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FINAL TECHNICAL REPORT (April 1, 1993 - May 31, 1997) 

(AFOSR Contract No. F49620-93-1-0249) 

I.   STATEMENT OF THE PROBLEMS STUDIED 

Effort under the above referenced contract was focused upon examining some in-situ, 

growth controlled approaches to synthesis of semiconductor nanostructures (quantum wires and 

quantum boxes) with particular emphasis on mechanisms of lattice mismatch strain 

accommodation and associated kinetic behavior. To this end, the following two different 

approaches were studied: 

(1) Formation behavior of the coherent, three-dimensional (3D) islands in highly strained epitaxy 

and their potential use as quantum boxes. 

(2) Control of density and size of such island quantum boxes via selective area growth on size- 

reduced patterned substrates containing appropriately oriented mesas. 

Studies of the first year or so showed a great potential for the coherently strained 3D island 

quantum boxes on planar substrates (also dubbed self-assembled quantum dots) for optoelectronic 

applications. Consequently, during the next two years (mid 1994 and mid 1996) of this contract 

period a greater effort was placed upon this aspect and resulted in a number of new and important 

findings and demonstrations, including the first unambiguous demonstration of a quantum box 

laser. The laser comprised vertically self-organized but electronically essentially uncoupled 

multiply stacked quantum dots as the active region. In the following we provide a brief summary 

of the most important results obtained in the two categories noted above. Details may be found in 

the publication numbers noted for each topic in the summary. These correspond to the publication 

list provided in Section III. 



H.     SUMMARY OF THE MOST IMPORTANT RESULTS 

n.l   3D Island Quantum Dots on Planar Substrates 

1.  In-situ UHV STM/AFM studies of 3D island evolution and implications for an atomistic 

kinetic frame work: 

Studies central to the understanding of the process and mechanism of the lattice mis- 

match induced coherent 3D island formation, using InAs/GaAs system as a vehicle, were 

carried out. The experimental findings are described in detail in publication nos. 16, 23 and 

24. Briefly, we discovered that, just after the initiation of the well-formed 3D islands at 

-1.57ML InAs deposition, the lateral size dispersion and average size of the islands first 

increases drastically (from panel (a) to (b) in Fig. 1) with about 0.05ML of additional InAs 

p = 146X108/cm2 

<d>=8.2X102A 

ls*andlai 'terai s>ze (4) """■"»zetfj 35° 

Fig. 1 



io3 

io; 

- """'D-—a. 

- 2D clusters 
D    small 
V    large 

naD--o—cna- ■□ -c 

detection limit 

§   10' 

deposition and then decreases and saturates (panels (c) through (f) in Fig. 1). This indicates 

the onset of a natural tendency for size equalization, including through loss of material from 

the initially formed largest islands. Moreover we discovered the presence, during the 2D- 

3D morphology transition, of a varying mass transfer between 2D and 3D surface features 

with increasing InAs deposition. The evolution of the density of different structural features 

is summarized in Fig.2.  The quasi-3D 

clusters (0.6-1.2nm high, labeled as 

Q3D clusters in the middle panel of 
n 

Fig. 2) are found to mediate the 2D-     ^ 10° 

3D morphology change and to play an     §   \Q 

o 
important     role     in     the      mass    i—>   10 

redistribution on the surface.    These    .^ 
C 

results provide clear evidence for the     Q 

importance of the synergistic evolu- 

tion  of local  (and  hence,   globally 

inhomogeneous) strain and 

surface/interface energy in determining 

the surface kinetic processes during 

the 3D island formation and evolution. 

Re-entrant behavior of 2D-3D morphology change and implications for lasing from 

quantum dots: 

The coherent nature of the 3D islands caused explosive growth during the period of 

this contract in the examination of their optical behavior as quantum boxes by groups 

around globe and of their potential for quantum box based injection lasers by a few, 

including us. Reliable interpretations of the origin of optical emission and lasing demanded 

that careful and systematic combined atomic level structural and optical studies be carried 

out on comparable samples in order to understand the atomistic mechanism of strain- 



induced evolution of structural features and their role in the optical response. We 

undertook this challenging task under the support of this contract. A remarkable discovery 

of a re-entrant behavior, as described below, was made and reported in a paper published in 

Phys. Rev. Lett, (publication no. 25). 

Briefly, InAs structural features up to five monolayers high appear at -1.25ML 

deposition of InAs, disappear, and reappear prior to the onset of well-developed 3D islands 

at 1.57ML, thus manifesting a hitherto unrecognized reentrant behavior in the formation of 

3D islands (see middle panel of Fig. 2). The optical signature of this reentrant behavior is 

shown in Fig. 3. The narrow peak near 8500Ä, which evolves with increasing InAs 

deposition and vanishes just beyond 0C at 1.57ML, is attributed to the recombination in the 

wetting layer (WL). The almost 

Gaussian peak observed at 10200Ä for 

the 2.00 ML sample is attributed to 

recombination in 3D island quantum 

dots (QDs). A careful analysis of the 

PL spectra of the 1.15 ML and 1.25 

ML samples reveals for the first time 

peaks at 9380Ä and 973 3 A, 

respectively, in addition to the WL 

emission. By contrast, no PL in the 

9200Ä to 10300Ä region could be 

resolved for the 1.35 ML and 1.45 ML 

samples. And then, at 1.55 ML 

deposition (just below 0c) PL 

reappears in this spectral region and 

finally develops into 3D island PL, thus establishing a re-entrant PL behavior paralleling 

that of the 3D structural features seen in the STM studies.   These results provide new 
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Fig. 3 



insights into the long-standing problem of the kinetic aspects of 2D to 3D morphology 

change not embodied in the widely encountered Stranski-Krastanow growth mode. 

Moreover, this systematic study unambiguously identified the origin of the lasing in our 

InAs quantum box-based laser structures as arising from the 3D island quantum boxes and 

not from other structural features, (see point 5). The spectrum position of the observed 

lasing line (see point 5) is shown as a dashed straight line in Fig. 3 for later reference. Since 

the laser structures contain InAs layer(s) with 2ML InAs deposition for which the quasi 3D 

clusters have vanished, the origin of lasing is attributed to the well formed, coherent InAs 

islands. 

3. Island induced adatom migration during cap layer growth: 

Through transmission electron microscope (TEM) studies of InAs island samples 

having GaAs cap layers containing AlGaAs marker layers we demonstrated InAs 3D island 

induced migration of Ga away from the islands during growth of the GaAs cap layers. A 

mechano-chemical surface chemical potential based theory for growth profile evolution was 

developed and used in conjunction with the TEM observations to estimate the spatial range 

of the island induced strain fields for the first time. This is reported in publication nos. 7, 9 

and 11. 

4. Demonstration of vertically self-organized growth: 

The above noted InAs island induced stress/strain fields in GaAs cap layers were 

exploited to demonstrate theoretically the kinetically controlled occurrence of vertically self- 

organized 3D island stacking in multi-layer growth and experimentally the realization of 

such vertically self-organized growth. These results are given in publication nos. 12 and 13. 

Figure 4 shows an illustrative cross-sectional TEM image of a stack of five InAs 3D island 

layers separated by 36 ML thick GaAs spacers and reveals the vertically self-organized 

growth. 



5 layers 50 nm :W* 
Fig. 4 

Demonstration of Lasing from Vertically Self-Organized 3D Island Quantum Dots: 

The results are shown in publication nos. 18 and 30. Ultra low threshold lasers are a 

critical component of high-density, high-throughput information processing systems. 

Owing to the discrete density of electronic states of an ideal quantum box, several over an 

order of magnitude type improvements in the figures of merit of devices based upon 

quantum boxes are theoretically expected. For lasers, these include threshold currents in 

the less than lOuA regime and high characteristic temperatures leading to much improved 

thermal stability. 

Figure 5 shows a cross-sectional TEM image of a laser structure comprising five sets 

of vertically self-organized quantum dots as the active region sandwiched between 

[(GaAs^AlAsyp based graded index optical confinement layers and AlGaAs cladding 

layers. Figure 6 shows the light output versus injected current behavior at 77K, indicating 

onset of lasing at a threshold current density (Jth) of ~310A/cm2. 
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GRIN Layer 
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Fig. 5 



10000-r 

«   8000- 
"S 
3 

e3   6000- 

3 
O. +-» 
3 
°   4000- 

xs 
oc 

RG951124-1 
35 (xm x 2.2 mm 
79 K 

2000- 

0   Ivti-ff 

Jth = 310A/cm2 

i i I i i i i I i i i i I i i i i 

400        600       800      1000 0 200 

Current Density (A/cm2) 

Fig. 6 

n.2   Fabrication of Nanoscale GaAs Mesas and Growth of In As on such Mesas 

Control of the spatial distribution, the density and the size uniformity of the InAs 

islands is important to further exploitation of these island structures as quantum boxes for 

electronic and optoelectronic device applications. An important path towards these 

objectives is the use of patterned substrates containing mesas of appropriate sizes and 

profiles to achieve selective growth on the mesas. Proper exploitation of the lattice misfit 

strain for these objectives demands mesa widths in the sub-micron to sub lOOnm regimes. 

We utilized our previously developed techniques of size-reducing epitaxy (publication nos. 

1-3, 10, 14-15, 20, 22, 27-29) on ex-situ photolithographically patterned as well as in-situ 

direct write patterned stripe mesas of as-patterned width ~lum to create the desired 

nanoscale mesas in-situ via purely growth control. A brief summary of the latter is given 

below as it is new and unique to our group. InAs island formation studies however, could be 

carried out only on the ex-situ as-patterned substrates due to both limitation of time and 

resources. 



1.   Growth of GaAs on in-situ patterned GaAs substrates: 

As a first step towards an all UHV in-situ process for creating arrays of nanoscale 

mesas, we studied the growth of GaAs on patterned substrates prepared in-situ via focused 

ion beam (FIB) assisted CI2 etching of GaAs(OOl). FIB assisted CI2 etching technique is 

compatible with the UHV environment and hence is promising for an all in-situ approach to 

growth/processing/re-growth. The results are detailed in publication no. 26. The highly 

non-equilibrium nature of such FIB assisted gaseous dry etching also affords creating mesa 

sidewall orientations other than those provided by the thermodynamically most stable planes 

accompanying the usual wet chemical etching. An illustrative AFM image is shown in Fig. 7 

for a stripe with -26° 

sidewalls. Figure 8 shows the 

nature of the size-reducing 

growth on such mesa stripe as 

revealed by TEM images of 

growth of GaAs with AlGaAs 

(light bands) marker layers. 

We note that the as-patterned 

surface roughness of about 20nm is completely healed with typically about 50nm of GaAs 

buffer layer growth. 

X(nm) 
Fig. 7 

Fig. 8 



2.    Growth of InAs on GaAs nanoscale stripe mesas: 

In Fig. 9 are shown some results of controlled deposition of InAs on nanoscale stripe 

mesas prepared in-situ via GaAs size-reducing epitaxy on ex-situ as-patterned mesas of 

widths ~lum . Note that in these growths the InAs deposition amount is less than the 

critical deposition amount (1.57ML) for 3D island quantum dot formation on the planar 

substrate. The images show that, by controlling the strain and interfacet migration, it is 

possible to achieve selective area growth of InAs islands, in this case on the mesa top only, 

while also achieving control of the spatial distribution and density of the InAs islands. Note 

the reduction from three parallel rows of InAs 3D islands to one as the mesa width is 

reduced from -lOOnm to 30nm. While some very promising results were obtained on this 

front, this contract expired and this approach could not be pursued much further. These 

results are a remarkable first and are to be published. 

Mesa width: lOOnm Mesa width: 60nm 

Mesa width: 30nm Fig. 9 
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