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BoxD 
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March 7, 1995 

To: Dr.  Walter F. Jones, Program Manager, Directorate of Aerospace Sciences, Air 
Force Office of Scientific Research 

From: L. B. Freund, M. Ortiz and R. Phillips, Division of Engineering 

Re: Final Technical Report, Grant No. F49620-92-J-0129 

This memorandum is a summary report of research on this grant during the period from 1 
January 1992 through 31 December 1994. We are pleased to report that the principal objectives 
have been met, and that directions for advance at the continuum/atomistic interface have been 
defined in the course of this work. Through incorporation of the perspectives from several disci- 
plines normally regarded as disjoint, we have extended concepts of mechanics beyond traditional 
boundaries and have identified fruitful avenues for research in the area of mechanics of materials. 

Finite element analysis of inelastic processes 

The analysis of the core structure of crystal defects such as dislocations, vacancies and solute 
atoms requires consideration of anharmonic lattice effects near the core. Lattice statics or molecular 
dynamics based on atomistic energy functions provide a powerful and accurate analysis tool on this 
scale. At the other end of the spectrum the macroscopic deformation behavior of crystals may 
involve dislocation densities as high as 1015 m-2. An area of one mm2, e. g., near the tip of a 
crack, may be crossed by as many as 109 dislocations. This precludes consideration of individual 
dislocations at the macroscopic scale, and has spurred the development of constitutive models 
which treat dislocations and other defects as continuously distributed objects. An intermediate 
scale, on the order of a few hundred nm, is presently emerging as the focus of increasing attention 
in applications such as nanoindentation. This scale is presently beyond the reach of atomistic 
methods. However, the deformation processes of interest involve discrete dislocations in numbers 
which are too small to be adequately described by macroscopic crystal plasticity models. This is 
the scale which we preferentially address in the present work. 

Ideally, we would like to have one theory with the following attributes. At the macroscale, 
the theory should reduce to continuum crystal elasticity, with its usual properties of material frame 
indifference and crystal symmetry. At the microscale, the theory should be built upon an atomistic 
potential, incorporate a lattice parameter, and possess all the usual lattice invariance properties. 
We note that the incorporation of the lattice parameter as an intrinsic length necessarily renders 
the theory nonlocal.   At intermediate or mesoscales, the theory should exhibit a continuous or 
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seamless transition from the lattice to the continuum realms. 

One way in which such a theory can be constructed is as follows. We begin by considering an 
equilibrated reference composite Bravais lattice X(l, k), 1 G Z3, k = 1,.. .,s. We adopt the Cauchy- 
Born rule and assume that, locally, deformations are affine, possibly with shuffles. Consequently, 
the positions of the atoms in the deformed configuration are 

x(l,fc) = FX(l,*) + b(&), lGZ3, k = l,...,s (1) 

where F is the local deformation gradient. The strain energy density of the crystal follows as 

W(F)=   lim   iminSfxa*)) (2) 
V—KXI  V   b(«) 

where $ is some atomistic potential. Note that the shuffles are optimized locally for given F. 
The use of an atomistic potential and the Cauchy-Born rule, and the explicit consideration of the 
lattice geometry in the reference configuration of the crystal, automatically endows the energy 
density function with the following properties: i) material frame indifference, W(QF) = W(F), 
VQ G SO(3); ii) crystal symmetry, W(FQ) = W(F), VQ G S where S is the point symmetry group 
of the lattice; iii) lattice invariance, W(FH) = W(F), H G Z3x3, detH = ±1; iv) slip-invariance, 
H = I + 7c@b,   c, b G Z3,   c • b = 0 =£> W(H) periodic in 7 with period 1. 

Stable configurations of the crystal can now be identified with minimizers of the potential 
energy 

P[4>] =   /    W(F)dV0 - forcing terms 
JBQ 

(3) 

where BQ is the domain of the reference configuration of the crystal, <ß : BQ —*• R3 is the deforma- 
tion mapping, and the attendant deformation gradients follow as F = VQ4>. Evidently, for small 
deformations of the crystal, the formulation reduces to conventional anisotropic linear elasticity. 
In particular, energy minimizers are uniquely defined up to a rigid body motion. These conditions 
are commonly realized in regions of the crystal which are distant from lattice defects. However, 
property (iv) implies the lack of quasi-convexity of W [1], which in turn makes it possible for ener- 
gy minimizers to develop intricate microstructures on a fine scale, such as lattice defects, twinning 
and others. On this scale, the periodicity of the lattice, and the resulting periodicity of the energy 
function with respect to crystallographic slip become all-important. 

For reasons which will become apparent in the sequel, an essential building block of the 
present approach is the introduction of a method of spatial discretization well-suited to multiple- 
scale analysis. Adaptive finite elements constitute a prime example. In our work, we have followed 
the approach of Ortiz and Quigley [2]. The reference domain of the crystal BQ is partitioned into 
N six-noded triangular elements Qe

h, e = 1,...,JV. Here and subsequently, the subscript h refers 
to some measure of the finite element mesh size. The deformation mapping 4>h is interpolated from 
nodal values using quadratic shape functions. Integrals over the elements, such as required for 
the computation of the energy, are approximated by a three-point quadrature rule. The stresses 
and tangent moduli are computed from the atomistic potential at the quadrature points of the 
elements based on the local value of the deformation gradients. The nodal values of the interpolated 
deformation mapping 4>h are obtained by a conjugate gradient iteration with line searches. 
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Fig.  1. Comparison of core structures of a Lomer dislocation in aluminum 
as computed by quasi-continuum method (black) and a direct atomistic simulation (grey). 

Meshes are constructed by Delaunay triangulation based on the corner nodes of the elements. 
Elements whose strain energy exceeds a specified maximum, i. e., such that 

W(Fh)dV0 > TOL (4) 

are targeted for refinement. This adaption criterion results in equipartition of energy over the 
elements of the mesh. Elements are refined by introducing new corner nodes at midside locations, 
followed by a complete re-triangulation of the mesh. The nodal displacements and state data are 
transferred to the new mesh using a transfer operator derived by Ortiz and Quigley [2]. 

It should be carefully noted that the theory, as previously stated, is purely local, as it lacks a 
characteristic length scale. This is a consequence of the adoption of the Cauchy-Born rule, which 
renders the energy density independent of the lattice parameter a. Minimizers of local energy 
functions lacking quasi-convexity often develop structure at arbitrarily fine scales. In particular, 
the energy equipartition criterion leads to indefinite mesh refinement near the core of defects such 
as dislocations. The requisite physical cut-off is, evidently, the lattice parameter a. We therefore 
endeavor to restore the lattice parameter a into the theory. 

This can be accomplished by a variety of means. Some possibilities are strain-gradient theories 
and non-local theories of the integral type, to mention a salient few. The common feature of these 
formulations is that they filter out the short wavelength components of the Fourier transform of 
the deformation gradient field. But in the context of adaptive finite element calculations, the same 
identical effect may be expediently accomplished by limiting the spatial resolution of the mesh, 
i. e., by requiring 

(5) fl  >   /lmin   ~  a C "mm 

In this manner the lattice parameter a is restored into the theory as an intrinsic length. 



The introduction of a mesh-size cut-off effectively checks the process of indefinite refinement 
induced at the core of defects by the energy equipartition adaption criterion. This in turn results in 
well-defined core energies, a prime distinguishing characteristic of theories with an internal length 
scale. Another consequence of the mesh-size cut-off is the introduction of an effective stacking 
fault energy. To see this, imagine a process of slip whereby two half crystals slide rigidly along 
a crystallographic plane. Under these conditions, the equipartition criterion causes the mesh to 
collapse towards the slip plane. The process of collapse ends when the mesh size h reaches the 
value hm-m. This results in an uniformly sheared cut plane of 'thickness' hmin. The strain energy 
associated with the shearing deformation is periodic in the amount of slip. For simplicity, assume 
that the strain energy density passes through a single maximum WmSlX within each period. At the 
maximum, the crystal is in unstable equilibrium, and the energy per unit length of the cut plane is, 
evidently, 7 ~ Wmaxhm\n, which can therefore be interpreted as an effective stacking fault energy. 

It is instructive to probe the limiting behavior of the theory at the atomistic microscale. Here 
the question is whether the theory can stably support lattice defects such as dislocations and, if so, 
how close are their cores to those predicted by an unconstrained atomistic simulation. A calculation 
of the core of a Lomer dislocation in aluminum is shown in Fig. 1. The atomistic potential adopted 
in the calculation is of the Embedded Atom type, as fitted to ab initio calculations by Ercolessi 
and Adams [3]. The initial displacements in the conjugate gradient iteration are set to the linear 
elastic solution. Fig. 1 compares the core obtained from the quasi-continuum method and a direct 
atomistic simulation. 

Three aspects of the solution bear emphasis. Firstly, the ability of the theory to produce 
stable lattice defects is noteworthy. In particular, the theory enables the crystal to be cut along 
a crystallographic cut-plane and slipped by a translation vector of the lattice without any change 
in energy. Secondly, the dislocation is accorded a well-defined core energy, a manifestation of the 
existence of an intrinsic length scale in the theory. Thirdly, although not exact, the structure of 
the core is in reasonable agreement with the prediction of the atomistic simulation. 

The example shown here is intended as a demonstration of the limiting behavior of the theory 
on the atomistic scale. Applications to problems in nanomechanics fit perhaps more naturally 
within the scope of the theory and will be pursued in a forthcoming publication [4] 

The Nucleation of Dislocations at a Crystal Surface 

The behavior of dislocations in materials intended for use in microelectronic devices has been 
a topic of long-standing interest because of the effect of dislocations on electronic properties of the 
materials. One example is the appearance of misfit dislocations in layers which have been epitaxially 
grown onto a substrate with a slightly different lattice parameter. Invariably, this process involves 
materials which have been chosen primarily for their electronic transport properties, and not for 
reasons related to lattice parameter or mechanical defect characteristics. The strain which arises 
through the constraint of epitaxy is commonly relieved by the formation of misfit dislocations at 
the interface between the strained layer and its substrate. If these dislocations are prevented from 
forming, the stress in the film is not necessarily detrimental; indeed, in some cases the influence of 
strain on band structure of the material can be exploited to some advantage in charge confinement 
in the system. 

The appearance of misfit dislocations during epitaxial growth has been observed experimen- 
tally to coincide with the attainment of a critical thickness which, in turn, depends on the elastic 

-4- 



I—i—i—i—i—i—i—r-i—■—|—i—i—■—i—j—i—■—i—i—|—r—i—i—i—|—i—■—i—i—|—■—r* 

m = 0.53S 

m = 1.0 

ledge creation  - 
ledge removal 

250    500    750   1000 
Temperature (° C)  

Fig. 2. The critical shear stress required to emit a dislocation 
for a free surface as a function of temperature. 

mismatch strain, elastic constants, and crystallographic orientation. Theoretical studies of this 
problem have established the validity of the critical thickness concept, and the theory has been 
supported by very careful experiments. A persistent difficulty in this area is that, on the one hand, 
the critical thickness concept is based on the behavior of a pre-existing dislocation while, on the 
other hand, materials can be grown of such high crystalline quality that the population of pre- 
existing dislocations in insufficient to accommodate significant relaxation of the elastic mismatch 
strain. Thus, the nucleation of dislocations emerges as a problem of central importance in such 
systems. 

Several mechanisms of dislocation nucleation in strained epitaxial films have been proposed. 
None seems to be present over a wide range of materials and/or conditions, and nucleation processes 
appear to be somewhat material specific. However, there is evidence to support the view that 
dislocations can be nucleated as loops at the growth surface of a strained material. It has been 
argued that the activation energy for this process is prohibitively large, and thus that the process 
is unlikely to occur. However, such models have been based on a restricted model of dislocation 
loop formation and on the role of the free surface. 

We have reexamined the process of dislocation nucleation at a crystal surface in light of recent 
developments within the theory of nucleation [5]. An exact expression for the elastic energy asso- 
ciated with a semicircular shear dislocation loop emanating from a free surface has been obtained 
and compared with earlier approximations. It has been demonstrated that the energy of a half loop 
emanating from a free surface has the form 

rrhalf _ fib2 r 2 - v     8mr 

8    l-i/      e2r0 
(6) 

where ß is the shear modulus, v is Poisson's ratio, 6 is the magnitude of the Burgers vector, r 
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is the radius of the half loop, ro is the core cut-off radius, e is the natural logarithm base, and 
m is a dimensionless parameter. It is noteworthy that, for m = 1, this expression gives one-half 
the energy of a full loop in an unbounded solid. The energy required to activate a semicircular 
dislocation loop into its unstable equilibrium configuration is then calculated on the basis of the 
modified self-energy estimate. As shown in Figure 2, the shear stress necessary to emit the loop, as 
a function of temperature, is almost 50% less than earlier estimates. Thus, when a more realistic 
description of a dislocation line is adopted, the process of surface nucleation of dislocation loops 
becomes much more plausible in such system. 

References 

[1] I. Fonseca, J. Math. Pures et AppL, 67 (1988) p. 175. 

[2] M. Ortiz, and J. J. Quigley, IV, Comp. Meth. AppL Mech. Engr. 90 (1991) p. 781. 

[3] F. Ercolessi and J. Adams, "Interatomic Potentials from First-Principles Calculations:  The 
Force Matching Method," University of Illinois Report, 1993. 

[4] E. Tadmor, M. Ortiz and R. Phillips, "Quasi-Continuum Finite Element Analysis of Inelastic 
Deformation Processes in Crystals," in preparation. 

[5] G. E. Beltz and L. B. Freund, Phys. Stat. Sol, 180(b) (1993) p. 303. 

A - /^ 'V£'t/LvL£l 

M. Ortiz 

 M 
R. Phillips 


