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Project Summary 

The project objective is the development of codes to simulate the interaction of charged 
particles and the electromagnetic field inside of complex chambers. This project is 
applicable to simulation of microwave devices. The codes are built around the use of 
generalized curvilinear coordinate systems based on hexahedral elements that can be 
made to conform to complex boundary surfaces. The new element in this project is the 
use of multiple coordinate patches to accommodate discontinuous and cylindrical 
surfaces. 

The main accomplishment is the development of techniques to allow integration of the 
Maxwell equations across coordinate discontinuities. The technique is demonstrated on a 
solid cylinder of variable cross section. The report also presents grid generation 
techniques. - 

(1) Project Objectives 

See project summary and text of attached narrative 

(2) Status of Research Effort 

See project summary and text of attached narrative. 

(3) Publications 
19971006 017 

Swift, D.W., Use of a hybrid code to model the Earth's magnetosphere, Geophys. Res. 
Lett., 22, 311, 1995* T' "' 

Swift, D. W., Use of a hybrid code for global-scale plasma simulation, J. Comp. Phys., 
126, 109 1996* « 

Lin, Y and D. W. Swift, A two-dimensional hybrid simulation of the magnetotail 
reconection layer, /. Geophys. Res., 101, 19,871, 1996 

DTIC QUALITY IHBPS8IS8 $ 



Lin, Y., D. W. Swift and L. C. Lee, Simulation of pressure pulses in the bow shock and 
magnetosheath driven by variations in interplanetary magnetic field direction, /. 
Geophys. Res., 101, 27,251, 1996 

Swift, D. W. Electromagnetic and hybrid codes in multiple-patch coordinate systems, J. 
Computer Physics Com. (In preparation) 

* Papers acknowledging AFOSR support 

(4) Personnel Associated with Project 

Peter Delemere, Ph.D. graduate student. Expected date of graduation: December 1997. 
Thesis title: Hybrid code simulation and analysis ofCRRES GJ, G9 and Gl JA 
barium releases. 

(5) Interactions 

June 1994: P. C. Liewer and S Karmesin visited Geophysical Institute in Fairbanks, AK 
to discuss project. 

December 1994: Attended American Geophysical Union Meeting in December 1994. 
Presented paper Use of a hybrid code to model the Earth's magnetosphere 

December 1994: Attended workshop on Adaptive Grid Methods for Fusion Plasmas 
sponsored by ASIC, NERSC and NYU held in Pleasanton, CA. Presented a paper 
Use of Generalized Curvilinear Coordinates Systems in Hybrid and 
Electromagnetic Codes. 

December 1994: Visited JPL in Pasadena, CA to discuss project with P. C. Liewer and 
S. Karmesin 

July 1995 Attended IUGG meeting in Boulder Colorado and presented a paper Prospects 
for a Space-Weather Forecasting Model 

September 1995 Attended Cray User Group conference in Fairbanks, AK and presented a 
paper Particle-in-Cell Electromagnetic Codes in Complex Geometries 

December 1995 Attended American Geophysical Union Meeting. Presented paper 

December 1995 Visited JPL in Pasadena, CA to discuss project with P. C. Liewer and S. 
Karmesin 

September 1996: Attended Workshop "Encounter between Global Observations and 
Models in the ISTP Era". Presented a paper entitled The effect of the Interplanetary 
Magnetic Field on the Dayside Magnetosphere 



(6) Other 

The codes developed have to a large extent solved the problem of simulation of 
electromagnetic waves inside a cylindrical domain that includes the cylindrical axis. The 
code at present exists in the form of modules written in Fortran 90. The investigator 
would be pleased to make the code available to and work with anyone who has an 
interest in using it. It is often difficult to integrate modules written by one party into code 
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1. Background and Motivation 
The original objective of this project had been to apply recently developed 

algorithms relating to the use of generalized curvilinear coordinates to simulate the 
interaction of charged particles and the electromagnetic field within microwave generation 
devices of complex shapes. Curvilinear coordinates enable coordinate surfaces to conform 
to continuous boundary surfaces, which greatly simplifies the imposition of boundary 
conditions. Microwave devices involve the interaction between charged particles and the 
electromagnetic field. This interaction is most easily treated in a coordinate using 
hexahedral cells, which are topologically equivalent to a cubic lattice. Madsen [1995], on 
the other hand, described methods simulating electromagnetic propagation using more 
general finite elements, but his work did not include particle interaction. 

Most devices of practical interest have sharp edges requiring discontinuous 
coordinate surfaces. It became apparent that attempts to approximate a discontinuous 
surface by a coordinate surface with large curvature would introduce unacceptable errors 
in the evaluation of the field derivatives needed in Maxwell equations. Eastwood et. al. 
[1995] show that complex devices can be modeled by use of multiple coordinate patches, 
each of which may be continuous. The sharp edge of the bounding domain would then lie 
on the surface separating the coordinate patches. The boundary conditions can be made 
homogeneous and imposed on a continuous surface. These considerations have led to the 
focus of this project on the design of a code which accommodates an arbitrary number of 
coordinate patches, each of which may be dimensioned differently. 

Although individual coordinate patches may be continuous, it is not always possible 
to join the coordinate patches so that grid across the patches is continuous. A good 
example is the common problem of propagation in a cylinder. An obvious choice would be 
the use of cylindrical coordinates. The problem is that cylindrical coordinates have a 
coordinate singularity along the central axis. Figure 1 shows the coverage of the interior 
of a circular domain by five coordinate patches, similar to that suggested by Eastwood et 
al., [1995]. Figure 2 shows the use of this coordinate system inside a solid cylinder of 
arbitrary cross section. Each coordinate patch is continuous, but the coordinates undergo 
a discontinuous change in direction across the boundaries separating the peripheral 
patches. The time stepping of Maxwell's equations for the electromagnetic field involves 
the numerical differentiation of vector fields across coordinate patches. This poses special 
problems because field components with respect to one coordinate system will be different 
in another. Another problem is that coordinate systems cannot always be constrained to be 
orthogonal. The result of a curl operation will give a vector component perpendicular to a 
cell face. Evaluation of a curl by Stokes' theorem requires vector components parallel to 
cell edges. In a non-orthogonal coordinate system cell edges are not parallel to cell face 
normals. Conversion from one to another requires interpolation, which is a multi-grid 
point operation that may cross coordinate patch boundaries. 

The main focus of efforts reported in this document is the development of robust 
techniques for accurate numerical integration of Maxwell's equations across discontinuous 
coordinate patch boundaries. The next section provides a more detailed description of the 
electromagnetic code and particle mover in curvilinear coordinates. This will provide 
background for Section 3, which describes the multiple-patch code. The focus will be on 



conversion from face-normal to edge tangent components used in the evaluation of curlE 
and curlB in the neighborhood of and across patch boundaries. The other critical element 
described in Section 3 will be the particle mover and current algorithm in relation to patch 
boundaries. Section 4 will describe techniques used for coordinate generation. 

2. The Electromagnetic Code in Generalized Curvilinear Coordinates 
This section describes the electromagnetic code as implemented for a single 

coordinate patch. The details of curvilinear methods, as applied to a hybrid code, have 
been previously reported [Swift, 1996]. The main purpose of this section is to acquaint 
the reader with the methods that will form the context of the new work to be reported in 
the next section. 

Figure 3 shows the arrangement of the data elements on a hexahedral grid. This 
layout is analogous to the two-dimensional layout for an electromagnetic code in a 
rectangular grid described by Birdsall and Langdon [1985], The important feature to 
notice in the figure is that the fields are laid out on a staggered grid. The divergence of 
the electric field lies on the main set of grid points. From Gauss' law, this must also be the 
locus of the charge, and hence particle, density. This grid point denoted by the integer 
indices is at the center of the /i-cell. The electric field components are located on the faces 
of the cell, as shown in the figure. The divergence of the magnetic field is located at the 
half-grid point and is the center of the B-ce\\. The magnetic field components are similarly 
located at the faces of the B-ce\\. The grid point locations of the various curvilinear 
components of the electromagnetic field are also indicated in figure 3. 

2.1 The Field Equations 
The function of the electromagnetic code is to advance the two Maxwell equations 

 = -V x E a 
at A    * (1) 

c'VxB- 
dt m 

Where B is defined in terms of the gyrofrequency of a particle of mass /??, E is defined in 
terms of the acceleration and J is in units of particle flux. Stokes theorem is used to 
discretize these equations. For example, Faraday's law takes the form 

)—-dA = -§E-dl (2) 
Gl 

Now, let us apply this to the right-facing face on the parallelepiped centered at 

/,/' + ~Jc+ j • The discretized time derivative of the face normal component of B, B\ is 

given by 
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where, the li's are the cell-edge tangent vectors, which reside at the center of cell edges; 
an example of which is given by 

(•2),,^,, =^+1,,-r;,;., (4) 

The I, is obtained by differencing on the /-index, and 13 by differencing on the yt-index. The 
same procedure can be carried out to evaluate the time derivative of E working on the E- 
cell. The calculation of the position vector rv,t. will be explained in Section 4 which 
describes the grid generation procedures used. The component B1 is defined through 

B = e,£1+e,£2+e,#3 
(5) 

where e, = 1, / /, .The component, say, Bx can be obtained by taking the scalar product of 

the above expression with 12 x I3, which is the area of face 1. 

The tangential electric field appearing in (3) is therefore given by 
El, I,-e,£'+l,-e2^+l,-e3£ 

7,-3 
(6) 

In an orthogonal coordinate system, only the E term would be present. Since the various 
components of E reside at different cell faces, second-order accuracy requires the other 
components be interpolated to the position occupied by El, For example computation 

of E ■ 1, requires 

and a similar interpolation is required for the /^-component. 
The above discussion indicates the steps necessary to evaluate the time derivative of 

the magnetic field from Faraday's law. The advancement of the electric field from 
Ampere's law follows a similar procedure. 

2.2 The Particle Equations of Motion. 
The standard relativistic equations of motion in the units of (1) are 

du     _ „ , 
= E + u x Bf y 

dt 
dx 

Hi 
u I y 

(8a) 

(8b) 

where u is the momentum per unit mass, and / = yj\ + u2/c2 . The time stepping of these 

equations is standard and will not be repeated here. Instead the discussion will focus on 
those aspects of integration of (8) peculiar to curvilinear coordinates. The main difficulty 
posed by use of curvilinear coordinates is that evaluation of the derivative in (8a) requires 
differentiation of the of the metric coefficients, the I, in (4). It will be noticed that this has 



been avoided in the evaluation of the curl operations. To avoid differencing errors, we 
choose to keep the components of u in Cartesian components. This requires conversion of 
E and B from face-normal to Cartesian components. The conversion simply requires 
resolution of the x, y and r-components of the e, appearing in (5). The components are 
easily computed from x, y and z components of the coordinate positions appearing in (4). 
As previously indicated, the particle charge density resides at the center of the £-cell, ruk. 
Momentum conservation requires that both the E and B fields be interpolated from the 
position at which the charge density resides. The code therefore interpolates the face- 
normal components to the £-cell center prior to computation of the Cartesian 
components. 

Equation (8b) is integrated in curvilinear coordinates. The reason is that it is the 
curvilinear coordinate that serves as a pointer to the grid points surrounding the particle. 
In fact, the grid point indices are simply obtained by truncating the curvilinear position. 
PIC (particle-in-cell) weighting is used to interpolate the fields to the particle position. 
Updating the curvilinear position requires conversion of the velocity to face-normal 
components. The curvilinear velocity component, qx can be obtained by taking the scalar 
product of the relation 

(ixux + iyiiy +1 _.//_.) / r = V/1 + '2<72 + V/3 (9) 

with I2 x 13 This generates a 3x3 matrix transformation. The curvilinear velocity is now 

position dependent. The transformation elements reside at the center of the A-cells, and 
the transformation is evaluated at the particle by PIC interpolation. To preserve second 
order accuracy, the particle's curvilinear position is advanced a half time step. The 
transformation evaluated at the half time step position is then used to advance the 
particle's curvilinear position a full time step. This procedure makes the curvilinear move a 
rather computationally expensive part of the particle update. 

2.3 Calculation of the Current. 
This subsection describes the implementation of the Villasenor-Buneman [1992] 

exactly charge-conserving algorithm for calculating the current. The essence of the 
algorithm is illustrated in Figure 4, which shows the finite element of charge carried by a 
particle on a rectangular grid. The particle element is the same size as the grid cell. The 
current is the amount of charge, represented by the change in area, carried across a cell 
boundary by a particle in a time step, divided by the duration of the time step. In two 
dimensions the current vector resides on the center of the cell boundary and is normal to 
the boundary. Since the amount of flux crossing a boundary represents the decrease 
(increase) in area occupied by the particle within a given cell, the current is rigorously 
conservative. In three dimensions the components of the current are centered on the cell 
face and normal to the cell face. 

In curvilinear space, the coordinate system is a cubic lattice with unit distance 
between grid points. Hence the conversion to curvilinear is trivial. The current comes out 
automatically to have face-normal components centered on faces of the /'J-cells - just 
where it is needed to update the A-field from Ampere's law. The particle's motion in 
curvilinear space is computed with the q' that is needed to update the particle position. 



A particle's charge element can intersect a rather large number of cell faces during a 
time step. Villasenor and Buneman use a rather complicated decision tree to calculate the 
amount of charge crossing each cell face. We have implemented a conceptually simpler 
recursion process. In our code the current calculation is done in conjunction with the 
particle move. The move is stopped each time a particle's finite element crosses a new cell 
face. The time is recorded and a new move is begun for the particle starting at the 
recorded time. The particle can recirculate through the move loop an arbitrary number of 
times until the duration of the time step has elapsed. 

3. Multiple Coordinate Patches 
The major accomplishment of this project has been the extension of the methods 

described above to coverage of a domain by an arbitrary number of coordinate patches. 
The design philosophy has been to segregate the code. One set of subroutines operates on 
coordinate patches independently, and another set of subroutines takes care of passing 
data between coordinate patches. This allows direct incorporation of methods already 
developed for curvilinear coordinates into the multiple coordinate patch environment. 

This has required some change in the structure of the data. Flexibility and generality 
require that the code be allowed to loop through an arbitrary number of patches, each of 
which may be dimensioned differently. This flexible data structure is accommodated in the 
Fortran 90 language used in the project. In this language, a component of the electric field 
may be referenced as 

f(m)%e(i,j,k,n) = ... 
where f is a type, or structure in C parlance, describing the field variables. Other members 
of the type are the electric field and current density. The m index is the patch number. The 
/', j, k indices refer to the grid point, and are used in the same context as the in Section 2. 
The index n, which runs from 1 to 3, is the component number. The dimension declaration 
on the positions of /, j, k indices depend on the patch number. 

Particles comprise a different data structure. A particle's curvilinear position may be 
referenced by 

p(m)%q(k,n) = ... 
where p is the type describing the particle arrays, m is the patch index , k is a particle 
index, and n is the component of the particle's position vector. All of the particles 
corresponding to patch number m reside within the volume occupied by coordinate patch 
m. The /t-slot is dimensioned sufficiently large to accommodate all the particles likely to be 
within the volume of patch m. The particle arrays are allocable, so it is possible to re- 
dimension them from time to time, as particles move from one region to another. 

The code is written for the Cray Y-MP, but the structure can be efficiently 
implemented on a distributed memory parallel computer by mapping patches onto 
individual processor elements. The sharing of data between coordinate patches minimizes 
inter-patch/processor communication by keeping the bulk of data references local to a 
patch/processor. 

3.1 Sharing of Field Data 
The key to modularization of the computation is data sharing. Figure 5 shows a 

blow-up of the grid shown in Figure 1 around the region surrounding the intersection of 
three coordinate patches. Also shown is the dual grid structure. The solid lines denote the 



£-cells, while the dotted lines are the £-cells. The density resides at the intersection of 
solid lines. The dashed grid is displaced a half grid distance out of the page from the solid 
grid. Data on the heavy grids is common to two or more patches. The choice of location 
of the density, and hence the E and £-cells is dictated by compatibility with the Villasenor- 
Buneman current algorithm across patch boundaries. 

Consider the interface between patches 1 and 5 and the update of B3 and E3, which 
are field components normal to the page. The B3 resides on the intersection of dashed 
lines, and is updated by taking the line integral of E on the surrounding solid lines. The 
update occurs in patch 5. The update of E3 on the other hand occurs in patch 1. Because 
the data is shared, the update is done entirely within a patch. Once the update on each of 
the patches is complete, data on the solid boundary line must be shared with patch 5, and 
data on the heavy dashed line must be copied from patch 5 to patch 1. 

The data sharing is accomplished through separate interface subroutines for the B 
and E fields. The subroutines are invoked twice: Once operating on the face normal 
components following the update of the fields, and once again on the tangential 
components of the fields following the conversion of the field from face normal to edge 
tangential components. The interface routines loop through all of the patches. Within each 
patch loop are nested loops over the three coordinats and each of the six faces. The 
controlling parameters determine whether the patch boundary is an external boundary or 
an inter-patch boundary. In the case of an external boundary, the interface routine sets the 
appropriate components to the values required by the boundary condition. In the case of 
an inter-patch boundary, the number of the adjacent patch is identified. 

The interface routine then, where appropriate, assigns values of the field variables 
from the adjacent patch to its grid. On the interface between patches 1 and 5 in Figure 5, 
the 1-components of both patches increase to the right and the 2-components both 
increase in the upward direction. Thus the interface routine operating on patch 5 simply 
copies values Bl,E? and E3 lying on the solid line to its grid. When it operates on patch 1, 
values of B2, B3 and E from patch 5 are copied to patch 1. In the case of the interface 
between patches 2 and 5, the 1-coordinate increases upward and the 2-coordinate 
increases to the left. This means that Bx copied from patch 2 becomes B2 when transferred 
to patch 5 , and E2 becomes -£' when transferred to patch 5. The reverse occurs when 
variables on the heavy dashed line are transferred from patch 5 to patch 2. Also, since grid 
points are sometimes enumerated in opposite directions, the interface routine must take 
care of relabeling of grid indices. There are in fact six parameters that identify adjacent 
patches and are responsible for relabeling and re-numerating of grid points for every patch 
component on every face of each patch. 

3.2 Coordinate Discontinuities 
The above procedure of copying and relabeling of field components is appropriate to 

boundary transitions between coordinate patches that are continuous. Figure 6 illustrates 
the difficulties when the methods described above are applied to discontinuities between 
coordinate patches. One problem is illustrated in the case of E The face normal 
component that emerges from taking the curl of B is displaced the cell-edge component. 
In the case of the 1-component of the magnetic field, the center of a coordinate face is 
displaced from the center of a coordinate edge. Moreover, the coordinate directions 



change so drastically that the face normal direction one side of a cell bears little 
resemblance to the face normal direction on the other. The usual interpolation methods 
described in the previous section will fail to give an accurate value for the tangential 
component, Bx. Since the curl operation takes differences between field components, 
acceptable accuracy requires very accurate values for the tangential components. 

Since the interpolation methods described in the previous section will not work in 
the neighborhood of a coordinate discontinuity, more general methods for interpolating in 
both direction and position are needed. This can be done by using the expansion 

E = lx[ax+bx(x-xQ) + cx(y-y0) + dx(z-z0)] + 

ly[ay + by(x-x0) + cy(y-yQ) + dy(z-zQ)] + (10) 

lz[az + K(x - *o)+cz{y-y<>)+dz(z ~ zo)] 
The tangential component of, say, Ex at the point x0,y0,z0. is calculated by taking the 

scalar product of (10) with I,, defined in (4). The result is 

E\ = hxax + l\yay + l\zaz (11) 

To determine the Cartesian components of a, b, c and d   in (10), we equate the 
expression with 

E = e,£1+e2£
2+e3£

3 (12) 

at twelve neighboring points where the face normal E are known.   For example, say we 
know Er at the point xpy ,,z-, then one of the twelve relations needed to determine the 

coefficients in (10) is 

e2-(e3xei)£
2 =lx-(e3 xe,) ax+bx\xj >) 

+ 

+ (13) 

))+cx(yj-yo) + dx(zj 

ly-(t3xei)[ay + by(xJ-x0)+cy(yJ-y0) + dy(zJ-z0) 

1. • (e3 x e,)[az + b.[xj -*<,)+ cz(^; ~yo) + d=[zj ~ -o) 

The set of twelve equations generated are then solved to determine the coefficients 
in a. Given the template of twelve face center points it is possible to compute any 
component of the E or B fields, say E, 

E = Xa,„E" (14) 
12 
T.amEn 

where the ain are precomputed by taking the inverse of a 12x12 template matrix. 
The same procedure is applied to the magnetic field, B. In addition it is necessary to 

determine E on each side of the discontinuity, as illustrated in Figure 6. This is done by 
taking the scalar product of (10) for E with e2 x e3, where e2 is the unit vector in the 

direction of the lighter-faced dashed lines shown in Figure 6. 
Figures 7a, b show the target points and component directions where the B and E- 

fields were computed. The components on and just to either side of the diagonal were 
computed for all 17 points out along the diagonal. The same computation is performed for 
all points along the axis normal to the plane of the page. The computations are repeated 
for the interface of patches 2 and 3, 3 and 4, and 4 and 1. The source components, E", in 
(14) were generally chosen so that there would be four values of the 1-component, four of 



the 2-component and four of the 3-component. The locations from which they were each 
selected formed the points of a tetrahedron that contained the target point. The reason for 
this is that if any of the face normals in the same direction were on a plane, the template 
matrix would be singular. 

For target points for B2 and £, located along the diagonal, the coordinate system 
shows considerable symmetry, which cannot be reflected in the tetrahedral arrangement of 
source points. For this reason, a thirteenth term and coefficient is added to the expression 
(10). This term is quadratic in a variable that increases in a direction perpendicular to the 
heavy diagonal line shown in Figure 5 and is in a direction perpendicular to the plane of 
the discontinuity. Caution has to be exercised in situations in which a target point is 
located on a symmetry axis because the upper left-hand block of the template matrix could 
be singular, even though the entire template matrix is not. This could cause failure or 
large truncation errors in the routine that inverts the template matrix. This can be avoided 
by randomizing the enumeration of the source points. 

The calculation of the Cartesian components needed for boosting the particles for 
the most part can be done using the methods described in Section 2.2. This procedure 
does become inaccurate points on the chevron discontinuity. There the expression in (10) 
is invoked to calculate the Cartesian components. 

The implementation procedures described above are outlined in Figure 8, which 
shows a block diagram of one-time setup and the routines that are called every time step. 
The setup routine is called by the subroutine that computes all the curvilinear coefficients 
relating to the patch interior. 

The setup routine contains a set of numbers that identify all the target points and 
their components for each of the peripheral coordinate patches. Attached to each target 
point is a set of integers that identify the location of source, or template, points and their 
associated components. Since many of the target points share the same source points, a 
subroutine was written to compute the x, y, z components of (e, x e2),   (e2 x e3), or 

(e3 x e,) for each of the source points, as indicated in (13). The subroutine call takes as 

an input the indices denoting position and component of the source points. The same 
routine also computes the x, y, z components of the edge tangent vector, since many of the 
source point are also target points. In addition the routine also computes both the face 
center and edge center positions. The next step in the setup routine consists of a loop over 
target points. This loop calls a procedure which computes the template matrix, inverts it 
and finally computes the coefficients a,„ in (14). 

In the main time stepping loop in which the fields are updated, the calculation of the 
target components is done in the interface routine. We start from the face-center 
components, as output by the curl operation. The first step is to execute the data share 
procedure described in section 3.1, even for components on the discontinuous patch 
interfaces. Next, the source components are saved in arrays that can be addressed by the 
indices declared in the setup routine. Then in the case of E-field, two face normal 
components of E{ are computed for each side of the chevron discontinuity, using 
coefficients generated by the setup procedure. The interface procedure is then exited. 

The interface procedure is entered again following the procedure that computes the 
edge-tangent components. The source components that were saved in the previous call are 



then used to compute the edge-tangent components in the neighborhood of the coordinate 
discontinuities, making use of the ain coefficients computed in the setup procedure. 
Following this, the interface procedure described in Section 3.1 is again executed. The 
fields are then ready for the curl computation. 

3.3 Testing and Evaluation 
The primary test of the algorithms described in this section was to take the curl of 

vector fields which changed linearly with distance, i.e. B = 1 z, which yields a unit vector 

in the x-direction. The tests were based on use of the coordinate system depicted in 
Figures 1 and 2. The steps used in the test are : (1) The Cartesian vectors were converted 
to the curvilinear, face-centered components that would be found following the curl 
operation. (2) The interface routine was applied, as described above. (3) Then the face- 
centered components were converted to edge-tangent components. (4) The interface 
routine was then applied. (5) The curl was then taken, and (6) the result was converted 
back to Cartesian components for comparison with the known result. 

The interface routines were first applied without the procedures described in Section 
3.2. Errors were unacceptably large around the target points shown in Figures 7a, b. 
Attempts to improve the accuracy were made by smoothing out the chevron discontinuity 
between the peripheral patches. The result was an increase in the number of grid points 
with unacceptably large (100%) errors. Moreover, no rearrangement of coordinate points 
improved the accuracy around the degenerate cells at the interface of three coordinate 
patches. 

The test procedures using linearly varying Cartesian components made it easy to 
compute edge-tangent field components by hand. It was found that the errors could be 
almost entirely accounted for by errors in the edge tangent components. Since the curl is 
computed by differencing edge-tangent components, they had to be computed with a high 
degree of accuracy. An error of a couple percent could give a 100% error in the result of 
the curl operation. Errors for the curl operation have been generally brought below 10% 
for the grid shown in Figures 1 and 2 and the target points shown in Figures 7 a, b. The 
errors could be reduced further by increasing the number of target points, because the 
errors remaining are contributed by edge-tangent components that were not computed by 
the methods described in Section 3.2. 

As a final remark, the procedures described above are sufficiently flexible and 
modular that they could be applied to the entire grid without a great deal more coding. It 
would just require some expansion in the tables that specify the template of source points. 
However, far enough away from the grid discontinuities, the errors are considerably less 
than 1%. Moreover, the source point template being based on a tetrahedral configuration 
may not have the accuracy of a more centered interpolation methods in the interior of 
coordinate patches, although it would work well for linearly varying fields used in the 
tests. Another distinction is that the tetrahedral interpolation relies on twelve or more 
source points and twelve or more coefficients, while the centered interpolation requires 
nine source points and nine coefficients. 

The selection of source and target points relied to some extent on the fact that 
coordinate scale factors varied relatively slowly along the cylindrical axis. However, the 
general methods are independent of the orientation of the underlying x,y,z Cartesian 



coordinates. Thus the methods described in Section 3.2 can be applied irrespective of the 
orientation of either the curvilinear or Cartesian coordinates to the coordinate 
discontinuity. They could in fact be applied to any finite element mesh, given an 
appropriate template of source points. 

3.4 The Particle Mover and Current Algorithm 
The presence of patch boundaries requires a rather straightforward extension to the 

particle move/current algorithm described in Section 2. A particle is tagged by a patch 
number and an index number. In addition to the particle's phase space position, the 
particle carries a logical variable. When it is . TRUE. the particle is moved and boosted, 
and when it is .FALSE. it is ignored. When a particle moves to a new patch, the time step 
is recorded the logical variable is set to . FALSE., and the particle is placed in a buffer 
along with the time and the index of the destination patch. An interface routine then places 
the particle at the top of the stack in the destination patch, assigns an index and sets the 
logical variable to . TRUE. The move subroutine is entered again, and the new particles 
are moved. The few particles which cross into a new patch are again placed in a buffer, 
and the process is continued. The move process stops when the buffer is empty. At the 
end of the moves, the particle arrays have a number of empty slots. A stack push down is 
executed in each patch so that all active particles are placed consecutively in the particle 
data arrays for each patch. 

A particle that is in the process of crossing a patch boundary contributes to the 
particle flux from both patches to the common boundary face. The cell-face currents are 
accumulated during the particle move. A current interface routine sums these currents and 
then distributes the data in same the way that the £-field data is distributed. 

4. Grid Generation 
The grids shown in Figures 1 and 2 were generated by two-dimensional solutions to 

the Laplace equation. Figures 9 and 10 show contour plots of the potential functions. The 
potential in Figure 9a was used to generate the nearly rectangular coordinates in the inner 
patch to the "radial" coordinates in the peripheral patch. Figure 9b shows contours which 
change continuously from a straight-line boundary to a circular boundary in the peripheral 
patches, while Figure 10a shows the potential function which conforms to the axial shape 
of the domain. 

Coordinate generation involves two steps. The first is the generation of the 
potentials, and the second step involves the conversion of the potential functions to the x, 
y, z location of coordinate points that can be used by the simulation program. 

4.1 Generation of Potentials 
This subsection describes the numerical technique for solution of Laplace's equation 

that satisfies Dirichlet conditions on bounding curves of arbitrary, but continuous, shape. 
The starting point is a Greens function solution that satisfies 

V2G(x;x') = -£(x') (15) 

i.e the potential of a unit source at an arbitrary location. This is done on an mxn grid. The 
solution satisfies periodic boundary conditions in one direction and force-free boundary 
condition in the other direction. It is obtained by use of an FFT in one direction and tri- 
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diagonal methods in the other direction. The solution possesses translational invariance 
and also has the property G(x, x') = G(x', x). That is, the potential contours are the same 

irrespective of the location of the source point relative to the boundary. Therefore only 
one Greens function is needed. 

The solution to the Laplace equation can be written as a linear combination of an 
arbitrary number of Greens functions 

0>(x) = TakG(x,xk) (16) 

Say, we want O to equal Bj at points x,, j = 1.. N. Then we get the relation 

BJ=I.akG(xJ,xk) (17) 

If the points xy constitute the points defining the boundary, then (16) represents the 
solution that satisfies the boundary conditions with a* determined by solution of the linear 
set of equations (17) 

In order that the solution be smooth, the boundary points should be no more than 
one grid point apart. The potentials shown in Figures 9 and 10 were generated typically on 
a 256x260 grid, and about 800 points were used to define the boundary. This large a set 
of equations with source points so close together becomes ill-conditioned. To get around 
this problem 8 or 10 groups of equations, involving 100 or 80 points are solved separately 
and solutions to the various groups are averaged. The points in each of the groups are 
staggered such that if the set of points is broken into 8 groups, then each group consists of 
every tenth point. This does result in some loss of resolution. If there is some point where 
it is important that the solution accurately satisfy a particular value, then that point can be 
represented in each of the groups. 

4.2 Determination of Grid Point Positions 
The grid shown in Figure 1 was generated with two potentials. The starting point is 

to lay out a set of fiducial points of q] along a known curve. In the case of the center patch 
of the grid, the points are laid out on the horizontal straight line. This constitutes one point 
on the qx coordinate. Then a set of fiducial values of q2 are established. In the case of the 
center patch these are the same values established for q] coordinate. The table for the 
potential   ql    contoured   in   Figure   9a   is   numerically   differentiated   to   obtain 

dqx\dx, dqxjdy. These derivatives are used to determine the line of constant ql in x-y 

coordinates. The generation program calculates the curve of constant q] , x(s), y(s). In the 
course of tracing this line, the program evaluates q2(x,y). If a fiducial value of q2 is 
exceeded, the program interpolates between the present q2 and the value of q2 at the 
previous integration step to find the value of s that corresponds to the fiducial value of q2. 
The program then determines the values of x, y that corresponds to the fiducial value of q2. 
The value of qx was set at the start of the curve tracing procedure. The x, y positions for 
fiducial value of q2 are then recorded. The index for q2 is incremented and the program 
seeks the crossing of the next fiducial value of q2. The same type of procedure is used to 
fill out the coordinate points in the peripheral patches. This time however, the program 
traces out radial lines using the potential in Figure 9a and calculates the crossings of 
fiducial values of the potential shown in Figure 9b. 
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The potential in Figure 10a is used to evaluate the cf coordinate. Here the procedure 
is somewhat different in that the program traces along a gradient, rather than along a line 
of constant potential. The program lays out a set of fiducial values for the cf coordinate 
along the axis of the cylindrical figure shown in Figure 2, which in this case happens to be 
proportional to the Cartesian z-coordinate. The program also identifies a set of fiducial 
values of the potential function shown in Figure 10a. It then integrates out along the 
gradient of the potential function in Figure 10a. This generates cf and cf coordinates, 
where cf advances along the cylindrical axis, and lines of constant cf are the potential 
contours of Figure 10a. The result is shown in Figure 10b. 

The last step in the construction of the three-dimensional coordinate system is the 
rotation of the grid in Figure 10 about the cylindrical axis at the bottom and the mapping 
of the coordinate system shown in Figure 1 onto constant cf surfaces of revolution. 

The above procedure generates coordinate points that are connected by the lines 
shown in Figure 1 and the solid lines in Figure 5. This generates the £-cells. The dual grid 
points are placed at the center of the £-cells, and the 5-cells, indicated by the dashed lines 
on Figure 5, are formed by planes connecting £-cell centers. 
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Figure Captions 

Figure 1. The filling of a circular cross section of a cylinder with five coordinate patches. 
Chevron type coordinate discontinuities extend from the corners of the central patch 
along the diagonals. 

Figure 2. Perspective view of a coordinate system in the interior of a cylinder of arbitrary 
cross section. The grid spanning the cross section is that shown in Figure 1. 

Figure 3. The location of the face normal components of E and B on the E- and 5-cells. 

Figure 4. Illustration of the finite element of charge carried by a particle. 

Figure 5. A detailed blow-up of the grid around the intersection of three coordinate 
patches. The charge density is at the intersection of the dashed lines, while the 
divergence of E is at the intersection of solid lines. Data on the heavy coordinate 
lines is shared in common between two or three patches. 

Figure 6. Illustration of the tangential and face normal components near a chevron 
coordinate discontinuity. The superscripts denote face normal components, while 
subscripts denote edge tangent components. 

Figure 7a. The locations where the tangential components of the E -field were computed 
by the special methods described in section 3.2 The arrows show the component 
directions. 

Figure 7b. The locations where the components of B were computed by the special 
methods outlined in section 3.2. 

Figure 8 A block diagram showing the relationship among the various modules used in 
updating the fields. 

Figure 9. Potentials used in generation of the grid shown in Figure 1. Panel A shows the 
potential used in the generation of the grid of patch 5 and the radial lines in patches 1 
- 4. Panel B shows the potential used to transition the grid from a square to a circle 
in patches 1-4. 

Figure 10. Panel A : The potential used in forming the axial dependence of the grid. Panel 
B: The grid generated by that potential. 
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Figure 1  The filling of a circular cross section of a cylinder with five coordinate patches. 
Chevron type coordinate discontinuities extend from the corners of the central 
patch along the diagonals. 



Figure 2 Perspective view of a coordinate system in the interior of a cylinder of arbitrary 
cross section. The grid spanning the cross section is that shown in Figure 1. 
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Figure 3   The location of the face normal components of E and B on the E- and 5-cells 
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Figure 4. Illustration of the finite element of charge carried by a particle 
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Figure 5 A detailed blow-up of the grid around the intersection of three coordinate 
patches. The charge density is at the intersection of the dashed lines, while the 
divergence of B is at the intersection of solid lines. Data on the heavy coordinate 
lines is shared in common between two or three patches. 



Figure 6. Illustration of the tangential and face normal components near a chevron 
coordinate discontinuity. The superscripts denote face normal components, while subcripts 
denote edge tangent components. 



Figure 7a E-field target points. The arrows show component directions. 



Figure 7b. £-field target points. The arrows show component directions 



Main Program 

Compute Geometrical Coefficients 
(Patch interior) 

Compute Interface Coefficients 
set indices for target and source points 

Compute source point 
coefficients 

Compute ain 

(see Equation 14) 

Interface Routine 

Data Share 

Save field components 

Compute Bx 

Compute Edge Tangent Components 
(patch interior) 

Interface Routine 

Compute edge tangent components 

Data Share 

Compute Curl 
(patch interior) 

Figure 8 A block diagram showing the relationship among the various modules used in 
updating the fields. 



Figure 9 Potentials used in generation of the grid shown in Figure. Panel a shows the 
potential used in the generation of the grid of patch 5 and the radial lines in patches 
1 - 4. Panel b shows the potential used to transition the grid from a square to a 
circle in patches 1 - 4. 
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Figure 10. Panel a : The potential used in forming the axial dependence of the grid. Panel 

b: The grid generated by that potential. 


