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ABSTRACT 

In this report, we summarize the final results of the research performed at The Ohio State 
University on the AASERT Project F49620-92-J-0299 entitled Integrated Circuits for 
Distributed Control-(AASERT FY91). This AASERT Project, which was initiated 
on 1 September 1992 and completed 14 October 1995, has been sponsored by the Air Force 
Office of Scientific Research (AFSC) and is linked to the Project F49620-92-J-0460 entitled 
Analysis and Control of Interconnected Structures. 

The central focus of the effort on this project has been the development of analog VLSI 
circuit models intended for use in distributed, model-based control of vibrations for flexible 
structures. The availability of piezo strain elements and memory alloys has created the 
possibility for actively controlled composite structures in which actuation is integrated with 
the structure. The advances in miniaturization of analog VLSI circuits allow analog models, 
controllers, and observers to be embedded directly on flexible structures with little increase 
in weight [1, 2, 3]. Thus, a chip model of a substructure could be integrated directly into the 
controller and embedded in the substructure with the actuation. The research presented 
in this report has involved designing analog models of flexible structures for applications 
involving sophisticated embedded control applications. 

in 
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INTRODUCTION 

In this report, we summarize the final results of the research performed at The Ohio State 
University on the AASERT Project F49620-92-J-0299 entitled Integrated Circuits for 
Distributed Control-(AASERT FY91). This AASERT Project, which was initiated 
on 1 September 1992 and completed 14 October 1995, has been sponsored by the Air Force 
Office of Scientific Research (AFSC) and is linked to the Project F49620-92-J-0460 entitled 
Analysis and Control of Interconnected Structures. 

The central focus of the effort on this project has been the development of analog VLSI 
circuit models intended for use in distributed, model-based control of vibrations for flexible 
structures. The availability of piezo strain elements and memory alloys has created the 
possibility for actively controlled composite structures in which actuation is integrated with 
the structure. The advances in miniaturization of analog VLSI circuits allow analog models, 
controllers, and observers to be embedded directly on flexible structures with little increase 
in weight [1, 2, 3]. Thus, a chip model of a substructure could be integrated directly into the 
controller and embedded in the substructure with the actuation. The research presented 
in this report has involved designing analog models of flexible structures for applications 
involving sophisticated embedded control applications. 

A smart structure requires an internal knowledge of self in order to act intelligently[1]. This 
knowledge may be acquired from local models of substructure dynamics. In systems/control 
terminology, the use of this knowledge to determine some intelligent action is model-based 
control. 

A large class of interconnected structures-including most structures comprised of physical 
systems-have models represented by electrical networks. By actually building electrical 
network models of substructure building-blocks, the interconnection of the subnetworks will 
provide the same system response as the assembly of the mechanical substructures. Thus, 
VLSI circuit chips can be developed to represent portions of trusses, plates, appendages, 
etc., and an analog representation of the complete system such as an airplane wing or a 
space station can be assembled. Furthermore, these models may be used in any of the 
large class of control approaches which incorporate a nominal model of the system being 
controlled within the feedback control loop. With the development of these VLSI circuit 
models, compact, cost-effective integrated controllers may eventually become available for 
many applications. 

Although finite element models (FEM) are well-suited for digital computation, the also have 
features which make them desirable for analog computation. The differential equations 
have a very repetitive structure and must be solved simultaneously in real time. Thus, 
the parallel architecture of the FEM is actually hotter suited for continuous-time analog 
signal processing than for implementation on a time-multiplexed DSP architecture. Another 
advantage of the analog solution is that all states of the system are available simultaneously 
and continuously in real time. The goal of the research presented here is to devise analog 
VLSI circuits which are easily connectable and represent finite elements of the FEM of a 



flexible structure. These elemental circuits should be tunable such that resonant modes and 
effective damping ratios for each element may be adjusted. From these elemental circuits, an 
entire structure could be easily modeled in analog hardware which could provide real-time 
data for use in embedded controllers. 

In this report, circuit-based modeling of structures is briefly summarized. A design method- 
ology to convert a FEM into analog circuitry which can be fabricated on a VLSI chip is 
presented. A simple circuit prototype and test results for a VLSI chip are demonstrated. 
Control applications for such VLSI circuit models are developed and simulation results are 
presented for a simple example which illustrate the concept that such analogous VLSI cir- 
cuits can directly aid in generating the feedback control for large structural systems. 

2.    MODELING OF FLEXIBLE STRUCTURES 

2.1     Finite Element Modeling 

The FEM for a flexible beam has been widely researched and is available in the literature 
[4, 5]. A FEM is generally of the form 

Mq + ßq + Kq = Fext :2.i: 

where M is the mass matrix, K is the stiffness matrix, ß is the damping matrix, Fext is the 
vector of generalized forces, and q is the nodal displacement vector. This matrix equation 
can be rewritten in state-space form 

x    =    Ax + Bu 

y   =    Cx + Du 

where x = [q q}T, and 

(2.2) 

(2.3) 

A 
0 

-AT1 A' 
I 

■M~xß 
B 

0 
-A/"1 (2.4) 

The state-space matrices for an FEM of a flexible structure generally are sparse, repetitive, 
and banded or block-diagonal. Thus, interconnecting the circuit equivalents of the structural 
elements requires relatively few connections. Generally, relatively few unique finite elements 
are used to model a flexible structure. Often, for instance, all elements are assumed to have 
the same size, shape, inertia, and stiffness properties. Thus, the FEM has a highly repetitive 
structure.  The repetitive structure allows additional elements to be easily integrated into 



the network-extending the order of the system. Also due to the repetitive structure, analog 
VLSI circuit equivalents of the FEM require very repetitive hardware. While the sparse 
and repetitive nature of the state space FEM formulation make finite element modeling 
particularly attractive for analog computation, non-sparse general state-space modeling is 
also possible using the same approach. 

2.2     Circuit Analogies for Flexible Structure Modeling 

Large flexible structures may be viewed as an interconnection of several substructures where 
the vibration control problem can be approached as a question of power transfer—similar to 
problems in transmission line theory or electrical circuits. Circuit analogies of mechanical 
systems have existed for many years. When the history of mechanical and electrical systems 
is considered, the complementary progress of the two areas is evident. Results of electrical 
network theory have many applications to acoustical, mechanical, and electromechanical 
systems. Included in these applications is vibration control of large flexible structures. 
Typical examples of circuit analogies for mechanical systems are shown in Table 2.2. Using 

Table 2.1: Electrical / Mechanical System Analogies' 
Electrical Mechanical 

(Linear) 
Mechanical 
(Rotational) 

voltage, V 
current, /, q 

charge, q 
flux linkage, A 
capacitance, C 

inverse inductance, 
inverse resistance, -^ {- 

velocity, v, x 
force, F 

momentum, P 
displacement, x 

mass, M 
stiffness, A' 
damping, ß 

angular velocity, ui, 8 
torque, r 

angular momentum, h 
angular displacement, 9 

moment of inertia, J 
rotational stiffness, A' 

damping, ß 

these variable and element analogies, the equations for electrical and mechanical systems 
are: 

i-ext     — 

r ext     = 

Text     — 

1 1     /" 
CV+BV+lI 
Mx + ßx + Kx 
J6 + pe + Kd 

V dt (2.5) 

(2.6) 

(2.7) 

Connecting substructures is analogous to connecting circuit subnetworks. The impedance 
of the entire structure can be determined from the impedances of the interconnected sub- 
structures as one would determine the impedance of a circuit. 



3.    CIRCUIT EQUIVALENT OF A MASS-SPRING SYSTEM 

The simplest type of flexible structure is a spring-mass system. Each mass or element 
in this structure is represented by a one-dimensional model and is connected to its two 
neighboring elements in one dimension. Higher order FEM models can be obtained by 
properly interconnecting such one-dimensional FEM models. 

Consider a mass-spring system with N identical discrete masses, each with mass M, con- 
nected together through N - 1 identical springs, each with spring constant k. In addition, 
light viscous damping will be modeled independently for each of the N - 1 masses as a 
dashpot with damping coefficient ß between each mass and the reference frame. Assume 
that the mass at one end of the system is free and the mass at the other end is attached to 

a rigid point through an additional identical spring and dashpot. The inputs to the system 
are time-dependent external forces F{ applied independently to the individual masses. The 
system outputs are the positions and velocities of each of the masses as functions of time. 
The following set of equations describes the motion of such a system: 

Mx\    -    —Ar(.-ri) + k(x2 - a?i) - ßxx + Ft (3.1) 

Mx'i    =    —k(xi — £,_i) + k(x{+i — Xi) — ß:bi + Fi      2 < i < N (3.2) 

MX'N    =    —k(xjv — XN-I) — ßxN + FN (3.3) 

where X{ is the displacement of the ith mass from its nominal rest position. Note that 
these equations illustrate the repetitive structure mentioned previously about FEM models 
of flexible structures. These three types of equations are all that are necessary to emulate 
the entire system. As we have pointed out previously, it is often assumed that each of the 
elements in a FEM have identical inertia and stiffness properties. 

In order to design the mass-spring circuit, one form of the following equation must be 
computed for each element: 

xn = -77(oixn_i + a2xn + a3xn+i) - ~—xn + FF (3.4) 

where k is the spring constant, M is the mass of the suspended mass, ß is the viscous damp- 
ing coefficient, and xn and xn are the position and velocity of the nth mass, respectively. 

Equation (3.4) is general enough to include all three forms of the mass-spring FEM equa- 
tions, (3.1) - (3.3). The resonant frequency UJQ and the quality factor Q — l/2£ related to 
the damping of the free hanging mass taken as a single element are given by: 

U
O = \IT7 Q = ~7T~' '    ^ 

A block diagram of the circuit representing an element with dynamics governed by (3.4) is 
shown in Figure 3.1.  The circuit for the nth element has input voltages representing the 
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Figure 3.1: Block Diagram of the Mass-Spring Circuit 

external force Fn applied to the element and the displacements xn_i and xn+i of each adja- 
cent element. The output voltages from each circuit represent xn and in-the displacement 
and velocity of the element, respectively. 

Thus, the circuit elements can be interconnected just as the actual mechanical elements 
would be interconnected as shown in Figure 3.2. External forces may be emulated by ap- 
plying the appropriate voltage to each element via the available F{ inputs. These inputs 
correspond to the externally applied control inputs u in (2.2) and (2.3). Note that circuits 
may be designed with strings of these elements already connected on the integrated cir- 
cuit chip. This would reduce the number of external connections required to produce an 
interconnected model. 

ix 
n-l 'n+1 

! 
! 
1 

n-2 
circuit circuit     ' circuit 

 ^-                  -*- 
:  element 

"       1  

X 

element I  element 

i i 

n+2 

n-l n+1 

Figure 3.2: Interconnection of Circuit Elements 

As more masses are added the system gains additional resonant modes. Table 3.1 shows 
how the modes change as masses are added for up to a 4 mass system. 

It is useful for modeling physical systems that JJQ be a low frequency. For example, an 
automobile suspension or flexible beam may have modes in the 10Hz or lower range. It is 
therefore an important goal to show that analog computation can work at low frequencies. 
For this reason the resonant mode was set at 100Hz and made tunable to achieve frequencies 
as low as 10Hz. 

An important observation is that the integrator characteristic frequency u>0 is used to set the 



Table 3.1: Resonant Modes for Mass-Spring System 

# Masses Mode 1 Mode 2     Mode 3     Mode 4 
1 tj0 

2 0.62 cj0 1.62u>o 
3 0.45w0 1.24w0      1.80 u>o 
4 0.35^o l.OO^o      1.53^0      1.88 u;0 

resonant frequency of the element. The characteristic frequency of an active RC integrator 
is given by OJ0 = - where r = RC is the integrator time constant. It is therefore necessary 
to have very slow integrators on a VLSI chip, or in other words large RC time constants, a 
requirement which is directly opposed with the goal of miniaturization. 

4.    VLSI CIRCUIT DESIGN 

The available technology which has been used is a two micron N-well double poly Orbit ana- 
log process. The circuit has been fabricated on a tiny chip which contains about 3.25mm2 

of area. The supply rails have been set to ±5V\ 

4.1 Capacitance 

In order to obtain fixed integrator time constants the integrator capacitors must be highly 
linear. The most linear capacitor available in this process is a double poly parallel plate 
capacitor. Unfortunately the unit area capacitance of a double poly capa.citor is relatively 
small (.47/F//.12). Therefore the largest practical capacitor size available is limited to about 
30pF. This means that in order to obtain large RC time constants the resistance values will 
have to be extremely large. 

4.2 Resistance 

Given the goal of 100Hz characteristic frequency and capacitors limited to 30pF, the min- 
imum resistance value will be approximately 50.1/S>. Table 4.1 gives a list of maximum 
resistances for 5% of a tiny chip die area and also resistance per unit area for the various 
passive layers. It is clearly not feasible to use passive resistors to set the integrator frequency 
at 100Hz. The best alternative is to use active resistors. 

In order to allow a greater variation in tuning without significant reduction of the input 
range, the double MOSFET method [6, 7, 8] is used. The double MOSFET method is 
a technique whereby a pair of matched resistors is replaced by four transistors[8].   The 
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Table 4.1: Comparison of Resistor Sizes 

Resistor Maximum     Resistance/ 
Layer Resistance     Unit Area 
Polysilicon 608 K 3.75 $ 
N+ Active 540 K 3-33 ^ 
P+ Active 1.08 M 6.67 |r 

101 £ N Well 16.3 M 
Active PMOS 158 M 975 £ 

double MOSFET method requires that both resistors to be replaced must have a common 
voltage (V) on one node that is not electrically connected. Figure 4.1 shows how the double 
MOSFET method replaces a pair of resistors. 

R 
vio-A/W^v 

v2^VWv 

R 

<=> 

Figure 4.1: Double MOSFET Method to Replace Resistors 

The equation for the voltage controlled equivalent resistance in this circuit is easily derived 
and given by: 

R 
\iC0XW(VCx - Vc2) 

(4.1; 

This equation is now independent of the input voltage to the resistor.   It must be noted 
however that the MOS transistors must operate in the triode region, and thus: 

Vi, V2 < min[Vbi - VT, VC2 - VT] (4.2) 

The main advantage of using the double MOSFET circuit in a fully balanced topology is 
that the tuning range is dramatically increased. Where a single MOSFET resistance is 
proportional to l/(Vas ~ VT)> the double MOSFET resistance is proportional to l/(Vci - 
Vci)- This allows a minimum tuning range of a factor of 5 by allowing AVc = [Vc\ - Va) 
to vary from IV to 0.2V'. 



4.3     Integrator Topology 

The integrators used in the mass-spring circuit were implemented as shown in Figure 4.2. 
In order to reduce the distortion caused by MOS resistors a fully balanced folded cascode 
single-pole opamp is used. The implementation of an active MOSFET-C continuous-time 
filter requires the use of a fully balanced opamp[9, 10. 11, 12. 13, 14, 15]. A list of simulated 
performance specifications for the opamp is given in Table 4.2. The transfer function for 
the ideal integrator is given by: 

Voutjs) = up =     1 

Vin(s)        s       sRC [ " ' 

Table 4.2: Folded Cascode Simulated Performance Specifications 
Specification Symbol       Value 
Open Loop Gain 
Unity Gain Bandwidth 
Phase Margin @ 150pF, 20K 
Slew Rate @ 150pF, 20K 
Delay Time 
Max. Common Mode Input 
Min. Common Mode Input 
Maximum Output Voltage 
Minimum Output Voltage 
Maximum Load Capacitance 
Minimum Resistive Load 
Static Power Dissipation 
CM Feedback Loop Gain 
CM Feedback Phase Margin 
Positive Supply Voltage 
Positive Supply Voltage 

Av lOdB 
Ft 1.5MHz 
PM 60° 
SR omv/fis 
U 2.bßs 
CMR+ 3.3V 
CMR- -5.0V 
VoutMAX 3.3V 
VoutMIN -2.9 
CL \50pF 
RL 20 K 
P.s 15mlV 
Ac.MF (V2dB 

PMcAlF 70° 
VDD 5V 
Yss -5V 

The transistors used in the active resistors circuit for the integrator time constant were 
PMOS with a length of 2400/i and a width of 5//. The equivalent resistance with typical 
process parameters and AVc for the integrators set to 0.5V was 54MÜ. The capacitors 
were designed for 30pF, yielding an RC time constant of 1.62m5, a characteristic frequency 
u0 of 98Hz. 

4.4     Chip Layout 

A full layout functional schematic of the chip is given in Figure 4.3. The integrator and 
weighted summer sections combine to form the transistor level implementation of the mass- 
spring circuit. The rest of the circuits on the chip are dedicated test structures. The 
required inputs sources are VQD, V55, and Irr.j. a reference current for the opamp. The 
opamp also requires bias voltages Vjg2 and Vß3.  The tuning voltages are set by applying 

8 



Vin- o 
Vin+ o 

QVout+ 
oVout- 

Figure 4.2: Integrator Topology 

external voltages to Vc and VQ. The mass-spring circuit has three external unity gain 
inputs to the weighted summer. These inputs are Vmi + , V{ni — , K'n2+, Vin2~, F+ and 
F-. Outputs are available for the position, velocity, and acceleration of each mass in the 
mass-spring system. 

CHIP TEST SETUP AND RESULTS 

5.1     Test Setup 

The mass-spring circuit is designed to simulate the differential equation for one element of a 
vibrating mass-spring system. By properly interconnecting the circuits, systems of vibrating 
masses and springs are modeled. A MOSIS fabrication request provides 4 chips and therefore 
up to four vibrating masses can be simulated. The circuit allows for two external tuning 
voltages. The voltages are used to tune the vibration frequency u0 = \JkjM and the 
damping ratio £ — ^r, .The circuit has been characterized by both a transfer function 
from the force on the free hanging mass to the velocity of the free hanging mass and by an 
impulse response from the free hanging mass to its velocity output. The following sections 
will demonstrate the performance of the mass-spring circuit. 

5.2     Frequency Response 

The primary characterization of the mass-spring system is the transfer function from the 
force input on the free mass to the velocity of that free mass. At a constant force (DC) the 
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Figure 4.3: Functional Schematic for the Mass-Spring Chip 

springs stretch a constant amount until the forces are equalized and then remain motionless. 
This corresponds to a zero at DC for the velocity and acceleration outputs. 

The DC gain of the transfer function is scaled internally by the resistor weights of the 
weighted summer force input. Because the weighted summer is based on resistance ratios, 
there is also an external scaling available through external resistors. The transfer function 
can be attenuated to arbitrary values by using external resistances in series. The transfer 
function will be scaled by the ratio of -j^%— whore R is the internal resistance from the 
weighted summer summer and Rext is the external resistance added in series. 

The transfer functions of the chip circuits have been measured with an HP3585B spectrum 
analyzer and plotted for one and four mass systems. The system is tuned to have resonant 
frequency of 100Hz for a single-mode one-element system. Transfer functions have been 
generated for one-element through four-element systems. The circuit transfer functions 
(dashed line) are plotted against the theoretical model transfer function (solid line). The 
plots are given in Figure 5.1 and Figure 5.2. The results show that the analog circuit model 
compares favorably with the mathematical model. 

5.3     Impulse Response 

The time domain equivalent of the transfer function is the impulse response. The impulse 
response is physically equivalent to an infinitely short unit energy hammer tap to the free 
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One Element System Frequency Response of Free End 

150 200 
Frequency(Hz) 

Figure 5.1: Single Mass System Frequency Response 

Four Element System Frequency Response of Free End 

150 200 
Frequency(Hz) 

Figure 5.2: Four Mass System Frequency Response 

mass. The impulse response is approximated by exciting the system with very fast impulse 
force generated by a function generator. The measured impulse response is shown in Figure 
5.3. The FFT of the impulse response should be identical to the transfer function or 
frequency response. The FFT of the measured impulse response is shown in Figure 5.4 and 
is plotted against the measured frequency response. The two curves compare very favorably. 
One obvious difference is the high noise floor of the FFT due to quantization noise. 

5.4     Tuning the Resonant Modes 

The mass-spring circuit allows for tuning the center frequency via an external voltage. The 
frequency can actually be tuned over quite a large range of frequencies, at least a factor of 
10 from maximum to minimum. Figure 5.5 shows the measured frequency response for a 
one spring system tuned for different resonant frequencies.   The tuning range varies from 
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Figure 5.3: Four Mass System Impulse Response 

FFT ot Impulse Response 

Figure 5.4: FFT of Four Mass System Impulse Response 

about 10 to 200 Hz. 

5.5     Tuning the Damping Ratio 

The (lamping ratio can be also be tuned via an external voltage. Figure 5.6 shows the effect 
of tuning the damping on the measured frequency response of a one mass system. The Q 
can be tuned from about 10 to 100 which is close to a (,' from 0.005 to about 0.05 The curves 
clearly show that the damping in the model can be controlled from nearly undamped to 
significantly damped. 
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Figure 5.5: Effect of Tuning the Center Frequency 

One Element System Frequency Response 

Figure 5.6: Effect of Tuning the Damping Ratio 

6.     MODEL-BASED CONTROL OF FLEXIBLE STRUCTURES USING 
CIRCUIT ANALOGIES 

As mentioned previously, the primary motivation for developing these VLSI circuit models 
of flexible structures if for inclusion in model-based controller designs. Model-based con- 
trol includes such methods as observer-based control, adaptive control, and several robust 
control schemes. A general system diagram of a model-based control system is shown in 
Figure 6.1. In this diagram, y is the vector of measured outputs, u is the vector of con- 
trol inputs which are applied to the plant, and r represents the vector of reference signals. 
Regardless of the type of control scheme used, the model-based controller receives the mea- 
sured outputs and applied inputs to compare with its internal model of the plant. Based 
on these comparisons, it determines an appropriate control signal. 
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Figure 6.1: Model-based control system 

In any of these control methods, cost and size are key advantages of using VLSI circuit 
models of flexible structures. A model may be easily mounted to the structure or substruc- 
ture to be controlled and used either as an observer or as part of an integrated controller. 
Because this model is analog, a microprocessor may not be necessary for control. 

As discussed previously, the dynamical equations of a structure are equivalent to the dy- 
namical equations of the analogous RLC circuit. The state equations for a nondegenerate 
RLC circuit (no capacitance-voltage source loops and no inductance-current source cut sets) 
without controlled (dependent) sources can be written as 

C 

diL 

' dt 
dvc 

dt 

=   RiL + Acvc + BEE(t) 

=   ALiL + Gvc + Bil(t) 

(6.1) 

(6.2) 

where the following are defined: 

%L vector of inductor currents 
vc vector of capacitor voltages 
E(t) vector of independent voltage sources 
I(t) vector of independent current sources 
L inductance matrix 
C capacitance matrix 
R matrix of resistances in writing loop (voltage) equations 

(row j shows resistances in the same loop as Ljj) 
Ac matrix showing capacitor voltages in loop (entries ±1 or 0) 
BE matrix showing voltage sources in loop (entries ±1 or 0) 
G matrix of inverse resistances in writing cut set (current) equations 
AL matrix showing inductor currents in cut set (entries ±1 or 0) 
B; matrix showing current sources in cut set (entries ±1 or 0) 

Note that these state equations may be rewritten in the form 

x = Ax + Bu (6.3) 

where the state x = [; T ,.T\T 
L vc 6 IRn is equivalent to the forces and velocities in the actual 

physical structure, u = [ET IT]T is equivalent to the external velocity and force inputs, 
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and 

A 
L'XR 

C~lAL 

L~lAc 

-C~lG 
B = 

L~lBE 

C~lBr 
(6.4) 

6.1     Observer Design 

Observer design is one interesting application of circuit representations of flexible structures. 
The observer may be easily mounted to the structure or substructure to be controlled. This 
observer can be implemented with an analog VLSI circuit model of the original system. 

The observer for the structure is equivalent to the observer for the analogous RLC circuit. 
Consider the case with some voltage (velocity) measurements. Thus, 

0   H 
VC 

(6.5) 

where it is assumed that H has full row rank and that {A, [0 H]} is observable. An observer 
can be designed using the circuit model of the structure such that the error between the 
observed states x = [t[ VQ]

T
 € Qtn and the true states which are the forces and velocities 

of the structure can be driven to zero with error dynamics specified by the selection of 
matrices F\ and F2 resulting in the following equations: 

L — 
dt 

C 
die 
IT 

RiL + AcvC - LFiHvc + LFiy + BEE{t) 

=    ALiL + Gvc-CF2Hvc + CF2y + BII(t) 

(6.6) 

(6.7) 

These equations imply that controlled (dependent) voltage sources must be added to the 
inductive element nodes with gains represented by F\ and that controlled (dependent) 
current sources must be added to the capacitive element nodes with gains represented by 
F2. Thus, an observer for a mechanical substructure may be created using the VLSI circuit 
model of the substructure driven by outputs of the system with the addition of dependent 
sources either external or internal to the VLSI chip. The resulting observed states will 
approach the true states asymptotically and may then be employed in state feedback control 
design [16]. 

6.2     Sensitivity Modeling and Adaptive Control 

A second specific application of the available analog VLSI circuit is to generate the so-called 
sensitivity functions of the states of a structure with respect to a vector a of unknown 
parameters of interest. It is assumed that the physical system matrices such as mass, 
stiffness, and damping which are represented by the electrical equivalents C, L, R, and 
G are known functions of an unknown parameter vector a £  1RP such that the system 
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behavior is directly effected by variations of a. In fact, the physical system matrices are, 
indeed, functions of such unknown parameters as Young's modulus, the shear modulus, and 
the density of a material. These parameters are generally approximated experimentally, but 
are not known exactly. 

It is known that the sensitivity functions can be generated from a sensitivity model which 
is governed by the same dynamics as the original system model and is driven by the system 
outputs [17, 18]. For the open-loop case where the system input u is not a function of a, 
the sensitivity model for the system represented by (6.1) and (6.2) is given by 

-r d 9'i-L r^dtL      .   dvc     OR .       dL dii 
at oai oai oai      octi aal at 

d dvc diL        dvc     dG dC dvc .   n. 
C— -7—   =   AL-— + G-— + 1—vc--: j—• (6.9) 

at oai oai oai      oai oai  at 

Thus, as with the observer, the sensitivity functions dx/dai can be generated with the 
VLSI circuit model by adding dependent sources either external or internal to the VLSI 
chip. Note that the dynamics associated with this sensitivity model are mathematically 
similar to the original system model. These equations may be rewritten in a form similar 
to (6.3) from Section 6.1 

d dx        , dx      n du      dA        OB ,„ ,„> 
-^- = Ä— + B— + —x + —u. 6.10 
at oai oai      ■   oai      oai        oai 

For simplicity, the notation of (6.3) and (6.4) will be adopted for the remainder of this 
chapter. 

The resulting sensitivity functions may then be used in parameter identification and indirect 
adaptive control algorithms often referred to as gradient descent or sensitivity methods [17, 
18, 19, 20]. In the controller design, a control structure is assumed and a design method is 
chosen such that the controller parameters depend on the system parameters by some known 
relationship. Because the system parameters depend on the unknown parameters a, the 
controller parameters also depend on a based on a known relationship. The basic philosophy 
behind indirect adaptive control is to obtain an estimate a of the actual parameter vector 
a in real-time and to use a to determine the controller parameters as if the estimates were 
the true parameters. 

In the adaptive control scheme we propose, several VLSI circuit models of the system using 
the estimated parameters a 6 Htp will be used within the controller structure. As has 
been shown in the previous chapter, the circuit para meters are tunable and will be updated 
continuously with new parameter estimates. The states of one of the models will be denoted 
by x — x(a) and will be used as an internal model of the physical system being controlled. 
Thus, 

x = Äx + Bu (6.11) 

16 



where A and B are equivalent to A and B in (6.4) evaluated using the estimated parameters 
rather than the true parameters. Furthermore, for each estimated parameter <*;, a separate 
VLSI circuit sensitivity model similar to the model described in (6.10) will be used. 

The gradient descent or sensitivity methods of identifying a seek to minimize the error 
e = x — x (or some cost functional of e) between the the actual system state x and the state 
x of the internal model. It is assumed that the actual state x is available for measurement 
and that x(0) = x(0) is chosen as the initial conditions of the internal model. This eliminates 
any errors between x and x due to differences in the initial conditions such that all of the 
state errors are assumed to be due to the error between a and a. 

Consider the positive definite cost functional and Lyapunov function candidate 

J=-eTe. (6.12) 

From Lyapunov stability theory, it is well known that if the time derivative of ./ 

dJ      dJ da      ÖJ de da 

dt      da dt       de da dt 
(6.13) 

could be made negative definite, then the error will approach zero asymptotically. Although, 
in general, it is not possible to guarantee that dJ/dt is negative definite, it is possible to 
ensure that d.J/dt be negative semi-definite by varying ä along the negative of the gradient 
of J as 

d&i d.JT deTd.JT ( de\r 

lit   ~ ''    lldat    ~ 1 d&i   de -It {dcTj    € i = l,...,p (6.14) 

where the 7; are positive constants which control the rate of convergence of the parameter 
estimates to the true values. These constants are often referred to as the adaptation gains. 
With the above choice of da/dt, the derivative of the cost functional becomes 

d.J T / P       de   de T\ T'X>^r;^-   )e (6.15) 
t=i dt \ /—f " da; da 

which is obviously negative semi-definite. 

To use the parameter estimation scheme described by (6.14), Öe/däi must be evaluated 

de        dx       dx 
TyT    =    TyT-Tyr. (6.16) 
aai      clai      da{ 

The dx/dati term is obtained from the sensitivity model 

d dx        - dx       - du      dA        dB 
— — = A— + B— + —x + —u. 6.17) 
at dai dai da^      aal        dai 



Similarly, noting that the system matrices A and B of the actual structure are not functions 
of a, the Öx/däi term is obtained from the sensitivity model 

d dx        , dx       „ du 
= A— + B—-. (6.18) 

a it d&i        dc*i        dä{ 

As the true matrices .4 and B are unknown, this sensitivity model will be evaluated using 
A and B which are based on the estimated parameters [17, 18]. 

For open-loop parameter identification, the input u is not a function of a; thus, the Öx/däi 

terms are zero. However, for closed-loop parameter identification, u = •;■ + Kx where r is a 
vector of independent reference signals and A" is the feedback gain matrix whose parameters 
are functions of &. Thus, dx/d&i must be evaluated because du/d&i is nonzero in general 

du      8K        T.dx ,„ ,„, 
Tr- = -^rx + A —-. (6.19) 
ooti      octi acxi 

Substituting (6.19) into (6.17) and (6.18) and evaluating (6.16) yields 

d  de       - de       dÄ _     dB 
7T-rpr- = A-— - T^-X- — u. (6.20) 
dt doi        octi     dal       dcti 

Thus, the error sensitivity functions are obtained from the analog VLSI circuit models and 
used in the gradient descent parameter identification scheme to obtain parameter estimates 
n. These estimates are then used to update the internal model, the sensitivity models, and 
the controller parameters. A simple example is provided in the following section. 

6.3     Adaptive Control of a Mass-Spring System 

In this section, simulation results of the above adaptive control scheme for a single mass- 
spring element will be presented to illustrate the concept of vibration control using the 
developed VLSI circuits. Consider once again the mass-spring system model of Chapters 3 
and 4 for a single finite element with mass M. stiffness Ä;, and damping coefficient ß. In 
this example, it will be assumed that the stiffness and damping coefficient are incorrectly 
estimated a priori as shown in Table 6.1. Thus, the uncertain parameter vector is a = 
[ß k]T. The values in the table have been chosen to represent typical values of a single 
finite element for a structural model. It should be noted that in practice, a very large 
number of these elements could be integrated on a single chip to emulate the complete 

model of a larger, more complex substructure. 

The equations of motion for the actual system can be written in the equivalent form of (6.1) 
and (6.2) using the circuit analogies presented in Table 2.2 

-(lk    =    v (6.21) 
k dt 

M^-    =    -fs-ßv + F (6.22) 
at 
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Table 6.1: Parameters for Mass-Spring Example 

Parameter Actual 
Value 

Nominal 
Estimate 

M, kg 
It, N/m 
ß, N-s/m 

0.01 
100 

0.02 

0.01 
90 

0.05 

where v = x is the velocity of the mass, fs is the force of the spring, and F is the externally 
applied force input which is available for control. These equations can be written in the 
state space form of (6.3) where x = [fs v]T, u = F, and 

A = 
0 
j_ 

' M 
ß_ 

' M 
B = 

0 
j_ 

~ M 
(6.23) 

The nominal model based on the estimated parameters 

ldfa 

k dt 
,dv 

M 
dt 

-fa -ßv + F 

(6.24) 

(6.25) 

can similarly be written in the form of (6.11) where x = [/s v]    and 

A 
M 

JL 
M 

B j_ 
A'/ 

(6.26) 

The error sensitivity models corresponding to each parameter are obtained from (6.20) and 
the parameter estimates are updated using the gradient descent method described by (6.14). 

In typical flexible structure control designs, a common objective is to add significant damp- 
ing to the flexible modes for the purpose of reducing vibrations. However, it is often the 
case that quick translational or slewing maneuvers may be necessary which often excite the 
flexible modes. A square wave has been used to emulate the rigid body position reference 
command r. The controller structure is assumed to be u = r + Kx where the feedback 
gain matrix K can be designed using any of various state-space methods. For this simple 
second order example, the design objective shall merely be to place the poles such that 
the response will be relatively quick and have a significant increase in damping. To obtain 
a desired natural frequency of oscillation u>d = 1500r«r//.s and a desired damping ratio of 
Q = 0.7, the characteristic equation s2 + 2(d<^<is + ^ = 0 is set equal to the determinant 
of the closed-loop system matrix A + BK. Hence, the resulting gains are functions of the 
estimated parameters 

K = [KX   K2 1-wJ-r-   ß-2QujdAI 
IX 

(6.27 
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Figure 6.2: Error Between Actual System States and Internal Model States 

As shown in Figure 6.2, the magnitudes of the errors between the actual system states 
and the internal model states approach zero asymptotically. Furthermore, the uncertain 
parameter estimates do converge to the actual parameter values as shown in Figure 6.3. 
The response shown in Figure 6.4 of the actual system to the square wave position reference 
command after adaptation illustrates the desired quick translational motion with very little 
oscillation. These results indicate that the developed adaptive control scheme which utilizes 
the developed analog VLSI circuit models performs well. 

7.    CONCLUSION 

The AASERT support has allowed us to investigate integrated circuits for distributed con- 
trol of flexible structures. This report has presented work concerning circuit implementa- 
tions of finite element models of flexible structures and model-based control approaches in 
which these circuits are used. 

An analog VLSI prototype has been developed and tested. A technique has been presented 
to implement low frequency finite element models with analog VLSI circuits. Four chips have 
been fabricated, each containing a single finite element of a mass-spring system. Results 
were presented for a four element mass-spring system, and proved to be very accurate in 
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Figure 6.3: Convergence of Internal Model Parameters to Actual System Parameters 

comparison to the theoretical model. The mass-spring system has also been extended in 
discrete form to a two-state flexible beam element with similar results. The number of 
elements and the number of states per element can be easily extended. The high precision 
of results is due in part to manual tuning of the integrator time constants, but future designs 
could incorporate automatic tuning schemes such as those presented in the adaptive control 
section of this report. 

The success of these analog FEM models creates the possibility for low area, low cost 
model-based controllers for vibrating systems which may be integrated with the actuation 
and embedded into the structure or substructure. It has been shown how these VLSI circuit 
models could be employed in several model-based control schemes. Simulation results of 
an adaptive vibration controller of a simple mass-spring system using the developed VLSI 
models have also been presented. 
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