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Performance of Nonlinear Mechanical, Resonant-Shunted Piezoelectric, and

Electronic Vibration Absorbers for Multi-Degree-of-Freedom Structures

Gregory S. Agnes

(ABSTRACT)

Linear vibration absorbers are a valuable tool used to suppress vibrations due to har-
monic excitation in structural systems. Limited evaluation of the performance of nonlinear
vibration absorbers for nonlinear structures exists in the current literature. The state of
the art is extended in this work to vibration absorbers in their three major physical imple-
mentations: the mechanical vibration absorber, the inductive-resistive shunted piezoelectric
vibration absorber, and the electronic vibration absorber (also denoted a positive position
feedback controller). A single, consistent, physically similar model capable of examining
the response of all three devices is developed.

The performance of vibration absorbers attached to single-degree-of-freedom structures
is next examined for performance, robustness, and stability. Perturbation techniques and
numerical analysis combine to yield insight into the tuning of nonlinear vibration absorbers
for both linear and nonlinear structures. The results both clarify and validate the existing
literature on mechanical vibration absorbers. Several new results, including an analytical
expression for the suppression region's location and bandwidth and requirements for its
robust performance, are derived.

Nonlinear multiple-degree-of-freedom structures are next evaluated. The theory of Non-
linear Normal Modes is extended to include consideration of modal damping, excitation,
and small linear coupling, allowing estimation of vibration absorber performance. The dy-
namics of the N+l-degree-of-freedom system reduce to those of a two-degree-of-freedom
system on a four-dimensional nonlinear modal manifold, thereby simplifying the analysis.
Quantitative agreement is shown to require a higher order model which is recommended for
future investigation.

Finally, experimental investigation on both single and multi-degree-of-freedom systems
is performed since few experiments on this topic are reported in the literature. The ex-
perimental results qualitatively verify the analytical models derived in this work. The
dissertation concludes with a discussion of future work which remains to allow nonlinear
vibration absorbers, in all three physical implementations, to enter the engineer's toolbox.

Sponsorship provided by the USAF Institute of Technology, Civilian Institute Program.
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Chapter 1

Introduction

Suppression of vibration is increasingly demanded by modern structures. The drive to

produce higher performance, lower cost structures and machines has resulted in reduced

structural weight and hence increased compliance. Nowhere has this trend been more

evident than the aerospace industry where the demand for smaller, lighter, cheaper aircraft

and spacecraft systems drives the acquisition effort. The demand for performance exists

in the face of ever harsher environments with increased disturbance levels. Meanwhile, the

need for cleaner, more maintainable systems reduces the number of connectors, joints, wires,

and other "dirty" components which contribute to structural damping. Modern systems

thus face higher disturbances with lower damping and increased compliance, resulting in

larger and often nonlinear vibrations. To achieve performance goals, the designer must

address the suppression of nonlinear vibrations.

1.1 Review of the Vibration Suppression Literature

Techniques used to reduce structural vibrations can be classified with two criteria. First,

one can either modify existing modes or add additional modes to the system. Secondly, the

technique can be either active or passive. A technique is passive if it requires no external

energy; otherwise, it is active. Differentiating between adding modes or altering existing
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modes results in an important distinction in the response of the modified system. This is

not well recognized in the literature or in practice and can lead to valuable insight into the

design and implementation of vibration suppression systems. The purpose of this section is

to review the relevant literature within this framework, motivating the subsequent research.

1.1.1 Modal Modification

Passive modal modification is perhaps the simplest and most commonly used technique.

To reduce the vibrations, the mode shapes and modal parameters are altered until accept-

able performance is achieved. For instance, if the rotation frequency of machinery is known

to lie within a certain bandwidth, the support structure is designed such that no resonant

frequencies lie within that bandwidth. Another example of passive modal modification is

the use of passive damping treatments such as constrained layer damping treatments [1]

or the addition of dashpot dampers to a structure. These modify the modal damping of

various structural modes and reduce the vibration of the system. The performance of pas-

sive modal modification can be assessed for linear systems using techniques found in most

vibration texts [2, 3]. First, the governing equations are transformed using modal analysis

into a set of uncoupled single degree of freedom modal equations, assuming proportional

damping. The response of each mode is then determined and compared to design criteria.

Structural modifications can then be designed and the structure reanalyzed.

Nonlinearity complicates this approach since structural modes can respond to excitation

far away from their resonant frequencies. For example:

"von Karman observed that certain parts of an airplane can be violently excited

by an engine running at an angular speed much larger than their natural fre-

quencies, and Lefschetz described a commercial aircraft in which the propellers

induced a subharmonic vibration in the wings which in turn induced a subhar-

monic vibration in the rudder. The oscillations were violent enough to cause

tragic consequences." [4]
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Nonlinear systems can also exhibit jump phenomena and either quasiperiodic or chaotic

responses to harmonic disturbance. The effect of changes in various parameters can be

examined to a limited extent using perturbation techniques for either weak nonlinearities

or small motions. Nayfeh and Mook [4] discuss such techniques, but their applications are

mostly limited to single-degree-of-freedom systems. Multiple-degree-of-freedom structures

are treated, but not in a modal manner, thus limiting the analysis to systems with a limited

number of degrees of freedom.

The concept of modal behavior for nonlinear systems was introduced by Rosenberg [5-

7]. According to his definition, a nonlinear normal mode of a discrete conservative system

must satisfy three conditions [8, 9]:

i. The masses execute periodic motions (not necessarily harmonic).

ii. The masses pass through static equilibrium simultaneously.

iii. Displacement of one mass uniquely defines the displacements of all masses.

These criteria are analogous to the synchronous motion criteria of linear normal modes.

However, the nonlinear normal modes are also classified as similar (the relation of criterion

three is linear) or non-similar (the relation is nonlinear) in contrast to linear normal modes

which always have linear relationships represented by the mode shape. The number of

nonlinear normal modes of a system under this definition is at least equal to the number of

degrees of freedom, but can be greater.

Shaw and Pierre [10, 11] present an alternative definition of nonlinear normal modes,

defined for both conservative and dissipative systems. Their definition is made in the phase

space and the nonlinear normal modes are as follows [8]:

i. Motions (not necessarily periodic) exist on invariant manifolds of the system which

are tangent to the linear normal modes at the equilibrium points.

ii. Motions pass through stable equilibrium.

3



iii. Displacement of one mass uniquely defines the displacements of all masses.

Thus the first criterion ensures there are exactly as many nonlinear normal modes as there

are linear normal modes for infinitesimal nonlinearity or system energy. Again, both similar

and nonsimilar modes are possible. This concept was later broadened by Slater and Inman

[12] who removed the second constraint. This allows nonlinear normal modes to be the

counterpart of linear complex modes for systems which are nonmodally damped. Such

modes are designated nonequal phase. Using the invariant manifold concept, nonlinear

normal modes can be used to define a nonlinear coordinate transformation from the physical

to the modal system [11, 12]. In the modal space, however, nonlinear couplings between the

modes can exist, but in the absence of internal resonance, are higher order effects near modal

resonance. Thus, nonlinear normal modes can be used to examine the modal response of a

system, and the results can be used to design passive modal modifications to the structure

in a manner similar to linear normal modes.

The solution for nonlinear normal modes (as defined by Shaw and Pierre) can be per-

formed using a number of techniques [8]. The original Real-Variable Invariant-Manifold

method [10], while conceptually significant, is difficult to implement for large systems, es-

pecially in the presence of internal resonance. It can be simplified by solving the linear

eigenvalue problem and transforming the equations to modal space. Two methods pro-

posed in [13] are easier to implement: the Complex-Variable Invariant-Manifold approach

and the Method of Multiple Scales. Solution of the manifold dynamics for any of these

methods is limited to small nonlinearities except for special cases.

Active modal modification usually involves feedback control using measurements at one

or more points on the structure. Through feedback control, the modal parameters of the

closed loop system can be altered. For linear systems, the use of collocated velocity feed-

back to provide increased structural damping is an example. For multi-degree-of-freedom

systems, any static gain feedback methodology such as eigenstructure assignment or LQG

control also simply modifies the eigenstructure (modal structure) of the system. Many

powerful techniques have been developed for linear systems control design. One of the sim-
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plest theoretical methods is modal control which determines changes in the modal dynamics

required and then uses the inverse modal transform to determine the physical controller.

Perfect modal observability and controllability are required to implement this approach.

For nonlinear systems, Slater [12,14] extended the approach of Shaw and Pierre [11] to

include forcing and sensing. Thus nonlinear controllers could be designed in the nonlinear

modal coordinate space and then transformed into physical coordinates. In a similar man-

ner, individual modes could be linearized, creating a modal form of feedback linearization

control. In contrast to linear theory, nonlinear theory lacks the tools for optimal design,

requiring a trial and error approach. Whether active or passive modal modification is

employed, the result is a physical structure with an improved modal structure capable of

satisfying performance requirements.

1.1.2 Modal Addition

When modal modification is impractical, additional degrees of freedom can be placed

into the structure in such a manner that vibration of critical components is reduced. Usu-

ally these new degrees of freedom will undergo large motions, absorbing the energy of the

disturbance. For example, vibration isolation is often achieved by placing a soft spring in

the energy transmission path. If a hard mount is replaced by a soft spring, a new degree of

freedom is added to the structure. (If an existing flexible mount is modified, this would be

modal modification instead.) This spring will undergo large deflection, but isolates the crit-

ical system components from the disturbance. Both passive and active vibration isolation

are possible (see Sciulli [15] for a recent review of vibration isolation for both single and

multiple degree of freedom systems). Nonlinear effects can be used to improve vibration

isolation particularly the concept of mode localization [9].

When it is not possible to isolate a system from disturbances, vibration absorbers use

modal addition to passively attenuate the response of a structure to external excitations.

The mechanical vibration absorber was first introduced at the turn of the century. The

theory of the classical device may be found in many standard vibrations textbooks. See for
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instance den Hartog [16] or Inman [2]. In brief, a single-degree-of-freedom system is inertially

coupled to a structure with its resonance tuned near that of the primary structure, creating

a one-to-one frequency relationship. Properly tuned, the device can reduce the response of

a structure to a narrowband harmonic excitation or, by adding damping to the absorber,

to a broadband excitation.

A recent review of the theory and application of the linear vibration absorber [17] notes

the mass and stroke length design limitations imposed by practical applications. Geometric

considerations can limit the stroke length (the amount of travel) of the added mass. Since

the mass added to a system must often be minimized, the tradeoff between mass and stroke is

a crucial design constraint. Given a fixed mass and stroke length, an absorber is efficient for

only a narrow range of driving force and frequency variations. Consequently, active and/or

adaptive feedback control is topical [17,18]. Using active control to minimize the response

of the system, smaller absorber stroke lengths can be achieved, albeit with increased system

complexity.

One solution to these limitations is the piezoelectric vibration absorber formed by cou-

pling a resonant electrical shunt between the electrodes of piezoelectric materials attached

or embedded in the structure. Tuning the shunt near a structural mode causes mechanical

energy to be transformed into electrical energy and dissipated by the resistive element in

the shunt in a manner analogous to a damped mechanical vibration absorber. Forward

[19] experimentally demonstrated the use of both resistive and resonant electrical shunts.

Hagood and Von Flotow [20] later presented an analytical model. Other researchers [21-23]

have extended this device providing multimode and self- tuning shunts. Incorporation of a

simultaneous active and passive signal is also possible [24].

The piezoelectric vibration absorber solves the stroke length problem by providing an

unobtrusive energy dissipation mechanism, but creates new design challenges. The large

inductances required to tune the electrical resonance are unreasonable for passive compo-

nents. Consequently, active inductors are synthesized using op- amps making piezoelectric

vibration absorbers semiactive (or powered) devices. A second design challenge presented
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by the piezoelectric vibration absorber is the structural properties of available piezoelectric

materials. Since piezoelectric materials transform strain energy into electrical energy, they

must be located in areas of high strain energy to function efficiently. Since their structural

properties are inferior to traditional load carrying materials, this poses a design challenge:

maximize strain energy in the piezoelectric material while maintaining structural integrity.

A final concern for the designers is the nonlinear behavior of piezoceramics [25]. To date, no

study could be found on the effects of small nonlinearities on the performance of piezoelectric

vibration absorbers.

Results have, however, been reported on nonlinear (mechanical) vibration absorbers.

Early work [26-28] considered a linear system with a nonlinear absorber and neglected

damping entirely. Most commonly, a nonlinear spring is used in place of the linear spring

when designing the absorber. In 1952, Roberson [26] reported that a broadening of the

suppression bandwidth was possible, and that the zero response frequency (design opera-

tional frequency in most cases) changed with force level and nonlinearity. References [27, 28]

came to similar conclusions with slightly different systems. Miller [29] presented a nonlinear

design using pneumatic springs, while Hunt and Nissen [30] used Belleville washers and re-

ported that a broadening of the suppression bandwidth is possible. Several authors [31-33]

have applied optimization methods to absorber design, but considered system damping of

ten percent or more. This is unrealistic for many applications. Each pointed to bandwidth

improvements and several claimed higher harmonic behavior improved the design.

However, Shaw [34] warned of the presence of quasiperiodic responses near the tuning

frequency. Such motions were present in numerical simulations of lightly damped linear

systems with nonlinear absorbers. These responses were also confirmed analytically in

[35, 36]. Rice and McCraith [35] used the method of harmonic balance to numerically inves-

tigate the response of a linear system with a nonlinear absorber to narrowband excitation.

Natsiavas [36] considered the case of the nonlinear system with a nonlinear absorber and

demonstrated the adverse effects of system nonlinearity on absorber performance. Note

that limited experimental work has been reported.

7



Alternately, the motion of the structure can serve as a parametric excitation to a non-

linear absorber [37]. Oueini, et al. [38] have experimentally implemented a similar system

using nonlinear feedback control with piezoelectric actuators. This approach will not be

considered in this work. Thus there appeared to be both some promise and some peril in

using nonlinear mechanical vibration absorbers. The effect of nonlinearity on the response

of the piezoelectric vibration absorber is currently unknown.

Active modal modification has also been pursued. For a linear system, any dynamic

compensator designed via H, , p-synthesis, or other modern control algorithms uses a

combination of modal modification and modal addition, but physical intuition into the

inner workings of the control schemes is limited since they are designed for generic first

order systems of the form = Ax instead of second order dynamic systems.

In contrast, the Positive Position Feedback (PPF) algorithm developed by Goh and

Caughey [39] and implemented by Fanson and Caughey [40,41] uses the second order form,

allowing better physical insight to vibration control by active modal addition. In this algo-

rithm, a position signal is compensated by a second order filter for feedback control. For

linear systems, the PPF controller is stable even in the presence of unmodelled actuator

dynamics, unlike the often used direct velocity feedback (which is a form of modal modi-

fication). Baz, et al., later combined PPF with Independent Modal Space Control [42, 43]

to design independent second order feedback compensators for individual modes. Caughey

later noted that positive position feedback was a generalization of the mechanical vibra-

tion absorber [44]. For this reason, PPF control can be denoted an electronic vibration

absorber. Other significant contributions to the PPF literature include the work of Dosch

[45], who derived stability conditions and applied PPF to an eight-ribbed space antenna.

Many other numerical and experimental implementations of the PPF control scheme may

be found in the literature. No reports on the influence of nonlinearity on the performance

of PPF controllers could be found.
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1.2 Objectives

The focus of this work will be on vibration suppression for nonlinear multi-degree-of-

freedom discrete structures via vibration absorbers. The detailed objectives are as follows:

" Demonstrate the equivalence, to first-order nonlinear effects, of the mechanical vibra-

tion absorber, the piezoelectric vibration absorber, and positive position feedback.

" Utilize perturbation methods to find the general nonlinear response of the aforemen-

tioned systems.

* Develop design guidelines for tuning the linear and nonlinear parameters for vibration

absorbers for nonlinear single-degree-of-freedom systems.

" Demonstrate the use of nonlinear normal modes to allow modal design of absorbers

for N-degree-of-freedom nonlinear structures using these guidelines.

* Qualitatively verify the models through experimental investigations for both single

and multiple degree-of-freedom systems.

Analytical, numerical, and experimental techniques will be used to demonstrate the perfor-

mance of nonlinear absorbers for a variety of nonlinear systems.

1.3 Overview

To achieve the objectives presented in the previous section, nonlinear models for the

mechanical, shunted piezoelectric and electronic (PPF) vibration absorbers are derived in

Chapter 2. By proper choice of states and nondimensional parameters, these systems all

reduce to a single set of identical nonlinear differential equations (to first order nonlinear

effects) while maintaining consistent physical variables.

Chapter 3 is devoted to examining both the linear and nonlinear response of the unified

model. Since there are many control parameters, a limited set of cases will be investi-

gated: linear system/linear absorber (LSLA), nonlinear (cubic) system/ linear absorber
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(NSLA) and linear system/nonlinear (cubic) absorber (LSNA). From the work cited above,

quasiperiodic responses can result from the nonlinearities in the LSNA system. It will be

shown analytically that they can also occur in the NSLA. Finally, a fourth system, non-

linear (cubic) system/nonlinear (cubic) absorber (NSNA), will be investigated. Tuning is

accomplished by observing the effects of linear and nonlinear parameters from the previous

three systems. Criteria for judging controller performance will also be addressed. Both

numerical and analytical (perturbation) methods will be used to calculate the responses.

Once a design methodology for a single-degree-of-freedom structure has been established,

N-degree-of-freedom discrete systems will be discussed in Chapter 4. The equations of

motion will be placed into modal form using nonlinear normal modes, and an absorber

designed for one of the modes. The procedure followed will be similar to Slater's, however

dynamic compensation instead of static compensation will be used. Since the example of

Shaw and Pierre [10] of a two-degree-of-freedom system has been used often in the literature

as a benchmark problem, it will be used to illustrate the methodology for absorber design.

Experimental investigations will be used to verify the analytical and numerical analysis

of the response of the single-degree-of-freedom system with a vibration absorber using an

analog computer. These will be conducted for various combinations of parameters. Then

the two-degree-of-freedom system of Shaw and Pierre will be similarly investigated. Finally,

a vibration absorber will be implemented using nonlinear PPF on a beam to further verify

the utility of the models in an experimental application.

The proposed work will meet the objectives outlined above. A single nonlinear model

for a single-degree-of-freedom mechanical, piezoelectric, or electronic vibration absorber will

be found. This model will be used to verify past research efforts for LSNA systems as well

as providing novel investigation into NSLA and NSNA systems. The model will preserve

physical intuition, unlike some past investigations. The discussion of nonlinear effects for

the piezoelectric vibration absorbers is new to the literature and was recently published

[46]. The derivation of a tuning strategy for the design of nonlinear absorbers will overcome

shortcomings noted by previous research and provide some analytic results for design. The
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state of the art will be further advanced by the use of nonlinear normal modes to design

vibration absorbers for N-dof systems. Finally, experimental verification of the predicted

quasiperiodic response will be accomplished. In summation, using nonlinear normal modes,

a design methodology for second-order, nonlinear vibration absorbers will be developed to

suppress the vibration of multiple- degree-of-freedom structures and machines which can be

implemented in mechanical, shunted piezoelectric, or electronic (PPF) form.
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Chapter 2

Single-Degree-of-Freedom System

Models

System models for the mechanical vibration absorber, the piezoelectric vibration ab-

sorber, and the positive position feedback algorithm may be found in the various references

cited. However, the common form of the models results in three different sets of equations.

By careful selection of nondimensional parameters, and by enforcing the requirement that

the degrees of freedom represent the motion of the base system and the stroke length of the

absorber, a common set of equations can be formed.

2.1 Mechanical Vibration Absorber

A model of a single-degree-of-freedom structure with a mechanical vibration absorber

is shown in Figure 2.1. A single-degree-of-freedom system of mass, M, stiffness, K, and

viscous damping, C, is driven by an external excitation, F, and responds with displacement,

X. By adding an absorber (with mass, stiffness, damping and displacement denoted Ma,

Ka, Ca and Xa, respectively) the displacement of the original system can be reduced.

The displacement of the absorber is also referred to as the stroke length in the literature.
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Figure 2.1: The mechanical vibration absorber.

Nonlinear stiffness of both the system and absorber will be considered of the form:

K(X) = KX + rX 3  (2.1a)

ga(X.) = KaXa + PaX 3  (2.1b)

FRom Newton's law, the equations of motion for the mechanical vibration absorber are then:

M± + CX - Caa + KX - KaXa =F - FX 3 + FaX 3  (2.2a)

MaX + Ma.'a + caa + KaXa = -rX (2.2b)

where the overdot denotes total differentiation with respect to time, T. The term k is then

solved for in Equation (2.2a) and substituted for in Equation (2.2b), thereby diagonalizing

the mass matrix. The ratio M,/M is denoted a 2 and the equations of motion are thus

MX + C± - Caf±a + KX - KaXa = F - rX 3 + FaX 3  (2.3a)

Ma,,'a - a 2C. + (1 + a 2)Cafa - a2KX + (1 + a2)KaX( (2.35)

= -a2F - (1 + a2 )r'aX 3 + a 21X 3

Next, the time, T, is nondimensionalized using the system natural frequency, w = VK-/M

and the differentiation is now with respect to nondimensional time, t. Both Equation (2.3a)

and Equation (2.3b) are then divided by K and a similarity transformation,

[(2.4)
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is performed. The non-dimensional equations of motion for the nonlinear mechanical vibra-

tion absorber are

+ 2-2a(1+)ia +x - a(1++ ) 2 xa=f-x 3 aya(1+ a2x (2.5a)

Xa - 2a. + 2(1 + 6)(1 + a 2 )Caai. - ax + (1 + a 2 )(1 + )2X( (2.5b)
=- ] -(1 + 2 )(1 + 3)2 ax3 + a-Yx 3

where the following nondimensional parameters axe introduced:

C 2  j - 2  F f

r 2y =L 2 = (2.6)
, ~ o =T a-r L=) 2 K 2(1 + j)2'Y a a

Analysis for the case of small nonlinearity can be performed using perturbation techniques.

For practical applications, the mass of the absorber is often constrained such that a is a

small parameter. Next, introduce a small parameter c as a bookkeeping parameter, and

scale the coefficients as in Table 2.1. Using this scaling and including terms to order 6, the

Table 2.1: Scaling for the Mechanical Vibration Absorber
Variable 1 1 C a I I a, - f

Scaling E IE E e E E

non-dimensional equations of motion for the mechanical vibration absorber are found to be

i + 2E + x - eaxa = ef - E-yx 3  (2.7a)

iaa + 2 ECaja - EQx + (1 + 2d)xa = -EfTax 3  (2.7b)

In Equations (2.7a)-(2.7b), x represents the displacement of the mass and xa is proportional

to the relative displacement (or strokelength) of the absorber. These are the variables

that the design criteria axe based upon, and thus the formulation is suited for design.

If instead, the absolute displacement of the absorber or the linear modes axe used (as

in many references) the resulting solutions must be transformed before application, and
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physical insight is hampered. Additionally, the form of the nonlinearity is simpler with

this formulation. In the next two sections, the equations of motion for the LR-shunted

piezoelectric vibration absorber and for Positive Position feedback control will be derived

in an equivalent form.

2.2 LR-Shunted Piezoelectric Vibration Absorber

A modal model of a structure containing piezoelectric materials can be idealized as shown

in Figure 2.2. The base system consists of a mass constrained by a structural spring, KS,

and a piezoelectric spring, Kp, arranged in parallel. The displacement of the structure, X,

is to be minimized by a tuned resonant circuit with charge Q on the piezoelectric electrodes.

The system thus has two degrees of freedom or 4 states.

The linear constitutive equations for piezoelectric materials, simplified for one-dimensional

transverse actuation, are [47]:

{E =[ ] (2.8)
Ti -h31 c Sil

Here, the standard IEEE notation is used (i.e. E is electric field, T is stress, D is elec-

trical displacement, S is strain, es is electrical permittivity, h is the piezoelectric coupling

constant, and cD is the elastic modulus). Assuming a standard patch-like application,

these equations may be rewritten in terms of variables more convenient for this study. The

equations for the piezoelectric spring are thus:

Cly D(2.9)

where V is the voltage of the piezoelectric electrode, F is the force of the spring, Q is

the charge flowing into the patch electrodes, X is the displacement of the spring, Cps is

the capacitance of the patch under constant strain, KpD is the stiffness of the piezoelectric

spring under constant charge, and H is the electro-mechanical coupling parameter. Note
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Figure 2.2: The piezoelectric vibration absorber.

that coefficients in these equations can be modified for more complicated geometries, but

would assume a similar form.

Placing an inductive-resistive (LR) shunt across the electrodes of the piezoelectric spring,

the equations of motion for the mass in Figure 2.2 are:

Mj + CX + KD(X, Q) + Ks(X) - HQ = F(t) (2.10a)

LQ + RQ + 1 Q- HX = G(X, Q) (2.10b)
CP

Here, L is the shunt inductance; R, the shunt resistance; M, the structural mass; and F(t) is

an external disturbance. The function, G(X, Q), of the displacement and charge represents

the nonlinearity in the shunt, K D (X, Q) represents the nonlinear piezoelectric stiffness, and

Ks(X) is the nonlinear structural spring stiffness. The form of the nonlinearity is assumed

as

G(X,Q)= Q3  KD(X, Q) = KDX Ks(X)= KsX + rX 3  (2.11)

These equations must be nondimensionalized to facilitate the scaling required by the per-
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turbation analysis of the next chapter. The nondimensional equations of motion are:

.+ 2( + x - (1 + J)alq = f(T) - yx 3  (2.12a)

4 + r(1 + j)24 + (1 + )2 q - (1 + j)alX = -aq 3  (2.12b)

Here, the nondimensional quantities used in Equations (2.12a,2.12b) are defined as follows:

wD - Ks+KWe 1

W V M We ICTS

2 = 321 KE k21  jl W - 1 (2.13)

t =TwD r = RCPSwD

q =/ILQ x = x/-MX

Differentiation in Equations (2.12a,2.12b) is with respect to nondimensional time, t. Note

that Equations (2.12a,2.12b,2.13) differ from those in the related literature [20, 22-24] since

the constant charge (shorted) stiffness, KD, of the piezoelectric spring is used in place of

the usual constant voltage stiffness, KE, for the nondimensional equations used in previous

research because it simplifies the analysis. Also note, that the coupling term is the gener-

alized electro-mechanical coupling coefficient which can be determined experimentally, as a

modal quantity [22].

Next, introduce a small parameter E as a bookkeeping parameter, and scale the coeffi-

cients as in Table 2.2. Using this scaling and including terms to order E, the non-dimensional

Table 2.2: Scaling for the LR-Shunted Piezoelectric Vibration Absorber

Variable -r 6 fy ya
Scaling e E I E E E e

equations of motion for the Mechanical Vibration Absorber are found to be

+ 2 <E& + x - ealq = Ef(t) - E-yx 3  (2.14a)

4 + 2r4 + (1 + 2eJ)q - calx = Yaq 3  (2.14b)
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These equations are of the same form as those for the mechanical vibration absorber pre-

sented in Section 2.1. The coordinates x and q are proportional to the system displacement

and shunt charge, respectively, thus maintaining physical significance. In the next section,

the equations of motion for a single-degree-of-freedom structure under positive position

feedback control will be derived of this same form.

2.3 Positive Position Feedback

A modal model of a structure containing an actuator can be idealized as shown in

Figure 2.3. A single degree of freedom with mass, M, viscous damping, C, and stiffness, K,

is driven by an external force, F. The displacement, X, of M is controlled by an actuation

force, U. Considering a nonlinear stiffness, the equations of motion are

M± + C± + K(X)X = F + U (2.15)

The nonlinear stiffness is of the form

K(X) = KX + rX 3  (2.16)

Introducing the usual non-dimensional parameters

C = 2(L, -L= Lw2
f w(2.17)

Equation (2.15) can be nondimensionalized. For positive position feedback, U is defined

U = Gx, (2.18a)

Z, + 2(Cwca5i + w~xc 2+ 'Cx 3 = Hx (2.18b)

Substituting Equation (2.18a) and Equation (2.17) into Equation (2.15), defining t = wT,

and dividing the resulting equations by w2 :

i+ 2(: +x-_ g(1 + 6)2X C = f (t) _ _YXI (2.19a)

' 21+ j)(Cxic + (1 + 6)2x c _ g(1 + 6)2X = _-YX 3 (215
8 (2.19b)

18



- i l -1iM
I C K Fx-- o

Figure 2.3: An Actuated Structure

The sensor and controller gains, H and G, have been set equal (as is conventional) and

defined as G = H = gw,. If nonsymmetric feedback is required, a transformation of the

states, {x, x'} can be introduced, bringing the equations into this form. Interest in these

equations is centered around primary resonance. Scaling of the equations for perturbation

analysis is presented in Table 2.3 After scaling, the equations to order E, where C is a small

Table 2.3: Scaling for Positive Position Feedback

Variable C (I g I - y f
Scaling e j E clel

bookkeeping parameter, are:

+ 2E(. + x - cgx, = f(t) - e-yx 3  (2.20a)

x'c + 2<i, + (1 + 26)x, - egx = -Yx 3  (2.20b)

which are of the same form as those in the last two sections.
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2.4 Unified Equation

Comparing Equation (2.7a) and Equation (2.7b) with Equation (2.12a) and Equa-

tion (2.12b) or Equation (2.20a) and Equation (2.20b) the nonlinear mechanical vibration

absorber, piezoelectric vibration absorber, or positive position feedback control system can

be modeled with a single set of equations:

Z'l + 2e<Y1 + x, - €ax 2 = f(t) - EC3Xl (2.21a)

i" + 26(i 2 + (1 + 2c3 1)x2 - calXl = E53X 3  (2.21b)

The nondimensional parameters in the unified equations are defined in Table 2.4. Note that

in each case, x, is proportional to the displacement of the system and x2 is proportional to

the "displacement" of the absorber. In the next chapter, the response of this equation will

be determined using perturbation techniques.

Table 2.4: Unification of Nonlinear Vibration Absorbers.

System MVA PVA PPF

X1 X V-MX X

2 x. VItQ Xc
C C C

2VKTA 2 KM 2 VgK-T-C2 aR 
2 C S

(2 L CC

M 1  Gatl Ml-" Kii

r r
a3 K MK K

MFJ M M

63 "i KMir- F F
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Chapter 3

Performance of Vibration

Absorbers for 1DOF Systems

Having derived the common model for the various vibration absorbers, their response

must now be determined. For small nonlinearities, perturbation techniques are useful for

determining the response. Herein, the method of multiple scales [48] is used to transform the

system of two second order equations of motion into four first order modulation equations.

Fixed points of the modulation equations represent periodic solutions of the system equa-

tions. Once the modulation equations are found, a series of systems is considered which are

increasingly more difficult (i.e. they contain more nonlinear parameters). Since the modu-

lation equations are in general a set of coupled nonlinear equations, numerical techniques,

namely pseudo-arclength continuation methods are used to solve for the response. Since

no available, robust, code existed, PSAL , a MATLAB toolbox [49], was developed. An

overview, with references, is found in Appendix A. The perturbation solutions are comple-

mented by numerical time simulations to illustrate the effects of the various parameters.

Many of the numerical results are also repeated by analog computer experiments which are

detailed in Chapter 5.

The organization of the chapter is as follows. First, the modulation equations are
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derived. Next, the influences of the various parameters are examined. First the linear

parameters, then the nonlinear, are discussed. Finally, conclusions are drawn on the use of

these results for design of nonlinear vibration absorbers.

3.1 Derivation of the Modulation Equations

The general system equations (2.21a)- (2.21b) describe the dynamics of the various

vibration absorbers presented in the previous section. (It can be noted that positive position

feedback with limited authority actuation as considered in the previous section can be

regarded as an electronic vibration absorber.) Note the effects of nonlinearity, damping,

excitation, and linear coupling have been brought together at O(E). To determine the

response, the method of multiple scales [48] was used. Thus we express nondimensional

time, t, in its various scales

TO = t T = et T2 = E
2t ... (3.1)

and thus by the chain rule find

Dt = Do + ED, +" (3.2a)

D = Do + 2eDoD 1 + E D ... (3.2b)

where the operator D' is the nth derivative w.r.t. Tx. Expanding x, and x2 in the small

parameter e,

Xi = Xi0 + EXli + O(E 2 ) (3.3a)

X2 = X20 + EX21 + O(e2) (3.3b)

and considering harmonic external forcing f (t) = f cos QT0 , the ordinary differential equa-

tions (2.21a-b) are replaced by partial (but solvable) differential equations of various orders

in E.
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0(1) Equations

D2x1 0 + X10 =0 (3.4a)

D0x 20 + X20 =0 (3.4b)

O(e) Equations

D2X1 + X1 1 = - 2DoD1x1 O - 2(,Dox1o + alX20 - 33 0 + f cos f2T0 (3.4c)

X21 + X2 1 = - 2DoD1X20 - 2(,D0x 20 + axlo - J3x 20  (3.4d)

Note that the sign of the nonlinear terms are such that hardening terms are positive. By

solving the 0(1) equations, the following results:

xlo-AI(T1, ... )eiT + CC X20 = A 2(T1 , ... )e i T + cc (3.5)

where "cc" denotes the complex conjugate. By defining f2 = 1 ± ca, the forced response

near resonance can be investigated. Substituting these results into Equations (3.4c)-(3.4d),

secular terms are identified leading to the following set of modulation equations:

2iA' =2i lA1 + a1A 2 - 3or3 A2 1 + feiT 1  (3.6a)1 1 2

2iAl =2iC2 A 2 + a1 A 1 - 3J 3 A 2A 2 2J 1 A2  (3.6b)

The prime denotes differentiation w.r.t. T 1 . These equations can then be solved by per-

forming the "cartesian" substitution

A. = (P, - iq.)e(GT1) (3.7)

and separating the modulation equations into real and imaginary parts:

I - al 3 p2 2)l(.a
P= -ql - 2-q2 - CIP1 + 8a(pl + ql)q (3.8a)

I P1 + 3 2 2 f3
q1 :P2 pl+ p - ¢1ql - _-3(p1 + q) +

2)P 8 2 (.b
P2 -( -- 1)q2 - 2 - 2P2 + 82 + q2)q2 (3.8c)

q2' = (7 O"- 1P2 2 "- -- (2q2 - 8 63(2 + q2)p2 (3.8d)
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The fixed points of the resulting four- dimensional set of nonlinear equations can be com-

puted using continuation methods.

3.2 The Linear Response

Before examining the nonlinear response, the linear response was first examined for two

reasons. First, the linear solution could be checked against the perturbation solution (i.e.

the solution of the modulation equations) thereby verifying the perturbation approach. Sec-

ond, it allows a complete discussion of vibration absorbers to be presented in one reference.

As noted in the literature review, the vibration absorber literature is spread over many

sources with no definitive reference (even for the linear case).

3.2.1 Linear Tuning Parameters

Two design parameters exist for the classic vibration absorber: the linear coupling

strength, c, and the tuning frequency, J1. For the undamped system, the modulation

equations reduce to

e1 (3.9a)
ol + -P2 =-.

a1
-Pl + (0' - J1)P2 =0 (3.9b)

since q =q2 0. Equations (3.9a)-(3.9b) can be solved for pi, yielding:

(u - 1)f
P - (0 8(3.10a)

2a(a - J) - -

-alf
P2 Q2 (3.10b)P22

Checking, if a = 61, p, = 0 and P2 = which agrees with the linear results for vibration

absorbers (found for example in [2]) to first order. In other words, if one uses the parameters

defined in the last chapter and expands the complete linear solution in 6, the results are

identical to O(c).
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Figure 3.1: The LSLA response as 61 vaies from -0.2 to 0.2 as indicated on the figure.

System Parameters: (1 -= 0-001, 2 = 0, 1 = 0.1, f = 1.0, a3 = J3 = 0.

The linear system performance is thus perfect at a -- J, and rapidly declines as the

excitation frequency moves away from the designed absorber frequency. This result is

easily seen in Figure 3.1 which was computed using PSAL for very light damping of the

main system. By varying 61, the absorber's effective range can be moved to the desired

excitation frequency. The response of the system can be eliminated by the action of the

absorber. However, since al is a small parameter, large absorber response is required to do

SO.

Since a, is related to the absorber mass (or piezoelectric coupling or control gain) a

tradeoff between the stroke of the absorber and the coupling, a, must be made. This is
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Figure 3.2: The LSLA response for various values of a, as indicated on the figure. System

Parameters: (1 = 0.001, C2 = 0, 61 = 0, f = 1.0, a 3 = 63 = 0.

clearly seen in Figure 3.2. Another benefit of increased a, is also apparent: the increase in

suppression bandwidth.

The suppression bandwidth is usually defined as the frequency span over which the

response of the system is less than the response of the system for a static load of equal

magnitude. For linear transfer functions, this implies the response lies below zero dB. As

seen in Figure 3.2 and Figure 3.1, the suppression bandwidth for a linear system increases

with a,, but is unaffected by 6. Mathematically, the suppression bandwidth is defined by

p, +f. Plugging this value into Equations (3.9a)-(3.9b), the in-phase (+) and out-of-

phase (-) suppression bandwidth edges can be found. Substituting, a quadratic equation in
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U± can be solved by expansion in small parameters to yield:

2
j+ - a (3.11a)

2
2

j + -1 (3.l1lb)

The bandwidth is thus a2, an E2 value. The larger ai is, the more robust the system is

to tuning errors. In general, the largest feasible value of a, will yield the best results.

This is not surprising, as more control power is usually associated with better performance.

However, in practice, a, is constrained by other design considerations and hence a method

for achieving larger bandwidths and lower absorber stroke-lengths is desirable. One method

for doing so is the introduction of damping into the absorber.

3.2.2 The Influence of Damping

The damped vibration absorber is discussed at length in many texts [2, 50]. In the classic

analysis, the system is treated as undamped with viscous damping in the absorber only.

DenHartog [16, 50] provided the first analysis with damping. By varying the damping,

the resonant response can be reduced at the expense of decreased narrowband vibration

suppression, as seen in Figure 3.3. From this figure, the effect of absorber damping is to

reduce the required stroke (especially at resonance) with reduced suppression bandwidth

(frequency range) and depth (system response level). This classic tradeoff is well recognized

in the literature [17]. As the damping is increased, the broadband response of the system

approaches a minimum while the narrowband response increases. Thus, it is possible to

divide vibration absorbers into two classes, the narrowband absorber which requires small

vibration damping and the broadband absorber with larger damping. Given a fixed linear

coupling al, narrowband problems are those in which the excitation lies between the two

resonant peaks defined by the undamped system:

10'1,2 = 1( + 1a + 61) + 0(E) 2  (3.12)
2
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Figure 3.3: The LSLA response as absorber damping (2 varies. (f2 = 0, 0.001, 0.01, 0.03,

0.1, 0.3. System Parameters: (1 = 0.001, al = 0.1, 81 = 0, f = 1.0, a3 = J3 = 0.

The effect of damping on the vibration absorber is to reduce the required stroke-length at

the cost of reduced suppression band. If the damping is too high, the suppression band is

eliminated. Such a device is still useful for broadband applications, but, since the scope of

this study is limited to narrowband disturbances, won't be discussed further.

A second source of damping is system damping which is less often treated in the litera-

ture. The response of the linear absorber as the damping of the system is varied is plotted

in Figure 3.4. Compared with absorber damping, system damping has a much less pro-

nounced effect on system response. Again, the resonant response is reduced, but without

the large penalty in absorber performance. The depth of the notch is reduced, and the
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0.3. System Parameters: (2 = 0.001, a, = 0.1, 61 = 0, f = 1.0, a3 = 63 = 0.

bandwidth narrowed, but only slightly. System damping therefore has a beneficial effect

of reducing resonant response with only slight tradeoff in narrowband suppression perfor-

mance. Increasing the system damping can thus be beneficial without sacrificing absorber

performance.

An absorber design methodology is still required which can expand the bandwidth with-

out sacrificing absorber performance. Such a device was presented in 1952 by Roberson:

the nonlinear vibration absorber.
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3.3 Linear Structure, Nonlinear Absorber

The nonlinear absorber is formed by replacing the linear spring (or the electrical shunt

circuit) with a nonlinear element. Cubic nonlinearities are considered herein to both limit

the scope and because they are most often discussed in the literature. Quadratic plus cubic

nonlinearities were considered in the initial study into the nonlinear piezoelectric vibration

absorber [46]. The effect of the quadratic nonlinearity, which will be shown in the next

section, was to soften the cubic nonlinearity in a manner similar to that reported in [4, 48].

The effect of a nonlinear absorber on a linear system will be illustrated with the example

of [46].

3.3.1 Example: Nonlinear Piezoelectric Vibration Absorber

In this example, the response of a mass supported by a linear spring to harmonic input

is considered. A piezoelectric spring is attached in parallel so a piezoelectric vibration ab-

sorber is formed by attaching an electrical shunt to its electrodes. Both quadratic and cubic

nonlinearities in the electrical shunt are considered. These would correspond to nonlinear

capacitance of the piezoceramic, or could be added to the shunt with electrical components,

hoping to improve performance. Since our previous derivation considered only cubic non-

linearities, the derivation of the modulation equations for this example is presented first.

Then numerical simulations of the performance are presented.

For a harmonic input of frequency Q, the equations of motion are:

+j2q = Jalx - r5 + a 2 q2 + a3q 3  (3.13a)

i + x = 5alq + f cos(QT) (3.13b)

A "perfect" tuning of the linear system (5 = 1) is assumed throughout. According to the

method of multiple scales, x, q and T are expanded in power series with e, a small parameter,

and take the form:

To = t T = et T2 = f2t (3.14a)
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x = xO+EX+E 2X2 +... (3.14b)

q = qo+eqli+c 2q2 +... (3.14c)

The coupled system of ordinary differential equations thus becomes a system of partial

differential equations in the different time scales (To, T1 ,... ). Absorber performance is

analyzed near primary resonance, so = 1 + e2a. At this point, the nonlinearities must be

scaled. The piezoelectric coupling between the mechanical deformation and the electrical

charge is typically small in piezoelectric vibration absorbers, on the order of 0.1. The

effects of damping, excitation, nonlinear stiffness, and coupling effects must all occur at the

same order. Quadratic nonlinearities influence the equations as a feedback term and must

therefore be of lower order than cubic to achieve this balance. Hence the quadradic term is

scaled to be first order in e while the damping, excitation, cubic stiffness, and coupling terms

are second order in E. Substituting Equation (3.14b) into Equation (3.13b) and including

the proper scaling:

(Do + cD 1 + ...)2 (qo + eq + ... ) + 62 (qo +Eqi± .- ) =

E2 3Q((XO + EX, + ... ) - 2rJ(Do + eDl +..)(qo + Eq 1 + ...) +

Ea 2(qO + EqI + ... )2 + C2 a3(qo + eqj + ... )3 (3.15a)

(Do + ED1 + ... )2 (xo + ... ) + (xo + EX,+ ... ) =

C2 cacl(qo + Eq, + ... ) + E2 f cos(f2T) (3.15b)

Expanding, and gathering like powers of e, yields the following set of equations:

Order 0

D2oqo +qo = 0 (3.16a)

D2xo+xo = 0 (3.16b)

Order 1

Dgqj + qj = -oe2q 2 - 2DoDiqo (3.16c)

D0x 1 + X, = -2DoDlxo (3.16d)
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Order 2

Voq2 + q2 = -2DoDlql - 2DoD 2qo-Dqo - rDoqo - 2a2qoql - a3q3 + al .16e)

Dx 2 + X2 = -2DoDlIx - 2DoD2Xo - D o - D o + alqo + f cos(To + aTJ).16f)

Note that Dix is the derivative of x with respect to T. Solving these equations yields a

solution of the form

q = qo = AI(T1,T 2)eiT  x = xo = A2 (T1,T 2)eiT°  (3.17)

where the coefficients must satisfy the following differential equation (first order in T2) to

eliminate secular terms:

2iAl - alA2 - 3a3 - 1 2) A A 1 + irA 1  = 0 (3.18a)

2iA' - alA 1 - 1fe i T2 = 0 (3.18b)
2 2

Note i = V/ and the over bar indicates the complex conjugate. Solutions are more readily

obtained if we use the polar form and thus define

A 1 = al
e"", Yl = CT 2 -31

A 2 = a2ei,32, '2 = aT 2 - 32 (3.19)

ONL = 3a3 - -a 2

where a, and a2 are the amplitudes of the nondimensional shunt charge and mass vibration,

respectively. The result is four autonomous differential equations in four unknowns:

1 1
a1 = -- ral + -a2 sin(31- -Y2) (3.20a)

2 2
1 31
1= al - NLa -a2 cos(,1 -72) (3.20b)

1 1aS - sin(7y2 ) -a2 sin(-y- (3.20c)
2 2 272

/ 1 1
a2Y 2  - aa2 - -f cos(y 2) - -a2 cos(-Y1 - 7y2) (3.20d)

These form the modulation equations in polar form. The cartesian form presented in the

previous section is more suitable for numerical analysis since it does not contain singulari-

ties if ai passes through zero. Steady state solutions are obtained by setting the left hand
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side of these equations to zero and solving the remaining algebraic equations for the un-

knowns. The amplitude of the mass vibration, a2, may then be found in terms of al using

Equations (3.20a)-(3.20b):

2 1 22 6

a2  - [(r + 402) al- aNLdal + aNLal] (3.21)

The frequency response equations can then be obtained by squaring and adding Equa-

tions (3.20c)-(3.20d), resulting in a third order equation in a2. The resulting equation,

1 22 62 024 202+ 2 02 2 2f=41 aNLal + OaNL (al-42) a, + (4r2  + ( a l - 42)) a -
a l =0 (3.22)

can thus be solved for a,, and the solution used in Equation (3.21) to find a 2 , the amplitude

of the primary mass vibration.

The frequency response Equation (3.22) can be solved using numerical techniques. The

results duplicate those obtained in the next section, so instead the numerical integration of

the system equations is presented. The system of equations was integrated numerically for

a range of excitation levels and frequencies. Several sets of parameters were used. Some of

these results are presented in Figures 3.5-3.9. The broadening of the suppression bandwidth

and the presence of strong resonances are both visible in Figures 3.5 and 3.6. Both the

linear, cubic and cubic-quadratic responses are plotted. The gray scale indicates the rms

magnitude of the response. The rms response was calculated using 1000 seconds of data

starting at 4000 seconds when the system had reached steady state. The presence of larger

damping (Figure 3.6) still does not prevent the presence of strong resonances, even for small

nonlinearities. Only light damping is within the scope of this work, but this result bears

further study in subsequent investigations. Looking at time traces in Figures 3.7-3.9,the

source of the resonances can be seen. As the excitation level is increased from 0.1 in

Figure 3.7 to 0.3 in Figure 3.8, a bifurcation occurs and the response becomes quasiperiodic.

As the excitation further increases to 0.7 (Figure 3.9) the response magnitude appears to

be chaotic and increases drastically. The averaged pointwise dimension [51] was found to

be approximately 2.5 (Figure 3.10), verifying the chaotic nature of this response. Fifteen
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Figure 3.5: Displacement for linear, cubic and quadratic+cubic absorbers with low damping.
These are plots of force vs frequency with the third parameter, rms displacement, visualized
by shading. Response magnitudes vary from -10 dB (black) to 40 dB (white). Responses
were calculated using ode45 in MATLAB@ .

34



Absorber Stroke: Xl System Displacement: X2
1 1

0.2 0.2

0.8 0.9 1 1.1 0.8 0.9 1 1.1
Frequency Frequency

0.8 0.

> >

_j 0.6 0.6

0 0
,4 0.4

0.2 0.2

0.8 0.9 1 1.1 0.8 0.9 1 1.1
Frequency Frequency

11

0.8 0.8

CD.
0.6 ,0.6

00

,? 0.4 LL 0.4

0.2 0.2

0.8 0.9 1 1.1 0.8 0.9 1 1.1
Frequency Frequency

Figure 3.6: Displacement for linear, cubic and quadratic+cubic absorbers with higher damp-
ing. These are plots of force vs frequency with the third parameter rms displacement, vi-
sualized by shading. Response magnitudes vary from -10 dB (black) to 40 dB (white).
Responses were calculated using ode45 in MATLAB@
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System Response to 1.025 rad/s Forcing
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Figure 3.7: Numerical simulation of the piezoelectric vibration absorber with r = 0.01,
al = 0.1, a2 = 0.1,a3 = 0.01, Q = 1.025, and f = 0.1. Note the response is periodic and

the absorber performance is comparable to the linear case. Note, however, the presence of

higher harmonics in the frequency response function.
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System Response to 1.025 rad/s Forcing
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Figure 3.8: Numerical simulation of the piezoelectric vibration absorber with r = 0.01,
a, = 0.1, a2 = 0.1, a3 = 0.01,2 = 1.025, and f = 0.3. Note the response is quasiperiodic
and the absorber performance is maintained.
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System Response to 1.025 rad/s Forcing
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Figure 3.9: Numerical simulation of the piezoelectric vibration absorber with r 0.01,
a, = 0.1, a2 = 0.1, a3 = 0.01,Q = 1.025, and f = 0.7. Note the response is chaotic and the

absorber performance is poor.
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Figure 3.10: Dimension of the piezoelectric vibration absorber response with r = 0.01,

a1 = 0.1, a 2 = 0.1, a 3 = 0.01,0 = 1.025, and f = 0.7. Note the response is chaotic with
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thousand seconds of data were sampled at thirty-two times the driving frequency. The first

five thousand seconds were discarded (leaving 55,202 samples). One thousand points were

used in the averaging as reference points. These quasiperiodic and chaotic regions must

therefore be avoided in designing shunts for piezoelectric vibration absorbers which contain

nonlinearities, modeled or not.

The effect of small nonlinearities on the response of piezoelectric vibration absorbers

indicates that while increased bandwidth is obtained by introducing nonlinear shunts, the

price is the presence of resonant response, even in the case of the damped piezoelectric vibra-

tion absorber. The presence of periodic, quasiperiodic, and chaotic solutions is established.

Further numerical analysis of the effect of nonlinearity is required to better understand

this behavior. These results also indicate that if nonlinearity is present in a linear shunt

design and unaccounted for, the resulting absorber performance could degrade without the

designer's knowledge.

3.3.2 Analysis

Motivated by the bandwidth increase demonstrated by the Nonlinear Piezoelectric Vi-

bration Absorber study presented in Section 3.3.1, detailed analysis of the linear structure

with a nonlinear absorber was undertaken. Using the cartesian form of the modulation equa-

tions, the LSNA (Linear System, Nonlinear Absorber) modulation equations are obtained

from Equations (3.8a)-(3.8d):

Pi = -oql - -q2 - (1P1 (3.23a)

UP1 + - ( + (3.23b)

i 3 2
p 2 = -(a - 51)q2 --- q - (2P2 + -3 q)q (3.23c)

2 8
Qi 3 2 2q = ( -1)P2 + ' P1 - (2q2 - 8 3(P2 + q2)p2 (3.23d)
28

The performance of the absorber can be seen in Figure 3.11. Multiple frequency response

curves are plotted for varying forcing levels as indicated in the caption. When f = 0.01, the
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response is almost linear except for some bend in the left-hand peak. The right resonance

bends significantly and note the Hopf bifurcation which takes place at a = 0.085. Within

the suppression bandwidth, the response of the system is acceptable.

If the force increases to 0.03, the response essentially remains the same with larger

bending of the resonant peaks. However, when the force increases to 0.1, a second set of

Hopf bifurcations occur at a = 0.0019 and a = 0.0056 which is right within the suppression

region. As shown in the last section, the performance of the vibration absorber deteriorates

when the response becomes quasiperiodic. Increasing the force to 0.3 returns to a single

Hopf bifurcation (within our plotting window) at a = 0.0142 and the suppression region

has moved with a zero location of a = 0.03, but the entire suppression region is quasiperi-

odic. This agrees with the solution of the previous section. Thus for positive values of 63,

as the force increases, Hopf bifurcations appear which lead to poor absorber performance.

Additionally, the suppression band moves to the right and expands. This increased sup-

pression bandwidth is of little use especially when unstable. The coexistence of stable (but

poor performance) fixed point solutions with the quasiperiodic solutions further complicates

absorber performance.

These results expand on those reported in [34] which treated the absorber as a com-

bination resonance and was thus unable to model both the suppression bandwidth and

the resonant behaviour modeled here. Since the resonant peaks bend into the suppression

bandwidth, the model must account for resonant and suppressed response. This ability is

a strength of the current analysis. The treatment of the absorber problem as an internal

resonance is more accurate for a small coupling of the absorber to the system. As seen

in Figure 3.11, there co-exists both suppressed and resonant response to excitation near

the absorber tuning frequency. This implies that the response of the system is dependent

on initial conditions. Moreover, a disturbance to the system could cause it to jump from

suppressed to resonant behavior implying the absorber lacks robustness required for good

design.

Linear tuning of the nonlinear vibration absorber is examined next. In Figures 3.12-3.13
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the linear tuning 51 is varied with otherwise identical system parameters as Figure 3.11. For

J, > 0, the response improves. The suppression region is shifted upwards in frequency,

eliminating the robustness issue. Furthermore, the stability of the system improves as

although the Hopf bifurcation occurs for f = 0.1, it is outside the suppression bandwidth.

For f = 0.3, the unstable region occurs on the edges of the suppression bandwidth, but

when the force is increased to f = 1.0, performance again suffers. Negative absorber tuning,

61 < 0, has similar results for stability, but the robustness is still a concern since multiple

stable fixed points are present.

Changing the sign of the nonlinearity produces a mirrored response as plotted in Fig-

ure 3.14 for otherwise identical parameters to Figure 3.11. The system thus produces

mirrored, but identical, results for {c,6 1 ,J 3} and {-O,-31,-3}. For a > (<)0, 33 > (<)0

produces an increased vibration suppression bandwidth. Tuning the linear absorber fre-

quency, J1 behaves in a manner similar to the linear system although the effective absorber

frequency shifts with increased forcing level, an important consideration for nonlinear ab-

sorber design.

For system parameters identical except for damping level to Figure 3.11, numerical

integration of the system equations was performed. The damping was increased slightly to

improve computation time (lighter damping results in longer time to come to steady state).

The equations of motion were integrated for 3500 seconds and the response is plotted for the

next 500 seconds. The results are shown for multiple forcing levels in Figure 3.15. Clearly,

the presence of Hopf bifurcations, and the corresponding quasiperiodic response cause a

deterioration in absorber performance as the force was increased from 0.1 to 0.3. Note

that the response of the system is less for the nonlinear absorber for f = 0.1, but greater

for f = 0.3, 1.0. These results are similar to those of the previous section. To maintain

performance of the absorber, the design force must be limited. The cost of force limitations

must be offset by the larger suppression bandwidth evident in Figures 3.11-3.14 for the

nonlinear absorber to be a viable design alternative.

Calculation of the suppression bandwidth for the undamped LSNA system is performed
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by setting p, + q, = f 2 and solving the modulation equations for c as was done for the

linear case in Section 3.2. Two equations in a result:

4  (3/4)(1 + 2a)a2(o -_ 1) + 2(1 + 2o) 3S3f 2 =0 (3.24a)

a, + (3/4)(1 - 2o-)a2(- S1)- 2(1 - 2o,)3
3f2 =0 (3.24b)

for the in-phase and out-of-phase solutions, respectively. Using a perturbation approach,

these polynomial equations can be solved for af±:

S3f 2  c 3SIS3f 2  3_3__ 4

= + 2+ 2+3 + M3 4  (3.25a)

63f 2  2  33l3f2 352f 4

+ - 2 1 2a6, 23 4 O(6 ) 3  (3.25b)

Similarly, the location of zero system response can be found as:

010 + 363f 2  (3.26)
8al

Thus like the linear case the nonlinear absorber bandwidth is centered around UO with

magnitude
a 2 + 3S13f 2  932f 4  (3.27)

a2 8a 4

which is in agreement with the numerical results presented in Figures 3.11-3.14. Several

authors have contended that only softening springs lead to an increased absorber bandwidth.

From Equation (3.27), the analysis shows this to be the case for 61 < 0 only. Performance is

symmetric for the case of S1 = 0. For S1 > 0, a hardening absorber has superior performance

when first order nonlinear effects and small coupling ratio a, are assumed. If the forcing

magnitude is larger, increases in bandwidth can be seen for either case. A plot of the

bandwidth for various absorber tunings S1 can be seen in Figure 3.16. The nondimensional

nonlinearity

- 363f 2

3- 2  (3.28)
8al
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is used in this plot. This nondimensional group arises often in the analysis and for a single

nonlinearity the forcing magnitude f can be considered unity and the effect of force on the

system is to change the effective nonlinearity. However, for multiple nonlinear parameters

this cannot be done since changes in f would result in simultaneous changes in multiple

parameters, possibly obscuring important relations.

The selection of absorber design parameters can be made using these results. To design

an absorber which has a given bandwidth at a frequency o and force f, one first solves

Equation (3.26) for 61,

363f 2

6=o 8c 2 (3.29)
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and substitutes the result into Equation (3.27) to yield the bandwidth, Ao:

ao = a2(1 + 3o53f2) (3.30)

The implications of this result are many. First, for ao - 0, no improvement in the absorber

bandwidth can be achieved while maintaining the (undamped) zero response at a = 0.

Second, although the zero frequency can theoretically be placed anywhere, care must be

taken if it is placed near the linear resonances of the system. In this case, the system

could be in resonance for low forcing levels only to achieve good performance as the forcing

increased. Such a design would not yield acceptable performance in most instances. Finally,

limitations on the achievable bandwidth will arise due to the presence of Hopf bifurcations

and their corresponding quasiperiodic response.

The presence of nonlinearity thus has both benefits and costs. As seen in Equa-

tion (3.27), the suppression bandwidth of the system can be increased. This comes at

the expense of moving the location of zero system response (perfect absorption) as the forc-

ing level increases and the possible presence of Hopf bifurcations leading to quasiperiodic

behavior and breakdown of absorption.

3.4 Nonlinear Structure, Linear Absorber

A second case to consider is that of a linear absorber on a nonlinear structure. The as-

sumption of a linear absorber is more likely to be accurate for either the electronic vibration

absorber or the piezoelectric vibration absorber where electronic components comprise the

absorber. Thus even for large displacement of the structure, the response of the absorber
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can be considered linear. The modulation equations in this case reduce to

I a1  3 2
P9 = -aq - -q2 - (1P1 + -a 3 (P2 + q±)ql (3.31a)

q1= arp1 + alP2 - (1q, - 33(P2 + q2)P 33b
2 8 2 + (3.31b)

P2 - 1)q2 - -ql - (2P2 (3.31c)

q= -(a - )- -Pl -a 2, 2 (3.31d)

As in the last section, these equations are solved using continuation methods. In Figure 3.17,

the response is shown for a variety of forcing levels. Contrary to the nonlinearity in the

absorber, nonlinear system stiffness affects only the resonant behavior, not the suppression

bandwidth. Calculating the system bandwidth as in the previous section yields the identical

result to a linear system:

or+ = 1  +2 + 0(6)3  (3.32a)
2

a = J, - -a- + O(E)3  (3.32b)
2

0° = 51 (3.32c)

Robustness is again a concern since multiple solutions exist for some frequencies within the

absorber suppression region. The performance of the absorber for various forcing levels is

shown in Figure 3.18. The time response for f = {0.01, 0.03,0.1,0.3, 1.0} shows system

nonlinearity does not affect the performance of the absorber. Both the nonlinear and linear

response are shown, but overlayed so only one trace is visible. However, this may not be

the case from all initial conditions or if a disturbance was to shock the system, causing it

to respond with resonant rather than suppressed behavior.

Thus, the effect of a nonlinear structure on the performance of a linear absorber is

detrimental, but not as severe as for the nonlinear absorber. The bandwidth of the absorber

is unaffected and, although Hopf bifurcations are present, they occur in resonant regions

outside of the operating range of the absorber. However, the influence of nonlinear systems
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on performance is important if the absorber is nonlinear, which will be demonstrated in the

next section.

3.5 Nonlinear Structure, Nonlinear Absorber

The final case considered in this chapter is a nonlinear system with a nonlinear absorber.

By controlling the absorber nonlinearity, enhancements in performance will be shown. The

modulation equations for this case are:

= oq -a 1  3 2P = -ql - -q2 - 1P1 + -a3(Pl + q2)ql (3.33a)

al 3 2 f (3.33b
= + P2 - (1q1 - 3(Pl + q 2)p - (333b)

al 3 2
P =- - Jl)q2 -- q - (2P2 + 53(P2 + 2(3.33C)

2 38

q2 = (' - 61)P2 + 2§Pi - (2q2 - 86 3(P2 + q2)P2 (3.33d)

Fixed points for these equations were numerically examined using continuation methods

and direct integration as in the previous cases. Results for various forcing levels are plotted

in Figures 3.19-3.22. Note that only three forcing levels were plotted to allow a

clearer view of the response. The results for 83a3 > 0 indicate that the robustness issue is

more severe than for the previous cases. The resonance curves bend more severely even for

low forcing levels. The symmetry in results for changing signs is again evident. However

when 33 a 3 < 0, the response is improved since the resonant curves bend away from the

suppression region. The bandwidth of the suppression region is identical to the LSNA

result Equation (3.27). The system nonlinearity affects only the resonant peaks, not the

absorber suppression region. Heuristically, if absorption is occurring, the system response

is suppressed, minimizing the nonlinear system effects, but the absorber response is large.

At resonance, both system and absorber response are large. System nonlinearities are

thus important in resonant response, but not in suppressed response while the absorber

nonlinearities are significant in both cases.
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Time responses were again calculated and showed similar behavior to the LSNA results.

Note that in Figure 3.26 the nonlinear response for f = 1.0 is not plotted. This case diverged

at t = 68 sec., becoming unbounded. Realistically, other nonlinear terms would bound this

behavior. Clearly these instabilities must be avoided for successful absorber design.

It is possible to achieve significant increases in absorber bandwidth with acceptable

stability and robustness. For the softening nonlinear system with a3 = -0.01, (1 = 0.0,

and linear coupling fixed as al=O, a nonlinear absorber was designed using the results

of this chapter for a frequency of 1.05 rad/sec. For an undamped linear absorber, the

suppression bandwidth would be 0.01 rad/sec. A nonlinear absorber was designed with

61 = 0.025 and 63 = 0.017. The absorber damping was set as (2 = 0.002 in both cases. The

frequency response plots for f = 0.2 for both the linear and nonlinear absorber are shown

in Figure 3.27. A close-up of the suppression region is plotted in Figure 3.28. From the

plots, the suppression bandwidth (defined at -14dB) has more than doubled from 0.009 to

0.018 around 1.05 rad/sec by the introduction of nonlinearity in the absorber. Note that the

unstable response of the nonlinear absorber is not within the bandwidth and both systems

are single-valued within the suppression bandwidth.

3.6 Summary

Using the method of multiple scales, the unified vibration absorber equation can be

transformed from the second order equations of motion into the first order modulation

equations. These equations were then used to perform parameter studies using pseudo-

arclength continuation with PSAL, a MATLABO toolbox. The effects of the conventional

nonlinear absorber design parameters on absorber performance have been considered.

Three key absorber performance qualities were identified: suppression bandwidth, sta-

bility (lack of quasiperiodic response) and robustness (lack of multiple solutions in the

absorber bandwidth). If stability is lacking within the absorber bandwidth, the system will

undergo large amplitude quasiperiodic motions. If multiple solutions are present, absorber
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performance becomes dependent on initial conditions. An impulse to the system could

transfer performance from suppressed to resonant response. Good absorber performance

depends on achieving acceptable absorber bandwidth with stability and robustness. The

stability and robustness issues have received only passing discussion in the literature. The

effect of absorber design parameters was considered using four systems: the LSLA, LSNA,

NSLA, and NSNA.

First, the linear parameters (a1 ,bj,(j, and (2) were examined. Increasing the linear

coupling a, was determined to control the suppression bandwidth. As large a value of a,

as possible should be used. Linear absorber frequency tuning is accomplished via J, which

controls the frequency of the linear absorber suppression bandwidth. Damping of the system

(1 has little effect on the suppression region, but reduces the resonant response significantly.

Increased absorber damping, on the other hand, reduces and even eliminates the suppression

bandwidth while simultaneously reducing resonant response of the system and the absorber

stroke. It thus can be used to trade suppression bandwidth for strokelength and reduced

resonant response.

The second system, the LSNA, examined the effect of the nonlinear absorber stiffness 33.

Shifting of the suppression frequency was observed as the forcing level of the system varied.

The suppression bandwidth increases with increased forcing provided J1 33 __ 0. Otherwise,

an initial decrease followed by an increase in the suppression bandwidth was noted. The

increased performance does, however, come at a cost: the existence of quasiperiodic and

chaotic motion within the absorber suppression region, affecting the stability of the design.

Additionally, for 3163 < 0 multivalued solutions were observed within the suppression region.

Thus although the suppression bandwidth increases, the stability and robustness of the

absorber enter as concerns.

The third system, the NSLA, demonstrated that nonlinear system stiffness was of con-

cern for linear absorber performance. Although quasiperiodic response was observed, it

was at resonance, outside of the suppression bandwidth. Robustness was however an is-

sue. Multiple solutions were possible within the absorption region even for very low forcing
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amplitudes. However, as demonstrated on the final system, the NSNA, use of a nonlinear

absorber on a nonlinear system can address the robustness issue. For the NSNA system the

issue of stability is similar to that of the LSNA.

Performance of the vibration absorber must account not only for suppression bandwidth,

but also the stability and robustness of the design. Limited discussion of these effects was

found in the literature. Since the NSLA can have robustness issues, the designer must utilize

a nonlinear absorber to achieve the more favorable behavior of the NSNA system as noted

above. Achieving an acceptable absorber design will result in a tradeoff between acceptable

absorber bandwidth, tuning frequency and maximum disturbance levels. The performance

of the nonlinear vibration absorber is complex. By systematically investigating the various

effects, insight into the design have been gained. However, few real-world systems are single-

degree-of-freedom and thus the performance of absorbers for N-degree-of-freedom systems

was next considered.
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Chapter 4

Performance of Vibration

Absorbers for NDOF Systems

Having established performance criteria and a design approach for single-degree-of-

freedom systems, N-degree-of-freedom systems were next considered. Motivated by the

work of Slater [12, 14], an approach using nonlinear normal modes (NNM) was developed

as follows:

i. Find the system equations of motion.

ii. Use Nonlinear Normal Modes to transform the equations of motion to modal coordi-

nates.

iii. Design the vibration absorber in modal coordinates for the two- dimensional modal

manifold being excited. (Note that it is assumed that the mode of interest is not in

internal resonance.)

iv. Evaluate the response by transforming the modal coordinates back to physical coor-

dinates using nonlinear normal mode theory.

To illustrate the design process, the example of Shaw and Pierre [10] is used. The system,

Figure 4.1, consists of two equal masses connected with one nonlinear and two linear springs.
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This example essentially outlines the procedure for absorber design for multi-degree-of-

freedom discrete (or discretized continuous) systems. The concepts of nonlinear normal

modes will be reviewed, then applied to vibration absorber design and an example presented.

4.1 Nonlinear Normal Modes

As discussed in Chapter 1, two definitions of Nonlinear Normal Modes are present in

the literature: one due to Rosenberg [5-7] and another due to Shaw and Pierre [10, 11].

For this work the definition due to Shaw and Pierre and later extended by Slater [12, 14] is

assumed. With this definition, a nonlinear normal mode is an invariant manifold tangent to

the linear modal plane as the nonlinearity in the system decreases to zero. In the absence

of internal resonance, each mode of the n-degree-of-freedom system

Mijfj = A (xj, ij) i,j = 1,...,n (4.1)

is a two-dimensional manifold parametrized as:

xi = Xi(u, v) and Yi = ii = Yi(4, V) (4.2)

The choice of u and v is arbitrary. Shaw and Pierre use the first physical coordinate, (xl,yl)

whereas Nayfeh [8] first transforms the system using the linear eigenvectors and uses (qk,Pk)

where Pk = qk to find the nonlinear normal mode tangent to the kth linear mode. It should

be noted that the form of the nonlinear stiffness on the manifold is dependent on the choice

of reference coordinates. The dynamics described remain the same and transformation

between definitions is possible. For the problem at hand, the modal coordinate approach

proved simplest. Using standard tensor notation, the system equations

Mij Yj + Kijxj + eN 2(xj) = 0 (4.3)

undergo a linear modal transformation,

xi = 4ijqj (4.4)
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where the eigenvectors, Iij, are normalized such that

Mij'irb'Sj = J3. and Kij(ir4sj = JsrW~r) (4.5)

The () on the index indicates summation is not performed on that term. The modal

equations of motion are then

q3 + W2)qj + cGj(q) = 0 (4.6)

where

Gj(q) = gjrstqrqsqt (4.7)

is assumed for the form of the nonlinearities considered for this study. Using the method

of multiple scales, we can solve for the nonlinear normal modes as in [8]. Expanding qj as

power series in e

qj = qjo + eqjl ± ... (4.8)

and defining time as

To = t, T1 = Et, ... (4.9)

the equations may be ordered in f to yield
D2 2

D0qjo + w(j)qjo = 0 (4. 10a)

DOqjj + w(j)qjl = -2DoDqjo - gjrstqroqsoqto (4.10b)

To construct the nonlinear normal mode which tends to the kth mode as E- > 0, let

[AkewkT ° + cc j = k,qj0 -- (4.11)

0 j k.

in Equation (4.10b):

+ w)qjl -- -2DD l qko - gkkkkq30 j = kD 2 qj + 2 )jl (4.12)

-gkkkqko j 0 k
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Substituting Equation (4.11) into Equation (4.12) and eliminating secular terms, the re-

sponse on the kth nonlinear normal mode is

r AkeiwkT + 2. A'e 3iwkT + cc + O(e) 2  k (4.13)

3g A2k 2 iwkTo + gj A3e 3iwkTo + CC + 0(6)2- -- : TAkeTcc+O() j #k

where

3i 2
D1 Ak = -igkkkkA2Ak (4.14)

can be solved using standard perturbation techniques. To place this result in a more common

form, express (see[8])
(uk =

qj = j(4.15)
rijkq3 + r2jkqk4k2 j 0 k

with

Mw 2
Fljk = (9w w_)(W 9-w2)gjkkk (4.16)

6
r 2jk = 92 62 (.7_(9w- w )(wk w) jkkk (4.17)

This solution procedure is valid unless the kth mode is in internal resonance. For the

undamped case presented here, the manifold is parametrized by the single variable qk.

This will not be true for nonconservative systems. However, for lightly damped and forced

systems, the response of the system to harmonic forcing near the modal frequency will

tend to the undamped nonlinear mode defined above [9, 14]. Using this result, the forced

response of the vibration absorber attached to a forced and lightly damped structure can

be analyzed.

4.2 NDOF absorber design

To model a vibration absorber coupled to an N-degree-of-freedom system, the same

approach as in Chapter 2 can be followed. The equations of motion in physical coordinates
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are

Mijjjj + Kijxj + ENi(xj) - EAixa = 0 (4.18a)

mi , + kx. + ENax 3 
- eBixi = 0 (4.18b)

Introducing the similarity transformation similar to the previous section,

xi = 4ijqj (4.19a)
1

Xa = 1qa (4. 19b)

the equations can be rewritten in modal coordinates:

+ W2j)qj+ +gjrstqrqsqt - cajqa = 0 (4.20a)

qa + wqa + ega 3 - cojqj = 0 (4.20b)

As in Chapter 3 the absorber is tuned to be near a resonance of the system. Thus wa = (1 +

J])Wk and a 1:1 internal resonance is formed between the absorber and the kth mode. Note

that f3k = ak. Applying the method of multiple scales, the equations can be transformed

into a series of partial differential equations. The O(EO) equations are:

D2 2
DOqjo + w(j)qjo = 0 (4.21a)

D0qo + wQk)qao = 0 (4.21b)

The solution for the kth mode is

AkeiwkTo + cc j = k
qjo = (4.22a)

10 j k

qao = AaeiWkT + cc (4.22b)

The O(c) equations are:

oqjl + wL(j)qjl = -2DoDlqjo - gjrstqroqsoqto + ajqao (4.23a)

D~qal + w(k)qao = -2DoDlqao - gaq .o + crjqjo (4.23b)

72



Substituting Equations (4.22a)-(4.22b) into Equations (4.23a)-(4.23b),

- 2DoDlqko - gkkkkq30 + akqao j = k
Dqj + w(j)qjl = 3 (4.24a)

[-gjkkqko + ajqao j 54k

Dqal + W(k)qao = -2DoDlqao - gaqao + akqko (4.24b)

Therefore, for a vibration absorber coupled to an NDOF system, the nonlinear modal

response for an absorber coupled to the kth linear mode is

(AkeiwkT ° +4 &k . Ake3iwkT ° + cc j = k
qj = 8W& (4.25a)qJ=|3gjkkkA'Ak-aL~ 9,'~ .Lgkkk A.3w~ 42a

Ia eikT + A3 +cc J +C

g AeiWkTo + a A3e 3 iwkTo + cc (4.25b)
8wk

where

DlAk = 3 igkkkk A2 - iakA (4.26a)
2Wk 2Wk

DI Aa =- 3iga A 2 Aa -a _

-- _ADk A k (4.26b)2 Wk a 2wk

These equations are identical to the solution for a single-degree-of-freedom system with a

vibration absorber presented in Chapter 3 in the absence of external forcing and damping.

The solution of the "absorbed" mode from Chapter 3 can be used to find (Ak,Aa) which

were denoted (A 1 ,A 2 ).

Since the forced and lightly damped response will tend towards the nonlinear normal

mode, nonlinear normal mode theory can be modified to include forcing and proportional

damping. First Equations (4.20a)-(4.20b) are modified to include forcing and damping:

q4 + 2 ((j)qJ + w2)qj + Egjrstqrq8 qt - cajqa = ^tjqf (4.27a)

4*a + 2(ala + wU2q + Egaqa - f/jqj = 0 (4.27b)

qf + w2qf = 0 (4.27c)
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Note that in Equation (4.27c) the forcing has been written as a harmonic variable coupled

to each mode (linearly) by -Yj, but not coupled to the force. Again allow Wa = (1 + 61)Wk

and set wf = (1 + U)Wk to to construct the response of the kth mode. Again 3k = ak.

Applying the method of multiple scales, the equations can be transformed into a series of

partial differential equations. The O(E° ) equations are:

0qjo + W(.)qjo = 0 (4.28a)

D0qao + W(k)qao = 0 (4.28b)

D0q o + Wqk)qfo = 0 (4.28c)

The solution for the kth mode is

qjo =u AkewkTO+cc k (4.29a)
j~k

qao = Ua = AaeiWkT + cc (4.29b)

qo = fo = f i'wT + cc (4.29c)

The O(E) equations are:

Dqjj + w(j)qj1 = -2DoDlqjo - 2((j)w(j)Doqjo - gjrstqroqsoqto + ajqao + yjqfo (4.30a)

qal + W 2 )qao = -2DoD q0o - 2(aW(k)Doqao - + cjqjo (4.30b)

D2 2

Doqfl + w(k)qf = -2DoDlqfo (4.30c)

Substituting Equations (4.29a)-(4.29b) into Equations (4.30a)-(4.30c),

(2 -2D°D l u° - 2(kDouo - gkkkku0 + akUa + "YkfO j = kDq + w~j)qjl = (4.31a)
-gj=jkkkU 3 + ajuaO j 0 k

qa + wk)qal = -2DoDiUa - 2CaDoua - gau 3 + akUO (4.31b)

D(qfl + L = -2DoDlfO - 2 afo (4.31c)
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the nonlinear normal mode which reduces to the kth linear mode can be found. Noting

2u 3 = [U3 _ O0 3 Uou5] (.2
S + 2(4.32)

4 Wk

where the first bracketed term is harmonic with frequency 3Wk while the second term is

harmonic with frequency Wk, the nonlinear normal mode can be expressed:

(4.33a)

qa = ua+ 2(Ua U:Ua) (4.33b)
.f ,To+T)+o + cc (4.j c

qj =  
32

e

a, WUO± gkkkkU0 - kUa CU3f iw(T+uTi)+¢° + cC (4.34)

i a + 2 aWki a + (1 + 23)w Ua ± gau 3 - &kuO = 0 (4.34b)

These are identical to the equations of a vibration absorber on a single-degree-of-freedom

system derived in Chapter 2.

Having solved for the kth mode solution, the th mode solution is now derived to deter-

mine the effect of the vibration absorber on the other modes of the structure. The solution
to Equations (4.27a)-(4.27c) for the mode is

2 3 f iAlekwTT + ce j = + CC

q.o =UL AieiTOC = (4.35a)

j#l

qao = 0 (4.35b)

qjoul 0 (4.35c)
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The O(E) equations of motion thus are

-2DoDju - 2(tw1Dou - gzutu j = 1 $ kD2qjl + w(j)2qjl =(4.36a)

-gjittu 3  j 541

DOqal + w(k) 2qai = atuIDqfi + w(k) 2qfl 0 (4.36b)

The dynamics of the lth nonlinear mode are thus unaffected by the presence of the vibration

absorber tuned to the kth mode (in the absence of a k-l internal resonance). They represent

the free response of a nonlinear single-degree-of-freedom system

iii + 2 (Iwjit + WL2 uj + gn1u 3 = 0 (4.37)

For steady state solutions these solutions will decay to zero for positive damping. The

design of a nonlinear vibration absorber for a nonlinear N-degree-of-freedom system therefore

reduces to that of the single-degree-of-freedom design presented in Chapter 3. To verify this

result, a nonlinear two-degree-of-freedom system used in [10] was examined.

4.3 Example: 2DOF Shaw & Pierre System

The two-mass, three-spring system shown in Figure 4.1 was used in [10] and later by

subsequent authors [9, 12, 14, 52] to illustrate the concept of nonlinear normal modes. Herein

it is used to illustrate the design procedure developed in the previous section. The equations

of motion of the 2DOF system with a vibration absorber attached to mass 1 and external

forcing applied to mass 2 are:

MX 1 + CX 1 - CaXa + 2KX1 - KX 2 + NX 3 
- KaXa - NaX = 0 (4.38a)

M'2 + Ci 2 + 2KX 2 - KX 1 = F (4.38b)

Ma(X'a + Xi) + C,±. + Kaxa + NaX 3 -o (4.38c)
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C C
Figure 4.1: 2DOF Nonlinear System

Following the methodology outlined in Chapter 2, these equations can be nondimensional-

ized and written

i*j ± 2ecil + 2x, - X2 + E?2x, -eaXa - Eflaxa (4.39a)

i*2 + 2EC~i 2 + 2X2 - X1 f (4.39b)

2~ + 2 eca25a + (1 + 2cbi)Xa + ±n~ 2Eax, - eaX2 =0 (4.39c)

where the following parameters were defined:

twT C= w - K-

V K Ca ____ Wa= Ma1  (4.40)

n,, = -T (1 + J) xi =Xi Xa = Xa

These equations are of the form assumed in the previous section. Applying the modal

transform

X11 1 0 q

X21 - 10 q (4.41)
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the equations are transformed into (linear) modal coordinates:

q1 + 2(141 + q, - + + (ql + q2) 3  f (4.42a)

a nf)
q2 + 2V,2,2 + 3q2 - f-qa + + q2 = f (4.42b)

a 3a3
qa + 2(.4. + (1 + 2J)qa - - e-q2 + c aq= 0(2 €- 2 nq 0 (4.42c)

Applying the results of the previous section, the nonlinear normal mode of interest is:

q= u _ n (u it2 ) (4.43a)a n n 3

ql - (U 3 _ U12 ) - -(u + uit2 ) f (4.43b)
2 -2- 48 16 2

n= Ua + 6 -Ua 2 ) (4.43c)

with the dynamics on the manifold:

+ (+ lu + -- u 3 - E C Ua = -f (4.44a)

iia + Caita 3E U = (4.44b)

Here u and Ua represent the manifold coordinates. The solution to these equations was

examined in the previous chapter. To evaluate the performance of the nonlinear normal

mode approach, time integration was used. Assuming n = -0.04, n a = 0.01, (1 = 0.01,

al = 0.Iv/(2), Equations (4.44a)-(4.44b) were integrated numerically using MATLABO ,

and compared with direct integration of the equations of motion in physical coordinates

and the O(e) correct modal coordinates. Various harmonic forcing amplitudes were con-

sidered for a frequency of 1.0 rad/s. Results are plotted in Figures 4.2-4.13 for both the

calculated physical coordinates, Xi, and the linear modal coordinates, qj. All integrations

were performed from rest, and both the initial response and the steady state response are

plotted as indicated on the figure captions.

Examining Figures 4.2-4.5, several observations can be made. First, the qualitative

responses of the figures are similar. All responses appear harmonic. Second, the transient
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Time simulation for f=0.01 and freq=1 rad/s
0.1 10 1 1 1 1

-- Physical -- NNM ... LNM

0 2 4 6 8 1 1 1 1 1

0 20 40 60 80 100 120 140 160 180 200

and o =0.1

0 20 40 100 120 140 160 180 200

-2 1 I I III

0 20 40 60 80 100 120 140 160 180 200
Time (s)

Figure 4.2: Transient response of the 2DOF system in physical coordinates for f =0.01

and oa = 0.
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Time simulation for f=0.01 and freq=1 rad/s
0.1 I

-0.1 I I I I

0 20 40 60 80 100 120 140 160 180 200

0 20 40 6 0 100 120 140 160 180 200

a=0.2
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Time simulation for f=0.01 and freq=1 rad/s0.02. ....

.~~I 'I " I . I " • I . . •

-0 .0 2 ,r,,
1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200

0.05 1 1 1 1 1 1 1 1 1- - Physical - NNM ... LNM
I t ' t 1 11 1 1 1' 1t" t • ' ' I

-0.05

1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200

1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200
Time (s)

Figure 4.4: Steady-state response of the 2DOF system in physical coordinates for f = 0.01

and a = 0.
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Time simulation for f=0.01 and freq=1 rad/s
0.05- - 1 1 1 I

- Physical -NNM -- LNM

t0 I i I I itI)

-0.00 02 14 100 18 10 10 14 16 10 10

1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200

1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200

Time (s)

Figure 4.5: Steady-state response of the 2DOF system in modal coordinates for f = 0.01
and a = 0.
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responses for all three cases agree well for both q, and q., but the present nonlinear normal

mode response is off. This makes physical sense since the present approach considers the

solution only within the manifold of the first mode. The initial conditions are not on that

manifold since on the manifold the system is at rest only if f = 0. As time progresses, the

three responses deviate. This results from the approximations made. Recall that the slower

time scales in the application of the method of multiple scales were not present in this order

of analysis. The transient results for the physical coordinates demonstrate similar results,

except the motion of X 2 is in agreement. This validates the assumption that the second

mode, q2, does not participate in the response to a large extent.

Examining the steady state results between t=1000s and 1200s, the agreement of the

three models is poor. Physically, the reason for this is that the width of the suppression

bandwidth is an O(E 2) quantity. The nonlinear normal mode analysis predicts that the

suppression bandwidth lies centered near 1 rad/s. Thus examining Figure 4.5, the NNM

model predicts suppressed response. However the presence of the second mode has shifted

the suppression bandwidth slightly. This is not captured by the present analysis. The

present analysis therefore only provides qualitative agreement with the physical model.

To achieve quantitative agreement for multi-mode systems, an O(f 2) analysis would be

required. Note that both the second mode and absorber displacements are in reasonable

agreement. This is because these responses are not as sensitive to the slight shifting of the

suppression bandwidth. The responses in physical coordinates shown in Figure 4.4 display

similar information.

Increasing the forcing level to f = 0.1, the agreement between the present model and

the physical model improves as shown in Figures 4.6-4.9. Again, the absorber response is in

excellent agreement while the system response, although in better agreement, shows some

improvement. Recall that as the excitation level increases, the suppression region shifts

higher in frequency away from the 1 rad/s forcing responses plotted. The sensitivity of

the system decreases with increased distance from this region, so improved results can be

expected. Otherwise, similar observations can be made from these plots. Note that the
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Time simulation for f=0.1 and freq=1 rad/s

- - P h y s ic a l -- N N M . . .L N M

o 20 40 60 80 100 120 140 160 180 200

1 

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200
Time (s)

Figure 4.6: Transient response of the 2DOF system in physical coordinates for f = 0.1 and

O"=0."
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Time simulation for f=0. 1 and f req=1 rad/s

1Physical -NNM -- LNM

o& 20400 8 0 2 4 6 8 0

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

Time (s)

Figure 4.7: Transient response of the 2DOF system in modal coordinates for f =0.1 and
0=.
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Time simulation for f=0.1 and freq=1 rad/s
0.1 A . .̂ - '

v .' Vll e It. I IIJ II ;I,v

-0.1 1
1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200

8- Physical -c NNM f. LNM

-10 I I "II It ' tI 

1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200

Time (s)

Figure 4.8: Steady-state response of the 2DOF system in physical coordinates for f = 0.1

and a = 0.
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Time simulation for f=O.1 and freq=1 rad/s
0.5 1 1 1 1 1 1 1

-- Physical -- NNM -- LNM
\ '1 '\ '\ .' ". I. I' . ,\I" I. I " \ ' ... .0" .P . . . . . I I, I' " ' - " I,
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1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200
Time (s)

Figure 4.9: Steady-state response of the 2DOF system in modal coordinates for f = 0.1

and or = 0.
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Time simulation for f=0.3 and freq=1 rad/s

-- Physical - NNM -- LNM
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xII 0 III N W IOI I

05 20 40 60 8 10 12 14 16 18 20

0 20 40 60 80 100 120 140 160 180 200
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Figure 4.10: Transient response of the 2DOF system in physical coordinates for f = 0.1
and o = 0.
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Time simulation for f=0.3 and freq=1 rad/s

0 20 40 60 80 100 120 140 160 180 200

-1

0 20 40 60 80 100 120 140 160 180 200

10 ...... ,

.5 I I I I "1 I I0 20 40 60 80 100 120 140 160 180 200

Time (s)

Figure 4.11: Transient response of the 2DOF system in modal coordinates for f = 0.1 and
c1=0.
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Time simulation for f=0.3 and freq=1 rad/s

~ of '~lttllt I.''~~f
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Figure 4.12: Steady-state response of the 2DOF system in physical coordinates for f = 0.1

and u = 0.
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Time simulation for f=0.3 and freq=1 radls

Cr0II 
I'
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Cl'J 0I T.
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1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200
Time (s)

Figure 4.13: Steady-state response of the 2DOF system in modal coordinates for f = 0.1
and o, = 0.
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steady state is periodic in all three models.

Increasing the forcing level further to f = 0.3 shows even better agreement as plotted in

Figures 4.10-4.13. The agreement between the physical coordinates for both transient and

modal coordinates is improved. Examining the steady state responses, the response in all

three cases is quasiperiodic. Some phase difference is observed, but is expected due to the

approximations made by the method of multiple scales. The steady state magnitudes are

in agreement. Thus qualitative agreement between the nonlinear normal mode solution and

direct integration of the newtonian equations of motion is achieved. Quantitative agreement

is lacking due to O(E2) shifts in the location of the suppression bandwidth not captured by

the O(E) approximations used.

4.4 Summary

In this chapter, the equations of motion for the N-degree-of-freedom system with a

vibration absorber were shown to reduce to the 2-degree-of-freedom absorber model through

the application of nonlinear normal mode theory. First the theory of nonlinear normal modes

was briefly reviewed. Then the theory was extended to allow small linear coupling. Finally,

the theory of nonlinear normal modes for internally resonant systems was extended to model

the forced and damped N-degree-of-freedom system with an attached vibration absorber.

This theory was then applied to an example commonly used in the nonlinear normal mode

literature.

The example has verified the qualitative correctness of the nonlinear mode approxima-

tion to the dynamics of an N-degree-of-freedom system with a vibration absorber. It has

also, however, highlighted the limitations of the model near the suppression region. These

limitations are due to O(E 2) shifts in the location of the suppression bandwidth not captured

by the O(E) approximations in the model. Improvement should be possible via higher order

approximations.
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Chapter 5

Experimental Validation

Having developed the model in Chapter 2 and both analytically and numerically in-

vestigated the performance of nonlinear vibration absorbers in Chapter 3, experimental

validation was undertaken. As noted in the literature review, little experimental investi-

gation of nonlinear vibration absorbers has been reported. Two experimental setups were

used. First, an analog computer was programmed with Equations (2.21a)-(2.21b) and the

effect of the nonlinear parameters investigated. The analog computer was then wired with

the two-degree-of-freedom system presented as an example in Section 4.3. In the second

experimental setup, a continuous screw-mounted beam (see Appendix B for geometry) was

investigated using nonlinear positive position feedback (NPPF). Since only the first mode

could be excited by the shaker due to frequency constraints, and no internal resonance

was identified in the open-loop structure, the beam is treated as a single-degree-of-freedom

structure and only the first mode was investigated. From the results of Chapter 4, the

absorber should only affect this mode. Qualitative agreement between the experimental

results and the Single- and N-degree-of-freedom models is therefore investigated.
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5.1 Analog Computer Experiments

A Model 7000 Compudyne Analog Computer with two GP-10 units was used to in-

vestigate the effect of the nonlinear parameters, a3 and J3 on system response for both a

single and multiple(two)-degree-of-freedom system. Details of the experimental hardware

used may be found in Appendix Chapter B. Two experiments were conducted. In the

first, the analog computer was patched with Equations (2.21a)-(2.21b) to investigate the

singe-degree-of-freedom model. In the second, Equations (4.39a)-(4.39c) were patched and

the effects of the vibration absorber on both the first and second mode were investigated.

In the first experiment, the system was fixed with a softening nonlinear characteristic

with a3 = -0.01. Four cases were considered: the open loop system, a linear vibration

absorber, a nonlinear softening absorber, and a nonlinear hardening absorber. These cases

correspond to the NSLA and NSNA systems modeled in Chapter 3. Other system pa-

rameters were fixed as follows: a, = 0.1, J1 = 0, (1 = (2 = 0.001. Time scaling was

used, increasing the characteristic time by a factor of 100. The open-loop system natural

frequency is therefore expected to be 100 rad/s or approximately 15.9 Hz. Two types of

experiments were performed. First, swept sine tests with both positive and negative fre-

quency sweeps were performed at two forcing amplitudes, f = 0.01 and f = 0.1. The sweeps

were conducted with a zoom fft bandwidth of 0.4 Hz and a step size of 1 Hz from 1-10 Hz,

0.05 Hz from 10-20 Hz, and 1 Hz from 20-30 Hz. Each sweeps takes approximately 1 hour

to complete. Next, the frequency was fixed at 15.85 Hz and the force slowly increased to

observe system response. Time histories were collected to evaluate the response. From the

analytical models, a Hopf bifurcation is expected with quasiperiodic response.

5.1.1 Swept Frequency Tests

The swept sine results are plotted in Figure 5.1. The system (Channel (3)) and absorber

response (Channel(5)) are plotted in the left and right column, respectively. All four cases

are plotted. In the first row, the open loop response is shown for f = 0.01 (the lower
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Figure 5.1: Experimental Swept Sine response of the single-degree-of-freedom analog com-
puter experiment. The system (Channel (3)) and absorber response (Channel(5)) are plot-
ted for the open loop, linear absorber, softening absorber, and hardening absorber in rows
1-4.
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line) and f = 0.1. Both the forward and backward sweeps are plotted. The vertical line

near 12 Hz (and 18 Hz for the absorber) results from the well-known jump phenomenon.

The open-loop absorber consists of the hardening nonlinearity absorber which is excited by

the system, but does not force the system degree of freedom. This cannot be realized for

a mechanical or piezoelectric absorber, but is possible with PPF control. Essentially, the

controller is excited by the system, but the feedback is turned off. From these plots, the

damping of the open-loop system was approximately (i = 0.01. This increase in damping

is a result of experimental hardware and cannot be reduced. Resonance occurs near 15.65

Hz.

In the second row, the response of the softening system with linear absorber is plotted.

For f = 0.01, the response appears linear. When the forcing level is increased to f = 0.1, the

resonant peaks begin to bend lower in frequency. This is expected for a softening system.

Jump phenomena are also visible. Resonant response is begining to coexist with suppressed

response. Thus the performance of the vibration absorber is compromised, as predicted by

the model for a nonlinear system with a linear absorber (NSLA).

Row three depicts the response of the softening system (a 3 = -0.02) with a softening

absorber (J3 = -0.01). For f = 0.01, the response is similar to the linear system. When

the sweep is performed at f = 0.1, the forward sweep from 1 Hz to 30 Hz indicates good

performance. The suppression frequency has shifted negative as predicted by the SDOF

model and although the upper resonance has shifted, it does not overlie the suppression

region. This is misleading since the negative sweep from 30 Hz to 1 Hz indicates that

the resonance extends from the upper frequency past the lower frequency. Although not

visible on the plot, it was observed that the response was quasiperiodic near the tip of the

resonance curve. This agrees well with the model predictions.

In the final row (row four), the response of a softening system with a hardening absorber

is shown. For f = 0.01, the response again appears linear. For f = 0.1, the sweeps

indicate acceptable absorber performance. The resonant peaks bend outwards, away from

the suppression region. The suppression region shifts upward in frequency and slightly
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broadens, as predicted theoretically. Jump phenomena and multi-valued solutions exist, but

outside of the absorber suppression region. As in the three previous cases, the experimental

results qualitatively match those of the model developed in Chapter 2 and explored in

Chapter 3. Quantitative agreement would only be expected to O(f) effects and as discussed

in the previous chapter, the location of the suppression region is sensitive to O(E2) effects.

5.1.2 Swept Excitation Magnitude Tests

Having qualitatively verified the frequency response curves of the model, the existence

of the Hopf bifurcations was next investigated. For this, the frequency was fixed at 15.85

Hz and the force level varied. The model and numerical simulations predict that as the

force level is increased, the response will shift from periodic to quasiperiodic and absorber

performance will deteriorate.

Time responses for f = 0.01, 0.03, 0.1, and 0.164 are plotted in Figure 5.2. As the force

is increased, the ratio of system response to forcing magnitude decreases, indicating that the

absorption frequency is shifting upwards with increased excitation as predicted. The DC

offset present in the plots is a result of the analog computer and could not be eliminated. It

was constant in the test for various forcing levels. When the forcing increased from 0.1 to

0.164 volts, a change in response occurred. The system lost its periodic nature and began

to oscillate with a multi-frequency response. Examining the spectrum of the response in

Figure 5.3, this response is quasiperiodic.

Further increases in the forcing level to f = 0.175, 0.19, 0.25, and 0.3 volts is shown in

Figure 5.4. Examining the responses and their corresponding spectrums in Figure 5.5, the

transition of the system response from a quasiperiodic to a chaotically modulated response

are presented in Figure 5.6. As the forcing level is increased from 0.164 to 0.175 volts,

the character of the response changes and the closed periodic curve on the Poincare section

shown in Figure 5.7 begins to break into segments. This indicates that synchronization of

the response is nearly occurring. Increasing the forcing level further, the response appears

to become chaotically modulated. The spectrum of the response seen in the lowest plot in
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Figure 5.2: Experimental time responses of the single-degree-of-freedom analog computer
experiment for f = 0.01, 0.03, 0.1, and 0.164. The system and absorber displacements are
plotted in the first and second columns, respectively.
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Figure 5.3: Experimental spectrums of the single-degree-of-freedom analog computer ex-

periment for f = 0.01, 0.03, 0.1, and 0.164. The power spectral density of the system

displacement is plotted.
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Figure 5.4: Experimental time responses of the single-degree-of-freedom analog computer
experiment for f 0.175, 0.19, 0.25, and 0.3. The system and absorber displacements are
plotted in the first and second columns, respectively.

100



1 DOF System Displacement PSD (dB)
100,,,,,,

f=0.175

02-100 40 680 10204

-200
0 20 40 60 80 100 120 140

100
f=0.190

- .. .. .-.. .

-200
0 20 40 60 80 100 120 140

100
• f=0.250

a.7 100

Vi

-200
0 20 40 60 80 100 120 140

n s m o f=0.300

0 - ... ....

o.-101

MZ

-200 ,,
0 20 40 60 80 100 120 140

Frequency (Hz.)

Figure 5.5: Experimental spectrums of the single-degree-of-freedom analog computer ex-

periment for f = 0.175, 0.19, 0.25, and 0.3. The power spectral density of the system

displacement is plotted.
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Figure 5.6: Experimental time responses of the single-degree-of-freedom analog computer
experiment for all eight forcing levels plotted in X-Y format. The forcing level increases

down the first and then the second column, sequentially.
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experiment for all eight forcing levels. The forcing level increases down the first and then
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Figure 5.5 is broadband-its corresponding Poincare section is space-filling. Note that only

two of the four dimensions of the Poincare section are plotted; however, given the nature

of the time signal, its spectrum, and its Poincare section, the response is, in all probability,

chaotic.

Experimental investigation of a single-degree-of-freedom system with a vibration ab-

sorber therefore agrees qualitatively with the model derived in Chapter 2 to O(E) effects.

The quasiperiodic response of the system and its transition to chaos is shown experimentally,

a novel result.

5.1.3 Swept Frequency Testing of a 2DOF System

The final experiment performed on the analog computer setup was to patch the system

with the equations of motion for the example of Shaw and Pierre [10] presented in Chapter 4.

The purpose of the experiment was to qualitatively evaluate the effect of the vibration

absorber on the modes of the system. The parameters used were identical to those of the

last chapter with the exception of a 3 = -0.02 instead of -0.01. This corresponds to doubling

the nonlinearity, N, from -0.04 to -0.08. This was done to facilitate patching three dynamic

systems on the limited amplifiers of the analog computer. The open-loop and closed-loop

results for swept-sine test conducted at two forcing levels, f = 0.01 and 0.1, are shown in

Figure 5.8. The open-loop response is plotted in row one, the closed-loop in row two.

The results are more easily examined by zooming the plots near the two modal frequencies

near 15.6 and 27.5 Hz. Examining the first mode in Figure 5.9, the effect of the vibration

absorber is identical to that presented in Figure 5.1 for the hardening absorber. In the

second plot, Figure 5.10, the effect of the vibration absorber tuned to the first mode on the

second mode can be seen. Perhaps the lack of effect would be a better description. Both

the open-loop and closed loop results are overlaid for a forcing level of f = 0.1. These

results thus qualitatively verify the model presented in Chapter 4. Again they are new to

the literature. Swept forcing tests are not shown since the results duplicate those for the

single-degree-of-freedom case presented in the last section.

104



20 20 20

10- 10 10-

0- 0 0

*110
C
CCC
CO Cz CO~-20 ~-20 -20

-30 -30 -30

-40 -40 -40

-50 -50 -50
0 20 40 0 20 40 0 20 40

20- 20 20

10• 10 10

0- 0- 0-

C a C
M C ca
~-20 ~-20 ~-20

-30 -30 -30

-40 -40 -40

-50 -50 -50
0 20 40 0 20 40 0 20 40

Frequency (Hz.) Frequency (Hz.) Frequency (Hz.)

Figure 5.8: Experimental Swept Sine response of the two-degree-of-freedom analog computer
experiment. The system (Channels (3) and (7)) and absorber (Channel(5)) responses are
plotted for the open loop, and hardening absorber in rows 1-2.
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Figure 5.9: Experimental Swept Sine response of the two-degree-of-freedom analog com-
puter experiment near the first mode. The system (Channels (3) and (7)) and absorber
(Channel(5)) responses are over-plotted for the open loop and hardening absorber, but due
to their agreement, only one curve is visible.
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Figure 5.10: Experimental Swept Sine response of the two-degree-of-freedom analog com-
puter experiment near the second mode. The system (Channels (3) and (7)) and absorber

(Channel(5)) responses are plotted for the open loop, and hardening absorber in rows 1-2.
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Figure 5.11: Screw Mounted Beam. See Appendix B for dimensions.
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5.2 Screw Mounted Beam Experiment

The second experimental setup consists of a beam mounted by screws on posts and

actuated by piezoelectric patches surface bonded to the aluminum beam. Details on con-

struction and hardware used in the experiment may be found in Appendix B. A diagram

of the beam is shown in Figure 5.11. Experimental data is presented first for the open loop

(uncontrolled) case, then for two closed loop cases with both linear and nonlinear vibration

absorbers implemented as positive position feedback control using a dSpace DSP based real-

time controller. Several types of tests were run for a variety of forcing levels to investigate

the linear and nonlinear behavior of the system. Before PPF control was implemented,

open loop results were obtained to identify the system under test.

5.2.1 Open Loop Results

Three types of tests were run to establish the baseline model of the screw-mounted beam.

First, random base excitation of the structure was used to determine the linear model.

Excitation rms levels were varied over several orders of magnitude to check for linearity.

The frequency response transfer functions for both acceleration and displacement can be

seen in Figure 5.12. Examining the region of resonance in more detail in Figure 5.13,

softening of the response with increasing forcing is visible. As the base excitation was

increased, resonance tended to shift lower in frequency.

Since the random response showed indications of nonlinear behavior, swept sine tests

were conducted to more accurately measure the system behavior. Frequency steps of 0.1

Hz were taken between 60 and 80 Hz with a zoom fft bandwidth of 0.4 Hz. Four averages of

the zoomed transfer function response were computed at each point. A two second (approx.

140 cycles) delay was taken between frequency steps to minimize transient effects. Auto-

ranging was utilized to ensure accurate data acquisition since the response levels varied over

several orders of magnitude. Each sweep took approximately 1 hr., although some of the

nonlinear PPF sweeps presented below took as long as 4 hrs. due to auto-ranging. The
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Figure 5.12: Screw Mounted Beam open-loop transfer functions for various base acceler-
ation levels of 0.025, 0.08, 0.25 and 0.8 grins. Transfer functions are shown between base

acceleration and beam acceleration (upper subplot) or beam displacement (lower subplot).
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Figure 5.13: Screw Mounted Beam open-loop transfer functions for various base acceleration

levels as indicated on the curves. Transfer functions are shown between base acceleration

and beam acceleration (upper subplot) or beam displacement (lower subplot).
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Figure 5.14: Screw Mounted Beam transfer functions for base acceleration levels of 0.01,
0.03, 0.1 and 0.3 g's. Transfer functions between base acceleration and the indicated chan-
nels are shown for the open loop, linear PPF and nonlinear PPF controller. Note that the
responses are plotted in volts/volt. See Appendix B for sensor sensitivities.
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Figure 5.15: Screw Mounted Beam frequency response functions for various base accelera-
tion levels as indicated on the curves. Responses are plotted for four excitation levels: 0.01,

0.03, 0.1 and 0.3 g's. Note that the responses axe plotted in volts. See Appendix B for
sensor sensitivities.
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open loop responses are plotted as transfer functions (Figure 5.14) and absolute response

(Figure 5.15) in the first row of each figure. Both the center acceleration and displacement

are shown. Again similar observations were made. As the base excitation increased, the

resonant response shifts lower in frequency. This indicates that a softening cubic stiffness

or either a stiffening or softening quadratic stiffness of the beam was present.

Time responses to a fixed frequency excitation at various forcing levels are shown in

Figures 5.16-5.19. Several plots are shown in each figure for different forcing levels. First,

portions of the time responses on two channels are shown in Figure 5.16. Both the system

displacement and absorber displacement are plotted. For the open-loop case, the absorber

displacement is not fed back to the piezoelectric actuators. Next, the spectrum of the beam

center displacement is shown in Figure 5.17. As the forcing level is increased, the influence

of the second and third harmonics varies. The response is generally clean, although some

noise is noted especially in at 120 Hz due to the optical displacement sensors. All tests

were conducted with a shield to minimize this noise which comes from the fluorescent light

fixtures. X-Y plots for the time responses (Figure 5.16) are shown in the first column of

Figure 5.18. In Figure 5.19 in the first column, the Poincare section, obtained by resampling

the data at the forcing frequency, is plotted. These figures illustrate the noise indicated by

the spread of the beam displacement signal and the size of the Poincare section. Instead of

a single point, a filled area is seen, especially at lower levels. This is due to noise inherent

in experimental work. For larger forcing levels, the X-Y plot is an oval, indicating that the

system and the absorber are not in perfect phase due to damping in the beam.

Examination of the response spectrum for 70.5 Hz forcing frequency shows that both

even and odd harmonics are present in the system response. However, examination of

the base acceleration also showed the presence of even and odd harmonics. The results

were thus inconclusive as to the exact nature of the nonlinearity of the beam although a

combination of quadratic and cubic behavior is suspected. However, as shown in Chapter 3,

the presence of nonlinearity in the system only slightly affects linear absorber performance.

A linear vibration absorber was next implemented using positive-position-feedback control
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Figure 5.16: Screw Mounted Beam open-loop time response in volts (from top to bottom)

for i'0 = 0.005, 0.015, 0.05, and 0.15 g. X(1) is beam displacement and X(2) is PPF

controller displacement. See Appendix B for sensor sensitivities.
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Figure 5.17: Screw Mounted Beam open-loop response spectrum for i6'o = 0.005, 0o015, 0.05,

and 0.15 g.
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Figure 5.18: Screw Mounted Beam X-Y time response in volts for open-loop, linear and
nonlinear PPF controllers. ilo = 0.005, 0.015, 0.05, and 0.15 g, respectively. X(1) is
beam displacement and X(2) is PPF controller displacement. See Appendix B for sensor
sensitivities.
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Figure 5.19: Screw Mounted Beam Poincare sections in volts for open-loop, linear and

nonlinear PPF controllers. 0io = 0.005, 0.015, 0.05, and 0.15 g, respectively. X(1) is

beam displacement and X(2) is PPF controller displacement. See Appendix B for sensor
sensitivities.
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to verify this analytical result.

5.2.2 Linear PPF

The PPF control was implemented using a dSpace real-time controller as detailed in

Appendix B. Gains on the controller were set using a trial and error approach to maximize

absorber performance. Since the piezoceramic elements on the beam will respond over

a large frequency range, filtering of the control signal was needed to prevent excitation

due to the digital signal. The filter was tuned to 2500 Hz which was half of the 5000 Hz

sampling rate. Additionally, an AC filter was used on the beam displacement signal since

the Philtec optical probes have a DC bias in their output and played no role in the dynamics.

The control signal filter however causes a constant phase shift which did not affect the first

mode, but destabilizes higher modes at high control gains. Since the piezoceramic actuators

excite the odd modes, the third mode would become unstable if the gain is too high. This

limitation in gain was due to the digital control, not to limitations of the PPF algorithm.

To prevent this problem in future work, an analog PPF filter should be implemented or a

piezoelectric vibration absorber shunt used instead.

With the gain set, linear control was implemented on the system. As with the open

loop case three types of tests were performed: random, swept sine, and fixed frequency

excitation. Results from the random excitation tests are shown in Figures 5.20-5.21. The

response is slightly different from the models of Chapter 3, but generally in good qualitative

agreement. The asymmetry in the response is due to nonlinearity in the system, agreeing

with the NSLA results presented in the Section 3.4.

Again steady state responses to 70.5 forcing at 0.005, 0.015, 0.05, and 0.15 g were

recorded. The sensor noise is evident in Figure 5.22 for the responses corresponding

to the lower two forcing levels. As the forcing level is increased, the effect of noise lessens

due to increased system response. The spectrum, Figure 5.23, shows some harmonic ef-

fects, although less influence of the nonlinearity is seen than in the open loop response

(Figures 5.16-5.17). This is due to reduced beam displacement as predicted by the theo-
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Figure 5.20: Screw Mounted Beam linear closed-loop transfer functions between base accel-
eration and the indicated channels for base acceleration levels of 0.025, 0.08, 0.25 and 0.8
grins. Channel(2) is beam acceleration, Channel (3) is beam displacement, and Channel (5)
is PPF filter displacement.
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Figure 5.21: Screw Mounted Beam linear closed-loop transfer functions for base acceleration

levels of 0.025, 0.08, 0.25 and 0.8 grins. Channel(2) is beam acceleration, Channel (3) is

beam displacement, and Channel (5) is PPF filter displacement.
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Figure 5.22: Screw Mounted Beam open-loop time response in volts for ZO = 0.005, 0.015,
0.05, and 0.15 g. X(1) is beam displacement and X(2) is PPF controller displacement. See
Appendix B for sensor sensitivities.
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Figure 5.23: Screw Mounted Beam with linear PPF response spectrum for i'o = 0.005,
0.015, 0.05, and 0.15 g (from top to bottom).
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retical results. The X-Y results and Poincare sections can be seen in the second column

of Figures 5.18-5.19. For a given forcing level, the system response is reduced due to the

action of the absorber within the narrow absorber bandwidth. The linear PPF results thus

agree with the single-degree-of-freedom model presented in Chapter 3.

5.2.3 Nonlinear PPF

The experimental effect of a nonlinear absorber was next investigated. A nonlinear hard-

ening term was added to the linear PPF filter. Its level was set to maximize the nonlinear

influence without destabilizing higher modes in the beam. The reason for destabilization is

unclear but similar to increasing the system gain. The loss of stability was for zero input

force and it is hypothesized that the shifting of phase due to the nonlinear term caused the

third mode to destabilize. Since the linear gain was set near the stability boundary, the

nonlinear phase shift would cause the higher mode to destabilize. This is an influence of the

required low-pass filter and not an effect of the PPF vibration absorber per se. As before,

analog implementation is recommended to avoid this problem in future investigations. If

the linear gain was reduced, greater nonlinearity was possible. However, to maintain con-

sistent results, this was not done. Instead, the nonlinear stiffness was set as high as possible

without destabilizing the third mode, since this was sufficient to demonstrate the influence

of nonlinearity on the absorber performance.

Swept sine tests were conducted and the results are shown in the third row of Fig-

ures 5.14-5.15. Initially, the nonlinear absorber performs better than the linear absorber;

system response is reduced with less absorber stroke. However, when the forcing level is

increased to 0.15 g, absorber performance is degraded and the system response is quasiperi-

odic. Note that the apparent "noisy" absorber response is due to the zoom frf's used in

swept sine testing. Only the response around the driving frequency is plotted, not the total

rms of the system. As the excitation frequency changes, the response at that frequency

varies, giving the "noisy" appearance. Also note that the "dip" in system and absorber

performance on the 0.05 g response curves corresponds to quasiperiodic response at reso-
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nance. Again, the narrowband rms may decrease, but the magnitude of system response

actually increases. The response simply is in other frequencies. The screw beam swept

sine testing thus agrees with the analytical models. As the forcing level was increased,

quasiperiodic system response occurs due to a Hopf bifurcation and causes a breakdown in

absorber performance.

To further investigate this phenomenon, time responses were measured at 70.5 Hz for

various forcing levels. The results are presented in Figure 5.24. As the forcing is increased

from 0.005 to 0.015 to 0.05 g's, absorber performance is excellent. However when the force

is increased to 0.15 g, the response appears quasiperiodic. Examining the spectrum in

Figure 5.25, the quasiperiodic nature of the response is evident. This is also confirmed by

the X-Y plots and Poincare sections plotted in Figure 5.18 and Figure 5.19, respectively.

These results thus indicate that the analytical model for a single-degree-of-freedom sys-

tem with a vibration absorber is capable of qualitatively modelling the behavior of the

screw-mounted beam. As predicted, the nonlinearities present in the beam did not signif-

icantly affect the performance of the linear PPF algorithm. However, the introduction of

absorber nonlinearity, while widening the suppression bandwidth, also introduced Hopf bi-

furcations resulting in quasiperiodic response and poor absorber behavior. The nonlinearity

in the absorber is thus insignificant for low excitation amplitude, beneficial for moderate

excitation amplitude, and detrimental for large excitation amplitude.

5.3 Summary

Experimental investigation was conducted on a single-degree-of-freedom, a two-degree-

of-freedom, and a continuous system with vibration absorbers tuned to the first linear

natural frequency. The results quantitatively validate the models presented in the previ-

ous chapters. As the excitation level increases, experimental verification of the predicted

quasiperiodic and chaotic response was obtained. Additionally, the need to tune the sign of

the nonlinearity of the absorber opposite to that of the system was observed.
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Figure 5.24: Screw Mounted Beam nonlinear PPF time response in volts for Z'0 = 0.005,
0.015, 0.05, and 0.15 g. X(1) is beam displacement and X(2) is PPF controller displacement.

See Appendix B for sensor sensitivities.
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Figure 5.25: Screw Mounted Beam with nonlinear PPF response spectrum for 50 = 0.005,
0.015, 0.05, and 0.15 g.
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Chapter 6

Conclusions and Future Work

The focus of this work was to investigate the performance of nonlinear vibration ab-

sorbers for lightly damped multi-degree-of-freedom discrete structures. The objectives were

to:

" Demonstrate the equivalence, to first-order nonlinear effects, of the mechanical vibra-

tion absorber, the piezoelectric vibration absorber, and positive position feedback.

" Utilize perturbation methods to find the general nonlinear response of the aforemen-

tioned systems.

" Develop guidelines for tuning the linear and nonlinear parameters for vibration ab-

sorbers for nonlinear single-degree-of-freedom systems.

" Demonstrate the use of nonlinear normal modes to allow modal design of absorbers

for N-degree-of-freedom nonlinear structures using these guidelines.

" Qualitatively verify the models through experimental investigations for both single

and multiple degree-of-freedom systems.

Each of these objectives has been addressed.
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6.1 Conclusions

In Chapter 2, a general model for the mechanical vibration absorber, the Inductive-

Resistive Shunted piezoelectric vibration absorber, and the electronic (Positive Position

Feedback) vibration absorber was derived. The model allows a single set of equations

to investigate the effects of nonlinearity on absorber performance using a single dynamic

model. Furthermore, this model was consistent between systems with its degrees of freedom

maintaining a consistent physical meaning, a feature unique in the literature. By deriving

this model, the effect of nonlinearity on the piezoelectric and electronic vibration absorber,

an effect unexplored in the literature heretofore, as well as those for the mechanical vibration

absorber could be examined using perturbation, numerical and experimental methods and

the results applied to all three physical implementations.

In Chapter 3, the general model developed in Chapter 2 for the single-degree-of-freedom

system with a vibration absorber were investigated using both perturbation and numerical

methods. Parameter studies were performed on four systems, the linear system with a linear

absorber, the linear system with a nonlinear absorber, the nonlinear system with a linear

absorber, and the nonlinear system with a nonlinear absorber. Three key performance

qualities were identified: suppression bandwidth, stability and robustness.

The size of the suppression bandwidth was found to depend not only on the coupling

parameter (either mass ratio, piezoelectric coupling coefficient, or gain) but also on the force
632and absorber nonlinearity as a function of the T parameter group and the linear frequency

a1mistuning parameter, 61. The identification of these groups and the effect of frequency

mistuning is a novel result and shows that for an absorber tuned above the open-loop

modal frequency, a hardening absorber is superior whereas below the modal frequency, a

softening absorber is required. The location in frequency of the suppression region was found

to depend on the tuning frequency of the absorber as well as the nondimensional nonlinear

parameter discussed above. The combination of these show that the maximum achievable

bandwidth increases as the tuning frequency deviates from the open-loop modal frequency.
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Moreover, it was determined that system nonlinearity did not affect the suppression region

at the level of approximation considered in this study.

This does not imply that system nonlinearity is unimportant: it affects the second pa-

rameter, robustness. Robustness, defined in this study as the absence of multiple solutions,

one of low and the other of high magnitude, in the absorber suppression region. If the

system nonlinearity is of the same type (hardening or softening), the resonant peaks will

overlie the suppression region, eliminating system robustness. Additionally, even for a linear

absorber, robustness is a concern when coupled with the linear mistuning. If the absorber

is tuned to a frequency less than the modal frequency, robustness is an issue for hardening

systems. The contrary is also true. The end result is that for softening systems, a hardening

nonlinear absorber tuned to a frequency above the open-loop modal frequency is desirable;

whereas, for a hardening system, a softening absorber should be tuned to frequencies be-

low the modal frequency. This result clarifies conflicting reports of hardening or softening

absorber preference in the literature.

The third and perhaps most troubling performance characteristic is stability of the peri-

odic solutions in the suppression region. As the excitation level increased, a Hopf bifurcation

was found to occur, resulting in quasiperiodic response of the system. This response was

determined detrimental to absorber performance for lightly damped systems. In the litera-

ture, the presence of higher harmonic behavior has in some cases been beneficial. However,

most of those investigations concerned highly damped systems. For the lightly damped sys-

tems considered herein, the quasiperiodic response always resulted in poor performance. For

modal frequencies between the locations of linear resonance (i.e. between the dual natural

frequencies of the undamped linear vibration absorber) these quasiperiodic responses seem

to limit the benefit of the nonlinearity to low forcing levels only. For higher forcing levels,

increased damping is required to suppress this effect, trading suppression performance for

stability. At present, no analytic solution for the location of the Hopf bifurcations within

the suppression bandwidth is available for lightly coupled absorbers.

Having considered the performance of the vibration absorber on lightly damped single-
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degree-of-freedom systems in Chapter 3, multiple-degree-of-freedom systems were consid-

ered in Chapter 4. The theory of nonlinear normal modes was extended in this work to

include harmonic forcing near the linear resonance, linear modal damping, and the presence

of small linear coupling. Using these results, the effect of vibration absorbers tuned near a

structural mode was shown to reduce to the response on a single four dimensional manifold.

The dynamics of this manifold were exactly of the form investigated in Chapters 2 and 3.

Numerical integration demonstrated some limitations to the O(c) models derived in this

investigation. Since the size of the suppression region is O(f2), the models derived, while

sufficient for qualitative analysis, are insufficient for quantitative analysis. Essentially, since

the size of the suppression region is zero at the level of the analysis, small shifts in the

location of this region can result from unmodeled effects in the next level of analysis. Qual-

itatively, the model is accurate and allows important insight into absorber performance.

More importantly, the application of nonlinear normal mode theory simplifies the dynamics

required for preliminary analysis, even if final performance considerations would require a

more detailed analysis.

Finally, the accuracy of the qualitative aspects of the model were verified through experi-

mental investigations presented in Chapter 5. Little experimental investigation of nonlinear

vibration absorbers was found in the literature. Through the analog computer investi-

gations, the effects predicted in Chapters 2-4 were verified. The nonlinearity shifted the

suppression bandwidth as predicted. The quasiperiodic responses predicted in the literature

were observed experimentally for the first time to the author's knowledge. Furthermore,

the transition of the response to chaotically modulated motion was observed. The beam

experiment again verified the model on a real-world structure. Quasiperiodic response was

again observed, although chaotic response was not, perhaps due to limitations in forcing

level and/or feedback gains. Additionally, the effect of the filtering on the stability of higher

modes was also noted. Finally, the quasiperiodic response was not a gradual transition, but

instead an abrupt jump phenomenon. This discovery emphasizes the need to avoid this

region since, if the force was increased to the point where quasiperiodic response occurred,
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a significant reduction in the forcing level was required to regain periodic performance.

All of the goals for this research have thus been accomplished. A consistent model for

the three common implementations of the vibration absorber has been derived. This perfor-

mance of the nonlinear vibration absorber has been investigated and qualitative agreement

was found between the analytical model and both numerical and experimental results. The

performance of nonlinear vibration absorbers for multi-degree-of-freedom discrete structure

has been explored and via the application of nonlinear normal modes shown to reduce to the

dynamics of the single-degree-of-freedom model. Experimental results have been performed

and demonstrate the presence of quasiperiodic and chaotically-modulated response.

6.2 Future Work

This work would be incomplete without some discussion on the practicality and appli-

cability of the nonlinear vibration absorber for engineering applications. In the author's

opinion, the benefits of the nonlinear absorber are outweighed by the limitations imposed

by stability concerns for linear systems at this time. If possible, a larger coupling should be

sought rather than resorting to a nonlinear absorber. For a nonlinear structure, the utility

of the nonlinear absorber may be to create a more robust system by bending the resonant

responses away from the suppression region. If a nonlinear absorber is required, the natural

frequency of the system should be shifted so that the absorber is operating away from the

open-loop resonance for best performance. System damping should also be increased since

the quasiperiodic response can be delayed. Under these circumstances, it is possible to

design a vibration absorber capable of significantly increasing the suppresion bandwidth for

a moderate excitation level as shown in Chapter 3. Further investigation is required before

nonlinear vibration absorbers enter the vibration engineer's toolbox. Future work on the

nonlinear vibration absorber can be divided into three sections: additional investigations

with the current O(e) analysis, extension of this analysis, and further experimental work.

Using the current model, several more investigations should be undertaken. First, the
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results of this study have been limited to light damping since this case was least investigated

in the literature. The damped nonlinear vibration absorber should be examined. The

application of damped vibration absorbers is generally to broadband, randomly excited

structures, but they can and are used to suppress harmonic excitation as well. In the

numerical investigation of the piezoelectric vibration absorber reported in [46], the presence

of undamped resonant response in damped vibration absorbers was seen. This should be

further investigated. Additionally, more investigation on the relationship between damping

and the minimum excitation level of the Hopf bifurcations is required to establish design

guidelines. The results of this analysis could be used to determine optimal designs though

the application of optimization techniques. Such an analysis should consider the effects of

using (static) added mass or stiffness to shift system frequencies and allow larger suppression

bandwidths. Any optimization effort must also consider the robustness and stability of the

final design, something lacking in the current literature.

To allow better quantitative analysis required to verify performance and fine-tune de-

signs, the O(e) analysis presented herein should be extended to the next level. This will

allow more accurate determination of the suppression region's location and width. Addi-

tionally, the next level of analysis would allow analytical evaluation of preliminary designs.

determined using the current analysis. A useful result would be an analytical determina-

tion of the Hopf bifurcation points for lightly coupled systems such a more detailed analysis

might provide. A second extension of the analysis would be to examine the performance

of vibration absorbers coupled to a set of internally resonant modes. Since periodic and

symmetric structures are common in engineering design, such an analysis would be required

to handle internally resonant modes.

Further experimental investigation of the application of nonlinear normal modes to real-

world structures is required. The accuracy of the predicted responses must be quantitatively

established by using structures with analytical models such as clamped-clamped beams. Al-

though nonlinear, the screw-mounted beam did not exhibit large nonlinearities at the forcing

levels obtainable with available equipment. Additionally, although nonlinear Positive Po-
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sition Feedback controllers or inductive-resistive piezoelectric shunts can be implemented,

a robust mechanical absorber with controllable nonlinear properties must be identified for

those situations where the electronic or piezoelectric vibration absorber is impractical. Ad-

ditionally, the nonlinear properties of piezoelectric materials must to determined to allow

a proper nonlinear design. Through the pursuit of these experimental investigations along

with the analytical investigations suggested above, the nonlinear vibration absorber may

be able to achieve the level of practicality required to join the engineer's toolchest.
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Appendix A

PSAL Overview

PSAL performs pseudo-arclength continuation to find solutions to a system of nonlinear

equations, {F}({x}; {A}) = {0}. It is a robust code with the following key capabilities.

" Determination of fixed points with or without time integration of the equations Ix}1 =

{F}({x}; {A} 0 ) from a user supplied initial guess {xo}.

" User function {F}({x}; {A}) is input along with its Jacobian in a single MATLAB

function.

* Continuation is performed within a user specified parameter range with adaptive step-

size using pseudo-arclength continuation.

" Bifurcation points are identified using efficient indirect methods and then solved for

using direct methods if desired. Turning Point, Hopf, and Branch points are sup-

ported. Branch switching is not yet implemented.

" Newton-Raphson methods are employed throughout. Second order differentials are

thus required for direct solution of bifurcation points. Numerical computation of these

derivatives is supported.

This combination of features combined with MATLAB's flexible programing environment

allow PSAL to serve as an excellent tool for parameter study, especially for small to
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medium size problems. The source code may be obtained by emailing the author at

greg. agnesciname .com.

The goal of continuation methods is to determine a set of solutions to the n equations

F(x; A) = 0 such that x E R' and A E R' as one (or more) of the parameters, Ai varies from

an initial solution {xo, Ao}. Some basic references used in constructing the code are [51, 53-

57]. The algorithm for constructing a continuation scheme consists of three key portions:

first, a robust root finder for systems of nonlinear equations to find the initial solution,

{xO, AO }; next, a prediction method to step from the initial solution to an adjoining solution;

and finally, since he predicted solution won't usually be an actual point in the solution set,

a correction method to find the actual solution. The algorithm continues stepping from

solution to solution until a stopping point is encountered. As it steps, bifurcation points

must be identified and the stability of the solution tracked. The algorithm followed must

therefore look as follows:

i. Find a starting (k = 0) solution, {xo; Ao}, to F(x; A) = 0.

ii. Evaluate the stability of this solution.

(a) If a bifurcation occurred between Xk and Xk-1, determine the type and use a

direct method to find it.

iii. Set k = k + 1 and Predict the next solution, {xO; AO I

iv. Correct the solution with p iterations and set Xk = xpk and Ak = Ap.

v. If {Xk, Ak} is out of bounds, terminate; otherwise repeat from step 2.

The theory of each of the first four steps is briefly explained in the next four subsections.

The Fifth step consists of checking if Ak is within user set bounds. For efficiency and data

structure limitations in MATLAB, the code actually performs a user set block of iterations

before termination. This allows a matrix of fixed size to be returned and stored. The results

are then stored in a large Matrix with an index identifying the run (which starting point it
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began from). The actual code does not terminate, but allows the user to begin the process

again from a new starting point. Additionally, plotting commands are used to post-process

and plot the data.

A.1 Initial Solution

The initial solution to the equations F(x; A) = 0 is accomplished using a Newton-

Raphson iteration scheme:

A A0  (A.1)

k = 4 + rAx3  (A.2)

Fx (; AO)Ax3  -F(4; AO) (A.3)

where Fx is shorthand notation for the matrix OF(x;A) The parameter r is a relaxation

parameter used to ensure jIF(Xk+l,Ao)l < IIF(xk,Ao)ll. If not, r is reduced until this

relation is satisfied. The iteration is repeated until

IIF(xk, Ao)II < Ea (A.4)

where Ea indicates how close to zero the norm of F must be.

In addition to the Newton-Raphson approach, the implementation also allows numerical

integration in time of the equations since often one is looking for the steady state response

to x' = F(x, A). If this is the case, time integration can reduce the initial estimate of the

solution before Newton-Raphson iteration is used, improving the chance of convergence.

Note that the Newton-Raphson algorithm is quadratically convergent so it usually is faster

to use it as opposed to time integration.

A.2 Predictor

Once a solution is found, a prediction to the next fixed point in {x, A} state-control

space is needed. It is tempting to just increment A and repeat the Newton-Raphson process.
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This approach will not yield successful results near turning or branch bifurcation points as

explained in [51, 53], for example. Instead a tangent predictor is used in a scheme known

as arclength continuation [51]. Thus, we consider the arclength s along the fixed-point

solution curve and have x = x(s) and A = A(s). Differentiating the fixed point equation,

F(x, A) = 0, with respect to s

Fx(x; A)x' + F,(x; A)A' = 0 (A.5)

a system of n equations in n + 1 unknowns. To find a solution we set

xiTxi +A A2 = As 2  (A.6)

which allows solution for the predicted step using an Euler step:

0Xk+1 = Xk + x'As (A.7)

= Ak + A'As (A.8)

This predicted solution will not usually be an exact solution, but will require correction.

The size of the step, As, is adapted in the code using a method suggested in [53]. The

length of the step is based upon the number of corrections needed to converge. The Euler

step is slightly modified to

X°+l = Xk + x'l xk, AkIJASk (A.9)
A°+ 1 = Ak + A' IXk, A,,IASk (A.10)

k = Ask (.) (A.11)

where Pk is the number of correction steps needed to converge to xk, Ak. The number of

desired correction steps Je was set to twelve, but can be adjusted if desired.

A.3 Corrector

Once a prediction {x,+1 , A°+1 } is determined, it must be corrected to satisfy the fixed

point equation. Again it is tempting to fix A and use the initial solution iteration, but
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this approach will face problems at either branch or turning points. To solve this problem,

pseudo-arclength continuation is used. Instead of seeking a solution parametrized by A =

Ak+1 one is sought which satisfies

g(x, A) = (x - Xk)xk + (A - Ak)A ' - 1Xk, AkIAsk =0 (A.12)

This is equivalent to searching for a solution which is normal to the predicted step, thereby

allowing one to move around most turning points. If small steps are taken, this also allows

branch points to be included, but does not guarantee branch switching will not occur [53].

To perform the correction, an iterative Newton-Raphson algorithm is used:

Fx(x3+l,A3+)Ax 3 + F(x3+l,A3+l)' A = -f(x +lA3 l (A. 13)

xTAxj + A'AAj  -g(X (A.14)k k kgx+1, A +1)

and

k+1 = Xk+1 + rAx (A. 15)

Aj + l = + 1 + rAAj  (A.16)
k+1l +

are repeated until convergence. Again, r is a relaxation parameter. If the equations fail

to converge, the step length, As, is reduced and the correction is repeated. Should this

procedure fail to converge, a singularity in the solution is probable. From experience, this

often happens at undamped resonant peaks. Once a solution is found, the index , k, is

updated and the prediction/correction cycle repeated until termination. Before beginning

the next prediction cycle, the stability of the new fixed point is investigated to determine

if bifurcations have occurred.

A.4 Stability and Bifurcation

Two classes of methods are available to detect and determine bifurcation points: indirect

and direct. Indirect methods determine the passage of a bifurcation point by examining
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data calculated at the fixed points determined by the corrector step. In general they are

"cheap" to evaluate, but not accurate in determining the location of the bifurcation point.

They simply determine that a bifurcation point was located between Xk-1 and xk. Direct

methods, in contrast, are more expensive to evaluate since they rely on iterative solutions

to larger systems of equations. They also require a good initial estimate of the root location

and often the marginally stable eigenvector of the jacobian (Since bifurcation is marked by

the passage of an eigenvalue of the jacobian into the right-half plane) for convergence.

PSAL uses a combination of indirect and direct methods. Indirect methods are used

to identify the presence and type of bifurcation point as the method steps along the fixed

point curve. Once a bifurcation point is identified, its corresponding direct method is used

to locate the point more exactly if desired. Thus for quick initial parameter studies an

approximation can be used, while for more accurate analysis, the direct solution can be

found. The drawback to this approach is that bifurcations can be missed if two bifurcation

points lie between the steps taken by the prediction-correction cycle. This possibility can

be minimized by performing runs with smaller values of As, the prediction step size.

Three types of bifurcation points are detected: turning points, branch points, and Hopf

points. The first two are characterized by having F, lose stability through the origin. Thus

a single real pole moves into the right-half plane. A Hopf bifurcation occurs when two

complex conjugate poles move into the right-half plane. Turning points and branch points

differ since for a turning point FA E R(Fx) (the null space of F,) whereas it is not for a

branch point. By calculating

det=,IFI and DET = FA (A.17)xiT

the presence of a turning or branch point can be detected since det changes sign for turning

points while DET only changes at branch points. Since the stability of the fixed point

is also of interest, the number of right-half plane eigenvalues is checked. If this increases

or decreases by two, a Hopf point has occurred. Using these indirect calculations, the

presence of bifurcation points is detected. For quick calculations, the points are identified
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as the average of the current and previous fixed points. For more exact calculations, direct

methods must be used.

To directly determine turning points, an expanded function, T(x, p, A) = 0, is solved

where

F(x; A)1

T(xp, A) ={ f(x; A)p (A.18)

Instead of using the Newton-Raphson method directly, a faster algorithm from [51] is used.

The same algorithm will detect branch points since the equations simply state that the

jacobian, Fx(x, A) has a real eigenvector u with a corresponding eigenvalue of zero.

For Hopf points, H(x, p, q,A , w) = 0 is solved where

F(x; A)

F.(x; A)p - wq

H(x,p, q, A, w) = Fx(x; A)q + wp (A.19)

Pk - 1

qk

In this case the Fx has an imaginary eigenvector p ± iq with a corresponding eigenvalue ±iw.

Note the last two equations simply normalize the eigenvector such that the kth element is

unity. Again, the algorithm for solving these equations is that in [51].

Finding the solution to Equations (A.18)-(A.19) depends on an initial guess for both the

bifurcation point and its eigensolution. To determine this, the eigensolution of the jacobian

at the initial guess of the bifurcation point with the largest real portion of the eigenvalue is

used. Convergence is sometimes still an issue and the code resorts to taking smaller steps

and using the indirect scheme.

In summary, the predictor, corrector and stability algorithms presented form a robust

MATLAB toolbox for performing a single parameter study using pseudo-arclength contin-

uation.
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Appendix B

Experimental Setup

This appendix details the experimental setups used. Three sections detail the common

equipment as well as the equipment used for analog computer simulations and the screw

mounted beam experiment.

B.1 Common Equipment

All experiments were run with the general setup of Figure B.1. The experiment is

connected to two I/O systems. One performs excitation and data acquisition while the

other functioned as a Real-time DSP based controller.

Data acquisition was performed with two SigLab 20-42 units connected to an Intel

PentiumPro 200 MHz. computer running Windows95. The SigLab [58] software runs as a

Matlab© Virtual Instruments (VIs) which operate as an oscilloscope, function generator,

spectrum analyzer, network analyzer, or swept sine analyzer. In addition, long time record

capture to memory or disk is possible. All data was captured using the eight differential-

ended inputs. Excitation was via the four single-ended outputs capable of producing a

variety of signals including random, sine, step, and arbitrary. FFTs are performed real-

time using DSP code on the SigLab unless otherwise noted. Data acquisition sampling

rate, windowing, and other relevant parameters are indicated in the main text.
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Figure B.1: General Experimental Setup.

The second I/O subsystem is a DSpacea real-time controller. Control systems are de-

signed in Simulink and downloaded to the dsp chip for implementation via the Matlab ©

Real Time Workshop. This system allowed easy implementation of nonlinear real-time con-

trol, although its maximum sampling rate limitation required that a filter be used to smooth

the 5 kHz discrete output of the D/A outputs. Their effect is discussed in Chapter 5.

B.2 Analog Computer

For the analog computer tests a Compdyna Model 7000/GP-10 system was used. To

patch the two-degree-of-freedom system with a vibration absorber, all but one available

amplifier was required. Free choice of the system parameters was therefore hampered.

Additionally the limitation in maximum operating speed (time scale) imposes longer time

requirements on data acquisition. Some DC offset of the amplifier channels was also present,

and could not be eliminated. A benefit of the analog computer was the flexibility in adjusting

system parameters in real time, allowing deeper understanding of the system dynamics in

a given time than numerical integration.
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Figure B.2: Screw Mounted Beam. See text for dimensions.

B.3 Screw Mounted Beam

Experimental investigations were conducted on a screw mounted beam as seen in Fig-

ure B.2. The beam consisted of an 8.5 x 1 x 0.032 inch aluminum substrate with holes

drilled at 1/4 in. from each edge at all four corners. Through these holes, the beam was

mounted to 1/4 in. diameter supports typically used for spacing electronic circuit boards.

A machine screw was used to connect the beam to the spacer. The boundary condition

is not a classical one, but of common engineering practice with mode shapes similar to a

clamped boundary condition.

To the beam, four 1.5 x 1 x 0.010 inch nickel-electroded, G1195 piezoceramic sheets were

attached using MBond 2000 adhesive. Attachment was performed using the manufacturer's

instructions for adhering strain gauges with the sole modification that a small drop of

nickel print was placed in the center of the sheet to ensure electrical connection between

the inner electrode and the beam, thereby providing a good ground plane. Polarity of the

sheets on the top and bottom of the beam were flipped so a positive voltage applied to the

beam resulted in a bending moment when the top sheet expands and the bottom contracts.

The outer electrodes and the beam were then attached to solder tabs with fine wire. The

solder tabs were then connected to an amplifier to provide a control actuator for the beam.
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Figure B.3: Mounting of the beam.

Maximum amplifier voltage was 60 V.

To complete the beam, a Kistler K-Beam accelerometer (Type 8302A(X)S1) was at-

tached at the center of the beam along with a 0.75 x 1.0 x 0.25 inch aluminum mass. The

mass served two purposes. First, it lowered the natural frequency of the system. Second,

the additional mass causes the effect of cable damping from both the piezoelectric and ac-

celerometer leads to be reduced. The accelerometer had a sensitivity of 0.499 V/g with a

maximum of 10 g's.

The beam was mounted in an aluminum frame and attached to an APS shaker as seen

in Figure B.3. The aluminum frame had an additional K-Beam accelerometer attached to

provide a measurement of the input motion. The sensitivity of the accelerometer was 499

mv/g with a maximum of 10 g's. Additionally, two Philtec Model D170 displacement probes

were mounted to provide a measurement of the relative displacement of the beam. One was

located at the center of the beam; the other varied. Only the results from the center probe

are reported in this work. Its sensitivity was 125.33 iin/mV with a maximum of 0.1 in.

for linear response. The center displacement signal was used in the feedback control laws

implemented.
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