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Acquired Equipment 

1. MIRA 900F, Coherent Inc., modelocked titanium-sapphire source of femtosecond pulses and 
stabilized He-Ne laser from Spectra Physics Inc. ($97 K). 
2. Autocorrelator system from Inrad Inc., ($16 K). 
3. Detection systems Newport Corp. and FJW Optical System Inc. (9 K) 
4. Oscilloscope from Textronix, Power supplies from Glassman Inc. and HP (7 K) 
5. High resolution and wide dynamic range CCD camera with interfaces TEA/CCD-1317K1 

with controller, Princeton Instruments Inc. (20 K) 
6. Optical table top and support system from Newport Inc. was required to be able installing the 

lasers (item#l) and set up research experiments ($14 K) 
7. High resolution optical spectrum analyzers WA-2500, PZ-91 and RG-93 programmable ramp 

generator from Burleigh Instruments Inc. ($11 K) 
8. Nonlinear x<2) and %0) crystals (from Deltronic Crystals and CSK Optronics Corp.) with 

manipulators (from Newport Corp. and New Focus Inc.) ($20 K) 
9. SHG frequency doubler CSK Optronics Corp. ($6 K) 
10. High speed phase modulators SSA-128A-900 with SLM2256-128 from Meadowlark Optics 

Inc., and 10x10 with CTL256 from Displaytech ($ 16 K) 
11. Mirrors, lenses and manipulators from Oriel Inc. and Newport Inc. ($ 6 K) 
12. Data acquisition and laboratory controller from ATS Inc., Acropolis, etc. ($ 17 K)   to 

interface and control the electronic and electrooptic components of the experiments. 

The total cost of the acquired DURIP(95) equipment was $239 K consisting of $199 K 
provided by the AFOSR DURIP(95) and the $40 K matched by UCSD. 

Projects Summary using Acquired Equipment 

The acquired DURIP(95) equipment was used to carry out the research in three projects as 
summarized below. 

Robust Quantum and Classical Crvptoeraphv for Security and Privacy in Photonic Imaeins 
Network. (Y. Fainman, R. Rao, Y. T. Mazurenko, P. C. Sun, B. Slutsky, L. Shang) 

Our research focussed on experimental realization [1-6] and information theoretic 
analysis of quantum cryptosystems [7-13]. On the theoretical side, we have studied the 
relationship between the secrecy capacity of a quantum cryptographic system and such factors as 
the error rate, line attenuation, and detector quality [7-9]. Quantum eavesdropping strategies and 
possible defenses against them were also investigated [10-13]. We have introduced and, using 
the acquired DURIP(1995) equipment, conducted preliminary experiments on transmission of 
photon phase information employing frequency division technique suitable for practical 
realizations over free space or optical fiber network [1-6]. The advantage of our technique is 
related to the fact that the phase difference between two signals spectrally separated by a small 
amount (in our experiments, 80 MHz) is not perceptibly affected by the physical stress to which 
the fiber carrying them may be subjected. Measurements were performed both with classical 
strength signals and with photomultipliers used as single photon detectors. Appropriate interfaces 
between the photomultipliers and the microcomputer controller was also established using the 



DURIP(1995) grant. In a separate experiment, we also tested and verified that two signals with 
frequency sepa-ration of 80 MHz do not experience noticeable phase delay difference due to 
dispersion in a fiber under external temperature stress. We are currently investigating design and 
implementation of frequency-division long distance interferometer using all fiber components. 
We also continue our research on utilizing optical sources that obey sub-Poisson statistics using 
second order nonlinear optical crystals. 

Our second approach uses classical encryption methods for privacy of next generation 
ultrahigh bandwidth'photonic imaging networks. This work explores secure systems that make 
use of the large optical bandwidth of ultrashort pulses. The technique combines with optical 
code-division multiple access using stationary or dynamically varying time delays. We have 
demonstrated few components that are integral part of this system demonstration, including 
femtosecond laser pulse spectrum modulation using phase-only computer-generated-holograms 
[14], or a phase-only spatial light modulators. Each encrypted spectrum will be separated mto 
two parts, and transmitted with an appropriately chosen delay between them. Coherent detection 
uses a complementary spectral-combining device combined with a sequence of temporal delays 
which allow the selection of the desired transmitter. The designated receiver will be able to 
compensate for the time-delay of the corresponding transmitter, combine the two complimentary 
signals, and use the secure phase-decoder to decrypt the message. The coherent detection using 
three-wave mixing has been also demonstrated using the acquired DURIP(95) equipment [15- 
19]. The classical encryption system for photonic imaging network privacy employing spread 
spectrum techniques is currently constructed. 

Optical Sienal Processine with Femtosecond Pulses   (Y. Fainman, Y. T. Mazurenko, P. C. 
Sun, K. Oba, and D. Marom) 

The bandwidth and the efficiency of optical communication systems exceed these of 
electrical cable systems. Electronic devices and systems connected to optical networks may 
reach bit-rates on the order of 1-10 Gb/s. In contrast, the maximum bit-rate of a photonic 
network may exceed 1 Tb/s. The 2-3 order-of-magnitude mismatch between fiber and 
electronic device capacity can be used to increase the speed, reduce latency, increase security 
and reliability in the transmission and distribution of image information. To implement these 
applications, we used the acquired DURIP(95) equipment to construct an all-optical pre- 
processor at the transmitter and a post-processor at the receiver which performs multiplexing 
and demultiplexing, respectively [20-25]. The multiplexer performing image space-to-time 
transformation combines relatively slow but parallel in space electronic channels into an 
ultrahigh bandwidth serial optical channel (i.e., parallel-to-serial conversion), whereas the 
demultiplexer performs the inverse time-to-image space transformation for processing and/or 
electronic detection (i.e., serial-to-parallel conversion). For efficient bandwidth utilization, 
these processors need to be operated at rates determined by the bandwidth of the optical pulses 
[26]. Such space-time optical processors have been constructed using the equipment from this 
grant and applied for pulse shaping, filtering, and space-to-time multiplexing and time-to-space 
demultiplexing [20, 21, 27,14-17]. 

Another example of using the acquired DURIP(95) equipment exploits applications that 
will benefit from an optical memory that will store and retrieve information in a format that is 
suitable for direct interface and transmission through an optical network, thereby, providing 
optimal performance in terms of hardware complexity, memory and network capacity, 
bandwidth, and latency. In this example we convert spatial image information into time 
domain. The corresponding data sequence in time is stored employing spectral domain 3-D 
volume holographic recording [18]. When the stored data is read out of the spectral domain 
storage system, the output spectrum is converted back into time sequence and sent through the 
all-optical fiber network to the user node. At the user node the time sequence is converted to 



lower rate parallel channels in space domain for optical or electronic filtering and detection 
[17,19]. 

In summary we introduced, analyzed and, using the acquired DURIP(95) equipment, 
evaluated experimentally a femtosecond pulse storage and imaging techniques useful for 
demultiplexing and parallel processing sequences of femtosecond pulses. Our pulse imaging 
method, based on 3-wave mixing in nonlinear crystals, allows converting complex amplitude 
of an ultrashort temporal pulse signal to a corresponding spatial image that resembles the 
temporal signal in space. Unlike the commonly used autocorrelator, our method carries both 
amplitude and phase information of the pulses. We also demonstrate nonvolatile storage of 
femtosecond pulses in photorefractive LiNb03 by recording and readout of spectral holograms 
at a wavelength of 460 nm and 920 nm, respectively. No degradation was observed after 24 
hours readout. The demonstrated spectral domain nonvolatile holographic storage and the 
femtosecond pulse imaging are useful for broadband information systems applications. 

Artificial dielectrics and diffractive optics with multifunctionalitv in polarization and color 
(Y. Fainman, F. Xu, P. C. Sun, J. Thomas, R. Tyan, P. Shames, W. Nakagawa, P. Lin) 

We have been investigating the diffractive optics with multifunctionality in polarization 
[28-32 and color [33-35] as well as programmable diffractive optics [36-43] during the last five 
years employing natural birefringent and electrooptic nonlinear materials. Recently we initiated 
research into artificial dielectric materials (nanostructures) for photonic device applications. The 
acquired DURIP(95) equipment also contributed to our characterization effort in the area of 
artificial dielectrics and diffractive optics. Modern microfabrication techniques (dry etching, 
electron beam lithography, patterned regrowth, epitaxial growth, laser assisted growth, laser 
ablation, etc.) allow to artificially fabricate sub-micron micro-structures which modify the 
dielectric and semiconductor properties such as birefringence, optical nonlinearity or opto- 
electronic interactions. For example, form birefringence or artificial birefringence effect occurs 
due to periodic microstructure boundary between two isotropic dielectric materials with different 
dielectric constants . The form birefrigent microstructures posses several unique properties that 
make them superior compared to these of naturally birefrigent materials: (i) high strength of 
form birefringence, An/n, can be obtained by selecting substrate dielectric materials with large 
refractive index difference (here An and n are the difference and the average effective indices of 
refraction for the two orthogonal polarizations, respectively), (ii) the magnitude of form 
birefringence, An, can be adjusted by varying the duty ratio as well as the shape of the 
microstructues, (iii) form birefringence can be constructed using an isotropic as well as 
anisotropic substrate, allowing to fine tune the anisotropic properties of naturally birefringent 
materials, and (iv) form birefringent microstructures can be used to modify the reflection 
properties of the dielectric boundaries. The artificial dielectric anisotropy due to form 
birefringence [44, 45] has been used to construct polarization optics components as well as 
polarization selective computer generated holograms [46, 47]. The form birefringence and the 
form birefringent computer generated holograms were characterized experimentally using the 
acquired DURIP(95) equipment. 

We further extend this approach by designing a new device that uses unique properties of 
anisotropic spectral reflectivity (ASR) characteristics of a high spatial frequency multilayer 
binary grating [48, 49]. The ASR mechanism is based on combining the effects of the form 
birefringence of a high spatial frequency grating (i.e., grating period is much less than the 
wavelength of the incident field) with the resonant reflectivity of a multilayer structure. With our 
approach, the angular field and wavelength range have been largely increased compared to 
conventional polarization selective beam splitter (PBS) devices. The ASR PBS combine such 
unique features as compactness, compatibility with semiconductor materials, negligible insertion 



losses, polarization selectivity for light at normal incidence, high polarization extinction ratios, 
and operation with waves of large angular bandwidth and from broad spectral range. Some 
interesting characteristics of the element with ASR characteristics cannot be found in a 
conventional PBS component. For instance, when our ASR device is designed to operate with 
normally incident light, it acts as a highly efficient polarization selective dielectric mirror [50- 
53] The ASR devices have been fabricated and characterized using the acquired DURIP(95) 
equipment. Furthermore, our ASR device fabrication method is compatable with conventional 
microfabrication and can become easily integrable with other photonic devices such as VCSELs, 
MQW modulators, and photodetectors. Initial experiments with fabricated devices demonstrate 
good performance. 
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