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Abstract: 
We developed several nonparametric modeling techniques as well as 
nonlinear controller design techniques.  We successfully implementing 
these techniques on a robot arm.  We used a locally weighted modeling 
approach as the basis of our nonparametric modeling technique. 
Locally weighted modeling avoids negative interference by retaining 
the original training data, so the approach is adaptive to changing 
data distributions.  We used sophisticated representations of high 
dimensional sub-manifolds to enable dynamic programming in higher 
dimensional spaces than are currently possible. 
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1 Objectives 

There were two major objectives in this project: to develop a practical nonparametric mod- 
eling approach and a complementary nonlinear control design approach for high performance 
maneuvers. The desired characteristics of the nonparametric modeling approach were: 

• The approach can be applied automatically or with minimal human supervision. 

• The approach can be applied for online system identification. 

• The approach does not suffer from interference. 

• The approach reduces the cost of nonlinear modeling. 

The desired characteristics of the nonlinear control design approach were: 

• The approach can be applied automatically or with minimal human supervision. 

• The controller designs can be based on the identified nonparametric models. 

• The approach reduces the cost of nonlinear controller design. 

The approaches developed were to be explored theoretically, in simulation, and in an actual 
implementation. 

2 State Of The Art 

Research on nonlinear modeling techniques advances the state of the art in nonlinear and 
learning control. A major challenge in the control of complex vehicles is dealing with the 
nonlinear dynamics of the vehicle. Learning algorithms are beginning to be applied for non- 
linear control, with the most promising applications coming in situations classically handled 
with gain scheduling or with nonlinear inversion. These "classical" approaches exploit de- 
tailed mathematical models of the nonlinear dynamics; the promise of learning algorithms is 
that high fidelity nonlinear control might be implemented even when suitable first principle 
nonlinear models of the dynamics are lacking or expensive to obtain. 

Using a nonlinear parametric model typically requires an assumption that the model 
structure is correct. This is rarely the case, and motivates the search for modeling techniques 



that can correct structural modeling errors. In cases where nonlinear models based on fixed 
structure neural networks have been shown to be able to approximate any function, large 
amounts of resources (exponential in the dimensionality of the state) have been required. 
Another approach is to add new resources as needed, by adding new parameters or terms 
to the model structure. Such techniques are being explored in the field of neural networks 
where new neurons are added to an existing net, and in statistics where approaches such as 
additive regression and projection pursuit add new terms to the model. These techniques, 
although promising, have not been adequately evaluated in adaptive control applications. 

3    Approach 

3.1 Nonparametric Modeling Based On A Locally Weighted Cri- 
terion 

We have chosen to explore a different approach that avoids difficult issues such as choosing 
an appropriate model structure in advance of collecting the data [4,7]. The locally weighted 
modeling approach simply stores data, which in a typical application would be the modeling 
errors of a parametric model based on knowledge of the plant. When a query is made to the 
parametric model, a new local correction model is formed using a locally weighted training 
criterion: 

CM = £ [(/(x,-,/?) - yt)
2K(d(xt,q))} (1) 

i 

the ith training data point has an input vector x,- and an output y,-, /() is a model structure 
with a parameter vector ß, K{) is the weighting or kernel function such as a one dimensional 
Gaussian, and d(x,-, q) is the distance between the data point x; and the query q. Using this 
training criterion, /(x, ß) becomes a local model, and can have a different set of parameters 
ß for each query point q [7]. 

The locally weighted modeling approach has excellent asymptotic properties, but little is 
known about how well it will perform on finite data sets. We have applied it to the control 
of robots with excellent results [1,2,8]. 

Linear systems require persistent excitation for accurate system identification. With 
nonlinear systems and an approximately correct model structure, the parameters identified 
depend on the data distribution. Negative interference is the loss of the ability to fit a 
previous data distribution because of training on a new data distribution. Locally weighted 
modeling avoids negative interference by retaining the original training data, so the approach 
is adaptive to changing data distributions [7]. 

3.2 Nonlinear  Controller Design Based On Dynamic Program- 
ming 

Dynamic programming provides a methodology to design controllers and estimators for non- 
linear systems. However, general dynamic programming is intractable. We explored using 
dynamic programming in tubes around the trajectory of a maneuver, and in bubbles around 



a goal state. We used sophisticated representations of high dimensional sub-manifolds to en- 
able dynamic programming in higher dimensional spaces than are currently possible [3,9,10]. 

4    Results 

We developed several nonparametric modeling techniques [1,4,6,7] as well as controller design 
techniques [2,3,8,9,10] for high performance control of maneuvers. We explored these schemes 
in simulation as well as implementing them on a nonlinear testbed. The nonlinear testbed 
was a complex seven degree of freedom robot arm. These implementations worked well, 
demonstrated real-time learning, and avoided negative interference when learning different 
maneuvers. The techniques were capable of learning maneuvers both autonomously and from 
demonstrations by experts. These implementations demonstrated the potential of control 
design techniques based on learned local nonparametric models. 

We developed and implemented techniques to improve the performance of locally weighted 
modeling in the areas of: 

• Modeling the bias and variance of locally weighted model predictions. Our predictions 
are linear in the data, leading to straightforward estimates of prediction bias, variance, 
and confidence intervals. 

• Globally optimizing fit parameters such as distance metrics, ridge regression parame- 
ters, outlier rejection thresholds, and weighting function parameters. 

• Identifying and eliminating locally irrelevant terms in the model. 

• Locally optimizing fit parameters such as a smoothing parameter or bandwidth. 

• Faster implementations that also use less memory based on using "receptive fields", 
each of which maintains a local model. 

4.1    Air Force Benefits 

Success in this research can have several practical consequences. Learning systems can allow 
us to increase the performance range of a given vehicle. Learning systems can optimize 
performance, improving efficiency, range, and agility. Terrain may be followed more closely, 
and better pursuit and evasive maneuvers may be possible. Learning systems may also allow 
us to make use of less costly components in manned and unmanned vehicles, and allow the 
use of less expensive instrumentation and manufacturing processes to produce parts and 
vehicles with less exacting tolerances. Learning can correct for component inaccuracies as 
long as each component is individually repeatable. Learning systems may make complex 
manned and unmanned vehicles easier to fly, and easier to train pilots for. Specific pilot 
training modes can be developed. Learning systems may make unmanned vehicles usable 
for a wider range of missions and ground controller skills, and ground crew requirements for 
UAVs may be reduced. The research can lead to less expensive design processes for control 
systems. 



5 Future Work 

We have shown that our nonparametric modelling techniques are successful in modeling 
nonlinear systems. However, an open question is how to use these nonparametric nonlinear 
models to design robust control systems. We have derived the bias and variance for our 
local modeling approaches, and expressions for the uncertainty of local model parameters. 
These techniques can be used directly in robust controller design approaches, and in dynamic 
programming to choose how to explore optimally, in addition to controlling optimally. 
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