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1    INTRODUCTION 

Abstract 

The element-free Galerkin (EFG) method is a mesh-free method for solv- 
ing solid mechanics problems with an approximation based only on nodes. It 
is developed here for linear elastic fracture problems. Smoothing of mesh-free 
approximations near nonconvex boundaries is done by three methds: (1) the 
diffraction method, in which the nodal domain of influence wrapped a short 
distance around a boundary, (2) the transparency method, which is described 
only for cracks, yields continuous approximations by gradually severing the 
domains of influence near crack tips, and (3) the "see-through" method, or 
continuous line criterion, which does not enforce a discontinuity or crack if the 
tip is within the domain of influence. Two methods for enriching EFG approxi- 
mations for linear elastic fracture problems are described: extrinsic enrichment 
involves adding the form of the solution to the trial function; for intrinsic en- 
richment, the EFG basis is expanded to include terms from the near tip crack 
solution. Several problems are solved to illustrate the effectiveness of EFG 
crack propagation with smoothing and enrichment. 

1    Introduction 

The element-free Galerkin (EFG) method is a recently developed computational tool 
which has been used extensively for computing arbitrary crack paths. EFG uses a 
Galerkin scheme for approximating the solution to partial differential equations with 
an approximant written in terms of a set of nodes and the surfaces of the model. This 
class of methods is often called meshless, gridless or particle methods because of the 
absence of any predefined nodal connectivity. 

Meshless methods have been in existence since the late 1970's. Lucy (1977) intro- 
duced a particle method called smoothed particle hydrodynamics (SPH) for modeling 
astrophysical phenomena and Gingold and Monaghan (1982) and Monaghan (1982) 
used this method for problems without boundaries, such as rotating stars and dust 
clouds. Libersky and Petschek (1991) extended this method to solve solid mechan- 
ics problems. Swegle, Hicks, and Attaway (1995) noted a tensile instability existed 
in SPH and Attaway, Heinstein, and Swegle (1994) coupled SPH to finite elements 
through a contact algorithm. 

A separate branch of meshless methods arose from the work of Nayroles, Touzot, 
and Villon (1992), who proposed a diffuse element method (DEM) using a basis 
function and a weight function to form a local approximation based on a set of nodes. 
Belytschko, Lu, and Gu (1994) recognized that this approximation was actually the 
moving least squares (MLS) approximation of Lancaster and Salkauskas (1981) and 
developed a similar method called the element-free Galerkin (EFG) method which has 
been used extensively for fracture and crack growth (Belytschko, Gu, and Lu, 1994; 
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Belytschko, Lu, Gu, and Tabbara, 1995; Lu, Belytschko, and Tabbara, 1995). Liu, 
Jun, and Zhang (1995) also proposed a meshless method called the reproducing kernel 
particle method (RKPM) with an approximation based on a convolution integral. The 
form of the convolution was similar to SPH, but it contains a correction function which 
corrects for consistency near boundaries and for nonuniform spacing. Belytschko, 
Krongauz, Organ, Fleming, and Krysl (1996) have shown that the discrete form of 
the convolution integral yields approximants which are identical to those which come 

from MLS. 
Meshless methods based on partitions of unity seem to provide an efficient ve- 

hicle for performing hp adaptivity. These methods include /ip-clouds (Duarte and 
Oden, 1996b) and the partition of unity finite element method (PUFEM) (Melenk 
and Babuska, 1996). The hp-doud method begins with a partition of unity based 
on moving least squares and enhances the polynomial order of the approximation 
through an extrinsic basis which can be added locally to nodes. 

Other meshless methods which have evolved are the particle in cell (PIC) method 
(Sulsky, Zhou, and Schreyer, 1995), the generalized finite difference method (Liszka 
and Orkisz, 1980) and the finite point method (Ofiate, Idelsohn, Zienkiewicz, Taylor, 
and Sacco, 1996). Belytschko, Krongauz, Organ, Fleming, and Krysl (1996) provide 
a comprehensive review of the state-of-the-art in meshless methods and details the 
relationship between several of the key-methods. 

The element-free Galerkin method can provide an excellent complement to finite 
element methods in situations where finite elements is not well suited. A formula- 
tion has been presented in Belytschko, Organ, and Krongauz (1995) for consistently 
coupling EFG and FE by blending the approximations in a transition element. This 
allows t'he speed and simplicity of finite elements to be exploited where possible while 
allowing EFG to be used in regions where a meshless method is appropriate. 

One class of problems which is inherently difficult with finite element methods 
is crack propagation for arbitrary crack paths. The predefined connectivity of the 
element structure in finite element methods requires special treatment if a crack is 
to be extended. Crack propagation has been modeled with finite elements in several 
ways. Early crack growth with finite elements was done by nodal release methods in 
which cracks were grown along finite element boundaries (Malluck and King, 1980). 
As the crack grew, the elements were unzipped to create new surfaces. This method 
suffers from a great deal of mesh dependence for arbitrary crack propagation. In 
addition, the crack increment is set by the element size because the crack grows from 
node to node. 

The most obvious way to handle crack propagation is by remeshing the geometry. 
Swenson and Ingraffea (1988) presented a local remeshing technique in which elements 
ahead of the crack tip in the propagation direction were removed and the crack was 
extended.   This area was triangulated to create a new local crack tip mesh.   This 
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method has the advantage that a vast amount of existing finite element technology 
can be used for support. There are some drawbacks to this method such as difficulties 
if the crack step size is too small, then remeshing is unwarranted. Complex geometries 
and interacting crack tips are also potential difficulties as is rerunning a step with a 
smaller crack increment. 

Al-Ostaz and Jasiuk (1995) modeled fracture and crack growth with finite elements 
by deleting elements which met a yield criterion. This approach, which is not based 
on fracture mechanics, requires a very fine mesh to get an acceptable representation of 
a crack. Other techniques for modeling crack growth include spring network models 
in which the material is represented by a network of springs and crack propagation 
is simulated by breaking springs (Schlangen and Mier, 1992). Boundary element 
methods have also been used to model, crack propagation (Gallego and Dominguez, 
1992). This method is attractive due to the absence of a domain mesh, making crack 
extension relatively simple. However, the requirements of a Green's function has 
limited the scope of problems this method is able to solve. 

This report focuses on the element-free Galerkin methods for computational frac- 
ture mechanics. In Section 1, the moving least squares methodology is reviewed and 
used to construct discrete EFG approximations. Issues in modeling cracks in a mesh- 
less method are discussed. The elastostatic boundary value problem is presented 
along with its associated weak form. -Approximation of the solution with EFG is 
presented and the topics of nodal domains of influence and integration of the weak 
form are discussed. It should be noted that the definition of a meshless method is one 
in which no predefined element connectivity exists for determining the approximant. 
Some confusion invariably arises when the meshless approximant is used in a Galerkin 
method Integration of the weak form is performed by Gauss quadrature which re- 
quires some sort of integration cells. Although this detracts from the "meshless" 
nature of the method, the background cell structure by no means destroys it. 

Smoothing of EFG approximation near nonconvex boundaries is presented in Sec- 
tion 4. Without smoothing, EFG approximations near nonconvex boundaries such 
as crack tips will contain discontinuities which extend into the domain. These dis- 
continuities arise due to nodal domains of influence which are truncated whenever a 
ray from a node to a sampling point grazes the boundary. The diffraction method 
smooths EFG approximations by wrapping the nodal support a short distance around 
the point at which the discontinuity would begin. The transparency method, which 
is written only for cracks, yields smooth approximations by gradually enforcing the 
crack. The "see-through" method, or continuous line criterion, does not enforce non- 
convex boundaries for situations in which a continuous line can be drawn between 
the node and a sampling point without leaving the domain of influence. 

Section 5 presents enrichment techniques for the EFG method. These methods 
hinge on knowledge of the solution form and are developed for linear elastic cracks. 



2   MESHLESS APPROXIMATIONS BY MLS 

The enrichment method can be categorized in two ways: extrinsic enrichment en- 
hances the approximation by adding functions to the approximation; in intrinsic 
enrichment, the intrinsic basis is expanded to include enrichment terms. For linear 
elastic cracks, enrichment can consist of adding the y/r term or adding the entire 
near-tip asymptotic solution. 

Several example problems are presented in Section 6 to show the effects of the 
smoothing and enrichment as well as illustrate the effectiveness of EFG for solving 
problems of arbitrary crack growth. 

2    Meshless Approximations by MLS 

A meshless approximation for a discrete system is one which is written entirely in 
terms of the parameter values at nodes - no predefined connectivities are used as 
with finite elements or finite differences. A smooth, monotonically decreasing weight 
function is defined at each node such that the whole domain is covered. Common 
shapes of weight functions in two dimensions are circles and rectangles (see Figs. 1). 
The counterparts of these in three dimensions are spheres and bricks. 

Two commonly used weight functions are the Gaussian and the quartic spline 
given in Eqs. (1). For the circular weights shown in Fig. la, the weight functions are 

rexp(-Wc)2)-exp(-(cWc)2)    dl < dmI 

Gaussian:    w(di) = < 1 — exp(—(dmi/c)2) ~   m (la) 
[ 0 d,! > dmi 

[■     r        M,    l1-<(7L)' + *(7L)'-*(7L),   d'^d- quartic spline:    w{dI) = < \dmI J \dml J \dmi J 
I 0 di > dmI 

(lb) 

where dj = ||x — xj|| is the distance from a sampling point x to a node xj, and dmi 
is the domain of influence of a node, i.e., the area for which the weight function is 
nonzero. The variable c in the Gaussian weight is used to control the dilation of 
the weight function. It is useful to define a characteristic nodal spacing, c/, which 
is a distance such that a node will yield a minimum set of neighbors sufficient for 
regularity of the equations used to determine the approximant. The weight function 
parameters are defined in terms of cj 

dmi = dmaxC] (2) 

c = occj (3) 
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(b) Rectangular. 

Figure 1: A computational model for a meshless method showing the bound- 
ary, nodes and supports. 



2   MESHLESS APPROXIMATIONS BY MLS 

where dmax and a are constants. For the Gaussian weight function in Eq. (la), the 
parameter a is a dilation parameter which controls the shape of the weight function. 
If a is kept constant while dmax is increased, the shape of the weight function will not 
change and the effective domain of influence will be smaller than the actual domain of 
influence. It is necessary to have the ratio dmaxla > 4.0 to avoid poorly-formed shape 
functions. In addition, a > 0.5 is needed for smooth shape functions and derivatives. 
In this report, the Gaussian weight with dmax = 2.5, a = 0.625(= dmax/4)is used 
unless otherwise stated. The characteristic nodal spacing, cj, is chosen as the distance 
to the second nearest neighbor for regularly spaced nodes and the distance to the third 
nearest neighbor for irregularly spaced nodes. 

The approximation of a function u(x) at any point x in the domain ti is written 

u*(x) = pT(x)a(x) (4) 

where p(x) is a basis (usually polynomial) and a(x) are unknown coefficients. Some 
complete polynomial bases are 

ID: pT(x) = [l,x] linear (5a) 

pT(x) = [l,x,.x2] quadratic (5b) 

pT(x) = [l,x,y] ' linear (5c) 

pT(x) = [l,x,y,x2,xy,y2] quadratic (5d) 

2D: 

In Section 5 it is shown that other functions can be added to the basis in situations 
where it is desirable to enrich the solution. 

To find the approximation of the field variable by Eq. (4), it is necessary to deter- 
mine the coefficients a(x). The moving least squares (MLS) methodology (Lancaster 
and Salkauskas, 1981) is an effective technique for approximating a function using a 
set of scattered data. Given a set of nodes with coordinates X/ at which the field 
variable u\ is known, a weighted £2 norm can be written 

1=1 

where w(x — X/) is the weight function of node I at point x, and n is the number of 
neighbors of point x, i.e., nodes with w(x — X/) > 0. 

Finding the minimum of J with respect to a(x) leads to a set of linear equations 

A(x)a(x) = C(x)u (7) 
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where 

n 

A(x) = ^u;(x-x/)p(x7)p
T(x/) (8a) 

1=1 

C(x) = [tü(x-x1)p(xi),tw(x-X2)p(x2),... ,w(x-xn)p(xn)] (8b) 

u = [ui,u2)... ,u„]. (8c) 

The matrix A(x) is often called the moment matrix and C(x) is a matrix of column 
vectors. Eq. (7) can be solved for a(x) to yield 

a(x) = A"1(x)C(x)u 

which can be substituted into Eq. (4) to yield an approximation in terms of the nodal 
coefficients 

ufc(x) = J2 pT(x)A"1(x)C/(x)u/ , (9) 
7=1 

where C/(x) is the Ith. column of C(x) and uj is the nodal coefficient for the 7th 
neighbor of x. Defining the shape function <£/(x) as 

0/(x) = pT(x)A-1(x)C7(x) (10) 

allows the approximation to be written as 

' n 

uh(x).= ^^(x)u7, (11) 
1=1 

which is a form familiar to those with a finite element background. 
The spatial derivatives of the shape functions, computed by the chain rule, are 

<Mx) = pJWA-^xJC/fx) + pT(x) [A^xJCHx) + A-^xJC/.iCx)] (12) 

where A"1 = — A-^^A-1. Note that the second term in Eq. (12) is expensive to 
compute because of the term A"1. Nayroles, Touzot, and Villon (1992) computed only 
the first term of the derivatives which results in the inability of their approximation 
to satisfy the patch test. Krongauz and Belytschko (1997a) have shown that the 
method can be rendered convergent by a Petrov-Galerkin formulation. 



2.1    Fast shape function and derivative computation 

2.1    Fast shape function and derivative computation 

The number of operations required to form shape functions and derivatives can be 
decreased by the procedure in Belytschko, Krongauz, Fleming, Organ, and Liu (1996) 
and Fleming, Chu, Moran, and Belytschko (1997). The shape function in Eq. (10) 
can be written as 

&(x) = pT(x)A-1(x)C/(x) = 7T(x)C7(x) (13) 

with corresponding derivatives 

<Mx) = 7j(x)C/(x) + 7T(x)C7„(x). (14) 

Comparing the underlined terms in Eq. (13) leads to the relationship 

A(x)7(x) = p(x). (15) 

The coefficients 7(x) can be obtained by an LU decomposition of A(x) and backsub- 
stitution. This requires fewer computations than a full inversion of A(x), which is 
required to form the shape functions with Eq. (10). 

The derivative of 7(x) is required to compute the shape function derivatives in 

Eq. (14). Taking the derivative of Eq. (15) 

A,,(x)7(x) + A(x)7,,(x) = p„(x) .      (16) 

and rearranging known terms which to the right-hand side leads to 

A(x)7li(x) = p„(x) - A,,-(x)7(x). (17) 

Using the LU decomposition of A(x), which is known from solving Eq. (15), 7i,-(x) 
can be computed with only a backsubstitution. Higher order derivatives can be easily 
obtained by repeating the procedure used for computing the first derivative. 

While this procedure for computing shape functions and their derivatives is theo- 
retically identical to directly evaluating Eqs. (10) and (12), the number of computa- 
tions is reduced. In addition to increasing speed, this modification can also alleviate 
ill conditioning of shape functions in cases where the moment matrix, A(x), is not 
well conditioned. 

2.2    Modeling cracks with EFG 

A crack is modeled in EFG by defining a line segment internal to the domain. The 
domains of influence for nodes near the crack are truncated whenever they intersect 
the crack surface so that a node on one side of the crack will not affect points on the 
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crack <*»* ' Splrtnode 

, , .  
N Crack tip node Old crack tip node 

(a) Initial setup (b) After 1 step 

Figure 2: Crack setup for modeling crack propagation with EFG. 

opposite side of the crack. This technique was first presented in Belytschko, Lu, and 
Gu (1994) has been called the visibility criterion by Krysl and Belytschko (1996). 
The nodal domain of influence can be" considered as the line of sight and a crack 
can be considered as an opaque boundary. Whenever the line of sight meets the 
opaque boundary, the domain of influence is cut. The visibility criterion has some 
limitations near crack tips which are discussed in Section 4. Determining whether a 
line drawn between a node and a sampling point intersects a crack segment requires an 
efficient and robust algorithm capable of handling complex geometries. The Sedgewick 
algorithm (Sedgewick, 1988) is found to work well. 

One of the biggest benefits of meshless methods such as EFG is their inherent 
ability to model arbitrary crack propagation due to the absence of a predefined ele- 
ment connectivity. Growing a crack consists of simply adding another line segment 
at the existing crack tip as shown in Fig. 2. 

As the crack propagates, it will pass directly through the current crack tip node 
and may pass through other nodes as well. In this case, the node is replaced by two 
nodes, one above the crack and another below the crack (see Fig. 2). This is preferred 
to deleting the node because it increases the spatial resolution along the crack surface. 

Using a linear basis for crack problems necessitates increased nodal refinement 
around the crack tip in order to capture the crack tip stress field accurately. A star- 
shaped array of nodes consisting of several rings of nodes around the crack tip is 
found to work well. A recommended arrangement of nodes is given in (Terry, 1994). 
The star-shaped arrangement is found to be more effective if existing nodes which 
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fall within the radius of the star are turned off (except for the crack tip node). For 
a propagating crack, the star-shaped array moves with the crack tip and turned off 
nodes are turned back on once they are no longer in the radius of the star. 

3    Elastostatics 

The report focuses on fracture of linear elastic media. The elastostatic boundary value 
problem is reviewed, the variational form is given and numerical approximations by 
mesh-free methods are shown; enforcement of essential boundary conditions is also 
discussed. 

Consider a two-dimensional domain ft bounded by T. The equation of equilibrium 
is 

V-o- + b = 0        in ft (18) 

where cr is the stress tensor for a displacement field u, and b is the body force. The 
boundary conditions are 

u = ü on ru 

<r ■ n = t on Tt 

where the superposed bar indicates prescribed values and n is the unit normal vector 
to r. 

The variational (or weak) form for Eq. (18) can be written 

4  / Vs5u :<rdrt- [ 5u ■ bdtt - f 5u-tdT- SWu(u) = 0, V£u 6 W>    (19) 

where Vs is the symmetric gradient operator and Su is a test function from the same 
space of functions as u, i.e., this is a Bubnov-Galerkin method (see Hughes (1987)). 
The term SWu(u) is required for enforcing the essential boundary conditions in a 
meshless method and will be discussed in the subsequent section. 

For linear elasticity, 

e = Vsu       a- = D : e (20) 

which can be used to write the weak form from Eq. (19) in terms of the displacement, 
u. 

The discrete form of Eq. (19) for a meshless method can be obtained using the 
approximation from Eq. (11) as an approximation for u and Su to get the system of 
equations 

Ku = fext. (21) 

5W 
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The stiffness matrix K G $Rne<J,x"e</ (neg is the number of equation) and the external 
force vector fext £ $lneq are composed of the submatrices 

B/DBjdft K/7= / 
Jo, 

qxt = f faidr + 14>ibdn 

(22a) 

(22b) 

where K/j G SR"sdx"sd, f«* g SRnsd (nsd is number of spatial dimensions), D is the 

constitutive matrix 

D 

D = 

E 

(1 + z/)(l - 2i/) 

E 

l-i/      i/ 0 
v      1 -v     0 
0 0 l-2t/ 

1      1/        0 
i/   1     0 
0   0 1-1/ 

2   . 

plane strain 

plane stress 

(23) 

(24) 

and B/ is a matrix of shape function derivatives 

<t>I,x 0 " 
0 4>i,y 

jf>I,V 4>i,xm 

(25) 

3.1    ^Enforcement of essential boundary conditions 

One drawback of MLS approximations is that essential boundary conditions cannot 
be satisfied directly because (f>i(xj) ^ £/j, and consequently, shape functions from 
nodes on the interior of the domain are nonzero on the boundary. The term SWu(u) 
in Eq. (19) is one way of enforcing essential boundary conditions. Some forms which 
have been suggested are 1) Lagrange multipliers (Belytschko, Lu, and Gu, 1994) 

SWu{u) = [ 5\-{u- u)dT + I 5\x ■ XdT, (26) 

where A is a Lagrange multiplier, 2) a modified variational principle in which the 
Lagrange multipliers are replaced by their physical meaning, the traction (Lu, Be- 
lytschko, and Gu, 1994) 

8Wu{u) =  f 8t-(u- n)dT + ! 5u ■ tdT, (27) 
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where t = er ■ n, and 3) a penalty method (Belytschko, Gu, and Lu, 1994) 

W„(u) = | /   ||u - ü||2<*r (28) 

where /? is a penalty parameter. 
Another method of enforcing essential boundary conditions in meshless methods is 

by coupling with finite elements (Krongauz and Belytschko, 1996; Belytschko,. Organ, 
and Krongauz, 1995). In this method, a row of finite elements is placed along the 
essential boundaries allowing the boundary conditions to be enforced by prescribing 
the values at the nodes. 

3.2    Integration issues 

Computing the stiffness matrix and force vector from Eqs. (22) requires an integration 
over the domain 0, which in two dimensions corresponds to an area integration. Inte- 
grating the stiffness matrix and force vector requires a numerical integration scheme 
such as Gauss quadrature, which in turn, requires a subdivision of the domain. Since 
meshless methods have no inherent subdivision of the domain like finite elements, 
it is necessary to introduce a subdivision of the domain. One type is a background 
cell structure. Two subdivisions are shown in Figs. 3. The first one shown, which 
is the most common, uses a finite element mesh generator to create a cell structure 
which matches the domain; this technique is often called an element quadrature. The 
vertices of this background mesh are often used as the initial array of nodes for the 
EFG model; however, additional nodes may be added where desired such as the nodes 
at the crack tip in the model shown. 

The second integration technique, which is often called cell quadrature, uses a 
background grid of cells which is independent of the domain. At each integration 
point it is necessary to determine if it lies inside the domain before it is used for 
integrating Eqs. (22). This technique is not widely used because it does not yield 
good accuracy along curved and angled boundaries. 

A nodal integration technique was proposed by Beissel and Belytschko (1996) in 
an effort to make EFG a completely meshless method. However, additional stability 
terms must be added to make the method stable and accuracy is not as good as 
cell-based integration schemes. 

Hegen (1997) proposed subdividing the cells through which a crack passes by a 
triangulation technique to avoid integration errors. This subdivision is not found 
to significantly increase the accuracy of EFG computations and imposes undesirable 
"remeshing" conditions on a meshless method. The lack of a noticeable effect when 
aligning the cell structure with a crack can be shown by using the model shown in 
Fig. 4. A crack is placed between rows of nodes and the near crack tip displacement 
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(a) Element quadrature 

1           :           i        A—■—"T"    *Ti»   '   ": *. \ 

' \    *    **i*     *       *    »••       i    » 

^-A.  

(b) Cell quadrature 

Figure 3: Two integration methods for integrating the weak form with a 
meshless method. 
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Figure 4: Discrete model for near-tip crack problem. 

field is applied to the boundary; for this problem, the asymptotic near-tip field is the 
exact solution. Gauss quadrature is performed in a cell structure with vertices at 
the nodes. The problem is also solved by dividing the cells through which the crack 
passes so that the cell boundaries coincide with the crack. No appreciable change in 
the error in strain energy (1% change) or stress intensity factor (0.1% change) was 
noticed'when the crack was allowed to pass through the middle of the cell. 

In this report, element quadrature is used with 4x4 Gauss quadrature points in 
each cell. For cells near a crack tip, the quadrature order is increased to 9 x 9. Cells 
surrounding a crack are not subdivided to align cell boundaries with the crack. 

3.3    Domains of influence 

Properly choosing the domain of influence or nodal support is an important aspect 
of meshless methods. The size of the support should be sufficiently large so that the 
moment matrix is regular and well conditioned and that the spatial distribution of 
neighbors is fairly even. On the other hand, choosing domains of influence which are 
too large leads to a great deal of computational expense in forming the approximations 
as well as assembling the stiffness matrix. Support sizes which are too large also 
detract from the local character of the approximation; for problems involving sharp 
gradients, some loss of accuracy is typically noted as the effect of the gradient is 
smeared. 
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These aspects of meshless methods are easily shown by considering a one dimen- 
sional bar on the domain 0 < x < n with Young's modulus of E = 1. The bar is 
loaded with a body force b(x) = sin(a;) and boundary conditions u(0) = 0, CT(TT) = -1. 
Evenly spaced nodal arrangements ranging from 21 to 201 nodes are used and the 
characteristic nodal spacing, c/, is set equal to the nodal spacing; the nodal support 
size is dmI = dmax c7. Fig. 5 presents the stress profile along the length of the bar 
computed using dmax = 2.0 and dmax = 1.01 and Fig. 6 shows results for the er- 
ror in energy computed with varying support sizes. When the support size is only 
slightly larger than the nodal spacing, the error is high and the stress field mimics 
a linear finite element solution, i.e., the stress is nearly discontinuous at the nodes. 
Increasing the support size to dmax = 2.0 or 2.5 leads to a sharp improvement in 
accuracy, although the rate of convergence remains the same. Further increasing to 
dmax = 3.0 and 3.5 actually leads to an increase in error, most likely because the gra- 
dients in the solution become smeared for such large nodal supports. Note that the 
rate of convergence in each case is linear and only the absolute accuracy increases with 
increasing dmax. These results disagree with the results of Liu, Li, and Belytschko 
(1996) and Duarte and Oden (1996a), who showed increasing rates of convergence. 
This increasing rate of convergence is perhaps attributable to keeping the domain 
of influence constant in size as the mesh is refined. Note that the RKPM in Liu, 
Li, and Belytschko (1996) and the fcp-clouds both used the moving least squares 
approximations (see Belytschko, Krongauz, Organ, Fleming, and Krysl (1996)). 

Determining proper domains of influence in two and three dimensions is more 
difficult than in one dimension. The stress fields are usually much more complicated 
and evenly spaced nodal arrangements are not practical. 

4    Smoothing of EFG approximations near noncon- 
vex boundaries 

The smoothness which is inherent in meshless methods is a two-edged sword. On 
one hand, it provides approximations of functions and their derivatives which are 
smooth and have the same continuity as the weight function. However, in cases 
where a discontinuity is present in either the geometry or the material, this higher 
order smoothness leads to difficulties which must be addressed in order to obtain 
good accuracy. Discontinuities can arise from material and geometric sources. A 
material discontinuity occurs along an interface between two materials with differ- 
ent properties, leading to discontinuous strains across the interface. This situation 
is easily modeled using finite elements where the interpolants are C°. Cordes and 
Moran (1996) have solved problems with multiple materials using EFG by treating 
the individual materials as separate bodies and joining them together with Lagrange 
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Figure 5: Stress distribution along one dimensional bar using 20 nodes. 
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multipliers. Krongauz and Belytschko (1997b) have developed techniques in which a 
so-called jump term is included in the trial function which is capable of representing 
the discontinuity. The magnitude of the jump becomes an unknown in the Galerkin 
discretization. 

The second class of problems which contain discontinuities are due to geometrical 
effects. This includes cases where a boundary of the geometry is nonconvex, such 
as a body with a hole or a crack. Because of the aforementioned smoothness of 
meshless methods, special procedures are required near nonconvex boundaries. In 
this section, techniques for modeling nonconvex boundaries will be discussed. The 
visibility criterion will be presented first and some of its limitations will be pointed 
out. To overcome some of the limitations of the visibility criterion, the diffraction, 
transparency and "see-through" methods are introduced. Numerical examples will be 
given to illustrate the behavior of these alternative techniques and show when they 
are necessary. 

4.1    Visibility Criterion 

The first technique for dealing with nonconvex boundaries is the visibility criterion 
(Belytschko, Lu, and Gu (1994), the name was coined in Krysl and Belytschko (1996)). 
In this straightforward approach, the domain of influence is considered as the field of 
vision at a node. All boundaries, internal and external, are considered to be opaque 
so that the field of vision is interrupted as soon as such a boundary is encountered. 
Consider node J in Fig. 7, where the surface of the crack is within its domain of 
influence and is therefore truncated. This truncation will create a discontinuity in 
the shape function for node J which will lead to the desired discontinuity in the 
solution across the crack (see Fig. 8a,c). 

A difficulty with the visibility criterion arises for nodes near the end of a discon- 
tinuity, i.e., a crack tip in fracture mechanics. Consider node I in Fig. 7. The field of 
vision is cut by the crack, leading to a discontinuity along line AC, i.e., the line of the 
crack. However, the field of vision is also truncated along line AB, which extends into 
the domain. This leads to a discontinuity in the weight function as well as the shape 
function along this line as shown in Fig. 8b,d. Note that because the shape functions 
are created from the interaction of weight functions, additional discontinuities arise 
in the shape functions from other nodes which have discontinuous weight functions 
due to the crack tip. 

Discontinuities in the shape functions can also arise for nodes near the surface of 
nonconvex boundaries such as a hole. As an example, consider the domain of influence 
of node I in Fig. 9. Whenever a ray emanating from the node grazes the surface of the 
hole such as points A or C, the weight function will have a discontinuity along lines 
AB and CD. A contour plot of the weight function for node I is shown in Fig. 10a 
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DOMAIN OF INFLUENCE DOMAIN OF INFLUENCE 

FOR NODE J FOR NODE I 

CRACK 

Figure 7: Domain of influence by the visibility criterion near a crack. 

and the corresponding shape function is shown in Fig. 10b. Note that the shape 
function has several lines of discontinuity because it is formed by the interaction of 
several weight functions, some of which have discontinuities similar to those shown 
in Fig. 10a. 

The presence of discontinuities within the domain is undesirable in a Galerkin 
method and must be handled with care. The length and size of the discontinuities is a 
function of the nodal refinement near a nonconvex boundary, i.e., as the nodal spacing 
goes to zero, the discontinuities go to zero. Using this argument and others similar to 
the arguments used in proving convergence for nonconforming finite elements, Krysl 
and Belytschko (1996) showed that the discontinuous approximations generated by 
the visibility criterion can lead to convergent solutions. 

4.2    Diffraction Method 

Continuous and smooth approximations near nonconvex boundaries can be con- 
structed quite easily by the diffraction method (Organ, Fleming, and Belytschko, 
1996; Organ, 1996; Belytschko, Krongauz, Fleming, Organ, and Liu, 1996). The 
nodal support is wrapped around nonconvex boundaries similar to the way light 
diffracts around sharp corners. This method, which has also been called the wrap- 
around method, is quite general and can be used for cracks or smooth boundaries such 
as interior holes. The method will first be described for cracks and then generalized 
for other nonconvex boundaries. 
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CRACK CRACK 

(a) Weight function for node J (b) Weight function for node I 

CRACK CRACK 

(c) Shape function for node J (d) Shape function for node J 

Figure 8: Contour plots of the weight function w(x — Xj) and shape function 
0/(x) as determined by the visibility criterion for nodes adjacent 
to a line of discontinuity due to a crack. 
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Figure 9: Domain of influence near an interior hole by the visibility criterion. 

HOLE HOLE 

(a) Weight function for node A (b) Shape function for node A 

Figure 10: Contours for weight and shape function near an interior hole by 
the visibility criterion. 
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CRACK 

(a) Support around a crack tip. (b) Support around a hole. 

Figure 11: The diffraction (wrap-around) method for constructing smooth 
weight functions around nonconvex boundaries. 

Consider Fig. 11a, where a line between the node, Xj, and a sampling point, x, 
intersects a crack and the tip is within the domain of influence of the node. The 
weight function distance, di, is modified (lengthened) by 

dj = 
SX +52(x) 

so(x) 
•so(x) (29) 

where sx = ||x/ - xc||, s2(x) = ||x - xc||, s0(x) = ||x - x/||, and xj is the node, x is 
the sampling point, and xc is the crack tip. The parameter A is used to adjust the 
distance of the support on the opposite side of the crack. It was found that A = 1,2 
performs well. Contour plots of the weight and shape functions by the diffraction 
method are shown in Fig. 12 and surface plots are shown in Fig. 13. 

The spatial derivatives of the weight function are computed using the chain rule: 

dw      dw ddi 

dxi      ddi dxi 

Since dw/ddj is unchanged, all that is necessary are expressions for ddj/dxi: 

ddi 

dxi 
(ÜlüV" fS + (1 - A) ('-1±±\ 
\   so   )     dxi \   s0   y 

dso 
dxi' 

(30) 

(31) 
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CRACK CRACK 

(a) Weight function for A = 1. (b) Shape function for A = 1. 

CRACK CRACK 

(c) Weight function for A = 2. (d) Shape function for A = 2. 

Figure 12: Contours for weight and shape functions associated with node A 
near a crack tip constructed using the diffraction method. The 
quartic weight function in (lb) is used with dmax = 2.01. 
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CRACK LINE 

(a) Weight function associated with node 
A in Fig. 12a. 

CRACK LINE 

(b) Shape function associated with node 
A in Fig. 12b. 

Figure 13: Surface plots for weight and shape functions near a crack tip con- 
structed using the diffraction method with A = 1. The quartic 
weight function in (lb) is used with dmax = 2.01. 
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where 
ds0      Xi — xj. ds2      Xi — xCi  . 

and   
dxi s0 dxi s2 

The diffraction method works well for general nonconvex boundaries as well. Con- 
sider the case shown in Fig. lib where the line between a node and a sampling point 
intersects the boundary of a hole. The tangent point between the node and the non- 
convex boundary is used as the wrap-around point, xc, and Eq. (29) used to compute 
the weight function distance, dj (see Fig. lib). Note that for this implementation 
of the diffraction method, the segment d2(x) intersects the boundary. This should 
not be a cause for alarm because with adequate refinement this effect is quite negligi- 
ble. As is shown in Section 4.4, acceptable results can be obtained when the smooth 
boundary is considered fully transparent. 

4.3    Transparency Method 

Another technique for constructing continuous approximations is the transparency 
method (Organ, Fleming, and Belytschko, 1996; Belytschko, Krongauz, Fleming, Or- 
gan, and Liü, 1996), which will be described here for cracks. The underlying concept 
of this method is to endow the crack tip with a varying measure of transparency such 
that it is completely transparent at the tip and becomes completely opaque a short 
distance behind the tip. In this way, the field of vision for a node near the crack tip is 
not abruptly truncated when it reaches the crack tip, but rather diminishes smoothly 
to zero a short distance behind the tip of the crack. 

When a ray passes between a node x/ and a sampling point x, and crosses the 
crack as shown in Fig. 14, the distance parameter di in the weight function is modified 
(lengthened) by the following: 

dI{*) = s0(*) + dmIh^\   ,    A>2, (32) 

where s0(x) = ||x = X/||, dmj is the radius of support for node I, and sc(x) is the 
intersection distance behind the crack tip. The parameter sc sets the distance behind 
the crack tip at which complete opacity occurs: 

sc = KJI, (33) 

where h is the nodal spacing and K is a constant, usually 0 < K < 1. 
The spatial derivatives of the distance parameter, dj, obtained by the chain rule, 

are 

ddl     ds° M \j    5*_1 dsc .   . 
OXi OXi S*    OXi 
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CRACK 

Figure 14: Transparency method for computing smooth weight functions. 

where 

dsp 

dxi 

Xj - xI( 

■so 

dsc = — cos 8 = 
Xb Xr 

and — sin 6 — 
Vb-Vc 

dxi sc dx2 

where # is the angle between the crack and the x-axis and Xf, is the intersection point 
behind the crack tip. 

Contour plots of the weight and shape functions near a crack tip constructed by 
the transparency method are shown in Fig. 15 and surface plots are shown in Fig. 16. 
Note that the functions are continuous at the crack tip. 

One drawback of the transparency method is that it does not work well when 
nodes are placed too close to the crack surface. Fig. 17 shows a surface plot of a 
shape function constructed by the transparency method when nodes are placed along 
the crack surface. Note the trough which appears in the shape function ahead of the 
crack. This trough appears because although the crack tip is transparent for this 
node, the change in the degree of transparency with respect to the change in angle is 
very sharp, i.e., sc(x) in Eq. (32) increases rapidly. There is no discontinuity in the 
shape function, only a small dip in the shape function. To circumvent this problem in 
the transparency method, a restriction has been placed on the position of the nodes. 
All nodes should be placed so that the normal distance from the node to the crack 
surface is greater than roughly 1/4/*, where h is the nodal spacing. 
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CRACK CRACK 

(a) Weight function for K = 1.0. (b) Shape function for K = 1.0. 

CRACK CRACK 

(c) Weight function for K = 0.5. (d) Shape function for K — 0.5. 

Figure 15: Contours for weight and shape functions associated with node A 
near a crack tip constructed using the transparency method. The 
quartic weight function in (lb) is used with dmax = 2.01. 



4.3    Transparency Method 27 

CRACK LINE 

(a) Weight function associated with node 
A in Fig. 15a. 

CRACK 

(b) Shape function associated with node 
A in Fig. 15b. 

Figure 16: Surface plots for weight and shape functions near a crack tip us- 
ing the transparency method with K = 1.0. The quartic weight 
function in (lb) is used with dmax = 2.01. 
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CRACK LINE 

Figure 17: Surface plot for shape function using the transparency method 
(K = 1) when nodes are placed too close to the crack surface. 

4.4     "See-through" Method 

Terry (1994) constructed a smooth approximation near nonconvex boundaries using a 
"see-through" method in which all or part of the curved boundary is made completely 
transparent. Terry (1994) found that better accuracy is obtained for a problem with 
an interior hole when the boundary of the hole was not strictly enforced by the 
visibility criterion. 

Duarte and Oden (1996b) and (Krysl and Belytschko, 1996) suggested a smoothing 
technique in which the crack was completely transparent if the crack tip is within the 
domain of influence of a node. This is also called the continuous line criterion: if 
a continuous line connecting the node to a point lies entirely withing the domain of 
influence of the node, the point is visible. While this technique is easy to implement 
and provides smooth approximations, it effectively shortens the crack and leads to 
inaccurate solutions (see Fig. 18). One situation in which this method does work 
for cracks is when the enrichment techniques from Chapter 5 are used. In this case, 
the approximation function near the crack tip is strong enough to yield correct crack 
opening displacements. 
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Figure 18: Crack opening displacement and Mises stress contours when us- 
ing the "see-through" method (dmax = 2). The dots are the nodal 
locations and the contours are generated using values at the inte- 
gration points. 

4.5    Numerical Examples 

Two problems are presented here to illustrate the performance of the smoothing 
techniques for nonconvex boundaries. The EFG method is used for numerical com- 
putations and a background element mesh is used for integrating the weak form. 

4.5.1    Infinite plate with a hole 

An infinite plate with a hole subjected to a remote unit traction in the a:-direction is 
solved and the solutions are compared for the visibility, diffraction, and "see-through" 
methods. The solution of this problem is given in Timoshenko and Goodier (1970) 
as: 

= l ~ a^\ cos(2*) + cos(4*)) + |£ cos(4*)' 
a2,1       ,_ ,._      3a4 

cos(40), 

'*y-    7.2v2 

where a is the radius of the hole 

Vyy = -^(2COS(26)-co<46))- 

<r„ = ~£ sin(20) + sin(4»)) + ^7 sin(40), 
2r4 

(35a) 

(35b) 

(35c) 
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Figure.19: Typical mesh for the infinite plate with a hole problem. Due to 
symmetry, only a quarter mesh is modeled. 

A finite model of the problem is constructed by applying the exact tractions 
corresponding to Eq. (35) on the boundaries; due to symmetry, only a quarter of the 
plate ig modeled (see Fig. 19). The dimensions used are a = 1.0 in., / = 5.0 in.; plane 
strain/linear elastic conditions are assumed with Young's modulus and Poisson's 
ratio, E = 30 x 106 psi and u = 0.3, respectively. A typical nodal arrangement is 
shown in Fig. 19. The EFG meshes were graded with additional refinement around 
the hole up to a radius of 2a; a typical mesh is shown in Fig. 19. The integration 
cells coincided with the nodal arrangement; 9x9 Gauss quadrature is used in the 
graded region, with 5x5 quadrature in the remaining cells; for the simulations by 
the diffraction method, A = 2. 

According to the analytic solution in Eq. (35a), the hole acts as a stress raiser 
with a stress concentration factor of 3 at (x,y) = (0,a). The numerical solution 
captures the stress concentration well for smaller support sizes (see Fig. 20), but the 
accuracy deteriorates for larger support sizes when shape functions are discontinuous. 
The errors in the stress concentration using the visibility criterion at large dmax can 
be traced to oscillations in the stress distribution, as shown along the line x = 0 in 
Fig. 21. 

The error in energy as a function of the domain of influence is plotted in Fig. 22, 
where the exact solution is computed from the solution given in Timoshenko and 
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Figure 20: Convergence of the stress concentration at the hole versus the 
number of nodes. 

Goodier (1970), and the energy norm is computed by 

energy norm -1U< <r-<Th):(e- eh)d^l 
1/2 

(36) 

The results again show that for smaller domains of influence, there are no significant 
differences in accuracy between the discontinuous and the smooth approximation 
functions; however, as the domain of influence is increased, the error increases for the 
discontinuous shape functions. On the other hand, both accuracy and convergence 
rate increase for the smooth shape functions as dmax increases (see Fig. 23). 

4.5.2    Mode 1 static fracture 

A near-tip crack problem is studied for the effects of smoothing the approximation 
for crack problems and shows the improvements in accuracy when using the EFG 
enrichment techniques from Section 5. 

For the numerical model, the asymptotic mode 1 displacement field in Eqs. (60) is 
applied to the boundaries of an EFG mesh, with the stress intensity factor prescribed 
as fci = 1 psi\/m. The mesh dimensions are 2a x 2a, with a crack of length a oriented 
such that the crack tip was located at the center as in Fig. 24. Numerical results are 
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Figure 21: Stress distribution along x = 0 for a mesh with 168 nodes shown 
in Fig. 19. 
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Figure 22: Error in energy versus the support size dmax for the infinite plate 
with a hole problem. 
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Figure 23: Convergence of the error in energy versus the number of nodes 
for the infinite plate with a hole problem. 
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Figure 24: Typical mesh for the mode 1 fracture problem. 

presented for both a linear basis and an intrinsically enriched basis from Eq. (50). In 
addition, the effects of local crack tip refinement are investigated. 

Fig. 25a shows the circumferential distribution of the displacement; note the dis- 
continuities near the crack tip for shape functions based on the visibility criterion. 
These discontinuities occur at fixed angles and vanish away from the crack tip. In 
other words, the discontinuities occur on rays from the nodes to the crack tip; the 
weight functions associated with those nodes are discontinuous along these rays. Krysl 
and Belytschko (1996) have shown that the solution is still convergent due to the local 
nature of the discontinuities. 

One drawback of the smooth approximations is that the computed crack opening 
profile is not parabolic at the tip. The shape functions wrap around the crack tip 
and the crack is effectively shortened if the smoothing effect is too large or the mesh 
is too coarse, leading to the crack opening displacement (COD) shown in Fig. 26a. 
The maximum stress is then not at the crack tip, but is shifted a small distance that 
depends on the mesh refinement. This effect can be reduced by increasing A in the 
diffraction method, or decreasing K in the transparency method. When the mesh is 
refined locally as in Fig. 26b or an enriched approximation is used as in Fig. 26c, the 
maximum stress shifts to the crack tip and the COD profile becomes parabolic. 

Smooth approximations provide substantial benefits when using an enriched ap- 
proximation.    Fig. 27 shows the error in energy in (36) plotted as a function of 
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Figure 25: Angular variation of displacement around the crack tip at various 
radial distances. The jumps at 45°, 90°, and 135° in (a) occur due 
to the discontinuous shape functions generated by the visibility 

criterion. 
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(a) Uniform mesh (linear basis). 

(b) Refinement at crack tip (linear basis). (c) Uniform mesh (enriched basis) 

Figure 26: Crack opening displacement and Mises stress contours for a mode 
1 fracture problem using the diffraction method (A = 1). The dots 
are nodal locations and the contours are generated using values 
at the integration points. 
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Figure 27: Convergence of the error in energy for the mode 1 crack problem. 
For the diffraction method, A = 2. 
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Figure 28: Convergence of the mode 1 stress intensity factor using the en- 
riched basis. For the diffraction method, A = 2. 
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uniform nodal refinement for both linear and enriched bases with the discontinuous 
and smooth approximations. The results are nearly identical for continuous and dis- 
continuous approximations with a linear basis because oscillations are the dominant 
source of error. The enriched basis reduces oscillations, so discontinuities in the shape 
functions become a noticeable source of error. Fig. 28 shows the convergence of the 
mode 1 stress intensity factor using the enriched basis. The stress intensity factor 
was computed using the J integral in domain form (Moran and Shih, 1987). For the 
discontinuous shape functions, the stress intensity factor is low by as much as 6% for 
a coarse mesh, but improves as the mesh is refined. For the smooth approximations, 
the stress intensity factor is within 0.1% for all meshes. 

As stated previously, in spite of the discontinuities due to the visibility criterion, 
the approximation is still convergent. Figs. 29 show four levels of increasing nodal 
refinement surrounding the crack tip. Fig. 30a shows the error in energy using a linear 
basis plotted as a function of the number of nodes added to the crack tip region and 
Fig. 30b shows the corresponding stress intensity factors for those levels of refinement. 
It is readily seen that as under these circumstances the discontinuous approximations 
do not degrade the accuracy compared to the smooth approximations for either total 
error or stress intensity factor. In addition, the smooth approximations generated by 
the "see-through" method are greatly in error, leading to the conclusion that these 
approximations should not be used in conjunction with sharp nonconvex boundaries 
such as cracks. It should also be noted that over-refinement of the crack tip region 
can actually lead to an increase in error if the mesh away from the crack tip is not 
refined. Fig. 30a shows that for the highest level of refinement in Fig. 29d, the error 
actually increases slightly over the previous refinement. As a general rule for meshless 
methods, a sharp gradient in nodal spacing leads to error. A likely source of this error 
is that nodes in the coarse region will have domains of influence which extend into 
the refined region while the converse is not true. 

5    Enrichment of EFG for Crack Tip Fields 

Finite element methods have reached a high degree of effectiveness in analysis of sta- 
tionary cracks. A large variety of approaches have evolved, such as direct application 
of standard elements, singular crack tip elements, and enriched elements. While di- 
rect application of standard elements is the most straightforward, a high degree of 
mesh refinement is required near the crack tip to capture the singular stress fields. 
Singular crack tip elements can achieve high accuracy in linear elastic fracture me- 
chanics without extremely refined meshes. The most popular of these elements is 
the quarter-point element (Henshell and Shaw, 1975; Barsoum, 1977; Banks-Sills and 
Bortman, 1984) which introduced a singularity in the Jacobian of an 8-node serendip- 
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(a) 2 rings, 5 nodes/ring (b) 4 rings, 9 nodes/ring 

"?©>: 
 $M£ 
'.'.... "^\ 

(c) 6 rings, 13 nodes/ring (d) 8 rings, 17 nodes/ring 

Figure 29: Four levels of nodal refinement using a star-shaped nodal array 
at the crack tip. 
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Figure 30: Energy error and stress intensity factors with four crack tip nodal 
refinements. All calculations were made with a linear basis and 
Gaussian weight function (dmax — 2.5, a = 0.625). 
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ity element by moving the mid-side node on the sides connected to the crack tip to 
the quarter-point. Akin (1976) presented an element in which the shape function at 
the crack tip node is modified so it possesses singular derivatives of the correct order. 

Another method of capturing the singular stress fields in finite elements is to enrich 
isoparametric finite elements by including the near tip fields in the trial functions 
(Benzley, 1974; Gifford and Hilton, 1978). The advantage of these elements is that 
the stress intensity factors can be computed directly as part of the solution. However, 
the results of elements enriched by singular fields are quite sensitive to their size, and 
do not exhibit uniform convergence. In addition, these elements are cumbersome 
to implement because the stiffness matrix and force vector have to be expanded to 
account for the extra unknowns, the stress intensity factors. Transition elements are 
needed because these enriched elements are generally not compatible with standard 
elements. 

In applications of EFG or meshless methods, special techniques have been devel- 
oped for incorporating the singular functions associated with elastostatic fracture as 
an alternative to large arrays of nodes at the crack tip;.the latter can be expensive 
and awkward for problems with complex geometry. It was found that the incorpo- 
ration of the singular fields in a meshless method is substantially simpler and more 
trouble-free than in finite element methods. 

Enrichment of a meshless method may be carried out extrinsically or intrinsically. 
Extrinsic enrichment consists of adding an enrichment function to the trial function. 
For intrinsic enrichment, the enrichment functions are included in the EFG basis, so 
that no additional unknowns are needed in the final system of equations. 

In this section, extrinsic and intrinsic enrichment techniques are presented for 
meshless methods. In Sections 5.1 and 5.2, two methods of extrinsic enrichment 
are presented and discussed. Section 5.3 presents intrinsic enrichment. Techniques 
for coupling enriched and linear approximations are discussed in Section 5.4 and a 
mapping for kinked cracks is given in Section 5.5. Numerical results are shown in 
Section 5.6. In addition, two degrees of enrichment are discussed: 1) full enrichment 
by all linearly independent functions of the asymptotic near-tip field, and 2) radial 
enrichment consisting of only the y/r field. 

5.1    Extrinsic MLS Enrichment 

In extrinsic enrichment of a meshless approximation, a function closely related to 
the solution is added to the polynomial expansion of MLS, Eq. (4). For example, in 
linear elastic fracture mechanics, the near tip asymptotic field or its constituents can 
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be added. The approximation takes the form 

^(x) = pT(x)aa(x) + £[fc^ia(x)+W2a(x)]       a = 1,2 (37) 
i=i 

where u£(x) denotes the approximation for ua(x), p(x) is a complete polynomial 
basis in the spatial coordinates, nc is the number of cracks in the model, a^x) are 
the coefficients of the polynomial basis; k{ and k3

2 are global unknowns associated 
with crack j. Lower case Greek subscripts have a range of 2 and refer to Cartesian 
components. Some complete bases are given in Eqs. (5). 

The functions Qia(x) and Q2a(x), which describe the near-tip displacement field 
for an elastic crack, are (Williams, 1957; Anderson, 1991) 

gil(x)=27V^C°SG 
öi2(x)=27V^sinG 
02l(x) = 27\/^sin-G 
ö22(X)=-2^V^COS(X 

K - 1 + 2 sin2 ( "- 

K + l-2 cos2 [ "- 

K + 1 + 2 cos2 

K — 1 — 2 sin2 

(38a) 

(38b) 

(38c) 

(38d) 

where r is the distance from the crack tip, 9 is the angle from the tangent to the 
crack path at the crack tip (see Fig. 31), p is the shear modulus and K the Kolosov 
constant defined as 

Z-Av 
K = 

plane strain 

(3 — u)/(l + v)    plane stress. 

The coefficients, aa(x), are functions of the spatial coordinates and are determined 
by the MLS methodology in Section 2. However, additional terms arise from the 
inclusion of the near-tip field and so the MLS formulation will be rederived here in 
the interest of completeness. A weighted, discrete £2 norm is written 

J = V^u;(x - x/) 
i=i 

I 2 

pT(x7)aa(x) + X>^a(x/) + HQL(xi)) - «/« 
3=1 

(39) 

where n is the number of points in the neighborhood of x for which the weight 
function, w(x - X/), is non-zero, and u/a is the a component of the nodal value at 
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r/ 

A. 
Figure 31: Local coordinate system at crack tip. 

X/. The stationarity of J with respect to aa(x) leads to 

n ( nc 

A(x)aa(x) = £c7(x) I uIa - jy4Qia(xi) + HQLM] 
I=I I j=i 

where 
n 

A(x) = 5}io(x ~ X/)P(X/)PT(X/) 
i=i 

C/(x) = w(x - x/)p(x/). 

(40) 

(41) 

(42) 

It should be noted that k[ and k3
2 are global parameters in this method and they are 

considered fixed in the process of obtaining the parameters aa for the local fit. 
Solving Eq. (40) for aa(x) gives 

a„(x) = J2 A-^CKx) LIa - JT\kiQia{xi) + %QL(*I)] \ ■ (43) 

Expressing Eq. (37) in terms of the nodal parameter uja and the enriched field pa- 
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rameters k[ and k3
2 yields 

«iw = J2MX) LIa - fy4oi.fr)+HQU^)} 
1=1     i    j=\ 

+fyioiaW+kiQiM) 
n 

7=1 

i=i       L 7=1 

+ £**     ^a(x) - ^/(X)QL(X7) 

(44a) 

i=i 

(44b) 

7=1 

as where the shape function, <^>/(x), is defined 

^(x) = pT(x)A-1(x)C7(x) (45) 

These shape functions are identical to" those defined in Eq. (10) and are capable of 
representing the smooth part of the solution. Eq. (44a) will be written as 

«ato = i>(x)ü,« + fyiQiaW + ^OLW], 
; /=i j=i 

where the modified nodal coefficients 

(46) 

ts, uia, are 

uia = uIa - YyiQ'ioM + KQLfr)]- 
3=1 

(47) 

Note that the enriched finite element formulation given by Benzley (1974) and 
Gifford and Hilton (1978) is the same as Eq. (44b). This form is advantageous in 
finite elements, but not necessary in a meshless method. Using the approximation 
in Eq. (46) is simpler to implement and computationally faster because the terms 

X)"-i ^7(x)^iQia(x/) and X)"=i ^ifr^iQia^i) are n°t subtracted at each sampling 
point. 

5.2    Extrinsic PU enrichment 

Extrinsic enrichment of meshless methods can be carried out using partition of unity 
(PU) methods (Duarte and Oden, 1996b; Melenk and Babuska, 1996; Belytschko, 
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Krongauz, Organ, Fleming, and Krysl, 1996). In this method, the approximation is 
augmented by enrichment functions added extrinsically to the existing EFG approxi- 
mation from Eq. (11). This basis can consist of higher order polynomials or, for linear 
elastic fracture problems, terms from the asymptotic near tip field can be used. The 
extrinsic basis is smoothly added to the existing approximation by multiplying it by 

a partition of unity. 
The essential element of this method is the construction of a partition of unity, 

which can be obtained by the MLS methodology (see Section 2). A partition of 
unity </>(x)fc, constructed from a complete polynomial basis of order k, is a local 

approximation for which 

X>/(x) = l. (48) 

It can easily be seen that MLS approximations are partitions of unity since Eq. (48) 
is the reproducing condition for a constant, which MLS approximations must satisfy 
(see Belytschko, Krongauz, Fleming, Organ, and Liu (1996)). 

Approximations based on partitions of unity take the form 
n n     mc 

u'J(x) = £ #(x)u/ + E E #(*)6«*(*) (4Q) 
1=1 '      1=1 «=1 

where uj and 6/, are nodal coefficients, and n is the number of neighbors of point x. 
The vector q(x) is called the extrinsic basis and is of length me. For enriching linear 
elastic fracture problems, this basis can contain the y/r radial dependence or the y/r 
radial and angular 6 dependence which spans Eq. (38). A superscript k is added to 
the shape functions </>/ in the approximation to denote the polynomial order of the 
basis used in forming the partition of unity. It is sometimes convenient to construct 
the partitions of unity using Shepard functions (i.e., k — 1) which satisfy constant 
consistency and add the terms to satisfy linear and higher order consistency to the 

extrinsic PU basis. 
PU methods appear to provide a vehicle for local enrichment. The partition 

of unity, <£/(x)fc, can be formed from a linear basis (k = 2), which yields linear 
consistency. Enrichment of the approximation may be carried out locally by adding 
the known form of the solution to the extrinsic basis, q(x), at nodes in the region in 
which it is needed. It should be noted that the enrichment should be added to each 
node whose domain of influence extends into the region to be enriched. 

5.3    Intrinsic Basis Enrichment 

Meshless approximations can be intrinsically enriched by including a special functions 
in the basis (Fleming, Chu, Moran, and Belytschko, 1997). For example, in fracture 
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mechanics, one can include the asymptotic near-tip displacement field in Eqs. (38), or 
an important ingredient such as yfr. The choice of functions depends on the coarse- 
mesh accuracy desired. For higher accuracy, include the full asymptotic field from 
(38), while for higher speed at some cost of accuracy, only the ,/r function can be 
included in the basis. Both methods are described in the subsequent sections. 

5.3.1    Full enrichment 

In full intrinsic enrichment of EFG approximations for fracture problems, the en- 
tire near-tip asymptotic displacement field is included in the basis. Following some 
trigonometric manipulation, it can be shown that all the functions in Eqs. (38) are 

spanned by the basis 

P
T
(X) = 

r       e    r ■   e    r ■   °   •   a    r       6  ■   a 1, x, y, y/r cos -, y/r sin -, 0" sin - sin 0, y/r cos - sin V (50) 

(the linear terms are not related to the near-tip fields and are represented through 
the linear completeness of the EFG approximant). This basis can be used in Eq. (4) 

and leads to approximations of the form 

ttft(x) = y^pT(x)A-^(x)CJ(x)uf. (51) 

where </>/(x) is the enriched EFG shape function. 
In contrast to the extrinsic methods presented in Sections 5.1 and 5.2, this method 

involves no additional unknowns. However, because of the increased size of the basis, 
additional computational effort is required to invert the moment matrix, A(x). In 
addition, the domain of influence must be enlarged to achieve regularity of A(x). For 
multiple cracks, four additional terms would have to be added to the basis for each 
crack; a method for coupling an enriched basis with a linear basis is presented in 

Section 5.4 which avoids this difficulty. 
Using an enriched basis can lead to a moment matrix which exhibits some ill- 

conditioning. While this generally does not affect the final solution when the enriched 
basis is used globally, it does have a deleterious effect when trying to couple shape 
functions from an enriched basis to shape functions from another basis such as a 
linear basis. A treatment which has been found to be effective for dealing with ill- 
conditioning is to reduce the number of computations required to compute the shape 
functions by the procedure in Section 2.1. This procedure replaces the full inversion of 
the moment matrix with only a forward reduction and back substitution. A second 
method found .to be effective for dealing with ill-conditioning is to diagonalize the 



5.4    Coupling enriched and linear approximations 47 

moment matrix by Gram-Schmidt orthogonalization (Lu, Belytschko, and Gu, 1994), 
which increases the linear independence of the moment, equations. 

When an enriched basis is used at any node of a mesh, it must be used at all nodes 
or a special technique must be used to blend it to nodes with a different basis. Simply 
deleting functions from the basis results in discontinuities in the approximation. 

5.3.2    Radial enrichment 

Meshless approximations can be partially enriched by expanding the intrinsic basis 
to include only the radial variation in Eq. (38). This leads to the basis 

pT(x)= [l,x,y,yfi\ (52) 

where r is the radial distance from the crack tip. This partial enrichment is feasible 
because the angular variation around the crack tip is smooth, but the radial variation 
is singular in the stress. 

The advantage of partial enrichment is that the intrinsic basis is only expanded 
by one term and inverting the moment matrix, A(x), to form the shape functions is 
much cheaper than for full enrichment. In addition, it does not seem to be necessary 
to use the smoothing techniques in Chapter 4 because there are no discontinuities in 
the radial direction; the discontinuities in the angular direction lead to a noticeable 
loss of accuracy when full enrichment is used. 

5.4    Coupling enriched and linear approximations 

Enriching the approximation for the entire domain of a problem is generally unnec- 
essary and leads to unneeded computational expense. For example, the crack-tip 
singular field is local to the crack tip with radius ~ 0.1a, where a is the length of the 
crack. Two techniques are presented here for coupling enriched and linear approx- 
imations, one which uses a consistent coupling to maintain C° continuity and one 
which does not. 

The first technique involves coupling the approximation over a transition region 
as a linear combination of the enriched linear approximations (this is similar to the 
way Belytschko, Organ, and Krongauz (1995) coupled EFG to finite elements). The 
approximation is written 

uh(x) = Rumr(x) + (1 - R)ulin(x). (53) 

where uenr(x) is the enriched approximation and ulin is the linear approximation; R 
is a ramp function which is equal to unity on the enriched boundary of the coupling 
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Linear 

Figure 32: Schematic for the coupling of enriched and linear approximations. 

region (r = ?~i) and equal to zero on the linear boundary of the coupling region 
(r = r2) (see Fig. 32). Some suggested polynomial ramp functions are 

R 
1 - 10f3 + 15f 

linear ramp 

6£5    quintic ramp 
(54) 

where £ = (r — ri)/(r2 — ri), r is the radial distance from the crack tip. 
The coupled approximation for the intrinsically enriched basis from Section 5.3 is 

written 

uh(x) - ]P <j>i(x.)u! 
i=i 

where 

Mx) = jtyr(x) + (i-Ä)#B(x) 

(55) 

(56) 

and <^nr(x) is the shape function formed from the enriched basis of Eq. (50) and 
4>ljn(x) is the shape function formed from a linear basis. This method ensures a com- 
patible displacement field. The continuity in the strain field depends on the continuity 
of the ramp function, R (i.e., the linear ramp will yield continuous displacements, but 
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discontinuous strains at r = ri,T2; both displacements and strains will be continuous 
and smooth using the quintic ramp). 

Through numerical experiments, it was found that the location of the inner radius 
of the ramp, n, is rather arbitrary and can actually begin at the crack tip. However, 
the outer radius, r2, needs to be outside the singularity-dominated zone to obtain 
good accuracy. 

It should be noted that it is possible to confine the enrichment to the crack tip 
region by simply changing from an enriched to a linear intrinsic basis away from 
the crack tip. The distance where the basis is changed should be outside the stress 
intensity factor dominated region, with an outer radius similar to the transition region 
described above. One drawback of this method is that the displacement field at the 
transition point will be C_1, i.e., it will have a small jump in displacement. While this 
is theoretically not permissible in a Galerkin method, it is acceptable if the transition 
radius is sufficiently far from the crack tip so that jump is very small. In this case, 
the small jump will not have a noticeable effect on the solution. 

These two methods of coupling the enriched and linear approximations were found 
to work better for the intrinsically enriched basis in Section 5.3 than for the extrin- 
sic MLS enrichment in Section 5.1. The extrinsic MLS enrichment is sensitive to 
discontinuities and some loss of accuracy was noticed for this coupling. 

Another method of localizing the enrichment to the crack tip region is to use 
extrinsic PUM enrichment from Section 5.2. The extrinsic basis can be added only 
to nodes near the crack tip region. However, it is necessary to enrich all nodes which 
contribute to the crack tip region or else the enrichment is incomplete and the solution 
is poor; 

5.5    Mapping for kinked cracks 

The enriched field of Eq. (38) predicts a discontinuity along 6 = ±ir. However, for 
kinked cracks, this discontinuity falls in the interior of the domain behind the crack 
tip. Therefore, a mapping is required to align this discontinuity in enriched field with 
the actual crack in the area behind the leading crack segment (i.e., the area to the 
left of the dotted line in Fig. 33). The mapping is designed so that a) the preceding 
segment of the crack is rotated to be aligned with the leading crack segment, b) the 
field along the line perpendicular to the leading segment (denoted by the dotted line) 
is not rotated, and c) the field between the two is rotated by a proportion of the angle 
a to 9R. 

We define an angle 8R as the angle between the leading crack segment and the 
preceding segment, and a as the angle between the leading crack segment and a 
line from the kink (or rotation) point (xrot,yrot) to the point of interest (x,y). Let 
0 = a — 8R and_,f = ^/(x — xrot)

2 + (y — yrot)2- A new angle 8 is defined 
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\xrot,yroU 
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Figure 33: Coordinate mapping used for kinked cracks. 

where 
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9=< 0 TT 

= ecb  e>o 

0R - TT/2 2 
= 0 Ca     0 < 0 

Cb = 

ca = 

TT/2 

3TT/2 - 0R 

TT/2 

(57) 

OR - TT/2 

which j's used to determine the coordinates of a point in the mapped coordinate system 

x* = xTOt — r cos 0 — xtip 

V* = Vrot - f sin 0 -ytip. 

(58a) 

(58b) 

These coordinates are used to compute r* and 0* which are used in Eq. (38) or Eq. (50) 
to compute the enriched fields at (x, y). Note that the computation of strain involves 
derivatives with respect to (x*,y*) and it is necessary to obtain the derivatives with 
respect to the original crack tip coordinate system (x, y). The derivatives are obtained 
by the chain rule which leads to 

dx 

d_ 

dy. 

— cos 0 cos a — sin 0 sin aC\   — sin 0 cos a + cos 0 sin a C\ 

— cos 0 sin a ■+ sin 0 cos aC\    — sin 0 sin a — cos 0 cos a C/ 

_d_ 
dx* 

_d_ 

.dy*S 

(59) 

where Ci = Ca jor Cb depending on the sign of 0 (see Eq. (57)). 
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5.6    Numerical Results for Enrichment 

Several problems are solved to illustrate the effectiveness of enriching the EFG formu- 
lation for fracture problems. Solutions are given for single and mixed mode problems. 

5.6.1    Near-tip crack problem 

A closed form solution for a crack problem can be constructed by using the well-known 
near-tip field in a domain about the crack tip and prescribing the displacements along 
the boundary according to this field. This is called a patch test for singular fields. 
A square patch with sides of length 2a and a crack of length a is used (see Fig. 34). 
This problem is used to compare the performance of full enrichment (extrinsic and 
intrinsic), radial enrichment, and a linear basis. The displacement field for a mode 1 
crack is (Williams, 1957) 

u*(x)=27V^cosG K-l + 2 sin2 m 
K + l-2 cos2 m 

(60a) 

«vW = T-A/T-^f?)   K + l-2cos2m    , (60b) 
2/i V 2TT       \2 

where r is the distance from the crack tip and 6 is the angle measured from the line 
of the crack (see Fig. 31). The stress intensity factor is prescribed as k\ = 1 psivm. 
The stresses resulting from this displacement field satisfy equilibrium so the solution 
is exact if the displacements from Eqs. (60) are prescribed on the outer boundaries. 

Without enrichment, the EFG method requires considerable nodal refinement near 
the crack tip to capture the singular stress field with sufficient accuracy to provide 
a useful computation of the stress intensity factor; the mesh used for comparison is 
shown in Fig. 34. A regular grid of nodes is used throughout the domain with a radial 
array of nodes around the crack tip for enhanced spatial resolution. The background 
finite element mesh used for quadrature of the Galerkin weak form is shown in Fig. 34c. 
The stress field ahead of the crack tip computed with a linear basis and the visibility 
criterion is shown in Fig. 35. Without the radial array of nodes around the crack 
tip, the singular stress is not adequately captured by regular EFG and the computed 
stress intensity factors are generally 5 — 15% low (see Fig. 42). The radial array aids 
in capturing the singular stress field; however, the stresses are oscillatory in the radial 
direction (see Fig. 35) and in the angular direction (see Fig. 36). These oscillations 
are typical in approximating a singular field by a smooth function, but they lead to 
moderate domain dependence for the J integral. 

Enriching the EFG trial function greatly aids in capturing the singular stress 
field around the crack tip; when full enrichment is used the oscillations are almost 
completely eliminated.   The stress along 0 = 0° from the crack tip computed with 
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(a) Full mesh (b) Closeup at crack tip 

(c) Integration cells 

Figure 34: Mesh, used for near-tip crack problem without enrichment using 
rings at r = 0.03a, 0.09a, 0.18a. 
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Figure 35: Stresses ahead of the crack tip (6 — 0, r > 0) for the near-tip 
crack problem. 
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Figure 36: Angular variation in stress at a distance r = 0.1a from the crack 
tip. Solution using linear basis with mesh shown in Fig. 34. 
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Figure. 37: Stresses ahead of the crack tip for the near-tip crack problem with 
extrinsic MLS enrichment. 

extrinsic MLS enrichment is shown in Fig. 37 and the angular variation of stress at r = 
0.1a from the crack tip, where a is the length of the crack, is shown in Fig. 38. These 
results,were calculated using the background nodal arrangement shown in Fig. 34a 
without refinement at the crack tip. The diffraction method with A = 1 (unless 
otherwise specified) is used with the enriched approximations to provide smooth and 
continuous shape functions near the crack tip. It can be seen that the enriched EFG 
method is able to capture the singularity and eliminate oscillations at the crack tip 
without using extra refinement in the crack tip region. The stress profiles for extrinsic 
and fully intrinsic enrichment are identical for this problem. Radial y/r enrichment of 
the intrinsic basis captures the singular stress much better than the linear basis with 
no extra nodes, but it tends to underestimate the stress field, as shown in Fig. 39. 

The relative error in strain energy is shown in Fig. 40, and it can be seen that 
the enrichment greatly increases the absolute accuracy. For a linear basis, the slope 
of the line represents the rate of convergence of the approximation for uniform nodal 
refinement. For problems with a singularity, the rate of convergence is controlled by 
the order of the singularity for a polynomial basis of any order (Krysl and Belytschko, 
1996; Strang and Fix, 1973). The rate of convergence for the linear basis in Fig. 40 
is 0.58, which is just slightly higher than the theoretical value of 1/2. For the fully 
enriched approximations (extrinsic or intrinsic), the exact solution is contained in the 
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Figure 38: Angular variation of stress along constant radius (r = 0.1a) from 
the crack tip. Calculated using extrinsic MLS enrichment. 
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Figure 39: Stresses ahead of the crack tip (0 = 0,r > 0) for the near-tip 
crack problem. 
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Figure 40: Convergence for near-tip crack problem. Diffraction method (A 
2) used for enriched basis. 

trial function and according to the theory of minimum potential energy, there should 
be no error due to approximation. In this case, the errors which arise are due to 
other effects, such as quadrature error and discretization of the essential boundary 
conditions. 

Stress intensity factors were computed using the domain form of the J integral 
(Moran and Shih, 1987) with the domain shown in Fig. 41. The J integral is theoret- 
ically domain independent; however, oscillations such as those apparent in Figs. 35 
and 36 and inaccuracy in the approximation of the singular crack-tip stress field as in 
Fig. 39 lead to some domain dependence. Enriching the EFG method yields domain 
independence by capturing the singularity and eliminating oscillations. Figs. 42 show 
stress intensity factors plotted against domain size for the J integral with enrichment 
by full and' y/r enrichment versus EFG with a linear basis using nodal meshes of 9 x 9, 
17 x 17 and 25 x 25 nodes. Full enrichment shows virtually no dependence on either 
domain size or number of nodes for this problem and for y/r enrichment, the stress 
intensity factor varies less than 3% for the coarsest mesh tested. 
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Figure 41: Domain used for evaluating domain form of J integral. 

5.6.2    Shear edge crack 

In this example, we consider a plate clamped on the bottom and subjected to shear 
traction r = 1 psi on the top and containing an edge crack of length a = W/2 = 3.5 in 
(see Fig. 43). The material constants used are E = 30 x 106psi and v = 0.25 and 
plane strain conditions are assumed. The reference solution for the stress intensity- 
factors is (Wilson, 1969) 

fci = 34.0 psivm 

k2 = 4.55 psivin. 

Stress intensity factors are computed by a mixed mode J integral formulation which 
uses the near crack tip fields as auxiliary fields; contour integrals in this method are 
converted to domain integrals using Gauss' theorem (Moran and Shih, 1987). 

The EFG method has been shown to work well for this problem (Belytschko," Gu, 
and Lu, 1994), but a great deal of nodal refinement near the crack tip was required; in 
addition a large domain was needed for the J integral. The enriched EFG formulation 
for this problem gives results which are accurate and require much less computational 
expense. Table 1 gives results for a linear basis and enriched EFG using nodal grids 
of 57 (5 x 11) nodes and 324 (11 x 29) nodes, all evenly spaced. A domain of ±1 in. 
from the crack tip is used for computing the J integral. 
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Figure 42: Domain dependence of normalized stress intensity factor for linear 
basis and enriched EFG for the near-tip crack problem. Results 
are identical for full intrinsic and extrinsic enrichment. 



5.6   Numerical Results for Enrichment 59 

1 psi 

i—» « ■—•—• 

rrrrrrrrrn 
h—w H 

Figure 43: Geometry and nodal configuration for shear edge crack. 

nodes 

Linear Extrinsic Intrinsic Intrinsic 
(no rings) MLS (Full) {yft 

ki        k2 ki        k2 ki       k2 ki        k2 

5x 11 
11 x29 

26.90 
32.51 

3.43 
4.33 

34.43 
34.21 

4.58 
4.55 

32.24 
33.87 

4.21 
4.54 

31.86 
33.01 

4.20 
4.59 

Table 1: Stress intensity factors for shear edge crack calculated by linear 
basis and enriched EFG. 
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Figure 44: Schematic drawing of a tension-loaded plate with two holes and 
two fatigue cracks growing. 

6     Numerical Results 

6.1    Plate with 2 Holes and 2 Cracks 

Fatigue crack growth from rivet holes is a common problem for structures made of 
thin, riveted sheets. For example, an aircraft fuselage is generally constructed of 
aluminum sheets which are riveted together at lap joints using thousands of rivets. 
The holes act as stress raisers to create a local stress concentration and small defects 
often develop in to cracks. Fig. 44 presents a simplified model of a plate with two 
holes subjected to a remote tension field. Initial cracks are assumed to emanate from 
each hole, with the left crack at an angle a and the right crack at an angle ß as shown. 
Placing the cracks at an angle allows for the investigation of crack passing and crack 
bridging where the crack tips will actually avoid each other (Melin, 1983). 

The first case shown is for a = ß = 45°. Figs. 45 shows Mises stress contours as 
the cracks are passing each other and after the cracks have passed. Before the cracks 
pass, there is significant load-bearing capacity in the region between the holes and 
up to the point where the cracks pass the crack tips are the area of highest stress. 
However, after the cracks pass, the region between the holes is severely weakened and 
the high stress area is shifted to the edge of the holes away from the cracks.   This 



6.1    Plate with 2 Holes and 2 Cracks 61 

(a) step 8 (b) Step 16 

Figure 45: Mises stress contours for a plate with two holes and two cracks 
growing. Initial cracks are at angles a = ß — 45°. 

is further illustrated by the stress intensity factors in Fig. 46. For the first several 
steps of crack growth, the mode 1 stress intensity factors are increasing, but after the 
cracks pass the mode 1 stress intensity factors decrease. The mode 2 stress intensity 
factors are a measure of crack smoothness and curvature and it can be noted that as 
the cracks pass, they begin to curve and the mode 2 stress intensity factor deviates 
slightly from zero. 

The next case shown is for o; = 15°,ß = '5°. At this shallower angle the crack 
interaction is much more significant. Figs. 47 shows Mises stress contours at two 
stages of crack growth. These results show a similar trend as in the previous example 
where the crack propagation weakens the area between the holes to the point where 
it does not carry load any longer. It is interesting to note that even at this shallow 
angle the crack tips do not coalesce, but rather avoid each other only to curve around 
and meet each other behind the tip. This phenomena is known as crack bridging 
(Melin, 1983). 
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Figure 46: Stress intensity factors for plate with two holes and two cracks. 
Initial cracks are at angles a = 45°, ß — —45°. 
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Figure 47: Mises stress contours for crack growth in a plate with two holes. 
Initial crack angles are a = 15°,ß = 5°. 
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Figure 48: Stress intensity factors for two cracks growing in a plate with two 
holes. Initial crack angles are a = 15°, ß = 5°. 

6.2    Double Cantilever Beam 

In this example, a quasi-static crack is allowed to grow in a double cantilever beam 
(DCB) specimen. The geometry is shown in Fig. 49, with L — 300 mm, h = 100 mm, 
a = 138 mm, and P = 100 N. Plane stress linear elastic conditions are assumed with 
Young's modulus E = 200 GPa and Poisson's ratio v = 0.3. 

In addition, a small perturbation is introduced at the crack tip consisting of a small 
kink at angle dO relative to the direction of the long crack. The double cantilever 
beam exhibits crack path instability, meaning that the crack will curve away from the 
original straight path after a small perturbation. Physically, a perturbation may arise 
from an inclusion or other imperfection in the material or original crack geometry. 
Sumi, Nemat-Nasser, and Keer (1985) presented experimental results demonstrating 
the unstable nature of the crack path. Cotterell (1966) and Cotterell and Rice (1980) 
showed through perturbation techniques that the second term in the near-tip asymp- 
totic expansion of stress, which is the non-singular stress parallel to the crack, can be 
used to identify the instability. Sumi, Nemat-Nasser, and Keer (1985) expanded this 
analysis to show situations of intermediate stability where either the path is initially 
stable and becomes unstable or else the path is initially unstable but becomes stable 
after some crack growth.  Sumi (1985) performed numerical studies using finite ele- 
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Figure 49: Initial geometry of double cantilever beam (DCB) specimen 

ments and found that by using a small perturbation at the crack tip it was possible 
to simulate the experimental results; however, the crack path was incorporated in the 

initial mesh or treated by remeshing. 
EFG results for three stages of crack growth are shown in Fig. 50 for a linear 

basis and in Fig. 50 for a linear +y/r basis. A perturbation of length Ax = 12 mm 
at an angle dd = 4.8° is placed at the crack tip resulting in an unstable crack path 
which deviates from the original straight path and curves toward the boundary. A 
star-shaped array of nodes is placed at the crack tip for enhanced spatial resolution 
and the crack growth step is Aa = 5 mm. Figs. 51 and 52 show the effect of using 
a crack step size which is too large. The predicted path will contain significant error 
when the step size is not small enough to resolve the sharp change in the path. The 
stress intensity factors for the linear basis and linear + y/r basis are shown in Fig. 53 
using a crack increment of Aa = 5 mm. The stress intensity factors for the two bases 
are quite similar, accounting for the similar crack path results shown in Figs. 50. 

6.3    Crack Growth from a Fillet 

This example shows the growth of a crack from a fillet in a structural member. The 
set-up to be modeled is shown in Fig. 54, with the actual domain modeled outlined 
with a dashed line. Sumi, Yang, and Wang (1995) performed experiments on a 
similar structure but also included the effects of welding residual stresses and varied 
the bending stiffness of the structure by varying the size of the bottom I-beam. The 
results presented here are for a simplified model in which the residual stresses due to 
welding are neglected. In addition, only the limiting cases for the bottom I-beam of 
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Figure 51: Crack path in double cantilever beam specimen for 2 growth step 
sizes using a linear basis. 
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Figure 52: Crack path in double cantilever beam specimen for 2 growth step 
sizes using a linear +y/r basis. 
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Figure 53: Stress intensity factors versus crack growth for linear basis and 
linear +y/r basis. 

rigid (very thick beam) and flexible (very thin beam) are considered. The material 
is assumed to be plane strain linear elastic with Young's modulus and Poisson's ratio 
of E = 200 GPa and v = 0.3, respectively. The applied load is P = 1.0 N and 
the fillet radius is p = 20 mm. The initial crack length is a0 = 5 mm. The EFG 
formulation is enriched using the enriched basis in the region surrounding the crack 
tip (n = 0, r2 = 12 mm) and the enriched fields are mapped using the procedure of 

Section 5.5. 
The crack path evolution shown in Fig. 55 is for the case in which the supporting 

I-beam is very thin. In this case, the crack curves sharply downward and propagates 
toward the bottom of the structure. In contrast, when the structure is supported by 
a rigid I-beam, the crack will propagate almost directly toward the opposite fillet as 

shown in Fig. 56. 

6.4    Beam Under 3-Point Bending 

The next example is crack growth in a beam under 3-point bending. Three holes are 
located in a vertical line offset from the centerline and a crack is seeded at the bottom 
of the beam and allowed to grow (see Fig. 57). Bittencourt, Sousa, Wawrzynek, and 
Ingraffea (1995) presented experimental and numerical results for this problem which 
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Figure 54: Experimental set-up from Sumi, et al. (1995). 

Configuration    Crack length, a    Crack offset, b 

Setup A                    1.5- 5.0 
Setup B LO 6.0 

Table 2: Crack configurations run for beam under 3-point bending. 

showed that based on the location and"length of the original crack, the path of crack 
growth would either intersect one of the holes or pass between them. 

This problem is solved by the EFG method using a linear basis except for the crack 
tip region where the basis is locally enriched. The coupling procedure in Section 5.4 
is used with n = 0.0001, r2 = 0.5. The locally enriched basis has the advantage 
of yielding accurate results for stress intensity factors without additional refinement 
at the crack tip. The presence of the holes makes this a useful feature because the 
additional nodes would create difficulties if they fell inside the holes. 

Table 2 gives the dimensions and location of the initial crack for the two cases run 
and Figs. 58 shows EFG results corresponding to these two cases. For the first case 
solved, the crack passed between the bottom two holes and then passed very close 
to the middle hole on the opposite side. Experimental results showed that the crack 
actually curved into the hole; however, this effect was not captured numerically by 
either EFG or by the finite elements with remeshing as shown in Fig. 59. For the 
second setup, the crack was moved farther from the centerline and shortened. Results 
showed that the crack grew directly toward the center hole for this case. 

6.5    Plate with 31 Holes 

The examples presented to this point have been for relatively simple geometries. 
To demonstrate the power and flexibility of EFG, a problem with a more compli- 
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Figure 55: Crack path progression from a fillet for the case of a thin I-beam. 
Crack tip field enriched by enriched basis for r = 0 — 12 mm. 
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Figure 56: Crack path from a fillet for the case of a rigid I-beam. Crack tip 
field enriched by enriched basis for r = 0 — 12 mm. 
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Figure 57: Schematic drawing of beam with three holes subjected to 3-point 
bending. 
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Figure 58: Final crack growth, results for two different initial crack configu- 
rations. 
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Figure 59: Experimental and numerical results from Bittencourt,  Sousa, 
Wawrzynek, and Ingraffea (1995) for setup A. 
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Figure 60: Two experimental specimens for crack propagation in a plate with 
31 randomly spaced holes from Al-Ostaz and Jasiuk (1995). 

cated geometry is solved. Consider a specimen with thirty-one holes randomly spaced 
throughout the domain. Crack growth in such a specimen is quite challenging and 
several of the enhancements for meshless methods are useful for solving this problem. 

Al-Ostaz and Jasiuk (1995) presented experimental results for brittle fracture 
propagation in specimens with this geometry. The cracks began at the edge of holes 
and tended to intersect the holes directly until the whole specimen had fractured 
(see Figs. 60). They also performed finite element studies with a fine mesh in which 
fracture was simulated by the removal of elements. Whenever the strain energy or 
the maximum principal stress in an element reached a critical value, the element was 
deleted from the mesh, thereby extending the crack. 

This problem was modeled by EFG using an initial nodal distribution of 2396 
nodes. A stress analysis was performed with no cracks in order to determine where the 
highest stresses were. Small cracks were seeded at the seven highest stress locations. 
The bottom edge was fixed and a constant displacement was applied in the vertical 
direction to the top surface. The displacement along the top surface was incremented 
each step by 0.02% each step. The enriched basis from Eq. (50) was used in the region 
surrounding each crack and was ramped to a linear basis. The enriched basis was 
chosen over increased spatial refinement because of the complex geometry. 

Results following 12 steps of crack growth are shown in Fig. 62. After a few 
steps of growth, a few dominant cracks developed and the other cracks arrested. 
Some cracks grew into other holes, but in general the cracks seemed to deflect away 
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Figure 61: Mises stress contours for stress analysis without cracks for plate 
with 31 randomly spaced holes. Cracks are seeded at the seven 
highest stress locations. 

from the holes. This result is in contrast to the experimental and numerical results 
of Al-Ostaz and Jasiuk (1995) who found that the crack tended to grow directly 
into the holes. Possible explanations of the differences with the experiments and 
the EFG computations is dynamic effects. The crack speed in the experiments was 
quite high (the specimens fractured completely in less than 1/3000 sec) while the 
EFG computations assumed quasi-static crack propagation. The cracking patterns 
obtained by EFG use the principles of fracture mechanics, whereas the finite element 
cracking pattern was predicted by the area of high stress. 

7    Conclusions 

A meshless method called the element-free Galerkin (EFG) method has been pre- 
sented as a computational tool for simulating fatigue and quasi-static crack propaga- 
tion. EFG approximations are formed from a basis, polynomial or enriched, and a set 
of unknown coefficients. A moving least squares (MLS) method is used to determine 
the unknown coefficients by minimizing a weighted £2 norm written in terms of nodal 
coefficients. The £2 norm in multiplied by a weight function with compact support, 
resulting in a local approximation, i.e., the approximation is written in terms of the 
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(a) Initial setup (b) After 12 steps 

(c) Mises stress contours 

Figure 62: Quasi-static crack propagation in plate with 31 randomly spaced 
holes. 
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surrounding nodes so the discrete equations are sparse. A weight function is defined 
at each node and common support shapes are circles and squares. A crack is modeled 
as a line segment in the interior of the domain. When a domain of influence of a node 
near the crack intersects the crack, it is truncated along the crack surface. Crack 
growth is modeled by adding an additional segment at the tip. 

Smoothing methods for meshless approximations near nonconvex boundaries are 
presented. Boundaries in meshless methods are enforced by truncating the domains 
of influence of the nodal weight functions along the boundary. For nonconvex bound- 
aries, this leads to discontinuities which extend into the domain. For the case of a 
crack, the weight function of a node near the crack tip will be discontinuous along the 
ray from the node which grazes the crack tip. Because the shape functions consist 
of the contributions of several weight functions, all shape functions near the crack 
tip will contain discontinuities along this line. These discontinuities are dealt with in 
several ways. The first is to simply ignore them and use the discontinuous approxima- 
tions. The second technique is to use the diffraction method in which nodal domains 
of influence for nodes near a crack tip or other nonconvex boundary are wrapped 
around the boundary similar to the way in which light diffracts. A third method, 
called the transparency method, is developed only for cracks. In this method, the 
domains of influence for nodes near the crack tip are not severed at the crack tip, but 
are truncated gradually until at a short distance behind the tip they are truncated 
completely. Another method for obtaining continuous approximations is called the 
"see-through" method or the continuous line criterion. According to this criterion, if 
a continuous line can be drawn between two points without leaving the domain of in- 
fluence,, then the weight function is not modified. This method works well for smooth 
boundaries, such as holes, for refined nodal discretizations, but is not recommended 
for sharp boundaries such as cracks. 

Techniques for enriching meshless approximations for linear elastic fracture are 
presented. Enrichment can be used when the form of the solution is known; this in- 
formation may be used to form better approximations yielding better solutions with 
fewer degrees of freedom. The enrichment is carried out in two basic ways, extrinsi- 
cally and intrinsically. Extrinsic enrichment involves adding the form of the solution 
to the EFG approximations constructed from a standard polynomial basis. Within 
extrinsic enrichment, extrinsic MLS enrichment and extrinsic PU enrichment are pre- 
sented. Extrinsic MLS enrichment consists of adding the enrichment functions to 
the approximation which is used in the MLS methodology. Extrinsic PU enrichment 
consists of using the EFG shape functions as partitions of unity (hence the term PU) 
and adding the enrichment terms in an extrinsic basis which is multiplied by the 
partition of unity and some unknown nodal coefficients. The other form of enrich- 
ment, which is called intrinsic basis enrichment, consists of expanding the existing 
polynomial basis to include the terms from the asymptotic near tip solution.  Both 
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full and partial enrichment are presented. Full enrichment adds the complete span of 
the near tip displacement field to the intrinsic basis, while partial enrichment adds 
only the y/r radial dependence to the basis. Computing enriched approximations is 
more expensive and is unnecessary away from a crack tip. To this end, a consistent 
coupling procedure is defined which allows enriched approximations to be used near 
a crack tip and then blended with the approximations from a linear basis. The cou- 
pling is defined such that consistency is maintained and no discontinuities arise in 
the displacement field. When the crack is kinked, a transformation is defined which 
will map the enriched fields to coincide with the actual crack path. This modification 
is required because the enriched field includes a discontinuity at 8 = ±7r which does 
not coincide with the required discontinuity beyond the kink. 

The element-free Galerkin method is shown to be an effective method for solv- 
ing solid mechanics problems. The method is easily able to handle arbitrary crack 
propagation. 
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