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ABSTRACT 

This Final Report describes our program in studies of (laminar/turbulent) stability and 

transition in non-equilibrium-chemistry flows characteristic of those on the forebodies of 

hypersonic vehicles. The configuration best modelling a hypersonic vehicle is an elliptic cone. 

Specifically, we investigated and optimized a Parabolized Navier-Stokes solution for the basic-state 

flow past a sharp elliptic cone including the region between the wall and the shock. We formulated 

the Parabolized Stability Equations for 3-D flows. 
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1. Introduction 

This Final Report describes our program in studies of (laminar/turbulent) stability and 

transition in non-equilibrium-chemistry, bounded flows characteristic of those on the forebodies of 

hypersonic vehicles. In this Report, Section 2 contains a list of accomplishments. Section 3 

contains a summary of the work. 

2. Technical Accomplishments 

In the past 3 years, 2 students have been supervised, 15 publications have been written or are 

in preparation, and 9 talks and lectures have been given. 

Publications 

"Transition Correlations in 3-D Boundary Layers," H.L. Reed and T.S. Haynes, AIAA Journal, 
Volume 32, Page 923, 1994. 

"Linear Disturbances in Hypersonic, Chemically Reacting Shock Layers," G.K. Stuckert and H.L. 
Reed, AIAA Journal., Volume 32, Number 7, Page 1384, 1994. 

"Linear Stability Theory Applied to Boundary Layers," H.L. Reed, W.S. Saric, and D. Arnal, 
Annual Review of Fluid Mechanics, Volume 28, 1996. 

"CFD Validation Issues in Transition Modelling," H.L. Reed, T.S. Haynes, and W.S. Saric, 
submitted to AIAA Journal.. 

"Numerical Investigation Nonlinear Saturation of Crossflow-Dominated Boundary Layers Using 
PSE," T.S. Haynes and H.L. Reed, submitted to Journal of Fluid Mechanics. 

"Investigation of PSE Initial Conditions for Crossflow-Dominated Boundary Layers," T.S. 
Haynes and H.L. Reed, to be submitted to Journal of Fluid Mechanics. 

"Spatial Direct Numerical Simulations," H.L. Reed, to be submitted to Progress in Aerospace 
Sciences. 

"Direct Numerical Simulation of Transition: The Spatial Approach," H.L. Reed, Invited Paper, 
AGARD Course in Transition Prediction and Modelling, AGARD Report No. 793, VonKarman 
Institute and Madrid, March 1994. 

"Use of Transition Correlations for Three-Dimensional Boundary Layers within Hypersonic 
Flows," I.J. Lyttle and H.L. Reed, AIAA-95-2293, 26th AIAA Fluid Dynamics, Plasma 
Dynamics, and Lasers Conference, San Diego, June 19-22, 1995. 

"Use of Transition Correlations for Three-Dimensional Boundary Layers within Hypersonic, 
Viscous Flows," I.J. Lyttle and H.L. Reed, Second Symposium on Transitional and Turbulent 
Compressible Flows, 1995 Joint ASME/JSME Fluids Engineering Conference, Hilton Head, 
August 1995. 

"Computations in Nonlinear Saturation of Stationary Crossflow Vortices in a Swept-Wing 
Boundary Layer," T.S. Haynes and H.L. Reed, AIAA 34th Aerospace Sciences Meeting and 
Exhibit, AIAA-96-0182, January 1996. 

"CFD Validation Issues in Transition Modelling," T.S. Haynes, H.L. Reed, and W.S. Saric, 
Invited Paper, A1AA-96-2051, Special Session on Verification and Validation: Uncertainties and 
Special Panel on Quantification of CFD Uncertainties, 27th AIAA Fluid Dynamics Conference, 
New Orleans, June 17-21, 1996. 
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"Drag Prediction and Transition in Hypersonic Flow," H.L. Reed, W.S. Saric, R. Kimmel, S. 
Schneider, and D. Arnal, Invited Paper, AGARD Interpanel (FDP&PEP) Symposium on "Future 
Aerospace Technology in Service to the Alliance", Paris, France, April 14-18, 1997 

"Drag Prediction and Transition in Hypersonic Flow," H.L. Reed, R. Kimmel, S. Schneider, and 
D. Arnal, Invited Paper, AIAA-97-I818, Snowmass, June 1997. 

"Role of Direct Numerical Simulations in Transition Modelling," H.L. Reed, Invited Paper, First 
AFOSR DNS/LES Conference, New Orleans, August 1997. 

Presentations 

"Direct Numerical Simulation of Transition: The Spatial Approach," H.L. Reed, Invited Paper, 
AGARD Course in Transition Prediction and Modelling, AGARD Report No. 793, VonKarman 
Institute and Madrid, March 1994. 

"Use of Transition Correlations for High-Speed Three-Dimensional Boundary Layers," I.J. Lyttle 
and H.L. Reed, Bulletin of the American Physical Society, Volume 39, Number 9, Page 1913, 
November 1994. 

"Use of Transition Correlations for Three-Dimensional Boundary Layers within Hypersonic 
Flows," I.J. Lyttle and H.L. Reed, AIAA-95-2293, 26th AIAA Fluid Dynamics, Plasma 
Dynamics, and Lasers Conference, San Diego, June 19-22, 1995. 

"Use of Transition Correlations for Three-Dimensional Boundary Layers within Hypersonic, 
Viscous Flows," I.J. Lyttle and H.L. Reed, Second Symposium on Transitional arid Turbulent 
Compressible Flows, 1995 Joint ASME/JSME Fluids Engineering Conference, Hilton Head, 
August 1995. 

"Computations in Nonlinear Saturation of Stationary Crossflow Vortices in a Swept-Wing 
Boundary Layer," T.S. Haynes and H.L. Reed, AIAA 34th Aerospace Sciences Meeting and 
Exhibit, AIAA-96-0182, January 1996. 

"CFD Validation and Verification Questions in Transition Modelling," T.S. Haynes, H.L. Reed, 
and W.S. Saric, Invited Paper, AIAA-96-2051, Special Session on Verification and Validation: 
Uncertainties and Special Panel on Quantification of CFD Uncertainties, 27th AIAA Fluid 
Dynamics Conference, New Orleans, June 17-21, 1996. 

"Drag Prediction and Transition in Hypersonic Flow," H.L. Reed, W.S. Saric, R. Kimmel, S. 
Schneider, and D. Arnal, Invited Paper, AGARD Interpanel (FDP&PEP) Symposium on "Future 
Aerospace Technology in Service to the Alliance", Paris, France, April 14-18, 1997 

"Drag Prediction and Transition in Hypersonic Flow," H.L. Reed, R. Kimmel, S. Schneider, and 
D. Arnal, Invited Paper, AIAA-97-1818, Snowmass, June 1997. 

"Role of Direct Numerical Simulations in Transition Modelling," H.L. Reed, Invited Paper, First 
AFOSR DNS/LES Conference, New Orleans, August 1997. 

Ph.D. Students 

T. Haynes, "Nonlinear Stability and Saturation of Crossflow Vortices in Swept-Wing Boundary 
Layers," completed Fall 1996. 

I. Lyttle, "Stability of Hypersonic Flow over an Elliptic Cone," expected Summer 1998. 
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3. Completed Work 

3.1 Introduction 

The world over, theorists and experimentalists are investigating the problems associated with 

hypersonic flight. Much of the current research into hypersonic flight is concentrated in the range 

of Mach 5 to Mach 15 (Reshotko, 1992). The skin-friction drag and heat-transfer rates of 

hypersonic vehicles depend on the state of the boundary layer, that is, whether it is laminar or 

turbulent. Moreover, the performance of the engine depends on the state of the boundary layer at 

the inlet. But the characteristics of transition at these speeds are not well understood. Transition is 

known, however, to be highly dependent on the details of the flowfield. 

The current conceptional design of the hypersonic vehicle includes a forebody which could be 

modeled as a sharp cone with an elliptical cross-section. It is this geometry, at zero angle-of- 

attack, that is of interest to this study. The boundary layers associated with this geometry are 

three-dimensional. As Reed & Saric (1989) point out, three-dimensional boundary layers are 

susceptible to crossflow instabilities, as well as stream wise instabilities. In fact, these crossflow 

instabilities are often the dominant mechanisms responsible for transition, and, in discussions on 

upper-atmosphere hypersonic transition experiments, much consideration has been given to the 

minimization of three-dimensional effects (Kimmel, 1994). 

Hypersonic flows are more complicated than subsonic and supersonic flows for some of the 

following reasons. 1) At hypersonic speeds, the gas often cannot be modeled as perfect because 

the molecular species begin to dissociate due to aerodynamic heating. In fact, sometimes there are 

not enough intermolecular collisions to support local chemical equilibrium and a nonequilibrium- 

chemistry model must be used. 2) The bow shock is very close to the edge of the boundary layer 

and must be included in the calculations. 3) The boundary layers on the forebody are highly 3-D. 

All of these effects must be included in predictions of transition. 

3.2 Chemically Reacting Basic-State Flow 

The purpose of this investigation is to examine the three-dimensional nature of boundary 

layers found on shaip cones of elliptical cross section. Initially, the basic state is solved using a 

finite-difference formulation of a set of Parabolized Navier-Stokes (PNS) equations. The set of 

PNS equations used is that derived by Lubard & Helliwell (1974). The finite-difference algorithm 

used to solve these PNS equations descends from the scheme derived by Tannehill et al. (1982). 

Since the boundary layer occupies a substantial fraction of the shock layer at hypersonic speeds, 

these equations are transformed into a coordinate system where the basic-state bow shock is a 

boundary of the computational domain. We recognize that for complex flowfields with strong 

viscous/inviscid interaction, reduced forms of the equations of motion do not provide solutions 
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accurate enough for transition studies, and it is necessary as a next step to solve either the full 

Navier-Stokes (NS) or Thin-Layer-Navier-Stokes (TLNS) equations. We are in the process of 

formulating and completing this activity. 

Code Optimization 

We have already made major improvements to increase the computational efficiency of the 

PNS scheme. The reason we did this was in preparation for the addition of the nonequilibrium- 

chemistry terms and the extension to either the full Navier-Stokes or Thin-Layer-Navier-Stokes 

formulations, which (we knew from our previous experience) would significantly increase the 

magnitude of the problem. 

For the Cray Y-MP and the Cray C-90, there is a facility called vectorization, whereby the 

CPU can act like an assembly line. This allows many operations to be performed at one time, 

increasing the number of arithmetic operations performed without increasing the amount of CPU 

time used. To achieve vectorization, certain rules must be followed concerning the order of 

operations, etc. In many cases, this requires major changes in the algorithm and corresponding 

changes in the code. For this research, vectorization is possible and is exploited. The most 

computationally intensive parts of the program involve the solution of block-tridiagonal systems of 

equations. The majority of the optimization effort was placed here. 

Step 1. A routine was written to invert matrices on the diagonal to exploit their structure. 

Step 2. Major input and output routines use binary files instead of ASCII files. 

Step 3. The block-tridiagonal systems are solved plane-by-plane instead of line-by-line. 

Step 4. The algorithm was analyzed to remove code which was not necessary. 

A simple representative run of the code was performed to gauge the effectiveness of the 

optimization. The speed improvements do not correspond exactly to the improvements in time 

because Step 4. was carried out over the entire course of the optimization. The top speed of one 

CPU of the Cray Y-MP is 338 MFLOPS. According to the staff at CEWES, this is a theoretical 

limit that is rarely approached. However, they are supportive of efforts to achieve such goals. 

Code Speed (MFLOPS)        CPU Time to complete (s) 

207 
33 
22 
8 

Before optimization 10.4 
After Step 1 40.9 
After Step 2 60.7 
After Step 3 163.6 
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SIGNIFICANCE One obvious benefit of this effort is the major savings of CPU resources 

for this project. Further more complex and resource intensive codes written in support of this 

research will be written using the principles learned in this simple initial effort. This will result in 

more efficient use of a valuable, limited resource to solve a critical national problem. 

Chemistry 

Qualitative as well as quantitative differences in the transition of the shock layer on a forebody 

can be observed when the effects of finite-rate chemical reactions are included. We are following 

the studies of stability on a cone of circular cross-section by Stuckert & Reed (1994) who used a 

five-component model for dissociated air: O2, N2, NO, N, and O. Only the effects of dissociation 

were considered; those of ionization were not. The mixture was also assumed to be one of ideal 

gases in thermal equilibrium. The viscosity used to determine the viscous stress tensor was 

computed using the mixture laws of Brokaw (1958). The translational thermal conductivity was 

computed similarly, whereas the internal thermal conductivity was determined as described in 

Hirschfelder (1957). The molar fluxes were computed using the multicomponent diffusion model 

described by Curtiss & Hirschfelder (1949), but only diffusion due to concentration gradients was 

included - diffusion due to pressure and temperature gradients and body forces was not. Finally, 

the law of mass action was used to compute the molar rate of production of each species assuming 

that they participate in the elementary reactions: 

02 + M<->0 + 0 + M 

N2 + M^N + N + M 

NO + M^N + O + M 

N2 + O <-> NO + N 

O + NO ^ N + O2 

where M is a collision partner (any of the species present in the mixture) which transfers energy in 

a reaction. 

The thermophysical data needed for the analysis were taken from a variety of sources. 

Collision cross section data for the transport properties were found in Biolsi & Biolsi (1983), 

Biolsi (1988), Capitelli & Devoto (1973), Capitelli & Ficocelli (1972), Cubley & Mason (1975), 

Levin et al. (1987, 1988), Monchick (1959), and Yun & Mason (1962). Thermodynamic data 

were taken from Blottner et al. (1971) and Jaffe (1987). Reaction-rate data were found in Camac 

& Vaughan (1961), Wray (1962), Thielen & Roth (1986), Monat et al. (1978), and Hanson & 
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Salimian (1984). Reverse reaction-rate constants were computed using the law of detailed balance 

to express them in terms of the forward-rate and equilibrium constants. For a complete description 

of the constitutive equations as well as detailed references for the thennophysical data, refer to 

Stuckert (1991). 

Josyula & Shang (1993) at Wright Patterson Air Force Base computed the 2-D steady, basic- 

state flow over a hemisphere-cylinder at Mach 10-18 Hemisphere-Cylinder. They used an explicit 

NS formulation with a 5-component chemical non-equilibrium model, comparable to Stuckert & 

Reed's. However, the objective of their work was to determine the sensitivity of heat-transfer 

predictions to the temperature model used (single temperature to multi-temperature, Stuckert & 

Reed used single temperature). They used a 40 x 50 grid on a CRAY XMP, which performed at 

3.38E-4 cpu-s/(pt.iteration) and required 20,000 iterations to converge. 

At this point we have successfully included equilibrium chemistry in the PNS equations. 

Over the next year, we shall incorporate non-equilibrium chemistry and investigate the effects of 

(sensitivity to) chemistry (equilibrium and non-equilibrium), as well as formulate and solve either 

the full Navier-Stokes (NS) or Thin-Layer-Navier-Stokes (TLNS) equations. 

3.3    Parabolized Stability Calculations for Transition Prediction 

3.3.1     Introduction 

In wall-bounded shear layers, transition occurs because of an incipient instability of the basic 

flow field, which depends intimately on subtle, and sometimes obscure, details of the flowfield. In 

other words, the wall-bounded shear layer is an open system. Disturbances in the freestream, such 

as sound or vorticity, enter the boundary layer as steady and/or unsteady fluctuations of the basic 

state. This part of the process, called receptivity (Morkovin 1969, Reshotko 1984), provides the 

vital initial conditions of amplitude, frequency, and phase for the breakdown of laminar flow. The 

recent progress in this area is summarized in Goldstein & Hultgren (1989) and Saric et al. (1994). 

Initially these disturbances may be too small to measure and they are observed only after the 

onset of an instability. The initial growth of these disturbances is described by linear stability 

theory (LST). Reed et al. (1996) review this subject. 

For two-dimensional (2-D) boundary layers, this growth is weak, occurs over a viscous 

length scale, and can be modulated by pressure gradients, mass flow, temperature gradients, etc. 

As the amplitude grows, three-dimensional (3-D) and nonlinear interactions occur in the form of 

secondary instabilities (Herbert 1988, Cowley & Wu 1994, Healy 1995). At this point, 

disturbance growth is very rapid (now over a convective length scale) and breakdown to turbulence 

occurs quickly. 
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3.3.2 Formulation 

In this Section we present the formulation for the research. Our main focus is the stability and 

transition of boundary-layer type flows. For transition analysis using the Parabolized Stability 

Equation (PSE) approach, equations governing the disturbance are typically solved separately from 

the basic state. The validity of the basic-state formulations must also be considered since the 

transition process is known to be sensitive to subtle changes in the basic state. In all cases the 

numerical accuracy of the basic state must be very high, because the stability and transition results 

will be very sensitive to small departures of the mean flow from its "exact" shape. The stability of 

the flow can depend on small variations of the boundary conditions for the basic state, such as 

freestream velocity or wall temperature. Therefore, basic-state boundary conditions must also be 

very accurate. See the discussion and examples of Arnal (1994) and Malik (1990). 

3.3.3 Parabolized  Stability Equations 

In recent years the parabolized stability equations (PSE) have become a popular approach to 

stability analysis owing to their elegant inclusion of the nonparallel and nonlinear effects which are 

ignored by LST (Herbert 1994; Bertolotti 1990). For linear PSE (LPSE), we consider a single 

monochromatic wave as the disturbance. The disturbance is decomposed into a rapidly varying 

"wave function" and a slowly varying "shape function". We accomplish this here with a multiple 

scales approach. 

(j)'(x,y,z,t) =   ${x,y)      x(x>z,t)+c.c. (1) 
sliapefunctian     wavefunction 

where 

^ = ia(x),   % = //?,   % = -ico (2)-(4) 
OX dl at 

This gives the following form for the streamwise derivatives: 

^ = {-RX+lCX(p]X + C-C- (5) 

d2Q'      I   1   d2<p    2ia dd)    id) da       -,-} 
-' r+ r. + _r. or<p\x + c.c. (6) 

dx1       \Rl dx1       R   dx     R IX 

The shape function 0 and wavenumber a depend on the slowly varying scale x while the wave 

function % depends on the rapidly varying scale x (x = Rx). 

In the PSE approach the second derivative term in  (6)  is  neglected based  on  physical 

arguments. Substituting into the disturbance equations gives a system of equations of the form: 
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(Lr) + Z,)0 + L2f + 0L,^ = O (7) 
ox ox 

Here Lais the compressible version of the Orr-Sommerfeld operator (provided curvature terms 

have been neglected), L, contains the nonparallel basic state terms, L,and  Z^arise due to the 

nonparallel disturbance terms.    The system of equations  (7)  is parabolic and thus requires 
boundary and initial conditions. The boundary conditions at y = Oand y - ymaxare: 

w = v = H> = f = 0 (8) 

Notice that setting L,, L^, and L, equal to zero removes the nonparallel effects and the problem 

(7)-(8) reduces to the linear parallel problem. 

There still remains the matter of the ambiguity in ^-dependence between  </>and  % in the 

decomposition (4). This ambiguity is resolved by imposing any of the normalization conditions 

^ =0 (9) 
u   ox 

y    -' max 

j v — dy = 0 (10) 
o ox 

r   * du 
ü—dy = 0 (11) 

o     Ä 

where ^max is the location of the maximum magnitude of w (superscript * denotes complex 

conjugate). Many other normalizations are possible. The normalization ensures that any rapid 

changes in the streamwise direction will be "absorbed" by the wave function so that the shape 
function will vary slowly in this direction. This permits us to discard the   0\l/R2)  second 

derivative term in equation (6). Other normalizations may be used and will give slightly different 

results. Herbert (1994) is working on an "optimal norm" that will minimize the effect of the PSE 

approximation on the solution. An integral normalization may be used rather than one applied at 
v = ynlaxto avoid the problems associated with shape functions developing multiple maxima. 

To complete the problem formulation, initial values of the disturbance flow quantities must be 
specified at some streamwise location (x„) for the start of the analysis.   If the analysis begins in a 

region where the initial disturbance amplitudes are small, the LST can be used to obtain these initial 

conditions. 

The nonlinear PSE (NPSE) are derived in a fashion similar to LPSE.    Each disturbance 

quantity is transformed spectrally in the spanwise and temporal directions using 
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n=-»*= 
shapefunct'ton wuvefunaion 

where 

dx = \n,k)ia(n,k)(X) (13) 

Here each mode, (n,k), is considered to be the product of a shape function and a wave function. 

Because the physical disturbance quantities are real, 

a(n,k) = -a(-n-ky     P(n,k) = P{-n,-k)>     U(n,k) = "(-/.,-*)'      V*) = \'<-k) 

- -   -* T -f* * (14) 
W(„,k) ~ W(-n,-k)>     T(n.k) - T(-n,-k)>     A(„.k) - A{-„.-k) 

If the basic state is symmetric with respect to the z-direction, the following additional relationships 

among the disturbance quantities hold: 

a(n,k) = a(n,-k)>     P(n,k) ~ P(n.-*)'     U(n,k) = "(«,-*)'     V(«,it) = V(»,-A) 

« « ~ ~ N ' 

•(n,k) ~ ~^\„-ky      T(n,k) = T(n-k)>     \n,k) ~ \n-k) 

Substituting (12) into the disturbance equations gives a system of equations of the form 

1   ±\{L0+^ + Ä~^\     A(n,k)e^-n^ = N (16) 

The left hand side consists of the linear- terms, while the right hand side consists of the nonlinear 

terms. The portion in brackets on the left hand side contains the same quantities as in equation (7) 
for LPSE except the quantities a and 0now carry the subscripts (n,k) identifying them with a 
particular- mode, and co and ß appearing in equation (7) must be replaced with nco 0 and kß 0 

respectively. 

The nonlinearities are quartic for compressible flows where the effect of thermal property 

fluctuations is considered to be important. For incompressible flows this effect can be neglected 

leading to only quadratic nonlinearities. In fact, it is reasonable to neglect the cubic and quartic 

nonlinearites for compressible computations at moderate Mach numbers for cases where their effect 

on the solution is small. This results in considerable savings since the higher-order nonlinear 

terms are expensive to compute. 

Since a numerical solution to the system (16) is desired, a finite number of modes (n,k) must 

be considered, so the analysis will be restricted to -N < n < N, - K < k < K. This is not a 

severe restriction since we are interested in the downstream evolution of disturbances which 

consist of only a few modes of finite amplitude at the starting location of the analysis. As the 
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disturbances propagate downstream they may be amplified and grow to the point where they excite 

higher modes through nonlinear interactions. Typically, the magnitude of the nonlinear terms is 

monitored during the numerical solution and modes will be included in the analysis as they become 

important. 

Harmonic balancing of equations (16) for a finite number of modes leads to a system of 

equations governing each (n,k) mode (neglecting higher-order nonlinearities). 

j(L„ + Z^ + Z,| + ^|U      A{iU)=    X      X;V(„2,Wi) (17) 
\n2\<N    \k2\<K 
\,h\<N    \k,\<K 

The boundary conditions (8) must then be applied for all the modes except the mean-flow 

distortion (MFD). This mode (?i=k=0) requires a special boundary condition for the normal 
velocity at y = vmax to allow for changes in the displacement thickness of the mean-flow profile. 
The boundary condition v,0 0N = Ois then replaced with 

^°'0)=0 (18) 
dy 

For problems where there is basic-state z-symmetry we need only to solve for 1/4 of the modes (0 

<n < N, 0 < k < K). The remaining modes will be required during calculation of the nonlinear 

terms, but they can be computed from the former set of modes by using equations (14)-(15). If no 

z-symmetry exists the computational effort may still be halved using the conditions of realness of 

the physical disturbance (equations (14)). The nonlinear terms in equation (17) couple the 

governing equations for all the modes. 

Once the continuous PSE have been derived, there are a number of discretizations available. 

The codes developed by Bertolotti (1990), Stuckert et al. (1993), Stuckert et al. (1994) use 

Chebyshev collocation in the wall-normal direction and backward-Euler finite differences for the 

streamwise direction. The backward-Euler finite difference helps damp transients that occur as a 

result of approximations used to obtain the initial conditions. Bertolotti (1990) uses backward- 

Euler discretization near the initial location and slowly switches to Crank-Nicolson further 

downstream. Chang et al. (1991) use either a fourth-order central-difference or compact two-point 

scheme for derivatives in the wall-normal direction and second-order backward differences (multi- 

step) in the streamwise direction. Haynes & Reed (1996) use fourth-order central differences for 

derivatives in the wall-normal direction and backward-Euler discretization in the streamwise 

direction. 
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Although the removal of part of the second-derivative terms in the PSE formulation apparently 

results in a system of parabolic differential equations, there is still some elliptic behavior associated 

with the upstream propagation of acoustic disturbances. This situation is analogous to the 

parabolizing procedures used to develop the PNS equations (Anderson et al. 1984). For 

incompressible formulations the streamwise derivative of the shape function for pressure may be 

dropped, or a large enough stepsize can be used to "step over" the elliptic region (Malik & Li 

1993). The two-dimensional incompressible formulation of Bertolotti (1990) avoids this difficulty 

by using a streamfunction formulation. For compressible PSE the resulting equations are 

hyperbolic in the supersonic region and elliptic in the subsonic region. Here the Vigneron 

technique (Vigneron et al. 1978) can be used to suppress the upstream wave propagation in the 

subsonic portion of the boundary layer. 

We have formulated and coded the PSE formulation for a surface (including curvature). Then 

we verified and validated our code. The basis of validation, or confirming that the equations used 

to model the physical situation are appropriate, is assumed to be a successful comparison with the 

few careful, archival experiments available in the literature. 

Over the next year, equilibrium effects will be included and the flow over the circular cone 

investigated using the PSE analysis. 

Verification 

We consider verification to mean "confirming the accuracy and correctness of the code". 

There are mainly three sources of error in the abstraction of continuous PDE's to a set of discrete 

algebraic equations; (1) discretization errors, (2) programming errors (bugs), and (3) computer 

round-off errors. Of the above three, only programming errors can be completely eliminated. The 

objective of code verification is then to completely eliminate programming errors and confirm that 

the accuracy of the discretization used in solving the continuous problem lies within some 

acceptable tolerance. Aside from specifying single or double precision, the code developer has little 

control over the computer round-off errors, but this is usually several orders of magnitude smaller 

than the discretization error and far less than the desired accuracy of the solution. 

In this section we address programming and discretization errors. Many methods are 

discussed in the literature for code verification using grid refinement, comparison with simplified 

analytical cases, etc. For recent discussions see Roache (1997) and Oberkampf et al. (1995). 

Specific suggestions for testing a CFD code for the study of transition include (a) grid-refinement 

studies, (b) solving test problems for which the solution is known, (c) changing the "far-field" 

boundary locations systematically and re-solving, (d) comparing linear growth rates, neutral 

points, and eigenfunctions with linear stability theory, (e) running the unsteady code with time- 
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independent boundary conditions to ensure that the calculations remain steady, and (f) running 

geometrically unsymmetric codes with symmetric conditions. 

In addition to the usual code verification techniques, there is a general method which we used 

to verify the discretizations and locate programming errors by comparison with "manufactured" 

analytical (Steinberg & Roache 1985). This method is general in that it can be applied to any 

system of equations. Although it is an extremely powerful tool, this method has received little 

acclaimation in the literature. 

For clarity the technique is demonstrated on the Poisson equation. 

LUS + =F(Xty) (19) 
ox      ay 

To solve this problem we discretize the operator L using some appropriate approximation (finite 

differences, spectral, etc.). In general, the exact solution is not available. Therefore, for 

verification purposes, we force the solution to (19) to be some combination of analytical functions 

with nontrivial derivatives.  For example, we might consider the system  g = Lv = 5e3>' sin(2;c), 

which has an analytical solution v = e3>'sin(2x). The exact solution can then be compared with 

the computed solution. Of course, manufactured solutions should be chosen with topological 

qualities similar to those anticipated for the solution to the "real" problem (e.g. gradients close to 

the wall). Proper choice for the manufactured solutions also allows the discretization of the 

boundary conditions to be verified. For large systems of equations a symbol manipulator is 

recommended for computing g. If a bug occurs, zeroing the coefficients of some terms in equation 

(16) can help to isolate the bug. 

We recommend this method in addition to the other specific suggestions mentioned above for 

code verification. Code validation is discussed in the next Section. 

Validation 

To date the PSE have been applied to a variety of 2- and 3-D flow situations and are generally 

regarded as appropriate for convectively unstable flows (Haynes & Reed 1996; Schrauf et al. 

1995; Stuckert et al. 1994; Wang et al. 1994; Stuckert et al. 1993; Herbert & Lin 1993; Herbert 

1994; Malik & Li 1993; Bertolotti et al. 1992; Chang et al. 1991; Bertolotti 1990). 

Bertolotti et al. (1992) verified the PSE approach for T-S (two-dimensional) disturbances in a 

Blasius boundary layer by comparison with the DNS results of Bayliss et al. (1986). For this 

nonlinear case they compared not only the growth rates, but also the mode shapes of the harmonics 

and found excellent agreement. Three-dimensional nonlinear PSE stability results were compared 

with the experimental results of Kachanov & Levchenko (1984), but only qualitative agreement 
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was achieved. The differences are attributed to virtual leading-edge and slight pressure-gradient 

effects in the experiment. Comparison of the same PSE results with DNS results of Fasel et al. 

(1990) and Crouch (1988) show better agreement. The experimental results of Cornelius (1985) 

for K-type transition are compared with PSE results and qualitative agreement is found. 

All of the above results are on a flat plate. The only available experiments against which to 

validate our 3-D curved-surface code are those of Reibert et al. (1996) on an NLF(2)-0415 swept 

airfoil. The nonlinear PSE results include curvature effects. It is clear that the linear theories fail to 

accurately predict the transitional flow for this situation. Studying a comparison of the 

experimental and computational disturbance mode shapes, we demonstrated that the nonlinear PSE 

does an excellent job of capturing the detailed profiles. See Haynes & Reed (1996). 

Global Eigenvalue  Solver 

To generate initial conditions for the nonlinear PSE code, we have also developed a global 

eigenvalue solver to predict which disturbances are most likely to break down to turbulence. We 

apply this code to the results of the basic-state code, and then apply the PSE to predict transition 

location. 
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