actual argu- 
ments corresponding to the special formal parameters. 

4.2 Experimental results 

We compared the running time of our mpC program to 
its carefully written MPI counterpart. We use 3 worksta- 
tions - SPARCstation 5 (hostname gamma), SPARCclassic 
(omega), and SPARCstation 20 (alpha), connected via 
lOMbits Ethernet. There were 23 other computers in the 
same segment of the local network. We used LAM MPI 
version 5.2 [12] as a particular communication platform. 

The computing space of the mpC programming environ- 
ment consists of 15 processes, 5 processes running on each 
workstation. The dispatcher runs on gamma and uses the 
following relative performances of the workstations 
obtained automatically upon the creation of the virtual 
parallel machine: 1150 (gamma), 331 (omega), 1662 
(alpha). 

The MPI program is written in such a way to minimize 
communication overheads. All our experiments deal with 
9 groups of bodies. We map 3 MPI processes to gamma, 1 
process to omega, and 5 processes to alpha, providing 
the optimal mapping if the numbers of bodies in these 
groups are equal to each other. 

The first experiment compares the mpC and MPI pro- 
grams for homogeneous input data when all groups consist 
of the same number of bodies. Figure 1 shows the running 
time of both programs simulating 15 hours of the galaxy 
evolution depending on the number of bodies in groups. 
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Figure 1. Running time of the MPI and mpC 

programs for homogenous input data. 

In fact, it shows how much we pay for the usage of mpC 
instead of pure MPI. One can see that the running time of 
the MPI program consists about 95-97% of the running 
time of the mpC program. That is, in this case we loose 3- 
5% of performance. 

The second experiment compares these programs for het- 
erogeneous input data. Let our groups consist of 10,10,10, 
100, 100, 100, 600, 600, and 600 bodies correspondingly. 

The running time of the mpC program does not depend 
on the order of the numbers. In any case, the dispatcher 
selects: 

- 4 processes on gamma for virtual processors of network 
g computing two 10-body groups, one 100-body group, 
and one 600-body group; 

- 3 processes on omega for virtual processors computing 
one 10-body group and two 100-body groups; 

- 2 processes on alpha for virtual processors computing 
two 600-body groups. 

The mpC program takes 94 seconds to simulate 15 hours 
of the galaxy evolution. 

The running time of the MPI program essentially 
depends on the order of these numbers. It takes from 88 to 
391 seconds to simulate 15 hours of the galaxy evolution 
depending on the particular order. Figure 2 shows the rela- 
tive running time of the MPI and mpC programs for differ- 
ent permutations of these numbers. All possible 
permutations can be broken down into 24 disjoint subsets 
of the same power in such a way that if two permutations 
belong to the same subset, the corresponding running time 
is equal to each other. Let these subsets be numerated so 
that the greater number the subset has, the longer time the 
MPI program takes. In figure 2, each such a subset is repre- 
sented by a bar, the height of which is equal to the corre- 
sponding value of tMPi/tmpC- 

1 24    N 
Figure 2. The relative running time for different 

permutations of the numbers of bodies in groups. 

One can see that almost for all input data the running 
time of the MPI program exceeds (and often, essentially) 
the running time of the mpC program. 

5. Regular applications 

5.1 Programming in mpC 

Let us consider a regular application multiplying 2 dense 
square nxn matrices X and Y. 

Our mpC program will use a number of virtual proces- 
sors, each of which computes a number of rows of the 
resulting matrix Z. Both dimension n of matrices and the 
number of virtual processors involved in computations are 
defined in run time. So, our application implements the fol- 
lowing scheme: 

Initializing X and Y 
on  the virtual host-processor 

Creating a network 
Scattering rows  of X over 

virtual processors  of the network 
Broadcasting Y over 

virtual processors of the network 
Parallel  computing submatrices  of Z 
Gathering the resulting matrix Z 

on  the virtual host-processor 

The corresponding mpC program looks as follows: 

/*!*/       nettype SimpleNet(n) { 
1*1*I coord I=n; 
/*3*/   }; 

/*4*/  nettype Star(m, n[m]) { 
/*5*/    coord I=m; 
/*6*/    node {I>=0: fast*n[I] scalar;}; 
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1*1*1 link {I>0:  [I]->[0], [0]->[I];}; 
/*8*/    parent [0]; 
/*9*/   }; 

void [*]MxM(float *x, float *y, 
float *z, repl n) { 

repl double *powers; 
repl nprocs, nrows[MAXNPROCS], n; 

MPC_Processors_static_info 
(&nprocs,&powers); 

Partition(nprocs,powers,nrows,n) ; 
{ 
net Star(nprocs, nrows) w; 
([([w]nprocs)w])ParMult( 
[w]x,[w]y,[w]z,[w]nrows,[w]n); 

} 
} 

void [net SimpleNet(p)v] ParMult( 
float *dx, float *dy, float *dz, 
repl *r, repl n) 

{ 
repl s=0; 
int myn, i; 
int *d, *1, c; 

myn=r[l coordof r]; 
([(p)v])MPC_Bcast(&s, dy, 1, 

n*n, dy, 1); 
d=calloc(p, sizeof(int)); 
l=calloc(p, sizeof(int)); 
for(i=0, d[0]=0; i<p; i++) { 

l[i]=r[i]*n; 
if(i+l<p) d[i+l]=l[i]+d[i]; 

} 
c=l[I coordof c]; 
([(p)v])MPC_Scatter(&s, dx ,d, 

1, c, dx) ; 
SeqMult(dx, dy, dz, myn, n); 
([(p)v])MPC_Gather(&s,dz,d,l,c,dz); 
} 

1*11*1  void SeqMult(float *a, float *b, 
/*48*/ float *c, int m, int n) 
/*49*/ { 
/*50*/     int   i,   j,   k,   ixn; 

double  s; 

/*10*/ 
/*11*/ 
1*12*1 
/*13*/ 
/*14*/ 
/*15*/ 
/*16*/ 
/*!!*/ 
/*18*/ 
/*19*/ 
/*20*/ 
/*21*/ 
1*22*1 
/*23*/ 

1*21*1 
/*25*/ 
/*26*/ 
1*21*/ 
/*28*/ 
/*29*/ 
/*30*/ 
/*31*/ 
/*32*/ 
/*33*/ 
/*34*/ 
/*35*/ 
/*36*/ 
/*37*/ 
/*38*/ 
/*39*/ 
/*40*/ 
/*41*/ 
/*42*/ 
/*43*/ 
/*44*/ 
/*45*/ 
/*46*/ 

/*51*/ 
/*52*/ 
/*53*/ 
/*54*/ 
/*55*/ 
/*56*/ 
/*57*/ 
/*58*/ 
/*59*/   } 

for(i=0;   i<m;   i++) 
for(j=0,   ixn=i*n;   j<n;   j++)   { 
for(k=0,   s=0.0;   k<n;   k++) 
s+=a[ixn+k]*(double)(b[k*n+j]); 

c[ixn+j]=s; 
} 

/*60*/ 
/*61*/ 
/*62*/ 
/*63*/ 
/*64*/ 
/*65*/ 
/*66*/ 
/*67*/ 
/*68*/ 
/*69*/ 
/*70*/ 
/*!!*/ 
1*12*1 
1*11*1 

void Partition(int p, double 
int *r, int n) 

{ 
int sr, i; 
double sv; 

for(i=0, sv=0.0; i<p; i++) 
sv+=v[i]; 

for(i=0, sr=0; i<p; i++) { 
r[i]=(int)(v[i]/sv*n); 
sr+=r[i]; 

} 
if(sr!=n) r[0]+=n-sr; 

} 

Formal parameters x, y, and z of basic function MxM are 
distributed over the entire computing space, and parameter 
n is replicated over the entire computing space. It is meant 
that n holds the dimension of matrices. It is also meant 
that x points to nxn-member array, and the component of 
this distributed array belonging to the virtual host-proces- 
sor holds matrix X. Similarly, [host] y points to an array 
holding matrix Y, and [host] z points to an array holding 
resulting matrix Z. 

Lines 15-16 calls to library nodal function 
MPC_Processors_static_inf o on the entire com- 
puting space returning the number of actual processors 
and their relative performances. So, after this call repli- 
cated variable nprocs will hold the number of actual 
processors, and replicated array powers will hold their 
relative performances. 

Line 17 calls to nodal function Partition on the 
entire computing space. Based on relative performances of 
actual processors, this function computes how many rows 
of the resulting matrix will be computed by every actual 
processor. So, after this call nrows [ i ] will hold the 
number of rows computed by i-th actual processor. 

Line 19 defines automatic network w. Its type is defined 
completely only in run time. Network w, which executes 
the rest of computations and communications, is defined in 
such a way, that the more powerful the virtual processor, 
the greater number of rows it computes. The mpC environ- 
ment will ensure the optimal mapping of the virtual pro- 
cessors constituting w into a set of processes constituting 
the entire computing space. So, just one process from pro- 
cesses running on each of actual processors will be 
involved in multiplication of matrices, and the more pow- 
erful the actual processor, the greater number of rows its 
process will compute. 

Lines 20-21 call to network function ParMult on net- 
work w. In this call, topological argument [w] nprocs 
specifies a network type as an instance of parametrized 
network type SimpleNet, and network argument w 
specifies a region of the computing space treated by func- 
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tion ParMult as a network of this type. 
In lines 24-26, the header of the definition of function 

ParMult declares identifier v of a network being a spe- 
cial network formal parameter of the function. Since net- 
work v has a parametrized type, topological parameter p is 
also declared in this header. In the function body, special 
formal parameter p is treated as an unmodifiable variable 
of type int replicated over network formal parameter v. 
The rest of formal parameters (regular formal parameters) 
of the function are also distributed over v. 

Actually, p holds the number of virtual processors in net- 
work v, n holds the dimension of matrices, r points to p- 
member array, i-th element of which holds the number of 
rows of the resulting matrix that i-th virtual processor of 
network v computes. Each component of dy points to an 
array to contain nxn matrix Y. Each component of dz 
points to an array to contain the rows of Z computed on the 
corresponding virtual processor of v. Each component of 
dx points to an array to contain the rows of X used in com- 
putations on the corresponding virtual processor. In addi- 
tion, throughout the function execution the components of 
dx, dy, dz belonging to the parent of network v are 
reputed to point to arrays holding matrices X, Y and Z cor- 
respondingly. 

Line 28 defines variable s replicated over v. Lines 29-30 
define variables myn, i, d, 1 and c all distributed over v. 

After execution of the asynchronous statement in line 32, 
each component of myn will contain the number of rows of 
the resulting matrix that computes the corresponding vir- 
tual processor. 

Lines 33-34 call to so-called embedded network function 
MPC_Bcast which is declared in a standard mpC header 
as follows: 

int   [net  SimpleNet(n)]   MPC_Bcast( 
repl  const  *coordinates_of_source, 
void  *source_buffer, 
const  source_step, 
repl  const  count, 
void  *destination_buffer, 
const destination_step); 

This call broadcasts matrix Y from the parent of v to all 
virtual processors of v. As a result, each component of the 
distributed array pointed by dy will contain this matrix. 

An embedded network function looks like a library net- 
work function, but a compiler knows its semantics. In par- 
ticular, it will generate different code for different types of 
arguments corresponding to source and destination buffers. 

Statements in lines 35-40 are asynchronous. They form 
two p-member arrays d and 1 distributed over v. After 
their execution, 1 [ i ] will hold the number of elements in 
the portion of the resulting matrix which is computed by 
the i-th virtual processor of v, and d [ i ] will hold the dis- 
placement which corresponds to this portion in the result- 
ing matrix. Equivalently, 1 [ i ] will hold the number of 

elements in the portion of matrix X which is used by i-th 
virtual processor of v, and d [ i ] will hold the displace- 
ment which corresponds to this portion in matrix X. 

The statement in line 41 is also asynchronous. After its 
execution, each component of c will hold the number of 
elements in the portion of the resulting matrix which is 
computed by the corresponding virtual processor (equiva- 
lently, the number of elements in the portion of matrix X 
which is used by this virtual processor). 

Lines 42-43  call to embedded network function 
MPC_Scatter which is declared as follows: 

int   [net  SimpleNet(n)   w]   MPC_Scatter( 
repl  const  *coordinates_of_source, 
void *source_buffer, 
const  *displacements, 
const  *sendcounts, 
const receivecount, 
void *destination_buffer); 

This call scatters matrix X from the parent of v to all vir- 
tual processors of v. As a result, each component of dx will 
point to an array containing the corresponding portion of 
matrix X. 

Line 44 calls to nodal function SeqMult on v, comput- 
ing the corresponding portions of the resulting matrix on 
each of its virtual processors in parallel (SeqMult imple- 
ments traditional sequential algorithm of matrix multipli- 
cation). 

Finally, line 45 calls to embedded network function 
MPC_Gather which is declared as follows: 

int   [net  SimpleNet(n)   w]   MPC_Gather( 
repl  const *coordinates_of_destination, 
void  *destination_buffer, 
const  *displacements, 
const   *receivecounts, 
const  sendcount, 
void *source_buffer); 

This call gathers resulting matrix Z each virtual processor 
of v sending its portion of the result to the parent of v. 

5.2 Experimental results 

We measured the running time of our mpC program mul- 
tiplying two dense square matrices. We used three Sun 
SPARCstations 5 (hostnames gamma, beta, and 
delta), SPARCclassic (omega), and HP 9000-712 
(zeta) connected via lOMbits Ethernet. There were more 
than 20 other computers in the same segment of the local 
network. 

We used LAM MPI Version 6.0 as a particular communi- 
cation platform as well as a new improved benchmark for 
detecting relative performances of workstations. In addi- 
tion, all executables, which took part in the experiment, 
were generated by GNU C compiler with optimization 
option -02. 
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Eight virtual parallel machines were created: 
g consisting of gamma (its relative performance 
detected during the creation of this virtual parallel 
machine was equal to 324); 
gd consisting of gamma (323), and delta (330); 
gbd consisting of gamma (324), beta (331), and 
delta (331); 
gbdz consisting of gamma (324), beta (327), 
delta (330), and zeta (510); 
zg consisting of zeta (510), and gamma (323); 
zgb consisting of zeta (509), gamma (321), and 
beta (325); 
zgbd consisting of zeta (466), gamma (328), beta 
(327), and delta (329); 
zo consisting of zeta (506), and omega (147). 

The computing space of each of these virtual parallel 
machines was constituted by 5 processes running on each 
of workstations (that is, for example, the computing space 
of gbdz was constituted by 20 processes). As a base of 
the comparison we used the running time of a sequential C 
program implementing the same algorithm which was 
used in function SeqMult. 

Table 1 gives the time of running the mpC program on 
four virtual parallel machines (g, gd, gbd, and gbdz) 
dependent on the dimension of multiplied matrices, and 
compares it to the time of running the sequential C pro- 
gram on workstation gamma. Machines g, gd, and gbd 
are homogeneous ones, meantime machine gbdz is heter- 
ogeneous. 

Figure 3 illustrates how the mpC program allows to 
speed up the multiplication of two dense square matrices, 
if the user starts from single workstation gamma and 
enhances his computing facilities step by step by means of 
adding workstations delta, beta and zeta. 

Table 1: Time to multiply two nxn matrices (sec) 

collisions resulted in visible degradation of the network 
bandwidth. 

n g g gd gbd gbdz 
c mpC mpC mpC mpC 

100 0.32 0.40 0.53 0.61 0.70 
200 2.55 2.61 2.00 1.91 2.05 
300 9.33 9.66 6.11 5.25 4.96 
400 31.2 32.2 17.9 13.9 11.6 
500 54.7 55.6 31.0 23.4 19.0 
600 125. 125. 68.0 49.0 37.0 
700 196. 196. 106. 75.0 58.0 
800 320. 323. 172. 123.0 88. 

Note, that the running time of the mpC program substan- 
tially depends on the network load. We monitored the net- 
work activity during our experiments. We have observed 
up to 32 collisions per second. The collisions occurred 
more often during broadcasting large data portions. The 

speedup 
k        « g A  -gbd 

gb ♦ - gbdz 

^♦* 
iF™- 

J L J L 
100    200     300    400     500     600     700     800n 

Figure 3. Speedups computed relative to sequen- 
tial code running on workstation gamma. 

Table 2 compares contribution of communications and 
computations in the total running time of the mpC pro- 
gram (results for gbdz are presented). The first column 
shows matrix dimensions, an the second one shows per- 
centage of communications in the total running time. 

Table 2: Contribution of communications in the total 
running time (gbdz) 

n Communications (%) 
100 40 
200 55 
300 48 
400 38 
500 35 
600 26 
700 24 
800 21 

Communications in our mpC program consist of three 
parts: scattering matrix X, broadcasting matrix Y, and gath- 
ering the resulting matrix. Table 3 compares contribution 
of each of these parts in the total communication time (for 
the gbdz virtual parallel machine). 

While analyzing the presented results, it is necessary to 
take into account some peculiarities of both the implemen- 
tation of MPI, which we used, and our local network. 

Our local network does not support fast communica- 
tions. It is based on lOMbits Ethernet and uses old-fash- 
ioned network equipment. In addition, there are 26 
computers in our segment of the network connected via 
cascade of 4 hubs. To characterize our network, it is 
enough to say that ftp transfers data from gamma to 
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alpha at the rate of 300-400Kbytes/s. It means that real 
bandwidth of our network is about 25-30% of its maxi- 
mum bandwidth. 

Table 3:Contribution of broadcast, scatter, and gather 
in the total communication time (gbdz) 

In addition, the table compares the mpC program and its 
manually written MPI counterpart on machine zo. 

n beast scatter gather 
100 70% 18% 12% 
200 78% 11% 11% 
300 78% 10% 12% 
400 79% 10% 11% 
500 79% 10% 11% 
600 79% 10% 11% 
700 79% 10% 11% 
800 76% 13% 11% 

On the other hand, LAM MPI Version 6.0 ensures send- 
ing large floating arrays at the rate of 50-60Kbytes/s. In 
addition, it doesn't use multicasting facilities of our net- 
work when broadcasting. 

Nevertheless, even under these conditions, our mpC pro- 
gram has demonstrated good speedup comparing with the 
sequential C program. 

If the implementation of MPI ensured the communica- 
tion rate comparable with the real bandwidth of the local 
network and used its multicasting facilities, contribution of 
communications in the total running time of our mpC pro- 
gram would not exceed 5-7%. If, in addition, we used 
lOOMbits Ethernet and up-to-date network technologies 
(for example, replaced hubs with switching devices), con- 
tribution of communications in the total running time of 
the mpC program would not exceed 1-2%. That is, the 
mpC programming environment can ensure practically 
ideal speedup of the presented mpC program for up-to-date 
heterogeneous networks of workstations. 

Table 4 gives the time of running the mpC program on 
four heterogeneous virtual parallel machines (zg, zgb, 
zgbd, and zo) dependent on the dimension of multiplied 
matrices, and compares it to the time of running the 
sequential C program on workstation zeta. 

Table 4: Time to multiply two nxn matrices (sec) 

n z zg zgb zgbd zo zo 

C mpC mpC mpC mpC MPI 
100 0.18 0.43 0.52 0.57 0.67 0.91 

200 1.52 1.67 1.70 1.79 2.36 4.29 

300 6.80 5.66 5.08 4.90 7.09 14.2 

400 17.3 14.2 11.7 11.1 16.4 33.0 

500 36.2 26.0 21.0 19.0 32.8 68.0 

600 66.8 53.0 41.0 37.0 58.5 120. 

700 113. 83.0 64.0 56.0 97.0 200. 

800 180. 134. 102. 88.0 152. 306. 
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Figure 4. Speedups computed relative to sequen- 
tial code running on workstation zeta. 

Figure 4 illustrates how the mpC program allows to 
speed up the multiplication of two dense square matrices, 
if the user starts from single powerful workstation zeta 
and enhances his computing facilities step by step by 
means of adding less powerful workstations gamma, 
beta, and delta. One can see that the mpC program- 
ming environment ensures good speedup in this case also. 

Another interesting result can be extracted from tables 1 
and 4. One can see that the slow network consisting of 
workstations gamma and delta (virtual parallel machine 
gd), the performance each of which is about 60% of the 
performance of workstation zeta, demonstrates a little bit 
higher performance (when multiplying two dense square 
matrices) than single workstation zeta. 

Finally, figure 5 shows clearly, that even for very hetero- 
geneous distributed memory machine consisting of high- 
performance HP workstation zeta and low-performance 
Sun workstation omega, the mpC program allows to uti- 
lize its parallel potential, speeding up the multiplication of 
two dense square matrices (comparing to the sequential C 
program running on zeta). At the same time, the use of 
its MPI counterpart, which distributes the workload 
equally, does not allow to do it slowing down the matrix 
multiplication essentially. 
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Figure 5. Speedups for MPI and mpC programs 
both running on machine zo. 

6. Summary 

The key peculiarity of mpC is its advanced facilities for 
managing such resources of DMMs as processors and 
links between them. They allow to develop parallel pro- 
grams for DMMs that once compiled will run efficiently 
on any particular DMM, because the mpC programming 
environment ensures optimal distribution of computations 
and communications over DMM in run time. 

The mpC language is a medium-level one. It demands 
from the user more than high-level parallel languages (say, 
Fortran D), but much less than MPI or PVM. 

Like MPI and PVM, mpC supports efficient program- 
ming a particular DMM. Like MPI, the user does not need 
to rewrite (and, moreover, to recompile) an mpC program 
to port it to other DMMs. 

At the same time, MPI (as well as MPI-2) does not 
ensure efficient porting to other DMMs, that is, it does not 
ensure, that a program, running efficiently on a particular 
DMM, will run efficiently after porting to other DMM. 
The mpC language and its programming environment do 
it. 

Advantages of mpC are especially clear when program- 
ming heterogeneous (irregular) applications or/and pro- 
gramming for heterogeneous DMM. 

It makes mpC and its programming environment suitable 
tools for development of libraries of parallel programs, 
especially for heterogeneous DMMs. 

The paradigm of parallel programming, supported by 
mpC, foresees explicit specification of a virtual parallel 
machine executing computations and communications. At 

the same time, mpC also supports implicit parallel pro- 
gramming, when parallelism is reduced to calls to library 

ictions (like function Nbody from section 4.1) 
gianuiimg, wiien paiaiieiism is reuuceu 10 cans to lie 
basic functions (like function Nbody from section 
that just encapsulate parallelism. 
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Abstract 
UbiWorld is a concept being developed by the Fu- 

tures Laboratory group at Argonne National Labora- 
tory that ties together the notion of ubiquitous com- 
puting (Ubicomp) with that of using virtual reality 
for rapid prototyping. The goal is to develop an en- 
vironment where one can explore Ubicomp-type con- 
cepts without having to build real Ubicomp hardware. 
The basic notion is to extend object models in a vir- 
tual world by using distributed wide area heterogeneous 
computing technology to provide complex networking 
and processing capabilities to virtual reality objects. 

1     Introduction 
In the Futures Laboratory [1] in the Mathematics 

and Computer Science (MCS) Division at Argonne 
National Laboratory (ANL), our research agenda is 
driven partly by discussions of advanced computing 
scenarios. We find that by suspending disbelief mo- 
mentarily and by engaging in serious discussion of such 
topics as off-planet infrastructure, green nomadic com- 
puting, and molecular nanotechnology, we are able to 
project beyond the current set of problems and to con- 
ceptualize innovative solutions. 

UbiWorld is a result of this fertile ground where 
concepts converge and evolve. This convergence is ev- 
ident in the off-planet infrastructure problem, or Peo- 
ple to Mars scenario. It's a safe assumption that sup- 
port for people on Mars will be primarily computing, 
that the computing will be ubiquitous and nearly in- 
visible, and that "green" technology will be used to 
minimize power consumption will be important, as 
will the deployment of nanotechnology to manufac- 
ture devices. On Mars, computers will always outnum- 
ber people. Computers will undoubtedly be heteroge- 
neous, it being hard to imagine a single architecture 
deployed in devices from gloves and boots to landers, 
flight control decks, and mining machines. Computers 
will need to be transparently interconnected; reliabil- 

ity and fault tolerance will be critical; and program- 
ming and code maintenance will be significant activi- 
ties. Everything of value will be available on mars.net 
from anywhere on the planet. Immersive telepresence 
will be a critical capability to overcome the obstacle 
of distance. 

These requirements push the boundaries of comput- 
ing and networking as we know them and as we can 
imagine them in the near future. Today, we don't even 
have the tools to experiment with implementations of 
some of these ideas. We can, however, conduct exper- 
iments in a virtual world, creating and designing ob- 
jects out of "pure thought-stuff," to borrow a phrase 
from Frederick Brooks. This is the concept behind 
UbiWorld. 

2    Ubiquitous Computing 
In the beginning, there were mainframe computers. 

Access to mainframes has historically been character- 
ized by many people per computer, batch operations, 
text input, and paper output. Today, we are living in 
the era of the personal computer. Personal computer 
use is characterized by one person per computer, mul- 
tithreaded interactive use, multimedia, windows, and 
mouse interface. The next wave of computing will 
be ubiquitous computing, characterized by many com- 
puters per person and a transparent interface, used to 
amplify one's powers, not replace them. Ubiquitous 
computing means computers will become as invisible 
to us today as text is [2]. There was a time when 
the written word was the sole province of the experts, 
guarded and used sparingly, much as computing has 
been. Text technology has undergone a transforma- 
tion from being written on clay tablets, then coarse 
paper, up to today's refined paper and display tech- 
nology. Believers in ubiquitous computing see a day 
when the same transformation will occur with respect 
to computing; users will not be any more aware of the 
computers in their lives than we are aware today of 
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the text in which this document is written. We are 
already beginning to see this happen with the integra- 
tion of computers in automobiles: the driver is really 
unaware of the computer and its function. 

The ubiquitous computing philosophy originated at 
Xerox Pare in 1988 [3], pioneered by Mark Weiser. He 
conceived of Ubicomp as nonintrusive, mobile, flexible 
computing, highly integrated into the working and liv- 
ing environment. Ubicomp is not virtual reality (VR). 
VR techniques, which put people into artificial worlds, 
primarily pose a computing and graphics horsepower 
problem. Ubicomp forces the computer to live in the 
real world with people. It is the integration of human 
factors, computer science, engineering, and social sci- 
ence. The human factors issues go well beyond yet an- 
other human computer interface problem and will not 
be solved with another windowing system. The com- 
puter science issues span all areas—networking, oper- 
ating systems, distribution of memory and processing, 
naming, resource management, etc. A general discus- 
sion of these issues can be found in [4]. Engineering 
will have to make advances in nanotechnology to man- 
ufacture the devices we can foresee. No one knows the 
social implications of everyone's having full-time com- 
puting and network access. 

An example of an Ubicomp object is intelligent cur- 
tains that contain light and temperature sensors and 
control room lighting and temperature. As develop- 
ers of UbiWorld, we talk about binoculars with image 
processing software to detect and highlight objects in 
a scene, to track eyes and vary the focus, or to per- 
form other image transformations. We imagine scrap 
paper that will be aware of the identity of the user, 
will auto connect to the user's environment, and will 
automatically store and retrieve all notes made in a 
personal database accessed via contact with a table or 
desk. We discuss many other examples, limited only 
by our imagination. 

Research in ubiquitous computing conducted at Xe- 
rox Pare followed standard experimental science pro- 
tocols [5]. Devices were conceived and prototypes con- 
structed and tried out on willing subjects. There were 
three prototypes of note: the Xerox ParcTab, a palm- 
sized device; the Pad, a notebook-sized device; and the 
Liveboard, a wall hanging device. Applications were 
constructed to perform e-mail, take notes, schedule 
meetings, check weather, etc. [6]. The primary les- 
son we take from the work, however, is that technol- 
ogy today is nowhere near what is required to design 
and perform experiments in truly ubiquitous comput- 
ing. A discussion of the many compromises that Xerox 
had to make in the development of the ParcTab can 

be found in [6]. 

3    UbiWorld 
UbiWorld is an experimental system combining vir- 

tual reality, advanced networking, and supercomput- 
ing to explore the implications of ubiquitous comput- 
ing. We use a virtual reality system as a design and 
evaluation environment. Instead of actually building 
devices, we use VR techniques to model the represen- 
tation of devices. We use advanced networking to link 
VR objects with computational servers to represent 
the behavior of the objects. Using these techniques, 
we can explore devices that are not yet possible to 
build. 

Today's hardware capabilities fall short of what 
ubiquitous computing will need in terms of power con- 
sumption, miniaturization, network bandwidth, and 
computing power. Until these capabilities can be met, 
we feel that experimenting in virtual spaces is a pro- 
ductive method of exploring the concepts in ubiqui- 
tous computing. The UbiWorld project builds on ex- 
isting software and projects in MCS. It serves to focus 
those efforts and leverages our long-standing expertise 
in software engineering and our strong development 
environment. 

Starting with the CAVE™ family of display de- 
vices we integrate tools for the construction of 3D ob- 
jects into the existing library [7]. Using these objects 
as models, we can then imbed new information tech- 
nology within them. These products might be hand- 
held computers, intelligent paper, image-processing 
binoculars, desks, clothing, jewelry, cups, eyeglasses, 
or carpeting. The plan is to couple the virtual ob- 
jects with remote computers via fine-grained heteroge- 
neous computing technology and to provide Ubicomp 
behavior and functionality to the models. The 3D ob- 
jects will be placed in virtual rooms, thereby creating 
a shared virtual world (in a collection of CAVEs, Im- 
mersaDesks, or whatever) where users can experiment 
with using the virtual devices. 

Each object in the world has behavior controlled 
by a program running on the network. The behav- 
ior could be one that, in the real object, would be 
provided by a local computer or by a combination 
of local computer and network connection to remote 
processors or databases. These "behavior" processes 
are able to communicate with each other by using a 
shared protocol (UbiWorldcomm). The objects also 
react and are influenced directly by interactions with 
the virtual world and its users. If someone picks up an 
object in the UbiWorld, that object knows it has been 
picked up and then "does the right thing," which may 
mean communicating with other objects or computing 
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something or displaying some network stream. For ex- 
ample, one's coffee cup could be displaying live video, 
or one could talk to an earring and make a phone call. 

UbiWorld will let us debug Ubicomp years before 
we have the technology to build it. It will enable us to 
change specifications without changing hardware and 
to identify software requirements. Through UbiWorld 
we can explore the boundaries of embedded computing 
and network computing. It serves as a testbed for 
heterogeneous computing tools and systems such as 
fine-grained networking protocols, image composition 
mechanisms, and agent integration. 

4    UbiWorld Design 
A fundamental principle in the design of UbiWorld 

is the separation of an object's representation from 
its behavior. As shown in Figure 1, the user inter- 
acts with the representation of an object. The be- 
havior of the object is specified independently of the 
representation. The actual computation of the be- 
havior is performed on a simulation server, separate 
from the representation computing. Furthermore, as 
seen in Figure 2, the world in which the object inter- 
acts is viewed as an orthogonal issue from the object 
itself. The virtual world, its representation, and its 
properties (such as light and gravity) are computed, 
stored, and rendered separately from the objects we 
choose to place in the world. In Figure 2, we show a 
virtual world record-and-playback engine that builds 
on work in progress at MCS. This engine, which we 
call VR Voyager, can be thought of as a virtual world 
server, storing virtual worlds, serving them to clients, 
recording VR experiences, and playing them back on 
demand. 

In addition, we introduce the concept of "dis- 
tributed rendering." This is an attempt to overcome 
the bottlenecks introduced into today's VR systems by 
lack of graphics rendering power. By employing ren- 
dering engines in distributed machines, we can bring 
much greater rendering power to bear than would oth- 
erwise be possible. Also, it gives us the ability to bring 
the rendering closer to the source of the data gener- 
ated in the simulations. Distributed rendering is a new 
research area introduced into the Futures Lab by the 
UbiWorld project. We are studying ways to composite 
the separately rendered images into a single image in 
the VR theater, by tapping into the OpenGL pipeline, 
for instance. Along with distributed rendering, we also 
introduce the concept of "aware networking." Aware 
networking means that networking resources are not 
precisely known at all times and implies an adaptive 
nature imbedded in the objects as they seek to join 
networks.  Objects can join networks by using a vari- 

ety of bandwidths and protocols. 
UbiWorld is a classic example of using the power 

of virtual reality systems to prototype devices that 
are impossible or too expensive to build. To accom- 
plish our goals, we must construct tools that simplify 
the connection of physical representations to computer 
simulations that are prototyping the hardware. This 
then gives us the ability to construct and test the use- 
fulness of hardware that is impossible to build with 
today's technology. 

5    UbiWorld    Development    Environ- 
ment 

The UbiWorld development environment is a com- 
bination of hardware and software environments. The 
hardware is a combination of supercomputers, net- 
works, and display devices. The software covers all 
major areas of software development from the low- 
level network code all the way up to high-level script- 
ing languages that allow users to configure the envi- 
ronment. 

5.1     Hardware 
The following two subsections will address the dis- 

play environments in which the UbiWorld system will 
be tested, and the various hardware limitations. 

5.1.1     Display Environments 

The current display environment is comprised of three 
virtual reality devices. 

• CAVE 

The CAVE™ (CAVE Automatic Virtual Envi- 
ronment) is a 10 x 10 x 9 foot room that uses 
rear-projected high-resolution projectors to pro- 
duce an immersive 3D environment (Figure 3). 
The CAVE environment, originally developed by 
the Electronic Visualization Laboratory (EVL) at 
the University of Illinois at Chicago, produces a 
3D stereo effect by displaying in alternating suc- 
cession the left and right eye views of the scene as 
rendered from the viewer's perspective [7]. These 
views are then seen by the user through a pair 
of LCD shutter glasses whose lenses open and 
close forty-eight times a second in synchronization 
with the left- and right-eye views. The correct 
viewer-centered projection is calculated based on 
the viewer's position and orientation as deter- 
mined by a electromagnetic tracking system. The 
position and orientation of a 3D wand are also 
tracked; this wand allows for navigation of and in- 
put into the virtual world. Along with the visual 
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Figure 1: The Connections of Behavior, Representation, Simulation, and the User within the UbiWorld model. 

feedback of the CAVE environment, a complete 
3D audio environment is available to the user. 

• ImmersaDesk 

The ImmersaDesk is based on the same rear- 
projection technology as the CAVE (Figure 4). It 
is a fully interactive, 3D immersive environment 
that is about the size of a large drafting table. 
The ImmersaDesk allows for one tracked viewer, 
along with two to three passive viewers. 

• InfinityWall 

The InfinityWall is a large rear-projected system 
that is created from compositing four standard 
1280 x 1024 screens together to create one large 
high-resolution screen. The InfinityWall can be 
used as a large ImmersaDesk, where the images 
are projected in stereo and the viewer is tracked, 
or can substitute for a large high-resolution work- 
station. The Nil/Wall was developed by EVL, 
the National Center for Supercomputing Appli- 
cations, and the University of Minnesota, with 
support from Silicon Graphics, Inc. 

5.1.2     Hardware Limitations 

Although this development environment is satisfac- 
tory for early experiments, we believe that several 
improvements will need to be made in virtual tech- 
nologies to fully realize the benefits of the UbiWorld 
project. 

• Resolution 

The current resolution of the CAVE is 1280 x 768 
on each wall. If we were to attempt a resolu- 
tion close to the capabilities of the human eye, we 
would need a resolution of 4,800 x 3,800 [8]. That 
resolution is not available at this time, but we be- 
lieve we can achieve that resolution on selected 
areas of the screen by using a "high-resolution 
window." By using a separate projector and ren- 
dering engine and by driving the location of the 
projector based on gaze direction, we can provide 
an area of high resolution at the place where the 
user is looking. This high-resolution window is 
another of the research projects in the Futures 
Lab that is motivated by the UbiWorld project. 

• Tracking 

The resolution of the tracking system is another 
weakness of the current environment. Today, our 
effective sampling rate is approximately 100 ms, 
with a spatial resolution of approximately 1 inch. 
In the future, for fine-grained manipulation of ob- 
jects, we expect a sampling rate closer to 1 ms and 
a spatial resolution of 1 mm. 

• Haptics 

Today, our CAVE environment has no haptic de- 
vices. The UbiWorld project requires that we 
bring these devices into the CAVE and learn to 
register their actions with virtual representations. 
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Figure 2: Separation of UbiWorld Spaces 

Force and feedback will be required to fully pro- 
totype actions of devices in our virtual world. 

• Control Interfaces 

Software in the CAVE today is programmed as 
an extension of current windows-based systems. 
We use menus, visual displays of pick lists, radio 
buttons, dials, etc. We believe these interfaces 
are wholly inadequate for use in UbiWorld. De- 
vices and objects represented in UbiWorld may be 
activated by voice, by absolute position or prox- 
imity to other objects, by proximity to or by sens- 
ing features in the virtual world, or by any other 
means that we haven't thought of yet. We need 
a new paradigm to allow freedom and innovation 
in control interfaces. This is yet another active 
research project spawned by requirements of the 
UbiWorld project. 

5.2     Software 
Although more tools are required, we have a good 

group of software already available to us for use in the 
UbiWorld project. 

5.2.1     CAVElib 

The CAVE library [7], developed at EVL to work with 
the CAVE family of display devices, provides basic VR 
functionality and viewer-centered perspective trans- 
forms automatically. This frees the VR programmer to 
focus on the graphics of the problem at hand, not the 
viewer perspective problem. The CAVE library pro- 
vides basic navigation functions, tracking of the user 
and wand, and interaction with the wand buttons and 
joystick. 

5.2.2 CAVEcomm 

The CAVEcomm library is a communications library 
that aids developers of virtual reality applications in 
the area of remote communications [9, 10]. The remote 
communications can be either virtual reality device to 
virtual reality device or virtual reality device to super- 
computer. Using the CAVEcomm library, users regis- 
ter their virtual reality applications and/or supercom- 
puting simulations with a broker. The broker process 
handles the connections of separate entities. The bro- 
ker manages resources and connections but does not 
handle data traffic. Once the broker has set up the 
connection between the entities, they send the actual 
data traffic only between each other. CAVEcomm is 
specifically designed to work with the CAVE group of 
virtual reality devices, namely, the CAVE, the Imm- 
ersaDesk, the CAVE simulator, and the T~finityWall. 
The ideas of CAVEcomm can be extena however, 
to any virtual reality-based system. 

CAVEcomm has been used to connect virtual re- 
ality applications to supercomputing simualtions that 
are running in real time. It has been used to con- 
nect two CAVEs that are geographically separated, 
allowing the users to collaborate on a joint task or 
to demonstrate something in one CAVE to users in 
another. 

5.2.3 CAVEav 

The CAVEav library brings multimedia capabilities to 
the CAVE. Using the library, programmers can con- 
nect to video sources on the network and texture map 
the resulting video stream onto objects in the CAVE. 
Live video streams from other CAVE, for instance, can 
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Figure 3: CAVE Virtual Environment (Milana Huang, EVL, 1994) 

be texture mapped onto avatars showing remote users. 
Live streams from robots or instruments are used to 
provide an immersive telepresence capability. Prere- 
corded streams can be used to provide instruction or 
backgrounds. 

A prototype system demonstrating these features 
has been developed at ANL. A small robot mounted 
with a variety of video and audio components is con- 
nected to the CAVE; from within the CAVE, a user 
can navigate the robot and interact with the environ- 
ment within which the robot lives [11]. This system is 
being used to test the requirements and to expose the 
difficult problems within a toolkit of this nature. 

5.2.4    CAVE-VRML Modeler 

Three-dimensional virtual computer environments 
such as the CAVE should have the capacity to be a 
working development environment, not just an inter- 
active display environment. One aspect of a develop- 
ment environment is 3D modeling. Currently, no 3D 
modelers work well in conjunction with the CAVE. Of- 
ten, in going from the modeler to the CAVE, "what 
you see is what you get" is not always true. Frequently, 
objects modeled on a workstation look quite different 
in the CAVE, particulary with respect to the object's 
scale, color, and lighting. One of the new projects 
in the Futures Lab is the development of an interac- 

tive modeling system to be used in the CAVE. This 
system will allow users to create objects in the native 
environment and will import/export VRML-based ob- 
jects that can be used in or taken from other VR en- 
vironments. Users will be able to affect the trans- 
formations (rotate, scale, translate) of the object as 
well as its material properties (ambience, diffusivity, 
shininess, specularity, etc.). The ability to edit ma- 
terials and lighting is significant given the fact that 
many objects look very different in the CAVE due to 
the physical components of the CAVE, (i.e., projec- 
tors and screens). This CAVE modeling tool will also 
have the ability to edit the object's shape, not just its 
extraneous properties. Users will be able to edit the 
polygons of the object; adding, deleting, and mov- 
ing vertices will give users the ability to redefine and 
combine existing shapes or create new objects from 
scratch. The created worlds and environments will be 
exportable to VRML. 

5.2.5    VR Voyager 

The Voyager multimedia recording and playback sys- 
tem has been under development in the Futures Lab 
for the past two years [12]. It uses an IBM SP2 
for multistream, multimedia record and playback of 
network-based sources. We propose to use the Voy- 
ager system as the basis for a new virtual world server, 
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Figure 4: ImmersaDesk Virtual Environment (Jason Leigh, EVL, 1995) 

providing record and playback of VR experiences. 

6    UbiWorld Goals and Requirements 

Our goal is to test UbiWorld objects and worlds in 
a task-based manner, under different scenarios. We 
will provide several different environments, for exam- 
ple, a home, office, airplane, hotel, car, field, restau- 
rant, laboratory, and shop. Each of these environ- 
ments must be rendered with high-resolution textures, 
complex spaces and lighting, and varying degress of 
scene complexity. Each of these models is different, 
but the requirements of ubiquitous computing span all 
of these environments. In each different environment, 
Ubicomp objects must behave appropriately. Scenario 
spaces will be used for experimenting with device func- 
tionality and interaction by requiring task-based ex- 
plorations. For instance, users may be required to or- 
der a meal, prepare a talk, negotiate a contract, drive 
to an unknown destination, or buy groceries. 

6.1     Virtual Device Requirements 

To accomplish this goal, we believe that computing 
objects in the UbiWorld must possess or make use of 
at least the following features. 

6.1.1     Innovative Representational Design 

Current thinking, as evidenced by the ParcTab, is too 
restricted by technology limitations to create truly in- 
novative design. We would like to be able to take the 
best from advanced industrial design and apply it to 
the design of future Ubicomp devices in UbiWorld. 
The type of advanced design philosophy we have in 
mind is embodied in publications such as Arbitare 
magazine and the book The Art Factory, Design in 
Italy Towards the Third Millenium [13]. In this latter 
text, the author analyzes the birth of virtual industry, 
links between the fashion system and the media sys- 
tem, the rediscovery of art and craft traditions, and 
renewed ecological awareness of materials in terms of 
contemporary and New Wave design. 

6.1.2     Novel Information Technology Compo- 
nents 

Using supercomputer and external multimedia servers 
and resources, designers in the UbiWorld will be able 
to specify and simulate behavior associated with ad- 
vanced CPU capabilities, imaging technology, sensors, 
actuators, multimedia components, communications 
capabilities, etc. 
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Figure 5: InfinityWall Virtual Environment (Jason Leigh, EVL, 1995) 

6.1.3 Transparent Networking 

Transparent, or "aware," networking is assumed to be 
a fundamental capability in the UbiWorld. The net- 
work in this case is transparent to the user. UbiWorld 
devices automatically connect to whatever other de- 
vice is appropriate, using mutually acceptable band- 
widths and protocols. 

6.1.4 Device/Space Awareness 

Devices in the UbiWorld must exhibit awareness of 
other devices and of the space in which they are op- 
erating. If a user carries a device to a different space, 
the device must automatically be aware of the new 
space context and take appropriate action. 

6.1.5 Reactive/Proactive/Proxy Behavior 

UbiWorld devices should, of course, react properly 
to users requests, but beyond that, they should be 
proactive as necessary. An example is the loading of a 
new context when the user enters a new space or the 
proactive downloading of news or information known 
to be of interest to the user. Based on current research 
within the artificial intelligence community on agent 
based systems, one can already see a trend emerging. 

Agents are being constructed that passively view the 
behaviors of users and learn about their interests. Us- 
ing methods similiar to these techniques, we hope to 
construct within the UbiWorld a framework that al- 
lows the Ubicomp devices to be reactive and proactive. 

6.1.6     Integration Functions 

In the UbiWorld, we believe the network really is the 
computer. As devices near other devices or objects 
in the space, they should be able to interrogate the 
devices and perform acts of spontaneous integration 
if it is of benefit to do so. Benefit in this case could 
be defined as access to greater bandwidth, computing 
power or advanced capabilities. The intelligent scrap 
paper idea fully embodies this idea, since the scrap 
paper integrates with desktops for greater bandwidth 
or with imaging devices to capture multimedia infor- 
mation. 
6.2    UbiWorld Design Problems 

We see four critical design problems in the Ubi- 
World project: 

• Object shape, form, and representation 

• Computing and communications internals 

• Functional behavior 
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• Integration with and awareness of environment 

In the UbiWorld project, we believe it is important 
that these design problems be separated. We want to 
feel free to experiment with the form and shape of an 
object independent of its other attributes. Since the 
object is virtual, we can experiment with communica- 
tions and computing internals without being encum- 
bered by physical packaging or power problems. Func- 
tional behavior is simulated via the computational 
servers and can be varied at will, independent of the 
packaging or other factors. Finally, integration with 
and awareness of the environment are accomplished 
via simulated sensors and connection interfaces. For 
instance, when an object such as a piece of intelligent 
paper is placed on a table, we expect it to perform 
the above mentioned "spontaneous integration" with 
the table. Through its sensors, it must become aware 
of the table and its capabilities. By using an aware 
networking approach, the intelligent paper negotiates 
with the table to establish a connection, thereby inte- 
grating its functionality with that of the table. 

For each of these design problems, appropriate tools 
are essential. Where existing tools are inadequate, it 
will be necessary to build or invent more robust tools. 

6.3     Technical Challenges 
The scope of the UbiWorld project pushes the 

bounds of current VR and networking technology and 
gives rise to a host of technical challenges. The follow- 
ing list is not meant to be comprehensive but serves 
to enumerate those problems we feel are most impor- 
tant to focus on now in the implementation of the 
UbiWorld. 

• Scalability 

Adding objects into a UbiWorld environment 
stresses protocols, bandwidths, computing, and 
rendering power. Important research issues re- 
garding scalability of these components and their 
interactions must be investigated. 

• Latency 

We know that there are limits on the user- 
perceived latencies in an interactive system. The 
latency of the total system (including latency 
from the graphics system, the tracking systems, 
the networks and the computation engines) can- 
not exceed 100 ms - 1000 ms, depending on the 
user's experience level [14]. Taylor et al. studied 

this phenomenon in multiple-tracked, network- 
connected VR systems and offered data and re- 
search issues to be investigated to mitigate the 
latencies in the system [15]. 

Object Representation 

The representation of objects within the Ubi- 
World model must be flexible, so that they can 
be changed easily, without affecting the underly- 
ing simulation of the objects. It is important to 
allow for a variety of different representations to 
be attached to the simulation, to allow users to 
experiment with different interfaces. This compo- 
nent is one of the true strengths of the connection 
of Ubicomp devices to VR, since expensive pro- 
totypes do not need to be built to try out a new 
device. 

Behavior Specification 

An open question is how best to specify the be- 
havior of an object. For our purposes, there are 
three categories of behavior: 

— Representation Dynamics 

— Functional Mechanics 

— Computational and Communication 

It is not likely that the same tools will be appro- 
priate for each of these tasks. A suite of tools 
will need to be developed to enable specification 
of each of these behaviors and their interactions. 

Object Binding and Brokering 

Resource brokering is the use of computationally 
enhanced entities to aid in the requesting, allo- 
cation, and management of remote capabilities. 
Much in the same way that data hiding is used in 
object-oriented programming to make the inter- 
faces easier to use and understand, wide-area re- 
source brokering can be used to simplify the user 
interaction with a large-complex set of computa- 
tional and collaborative resources. One approach 
can be attacked by expanding on what we have 
learned from traditional system management soft- 
ware and current work in cluster management. 
Through the use of resource brokering, the level 
of complexity needed to configure and control a 
large virtual world is reduced to a manageable 
state for the user. 
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Process Mapping and Execution Control Security 

The management and control of processes become 
important in the UbiWorld model. The ability 
to map a new process into an existing computa- 
tional framework is an essential component of the 
UbiWorld model. As a new user enters the Ubi- 
World or a new Ubicomp device is introduced, the 
process controlling the simulation will have to be 
seamlessly integrated. At the computational level 
that will require mapping the new process onto a 
computational resource and then controling the 
execution from startup to termination. 

Evaluation and Measurement 

As in any scientific endeavor, we desire to mea- 
sure, evaluate, and report on our work in a rigor- 
ous manner. Tools are required to enable instru- 
mentation of all the computational and commu- 
nications processes and their relationships. Eval- 
uation and reporting tools are essential to reduce 
and analyze the data generated by instrumented 
codes. 

Distribution 

Distribution covers a whole set of problems re- 
lated to using networked resources: the map- 
ping of processes to processors; the distribution of 
databases over networked resources; the issues of 
redundancy, failure recovery, and the other prob- 
lems usually associated with distributed comput- 
ing — all are present in the UbiWorld project. 

Naming and Identification 

The current Internet provides mechanisms for 
naming computers and Web pages. Future envi- 
ronments will require the ability to name a much 
wider variety of objects with varying degrees of 
persistence and scope [16]. Mechanisms are also 
required for locating objects based on different 
criteria. Proposals for Universal Resource Names 
are a step in this direction but are designed for 
long-lived objects. We believe that a new class of 
naming mechanism will be needed that can refer 
to much shorter-lived objects that would be the 
topic of communication between user agents and 
simulation spaces. Brokering and name trans- 
lations mechanisms are also needed. These will 
need to be high performance and scalable and to 
incorporate hooks for security and access rights. 

Fine-grained, scalable authentication, authoriza- 
tion, and accounting mechanisms will be required 
to control access to information and computa- 
tional resources by both users and computational 
entities. Complex issues include secure communi- 
cation of high-bandwidth multimedia data, access 
control of dynamically created entities, multi- 
entity interactions, security of archived data, 
object-level security in virtual environments, and 
delegation of authority between users and associ- 
ated computational entities. 

7    Tools 
The underlying infrastructure for the construction 

of UbiWorld requires the combination of a wide area 
of computer science disciplines. Techniques and tools 
need to be borrowed from the fields of computer graph- 
ics, artificial intelligence, and systems to name but a 
few. 

We have identified a set of existing tools for use 
in implementing the UbiWorld concept. These tools 
will not be sufficient in the long term, but most rep- 
resent a suitable beginning for work on the UbiWorld 
requirements. 

7.1 Representation 

The physical representation of the objects within 
UbiWorld, such as intelligent paper or image- 
processing glasses, needs to modeled in such a way 
that the objects can be easily changed and modified. 
Currently one can use a wide variety of desktop mod- 
eling and CAD packages to physically design the ob- 
jects. These packages are not sufficient to develop 
•UbiWorld objects to final state. While it is impor- 
tant to separate the representation from the function, 
the modelers require the ability to provide hooks or 
connections to a behavior toolkit. We believe that the 
Open Inventor™ and VMRL modeling formats lend 
themselves most to this goal. 

7.2 Behavior Specification 

For the representational dynamics of an object, the 
tools such as VRML or Openlnventor come to mind. 
For the functional (or mechanical) behavior, procedu- 
ral systems such as Java or C++ are available today, 
but they are too low level to use in the long term. 
For the specification of the computational and com- 
munications behavior, we can also use Java or C++, 
or other still too low-level systems such as nperl or 
Nexus. 
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7.3 Object Binding/Brokering 
Binding of objects to resources can currently be 

accomplished by hard-wiring the connection or soft- 
wiring the connection through the use of a brokering 
system such as CORBA or the LabSpace broker. 

7.4 Process Mapping and Execution Con- 
trol 

The design of UbiWorld calls for object behavior to 
be computed on separate computational servers. The 
mapping of many object processes to computational 
servers and control of the execution is a problem we 
have been examining for some time. For SC'95, a team 
at ANL developed custom software for scheduling and 
mapping processes to network-based processors. The 
system deployed at SC'95 was the I-WAY Point of 
Presence (I-POP) machine. The I-POP machine was 
specifically set up to manage security issues and was 
configured specifically for the I-WAY [17]. It allowed 
use of process mapping and control software such as 
Nexus and MPI. Subsequent to the I-WAY project, 
a team at ANL has been integrating the Adaptive 
Communication Environment (ACE) [18] system into 
a parallel message-passing toolkit. 

Each of these solutions has shortcomings, and we 
fully expect that UbiWorld requirements will force the 
design or evolution of a new, more sophisticated sys- 
tem for process mapping and control. 

7.5     Evaluation and Measurement 
It is important to be able to measure and quantify 

the progress that is being made. Since UbiWorld re- 
quires the combination of such a wide variety of differ- 
ent aspects of the field of computing, we are required 
to connect various areas that are only now beginning 
to be tested. The connection of supercomputers to im- 
mersive virtual reality display devices is just one area. 
For the first time, issues such as latency, for example, 
need to be looked at outside their normal meanings 
to supercomputer users and to graphics programmers. 
Therefore, as UbiWorld is constructed, measurements 
and evaluation need to be done. Currently, we are us- 
ing PABLO from the University of Illinois for instru- 
menting VR and simulation programs. We use MPI 
logging and the Upshot display system for tracing and 
evaluating MPI programs. 

8    Conclusion 
UbiWorld is a project that pushes beyond the 

bounds of current technology and forces us to think 
of heterogeneous computing in new terms. Rather 
than making incremental changes in existing technol- 
ogy, UbiWorld gives us a chance to leapfrog into a new 
problem space where heterogeneous computing is the 

norm, not the exception. In this space, we can more 
clearly see the technical challenges that await us, and 
we can proceed to invent solutions well ahead of tech- 
nological progress that can implement these solutions. 

The scope of UbiWorld is very broad and invites 
research on many fronts. We have identified some of 
these issues, such as network latency, scalability, ob- 
ject representation and specification, process and data 
mapping, object brokering and binding, security, and 
measurement. Each of these issues is deserving of a 
focused research effort in the futures-oriented ubiqui- 
tous computing scenario, and we invite the heteroge- 
neous computing community to engage in discussions 
and research in this rich problem space. 
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Abstract 

A heterogeneous multicomputer is a 
multicomputer composed of two or more 
different types of processors. This paper describes 
the rationale for heterogeneity in a 
multicomputer and gives a typical example of a 
heterogeneous system in the form of a RACE 
multicomputer composed of a mixture of Analog 
Devices' SHARC 21060 and the 
IBM/Motorola/Apple PowerPC 603p processors. 
These two processors have complementary 
attributes, and the advantages and limitations of 
each are described. 

Multicomputers generally implement a sequence 
of different processing algorithms. The "optimal" 
processor that maximizes throughput at each step 
in the processing flow is generally a function of 
the algorithm to be executed at that step. Other 
factors that also influence the optimal mix of 
processors in a heterogeneous multicomputer 
include physical processing density, hardware 
cost, and ease of programmability. 

1.0 Introduction 

A multicomputer is defined as a computing 
system composed of multiple, independent but 
cooperating processors. The different processors 
in a multicomputer communicate with each other 
over a common data communication fabric. In its 
simplest form, this communication fabric may 
consist of a single common bus, such as VME 
or PCI, that is shared by all of the 
multicomputer's processors. Another high- 
performance example of such a fabric is a 
crossbar switching network that consists of 
multiple independent data paths over which 
several independent data transactions can be in 
process concurrently. The principal purpose of a 
multicomputer is to satisfy the processing 
requirements of applications that require the 
processing throughput exceeding that of a single 
processor. 

A modular multicomputer employs component 
processors designed to be modular, much like the 
building blocks in a Lego™ set. This enables 
expandability by literally "plugging" additional 
processors into the common interprocessor 
communication fabric. 

There are both physical and logical implications 
to this configuration. The physical implication is 
merely that the processor modules be constructed 
on individual circuit boards or cards that plug 
into a standard connector on the communication 
fabric. VME circuit boards and connectors are an 
example of such a standard connector interface. 
The logical implication of this modularity is in 
the multicomputer's operating system software. 
Each processor must use a common 
interprocessor communication system that can 
support data communication with any other 
processor or group of processors in the 
multicomputer. Multicomputer software will be 
discussed in more detail in a subsequent section. 

Finally, a heterogeneous multicomputer is 
defined as a multicomputer composed of two or 
more different types of processors. One example 
of such a system is Mercury Computer Systems' 
RACE multicomputer. In addition to being 
heterogeneous, the Mercury system is also 
modular and may be configured to contain from 
four to several hundred processors, consisting of 
any combination of the following processors: 
Intel i860, IBM/Motorola/Apple PowerPC 603p, 
Analog Devices SHARC 21060, and Texas 
Instruments C80. 

Why heterogeneous multicomputing? Even when 
several different processors have comparable 
MFLOP throughput ratings, each processor type 
may have particular attributes that make it ideally 
matched to certain applications. For example, the 
SHARC 21060 is ideally matched to vector 
signal processing applications such as FFTs, as 
well as for embedded applications that require 
high processing densities in terms of both 
MFLOPS/volume    and/or   MFLOPS/watt.    In 
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contrast, the PowerPC is ideal for executing 
scalar (non-DSP) applications characterized by 
arbitrary C code. 

In general, algorithms that have a high ratio of 
computation-to-data accesses will execute more 
efficiently on the PowerPC than on the SHARC, 
whereas the converse is true for algorithms 
having a low ratio of computation-to-data 
accesses. A more detailed comparison of the 
SHARC and PowerPC processors, together with 
the relative advantages and disadvantages of each, 
will be given in a subsequent section. It will be 
shown that the SHARC and PowerPC are truly 
complementary processors that justify the 
concept of heterogeneous multicomputing. 

The remainder of this paper will discuss a 
Mercury modular heterogeneous RACE 
multicomputer composed of the following two 
processor types: SHARC and PowerPC 603p. 

This paper is organized as follows: Section 2 
briefly introduces the following basic logical 
components of Mercury's RACE multicomputer: 
Compute Elements (CEs), Compute Nodes 
(CNs), CN RACEway interface ASICs, RACE 
crossbars, and the RACEway crossbar switching 
network. Also described in Section 2 is how 
these modules can be physically interconnected to 
form a RACE multicomputer. 

The only components in this multicomputer that 
are unique to a given processor type are the CEs 
themselves and the CN RACEway interface 
ASICs. The CN RACEway Interface ASIC for a 
given processor type provides a common 
interface to RACEway communication from that 
processor. The interface commonality provided 
by these ASICs is the hardware key that enables 
a RACE multicomputer to be heterogeneously 
configured from a number of different processor 
types. 

The RACEway crossbar switching network is an 
essential element of the RACE multicomputer's 
scalability. This crossbar network provides 
multiple concurrent paths between different CEs 
of the multicomputer. Much like in a modern 
digital telephone switching network, a number of 
independent messages can be transferred 
concurrently over different paths between CEs, 
and/or CEs and I/O interfaces, at data rates of up 
to 160 MB/s per path. Each path is dynamically 
switchable in less than two microseconds. 
As additional processors are added to a 
multicomputer, the interprocessor 
communication bandwidth requirements naturally 

increase. Unlike a bus, whose bandwidth capacity 
is fixed, as more processor nodes are added to a 
RACE multicomputer, the crossbar network 
automatically expands to provide the additional 
bandwidth required. This expansion is realized by 
adding crossbar sub-network modules to an 
existing crossbar network to accommodate the 
added nodes. 

Section 3 presents a very-high level overview of 
the software in a Mercury RACE multicomputer. 
A separate copy of Mercury's real-time runtime 
environment, MC/OS, executes in every CE of 
the multicomputer. 

The MC/OS runtime environment consists 
primarily of the following three components: 
MCexec™, Interprocessor Communication 
System (ICS) and Hardware Abstraction Layer 
(HAL). MCexec is a standard, single-processor 
real-time operating system that handles task 
scheduling, context switching, timer services, 
etc. for the processor on which it resides. ICS is 
a set of Application Programming Interfaces 
(APIs) that handles all interprocessor 
communication. ICS allocates and manages 
shared memory buffers, performs address 
mapping of remote nodes, and manages all 
interprocess data transfers, both DMA and 
programmed I/O. 

HAL is a set of processor-specific software that 
provides the interface between both MCexec and 
ICS and each processor's unique hardware (i.e. 
DMA controllers, interrupt registers and vectors, 
address mapping registers, etc.). The purpose of 
HAL is to make the MCexec and ICS 
components of MC/OS as processor-independent 
as possible. Thus, most of the processor-specific 
elements of MC/OS have been encapsulated in 
the HAL. 

Section 4 introduces the concept of 
heterogeneous processing, using a system 
composed of SHARC and PowerPC processors 
as a specific example. The unique attributes of 
the SHARC and PowerPC processor chips are 
described as well as which chip is best suited to 
which kind of application. In a nutshell, the 
PowerPC is best suited for the execution of 
algorithms that are characterized by a high ratio 
of computation-to-data accesses. Typical 
algorithms in this category include those that 
involve the evaluation of transcendental functions 
such as sine, cosine, sqrt, atan, log, etc., as well 
as long FIR filters, matrix inversion and multi- 
point data interpolation. In contrast, the SHARC 
is best suited for vector operations characterized 
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by a relatively low ratio of computation-to-data 
accesses, as well as for computation of large-size 
(i.e. >512-point)FFTs. 

Other important considerations that effect 
processor choice include physical processing 
density, ease of coding, and code portability. The 
SHARC is one of the densest (in terms of 
MFLOPS/volume and MFLOPS/watt) 
processing chips available today. This factor is 
an especially important issue in embedded 
systems for military applications. On the other 
hand, coding SHARC applications generally 
requires an extra level of learning if the chip's 
full processing potential is to be realized. In 
particular, the SHARC user should make use of 
Mercury's hand-coded Scientific Algorithm 
Library (SAL) and multibuffering routines 
wherever possible, using C code only as 'glue.' 

In contrast, compiled C code runs extremely 
efficiently on the PowerPC, and in some cases 
even more so than on corresponding SAL 
functions. Thus, if the user has already written a 
large application in C that the user wants to port 
to a Mercury RACE multicomputer, porting that 
application to the PowerPC will usually be 
significantly easier than to the SHARC. Section 
4 enumerates the various pros and cons of each 
chip. It is up to the user to make the trade-offs 
between conflicting goals in deciding which chip 
to use for which processing step in the 
application. 

fabric may be a bus, a series of separate buses 
connected by bridges, a set of fixed point-point 
links, or a configurable multi-transaction 
interconnect network such as Mercury's 
RACEway. The individual paths that comprise 
this fabric may be either serial or parallel links. 

A corresponding high-level diagram of a typical 
Mercury RACE multicomputer is illustrated in 
Fig. 2. The system consists of a variety of 
processor, I/O, and bridge nodes connected to the 
terminal ports of the RACEway interconnect. 
The salient features of this system are as follows: 

• Use of Mercury's RACEway high-bandwidth 
crossbar switching network as the 
multiprocessor interconnect fabric. 

•     Self-contained CNs with local DRAM 
DMA controllers. 

and 

Ability to include different processor types 
in the multicomputer (heterogeneous CNs). 

Use of bridges between RACEway and 
standard buses such as VME, VSB, and PCI. 

Complete modularity and scalability. The 
system is modular in that any type of node 
(i.e., CN, I/O, etc.) can be connected to any 
terminal port on RACEway. All nodes 
present the same interface to RACEway. 

To: External 
I/O Device 

Multiple Processors 

To: External 
I/O Device 

CPU DRAM 

DMA 
1 

I/O 
Intfc. 

CPU - DRAM 

DMA 

CPU r DRAM 

DMA 
ZT- 

CPU DRAM 

DMA 
1 

CPU DRAM 

DMA 
 1 

I/O 
Intfc. 

Multiprocessor Interconnect: (Bus, Point-Point Links, Switching Fabric, etc.) 

Fig. 1. Typical Multicomputer System 

2.0 Mercury's RACE 
Multicomputer 

Fig. 1 illustrates a high-level block diagram of a 
typical multicomputer. The system portrayed in 
Fig. 1 is composed of three generic-node types: 
processor nodes, I/O nodes, and bridge nodes, all 
of which are interconnected by a common data 
communication   fabric.    This    interconnection 

The system is scalable in that it can be expanded 
merely by expanding the RACEway interconnect 
to provide more terminal ports and then 
populating them with additional CN, I/O, or 
bridge nodes. 

All nodes in the multicomputer have a common 
interface to the RACEway crossbar switching 
network consisting of 32 parallel data lines and 8 
control lines. Data is transferred between each 
node and the crossbar network synchronously at a 
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Fig. 2. RACE Multicomputer 

clock rate of 40 MHz, providing a data bandwidth 
of 160 MB/s per path. 

A RACE crossbar switching network is 
composed of six-port crossbar switches. Each 
switch can either interconnect any three port pairs 
from among the six crossbar ports to each other, 
providing an aggregate data transfer bandwidth of 
480 MB/s, or can cause data entering one of the 
six ports to be broadcast to some subset of the 
remaining five ports on that crossbar. A large 
number of different network topologies may be 
configured from these switches. The aggregate 
data bandwidth of a given network is equal to 160 
MB/s, times the number of independent parallel 
paths provided by that network. For large 
networks, this aggregate network bandwidth can 
reach several GB/s. Furthermore, the resulting 
crossbar networks are easily expandable to 
accommodate the addition of more CNs to a 
given multicomputer. 

Expansion of a given crossbar network not only 
provides more node ports to which additional 
CNs may be connected, but also increases the 
aggregate network bandwidth by adding more 
transaction paths that can be used concurrently. 
Further details on the operation and capabilities 
of Mercury's RACEway crossbar switching 
network may be found in Refs [1], [2]. 

Fig. 3 shows a "thinned" Fat -Tree architecture of 
the generic RACEway interconnect that was 
illustrated in Fig. 2. The various compute, I/O 
and bridge nodes that comprise the 
multicomputer illustrated in Fig. 2 are shown 

connected to the bottom level of this inverted tree 
architecture. 

The "thinned" Fat -Tree architecture illustrated in 
Fig. 3. is not the only network interconnect 
topology that can be constructed with the 
currently available six-port RACE crossbar 
switches. Other network topologies that could be 
constructed with these switches include two- 
dimensional (2-D) and three-dimensional (3-D) 
meshes and rings. 

Note that the scalability of the RACE 
multicomputer derives from the following two 
attributes of the RACE architecture. 

• Scalability of the RACEway crossbar 
interconnection network. A given network 
may be expanded either by adding additional 
crossbars or by interconnecting sub-networks 
of crossbars. 

• Modularity of the system nodes. The system 
nodes (CNs, I/O, and bridges) may be 
considered both physical and logical building 
blocks that can be plugged into any terminal 
port of the crossbar network. This is 
somewhat analogous to plugging a 
telephone or FAX machine into any port of 
a telephone network. 

Of particular interest with regard to 
heterogeneous computing are the CNs illustrated 
in Figs. 2 and 3. Each CN consists of the 
following basic items: from one to three CPUs, 
all of the same type; DRAM memory of between 
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8 and 64 MBs; and a RACE way CN interface 
ASIC. 

The principal components of the CN ASIC 
are: address mapping logic that enables the 
local CN to access any DRAM location in 
any remotely located CN on RACEway; a 
DMA controller for performing rapid 
transfers between local DRAM and any other 
remote CN, I/O, or bridge node on 
RACEway; processor-support functions such 
as timers; and finally, interfacing logic for 
effecting RACEway transfers. 

Clearly, there is a unique CN for each processor 
type. However, every CN ASIC, regardless of 
type, has the same interface to RACEway. 
Currently, RACE CNs are available for the i860, 
SHARC, and PowerPC. 

Fig. 4 describes the architecture of the CNs for 
the SHARC and PowerPC. The SHARC CN 
consists of one to three SHARC CPUs sharing a 
common RACEway interface and DRAM. 
Multiple SHARC CPUs are connected together 
on a common internal bus. In contrast, the CN 
for the PowerPC consists of only a single CPU, 
together with a DRAM and CN RACEway 
Interface. 

Each CPU in a multi-CPU CN functions as an 
autonomous CE that executes independently of 
any other CE. Therefore, each CE operates under 
control of its own copy of Mercury's MC/OS 
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Fig. 4. SHARC and PowerPC Compute Notes 

runtime environment. Thus, the SHARC CN 
consists of three independently executing CEs 
that happen to share a common DRAM and 
RACEway interface. 

In contrast, the PowerPC CN consists of only a 
single CE, making the distinction between a CE 
and CN somewhat moot in that case. In 
summary, a CN is defined as a computational 
node that attaches to RACEway, whereas a CE is 
defined as an independent processing element. In 
the case of multiple CEs that are connected to a 
common node, as in the case of a multiple 
SHARC node, each CE operates under control of 
its own copy of the operating system and does 
not necessarily have to execute the same 
application code as the other CEs at that node. 
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3.0 Mercury's Multicomputing 
Software 

The basic software components of the Mercury 
RACE multicomputer are: 

• The MC/OS runtime environment 
• The Scientific Algorithm Library (SAL) 
• Cross-compilers and cross-assemblers for 

each supported processor type 

A different version of each of these software 
components is required for each supported CE 
type; however, the APIs to these components are 
identical across all CE-specific versions. This 
makes the user's application code nearly 
independent of processor type. However, to get 
optimal performance on a given processor, the 
user should be aware of each processor's features 
and limitations, and tailor the code accordingly. 
In most cases, execution of the user's application 
code on any given processor will be optimized by 
using the SAL functions wherever possible. All 
functions in the SAL library have been assembly 
language coded individually for each processor, to 
provide optimal performance on that processor. 

A separate copy of MC/OS executes in each CE 
of the multicomputer. These copies are 
functionally identical; however, as was 
mentioned earlier, a different version is used for 
each processor type. 

MC/OS consists of the following three principal 
components. 

• MCexec 
A standard, uniprocessor multitasking real- 
time OS that handles task scheduling, timers, 
and interrupt servicing. 

• ICS 
A component that handles all interprocess 
communications. It allocates and manages 
shared-memory buffers in both local and 
remote CNs, does address mapping of remote 
nodes, and manages all data transfers between 
local and remote shared-memory buffers using 
either the local CE's DMA controller or 
programmed I/O, as appropriate. 

• HAL 
This is the processor-specific code that forms 
the interface between MCexec, ICS and the 
given processor's DMA controller, timer, 
interrupt control and other internal registers. 

MCexec and ICS both operate on top of the 
HAL. While the HAL code varies from processor 
to processor, the implementations of MCexec 
and ICS are largely processor-independent. 
Therefore, although a new version of HAL must 
be supplied for each new processor type 
implemented in the RACE multicomputer, 
existing versions of both MCexec and ICS are 
largely portable between different types of 
processors. Fig. 5 illustrates how the different 
components of MC/OS relate to each other and 
to the hardware of the host processor. 

Composition of Mercury's MC/OS Runtime Environment 

Interprocessor Communication System 
(ICS) 

'DX' Data Transfer 
Facility 

POSIX 
API 

MCexec 

Loadable 
Device Drivers 

HARDWARE ABSTRACTION LAYER " 
CN ASIC Registers: 
Timers, interrupts, 
Remote Node Mapping, 

DMA 
Controller 

CPU 
Registers 

Fig. 5. MC/OS Organization 

The basic size of MC/OS varies between 550 and 
700 KBs, depending on the CE type. Additional 
memory is also required at each CE for the 
Configuration Data Base (CDB) and any 
temporary buffers that may be dynamically 
allocated by MC/OS. The CDB is a table in each 
CE's DRAM that contains the crossbar routing 
information from that CE to every other CE in 
the system; clearly, the size of the CDB increases 
in proportion to the number of nodes in the 
multicomputer. The total memory consumed by 
each copy of MC/OS and its associated tables is 
approximatley 700 KBs to 1.2 MBs, depending 
on the CE type and size (i.e., number of CEs) in 
the multicomputer. The copy of MC/OS and its 
associated tables for a given CE is stored in that 
CE's local-node DRAM memory. Recall that in 
the case of CNs that consist of multiple CEs, a 
separate copy of MC/OS is stored in the 
common CN DRAM, for each CE. 
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4.0 Heterogeneous Computing 
with SHARC and PowerPC CEs 

A currently popular multicomputer configuration 
is one based on a mixture of the SHARC 21060 
and PowerPC 603p processing chips. 
Architecturally, these are two very different 
processors. The PowerPC is a RISC chip, and 
the SHARC is a DSP chip. The principal 
functional differences between these two chips 
are: 

• type of fast, on-chip memory used 
• processor clock speed 

The 200 MHz PowerPC uses a 16 KB write-back 
cache having a bandwidth of 800 MB/s, while the 
SHARC uses a 512 KB on-chip SRAM having 
an effective bandwidth of up to 480 MB/s. With 
regard to clock speed, the PowerPC 603p 
operates at a clock speed of 200 MHz, while the 
SHARC operates at a clock speed of only 40 
MHz. In addition, the SHARCs architecture has 
been optimized for the computation of FFTs, 
with the ability to execute the following three 
instructions, in parallel, in one clock cycle: 

• (a+b) 
• (a-b) 
• c*d 

However, the 5:1 clock-speed ratio between the 
PowerPC and the SHARC does not necessarily 
mean that the PowerPC has five times the 
throughput of the SHARC. For some DSP 
operations, such as large FFTs, the SHARC can 
execute up to twice as fast as the PowerPC, 
despite its considerably lower clock speed. 

Furthermore, the choice of "best" processor for a 
given application depends not only on the 
specific algorithm to be implemented, but also 
on power and space contraints imposed by the 
application. The latter is an especially important 
issue in embedded systems. For these and other 
reasons, a heterogeneous multicomputer 
comprised of both SHARCs and PowerPCs, is 
often the optimal (in terms of size and cost) 
solution for many applications. 

4.1 Processing Attributes of the 
PowerPC 

Specifically, the PowerPC is best suited for 
executing algorithms that have a high ratio of 
computation-to-DRAM memory accesses, (>10 
operations per floating point data access), such as 
transcendental functions, matrix inversion, and 

FFTs etc., with the exception of large-size FFTs. 
The PowerPC is also the processor of choice for 
scalar processing applications written in C and 
for performing double-precision arithmetic. 

The reason is that the PowerPC can execute a 
floating-point instruction between 1.3 and 3.0 
clock cycles, resulting in throughputs of between 
67 and 167 MFLOPS, provided that all operands 
and results were previously cached. Even higher 
throughputs are possible for compound 
operations in which the intermediate results can 
be retained in the CPU's internal registers rather 
than being written to and then read back from 
cache between successive operations. Indeed, the 
C compiler for the PowerPC takes maximum 
advantage of the CPU's internal registers to 
produce highly efficient code. In general, 
however, the principal limitation on the 
PowerPC's floating-point execution speed is the 
single-precision cache bandwidth of 800 MB/s 
(200 M combined single-precision floating-point 
operand and result cache accesses per second). 

Eventually, however, new data must be accessed 
from, and the corresponding results written back 
to, DRAM. When this occurs things can slow 
down dramatically. For sake of argument, assume 
a 160 MB/s DRAM. Because of the operation of 
the write-back cache, the effective DRAM access 
rate of the PowerPC is reduced from 160 MB/s to 
between 50 and 80 MB/s — more than an order 
of magnitude less than the cache bandwidth of 
800 MB/s. As a result, operations characterized 
by a low ratio of computation-to-DRAM 
accesses (< 10 operations/floating-point operand 
accessed) become I/O-bound by the above-cited 
DRAM-cache access limit. This causes the 
effective throughput to decrease dramatically. For 
example, in the case of three-access floating- 
point operations, (i.e. those that produce a single 
result from a pair of operands), the 
aforementioned DRAM/cache access bandwidth 
constraint can reduce the sustainable throughput 
to a value as low as 4 MFLOPS. 

However, computationally intensive operations 
such as those cited earlier, tend to be compute- 
bound, and are thus less effected by the decrease 
in DRAM data access bandwidth associated with 
the operation of the write-back cache. 

As mentioned earlier, an exception to the above 
occurs for complex FFTs (in-place) longer than 
1024 points (512 points for out-of-place FFTs). 
Although the ratio of computation-to-data 
accesses for FFTs increases with FFT size, the 
limited size (i.e., 16 KB) of the PowerPC cache 
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now places a new limit on performance. A 
complex input data stream longer than 1024 
elements (8 KBs), together with the required FFT 
weights, will not fit into a 16 KB cache. Thus, 
complex FFTs of length 2048 or greater must be 
decomposed into a 2-D array whose maximum 
row length is less than or equal to 1024. Each 
row of this array is then accessed, its FFT 
computed, and the transformed rows written back 
to DRAM. The resulting columns of this 2-D 
array are then accessed from DRAM, multiplied 
by a complex "twiddle factor" vector, and the 
corresponding column FFTs are computed. 
Although this process is handled automatically 
by the SAL and is transparent to the user, the 
DRAM accesses associated with this 2-D FFT 
decomposition process slow down FFT 
throughput significantly. 

In summary, the PowerPC is best suited for 
computation of the following types of 
algorithms: 

• Algorithms (with the exception of large 
FFTs) that have a ratio of computation to 
data accessed in excess of 10 floating-point 
operations per data item accessed 
from/written to DRAM. 

• C-coded scalar processing algorithms. 

• Algorithms or procedures whose 
implementation requires more than 50 KBs 
of code. 

• Computations requiring double-precision 
arithmetic. 

In contrast, the PowerPC is poorly suited for 
processing long vectors (including large FFTs) 
whose length is such that the combination of all 
vector operands and results exceeds the size of the 
16 KB cache. 

4.2 Processing Attributes of the 
SHARC 

The SHARC is ideally suited for processing of 
vectors of any length, including FFTs of all 
sizes. Indeed, the SHARC has been customized 
for efficient computation of FFTs, as it can 
perform the following two additions and a 
multiply (i.e., three operations) in one clock 
cycle: 

• (a+b) 
.     (a-b) 
• c*d 

This gives the SHARC a throughput rate for 
FFTs of nearly 120 MFLOPS. In general, the 
throughput limits for the SHARC are as follows: 

• 120 MFLOPS for FFTs 
• 80 MFLOPS for multiply-accumulate 

operations (e.g. dot products) 
• 40 MFLOPS for most other floating-point 

operations 

To realize the above rates, all operands and 
results must be accessed from/written to the 
SHARC's 512 KB SRAM. This on-chip SRAM 
effectively plays the role of a cache. However, 
unlike the PowerPC, the operation of the 
SHARC rarely becomes I/O-limited. 

The SHARC's 512 KB SRAM is divided into 
two independent banks of 256 KBs each. 
Furthermore, each of these two banks is dual- 
ported; each bank having both a processor and an 
I/O port. These dual ports enable either SRAM 
bank to be simultaneously accessed by both the 
processor and external DRAM memory at 
combined access rates of up to 320 MB/s (i.e. 
160 MB/s through each of the two ports). In 
addition, the SHARC CPU also has two 
independent buses that are connected to both 
SRAM banks through a multiplexor, enabling 
the CPU to make separate data accesses to both 
memory banks simultaneously, at rates of 160 
MB/s from each bank. 

In summary, the SHARC has three internal data 
buses that can each simultaneously make 
accesses to this SRAM, two CPU buses and an 
external I/O bus to DRAM. Simultaneous 
accesses can be made to either of the two SRAM 
banks by the external I/O bus and one of the two 
CPU buses. Simultaneously, the other CPU bus 
can also access data from the other SRAM bank. 
Each of these three buses has a bandwidth of 
160 MB/s. Therefore, data can be transferred 
between external DRAM and the on-chip SRAM 
at 160 MB/s, while the CPU is simultaneously 
accessing (read and/or write) data from/to SRAM 
over its two internal buses at an aggregate rate of 
320 MB/s. 

The bottom line is that on the SHARC, data can 
always be moved between DRAM and SRAM at 
rates of up to 160 MB/s without impacting 
CPU activity. As a result, the SHARC has a 
better balance of processing and I/O throughput 
for operations that are characterized by a low ratio 
of processing to data accesses (i.e., less than 10 
floating-point operations per DRAM data access). 
On the PowerPC, the processor throughput for 
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such operations becomes throttled to rates of 
between 4 and 10 MFLOPS by the effective 
cache-DRAM access bandwidth limit of 50 to 80 
MB/s. However, on the SHARC, because of the 
greater DRAM access bandwidth available, such 
operations can potentially execute two to three 
times faster than on the PowerPC, despite the 
SHARC's slower clock speed. 

In summary, the SHARC is best suited for the 
following types of applications. 

• Computation of FFTs of any length. 
Effective throughput rates in excess of 
100 MFLOPS can be sustained for all FFT 
sizes. Complex FFTs larger than 4K must 
be decomposed into a 2-D array and the 
intermediate results written back to DRAM, 
as described previously for the PowerPC. 
However, in the case of the SHARC, much 
of the requisite I/O between SRAM and 
DRAM can be overlapped with ongoing 
computation so that the associated 
computations never become I/O-bound. 

• Processing of long vectors. Because I/O and 
computation can be overlapped on the 
SHARC, long vectors can be strip-mined 
without incurring a performance penalty. 

• Executing algorithms that are characterized 
by a low ratio of computation-to-memory 
accesses. 

• Applications in which there is a premium on 
physical density (MFLOP/volume, 
MFLOP/watt). 

The above attributes make the SHARC ideal for 
repetitive, FFT-intensive, embedded signal 
processing applications such radar, sonar, 
communications and medical imaging. 

In contrast, the SHARC is poorly suited for 
execution of user application programs whose 
executable code occupies more than 50 KBs of 
memory, involve the use of double-precision 
arithmetic, and/or programs that make frequent 
use of MC/OS services. The reason is that the 
SHARC can execute only code located in SRAM 
and does not have double-precision hardware. 
However, only about 50 KBs of the 512 KBs in 
SRAM are allocated to the storage of user code. 
The remainder is allocated to segments of 
MC/OS and data. A map of SRAM memory 
allocations for a Mercury SHARC CN is 
illustrated in Fig. 6. 

SHARC On-chip SRAM (512 KB) 

BankO 
(0-256 KB) 

MCexec kernel 
(52,960 bytes) 

User Executable Code 
(Wired and Overlay) 

(49,152 bytes) 

Allocable Data Memory 
(28,960 bytes) 

Unusable Area* 
(3808 bytes) jj 

Allocable Data Memory 
(127,264 bytes) 

Bankl 
(256-512 KB) 

MG/OS Overlay Area 
(24,576 bytes) 

Allocable Data Memory 
(16,384 bytes) 
Unusable Area 
(8192 bytes) 

User Stack 
(32,768 bytes (default)) 

Allocable Data Memory 
(179,774 bytes) 

Fig. 6. SHARC SRAM Allocations 

Note that not even all of MC/OS can fit into 
SRAM! Consequently, only the MCexec kernel 
is loaded into SRAM. All other MC/OS 
services, such as the ICS routines, are loaded into 
SRAM as overlays on an as-needed basis. 
Similarly, only 50 KBs of SRAM are allocated 
to storage of the user's application code. User 
programs consisting of more than 50 KB of code 
must be broken up into multiple overlay 
segments, each smaller than 50 KBs, that can be 
subsequently loaded, as needed, from DRAM into 
the allocated 50 KBs segment of SRAM. 

Although this overlay mechanism does allow 
user code that extends over more than 50 KBs to 
be run on the SHARC, each overlay takes up to 
333 usec to complete, during which time the 
CPU is idled. Although this amount of overhead 
may be tolerable in certain applications, it 
usually is unacceptable in most high-performance 
real-time signal processing applications. 
Consequently, execution of application programs 
that contain more than 50 KBs should generally 
be avoided unless it is determined that the 
overhead associated with bringing in each new 
overlay can be tolerated. Similarly, the execution 
of software such as I/O drivers, that may cause 
MC/OS overlays to be invoked, should also be 
avoided on the SHARC. 

Another potential limitation of the SHARC 
relative to the PowerPC is that the SHARC is 
somewhat more difficult to program than the 
PowerPC. This is primarily so for two reasons. 

First, in order to get maximum performance from 
the SHARC, the user should write the code in 
terms of calls to Mercury's SAL functions to the 
greatest degree possible. Use of SAL functions is 
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much more efficient than executing compiled C 
code on the SHARC. 

Second, unlike the case of cache, the user must 
explicitly manage all data transfers between 
DRAM and SRAM, as well as being aware of 
which SRAM memory banks his data is stored 
in. For optimum performance, the results of an 
operation (i.e., a SAL call) should generally be 
stored in the opposite SRAM memory bank from 
the operands. Furthermore, the user should also 
arrange all data transfers between SRAM and 
DRAM so they are performed concurrently with 
program execution, using either the on-chip or 
the external DMA controller. Generally, the on- 
chip DMA controller should be used to write data 
from SRAM to DRAM, while the external (on 
the CN ASIC) DMA controller is used to write 
data from DRAM to SRAM. Mercury supplies a 
set of data transfer routines for the SHARC, 
called the Multi-buffering Facility, that largely 
automates this process and makes use of these 
two DMA controllers transparent to the user. 
However, the user is still responsible for 
assigning the data buffers to the proper SRAM 
memory banks and for making sure that the 
SRAM-DRAM I/O operations are overlapped 
with program execution as much as possible. 
Failure to do so will result in sub-optimal 
performance. 

5.0 A Sample Heterogeneous 
Processing Application 

The processor topology of a multicomputer 1 
typical dataflow processing application 
illustrated in Fig. 7. 

for a 
is 

The processing operations to be performed are 
first partitioned into a number of sequential sub- 
process processing stages. At each stage, the data 
to be processed is subdivided into segments that 
are distributed over a corresponding number of 
processors, each of which executes the same sub- 
process independently and in parallel, on its 
associated data segment. 

A processing stage is defined as a sequence of 
processing steps that can be performed in parallel 
on different segments of data, without requiring 
communication with any other processors at that 
stage. A new processing stage is defined 
whenever the nature of the data segments to be 
processed changes. Therefore, a redistribution of 
data always occurs between any two adjacent 
processing stages. The number of stages into 
which a given process is partitioned is a function 
of the application. 

A 2-D FFT is a simple example of a simple two- 
stage processing application. The data to be 
processed by a 2-D FFT may be considered to be 
a 2-D array, or matrix. The first processing stage 
consists of performing the row FFTs, in which 
the rows of the matrix are distributed over the 
processors assigned to that stage. The 
transformed row output(s) of each processor in 
this first stage, are then redistributed among the 
processors in the second stage so that each 
second-stage processor receives an integer number 
of matrix columns. The second-stage processors 
then perform the requisite column FFTs to 
complete the computation of the 2-D FFT. 

In the multicomputer dataflow model of Fig. 7, 

Processing Stage 1 
(P-l processors) 

Processing Stage 2 
(P2 processors) 

Processing Stage M 
(PM processors) 

Data» 
Inpuf 

Interface 
Control 

Prorassoi 

Proc1.1 Proc2.1 

Input ] h. Proc 1 3   »jRe-distributd ^- Proc 2-3 _^JHe-distnbuti 
Interface)  II    Data   J\ |      V    Data   „ 

Proc M.1 

Proc M.2 

Proc 1 .P 'roc 2.P2 

Proc M.3 

Proc M.Pi W 

Fig. 7. Multicomputer Processor Topology for an M-Stage Dataflow Application 
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all processors used within a given stage would be 
the same type. This makes sense because all 
processors used at a given stage execute the same 
algorithm in parallel, albeit on different data. 
However, the processor type used at a given stage 
may vary from one stage to the next, depending 
upon the nature of the algorithm being 
implemented at each stage. 

The general rules for choosing the optimum 
processor for a given processing stage, as a 
function of the algorithm being implemented to 
maximize throughput, were described in the 
preceding section. In general, FFT-intensive 
processing algorithms and those algorithms 
characterized by a low ratio of processing-to-data 
accesses are more efficiently implemented using 
the SHARC processor. In contrast, algorithms 
that are highly computationally intensive -i.e., 
those characterized by a high ratio of 
computation to data accesses — such as those 
involving transcendental functions, iterative 
procedures, or complex multi-point interpolation 
— are usually more efficiently implemented 
using the PowerPC. The PowerPC would also be 
the processor of choice for algorithms or 
processes whose implementation entails more 
than 50 KBs of code, or that require extensive 
interaction with the operating system. Typical 
applications include I/O drivers, system-name 
servers, system control programs, etc. 

6.0 Conclusion 

The rationale for a heterogeneous multicomputer 
has been described. A specific example of such a 
system, a Mercury RACE multicomputer 
composed of SHARC and PowerPC processors, 
has been presented. It was shown that each of 
these processors is ideally suited for different 
types of algorithms. 

Briefly, the SHARC is optimized for execution 
of vector-oriented signal processing algorithms, 
especially those involving FFTs. One of the 
principal limitations of the SHARC is that in 
order to realize maximum processing throughput, 
the compiled code to be executed should not 
exceed 50 KBs in length. Observance of this 
constraint avoids the need for code overlays. In 
addition, to obtain peak performance from the 
SHARC, the user's code should make use of 
Mercury's SAL routines wherever possible. 

In contrast, the PowerPC is generally superior 
for execution of algorithms or processes that are 
characterized by a high ratio of computation to 
data    accesses,    such    as     those     involving 

transcendental functions, iterative procedures or 
complex multi-point interpolation. The 
PowerPC would also be the processor of choice 
for algorithms or processes whose executable 
code is more than 50 KBs in length, that involve 
double-precision arithmetic, or those that require 
extensive interaction with the operating system. 

A typical multicomputing application generally 
consists of a sequence of different types of 
algorithms, the execution of each of which may 
be optimized by one or the other of the above 
two processor types. When each algorithm is 
implemented on its corresponding optimal 
processor type, the result is a heterogeneous 
multicomputer. 

The above preferences are only general guidelines 
that assume maximum performance per processor 
is the only parameter to be optimized. However, 
in a practical, real-world application, other factors 

such as processor density (i.e. MFLOP/m^ 
and/or MFLOP/watt) and ease of programming 
may be of equal or greater importance than just 
minimizing the total number of processors. In 
this regard, the SHARC usually offers the 
highest processing density, while the PowerPC 
is easier to program. 

In summary, although processor heterogeneity 
provides a means of optimizing a multicomputer 
configuration for a given application, there are 
usually a number of different optimization 
criteria that should be considered such as: 

• Minimization of processor count 
• Minimization of total system hardware cost 
• Maximization of processor density 

(especially in embedded systems) 
• Minimization of software development costs 

(i.e. ease of programming) 

In general, each of the above objectives, taken 
alone, results in a different optimal 
heterogeneous solution. Every situation is 
different, and it is up to the user to make trade- 
offs between the various optimization criteria 
listed above that are appropriate to a specific 
situation. 
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Abstract 

In this paper we discuss intelligent agent support for 
parallel and distributed computing in a heterogeneous 
environment. We provide an overview of the Bond environ- 
ment and of services provided by a network on intelligent 
agents, then we discuss in depth the Scheduling Expert 
Advisor, SEA. The SEA processes a high level description 
of a computational task provided by a user and converts it 
into a set of facts and rules. An expert system starts the 
execution of one program or a group of programs based on 
the scheduling information compiled earlier. 

Intelligent agent support for heterogeneous 
parallel and distributed computing 

While intelligent agents [5, 6, 7] are used extensively 
for information retrieval and data mining, there are virtu- 
ally no reports of their application in the area of parallel 
and distributed computing. In this paper we discuss an 
environment for parallel and distributed computing and 
present one of it major components, the Scheduling Expert 
Advisor. A feature distinguishing the Bond environment 
from other efforts in this area is the extensive use of 
knowledge processing. It seems natural that in a distrib- 
uted environment based upon the client-server paradigm, 
at least some of the services be provided by intelligent 
agents. 

The task of accommodating heterogeneity poses chal- 
lenges difficult to carry out by less sophisticated means 
then knowledge processing. Take for example data and 
program migration, one of the activities needed in such an 
environment. Data migration can be accomplished by a 
script including commands to tar, compress, ftp, 
rlogin, etc. But each of the steps mentioned above may 
fail and a script able to handle such errors is likely to be 
very complex. When one adds the requirement to move 
data among systems with different operating systems e.g. 

Unix and NT, this solution becomes impractical. For 
example, the task of finding if enough space is available on 
the target system, one of the low level actions performed 
during data and program migration is considerably easier 
to implement as a set of facts and rules than as a script. 

The intelligent agents in the Bond environment are 
specialized expert systems acting as servers able to per- 
form tasks like program migration, data migration, sched- 
uling, mapping, exporting objects, and so on. At the heart 
of the Bond systems are resource databases, which provide 
information about all the objects available to individual 
members of a group. Programs, data, and hardware objects 
are shared or used exclusively by the members of the 
group. The information about the services available in the 
system is provided by a name server, the oracle, running at 
a known port. All services including those provided by 
intelligent agents register themselves with the oracle. 

The Scheduling Expert Advisor works in a network of 
expert advisors to accomplish its task. The Mapping 
Expert Advisor selects a target system, the Data Replica- 
tion and the Program Migration Expert Advisors make the 
programs and data objects needed for the computation 
available at the target system. 

To exploit the benefits of knowledge processing we 
had to provide effective mechanism for the intelligent 
agents to collaborate with one another, and to adapt their 
behavior according to the feedback provided by the envi- 
ronment as a result of their action. The major contributions 
of this paper are such mechanisms. In the Bond environ- 
ment, the facts and the rules used by an inference engine 
are modified dynamically as a result of user interactions, 
actions of other intelligent agents as well as feedback from 
the environment. 

The Scheduling Expert Advisor, SEA, is developed in 
Clips [1-3]. Additional functions for socket communica- 
tion are written in C. SEA interacts with clients through 
TCP sockets using ASCII strings. We consider using a 
KQML [4, 11] interface for the expert advisors. Clients 
and test programs are written in Tk [12] and Expect [10]. 

0-8186-7879-8/97 $10.00 © 1997 IEEE 
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Rule-based expert systems 

This section gives artificial intelligence background 
and provides some insight into the operation of expert sys- 
tems. An expert system starts with information about an 
abstract universe model and then infers additional knowl- 
edge [9]. The new knowledge can be stored in the form of 
both facts and rules. The following discussion follows 
loosely the CLIPS language [1-3, 8], but the presented 
concepts are valid for any rule-based system. In an expert 
system, information is stored as facts (individual items) 
and rules (algorithmic knowledge). A fact stores knowl- 
edge about the problem universe, and is represented as an 
n-tuple (« > 1), in which the first element is a fact identi- 
fier and the other optional elements are fact arguments. A 
rule represents procedural information, and is a construct 
of the type: 
IF (antecedent) THEN (consequent) 

Alternative component names are Left Hand Side, 
LHS, for the antecedent, and Right Hand Side, RHS, for 
the consequent. If all the terms of the antecedent are true, 
the rule is activated. The system triggers one of the acti- 
vated rules, and evaluates the expressions of the RHS in 
sequential order. 

Figure 1 illustrates the block architecture of a rule- 
based expert system. The facts are stored in the working 
memory and the rules are stored in the production memory. 
The Inference Engine (IE) runs a three-step infinite cycle 
of matching, selecting and execution. The first step 
matches the available facts against all rules. This is done 
by special algorithms to improve efficiency and avoid 
combinatorial complexity. The activated rules are placed 
on a list called the system's agenda. Next, the IE sorts the 
agenda and selects the top rule for execution. The sorting 
criteria is central to the operation of the expert system. In 
the third step, the RHS actions of the triggered rule are 
executed. As side effects, changes in the working and pro- 
duction memory can occur. Usually only facts are 
changed, although the mechanism for dynamic rule 
changes is present. The original rule is then removed from 
the agenda to prevent repeated activation by the same 
facts. The IE cycle continues with a new matching step, 
and stops if no rule is activated. 

The Bond environment 

The Bond environment [14] currently under develop- 
ment at Purdue University is designed to support concur- 
rent execution of parallel and/or sequential programs on 
computing platforms with different architecture and sys- 
tem software, interconnected by a high speed network. We 
consider a model of parallel and distributed computing 
which allows an individual working in a group to provide a 

I 1 
Working memory 

(facts) 
Production memory \ 
(rules, implications)J 

Inference engine 

1 [>     Match 

* 
( Agenda   j 

V 
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J 
Execute 

1 

Figure 1: Architecture of a Rule-based Expert 
System 

high level description of the problem to be solved and let 
an intelligent environment determine a sequence of actions 
optimal in some sense leading to the desired result. To 
accomplish this goal the environment has several inference 
engines and maintains a set of resource databases contain- 
ing the description of the computing platforms and net- 
works, information about the programs, the services, and 
the data available to the group, and to each individual 
within the group. 

Bond is a groupware system which supports batch as 
well as interactive execution. It is designed to run on top of 
different operating systems, makes no assumptions con- 
cerning the communication libraries used by the parallel 
programs, and supports the management of hardware and 
software objects. It consists of a kernel, resource data- 
bases, remote services including Expert Advisors, and a 
user interface. The user interface provides access to a set 
of computing engines interconnected by a high speed net- 
work. The environment allows a user to provide a high 
level description of the problem to be solved, including 
execution and data dependencies. The Scheduling Expert 
Advisor converts this description into a set of complex 
tasks and returns a task schedule to the kernel. The Bond 
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kernel uses other agents e.g. Program and Data Replica- 
tion Advisors, the Mapping Expert Advisor, etc. to execute 
simple tasks. Each simple task implies running a program 
with a particular data set on a target system under the 
supervision of a Bond process. This supervisory process 
informs the environment about the outcome of the execu- 
tion and allows the Scheduling Advisor to proceed with 
the scheduling of the next task or to attempt an error 
recovery procedure. 

When activated, Bond creates a user environment, 
reflecting information from shared and private resource 
databases. The services and the Expert Advisors invoked 
in behalf of a user share the same view of the environment. 
The set of services and Expert Advisors are distributed and 
they can be accessed via an oracle. The system is open- 
ended, as new services are added they are registered with 
the oracle. Some of the services are replicated and the ora- 
cle directs a request for service to the server capable of 
providing the service in an optimal way. 

Other Expert Advisors use facts stored in shared 
knowledge bases to determine if similar tasks have been 
carried out previously, and based upon the size of the cur- 
rent problem suggest alternative ways to carry out the 
computations, provide estimates of the execution time on 
different configurations. The Data Replication Advisor 
determines if the data needed for the computation is avail- 
able at the execution site and performs a variety of opera- 

tions related to data staging. For example it determines if 
enough storage space is available at the execution site, 
then establishes if data conversion is necessary, if so 
decides where it should take place, compresses and even- 
tually encrypts the data and finally makes a copy of the 
data at the execution site. The Program Movement Advi- 
sor provides similar functionality for program staging. 
When the remote execution completes, the EA extracts the 
relevant facts and stores them into shared knowledge 
bases. 

Overview of the scheduling expert advisor 

This paper shows the use of an expert advisor for the 
scheduling of complex program execution sequences. The 
data and execution dependencies of the component pro- 
grams are encoded in a set of facts and rules which control 
the expert system. Rule activation models the scheduling 
of programs which have all their dependencies satisfied. 
The process is simple and has significant advantages over 
the static approach using scripts. 

The Scheduling Expert Advisor, SEA, is a layer posi- 
tioned between the problem description provided by the 
user and the Bond execution environment, as shown in 
Figure 2. The SEA processes the High Level Description, 
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Figure 2: The Scheduling2 Expert Advisor processes a high level description of the problem and con- 
verts it into Scheduling Control Information (facts and rules). Then it sends scheduling 
requests to the environment. 

HLD, and generates a knowledge-based representation of 
the problem. Next, the SEA submits program scheduling 
requests to the Bond execution environment. The exit sta- 
tus of the executed programs is returned to the SEA, which 
updates its internal state. Successful executions validate 
conditions for the other programs, which are then sched- 
uled. The user can program actions to be taken in case of 

program failure, for example start an expert advisor spe- 
cific for error recovery or take direct control of the execu- 
tion. 

The High Level Description, is processed by the SEA 
and converted into a set of rules and facts called Scheduler 
Control Information, SCI. The process is similar to com- 
piling a source program into intermediate code. The SCI is 
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in fact an independent expert system which automatically 
schedules programs in the Bond environment according to 
the input HLD. The design principle follows the inference 
engine algorithm described in Section . In a rule-based 
expert system, the antecedents of each rule are matched 
with all the available facts. If all the conditions of a rule 
are satisfied, the rule is activated. One active rule is exe- 
cuted based on the selection mechanism. The scheduling 
of a program in a complex processing follows the same 
principle. Some conditions have to be satisfied before the 
program can be started. The most common conditions are 
data and execution dependencies. Data dependencies 
appear when a previous program has to terminate success- 
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fully to provide input data for the next step. An example of 
execution dependency arises when the programs in a 
group have to be co-scheduled to exchange intermediate 
results. A group is scheduled only when all the component 
programs are ready for execution. The basic idea behind 
the Scheduling Expert Advisor is to associate rules with 
the scheduling of programs, and antecedent conditions 
with execution and data dependencies. When all the 
dependencies are satisfied, the rule is activated and the 
program is scheduled. 

An important difference between the SEA and an 
usual expert system is the asynchronous nature of the SEA 
program scheduling, presented in Figure 3. The schedul- 

Mapping 

Expert Advisor 

asynchronous 
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Figure 3: Asynchronous Communication with the SEA. The SEA sends requests to the MEA which in 
turn generates mappings. The Bond execution environment responds when a mapped activ- 
ity completes. The MEA informs the SEA that the request was satisfied. The result is entered 
as a new fact of the SCI. 

ing information is sent to the execution environment, but it 
is unknown how long the execution will take. Some pro- 
grams might take hours or even days to complete. As such, 
scheduling of a program is a complete rule by itself. While 
an expert system normally runs only one active rule at a 
time, the SEA can schedule all ready programs at the same 
time, providing an added superconcurency bonus. The 
downside is that a connection has to be open to receive 
asynchronous return codes when an individual program 
terminates. The return codes are converted into facts 
which are placed in the working memory, activating in 
turn processing rules. 

When a program is scheduled by the SEA, the neces- 
sary information is passed to the Mapping Expert Advisor, 
MEA, which selects an execution target, starts the pro- 
gram in the control environment, and monitors its execu- 

tion. The completion code, OK/Error, is reported to the 
SEA. Only after a successful completion of a program its 
output files are available as input for other programs. The 
process continues until all available programs are exe- 
cuted. In case of a program failure additional information 
can be reported to the SEA for diagnostic and recovery 
purposes. 

The SEA is loosely coupled with the user interface 
and with the Bond Execution Environment, BEE. Any 
interface able to generate the HLD of a problem workflow 
is acceptable. On the BEE side, SEA generates scheduling 
information blocks used by the Mapping Expert Advisor. 
Any program able to parse such a block can be used for 
scheduling execution, if it returns valid completion infor- 
mation. 
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Task execution specification 

A graphical interface allows the user to specify the 
workflow of a given problem. The sequence of programs, 
with associated input and output files is described. Parallel 
execution of program groups are specified. Links are 
established between output and input files of various pro- 
grams. The GUI translates this description into an interme- 
diate representation which is parsed by the Scheduling 

Expert Advisor. We have named the graphical presentation 
of the workflow High Level Description, or HLD. This 
description is similar to different module interconnection 
languages [13]. 

The central HLD concept is the Execution Block, or 
Block for short. There are basic execution blocks and com- 
posite ones.The basic execution block is an executable 
program and its internal structure is presented in Figure 4. 

Input Data 

Filel 

Input Data 

File n 

Program Name 

Output Data 
Filel 

Control 

Input File 

Command Line Arguments 

Supervisor 

Output Data 
Filem 

Execution Report 

Verify Filterj -O Yes/No Verify Filterk -!> Yes/No 

Figure 4: A basic execution block and its internal structure 

Each basic block may have 0 to n Input Files. The Control 
Input File guides execution with specific options, so it is 
processed separately from the other input files. Command 
line arguments for the program are provided, although in 
most cases the information is in the control input file. The 
user can select a Target System for the program execution, 
or this decision can be left to the Mapping EA. A Supervi- 
sor program monitors the execution of the program, and 
determines if the execution was successful or not. The 
supervisor returns the Execution Report to the MEA. The 
program generates a number of Output Data Files, and the 
output results are validated by Verify Filters (VFrVFk). 
The VFs are started by the supervisor in case of successful 
execution, and report if the output complies with their 

requirements or not. The verify filters are similar to asser- 
tions in various programming languages. 

Composite execution blocks are created by recursive 
application of composition rules on basic blocks. The list 
of control composition rules contains: (1) block sequence, 
(2) loop, (3) forced alternative, (4) computed alternative, 
and (5) group with parallel execution of component 
blocks. In a block sequence, individual blocks are executed 
only after the previous block in the sequence has success- 
fully terminated. It is similar to sequential execution of the 
statements in a programming language. The loops are 
composed of an execution block and a decision program, 
as shown in Figure 5. The structures are similar to tradi- 
tional  programming  language.  The  role  of a logical 
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Figure 5: HLD Loop Structures 

expression is taken by a Decision Program, which controls 
the execution flow. A. forced alternative arises when there 
are a number of equivalent programs that have the same 
processing effect, and the user manually selects one before 
execution. The computed alternative involves a Decision 
Program which selects one of the available paths in the 
description. A parallel group contains programs that must 
be scheduled at the same time due to communication 
dependencies. 

By combining multiple blocks we can use combina- 
tion techniques to group any number of subblocks into a 
higher level block. Usually each program has a number of 
additional elements associated with it, such as names of 
input and output files. 

The scheduling expert advisor 

The Scheduling Expert Advisor has the following 
functions: 

• Parse a new HLD and convert it into rules and facts 
(pre-processing). 

• Determine the programs available for execution at 
any time. 

• Schedule the program that can be run in the current 
step. A scheduling request is passed to the Mapping 
Expert Advisor for each individual program or 
group of programs. 

• Run in asynchronous or synchronous mode. In the 
first case each program is scheduled when all the 
conditions are fulfilled. In the second case all pro- 
grams available for execution in one step are co- 

b) Final Test Loop: Repeat-Until 

scheduled; whenever a program terminates, a new 
scheduling cycle is started. 

• Report programs that have not been executed and 
might never be, due to a possible HLD program- 
ming error. 

• Clear the working and production memory of the 
current HLD, and prepare for a new script. 

Generation of the new rules and facts for a HLD and 
the scheduling of programs are the most important func- 
tions of the SEA. 

The program scheduling results from the interaction 
of the new generated rules. The state transition diagram of 
a generic program is presented in Figure 6. Each arrow in 
the transition diagram represents a single rule or a set of 
rules in the Scheduler Control Information. The rules are 
named after the destination state, for example the rules 
leading to the Valid State are called Valid Rules. Most 
states are represented by SEA facts, named as in the transi- 
tion diagram. Initially, the programs are in the Start State, 
when partial dependencies are satisfied. There is no spe- 
cific fact associated with a program in the Start State. 
When all data dependencies are satisfied, the Ready Rule 
executes, and the program enters the Ready State, which is 
marked by a corresponding fact. The Ready Rule triggers 
asynchronously, whenever all the data dependencies of a 
program are satisfied. Each target program has its unique 
Ready Rule in the SCI rule base. 

Valid Rules control the HLD execution flow. In Run 
Mode, a program can be scheduled at any time, so the tran- 
sition from the Ready state to the Valid state is immediate 
and asynchronous. In Step Mode, the programs can be 
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data dependencies are satisfied 

Ready the program is ready for independent execution 

i. execution mode is validated (single step or run) 

Valid the program can be scheduled in the current 
execution step 

execution dependencies are satisfied 

groups and individual programs are scheduled 

handle error condition or fail script 

Figure 6: State Transition Diagram of a Program in the Scheduling Expert Advisor 

scheduled only at predetermined events (steps). All the 
programs holding in the Ready State during the previous 
cycle are validated synchronously. Programs entering 
Ready State after the validation transition have to wait 
there until the next validation cycle. There is a Valid Rule 
for the Run Mode, and a Valid Rule for the Step Mode. 
These rules are common for all programs. If only the Run 
Mode is desired, the Valid Rules and the Valid state are 
eliminated from the transition diagram, and the Schedul- 
ing Rules respond to the Ready facts and not to the Valid 
facts. The execution mode is selected by the initial execu- 
tion request and can be changed at any time. The same SCI 
rule base is used in all execution modes. 

The Scheduling Rules differ for groups of programs 
that must be co-scheduled and for individual programs 
which are executed alone. An independent program is 
scheduled as soon as it enters the Valid state. Groups of 
programs are scheduled when all their execution depen- 

dencies are satisfied, in most cases when all the programs 
in the group are in the Valid state. Each Scheduling Rule 
creates a Scheduling Block of information which is passed 
to the Mapping Expert Advisor and an internal hook for 
the execution result. The Scheduling Rules are triggered 
asynchronously. Once a program has executed, the results 
are entered as specific Success or Failure facts in the 
knowledge base. In case of success, the output files are 
marked as valid, and can satisfy data dependencies of 
other programs. In case of failure, the SEA tries to recover 
from the error or lets the user handle the error. 

Example 

The preprocessing step of the Scheduling Expert 
Advisor converts the text or graphic HLD description into 
a set of facts and rules used to control the SEA. In this sec- 
tion we present a possible structure of the SCI facts and 
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rules, the structure actually used by the Bond SEA. 
The facts represent the status of various input files or 

control conditions. The preprocessor determines the set of 
Absolute Input Files, AIF, not generated by HLD programs 
and used as input for one of the HLD blocks. Bond checks 
if AIFs exist in the system. For the available AIF, the pre- 
processor adds a "file file-name valid" fact to 
the SCI. A fact "file file-name invalid" marks 
the missing AIF files. 

The following rule types are generated by the prepro- 
cessor, as seen in Figure 6: (1) ready rule, (2) program or 
group scheduling rule, (3) successful execution rule, and 
(4) failed execution rule. In the following examples we 
ignore the Valid state which is controlled by shared rules. 

The ready rules detect when a program has all the 
execution conditions satisfied. For example, program_N 
depends only on its input files: 
(defrule ready_program_N 

(file input_data_file_l valid) 

(file input_data_file_k valid) 
=> 

(assert (ready program_N 
input_data_file_l ... 
input_data_file_k) 

) 
) 

The step control changes the program state from 
Ready to Valid. If the program has no other execution con- 
strains, the generated scheduling rule is: 

(defrule schedule_program_N 
factx <- (valid program_N args) 

=> 
(retract factx) 
(schedulef  program_N args) 

) 
A group of programs (program_A to program_J) 

which execute concurrently has a single scheduling rule: 
(defrule  schedule_group_M 

fact_a <- (Valid program_A args_a) 

fact_j <- (valid program_J args_j) 
=> 

(retract fact_a) 

(retract fact_j) 
(schedulef program_A args_a) 

(schedulef  program_J  args_j) 
) 

The   schedulef   function  passes  the  execution 
request to the Mapping Expert Advisor, and prepares a 
hook to insert the execution results in the working mem- 

ory. The generated facts are: 
(result program_N OK) 
(result program_N error) 

The rule for a successful execution validates the out- 
put files of the current program: 

(defrule success_program_N 
factq <- (result program_N OK) 

=> 
(retract factq) 
(validate output_data_file_l) 

(validate output_data_file_m) 

) 
The validation procedure removes a possible invalid 

fact for the file name and generates a valid fact for the file 
(file file_name valid). The scheduling process 
continues with the new facts (valid files), which can trig- 
ger execution of the next programs. 

The execution failure rule triggers an error recovery 
procedure or fails the entire process: 

(defrule  error_program_N 
factq <- (result program_N error) 

=> 
(... report and process error) 
(... revalidate program_N | ignore 

j STOP) 
) 

Conclusions 

There are major differences between an execution 
controlled by a program or a script and one controlled by 
an expert advisor, (a) A program or a script has limited 
adaptability properties, it needs to invoke error recovery 
routines to handle error conditions. An expert advisor can 
provide recovery rules invoked automatically when an 
error condition occurs, (b) In an expert system environ- 
ment individual operations can be enhanced without 
changing the entire system. Rules in an expert system are 
loosely coupled. Changes to one rule generator will not 
propagate to other generators or control rules, (c) In an 
expert advisor, the dependencies can be specified in any 
order. A number of conditions must be valid before a pro- 
gram can be started. There is no order in which these con- 
ditions have to be entered or fulfilled. Programs are 
scheduled for execution only when all conditions are satis- 
fied. Several unrelated programs that can be executed con- 
currently. If dependencies have to be satisfied in a specific 
order, we generate a chain of ready rules. The first rule 
checks the first dependency and then activates the second 
ready rule. The second rule checks the next dependency 
and so on, until all conditions have been satisfied, (d) 
Scheduler Control Information can be saved to a file and 
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loaded in a separate expert system. This expert system can 
work independently to create a specialized Scheduling 
Expert Advisor to control execution of a particular work- 
flow, (e) A simple deadlock detection mechanism is avail- 
able. If programs are placed into a circular dependency 
list, none of them can be executed. SEA recognizes the 
condition and informs the user of the fact. Dead sequences 
of program which cannot be executed are also reported by 
the SEA. 
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Abstract 

The different types of messages used by a parallel 
application program executing in a distributed system 
can each have unique characteristics so that no single 
communication network can produce the lowest latency 
for all messages. For instance, short control messages 
may be sent with the lowest overhead on one type of 
network, such as Ethernet, while bulk data transfers 
may be better suited to a different type of network, 
such as Fibre Channel or HiPPI. In this paper, we 
investigate how to exploit multiple heterogeneous com- 
munication networks that interconnect the same set 
of processing nodes by dynamically selecting the best 
(lowest latency) network for each message based on the 
message size. We also show how to aggregate these 
multiple parallel networks into a single virtual net- 
work to further reduce the latency and increase the 
available bandwidth. We test this multiplexing and ag- 
gregation on a cluster of SGI multiprocessors intercon- 
nected with both Fibre Channel and Ethernet. We find 
that multiplexing between Ethernet and Fibre Channel 
can substantially reduce communication overhead in 
a synthetic benchmark compared to using either net- 
work alone. Aggregating these two networks into a 
single virtual network can further reduce communica- 
tion delays for applications with many large messages. 
The best choice of either multiplexing or aggregation 
depends on the mix of message sizes in the applica- 
tion program and the relative overheads of the two net- 
works. 

Keywords: heterogeneous networks; multiplexing; 
aggregation; virtual networks; communication over- 
head. 

1    Introduction 

The importance of efficient communication in dis- 
tributed parallel systems cannot be overemphasized 
since communication overhead restricts the sphere of 
applications that can be efficiently parallelized on 
these systems. Additionally, communication delays 
are typically large compared to computation time, so 
that communication often becomes the performance 
bottleneck. While an obvious technique for reducing 
communication overhead is to use a higher bandwidth 
network, latency-limited applications, as opposed to 
bandwidth-limited applications, may not benefit from 
the increased network speed. In fact, several different 
types of messages are typically used in a single ap- 
plication program, some of which are latency-limited, 
while others are bandwidth-limited. 

These different types of messages each may be bet- 
ter suited to a different type of communication net- 
work so that no single network can provide the best 
performance for all types of communication within a 
single program. For instance, short control messages 
sent between processing nodes, such as synchroniza- 
tion or load information, require low-latency connec- 
tions. Bulk data transfers, such as the transfer of large 
matrices, on the other hand, require high-bandwidth, 
but can often tolerate higher latency. As a result, 
since each type of network makes different trade-offs 
in latency and bandwidth [10,12,13], each of these dif- 
ferent types of data transfers may be best suited for 
transmission on a different type of communication net- 
work. Fortunately, many networked parallel comput- 
ing systems are being assembled with several different 
types of communication links between the same pro- 
cessing nodes. A common configuration, for instance, 
is a network of workstations interconnected with both 
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Ethernet plus some higher-bandwidth network, such 
as Fibre Channel, ATM, or HiPPI. 

This paper presents some of our preliminary inves- 
tigations into how to effectively utilize these multiple 
heterogeneous networks to reduce the communication 
overhead in parallel application programs. Specifi- 
cally, we examine three different approaches imple- 
mented on a cluster of Silicon Graphics Challenge 
L multiprocessors interconnected with both Ethernet 
and Fibre Channel communication networks. The first 
approach is a simple multiplexing strategy that dy- 
namically selects one of the two networks on which 
to send each message based on the size of each indi- 
vidual message to minimize the total communication 
latency. This approach introduces a small amount of 
overhead to select between the networks compared to 
using only a single network. The second approach 
aggregates the two separate networks into a single vir- 
tual network whose bandwidth is approximately the 
sum of the bandwidth of the two individual networks. 
This approach introduces some additional latency over 
simple multiplexing due to the segmentation and re- 
assembly required to send a single message over par- 
allel communication paths. Finally, we evaluate the 
next level of multiplexing that dynamically selects be- 
tween the Ethernet, the Fibre Channel, or the single 
virtual network. 

In the remainder of the paper, Section 2 provides 
additional background on communication overheads, 
and measures the performance characteristics of the 
networks in our testbed. Section 3 then describes how 
the multiplexing and aggregation strategies are im- 
plemented, and compares their raw performance as a 
function of message size. Section 4 characterizes the 
communication patterns of several of the NAS bench- 
marks which are then used to create a synthetic bench- 
mark for evaluating the performance of our new com- 
munication strategies at the application level. Finally, 
Section 5 summarizes our results and conclusions. 

2    Background  and  Network  Charac- 
teristics 

2.1    Communication Overhead 

Communication overhead can be decomposed into 
both hardware and software overhead. Hardware over- 
head includes both the host interface delay and the 
signal propagation delay. Software overhead, on the 
other hand, is incurred by interactions with the host 
operating system, the actual device driver routines, 
and the high-level network communication protocols. 

Applications 

I 
Message Passing Interface(PVM, MPI, P4 etc.) 

I 
Socket Interface 

TCP 

~T~ 
UDP 

~r~ 
ip 

I 

Low 
Overhead 
Protocols 

Network dependent protocols 

 1  
Network 

Figure 1: Communication network protocol hierarchy. 

Software communication overhead can be reduced 
by eliminating the overhead of high-level protocols 
[4, 13] as shown in the conceptual protocol hierarchy 
of Figure 1. The overhead of the high-level protocols, 
and the operating system overhead, can be changed 
by using different Application Programming Interfaces 
(APIs). The APIs in the left-hand side of the figure 
are typical interfaces that pass through the TCP/IP 
or UDP/IP protocol stack from the application level 
to the physical level. The right-hand side of the figure 
shows that special-purpose protocols that reduce the 
software overhead can be used instead. For example, 
a 66% throughput improvement and 30% reduction in 
round-trip latency, compared to using a typical API, 
has been demonstrated by using PVM as the message 
passing interface with HiPPI as the communication 
link [4]. Hewlett Packard's Link Level Access (LLA) 
was the alternative API. The cost of these low over- 
head protocols, however, is that they may depend on 
specific hardware implementations of the network in- 
terface. 

In addition to reducing the software overhead, there 
are also system-level techniques for reducing commu- 
nication latency [12]. For example, there are two 
common techniques for transferring data between the 
host processor and the network controller. One tech- 
nique uses the host memory as a packet buffer with 
the host and the controller sharing descriptors in the 
memory. The other technique uses a simple FIFO for 
buffering packets. The FIFO-based controller is better 
for small packets than the shared-descriptor technique 
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Figure 2: Multiple heterogeneous network configura- 
tion used in the experiments. 

since it reduces the interrupt handling overhead. The 
descriptor-based controller is better for large packets 
in which the memory-to-memory copy time dominates 
the interrupt handling execution time. A hybrid con- 
troller is possible that supports both types of inter- 
faces on the same controller. 

2.2    Network Characteristics 

There are several different communication net- 
works, such as ATM, Fibre Channel, HiPPI and 
FDDI, that have been proposed to be used as a com- 
munication channel between independent processing 
nodes to thereby create a scalable parallel computing 
system [4, 6, 12]. Each of these networks has different 
latency and bandwidth characteristics. In addition, 
the different types of communications used by a par- 
allel application have different latency and bandwidth 
requirements. As a result, we expect that it may be 
possible to reduce communication overhead in paral- 
lel applications by having multiple heterogeneous net- 
works between processing nodes and then matching 
each message to the most appropriate network. 

To demonstrate the differences in network charac- 
teristics, we compare an Ethernet and a Fibre Channel 
network in a system consisting of four Silicon Graphics 
Challenge L shared-memory multiprocessors, as shown 
in Figure 2. Each of the nodes in this system contain 
four or eight R10000 processors running at 196 MHz 
on a shared bus. The nodes can communicate with 
each other via either an Ethernet running at a peak 

transfer rate of 10 Mbps, or a Fibre Channel network, 
using an Ancor CXT250 16 port switch, running at 
266 Mbps. All nodes run version 6.2 of the IRIX op- 
erating system. 

We measured the latency and bandwidth character- 
istics of both these networks using the echo program 
shown in Figure 3. All measurements were made on 
a dedicated system with no other users to minimize 
the interference from external traffic. The sending 
and receiving buffer sizes for both Ethernet and Fibre 
Channel were set at 61,440 bytes. We repeated the 
test 3 times, running N=100 iterations of each send 
and receive, and then chose the best values for Figure 
4. The variance in these.measurements was minimal 
since the system was dedicated to these experiments. 
The average bandwidth is calculated as avera

2
g*™atency 

since there are two m-byte messages transferred, one 
in the forward direction, and one in the reverse. 

Figure 4 shows the measured latency and band- 
width characteristics of these two networks as a func- 
tion of the message size transferred. The character- 
istics are compared using both the TCP and UDP 
transport protocols. As expected, there is little perfor- 
mance difference between the two transport protocols 
for messages smaller than approximately 32,000 bytes 
[11]. Comparing Ethernet and Fibre Channel in Fig- 
ure 4(a), we see that the slope of the latency curve 
for Ethernet is much steeper than the curve for Fi- 
bre Channel, although Ethernet has a lower latency 
than Fibre Channel for small messages. In fact, Eth- 
ernet outperforms Fibre Channel for messages smaller 
than approximately 900 bytes while Fibre Channel 
produces a lower total latency for larger messages. 
The bandwidth of the Ethernet begins to saturate with 
messages larger than approximately 1,500 bytes while 
the Fibre Channel bandwidth continues to increase 
with increases in the message size. 

3    Multiplexing and Aggregating Mul- 
tiple Heterogeneous Networks 

The network comparisons in the previous section 
suggest that there may be some benefit to multiplex- 
ing between the two networks as a function of the 
message size. It is possible to select an appropriate 
network for a given message using some characteristic 
other than message size, such as the message type (e.g. 
synchronization or bulk data transfer), or the network 
traffic load, but, to demonstrate the basic idea, we 
focus on selecting an appropriate network based only 
on the message size. In particular, we extend our net- 
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Figure 3: Echo program for network latency and bandwidth measurements. 
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Figure 4: Communication performance of Ethernet and Fibre Channel using TCP and UDP transport protocols. 
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work characterization echo program described in the 
previous section to dynamically select for each indi- 
vidual message the Ethernet network if the message 
is smaller than 900 bytes. Otherwise, the message is 
sent via the Fibre Channel network. The additional 
overhead required for this multiplexing compared to 
using only one network by itself is approximately the 
time required to execute one conditional statement to 
compare the message size to the multiplexing thresh- 
old. 

In addition to multiplexing, we also investigate ag- 
gregating the two networks into a single virtual net- 
work. With this approach, the original message is di- 
vided into two smaller submessages. One of these sub- 
messages is then transferred over the Ethernet while 
the other submessage is transferred simultaneously 
over the Fibre Channel. From the point-of-view of the 
application program, this aggregated network appears 
to be a single (virtual) network whose bandwidth is 
approximately the sum of the bandwidths of the indi- 
vidual component networks. 

One of the most important considerations for this 
network aggregation is determining the size of the sub- 
messages that should be sent over each of the net- 
works. The original message must be divided into two 
submessages with the goal of having the two submes- 
sages be completely received at the destination at the 
same time. More precisely, assume that a message 
consisting of me bytes can be sent and received at the 
destination in time te on the Ethernet. Similarly, a 
message consisting of m/c bytes requires time tfc to 
be sent and received on the Fibre Channel network. 
Then me and m/c must be chosen so that te = tfc 

and me + rrifc = m, where m is the size of the orig- 
inal message. Given any message of size m, the la- 
tency characteristic curves shown in Figure 4 can be 
used to empirically determine appropriate values for 
me and m/c to minimize the total communication la- 
tency. The specific values used in this study are shown 
in Table  1. 

In addition to the two conditional statements re- 
quired to determine the values of me and m/c, this 
aggregation requires a special message segmentation 
and reassembly step to first divide the message into 
the two submessages at the sender, and then reassem- 
ble them into a single message at the receiver. As a 
result, the overhead of this aggregation is considerably 
higher than the simple multiplexing approach. 

We implemented the multiplexing and aggregation 
using UDP as the application program interface to the 

transport level protocol. Since UDP does not guaran- 
tee delivery, sequencing, or duplicate packet protec- 
tion [11], we added these services on top of the basic 
datagram service. We then measured the latency and 
bandwidth of these communication approaches using 
the same hardware configuration as shown in Figure 
2. 

Figure 5 shows the overall latency for multiplexing 
and aggregation as well as that for Ethernet and Fibre 
Channel. Figure 5(a) is a magnified version of Fig- 
ure 5(b) for messages smaller than 10K bytes. These 
figures show that the latency of the multiplexing ap- 
proach follows the smaller of both Ethernet and Fibre 
Channel as the message size increases. Also, this sim- 
ple multiplexing shows better performance than that 
of the aggregation until the message size is greater 
than 9,500 bytes because of the software overhead nec- 
essary for the segmentation and reassembly of mes- 
sages with aggregation. However, we can see as much 
as an 11% improvement with aggregation over simple 
multiplexing with 55K byte messages. The intersec- 
tions of aggregation and multiplexing at 30K bytes 
and 45K bytes are due to the coarse choices of me 

and rrifc in Table 1. We expect that they can be 
eliminated with a finer granularity of message divi- 
sions. 

Comparing the bandwidth of the different ap- 
proaches in Figures 5(c) and 5(d), we see that the 
bandwidth of the multiplexing approach follows the 
best of Ethernet and Fibre Channel as the message 
size increases. The bandwidth of the aggregated vir- 
tual network is almost the sum of the bandwidth of 
the two networks individually for large message sizes. 
The slightly reduced bandwidth of this approach is 
due to the segmentation and reassembly overhead re- 
quired for the aggregation. These measurements show 
that, by multiplexing between the two networks based 
simply on message size, we can obtain a network la- 
tency that follows the best of both. Furthermore, we 
can aggregate the two networks into a single virtual 
network to increase the total bandwidth available to 
an application when sending large messages. 

Application-Level 
Performance 

Communication 

The performance characterizations shown in the 
previous section demonstrate that multiplexing and 
aggregating heterogeneous networks can reduce the 
overall communication latency when sending messages 
of a specific size.  However, it is important to deter- 
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Message size 
(m bytes) 

Message size sent on 
Ethernet (me) Fibre Channel (m/c) 

0 <          m           < 900 
900 <          m           < 1800 

1800 <          m          < 4000 
4000 <          m          < 6000 
6000 <          m           < 15000 

15000 <          m          < 25000 
25000 <          m           < 40000 
40000 <          m          < 60000 
60000 <          m 

m 
m-1000 

900 
1200 
1500 
2400 
3900 
5500 
8500 

0 
1000 

m-900 
m-1200 
m-1500 
m-2400 
m-3900 
m-5500 
m-8500 

Table 1: Empirically-derived values used to determine the size of the submessages to be sent on the Ethernet 
(me) and the Fibre Channel (m/c) when aggregating the networks into a single virtual network. Note that 
m = me + rrifc. 

-»-Em. 

-*-F.C. 

-fi-Mux. 

-X-Agg. 

100O200O30004O0050006000700080009000     10000 

Bylei 

(a) Latency (b) Latency 

(c) Bandwidth (d) Bandwidth 

Figure 5: Latency and bandwidth measurements of multiplexing and aggregation. The left figure is a magnification 
of the right figure in the range from 0 - 10,000 bytes. 
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Sample code Class A Class B 

CG Conjugate 1400 14000 75000 
IS Integer Sort 216x211 223x219 225x22i 

MG Multigrid 323, 4 iters 2563, 4 iters 2563, 20 iters 
BT BT Simulated CFD application 12x12x12 64x64x64 102x102x102 
LU LU Simulated CFD application 12x12x12 64x64x64 102x102x102 

Table 2: Problem sizes for the NAS parallel benchmarks. 

mine how these approaches can reduce the total com- 
munication time at the application level. To investi- 
gate the application-level performance of these latency 
reduction strategies, we first characterize the program 
communication patterns of several of the NAS bench- 
marks [1]. We use these patterns to generate a syn- 
thetic benchmark program in which we can vary the 
mix of message sizes. We then use this synthetic 
benchmark to determine how the total communication 
time is affected by our multiplexing and aggregating 
strategies. 

4.1    Characteristics of Program Commu- 
nication Patterns 

This subsection characterizes the communication 
patterns of several of the NAS benchmarks [1] run- 
ning on the four-node SGI Challenge system shown in 
Figure 2. The results provide interesting insights into 
communication patterns of parallel applications. We 
chose five of the benchmarks that represent a range of 
communication characteristics of highly parallel ap- 
plications. Three of them, CG, IS, and MG, are rel- 
atively compact kernel benchmarks that emphasize 
some particular type of computation. The remaining 
two benchmarks, BT and LU, are computational fluid 
dynamics applications that have more data movement 
than the kernel benchmarks. There are one sample 
and two standard problem sizes for the NAS Parallel 
Benchmarks, as shown in Table  2. 

In the CG benchmark, a conjugate gradient method 
is used to compute an approximation to the small- 
est eigenvalue of a large, sparse, symmetric, positive- 
definite matrix. This kernel tests irregular long- 
distance communication, employing unstructured ma- 
trix vector multiplication. The IS benchmark is a 
large integer sort with no floating point arithmetic. It 
tests both integer computation speed and communica- 
tion performance. The MG benchmark is a simplified 
multigrid kernel with a constant coefficient. It solves a 
3-D Poisson partial differential equation. This kernel 

is a good test of both short- and long-distance data 
communication. The LU code is the lower-upper di- 
agonal benchmark. It does not perform an LU factor- 
ization, but instead employs a symmetric successive 
over-relaxation numerical scheme to solve a regular, 
sparse, block 5x5 lower and upper triangular system. 
The block tridiagonal benchmark, BT, solves multi- 
ple independent systems of non-diagonally dominant, 
block tridiagonal equations with a 5x5 block size. 

We extend PVM versions of the five NAS bench- 
marks by inserting monitor operations at points in 
the programs where message-related activities are ex- 
ecuted. This instrumentation allowed us to observe 
the programs' communication patterns. We tested 
the Class A problem sizes for the CG, IS, and MG 
codes, and the Sample problem sizes for the LU and 
BT codes. However, we believe our results below are 
somewhat independent of the problem size. For the 
optional setup of PVM [3], we used the default mode, 
that is, normal routing using UDP connections, reg- 
ular pvmsend(), pvm-receive(), and pvm-initsend() 
commands, and the default XDR (external Data Rep- 
resentation) encoding, which is an Internet standard 
data encoding. 

Figure 6 shows the distribution of processors that 
are message destinations. In the CG, IS, and MG 
codes, all of the processors perform the same types of 
tasks. In the BT and LU codes, however, the master 
processor plays the role of a central controller while 
the slave processors perform the actual work. From 
the viewpoint of the individual processors, the desti- 
nation distribution does not appear to have any spe- 
cial or characteristic pattern. For example, in the CG 
program, processors 0 and 3 send messages to all of 
the other processors, while processor 2 sends only to 
processor 0. Since the distribution of message destina- 
tions has a spatial locality which favors nearest neigh- 
bors, the destination distribution strongly depends on 
the algorithm and the network topology[8]. However, 
we can see that the overall destination distribution is 

89 



itoPi        ntoP2        ntoP3 

I MT 111 
JBLAJII..J-,)JBI I ,1  L-IJBLJ-JK. 

I 

D.      H? 

CG IS MG LU 

Figure 6: Distribution of processors that are the destinations of messages. 
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Figure 7: Relative times of communication events for the IS and MG benchmarks. 
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uniformly distributed among the processors. 

Figure 7 shows the occurences in time of commu- 
nication events for two of the test benchmarks, IS and 
MG. The X axis represents elapsed time from the be- 
ginning of the program execution and the Y axis shows 
the message size of the corresponding communication 
event. Note that the Y axis is the log of the actual 
message size. In both applications, all of the proces- 
sors show similar communication patterns, except at 
the beginning of the execution. Specifically, each pro- 
cessor tends to alternate computation and communi- 
cation at the same time so that they all are likely to 
communicate at the same time. As a result, commu- 
nication congestion is likely to occur among the pro- 
cessors even when the system is dedicated to a single 
application. We also saw similar results from the other 

three benchmarks. 

Figure 8 shows the distribution of message sizes for 
all five applications. It is clear from the figure that, 
except for the MG program, all of the messages within 
an application are one of two distinct sizes. In partic- 
ular, some fraction of the messages within an appli- 
cation tend to be very large while the remainder tend 
to be very small. For instance, approximately 70% of 
the messages in the CG program are 8 bytes in length 
while the remainder are around 56Ä" bytes. Similarly, 
approximately 40% of the messages in the BT program 
are 480 bytes, while the remaining 60% are around 
2K bytes. Similar distributions were also found for 
the LU and IS programs. Previous researchers' mea- 
surements of CAD and numeric applications [5] and 
scientific applications [2] have shown similar bimodal 
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Figure 8: The cumulative distribution of message sizes. 

distributions. 

■ M WIIM ill "I 

-eg 

-is 

-mg 

-bt 

-lu 

1000 1500 2000 

Interarrival time (msec) 

Figure 9: The percentage of messages with a given interarrival time. 

Figure 9 shows the distribution of the time inter- 
vals between two successive communication events in 
one processor. As is often assumed in analytic stud- 
ies of network performance [7], these interarrival times 
tend to look exponentially distributed. However, we 
can see multiple peaks in the IS and CG benchmarks. 
These multiple peaks make it difficult to model the 
distributions with a simple exponential distribution 
function. Consequently, we need to use a combination 
of several distribution functions, or multi-stage prob- 
ability density functions [5], to model the interarrival 
times more accurately. 

4.2    Communication    Performance    with 
the Synthetic Benchmark 

To estimate the improvement in communication 
performance that could be obtained at the applica- 
tion level by multiplexing and aggregating the two 
networks, we develop a synthetic benchmark to exe- 
cute on the testbed system. This synthetic benchmark 
is based on the communication patterns observed in 
the NAS benchmarks and is parameterized so that we 
may simulate the communication patterns of a variety 
of different application programs. As shown in Fig- 
ure 10, the benchmark configures the system into one 
master processor and p — 1 slave processors. For each 
communication event, the master processor generates 
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Figure 10: Synthetic benchmark modeling with p=4 processing nodes. 

several random numbers. The first of these numbers 
determines the destination processor number, x. This 
value is uniformly distributed from 1 to p — 1 so that 
each slave processor has an equal chance of becoming 
the destination of the current message. The second 
random number follows a Boolean distribution with 
probability b to select one of two Poisson distribu- 
tions, one with a mean value of l\ and the other with 
a mean value of l2. The third random number then is 
used to generate a random value that follows the Pois- 
son distribution selected by b. This value is used as 
the size of the message that is actually sent, m. The 
final random number, g, determines the computation 
time until the next communication event. It also is 
exponentially distributed. 

After generating these random values, the m-byte 
message is sent to the destination processor using the 
chosen communication strategy. The receiving proces- 
sor responds to the sending processor with a four-byte 
acknowledgement message after it has completely re- 
ceived the message. The master (i.e. sending) pro- 
cessor then idles for a random amount of time, g, to 
simulate the processors' computation. In these experi- 
ments, we set the value of g to zero since the communi- 
cation behavior is the main focus of this study. Thus, 
when this synthetic benchmark is executed, the master 
processor will send an m-byte message to a randomly 
selected slave processor. The size of the message, m, 
will follow a Poisson distribution such that (b * 100)% 
of the time the mean will be h and the remainder of 
the time the mean will be l2. These steps are repeated 
N = 10,000 times for each run of the benchmark pro- 

gram. A pseudocode description of the benchmark is 
shown in Figure  11. 

By appropriately choosing the above parameters, 
we can approximate the communication patterns of 
several different types of benchmarks. Table 3 shows 
the parameters actually used in our simulations. The 
Type A parameters, for instance, simulate an appli- 
cation program in which 50 percent (i.e. b = 0.5) of 
its messages are Poisson distributed with a mean of 
h = 8 bytes, and 50 percent of its messages are Pois- 
son distributed with a mean of h = IK bytes. 

Figure 12 shows the results of executing this syn- 
thetic benchmark with the different parameter values 
shown in Table 3 on the same SGI test system used for 
the previous experiments. Each data point is the aver- 
age of 3 different runs of the benchmark with different 
random seed values. Since we used a dedicated system 
with no other users when executing the benchmark, 
and since the loop count, N, was large, the variance in 
execution times for a specific parameter set was quite 
small. The different communication network options 
are: 1) Ethernet (Etn) alone, 2) Fibre Channel (FC) 
alone, 3) simple multiplexing (Mux) between Ether- 
net and Fibre Channel, 4) aggregating (Agg) Ethernet 
and Fibre Channel into a single virtual network, or 5) 
the combination of both multiplexing and aggregating 
(Mux-Agg). The raw execution times are normalized 
to the execution time of the benchmark when using 
only the Ethernet connection. 

Figure 12 shows that the simple multiplexing 
scheme is better than both Ethernet alone and Fibre 
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Application 
Type 

small message large message 
mean l\ = 8 byte mean l2 = IK byte mean l2 = 20K byte 

A 50% 50% - 
B 10% 90% - 
C 90% 10% - 
D 50% - 50% 
E 10% - 90% 
F 90% - 10% 

Table 3: Parameter values used in the synthetic benchmark. 

Master Slave 

{ 
Initial setup 
Start TIMER 
for(i=0;i<N;i++) 

{ 
Message generation 

Destination: Uniform, x 
Size: Poisson, m { 

with P(mean=/j) = b; 
P(mean=;j) = I-b 

Multiplexing/Aggregation 
m byte 

Initial setup 
while(l) 

{ 

Idle time: Exponential, g 

} 
Stop TIMER 

) 

4 byte 
} 

} 

Figure 11: Synthetic benchmark. 

Channel alone for all types of communication patterns, 
except type E. This set of parameters simulates a pro- 
gram with mostly 20K byte messages. When an appli- 
cation consists primarily of large messages, however, 
there is little benefit to multiplexing. In fact, in this 
case, the overhead of multiplexing can cause its perfor- 
mance to be worse than no multiplexing. Multiplexing 
also shows little benefit for the type B communication 
pattern since it too has mostly large messages. 

The aggregation scheme always outperforms both 
Ethernet and Fibre Channel used alone. However, 
it is worse than simple multiplexing for the type C 
and F communication patterns. Both of these bench- 
marks consist mainly of 8 byte messages with a rel- 
atively small fraction (10%) of large messages. Since 
the overhead of aggregation is too high to be of any 
benefit for small messages, simple multiplexing is the 
best solution for these two parameter sets. 

For the combination of multiplexing and aggrega- 
tion (Mux-Agg), the Ethernet is chosen for messages 
less than 900 bytes, the Fibre Channel is chosen for 
messages greater than 900 bytes, but less than 9,500 
bytes, and the aggregation of both networks is used 
for messages larger than 9,500 bytes. Since the type 
A and B parameter sets have essentially no messages 
larger than 2K bytes, aggregation is almost never used 
with this combined approach. However, these appli- 
cations do get penalized by the additional overhead of 
the combined approach. As a result, the combination 
of multiplexing and aggregation is worse than aggrega- 
tion alone for these parameter sets. Almost all of the 
messages in type C are small with only 10% having a 
mean of 2K bytes, so that the combined approach al- 
most always selects the Ethernet with no aggregating. 
Since aggregating alone has higher overhead than the 
combined approach for small messages, the combined 
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Type A Type B Type C Type D Type E Type F 

Figure 12: Communication time comparisons for the synthetic benchmark. 

approach actually outperforms aggregating alone for 
this parameter set. For the remaining three param- 
eter sets, multiplexing between Ethernet and Fibre 
Channel for the small messages ensures that they are 
always sent on the best of the two available networks. 
At the same time, the large messages (mean message 
size = 20K bytes) take advantage of the benefit of ag- 
gregating the two networks. The net result is that the 
combined approach can provide the best performance 
for applications with a high fraction of large messages. 

5    Conclusion 

The importance of reducing communication over- 
head in network computing cannot be overempha- 
sized since the communication delays in standardized 
interconnection networks can often become the per- 
formance bottleneck in parallel application programs. 
Furthermore, the different types of messages used in 
parallel application programs, such as short control 
information or bulk data transfers, have affinities for 
different types of networks. For instance, short mes- 
sages, such as synchronization, typically require very 
low latency, while larger messages need high band- 
width, although these larger messages often can toler- 
ate higher latencies. 

In this study, we take advantage of these differ- 
ent network and message characteristics to reduce the 
overall communication delay experienced by parallel 
application programs by exploiting multiple heteroge- 
neous networks between the same processing nodes. 
Using a cluster of Silicon Graphics Challenge L multi- 
processors interconnected with both Ethernet and Fi- 
bre Channel networks, we demonstrated how simple 
multiplexing can select the best network for each mes- 

sage based on the message size. We also presented an 
aggregation scheme that combines both networks into 
a single virtual network by dividing a single message 
into two submessages that are sent on each network 
simultaneously. Measurements of communication la- 
tency versus message size showed that the overhead 
of the simple multiplexing approach is low enough 
to allow it to track the performance of the network 
with the lowest latency. The need for message seg- 
mentation and reassembly causes the overhead of the 
aggregation approach to be significantly higher than 
the simple multiplexing approach. For messages larger 
than about 9,500 bytes, however, this aggregation re- 
duces the overall latency to be less than that of using 
either network alone, and less than multiplexing be- 
tween them. 

Finally, we used a synthetic benchmark to study the 
effectiveness of these approaches in reducing the com- 
munication latency from the perspective of the appli- 
cation program. We modeled the synthetic communi- 
cation patterns after the communication patterns we 
measured in the NAS parallel benchmarks. Our ex- 
perimental measurements show that a combination of 
aggregation and multiplexing produces the best per- 
formance for applications that have a mix of very large 
messages and small messages. For applications dom- 
inated by small messages, however, the simple mul- 
tiplexing approach is best due to the relatively high 
overhead of aggregating. Our future work will more 
precisely evaluate the trade-offs in these various ap- 
proaches, and will develop approaches for further re- 
ducing their overhead. We also plan to investigate 
characteristics other than the message size for multi- 
plexing between networks, and to develop approaches 
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for adjusting to dynamically varying network loads. 
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Abstract 
Heterogeneous computing covers a great variety of 

situations. This study focuses on a particular application 
domain (iterative automatic target recognition tasks) and 
an associated specific class of dedicated heterogeneous 
hardware platforms. The contribution of this paper is 
that, for the computational environment considered, it 
presents a methodology for real-time on-line input-data 
dependent remappings of the application subtasks to the 
processors in the heterogeneous hardware platform using 
previously stored off-line statically determined mappings. 
That is, the operating system will be able to decide during 
the execution of the application whether or not to perform 
a remapping based on information generated by the 
application from its input data. If the decision is to 
remap, the operating system will be able to select a previ- 
ously derived and stored mapping that is appropriate for 
the given state of the application (e.g., the number of 
objects it is currently tracking). 
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1: Introduction 

Heterogeneous computing (HC) covers a great 
variety of situations (e.g., see [14], [19], [20]). This study 
focuses on a particular application domain (iterative 
automatic target recognition (ATR) tasks) and an associ- 
ated specific class of dedicated heterogeneous hardware 
platforms. The contribution of this paper is that, for the 
computational environment considered, it presents a 
methodology for real-time on-line input-data dependent 
remapping of the application subtasks to the processors in 
the heterogeneous hardware platform using a previously 
stored off-line statically determined mapping (i.e., a 
matching of application subtasks to processors and a 
scheduling for the execution order of these subtasks). 
That is, the operating system will be able to decide during 
the execution of the application whether or not to perform 
a remapping based on information generated by the 
application from its input data. If the decision is to 
remap, the operating system will be able to select a previ- 
ously derived and stored mapping that is appropriate for 
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the given state of the application (e.g., the number of 
objects it is currently tracking). 

The high-level operating system approach presented 
here for enabling the on-line use of off-line mappings is 
called the IOS (Intelligent Operating System). The IOS 
conceptual design, on-line components, and off-line com- 
ponents are depicted in Figures 1, 2, and 3, respectively. 
Consider the conceptual design (Figure 1). The ATR 
Kernel makes decisions on how a given ATR application 
task should be accomplished, including determining the 
partial ordering of subtasks and which algorithms should 
be used to accomplish each subtask. The HC Kernel 
decides how the partially ordered algorithmic suggestions 
should be implemented and mapped onto the heterogene- 
ous parallel platform. Also, the HC Kernel interacts with 
the Basic Kernel to execute the application and monitor 
its execution. Thus, the ATR Kernel deals with 
application issues, while the HC Kernel deals with imple- 
mentation issues. Information from the Algorithm 
Database and the Knowledge Base is used to support the 
ATR and HC Kernels. This design has its roots in the 
high-level model presented in [3] for automatic dynamic 
processor allocation in a partitionable parallel machine 
with homogeneous processors. 

This paper concentrates on the operation of the HC 
Kernel; the other components will be discussed only to 
the extent needed for describing the HC Kernel (addi- 
tional information on the other components is in [2]). In 
particular, this paper focuses on (1) the application and 
hardware platform characteristics that are needed to 
enable the use of the HC Kernel, (2) the overall IOS 
structure that will include the HC Kernel, (3) the tech- 
niques that comprise the HC Kernel, and (4) how to col- 
lect the information needed for the HC Kernel to operate. 
The IOS has not been implemented; such an implementa- 
tion is a major undertaking and outside the scope of this 
paper, which is the design concepts for the HC Kernel. 

The IOS differs from other real-time HC mapping 
techniques in that it allows on-line real-time use of off- 
line precomputed mappings. This is significant because 
off-line heuristics can produce better mappings because 
they can have much longer execution times to search for a 
good solution than what is practical for an on-line heuris- 
tic. Thus, the mapping quality of an off-line time- 
consuming heuristic can be approached at real-time 
speeds. 

The IOS ideas can also be used for other application 
domains and classes of hardware platforms whose 
characteristics are similar to those of the iterative ATR 
applications and platforms considered here. Examples of 
other such application domains are sensor-based robotics, 
intelligent vehicle highway systems, air traffic control, 

nuclear facility maintenance, weather prediction, intruder 
detection, and manufacturing inspection. 

The paper is organized as follows. Section 2 
describes the application domain and Section 3 the 
heterogeneous hardware platform. Overviews of the off- 
line and on-line components of the IOS are presented in 
Sections 4 and 5, respectively. More information about 
the HC Kernel off-line and on-line components are pro- 
vided in Sections 6 and 7, respectively. 

2: Application domain 

Simply stated, an ATR system takes a set of images 
from a group of sensors and produces a description of the 
scene. The various types of processing required in an 
ATR system can be broadly classified into three groups: 
numeric computation, quasi-symbolic computation (e.g., 
where numeric and symbolic types of operations are used 
to describe surfaces and shapes of objects in the scene), 
and symbolic computation (e.g., used to produce the 
scene description). Heterogeneous parallel architectures 
are ideal computing platforms for efficiently handling 
computational tasks with such diverse requirements. 

A key technical issue that must be addressed to 
exploit the inherent potential of heterogeneous parallel 
computing systems to efficiently implement ATR 
applications is the development of a high-level operating 
system that can fully use the architectural flexibility of 
such a system. Such a high-level operating system must 
be able to assign each ATR application subtask to the pro- 
cessors where it is best suited for execution. Often, sub- 
tasks can execute concurrently, sharing resources. 
Because the execution time of application subtasks in an 
ATR system is highly input data dependent (e.g., number 
of currently located objects), this matching and schedul- 
ing of application subtasks to processors must be per- 
formed dynamically at run time. 

This work is being developed for a class of ATR 
applications each of which can be modeled as an iterative 
execution of a set of partially ordered subtasks. Each 
ATR application in this class is a production job that is 
executed repeatedly. Thus, it is worthwhile to invest off- 
line time in preparing an effective mapping of the 
application onto the hardware platform used to execute it. 
The ATA (automatic target acquisition) system described 
in [4] is an example of such an iterative ATR application. 

Each application task will be an instantiation of a 
DDG (data dependency graph), whose nodes are the sub- 
tasks that need to be executed to perform the application 
and whose arcs are the the data dependencies between 
subtasks. The expected number of subtasks is ten to 50. 
The DDG will be structured as a directed acyclic graph 
(DAG). The IOS is being designed for applications that 
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will iteratively execute such a DDG. Note that while the 
subtasks' dependencies are represented as a DAG, sub- 
tasks themselves may contain loops. 

For the initial iteration through the set of subtasks, 
the IOS will use information about the processing 
environment in its selection of algorithms for the sub- 
tasks, and their associated implementations. As part of 
this, the IOS will decide how to assign processing 
resources (processors) to the subtasks. 

After each execution iteration through the set of sub- 
tasks, the values of certain dynamic parameters of the 
application may change, such as the number of objects 
detected in the current frame of a real-time image stream 
being processed. It is expected that the values of these 
parameters will change slowly. After all subtasks have 
completed execution for a given iteration, and before the 
next iteration begins, the latest values of these dynamic 
parameters will be reported to the on-line HC Kernel. The 
HC Kernel will use the most recent values of such 
dynamic parameters to estimate if it is worthwhile to 
reconfigure the assignment of processing resources to 
subtasks to reduce execution time of the next iteration. If 
it is desirable, the HC Kernel will select a new assignment 
to use for the next execution iteration through the sub- 
tasks. If not, the same assignment will continue to be 
used. 

3: Heterogeneous hardware platform 

The type of target hardware platforms considered for 
this study are driven by the expected needs of the kinds of 
ATR applications that are of interest to the U.S. Army 
Research Laboratory. Thus, for the intended application 
environment of the IOS, it is assumed that there will be 
up to four different types of processors, and up to a total 
of 64 processors (of all types combined). For example, 
two types may be SHARC processors and PowerPCs. 
These processors will comprise the heterogeneous parallel 
architecture onto which application tasks will be mapped. 
A system of this size should provide the real-time com- 
puting power needed for the intended application domain. 
The IOS approach is appropriate for larger HC platforms 
as well. 

A small-scale example of the type of hardware plat- 
form being considering is the one described in [5]. This 
system was developed by the Army Research Laboratory 
for a real-time ATR relational template matching algo- 
rithm. Another example, although outdated, is [1], which 
describes a heterogeneous hardware platform designed to 
perform ATR research and prototyping. 

All the processors of all types will have communica- 
tion paths to one another. Communications among pro- 
cessors of the same type is assumed to be symmetric in 

the sense that the conflict-free time for any pair of proces- 
sors to communicate is the same. For example, a Mercury 
daughter board can be populated with six SHARC proces- 
sors that physically share a DRAM. To connect proces- 
sors of different types, a VME bus can be used to provide 
communications among different collections of proces- 
sors. In addition, the hardware platform will include (1) a 
workstation, for off-line IOS operations to develop an 
application implementation and for use as the Application 
User interface, and (2) a Host Processor, which will 
monitor the application implementation during its execu- 
tion and implement the on-line HC Kernel. 

For simplicity, it is assumed that if an implementa- 
tion of a given subtask uses multiple processors, all pro- 
cessors will be of the same type. Given this and the sym- 
metry property of the inter-processor communications 
among processors of the same type, the expected execu- 
tion time of a particular multiprocessor implementation of 
a subtask is independent of which fixed-size subset of the 
processors of a given type are assigned to execute the 
subtask. 

The IOS design should be capable of working with 
any hardware platform of the type described above. A 
given hardware platform may be used for many different 
ATR applications. It is assumed that when a given ATR 
application is executing on a platform, that platform is 
dedicated to that application. 

4: Overview of IOS off-line components 

Figure 3 shows the off-line components of the IOS. 
The Knowledge Base contains a collection of DDGs. The 
Algorithm Database contains information about algo- 
rithms that can be used to perform the subtasks in the 
DDGs. The DDGs and algorithm information is supplied 
by the application domain expert, the Application 
Developer. The Application Developer, who is responsi- 
ble for developing the application software, will typically 
be a different person (or people) from the Application 
User(s), who may know nothing about software develop- 
ment and may just use the ATR system as a prepackaged 
tool. An analogy to this in the personal computing field is 
the programmer who develops a software package for 
graphics versus the package user who draws figures with 
the tool without any knowledge of the details of the actual 
code in the software package. 

To design a particular application, the Application 
Developer first selects a DDG. (The Application 
Developer can also specify a particular set of DDGs that 
can execute simultaneously and be treated as a single 
DDG [2].) Each DDG has associated with it a list of 
Application Characteristic and Input Data Characteristic 
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names, whose values must be filled in when the DDG is 
instantiated for a given application and associated 
environment. (The SmartNet project uses a similar set of 
characteristics called "Compute Characteristics," whose 
values when an application is invoked are called the 
"Compute Characteristics Operating Point" [9].) Each 
subtask in the DDG is assigned one or more algorithms 
whose image processing performance for that subtask and 
its associated Application and Input Data Characteristics 
are above some threshold (note that execution time is not 
considered by the ATR Kernel). Performing this assign- 
ment transforms a DDG into an ODDG (over-instantiated 
DDG). The ODDG is constructed by the ATR Kernel 
ODDG Generator. 

Each of these sets of Application and Input Data 
Characteristics can be divided into static and dynamic 
parameters. Static parameters are those Input Data 
Characteristics, such as image size, and Application 
Characteristics, such as type of object of interest (e.g., 
tank), that will not change during the execution of the 
application task. Dynamic parameters, in contrast, are 
those Input Data Characteristics, such as amount of 
clutter, and Application Characteristics, such as number 
of located objects to be identified, that will change during 
run time and can be computed by the application as it 
executes. When an Application Developer instantiates a 
DDG to implement an application in a given environment, 
the values for the static characteristics are known and pro- 
vided by the Application Developer. For the dynamic 
characteristics, the Application Developer is expected to 
provide ranges for these values (i.e., the minimum and 
maximum value each given dynamic parameter can 
have). It is the job of the Scenario Generator to use these 
ranges to derive representative values for the dynamic 
parameters. 

The Scenario Generator subdivides the range of each 
dynamic parameter into C equal sized intervals (i.e., each 
dynamic parameter range is transformed into a set of C 
choices of representative values for that parameter, and 
these C choices are equally distributed across the range). 
Assume there are D dynamic parameters. Each set of D 
values for these D dynamic parameters, one per parame- 
ter, is called a scenario. The number of different 
scenarios that can be generated is S = CD. 

For a given application, the ATR Kernel ODDG 
Generator creates a distinct ODDG for each scenario. 
Thus, for a single application and associated static 
environment, one DDG is selected by the Application 
Developer, which is the basis for S ODDGs generated by 
the ATR Kernel ODDG Generator, one for each scenario. 
For each ODDG, only one MDDG (mapped DDG) is gen- 
erated by the HC Kernel MDDG Generator. The MDDG 

specifies how the corresponding ODDG will be imple- 
mented and mapped onto the HC platform, as discussed 
further in later sections. 

Therefore, the number of MDDGs generated by the 
HC Kernel MDDG Generator for a given application and 
its associated static environment is S. These are the S 
MDDGs that will compose the MDDG Table constructed 
by the MDDG Table Builder for that application and 
static environment (the HC Kernel MDDG Generator 
passes the MDDGs to the MDDG Table Builder). The 
MDDG Table will be indexed as a D-dimensional array, 
where each dimension is of size C, i.e., an MDDG Table 
entry will be accessed by a list of D indices (correspond- 
ing to a scenario), where the i-th index corresponds to an 
allowable representative value for the i-th dynamic 
parameter. MDDG Tables are stored in the Knowledge 
Base, as are the associated Application Menus con- 
structed by the Application Menu Builder. 

A question that arises is what the value of S should 
be. The larger S is, the closer a given scenario in the 
MDDG Table may match a given set of actual dynamic 
parameter values calculated during execution of the 
application. It is expected that the closer this match is, 
the better the mapping specified by the corresponding 
MDDG Table entry will be. However, the larger S is, the 
larger the MDDG Table will be and the larger the number 
of ODDGs and MDDGs for a given application and 
environment will be, resulting in longer off-line execution 
time for the ATR Kernel ODDG Generator and HC 
Kernel MDDG Generator. Thus, the IOS implementor 
will need to select a value for S that balances these factors 
based on experience with applications in the intended 
operating domain. 

A variation on the scheme described above (where 
each dynamic parameter is divided into C equidistant 
choices) is to allow the Application Developer to specify 
the number of choices for a given dynamic parameter and 
do this for all or some subset of the dynamic parameters. 
Additionally, the Application Developer may wish to 
specify the exact choices of representative values to use 
for one or more of the dynamic parameters. To imple- 
ment such variations, the Scenario Generator would need 
to be designed to interact with the Application Developer 
to enforce the given value selected for S. 

Three items of information about the hardware plat- 
form will be needed by the HC Kernel MDDG Generator: 
(1) algorithm implementation execution time, (2) number 
of each type of processor available, and (3) inter- 
processor communication time. The HC Kernel MDDG 
Generator uses this information when it applies the 
heuristic for determining an effective assignment of sub- 
task implementations to processors. 
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The Algorithm Database will include one or more 
implementations of each algorithm (e.g., one for each 
processor type). The Algorithm Database must also con- 
tain the expected execution time of each algorithm imple- 
mentation, typically specified as a function of type and 
number of processors assigned, interprocessor communi- 
cation time, and certain static and dynamic Input Data and 
Application Characteristics. This is an expected time, 
rather than a definite time, because it may vary depending 
on the actual values of the input data being processed. 
This expected execution time information must be pro- 
vided by the Application Developer, who also supplies 
the code for each implementation of a given algorithm. It 
is expected that algorithm implementations will be written 
using the number of processors (of a given type) as an 
input parameter whenever possible. The assumption of 
the availability of expected implementation execution 
time for each type of processor (or set of processors of the 
same type) is typically made for the current state of the 
art in HC systems (e.g., [8], [13], [17], [21]). The 
Application Developer can determine this information 
empirically. The HC Kernel MDDG Generator needs to 
use this information (in conjunction with the other infor- 
mation below) to determine the expected total application 
task execution time. 

The second item needed is the total number and type 
of the processors in the platform. The HC Kernel MDDG 
Generator needs this to know how many processors of 
each type it has available to assign. This is specified by 
the Platform Architect, who is responsible for the 
hardware design of the system. Typically, this person (or 
people) is distinct from the Application Developer(s) and 
Application User(s), although it is assumed that the Plat- 
form Architect(s) will consult with the Application 
Developer(s). Referring to the earlier analogy with per- 
sonal computing, the people responsible for designing the 
system hardware configuration will typically not be the 
same people who develop the graphics package. 

The last item needed is a communication matrix 
indicating the time it takes for each processor in the plat- 
form to communicate with every other processor in the 
platform. This is also specified by the Platform Architect. 
Entry (i,j) in this matrix is the information needed to cal- 
culate the conflict-free time for processor i to send data to 
processor j. The communication time for a given pair of 
processors typically will have two components: a fixed 
latency time for the first byte to arrive, and a variable time 
that depends on the length of the message being transmit- 
ted (that is based on the bandwidth of the communication 
path). This type of matrix is used by other researchers in 
HC (e.g., [13], [17], [21]). This matrix is needed for the 
HC Kernel MDDG Generator to determine the expected 
inter-subtask communication times for possible mappings 

of subtasks onto the platform. 
The Platform Architect can also specify faulty varia- 

tions of a given platform as additional separate platforms. 
By doing this, the HC Kernel MDDG Generator will con- 
struct mappings that can be accessed and used in real time 
should a potential hardware fault occur. Each MDDG 
Table will correspond to a given platform variation and a 
given application with its associated static environment. 

5: Overview of IOS on-line components 

Figure 2 shows the on-line components of the IOS. 
Once in the field, the Application User interacts with the 
ATR Kernel User Interface, including the Application 
Menus. The Application Menus will be used on-line by 
the Application User to select a particular initial MDDG 
to use to invoke an application (with an associated set of 
Application User specified values for static parameters 
and initial choices of allowable representative dynamic 
parameters). That MDDG is passed to the HC Kernel 
Monitor to use as the initial mapping. Then, as the 
application is executing, the HC Kernel Monitor monitors 
the run time values of the dynamic parameters at the end 
of each iteration through the underlying DDG to decide 
whether to continue with the current mapping, or to select 
and instantiate a new mapping (for the next iteration) 
from among the entries of the relevant MDDG Table 
(which were determined off-line). Thus, the off-line pro- 
cessing provides a set of predetermined mappings that the 
on-line processing can index in real time. 

6: HC Kernel MDDG Generator 

The HC Kernel MDDG Generator is the component 
of the off-line IOS (Figure 3) that is responsible for map- 
ping each ODDG onto the heterogeneous hardware plat- 
form creating a corresponding MDDG. Each MDDG is 
isomorphic to a given ODDG. For each node in the 
ODDG, there is a corresponding node in the MDDG that 
includes: (1) which implementation (stored in the Algo- 
rithm Database) will be used for one of the algorithms in 
that ODDG node; (2) pointers to the needed object code 
for that implementation; (3) any additional information 
needed for loading that implementation onto the hetero- 
geneous parallel system; (4) any needed inter-subtask 
(i.e., inter-node) communications between that given 
MDDG node and any other node in the MDDG (which 
will also enforce data-dependency constraints among the 
subtasks); and (5) the specific set of processors that will 
be used to execute that MDDG node. In addition to this 
node specific information, global MDDG information is 
stored with each MDDG, including: (1) the schedule for 
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the execution order of the MDDG nodes and inter-subtask 
data transfers; and (2) the expected execution time for one 
iteration through the MDDG for the scenario (values of 
dynamic parameters) that was specified along with (and is 
the basis of) the corresponding ODDG. The execution 
time information in (2) above is used by the HC Kernel 
Monitor when deciding whether to change the mapping 
(i.e., reconfigure), as discussed in the next section. As dis- 
cussed earlier, the HC Kernel MDDG Generator passes 
this MDDG to the MDDG Table Builder, to be stored as 
part of the MDDG Table for the given application and 
static environment characteristics. 

The Application Developer can also specify an esti- 
mate of the average overhead time to reconfigure the 
mapping of the given application (and associated static 
environment) on the hardware platform. This estimate 
will represent the time needed to remap the application 
during execution as a result of changes to the values of 
the dynamic parameters. The estimated average 
reconfiguration overhead time will be sent from the 
Application Developer to the HC Kernel MDDG Genera- 
tor through the IOS-App Builder software. If the 
Application Developer does not know how to estimate 
this value, the Application Developer can provide the 
IOS-App Builder with a set of scenarios that are expected 
to occur frequently, and the IOS-App Builder can use 
these to actually perform remappings among these 
scenarios to calculate an overhead estimate. Alterna- 
tively, the IOS-App Builder can generate a relatively 
small random subset of scenarios to use to calculate the 
estimate. Rather than derive a single estimated average 
overhead value, the reconfiguration time could be calcu- 
lated for each of the S2 possible old and new 
configuration pairs, and stored in the Knowledge Base; 
however, this would require an excessive amount of space 
to store and an excessive amount of off-line time to calcu- 
late, and, thus, it is not advisable. 

The HC Kernel MDDG Generator will pass the aver- 
age reconfiguration overhead time estimate to the MDDG 
Table Builder to be stored as part of the MDDG Table for 
this application. This overhead time will be used by the 
HC Kernel Monitor when deciding whether or not to per- 
form a reconfiguration. 

Thus, the HC Kernel MDDG Generator gets from 
the ATR Kernel ODDG Generator an ODDG and an 
associated scenario, it creates an MDDG containing the 
information specified above, and then passes this MDDG 
to the MDDG Table Builder that constructs a complete 
table and stores it in the Knowledge Base. The rest of this 
section will examine how the HC Kernel MDDG Genera- 
tor can derive the information that comprises the MDDG. 

In the HC field, the node specific items (1), (4), and 
(5) defined at the beginning of this section are part of the 

process of matching subtasks in a task graph to processors 
in the heterogeneous system. The node specific items (3) 
and (4) above are adaptations of standard operating sys- 
tem functions that will need to be implemented, but will 
not be discussed further here. The global MDDG item (1) 
is referred to as the scheduling component of a mapping 
in an HC environment. 

For general HC, deriving an optimal matching and 
scheduling is intractable (i.e., it is known to be an NP- 
complete problem that requires exponential execution 
time to perform an exhaustive search of the space of pos- 
sible solutions [7]). This is true even when all execution 
and communication times can be determined statically 
(i.e., they are not input-data dependent). For the intended 
application domain and hardware platforms, an exhaus- 
tive search will take time proportional to the number of 
processors in the hardware platform to the power of the 
number of subtasks in the application. Thus, a heuristic is 
used, as is common in the heterogeneous field [19], [20]. 

The structure of the HC Kernel MDDG Generator is 
such that any good heuristic could be employed. The 
heuristic that is used could be one that can be executed 
during run time, such as a levelized-min-time heuristic 
(e.g., [12]), or an off-line heuristic, such as a genetic algo- 
rithm (e.g., [17], [21], [25]). In general, an off-line 
heuristic can find a better mapping than an on-line run- 
time heuristic because its execution time can be orders of 
magnitude longer than that of the run-time algorithm. An 
example of this difference in quality of matchings is pro- 
vided in [25]. However, because of the longer execution 
times of genetic-algorithm-based heuristics, it would not 
be appropriate to execute a genetic algorithm while a 
real-time application is running in order to decide how to 
reconfigure resources based on the actual values of the 
dynamic parameters at the end of a given iteration 
through the underlying DDG. 

For this application domain, it is possible to use off- 
line precomputed mappings to reconfigure resources in 
real time. In particular, the IOS will: (1) allow the HC 
Kernel MDDG Generator to use genetic algorithms (or 
other off-line heuristics) to determine a matching and 
scheduling (i.e., MDDG) off-line for each scenario asso- 
ciated with a production ATR application task; (2) allow 
the user to select an initial MDDG when the application's 
execution is initiated (through the ATR Kernel User Inter- 
face); and (3) allow the HC Kernel Monitor to select a 
new MDDG during execution if desired based on the 
actual values of the dynamic parameters at the end of an 
iteration through the corresponding DDG. Item (1) above 
is the subject of this section, item (2) is part of the ATR 
Kernel User Interface (not the HC Kernel), and item (3) 
will be covered in the next section. 

While the HC Kernel MDDG Generator can incor- 
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porate any appropriate off-line mapping heuristic, to 
describe the design ideas involved in the HC Kernel it 
will be assumed that a genetic algorithm is used. In this 
environment, the genetic algorithm is a guided heuristic 
search through the space of possible matchings and 
schedulings (called solutions). The genetic algorithm in 
[25] was found to be very successful, and used an HC 
model that is quite compatible with the situation here. 
However, in [25] each subtask was assigned a single 
machine, so, for the type of platforms described in Sec- 
tion 3, the "chromosome" representing the matching will 
have to be adapted to allow for multiple processors of the 
same type to be assigned to a subtask. This genetic algo- 
rithm and a method for adapting it for use in the ATR 
environment are summarized in the appendix. 

The approach in [25] differs from other genetic algo- 
rithm approaches to matching and scheduling for hetero- 
geneous systems in the literature ([17], [21], [23]) in 
many ways. The most significant difference from [17] and 
[21] is that the [25] model of a heterogeneous system is 
more realistic (e.g., [21] assumes an unlimited number of 
machines). The main difference between [25] and [23] is 
that in [25] it is assumed that there is a given target 
hardware platform, whereas [23] selects processors to be 
included in the platform and uses processor cost as a co- 
metric. Thus, for the HC Kernel for the application and 
platform environments discussed in Sections 2 and 3, it is 
most appropriate to build on the [25] genetic approach. 

For the intended application domain here, the genetic 
algorithm needs the following information to create a 
matching and scheduling, i.e., to transform an ODDG into 
an MDDG: (1) the structure of the underlying DDG; (2) 
the expected execution time of each subtask on a set of 
processors (of the same type) assigned, as a function of 
the type of the processors and the number of processors; 
(3) the inter-subtask data transfers needed, in terms of 
formats and expected  sizes  of the data items to be 
transferred; (4) the expected time to send data from one 
processor to another as a function of the size of the data 
item to be transferred; and (5) the number of each type of 
processor that is in the hardware platform.  The genetic 
algorithm selects a subset of possible solutions and then 
evaluates them using the information in items (1) to (5) 
above.   The genetic algorithm uses the results of the 
evaluations of these possible solutions to generate a new 
set of possible solutions. This process iterates until some 
stopping criteria is met (e.g., no improvement in solution 
quality after a given fixed number of iterations within the 
genetic algorithm).   When the genetic algorithm stops 
iterating, the best solution found is used as the mapping 
for the MDDG. 

How the HC Kernel MDDG Generator gets each of 
the above information items is now considered. Much of 

the relevant information flow is depicted in Figure 3. 
The HC Kernel MDDG Generator gets the item (1) 

from the ODDG that is passed to it from the ATR Kernel 
ODDG Generator. The genetic algorithm uses a topologi- 
cal sort (i.e., a valid total ordering) of the subtasks in the 
ODDG to establish the order in which it evaluates the 
nodes of the ODDG. 

Item (2) is provided by the Application Developer 
and stored in the Algorithm Database. Information about 
static characteristics may be needed in some cases (e.g., 
the size of subtask input and output data blocks). The HC 
Kernel MDDG Generator will receive this from the IOS- 
App Builder. The expected execution times for subtasks 
calculated from this information are used by the genetic 
algorithm in its evaluation of possible solutions. 

Recall that each subtask of the underlying DDG 
corresponds to a node of the ODDG that may contain 
more than one possible algorithm to perform the subtask. 
For each of these algorithms, there is at least one imple- 
mentation that can execute on the hardware platform, and 
possibly more than one. When the genetic algorithm 
evaluates a given possible mapping solution (i.e., assign- 
ment of resources), it selects the implementation for the 
subtask that has the smallest expected execution time for 
the resources assigned to that subtask. If no implementa- 
tion is available for that assignment, that mapping is con- 
sidered invalid by the genetic algorithm and is discarded 
from the set of possible mappings. 

There may be cases when there are inter-subtask 
implementation interactions that must be considered when 
selecting the implementation for a given subtask. One 
example of how this can occur is when some subtask A 
sends a data block, e.g., an image, to a subtask B, and the 
image is stored using different formats for the two sub- 
tasks' implementations selected (e.g., assigning rectangu- 
lar subimages to processors in a multiprocessor imple- 
mentation for subtask A and row striping of subimages in 
a multiprocessor implementation for subtask B). When 
this occurs, overall implementations based on each data 
format are considered, and the one with the smallest exe- 
cution time is used as a basis for selecting the implemen- 
tations for subtasks A and B for this possible solution 
mapping. For the intended application domain, this 
should not cause a significant time penalty relative to the 
total execution time for the genetic algorithm to generate 
a mapping for the MDDG being constructed. 

An alternate approach for handling mismatched data 
block storage organizations is to allow each subtask 
implementation to use its own choice of organization and 
convert between organizations during run time. For the 
intended real-time ATR applications, this option will not 
be considered; however, if it becomes desirable to con- 
sider this option in the future, the genetic algorithm 
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framework of [25] will allow it to be included. 
Item (3) is provided by the Application Developer 

and stored in the Algorithm Database as part of the 
input/output parameter descriptions (see [2]). This inter- 
subtask data transfer information is used by the genetic 
algorithm (in conjunction with the information in item 
(4)) in its evaluation of possible solutions. 

Item (4) is provided by the Platform Architect and 
stored in the Knowledge Base as part of the hardware 
description. Together with the information from item (3), 
the genetic algorithm can evaluate the expected inter- 
subtask communication times for a given possible map- 
ping solution. 

Item (5) is provided by the Platform Architect and 
stored in the Knowledge Base as part of the hardware 
description. It is used by the genetic algorithm to know 
the upper bound on the number of each type of processor 
that can be assigned. It should be noted that in some 
cases the optimal mapping (in terms of total execution 
time for an iteration through the ODDG) may not use all 
available processors (i.e., in some cases the overhead 
involved in using all of the processors may make it better 
to use only a subset of the available processors, as dis- 
cussed in [18]). 

Thus, using all of this information, the genetic algo- 
rithm can create a matching and scheduling to be included 
in the MDDG for the given ODDG. As part of the 
evaluation for the potential solutions, the genetic algo- 
rithm computes the expected total execution time per 
iteration for each solution. For the mapping solution 
chosen, this expected total time is stored with the MDDG, 
as mentioned earlier. The completed MDDG is sent to 
the MDDG Table Builder. 

7: HC Kernel Monitor 

The HC Kernel Monitor is the on-line component of 
the IOS (Figure 2) responsible for (1) establishing the ini- 
tial mapping of the given application onto the hardware 
platform, and (2) monitoring the execution of the 
application and at the end of each iteration through the 
corresponding DDG deciding if and how the mapping of 
the application onto the hardware platform should be 
changed based on information about the actual values of 
the dynamic parameters. To establish the initial mapping, 
the HC Kernel Monitor uses the MDDG index (scenario) 
and associated MDDG Table identifier passed to it from 
the ATR Kernel User Interface. With this index and 
identifier, the HC Kernel Monitor can access from the 
appropriate MDDG Table in the Knowledge Base the 
MDDG entry selected by the Application User (see Fig- 
ure 2). The HC Kernel Monitor then passes the relevant 
information to the Basic Kernel (i.e., loading, configuring, 

and scheduling information). The Basic Kernel accesses 
the implementation code directly from the Algorithm 
Database using pointers provided with the loading infor- 
mation. The Basic Kernel can then begin execution of the 
application task. 

During execution of the application, the HC Kernel 
Monitor receives updated actual values of the dynamic 
parameters at the end of each iteration through the 
corresponding DDG. Specifically, after all subtasks' 
implementations have completed execution for a given 
iteration of the DDG corresponding to the application, 
and before the next iteration begins, the latest values of 
these dynamic parameters will be sent to the HC Kernel 
Monitor from the Basic Kernel. The HC Kernel Monitor 
will use the most recent values of these dynamic parame- 
ters to estimate if changing the matching and scheduling 
will reduce the expected execution time of the next itera- 
tion through the corresponding DDG. Thus, this decision 
is made in real time after all subtasks' implementations 
for the current iteration have finished executing and 
before any subtask implementations begin to execute for 
the next iteration. 

If it is desirable to change the mapping, then it is the 
responsibility of the HC Kernel Monitor to select a new 
matching and scheduling (i.e., a new MDDG entry from 
the given MDDG Table) to use for the next execution 
iteration through the corresponding DDG. If not, the 
same mapping will continue to be used. 

To determine if the current mapping should be 
changed, the HC Kernel Monitor performs the following 
sequence of steps. 
(1) For each dynamic parameter, the representative value 
included in the allowable choices for that parameter (as 
specified by the Scenario Generator) is found that is 
closest in absolute difference to the current actual value 
for that parameter. This is done for all D dynamic param- 
eters for this application. The resulting vector of D 
representative values is used as the approximation of the 
set of current actual dynamic parameters in terms of a 
precomputed scenario (MDDG Table index). Call this 
new MDDG Table index A. If MDDG Table index A is 
the same MDDG Table index as the one used for the 
current iteration, the next iteration of the application 
proceeds with the same mapping as the current iteration. 
If MDDG Table index A is not the same as the one used 
for the current iteration, then steps (2) through (5) are per- 
formed. 
(2) The HC Kernel Monitor then accesses the MDDG 
Table for this application, using A as the index. The 
expected execution time for an iteration through the 
MDDG Table entry corresponding to MDDG Table index 
A is used as an estimate of what the expected execution 
time will be for the actual dynamic parameters for the 
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next iteration of the application if the remapping occurs. 
Call this time TI- 
CS) The actual execution time of the last (current) iteration 
through the application's corresponding DDG is used as 
an estimate for the time to execute the next iteration with 
the current actual dynamic parameters with the current 
mapping (this is only an estimate because some or all of 
these parameter values may have been different at the 
beginning of the current iteration and changed sometime 
during the execution of this iteration). Call the actual 
execution time for the current iteration T2. 
(4) When making the decision to reconfigure the 
resources, in addition to comparing Tl and T2, the HC 
Kernel Monitor must also consider the time required to 
perform the reconfiguration (e.g., any code and data 
movements that the reconfiguration will require). The 
average reconfiguration overhead time estimate stored 
with the MDDG Table is used. Call this overhead time 
TO. (The HC Kernel Monitor could start with the esti- 
mate provided with the MDDG Table and then, for each 
time a reconfiguration is performed for this application, 
measure the actual overhead time and use this experiential 
information to modify the most recent estimate in some 
weighted way.) 
(5) If (Tl+TO)<T2, then the HC Kernel Montior 
instructs the Basic Kernel to change the mapping to the 
one corresponding to the MDDG Table entry for MDDG 
Table index A. 

Thus, the HC Kernel Monitor can use the actual 
values of dynamic parameters at the end of each execu- 
tion iteration of the application to make remapping deci- 
sions and select new mappings derived by a time- 
consuming off-line heuristic. As can be observed, the 
execution of the computationally simple steps (1) to (5) 
above can be done in real time, causing relatively negligi- 
ble overhead compared to the expected execution time of 
an iteration through an ATR DDG. 

The decisions made by the HC Kernel Monitor are 
based on heuristics and approximations. Thus, pathologi- 
cal cases could cause a bad decision to be made. In gen- 
eral, the ideas underlying the HC Kernel Monitor will 
lead to reduced overall application execution time for the 
environment under consideration. 

As an example of a possible pathological case that 
could occur, if T1=T2-/ and TO = r'+l, then 
(Tl + TO) > T2, and reconfiguration would not be done. 
If the values of the dynamic parameters do not change for 
the next 20 iterations, the execution time for those itera- 
tions will total approximately 20xT2. If reconfiguration 
had been done, the execution time for those iterations 
would total approximately 20xTl = 20*T2 - 20XJ. 

Because the values of dynamic parameters depend on the 

input data, the number of iterations that will occur with no 
changes to the dynamic parameter values can never be 
predicted with certainty. If situations such as the above 
do appear to occur frequently for a given application, it 
would be possible to instrument the HC Kernel Monitor 
to collect the relevant statistics and then develop and add 
special rules. For this example, a new rule may be that if 
after so many iterations with no change to the dynamic 
parameter values, if the relationship between TO and 
(T2-T1) is smaller than some threshold, perform the 
remapping. However, there is no guarantee that the 
dynamic parameter values will not change during the next 
iteration, so the decision to include such rules must be 
made carefully. 

Thus, by studying properties of the application 
domain, the IOS builder may decide to fine tune the HC 
Kernel Monitor in different ways. The HC Kernel design 
has the flexibility to allow such tuning. 

8: Summary 

This study focused on a design for an IOS for itera- 
tive ATR tasks and an associated specific class of dedi- 
cated heterogeneous hardware platforms. For the compu- 
tational environment considered, an HC Kernel was 
presented for making real-time on-line input-data depen- 
dent remappings of the application subtasks to the proces- 
sors in the heterogeneous hardware platform using previ- 
ously stored off-line statically determined mappings. In 
particular, it was shown that the HC Kernel can be used to 
create the MDDG Table off-line and then use it to make 
real-time on-line decisions and selections of mappings. In 
addition to the HC Kernel, the relevant parts of other 
components of the IOS were briefly discussed. The 
overall strategy of the IOS and the interactions of the IOS 
components are summarized in Figures 1 to 3. The IOS 
ideas introduced here can also be used for other 
application domains and classes of hardware platforms 
whose characteristics are similar to those of the 
applications and platforms considered here. 
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APPENDIX: 

This appendix summarizes the genetic-algorithm- 
based approach for subtask matching and scheduling in 
HC environments that was presented in [25]. It is fol- 
lowed by a discussion of modifications needed to make it 
suitable for dealing with multiple processors of the same 
type being assigned to a given subtask. In the summary 
below, a machine corresponds to a processor type in the 
ATR environment. 

An application task is decomposed into a set of sub- 
tasks B of size | B |. Let b; be the i-th subtask. An HC 

suite consists of a set of machines M of size | M |. Let nij 

be the j-th machine. Each machine can be a different 
type. The estimated expected execution time of subtask 
bj on machine nij is Ty. The global data items (gdis), i.e., 

data items that need to be transferred between subtasks, 
form a set G of size | G |. Let gdik be the k-th global data 

item. The following assumptions about the applications 
and HC environment are made. The data dependencies 
among the subtasks are known and are represented by a 
directed acyclic graph (DAG). For each global data item, 
there is a single subtask that produces it (producer) and 
there are some subtasks that need this data item 
(consumers). Each edge goes from a producer to a 
consumer and is labeled by the global data item that is 
transferred over it. This application task has exclusive 
use of the HC environment, and the genetic-algorithm- 
based matcher/scheduler controls the HC machine suite 
(hardware platform). Subtask execution is non- 
preemptive. The heuristic assumes that all input data 
items of a subtask must be received before its execution 
can begin, and none of its output data items is available 
until the execution of this subtask is finished. 

Genetic algorithms (GAs) are a promising heuristic 
approach to optimization problems that are intractable [6], 
[10], [11]. There are a great variety of approaches to 
GAs; many are surveyed in [15], [22]. The first step is to 
encode some of the possible solutions as chromosomes, 
the set of which is referred to as a population. In the [25] 

106 



approach, each chromosome consists of two parts:   the 
matching string and the scheduling string. 

Let mat be the matching string, which is a vector of 
length |B|, where mat(i) = nij (i.e., subtask b; is assigned 
to machine irij). Typically, multiple subtasks will be 
assigned to the same machine, and then executed in a 
non-preemptive manner based on an ordering that obeys 
the precedence constraints (data dependencies) specified 
in the application task DAG. 

The scheduling string is a topological sort of the 
DAG (i.e., a valid total ordering of the partially orered 
DAG). Define ss to be the scheduling string, which is a 
vector of length |B|, where ss(k) = bj, 0^i,k< |B| (i.e., 
subtask bj is the k-th subtask in the scheduling string). 
Because it is a topological sort, if ss(k) is a consumer of a 
gdi produced by ss(j), then j < k. The scheduling string 
gives an ordering of subtasks that is used by the 
evaluation step. Thus, in this approach, each chromo- 
some is a two-tuple <mat, ss>. 

In the initial population generation step, a predefined 
number of chromosomes are created. A new matching 
string is obtained by assigning each subtask to a machine 
randomly. The DAG is first topologically sorted to form 
a basis scheduling string. Then, for each chromosome to 
be generated, this basis string is mutated multiple times 
using the scheduling string mutation operator (defined 
below) to generate a valid ss vector. The solution from a 
non-evolutionary baseline (BL) heuristic is also included 
in the initial population. It is common in GA applications 
to incorporate solutions from some non-evolutionary 
heuristics into the initial population, which may reduce 
the time needed for finding a satisfactory solution [6]. It 
is guaranteed that the chromosomes in the initial popula- 
tion are distinct from each other. 

After the initial population is determined, the genetic 
algorithm iterates until a predefined termination criteria is 
met. Each iteration consists of the selection, crossover, 
mutation, and evaluation steps. 

Each chromosome is associated with a fitness value, 
which is the completion time of the solution (i.e., match- 
ing and scheduling) represented by this chromosome (i.e., 
the expected execution time of the application task if the 
matching and scheduling specified by this chromosome 
were used). Overlapping among all of the computations 
and communications performed is limited only by inter- 
subtask data dependencies and the availability of the 
machines and the inter-machine network. The fitness 
values are determined in the evaluation step (discussed 
later). 

In the selection step, all of the chromosomes in the 
population are ordered (ranked) by their fitness values. 
Then a rank-based roulette wheel selection scheme is 

used to implement proportionate selection [11]. The 
population size is kept constant and a chromosome 
representing a better solution has a higher probability of 
having one or more copies in the next generation popula- 
tion. This GA-based approach also incorporates elitism, 
i.e., the best solution found so far is always maintained in 
the population [16]. 

The selection step is followed by the crossover step, 
where some chromosomes are paired and corresponding 
components of the paired chromosomes are exchanged. 
The crossover operator for the scheduling strings ran- 
domly chooses some pairs of the scheduling strings in the 
current population. For each pair, it randomly generates a 
cutoff point, and divides the scheduling strings of the pair 
into top and bottom parts. Then, the subtasks in each bot- 
tom part are reordered. The new ordering of the subtasks 
in the bottom part of one string is the relative positions of 
these subtasks in the other original scheduling string, thus 
guaranteeing that the newly generated scheduling strings 
are valid schedules. The crossover operator for the 
matching strings randomly chooses some pairs of the 
matching strings in the current population. For each pair, 
it randomly generates a cutoff point, and divides both 
matching strings of the pair into two parts. Then the 
machine assignments of the bottom parts are exchanged. 

The next step is mutation. The scheduling string 
mutation operator randomly chooses some scheduling 
strings in the current population. Then for each chosen 
scheduling string, it randomly selects a victim subtask. 
The valid range of the victim subtask is the set of the 
positions in the scheduling string at which this victim sub- 
task can be placed and still have a valid topological sort 
of the DAG. After a victim subtask is chosen, it is moved 
randomly to another position in the scheduling string 
within its valid range. The matching string mutation 
operator randomly chooses some matching strings in the 
current population. For each chosen matching string, it 
randomly selects a subtask entry. Then the machine 
assignment for the selected entry is changed randomly to 
another machine. 

The last step of an evolution iteration is the 
evaluation step to determine the fitness value of each 
chromosome in the current population (discussed earlier). 
The computation characteristics of the subtasks are 
obtained from the array T described above. The com- 
munication characteristics of the given HC system are 
also needed. To demonstrate the evaluation process, a 
communication subsystem that is modeled after a HiPPI 
LAN with a central crossbar switch [24] was assumed for 
the tests that were conducted (discussed further below). 
(For the ATR environment, the inter-processor communi- 
cation matrix described in Section 4 will be used in the 
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evaluation of the fitness value for each chromosome in 
the current population.) As stated earlier, the above steps 
of selection, crossover, mutation, and evaluation are 
repeated until one of the stopping criteria are met: (1) the 
number of iterations reaches some limit (e.g., 1000), (2) 
the population converged (all the chromosomes had the 
same fitness value), or (3) the best solution found was not 
improved after some number of iterations (e.g., 150). 

In the tests of this GA approach in [25], simulated 
program behaviors were used. GA simulation studies 
were conducted using the following parameters. The pro- 
babilities for scheduling and matching string crossovers 
and scheduling and matching string mutations were 0.4, 
0.4, 0.1, 0.1, respectively. This set of numbers was 
selected by experimentation. Small-scale tests were con- 
ducted with up to ten subtasks, three machines, seven glo- 
bal data items, and population size 50. For each test, the 
GA-based approach found a solution (matching and 
scheduling) that had the same expected completion time 
for the task as that of the optimal solution found by 
exhaustive search. Larger tests with up to 100 subtasks 
and 20 machines were conducted. Each of them had its 
number of global data items in the range (2/3)*|B| < |G| < 
|B|. The population size for these larger tests was chosen 
to be 200. This GA approach produced solutions (match- 
ings and schedulings) that averaged from 150% to 200% 
better than those produced by the non-evolutionary level- 
ized min-time (LMT) heuristic proposed in [12]. The 
heuristic in [12] was selected for comparison because it 
used a similar model of HC. 

Now consider one way to adapt this GA heuristic for 
the case of allowing multiple processors to be assigned to 
a subtask. There are different ways in which this can be 
done; the method discussed below is just one example. 

Recall that each machine nij will represent a proces- 
sor type in the ATR environment. After the initial popu- 
lation is generated, for each subtask the following is done. 
If the subtask is assigned to machine nij, then a random 
number is generated that is from one to the total number 
of processors corresponding to type nij that are in the 
hardware platform. This will be the number of processors 
of type irij that are assigned to this subtask. As described 
earlier, in the case for [25], if multiple subtasks are 
assigned to the same machine, then the subtasks are exe- 
cuted on that machine is some order. In the ATR environ- 
ment, if multiple subtasks are assigned to a total number 
of processors of type nij that exceeds the number of that 
type that are in the hardware platform, then the subtasks 
that are assigned to the same processors must be executed 
on those processors in the order specified by the schedul- 
ing string. Because of the symmetry assumption about 
the communications among processors of the same type 

(see Section 3), it does not matter which processors of the 
same type are used for a subtask. If the Algorithm 
Database implementation information (Section 6) does 
not contain an implementation for some algorithm associ- 
ated with that subtask in the ODDG that will execute on 
the number of type nij processors assigned to that subtask, 
then that assignment is considered invalid, and another 
choice for number of processors is made (or processor 
type if necessary). Thus, each matching string now 
matches a subtask with one or more processors of the 
same type. 

Performing mutations on the matching strings is 
done as specified earlier, except now in addition to ran- 
domly selecting a new machine (processor type), a 
number of processors of that type is randomly assigned 
(in the same manner as done for the initial population). 
Crossovers are done in the same way as before, except 
now instead of swapping machine assignments, the pro- 
cessor type and number of processors are swapped 
together. 

Thus, with these modifications, the successful GA in 
[25] can be used in the ATR environment. The various 
GA parameters, such as population size and probability of 
performing a mutation, will be set based on experiments 
conducted with the ATR problem domain. 
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Abstract 
Interactive simulation of battles is a valuable tool 

for training. The behavior and movement of hundreds 
or thousands of entities (tanks, trucks, airplanes, mis- 
siles, etc.) is currently simulated using dozens or more 
workstations on geographically distributed LANs con- 
nected by WANs. The simulated entities can move, 
fire weapons, receive "radio" messages, etc. The ter- 
rain that they traverse may change dynamically, for 
example due to rains turning dirt roads into mud or 
bombs forming craters. Thus the entities need to re- 
ceive frequent information about the state of the ter- 
rain and the location and state of other entities. Typ- 
ically, information is updated several times a second. 
As the number of simulated entities grows, the num- 
ber of messages that need to be sent per unit of time 
can grow to unmanageable numbers. One approach to 
reducing the number of messages is to keep track of 
what entities need to know about which other entities 
and only send information to the entities that need to 
know. For example, tanks in Germany need not know 
about a change of course of a ship in the Pacific. This 
technique for reducing messages is known as interest 
management. 

Caltech and its Jet Propulsion Laboratory have im- 
plemented a simulation of this type on several large- 
scale parallel computers, exploiting both the compute 
power and the fast messaging fabric of such systems. 
The application is implemented using a heterogeneous 
approach. Some nodes are used to simulate entities, 
some to manage a database of terrain information, 
some to provide interest management functions, and 
some to route messages to the entities that do need 
to receive the information. Some of these tasks re- 
quire more memory than others, some require faster 
processing capability. Thus the application is hetero- 
geneous both in its functional decomposition and to a 

'Support for this research was supplied by the Informa- 
tion Technology Office, DARPA, with contract and technical 
monitoring via Naval Research and Development Laboratory 
(NRaD) 

smaller extent in the characteristics of the hardware 
that is used to run each function. In addition, work- 
stations are used to run the Graphical User Interface 
(GUI) that is used to control the simulation and to vi- 
sualize the simulation as it is running. This approach 
has been used to run an exercise with over twice the 
previous record number of vehicles simulated. 

A near-term goal is to simulate 50,000 entities. To 
do so, it will be necessary to run the simulation on 
several geographically distributed SPPs. For pragmatic 
reasons (availability of sufficiently large systems), the 
machines employed will have different architectures. 

1 Introduction 
Simulation of synthetic environments and activi- 

ties for training of military personnel is routinely car- 
ried out on distributed, homogeneous computing as- 
sets. Caltech has undertaken a project whose goal is 
to increase substantially the size and fidelity of these 
simulations. Our approach of using large-scale parallel 
computers has led to a heterogeneous computing strat- 
egy. This paper describes our software architecture, 
our motivation for using a heterogeneous approach, 
and preliminary experience with the implementation 
of the simulation program on parallel systems. 

2 Background 
The United States Department of Defense has 

found it increasingly useful to train individuals and 
commands using simulated environments. These sim- 
ulations have become more realistic and effective with 
the advent of computer-generated scenarios, visual- 
izations, and battlefield entity behaviors. Of partic- 
ular importance has been the development and use 
of Distributed Interactive Simulation (DIS). A large 
implementation of the DIS was conducted by several 
units located in Europe in November of 1994. It was 
called Synthetic Theater of War—Europe (STOW- 
E). It combined the classic manned simulator entities 
(as originally developed under SIMNET) with Modu- 
lar SemiAutomated Forces (ModSAF) simulation soft- 
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ware executing on networks of workstations; the in- 
dividual ethernet networks were themselves intercon- 
nected by Wide Area Network (WAN) links. The to- 
tal number of simulators and ModSAF entities used in 
this exercise was about 2,000. Stimulated in part by 
this successful exercise, current simulation initiatives 
have vehicle count goals in the 10,000-50,000 range. 
A vehicle is defined in the military argot to be any 
substantial entity—ground, air vehicles, autonomous 
personnel, etc. In addition to a desire to simulate 
more entities, the trainers and the trainees are con- 
stantly asking for more resolution, faster refresh rates, 
higher fidelity, more automatic behaviors, increased 
training environment responsiveness, and overall im- 
provements in the training environment. Finally, there 
is the emergent realization that faster than real-time 
analytic simulations will be required in the future to 
support the operational use of simulations in the bat- 
tlefield itself. This latter capability is essential if the 
simulation software is to be used for planning as op- 
posed to training. It should be noted that this class of 
simulation has applications in other fields, for example 
for emergency response to natural disasters. 

These demands for increased capability and capac- 
ity lead one naturally to consider devising a software 
architecture and computer platform strategy that will 
support a wide range of requirements. In other words, 
a scalable approach is needed. 

Caltech and its Jet Propulsion Laboratory (JPL) 
have a long history of using parallel computer ar- 
chitectures for scalability of scientific and engineer- 
ing simulations, including discrete event simulations. 
In addition, in the CASA gigabit testbed project [1], 
we performed experiments with distributed, hetero- 
geneous implementations of several applications ex- 
ecuting on parallel supercomputers connected by a 
high-speed wide-area network. Hence when we de- 
cided to tackle the challenge of supporting more am- 
bitious simulations, we quickly decided to apply the 
large-scale capabilities of High Performance Comput- 
ing and Communications (HPCC) assets as an alter- 
native to WAN-linked sub networks of workstations in 
order to develop and demonstrate the software archi- 
tectures needed to reach these goals. 

The Caltech/JPL project, called Synthetic Forces 
Express (SF Express), selected ModSAF as the base 
software to enhance and use to carry out scaling ex- 
periments. The SF Express project has a two-year 
goal to achieve a 50,000 vehicle count simulation via: 

The efficient operation of the ModSAF software on 
individual, large, SPP platforms and, the networking 
of two or more of these large platforms together as 

a single metacomputer for the largest runs. These 
WAN's will include connectivity to more conventional 
ModSAF assets of workstations and simulators. 

At present, the SF Express Team has pilot versions 
of its emerging software architecture operational on 
Intel Paragon platforms at Caltech and Oak Ridge Na- 
tional Laboratory (ORNL) and on IBM SP2 systems 
at Caltech and Ames Research Center (ARC). Use of 
the much larger SP2 at the Cornell Theory Center's 
SP2 is about to begin. Efforts are also underway to 
port the SF Express software to the CRAY T3D and 
T3E class of machines. 

At this writing a full 10,000 vehicle scenario, ap- 
proximately twice the size achieved previously, has 
been demonstrated on several occasions using the 
1,024-node ORNL machine. Indeed, one of these 
demonstrations took place live during Supercomput- 
ing '96 from the floor of the Pittsburgh Convention 
Center. Software adapted to the SP2 has achieved 
runs of up to 8,000 vehicles on the 143-node SP2 at 
ARC. 

To date, these simulations have been run using sce- 
narios created by NRAD and executed using the sim- 
ulated ground environment of that of the Fort Knox 
Terrain Database. Larger scenarios—up to 50,000 
vehicles—are actively being constructed, this time on 
the much larger playing field afforded by Southwest 
USA Terrain Database (SWUSA), centered near 29 
Palms and spanning much of the surrounding terri- 
tory of Southern California. 

Based on measured performance of our variant of 
the ModSAF code, we have determined that no sin- 
gle available SPP can execute the full 50,000 vehicle 
scenario; indeed, the near term 50,000 goal was se- 
lected in part so as to require the involvement of two 
or more supercomputers. Accordingly, our SPP ar- 
chitecture includes provisions for networking several 
large SPPs together, creating a meta-supercomputing 
network. 

In what follows, we discuss some of the key ar- 
chitectural concepts being explored to make ModSAF 
suitable for SPP machines and to improve its overall 
scalability. While ModSAF is the basis for all of our 
current work, we intend that the applicability of this 
research to be much broader. ModSAF, then, is the 
current focus serving both as a convenient tool and as 
a familiar yardstick for measuring progress familiar to 
a large community. 

3    Interest Management 
We take as axiomatic that to enable dramatic scal- 

ability of entity level simulations, "interest manage- 
ment" must be central to the software architecture. 
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Using the language of ModSAF, beyond a certain 
(rather small) limit, it is necessary to abandon broad- 
cast style inter-entity messaging schemes and insert 
rather precise interest management techniques. This 
arises because of two separate but related notions: 

An entity's behavior is shaped partly by an aware- 
ness of other entities around it (local perceived ground 
truth). Since not all entities of interest are computed 
by the same local CPU, the need arises for "remote 
entities" to signal their presence and activities to that 
local CPU via messaging. But if each individual CPU 
attempts to deal with all of these incoming messages 
(global ground truth), all CPU's will be overwhelmed 
both in memory and in performing bookkeeping du- 
ties. Interest management must be performed more 
globally to permit scalability. 

As the number of entities increases, an all to all pro- 
tocol eventually overwhelms the physical SPP messag- 
ing fabric. The same conclusion is obtained: a global 
interest management scheme is critical. 

Accordingly, the SF Express Team has been exper- 
imenting with two variants of global interest manage- 
ment: one a server based notion and a second router 
based scheme. 

Space does not permit their detailed exposition here 
[2] but the main ideas are easily grasped. See Figure 1. 

In Figure 1, the top squares represent nodes exe- 
cuting the ModSAF entity behavior codes known as 
SAFSIMs. As part of this behavior, each vehicle as- 
serts its interest in what in effect are "regions of inter- 
est spaces." There are several of these—e.g., a high 
and a low resolution terrain space, vehicle i.d., signal 
frequency—but to grasp the basic ideas it suffices to 
consider interest to be a function of geographic loca- 
tion. In the server interest management scheme, this 
interest is registered in one of the interest management 
nodes, nodes which themselves are decomposed over 
the index of that interest space. Messages (known as 
PDUs in ModSAF) generated by any vehicle are sent 
(registered) to the coordinate of that interest space 
corresponding to the coordinate of the sending vehi- 
cle. For example, if a PDU is sent from a vehicle whose 
location is (x,y), it is sent to the (x,y) coordinate of 
the Interest Management (IM) nodes. The IM node 
then forwards the message back to each SAFSIM that 
has registered an interest in that coordinate. 

Looking at the process from the point of view of the 
IM nodes, each maintains queues of messages to be 
sent to each SAFSIM, looping over all SAFSIMS, and 
sending a single bundled message for each traversal of 
that loop. In this relatively straightforward manner, 
messages arrive at only the SAFSIMs that have explic- 

itly asserted interest. The remote entities represented 
at each SAFSIM node and the volume of individual 
PDUs processed are thus kept to a minimum. 

In this IM scheme, communications channels are 
associated with interest classes, and a single simula- 
tor node will generally exchange data with more than 
one IM node. In the alternative Router model, each 
simulator node has a single communications channel 
to the "outside world." 

The basic building block of the Router architec- 
ture is a fixed collection of SAFSIM nodes associ- 
ated with a Primary Router, as seen in the bot- 
tom of Figure 2. The SAFSIM nodes send data 
and interest declarations up to their associated Pri- 
mary Routers, and only the appropriate, interest se- 
lected data flow back down. Data communications 
among the (SAFSIMs+Primary) building blocks are 
accomplished through additional layers of data col- 
lection and data distribution router nodes shown in 
the top part of Figure 2. Communications within 
the upper layers occur in parallel with those in the 
PrimaryoSAFSIM layer. This means that there are 
no significant additional time costs for data messages 
which take the longer (5 hop) path through the full 
communications network. 

The use of (few) fixed communications chan- 
nels in the Router architecture allows extremely 
efficient   bundling   of   data   messages. During 
the communications-intensive initialization phases of 
ModSAF, individual messages flowing down to the 
SAFSIM nodes routinely contain 40 or more PDUs, 
and total data rates through the Primary Routers 
in excess of 16K PDU/second have been observed. 
Once initializations are completed, the "steady-state" 
Primary-H-SAFSIM communications account for only 
about 3% of a SAFSIM's (wall clock) time. 

A system-wide evolving picture of interest declara- 
tions and payloads can be obtained from the Router 
architecture. Tracing performance and program be- 
havior, along with general purpose logging capabili- 
ties, are facilitated by the very nature of the Router 
clusters. 

4    Functional Decomposition 
Vanilla ModSAF normally executes completely 

within a single workstation, replicating workstations 
until enough are employed to execute the desired size 
of the simulation. There are two basic modules in 
ModSAF: the SAFSIM, already identified, and the 
GUI which is only activated on a workstation if it is 
desired to input to the scenario or observe the sim- 
ulation's progress. In building SF Express, we have 
already migrated some of the sub elements away from 
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the SAFSIM and are planning to migrate others. In 
addition, we add others, such as the interest manage- 
ment just discussed, as separate and new functions not 
present in vanilla ModSAF. 

Functional decomposition is natural in the quest 
for scalability. When a resource (such as a terrain 
data base) must be accessed simultaneously by hun- 
dreds or thousands of processors, one replicates it. If 
the data base is large, computers with large memories 
should be used. If the computational cost of simulat- 
ing a complex type of vehicle is high, one spins off that 
task to separate nodes; if to achieve fidelity the sim- 
ulation requires a lot of floating-point computation, 
nodes with suitable CPUs should be chosen. Router 
nodes on the other hand will do few if any floating- 
point computations to carry out their role; routers can 
therefore be hosted on systems that excel at logic and 
integer operations. Data logging for subsequent replay 
of the simulation might require processors with ample 
attached disk storage. 

The need to keep up with real time also dictates a 
functional decomposition. Furthermore, in some simu- 
lations sensor data from real instruments must be read 
and processed to guide parts of the simulation. Visu- 
alization of the ongoing simulation is essential and it 
also requires a different type of computer resource. 

An indication of how this approach is used in prac- 
tice can be gleaned from our experience with a 10,174 
Vehicle synthetic forces simulation that was run by on 
the Oak Ridge National Lab 1024-node Intel Paragon. 
The run, approximately twice as large as the largest 
previous such simulation, utilized a scenario set on the 
Ft. Knox Compact Terrain Data Base, with "blue and 
red" forces made up of battle tanks, fighting vehicles, 
armored personnel carriers and trucks. This run em- 
ployed 784 Paragon processors, of which 640 were de- 
voted to simulating vehicles, 48 processors acted as 
routers in a communications network that provides 
the good scalability demonstrated; 90 processors were 
used as terrain data base servers; and six processors 
were used as servers to load the program and data. In 
addition, a GUI proxy node was used, as is described 
in the next section. 

In short, heterogeneous functional decomposition is 
a natural strategy for coping with the evolving needs 
of synthetic forces simulations. 

4.1     Graphics user interface and visualiza- 
tion 

We have experimented with a number of approaches 
to providing GUI functionality. The most straightfor- 
ward method on the SP2 is simply to take advantage 
of its X Windowing system and devote one or more 

nodes hosting a complete ModSAF with an X Window 
output being sent to a remote workstation. This is an 
attractive option, particularly when it is desired to in- 
teract with the simulation during its progress: e.g., 
vehicles can be created and instantiated on the GUI 
node as in workstation based ModSAF, a function not 
otherwise readily available with the SPPs. It is also 
easy to "interest manage" the display, by attaching 
the GUI node directly to the Interest Management 
nodes. Interest is geographically expressed by turning 
the screen display corner coordinates into an interest 
expression. PDUs only from vehicles within the cov- 
ered region will be transmitted to the GUI node, a key 
circumscription if that node is not to be overwhelmed 
with irrelevant information. 

A second technique removes the GUI from the SPP 
entirely, substituting there instead a GUI Proxy, and 
executing a workstation GUI as a stand-alone unit on 
the outside. This workstation then transmits inter- 
est declarations to the Proxy, which in turn interfaces 
with the interest management machinery in a manner 
similar to a SAFSIM. This technique is less demand- 
ing of connection bandwidth but sacrifices some of the 
portability of the X Windows approach. 

A third approach, and one which ultimately may 
prove more powerful, is to send the PDUs themselves 
out of the SPP to external devices. These data can be 
compressed and limited in various ways, but current 
experience indicates that the entire PDU stream can 
be issued by the SPP and assimilated by a high perfor- 
mance workstation in real time. A current experiment 
[3] describes progress in processing the PDU stream on 
external devices either for more scalable real time dis- 
play or for after action analysis. The post processing 
can subdivide the PDU stream, redirecting the PDUs 
to multiple processes and to, for example, a matrix 
of coordinated screens, giving an overall view of the 
battlefield. 

4.2    Replacing routine disk access 
Frequent retrieval of data from disk storage is too 

slow to be practical on the SPPs. Instead, reader files 
common to all SAFSIMs are held in RAM in one or 
more file server nodes. Supplying each SAFSIM with 
its required information then takes place at RAM ac- 
cess and SPP messaging rates, greatly reducing ini- 
tialization time. We are currently experimenting with 
compiling these reader files into binary prior to any 
single simulation. This compacts the files and fur- 
ther speeds up their delivery to the individual SAF- 
SIM nodes. 

The simulation terrain in ModSAF is represented 
through a fairly elaborate, memory-efficient scheme 
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built from small terrain elements ("pages" and "patch- 
es"). Arbitrarily large terrains are supported through 
a caching scheme in which a SAFSIM maintains only 
a modest fraction of the full terrain in memory, re- 
questing new pages and patches as they are needed. 

In the parallel implementation, the disk-read data 
retrievals of conventional ModSAF are replaced by 
message exchanges with database server partitions. 
Each partition consists of a sufficient number of nodes 
to hold the entire terrain database in memory. Multi- 
ple replicas of the database partition are used for runs 
with large numbers of SAFSIM nodes. 

4.3    Some future possibilities 
While not currently implemented, the above terrain 

serving scheme is consistent with ultimately providing 
for dynamic terrain. Since only a few terrain servers 
are needed, it is practical to keep these synchronously 
updated with terrain changes and, via cache coherence 
methods, ensure that the SAFSIMs receive cached up- 
dates as well. 

In the future we expect to migrate more function- 
ality away from the individual SAFSIMs. Terrain rea- 
soning is a good candidate. High level and complex 
functions such as path planning are currently handled 
within the SAFSIMs on a lower priority basis than the 
fundamental activity loops. The computation takes 
many cycles to complete and its performance is hard to 
predict. Migrating that function to the terrain server 
nodes has great appeal. 

It may even be helpful to migrate lower level func- 
tions like intervisibility calculations there as well. In 
workstation based ModSAF many intervisibility cal- 
culations are unnecessarily duplicated. Vehicle A cal- 
culates its visibility to remote vehicle B, while in B's 
local workstation, the reciprocal calculation is being 
made to its remote vehicle A. Doing this calculation 
once in a server can gain important economies. 

Finally, decomposing the ModSAF functionalities 
and switching to a server perspective paves the way 
for higher fidelity reasoning and environmental calcu- 
lations, since more CPU power can be deployed to 
any one function when it is needed without interfering 
with the tightly controlled and repetitive tasks within 
each SAFSIM. 

5    SPP Portability 
SF Express has been built around MPI messaging 

libraries, a necessary but by no means sufficient con- 
dition to ensure portability. Machines that have been 
addressed so far with various degrees of completeness 

are: 

Intel Paragon 
IBM SP2 
Cray T3D The codes 
SGI Origin 2000 
SGI Power Onyx/Challenge Series 
Beowulf 

on the Paragon and SP2 are by far the most mature. 
The major difficulty encountered with the Paragon 
was the reversed endianess as compared to all other 
machines on the list, save Beowulf. The port to the 
SP2 was smooth and uneventful. Unfortunately the 
Cray T3D has proved the most difficult of all, almost 
entirely because of the lack of a 32 bit Cray C com- 
piler. ModSAF was definitely not written with porta- 
bility to 64 bit machines-in mind. Our current ap- 
proach is to work with the AC compiler authored by 
Bill Carlson and available on both the T3D and the 
T3E. Success here would give the Project access to 
this important class of machines. 

An informal port to the SGI Origin 2000 was 
performed and demonstrated during the Supercom- 
puting '96 Convention in Pittsburgh. The Power 
Onyx/Challenge Series of machines are listed, even 
though they are shared memory machines, because 
they offer an MPI library. The shared memory ma- 
chines, then, emulate the message passing architec- 
tures and the SF Express concepts port without diffi- 
culty. Since ModSAF itself is native to the SGFs, the 
port was uneventful. 

A Beowulf "pile of PCs" cluster, has been built 
by the California Institute of Technology and the 
Jet Propulsion Laboratory. The cluster consists of 
16 Intel Pentium Pro (200MHz) processors running 
Parallel Linux connected via a 100Mb/sec ethernet 
switch. Out of the box ModSAF has been ported to 
Beowulf. We are experimenting various MPI exten- 
sions and profiling libraries to maximize efficiency and 
properly characterize the performance of the SF Ex- 
press port .This kind of cluster shows very good price- 
performance ratios and may be a viable platform for 
future uses of SF Express. 

In summary, we are pleased with the considerable— 
but incomplete—progress made towards our portabil- 
ity goals. We believe that offering options to be an 
important aspect of enabling the continuing applica- 
bility of this research. 

6    Interoperability and Meta- 
supercomputing 

Implementing SF Express on multiple machines is 
additionally important to achieving the project goal 
of 50,000 entities. As mentioned in the introduction, 
no single SPP is likely to be able to achieve this goal 
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and it will be necessary to utilize two or more SPPs 
together connected by wide area networks to achieve 
this result. 

Fortunately, the essential information that needs to 
be shared among the participating SPPs is exchanged 
using ModSAF PDUs and their data structures were 
designed to interoperate with different machines. En- 
dianess and machine word lengths will not pose diffi- 
cult problems. 

Also, the key to scalability is once again, precise 
interest management. And this can be accomplished 
between SPPs as an extension of the interest schemes 
already described. 

In an unconstrained world, a uniform messaging 
structure would be established across the whole meta- 
supercomputer and the structures we have been dis- 
cussing would need no modifications at all—a node 
on a distant machine would be different only in that 
it had a unique node identification. Unfortunately, 
this would require the WAN network to be as high in 
bandwidth and message handling capabilities as the 
SPP messaging fabrics themselves. Since we will at- 
tempt the metacomputing runs with at best OC-3 net- 
works, an approach more parsimonious of bandwidth 
resources is required. 

Referring to Figure 2, one can think of the interface 
between the geographically-distributed SPPs as being 
done by connecting the Pop-Up routers with WAN 
connections. The time delays for PDUs sent through 
the upper router layer are modest (e.g., less than 50 
msec) and thus likely to be small compared to the 
delays introduced by WAN access. 

This approach has not been fully implemented but 
its broad outlines are clear. To establish a global in- 
terest manager, each SPP would need to create peri- 
odically (once every ~l-5 sec) a complete interest ex- 
pression across the entire range of interest coordinates. 
The remote SPP returns only the PDUs responsive to 
those interests. 

7    Conclusions and Plans for '97 
At this writing, the project is consolidating the 

progress made thus far which culminated in the 10,000 
and 8,000 vehicle runs at ORNL and ARC respec- 
tively. Implementations are being cleaned up and 
more comprehensive attention paid to instrumentation 
and measurement. 

Near term developments include the design of the 
meta-supercomputing interfaces to enable the employ- 
ment of two or more SPPs in a single exercise. 

In addition, little attention has been paid thus far 
to how to make the large simulations thus enabled 

available to conventional ModSAF cluster worksta- 
tion networks and simulators. In the sense that ev- 
eryone speaks DIS protocol, the interface is easy and 
assured. But once again, interest management must 
be enabled as a two way interface between the parties, 
else the workstations will be overwhelmed and the in- 
fluence of the entities modeled within the conventional 
workstations will not be properly represented to the 
SF Express Forces within the SPP. There are several 
choices available; perhaps the best is to treat the SF 
Express as an HLA federate and implement a standard 
HLA/RTI interface to the outside world. 

We are being asked to reach the 50,000 goal this 
year and in pursuit of this are setting up the necessary 
cooperations between several major national SPP as- 
sets. In addition to the assets at JPL/CIT, we are en- 
listing support in pursuit of the meta-supercomputing 
goals from ORNL, ARC, CTC, and the San Diego Su- 
percomputing Center (SDSC). 
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Abstract 

In a dedicated mixed-machine heterogeneous com- 
puting (HC) system,  an application program may be 

decomposed into subtasks, then each subtask assigned to 

the machine where it is best suited for execution. Subtask 

data relocation is defined as selecting the sources for 
their needed data items.   This study focuses on theoreti- 

cal issues for data relocation using a stochastic HC 

model.  It is assumed that multiple independent subtasks 

of an application program can be executed concurrently 

on different machines whenever possible.   A stochastic 

model for HC is proposed, in which the computation 

times of subtasks and communication times for inter- 

machine data transfers can be random variables. The 

optimization problem for finding the optimal matching, 

scheduling, and data relocation schemes to minimize the 

total execution time of an application program is defined 

based on this stochastic HC model. The optimization cri- 

teria and search space for the above optimization prob- 

lem are described.  It is proven that a greedy algorithm 

based approach will generate the optimal data relocation 

scheme with respect to any fixed matching and schedul- 

ing schemes. This result indicates that a greedy algo- 

rithm based approach is the best strategy for developing 
data relocation heuristics in practice. 

This research was supported in part by NRaD under contract 
number N66001-96-M-2277. 

Keywords: data relocation, greedy algorithm, hetero- 
geneous computing, mapping, matching, optimization, 
scheduling, stochastic modeling. 

1: Introduction 

A single application program often requires many 
different types of computation that result in different 
needs for machine capabilities. Heterogeneous comput- 
ing (HC) is the effective use of the diverse hardware and 

software components in a heterogeneous suite of 
machines connected by a high-speed network to meet the 

varied computational requirements of a given application 

[8]. One goal of HC is to decompose an application pro- 
gram into subtasks, each of which is computationally 

homogeneous, and then assign each subtask to the 
machine where it is best suited for execution. 

Subtask matching, scheduling, and data relocation 

are three critical steps for implementing an HC applica- 
tion on an HC system. Matching involves assigning sub- 
tasks to machines. Scheduling includes ordering the exe- 

cution of the subtasks assigned to each machine and ord- 

ering the inter-machine communication steps for data 

transfers. Data relocation is the scheme for selecting the 

sources for needed data items. This study focuses on 

theoretical issues for data relocation using a stochastic 

HC model. It is assumed that multiple independent sub- 
tasks of an application program can be executed con- 

currently on different machines whenever possible (e.g., 

0-8186-7879-8/97 $10.00 © 1997 IEEE 
122 



when the machines are available for subtask execution). 

The contribution of this paper can be summarized 

as follows. A general stochastic HC model is proposed, 

in which the computation times of subtasks and 

communication times for inter-machine data transfers are 

random variables. The optimization problem for finding 

the optimal matching, scheduling, and data relocation 

schemes to minimize the total execution time of an 

application program executed in a dedicated HC system 

is defined based on this proposed stochastic HC model. 

The optimization criterion and search space for the above 

optimization problem in HC are described. It is proven 

that a greedy algorithm based approach will generate the 

optimal data relocation scheme with respect to any fixed 
matching and scheduling schemes. This result indicates 

that a greedy algorithm based approach is the best 
strategy for developing data relocation heuristics in 

practice. 
The inter-machine communication time between 

subtasks can be substantial and is one of the major fac- 
tors that degrade the performance of an HC system. This 
paper focuses on potential methods for minimizing the 

inter-machine communication time of an application pro- 
gram when the concurrent execution of different subtasks 

on different machines is considered whenever possible. 
In particular, the impact of the data relocation scheme on 
the total execution time of the subtasks executed in a 
dedicated HC system is examined. 

In most of the mathematical models for HC in the 
literature (e.g., [5, 9]), the computation times and inter- 
machine data transfer times of data items for different 
subtasks in the application program are assumed to be 

deterministic quantities. This is valid when the inter- 
machine network is completely controlled by the 

scheduler and all execution times and inter-machine 
communication needs are known a priori (not dependent 

on input data). However, there are elements of uncer- 

tainty (e.g., input data dependent looping and conditional 
constructs) that impact the deterministic nature of both 

the computation and inter-machine communication times 

for different subtasks. Such uncertainties can create oth- 
ers, e.g., network contention among different inter- 

machine data transfer steps. They are unpredictable pri- 

or to execution time. An approach to modeling these 
computation and communication times is to represent 

them as random variables with assumed probability dis- 

tribution functions. 

To use a dedicated HC system to execute an appli- 

cation program efficiently, the optimization problem of 

using matching, scheduling, and data relocation schemes 
to minimize the total execution time must be defined. 

Section 2 provides the background and terminology 

needed for the rest of this paper. In Section 3, a stochas- 

tic HC model for matching, scheduling, and data reloca- 

tion is introduced. A topological sort based procedure is 

presented in Section 4 for defining the execution time of 

an application program executed in a dedicated HC sys- 

tem where the execution of the subtasks is partially or- 

dered, and when matching, scheduling, and data reloca- 

tion schemes are known. In Section 5, a method is dev- 

ised to enumerate all the valid options in choosing the 

data relocation scheme for a given arbitrary matching. 
Thus, Sections 3, 4, and 5 collectively define the above 
optimization problem in HC with a stochastic model. 
Because of the complexity of this defined optimization 
problem in HC, guidelines for devising heuristics must 
be provided. It is proven in Section 6 that a greedy algo- 
rithm based approach will generate the optimal data relo- 

cation scheme with respect to any fixed matching and 
scheduling schemes. This result indicates that a greedy 
algorithm based approach is the best strategy for 
developing data relocation heuristics in practice. 

Most of the literature for HC has concentrated on 
addressing the practical aspects and heuristics for match- 
ing and scheduling. This paper emphasizes instead the 

theoretical issues involved in data relocation using a sto- 
chastic HC model. The practical implication on data re- 
location heuristic design of the theoretical result derived 

is explained. 

2: Background and terminology 

The material in this subsection is summarized from 

[9]. It provides the background and terminology needed 
for the rest of this paper. In general, the goal for HC is 

to assign each subtask to one of the machines in the 

system such that the total execution time (computation 
time and inter-machine communication time) of the 

application program is minimized [3]. The subtask to 

machine assignment problem is referred to as matching 

in HC. When a subset of subtasks can be executed in 
any order, varying the order of the computation of these 

subtasks (while maintaining the data dependencies 
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Figure 1: Subtask flow graph for the example application program. 

among all subtasks) can impact the total execution time 
of the application program. Determining the order of 
computation for the subtasks is referred to as scheduling 

in this paper. In most of the literature for HC, a subtask 

flow graph is used to describe the data dependencies 

among subtasks in an application program (e.g., [5, 9]). 
In Figure 1, each vertex of the subtask flow graph 

represents a subtask. Let S\k] denote the Jt-th subtask. 

For each data element that S[k] transfers to S\fl during 

execution, there is an edge from S[k] to S[j] labeled with 

the corresponding variable name. An extra vertex labeled 

Source denotes the locations where the initial data 

elements of the program are stored. 

Let a data item be a block of information that can 

be transferred between subtasks. Using information 
from the subtask flow graph, a data item is denoted by 
the two-tuple Is, d), where s > 0 is the number of the sub- 

task that generates the needed value of variable d upon 
completion of computation of that subtask. If the needed 

value of d is an initial data element to the program, then s 

= -1. Two data items are the same if and only if they are 
both associated with the same variable name in an appli- 

cation program and the corresponding value of the data is 

generated by the same subtask (which implies that the 
two data items have the same value). 

In general, most of the graph-based algorithms for 
matching-related problems assume that the pattern of 
data transfers among subtasks is known a priori and can 
be illustrated using a subtask flow graph (e.g., [5, 10]). 
Thus, no matter which machine is used for executing 
each subtask of a specific application program, the loca- 

tions (subtasks) from which each subtask obtains its 
corresponding input data items are determined by the 

subtask flow graph and are independent of any particular 

matching scheme between machines and subtasks. 

The above assumption generally needs refinement 

in the case of HC. In [9], two data-distribution situa- 
tions, namely data locality and multiple data-copies, are 
identified for addressing refinements of the above as- 

sumption. It is assumed that each subtask S[i] keeps a 
copy of each of its individual input data items and output 
data items on the machine to which S[i] is assigned by 

the matching scheme. Furthermore, it is also assumed 
that all input data items are received for a subtask prior 
to that subtask's computation. 

Data locality arises when two subtasks, S\j] and 

S[k] that are assigned to the same machine, need the 

same data item e from S[i] (assigned to a different 

machine). Because a machine can fetch a data item from 
its local storage faster than fetching it from other 

machines, if S[j] is executed after S[k], then £[/] should 
obtain e locally from S[k] instead of from the machine 
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assigned to S[i]. If a subtask flow graph is used to com- 

pute inter-subtask communication cost, then without con- 

sidering machine assignments, the impact of data locality 

might be ignored. 
The multiple data-copies situation arises when two 

subtasks, S\j] and S[k], need the same data item e from 
S[i], where S[i\, S[f], and S[k] are assigned to three dif- 

ferent machines. If S[k] is executed after S\j] obtains e, 

then the machine assigned to S[k] can get data item e 

from either the machine assigned to S[i] or the machine 

assigned to S\j]. The choice that results in the shorter 

time should be selected. Selecting the sources for need- 

ed data items is referred to as data relocation (because 

the data relocation scheme determines the source 

machines from which the data items will be relocated to 
the destination machines). In general, when using infor- 

mation only from the subtask flow graph, the possibility 

of having multiple sources for a needed data item is not 
considered. Data locality can be viewed as a special case 
of having multiple data copies (i.e., one copy is on the 

machine to which the receiving subtask is assigned by 

the matching scheme). 
In [9], it is assumed that, at any instant in time dur- 

ing the execution of an application program, only one 
computation or inter-machine data transfer step for a 
specific subtask is being executed. Based on this assump- 
tion, a minimum spanning tree based algorithm is 
presented in [9] that finds, for a given matching, the op- 
timal scheduling scheme for inter-machine data transfer 
steps and the optimal data relocation scheme for each 
subtask. Data locality and multiple data-copies are all 

considered in the above algorithm. The mathematical 
model for HC presented in this paper differs from the 

one in [9] in that the possible concurrent execution of 
both the computation and inter-machine communication 

steps of different subtasks in an application program is 

considered. Also, the computation times of subtasks and 
communication times for inter-machine data transfers 

can be random variables. It is proven in this paper that a 
greedy algorithm based approach will generate the op- 

timal data relocation scheme with respect to any fixed 

matching and scheduling schemes. This result indicates 

that a greedy algorithm based approach is the best stra- 

tegy for developing data relocation heuristics in practice 

and attempts to solve a much more general problem in 

HC than addressed in [9]. 

3: A stochastic model for matching, 
scheduling, and data relocation in HC 

A stochastic model of matching, scheduling, and 

data relocation for HC is formalized in this section. This 

model is an extension of the one presented in [9]. The 
possible concurrent execution of both the computation of 

subtasks and inter-machine communication steps in an 

application program is considered. The issues related to 
using a stochastic HC model are addressed. When the 

computation time of each subtask on each machine and 

the communication times of transferring data items have 

stochastic properties, those timing parameters must be 

modeled as random variables. This paper examines an 

underlying theoretical issue with respect to data reloca- 
tion. Due to the theoretical nature of the proof of the 
main result in this paper, it is not necessary to know the 

actual distribution functions of those random variables. 
The mathematical model presented in this section allows 

the material in the rest of this paper to be given in unam- 

biguous terms. 

(1) An application program P is composed of a set of n 

subtasks 
S={S[0],S[l],...,S[n-l]}. 

There are a set of Q initial data elements 

{dQ, d\,..., rfg-i). 

(2) The set of NI\i\ input data items required by S[i] is 

M = {Id[i, 0], Id[i, 1] Id[i, NI[i]-l]}, 

and the set of NG\i\ output data items generated by S[i] 

is 

GUI = {Gd[i, 0], Gd[i, 1],..., Gd[i, NG[i]-l]}. 

The program structure of P is specified by a subtask flow 

graph. 

In this paper, the subtask flow graph of any appli- 

cation program P is assumed to be acyclic. A cycle in a 
graph represents a loop containing one or more subtasks. 

With the presence of looping constructs, an appropriate 

statistical approach can be used to determine the distribu- 

tion for the number of iterations each looping construct 

will execute and the maximum number of iterations each 
looping construct has [10]. Then, the existent subtask 

flow graph can be transformed into an acyclic one by un- 
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rolling each looping construct with the known or estimat- 

ed maximum number of iterations. The above approach 

potentially will increase the number of subtasks present 

in the acyclic subtask flow graph significantly. Also, the 

distribution for the number of iterations each looping 

construct will execute and the maximum number of itera- 

tions each looping construct has can be difficult to esti- 

mate in reality. A possibly more practical approach is to 

group a fixed number of consecutive iterations of the un- 

rolled looping constructs together to decrease the number 

of subtasks present. Another approach is to view each 

looping construct as part of a single subtask and the 

boundaries for decomposing an application program into 

subtasks are not allowed to be in the middle of a looping 

construct. 

(3) An HC system consists of a heterogeneous suite of m 

machines 

M = [M[0], M[l],..., M[m - 1]}, 

M includes the devices where all the initial data elements 
are stored before the execution of P. 

(4) There is a computation matrix C = [C[i, j]}, where 

C[i, j] denotes the computation time of S[i] on machine 

M\j] (e-g- [4]). For the reason stated in Section 1, C[i,j] 
is assumed to be a random variable with a known distri- 
bution. It can be computed from empirical information 

or by applying two characterization techniques in HC, 
namely task profiling and analytical benchmarking (see 
[8] for a survey of these techniques). In [7], a methodolo- 

gy is introduced for estimating the distribution of execu- 
tion time for a given data parallel program that is to be 
executed on a single hybrid SIMD/SPMD mixed-mode 
machine. However, as mentioned earlier, for the results 

mentioned here, it is not necessary to determine the dis- 
tribution functions for the random variables. 

(5) An assignment (matching) function Af S —> M is 

such that if Afii) = j, then S[i] is assigned to be executed 
on machine M\j]. NS[j] is defined as the number of sub- 

tasks assigned to be executed on machine M\J\. Thus, 
m-\ 
£Atf [/] = «. 
;=0 

(6) A scheduling function Sf indicates the execution ord- 

er of a subtask with respect to the other subtasks assigned 

to the same machine.  If Sfii) - k, then S[i] is the k-th 

subtask whose computation is executed on machine 

M[Af(i)], where 0 < k < NS[Af(i)]. Readers should notice 

that the scheduling function Sf schedules only the order 

of the computation for different subtasks (not the order 

for executing the inter-machine communication steps). 

(7) The set of data-source functions is 

DS = [DS[0], DS[l],.... DS[n - 1]}, 

where DS[i](j) = [*,, k2] (0 < i < n, 0 <; < NI[i], 0<kx 

< n, and 0 < k2 < m) means that S[i] obtains the input 

data item Id[i,j] from S[jfcj] and k2 = Af{kx). If DS[i](f) 

= [ku k2] and kx = -1, then Id[i,j] = (-1, dx) and S[i] 

obtains the associated initial data element from machine 

M[k2] where dx is initially stored. Readers should notice 

that, when k\ * -1, the augmented information k2 can be 

obtained with the known Af and is redundant. But the in- 

formation from k2 is necessary to specify the source of 

an initial data element when k\ = —1. The above 
definition of DS gives a unified way of specifying the 

values of a data-source function. For different assign- 
ment and scheduling functions, with consideration of the 
impact of data locality and multiple data-copies, there are 
different choices for sets of the data-source functions. 
This choice of DS corresponds to the data relocation 
problem discussed in Section 2. 

It is assumed that each subtask S[i] will submit a 
copy of its input data item Id[i, j] to the network for for- 
warding to other destination machines (based on DS) im- 
mediately after Id[i,j] is available on machine M[Afii)]. 

Each subtask will also submit copies of all of its output 

data items to the network to be transferred to the proper 
destination machines (based on DS) after the completion 
of its entire computation. Thus, Af Sf and DS together 

completely specify the computation and inter-machine 
communication steps needed at any time to execute the 

application program P in a dedicated HC system. 

(8) The communication time estimator D\s, r, e] denotes 

the length of the communication time interval between 

the time when a data item e is available on M[s] and the 

time when e is obtained by M[r] (assuming this transfer 
is required for the given Af, Sf and DS). For the reason 
stated in Section 1, D[s,r, e] is assumed to be a random 

variable (again recall that the distribution of this random 

variable is not needed to derive the results of this paper). 
D[s, r, e] includes all the various hardware and software 
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related times of the inter-machine communication 

process (e.g., network latency and the time for data 

format conversion between M[s] and M[r] when 

necessary). 

Most of the literature for HC (e.g., [4, 9]) assumes 

that the inter-machine communication time for sending a 

data item e from M[s] to M[r] is only a function of s, r, 

and e. But in reality, even in a dedicated HC system, 
when an application program is executed, the traffic pat- 

tern for inter-machine communication can be impacted 

by subtask computation and other inter-machine com- 

munication times that are all input data dependent (and 

represented as random variables). The choice of Af, Sf, 

and DS impacts all of these computation and communi- 
cation times and, hence, the communication time interval 
between the time when e is available on M[s] and the 
time when e is obtained by M[r\. Thus, the communica- 
tion time estimator D[s, r, e] is dependent on Af, Sf, DS, 

s, r, and e. 
In general, it will be extremely difficult (if not im- 

possible) to estimate the distribution function of D[s, r, e] 

as a function of Af, Sf, DS, s, r, and e. The purpose of 
defining D[s, r, e] here is to address the factors that im- 
pact the inter-machine communication times for the ap- 
plication programs executed in a dedicated HC system. It 
also helps to establish a theoretical model for defining 

the optimization criterion of the optimization problem for 
HC. With this well-defined theoretical model and optim- 
ization criterion, the greedy algorithm based approach in- 
troduced in Section 6 can provide potential data reloca- 
tion heuristics with a sound local optimization strategy 
based on a solid theoretical derivation. Future data relo- 

cation heuristics can follow the local optimization stra- 
tegy in Section 6 to achieve a reasonable level of global 
optimization without the information about the exact dis- 

tribution function of D[s, r, e\. 

4: A topological sort based algorithm for 
calculating the execution time of an 
application program in an HC system 

For a given computation matrix C and 

communication time estimator D[s, r, e], the total 

execution time of the application program P associated 
with an assignment function Af, a scheduling function Sf, 

and a set of data-source functions DS is defined by the 

following procedure. A data relocation graph (denoted 

as Gf) corresponding to a particular Af, Sf, and DS is 

generated using the steps specified below. When the 
impact of data locality and multiple data-copies is 

considered, the concept of a valid set of data-source 

functions DS of the application program P can be defined 

according to the properties of Gr. There may be many 

valid sets for P, each corresponding to a unique graph for 

P, and each resulting in possibly different execution time 

of P. An invalid DS would correspond to a set of data- 

source functions that does not result in an operational 

program. 
The steps for constructing Gr are as follows. 

Step 1: A Source vertex is generated that represents the 

locations of all the initial data elements (which may be 

on different machines). 

Step 2: For each S[i], NI[i] + 1 vertices are created, one 
for each of the NI[i] input data items and one for all of 

the generated output data items of S[i]. These are the set 

of input data vertices, labeled V[i, f\ (0<j< NI[i\) and 

the output data vertex Vg[i]. V[i, j] represents the opera- 

tion for subtask S[i] to receive its j-th input data item. 
Vg[i] represents the computation for S[i] to generate all 
of its output data items. V is a set that contains all of the 

above vertices associated with the application program P 
in Steps 1 and 2. Each V[i,j] is associated with a weight 

zero and each Vg[i] is associated with a weight C[i, 

Af(i)], the computation time of subtask S[i] on the 

machine assigned by the assignment function Af. 

Step 3: For any input data vertex WiJih suppose that 
DS[ii](Ji) = [i2, k2] where -1 <i2<n and 0 < k2 < m, 

and if 0 < i2 < n, then k2 = Af(i2). 

Case A: £[/]] obtains its required input-data item Id[ix, 

j{\ by copying it from the Source vertex if Id[i\, ji] = 

(-1, dk) and dk is one of the initial data elements. 
If i2 = -1, then there exists k (0 < k < Q), such that Id[ix, 

;',] = (-1, dk), and a directed edge with weight D[k2, 

Af(ii), ld[ix, ji]] is added from the Source vertex to 

V[i\J\] (recall that £>S[M](/I) = \h, k2] implies that dk 

is received from machine M[k2]). That is, if subtask 
S[i! ] 's j j -th input data item Id[i i, j i ] is one of the initial 

data elements and is obtained from one of the initial loca- 
tions where dk is stored before program execution, then 

add an edge from the Source vertex to V[ilt j\] whose 
weight is the communication time interval needed to 
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transfer that initial data element from the initial location 

M[k2] where it is stored to the machine assigned to S[i]]. 

Case B: S[i i ] obtains its required input-data item Id[i i, 

j\] by copying it from the subtask that generates Id[i\, 

If 0 < 12 <n and there isy2, such that Id[i-[,j\\ = Gd[i2, 

j2], then a directed edge with weight D[k2, 4/0i)> Id[i\, 

j\]\ is added from Vg[i2] to V[i\,j\]. That is, if subtask 
S[ii]'s 7'1-th input data item Id[iu j^] is subtask S[i2]'s 
j2-th output data item Gd[i2, j2], then add an edge from 

Vg[i2] to Vfi], j]] whose weight is the communication 

time interval needed to transfer that data item from 

M[k2] to the machine assigned to S[i\]. 

Case C: S[i]] obtains its required input-data item Id[i\, 

Ji] by copying it from one of the other subtasks that have 

obtained that input-data item already. 

If 0 < i2 < n, and there is a j2, such that Id[iu j\] - 

Id[i2, j2], then a directed edge with weight D[k2, Af[i}), 

Id[il> j\]] is added from V[i2, j2] to V[ii,ji]. That is, if 
subtask S[ij]'s jx-th input data item Id[i\,j\] is obtained 
by copying subtask S[i2]'s j'2-th input data item Id[i2, 
j2], then add an edge from V[i2, j2] to V[ilt j\] whose 
weight is the communication time interval needed to 
transfer that data item from M[k2] to the machine as- 
signed to 5[/]]. 

For any input data vertex V{i\, j\] (0 < i] < n and 
0 <ji < NI[ii]) for a given DS, one and only one case of 

A, B, or C can occur. Thus, any vertex V[ij, j j] has one 

and only one parent vertex, which is specified by the 

given DS. Also, the weight of the edge between V[ij, jj] 

and its unique parent vertex is the communication time 
interval needed for £[;']] to obtain Id[iu jx] from its 
source with respect to the given Af, Sf, and DS. 

Step 4: For every 0 < i < n, a directed edge with weight 
zero is added from V[i,j] to Vg[i] (0 <j < NI[i]). 

If the Gr generated above is an acyclic graph, then 
the corresponding DS is defined as a valid set of 

data-source functions for the application program P. If 

the graph had a cycle, then deadlock would arise in the 

application program P, which makes P unschedulable. 

Readers should notice that the weight of each edge or 

vertex depends on Af, Sf, and DS. The validity of a par- 

ticular DS is based on the subtask flow graph and is in- 

dependent of the underlying Af and Sf for generating the 

specific Gr. For the rest of this paper, only valid sets of 
data-source functions will be considered. 

Step 5: For each ij and i2 (0 < i\ <n and 0 < i2 < n), if 

AAii) = Af{i2) and Sfti,) = Sf(i2) - 1 (i.e., SV^ and 
S[i2] are assigned to the same machine and Sfij] is exe- 

cuted immediately before S[i2]), a directed edge with 

weight zero is added from Vg[i'i] to Vg[i2]- The extended 
graph based on Gr and Sf after this step is defined as the 

execution graph Ex of P. If the generated execution 

graph Ex is acyclic, then the corresponding scheduling 

function generates an operational program and is defined 

as a valid scheduling function. For the rest of this paper, 

only valid scheduling functions will be considered. 

Step 6: Each vertex v of Ex is associated with a starting 

time ST(v) and a finishing time FT(v) (ST(v) and FT(v) 

are random variables). From the definitions in Steps 4 

and 5, the execution graph Ex generated is acyclic. Thus, 

there exists a topological sort [2] of the vertices in V. Set 
ST(Source) = 0. W(v) is the weight of v (recall that each 

V[i, j] is associated with a weight zero and each Vg[i] is 
associated with a weight C[i, Af(i)]).  Suppose that v,- is 

one of the immediate predecessors of v, W(vh v) is the 

weight of the direct edge from v, to v. Then ST(v) and 
FT(v) can be derived inductively one by one in the order 
specified by the topological sort according to the follow- 
ing formula: 

ST(v) = max {FT(Vj) + W(yh v)} 

FT(v) = ST(v) + W(y). 

(1) 

(2) 

Step 7: The total execution time of the application pro- 
gram P associated with an assignment function Af, a 
valid scheduling function Sf, and a valid set of data- 
source functions DS is defined by the following formula: 

Execution_time/J(A/, Sf, DS) = max{FT(v)}.    (3) 
V E V 

Suppose that E{x] denotes the expected value of a ran- 

dom variable x. The objective of matching, scheduling, 

and data relocation for HC is to find an assignment func- 

tion Af*, a valid scheduling function Sf*, and a valid set 

of data-source functions DS*, such that 

E{Execution_timef(Af*, Sf*, DS*)} = 
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min E{Execution_timep04/,S/,AS)}.        (4) 
Af,Sf,DS 

Thus, the minimization of the expected value of the total 

execution time of an application program is the optimiza- 

tion criterion of the optimization problem for HC 

described in Section 1 with respect to the stochastic 

model defined in Section 3. 

It is assumed in this mathematical model that, if 

there is no data dependency between two subtasks S[i] 

and S{j], and they are assigned to be executed on two dif- 

ferent machines by the assignment function Af, then S[i] 

and S\j] can be executed concurrently. Furthermore, the 

inter-machine communication step for one subtask to ob- 

tain one of its input data items can be overlapped with (a) 

inter-machine communication step(s) to obtain its other 
input data item(s), (b) the inter-machine communication 
steps of other subtasks to obtain their input data items, 
and (c) the computation steps of other subtasks. The dis- 
tribution of each random variable D[s, r, e] indicates any 

time delay resulting from network or machine I/O 

conflicts. 
As stated in Section 3, it is extremely difficult to 

obtain the exact distribution of D[s, r, e]. The purpose of 
the above topological sort based procedure is not for cal- 

culating Execution_time/>(A/, Sf, DS) in practice due to 

this difficulty. Rather it is to define the optimization cri- 
terion theoretically for the optimization problem of HC. 
The theorem presented in Section 6 is based on this 
defined Execution^imepCA/, Sf, DS) with a known Af, Sf, 

and DS and provides a practical local optimization stra- 

tegy for future data relocation heuristics. 

5: A procedure for enumerating the valid 
options in choosing data relocation 
schemes 

In this subsection, a procedure for enumerating all 

the valid options available in choosing data relocation 

schemes (with respect to an arbitrary matching) is 

described for subtask flow graphs without data- 
dependent conditional and looping constructs. Due to 

space limitations, the case of having data-dependent con- 

ditional and looping constructs inside the subtask flow 

graph is not described in this paper. When data- 
dependent conditional and looping constructs are present 

inside  the  subtask  flow  graph,  the  same  procedure 

presented in this section can be modified to enumerate 

the valid options in choosing data relocation schemes as 

well. The material presented in this section defines the 

search space for the optimization problem of HC men- 
tioned in Section 1. This defined search space also helps 

future data relocation heuristic developers to know all 
the valid options in choosing a data relocation scheme. 

A directed graph Dg[Af\ corresponding to a 

specific assignment function Af can be generated by con- 

necting the vertices in V as follows (recall that V is a set 

that contains all the vertices generated for any specific 
application program P according to Steps 1 and 2 

described in Section 4): 

(a) For every i\,ji, i2, and j2, where 0 < ij < n, 0 < i2 < 

n,0< jx < Nl[i\\, 0<j2< NI[i2], and ij * i2, such that 
Id[i\,j\] = Id[i2, j2] = e, a directed edge from V[i\,ji] 

to V[i2, j2] and a directed edge from V[i2, j2] to V[ilt 

ji] are added. 

(b) For every i\,j\, i2, and j2, where 0 < ij < n, 0 < i2 < 

n,0< j1 < NG[iil and 0 <j2 < NI[i2], such that Gd[iu 

ji] = Id[i2, j2] - e, a directed edge from Vg[ix] to V[i2, 

j2] is added. 
After (a) and (b), each generated data item Gd[i i, 

ji] of P corresponds to a fully connected graph of the set 

of vertices VG [iuj\] = {Vfo. J2] I Gd[ix, j,] = Id[i2, 

j2], 0<i2<n,0< j2 < NI[i2]}. This corresponds to the 

set of input data vertices that need the generated data 

item Gdtfi, jj. Also, Vg[«i] is connected uni- 
directionally (i.e., VÄ[i'i] is the starting point of each 
directed edge ) to all the vertices in VG[i\, j\\. 

(c) For every i, j, and k, such that Id[i, j] = (-1, dk), 

where 0 < i < n, 0 < j < NI[i], and 0 < k < Q, a directed 
edge from the Source vertex to V[i,f\ is added. 

After (c), each initial data item (-1, dk) (0<k<Q) 

of P corresponds to a fully connected graph of the set of 

vertices V7H1 = {V[i,f\ I Id[i,j] = (-1, dk)} (i.e., the input 

data vertices that need the initial data element dk). There 

is also a directed edge from the Source vertex to each 
vertex in VI[k]. All the edges generated in (a), (b), and 

(c) are called fetch edges. 

Figure 2 illustrates components of Dg[Af\ for the 

subtask flow graph shown in Figure 1 (d0 is an initial 
data element and X0 and Z0 are generated data items). 

The notation relevant to d0,X0, and Z0 is as follows. 
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(Vpjj) 

Figure 2: The d0, X0, and Z0 components of Dg[Af], based on the subtask flow graph in Figure 1. 

S[0]: NI[0] = 1, W[0, 0] = (-1, d0); NG[0] = 2, Gd[0, 0] 

= (0,X0)- 
5[1]: M[l] = 2, W[l, 0] = (-1, dQ), Ml, 1] = (0, X0). 
Sffl: NI[2] = 2, Id[2, 0] = (0, X0); NG[2] = 2, Gd[2, 0] = 

(2,Z0). 
S[3]: M[3] = 3, W[3, 2] = (2, Z„). 

5[5]: NI[5] = 2, Id[5, 1] = (2, Z0); and M7[5] = 0. 
Suppose that the assignment function Af for this current 

example is defined such that: AßO) = 1, Aßl) = 2, A/(2) = 

2, Aß?) = 1, A/(4) = 3, and Aß5) = 0.  After applying 
above Steps (a), (b), and (c), the edges (both solid and 

dashed lines) of Dg[Af] in Figure 2 are fetch edges 

corresponding to the initial data elements d0 and the gen- 
erated data items X0 and Z0. 

A directed graph Dg[Af] can be generated by 

knowing only P and Af. After generating Dg[Af], any 
algorithm for enumerating the spanning trees of a 

directed graph [2] can be applied to the subgraphs of 
Dg[Af] for (1) the set of vertices {Vg[i]} u VG[i,j] (0 < i 
< n and 0 < j < NG[i]) and (2) the set of vertices 

{Source} u VI[k] (0 < k < Q). The roots of all possible 
spanning trees are VM] (0 < i < n) or the Source vertex, 

respectively. Each spanning tree corresponding to the set 
of vertices {V^D']} u VG[i,j] specifies a valid data relo- 
cation scheme for the generated data item Gd[i, j]. 

Because the Source vertex can denote multiple locations 
where each initial data element dk is stored before the 

execution of P, each spanning tree corresponding to the 
set of vertices {Source} u VI[k] can specify a suite of 
valid data relocation schemes for the initial data element 

dk. In the above generated spanning trees, if the parent 

vertex of V[i\,j\\ is Wi, ji\ or Vg[i2l then £>S[;,](/i) 
= [*2> A.fi.h)]> a"d iftne parent vertex of Vf/j, j{\ is the 
Source vertex, then DS[ix](j{) = [-1, q], where M[q] is 
one of the initial locations of the corresponding initial 

data element. The solid lines in Figure 2 illustrate one 

spanning tree for each of d0, X0, and Z0, respectively. 

6: A greedy algorithm based approach to 
developing data relocation heuristics 

In this section, a greedy algorithm based approach 
to developing data relocation heuristics is presented. This 
greedy strategy is established based on the mathematical 

model, optimization criterion, and search space described 
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in Sections 3, 4, and 5, respectively, for the optimization 

problem in HC. Choosing Af, Sf, and DS to minimize the 

expected value of the total execution time based on a sto- 

chastic HC model is a complex optimization problem. 

However, developing heuristics to find suboptimal Af, Sf, 

and DS is necessary to use HC systems efficiently. 
A greedy algorithm based approach to developing 

data relocation heuristics is to find a data relocation 

scheme DS*, such that for the same Af and Sf, each sub- 

task can obtain its individual input data item as early as 
possible in terms of its expected receiving time. Readers 

should recall that, based on a stochastic HC model, the 

receiving time of each input data item of a subtask is a 
random variable. In general, it is difficult to compare two 
random variables without referring to a particular statis- 

tic (e.g., the expected value). The following theorem 
shows that, if the expected receiving time for each input 

data item of a subtask can be minimized, then the 
expected time when each subtask has received all of its 

input data items can be minimized based on the assump- 
tions of the distributions of those receiving times stated 

later. This conclusion demonstrated by the following 
theorem is not obvious because the expected value of the 
maximum of a set of random variables is not necessarily 
equal to the maximum of the corresponding expected 

values of the same set of random variables. 
Suppose that rt(V[i, j]) and rt'(V[i, j]) are the ran- 

dom variables that specify the receiving times of input 
data item Id[i, j] for subtask S[i], corresponding to two 
different data relocation schemes DS and DS for the 
same Af and Sf. The following assumptions about rt(V[i, 

j\) and rt'(V[i,j]) are made: 

(1) rt(V[i, j]) + k and rt'(V[i, j]) + k for a fixed i and j 

(where k and k are arbitrary constants) belong to the 
same two-parameter family of random variables [1] such 

that their probability distribution functions can be com- 

pletely determined by their corresponding means and 
variances. Most of the common families of distributions 
for random variables, such as normal distribution, 

Gamma distribution, and Beta distribution, have this pro- 

perty. 

(2) The variance of rt(V[i, j]) is equal to the variance of 

rt'(V[i,j\) for fixed i andj. 

(3) For any data relocation scheme DS, rt(V[i, jx]) + cx 

is independent of rt{V[i, j2]) + c2 Oi *h and c, and c2 

are arbitrary constants). 

Readers should notice that assumptions (1), (2), 

and (3) are all related to the statistical properties of 

rt(V[i, j]) and rt'(V[i, ;']). As long as they are approxi- 

mately satisfied in reality, the theorem that follows based 

on those assumptions still has practical as well as 

theoretical significance. The following discussion pro- 

vides the rationale behind the above three assumptions. 

For assumptions (1) and (2), because rt(V[i, j\) and 

rt'(V[i,J]) are two random variables for specifying the 

receiving times of the same data item (i.e., Id[i, j]) for 
S[i\ corresponding to two different data relocation 

schemes and the same Af and Sf, it is quite reasonable to 
assume that they have certain similar statistical proper- 

ties (e.g., their variances, their families of distribution). 

For assumption (3), although rt(V[i, ji]) and rt{V[U j2]) 
are defined for two different data items, but if the inter- 

machine data transfer steps for Id[i,jx] and Id[i, j2] will 
impact each other or those two data items are generated 
by the same subtask, their corresponding receiving times 

by S[i] can be correlated to each other. However, condi- 
tions exist under which the random variables can be 
treated as independent with each other despite this type 

of correlation. The Kleinrock independence approxima- 
tion for a data network in which there are many interact- 
ing transmission queues [6] is a well-known condition 
for describing this situation. This Kleinrock indepen- 
dence approximation is used here as the basis for assum- 
ing independence between rt(V[i,f\) + cx and rt (V[t,/|) 

+ c2 that may technically be correlated. 

Theorem: For two different data relocation schemes DS 

and DS , with the same Af and Sf, and a fixed i (0 < i < 

n), suppose Xj = rt(V[i, j]), Y± = rt'(V[i, f\), X = max[Xy], 

and Y = max[F;] (0 < ; < M[i]), where X and Y are ran- 
j 

dorn variables for specifying the times when S[i] receives 

all of its input data items with respect to DS and DS . If 

E{Xj} < E{ Yj} for 0 <j < NI[i], then E{X} < E{ Y}. 

Proof: Suppose that the distribution function of a random 

variable w is Fw. Because E{X,} < EfF,-} for all;, there 

exists cj > 0, such that E{X,} + c,- = E{ Yj}. It is true that 

E{Xj+Cj)=B{Yj) 

and 
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Var{Xj + cj}= Var{X,} = Var{ Y}} 

due to assumption (2). Then, because of assumption (1), 

Xj +c .- =FY 

From assumption (3), 

{Xj + cj \0<j<NI[i]} 

is a set of independent random variables and 

{Yj \0<j<NI[i]} 

is another set of independent random variables. With the 

properties associated with the ' 'max'' operator over mul- 

tiple independent random variables [1], it can be shown 
that 

NI[i] - 1 NI[i] - 1 
Fmax[Xj+Cj}=    Ft   FXj+Cj  =    El   FYj  = Fmax[Yj}- 

j=0 j=0 

Therefore, 

E{Y}=E{meLx[Yj]}=E{max[Xj + Cj]}. 

Without loss of generality, suppose c0 = min[c,-], then 

E{Y)=E{m?x[Xj+Cj]} 

>E{max[Z, +c0]} 

>E{max[Xj]} 

= E{X}. 

Thus, E{X}<E{y}. 

Based on the above theorem, the greedy algorithm 
based approach that finds DS* to minimize E{rt(V[i, j])} 

for S[i] to obtain Id[i, j] with respect to the same Af and 

Sf for all 0 < i < n can also minimize the expected time 

when each subtask receives all of its input data items 
(i.e., E{X}) and is ready for its computation. The exact 

starting time and the cost of the computation for S[i] (i.e., 

ST(Vg[i]) and C[i, Af(i)]) depend on the choice of Af and 

Sf But with respect to the same given Af and Sf DS* is 

the optimal data relocation scheme that minimizes the 

expected value of the probability distribution of the exe- 
cution time (as defined in Section 4). 

The significance of the above theorem is that it 

shows a greedy algorithm based approach is the best for 
data relocation heuristics. Based on the above conclu- 

sion, in order to minimize the expected total execution 

time of an application program executed in a dedicated 
HC system, data relocation heuristics should select the 

source for each input data item of S[i], among all the 

valid options described in Section 5, such that its receiv- 

ing time by S[i] is as small as possible. Referring to the 

above theorem, for a specific subtask, there exists a DS 

that is better than all other DS'. But the inter-machine 

communication steps specified by the selected DS for one 

subtask may impact the expected receiving time of input 
data items for other subtasks. Thus, the DS* that minim- 

izes E{rt(V[i, j])} for every S[i] may be hard to find or 

may not exist. Trade-offs must be made to choose a 

suboptimal data relocation scheme, such that more input 

data items can be obtained by more subtasks as quickly 
as possible. 

6: Summary 

In an HC system, the subtasks of an application 

program P must be assigned to a suite of heterogeneous 

machines (the matching problem) and ordered (the 

scheduling problem) to utilize computational resources 

effectively. The matching and scheduling solutions 
presented in the literature, in general, concentrate on 
decreasing the computation time of P. The inter-machine 
communication time of P is impacted by the scheme for 
distributing the initial data elements and the generated 
data items of P to different subtasks (the data relocation 
problem). 

The inter-machine communication time in an HC 
system can have a significant impact on overall system 
performance, so that any technique that can be used to 
reduce this time is important. This paper focused on the 

data relocation scheme to decrease the inter-machine 
communication time for given matching and scheduling 

schemes, when the possible concurrent execution of mul- 
tiple subtasks on different machines is considered. 

This paper concentrates on theoretical aspects of 

matching, scheduling, and data relocation for stochastic 

HC. The optimization problem for minimizing the total 
execution time of an application program executed in a 

dedicated HC system with respect to the above three fac- 
tors is completely defined based on a stochastic 

mathematical model, optimization criterion, and the 

search space described in Sections 3, 4, and 5. The prac- 

tical application of the above theoretical results is 
demonstrated by the theorem shown in Section 6 that 

proves a greedy algorithm based approach is the best 

strategy for developing data relocation heuristics. The 
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greedy local optimization strategy, coupled with the 

search space defined for choosing the data relocation 

schemes, can help developers of future data relocation 

heuristics. 

Acknowledgments: The authors thank J. K. Antonio, M. 

B. Kulaczewski, Y. A. Li, and J. M. Siegel for their valu- 

able comments. 

References: 

[1] G. Casella and R. L. Berger, Statistical Inference, 
Wads worth & Brooks/Cole Advanced Books & 
Software, Pacific Grove, CA, 1990. 

[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, 
Introduction to Algorithms, MIT Press, Cambridge, 
MA, 1992. 

[3] R. F. Freund, "Optimal selection theory for super- 
concurrency," Supercomputing '89, Nov. 1989, pp. 
699-703. 

[4] A. Ghafoor and J. Yang, "Distributed heterogene- 
ous supercomputing management system," IEEE 
Computer, Vol. 26, No. 6, June 1993, pp. 78-86. 

[5] M. A. Iverson, F. Ozguner, and G. J. Folien, ' 'Paral- 
lelizing existing applications in a distributed hetero- 
geneous environment," Heterogeneous Computing 
Workshop, Apr. 1995, pp. 93-100. 

[6] L. Kleinrock, Communication Nets: Stochastic Mes- 
sage Flow and Delay, McGraw-Hill, New York, 
NY, 1964. 

[7] Y. A. Li, J. K. Antonio, H. J. Siegel, and M. Tan, D. 
W. Watson, "Estimating the distribution of execu- 
tion times for SIMD/SPMD mixed-mode pro- 
grams," Heterogeneous Computing Workshop, Apr. 
1995, pp. 35-46. 

[8] H. J. Siegel, J. K. Antonio, R. C. Metzger, M. Tan, 
and Y. A. Li, "Heterogeneous computing," in 
Parallel and Distributed Computing Handbook, A. 
Y. Zomaya, ed., McGraw-Hill, New York, NY, 
1996, pp. 725-761. 

[9] M. Tan, J. K. Antonio, H. J. Siegel, and Y. A. Li, 
"Scheduling and data relocation for sequentially 
executed subtasks in a heterogeneous computing 
system," Heterogeneous Computing Workshop, 
Apr. 1995, pp. 109-120. 

[10] D. Towsley, "Allocating programs containing 
branches and loops within a multiple processor sys- 
tem," IEEE Transactions on Software Engineering, 
Vol. SE-12, No. 10, Oct. 1986, pp. 1018-1024. 

AUTHOR BIOGRAPHIES 

Min Tan is a Ph.D. candidate in the School of Electrical 

and Computer Engineering at Purdue University, West 

Lafayette, Indiana, USA. His research interests include 
data source management in heterogeneous computing, 
data staging issues for network communication, video 

compression and financial applications on parallel and 

distributed systems, and dynamic partitionability for 

reconfigurable parallel processing machines. He has 

authored or coauthored ten conference papers, one book 

chapter, and two technical reports. 

Mr. Tan attended Shanghai Jiao Tong University, 

Shanghai, People's Republic of China, in 1988. In 1991, 

he went to Western Maryland College, Maryland, USA, 

and received a BA degree in Mathematics and Physics in 
1993. In 1994, he received an MS degree in Electrical 

Engineering from Purdue University. While at Purdue, 

he received the "Estus H. and Vashti L. Magoon Out- 

standing Teaching Assistant Award" in 1996. He also 

worked as a software engineer for Dupont Photomasks, 

Inc., and for Hughes Network Systems, Inc., during the 

summers of 1995 and 1996, respectively. Mr. Tan is a 
member of IEEE, the IEEE Computer Society, and the 

Eta Kappa Nu honorary society. 

Howard Jay Siegel is a Professor and Coordinator of the 
Parallel Processing Laboratory in the School of Electrical 
and Computer Engineering at Purdue University. He 

received two B.S. degrees from the Massachusetts Insti- 
tute of Technology (MIT), and the M.A., M.S.E., and 
Ph.D. degrees from Princeton University. He has coau- 
thored over 230 technical papers, has coedited seven 
volumes, and wrote the book ' 'Interconnection Networks 
for Large-Scale Parallel Processing" (second edition 
1990). He is a Fellow of the IEEE, was a Coeditor-in- 
Chief of the Journal of Parallel and Distributed Comput- 

ing, and is currently on the Editorial Boards of both the 
IEEE Transactions on Parallel and Distributed Systems 
and the IEEE Transactions on Computers. He is an inter- 

national keynote speaker and tutorial lecturer, as well as 

a consultant. 

Prof. Siegel's research interests include hetero- 
geneous computing, parallel algorithms, interconnection 

networks, and the PASM reconfigurable parallel com- 

puter system. In the area of heterogeneous computing, 

he is examining ways to match segments of a task to dif- 

ferent machines in a heterogeneous suite to exploit the 

varied computational capabilities available. His algo- 
rithm work explores the factors involved in mapping a 

problem onto a parallel processing system to minimize 

133 



execution time. Topological properties and fault toler- 
ance are the focus of his research on interconnection net- 

works for large-scale parallel machines. He is analyti- 

cally and experimentally investigating the utility of the 

three dimensions of dynamic reconfigurability supported 

by the PASM design ideas and the small-scale proof-of- 

concept prototype: mixed-mode parallelism, switchable 
inter-processor communications, and system partitiona- 
bility. 

Prof. Siegel was Program Co-Chair of the "1983 
International Conference on Parallel Processing," Pro- 

gram Chair of ' 'Frontiers '92: The 4th Symposium on the 

Frontiers of Massively Parallel Computation," and Pro- 

gram Chair of the "8th International Parallel Processing 

Symposium." In addition, he has been General 

Chair/Co-Chair of four international conferences and 
Chair/Co-Chair of four workshops. 

134 



Optimal Task Assignment in Heterogeneous Computing Systems 

Muhammad Kafil and Ishfaq Ahmad 

Department of Computer Science 
The Hong Kong University of Science and Technology, Hong Kong. 

Abstract1 

Distributed systems comprising networked 
heterogeneous workstations are now considered to be a 
viable choice for high-performance computing. For 
achieving a fast response time from such systems, an 
efficient assignment of the application tasks to the 
processors is imperative. The general assignment problem 
is known to be NP-hard, except in a few special cases with 
strict assumptions. While a large number of heuristic 
techniques have been suggested in the literature that can 
yield sub-optimal solutions in a reasonable amount of 
time, we aim to develop techniques for optimal solutions 
under relaxed assumptions. The basis of our research is a 
best-first search technique known as the A * algorithm from 
the area of artificial intelligence. The original search 
technique guarantees an optimal solution but is not 
feasible for problems of practically large sizes due to its 
high time and space complexity. We propose a number of 
algorithms based around the A* technique. The proposed 
algorithms also yield optimal solutions but are 
considerably faster. The first algorithm solves the 
assignment problem by using parallel processing. 
Parallelizing the assignment algorithm is a natural way to 
lower the time complexity, and we believe our algorithm to 
be novel in this regard. The second algorithm is based on 
a clustering based pre-processing technique that merges 
the high affinity tasks. Clustering reduces the problem size, 
which in turn reduces the state-space for the assignment 
algorithm. We also propose three heuristics which do not 
guarantee optimal solutions but provide near-optimal 
solutions and are considerably faster. By using our 
parallel formulation, the proposed clustering technique 
and the heuristics can also be parallelized to further 
improve their time complexity. 

Keywords: Best-first search, parallel processing, task 
assignment, mapping, distributed systems. 

1 Introduction 
The fast progress of network technologies and 

sequential processors has made distributed computing 
systems, such as networks of heterogeneous workstations 
or PCs, an attractive alternative to massively parallel 
machines. To exploit the capabilities of these systems for 
an effective parallelism, the tasks of an application must be 
properly assigned to the processors. 

Given a parallel program represented by a task graph 
and a network of processors also represented as a graph, 

1. This research was supported by the Hong Kong Research Grants 
Council under contract number HKUST 619/94E. 

the assignment problem is to find an allocation of the tasks 
to the processors that results in the minimum turnaround 
time. This is usually done by assigning an equal amount of 
load to all processors and by reducing the overhead of 
interaction among them. An assignment can be static or 
dynamic, depending upon on the time at which the 
allocation or assignment decisions are made. In a static 
assignment the information about the tasks and processors 
in the systems is assumed to be known in advance, and the 
tasks are allocated to the processors before starting the 
execution. The task assignment problem, also known as 
the allocation problem or the mapping problem [4], is well 
known to be NP-hard [6], but continues to be regarded as 
an interesting and important problem. 

Most of the algorithms proposed in the past yield sub- 
optimal solutions while optimal algorithms exist only for 
restricted cases or small problem sizes. Optimal solutions, 
however, are required in many situations where 
performance is the primary goal. Also, once an optimal 
assignment of a program is determined, one can reuse this 
information for future mappings. 

The simplest approach to finding an optimal solution is 
an exhaustive search. But since there are nm ways for 
assigning m tasks to n processors, an exhaustive search is 
impractical. Another possibility is to reduce the size of the 
state-space using an informed search. The A* algorithm 
from the area of artificial intelligence is one such informed 
search algorithm. The algorithm, despite guaranteeing an 
optimal solution, is not feasible for problems of practically 
large sizes because of its high time and space complexity. 
Thus, we need ways to either further reduce the size of the 
state-space, or speedup the search process using parallel 
processing — or do both. 

Since a parallel program is executed on multiple 
processors, it is natural to utilize the same processors to 
speedup the mapping of the program. Parallel processing 
can help in reducing the search time and allows to find 
optimal assignments for larger problem sizes, as compared 
to the serial algorithms. Even for a sub-optimal solution, 
parallel processing can help in solving a problem of larger 
size. However, very little work has been done on using 
parallel processing in solving the assignment problem; a 
few exceptions are the parallel heuristic for the scheduling 
problem proposed by Ahmad and Kwok [2] and the 
parallel heuristics for the assignment problem proposed by 
Bultan and Akyanat [5]. To the best of our knowledge, no 
prior work on finding an optimal assignment using parallel 
processing has been reported. 

0-8186-7879-8/97 $10.00 © 1997 IEEE 
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We propose a parallel algorithm that generates an 
optimal solution for assigning an arbitrary task graph to an 
arbitrary network of heterogeneous processors. The 
algorithm, running on the Intel Paragon parallel machine, 
gives optimal assignments for small to medium size 
problems, with a reasonable speedup. We also propose a 
clustering based pre-processing algorithm that merges the 
high affinity tasks before starting the search. This reduces 
the problem size which in turn reduces the size of the state- 
space for the assignment algorithm. We also propose three 
heuristics which do not guarantee optimal solutions but 
yield near-optimal solutions and take considerably less 
execution time. The proposed heuristics and the 
clustering-based approach can also be parallelized using 
the proposed parallel formulation. 

2 Problem Definition 
A parallel program can be partitioned into a set of m 

communicating tasks represented by an undirected graph 
GT = (Vj, ET) where VT is the set of vertices, {tb t2,.., tm), 
and ET is a set of edges labelled by the communication 
costs between the vertices. The interconnection network of 
n processors, {p/,p2,..,p,,}, is represented by an n*n matrix 
L, where an entry L,y is 1 if the processors i and j are 
connected, and 0 otherwise. 

A task tj from the set VT can be executed on any one of 
the n processors of the system. In a heterogeneous system 
[16], each task has an execution cost associated with it on 
a given processor. The execution costs of tasks are given 
by a matrix X, where the matrix entry X^ is the execution 
cost of task i on processor p. When two tasks tt and t, 
executing on two different processors need to exchange 
data, a communication cost is incurred. Communication 
among the tasks is represented by a matrix C, where C,-.- is 
the communication cost between task i andy if they reside 
on two different processors. The load on a processor is the 
combination of all the execution and communication costs 
associated with the tasks assigned to it. The total 
completion time of the entire program will be the time 
needed by the heaviest loaded processor. 

Task assignment problem is to find a mapping of the set 
of m tasks to n processors such that the total completion 
time is minimized. The mapping or assignment of tasks to 
processors is given by a matrix A, where Aip is 1 if task i is 
assigned to processor p and 0 otherwise. The load on a 
processor p is given by 

m n      m     m 

~ZxinmA;„+ y y y (CA.A.L ) 
' = 1 q=\i=]j=\ 

(P*1) 

The first part of the equation represents the total 
execution cost of the tasks assigned to processor/;, and the 
second part is the communication overhead on p. To find 
the processor with the heaviest load, the load on each of the 
n processors needs to be computed. The optimal 
assignment is the one that results in the minimum load on 
the heaviest loaded processor among all the assignments. 

3 Related Work 
A large number of task assignment algorithms have 

been proposed using various techniques such as network 
flow [17], integer programming [12], state-space search 
[14, 15, 18], clustering [3], bin-packing [19], randomized 
optimization [1, 5, 7, 8], etc. Most of these algorithms can 
be classified according to the taxonomy given in Figure 1. 
At the first level of the hierarchy these algorithms can be 
classified as optimal and sub-optimal categories, where the 
optimal algorithms can be further classified as restricted or 
non-restricted categories. Restricted algorithms yield 
optimal solutions in a polynomial time by restricting the 
structure of the program and/or the multicomputer system. 
Non-restricted algorithms, on the other hand, consider the 
problem in a more general context; they give optimal 
solutions but not necessarily in a polynomial time. 

Sub-optimal algorithms can be divided into 
approximate or heuristics classes. Approximate 
algorithms [9] assume the same computational model used 
by the optimal algorithm. But instead of searching the 
complete solution space for optimal solution, approximate 
algorithms guarantee a solution that is within a certain 
range from the optimal solution. Heuristic algorithms 
make use of special parameters which affect the system in 
indirect ways, for example, clustering the groups of 
heavily communicating tasks together. A greedy heuristic 
starts from a partial assignment and assigns one task at 
each step until a complete assignment is obtained; in 
general, backtracking is not allowed. Bin-packing 
techniques use a sizing policy, an ordering policy, and a 
placement policy for the tasks to be assigned. Randomize 
optimization methods start from a complete assignment 
and search for an improvement in the assignment by 
exchanging and moving tasks among different processors. 

Because of the intractable nature of the problem most 
of the research is focused on the development of heuristic 
algorithms. There are also some optimal algorithms 
available either for restricted cases of the problem or for 
very small problem sizes. 

4 Overview of the A* Technique 
The A* algorithm is a best first search algorithm [13]. 

It has been extensively used for problem solving in 
artificial intelligence. The algorithm is used to search 
efficiently in a search-space (which is a tree in our case but 
can be some other type of graph). It searches the nodes of 
the tree starting from the root called the start node (usually 
a null solution of the problem). Intermediate nodes 
represent the partial solutions while the leaf nodes 
represent the complete solutions or goals. 

Associated with each node is a cost which is computed 
by a cost function /. The nodes are ordered for search 
according to this cost, that is, the node with the minimum 
cost is searched first. The value of / for a node n is 
computed as: 

fin) = g(n) + h(n) 
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Figure 6: A classification of task assignment algorithms. 

where g(n) is the cost of the search path from the start node 
to the current node n; h(n) is a lower bound estimate of the 
path cost from node n to the goal node (solution). 
Expansion of a node is to generate all of its successors or 
children and compute the / value for each of them. The 
algorithm maintains a sorted list, called OPEN, of nodes 
(according to their/values) and always selects a node with 
the best cost for expansion. Since the algorithm always 
selects the best cost node, it guarantees an optimal solution. 
Since for a leaf node n, h(n) is 0, we will set the value of 
fin) equal to g(n) for all leaf nodes. 

4.1 Application to Task Assignment 
For the task assignment problem under consideration, 

the search space is a tree. The initial node (the root) is a 
node with null assignment, i.e., no task is assigned; 
intermediate nodes are nodes with partial assignments, i.e., 
some tasks are assigned while others are still unassigned at 
this stage. A solution (goal) node is a node with a complete 
assignment (all task are assigned). For the computation of 
the cost function, g(n) is the cost of partial assignment (A) 
at node n, that is, the load on the heaviest loaded processor. 
For the computation of h(n), two sets Tp (the set of tasks 
which are assigned to the heaviest loaded processor/?) and 
U (the set of tasks which are unassigned at this stage of the 
search and have a communication link with any task in set 
T„) are defined. Now each task t,- in U will be assigned to 
either processor p or any other processor q which has a 
direct communication link with p. Thus, there can be two 
kinds of costs associated with the assignment of each t,-: 
X,-„ (the execution cost of t(- on processor/?) and the sum of 
communication cost with all the tasks in set Tp. Let cost (t,-) 
be the minimum of these two costs, then h(n) is computed 
as; 

h(n)  =   X cosf(r,) 
tfiV 

The algorithm A* is described as follows: 

The A* Algorithm 

(1) Build the initial node s and insert it into the list OPEN 
(2) Set/W = 0 
(3) Repeat 
(4) Select the node n with the smallest/ value. 
(5) if (n is not a solution) 
(6) Generate successors of n 
(7) for each successor node n' do 
(8) if (n' is not at the last level in the search tree) 
(9) fin') = g(n') + h(n') 
(10) elsefin') = g(n') 
(11) Insert n' into OPEN 
(12) end for 
(13) end if 
(14)if (n is a solution) 
(15)    Report the Solution and stop 
(16)Until (n is a Solution) or (OPEN is empty) 

A study by Ramakrishnan et cd. [14] showed that the 
order in which the tasks are considered for allocation has 
a great impact on the performance of the algorithm (for the 
same cost function used). Their study indicated that a 
significant performance improvement could be achieved 
by first considering the tasks with larger weights in the 
computation of the optimal cost at the shallow levels of the 
tree. They proposed a number of heuristics for ordering the 
tasks. Out of these heuristics the so called minimax 
sequencing heuristic has been shown to perform the best. 
The minimax sequencing works as follows. Consider a 
matrix Hofm rows and n columns where m is the number 
of tasks and n is the number of processors. The entry H (i, 
k) of the matrix is given by 

H(i,k)  =Xik + h(v), 

where h(v) is given by 

A(v) =   I miniX^dj), 
ye V 

where [/is the set of unassigned tasks which communicate 
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with tt. The minimax value, mm (r,) of task tt is defined as 

mm(ti)  = min{H(i,k),l<k<n}. 

The minimax sequence is then defined as: 

n =  {T,,T2, ...,xm},/nm(t,.) >wrm(t. + ]),V/. 

4.2 An Illustrative Example 
Given a set of 5 tasks, {t0, t„ t2, t3, t4) and a set of 3 

processors {p0, p,, p2} as shown in Figure 2, the algorithm 
first generates the minimax sequence {tg, t,, 12, t4, t3}. 

Processor graph 2 

Po PJ P2 

to 15 11 9 

tj 14 12 8 

t* 16 13 6 

t3 5 4 3 

U 10 9 7 

Execution cost matrix 

Task graph 

Figure 2: An example task graph and a processor and the network, 
execution costs of the tasks on various processors. 

Figure   2   illustrates   the   search   tree   for  finding   the 
assignment for this example. 

A node in the search tree includes the partial 
assignment of tasks to processors as well as the value of/ 
(the cost of partial assignment). The assignment of m tasks 
to n processors is indicated by an m digit string 'aga,...am_ 
/, where a, ( 0 < i < m - 1) represents the processor (0 to 
n -1) to which rth task has been assigned. A partial 
assignment means that some tasks are unassigned; the 
value of a,- equal to 'X' indicates that ith task has not been 
assigned yet. Each level of the tree corresponds to a task, 
thus replacing an 'X' value in the assignment string with 
some processor number. Node expansion is to add the 
assignment of a new task to the partial assignment. Thus 
the depth (d) of the search tree is equal to the number of 
tasks m, and any node of the tree can have a maximum of 
n (no of processors) successors. 

The root node includes the set of all unassigned tasks 
'XXXXX'. For example in Figure 2, the allocations of t0 to 

Po ('OXXXX'), t0 top, (' 1XXXX'), and t0 top2 ('2XXXX') 
are considered by determining the costs of assignments at 
the first level of the tree. The assignment of t0 to p0 

('OXXXX') results in the total cost/(n) being equal to 30. 
The g(ri) in this case equals 15 which is the cost of 
executing t0 on p0. The h{ri) in this case also equals 15 
which is the sum of minimum of the execution or 
communication costs of t, and t4 (tasks communicating 

with t0). The costs of assigning t0 top, (26) and t0 top2 (24) 
are calculated in a similar fashion. These three nodes are 
inserted to the list OPEN. Since 24 is the minimum cost, 
the node '2XXXX' is selected for expansion. The search 
continues until the node with the complete assignment 
('20112') is selected for expansion 

At this point since this is the node with a complete 
assignment and the minimum cost, it is the goal node. 
Notice that all assignment strings are unique. A total of 39 
nodes are generated and 13 nodes are expanded. In 
comparison, an exhaustive search will generate nm = 243 
nodes in order to find the optimal solution. 

5 The Proposed Algorithms 
In this section, we describe our proposed parallel and 

clustering algorithms for optimal solutions. The sub- 
optimal algorithms are also explained in this section. 

5.1 The Parallel Algorithm 
The objective of the parallel algorithm is to divide the 

search tree among the processing elements (PEs) as evenly 
as possible and to avoid the expansions of non-essential 
nodes, that is, the nodes which are not expanded by the 
sequential algorithm. A good overview of parallel depth- 
first and best-first search algorithms are given in [10] [11]. 
To distinguish the processors on which the parallel task 
assignment algorithm is running from the processors in the 
problem domain, we will denote the former with the 
abbreviation PE (processing element which in our case is 
the Intel Paragon processor). We call this parallel 
algorithm the Optimal Assignment with Parallel Search 
(OAPS) algorithm. 

The OAPS Algorithm: 
(1) Init- PartitionO 
(2) SetUp-NeighborhoodO 
(3) Repeat 
(4) Expand the best cost node from OPEN 
(5) if (a solution found) 
(6) if (it's better than previously received Solutions) 
(7) Broadcast the Solution to all PEs 
(8) else 
(9) Inform neighbors that I am done 
(10) end if 
(11) Record the solution and stop 
(12) end if 
(13) If (OPEN's length increases by a threshold u) 
(14) Select a neighbor PE j using RR 
(15) Send the current best node from OPEN to j 
(16) end if 
(17) If (Received a node from a neighbor) 
(18) Insert it to OPEN 
(19) if (Received a solution from a PE) 
(20) Insert it to OPEN 
(21) if (Sender is a neighbor) 
(22) Remove this from neighborhood list 
(23) end if 
(24)UntiI (OPEN is empty) OR (OPEN is full) 
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Figure 3: The search tree for the example problem 
(nodes generated = 39, nodes expanded =13). 

Initially the search tree is divided statically based on 
the number of processing elements (PEs) P in the system 
and the maximum number of successors, S, of a node in the 
search tree. There could be three situations: 

Case 1) P< S: Each PE will expand only the initial 
node which results in S new nodes. Each PE will get one 
node and additional nodes are distributed in a round robin 
(RR) fashion. 

Case 2) P = S: Only the initial node will be expanded 
and each PE will get one node. 

Case 3) P > S: Each PE will keep expanding nodes 
starting from the initial node (the null assignment) until the 
number of nodes in the list is greater than or equal to P. List 
is sorted in an increasing order of cost values of the nodes. 
The first node in the list will go to PEJ; the second node 
will go to PEp, the third node goes to PE2, the fourth node 
goes to PE„.;, and so on. Extra nodes will be distributed in 
RR fashion. Although there is no guarantee that a best cost 
node at the initial levels of the tree will lead to a good cost 
node after some expansions, the algorithm still tries to 
distribute the good nodes as evenly as possible among all 
the PEs. 

If a solution is found during the search, the algorithm 
terminates. Note that there is no master PE which is 
responsible for generating and distributing nodes among 
the PEs. Therefore, the overhead of the static node 
assignment is negligible as compared to the host-node 
style because the whole process is done in parallel. To 
illustrate this,  we consider the example of the task 

assignment problem of assigning 10 tasks to 4 processors 
using 2 PEs (PE1 and PE2). Here S is 4 since a node in the 
search tree can have a maximum of 4 successors. Each PE, 
therefore, generates 4 nodes numbered from 1 to 4 (as 
shown in Figure 4 where the number in a box is the/value 
of the node). PE1 will then get the first and third node 3, 
while PE2 will get the second and fourth node. 

PE1. 

30 

30 35 45 55 

/ 1 JP> <^3 \4 
s^PE2 

45 35 55 

Figure 4: An initial static assignment. 

If there is no communication among the PEs after the 
initial static assignment (i.e., every PE just searches its 
own tree), some of them may work on a good part of the 
search space, while others may expand unnecessary nodes 
(i.e., the nodes which the serial algorithm will not expand). 
This can result in a poor speedup. To avoid this, PEs need 
to communicate to share the best part of the search space 
and to avoid unnecessary work. This communication can 
be global (a PE broadcast its nodes to all other PEs) or 
local (a PE communicates only with its neighbors). 

In our formulation we have used a round robin (RR) 
within neighborhood communication strategy. With this 
communication strategy a PE can share the best part of the 
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Figure 5: The operation of the parallel assignment algorithm using three PEs. 
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search space. Further, a PE can avoid unnecessary work 
explicitly by communicating with its neighbors and 
implicitly by broadcasting its solution to all other PEs. 
Since the Paragon PEs are connected together with a mesh 
topology, a PE can have a maximum of 4 neighbors. Since 
most of the time a PE communicates only with its neighbor, 
a low communication overhead is incurred making the 
algorithm more scalable as compared to a global 
communication strategy. 

A PE periodically (when OPEN increases beyond a 
threshold u) selects a neighbor in a RR fashion and then 
sends its best node to that neighbor. As a result, the load is 
balanced and the best part of the search space is shared 
within the neighborhood of a PE. At finding a solution, a PE 
broadcasts it to all the PEs, thus helping in avoiding the 
unnecessary work for a PE that is working on the bad part 
of the search space. Once a node receives a better cost 
solution than its current best node, it stops expanding the 
unnecessary nodes. The PE that finds the first solution 
broadcasts its result to all other PEs, and from that point 
each PE broadcasts its solution only if its cost is better than 
a previously received solution. 

With an initial partitioning, every PE has one or more 
nodes in its list OPEN. Each PE then determines the PEs in 
its neighbor by using its own position in the mesh (topology 
of the Intel Paragon). A PE starts expanding new nodes 
starting from the initial nodes. PEs then interact with each 
other for exchanging their best nodes and to broadcast their 
solutions. When a PE finds a solution, it records it in a 
common file (opened by all PEs) and stops. The optimal 
solution is the solution with the minimum costs among all 
PEs. 

To illustrate the operation (see Figure 5) of the OAPS 
algorithm, we consider the example used earlier for the 
sequential assignment algorithm. Here we assume that the 
parallel algorithm runs on three PEs connected together as 
a linear chain. Initially three nodes are generated as in the 
sequential case. Then, through the initial partitioning, these 
nodes are assigned to the three PEs. Each PE then goes 
through a number of steps. In each step, there are two 
phases: the expansion phase and the communication 
phase1. In the expansion phase, a PE sequentially expands 
its nodes (the newly created nodes are shown with thick 
borders). It will keep on expanding until it reaches the 
threshold (M) (which is set to be 3 in this example). In the 
communication phase, a PE selects a neighbor and then 
sends its best cost node to it. The selection of the neighbors 
is done in a RR fashion. In Figure 5, the exchange of the 
best cost nodes among the neighbors is shown by dashed 
arrows. In the 5th step, PE1 finds its solution, broadcasts it 
to other PEs, and then stops. In the final step, PEO also 
broadcasts (not shown here for the sake of simplicity) its 
solution to PE2 which finally records its solution and stops. 

1. The synchronous operation of PEs shown here is just to 
illustrate the concept; the actual algorithm is fully 
asynchronous and thus may follow a different sequence — 
the final result will of course be the same. 

5.2 The Preprocessing Clustering Algorithm 
The algorithm starts by clustering (or merging) the 

tasks in the task graph. Two tasks are merged if the 
communication cost among them is so high that they will 
never be assigned to two different processors in the 
optimal assignment; Equations 5.1 and 5.2 given below 
ensure that the two tasks under consideration are never 
assigned to two different processors. Clustering reduces 
the size of the task graph and hence the depth (d) of the 
resulting search tree. 

The algorithm first sorts the edges of the task graph, 
and then selects the largest edge (i, j), where task i and; are 
the tasks connected with the edge. The cost of an edge 
when mapped onto an edge of the processor graph is 
defined as the sum of the edge cost and the minimum 
execution cost of task i or j on the processors of the 
processor edge. The cost is computed using the following 
equation: 

(min { (Xip + C;.) • Lpq, (Xjq + Ci}) • Lpq}\ 
mm Urn { (Xjp + Cy) • Lpq, (Xiq + Cy) • Lpq}) (5.1) 
p, q = 1 to n 

The cost of assigning tasks i and j to the same 
processor is the minimum execution cost of two tasks on 
either of the two processors of the processor edge. This 
cost is given by the following equation. 

min   {(Xip + Xjq)AXiq + Xjq))       (5.2) 
p, q = 1 to n 

A selected edge is merged if the cost of mapping it onto 
all of the processor edges is higher than the cost of 
assigning the two tasks on the same processor. The 
clustering process is repeated for all the edges of the 
processor graph. 

The clustering process is illustrated by an example, 
given in Figure 6, where the largest edges selected are 
shown as thick edges. In the first iteration the edge (t2, t4) 
is selected and task t4 is merged with t2 and its 
communication links with other tasks are added to t2. In 
the second iteration tj is merged. In the third iteration, the 
selected edge is not merged, and the algorithm stops. 

After clustering, the tasks are reordered using the 
minimax sequencing as discussed in Section 4.1. Now the 
tasks are selected for the assignment using this sequence. 

The clustering procedure guarantees an optimal 
assignment only when the processors are fully-connected 
since the searching algorithm assigns two communicating 
tasks only to the directly connected processors. 

5.3 Sub-optimal Algorithm 
The sub-optimal algorithm, henceforth referred to as 

the Sub-Optimal Assignments (SA) algorithm, is designed 
to obtain the solution faster and to overcome the high 
memory requirements of A*. The basic idea in this 
algorithm is that when the search process reaches a certain 
level deep in the search tree, some search can be avoided 
(some tree nodes can be discarded) without moving far 
from the optimal solution. Based on this reasoning, we 
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propose three heuristics, SA1, SA2 and SA3. The first 
heuristic (SA1) is explained as follows. When the 
algorithm selects a node for expansion and that node 
belongs to a level R or deeper than that in the search tree, 
it generates only its best successor instead of generating all 
the successors (i.e., it discards all successors except the 
best one). The second heuristic (SA2) is similar to the first: 
when the search reaches at level R for the first time, the 
algorithm starts discarding all successors except the best 
node among all the nodes selected for expansion. The third 
heuristic (S A3) is similar to the second heuristic except the 
nodes are discarded from the global list (OPEN). For 
example, if n nodes are generated, then all of them are 
inserted to OPEN and n - 1 high cost nodes are discarded. 

There is a little chance of running out of memory for 
the above mentioned heuristics. This is because when a 
node at level R is selected, the algorithm inserts only one 
node to OPEN for expansion and takes one node from it. 
Thus, no extra memory is required. Moreover, the running 
time of the algorithm is reduced by a large factor since the 
algorithm explores fewer nodes once it reaches the level R. 

6 Experimental Results 
We first discuss the workload used in our study and 

then present the experimental results obtained by the 
proposed algorithms. 

6.1 Workload Generation 
A realistic workload is important to validate an 

assignment algorithm but very little information is 
available about process communication patterns 
encountered in distributed systems. In distributed systems, 

there is usually a number of process groups with heavy 
interaction within the group, and almost no interaction 
with the processes outside the group [3]. With this 
intuition, we first generated a number of primitive task 
graph structures such as the pipeline, the ring, the server, 
and the interference graphs, all consisting of 2 to 8 nodes. 
The complete task graphs, consisting of 10-28 nodes, were 
generated by randomly selecting these primitives 
structures and combining them until the desired number of 
tasks was reached. This was done by first selecting a 
primitive graph and then combining it with a newly 
selected graph through a link labelled with cost 1; the last 
node was connected back to the first node. 

Since we assume the processors to be heterogeneous (a 
homogeneous processor system is a special case of a 
heterogeneous processor system), the execution cost varies 
from processor to processor in the execution cost matrix 
(X); the average value, however, remains the same. To 
generate the execution costs for the nodes and the 
communication costs for the edges, we used a parameter 
called the communication-to-cost ratio (CCR) which is the 
value of the average computation cost divide by the 
average communication cost per node. For example, if the 
total communication cost (sum of the cost of all of the 
edges connected to this task) of task i is equal to 16.0 and 
the CCR is equal to 0.2, then the average execution cost of 
i will be given by: 16.0 /0.2 = 80. We used the following 
values of CCR: 0.1, 0.2, 1.0, 5.0, and 10.0. 

For the processor graphs, we used 3 topologies each 
comprising 4 nodes. For the parallel algorithm OAPS, we 
used 2, 4, 8, and 16 Paragon PEs. 
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6.2 Running Times of the Serial Algorithm 
In this section we present the running times of various 

versions of the serial assignment algorithm. Table 1 and 2 
include the running times for different variations of the 
serial algorithm for the fully-connected topology 
comprising 4 processors. The running times of the serial 
algorithm without any task ordering or clustering are given 
in column 2; we will refer to it as A* in these tables. An 
entry '**' in a column means the algorithm could not 
generate the solution for this case using 50 MB of memory, 
i.e., it ran out of memory after a few hours (usually 5 to 6 
hours). The third column shows the running times of the 
algorithm with the task ordering; we will refer to this 
technique as A*R. The fourth column shows the running 
times of the algorithm with clustering and then ordering; 
we will refer to this technique as A*C. The fifth column is 
the ratio of the running times of the two algorithms. 

For the fully-connected topology of 4 processors and 
with CCR equal to 1.0 (see Table 1), the clustering 
algorithm is on the average 3.95 times faster than A*R. 
Table 2 presents the running times for the same topology 
but with CCR equal to 5.0. The clustering algorithm is on 
the average 281 times faster. The clustering algorithm 
performs well when the value of CCR is high because for 
these cases the optimal algorithm also assi^/i highly 
communicating tasks to the same processor. For lower 
values of CCR the algorithm does no merging for most of 
the cases. 

It is observed that for most of the cases, task graphs 
with CCR equal to 0.1 and 0.2 result in larger search trees 
as compared to the graphs with CCR equal to 1.0, 5.0, and 
10. The task graphs with CCR equal to 10.0 take the lowest 
running times. This is because the cost of the optimal 
solution for a higher CCR is less than a lower CCR and 
thus the algorithm finds the optimal solution quickly 
starting from an initial cost 0. For example, a task graph 
consisting of 10 tasks with the CCR equal to 10.0 has the 
solution cost equal to 7.36, while the same graph with the 
CCR equal to 0.1 has the solution cost equal to 374.00. 
Thus, the former takes only 0.40 seconds to find the 
solution while the latter takes 4.30 seconds. 

The processor topology also has a great impact on the 
size of the search tree as well as on the running time. This 
is because the algorithm assigns two communicating task 
to two different processors only if the processors are 
directly connected. So, in case of the line or ring topology, 
the algorithm prunes some of the nodes in the search tree 
based on this constraint. On the other hand, no such 
pruning is done for the fully-connected case. 

6.3 Speedup Using the Parallel Algorithm 
In this section, we present the speedup of the parallel 

algorithm using various number of processors. The 
speedup is defined as the running time of the serial 
algorithm over the running time of the parallel algorithm. 

Table 3 presents the speedup data for the fully- 
connected topology comprising 4 processors and the task 

graphs with CCR equal to 0.1. The second column 
includes the running time of the serial algorithm while the 
third, fourth, fifth, and sixth columns include the speedup 
of the parallel algorithm over the serial algorithm using 2, 
4, 8 and 16 Paragon PEs, respectively. The bottom row of 
the table indicates the average speedup of all the task 
graphs. 

We can observe that the speedup increases with an 
increase in the problem size. Also the problems with a 
lower value of CCR yield a better speedup in most of the 
cases, since the running times of the serial algorithm in 
those cases are much longer compared to the parallel 
algorithm. 

Table 1: The running times using the fully-connected 
topology (CCR =1.0) 

No. of 
Tasks 

T(A*) 
(sec) 

T(A*R) 
(sec) 

T(A*C) 
(sec) 

T(A*R) 
T(A*C) 

10 3.35 0.87 0.17 5.12 
12 139.54 0.73 0.77 0.95 

14 270.70 4.82 3.77 1.28 

16 822.08 36.08 1.67 21.60 

IS ** 31.62 30.76 1.03 

20 ** 55.78 22.19 2.51 

22 ** 67.70 67.78 1.00 

24 ** 191.27 55.21 3.46 

26 ** 206.63 143.06 1.44 

28 ** 2451.56 2124.08 1.15 

Avg 3.95 

Table 2: The running times using the fully-connected 
topology (CCR=5.0). 

No. of 
Tasks 

T(A*) 
(sec) 

T(A*R) 
(sec) 

T(A*C) 
(sec) 

TfA*Rl 
T(A*C) 

10 0.24 Ö.27 Ö.Ö8 3.37 
12 1.53 0.49 0.12 4.08 

14 35.98 1.73 0.25 6.92 

16 10.29 1.67 0.27 6.19 

18 6195.63 29.79 0.55 54.16 

20 ** 21.96 1.14 19.26 

22 ** 3.98 3.18 1.25 

24 ** 3387.58 4.15 816.28 

26 ** 4134.28 2.19 1887.80 

28 ** 52.86 3.87 13.66 

Avg 281.30 

The values of the average speedup for the fully- 
connected, ring, and line topologies are shown graphically 
in Figure 7. 

6.4 Results of the Heuristics 
In this section, we present the result of comparing the 

three proposed heuristics (SA1, SA2, SA3) with the 
optimal algorithm. We make two kinds of comparisons. 
First, we compare the percentage deviation of the solution 
produced by SA1, SA2 and SA3 from that of OASS. This 
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deviation is defined as follows: 

%D = (Cost(SA) - Cost(OASS) * 100) / Cost(OASS) 

Second, we compare ratios of the running times of 
SA1, SA2 and SA3 to those of OASS. Optimal solutions 
are first obtained for the five task sets discussed in Section 
5.2 and then sub-optimal solution are obtained using SA1, 
SA2 and SA3 for the same task sets. Heuristic tree level 
used is: 

R = 

where d is the maximum depth of the search tree. Table 4 
presents the results for the ring topology with 4 processors 
and the task graphs with CCR equal to 0.2. Each entry in 
the table is the average of five runs of each algorithm for 5 
task graphs generated using various permutations of the 
pipeline, the ring, the server and the interference sub- 
graphs. The average values of the percentage deviation in 
the solution and the ratios of the running times are 
indicated in the bottom row. 

The results indicate that SA3 always gives good 
solutions in terms of the percentage cost deviation from the 
optimal. This is because SA3 discards high cost nodes 
from the global list OPEN, so good nodes are always 
prevented from deletion. SA2 deviates more than SA3 but 
is faster. 

The average cost deviation and the ratio of time 
improvement for the fully-connected topology (with 
different values of CCR) is shown in Figure 8. It can be 
noted that the average percentage cost deviation for the 
cases with CCR equal to 5.0 and 10.0 is quite high as 
compared to the cases with lower values of CCR. This is 
because when the task graph has a larger value of CCR the 
optimal algorithm assigns more tasks to a single processor 
(for some cases all the tasks goes to one processor). 
Therefore, the optimal algorithm follows a rather straight 
path in the search tree considering less options. If the sub- 
optimal algorithm discards a node on this path, it will 
deviate far from the optimal. 

The availability of the optimal algorithm, sub-optimal 
heuristics, and the parallel algorithm gives a choice to the 
user to select a suitable algorithm depending upon the 
objective. If the objective is to find a solution in a short 
time, then SA2 can be used. To obtain a near-optimal 
assignments for a task graphs with higher values of CCR, 
SA3 can be used. If finding the optimal solution is the main 
objective without any regard to the algorithm running 
time, then the sequential A* can be used. If the resources, 
such as a parallel machine, are available, then OAPS can 
be used to speedup the running time of the optimal 
algorithm. 

7 Conclusions and Future Work 
We proposed algorithms for optimal and sub-optimal 

assignments of tasks to processors. We considered the 

problem under relaxed assumptions such as an arbitrary 
task graph with arbitrary costs on the nodes and edges of 
the graph, and processors connected through an 
interconnection network. Our algorithms can be used for 
homogeneous as well as heterogeneous processors, 
although in this paper we considered only the 
heterogeneous cases. We believe that to the best of our 
knowledge, ours is the first attempt in proposing a parallel 
algorithm for the optimal task-to-processor assignment 
problem. Although we kept the mapping of the algorithm 
on the Paragon PEs simple, some fine refinements are 
possible to further improve the performance. 

A further study is required to understand the behavior 
of the parallel algorithm. One possibility is to implement 
quantitative load balancing of the tree nodes after a 
processor finds its solution, i.e., let the processor find more 
than one solution. Also, additional experimentation is 
required to find the ideal value of the threshold u. The 
clustering algorithm and the sub-optimal heuristic SA3 
may be combined in order to obtain faster and close-to- 
optimal assignments for task graphs with high values of 
CCR. Our future plans also include a parallelization and 
analysis of the heuristic algorithms (for an ideal tree level 
R) to start applying the heuristics would also require more 
future works. 
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Table 3: The speedup using the ully-connected topology (CCR=0.1) 

No. of 
Tasks 

T(A*R) 
(sec) 

T(A*R) 
T(OPAS) 

PEs=2 PEs=4 PEs=8 PEs=16 

10 30.14 1.87 3.48 5.72 7.63 

12 58.96 1.96 3.68 3.60 12.85 

14 105.05 1.70 2.02 4.58 4.64 

16 1550.46 2.00 2.94 4.72 6.71 

18 3839.00 2.00 3.86 7.59 13.16 

20 3191.86 1.78 3.72 5.62 9.97 

Avg 1.89 3.28 5.30 9.13 

Table 4: The time and cost comparison using the ring topology (CCR=0.2). 

No. of 
Tasks 

cfSAn—aoAssi*ioo 
aoAss) 

aSA31 —C(OASS)*100 
aoAss 

CfSA3) —CfOASS)*100 
CfOASS 

TfO) 
T(SA1) 

TYP) 
TCSA2) 

TYP) 
TYSA3) 

10 7.2Ö Ml Ö.Ö0 1.72 168 1.95 

12 1.96 2.24 1.49 1.54 3.18 1.90 

14 4.08 4.21 0.55 1.75 3.94 2.48 

16 2.68 3.41 0.55 4.17 8.65 4.24 

18 1.86 2.07 1.15 3.53 7.22 2.81 

20 6.04 6.31 2.30 2.35 5.11 2.91 

22 2.81 4.15 3.27 7.13 37.97 22.59 

24 1.53 2.51 0.94 6.19 25.89 10.19 

26 3.52 4.39 3.88 15.72 108.75 40.81 

Avg 3.52 3.53 1.67 4.90 22.60 9.99 

145 



Proc topology = fully 
connected 

Q. 
3 
i 

■a 
CD 
CD 
Q. 
to 

u- * 
f 

8- 

b- 

4- 

2 

n- i — 
■ PEs=2 

UPEs=4 

■ PEs=8 

OPEs=16 

0.1  0.2    1      5    10 

CCR 

Proc topology = line 

■a 
CD 
CD a. 

1- f 

b 

b 

4 

3- 

2 

1 
0 

Nil iimi 

■ PEs=2 

BPEs=4 

■ PEs=8 

□ PEs=16 

0.1   0.2     1       5 

CCR 

10 

Figure 7: The average speedup of the parallel algorithm. 

Proc topology = fully connected 

BSA1 
■ SA2 
QSA3 

Figure 8: The percentage cost deviation and speedup of the sub-optimal algorithms over the optimal algorithm. 

146 



Mapping Heterogeneous Task Graphs onto Heterogeneous System 
Graphs * 

M. M. Eshaghian 

Dept. of Computer and Information Science 
New Jersey Institute of Technology 

Newark, NJ 07102 

Y. C. Wu 

SyncSort, Inc. 
Woodcliff Lake, NJ 07675 

Abstract 
In this paper, a generic technique for mapping 

heterogeneous task graphs onto heterogeneous system 
graphs is presented. The task and system graphs stud- 
ied in this paper have nonuniform computation and 
communication weights associated with the nodes and 
the edges. Two clustering algorithms have been pro- 
posed which can be used to obtain a multilayer clus- 
tered graph called a Spec graph from a given task graph 
and a multilayer clustered graph called a Rep graph 
from a given system graph. We present a mapping 
algorithm which produces a suboptimal matching of a 
given Spec graph containing M task modules, onto a 
Rep graph of N processors, in 0(MP) time, where 
P = mzx(M,N). Our experimental results indicate 
that our mapping algorithm is the fastest one and 
generates results which are better than, or similar to, 
those of other leading techniques which work only for 
restricted task or system graphs. 

1    Introduction 
The mapping problem is one of the most challeng- 

ing problems in parallel and distributed computing. 
It is known to be NP-complete in its general form as 
well as several restricted forms [7]. In the mapping 
problem, a program task is divided into a number of 
task modules and these task modules are to be as- 
signed to a parallel computer system with a set of ho- 
mogeneous or heterogeneous processors for execution. 
A program task can be represented by a task graph, 
with each node representing a task module and each 
edge representing data communication between two 
modules. In the task graph, each node is associated 
with a weight representing the computation amount of 
the corresponding task module, while the weight of an 
edge represents the communication amount between 
the two task modules it is connecting. Similarly, a par- 
allel computer system can be modeled as a weighted, 
undirected system graph with each node representing 

a processing unit and each edge representing a com- 
munication channel. In the system graph, each node 
is associated with a weight representing the computa- 
tion speed of the corresponding processing unit while 
the weight of an edge represents the transmission rate 
of the two processing units which it connects. 

In static mapping, the assignments of the nodes of 
the task graphs onto the system graphs are determined 
prior to the execution and are not changed until the 
end of the execution. Static mapping can be classified 
in two general ways. The first classification is based 
on the topology of task and/or system graphs [3]. 
Based on this, the mappings can be classified into four 
groups: (1) mapping specialized tasks onto specialized 
systems, (2) mapping specialized tasks onto arbitrary 
systems, (3) mapping arbitrary tasks onto specialized 
systems and (4) mapping arbitrary tasks onto arbi- 
trary systems. The second classification can be based 
on the uniformity of the weights of the nodes and the 
edges of the task and/or the system graphs. Based 
on this, the mappings can be categorized into the fol- 
lowing four groups: (1) mapping uniform tasks onto 
uniform systems [3, 2, 12, 1, 8], (2) mapping uniform 
tasks onto nonuniform systems, (3) mapping nonuni- 
form tasks onto uniform systems [17, 14, 15, 6, 18], 
and (4) mapping nonuniform tasks onto nonuniform 
systems [16, 13]. 

In this paper, we concentrate on static mapping 
of arbitrary nonuniform task graphs onto arbitrary 
nonuniform system graphs. The existing mapping 
techniques in this group include El-Rewini and Lewis' 
mapping heuristic algorithm [6] and Lo's max flow 
min cut mapping heuristic [13]. The time com- 
plexity of these two heuristics are 0(M2N3) and 
0(M4NlogM), respectively, where M is the num- 
ber of task modules and N is the number of proces- 
sors. In this paper, we present an algorithm which 
can map arbitrary, nonuniform, architecturally inde- 
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pendent task graphs onto arbitrary, nonuniform, task- 
independent system graphs in O(MP) time, where 
P = max(M, N). This technique is based on the map- 
ping methodology used in the Cluster-M portable par- 
allel programming tool and consists of two clustering 
algorithms and a mapping algorithm, which are ex- 
tensions to those presented in [3]. The experimental 
studies indicate that our mapping results are better 
than or similar to those of other leading techniques. 

The rest of the paper is organized as follows. We 
present the Cluster-M preliminaries in Section 2. In 
Section 3, we present two clustering algorithms. The 
mapping algorithm is detailed in Section 4. We show 
our experimental results in comparing our algorithm 
with several other existing mapping algorithms in Sec- 
tion 5. A brief conclusion is given in Section 6. 

2    Cluster-M Preliminaries 
The nonuniform clustering and mapping algorithms 

presented in this paper are part of the mapping mod- 
ule of the Cluster-M portable parallel programming 
tool [4, 9]. In an earlier publication [3] a set of clus- 
tering and mapping algorithms was presented for the 
preliminary version of the Cluster-M mapping module. 
Those algorithms can handle only "uniform" arbitrary 
task and system graphs. The algorithms presented in 
this paper are nontrivial extensions of the Cluster-M 
uniform algorithms for mapping "nonuniform" arbi- 
trary task graphs onto "nonuniform" arbitrary system 
graphs. In the following, we first give an overview of 
the Cluster-M tool and then present basic concepts 
used both in uniform and nonuniform Cluster-M clus- 
tering and mapping algorithms. A set of parameters 
used in the nonuniform clustering and mapping algo- 
rithms is presented in Section 2.3. 
2.1     Cluster-M 

Cluster-M is a programming tool that facilitates the 
design and mapping of portable parallel programs [3]. 
Cluster-M has three main components: the specifica- 
tion module, the representation module and the map- 
ping module. In the specification module, machine- 
independent algorithms are specified and coded using 
the Program Composition Notation (PCN [11]) pro- 
gramming language [9]. Cluster-M specifications are 
represented in the form of a multilayer clustered task 
graph called Spec graph. Each clustering layer in the 
Spec graph represents a set of concurrent computa- 
tions, called Spec clusters. A Cluster-M Representa- 
tion represents a multilayer partitioning of a system 
graph called Rep graph. At every partitioning layer of 
the Rep graph, there are a number of clusters called 
Rep clusters. Each Rep cluster represents a set of pro- 
cessors with a certain degree of connectivity. Given a 

task (system) graph, a Spec (Rep) graph can be gener- 
ated using one of the Cluster-M clustering algorithms. 
The clustering is done only once for a given task (sys- 
tem) graph independent of any system (task) graphs. 
It is a machine-independent (application-independent) 
clustering, therefore it is not necessary to be repeated 
for different mappings. For this reason, the time com- 
plexities of the clustering algorithms are not included 
in the time complexity of the Cluster-M mapping algo- 
rithm. In the mapping module, a given Spec graph is 
mapped onto a given Rep graph. This process is shown 
in Figure 1. In an earlier publication [3] two Cluster-M 
clustering algorithms and a mapping algorithm were 
presented for uniform graphs. Next, the basic con- 
cepts used in Cluster-M clustering and mapping will 
be explained. Using these concepts we present a set of 
parameters which is going to be used in the nonuni- 
form clustering and mapping algorithms presented in 
Sections 3 and 4. 

Task graph System graph 

Specification 
module 

Representation 
module 

Spec graph Rep graph 

Mapping    Mapping module 

Mapping of a Spec graph onto a Rep graph 

Figure 1: Cluster-M mapping process. 

2.2    Basic Concepts 
There are a number of reasons and benefits in 

clustering task and system graphs in the Cluster-M 
fashion. Basically Cluster-M clustering causes both 
task and system graphs be partitioned so that the 
complexity of the mapping problem is simplified and 
good mapping results can be obtained. In clustering 
an undirected graph, completely connected nodes are 
grouped together forming a set of clusters [3, 9]. Clus- 
ters are then grouped together again if they are com- 
pletely connected. This is continued until no more 
clustering is possible. When an undirected graph is 
a task graph, then doing this clustering essentially 
identifies and groups communication-intensive sets of 
task nodes into a number of clusters called Spec clus- 
ters. Similarly for a system graph, doing the clus- 
tering identifies well-connected sets of processors into 
a number of clusters called Rep clusters. In the map- 
ping process, each of the communication intensive sets 
of task nodes (Spec clusters) is to be mapped onto 
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a communication-efficient subsystem (Rep cluster) of 
suitable size. Note that mapping of undirected task 
graphs onto undirected system graphs is referred to 
as the allocation problem. An earlier publication [3] 
showed that Cluster-M clustering and mapping algo- 
rithms can lead to good allocation results. It com- 
pared its results with Bokhari's 0(N3) algorithm and 
showed that its algorithm has a lower time complexity 
of 0(MN), where M and N are the number of nodes 
in the task and system graphs, respectively. 

Clustering directed graphs (i.e., directed task 
graphs) produces two types of graph partitioning: hor- 
izontal and vertical. Horizontal partitioning is ob- 
tained because, as part of clustering, we divide a di- 
rected graph into a layered graph such that each layer 
consists of a number of computation nodes that can 
be executed in parallel and a number of communica- 
tion edges incoming to these nodes. This is shown in 
Figure 2(a). The layers are to be executed one at a 
time. Therefore, the mapping is done one layer at a 
time. This significantly reduces the complexity of the 
mapping problem since the entire task graph need not 
to be matched against the entire system graph. 

(a) Horizontal (b) Vertical 

Figure 2: Horizontal and vertical partitioning of a task 
graph. 

Vertical graph partitioning is obtained because as 
part of the clustering the nodes from consecutive lay- 
ers are merged or embedded. All the nodes in a layer 
are merged to form a cluster if they have a common 
parent node in the layer above or a common child node 
in the layer below. Doing this traces the flow of data. 
This information will be used later as part of the map- 
ping so that the tasks are placed onto the processors 
in a way that total communication overhead is mini- 
mized. For example, to avoid unnecessary communi- 
cation overhead, the task nodes along a path may be 
embedded into one another so that they are assigned 
to the same processor. The effect of this type of par- 

titioning is shown in Figure 2(b). 
Both horizontal and vertical graph partitionings 

are accomplished by performing the clustering in a 
bottom-up fashion. The Cluster-M mapping will then 
be performed in a top-down fashion by mapping the 
Spec clusters one layer at a time onto the Rep clus- 
ters. The next two sections show how these clustering 
and mapping ideas work for nonuniformly weighted 
graphs. The nonuniform algorithms shown in this 
chapter are nontrivial extensions of the Cluster-M uni- 
form algorithms presented in an earlier publication [3]. 

2.3    Clustering Parameters 
In the following, we present a set of parameters 

needed for nonuniform version of Cluster-M cluster- 
ing and mapping. The first set is for representing a 
portable parallel program and the other for specify- 
ing the organization of the underlying heterogeneous 
architecture or suite. 

2.3.1    Machine-Independent Program Param- 
eters 

A given parallel program consists of a sequence of 
steps such that in each step a number of computa- 
tions can be done concurrently. Each step is called a 
layer. These concurrent computations for a given step 
(layer) can each be presented by a cluster called a Spec 
cluster. The mth Spec cluster at layer u is denoted by 
S^ and associated with the following parameters. 

aS^ The size of S^ which is the maximum number 
of nodes in this cluster that can be computed in 
parallel. 

SS^ The maximum sequential computation amounts 
(i.e., the maximum number of clock cycles re- 
quired to execute all the instructions sequentially 
using a baseline computer) in 5^. 

IIS^, The total amount of communication from layer 
1 to layer u of S^. 

■KS^ The average communication amount at the layer 
u in S£. 

pS^ The computational type of 5^. Its value is set 
to 0 for single instruction stream, multiple data 
stream (SIMD) type and 1 for multiple instruc- 
tion stream, multiple data stream (MIMD) type1. 

XA11 the examples of the problems and systems studied in 
this paper are assumed to be of MIMD-type. However, in het- 
erogeneous computing, it is possible to have a mix of SIMD and 
MIMD nodes both in the task and the system. 
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2.3.2    Program-Independent Machine Param- 
eters 

Any heterogeneous architecture can similarly be rep- 
resented in a multilayered format such that each layer 
presents a set of processing units which are completely 
connected. Each processing unit is represented by a 
cluster called a Rep cluster. The nth Rep cluster at 
layer v is denoted by R?n and associated with the fol- 
lowing parameters. 

aR°n The number of processors contained in R„. 

6R% The average computation speed of the processors 
mRZ. 

UR„ The total data transmission rate including the 
transmission rate over the links (communication 
bandwidth) and over the nodes (switching la- 
tency) from layer 1 to v in Rv

n. 

■KRv
n The average data transmission rate at layer v of 
nv 

pRv
n The computational type of the Rep cluster. Its 
value is set to 0 for SIMD type and 1 for MIMD 
type. 

3    Non-Uniform Clustering 
This section first presents a clustering algorithm to 

be used for directed task graphs independent of any 
system graphs and then present another one for undi- 
rected system graphs independent of any task graphs. 
Both algorithms are done only once for any given task 
or system graph and are not repeated as part of the 
mapping process. 
3.1     Clustering Directed Task Graphs 

A task can be represented by a directed graph 
Gt(Vt,Et), where Vt = {<i, ..., tM} is a set of task 
modules to be executed and Et is a set of edges rep- 
resenting the partial orders and communication direc- 
tions between task modules. A directed edge (ti,tj) 
represents that a data communication exists from 
module ti to t, and that U must be completed be- 
fore tj can begin, where 1 < i,j < M. Each edge 
(ti,tj) is associated with D^, the amount of data re- 
quired to be transmitted from module ti to module tj, 
where D^ > 1. Each task module ti is associated with 
its amount of computation Ai, that is, the number of 
instructions contained in ti. Note that Ai > 1 and 
Dij > 1 if there exits an edge (U,tj), for 1 < i, j < M. 
If a directed edge (ti,tj) exists, ti is called a parent 
node (module) of tj and tj a child node (module) of ij. 
If a node has more than one child, it is called a fork- 
node. If a node has more than one parent, it is called 

a join-node. A task graph is divided into a number 
of layers, so that all nodes in a layer can be executed 
concurrently. 

Algorithm CNDG 
Divide the directed graph into a number of layers 
for each node at layer 1 do 

Make it into a cluster and calculate its parameters 
For each of the other layers do 
begin 

for all edges (ti,tj) do 
begin if t; is a fork-node then 

begin Embed the child node with the largest edge 
weight to ti 

if the child nodes of i; are not in a cluster then 
begin Merge them with f; into a cluster 

Calculate parameters of the new cluster 
end 

end 
if tj is a join-node then 
begin Embed the child node with the largest edge 

weight to ti 
if the parent nodes of tj are not in a cluster then 
begin Merge them with tj into a cluster 

Calculate parameters of the new cluster 
end 

end 
end 

end 

Figure 3:   Clustering Nonuniform Directed Graphs 
(CNDG) algorithm. 

A clustering algorithm called clustering nonuniform 
directed graphs (CNDG) is shown in detail in Figure 3. 
This nonuniform algorithm is designed as an extension 
to the uniform clustering algorithm presented in an 
earlier publication [3]. The nonuniform algorithm has 
been designed in such a way that it is a generalization 
of the uniform algorithm. For clustering nonuniform 
directed graphs, a quintuple of parameters (aS^, SS^, 
IIS^, TTS^, pS^) from the Cluster-M model described 
in Section 2.3 is associated with the mth Spec cluster 
at layer u denoted by 5^. The clustering is done layer 
by layer. At layer 1, a node with computation amount 
Ai is a cluster by itself with parameters (1, Ai, 0,0,0) 
for SIMD type or (1, Au 0,0,1) for MIMD type. Then 
for other layers, the nodes are clustered as follows. If 
a node is a join-node, we first embed it onto one of 
its parent nodes that has the largest weighted edge 
connecting to this join-node. If multiple parent nodes 
have edges with the same largest weight, we randomly 
select one of them. When a node with a computation 
amount A is to be embedded to S^, then these pa- 
rameters are updated to aS^, SS^ + Ai, US^, itS^, 
and pS^. We then merge all its parent nodes into a 
new cluster denoted by S"+1. This is shown in Figure 
4, where a join-node at layer (u + 1) with computa- 
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tion amount A has n parent nodes 5", S%, • • •, S% at 
layer u. The communication amount between the join- 
node and one of its parent nodes Sf is denoted by A, 
where 1 < i < n. Also, Di = maxi<i<„ A- The new 
cluster 5"+1 is generated by embedding the join-node 
to S? and merging it with all the other parent nodes. 
The first four parameters of 5"+1 can be computed as 
follows. 

aS?+1 = £*s? (1) 

ÖS?+1 = max(8S? + A,6S%,-- Ä) (2) 

US^+1 = Y^i^ST + Di) - Dl (3) 

nS?+1 = 
n-l 

(4) 

If a node is a fork-node, we will embed one of its child 
nodes to this fork-node. The child node is selected 
so that it has the largest weighted edge connecting 
to the fork-node. If multiple child nodes have edges 
with the same largest weight, we randomly select one 
of them. We then merge the rest of the child nodes 
with the fork-node into a new cluster. As shown in 
Figure 5, a fork-node 5f at layer u has n child nodes 
at layer (u + 1). These child nodes have computa- 
tion amounts A\, A2, ■ ■ ■ ,An, and the communication 
amounts between the fork-node and each of them are 
Di,D2,-- -,Dn, respectively. Similar to the case of 
join-node, £>i = maxi<,<n.Dj- Then the node with 
the computation amount A\ is embedded to the fork- 
node before we merge the fork-node with all the other 
child nodes to generate the new cluster 5"+1. The first 
four parameters of 5"+1 is then computed as follows. 

max(«7SJ,,n-l) + l (5) 

max(6S? + A1,A2,---,An)      (6) 

TrS? u+1 

ILSr + ^A 
i=2 

n-l 

(7) 

(8) 

For both fork and join nodes, the fifth parameter, 
pS^, is determined as follows. As an MIMD cluster 
is merged with an SIMD or MIMD cluster, the com- 
putation type of the new generated cluster is MIMD. 
When two SIMD clusters are merged then the com- 
putation type of the new cluster is decided by their 
computational form (addition, subtraction, multipli- 
cation, etc.). If the two SIMD clusters have exact the 
same computation form then the computational type 

of the new cluster is SIMD, otherwise, it is MIMD. We 
denote the computation form of S£ by CF(S^). Then 
the computational type of a new cluster 5^ generated 
from embedding or merging n clusters, S%,S%,---,S%, 
can be formulated as follows. 

0 if {pSf = 0, for all i) and (CF[S?) = 
pS^ = {        CF(SZ) = - = CF(SZ)) 

1 otherwise 
(9) 

Note that since our task graphs are independent of 
any system graphs (unlike [17, 15, 18]), they do not 
contain the information about computation time and 
communication delay. Therefore, we can only embed 
one node into another as part of clustering for reducing 
communication overhead. The embedding of multiple 
nodes onto one node is done as part of the mapping, 
as explained in the next section. 

sr (csi&s-.nsiKS-rPs-,)  s; (os;,&sjnsjiis;.Ps»   s; (os:,ssins"„ns:,ps"n) 
layer « 

layer (u+1) 

sr'(&5r,max(8S>A, 8S2" 8«), ffflS'+DJ-D, W. -PS?') 
iT; i=/ n-l 

Figure 4: Clustering on a join-node: a general case. 

sr, (oyj^ns^psp 
layer u 

layer (u+1) 

"      yn 
^'(max(a^,nA max(8S> A„A2,-,An), nS>£D,-, j^i >pO 

t—2     n-l 

Figure 5: Clustering on a fork-node: a general case. 
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© 
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(1.12.O.0,1)(1.2.0.0,I) 

© 

Layer 1 Layer 2 

Spec graph 

(3, 12, 8, 6, 1) 

(2,12,2,2,1) 

(1,12,0,0,1) (1,6,0,0,1) (1,4,0,0,1) 

. . 

Layer 3 

Spec graph 

(3,12,11,9,1) 

(2.12,2,2,1) 

(1,12,0,0,1)  (1,8,0,0,1) 1 
(1,4,0,0,1) 

© . : 

Layer 4 

Spec graph 

(3,12,11,9,1) 

(2,12,2,2,1) 

(1,14,0,0,1)   (1,8,0,0,1) 

(l,,t2,t7)(l3,t4,t6) 

(1.4,0,0,1) 

© . . 

Layer 5 

Figure 6:  A task graph and steps for obtaining the 
Spec graph. 

The time complexity of the CNDG algorithm is 
bounded by the number of edges in the task graph, 
which is 0(\Et\). For the worst case, we have an upper 
bound for this algorithm, that is, 0(M2), where M is 
the number of nodes. However, note that most graphs 
are not completely connected, therefore, in practice, 
the time complexity of this algorithm will be O(M) if 
the number of edges is proportional to the number of 
nodes. To illustrate this algorithm, consider the task 
graph of seven modules and its Spec graph, as shown 
in Figure 6. Each module is labeled with its com- 
putation amount and each edge is labeled with the 
amount of data communication. The Spec graph is 
constructed by embedding/merging the clusters layer 
by layer and is a multi-layer clustered graph as shown. 

3.2    Clustering       Undirected        System 
Graphs 

A parallel system that can be modeled as an 
undirected system graph GP(VP,EP). In Gp, Vp = 
{PI,---,PN} is the set of processors forming the under- 
lying architecture, while Ep is the set of edges rep- 
resenting the interconnection topology of the parallel 
system. We assume that the connections between ad- 
jacent processors are bidirectional. Therefore, an edge 
(pi,Pj) represents that there is a direct connection be- 
tween processor pt and pj. The computational speed 
of processor pt is denoted by B{, and the communi- 
cation bandwidth between two processors pt and pj is 
denoted by Cy. The transmission rate is a function 
of the communication bandwidth between pt and pj 
and the node latencies at pt and pj. Both the compu- 
tational speeds of different processors and the trans- 
mission rates of different communication links may 
be nonuniform. This makes the Cluster-M approach 
more general than approaches such as PYRROS, Hy- 
pertool, and PARSA, which assume fully connected 
uniform systems. 

Similar to Spec clusters, the nth Rep cluster 
at layer v, Rv

n, is associated with the quintuple 
(aRv

n,6Rv
n,URv

n,nRv
n,pRv

n) defined as part of the 
Cluster-M model in Section 2.3. To construct a Rep 
graph from an undirected system graph, initially, ev- 
ery node with computation speed of Bi forms a clus- 
ter by itself with parameters (1, B{, 0, 0, 1), assuming 
that these nodes are all MIMD type. Then clusters 
that are completely connected are merged to form a 
new cluster, and the parameters of the new cluster 
are calculated, as explained below. This process is 
repeated until no further merging is possible. Three 
clusters Rv

x,R
v

y, and Rv
z are completely connected if 

Rv
x contains a node px, R% contains a node py, and 

Rv
z contains a node pz, so that nodes px,Py, and pz 
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form a clique. This definition can be extended for N 
completed connected clusters. To calculate the values 
of the first four parameters for a new cluster, con- 
sider a new cluster i?£+1, which is generated at layer 
(v + 1) by merging N completely connected clusters 
R\, R%, ■ ■ ■, RV

N at layer v. Then the values of oR^1 

and SR„+1 can be easily computed as follows. 

N 

*K+1 

6R1+1 

= E aRV; (10) 
»=1 

„P«+l ~       ^N    „Dv      V-' 
crR^i Er=i^ 

We denote the transmission rate between R\ and Rj 
to be Cfj, which is defined as the sum of the transmis- 
sion rate (as a function of communication bandwidth 
and switching latency) of each pair of processors (sub- 
clusters) pi and pj such that pi is in R% and pj is in 
Rl that is, Cfj = £w6ÄyiWeÄ. Cij. Then IU^'' 

and TtRn+1 can be calculated as follows. 

+i 

UR. 

*K+1 

v+l      _ 
N N-l     N 

En^ + E E^ (12) 
i=l 
EJV-1 T-^N f~,v 

i=\    2sj=i+l ^ij 
N(N-l) 

2(EilT1 EJUi cy 
N(N - 1) 

(13) 

The fifth parameter, pRn+1, is computed per (9). 
The algorithm for clustering undirected graphs is 

shown in Figure 7. Instead of using an optimal algo- 
rithm for finding cliques, we use a heuristic so that, for 
every cluster, we examine the set of edges connected 
to it in the following manner. The edges are sorted 
in descending order based on the value of Cy. The 
edges are then examined one at a time from this list. 
If more than one of the edges have the same weight, 
then an arbitrary one is selected. A simple example is 
shown in Figure 8. 

We now analyze the running time of this implemen- 
tation. For each layer, we first sort all the edges be- 
tween clusters that take 0(\Ep\log\Ep\), where \EP\ 
is the number of edges in the system graph. Then, 
we keep merging clusters into the next layers. Sup- 
pose at a certain layer, there are m clusters c\, • • ■, cm. 
The time for finding cliques among these clusters is at 
most mxm < N2, where N is the number of proces- 
sors in the system graph. The most number of layers 
there can be is N - 1. Therefore the total time com- 
plexity of this algorithm is 0(N{\Ep\ log \EP\ + N2)). 

Algorithm CNUG 
for all nodes p* do 
begin Make a cluster for p; at clustering layer 1 

Set the parameters of the cluster to be (1, Bi, 0, 0) 
end 
Set cluster layer to be 1 
while there is at least one edge linking two clusters do 
begin Sort all edges linking any two clusters 

while sorted edge list is not empty, do 
begin Take the first edge (CJ,C,) from sorted edge list 

Delete the edge from the list 
Merge c,- and Cj into cluster d at next layer 
Calculate the parameters of c' 
Delete clusters C{ and Cj from current layer 
for each edge (c^Cj,) in sorted edge list 
if Cx is a sub-cluster of c' and 
cy is not a sub-cluster of any cluster and 
cy is connected to all other sub-clusters of c', then 
begin Merge cy into c' 

Recalculate the parameters of c' 
Delete (cx,cy) from edge list 

end 
else if cx and cv are sub-clusters of 
two different clusters at next layer, then 
begin Add the weight of (cj;,Cj,) to 

the edge between the two super-clusters 
Delete (cx,cy) from edge list 

end 
end 
Increment clustering layer by 1 

end 

Figure 7: Clustering Nonuniform Undirected Graphs 
(CNUG) algorithm. 

(3,5/3,3,1,1) 

Rep graph 
(3,5/3,3,1,1) 

(2,2,2,2,1) 
f(l,2,0,0,l) (1,2,0,0,1) 

[     ©          © 
(1,1,0,0,1) 

© 
^ ) 

Figure 8:   A nonuniform system graph and its Rep 
graph. 
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Consider the worst case, where the system graph is 
completely connected (i.e., \EP\ = 0(N2)), then the 
time complexity of this algorithm will be 0(N3 logN). 
Note that most system graphs are not completed con- 
nected. Therefore, in practice the time complexity of 
this algorithm will be 0(N3) if the number of edges is 
proportional to the number of nodes. 

4    Cluster-M Mapping Algorithm 
A Spec graph and a Rep graph can be generated 

directly from a given task graph and system graph, 
using the clustering algorithms presented in the previ- 
ous section. Given a Spec graph and a Rep graph, this 
section presents an efficient mapping algorithm that 
produces a suboptimal matching of the two graphs in 
O(MP) time, where P = max(M, JV). Note that the 
mapping algorithm maps the Spec graph one layer at 
a time as explained in Section 2.2. Every layer of the 
Spec graph represents a computational step in which a 
number of concurrent computations are represented by 
a number of Spec clusters. These clusters are formed 
by tracing the data dependency of other subcomputa- 
tions from a previous step. We are interested in map- 
ping the Spec clusters at each layer to the appropriate 
Rep clusters. In the following, we first present a set of 
preliminaries and then give a high-level description of 
the mapping algorithm. In Section 4.3, a few examples 
are given to illustrate the mapping algorithm. 

4.1    Preliminaries 

We first define the mapping function fm : Vt ^-4 
Vp. Following the precedence constraints and the 
computation and communication requirements of the 
original task graph, a schedule can be obtained 
by assigning each task module U to the proces- 
sor fm(ti). We assume that the communication 
time   for   a  task   graph   edge   (U,tj)   is   equal   to 

^(p*,Py)€vzthUm(u)jm(tj)) -c^T> where Pathfo,^) is 
the shortest path between processor pi and pj. 

A schedule can be illustrated with a Gantt chart 
that consists of a list of all processors and a list of 
all task modules allocated to each of the processors 
ordered by their execution time [7]. We define the 
total execution time of a schedule, Tm, to be the latest 
finishing computation time of the last scheduled task 
module on any processor. Obviously, Tm is equal to 
the total execution time of a given task on a given 
system. As we consider the shortest execution time of 
a given task on a system to be the ultimate goal in 
scheduling, we take Tm as our measure of quality to 
scale how good a mapping is. 

4.2    The Algorithm 
A detailed description of the mapping algorithm 

is presented in Figure 9. In the following, we give 
an overview of the algorithm. The mapping is done 
recursively at each clustering layer, where we try to 
find the best matching between Spec clusters and Rep 
clusters. Assume that at a certain step of mapping, 
m Spec clusters of layer u, 5", 5£, ■ ■ •, S£, are to be 
mapped onto n Rep clusters of layer v, R^,R^,-■ ■ ,R^. 
We denote the estimated total execution time of map- 
ping the Spec cluster 5" onto the Rep cluster Rv- by 
r{Sf, Rj), which includes computation time and com- 
munication time. The total computation amount of 
Sf is estimated to be aSf x 8Sf, and the total com- 
putation power of i?| can be calculated as aRj x 5RV,. 
Therefore, the computation time for executing 5" on 
R] is estimated to be (pS? x 5S?)/(aRVj x 6R]). Sim- 
ilarly, the total communication requirement of 5" is 
115" and the total communication capacity of Rv, is 
HRj, hence the estimated communication time for 
mapping Sf on fiv will be ILSf/MVj. A slow-down 
factor, d, is defined that indicates the factor of slow 
down due to mismatch of the computation type be- 
tween 5" and Rj. This leads to an estimated exe- 
cution time in (14). Note that the estimated execu- 
tion time does not take into consideration the mem- 
ory requirements of a given problem and the memory 
space available in the underlying organization. This is 
mainly due to the fact that the model does not con- 
tain any parameters for memory size requirements and 
availabilities. 

r(Sr,BS) 

d- {f 
,     aSf x 8Sf 
dx —-* H- + 

aR] x OR] 
usi 
ILRJ' 

if pS? = 1 and pR] = 0 
otherwise 

(14) 

Then the mapping process at each layer can be viewed 
as an optimization problem as follows. 

Min J2r(Sr,fm(Sr)) (15) 

The time complexity of finding an optimal solution 
to the above formula can be costly [10]. Therefore, 
we propose the following greedy algorithm for find- 
ing a near-optimal solution to the formula for each 
layer. In this greedy algorithm, we assume that all 
the computations are MIMD. Therefore, we only deal 
with four of the five parameters in the process. The 
greedy algorithm continues as follows. First, the Spec 
and Rep clusters are sorted in descending order with 
respect to the order of the four parameters (a, 6, II, 
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7r). For example, Spec clusters with larger sizes are 
sorted before those with smaller sizes, and for Spec 
clusters with the same size, those with larger amount 
of sequential computation are sorted first. 

Secondly, we compute a reduction factor denoted 
by /(„,„), which is the ratio of the total size of the Rep 
clusters over the total size of the Spec clusters and 
is used to estimate how many computation nodes to 
share a processor. This is essential for mapping task 
graphs of size M onto system graphs of size N, where 
M > N. The value of /(„,„) is computed as: 

J(u,v) (16) 

Third, we map each of the Spec clusters 5", 1 < 
i < m, as follows. We first search for a Rep cluster iJJ, 
I <j <n, with the best matched size, that is, closest 
to /(„,„) x aSf. Therefore, we try to minimize the 
function in Equation (17). If multiple Rep clusters 
with the matching size are found, we select the one 
with the minimum estimated execution time. If no 
Rep cluster with a matching size can be found for a 
Spec cluster, we either merge or split (unmerge) Rep 
clusters until a matching Rep cluster is found. 

m 

\fm\ = £ |/(U,„) x *S? - a[fm(Sm       (17) 
i=l 

Finally, for every matched pair of the Spec and Rep 
clusters, we do the following to embed communica- 
tion intensive nodes together. This is similar to the 
clustering process in [17, 15, 18]. However, in this 
chapter, we only do it in the mapping step so that 
the clustering of the task graph is kept independent 
of the system graph, as described in the previous sec- 
tion. Assume that a Spec cluster Sf having k sub- 
clusters, 51

u-1,52"-1,---,5^-1, is mapped to a Rep 
cluster Rj. If the communication overhead for pro- 
cessing the subclusters in parallel is greater than the 
computation overhead for processing the subclusters 
sequentially, then we embed all subclusters into one 
subcluster having the largest size so that they will be 
executed sequentially. We then calculate the parame- 
ter quadruple for the new cluster. In Inequality (18), 
irSf/nltf is the communication time if the subclusters 
are executed in parallel and 

back in the proper position in the sorted list of Spec 
clusters for mapping, and the matching process is re- 
peated for the remaining Spec clusters in the list. If 
no embedding is necessary, then the mapping of this 
Spec cluster onto a Rep cluster is done for this layer, 
and, therefore, this Spec cluster is removed from the 
list. 

7TÄV 

1       min^Sjf- M5PV5I ^-MSa-1, ■,aS\ 
u-iSSu-is 

h u,v) 6R» 

is the computation time for executing the subclusters 
sequentially on i?J. The embedded cluster is inserted 

min(crSj'-1<5Sj'-1,o-S; rl*srl,---,*sr1*sr 
J(u,v) 6R] 

(18) 

In the above mapping algorithm, the worst case of 
the time complexity of the mapping algorithm at layer 
i occurs in one of the following two cases. In case 1, 
for each Spec cluster, all the remaining Rep clusters 
have the matching size, thus (14) is used to select the 
best Rep cluster. In case 2, for each Spec cluster, no 
Rep cluster of matching size is found, thus Rep clus- 
ters are merged or split recursively until a Rep cluster 
of matching size is obtained. Suppose the number of 
Spec clusters at layer iis Kt. In both cases described 
above, or in any combination of the two cases, it takes 
0(KtN) time to find the best matches for all Ki Spec 
clusters, as the total number of clusters in the Rep 
graph is 0{N), where N is the number of processors. 
For each pair of matching Spec and Rep clusters, if In- 
equality (18) is satisfied, then an extra 0{M) time for 
embedding will be needed. The total number of Spec 
clusters is O(M), that is, ^ Ki = O(M), where M is 
the number of nodes in original task graph. Therefore, 
the total time complexity of this mapping algorithm is 
Y,i(KiN + M) = 0(MN) + 0(M2) = O(MP), where 
P = max(M,iV). 

4.3    A Mapping Example 
In Section 3, we constructed a Spec graph and a 

Rep graph from the original task graph and system 
graph, as shown in Figure 6 and 8. Figure 10 shows 
the snapshot of the mapping process. Figure 11 shows 
the final schedule obtained from the above mapping by 
following the data and operational precedence of the 
task graph. As shown in the Gantt chart, Tm = 10. 

To show that the same task graph can be mapped 
onto various system graphs, three different system 
graphs are chosen and shown in Figure 12. Figure 
12(a) is the same task graph as shown in Figure 6. 
Figure 12(b) shows a uniform, fully connected sys- 
tem graph and its clustering. The computation speed 
of each processor and communication bandwidth of 
each communication link are equal to 2. The result of 
Cluster-M mapping onto this graph is shown in Fig- 
ure 12(c). In Figure 12(d), the system is fully con- 
nected with computation speed of 1 at each processor, 
but the communication bandwidths are nonuniform. 
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Mapping Algorithm 
for each layer of Spec graph do 
begin 

Sort all Spec clusters at top layer in descending order of 
aSf, ÖS?, US?, and irSf. 
Sort all Rep clusters at top layer in descending order of 
crR) SR), nflV, and TTHJ. 

Calculate /(„,„), if /(„,„) > 1> let /(„,„> = 1. 
Calculate the required size of the Rep cluster matching 
S" to be /(„,„) x aS™ 
for each Spec cluster at top layer sorted list, do 
begin if the cluster has only one sub-cluster, then 

Go to a lower layer containing multiple or no 
sub-clusters 
if at least a Rep cluster of required size is found, then 
begin Select the Rep cluster of required size with 

minimum estimated execution time according 
to Equation (14) 
Match the Spec cluster to the Rep cluster 
Delete the Spec and Rep clusters from Spec 
and Rep lists 

end 
end 
for each unmatched Spec cluster, do 
begin if size of the first Rep cluster > than required size 

begin Split the Rep cluster into two parts with one 
part of the required size 
Match the Spec cluster to this part 
Insert the other part to proper position of the 
sorted Rep cluster list 

end 
else begin 

Merge Rep clusters until sum of sizes > the 
required size 
if =, then 
Match the Spec cluster to merged Rep cluster 
else 
begin Split the merged Rep cluster into two 

parts with one of required size 
match the Spec cluster to this part 
Insert the other part to sorted Rep list 

end 
end 

end 
for each matching pair of Spec cluster and Rep cluster, do 
begin if the Rep cluster contains only one processor, then 

Map all modules in the Spec cluster to the processor 
else if Inequality (18) is satisfied, then 

begin Select the sub-cluster of the Spec cluster 
with the largest size 
Embed the nodes of other sub-clusters to 
connected nodes of selected sub-cluster 
Calculate parameters of the new cluster 
Insert it into the sorted Spec cluster list 

end 
else 
begin Delete the Spec cluster from Spec list 

Delete the Rep cluster from Rep list 
Go to sub-clusters of the Spec and Rep 
clusters (so they are pushed to top layer) 
Call the same mapping algorithm for 
these clusters 

end 
end 

end 
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Figure 10: A mapping example. 

0123456789  10 

P\ t\ '2 '7 

P2 '3 '4 '5 '6 

Pi, 

Figure 11: Gantt chart of the obtained schedule. 

Figure 9: Mapping algorithm. 
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Figure 12: Mappings on different system graphs. 

In this case, the Cluster-M algorithm distributes the 
task modules to all three processors, as shown in Fig- 
ure 12(e), to utilize the relatively high communication 
bandwidth available. If the system is fully connected 
with uniform communication bandwidth and nonuni- 
form computation speeds as shown in Figure 12(f), 
Cluster-M mapping algorithm maps all the task mod- 
ules onto the processor with the highest speed to avoid 
the relatively expensive communication cost. This is 
shown in Figure 12(g). For more examples, see the 
full version of the paper [5]. 

5    Comparison Results 
In the full version of the paper [5], we present a 

set of experimental results we have obtained in com- 
paring our algorithm with other leading techniques. 
The comparisons presented in the full version of the 
paper [5], are classified into two categories: (1) map- 
ping arbitrary nonuniform task graphs onto arbitrary 
nonuniform system graphs, and (2) mapping arbitrary 
nonuniform task graphs onto uniform fully connected 
system graphs. We first present the comparison for the 
first category and then the second one. The following 
three criteria are used for comparing the performance 
of our algorithm with other leading techniques: (1) 
the total time complexity of executing the mapping 
algorithm, Tc; (2) the total execution time of the gen- 
erated mappings, Tm; and (3) the number of proces- 
sors used, Nm. From (2) and (3), we can obtain the 
speedup Sm = ^ and efficiency 77 = |^, where Ts 

is the sequential execution time of the task. In this 
paper, we present a summary of our results for map- 
ping arbitrary nonuniform task graphs onto arbitrary 
nonuniform system graphs, only. 

The mapping techniques in this category include 
El-Rewini and Lewis' mapping heuristic (MH) [6] and 
Lo's Max Flow/Min Cut (MFMC) algorithm [13]. To 
the best of our knowledge, they are the only known 
efficient mapping techniques that can map arbitrary 
nonuniform task graphs onto arbitrary nonuniform 
system graphs in polynomial time. The experimen- 
tal results shown in this section are obtained by run- 
ning a set of simulations on a SUN SPARCstation 20 
workstation, and all running times are measured in 
second on this machine. The nonuniform task graphs 
are randomly generated. In the full version of the 
paper [5], we map these task graphs onto four dif- 
ferent nonuniform systems2:   (1) a randomly gener- 

2For comparing against MFMC, we use three system con- 
figurations, system (2)-(4). The time complexity of MFMC in 
practice is too high and for the first system configuration, each 
experiment takes several days. For more detail, see Section 
5.1.2. 
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ated system graph with 100 nodes, where the com- 
putation speed of the nodes and the communication 
bandwidth of the edges range from 1 to 5, (2) a ran- 
domly generated system graph with five nodes, where 
the computation speed of the nodes and the commu- 
nication bandwidth of the edges range from 1 to 5, (3) 
a completely connected system graph with four nodes 
as shown in Figure 13, and (4) a hypercube with eight 
nodes as shown in Figure 14. In the following, we 
present a summary of our comparison results using 
system configuration 2, system configuration 3, and 
system configuration 4. As shown in Tables 1, 2, and 
3, Cluster-M produces similarly good results but in 
significantly less time. 

Figure 13: System (2): A completedly connected sys- 
tem. 

Figure 14: System (3): A hypercube system. 

6    Conclusion 
In this paper, we have presented a generic algo- 

rithm for mapping non-uniform arbitrary task graphs 
onto non-uniform arbitrary system graphs. Given a 
task graph and system graph, we have shown efficient 
techniques for producing two clustered graphs called 
Spec graph and Rep graph, which are the input to the 
mapping algorithm. The clustering is done only once 
for a given task graph (system graph) independent of 
any system graphs (task graphs). It is a machine- 
independent (application-independent) clustering and 
is not repeated for different mappings. The complexity 
of the mapping algorithm is O(MP), where M is the 

number of task modules, N is the number of proces- 
sors, and P = max(M,N). We presented our exper- 
imental results in comparing the performance of our 
generic algorithm with other leading ones. We have 
shown that we can obtain similar results in less time. 
The presented mapping algorithm can be efficiently 
integrated as part of portable parallel programming 
tools. 
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Table 1: Comparison of Cluster-M; MFMC, and MH on system (2). 

Size of 
Random Graph Ts 

Cluster-M [O(MJV)] MFMC [0(M4iV log M)] MH [0(MzN0)] 

Tm bm Tc i-in &m Tc Tm ^m Tc 

10 27 7.93 3.40 0.01 8.10 3.33 0.8 11.13 2.43 0.1 

12 33 8.23 4.00 0.01 16.85 1.96 4.1 9.03 3.65 0.1 

14 45 8.20 5.49 0.01 18.25 2.47 23.9 16.87 2.67 0.1 

16 46 12.50 3.68 0.01 23.70 1.94 109.1 14.05 3.27 0.1 

18 54 20.33 2.66 0.01 27.90 1.94 556.3 19.98 2.70 0.1 

20 64 19.00 3.37 0.01 34.70 1.84 2762.3 26.33 2.43 0.1 

22 60 23.40 2.56 0.01 33.20 1.80 13430.0 28.29 2.12 0.1 

24 86 16.00 5.38 0.01 39.65 2.17 21323.0 32.75 2.63 0.1 

Table 2: Comparison of Cluster-M, MFMC, and MH on system (3). 

Size of 
Random Graph Ts 

Cluster-M [O(MiV)] MFMC [0(M4W log M)] MH [0(M2Na)} 
Tm bm Tc 1-rn &m Tc Tm im Tc 

10 27 9.00 3.00 0.01 15.33 1.76 0.8 17.33 1.56 0.1 

12 33 13.50 2.44 0.01 17.83 1.85 3.7 17.00 1.94 0.1 

14 45 13.67 3.29 0.01 19.00 2.37 21.8 20.67 2.18 0.1 

16 46 21.00 2.19 0.01 22.50 2.04 99.6 20.50 2.24 0.1 

18 54 19.33 2.79 0.01 26.83 2.01 503.8 32.00 1.69 0.1 

20 64 19.00 3.37 0.01 31.17 2.05 2504.8 33.83 1.89 0.1 

22 60 24.50 2.45 0.01 35.83 1.67 13445.3 39.17 1.53 0.1 

24 86 26.67 3.23 0.01 39.83 2.16 15225.2 48.17 1.79 0.1 

Table 3: Comparison of Cluster-M, MFMC, and MH on system (4). 

Size of 
Random Graph Ts 

Cluster-M [O(MN)} MFMC [0(M4N log M)} MH [0{M'2NA)\ 

Tm ■5m Tc J-m &7TI Tc Irn &m Tc 

10 27 9.83 2.75 0.01 18.66 1.45 1.1 17.92 1.51 0.1 

12 33 21.33 1.54 0.01 19.33 1.71 5.3 17.08 1.93 0.1 

14 45 13.67 3.29 0.01 39.00 1.15 29.3 16.17 2.78 0.1 

16 46 21.00 2.19 0.01 45.83 1.00 141.2 25.83 1.78 0.1 

18 54 19.33 2.79 0.01 29.50 1.83 715.4 33.58 1.61 0.1 

20 64 19.00 3.37 0.01 60.17 1.06 3579.5 44.83 1.43 0.1 

22 60 26.00 2.31 0.01 40.83 1.47 17298.8 51.00 1.18 0.2 

24 86 26.67 3.23 0.01 71.83 1.20 30081.7 41.17 2.09 0.2 

160 



Case Study 

Practical Issues in Heterogeneous Processing Systems 
for Military Applications 

Glenn O. Ladd, Jr. 
Hughes Aircraft Company, El Segundo, CA, USA 



Practical Issues in Heterogeneous Processing Systems for 
Military Applications 

Glenn O. Ladd, Jr. 
Hughes Aircraft Company, El Segundo, CA 

Abstract 

Heterogeneous parallel processing systems have been 
extensively used in embedded military applications due to 
their advantages in size, weight, power, and hardware 
cost. This paper reviews the evolution of some of these 
systems and discusses design factors and tradeoffs which 
affect their application. As military systems have become 
more cost sensitive, and initial development more 
common than long term production, the use of 
commercial hardware and software has become more 
common. The rapid advances of computer technology 
seem likely to accelerate that trend in the future. 

Introduction 

This paper was motivated by observations by the 
author that heterogeneous processing design for many 
military applications is significantly different than is 
generally treated in the literature. There are many 
publications on the types of embedded military 
applications that are discussed herein, but a review of the 
practical considerations that have driven the design of 
fielded military processing systems may be of value to the 
reader. For our purposes, the term embedded is used in 
the sense of a focused, mission critical system design as 
opposed to a system for multiple user programming. The 
term is not intended to denote anything with respect to 
physical configuration. This paper reviews the more 
obvious features of several types of fielded systems, 
including more recent systems based on parallel 
processing architectures, sometimes termed embedded 
high performance computing designs after the work 
sponsored by DARPA in this area. 

Motivation 

The heterogeneous processing technical area is very 
broad, as is well developed in a recent paper by Ekmecic, 
et aUU The heterogeneity of the basic application, with 
respect to execution mode, is of great importance in 
developing the algorithms and application design for a 

specific compute problem. The concerns include detection 
of fine grain and course grain parallelism, the choice of a 
specific machine type to run each part of the application, 
and the allocation of the application code among various 
numbers of heterogeneous processing nodes. This 
statement already assumes the concept of parallelism, 
which one may observe is a consequence of the use of 
different machine or node types in the system, or of the 
use of a homogeneous machine on multiple execution 
modes at different times, i.e., temporal parallelism. The 
paper cited covers this discussion in some detail. 

In this paper, the focus is on the development of a 
practical heterogeneous processing system for military 
applications and the tradeoffs that must be made for an 
optimal system platform solution. The basic design of the 
applications that will be used is assumed to have been 
determined, though this is by no means an obvious step in 
the overall software system or software architecture 
design. The application design can have a profound effect 
on the hardware efficiency achieved and the choice of 
heterogeneous elements to incorporate in the system. The 
focus here is on the implications of such application 
designs for the processing system design rather than on 
the details of application algorithms and partitioning. 

The designs of practical embedded military 
processing systems tend to be driven strongly by 
considerations of platform system cost and required 
functionality. This is contrasted with decisions that might 
be made for a heterogeneous processing system for 
support of scientific or so-called "grand challenge" 
applications. A key notion for all embedded military 
processing systems is resource constraints: size, weight, 
volume; recurring cost; available memory and numbers of 
compute nodes and types, leading to throughput, latency, 
memory, interconnect bandwidth and similar constraints; 
application development cost; upgrade costs, etc. The 
notion of resource constraints pervades the entire system 
design and system application behavior, leading to 
demanding requirements for all levels of the hardware and 
software in the embedded processing system, and the 
hardware and software which supports application 
development and system integration. 
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Heterogeneous processing categorization 

Reference 1 develops a taxonomy of machine types 
which, when applied to military systems, reveals that such 
systems have embraced heterogeneous processing from 
fairly early designs. It also serves to focus attention on the 
diversity of heterogeneous processing system designs, and 
the on the resulting complexity of these systems. The 
taxonomy is described as follows, with the interpretations 
used in this paper: 

1. SESM: Single Execution Mode/Single Machine 
Model (Single application execution mode, 
single processing element/machine design) 

2. SEMM: Single Execution Mode/Multiple 
Machine Model (Single execution mode per 
processing element, multiple processing 
element/machine designs) 

3. MESM: Multiple Execution Mode/Single 
Machine Model (Multiple execution modes on 
any single processing element type, single 
processing element/machine design) 

4. MEMM: Multiple Execution Mode/Multiple 
Machines (Multiple execution modes, Multiple 
processing element/machine designs) 

The execution mode as interpreted here refers to the 
type of parallelism exhibited by the application, not the 
processing node or processing element (PE), and assumes 
that various execution modes can be implemented through 
software on a variety of machine models. The machine 
model refers to the fundamental design of the processing 
node or element. Examples of different execution modes 
for applications include vector, scalar, dataflow, systolic, 
SIMD, MIMD, etc. Examples of PE types, that is, 
hardware architectures, include general purpose 
microprocessors, digital signal processing (DSP) 
microprocessors, systolic array PEs, vector processing 
machines, and unique digital processing machine designs 
(common in military systems). Different machine models 
also include machines which are operated at different 
clock rates such that applications running on them execute 
with different performance and timing. 

The purpose of Table 1 is to show not only how high 
a degree of heterogeneity has been used in military 
processing, but also to show how long it has been a part 
of military systems. This observation will, of course, 
come as no surprise to those involved in these systems 
over the years, but the evolving complexity of some of the 
recent systems may be of some interest. The most early 
digital processing systems were uniprocessors which did 
some signal processing and some control and/or display 
functions. SESM was the paradigm of examples 1 and 2 
in the table. Example 3 is a surprisingly early example of 
an MEMM system—the digital signal processor did both 

vector and scalar computations for digital filtering, 
Kahlman filtering, and control synchronization. The 
general purpose processor was a unique design of the day 
used for sensor control and display and post processing on 
the radar mode applications. This was one of the very 
earliest programmable digital signal processing systems, 
and was motivated by the need for tuning the signal 
processing applications in response to actual flight data 
and the need to support multiple mode applications within 
severe hardware constraints. The hardware design was 
tailored to the application need. At that time, no 
commercial DSP machines existed, and funding for 
unique machines was available. Now we see this type of 
architecture used widely, but the programmable DSP and 
the GP are commercially available items. 

Example 5 in the table represents a generic type of 
integrated processing system. This system is uniquely 
designed to support the requirements of the platform. 
Further in this paper the type of requirements that such a 
system may need to support are reviewed, but as an 
example of an embedded heterogeneous processing 
system, this is of high complexity, yet highly unified in 
concept. Six machine types are suggested. The lower case 
n is some multiplier below 10 for practical cases. Each 
machine type supports one or more execution modes. The 
nodes might be connected by one or more communication 
paths including a bus, high bandwidth interconnect such 
as a switched network, and perhaps even a multiport 
memory. The system may support several sensors as well 
as mission management applications and user control 
console displays. Not only is the system hard real-time, 
but is also required to be multi-level secure, supporting 
applications at multiple security levels. This property 
fortunately supports separation within a complex 
application program suite which runs on the 
heterogeneous machine resources. This processing system 
serves as an example of a type of highly complex 
heterogeneous, parallel processing system of custom 
design. 

By contrast, current embedded military systems are 
beginning to be fielded with parallel processing systems 
that are commercially available from a number of 
companies. The most compact of these are supplied in the 
VME format by companies such as Mercury, SKY, and 
CSPI, while some military platforms are using parallel 
systems from IBM (SP-2), SGI, Digital, and others. While 
the IBM and similar systems would be classified as 
MESM, the Mercury, etc. systems are supplying multiple 
node types and are being operated as MEMM, as noted in 
the table. 

A final word regarding Table 1 - there are numerous 
other examples of the types of processing systems shown 
from multiple military suppliers. The author hopes to be 
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Table 1. Examples of military heterogeneous processing systems which have been or are planned 
to be fielded 

No. 

Heterog. 
Arch. 
Type 

Architecture 
Description 

Computing 
Commun. 

Control 
Commun. 

Processing Element 
Types: Typical 
number used 

Application, Developer and 
Approx. Dates 

1 SESM Bus-Oriented Multidrop 
Bus 

Same GPtype: 1-3 Typical Airborne, Naval 
Mission Computers of 70s, 
80s 

2 SESM In-line hardwired 
preprocessor 
andGP 

Unique 
parallel 
interfaces 

Unique 
Interfaces 

One GP and one 
preprocessor 

Typical radar processor of 
70s and early 80s. 

3 MEMM In-line 
Programmable 
Signal 
Processor and 
GP 

Internal to 
PES 

Unique 
Interfaces 

One GP and one Signal 
Processor 

Hughes programmable 
signal processor for 
airborne radar, mid-70s. 

4 MEMM Bus and Multi- 
Port Memory 

Multiport 
Memory 

Bus PES: 1-4 
MPM: 4 way 
1750A: 1-2 

Hughes Aircraft processors 
forF-14, F-15andF/A-18 
airborne radars of 1980s 

5 MEMM Bus, MPM, and 
SWN 

MPM, SWN Bus PES-Radar: 4n 
PES-Communic: n 
PES-EO: n 
PES-Display/Graphics: n 
PES-Encryption: n 
GP: 10n 

Integrated avionics or 
integrated sensor systems 
processing complex 

6 MEMM Bus, SWN SWN Bus and 
SWN 

Intel I860: 32-128 
GP: 1-2 

Mercury RACE systems, 
1995 

7 MESM Commercial 
High-End 
Server, 
Multiprocessor 

Various 
parallel 
network 
designs 

Usually the 
network 

GPSMP: 1-32 
(SMP = 2-4, or up to 8) 

Recent parallel commercial 
servers by DEC, H-P, Sun, 
SGI, etc. 

Glossary for Table 1 
PES - PE for digital Signal Processing, unique design. 
MD Bus - Multi-drop bus, e.g., VME, PI bus, etc. 
GP - General Purpose uniprocessor design, e.g., 1750A, Commodity microprocessors of 80s. 
MPM - Multiport memory. 
SWN - Switched Network (not differentiated as to type of switching or message protocol). 
SMP - Symmetric Multi-Processor. 

forgiven for not providing a comprehensive list, and does 
not intend to imply by omission that the examples cited 
are necessarily the best that might be cited! 

Application requirements issues and drivers 

The demands (and opportunities) of military platform 
requirements have had a high impact on the 
implementation of embedded heterogeneous processing 
systems. Table 2 adds information about the application 
and software requirements for systems shown in Table 1. 

The purpose of Table 2 is to add information about 
application or military platform/system requirements that 
add complexity to the system design and/or support of 
embedded heterogeneous systems. The focus is on the 

complexity of the system software architecture. Note that 
with example 3, the requirement for low latency, 
preemptive, deadline scheduled operating systems 
appeared. This was driven by the fact that sensor control 
loops began to be handled by the digital processing 
system. Synchronization of the sensor input with data 
availability for starting the application was required in 
some systems. 

By the time systems such as example 4 appeared, the 
use of multiple parallel signal PEs and multiple 
application programs which could be preempted by the 
operator resulted in the requirement for support for 
preemption of running programs in the operating systems 
(OS). This requirement alone begins to divide the practice 
of heterogeneous  computing  in embedded military 
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Table 2. Comparison of military system application latency and control requirements 

Application Interrupt- Hard Real- 
Application, Principle Heterog. Program Driven Time Special Run- 

Developer and System Arch. Support Computing Control Time SW 
No. Approximate Dates Application Type Reqmnts. Reqmnts. Reqmnts. Reqmnts. 

1 Typical Airborne, 
Naval Mission 
Computers of 70s, 
80s 

General 
purpose 
processing and 
control 

SESM Single program NO NO Custom RT OS 
design 

2 Typical radar Single sensor, SESM 1-3 programs NO NO. Synch Custom RT OS 
processor of 70s and few modes to sensor design 
early 80s. front-end 

3 Hughes Single sensor, MEMM Multi-program, YES YES Custom RT OS 
programmable signal few modes. sensor control design 
processor for airborne loops 
radar, mid-70s. 

4 Hughes Aircraft Single sensor, MEMM Multi-program, YES YES Custom RT OS 
processors for F-14, multiple, interrupt driven design 
F-15andF/A-18 interrupt driven 
airborne radars of modes 
1980s 

5 Integrated avionics or Multiple sensor, MEMM Multi-program, YES YES RT OS design 
integrated sensor multiple, interrupt with MLS, fault- 
systems processing interrupt driven driven, toler. support, 
complex modes per 

sensor 
reconfigurable, 
fault-tolerant, 
secure 

resource 
mgmnt. 

6 Mercury RACE Various system MESM Multi-program, YES YES Custom RT OS 
systems, 1995 applications interrupt driven design, POSIX 

interface. 
7 Recent parallel Military MESM Multiple NO NO High 

commercial servers command and programs, not performance 
by DEC, H-P, Sun, control, ground hard RT UNIX OS, 
SGI, etc. processing 

stations 
commercial 
middleware 

8 Future integrated Fully integrated MESM Multi-program, YES YES RT OS with 
heterog. parallel sensor & C4I interrupt POSIX API, 
processing systems systems/ 

platforms 
driven, 
dynamically 
scaling and 
repartitioning, 
reconfigurable, 
fault-tolerant, 
secure              | 

MLS, fault- 
toler., high 
performance 
resource 
management, 
interface to 
DISA COE. 

Glossary for Table 2: 
RT OS - Real-Time Operating System 
MLS - Multi-Level Security: Separation of applications and files as well as message separation, audit and logging, etc. 
DISA COE - Defense Information Security Agency, Common Operating Environment 

systems from heterogeneous applications in scientific 
processing. 

Example 5 exhibits the most demanding application 
and software requirements in this table. Sensor control 
loops must be supported with low latencies. Applications 
and files must  be protected while supporting hard real- 

time, preemptive priority interrupt and context switching 
performance. Special maintenance hardware may be 
available to report failures at run time, in much the same 
manner as for commercial mainframes, and run-time 
software can reconfigure the applications to hot spare 
modules. Error logging and instrumentation must be 
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supported at run-time. Run-time management of 
application faults must be supported, with restart. All of 
these capabilities place high demands on the hardware 
and software design, as stringent as may be found in 
today's military systems. 

In the past few years, the application of systems like 
example 6 has become popular because of the high 
performance per watt-cubic inch-pound-dollar. The 
Mercury and similar systems provide a high performance 
real-time OS but with significantly less robust application 
support than those in example 7. On the other hand, the 
technical community that grew up with the systems in 
examples 1-5 are quite able to design and field systems 
with high efficiency for parallel application code, though 
at higher cost. Highly complex, multiprogram 
applications similar to example 5 have not appeared 
publicly at this time, but may be anticipated. The only 
barriers are sufficiently capable operating systems and 
middleware similar to what has been developed for 
example 5. 

With example 7 in the table, the requirement for 
preemption is usually a soft requirement, in that system 
operation can be achieved within the capabilities of 
modern high performance UNIX operating systems, and 
modified commercial middleware. These systems are not 
operating with typical commercial client-server 
performance parameters, however. They do operate with 
commercial application programming interfaces (API). 
The commercial parallel server hardware is very cost- 
effective and offers high value when size/weight/power 
requirements are not demanding. Typical installations are 
in ground, ship, and cabin-mounted aircraft environments. 

Example 8 suggests what may be expected in future 
heterogeneous parallel processing systems. The hardware 
designs to support these systems exists in part in several 
existing commercial products, but not all in one product. 
This is discussed further in the conclusion section. 

Design trades for heterogeneous systems 

While the design of a heterogeneous system will be 
greatly affected by the nature of the applications and their 
performance on specific PEs or machine types, the 
practical requirements play such large role that they 
cannot be ignored. The figure of merit [Performance + 
[Watt * Cubic Inch * Pound * Cost ($)]] is always a 
strong consideration for any embedded military 
processing system. The impact can cause large differences 
in the choice of hardware, run-time software, and 
application design. This section attempts to illustrate these 
issues in order to highlight their importance. 

Table 3 shows three systems configured with up to 
three different PE or machine types. The prototype for 
such  systems  are  those  processors  being  supplied 

commercially by VME-based suppliers such as CSPI, 
Mercury, SKY, and others. The example PEs are the 
popular Motorola PowerPC and Analog Devices 21060 
devices, which are typically supplied in the configurations 
shown. Other configurations, such as 9U VME format, 
are available, and offer other possibilities in a design 
trade. An assumption is also made as to the replacement 
of PowerPC code in system 1 with PE-B code in 
system 2, specifically, that the source lines of code 
(SLOC) will be the same in either processor, which is a 
simplification. The performance replacement is as noted 
in the table, and is confirmed by actual benchmark results. 
Again, this replacement ratio can be quite different for 
different applications. The point, however, is that the use 
of special purpose PEs can significantly increase the FOM 
defined above. For systems which demand the lowest 
recurring cost, volume and power, heterogeneous systems 
are highly advantageous. 

The downside of heterogeneous systems is the 
additional complexity and software cost. Table 4 attempts 
to demonstrate the impact of software costs on the system 
design trades. The table assumes an application base of 
100,000 SLOC, which is not atypical of such systems, and 
can be much larger. Software development costs vary 
widely from place to place but the figure is at least 
illustrative. As in Table 3, the DSPs replace GP PE code 
on a one-one basis, and the cost of developing such code 
is considered to be about 25% higher. The Software 
Development Environment (SDE) cost is higher for the 
GP due to it's richness, and that for the DSP is less 
expensive. Note that DSP SDE costs can ultimately be 
much higher if the developer chooses to add and support 
unique tools. Running the numbers shows that that the 
total expense is about the same for the three example 
systems, while the volume from Table 3 is much smaller 
as the DSP nodes are added. 

Note, however, that SW costs greatly dominate the 
total system cost for the first article, validated system. At 
this point, considerations as to how this cost will be 
recovered become paramount. If the system is for 
development only, then the example would tend to 
support the homogeneous case, because the application 
should be more portable to upgraded hardware later. If the 
system is for reasonable production volumes, then the 
lower recurring cost of system 3 is desired. If the military 
platform requires minimum size, system 3 is also favored 
by a large margin. But what of other considerations? 

Table 5 presents a list of design factors that affect the 
choice of a processing system design or supplier. Each of 
these factors, if not more, will be evaluated by a system 
architect, or will be a factor in the cost and performance 
that a supplier can provide. To somewhat better 
appreciate the effect of architecture layout on application 
partitioning, reconfiguration, resource management, etc., 
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Table 3. Notional illustration of a heterogeneous parallel system design tradeoff 

Cost/ Total Total Volume = Approximate 
CPU No. of No. of Module, Module Cost, Total Ratios, $K- 

System Type Typical example CPUs Modules $K Cost, $K $K Modules Vol 

1 A PPC 604, 200 MHz 144 36 45 1620 1620 36 1-1 

2 A PPC 604, 200 MHz 96 24 45 1080 1142 25 0.70-0.69 

B AD21060, 40 MHz 12 1 62 62 

3 A PPC 604, 200 MHz 48 12 45 540 672 14 0.41-0.39 

B AD21060, 40 MHz 12 1 62 62 

C Like AD21060, 
different ISA 

12 1 62 62 

NOTES: Assumes 12 AD21060s are about 4X faster than 4 PPCs (127 MOPS/SHARC, 91 MOPS/PPC on FFTs). 

Table 4. Notional illustration of a heterogeneous parallel system design tradeoff—software 
costs added 

System 
CPU 
Type Typical Example 

No. of 
Modules 

No. of 
Applic. 
SLOCs, 

K 

SW 
Devel. 
Cost, 
$K(2) 

SDE 
Fixed 
Cost, 
$K 

Total 
SW 

Costs, 
$M 

Total 
HW 

Cost, 
$M 

Grand 
Total 
Cost, 
$M 

Approx. 
Ratios, Total 

$K-Vol 

1 A PPC 604, 200 MHz 36 100(1) 10,000 1000 10.1 1.620 11.7 1-1 

2 A 
B 

PPC 604, 200 MHz 
AD21060, 40 MHz 

24 
1 

90 
10 

9,000 
1,250 

1000 
300 

11.5 1.142 12.6 1.1-0.69 

3 A 
B 
C 

PPC 604, 200 MHz 
AD21060,40MHz 

Like SHARC, 
different ISA 

12 
1 
1 

80 
10 
10 

8,000 
1,250 
1,250 

1000 
300 
300 

12.1 0.672 12.7 1.1-0.39 

NOTES: 
1. The estimate of 100,000 SLOCs for this problem is on the low side; practical systems could be 3 times as large. 
2. Development cost: GP code - 100 SLOC/MM divided by 10K/MM = 10 SLOC/1K. DSP code - 8 SLOC/1K. 

consider Figure 1. Three types of nodes are shown—two 
DSPs and one GP node type. In the table (row 7 and 8), 
the application is assumed to support scaling from a few 
to many nodes either at design or at run-time. The degree 
of scaling is limited by the number of physical nodes per 
type, which will be fewer for the heterogeneous system, 
though percentage scaling will be similar. For 
reconfiguration on detected faults, there is less flexibility 
for the heterogeneous case. 

Another consideration for the choice of PEs is the life 
cycle costs of upgrading and replacing both the hardware 
and software. GP microprocessors tend to be upgraded 
every 18 months and are generally instruction set 
architecture (ISA) compatible. DSPs evolve on something 
more like a 3 year cycle, and are not necessarily ISA 
compatible. For military systems, upgrades tend to be 
costly and complex due to the need to validate correct 
system operation, a process which has usually required 
field trials involving expensive equipment, instrumented 
test ranges, and months of effort. ISA compatibility is a 
typical measure of reduced risk in such upgrades. In the 

past, such "DSP" machines were uniquely built and were 
designed to be ISA compatible. This factor alone should 
be enough to mitigate against heterogeneous designs 
using current commercial DSPs. The fact that such 
designs are nevertheless being widely used may be 
attributed to the high impact of the small footprint of the 
heterogeneous designs. 

Summary 

The use of heterogeneous processing systems in 
embedded military systems is well entrenched and will 
continue. The key driver is the need to conserve size, 
weight, and power for many military systems. A key 
supporting capability which is little acknowledged is that 
a pool of highly capable analysts and programmer exists 
in the defense industry for whom the programming of 
high performance DSP machines is a known art, albeit 
more expensive. This allows designers to choose 
heterogeneous machines in some cases where they might 
otherwise be rejected. 
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Table 5. Comparison of heterogeneous and homogeneous parallel system design factors 

No. Comparison Factors 
Homogeneous 

Parallel Heterogeneous Parallel 
Life Cycle Cost 

Impact 
Heterog. 

Advantage 

1 Hardware Arch Design Baseline, simplest Complicated by PE type placement 
in net 

Initial None 

2 HW Interfaces Baseline Multiple network and I/O interfaces Upgrade None 
3 Software Architecture 

Design 
Least Complex Partitioning of applications, multiple 

PE targets for middleware, resource 
management, etc. 

Design, 
Maintenance 

None 

4 SW Interface Drivers Fewer types Increased due to more PE types Design None 
5 SW Engineering 

Environment 
Single PE target Multiple SDE Upgrade None 

6 SW Programmer 
Training 

Single PE target Multiple types Upgrade, 
Maintenance 

None 

7 Applic. Behavior: 
Scaling 

Most simple case Complicated by multiple types Design None 

8 Applic. Behavior: 
Reconfiguration. 

Most simple case Complicated by multiple types Design None 

9 Multilevel Security Most simple case Harder- DSPs do not host secure 
OS, must be protected by GP- 
hosted OS 

Design None 

10 Fault Tolerance 
Implementation 

Most simple case Complicated by multiple PE types Design None 

11 Upgradeability: HW 
Cost 

Baseline Multiple PE types = multiple 
generations, not concurrent 

Upgrade, 
Maintenance 

None 

12 Upgradeability: SW 
Cost 

Baseline Portability less likely on DSP 
designs 

Upgrade None 

13 Perform.-HW: Unit 
Cost 

Baseline Lower due to DSP efficiencies Recurring Cost Significant 

14 Perform.-HW: 
W*cu.in.*lb. 

Baseline Lower due to DSP efficiencies High FOM Significant 

15 Perform. - SW: Devel. 
Cost 

Baseline Higher due to more difficult DSP 
programmability 

Design, 
Maintenance 

None 

16 Perform.-SW: SDE 
Cost 

Single PE target Multiple SDE types for multiple PE 
types 

Design, 
Maintenance, 
Upgrades 

None 

17 HW Spares Cost Most simple, least 
costly 

Higher cost, less commonality, more 
types of spares 

Recurring None 

In addition, technology is emerging which will make 
the development of systems noted in line 8 of Table 2 
readily achievable. The major computer industry suppliers 
are moving to parallel systems for high end servers, and 
will incorporate high bandwidth networks. Industry 
standard high bandwidth networks, if adopted would 
allow DSP modules to be attached or incorporated for 
some military systems. As these new servers mature, the 
maintenance capabilities and run-time software will 
become more powerful in response to commercial 
application drivers such as telecommunications and video 
on demand. Unfortunately, internal network standards are 
the exception in current machines, not the norm. 

At the same time, those companies specializing in the 
embedded market will add PE types and more powerful 
software to their offerings, thus maintaining the 
advantages of performance per power/size/weight/cost 
that they have historically enjoyed. The introduction of 
new network concepts such as System Area Network 
(SAN), of which the Myrinet currently being supplied by 
Myricom, Incorporated is an example, will also allow 
such systems to achieve large numbers of nodes which 
can include both commercial workstations and highly 
compact, high performance heterogeneous rack systems. 
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Abstract 

The problem of statically estimating the execution 
time distribution for a task graph consisting of a col- 
lection of subtasks to be executed in a heterogeneous 
computing (HC) system is considered. Execution time 
distributions for the individual subtasks are assumed 
to be known. A mathematical model for the communi- 
cation network that interconnects the machines of the 
HC system is introduced, and a probabilistic approach 
is developed to estimate the overall execution time dis- 
tribution of the task graph. It is shown that, for a given 
matching and scheduling, computing the exact distri- 
bution of the overall execution time of a task graph 
is very difficult, and thus impractical. The proposed 
approach approximates the exact distribution and re- 
quires a relatively small amount of calculation time. 
The accuracy of the proposed approach is demonstrated 
mathematically through the derivation of bounds that 
quantify the difference between the exact distribution 
and that provided by the proposed approach. Numer- 
ical studies are also included to further validate the 
utility of the proposed methodology. 

1    Introduction 

A heterogeneous computing (HC) system provides 
a variety of architectural capabilities, orchestrated to 
perform an application whose subtasks have diverse 
execution requirements [1]. HC has become a sub- 
ject of intensive research within the high-performance 
computing community in the quest of systems that 
are versatile and provide good performance. For a 
description of example HC applications and a list of 
related references, refer to [1]. 

"This work was supported by Rome Laboratory under grant 
number F30602-96-1-0098. 

Throughout this paper, an HC system is assumed 
to consist of a suite of independent machines of differ- 
ent types interconnected by a high-speed network. HC 
requires the effective use of diverse hardware and soft- 
ware components to meet the distinct and varied com- 
putational requirements of a given application. Im- 
plicit in the concept of HC is the idea that subtasks 
with different machine architectural requirements are 
embedded in the applications executed by the HC sys- 
tem. The concept of HC is to decompose a task into 
computationally homogeneous subtasks, and then as- 
sign each subtask to the machine where it is best suited 
for execution [1]. 

Unlike in distributed homogeneous systems (e.g., a 
network of workstations of the same type and configu- 
ration), it is generally difficult and impractical to sus- 
pend the execution of a subtask on one machine and 
resume that subtask's execution on another machine 
of a different type in an HC system. Thus, a challenge 
in making effective use of an HC system is to minimize 
the need for such dynamic subtask migration, which 
implies an increased importance on the static prob- 
lems of assigning subtasks to machines (matching) 
and ordering the execution of subtasks assigned to the 
same machine (scheduling). 

Performance prediction is the basis of matching and 
scheduling techniques for HC systems. Many match- 
ing and scheduling algorithms make the simplifying 
assumption that the execution time for each subtask 
is a known constant for each machine in the system 
(e.g., [2, 3]). However, there are elements of uncer- 
tainty, such as the uncertainty in input data values 
or in inter-machine communication time, which can 
impact the execution times. Machine choices for exe- 
cuting subtasks can also affect the execution time and 
its degree of uncertainty. 

In this paper, the task to be executed on the HC 
system is modeled as a task graph consisting of a col- 
lection of subtasks.   A mathematical model for the 
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communication network that interconnects the ma- 
chines of the HC system is introduced, and a prob- 
abilistic approach is developed to estimate the overall 
execution time distribution of the task graph. This 
overall distribution depends on the individual subtask 
execution time distributions, the inter-machine com- 
munication time distributions, the data dependency 
structure among the subtasks, the matching of sub- 
tasks to machines, and the scheduling of subtasks 
matched to a common machine. It is shown that, 
for a given matching and scheduling, computing the 
exact distribution of the overall execution time of a 
task graph is very difficult, and thus impractical. The 
proposed approach approximates the exact distribu- 
tion and requires a relatively small amount of calcula- 
tion time. The accuracy of the proposed approach is 
demonstrated mathematically through the derivation 
of bounds that quantify the difference between the ex- 
act distribution and that provided by the proposed 
approach. Numerical studies are also included to fur- 
ther validate the utility of the proposed methodology. 

Section 2 presents the basic assumptions and an 
overview of the approach. A mathematical framework 
for the approach is presented in Section 3. Section 4 
demonstrates the generic difficulty associated with cal- 
culating the exact execution time distribution for a 
task graph. An approximate approach is then pro- 
posed based on the conditions set forth by the Klein- 
rock independence approximation [4]. Section 4 con- 
cludes with a mathematical derivation of a bound for 
quantifying the difference between the exact distribu- 
tion and that associated with the proposed approach. 
In Section 5, execution time distributions determined 
using the proposed approach are compared with corre- 
sponding distributions obtained by simulation of ex- 
ample task graphs. These studies indicate that the 
proposed approach predicts the execution time distri- 
bution for a large class of practical task graphs with 
high accuracy. 

2    Assumptions and Overview 

It is assumed that the HC system consists of a dedi- 
cated network of machines under the control of a single 
matching/scheduling mechanism. The type of appli- 
cation task considered is composed of a number of 
subtasks, each of which is to be executed on a partic- 
ular machine in the HC system. The execution time 
distribution for each individual subtask is assumed to 
be known or estimated for the machine on which it is 
to be executed. Previous approaches for determining 
the execution time distribution of (parallel) programs 

(e.g., [5, 6]) could be applied for estimating the execu- 
tion time distribution of subtasks. Estimates of sub- 
task execution time distributions based on empirical 
measurements could also be utilized in the framework 
assumed here. 

The subtask-to-machine matching and the order of 
execution for multiple subtasks assigned to the same 
machine (i.e., the subtask scheduling for each ma- 
chine) are assumed to be static and known. The prob- 
lems of optimal matching and scheduling represent 
large bodies of research in the field of HC, e.g., see 
[3, 7]. How to determine good solutions to the match- 
ing and scheduling problems is beyond the scope of 
this paper. The goal here is to develop a new prob- 
abilistic approach for analyzing the overall task exe- 
cution time for given matching and scheduling poli- 
cies. From this probabilistic modeling foundation, fu- 
ture matching and scheduling techniques may be de- 
veloped that are based on probabilistic metrics for per- 
formance. 

For each subtask, all input data items must be 
present at the subtask's designated machine before 
computation starts, and output data items can be 
transferred to other machines only after computa- 
tion of the subtask is completed. Data-dependencies 
among the subtasks are represented by a task graph. 
A task graph is a directed acyclic graph in which 
nodes represent subtasks and arcs represent the data- 
dependencies among the subtasks. 

To compute the execution time distribution of the 
entire task, the assumed execution time distributions 
of all subtasks (on their designated machines) are uti- 
lized. These distributions correspond to the compu- 
tation time of the subtasks only; distributions for the 
times required to input and output any data structures 
are defined separately. 

For each subtask, the machine from which each re- 
quired input data item is fetched is assumed to be 
specified. In general, these machines will depend on 
the subtask-to-machine matching that is used. For ex- 
ample, fetching a data item from the machine at which 
it was first generated (or was initially stored) is a sim- 
ple rule that is often assumed for this type of analysis. 
However, the model devised here allows for more gen- 
eral refinements in how the data is distributed and 
retrieved. For example, the model is general enough 
to account for the data-reuse and multiple data-copies 
situations [8], which allow the fetching of data items 
from a machine other than the one where it was gen- 
erated. 

Network I/O at each machine is assumed to be non- 
blocking (e.g., handled by a stand-alone I/O proces- 
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sor). Therefore, computation and inter-machine com- 
munication can be overlapped in time. Each subtask is 
assumed to start computation when its designated ma- 
chine is ready and all its input data items are available 
on this machine. Immediately after computation for a 
subtask completes, the machine is made available for 
executing the next subtask scheduled for execution on 
that machine. Also, the output data items produced 
by the completed subtask are made available for all 
subsequent subtasks to be executed on that machine. 
If multiple data items produced by a subtask are to be 
transferred to other machines, the order in which they 
are sent is assumed to be specified. All outgoing data 
items at a given machine are assumed to be buffered 
when the machine is transmitting another data item. 

In general, the network transmission time for a 
given data item (including the uncertain delay caused 
by network contention) depends on factors such as the 
size of the data item being transferred, the topology 
and bandwidth of the network, the type of switching 
used, the types of machine-network interfaces used, 
and the overall network load. For the purpose of this 
analysis, a network model in which the transmission 
time is modeled according to a probabilistic distribu- 
tion is assumed. In this model, the shape of the dis- 
tribution is fixed (e.g., the variance is fixed), and the 
mean of the distribution is defined to be the sum of a 
fixed overhead and a term proportional to the size of 
data item transfered. The fixed overhead corresponds 
to the latency of the network, and the coefficient for 
the second term corresponds to the inverse of the chan- 
nel bandwidth. This represents one possible model 
for the transmission time for a network. Other net- 
work models are possible and could be used in place of 
the one assumed here. Furthermore, the transmission 
time can be source-destination dependent. The only 
requirement is that the transmission time be modeled 
according to a probabilistic distribution. 

Three separate random variables are used to rep- 
resent the start time, execution time, and completion 
time for each subtask. The values of the start and fin- 
ish times are defined with respect to a global time-line, 
and the subtask execution time represents the length 
of an interval on this time-line. The task is assumed 
to start execution at time 0. A subtask is called a 
terminal subtask if it corresponds to a node with no 
successors in the task graph and is the last subtask 
executed on its designated machine. The maximum of 
the completion times over all terminal subtasks defines 
the finish time of the entire task. 

3    Mathematical Model of Task Graph Exe- 
cution in an HC System 

In this section, random variables are used to model 
the data communication times among the machines 
and the start time, execution time, and finish time 
for each subtask. The relationships among these ran- 
dom variables are derived. These are used in the next 
section to compute the overall task execution time dis- 
tribution by performing appropriate operations to the 
distribution functions of these random variables. 

It is assumed that there are m machines in the HC 
system, labeled M, i = 0, l,...,m - 1. The task 
consists of n subtasks, labeled Sj_, j = 0,1,...,n - 1. 
The subtask-to-machine matching is defined by the 
function 

Al:{0,...,n-l}->{0,...,m-l}.        (1) 

Thus, subtask Sj is to be executed on machine MM(J) ■ 
For each machine Mi, the number of subtasks assigned 
to Mi is denoted as a*, and the execution schedule 
for these a» subtasks is defined by the function X^ : 
{0,... ,(Xi - 1} -> M-1(i), which is a bijection. Thus, 
Xi{k), 0 < k < at, defines the (k + l)-th task to be 
executed; the sequence of execution on machine Mi is 
from subtask S;t,(o) to 5^(Qi_i). 

For each subtask Sj, 0 < j < n, define n] and n£ 
to be the number of associated input and output data 
items, respectively. Input data items of Sj are labeled 
Dj v, 0 < v < nj. Output data items of Sj are labeled 

Dfu, 0 < u < nf. If multiple output data items of a 

subtask need to be transmitted to other machine(s), 
then they are transmitted serially in ascending index 
order, i.e., Dfu is transmitted before Dft, for u < L 

For each subtask Sj, the times at which computa- 
tion starts and finishes is modeled by random vari- 
ables Tf and Tf, respectively.   The execution time 

of Sj is modeled by random variable rf, defined as 

T? = Tf - Tf. Note that throughout this paper, val- 
ues of random variables involving the letter "T" corre- 
spond to points on the global time-line, and those that 
use "T" represent lengths of intervals on this time-line. 
It is assumed that the execution times of all subtasks 
are independent, i.e., rf, 0<j<n, form a set of mu- 
tually independent random variables. This has been 
an assumption made by other researchers as well, e.g., 
[9]. Based on the definition of rf, a useful expression 
for Tf is given by: 

j j      Ti 
E (2) 
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For each subtask Sj, the time at which input data 
item DT

jv, 0 < v < nj, becomes available on machine 
MM{]) is defined by Tjv. It is assumed that all initial 
data items are pre-loaded to the machines that will 
first use them, i.e., the time required to load these 
data items is not considered in the analysis. Thus, 
the available time for all pre-loaded data items is de- 
fined as 0. The sum of the queuing time, denoted by 

rfu, and the network time, denoted by T£U, defines 

the time period starting at time Tf and ending when 
data item D9„ is available at its destination subtask. 
If the destination subtask of Dfu is on the same ma- 

chine as Sj, then both rfu and T£U are defined to be 

0. Otherwise, rfu represents the time Dfu waits in 
the queue before machine MM(J) begins to transmit 
it, and T^ represents the amount of time (including 
any delay caused by network contention) to transfer 
Dfu through the network to its destination. Network 
times for different output data items are assumed to 
be independent (i.e., the random variables T£U are in- 
dependent). 

In the following discussion, let output data item u 
of Sj (i.e., Dfu) be input data item v of subtask Sg 

(i.e., Dfu = D1  ). Also, if Sj and Sg are assigned to 
o 

the same machine, i.e., M(g) = M(j), then Tju = 0 
for all u. If u = 0 (i.e., D<?u = Dffi is the first data 
item transmitted), then the queuing time is zero, i.e., 
TQ Q 0. Hence, the general expression for T^U is: 

TQ    = 

(0 if u = 0 

or M(j) = M{g), 

T9U_! + rj^i    otherwise. 
(3) 

It is assumed that Dfu is available to Sg immediately 
upon arriving at machine MM^gy Let T£u define this 

arrival time, then 

rpA      rpj 
j,u ~ ±g,v Tf+TQ 

3,u ~ '],u- (4) 

Assume now that subtask Sj is to be executed on 
machine M*, i.e., M(j) = i, and is the (k + l)-th 
subtask scheduled for execution, i.e., Xi(k) = j. Let 
Tj1 denote the time that Mi becomes available for 
executing Sj. If A; = 0, i.e., Sj is the first subtask 
scheduled to execute on Mi, then Tf1 is defined to be 
0. Otherwise, Sx^k-x) is the previous subtask that 
executes on Mi, and Tf1 is defined to be the finish 
time of Sxi(k-i)- Therefore, the general relation for 
the time when machine Mi becomes available for exe- 

cuting subtask Sxi(k) is: 

'0 

*i(k)      \Tx.ik-i)    otherwise. 
(5) 

The start time of a subtask is the maximum of the 
available time of the designated machine and the max- 
imum of all arrival times of its input data items: 

if = max l T, M max 
v=0 M»} (6) 

Equations (2) through (6) establish the relation- 
ships among the defined random variables, and are 
used to derive their associated probability distribution 
and/or density functions. In particular, distributions 
for the random variables rf and T^U are assumed to be 
specified, and distributions for the other random vari- 
ables are defined based on the relationships derived in 
this section. The overall execution time distribution 
of a task graph is analyzed in the next section. 

4    Calculating the Execution Time Distribu- 
tion for a Task Graph 

4.1    Difficulty with exact calculation 

In a task graph, subtasks that require input data 
items from a common subtask have correlated start 
and finish times, and thus their associated random 
variables are not independent. This correlation can 
propagate to the start and finish times of subsequent 
subtasks that get data from these subtasks. All such 
subtasks correspond to nodes in the task graph that 
have a common ancestor. It is shown in this subsection 
that this type of correlation generally makes the exact 
derivation of the overall execution time distribution of 
a task graph difficult and impractical. 

Before demonstrating the difficulty of performing 
basic operations on correlated random variables, the 
summation and maximum operations for independent 
random variables are first reviewed. From basic prob- 
ability theory, recall that the density function of the 
summation of independent random variables is the 
convolution of the density functions of the individ- 
ual random variables [10]. Thus, for two independent 
random variables, say R and V with density functions 
fn(-) and /v(-)> the density function of Y = R + V is 
given by the convolution of /R(-) and /y(-)> denoted 
by /VO = /«(•) */v(Q, which is defined by: 

fi 
,0, 

'(</) = / 
J—c 

fR(y-t)fv(t)dt. (7) 
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Also recall that the distribution function of the maxi- 
mum of independent discrete random variables is the 
product of the distribution functions of the individual 
random variables [10]. Thus, for two independent dis- 
crete random variables, say R and V with distribution 
functions FR(-) and Fy(-), the distribution function of 
Z = maxji?, V} is given by 

Fz(z) = FR(z) ■ Fv(z). (8) 

Figure 1: An example task graph whose overall exe- 
cution time distribution is difficult to derive. 

Consider the task graph with five subtasks shown in 
Fig. 1. Assume there are two machines in the HC sys- 
tem. Subtasks So, «S2 and 54 are assigned to machine 
Mo, and subtasks Si and S3 are assigned to machine 
Mi. To simplify the presentation, the network com- 
munication times are assumed to be zero, i.e., T^U = 0 
for all j and u. Recall that rf denotes the given execu- 
tion time distribution of Sj on its designated machine. 
The start time of subtask 54 can be derived by using 
Equations (2)-(6) as follows. 

rpF 

TF 
To*, 

— 1o   — T0 

T3
S = max{Tf,T?} = max^ ,rf}, 

= Tn 

JS  „El .3   = max{-r^,T^} + Tf, 

T4
5=max{T2

F,T3
F} 

= max{7-0
B + if, max{r0

£, rf} + T?}.     (9) 

Because T% and TF are not independent, Equa- 
tion (8) is not applicable for computing the distribu- 
tion of Tf. The only way to compute the exact dis- 
tribution for Tf is to consider Tf as a function of r<f, 
rf, T%, and rf (which are assumed to be indepen- 
dent random variables) and use direct integration. To 
simplify the notation, let TQ = A, rf = B, rf = C, 
rf = D, and Tf = X.   With these substitutions, 

Equation (9) is 

X = max{yl + C, max{,4, B} + D}. 

An exact derivation of the distribution function for 
X (i.e., T4

S) based on basic probability theory is as 
follows. 

Fx(x) 

= Pr[max{(yl + C), max{i, B} + D} < x] 

= Pi[A + C < x, m&x{A, B) + D < x] 

=  / Pr[A + C < x, max{A, B} + D < x\D = d] 

dFD{d) 

= / Px[A + C <x,max{A,B} < x - d] dFD{d) 

"// 

■// 

■/// 

■/// 

Pr[A + C < x, max{A, B) < x - d\B = b] 

dFB{b) dFD(d) 

Pr[A + C < x, max{A, b} < x - d] 

dFB(b) dFD{d) 

Vv[A + C < x, max{A, b} < x - d\A = a] 

dFA{a) dFB(b) dFD(d) 

Pr[C < x — a, max{a, b} < x — d] 

dFA(a) dFB{b) dFD(d) 

Fc(x — a)/(max{a, b} < x — d) 

dFA(a) dFB{b) dFD{d), (10) 

where /(•) is the "indicator function," defined for 
this case as follows: if max{a,6} < x — d, then 
I(max{a, b} < x — d) = 1; otherwise J(max{a, b} < 
x-d) = 0. 

The above example illustrates that even for a sim- 
plified model (i.e., ignoring the communication over- 
head) of the considered task graph, the derivation of 
the exact execution time distribution is non-trivial. In 
particular, the production of a string of equalities is 
required (based on basic principles of probability the- 
ory) in order to derive the final expression given in 
Equation (10). Thus, although the final expression 
can be evaluated in this case, it was not straightfor- 
ward to derive. 

Practical task graphs will be more complicated than 
that of Fig. 1, and dependencies imposed by machine 
availability could further complicate the relationships 
among the start and finish times of subtasks. Al- 
though exact derivation for general task graphs may 
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be possible, there is no clear systematic approach for 
automating such a derivation. A goal of this paper is 
to devise an approach for systematically determining 
(or suitably approximating) the execution time dis- 
tribution of a task graph. In the remainder of this 
section, such a technique is proposed for estimating 
the overall execution time distribution based on the 
Kleinrock independence approximation. This approx- 
imation enables the usage of the simple formulas for 
summation and maximum of random variables (i.e., 
Equations (7) and (8)). 

4.2    Independence assumption 

As demonstrated in the previous subsection, sub- 
tasks corresponding to nodes in the task graph that 
have a common ancestor can have correlated random 
variables associated with the start and finish times. In 
such cases, deriving an expression for the exact distri- 
bution of the overall execution time distribution can 
become unrealistic for general task graphs. However, 
conditions exist for which the associated random vari- 
ables can nevertheless be treated as uncorrelated de- 
spite this type of interaction. The Kleinrock indepen- 
dence approximation [4] is a well-known condition for 
describing this situation, and is used here as the basis 
for assuming independence among random variables 
that may technically be correlated. 

To understand the original rationale of the Klein- 
rock independence approximation, consider a data 
network in which there are many interacting trans- 
mission queues. A traffic stream departing from one 
queue enters one or more other queues, perhaps af- 
ter merging with portions of other traffic streams 
departing from yet other queues. Although packet 
inter-arrival times of data packets can become de- 
pendent (i.e., correlated) after a traffic stream leaves 
the first queue, the Kleinrock independence approxi- 
mation concludes that the merging of many different 
packet streams on a transmission line has an effect 
similar to restoring the independence of inter-arrival 
times and packet lengths [11]. 

Similarly, in a task graph, a subtask may take input 
from many other subtasks, and multiple subtasks may 
be assigned to the same machine, where they must 
wait for the machine to become available before ex- 
ecution. The effect is analogous to that of merging 
many traffic streams in a data network. Thus, it is 
assumed that the input of data from many other sub- 
tasks has the effect of restoring independence among 
the start and finish times of subtasks that have a com- 
mon ancestor in the task graph. This approximation 
of independence is the basis for justifying the use of 

Equations (7) and (8) to compute the distribution of 
start and finish times of subtasks. The degree to which 
this independence approximation is violated (or not) 
will influence the resulting accuracy of the calculated 
distribution. The estimation error is analyzed mathe- 
matically in Subsection 4.4, and is investigated further 
in Section 5 through numerical simulation studies. 

4.3    Proposed approach for calculating the exe- 
cution time distribution 

Subtask start and finish time distributions are cal- 
culated in an order determined by the data depen- 
dency structure of the task graph and machine avail- 
ability, which depends on the given matching of sub- 
tasks to machines and local scheduling for each ma- 
chine. The key to calculating the start and finish time 
distributions is to partition the subtasks into layers, 
which requires the definition of an immediate prede- 
cessor. Subtask Sj is an immediate predecessor of sub- 
task Sg if either of the following conditions is satisfied: 
(1) Sg requires data from Sj (i.e., there is an arc in 
the task graph from Sj to Sg) or (2) Sj and Sg are 
assigned to the same machine and Sj is scheduled to 
execute immediately before Sg. Those subtasks with- 
out an immediate predecessor are put into layer 1. A 
subtask is put into layer k +1 if the highest layer num- 
ber of its immediate predecessors is k. Based on this 
definition (which implies a constructive procedure), 
there is no data dependence among subtasks of the 
same layer. The main difference between this layer- 
ing approach and those found in the literature (e.g., 
Cluster-M model in [12]) is the resource dependence 
determined by scheduling is also considered, i.e., con- 
dition (2) above, is also considered. 

Subtask start and finish time distributions are first 
computed for subtasks in layer 1. Distributions for 
the time each output data item is available on its tar- 
get machine are then calculated. These steps are re- 
peated for subtasks in layer 2, and so on. In this 
way, when the start time distribution of each subtask 
is computed, the distributions for available times of 
the designated machine and all input data items are 
known. 

For each subtask Sj considered in the "layered" or- 
der, the following four calculations are performed. 

1. Compute distribution function for subtask start 
time: 

FTS(-) = FTM(-)1[FT!   (■). (11) 
v=0 
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2. Compute density function for subtask completion 
time: 

/r/-(-) = /r/(0*/rf(-)- (12) 

3. Let the next subtask to be executed on machine 
MM(j) be Sg. Define the density function for ma- 
chine available time for Sg: 

/TM(.)   = fTF (•). (13) 

4. For each u from 0 to nf - 1, let output data 
item D? be the input data item h of subtask Sg 

(i.e., D1 h). Compute the distributions for queu- 
ing time, arrival time for Dfu, and the available 

time for D1 h. 

fr« (0 

(5()        if u = 0 or M(j)=M(g), 

I fTQ      (•) * /TN   , (•)    otherwise. 
(14) 

/T£,(-) = /T<„(-) 

= /T?(-)*/r0(-)*/r»0- (15) 

(<5(-) represents the Dirac delta function [13].) 

After completing the above four steps for each sub- 
task (ordered according to the layer numbers), the 
overall distribution of the task execution time is com- 
puted. Let cf> be the number of terminal subtasks, and 
let {Sj0,Sj1,...,Sj4,_l} be the set of terminal sub- 
tasks. Then the probability distribution function of 
the completion time of the entire task is: 

FTC(-)=1[FTF(-). (16) 

4.4    Error analysis 

In this subsection, the difference between the dis- 
tribution computed by the proposed approach (Sub- 
section 4.3) and the exact distribution is analyzed for 
a special class of task graphs for which the Kleinrock 
independence assumption is (apparently) violated. An 
analytical expression for the difference of the means of 
these distributions is derived. Based on this expres- 
sion, it is shown that the proposed approach always 
overestimates the actual mean of the execution time. 
A bound for the difference of the means is also de- 
rived that depends on the parameters of the assumed 
subtask distributions involved. Finally, conditions are 
determined for which the distribution of the proposed 

approach equals the exact distribution for this class of 
task graph. 

In a task graph, a fork-join structure between two 
subtasks Sf and Sj contains a set of two or more dis- 
joint paths from Sf to Sj ("f" is for fork and "j" 
is for join). Let W denote the set of subtasks in a 
fork-join structure, excluding Sf and Sj. For a given 
subtask-to-machine matching and a given scheduling 
for each machine, a fork-join structure is called an 
isolated fork-join structure if every immediate prede- 
cessor of a subtask in W belongs to W U {Sf}. Ex- 
amples of isolated fork-join structures are shown in 
Fig. 2, in which each subtask is assumed to be as- 
signed to a distinct machine. The conditions of the 
Kleinrock independence approximation are clearly vi- 
olated in an isolated fork-join structure. This is be- 
cause the data that flows from Sf to Sj (e.g., So to 
S3 in Fig. 2(a)) does not merge with other data origi- 
nating from subtasks outside that fork-join structure. 
Therefore, the effect of restoring independence of ar- 
rival times of input data items for Sj by merging data 
flows from different subtasks/machines does not oc- 
cur. Perhaps surprisingly, it is shown that even for 
this "worst case" structure (i.e., the isolated fork-join 
structure), the proposed approach still can provide 
reasonably accurate estimate of the exact distribution. 
Under certain conditions, it is shown that the distri- 
bution from the proposed approach actually coincides 
with the exact distribution. 

Figure 2: Examples of isolated fork-join structures. 
Each subtask is assumed to be assigned to a distinct 
machine for each example. 

Isolated fork-join structures are characterized by 
the number of disjoint paths that connect Sf to Sj. 
In Fig. 2(b), note that the chains Si -> S3 ->• S5 and 
S2 —> S4 can each be reduced to a single subtask, re- 
sulting in a structure identical to that in Fig. 2(a). 
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Therefore, without loss of generality, only structures 
in which there is exactly one subtask on each path 
between S{ and Sj (such as Figs. 2(a) and (c)) are 
studied here. 

In general, for multiple subtasks matched to the 
same machine, a fork-join structure may not be an 
isolated fork-join structure. For example, consider 
Fig. 3 in which the subtasks are matched to machines 
as indicated by the ovals. Although 50 through 53 
form a fork-join structure, the scheduling of 5i and 
55 on Mi determines whether it is an isolated fork- 
join structure. In particular, if 5s is scheduled be- 
fore Si, then it is not an isolated fork-join structure, 
because S§ is an immediate predecessor of Si and 
S6tW\J{So} = {So,S1,S2}. 

M0      ( 

Mx 

Figure 3: Example task graph in which its character- 
ization as an isolated fork-join structure depends on 
the scheduling. 

Consider the isolated fork-join structure shown in 
Fig. 2(a). For clarity of presentation and without loss 
of generality, network communication times are ig- 
nored. Let A, B, and C denote the execution time 
distribution of So, Si, and S2 on their designated ma- 
chines, respectively. The start time of 53 can be de- 
rived as: 

Tf = T? = Tf = A, 
Tf = A + B, 

Tf = A + C, 
T§ = max{lf, Tf} = max{A + B, A + C}. 

Note that the distributions for Tf and Tf are ob- 
tained by convolving the appropriate density functions 
(i.e., /,.,(■) = /A(-)*/B(0 and /T,(.) = fA{-)*fc(-)). 
The proposed approach estimates the distribution of 
T3

S as FTF(-)FTF(-). For notational convenience, let 
X denote the random variable with distribution func- 
tion FTF(-)FTF(-), and let X* = T3

S, i.e., X and X* 

represent the estimated and exact value of T3
S, respec- 

tively. 

In [6], the exact distribution for X* is derived and 
the difference between X and X* is analyzed mathe- 
matically. Due to space limitations, only the results 
of this analysis is included here (refer to [6] for the de- 
tailed derivation). To state the results, some notation 
is needed for quantifying the ranges of the random 
variables A, B, and C. Because these random rep- 
resent the execution times of So, Si, and 52, it is as- 
sumed that they are finite and have finite range. Thus, 
there exists constants 0 < ai < 02, 0 < &i < 62, and 
0 < ci < c2) such that Pi[A < 01] = Pi[A > a2] = 0, 
Pr[S < 61] = Pr[B > b2] = 0, Pr[C < a] = Pr[C > 
c2] = 0. 

The following is a summary of the results proven in 
[6]. 

1. The proposed approach always overestimates the 
mean, and the estimation error for the mean is 
upper-bounded by the length of the range of A: 

OKEX-EX* <a2-ai, (17) 

where EX and EX* denote the expected values 
(i.e., means) of the approximate and exact distri- 
butions, respectively. 

2. The proposed approach yields the exact distri- 
bution if the length of the range of A is shorter 
than the length of combined range of B and C. 
Mathematically, this condition on the length of 
the range of A is stated as: 

a-i — ai < max{Ö2,C2} — min{6i,Ci}. 

Thus, if the above inequality is satisfied, then the 
distribution produced by the proposed approach 
equals the exact distribution (i.e., X = X*). 

These two results share a common theme - the 
smaller the range of possible values for A, the smaller 
the estimation error. The second result is most inter- 
esting, and perhaps most surprising. It states that if 
the range of values for A is sufficiently small (with re- 
spect to the corresponding ranges for B and C), then 
the estimated distribution actually equals the exact 
distribution (i.e., there is no estimation error). An 
important key in deriving these results is the finite 
range assumption for the random variables A, B, and 
C. 

5   Numerical Studies 

5.1    Overview 

In this section, the accuracy of the execution time 
distributions determined from the proposed approach 
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(Subsection 4.3) is evaluated through numerical stud- 
ies. Due to the size and complexity of the task graphs 
considered, derivation of the exact distributions (as 
done for the simple task graphs considered in the pre- 
vious section) is not feasible. Thus, detailed simu- 
lations of the task graphs are performed as a means 
of determining the actual distributions. The results 
show that the proposed approach predicts simulated 
task graph execution time distribution with high ac- 
curacy. Task graph structures for which the indepen- 
dence among the random variables is apparently vio- 
lated to a substantial degree are also studied. Even 
for these task graph structures, the distributions com- 
puted by the proposed approach match those from the 
simulation reasonably well. On a Sun SPARCstation 
5, the time required to compute distributions based 
on the proposed approach is about 10 times less than 
that based on simulating the task graph over 4000 in- 
stances. 

For this study, each subtask execution time distri- 
bution (associated with the random variable rf for 
subtask Sj) is assumed to be either a uniform or a 
normal distribution. (This is for convenience only; 
any distribution could be used in this framework.) 
Each network transmission time distribution (associ- 
ated with the random variable rj^J is assumed to be 
a normal distribution with a fixed standard deviation, 
and the mean defined as the sum of a fixed overhead 
and a term proportional to the size of data item to be 
transfered. (Each normal distribution N(fj,,cr) with 
mean ß and standard deviation a is discretized in the 
range of (max{^ — 4a, 0}, fi + 4er).) The parameters of 
these distributions are included in an input file. Also 
included in this file is the subtask-to-machine match- 
ing and execution schedule of each individual machine. 
A program was written in C to parse this input file and 
output a Matlab program for simulating the execution 
time of task graph (see [6] for details). 

For each instance of the simulation, the execution 
time of a subtask is determined by generating a ran- 
dom number according to its assumed distribution, 
and network transmission times are determined sim- 
ilarly. The overall execution time of the task graph 
is calculated according to data dependency structure 
of the task graph and execution schedule of the indi- 
vidual machines. Subtask start and finish times are 
first computed for subtasks in layer 1. The time each 
output data item of layer 1 subtasks is available on its 
target machine are then calculated. These steps are 
repeated for subtasks in layer 2, and so on. In this 
way, when the start time of each subtask is computed, 
the available times of the designated machine and all 

,(1.0) 

Key for arc labels (d, k): 
d: amount of data to be transfered 

k: order index of output data item 

Figure 4: Example task graph. 

input data items are known. The overall execution 
time of the task graph is the maximum of the finish 
times over all terminal subtasks. For each task graph 
studied, 4000 simulation instances were performed to 
collect the sample distribution of the overall execution 
time of the task graph. 

5.2    Comparison of estimated distribution and 
simulated sample distribution 

The first task graph studied is shown in Fig. 4. 
There are 12 subtasks in the graph, labeled from 50 to 
Sn. Each arc is labeled with an ordered paired (d, k), 
where d is the amount of data to be transfered and k 
is the output data index for the source subtask. (Re- 
call if a subtask has multiple output data items to be 
transmitted to other machine(s), they are transmitted 
in ascending index order.) It is assumed that there are 
four machines in the HC system, labeled from Mo to 
M3. The assumed subtask-to-machine matching, exe- 
cution schedule of each machine, and execution time 
distribution of each subtask on its designated machine 
are defined in Table 1. Three subtasks are assigned to 
each machine. Each row corresponds to parameters 
for a subtask; the first column is the label of the sub- 
task, the second column is the label of its designated 
machine, the third column is the order of execution on 
that machine, and the forth column parameterizes its 
execution time distribution. 

The network transmission time is modeled by a nor- 
mal distribution with a standard deviation of 3. Two 
separate models for the mean of the network network 
transmission time were used. In the first, the mean is 
equal to 10 + (5 x d), and in the second, the mean is 
equal to 20 + (30 x d). These two models represent 
different computation to communication ratios.   For 

180 



subtask machine schedule exe. time distr. 

0 0 0 «7(125,146) 

1 1 0 iV(203,10.3) 

2 2 0 C/(244, 325) 

3 0 1 iV(301, 24.3) 

4 3 0 1/(203,248) 
5 1 1 7V(350, 27.3) 

6 2 1 1/(271,324) 

7 0 2 7V(283,26.1) 

8 3 1 /V(201, 34.1) 

9 1 2 1/(278,321) 

10 2 2 1/(130,183) 
11 3 2 JV(231,29.4) 

Table 1: Assumed matching, scheduling, and execu- 
tion time distribution for subtasks of Fig. 4. U(a,b): 
uniform distribution between a and 6. N(fi,a): nor- 
mal distribution with mean ß and standard deviation 
a. 

each model, the distribution for the execution time of 
the entire task graph are obtained through simulation, 
and the corresponding distribution is also computed 
by the proposed approach. 

The results of these studies are shown in Figs. 5 
and 6. For each study, the difference between the sim- 
ulated mean execution time and the estimated mean 
execution time is less than 0.4%, and the difference for 
standard deviation is less than 6.3%. From this, it is 
concluded that the proposed approach accurately es- 
timates the distribution of execution time for the task 
graph considered. 

Simulation was also performed for the task graph 
shown in Fig. 7. The task graph is nearly the same 
structure as that of Fig. 4. The only difference is the 
arc 54 -» 56 (in Fig. 4) has been changed to become 
arc 56 —► 5n (in Fig. 7). However, this small change 
in the structure of the task graph creates an isolated 
fork-join structure (52, 56, 57, 5n). The subtask-to- 
machine matching, subtask execution time distribu- 
tion, and execution schedules of individual machines 
remain unchanged. Simulations are performed using 
the same two network communication models as used 
for Fig. 4. The resulting distributions are compared 
with estimates in Figs. 8 and 9. Still, the proposed 
approach provides a good approximation for the task 
graph execution time distribution. The error between 
estimated and simulated results is less than 1.08% for 
the mean execution time and less than 10.4% for the 
standard deviation. This example demonstrates the 
robustness of the proposed approach when some as- 
sumptions are violated. (Recall that even for isolated 

mean=989.65 

standard deviation=42.19 

650 900 950        1000       1050       1100       1150       1200       1250       1300 
task graph execution time 

mean=992.97 

standard deviation=39.56 

650 900 950        1000       1050       1100       1150       1200       1250       1300 
task graph execution time 

(b) 

Figure 5: Distributions of execution time for task 
graph in Fig. 4 where the mean of network transmis- 
sion time is equal to 10 + (5 x d). (a) Sample distri- 
bution, (b) Estimated distribution. 

fork-join structure, the estimation error for the mean 
execution time is upper-bounded by the width of the 
density of execution time of the fork node, and con- 
ditions exists under which exact results could be ob- 
tained.) 

6    Summary 

In this paper, a methodology for estimating the ex- 
ecution time distribution for a task graph executed in 
an HC system is introduced. Individual subtask ex- 
ecution time distributions are assumed to be known 
or estimated using analytical or empirical techniques. 
A probabilistic model for the data transmission time 
is developed. Random variables are used to represent 
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Figure 6: Distributions of execution time for task 
graph in Fig. 4 where the mean of network trans- 
mission time is equal to 20 + (30 x d). (a) Sample 
distribution, (b) Estimated distribution. 

Key for arc labels (d, k): 

d: amount of data to be transferee! 

k:  order index of output data item 

Figure 7: Example task graph in Fig. 4 with arc S4 -> 
Sß moved to Se -*■ Sn- 

mean=1008.4 

standard deviation=36.93 

850 900 950        1000       1050       1100       1150       1200       1250       1300 
task graph execution time 

(b) 

Figure 8: Distributions of execution time for task 
graph in Fig. 7 where the mean of network transmis- 
sion time is equal to 10 + (5 x d). (a) Sample distri- 
bution, (b) Estimated distribution. 

the duration of subtask executions and network trans- 
missions, as well as the start and finish times. Data 
dependency and machine availability are used to de- 
rive the relationships among these random variables. 

It is demonstrated that deriving the exact execution 
time distribution for general task graphs is extremely 
difficult. The Kleinrock independence approximation 
is applied to make the computation of associated prob- 
ability distributions tractable. Graph structures for 
which the independence assumption is violated are 
identified, and an upper bound of the estimation error 
for the mean execution time is derived for this case. 
Simulations were performed for various task graphs. 
The simulation results indicate.that the proposed ap- 
proach provides accurate estimates for execution time 
distribution. 
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Figure 9: Distributions of execution time for task 
graph in Fig. 7 where the mean of network trans- 
mission time is equal to 20 + (30 x d). (a) Sample 
distribution, (b) Estimated distribution. 
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Abstract 

A Stochastic Petri Net (SPN) is systematically con- 
structed from a task graph whose component subtasks are 
statically allocated onto the processor suite of a Hetero- 
geneous Computing System (HCS). Given that subtask 
execution times are exponentially distributed, an exponen- 
tial distribution can be generated for the overall comple- 
tion time. In particular, the enabling functions and rate 
functions used to specify the SPN model provide needed 
versatility to integrate processor heterogeneity, task prior- 
ities, allocation schemes, communication costs, and other 
factors characteristic of a HCS into a comprehensive per- 
formance analysis. The manner in which these parame- 
ters are incorporated into the SPN allows the model to be 
transformed into a testbed for optimization schemes and 
heuristics. The proposed approach can be applied to 
arbitrary task graphs including non-series-parallel. 

1. Introduction 

Stochastic Petri Nets (SPN's) can be used as a versa- 
tile analytic tool for evaluating task graphs composed of 
tasks with exponentially distributed execution times allo- 
cated onto a finite set of heterogeneous distributed proces- 
sors, i.e. Heterogeneous Computing System (HCS). 
HCS's are complex systems exhibiting diverse architec- 
tural capabilities which perform applications composed of 
subtasks with diverse execution paradigms [1]. In HCS 
theory, the motivation of qualitative matching of machine 
type with task type can be more important than the quanti- 
tative balancing of the load of tasks among the processors 
[2]. Optimally allocating application subtasks to HCS 
components as well as the specification of initiation times 
is known as the task scheduling problem. Hence, HCS is 
a rich field requiring qualitative and quantitative analysis 
of both the task at hand and the processing resources 

available to achieve an optimal allocation of tasks to the 
system. In this paper, a SPN-based methodology, aug- 
mented with enabling and rate functions, is discussed; it is 
shown that the modeling approach presented provides the 
flexibility and versatility necessary to meet the challenge 
of representing and analyzing complex HCS's. 

Task graphs represent general computation jobs 
which have been decomposed into modules called tasks 
which must be executed according to some precedence 
constraints. Direct evaluation of task graphs provides an 
average completion time of the overall job assuming no 
restrictions exist on the number and architecture of pro- 
cessing units and with no regard to allocation schemes. 
When the task graph is executed on the processing ele- 
ments of a HCS, estimating overall completion time 
becomes an optimization problem involving allocation of 
tasks to processors such that completion time is mini- 
mized. Before the problem of optimal allocations can be 
discussed, a method must be available for computing an 
expected completion time and deriving a probability dis- 
tribution of the completion time for any given task graph, 
HCS, and allocation. A solution technique for series- 
parallel graphs relying on multiplication/convolution of 
parallel/series tasks is reported in [3]. Execution times of 
fork-join parallel programs in multiprocessor environ- 
ments is discussed in [4]. The multiplication/convolution 
approach is applied to HCS at coarse and fine levels of 
granularity [5]. Also, in [6] performance prediction of 
fork-join task graphs is addressed, where the residence 
times of each task are estimated in terms of service 
demands and queuing delays; based on these estimations, 
the task graph is then systematically reduced. This 
approach is attractive because it avoids the state explosion 
encountered in Markov-based solutions. However, since 
only tightly coupled systems are addressed, there is no 
regard for preallocation schemes and communication 
costs are ignored. 
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begin 

end 

Figure 1. A simple task graph 

A Markov-based solution technique of task graph 
systems has been reported in [7]; though limited to rela- 
tively small task graphs, this technique is used for the 
analysis of scheduling policies in [8]. SPN's directly 
incorporate the topological information of the input task 
graph and provide a systematic means for applying factors 
such as allocation schemes, processor heterogeneity, com- 
munication costs, and random execution times. Also, an 
analytical approach based on SPN's can be applied to 
arbitrary graphs which are acyclic, but not necessarily 
series-parallel. SPN tools can automatically generate 
Markov chains which are then solved to compute system 
performance characteristics such as a distribution of the 
overall completion time. Although the methodology 
described in this paper is not in itself an optimization 
technique, it can be used in conjunction with optimization 
techniques which attempt to search a space of completion 
time distributions [9]. Furthermore, the implementation 
of the proposed methodology can be easily adapted to 
become a testbed for various optimization heuristics. 

2. HCS Model Parameters and Notation 

Several formal definitions of the task scheduling 
problem in the context of HCS have been proposed [10, 1, 
2]. The goal of such definitions is to express the prece- 
dence constraints and computational requirements of the 
application as well as the diverse processing capabilities 
of the HCS in a way such that performance evaluation and 
optimization can be mathematically formulated and 
resolved. For the analytical method of this paper, a HCS 
is assumed to be completely described by the following: 

• a task graph G(T,E) where the vertex set 
T = {T\Ti,...,Tk} consists of k tasks which compose 
some overall job and the edge set E consists of ordered 
pairs from T which correspond to data or control depen- 
dencies. 

The topology of T is described in detail by the fol- 
lowing: 

- an in-degree vector D = [d1d2,...,dk] where dt is 
the number of tasks which must complete before Tj 
may initiate execution. 

- an out-degree vector H = [h\Ji2, ■ ■ ■, hk] where Ä,- 
is the number of tasks which are spawned after the 
completion of Tt. 

- a task graph structure TG[i][j], 1 < i < k, 
1 < j < hj where TG[i] is an array specifying the ht 

tasks which are spawned by the completion of T,; 
thus, the ordered pair (Tt, TG[i, j])eE. 

• a kxk matrix pkt[i,j], \<i,j<k where pkt[i,j] is 
the average number of data packets of standard size that is 
sent from Tt to Tj. Alternatively, these can be specified as 
edge weights for the elements of E. 

• a priority vector W = [wx w2,...,wk] which induces a 
sequential ordering of any ready tasks assigned to the 
same processor; these priorities may be taken from the 
indices of the tasks, e.g. wt = k- i, or they may be ran- 
domly or heuristically determined. 

• a set P = {PxP2,...,Pn} consisting of n processors 
composing a heterogeneous suite. 

• a kxn execution time matrix B[i, j], 
1 < i < k, 1 < j < n where by is the average execution 
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a) PN before transition fires b)PN after transition fires 

Figure 2. Simple Petri net 

time of Tj on P j. 

• an n x n communication time matrix C[r, s],l<r,s<n 
where each entry c„ is the average communication time 
to transfer a data packet of standard size from Pr to Ps. 

• a kxn static allocation matrix A[i,j], 
I <i <k,l < j <n where entry ay = 1 if 7, has been 
allocated to Pj, and 0 otherwise. 

Task graphs are assumed to be series-parallel for sev- 
eral approaches to performance evaluation [11] and opti- 
mization [9]; however, this limitation is avoided in the 
SPN-based methodology of this work. Fig. 1 shows a 
simple task graph which will be used to illustrate the 
transformation of task graphs into SPNs. 

3. Review of Basic Petri Net Concepts 

A Petri net is a directed graph whose underlying 
graph N is directed, weighted, and bipartite [12]. Petri 
nets are bipartite in that nodes are of two types, places 
and transitions, with arcs occurring either from places to 
transitions or from transitions to places. When an arc is 
from a place p to a transition t, then p is an input place of 
/; a place p is an output place of t if an arc proceeds from 
t to p. Places and transitions are represented pictorially 
by circles and thin rectangles, respectively. 

A third component of any PN are tokens which reside 
in places; pictorially, tokens are represented by dots 
within the perimeters of places. Tokens are transferred 
from one place to another by the firing of transitions. 
When a transition t fires, tokens are removed from all 
input places of t and placed in the output places of t. 
PN's enforce a logical flow of activity via the rule for 
enabling and firing of transitions. According to this rule, 
a transition can fire if it has been enabled, and it is 
enabled if all of its input places possess at least one token. 
An arc may be weighted where the weight specifies the 
number of tokens which must reside in an input place in 
order for a transition to be enabled, or the number of 

tokens placed in an output place by the appropriate transi- 
tion; if weight is unspecified then it is assumed to be one. 
The PN in Fig. 2a depicts a system state in which both 
preconditions for an event have been fulfilled; Fig. 2b 
shows the resulting state after the occurrence of the event. 

PN's and their dynamic behavior can be captured in 
mathematical notation via state vectors. Given a PN with 
k places, a marking q of the PN is denoted by Mq\ a 
marking is described by a k - vector whose ith compo- 
nent denotes the number of tokens in place pt; an initial 
marking of the PN is denoted by M0. A particular PN 
with an underlying graph N is denoted (N, Af0). For the 
simple example in Fig. 2, the associated markings are 
M0 = [1 2 0] and Mx = [0 0 1]. The reachability graph of 
a PN is a graph GR(M, A) where the vertex set M is the 
set of all possible markings for the PN and the edge set A 
consists of all possible transition firings transforming one 
marking to another. 

Stochastic Petri nets are PN's in which there is an 
exponentially distributed delay time between the enabling 
and firing of transitions. The reachability graph of a 
bounded SPN is isomorphic to a finite Markov chain 
(MC) [13]; in particular, the markings of the reachability 
graph comprise the state space of a MC, and the transition 
rate between any two states Xt and Xj is the sum of all fir- 
ing delays for transitions transforming M, into Mr Gen- 
eralized stochastic Petri nets (GSPN) have been proposed 
[14] in which transitions are of two types: timed transi- 
tions which have the exponentially determined firing rates 
and immediate transitions which have no firing delay and 
have priority over any timed transition. Enabling func- 
tions are marking dependent functions which can be 
defined on each transition as a switching mechanism. 
Transition priorities (timed vs. immediate), and enabling 
functions are logically equivalent extensions of SPN 
which endow them with the full computational power of 
Turing machines [15]. 
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Figure 3. SPN model of the task graph from Fig. 1 

4.   Stochastic Petri Nets Applied to Task 
Graph Analysis 

The transformation of a task graph into a SPN begins 
with the association of each task T, with a place/timed 
transition pair, pt and f,-. Fig. 3 shows the SPN corre- 
sponding to the task graph in Fig. 1. Auxiliary places xp0 

and xpx and immediate transitions it0 and itt are used to 
enforce initiation and completion conditions, respectively, 
for the overall job. The presence of at least one token in a 
place may represent the fulfillment of all preconditions for 
the initiation of the task. The firing of a timed transition 
represents the completion of execution of the correspond- 
ing task. The delay time of each transition corresponds to 
the exponentially distributed execution time of the task. A 
place Pi can be associated with the in-degree d-, to enforce 
precedence constraints. Initially, the presence of a token 
in xp0 enables it0; the firing of it0 represents the initiation 
of an execution cycle. The presence of three tokens in 
xpi and the firing of it] indicates that an execution cycle 
has been completed. 

Timed transitions in the SPN model in Fig. 3 will fire 
once enabled according to an exponentially distributed 
delay. The markings generated correspond to the possible 
execution states of the system, where a system state is 
defined by the tasks which are executing concurrently. 
The reachability graph generated by the SPN reflects the 
space of potential execution paths for the task graph. 
Depending on the number of processing units, different 
reachability graphs can be generated with the same model 
if different enabling functions are associated with the 
timed transitions. Fig. 4 depicts a partial reachability 
graph for the SPN model shown in Fig. 3 under the 

assumption of an unlimited number of homogeneous pro- 
cessors. 

Let M, = [Xj(pj)], 1 < j < k denote a partial descrip- 
tion of the j'th marking, where Xj(pj) is the number of 
tokens in place j. Note that this description of a marking 
sets up a one-to-one correspondence between markings 
and system states. Consider the firing of the immediate 
transition itx from the initial marking M0. A token is 
removed from xp\ and one token is placed in places plt 

p2, and p3, respectively. The resulting marking is a tangi- 
ble marking M] =[1 1 100 0]. Then, depending on 
restrictions due to the number of available processors, 
some or all of transitions tu t2, and ?3 are enabled and can 
fire from Mi. Note that the initial marking indicates the 
presence of a token in xpi, but it is shown in Fig. 4 as 
M0 = [000000] because it is only described in terms of 
places corresponding to actual tasks of the original task 
graph. 

Consider some marking Mt in which task T6 should 
be ready to run. To make this possible, both T2 and T3 

must have completed; this will be indicated by the pres- 
ence of two tokens in p6, i.e. xt(p6) = 2. To capture this 
precedence constraint it suffices to associate each input 
arc into a timed transition with a weight corresponding to 
the in- degree of each node in the task graph. 

Given that the execution times of the tasks are expo- 
nentially distributed, then the firing rates of the transitions 
in the SPN are exponentially distributed. This makes the 
reachability graph of Fig. 4 equivalent to a continuous 
time MC (CTMC). Therefore, once the topological prop- 
erties of the task graph have been used to build the SPN 
and the timed transition firing rates have been identified 
with the task execution rates, a CTMC can be generated. 
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Figure 4. Partial reachability graph assuming unlimited number of processors 

The CTMC model is then used to conduct a complete 
stochastic analysis of the underlying system. Since SPNs 
provide a natural representation of parallelism and syn- 
chronization, SPN models have been used to represent 
queuing networks, failure/repair models, and task graphs 
[16]. SPNs have been used to analyze specific multi- 
processor systems and individual parallel or concurrent 
programs [17, 18, 19]. Dependability and performance 
analysis of systems characterized by distributed programs, 
distributed files and remote processing has also been mod- 
elled using SPN's [20]. The methodology of this paper 
was implemented with the SPNP software tool to system- 
atically construct the SPN and conduct CTMC analysis 
[21]. In [22], SHARPE [3] is used to validate results 
obtained using SPN-based models similar to the models 
reported in this paper. 

5. Incorporating HCS Parameters into SPN 
Models 

Thus far, two systematic steps have been mentioned 
in the construction of a SPN model from the HCS param- 
eters in Section 2: 1) the association of a place/timed- 
transition pair with each Tt in the vertex set of G and 2) 
weighting the input arc into each timed transition, th with 
dt. The result is that the SPN so constructed is topologi- 

cally equivalent to G and fully captures the precedence 
relationships inherent in G. The dynamic behavior of the 
system resulting from factors not specified in the topology 
of G can be modeled by means of enabling functions and 
rate functions. Both types of functions manipulate the fir- 
ing rate of transitions by incorporating dynamic informa- 
tion drawn from the evolution of the reachability graph as 
well as non-task-graph information concerning the pro- 
cessing system. Enabling functions act as switching 
mechanisms to turn timed-transitions on and off based on 
the availability or unavailability of processors to which 
tasks have been allocated. Rate functions can specify the 
appropriate rate of timed-transitions based on the 
task/processor combinations and processor-to-processor 
communication costs. Referring to the parameters pro- 
posed for a HCS in Section 2, let F = [/;], 1 < i < k 
define a vector of enabling functions such that for the jth 
column of A: 

This condition asserts that no more than one timed transi- 
tion is ever enabled, i.e., no more than one task per pro- 
cessor is ever executing. The vector F can be defined in 
terms of another enabling vector E = [c,], 1 < i < k whose 
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components are marking-dependent values for a marking 
Mq where I is the indicator function: 

e, = I(xg(pi) = di) 

Thus, E captures the precedence relations in the original 
task graph. However, when two or more tasks could run 
concurrently but have been allocated to the same proces- 
sor, they must be serialized and selected for execution 
according to some predefined priority scheme. To 
account for this necessity, let A = [ay] define a weighted 
allocation where: 

Let V = [vy] denote another kxn matrix which is deter- 
mined by examining A such that for the y'th column of V: 

vy = /(w, = max {ägj, i<q< k}) 

Effectively, Vy = 1 if T, is the ready task with the highest 
priority on Pj and is 0 otherwise. Finally, using matrix V 
the enabling vector F can be obtained as follows: 

/; = /|uvl7 = i 

As a result vector F accounts for the restriction on the 
number of processors and the allocation scheme. 

Matrix V can also be utilized to determine a marking- 
dependent transition rate for the timed transitions corre- 
sponding to each Tt. Let B(t) = [fc,(r)], 1 ^i ^ k denote a 
column vector such that £,(?) = by if Tt is allocated to Pj 
and enabled at Mq, and is 0 otherwise. Then B(t) can be 
computed such that B(t) = [bjV?], 1 < i < k where b; 

denotes the ith row of B and vj denotes the transpose of 
the ith row of V. Let A = [A,], 1 < i < k denote a column 
vector specifying the effective firing rates for the k timed 
transitions at the marking Mq, where: 

X; = 

1 
if bi(t)*0 

undefined otherwise 

However, the above development of enabling and rate 
functions does not involve any consideration of network 
communication costs. Incorporation of communication 
costs into the SPN model of the HCS can be approached 
in different ways depending on the assumptions made 
about underlying network capabilities and the nature of 
task/network interaction. As with task execution times, 
the communication times are assumed to be exponentially 
distributed. Here two approaches are presented based on 
two types of interconnection networks: (a) a high- 
performance network characterized by high-connectivity 
and parallel communications and (b) a bus-oriented net- 

work with low-connectivity. In both cases, output data is 
assumed to be accumulated in a buffer during task execu- 
tion and transmitted after task completion. 

5.1. Case 1: Modeling High-performance Com- 
munication Networks 

High-performance communication networks can be 
characterized as expensive systems in which inter-node 
communication takes place on dedicated, point-to-point 
links. Data intended for each successor is written to a 
separate buffer. Furthermore, each processor may be cou- 
pled with a front-end communication processor which 
enables parallel communication. In terms of a task graph, 
once a given task completes, successor tasks experience 
initiation delay equal to the data transfer time for all 
intended packets; ideally, any successor task allocated to 
the same processor as the parent task should be able to 
begin execution immediately after the completion of the 
parent. The properties of such a high-performance net- 
work can be modeled in an SPN by inserting additional 
place/timed-transitions to represent each individual com- 
munication; augmentation of the task graph with commu- 
nication nodes has been proposed for CTMC- based anal- 
ysis [23]. Each timed-transition inserted is associated 
with an exponentially distributed delay whose parameter 
is the average communication time between the host pro- 
cessors. Thus, given a completed task T{ allocated to pro- 
cessor Pr and a successor task Tj allocated to Ps, the 
average communication rate assigned to the transition 
modeling the transfer of data is given by: 

Sy= l 

crspkt[i,j] 

Fig. 5a illustrates a segment of some task graph in 
which Task A spawns tasks B, C, and D. Suppose the 
four tasks are allocated to three processors such that A 
and C are allocated to one processor, and B and D are 
allocated to the other two processors, then the resulting 
SPN for Case 1 would be as shown in Fig. 5b. Note the 
insertion of place/transition pairs between A and B and A 
and D to represent the individual communications 
involved. 

5.2. Case 2: Modeling Bus-Oriented Networks 

In interconnection networks characterized by low- 
connectivity, groups of processors may have to share com- 
mon communication links, as is the case with a bus- 
oriented architecture. Also, in lower cost systems proces- 
sors may be forced to expend computation cycles on com- 
munication processing. If, additionally, output data pack- 
ets for successor tasks are queued up in a single buffer in 
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a) Segment of a task graph b) SPN with communication nodes 

Figure 5. SPN model assuming a high-performance network 

some random ordering and transmitted on a FIFO basis, 
then it is highly unlikely that a successor task will receive 
all of its packets before any other successor task. In terms 
of the example in Fig. 5a, if the processor to which task A 
is allocated must broadcast packets in random order to the 
processors associated with tasks B, C, and D , then it is 
reasonable to assume that on average B, C, and D will 
experience uniform initiation delay. Such behavior can be 
reflected in the SPN simply by modifying the rate func- 
tion governing the firing of the transitions associated with 
each task. In this case, no extra nodes are inserted in the 
SPN model. Rather, the firing delay of each transition is 
increased by the sum of communication costs associated 
with each successor task. Let T, be allocated to Pj where 
completion of r, spawns m = hi tasks Tqi,Tq2,...,Tqm 

which are allocated to processors PyvPyi, ■■■, Pym 

a modified firing rate for transition f,- is given by: 
Then 

1 
A,- =  

*/; + Hl
cjytP

kt\-i^k\ 

It should be noted that in reality a given network may 
be heterogeneous with respect to interconnection capabili- 
ties. In this case the SPN model can be systematically 
constructed to appropriately model each segment of the 
network, reflecting the different sets of assumptions men- 
tioned above. 

The net result is that an SPN with dynamically deter- 
mined transition rates and enabling functions can repre- 
sent the full interplay of task precedence relationships, 
allocations specifications, availability of idle processors, 

diverse execution rates across a heterogeneous suite, and 
communication costs. Assuming exponentially dis- 
tributed execution and communication times, an overall 
completion time distribution can be generated which is 
itself exponentially distributed. In addition, the Mean 
Time To Completion (MTTC) for the overall graph is 
computed. 

6. Numerical Example 

To reinforce the concepts and notation involved in the 
methodology proposed, a straightforward numerical 
example follows which is based on the 13-node non- 
series-parallel task graph of Fig. 6. Although the example 
is simple, it illustrates the versatility of the method and 
the direct manner in which the space of task allocations 
and prioritizations can be traversed. As mentioned above, 
this method is not an optimization scheme but an analyti- 
cal tool which can be readily harnessed to implement the 
objective function of optimization approaches. 

The edge weights indicated in Fig. 6 are the number 
pkt of standard size packets transmitted from one task to 
its successor. The following matrix specifies an arbitrary 
allocation of the tasks of this graph onto a network of 6 
processors: 

100000000010 0' 
0100000001010 
0010000010001 
000 1 0001 00000 
0000 1 01000000 
00000 10000000 

Ar = 
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begin 
-*»•■ 

end 

Figure 6. A 13-node complex task graph 

The matrix B specifies the spectrum of execution 
times for each task across all processors of the system in 
standard time units per execution: 

".9 2 .3  1  .3 4 2 1  3 2 .3 .2 .1" 
.3 4 .3  1  .3 5 2  1  3 4 .5 .5 .1 

BT = 
.5  1  .5  1  .3 5 2 1  4 2 5    .2 .3 
.5 2 .2 2 .3 5 2 2 2 2 .5 .2 .1 
.5 2 .3  1  .6 5 3  1  3 2 .5 .2 .1 

.5 2 .3  1  .3 7 1   1  3 2 .3 .2 .1 

The communication delays per data packet in the 
interconnection network between the six processors are 
characterized by the matrix C in terms of standard time 
units per packet: 

0 .1 .1 .2 .2 . r 

.1 0 .4 .3 .2 .1 

.1 .4 0 .2 .3 .3 

.2 .3 .2 0 .3 .2 

.2 .2 .3 .3 0 .1 

.1  .1  .3 .2 .1 0 

C = 

Relative priorities among the 13 tasks are specified 
thus: 

W = [13 12 11 8 9 1076543 1 2] 

It should be noted that this priority scheme is entirely 
arbitrary as is the initial allocation. 

The plots in Fig. 7 correspond to the probability of 
completion at time t, P(X < t) of the overall job based on 
two possible allocations; also, three communication sce- 
narios are considered: a) there are no communication 
costs, b) communication occurs over a high- performance 
network (Case 1 outlined above) , and c) communication 
takes place over a low-performance network (Case 2 
above). The M7TC in each case is 16.2272, 21.6014, and 
26.3359, respectively. 

Obviously, it is easy to find a better allocation than 
the one specified by A. A better matching is derived from 
the first allocation by moving each 7, from the current 
processor /' to (j + 1) mod 6. With the new allocation the 
MTTCs are reduced to 7.7928, 11.7537, and 15.0375. 

One further important numerical result relates to the 
size of the reachability graph generated by each approach 
to modeling communication costs. When communication 
costs are modeled by modified transition rates without the 
insertion of new nodes into the SPN, the reachability 
graph consisted of 122 markings and 305 marking-to- 
marking transitions; if new place/transition pairs are 
inserted into the SPN to model communication effects, 
then the reachabilty graph grows to 2576 markings and 
9922 marking-to-marking transitions, indicating the state- 
space limitations of this approach. 
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Figure 7. CDF of completion time given static allocation and network type 

7. Conclusions 

A direct method for analyzing static allocation 
schemes of task graphs in the context of HC environments 
has been presented. Task graphs can be systematically 
translated into unique SPN models which are then modi- 
fied to account for the parameters of a HCS. A direct 
evaluation of the SPN model estimates the average execu- 
tion time of the job represented and generates an exponen- 
tial distribution for completion time. Further areas of 
investigation include incorporation of multiple data copies 
and task replication into the model. Also, the number of 
system states increases with the complexity of the task 
system, indicating the need for approximate solutions 
using state reduction techniques. The manner in which 
HCS parameters are incorporated into the SPN suggests 
the potential of joining this methodology with heuristics 
for optimization by means of perturbing or otherwise 
exploring allocations and priority schemes. 
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Abstract 

Heterogeneous computing opens up new challenges and 
opportunities in fields such as parallel and distributed 
processing, design of algorithms for applications, 
scheduling of parallel tasks, interconnection network 
technology and support for reliable distributed 
heterogeneous computing. A trend of supporting fault- 
tolerance in distributed computing systems is to 
incorporate fault-tolerance into applications at low cost, in 
terms of both run time performance and programming 
effort required to construct reliable application software. 
We present an approach for developing efficient reliable 
distributed applications for heterogeneous computing 
systems. In this paper we propose a library prototype, 
called H-Libra, to support fault-tolerance in heterogeneous 
systems with low run-time cost. Fault-tolerance is based on 
distributed consistent checkpointing and rollback-recovery 
integrated with a user-level network communication 
protocol. By employing novel mechanisms, minimum 
communication overhead is involved for taking a 
consistent distributed checkpoint and catching messages in 
transit during a checkpoint. By providing fault-tolerance 
transparency and a simple, easy to use high-level message- 
passing interface, H-Libra simplifies the development of 
reliable heterogeneous distributed applications. 

1: Introduction 

Hardware and software heterogeneity arises in many 
computing environments, for example, in an academic 
department with different experimental research 
machines and software systems. A distributed 
heterogeneous computing system (DHCS) consists of a 
connected set of traditional computer systems. Open 
architectures, workstations and multicomputers are a 
natural environment for heterogeneity. A simple 
heterogeneous computing environment is a departmental 
network  with  some  SUN  workstations,   some  DEC 

workstations and a high-performance graphics 
workstation. Heterogeneous computing (HC) is also a 
promising cost-effective approach to the design of high- 
performance parallel computers, which generally 
incorporates proven technology and existing designs 
and reduces new design risks from scratch [5, 8]. 

In recent years the abundance of variety of 
workstations and networked computers has established 
distributed computing as a mainstream paradigm 
suitable to achieve high utilisation of available 
computing resources. In a setting consisting of a 
potentially large number of heterogeneous computers 
connected by an unreliable network, fault-tolerance 
becomes a major issue. Naturally the new challenge is to 
incorporate fault-tolerance into applications at low cost 
in terms of both run-time performance and 
programming effort required to construct the application 
software. The combined complexity of dealing with 
network communications and fault-tolerance makes the 
development of efficient reliable distributed software on 
heterogeneous systems difficult. 

There are basically three types of approaches that can 
be used to support fault-tolerance in distributed 
applications. 1. Coding within applications to explicitly 
deal with the potential failures during program 
execution. For distributed heterogeneous applications, it 
is tremendously complex to do so and software 
development costs are simply too high. 2. Replication. 
By running n instances of an application on different 
processing resources, the computation can still proceed 
even if n— 1 instances fail. This is a very useful 
approach especially in real-time systems while, for 
general-purpose distributed applications, the cost of 
replication is too expensive. In fact, for a DHCS it may 
not be feasible at all, if individual processes are meant 
to be run on specific machines. 3. Checkpointing and 
rollback-recovery. It has been widely considered as a 
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Figure 1: Consistent and inconsistent system states 

general way to provide fault-tolerance in distributed 
systems. Our approach integrates distributed 
checkpointing and rollback-recovery protocols with a 
network communication protocol, called the user-level 
reliable transmission protocol (URTP). 

The rest of the paper is organised as follows. Section 
2 provides some background to distributed 
checkpointing and rollback-recovery mechanisms. 
Section 3 describes our checkpointing and rollback- 
recovery protocols including the URTP protocol. 
Section 4 describes the architecture and implementation 
of our library prototype, called H-Libra, which supports 
reliable heterogeneous distributed computing at low 
run-time cost. Section 5 concludes the paper. 

2: Background 

Though a distributed heterogeneous computing 
system provides a cost-effective approach to parallel 
and distributed processing, its reliable use depends on 
careful planning and design. The key issue of supporting 
fault-tolerance in distributed systems using 
checkpointing and rollback-recovery is how to obtain a 
consistent state of a distributed system. Chandy and 
Lamport [2] formally define the concept of a consistent 
distributed system state, and introduce an algorithm by 
which a process in a distributed system determines a 
global state of the system during a computation. 

Briefly, a set of process states forms a consistent 
distributed system state if it satisfies the following 
condition: For each message among the processes, if it 
is recorded in the state of the receiving process, it must 
also be recorded in the state of the sending process. 

Informally, we can use a time diagram to describe a 
system's execution, where horizontal lines are time axes 
of executing processes, and messages are represented by 
arrows. For example, in Figure 1, p\, p2, P3, and p4 are 
four processes, and a, b, and c are cuts (sets of process 
states) each of which forms a distributed system state. 
According to the definition, cuts b and c are consistent 
cuts, while cut a is an inconsistent cut, as process p^ 
recorded its state after it received the message while 
process p3 recorded its state before it sent the message. 
If the system restarts from system state a, process pi 
restarts from a point where it already received the 
message from p3, but p3 restarts from a point where it 
has not sent the message to /?j, so process p\ will 
actually receive the message from p3 twice. This 
incorrect execution results from the inconsistency of cut 
a. Another important fact is that although cut b is a 
consistent distributed system state, the messages to 
processes /»j, p3 and p4 must be recorded in some way, 
otherwise message losses will occur if the system 
restarts from state b. 

A variety of approaches to checkpointing and 
rollback-recovery have been proposed in the literature. 
Some are based on independent checkpointing [7, 18, 
19, 21], while others use consistent or coordinated 
checkpointing [1, 2, 4, 9-11, 17]. Processes, using an 
independent checkpointing protocol, perform their 
message logging and checkpointing independently. With 
message logging, every process can detect its 
dependency on the states of other processes with which 
it communicates, and the dependency control 
information enables a reconstruction of a consistent 
distributed   system   state   following   a   failure,   using 
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process rollback and message replay. By using 
consistent checkpointing, checkpointing of processes is 
synchronised in such a way that the resulting distributed 
checkpoint forms a consistent system state. 

Our approach of checkpointing is basically a 
consistent checkpointing scheme which is different from 
other schemes in many sense. A message is in transit if 
it was sent within the previous checkpoint interval and is 
received within the current checkpoint interval. Our 
checkpointing protocol involves minimum 
communication overhead for constructing a consistent 
distributed checkpoint in a distributed system and 
catching messages in transit. It provides tolerance to 
message losses due to site failures or unreliable non- 
FIFO networks. The protocol reduces the run-time 
overhead, thus enhances the efficiency of reliable 
distributed applications [13]. 

Incorporating efficient checkpointing and rollback- 
recovery, we propose a library prototype, called H-Libra 
which transparently supports fault-tolerance in 
distributed heterogeneous applications. H-Libra is an 
extension of our previous library (called Libra) for 
homogeneous distributed systems [13, 14] which 
implements our distributed consistent checkpointing and 
rollback-recovery protocols, including a user-level 
network communication protocol [12]. The library 
exports high-level message-passing primitives which 
hide the complexity of fault-tolerant network 
communications from the application. This approach, 
besides significantly simplifying the application 
programmer's task, allows us to interweave message- 
passing tightly with distributed checkpointing and 
rollback-recovery, and thus implement them efficiently. 

The same motivations drove the work of other 
researchers who developed reusable components for 
reliable systems. Some [15, 16] do not deal with 
distributed fault-tolerance while others [6] address fault- 
tolerant network communications by providing low- 
level primitives, by which it is still difficult to construct 
reliable distributed applications. H-Libra differs from 
these not only by the underlying mechanisms, but also 
by offering fault-tolerance transparency together with a 
simple, high-level message-passing interface. H-Libra 
also differs from other message-passing systems, such 
as PVM [20], which do not support fault-tolerance at the 
application level. 

3: Distributed checkpointing and rollback- 
recovery 

3.1: The system model 

Our system model consists of heterogeneous 
computing nodes connected by a high-speed 
communication network. Without going into the 
implemenation issues of supporting communication, we 
assume that each node is able to communicate with any 
other node in the system though all nodes may not be 
fully connected. Nodes can fail by stopping. When a 
recovery is performed, the process states can be restored 
from the checkpoint stored on stable storage of the 
respective node. We assume that each node shares a 
reliable network file server. Processes communicate by 
passing the messages over the communication network. 
The network channels are unreliable non-FIFO channels 
which may loose or reorder messages, and may 
temporarily be broken. For simplicity, we also assume 
that all processes involved in a consistent checkpoint or 
a rollback-recovery belong to a single distributed 
heterogeneous application, checkpointing or recovery of 
different applications does not interfere with each other. 

In the following section we describe our 
checkpointing and rollback-recovery protocols which 
basically works for any generalized distributed system. 
Our library prototype H-Libra incorporates these 
protocols to help the user to develop reliable 
applications. 

3.2: The protocols 

In our distributed consistent checkpointing protocol, 
each distributed checkpoint is uniquely identified by an 
increasing checkpoint sequence number (CSN) and a 
status bit. CSNs are also used by other researchers [4, 
10-12, 17]. The status bit on a node is set when the local 
checkpoint is part of the latest committed distributed 
checkpoint. Synchronised by the coordinator, a variant 
of a two-phase commit protocol is employed, where the 
second phase proceeds lazily and therefore does not 
require extra messages. The protocol tags each normal 
(i.e., application-level) message with the current CSN 
and status bit of the sender. If any message is received 
with a CSN greater than the local one, a local 
checkpoint is taken. If the message's CSN is less than 
the local one, the message was in transit during the 
checkpoint and must be logged. If the CSNs agree but 
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Figure 2: Consistent checkpointing with URTP and ACs 

the message's status bit is set while the local one is not, 
the local checkpoint is committed. Communication 
overhead for a distributed checkpoint is thus reduced to 
that of systems using a one-phase commit, while stable 
storage is utilised more efficiently, as previous 
checkpoints can be discarded once the present 
checkpoint is committed. 

To prevent message loss following a rollback, 
messages in transit during a distributed checkpoint need 
to be discovered and logged as part of the current 
checkpoint. While other approaches, for example, due to 
Chandy and Lamport [2] and Mattern [11], require 
additional messages to catch such messages in transit, 
we avoid this overhead by integrating the checkpointing 
algorithms with the network communication protocol. 
We employ a novel user-level reliable transmission 
protocol (URTP) having the following features. The 
details of URTP will be discussed in Section 4.2. 

• It provides user-level reliable message-passing. A 
reliable message delivery is realized by 
retransmitting a message a number of times until 
an acknowledgement is received from the 
destination process. If no acknowledgement is 
received after a certain number of retransmissions, 
URTP assumes an error due to a node failure or a 
temporarily partitioned channel, and informs the 
rollback-recovery coordinator of the failure. 

• Threads are used to provide non-blocking 
asynchronous communications amongst 
heterogeneous nodes. 

• The protocol cooperates with the checkpointing 
and rollback-recovery algorithms (i.e., the logging 
of messages in transit) to transparently handle 

distributed checkpointing and rollback-recovery. 

A second novelty of our approach is the use of an 
acknowledgement counter (AC) to record the number of 
message packets originating from the local node 
between two checkpoints that have not been 
acknowledged. Each node in the system maintains two 
ACs: previous AC (PAC) and current AC (CAC). An AC 
is incremented by the number of packets used when 
sending a message, and is decremented by the same 
amount once the last packet of that message has been 
acknowledged. The PAC is updated while there exists no 
uncommitted local checkpoint, otherwise the CAC is 
updated when sending or receiving a message. On 
commit, the PAC is set equal to the value of the CAC, 
and then the CAC is initialized to zero. The local node 
does not inform the coordinator of the local checkpoint 
having been taken until its PAC becomes zero 
(indicating that all messages originating at that node 
between the last two checkpoints have arrived at their 
destinations and have been logged if necessary). This 
guarantees that all messages in transit have been logged 
and no message losses due to site failures or unreliable 
non-FIFO networks have occurred once the coordinator 
commits. The coordinator assumes a failure and initiates 
a rollback-recovery if some nodes fail to respond within 
a timeout interval. Other failures, such as 
unacknowledged messages, are detected by the URTP 
protocol (Section 4.2). 

Figure 2 shows how a consistent distributed 
checkpoint is taken within an application of four 
processes on different nodes. Coordinator pi initiates at 
point t\ the ith distributed checkpoint. As informed 
either by a checkpointing request or by an application 
message, other processes take their local checkpoints, 
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Figure 3: H-Libra runtime configuration on a Distributed Heterogeneous Computing System 

and will not send the acknowledgements topi until their 
local PACs become zero, pi knows at point t2, after 
receiving all the acknowledgements, that not only all the 
processes within the application have been 
checkpointed, but also no messages originating in the 
last checkpoint interval are in transit or lost. /7j can set 
its local status bit and commit the rth checkpoint. As 
described above, the commit decision is delivered to 
other processes lazily by tagging the status bit on each 
application message. 

Rollbacks are also uniquely identified, by a recovery 
sequence number (RSN), to avoid livelocks and 
maximise parallelism during recovery. The RSN is also 
tagged on every message. A one-phase commit protocol 
is used for the distributed rollback. If a message (either 
a specific rollback request or a normal message) is 
received with a RSN greater than the local RSN, a local 
rollback-recovery is performed and an acknowledge- 
ment is sent to the coordinator. If a RSN is received 
which is less than the local one, the message was sent 
before the sender performed its rollback and is therefore 
discarded. 

4: Library prototype 

4.1: Library architecture 

Based on the checkpointing and rollback-recovery 
protocols described in the previous section, we have 
developed a library prototype called Libra which 
transparently   provides   fault-tolerance   to   distributed 

applications on homogeneous systems [14]. The library 
prototype has been built on an Ethernet network of Sun 
workstations running SunOS 4.1 and Solaris 2.5. In the 
following discussion we propose how it can be 
implemented on a heterogeneous systems. 

Figure 3 shows the overall H-Libra run-time 
configuration on a DHCS where each participating node 
uses the local instance of H-Libra on its operating 
system. Distributed applications use threads and H- 
Libra's message-passing and memory allocation 
primitives; the checkpointing thread and rollback- 
recovery thread are created by H-Libra when the user 
program starts; fault-tolerance is then automatically 
provided by the library. Table 1 shows the library 
interface (functions for configuring parameters, such as 
the number of participating nodes, checkpoint frequency 
and timeout intervals, have been omitted from the table 
for simplicity). 

The functions f t_send and f t_recv provide basic 
message passing. Threads are created by the library to 
perform the actual send operation without blocking the 
application. The tasks of initiating and committing 
checkpoints and rollbacks, and handling the message 
logs, are performed transparently by H-Libra (through 
background threads and the application's calls to 
ft_send and ft_recv). The functions ft_malloc 
and ft_free, exported by H-Libra, are used for 
memory management at the user-level. Their use by the 
application ensures that ft_malloc arena is 
checkpointed. 
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Table 1: Important functions provided by H-Libra mesg.right = mesg.left = DONE; 

Message-passing primitives 
int ft_send(char *msg, int size, 

int dest) 

int ft_recv(char *msg, int size, 
int *sender) 

Memory allocation primitives 
char *ft_malloc(int size) 

int ft_free(char *addr) 

Initialization 

int ft_init(int my_ide, ...) 

The application needs to call ft_init so H-Libra 
can initialise its internal data structures. This call, when 
executed on the coordinator node (node 0) will create a 
coordinator thread, cp_coor, which initiates 
distributed checkpoints, and commits or aborts them. On 
other nodes a cp_node thread is set up. This thread 
performs local checkpoints, as requested by the 
coordinator. On the coordinator node, a separate thread 
rr_coor is responsible for rollback-recoveries; this 
thread initiates, coordinates and commits or aborts the 
recovery as appropriate. Local recovery action is 
performed by thread rr_node running on non- 
coordinator nodes. 

Note that the functions presented in Table 1 are 
exported for constructing application software while the 
other internal functions such as checkpoint, 
msg_log, restart, msend and mrecv are 
transparent to the user code. They are used by thread 
cp_coor, cp_node, rr_coor and rr_node to 
transparently handle checkpointing, message logging 
and rollback-recovery. As a simple, easy to use high- 
level message-passing interface is provided and fault- 
tolerance is completely transparent to the user, H-Libra 
can significantly simplifies the development of reliable 
distributed applications. The following example is part 
of the client code of Quicksort program. It demonstrates 
that, using H-Libra, little programming effort is required 
to construct a reliable version of a distributed 
heterogeneous program. 

void Client() 
{ 

QSmsg mesg; 
int       bytes,   recvid; 

for (;;) { 
mesg.sender = locid; 
mesg.type   = WORKER_REQ; 
if (mesg.left != DONE) { 
bytes = (mesg.right - mesg.left + 1) 

* sizeof(int); 
bcopy((char *)data, mesg.buf, bytes); 

} 
/* send a message to the server */ 
ft_send((char *)&mesg, sizeof(mesg), 

toid); 
/* wait for a message from the server */ 
ft_recv((char *)&mesg, sizeof(mesg), 

(int *)&recvid); 

if (mesg.type == MASTER_DON) { 
printf("Node %d done!", locid); 
exit(O); 

} 
if (mesg.type != WORKER_ACK) { 
printf("Some error from master %d.", 

mesg.type); 
exit(l); 

} 
bytes = (mesg.right - mesg.left +1) * 

sizeof(int); 
bcopy((char *)mesg.buf, (char *)data, 

bytes); 
printf("Received [%d, %d] from server. 

sorting.", mesg.left, mesg.right); 
Bubblesort(0, mesg.right - mesg.left); 

} 
} 

main(arge, argv) 
unsigned arge; 
char **argv; 
{ 
/* initialisation operations */ 

/* create the client thread */ 

ft_init(my_id, ...); 

Figure 4 presents an example which demonstrates 
how a reliable distributed computation proceeds by 
using H-Libra. The picture depicts the interactions 
between the user code and the library functions as well 
as those between the library functions themselves. 
Suppose that two threads exchange messages across 
networks: thread 7} on node i sends message My to 
thread Tj on node j, meanwhile Tj sends message M,,- to 
T; (as indicated by the heavy dashed arrow). The shaded 
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Figure 4: An example of reliable distributed computation using H-Libra 

functions are used by user threads for message passing. 
Each light dashed arrow is an interaction between two 
library functions or between a library function and the 
user code. Each light solid arrow is a message delivered 
across networks. The heavy solid arrows indicate the 
user-code/library relationship. The sequence number 
associated with each light arrow represents the logical 
time when the corresponding interaction or event 
occurs. 

According to the logical time when each interaction 
or event occurs, we go through a scenario as follows. (1) 
Tj sends 7\- message M„- by calling f t_send. Suppose 
that, at this point, the state of 7j has been saved as part 
of the latest consistent distributed checkpoint (its local 
CSN is n and local status bit is 0) while Tj has not been 
checkpointed (its local CSN is n— 1 and local status bit is 
1). (2) ft_send starts a separate thread and then 
returns. The created thread sends My- to Tj by using the 
URTP protocol. (3) After returning from f t_send, 7} 
waits for message M, from 7} by calling f t_recv. (4) 
At this point Tj calls f t_send to send message M,-,-. (5) 
ft_send creates a thread which sends M,(- by using 
URTP protocol. (6) After returning from f t_send, re- 
calls f t_recv to receive message M„- which has arrived 
at node,/. (7) Suppose that the CSN on node j is still n—\ 
when f t_recv is called. Because the CSN (n) tagged 
on My is greater than the local one («— 1), f t_recv 
performs a call to checkpoint to save the local state 
as part of the latest distributed checkpoint. (8) M,-,- 
arrives at node i and is received by f t_recv. Since the 
CSN (n— 1) tagged on A/,-,- is less than the local one («), 
Mji is a message in transit and f t_recv performs a call 

to msg_log to log this message. (9) After logging My,-, 
msg_log returns to ft_recv. (10) ft_recv returns 
to the user code after receiving M,,-. (11) checkpoint 
takes the local checkpoint and returns to f t_recv. (12) 
After receiving the last packet of M„- ft_recv 
reassembles the message and then returns to the user 
code. 

4.2: Library implementation 

This section describes the main features of the 
implementation of the library prototype, which is built 
up on the mechanisms described in Section 2. In 
particular we emphasise on the following issues: how to 
implement the high-level message-passing interface by 
using URTP which interweaves tightly with the 
distributed checkpointing and rollback-recovery 
protocols, and how to reduce the latency and disk usage 
resulted from checkpointing. Note that we do not go into 
any implementation details specific to the underlying 
operating systems. 

4.2.1: The message-passing interface and the 
underlying URTP 

We model a network of heterogeneous workstations, 
on which H-Libra is running, as an array of nodes — 
Node_Array [n] where n is the number of nodes in 
the network. Each node associated with an element of 
the array is represented by the following structure, 
comprising of its network address and port numbers. 
Different port numbers are used for message passing, 
distributed   checkpointing,   and   rollback-recovery.   A 
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copy of the array is made available on each node. 

typedef  struct node   { 
char *hostaddr; 
unsigned      ap_port; 
unsigned      cp_port; 
unsigned      rr_port; 

}   node_t; 
node_t Node_Array[n]; 

Functions ft_send and ft_recv provide basic 
message-passing according to the URTP protocol. When 
sending a message, it is essential to efficiently address 
the following issues: 1. detecting missing, duplicate and 
other unexpected message packets for reliable message 
passing; 2. synchronisation between threads when more 
than one thread on a node simultaneously send messages 
to the same remote node; 3. providing control 
information required by distributed checkpointing and 
rollback-recovery; and 4. implementing non-blocking 
communications. 

H-Libra maintains on each node a sending sequence 
number vector (SSV) of length n, the number of nodes 
in the distributed system. When sending a packet to 
node./, SSV[/'] on sender i is incremented and tagged on 
the packet. The receiver will use SSV[/] tagged on the 
packet for detecting missing, duplicate and other 
unexpected packets. 

When more than one thread on a node simultaneously 
send messages to the same remote node, the threads 
must be synchronised properly to ensure that messages 
to the same destination are delivered sequentially. To 
achieve this, the library maintains on each node a 
sending lock vector (SLV) as well as a next sequence 
number vector (NSV) with the same length as a SSV. A 
thread on node i can send a message to node j only when 
it has acquired the lock — SLV[/], and SSV[/'] tagged on 
the first packet of the message is equal to NSV[/']. When 
the last packet of the message is acknowledged, NSV[/] 
is incremented by the number of packets used for the 
message, and SLV[/] is released. 

According to the mechanisms described in Section 2, 
ft_send tags each outgoing packet with the local 
RSN, CSN and status bit. When a packet is sent or 
acknowledged, the corresponding AC must be updated 
accordingly. In order to achieve efficient message 
passing, non-blocking communications is supported 
such that f t_send starts a separate thread which sends 
the message by using the URTP protocol, and it can 
return without waiting for the acknowledgements. 

When ft_send is called, the following self- 
explanatory operations are performed. 

1) tags the message with the identifier of the local node 
and the sending sequence number, then increments 
the sending sequence number by the number of 
packets needed for this message; 

2) tags the message with RSN, CSN, and status bit; 

3) increments the value of the corresponding AC by the 
number of packets needed for this message; 

4) creates a thread to send the message, and then 
returns. 

The created thread then performs the following 
operations based on the URTP protocol. 

1) acquires the lock associated with the destination; 

2) if SSV[dest] is equal to NSV[dest], goes to the next 
step; otherwise, releases the lock and goes to step 
1; 

3) opens and binds a UDP socket; 

4) loads the predefined number of bytes into a packet 
tagged with the local id, number of packets used for 
the message, sending sequence number, RSN, 
CSN, and status bit; 

5) sends the packet through the socket and waits for 
the acknowledgment; 

6) if the acknowledgment arrives within the timeout 
interval, goes to the next step, if the 
acknowledgment has not arrived and the packet has 
been retransmitted for a certain number of times, 
goes to step 9, otherwise, goes to step 5 for 
retransmission; 

7) decrements the RAC while there exists no 
uncommitted local checkpoint, otherwise the CAC; 

8) if the last packet of the message is acknowledged, 
the sending thread increments NSV[dest] by the 
number of packets used for the message, releases 
the lock, and exits normally, otherwise goes to step 4 
for the next packet; 

9) at this point a failure is assumed to have occurred, 
and a rollback request is sent to thread rr_coor, 
the rollback-recovery coordinator. 

The implementation of f t_recv is more complex. 
When receiving a message the following issues must be 
addressed: 1. detecting missing, duplicate and other 
unexpected message packets at the receiving end; 2. 
synchronisation when message packets from different 
source nodes arrive simultaneously; 3. checkpointing 
(when needed) at a correct point within f t_recv; 4. 
retrieving messages from the message log if any; 5. 
dealing with an incoming message from a different 
checkpoint interval whose CSN is greater or less than 
the local one; 6. dealing with an incoming message from 
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a different rollback-recovery interval whose RSN is 
greater or less than the local one. 

In order to detect missing, duplicate and other 
unexpected packets at the receiving end, H-Libra 
maintains on each node a receiving sequence number 
vector (RSV) with the same length as a SSV. When a 
packet from sender i is received by a call to f t_recv 
on node j, the SSV[/] tagged on the packet is compared 
with the local value of RSV[i]. If these agree, the packet 
is valid and RSV[i] is incremented. If 
SSV[/'] = RSV[i]-l, a duplicate packet has been 
received and is ignored, as are unexpected packets 
recognised by other cases of non-matching sequence 
numbers. 

When message packets from different source nodes 
arrive simultaneously, it must be ensured that messages 
are received sequentially. For instance, after f t_recv 
first receives the packets of message Mj from node i, a 
packet of message A/2 from node j arrives before the last 
packet of Mj is received, and the packets of message M2 

cannot be received until Mj has been reassembled. This 
is done by that, when the first packet is received, 
f t_recv records the source id tagged on the packet 
and then only receives the packets from the same source 
node until it returns and another call to f t_recv is 
performed. 

When a call to ft_recv is performed, it is 
impossible to know in advance the CSN of an incoming 
message packet. In order to construct a consistent 
checkpoint, ft_recv, before receiving an incoming 
message, pre-saves the machine-dependent context of 
the receiving thread to a buffer. When a local checkpoint 
needs to be taken before f t_recv returns, the saved 
context indicates a correct point where the checkpoint is 
constructed, and the local state including the saved 
context is written to stable storage; otherwise the 
context is discarded right before f t_recv returns. 

When a normal message packet is received with a 
RSN greater than the local one, a local rollback- 
recovery must be taken, and the packet is saved to the 
suspended packet buffer and will be replayed by a call to 
f t_recv after the rollback. Messages in the message 
log are retrieved to the logged message buffer when a 
rollback is done. Before receiving a message from 
networks, f t_recv needs to check whether the logged 
message buffer and suspended packet buffer are empty. 
If the logged message buffer is not empty, ft_recv 

removes a message from the buffer and returns it to the 
caller. If the suspended packet buffer is not empty, 
ft_recv removes the suspended packet from the 
buffer, if the packet is the last packet of a message, 
f t_recv reassembles the message and returns it to the 
caller; otherwise waits for receiving the next packet of 
the same message. 

When receiving a message packet either from a 
different checkpoint interval or from a different 
rollback-recovery interval, the corresponding 
operations, according to the distributed checkpointing 
and rollback-recovery protocols (see Section 2), are 
performed. 

With the techniques as described above, the 
following self-explanatory operations are performed 
when f t_recv is called. 

1) pre-saves the machine-dependent context of the 
receiving thread; 

2) if the logged message buffer is not empty, removes a 
message from the buffer and returns it to the caller, 
otherwise goes to the next step; 

3) if the suspended packet buffer is not empty, removes 
the packet from the buffer and goes to step 5, 
otherwise goes to the next step; 

4) waits for an incoming packet from networks; 

5) when receiving the first packet, records the source 
node id tagged on the packet, if, when receiving the 
next packet, it is from the same source node, goes to 
the next step, otherwise goes to step 4; 

6) if the packet is a duplicate, acknowledges it and 
goes to step 4; 

7) if the packet is an unexpected one, ignores it and 
goes to step 4; 

8) if the sending sequence number tagged the packet 
is equal to the local receiving sequence number, 
compares the incoming RSN, CSN and status bit 
with the local ones, and the corresponding 
operations are performed as appropriate; 

9) acknowledges the packet; 

10) if the packet is the last of a message, reassembles 
the message and returns it to the caller, otherwise 
goes to step 4 for the next packet. 

4.2.2: Efficient checkpointing 

In this section we describe what is necessary to be 
included in a checkpoint and how to reduce the latency 
and disk usage due to checkpointing. When 
checkpointing, H-Libra saves the state of the local 
process within the distributed application which 
contains, the states of user threads (not H-Libra threads) 
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Figure 5: An address space of a multithreaded process 

including the machine-dependent contexts and stacks, 
global/static and heap data. 

H-Libra maintains on each node thr_list, as 
defined below, each element of which records the state 
of a local thread such as thread identifier, machine- 
dependent context, stack top, stack pointer, the location 
and size of the stack buffer, and names of its message 
logs (a thread has no message logs if merely doing local 
processing). 

struct thr_stat { 
thread_t tid; 
machstat_t machstat 
caddr_t Stacktop; 
caddr_t stackptr; 
caddr_t s tkbu f_addr; 
int stacksz,- 
unsigned pre_ctx; 
char prev_log[nmlen] 
char curr_log[nmlen] 

} thr_list [thrnum] ,- 

gdb_list records the control information for 
checkpointing global/static data, comprising of their 
addresses, sizes, and the locations of the associated 
buffers. The buffers are used to buffer global/static data 
before written to stable storage. 

struct gdb_stat   { 
caddr_t      addr; 
int len; 
caddr_t      gdbbuf_addr ; 

}   gdb_list[gdbnum]; 

It is common for applications to use heap space so 
that heap state should be saved as part of a checkpoint. 
Figure 5 shows an address space of a multithreaded 
process. The heap is divided into several segments: 
checkpointing buffers where checkpointed data are 
saved before written to stable storage, red-zone 
protected stacks of threads, and normal malloc arena 
(unshaded) which need to be checkpointed. Although it 
is feasible to checkpoint the separated unshaded heap 
areas, there are two serious problems: 1. the locations, 
sizes,   and   number  of unshaded  areas  may  change 

dynamically when red-zone protected stacks are 
allocated or freed due to the creation and termination of 
threads, and it is complicated to keep the trace of the 
unshaded areas; 2. checkpointing all of the unshaded 
heap areas unnecessarily increases the size of a 
checkpoint and therefore increases the checkpointing 
overhead because the thread library and H-Libra use a 
large part of heap space which is irrelevant to a 
checkpoint. 

H-Libra uses another approach which guarantees that 
only relevant heap data are checkpointed. As indicated 
by an application, H-Libra, when program starts, 
allocates a dedicated memory segment which is large 
enough to contain the heap data requested by the user 
code. As described in Section 4.1, ft_malloc and 
ft_free are provided to manage the dedicated 
memory segment. The user code allocates or frees 
memory by calling f t_malloc and f t_free. It is the 
user's responsibility to guarantee that ft_malloc 
arena contains all of the heap data which need to be 
checkpointed. In order to manage the memory segment 
and correctly checkpoint its state, H-Libra maintains the 
following control data structure used by ft_malloc, 
ft_free, and other checkpointing related library 
functions, meraseg recodes, the base and size of the 
segment, the highest segment location currently used by 
the program, and the location of the associated buffer 
which is used to buffer heap data before written to stable 
storage. It also records the pointers to the allocation list 
and free list which are used by ft_malloc and 
ft_free for memory management. When 
checkpointing, f t_malloc arena from meraseg_base 
to memseg_ptr as well as memseg are saved. 

struct memseg_stat   { 
caddr_t 
int 
caddr_t 
caddr_t 
memblk_t 
memblk_t 
memblk_t 

memseg_base; 
memseg_size; 
memseg_ptr; 
segbuf_addr; 
*mlist_bptr; 
*mlist_eptr; 
*flist_bptr; 
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memblk_t     *flist_eptr; 
}   memseg; 

The latency and disk usage due to checkpointing can 
be significantly reduced by using copy on write and 
incremental checkpointing [4]. The techniques are 
implemented in H-Libra as follows: First, H-Libra freezes 
user threads, saves the machine-dependent contexts, and 
changes the access protections, to be "read-only", on the 
pages within the address space which contain what 
should be checkpointed. Next it unfreezes user threads 
and starts a separate writer thread that copies, to the 
checkpointing buffers, the pages which have been 
modified since the last checkpoint. If a user thread 
generates a page access violation, the page fault handler 
writes that page to the buffer only if the writer thread 
has not done this, then it sets the page's protection to 
"read-write", sets the page as modified since the last 
checkpoint, and restarts the user thread. After copying 
the local state to the checkpointing buffers the writer 
thread writes, to stable storage, the pages which have 
been modified since the last checkpoint. 

4.2.3: Implementation issues related to 
heterogeneous environment 

The implementation of H-Libra in a heterogeneous 
environment is different from the implementation of 
Libra in a homogeneous system. Note that we assume 
sockets are supported by all nodes as sockets are used to 
handle message-passing in heterogeneous environments. 
We think that a heterogeneous environment can affect 
the implementation and efficiency of H-Libra due to the 
following reasons: 

1. Different types of threads are supported by 
operating systems. For instance, SunOS 4.1 and the 
OSF's Distributed Computing Environment (DCE) 
support user-level threads, where threads 
management is done in user time and the operating 
system has no control of the threaded evironment 
except to make resources available to the entire 
process. However, Solaris and Ultrix support 
kernel-level threads, which are visible to the 
operating system. The type of thread supported 
largely decide whether H-Libra can take full 
advantage of the underlying mechanisms (i.e., copy 
on write checkpointing, URTP) which maximise 
the concurrency and parallelism, and reduce the 
overhead and latency of checkpointing. 

2. Different operating systems provide different 
policies for scheduling and resource allocation 
which may also affect the efficency of our 
checkpointing and rollback-recovery algorithms. 

3. The implementation techiques for checkpointing 
and recovering threads on different operating 
systems may be diferent from one to another. For 
instance, checkpointing threads are straightforward 
in SunOS 4.1 by simply calling lwp_getregs, 
and executions of threads can be resumed by 
calling lwp_setregs after restoring the states of 
threads. However, checkpointing and recovering 
threads in Solaris are mainly based on signal 
handling. The target threads are interrupted by 
signals, and checkpointed and recovered by the 
corresponding signal handlers. Again, different 
degrees of invasiveness of H-Libra result. 

5: Performance evaluation 

We present in this section the performance of Libra 
with respect to communication, and running time 
overheads. We expect that the communication overheads 
for H-Libra should be comparable to that of Libra as both 
use the same underlying protocols. We also compare the 
run-time performance of Libra implemented on SunOS 
4.1 and Solaris 2.5. For this purpose, we choose three 
message-passing applications with quite different 
communication patterns: CST, a program for 
maintaining a balanced concurrent search tree 2 — 2 
search tree [3]; QSORT, a distributed quicksort 
implementation; and FFT, the Fast Fourier Transform of 
64k to 2M data points. CST exchanges many small 
messages, while FFT and QSORT is somewhere in 
between these two extremes. Each application is 
distributed by using a number of client and one or more 
server processes. 

5.1: Communication overhead 

We classified the existing approaches based on 
consistent checkpointing into five categories according 
to how consistent checkpoints are taken and how 
messages in transit are caught. We chose a typical 
representative from each category to compare 
communication overhead in terms of the number and 
size of messages for fault-tolerance. The choices are: 1. 
a variant of Chandy and Lamport's one-phase commit 
snapshot   algorithm   [2]   for   non-FIFO   systems;   2. 
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Table 2: Communication overheads due to checkpointing 

Programs 

Benchmark Statistics Communication overheads 

Number of 
Processes 

Number of 
Checpoints 

Number of 
Messages 

Chandy 
Lamport 

DCTD 
(Mattern) 

VCP 
(Mattern) 

Elnozahy URTP 
&ACs 

CST 

QSORT 

FFT 

110 

101 

65 

9 

9 

5 

114 

100 

45 

435 

400 

256 

332 

300 

173 

288 

321 

192 

436 

400 

256 

218 

200 

128 

Mattern's one-phase commit snapshot algorithm with 
the deficiency counting termination detection method 
(DCTD) for catching messages in transit [11]; 3. 
Mattern's one-phase commit algorithm with the vector 
counter principle (VCP) for catching messages in transit 
[11]; 4. Elnozahy et al.'s two-phase commit algorithm 
[4] (which does not catch messages in transit); 5. our 
algorithm based on URTP and ACs. 

We simulated the three programs on a single 
machine, using the light-weight process library provided 
in Sun OS 4.1. Each program was implemented in five 
versions, one for each of the checkpointing algorithms 
examined. The message overheads for the five 
algorithms for the three benchmarks are shown in Table 
2. There are two types of overhead messages: overhead 
for checkpointing and overhead for catching messags in 
transit. The major benefit of our algorithm (URTP & 
ACs) is that it does not cause any further message 
passing for catching messages in transit, and hence it 
exhibits the lowest communication overhead. 

5.2: Time overhead 

All the benchmark programs were run on a network 
of four Sun workstations, running SunOS 4.1 and 
Solaris 2.5. Figure 6 presents a comparison between the 
running overheads on the two systems. All times are 
averages of three runs on an otherwise essentially empty 
system. The overhead is generally quite low, below 10% 
even with the shortest checkpointing interval on SunOS 
4.1 where over 30 checkpoints were written. This 
version of library has no kernel support for threads. As a 
result, in the implementation user threads are blocked 
when a write system call is performed during 
checkpoints. This even occurs when the so-called "non- 
blocking I/O library" is used. The implementation of 
Libra on Solaris 2.5 is more efficient than that on SunOS 
4.1 because Solaris 2.5 supports threads at kernel-level. 

6: Conclusions 

We have described in this paper an approach for 
supporting the development of reliable heterogeneous 

10% 10% 10% 

2-min 5-min 10-min 

Checkpoint interval   —*■ 
2-min 5-min 10-min 2-min 5-min 10-min 

HI     SunOS 4.1 version 

I      I     Solaris 2.5 version 

Figure 6: Checkpointing overhead comparison between two versions of Libra 
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distributed applications. The approach meets two 

objectives: to simplify the development of reliable 

distributed applications, and to achieve fault-tolerance 

at low run-time cost. The first objective is met by the 

provision of fault-tolerance transparency and a simple, 

easy to use high-level message-passing interface. Fault- 

tolerance is provided to applications transparently and is 

based on the distributed consistent checkpointing and 

rollback-recovery protocols integrated with a user-level 

network communication protocol. The second objective 

is met by the use of protocols which minimise 

communication overhead for taking a consistent 

distributed checkpoint and catching messages in transit, 

and impose low overhead in terms of running times. 

Our benchmarks have shown that it can achieve high 

efficiency and be used as a practical tool to construct 

reliable distributed applications. We are now 

implementing H-Libra on a real heterogeneous 

environment comprising of other operating systems such 

as SGI Irix and Digital Ultrix. The performance and 

overheads due to both checkpointing and rollback- 

recovery will be analyzed on such a heterogeneous 

system. 
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The Hopping Ruse 
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Abstract 
We describe a novel framework for early detection 

and isolation of security violations in heterogeneous 
environments, based on realtime service hopping. In 
distributed client-server systems, service hopping fills 
a role analogous to frequency-hopping spread-spectrum 
techniques for secure wireless communication. 

The framework incorporates design principles for 
secure hopping, as well as engineering principles for 
improving throughput in the presence of a statistically 
noisy interconnection network. We describe potential 
large-scale applications of the hopping techniques, and 
present some initial experimental results with a hop- 
ping client-server system. 

1     Motivation 
For many widely deployed applications with broad 

commercial appeal, security from attack and confiden- 
tiality of content are pre-requisites. These systems in- 
clude electronic stock exchanges, electronic commer- 
cial banking, telemedicine, medical informatics, man- 
ufacturing design, and defense applications. The het- 
erogeneous computing base upon which these widely 
distributed applications rely poses special challenges 
from the perspective of security. Waging or defending 
against information warfare in such a system requires 
detection of intrusion in any component, and insula- 
tion of the system from those components' effects until 
countermeasures can be brought to bear. 

Perils of Homogenization Traditional strate- 
gies for managing and exploiting heterogeneity have 
focused on portable implementations of standard 
transport- and application-level protocols. These pro- 
tocols allow heterogeneous hardware to support a 
more homogeneous software base, so that diverse sys- 
tems can cooperate to carry out large-scale coordi- 
nated computation. 

With this homogenization of software tools, how- 
ever, have come some serious potential security prob- 
lems.  When every system honors a common mecha- 

nism for access, any flaw in those mechanisms can be 
universally exploited. When systems are configured 
to support transparent migration of code or live pro- 
cesses from one heterogeneous host to another, one 
compromised host can "infect" all the hosts that trust 
it. Worst of all are common implementations of com- 
mon access mechanisms (using portable source or ob- 
ject code). In such cases, designers of heterogeneous 
software must warrantee as bug-free not only the ac- 
cess mechanisms, but their universally accepted im- 
plementations as well, to feel certain that there are no 
exploitable vulnerabilities. 

Transport-level Security To date, the security 
of the distributed heterogeneous computing base has 
largely relied on basic access control and authen- 
tication of communication partners, coupled with 
transport-level protocols for packet encryption and 
data integrity [3]. Encryption-based approaches are 
both effective at protecting content and access, and 
predictable in their effect on the performance of net- 
work applications. 

However, by eliminating cleartext network traffic, 
transport-level encryption protocols make it signifi- 
cantly harder for network managers to tell successful 
intruders from legitimate users at a glance, and to spot 
the emergent traffic patterns of probing and spoof- 
ing that signal impending trouble. Worse, encryption- 
based approaches by themselves fail to give adminis- 
trators a complete picture of the security of a hetero- 
geneous distributed computing environment. To scale 
beyond a handful of nodes, network security must rely 
on data collection, recognition of patterns, and clas- 
sification of security threats as they emerge from the 
noise of legitimate network use. 

1.1     Application-level Security 
We are interested in developing higher-level struc- 

tural security techniques for heterogeneous comput- 
ing systems, to complement simple access control and 
protocol-level encryption.    These techniques exploit 
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or modify the structure of a heterogeneous computa- 
tion — the mapping of tasks to processors throughout 
the system — to help quantify security risks, identify 
emergent threats, and contain intrusions. 

By re-injecting an element of software heterogeneity 
into an increasingly homogeneous software base, and 
being creative (if not unpredictable) in our mapping of 
tasks to heterogeneous resources, we hope to improve 
the overall resistance of large distributed systems to 
attack. In this paper, we propose service hopping, a 
realtime application-level scheme that allows early de- 
tection and monitoring of unauthorized access to sen- 
sitive resources within a heterogeneous computational 
environment. 

Frequency hopping. The basic concept of service 
hopping uses an analogue of the frequency-hopping 
strategies used in secure radio transmission. Fre- 
quency hopping is one of several spread-spectrum 
techniques originally used to secure military radio traf- 
fic against interception and jamming. A frequency- 
hopping radio transmitter changes the broadcast fre- 
quency synchronously many times each second; the 
pattern of "hopping" is controlled by bits sampled 
from a periodic pseudorandom signal. Authorized 
client radio receivers can follow the hop sequence, but 
potential eavesdroppers and jammers are frustrated. 

Service hopping. In a service hopping system, 
several real and false instances of each sensitive net- 
work service are active at any given moment, spread 
out across the nodes and ports of a heterogeneous 
computing system. Rather than migrate the services 
themselves, the "token of legitimacy" changes hands 
periodically, following a random walk over the in- 
dividual service instances within the heterogeneous 
workspace. True instances periodically cease to func- 
tion, becoming false instances, and vice versa. 

Using one of a number of alternative schemes for 
distribution of secret data, legitimate network clients 
are provided with secure access to the same hopping 
sequence data. In an environment where only legit- 
imate clients (those who know the dance) can fol- 
low the dynamic host/port binding of legitimate net- 
work services, unauthorized accesses to false services 
are instantly identifiable. False instances can assume 
that any requests for service are intrusive probes, and 
report them to the security monitoring layer. Net- 
work administrators can take security countermea- 
sures, while the intruder wastes precious minutes at- 
tempting to compromise a compartmentalized dummy 
resource. 

Organization In the sections that follow, we dis- 
cuss some design strategies for constructing a hopping 
service system that will betray intruders while pre- 
serving throughput within the heterogeneous environ- 
ment. We then address some of the practical engineer- 
ing issues — how to construct and distribute hopping 
information to clients, minimize throughput overhead 
due to hopping, and maintain hopping connections in 
the face of network noise. Finally, we sketch applica- 
tions for hopping techniques, and describe our proto- 
type implementation of a hopping web server. 

2    Design Issues for Secure Hopping 
Designing network services that implement secure 

realtime service hopping requires attention to several 

• First, standard network services and clients 
should be extended with false versions to frus- 
trate a traffic analysis attack on the hopping 
scheme. 

• Second, the problem requires mechanisms for 
secure generation and propagation of hop se- 
quence data to clients and servers, and provi- 
sions for invalidating and reissuing that sequence 
in case of attack. 

• Finally, the true versions of clients and servers 
require extra logic for implementing the "hop- 
ping cycle" under less-than-ideal network con- 
ditions. 

Hopping clients and network services must act, in 
effect, as coupled, phase-locked oscillators. Mecha- 
nisms for carrying out clock synchronization at the 
hardware or ICMP network levels are well known [6]. 
Tracking a server's hop phase over a statistically noisy 
Internet, at user level, creates some additional compli- 
cations. 
2.1     The Bait 

The first component of the hopping ruse is to de- 
rive a false service that offers some simulated behavior 
which is subjectively similar to the actual behavior of 
the base service. That is, it offers the same interface to 
network clients, simulating both the overt content and 
side effects of the legitimate network service, including 
contributions to load average and network traffic gen- 
eration. In general, the higher the fidelity of the false 
data, the longer an unauthorized browser can be held 
on the hook while countermeasures are put in motion. 

For example, a network service that provides a 
realtime interface to a stream of video frame data 

209 



might have a false version that returns frames of 
static, simulating a temporarily broken connection, 
or even frames of video captured from an older ses- 
sion. A false database application may return inocu- 
ous dummy data in response to queries. We supply 
an ersatz Web server which points to a distinct docu- 
ment tree of interesting, but sanitized content. Figure 
1 presents a snapshot of a hopping collection of real 
and false service instances. 

As an optional extension, we also implement a false 
client to exercise the false service interface. Without 
false clients, an intruder capable of monitoring net- 
work traffic patterns would readily discern the bona 
fide services from the false versions. These clients 
make periodic requests for service which mimic those 
of real users. A video server client might simply re- 
quest playback of a few seconds of video; a database 
client might make periodic queries and discard the re- 
sults, and so forth. One prototype we built, a hopping 
version of a Web server, has "false browsers" which 
replay random sequences of requests directly from the 
server log. 

2.2     The Swap 
When a hop takes place, all legitimate clients pause 

in their interaction with the legitimate services. True 
services become false services, and vice versa. Legit- 
imate clients are privy to the secret host and port of 
the next "true" service instance in the hop sequence. 
Throughout the heterogeneous computing space, com- 
putation between hops takes place in phases, sepa- 
rated by short "hop windows." 

Some of the performance overhead of hopping tech- 
niques can be minimized by careful engineering: the 
time spent in the global synchronization/migration 
phase of the hop window, and the overhead required 
to avoid false security violations due to network noise 
and server load. In the following sections, we con- 
sider techniques to address these two factors, as well 
as the additional (administrator-configurable) execu- 
tion overhead of multiple false clients and servers. 

3    Engineering Issues for Effective Hop- 
ping 

How long it takes to synchronize the various clients 
and service instances in order to effect a hop (the 
transfer of legitimacy from one point in the hetero- 
geneous workspace to another) depends in large part 
on the strategy used for derivation and distribution of 
hop sequence data. All legitimate entities in the sys- 
tem must know the answer to two questions: where 
and when the network service should hop. 

3.1     Where to Hop? 

Figure 2 shows a schematic snapshot of events 
within the next hop window of the system shown in fig- 
ure 1. Two true service instances have stopped offer- 
ing true service; their jobs are taken over by two pre- 
viously false service instances. The authorized client 
must use its knowledge of the hopping sequence to syn- 
chronously close connections to the newly invalidated 
instance, and direct future connections to a newly val- 
idated instance, whereever that may be. 

To carry out the migration of legitimacy from one 
service to another, all network clients and services in 
the "hop group" are effectively globally synchronized. 
During this synchronization period (called the "hop 
window"), secure network services may be briefly un- 
available while the transfer of legitimacy takes place. 
Our goal is to make those services maximally available 
by minimzing that window. 

Encrypted, embedded hop information.    In one 
design, every burst of content produced by the true 
network service might include an embedded trigger 
for a global hop, plus the encrypted target of the hop. 
Since we already contemplate significant modifications 
to the service and client code to support service hop- 
ping, extending the service interface to include this 
field would not be unreasonable. This would eliminate 
the need to distribute pregenerated blocks of hop se- 
quence information to clients, the least trusted links in 
a heterogeneous client-server system. It also has some 
significant drawbacks, however. Primarily, it adds sig- 
nificant overhead by forcing clients to issue extra pe- 
riodic traffic (at least one transaction per hop cycle, if 
only to receive the target of the next hop). 

Out-of-band sequence generation. A better 
strategy for hop sequence propagation is to generate a 
large personalized cache of hop sequence information. 
A hop sequence generator presamples a sequence of n 
hops from a random distribution, or chooses a seed for 
a deterministic random number sequence generator. 
This sequence will represent the global "hop map" for 
some number n of computational phases, and consists 
of a list of valid service host/port addresses following 
each transition H\..Hn. 

This dataset, valid for N hop cycles, may then be 
transmitted to clients through existing secure chan- 
nels; for example, using public-key cryptography to 
verify the client to the hop sequence generator, and 
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Figure 1: Service-hopping system snapshot between hop windows. Service instances are identified by Host and Port. One 
client has found a legitimate service instance at H2:P3, designated by a T, relaying sensitive data from a shared resource 
in a secure subnet. The other client has stumbled across a false service instance at H3:P4; this service gives out dummy 
data while alerting the security layer to the presence of an intruder. 
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H1:P1->H2:P1 
H2:P3->H3:P3 
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Figure 2: Service-hopping system snapshot of events within one hop window. Two true service instances have stopped 
offering true service; their jobs are taken over by two previously false service instances. The false service instance which 
registered a possible intrusion in the previous phase has been marked invalid and removed from the hopping sequence. The 
authorized client uses its knowledge of the hopping sequence to synchronously close its connections to the newly invalidated 
instance, and direct future connections to a newly validated instance. 
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vice versa. The hop sequence itself may be transmit- 
ted, or just the random sequence seed (if the generator 
is known to both servers and clients). 

Servers get their hop sequence information through 
a slightly different mechanism. The hop sequence gen- 
erator sends each service instance an encrypted, per- 
sonalized projection of the global hop sequence. The 
primary component of this projection, the veracity se- 
quence, is simply a bitsequence in which a 1 represents 
a scheduled phase of local real service, and a 0 repre- 
sents a phase of local false service. 

In a system that used hop signals embedded in 
server content, the hop sequence projection would in- 
clude a second component: the target sequence. This 
bytestream represents the host and port of the next 
hop target following each phase, including apparently 
reasonable, but meaningless target data during phases 
when a false service is called for. 

Yet another variant might distribute a synchronized 
token stream generator (like those found in authenti- 
cation smart cards) to each client and server. In the 
last case, the token generator could provide the global 
timing information for each hop, as well as the dy- 
namic host/port target information for the legitimate 
service in the current hop cycle. Out-of-band sequence 
propagation has the benefit of reducing or eliminating 
the synchronization time required in each hop window, 
and strengthens the system against eavesdropping at- 
tacks. 

Invalidating and Reissuing the Hop Sequence. 
At some point before the expiration of TV hop cy- 
cles, all clients and servers must receive a refresher se- 
quence. This refresh may be forced early, if a false ser- 
vice detects a security violation. For example, the false 
service instance in figure 2 which registered a possible 
intrusion in the previous phase has been marked in- 
valid and removed from the hopping sequence. The re- 
maining hops in that sequence are therefore discarded 
and globally replaced by new data — an expensive, 
but hopefully infrequent operation. 

The security of the hopping ruse derives from two 
sources: the encryption of the hop sequence data in 
transit, and the requirement that an eavesdropper 
must intercept, decrypt, and merge many indepen- 
dent subsequences in order to reliably reconstruct even 
a partial consecutive hop sequence. Presampling the 
random hop information allows us to improve the per- 
formance of service-hopping computations by elimi- 
nating the time spent determining a destination in the 
synchronized hop window. 

3.2    When to Hop? 
Having answered the question of where legitimate 

services can be found, there are at least two ways of 
defining the intervals at which a hop is to take place 
in a client-server system. 

An asynchronous hopping scheme keys the hop 
times to the underlying structure of the data being 
served. Many important network services, including 
servers for audio and video data, are "fronts" for an 
underlying marked-stream resource. Marked streams 
allow the hop points to be keyed to marks within the 
data itself. For example, a video stream server may 
be keyed to "hop" every 30 frames. 

For other network applications, including trans- 
actional services such as' databases and web servers, 
there may be no appropriate structural clue to guide 
the placement of a hop. A synchronous hop scheme 
uses a generalized coupled-oscillator method to bring 
client clocks into synchrony with service clocks, and 
then hop on the rising edge of each common clock 
phase. 

Making this work across a less-than-ideal network 
can be tricky; figure 3 illustrates the problem schemat- 
ically. If T/j is the server's hop window delay, and Tt 

is the total hop cycle time (S.), then only the time 
Tc = Tt — T/, is available for accepting transactions. 
From the client's perspective, this available window 
is phase-shifted by the minimum transit time of ser- 
vice requests across the network, and then muddied by 
the introduction of network timing noise. As a result, 
there are three regions of network conditions clients 
must consider when timing their transactions with a 
hopping server. 

Region A. Constant Latencies and Infinite 
Server Capacity. In an ideal client/server network, 
the time for a transaction to travel from the client to 
the server and enter into service will be a well-behaved 
constant. We discuss some design elements of such a 
system in [1]. In this idealized region of the problem 
space, a remote client synchronizes once, and subse- 
quently observes a fixed phase correction Td to the 
server to determine the next hop time. 

Region B. Variable Latencies and Server Loads. 
When server load, clock skew, and network propaga- 
tion delay variance are taken into account, the effec- 
tive window Te within which a client can confidently 
issue a transaction without risking an inadvertant se- 
curity false alarm begins to shrink. Under these cir- 
cumstances, the client will be forced to delay some 
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Figure 3: Schematic illustration of the problem of synchronizing the effective computation windows of a hopping client and 
hopping server separated by a less-than-ideal network. The collection of hopping services (S) stops accepting transactions 
during the hop window TV Remote clients (A, B) try to get their requests into service with the correct service instance 
within this window, subject to transmission delays, server load, clock skew, and unreliable links. In the worst case [C], 
clients have no guaranteed window for issuing transactions. 
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transactions until the rise of the next hop window. 
This is a problem shared with all coupled-oscillator 
methods across a network containing multiple gate- 
ways, routers, and unreliable links; the best that can 
be hoped for is a graceful degradation of throughput 
as the noise between clients and servers increases. 

Region C. Unstable Network and Service 
Times. In this region, the probability of a successful 
(non-security-violating) transaction never reaches one 
at any point in the hop cycle. In such an extreme net- 
work environment, hopping clients have no guaranteed 
effective window Te within which to issue transactions. 
Under these circumstances, the user can apply a prob- 
abilistic filter which allows tentative progress during 
all times t within Tc when the probability <j>t of a suc- 
cessful transaction exceeds a trigger 0/. 

In our prototype, for example, the client tracks the 
average and variance of its historical service times, and 
waits for the next window whenever a service time out- 
side a specified probability tolerance would result in a 
false security violation. This event (a "hop stutter") 
adds to document retrieval time by as much as the 
length of the hop window, in practice, the overhead 
is much less, precisely because the stuttering client 
believes that the time to be spent sleeping until the 
rising edge of the next hop window is small. 

Safety Margin Considerations. The safety mar- 
gin can be computed via a number of strategies, from 
simple conservative calculations (1/2 or 3/4 of the to- 
tal hop window) to elaborate statistical estimates that 
factor in the variance in the round trip time between 
document request and header receipt. In the most con- 
servative strategies, clients may experience as much as 
a 95% stutter rate per document request. This can 
add nearly one hop window of worst-case latency to 
each document fetch (1 to 3 seconds), which is a sig- 
nificant subjective delay. 

To minimize this delay, hopping service clients can 
use alternative strategies, with less conservative safety 
margins. Rather than simply issuing a stutter within 
a fixed percentage of the end of the window, more 
intelligent strategies factor in information about the 
noise of the link and server load, by maintaining a 
history of document fetch time variances. These im- 
proved safety margins cause stutter rates to drop, and 
improve document fetch throughput, at the expense 
of increasing the number of false security alarms. In 
the next section, we describe the role of the security 

manager in managing real and false alarms in a het- 
erogeneous hopping system. 

4    Security vs Performance 
Realistic networks of heterogeneous processors are 

noisy places. Sometimes, despite a client's best efforts 
to remain synchronized with a hopping server at a rea- 
sonable stutter rate, a legitimate client will access a 
stale server (one which is no longer legitimate). The 
stale server must assume that the request for service is 
an intrusive probe, and report it to the security mon- 
itoring layer. 

This network management layer, in turn, must im- 
plement a policy for filtering incoming alarms. By 
themselves, single alarms may indicate a transient 
problem resulting from congestion or server overload; 
beyond some sequence threshold, however, false server 
accesses from a given site or domain should be ab- 
stracted into a single intrusion warning that draws at- 
tention from an administrator. Our experience with 
a hopping Web server prototype indicates that a few 
observed fault behaviors are typical, and should be 
factored into the design of this filtering system. 

Single-step violations. In order to practically 
eliminate false accesses, the hop window length must 
be extremely long (on the order of tens of seconds for 
an intranet, minutes across a noisy internet) and the 
client must agree to suffer some hop stutter due to con- 
servative safety margins. It's not necessary to actually 
eliminate all errors, however; with proper alarm filter- 
ing and context information, more generous strategies 
can still provide adequate security guarantees. 

We observed that a very high percentage of inad- 
vertant false accesses (90% for 500ms hop windows, 
99% for 2500ms hop windows) are only out-of-step by 
one hop. That is, the failed access attempt would have 
been valid in the immediately previous hop window. 

This confirms that the security layer has an im- 
portant role to play in maintaining a good tradeoff of 
security for performance. Rather than expand safety 
margins on the client side, or expand hop windows on 
the server side, the security layer can choose to selec- 
tively classify one-hop errors as stale accesses, and ig- 
nore them. This enables the use of short (1-2 second) 
hop windows, and liberal safety margin calculations 
that reduce stutter rates by 70% or more. 

Malignant patterns. The probability of falsely 
categorizing a true illegal access as a benign stale hop 
is 1/N, where there are N hop servers. For a rea- 
sonable number of hop service instances (in our trials, 
4-8), this still leaves a reasonable chance for a single il- 
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Figure 4: Percentage of false alarms due to a single-hop error in a prototype hopping Web server implementation. 
The vast majority of the inadvertant security violations, regardless of safety margin strategy or traffic load, are 
due to single-hop errors and can be distinguished from sequences of intrusive probes. 

legal access to be accidentally silenced by the security 
layer. 

In general, however, intrusive probes can be ex- 
pected to repeat, obeying spatial and temporal pat- 
terns that can be detected. The security layer might 
reasonably maintain a history of all hopping violations 
from a given host or domain, and flag those alarm 
sequences whose length exceeds some small expected 
threshold value for the hopping server parameters that 
are in force. 

Intrusion Containment. Once such an intru- 
sion is detected, the administrators of heterogeneous 
network environments must regard all system services 
which may have been compromised as suspect. The se- 
curity layer therefore has the power to invalidate out- 
standing hopping codes and force them to be reissued. 
This new hop sequence may exclude service hosts that 
may have been the target of an intrusion, or which are 
consistently overloaded, resulting in false alarms due 
to missed hop windows. (The security layer may also 
log and filter future requests from the domain that 
originated the offending request, to frustrate denial- 
of-service attacks based on a flood of indiscriminate 
accesses to known false services.) 

Beyond first contact, the false services' bogus con- 

tent may help administrators keep an intruder online 
long enough to log and trace their actions. This gives 
time to identify the mode of attack and assess the ex- 
tent of damage to system components, a key require- 
ment for closing holes and warding off future intrusions 
[2]. 

4.1     Mitigating Hopping Overhead 

Minimizing the additional server load and net- 
work bandwidth required to support a secure hop- 
ping scheme is a key concern. Like any other secu- 
rity measure, the implementation of service hopping 
trades away some performance; how much and what 
kind depend on several design factors. As we have 
already described, two of these design factors can be 
minimized by careful engineering: the time spent in 
the global synchronization/migration phase of the hop 
window, and the overhead required to avoid false se- 
curity violations due to network noise and server load. 
The server administrator must make locally appropri- 
ate decisions for the other two factors: the fidelity of 
the content provided by false services, and the relative 
population of true and false instances throughout the 
heterogeneous computer. 

False server overhead. The number of false hop- 
ping services alone does not affect network bandwidth 
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consumption; legitimate service requests are simply 
"smeared" over the available services, following the 
hopping sequence. Instead, server load may become 
an issue, especially if there are not enough spare nodes 
willing to host false server instances, and multiple hop- 
ping services must be mapped to the same processor. 

If server load, and not local network bandwidth, is 
the limiting factor, a system of lightweight "hopping 
proxies" can pass through content from two hidden, 
centralized services, one providing real content and the 
other false content. This strategy restricts the num- 
ber of full servers to 2 (or even 1 if the difference is 
precomputed; e.g., a different document root for true 
and false HTML content). Of course, there's a price 
for protecting the anonymity of the underlying server 
from its clients: up to twice the local bandwidth re- 
quirement, to support the hopping server proxies that 
relay content. 

False client overhead. Similarly, maintaining 
false clients can have a considerable effect on resource 
consumption. Incoming network traffic and server 
load scales linearly with the false client count, a fun- 
damental restriction if network bandwidth is scarce, 
or servers are inadequately sized. 

Recall, however, that hopping service schemes work 
entirely well without the presence of false clients, 
which only serve to confuse traffic analysis. If secure 
out-of-band hop sequence generation is available, ad- 
ministrators can combine extremely long, nonrepeat- 
ing hop sequences with relatively short hop windows. 
That effectively eliminates an eavesdropper's advan- 
tage, since snooped hop sequence data goes stale be- 
fore it can be used, and never becomes useful again to 
derive the identity of the true servers. Under such cir- 
cumstances, administrators may elect to live without 
the smokescreen of false clients, and eliminate their 
additional bandwidth requirements and server load. 

5    Applications 
Consider a heterogeneous environment consisting of 

three corporate campuses, each protected by its own 
firewall from casual attack from the Internet. (This 
network configuration will become increasingly com- 
mon with the advent of global-scale design and manu- 
facturing operations, as industrial espionage motivates 
concerted attacks on proprietary data.) Each of the 
three campuses needs to publish certain information 
services for the benefit of the others, but wishes to 
exercise control over the distribution of sensitive con- 
tent. In figure 5, site A offers realtime video and audio 
content, site B offers access to the corporate database, 

and site C stores the corporation's master Web docu- 
ment tree. A high-speed interconnect links individual 
hosts within each campus, and there are two alterna- 
tives for links between campuses. Internet routes that 
share bandwidth with strangers' traffic offer an inex- 
pensive solution for connectivity, but dedicated pri- 
vate lines offer physical security. 

One solution is to use a combination of structure- 
based (hopping) and content-based (encryption) tech- 
niques to secure client-server resources against attack 
over insecure networks. Consider site A, the cam- 
pus that needs to offer secure streaming video service. 
Without hopping, site A would probably dedicate one 
port to video, configure the firewall to pass traffic on 
that port, authenticate clients using a public or pri- 
vate key scheme, and encrypt each video transmission. 
Adding hopping to the picture, site A could dedicate 
one port for hop sequence data, plus 4 ports for video 
service. They might run four video servers on each of 
four hosts within the campus network, giving a false- 
true server ratio of 15:1, while continuing to authen- 
ticate clients and encrypt content as before. 

The true services and clients in such a hopping sys- 
tem use roughly the same amount of server time and 
network bandwidth as if only a single non-hopping 
server were involved. The performance tradeoff actu- 
ally involves an orthogonal issue: paying for deception. 
False servers can be configured to produce a common 
load average across campus C's four hosts (true and 
false) to prevent a casual observer from narrowing the 
odds. False clients multiply bandwidth requirements a 
fewfold, but only enough to mask the relatively small 
number of legitimate clients who are likely to connect 
to a secure network service. These parameters are 
user-specified, according to the sensitive nature of the 
application. 

If we can rewrite the video client code to implement 
hopping directly, then users from campuses B and C 
will use a modified multimedia client to authenticate 
themselves to A, receiving authenticated hop sequence 
data in return. An alternative that avoids rewriting 
client code involves the use of a "hopping proxy" video 
server installed at B and C, which handles the authen- 
tication steps and hopping logic. In their spare time, 
these proxy servers also launch false database clients 
to confuse eavesdroppers. In figure 5, campus B is of- 
fering hopping database service, and proxy database 
servers have been installed at campuses A and C. 

5.1     Prototype System 
As a proof of concept, we constructed a web client- 

server system implementing a service-hopping proto- 
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Figure 5: Large, heterogeneous service-hopping system consisting of three campuses, four hosts per campus, using four 
ports to implement a total of 45 false and 3 true services. Campus A publishes video data, campus B offers database 
access, and campus C hosts the corporate Web document tree. Clients of the video server interact directly with the remote 
service instances; campuses A and C offer their users a simpler proxy interface to B's database, handling authentication 
and hopping mechanics transparently. 
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col, like that of campus C in figure 5. Web server se- 
curity rangf om simple username/password authen- 
tication for individual subtrees within the document 
space, to complex schemes that encrypt and authen- 
ticate client-server traffic [4, 5, 7]. A hopping scheme 
can add an extra measure of security to such a system, 
even in cases where the passwords for a page have been 
compromised. 

For the "bait" portion of the ruse, we built Java 
application classes that serve HTML content to Web 
browsers using the HTTP/1.0 protocol. The distinc- 
tion between a real service and a false service, in this 
simplified case, lies in the document tree. We provided 
a hierarchy of convincing fake documents for the false 
servers to provide to clients; true servers reference the 
standard document tree. We also constructed Java 
application classes that, given a fragment of repre- 
sentative access log, stage periodic accesses to HTTP 
server documents, replicating the activity of a human 
browser to defeat traffic-based identification of the real 
web server of the moment. 

We then constructed a proxy Web server, also in 
Java, which redirected all document requests to the 
currently legitimate Web server on a remote host. In 
our scenario, the proxy server runs at a selected remote 
site, giving users within that site access to a sensitive 
document tree through the hopping mechanism. An 
intruder who sniffed the page passwords from the net 
would nonetheless be locked out without the proxy 
server's private hopping information. 

We had no trouble keeping the proxy locked in sync 
with the hopping servers, using hop windows of 1 to 
2 seconds, as long as the interval between submission 
of a document request by the proxy and the approval 
of the request within the current window on the re- 
mote server was relatively stable. If the proxy issues 
a request which takes too long to enter service on the 
remote host, it may miss the current hop window, re- 
sulting in a false security alarm. The alternative is to 
delay service requests until the rise of the next win- 
dow, reducing throughput. The proxy server must 
start with a conservative estimate of the width of its 
effective compute window, and then work to expand 
that window to improve performance. 

Initial Synchronization First, during initial au- 
thentication with the remote server, the proxy down- 
loads its initial hop sequence. Each line in that se- 
quence is timestamped as it is generated by the hop 
sequence server and downloaded (byte-at-a-time) by 
the proxy. This gives the proxy a rough estimate of the 

average and variance of the phase offset Td between its 
clock and the server clock, including the transit time 
for short messages. If the hop window exceeds this 
average transit time by less than several standard de- 
viations, the proxy server attempts resynchronization 
periodically until the network has quieted down. 

This process only attempts to synchronize the 
proxy, or client, with the distant collection of hopping 
servers. Because the service hosts and the sequence 
server are all assumed to be within the same admin- 
istrative domain, we assume that their system clocks 
could be trivially presynchronized using, for example, 
NTP[6]. 

Once the servers have synchronized successfully, the 
proxy then makes document requests within Te of the 
rising edge of the remote hop window. Te starts off as 
Tc — Td — 2(TTd — the compute window time less the 
clock offset and two standard deviations. 

Periodic Adjustment Because some variable de- 
lay arises from load on the remote server (to begin to 
locate and transmit the document), and because mes- 
sage transit times may vary, each document served by 
the hopping server includes a header line for clock ad- 
justment. This line contains the server clock state at 
the moment the document began transmission, and 
allows the proxy to compute the time which remained 
in the current hop cycle. The proxy uses a sliding 
window of these times to recompute the variance and 
adjust its estimate of the phase correction to arrive at 
a new effective window Te. If the network becomes 
quieter, Te expands; if the network becomes noisier, 
Te shrinks. 

Conclusion. All these measures are necessary be- 
cause above some moderate noise level, hopping 
strategies break down due to sporadic missed hop 
windows, resulting in nuisance security alarms. For 
this reason, hopping techniques will be of most value 
in contexts where the network links between clients 
and hopping servers are relatively low-latency, when 
servers are adequately sized to avoid service delays due 
to load, and when the time required to initiate each 
service is relatively constant. 

Application-level structural techniques such as ser- 
vice hopping help balance security, performance, and 
convenience: three primary design criteria for hetero- 
geneous network management tools. The hopping ruse 
provides a new way to map tasks to heterogeneous re- 
sources, in order to augment the security provided by 
more traditional content-based encryption techniques. 
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Service hopping has the dual advantages of com- 
plicating the intruder's job, while giving administra- 
tors early warning of a potential breakin attempt and 
isolation of the affected component. We expect that 
the general techniques presented will be applicable 
to many heterogeneous distributed application con- 
texts of commercial and military significance, includ- 
ing databases, multimedia, signal processing, and dis- 
tributed control. 
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ABSTRACT 

A case study was conducted to examine the per- 
formance and portability of parallel applications, with 
an emphasis on data transfer among the processors in 
heterogeneous environments. Several parallel test pro- 
grams using MPICH, a Message Passing Interface 
(MPI) library, and the Linda parallel environment 
were developed to analyze communication perform- 
ance and portability. These programs implement 
loosely and tightly synchronized communication mod- 
els in which each processor exchanges data with two 
other processors. This data-exchange pattern mimics 
communication in certain parallel applications using 
striped partitioning of the computational domain. 
Tests were performed on an isolated, distributed com- 
puting testbed, a live development network, and a 
symmetrical multi-processing computer system. All 
network configurations used asynchronous transfer 
mode (ATM) network technologies. The testbed used in 
the study was a heterogeneous network consisting of 
various workstations and networking equipment. This 
paper presents an analysis of the results and recom- 
mendations for designing and implementing course- 
grained, parallel, scientific applications. 

1.0      Introduction 

Solving today's complex, scientific and techno- 
logical problems requires powerful computer platforms. 
Currently, many high-end computational systems fea- 
ture parallel architectures. Consequently, parallel im- 
plementations of scientific applications are becoming 

more important. In addition to using high-end com- 
puter platforms, a growing number of organizations are 
using distributed, networked resources to run parallel 
applications. The use of networked computers presents 
additional challenges to the application developer. 
Among these challenges are the relatively limited 
communication performance of the existing networking 
technologies and the difficulty in using the available 
bandwidth and processing power consistently. 

Parallel implementations enable us to solve more 
complex problems and to reduce execution time; how- 
ever, the increase in performance depends on the type 
of application, algorithms, and hardware characteris- 
tics. Powerful processors found in today's parallel 
systems and limitations in networking technology favor 
coarse-grained parallel implementations, in which a 
high number of operations per byte transferred mini- 
mize communication requirements. Coarse-grained 
parallelism [1] allows more computation to be per- 
formed locally between two synchronization events. It 
reduces the number of messages and the volume of data 
that processors exchange. Due to its suitability for sev- 
eral parallel architectures, coarse-grained parallelism 
also enables the development of portable applications. 
One can develop a parallel application in any parallel 
environment, such as a network of workstations 
(NOW), and subsequently port it to shared-memory 
multiprocessors or distributed-memory parallel ma- 
chines. 

Test programs were developed to evaluate com- 
munication performance using several communication 
patterns. The results of these tests can be used in de- 
signing and implementing parallel algorithms and 
communication techniques. Two scientific applications 
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were used as references for this study: a finite- 
differences time-domain (FDTD) electromagnetic 
simulation and a viscous fluid flow simulation. The 
electromagnetic simulation is based on solving a re- 
duced set of the Maxwell equations for the electromag- 
netic field. The implementation is an explicit, multi- 
domain model, suitable for parallel execution, that re- 
quires data to be exchanged at each time step. For the 
viscous fluid-flow simulation, the single-domain nu- 
merical solution requires large systems of equations to 
be solved (implicit implementation). In the multi- 
domain model, an iteration by subdomains method that 
requires local solvers and interface conditions is con- 
sidered. The computational domain is partitioned into 
subdomains, and each subdomain is allocated to a 
processor. Multiple subdomains can coexist on the 
same processor. For both applications, each processor 
communicates with at least two other processors. The 
partitioning of the domain into subdomains and the 
allocation of subdomains to participating processors 
induce certain communication patterns that were cap- 
tured in the test programs. 

In most implementations, the programs running on 
multiple processors are synchronized periodically, and 
messages are sent within each cycle (timestep or itera- 
tion on the complete domain); however, the developer 
has the latitude to implement either tightly or loosely 
synchronized models. In this paper, we have analyzed 
the network response to both tightly and loosely syn- 
chronized models. Low computation for each byte 
transferred implies that computation and communica- 
tion must be overlapped to provide good performance 
for parallel execution of the application. 

The test programs implement data-exchange pat- 
terns that mimic communication in parallel applica- 
tions similar to the electromagnetic and viscous fluid 
flow simulations presented above, using striped parti- 
tioning of the computational domain. The main hard- 
ware target for the tests is a heterogeneous network of 
workstations. Test results on the heterogeneous net- 
work are compared to those on homogeneous, isolated 
and active networks and on a symmetrical, multi- 
processing platform. MPICH [2,3], a public domain 
Message Passing Interface (MPI) implementation, was 
used in the parallel test programs. In addition, compa- 
rable implementations using Linda [4], a Scientific 
Computing Associates, Inc. (SCA)2 product, were used 

in some tests to complement or reinforce the conclu- 
sions.3 

2.0      Test environment 

MPICH (version 1.0.12) and Linda (version 3.1) 
were used in the tests. Several implementations of 
MPI are available in the public domain or from com- 
mercial vendors. Linda is a commercially available 
parallel programming environment. MPI and Linda are 
accepted in the high-performance computing industry 
and are reported to have good performance and port- 
ability. The two environments are very different in 
their level of abstraction and programming complexity. 
MPI is based on the message passing programming 
paradigm, while Linda is based on the distributed data 
paradigm (virtual shared memory). When using MPI, 
the programmer can perform fine tuning of communi- 
cation [5]. Explicit communication among processors 
and a wide range of message passing capabilities make 
this possible. Fine tuning, however, requires extensive 
knowledge of the MPI environment and parallel archi- 
tectures, making the programmer's job more challeng- 
ing. 

Performance testing was conducted on heterogene- 
ous and homogeneous NOWs and on a Silicon Graph- 
ics, Inc. (SGI) Onyx symmetric multiprocessor (SMP). 
Tests were performed on an isolated local area network 
(LAN) removed from user activity, as well as on an 
active LAN with varied traffic load. Both networks 
employed ATM technology. The Andrew File System 
(AFS V3.4) was used as the distributed shared file sys- 
tem in all configurations employed by the study. 

The isolated NOW testing used an established, 
heterogeneous, distributed computing testbed environ- 
ment. System resources within the testbed included: 

• SGI Indy workstations, each equipped with 
one MIPS R4000 100 MHz microprocessor 
and 48 Mbytes of RAM 

• SGI Indigo II workstations equipped with a 
MIPS R4400 200 MHz microprocessor and 
96 Mbytes of RAM 

• Sun Ultra 1 workstations, each equipped with 
one UltraSPARC 167 MHz microprocessor 
and 96-128 Mbytes of RAM 

• IRIX 5.3 operating system on all SGI work- 
stations 

• Sun OS 5.5.1 (Solaris 2.5) operating system 
on all Sun platforms. 

Linda is a registered trademark of Scientific Computing Associ- 
ates, Inc. 

This paper does not choose between Linda or MPICH for the de- 
velopment of parallel applications. 
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The testbed also provided several network tech- 
nology and protocol options such as Ethernet, Classical 
IP (Internet Protocol) over ATM, and FORE IP over 
ATM. Based on network communication benchmark- 
ing [6], it was determined that the standard Classical IP 
protocol over ATM results are very similar to FORE IP 
over ATM. We chose to use the FORE IP over ATM 
for this study. Figure 1 shows the heterogeneous testbed 
environment that was used for this study. 

SUN Ultra 1 
Workstation 

SUN Ultra 1 
Workstation 

SGI Indy 
Workstation 

SGI Indy 
Workstation 

SGI Indy 
Workstation 

SGI Indy 
Workstation 
SGI Indigo II 
Workstation 

Legend: 

 100 Mb ATM (TAXI) 
 155 Mb ATM (0C3) 

Figure 1. Heterogeneous Testbed Environment 

The testbed network configuration consisted of a 
two-switch ATM work group with an OC3 (155 Mbits 
per second) connection between the switches. The 
ATM switches used were the FORE Systems 
ASX200BX models with a combination of 100 Mbits 
per second Taxi interfaces for SGI Indys, and 155 
Mbits per second OC3 interfaces for SGI Indigo II and 
Sun Ultra 1. All ATM equipment used FORE Systems 
software version 4.0. Because the testbed was com- 
pletely isolated during the tests, the results represent 
ideal or best case situations. 

The NOW on the active LAN featured similar 
characteristics to that of the isolated NOW, including 
similar workstations and network configurations. The 
active LAN supported approximately 50 users. Work- 
stations with low computational load were selected for 
the test. Therefore, we assumed that the pre-existing 
computational load would not affect the test results 
significantly. The goal was to reveal the impact of the 
pre-existing network traffic on the communication- 
intensive, parallel applications. 

The SGI Onyx featured eight (200 MHz) micro- 
processors with a main memory of 1 Gbyte. Except 
for choosing a time period when the Onyx had low 
computation load, no special measures were taken to 
control the SMP. 

3.0      Test programs 

The performance tests target communication as- 
pects of parallel applications, such as FDTD electro- 
magnetic simulations and fluid flow simulations, using 
an iteration by subdomains method, described in sec- 
tion 1.0. Two synchronization models are consid- 
ered—a loosely synchronized model and a tightly syn- 
chronized model. Communication using the loosely 
synchronized model has the advantage of smoother, 
non-burst transfers. When all senders use the network 
or memory bus at one time (tight synchronization), ar- 
bitration delays may limit the performance. Within the 
loosely synchronized model, requests for network or 
bus access occur at a more uniform rate. In general, 
better execution times are expected for the loosely syn- 
chronized model. 

Figure 2. Generic Performance Testing Model 

To determine practical and obtainable performance 
expectations, it was necessary to devise tests that 
closely simulate parallel application behavior with re- 
gard to data exchange. The test software configuration 
consists of a master process and multiple slave proc- 
esses, as shown in Figure 2. The master process man- 
ages the slave processes and reports the results. The 
slave processes perform data transfers without proc- 
essing the data received. Each participating processor 
executes only one process (master or slave). 

The test software begins execution by examining 
input parameters and performing various overhead op- 
erations. Once the network topology and test environ- 
ment parameters are known and distributed throughout 
the configuration, the test programs measure communi- 
cation performance, specifically, data transfer times. 
Transfers are performed repeatedly to generate valid 
statistics. 

The loosely synchronized model relies on slave- 
slave communication for minimal synchronization, and 
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the tightly synchronized model uses slave-master com- 
munication for more rigid synchronization. Table 1 
shows the main design characteristics of the two mod- 
els. The total execution time is used to compare the 
models. 

Each test was executed three times. The execution 
time average was then used for analysis. Each test con- 
sisted of 100 iterations. Within one iteration, each of 
the four slave processes sends the specified size mes- 
sage to two partners.   Using execution time and mes- 

sage size, one can approximate the application band- 
width (total amount of data exchanged for 100 itera- 
tions divided by execution time). In configurations 
with four processors running slave programs, the total 
amount of data exchanged over the network for 100 
iterations is 8*100*(message size). The bandwidth 
defined above depends on the characteristics of both 
the test program and the parallel environment 
(hardware and software). 

Test Model Loosely Synchronized Tightly Synchronized 
Specific 

Characteristics 
• Master only communicates with slaves 

on initialization and termination 
• Slaves can only send successive mes- 

sages after receiving a message from 
each partner 

• Master communicates with all slaves in 
each iteration to start slave-slave trans- 
fer 

• Each slave-slave transfer is acknowl- 
edged 

Generic 
Characteristics 

• Number of slaves in configuration is variable 
• Each slave sends and receives from two slave partners 
• Message transfer size is variable 
• Number of iterations for testing is variable 
• Master determines total execution time (all iterations) 

Table 1. Performance Testing Software Model Characteristics 

4.0      Performance tests on NOWs 

For the MPICH implementations, loosely and 
tightly synchronized models were developed using the 
blocking standard communication mode. (MPI may 
buffer outgoing messages.) Other variations, such as 
user buffering and nonblocking, were considered but 
not studied due to time constraints. Test results are 
presented for heterogeneous and quasi-homogeneous, 
isolated NOWs and for an active, homogeneous NOW. 
Several data types were used (byte, char, and double) 
for tests on the isolated NOW, but no significant differ- 
ences in performance were found. Transfers using 
MPI_BYTE data type are discussed in this paper. 

Additionally, the models were implemented using 
Linda, and the test results for a quasi-homogeneous, 
isolated NOW are discussed in this paper. 

The quasi-homogeneous configuration employed 
four Indy workstations running the slave programs and 
an Indigo II running the master program. For the per- 
formance tests described in the previous section, this 
configuration can be considered homogeneous because 
the amount of data communicated to and from the 
master processor is very small compared to the amount 
of data exchanged among the slaves. The heterogene- 
ous configuration employed two INDY workstations, 
two Ultra 1 workstations running the slave programs, 
and an Indigo II running the master program. The Ul- 
tra 1 workstations were equipped with a faster micro- 

processor, more memory, and a faster ATM card; how- 
ever, the allocated workload and the data transfer vol- 
ume were the same. 

4.1       Tests    using    MPICH    on    isolated 
NOWs 

This section compares the performance results of 
the MPI test programs for loosely and tightly synchro- 
nized communication on isolated NOWs in quasi- 
homogeneous and heterogeneous configurations. 

In heterogeneous environments, the loosely syn- 
chronized model performed significantly better than the 
tightly synchronized model for messages up to 1 
Mbyte. For messages larger than 1 Mbyte, the tightly 
synchronized model yielded better performance results. 
Note that for some tests in the heterogeneous configu- 
ration, the results varied significantly among the three 
executions. (As mentioned in section 3.0, each test was 
executed three times.) This variation was not exhibited 
in the homogeneous configuration. 

On the homogeneous NOW (Figure 3a), the differ- 
ence in the execution times for loosely and tightly syn- 
chronized models was even greater for very large mes- 
sages. For the tightly synchronized tests, the execution 
times were up to three and one-half times longer. 

A sharp decrease in the transfer rate for messages 
between 200 Kbytes and 500 Kbytes was common for 
both the homogeneous and the heterogeneous environ- 
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ments when the tightly synchronized model was used. 
In the tightly synchronized model, the network bottle- 
necks became critical due to data bursts. Performance 
of the tightly synchronized model improves relative to 
the performance of the loosely synchronized model 
when large messages are passed on a heterogeneous 
NOW. This result was not anticipated and is opposite 
to the result on the homogenous NOW; however, the 
absolute values of execution times were shorter in the 
homogeneous environment. In the loosely synchronized 
model, the execution time on the homogeneous NOW 
was more than five times smaller than the execution 
time on the heterogeneous NOW. 

(a) Large Messages 

500 1000        1500 

Message Size (Kbytes) 

2000 

(b) Small Messages 

-Het. LS 

Het. TS 

- ^ - -Horn. LS 

—K Hom.TS 

Message Size (Kbytes) 

Figure 3. Tests using MPICH in heterogeneous 
(Het.) and homogeneous (Horn.), isolated NOW 
configurations. Loosely Synchronized (LS) 
implementations are compared to Tightly Syn- 
chronized (TS) implementations.  

For small messages (to 8 Kbytes), the tests showed 
similar performance in both homogeneous and hetero- 
geneous environments (Figure 3b). Loosely synchro- 

nized model implementations executed up to two times 
faster than the tightly synchronized model implementa- 
tions for very small messages (100 bytes). Synchroni- 
zation overhead and communication with the master 
could have caused this behavior. 

Even though the cumulative computational power 
and network bandwidth were superior for the heteroge- 
neous NOW, tests on the homogeneous NOW yielded 
better performance results. As expected, additional 
tests with two and three slaves on homogeneous NOWs 
showed better results on Ultra 1 NOWs than on Indy 
NOWs (30 percent shorter execution time). In general, 
for equal load, one would expect that the performance 
in a heterogeneous NOW should be at least the same as 
the performance in a homogeneous NOW using the 
least powerful workstation type in the heterogeneous 
NOW; however, additional measurement without MPI 
showed smaller throughput on a communication line 
connecting two different machines (Ultra 1 and Indy) 
than between two Ultra 1 or two Indy workstations. 
Also, a significant difference was noticed between the 
two directions of communication (from SUN worksta- 
tions to SGI workstations and from SGI workstations to 
SUN workstations). We conclude that each platform's 
communication layers have been optimized for best 
communication in a homogeneous configuration. This 
behavior is consistent with the results of the MPI tests. 

4.2        Tests using MPICH on an active NOW 

Figure 4 and Figure 5 compare results obtained on 
the active, homogeneous NOW to results measured on 
the isolated, homogeneous and heterogeneous NOWs. 
The workstations and network hardware on the active 
network were similar to the workstations and network 
hardware on the isolated network. 

As expected, the execution times for the active 
network were longer than they were for the isolated 
network (homogeneous NOW), as shown in Figure 4, 
due to varied, active network load. The execution 
times of the loosely synchronized tests were three to 
four times faster on the homogeneous, isolated net- 
work. In contrast, the execution times of the tightly 
synchronized implementations on the isolated network 
were comparable to the execution times of the test pro- 
grams on the active network (Figure 5). Overall, tightly 
synchronized implementations for large messages 
yielded poor performance results on both active and 
isolated, homogeneous networks. 

For large messages, the execution times on the 
isolated, heterogeneous network were longer than the 
execution times on the active network in a homogene- 
ous configuration for both loose and tight synchroniza- 
tion. Relatively low, pre-existing communication load 
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on the active network and the behavior of communica- 
tion in heterogeneous versus homogeneous environ- 
ments (section 4.1) contributed to these results. 
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Figure 4. Loosely Synchronized (LS) tests 
using MPICH on an active, homogeneous 
(A. Horn.) NOW. The results of tests on the 
A. Horn. NOW are compared to the results on 
isolated, homogeneous (I. Horn.) and isolated, 
heterogeneous (I. Het.) NOWs. 

The application bandwidth computed from the 
graphs shows values of up to 11.4 Mbytes per second 
for loosely synchronized tests on the isolated, homo- 
geneous NOW. The maximum application bandwidth 
for tests on the active network is approximately 3.6 
Mbytes per second (large messages). 

For small messages, the execution times for the 
tightly synchronized tests (Figure 5b) on the active net- 
work were significantly higher (20 times) than the exe- 
cution times for the loosely synchronized tests (Figure 
4b). Given that on the isolated NOW the difference 
between the tightly and loosely synchronized imple- 
mentations was significantly smaller, it can be con- 
cluded that the behavior was caused by network loading 

on the active network. The behavior of the loosely 
synchronized implementations (Figure 4b) seems to con- 
firm this hypothesis. In this case, the execution times 
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Figure 5. Tightly Synchronized (TS) tests 
using MPICH on an active, homogeneous 
(A. Horn.) NOW. The results of tests on the 
A. Horn. NOW are compared to the results on 
isolated, homogeneous (I. Horn.) and iso- 
lated, heterogeneous (I. Het.) NOWs. 

on the active network were only slightly higher than the 
execution times for similar tests on the isolated net- 
work. 

A drop in the execution time can be noticed at 
8 Kbytes for both the isolated and the active NOWs 
(Figure 4b and 5b), possibly due to the packet size used 
at one of the multiple layers of communication. 

As noted in section 3.0, four of the less utilized 
workstations on a LAN of 50 were used for the tests. 
The network equipment provided communication sup- 
port to other applications, also. The results on the ac- 
tive NOW show that the un-utilized computing power 
can be harnessed to solve large problems; however, a 
proper jobs distribution tool based on the actual load 
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and usage profile of the workstations should be used. 
Reliable, application-driven load balancing and check- 
pointing are also desirable. 

4.3       Tests using Linda on an isolated NOW 

This section presents the performance results of the 
Linda (version 3.1) test programs for loosely and 
tightly synchronized implementations on an isolated, 
homogeneous NOW. Results for the heterogeneous 
NOW are not available. Tests were also performed on 
an active network; however, only the results gathered 
on the isolated NOW are discussed here. (Results on 
the active NOW depended on the network load; the 
conclusions drawn from the tests using MPICH apply 
here, also.) 
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Figure 6. Tests using MPICH and Linda on an 
isolated, homogeneous NOW. Execution 
times of Loosely Synchronized (LS) and 
Tightly Synchronized (TS) tests using MPICH 
are compared to the execution times of LS and 
TS tests using Linda.  

For small messages (from 100 bytes to 8 Kbytes), 
as shown in Figure 6b, the execution times for the 
tightly synchronized tests were longer than the execu- 
tion times for the loosely synchronized tests. This can 
be attributed to the communication overhead in the 
tightly synchronized tests and is consistent with the 
general behavior of loosely and tightly synchronized 
implementations. As in the tests using MPICH, a 
change in bandwidth is noticed around 8 Kbytes for 
tests using Linda. This could have resulted from a 
change in Linda's internal mechanism, such as different 
handling procedures for small and large messages or 
the discrete behavior of a lower-level communication 
layer (or a combination of both). 

Figure 6 shows that the execution times for the 
loosely and tightly synchronized test programs using 
Linda were nearly the same for larger messages (from 
500 Kbytes to 2 Mbytes). The differences can barely 
be noticed from the graph. These results are situated 
between the performance results of the loosely and 
tightly synchronized test programs using MPICH. It can 
be concluded that Linda smoothes out data bursts in 
such a manner that execution times for tightly and 
loosely synchronized tests are comparable, especially 
for larger messages. Also, note that test programs us- 
ing Linda and test programs using MPICH are compa- 
rable, but not identical. This could have impacted the 
behavior of the loosely and tightly synchronized mod- 
els, as well as the results. 

5.0      Portability 

As mentioned in section 1.0, applications can be 
developed and fine tuned on NOW and subsequently 
ported to other parallel environments. MPI defines the 
user interface and functionality for a wide range of 
message-passing capabilities. Although the MPI envi- 
ronment management may vary, the functionality, se- 
mantics, and syntax are the same for all implementa- 
tions. MPI supplies a portable and efficient method for 
process communication, providing flexibility and con- 
trol to the application developer. By using a standard 
method of message passing, the burden of low-level 
communication is lifted from the application developer. 
Programs based on both the Single Program Multiple 
Data (SPMD) paradigm and Multiple Program Multiple 
Data (MPMD) paradigm are supported, although the 
startup procedure and configuration may vary for dif- 
ferent MPI implementations. 

MPICH supports a wide range of systems, from 
NOWs to shared-memory and distributed-memory sys- 
tems (such as IBM, SGI, HP, and CRAY products). 
Other MPI libraries are available in the public domain 
(LAM, CHIMP). Platform-specific MPI implementa- 
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tions are also available and provide the same function- 
ality with better performance levels, since they are 
written and tuned for a particular platform. 

Linda is available on a large number of parallel 
computing systems, including NOW, shared-memory 
computers, and distributed-memory computers, such as 
IBM, CRAY, HP, and SGI products. Most applications 
run on different machines without any source code 
changes. 

Very little investigation was conducted on porting 
MPICH programs to other MPI environments. (Some 
programs were executed in a LAM environment.) The 
study's emphasis was on porting test programs from 
NOW to shared-memory multiprocessors, using 
MPICH in both cases. The test programs using Linda 
were also ported to the shared-memory multiprocessor 
platform. The following section discusses a few port- 
ability issues, including changes in data transfer per- 
formance. 

5.1        Porting test programs using MPICH to 
anSMP 

The test programs were executed in both NOW 
and SMP environments. To obtain optimum results on 
the SMP, only the SPMD paradigm was used. Cur- 
rently, MPICH does not have a shared memory-based 
implementation for MPMD. MPMD parallel programs 
can be executed on an SMP, but the performance is 
poor. 

Figure 7a shows that there is little difference in the 
execution times for the loosely and tightly synchronized 
test results on the SMP, whereas there is significant 
difference between loosely and tightly synchronized 
tests on the NOWs. It appears that SMPs handle data 
bursts more effectively. The reasons for this behavior 
include a high bus bandwidth per processor and the 
implementation of the message passing through a 
shared-memory library. In a network, data bursts can 
cause packets to be dropped and, thus, trigger delays. 

For message sizes above 500 Kbytes, the tightly 
synchronized tests had execution times that were four 
to six times longer than those of the loosely synchro- 
nized tests. For the loosely synchronized model, the 
total application bandwidth was approximately 11.4 
Mbytes per second (isolated homogeneous NOW) ver- 
sus 28 to 40 Mbytes per second (SMP) for large mes- 
sages. When comparing the results on NOWs to those 
on the SMP, one should also consider that the SMP had 
processors with a clock rate two times greater than that 
of the workstations (200 MHz compared to 100 MHz 
on workstations). In addition, the memory available to 
each processor was more than three times greater on the 
SMP. 

Figure 7b shows that on the SMP, for small mes- 
sages, test programs had an execution time proportional 
to the message size, while the isolated network did not. 
When message size exceeded 4 Kbytes, the isolated 
network's loosely and tightly synchronized slope dou- 
bled on the graphs. This could be due to the discrete 
behavior of low-level communication software 
(dependent on the message size). For small messages, 
the loosely synchronized model yielded better perform- 
ance results than the tightly synchronized model, simi- 
lar to the behavior on the NOWs. 
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Figure 7. Tests using MPICH on the SMP and 
NOWs. Execution times of Loosely Synchro- 
nized (LS) and Tightly Synchronized (TS) tests 
using MPICH on an SMP are compared to the 
execution times of LS and TS tests on an iso- 
lated NOW in homogeneous (I. Horn.) and het- 
erogeneous (I. Het.) environments. 

It is evident that testing conducted on the SMP 
resulted in better data exchange performance compared 
to testing on the NOWs (Figure 7). Because data ex- 
change on an SMP does not require network access, 
SMP transfers should be faster, as long as there is suffi- 
cient processing power to handle both data processing 
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and communication. The data exchange performance 
on the SMP and NOW may change if processing or 
simulation is included in the experiment. 

5.2       Porting test programs using Linda to 
an SMP environment 

The loosely and tightly synchronized test programs 
using Linda were ported easily from a NOW to an SMP 
environment. It was only necessary to recompile the 
source code. A comparison of results on the isolated, 
homogeneous NOW and SMP follows. 
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Figure 8. Tests using Linda on the SMP and 
isolated, homogeneous NOW. Execution 
times of Loosely Synchronized (LS) and 
Tightly Synchronized (TS) tests using Linda 
on the SMP are compared to the execution 
times on an isolated, homogeneous NOW (I. 
Horn. LS and I. Horn. TS).  

Figure 8a shows very little difference between 
loosely and tightly synchronized tests on the SMP. 
Most comments on tests using MPICH with regard to 

NOW versus SMP execution times apply to tests using 
Linda for both large and small messages (Figure 8b); 
however, for large messages, the results of tests using 
Linda show an almost linear increase in execution time 
with the message size for both environments discussed 
(isolated NOW and SMP). This is not the case for tests 
using MPICH, especially on the NOW (Figure 6a). 

6.0      Conclusions 

The tests presented in this paper targeted perform- 
ance and portability in three environments—the iso- 
lated NOW, active NOW, and SMP. Most of the tests 
used four slave processors and one master processor. 
Various message sizes were tested, from 100 bytes to 2 
Mbytes. Fine tuning of the environments to improve 
performance was not part of the scope of this study. 
Instead, design aspects, mainly related to inter- 
processor communication, were investigated. These 
aspects need to be considered when developing parallel 
applications. Overall results are reviewed in this sec- 
tion. 

Environment. As expected, when a limited number 
of processors (four in these tests) were used, the tests 
yielded better performance results on the SMP than on 
the NOWs. On the NOWs, environment control 
(workstations and network) was more important than 
the tools and methods employed in the applications. 
Adapting to the environment (i.e., load balancing) 
would be beneficial; however, the additional communi- 
cation generated by dynamic load balancing needs to be 
monitored. 

Synchronization. In tests using MPICH on NOWs, 
the loosely synchronized model performed significantly 
better than the tightly synchronized model. In the 
tightly synchronized model, data bursts occurred, and 
certain components of the communication chain were 
overloaded. Thus, the preferred model for applications 
exhibiting an inter-processor data exchange pattern 
similar to that described in this paper is the loosely 
synchronized model. Use of the loosely synchronized 
model in MPICH implementations, especially on ho- 
mogeneous NOWs, is essential for good performance. 
The execution time was three to five times longer for 
tightly synchronized implementations with large mes- 
sages and could be up to two times longer for very 
small messages. For small messages, the overhead 
caused the difference in performance, while for large 
messages, the difference was due to burst transfers that 
were not handled efficiently by the network. Imple- 
mentations using Linda did not show important differ- 
ences between the two models, except in the case of 
small messages. On the SMP, the loosely synchronized 
tests (using MPICH or Linda) yielded better results, 
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also; however, the relative gap between the results of 
the two models was smaller, especially for large mes- 
sages. 

Portability and Programming Paradigm. In gen- 
eral, coarse-grained MPI and Linda parallel programs 
can be ported among parallel environments. The SMP 
implementation of MPICH, however, did not fully sup- 
port the MPMD programming paradigm. MPICH 
could be configured to accept MPMD, but it did not 
use the shared-memory library. For a portable imple- 
mentation that preserves good performance, an SPMD 
approach should be used. 

Bandwidth. The isolated network in a homogene- 
ous configuration supported a maximum application 
bandwidth of 11.4 Mbytes per second when test pro- 
grams used the loosely synchronized model. For the 
tightly synchronized model, the bandwidth was less 
than 4.3 Mbytes per second. Bandwidth measurements 
in tests using MPICH, when only one sender and one 
receiver were active, showed an application perform- 
ance of 6 Mbytes per second. These measurements 
confirm the conclusion recommending loose synchro- 
nization for optimum performance. The number of 
processors involved, network configuration, message 
size, and communication load of each processor and 
network switch are also important points to be consid- 
ered. Tests on the SMP, using either MPICH or Linda, 
yielded an application bandwidth up to 40 Mbytes per 
second. 

Message Size. All the tests yielded low perform- 
ance results for small messages. This behavior is at- 
tributed to synchronization overhead, communication 
latency, and non-homogeneity. For larger messages, 
the bandwidth increased considerably. Tests using 
MPICH on the SMP, however, displayed a decrease in 
performance for messages larger than 500 Kbytes (from 
40 Mbytes per second to 28 Mbytes per second). 

Heterogeneity. The performance in a heterogene- 
ous environment was notably lower than the perform- 
ance in a homogeneous one. Additional measurement, 
without MPICH, exhibited smaller throughput on a 
connection between workstations of a different type, 
than on a connection between two workstations of the 
same type. In addition, a significant difference was 
noticed between the two directions of communication. 
The conclusion is that each platform's communication 
layers are optimized for best communication in a ho- 
mogeneous configuration. This behavior is consistent 
with the results of tests using MPICH. 

Scalability. The application bandwidth supported 
by the network increased with the number of processors 
involved in the parallel execution (from two to four 
processors). It is expected that, with the appropriate 
configuration, an ATM network can support additional 
processors efficiently. 
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