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SUMMARY OF PROGRESS 

The REACT research group at Stanford, under the supervision of Professor Zohar Manna, de- 
veloped methodologies and tools for the verification and synthesis of reactive, real-time and hybrid 
systems based on their temporal specifications. A system, STeP (Stanford Temporal Prover), has 
been implemented to support computer-aided verification and synthesis based on these methodolo- 
gies and tools. The goal of the system is to automate the development process as much as possible, 
thereby reducing the errors that otherwise pervade software development. 

The research group consisted of Prof. Zohar Manna (PI), Prof. Amir Pnueli (visitor), 8 PhD 
students, 2 MSc students, and a programmer. One of the PhD students graduated during the period 
covered by this report. Several of the PhD students were supported by this AFOSR grant. 

Research has been conducted on the following related areas: 

• Methodologies and Tools for Computer-Aided Verification and Synthesis 

Reactive Systems A methodology based on temporal logic was developed for the specifi- 
cation, verification and synthesis of reactive systems, i.e., systems whose role is to maintain 
an ongoing interaction with their environment. Examples of reactive systems are concurrent 
and embedded programs, communication networks, control programs for industrial plants 
and transport systems, and operating systems. 

Real-Time Systems The temporal methodology has been extended to deal with real-time 
systems by introducing a time parameter into the state. The specification language and the 
proof system were appropriately extended to allow the expression and verification of timing 
properties of such systems. 

Hybrid Systems The temporal methodology, the specification language, and the proof 
system have been extended to deal with hybrid systems. These systems consist of a non- 
trivial mixture of discrete and continuous components. 

• The Stanford Temporal Prover (STeP) System 

We are currently implementing a comprehensive development environment that is particularly suited 
for the construction of highly reliable software, because of methodology and design features that are 
not available in other systems for formal reasoning. This includes 

Compositional Reasoning Facilities for Compositional Reasoning (Modularity) are in- 
corporated in STeP, which allows large systems to be analyzed piecemeal and promotes 
software reuse of formally verified system components. 

Integration of Methods The system is unique in its integration of fundamental principles 
of mathematical deduction, model checking, decision procedures, and verification rules. 
Each of these technologies can be applied, as appropriate, to the system being developed. 

Visual Language An important special feature of the STeP system is its use of Verification 
Diagrams as a visual language for constructing proofs. We expect that this language will be 
a significant improvement towards allowing software engineers who have not been trained 
in formal methods to apply these tools to system development. 
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TECHNICAL INFORMATION 

During the second year of the award, our research concentrated on the following topics: 

REACTIVE SYSTEMS 

• Verification Diagrams ([MP1.BMS]) 

Most formal approaches to the verification of temporal properties of reactive programs infer 
temporal conclusions from verification conditions that are state formulas, i.e., contain no temporal 
operators. These proofs can often be effectively presented by the use of verification diagrams. We 
introduced verification diagrams as a tool for proving various temporal properties. 

Beginning with safety properties, we present wait-for and invariance diagrams for proving wait- 
for (precedence) and invariance formulas. Proceeding to liveness properties, we present verification 
diagrams for response properties that require a bounded number of helpful steps (chain diagrams) 
and response properties that require an unbounded number of helpful steps (rank diagrams). 

Additional types of diagrams are proposed for handling response properties for parameterized 
programs and response properties that rely on the full spectrum of fairness requirements, including 
compassionate helpful transitions. 

• Realizability and Synthesis ([AM]) 

We present two algorithms: a realizability-checking algorithm and a synthesis algorithm. Given 
a specification of reactive asynchronous modules expressed in propositional ETL (Extended Tem- 
poral Logic), the realizability-checking algorithm decides whether the specification has an actual 
implementation, under the assumptions of a random environment and fair execution. It also creates 
a structure which can then be transformed by the synthesis algorithm into a program, represented 
as a labeled finite automaton. Unlike previous approaches, the realizability-checking algorithm can 
handle fairness assumptions. The realizability-checking algorithm is incremental and it directly ma- 
nipulates formulas in linear temporal logic without having to transform into a branching-time logic 
or other representations. 

• Verification of Parameterized Programs ([MP2]) 

We developed special techniques for the verification of parameterized reactive programs, using 
temporal logic. A parameterized program consists of several similar processes whose number is 
determined by an input parameter. A challenging problem is to provide methods for the uniform 
verification of such programs, i.e., proving correctness of the program for any number of processes. 
The ability to conduct a uniform verification of a parameterized program is one of the striking 
advantages of the deductive method for temporal verification over model-checking techniques. 

Suppose M denote the input parameter which determines the number of processes in the con- 
sidered system. We can use model-checking to verify the desired properties of the system for specific 
values of M, such as M = 3,4,5. Usually, the model checker's memory capacity is exceeded for 
values of M smaller than 100. Furthermore, in the general case, nothing can be concluded about 
the property holding for any value of M from the fact that it holds for some finite set of values. In 
comparison, the deductive method establishes in one fell swoop the validity of the property for any 
value of M. 

The verification approach presented here extends our methodology, proof rules and verification 
diagrams to the case of parameterized programs. We applied our techniques in the verification of 
of safety properties of complex parameterized programs. 



•    Temporal Verification of Simulation and Refinement ([KMP]) 

We developed temporal logic methods for proving simulation and refinement relations between 
programs. We first defined the relations of simulation and refinement between programs and relate 
them to inclusion relations between computations and observations of the compared systems. These 
semantic definitions can be formalized in temporal logic by the use of the temporal and observa- 
tional semantics formulas. This representation expresses simulation and refinement as implications 
between a pair of such formulas. We provided proof rules. 

We also proposed a new temporal logic, called TLR, which is insensitive to stuttering. This 
logic is interpreted over sequences of sampling points, alternating between persistent and transient 
sample points. This logic possesses an idempotent next-time operator, which gives some insight 
into its stuttering robustness. We gave a decision procedure and a complete axiomatic system for 
the propositional version of TLR. 

We also developed a stronger proof rule for refinement, and illustrated its use to prove refine- 
ment of two programs that could not be done within the regular temporal logic framework. 

REAL-TIME SYSTEMS 

• Verification of Real-Time Systems ([HMP.MP3]) 

We extend the specification language of temporal logic, the corresponding verification frame- 
work, and the underlying computational model to deal with real-time properties of reactive systems. 
The abstract notion of timed transition systems generalizes traditional transition systems conserva- 
tively: qualitative fairness requirements are replaced (and superseded) by quantitative lower-bound 
and upper-bound timing constraints on transitions. This framework can model real-time systems 
that communicate either through shared variables or by message passing and handle real-time issues 
such as timeouts, process priorities (interrupts), and process scheduling. 

We exhibit two styles for the specification of real-time systems. While the first approach uses 
time-bounded versions of the temporal operators, the second approach allows explicit references 
to time through a special clock variable. Corresponding to the two styles of specification, we 
present and compare two different proof methodologies for the verification of timing requirements 
that are expressed in these styles. For the bounded-operator style, we provide a set of proof rules 
for establishing bounded-invariance and bounded-response properties of timed transition systems. 
This approach generalizes the standard temporal proof rules for verifying invariance and response 
properties conservatively. For the explicit-clock style, we exploit the observation that every time- 
bounded property is a safety property and use the standard temporal proof rules for establishing 
safety properties. 

• Compositional Verification of Real-time Systems ([CMP]) 

We developed a compositional proof system for the verification of real-time systems. Real- 
time systems are modeled as timed transition modules, which explicitly model interaction with the 
environment and may be combined using composition operators. 

Composition rules are devised such that the correctness of a system may be determined from 
the correctness of its components. These proof rules are demonstrated on Fischer's mutual exclusion 
algorithm, for which mutual exclusion and bounded response are proven. 



HYBRID SYSTEMS 

• Hybrid Temporal Logic ([KHMP]) 

We propose a methodology for the specification, verification, and design of hybrid systems. The 
methodology consists of the computational model of Concrete Phase Transition Systems (CPTS), the 
specification language of Hybrid Temporal Logic (HTL), the graphical system description language 
of Hybrid Automata, and a proof system for verifying that hybrid automata satisfy their HTL 
specifications. 

The novelty of the approach lies in the continuous-time logic, which allows specification of both 
point-based and interval-based properties and provides direct references to derivatives of variables, 
and in the proof system that supports verification of point-based and interval-based properties. 
The proof rules demonstrate that sound and convenient induction rules can also be established for 
continuous-time logics and are not necessarily restricted to discrete logics. The proof rules are 
illustrated on several examples. 

• Design of Controlled Systems ([SM.MS]) 

We propose a conceptual framework to support specification, design and verification of pro- 
grams controlling physical systems. We introduce a computational model that represents the con- 
troller capabilities and distinguishes between synchronous and phase transitions. A graphical sys- 
tem description language is proposed that we believe is readily accessible to control engineers. We 
formalize the notion of control strategy in controller design. 

• Verification in Continuous Time ([dAM]) 

There are two common choices for the semantics of real-time and hybrid systems. The first is 
a discrete semantics, in which the temporal evolution of the system is represented as an enumerable 
sequence of snapshots, each describing the state of the system at a certain time. The second is a 
continuous semantics, in which the system evolution is represented by a sequence of intervals of 
time, together with a description of the system state during each interval. 

We showed how the advantages of both semantics can be combined by adapting the simple 
verification rules of the discrete semantics to the continuous one. Specifically, if a temporal logic 
formula has the property of finite variability (FV), its validity in the discrete semantics implies 
its validity in the continuous one. Thus, verification rules that have as conclusion a FV formula 
are sound also in the continuous semantics. Most formulas that arise in practice are FV, and we 
give criteria that help to characterize them. The ability to transfer results between the semantics, 
together with a deductive system for the continuous semantics, provides a methodology for verifying 
temporal logic properties of real-time and hybrid systems in the continuous semantics. 



COMPUTER-AIDED VERIFICATION 

• STeP: the Stanford Temporal Prover ([M,MBB1,MBB2]) 

STeP (the Stanford Temporal Prover) is a system to support computer-aided verification of 
reactive systems based on their temporal specifications. Unlike most systems for temporal verifi- 
cation, STeP does not concentrate solely on finite-state systems. It combines model checking with 
algorithmic deductive methods (decision procedures) and interactive deductive methods (theorem 
proving). The user is expected to interact with the system and provide, whenever necessary, top-level 
guidance in the form of auxiliary invariants for safety properties, and well-founded measures and 
intermediate assertions for progress properties. In short, STeP has been designed with the objective 
of combining the expressiveness of deductive methods with the simplicity of model checking. 

Development efforts have been focused, in particular, in the following areas. 
First, in addition to the textual language of temporal logic, the system supports a structured 

visual language of verification diagrams [MP1] for guiding proofs. Verification diagrams allow 
the user to construct proofs hierarchically, starting from a high-level, intuitive proof sketch and 
proceeding incrementally, as necessary, through layers of greater detail. 

Second, the system implements powerful techniques (algorithmic and heuristic) for automatic 
invariant generation. Deductive verification in the temporal framework almost always relies heav- 
ily on finding, for a given program and specification, suitably strong invariants and intermediate 
assertions. The user can typically provide an intuitive, high-level invariant, from which the system 
derives stronger, top-down invariants. Simultaneously, bottom-up invariants are generated auto- 
matically by analyzing the program text. By combining these two methods, the system can often 
deduce sufficiently detailed invariants to carry through the entire verification process. 

Finally, the system provides a built-in facility for automatically checking a large class of first- 
order and temporal formulas, based on simplification methods, term rewriting, and decision proce- 
dures. This degree of automated deduction is sufficient to handle most of the verification conditions 
that arise during the course of deductive verification — and the few conditions that are not solved 
automatically correspond to the critical steps of manually constructed proofs, where the user is most 
capable of providing guidance. 

Although the system is in an early stage of development, many of the examples in the Manna- 
Pnueli textbook [MP3] have already been automatically verified using STeP. The system is already 
used as a tool for doctoral research and about to be released worldwide as courseware. 

• Automatic Generation of Invariants [BBM] 

Verifying temporal specifications of reactive and concurrent systems commonly relies on finding 
auxiliary invariants and strengthening properties. Two dual approaches find solutions to these 
problems: the bottom-up method performs an abstract execution of the system, the top-down method 
performs a reverse execution. Both methods are impractical for very large scale verification. We 
developed new techniques, applying abstract interpretation, to obtain feasible solutions even for 
complex tasks. 

We apply tools from linear algebra, linear programming, (tree-)automata theory and theorem 
proving. Perpendicular to the techniques, we distinguish abstraction domains by their ability to 
contain mutual dependencies of variables. The new techniques have been implemented in STeP, the 
Stanford Temporal Prover. 



• Binary Decision Diagrams [AMU] 

We introduce a class of Binary Decision Diagrams (BDDs) which we call Differential BDDs 
(ABDDs), and two transformations over ABDDs, called Push-up and Delta transformations. In 
ABDDs and its derived classes, in addition to the ordinary node-sharing in the normal Ordered 
Binary Decision Diagrams (OBDDs), some isomorphic substructures are collapsed together forming 
an even more compact representation of boolean functions. 

The elimination of isomorphic substructures coincides with the repetitive occurrences of the 
same or similar small components in many applications of BDDs such as in the representation of 
hardware circuits. The reduction in the number of nodes, from OBDDs to ABDDs, is potentially 
exponential while boolean manipulations on ABDDs remain efficient. 

• Temporal Deduction ([MMW]) 

We developed a deductive system for predicate temporal logic with induction. This deductive 
system is relatively complete. 

Representing temporal operators by first-order expressions enables temporal deduction to use 
the already developed techniques of first-order deduction. But when translating from temporal 
logic to first-order logic is done indiscriminately, the ensuing quantifications and comparisons of 
time expressions encumber formulas, hindering deduction. In our deductive system, translation 
occurs more carefully, via reification rules. These rules paraphrase selected temporal formulas as 
nontemporal first-order formulas with time annotations. This process of time reification suppresses 
quantifications (the process is analogous to quantifier skolemization) and uses addition instead of 
complicated combinations of comparisons. Some ordering conditions on arithmetic expressions can 
arise, but these are handled automatically by a special-purpose unification algorithm plus a decision 
procedure for Presburger arithmetic. 

• Algorithmic-Deductive Verification ([SUM,dAM2]) 

The two main approaches to verifying temporal properties of hardware are Algorithmic (Model 
Checking) and Deductive (Theorem Proving) . Algorithmic verification is usually automatic, while 
deductive verification often relies on user interaction to identify suitable lemmas and auxiliary as- 
sertions. However, the algorithmic approach is usually only applicable to purely finite-state systems 
of limited size, while the deductive approach can verify infinite-state systems and parameterized 
finite-state systems of arbitrary size. 

While algorithmic methods can automatically verify a particular hardware configuration for 
a given maximum number of bits, determined by the computational resources available, deductive 
methods have the potential of verifying the corresponding parameterized class of systems in a single, 
interactive step. We investigated how a combination of the expressiveness of deduction with algo- 
rithmic nature of model checking can enable the verification of larger and more complex systems 
than what either approach can allow. 

To manage the complexity of such verification efforts, we developed Diagram-Based verification 
formalisms. These formalisms offer concise, high-level representations of formal proofs, and can 
be developed in a hierarchical and incremental way. Diagrams can also be easier to construct, 
understand and maintain than text-based proofs and specifications, and can be incorporated into 
the hardware design process. 



PH.D. THESIS:     Temporal Validity [Mc] 

This dissertation presents two methods for determining satisfiability or validity of formulas of 
Discrete Metric Annotated Linear Temporal Logic. This logic is convenient for representing and 
verifying properties of reactive and concurrent systems, including software and electronic circuits. 

The first method is an algorithm for automatically deciding whether any given propositional 
temporal formula is satisfiable, and if so reporting a model of the formula. The classical algorithm 
for this task defines a possible state as a setting of the truth-values of certain formulas which are 
relevant to the given formula; possible states are constructed and then linked according to their 
associated formulas' constraints on temporally adjacent states, and then some fulfillment-conditions 
are checked. The new algorithm here efficiently extends that treatment to formulas with operators 
which refer to the past or are metric (i.e. refer to measured amounts of time). Then, whereas 
classical proofs of correctness for such algorithms are existential, the proof here is constructive. It 
shows that for any given formula being checked, any model of the formula is embedded in the graph 
of possible states, in which case the algorithm here can find the model. 

The second method is a deduction-calculus for determining the validity of predicate temporal 
formulas. As has been done, to use the already well-developed techniques available for deduction 
in first-order logic, it is useful to represent temporal operators by first-order expressions, with time 
reified as expressions of the natural numbers. The new deduction-calculus presented here employs 
a refined, conservative version of the process of translation from temporal forms to expressions 
with time reified. Quantifications are elided, and addition is used instead of classical complicated 
combinations of comparisons. Some ordering conditions on arithmetic expressions can arise, but 
such are handled automatically via unification and a decision-procedure for Presburger arithmetic. 
With deduction-rules such as temporal induction, this deduction-calculus is as powerful as others. 
Further deduction-rules such as rewriting are included for additional convenience. 

BOOK: Temporal Verification [MP4] 

The book Temporal Verification of Reactive Systems [MP3] describes formal methods for the 
verification of reactive systems. The book is already being used as course text in various universities. 

We studied in detail the proof methodologies for verifying temporal properties of reactive 
systems. Appropriate proof principles were presented for each class of temporal safety and progress 
properties. 

We developed proof principles for the establishment of safety properties. We showed that 
essentially there is only one such principle for safety proofs, the invariance principle, which is 
a generalization of the method of intermediate assertions. We also indicated special cases under 
which these assertions can be found algorithmically. 

The proof principle that we developed for liveness properties is based on the notion of well- 
founded descent of ranking functions. However, because of the nondeterminacy inherent in concur- 
rent computations, the well-founded principle must be modified in a way that is strongly dependent 
on the notion of fairness that is assumed in the computation. Consequently, three versions of the 
well-founded principle were presented, each corresponding to a different definition of fairness. 

We illustrate the application of these rules on many examples. We suggest concise presentations 
of complex proofs using the devices of transition tables and verification diagrams. 
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