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Chapter 1 

Introduction 

Damage due to an external impact is a serious problem for fiber reinforced organic 

matrix composite structures. An impact may cause delamination or other damage to 

the structures. The structures may require routine inspections to insure its integrity. 

A system that could automatically detect and report an impact would make inspection 

for impact damage only necessary when an impact of significant energy is received. 

Several authors have published methods to identify an impact on a plate using 

sensor measurements. Wu et. al. [1], [2] and [3], presented an optimization procedure 

to calculate the impact history of an impact at a known location on a composite 

plate. They used an array of strain gauges to measure the plate response. They 

also developed a method to select the impact location from several possibilities on an 

aluminum plate. However, they did not develop a complete system for locating and 

reconstructing an unknown impact on a composite plate. 

Another way of solving the identification problem is using a neural network. 

Shaw [4] and Jones [5] developed a neural network based identification method and 

successfully found the location of a known force. The training of the neural network 

becomes impractical when the force history is unknown. Reconstructing an impact 

force history would require nearly an infinite number of training impacts. 

Approaching the problem of impact identification in another way, Günther et 

al [6], recorded the time of arrival of the signal at four different fiber-optic sensors 

and triangulated to find the non-damaging impact location.   However, in practice, 
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using details of the signal's time of arrival is difficult. Because the wave is dispersive, 

the initial part of the sensor response has a low amplitude and a high frequency 

content. If there is noise in the sensor, it is difficult to differentiate between the 

arrival of the signal and the sensor noise. 

A robust and accurate impact identification system for a beam was developed by 

Choi and Chang [7]. An optimization technique, a smoother/filter, was used to solve 

the inverse problem. 

The smoother/filter is employed in this research. Its use is expanded to the two- 

dimensional impact identification problem on a composite plate. This approach will 

provide a robust and reliable means of identifying the impact on composite plates 

with clamped or free boundary conditions and noisy sensor data. 
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Problem Statement 

The problem is identification of impacts on composite plates using a distributed 

sensor array. The identification includes determination of the impact location and 

reconstruction of its force-time history. The duration of the low-mass, high-speed 

impact is on the order of one millisecond. The composite plates are general symmetric 

laminates. The sensors measure the plate's response to an impact. 

Specifically, the research addresses the identification problem for the following 

conditions: 

• The composite plate has a symmetric layup. 

• The composite plate has clamped or free boundary conditions but does not have 

any stiffeners. 

• The length and width of the composite plate are much greater than its thickness 

so that shear effects on plate bending are negligible. 

• The impact does not cause damage to the composite. 

• The impact occurs at a point. The size of the impactor is much less than the 

dimensions of the plate. 

• The sensors are small and widely spaced so that the bending stiffness of the 

plate is not effected. 
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The identification system is introduced in Figure 1. Using the measured response 

of the plate and the application parameters, the identification system reports the 

impact location and the reconstructed force time history. 
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Figure 1: The impact identification system. The system identifies the un- 
known impact on the composite plate. With the plate response 
and application parameters, the system reports the impact loca- 
tion and force time history. 
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Approach 

As described in the problem statement, the identification system identifies the 

unknown impact on a composite plate. The input to the system is the plate response 

and the application parameters which describe the plate and sensor properties. The 

output is the impact identification which includes the impact location and force time 

history. 

This research includes the theoretical development, the computer implementation 

and' the experimental testing of the identification system. 

The theory was developed for the four components of the identification system, see 

Figure 2. The sensors, the preprocessor, the forward model and the inverse problem 

solver. 

• The plate response is measured using small circular piezoelectric sensors. The 

sensors measure strain where bonded to the surface of the composite plate. 

• The preprocessor provides experimental data to the inverse problem solver. The 

preprocessor determines which sensors are closest to the impact. These sensors 

are isolated so that the most relevant data is used in the solution process. 

• The forward model calculates the plate response as a bending wave radiating 

from the point of impact. The bending wave is modeled using Kirchoff's theory 

for composite plates.  The governing equation is solved using a discrete time 
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integration.   The model response is compared to the experimental measured 

response in the inverse problem solver. 

• The inverse problem solver identifies an impact that will minimize the difference 

between the model response and the measured response. The minimization is 

accomplished with an outer loop estimating the impact location and an inner 

loop reconstructing the force history, see Figure 3. The inner loop provides a 

figure-of-merit that is used to update the estimated location. The procedure 

continues until the the best estimate of the impact location is found. 

The identification system was implemented with the computer code IDIMPACT. 

The system runs on one machine that collects and digitizes the data and then cal- 

culates the solution. The code solves the identification problem given the digitized 

response of the composite plate. It reports, in a graphic interface, the impact location 

and force time history. 

The ability of the identification program, IDIMPACT, to identify an unknown 

force was demonstrated on a composite plate. The system was then extensively 

tested with a distributed array of impacts to determine its accuracy and reliability. 

Finally, the robustness of the identification system was tested by introducing noise in 

the sensor data. 
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Figure 2: Inside the identification system. The sensors measure the plate 
response, the preprocessor isolates the relevant sensor region, and 
the inverse problem solver identifies the impact using the measured 
response and the model response. 
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Figure 3: The inner and outer loop of the inverse problem solution. 
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Sensor and Preprocessor 

The sensors and the preprocessor provide experimental data to the inverse problem 

solver. Piezoelectric sensors were selected to measure the response of a composite 

plate to an impact. The response is.digitized by the analog to digital converters. The 

preprocessor scans the data to find the sensors closest to the impact. The closest 

sensors and the corresponding area are used in the solution process. 

4.1    Piezoelectric Sensors 

The small circular piezoelectrics are manufactured by Piezo Kinetics Incorporated. 

The sensors are good for dynamic reading because they have a very fast response time 

and have sufficient voltage output that sophisticated amplification is not necessary. 

The relation between the voltage output and the strain is supplied in the manu- 

facturer's application notes. The one dimensional strain relation is 

exx = — = d31j (4.1) 

The strain exx is the ratio of I, the length of the piezo, over AZ, the change in 

length. V is the voltage and tpz is the thickness of the piezo. The piezoelectric 

constant, d3i, relates the mechanical strain (fractional deformation of the ceramic) to 

the electrical voltage. This constant is supplied by the manufacturer. The piezo is 

poled perpendicular to the x-y plane. See Figure 4 for an explanation of the geometry. 

10 
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In this research, small circular piezoelectrics are used. The diameter, d, of the 

piezo is .25 inches. The thickness, t, is .01 inches. The equation to obtain voltage 

from a two dimensional strain field is 

V = {£xx + £yy) (4.2) 
dai (1 " v) 

This equation simplifies to the one-dimensional equation when the stress cry is set 

to zero. In that case, eyy — —vexx, and Eq. 4.2 becomes 

V=—e. 
d. 

(4.3) 
31 

The experimental strain is attained from the experimental voltage data using 

Seip — Qe X  V eXp V^-^J 

where Vexp is the voltage data from each sensor. ge is the gain to convert the voltage 

to strain and includes the constants of Eq. 4.2 and the effects of bonding. This 

constant can be determined experimentally by comparing the forward model to the 

experimental data. The experimental strain, sexp, contains the experimental strain 

data for all the sensors. 

The circular piezos measure a non-directional strain property. The combination 

of strain, exx + eyy, is a two-dimensional strain invariant. The measurement is. inde- 

pendent of the orientation of the coordinate system. This can be demonstrated using 

the two-dimensional strain transformation tensor where 0 is the angle of coordinate 

rotation. 

XX 

I 
yy 
i 
xy 

cos2 iß) sin2 [ß) cos (0) sin (9) 

sin2 (9) cos2 (9) - cos (9) sin (0) 

-2 cos (9) sin (9)   2 cos (0) sin (0)   cos2 (0) - sin2 (0) 

r              ■    -1 

€xx 

€yy 

(■xy 

(4.5) 

The strain combination is then 

en ~^" eyy — ^xx ~r ^yy —  (-xx "t~ Cii (4.6) 
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The quantity is not changing with the rotation of the coordinate system. By providing 

a non-directional means of measuring the plate response, the sensor simplifies the 

inverse problem solution. 

The sensors used in this research measure the strain invariant exx + eyy. The 

experimentally measured quantity becomes 

Seip == €Xx   i   Eyy V^-' / 

It is assumed that the diameter of the circular piezo is significantly smaller than 

the wave length of the plate response. The sensor response is calculated as a point 

property of strain. It is assumed the effect of averaging the experimental strain over 

the sensor surface area is small. This assumption will be tested in the application of 

the identification system by comparing the sensor diameter to the global response of 

the composite plate. 

4.2    Preprocessor 

The preprocessor selects the sensors closest to the impact location. This allows 

for a region of the sensor array to be isolated for the inverse problem solver. 

The preprocessor scans the experimental strain to find the sensors closest to the 

impact. It determines the close sensors by comparing the energy in an initial time 

window of the data. It calculates the energy using 

1=0 

where E is the energy of the sensors being scanned. Ne is the number of data points 

included in the initial time window. The number of points used should be enough 

that sensors close to the impact have a large energy content while those far away have 

close to zero. 

The energy of each of the sensors are compared. The sensors with the greatest 

energy and .the corresponding region of the plate are then used by the inverse prob- 

lem solver.  This method provides a method that is not susceptible to noise in the 
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experimental data and provides a reliable way to isolate a region of the sensor array. 
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Figure 4: The description of the relationship between strain and voltage for 
the piezoelectric. The piezo is poled, P, in the vertical direction 
and strained horizontally. 
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Forward Model 

The forward model calculates the plate response as a bending wave radiating 

from the point of impact. The bending wave is modeled using Kirchoff's theory 

for composite plates. A governing, equation is developed that describes the plate 

response, both displacement and strain, at specific points. The governing fourth- 

order differential equation is reduced to a system of first-order equations using a 

Fourier transformation. The equations are recast in state-space form and solved with 

a discrete-time integration. The plate can have either clamped or free boundary 

conditions. The model response is compared to the experimental measured response 

in the inverse problem solver. 

The accuracy of the forward model is verified by comparison with an analytic 

solution of an isotropic plate and with an experimental impact on a composite plate. 

15 
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5.1    Governing Equation 

The governing equation for the composite plate can be expressed in state space 

form. Starting with Kirchoff's plate-bending theory generalized for composite plates 

with symmetric layups, the governing equation for a point impact is 

f(t)6(x,y)   =   Ai^ + 4D16£^ + 2(D12 + 2D66): dx4  ' '   l dx3dy 
_     crw       „   o^w 

+     4D26Q..CQ +-°22- 
d2 

dx2dy2 

w 
(5.1) 

dxdy3 dy* 
m 

ÖH2 

f(t)6(x, y) is the point load located at (0,0), A? are elements of the composite lam- 

inate matrix D, (Tsai [8]), and w is the out-of-plate deflection of the plate. 

This governing equation is applied to an infinite plate by using the two-dimensional 

discrete Fourier transformation with respect to the spatial variables x and y. 

N-1M-1 

w(Xi,yj,t)=Yl   E^n(«-Kn,t)eiKmIi+iK^ 
n=0 m=0 

(5.2) 

The frequency components are calculated using Km — ^p and «n = 
2yk. X and 

Y 'are the extent of the spatial domain. wmn is the amplitude of each frequency com- 

ponent. Applying the transform to both sides of the equation yields the component 

equation 

(Du4i + ^Dl6K3
mKn + 2(£>i2 + 2D66)K2

mK
2

n+ 

d2ür 
(5.3) 

4D26«m«ll + Aä2<) Ümn + m "" = f(t) dt2 

These component equations can be regrouped by introducing the state-space formu- 

lation. 

d_ 
dt 

Wmn 

Wmn 

0 1 

—Kmn   0 

Wmn 

Wmn 
+ 0 

b 
/(*) (5.4) 

where 
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Kmn = X (011*4 + 4016*4*7. + 2(D12 + 2D6&)K2
mK

2
n 

+4£>26«m'4 + Ai2*4) 

m (5.5) 

and 

6 = i 
m 

(5.6) 

This state-space formulation is completed when the terms are collected to generate 

the system equation in matrix form. 

z   = 

■ 

d UJ 0    I Ü) 
+ 

0 

m . 
u> K   0 U) b 

/(*) 
(5.7) 

=   Az+Bf(t) 

I is an [N ■ M x N ■ M] identity matrix, 0 is a zero matrix of the same size, b and a» 

are/ [N • M x 1] vectors with the elements 

b(n + JVm) = - = b (5.8) 

ö(n + Nm) = umn (5.9) 

and K is a diagonal matrix, [N • M x N ■ M], with the diagonal elements 

K(n + Nm, n + Nm) = tfmB (5.10) 

where m =  0,   ...,   (M - 1)   and n =  0,   ...,   (iV - 1) 
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5.2    Plate Response 

A state space formulation is used to calculate the plate response. The Fourier 

Transform provides the out-of-plane deflection of the composite plate at x = Xi and 

N-1M-1 

'   tufa, Vj, *) = E E fiW*m. Ky, t)eiK"*<+i"»* (5.11) 
n=0 m=0 

The equation can be represented in matrix form.   ü> is a [1 x N • M] vector.   A 

vector with [N • M x 1] elements is defined for the exponential terms.   For m — 

0,   ...,   (M-l)   and n=  0,   ...,   \N -1) 

Cw(n + Nm) = eiKmXi+iKn* (5.12) 

The calculation of the displacement becomes 

w(a;i,j/iI*) = Cll,ü> (5.13) 

A more general form of this equation can be defined 

s = Cz (5.14) 

where s is the general measured quantity - displacement, acceleration or strain, s is 

a [NS x 1] vector where NS is the number of sensors in the system. Each element 

of s is the response of one sensor at time step n. The C matrix, is the observation 

matrix. For one sensor 

C=[C„   O] (5.15) 

C is a [NS x N ■ M] matrix where each row represents one sensor. 

The observation matrix can be simplified using the symmetry of the impact prob- 

lem and the properties of a Fourier transformation for real and even functions, see 

Appendix A. The simplified submatrix becomes a [NS X (f + 1) • (y + 1)] matrix. 

For m=  0,   ...,   4f   and n =  0,   ...,   y , each row becomes 
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[ 1 ••• 2COS(K„2/J) ••• cos(KN/2yj) 

2 cos(KmXi)   •••    4 cos(«mXi) cos(Knyj)     ■■■   2 cos(/cmXi) COS(KN/2VJ) 

cos(KM/2Xi)   •••   2cos(/CM/2^i)cos(/cn?/j)   •••   cos(KM/2Xi) cos(KN/2yj)     ] 

(5.16) 

5.3    Strain Measurement 

Strain is often the measured quantity in structures applications. To calculate 

strain with the measured quantity s(t), an appropriate strain observation matrix is 

required. 

The equations for surface strain are 

^xxy^ii Vji ")    — n 
hd2 W 

2dx2 

t JV-lM-l 

z n=0 m=0 

Zyy\xi,yj,t)     =     ~ 2~o\J2 

LN-IM-1 

(5.17) 

1 n=0 m=0 

where h is the thickness of the plate, exx is the strain measured on the surface of the 

plate in the x direction, and eyy is the strain in the y direction. 

Similar to displacement, the strain equations can be written in matrix form. The 

strain equations become 

e*x(z». Vj,t) = Cxxü> (5.18) 
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eyy(xi,yj,t) = Cyyü> (5.19) 

The elements of the the strain submatrices Cxx and Cyy are 

(Csx)(n + Nm)   =   K2
m(Cw)(n + Nm) 

(Cyy){n + Nm)   =   K2
n{Cw)(n + Nm) 

(5.20) 

where m =  0,   ...,   (M - 1)   and n =  0,   ...,   (iV - 1) . 

The general measured quantity s(t) can now be used to calculate the strain. Al- 

though the observation equation remains unchanged, 

s(t) = Cz (5.21) 

the observation submatrix has changed.  For each sensor measuring strain in the x 

direction and 

C=[CXX   O] (5.22) 

and for each sensor measuring in the y direction 

/ C=[cyy   0] (5.23) 

5.4    Discrete Time Domain 

To solve the governing equation, the state-space formulation developed in the 

previous section is converted to the discrete time domain. The system formulation in 

the continuous time domain is 

z- = Az + B/(i) (5.24) 

s(t) = Cz (5.25) 
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In the discrete time domain, the governing equations become 

z(n +1)    = z(n)+ f(n) 
4>U     <f>12 

z(n)+ 
7i 

<f>21     <f>22 72 
(5.26) 

=   *z(n) + T/(n) 

and the observation equation becomes 

s(n) = Cz(n) 

where n =  0,   ...,   (iVT - 1) • The new matrices are defined as 

(5.27) 

$ = exp (AT.) (5.28) 

r = / ° exv(At)dtB (5.29) 
Jo 

See Franklin, et. al. [9] for a discussion of these relations. $ is a block diagonal 

matrix. <t>n through <£22 are [N • M x N ■ M] diagonal matrices. 71 and 71 are 

[N • M x 1] vectors. The observation matrix C remains unchanged. 

The solution to the discrete time equations begins with an initial condition, z(0) 

and the initial value of the force /(0). The variables are calculated at the discrete 

time step n where the time is t — nTs. Ts is the sampling period. If the plate is 

initially at rest, z(0) = 0. The time history of the strain is constructed by calculating 

z(n + 1) from z(n) and f(n) and updating the measured quantity s(n). 

The discrete time relations, Eq. 5.28 and Eq. 5.29, can be solved to facilitate the 

numeric implementation. Defining Aau&, a 2 x 2 subarray of the A matrix, 

■"■sub — 

0 1 

-K(n + Nm, n + Nm)   0 
(5.30) 
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a subarray &sub of the $ matrix can be calculated using Eq. 5.28. For n and m # 0, 

the resulting $ subarray is 

^sub    — 

<f)n(n + Nm)   4>n (n + Nm) 

<f)2l(n + Nm)   <f>22(n + Nm) 

cos 
VKr, 

(5.31) 

y/Kmnsin (rs>/Kmn) cos (T^v/Ämn) 

Similarly, defining Bsub as a subarray of the B matrix, the elements of the T, Tsub, 

can be calculated using Eq. 5.29. The B subarray is 

BSU6 — 
0 

b 

and, for n and m / 0, the resulting T subarray is 

(5.32) 

*■ sub 

<t>x(n + Nm) 

(f>2(n + Nm) 

K COS (Tay/K^\ + -TT- 

y[Kn 
-sin \Ta\JKmnj 

(5.33) 

If m and n = 0, then 

™su6 — 

•*- sub — 

1   Ts 

0    1 

bTa 

(5.34) 

(5.35) 
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5.5    Forward Model Verification 

To verify the accuracy of the forward model response, it was compared to an 

analytic solution of an isotropic plate and the measured response of a composite 

plate. 

The analytical solution for an isotropic aluminum plate is presented in Doyle [10]. 

The strain response is calculated in radial coordinates using the Fourier Transform 

N-l 

where 

err(j) = 
iF{j)h 

32£> 
(Jo - A) -i(Y0- Y2) + -(K0- K2) 

7T 

and 

(5.36) 

(5.37) 

p=0 

(5.38) 

/ is the force time history. D is the bending stiffness of the isotropic plate, i is equal 

to V—L The argument for the Bessel functions J, Y and K, is 

z = ßr ß = ^ 
ph 
~D 

1/4 

(5.39) 

where p is the density of the isotropic material. 

A half-sine-wave impact was the input to the forward model and the analytic 

solution. The responses are compared in Figure 5. A very small error was seen to 

accrue in the forward model. 

The forward model was also compared to the measured response from an actual 

impact on composite plate. A T800 composite plate with a [45/90/ - 45/02/45/02/ - 

45/0]s layup and clamped boundaries was used.   The composite D matrix for the 

plate is 
"" 2265.4 641.6 185.1 

D=     641.6 1990.2 185.1 (5.40) 

185.1 185.1 760.6 
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where the units are lbs-in. The mass per unit area of the plate, m is .000165 lb s2/ft3. 

The plate is 30" x 36". The thickness of each ply is .007 inches for a total thickness 

is .14 inches. 

The response was calculated with Eq. 5.26 and Eq. 5.27 where N = M = 180, 

NT = 45, T3 = 4.48 x 10-5 seconds, and X = Y = 90 inches. 

The plate was hit at its center and the strain response was measured at four 

locations. The plate dimensions, sensors coordinates and boundaries are shown in 

Figure 6. The sensors were located along the 45 degree ply direction and the 90 

degree ply direction. The sensors at different ply directions test if the model includes 

the anisotropic properties of the plate. • 

The impact force was recorded using an instrumented hammer. The hammer was 

manufactured by PCB Piezotronics. It has a 208 A04 force transducer and a 480A 

power unit. The impact force history is shown in Figure 7. The model response to 

this impact is compared to the experimental response in Figure 8 and Figure 9. The 

forward model was shown to be a simple and reasonable means of calculating the 

impact response of the plate. 

5.6    Boundaries 

In real-life applications the plate will have boundaries. The effects of the bound- 

aries can be approximated by adding mirror images of the actual impact about the 

boundaries. 

A sensor bonded to an actual plate with boundaries measures the initial wave 

generated by the impact and the wave after it has reflected from the boundaries. In 

the forward model, the effect of these boundaries can be simulated by adding the 

infinite plate solution with the impact located symmetrically about the boundaries. 

The sensor in the forward model then includes the response from the impact as well as 

the response from the image impacts. The sum of the impact responses approximate 

the effect of the plate boundary. 

The location of the image impacts to simulate the first reflection from each of 

the four boundaries is shown in Figure 10. The location of the boundary is measured 
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Figure 5: Comparison of the forward model and the analytic solution. The 
-■•■   response of an isotropic plate to a half sine wave impact is cal- 

culated using the forward model and the analytic solution.  The 
location of the sensor relative to the impact is shown.   A very 
small error accrues in the forward model. 
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Figure 6: The experimental setup to verify the forward model. The zero ply 
direction is in the x direction. 
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Figure 7: Experimentally recorded impact. This impact was used to compare 
the forward model response and the experimental response. The 
x-axis is the zero ply direction. 
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Sensor at x=.71, y=.71 

Experimental 
Forward model 
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Sensor at x=1.4, y=1.4 

 Experimental 
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Figure 8: Verification of the forward model. The graphs compare the model 
response to the experimental response at two locations. 
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Figure 9: Verification of Composite Plate Model 
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perpendicular from the impact location. Image impacts can also be added to simulate 

second and third reflections. 

In the forward model, only the observation matrix is affected. The C matrix is 

the summation of the observation matrices translated to the correct point relative to 

each image impact. The observation matrix for the first reflection from the clamped 

boundaries is 

C   =   C(xs,ys) + C(xs-2xbn,ys-2ybn) (5-41) 

where (xbn,ybn) is the location of the boundary measured perpendicular from the im- 

pact location. There are a set of coordinates for each boundary, so n =  0,   ...,   (Nb - 1) 

and Nb is the number of boundaries. For free boundary conditions 

C   =   C(xs,ys)-C(xs-2xbn,ys-2ybn) (5-42) 

where the only difference is the sign of the image impact. 

/The forward model with the image impact is compared to the measured response 

in Figure 11. The impact and sensor were located so there was significant boundary 

effect in the signal. The impact was near the center of the plate, 12.5 inches from 

right clamped boundary and 20 inches from the top. The sensor was located 5 inches 

from the right boundary and 25 inches form the top. With the sensor further away 

from the impact, the match between the model and the measured response is not as 

close as in Figure 8 and Figure 9. The general shape of the response is present but 

some of the higher frequency reflected waves are not well modeled. 

5.7    Global Response 

The impact response of the entire plate can be calculated at one point in time. 

At every point in the space domain Eq. 5.21 is used to calculate the plate deflection. 
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f(2yb3/2yb3) 

H2yM,2yM) 

Boundary of 
composite plate 

f(2ybi,2ybi) 

Figure 10: Simulation of clamped boundaries. The boundaries of the real 
plate are simulated using image impacts. The image and the 
actual impact are located symmetrically about the boundaries. 
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Figure 11: Verification of the forward model where there is significant bound- 
ary effect. The sensor is 5 inches from the right clamped boundary 
and 25 inches form the top. The impact is 12.5 inches from the 
right boundary and 20 inches from the top. 
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The force time history of Figure 7 was applied to the center of the composite plate. 

The response at time step n = 22 or t = .986 milliseconds is shown in Figure 12. 

From the global response, it is evident that the wavelength of the response is 

several inches. With this wave length, the assumption of the sensors measuring a 

point property of the strain appears reasonable. 
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x (inches) y (inches) 

Figure 12: The global response of the T800 composite plate. The plate with 
clamped boundaries is hit in the middle. The displacement is 
calculated at time step n = 22 or t = .986 milliseconds. 
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Inverse Problem Solver 

The inverse problem solver is the key component of the identification system. 

The solver identifies an impact that will minimize the difference between the model 

response and the measured response. 

The solution to the inverse problem has two major elements. The outer loop 

searches for the impact location and the inner loop, the smoother/filter, reconstructs 

the impact force time history. The solution starts from the outer loop with an estimate 

of ,the impact location. At this location the filter/smoother reconstructs a force 

history. The solution continues when the figure-of-merit, based on the difference 

between the model response and the experimental response, is reported to the outer 

loop and is used to improve the estimate of the impact location. 

6.1    The Inner Loop - The Smoother/Filter 

At an estimated impact location, the smoother/filter reconstructs a force history 

based on the experimental response. This technique of using the system response to 

find the system properties and the unknown input was presented by Bryson [11]. The 

technique successfully found system properties of a helicopter using flight test data. 

The following development closely follows Bryson's method. 

35 
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The reconstruction of the force history begins with the definition of the figure-of- 

merit. 
NT-l 

J   =   i [z0 - z(0)]r So [z0 - z(0)] + - £ /(n)Q/(n) 
(6.1) * Z   n=0 

1 H-l-l 1 ~ 

2 n ^ 

where z0 and zNT are user-supplied guesses of initial and final states. / is the re- 

constructed force, v is the error between the experimental data, seip, and the model 

response, s. The error contains both the effects of measurement noise and the error 

due to incorrect estimation of the impact. Q is the diagonal weighting matrix for the 

input force and R for the states. S0 and S/ are weighting matrices for the initial and 

final conditions. 

The values Q and R were set to .05 and 5.0 x 1010. These values were based on 

Choi's [12] work on the beam and were adjusted empirically for the composite plate. 

Additional information on these values can be found in Sage and Melsa [13]. The 

system is at rest prior to the impact so z0 is set to zero and S0 is set to a very high 

value. Since the final condition is unpredictable, S/ is set to zero. 

The objective is to minimize J. This means that the error, v , is minimized, the 

force reconstruction, /, is constrained and the initial conditions are constrained. The 

force is unknown but its reconstruction is constrained by penalizing J for large force 

values. Similarly, J is penalized when the initial condition is not met. 

The minimization of the figure-of-merit is subject to the system equations of 

Chapter 5, Eq. 5.26 and Eq. 5.27. Forn =  0,   ...,   (NT - 1) 

z(n +1) = *z(n) + T/(n) (6.2) 

s(n) = Cz(n) (6.3) 

where NT is the number of time steps. 

To satisfy these equations, the figure-of-merit is modified to accommodate the 

constraints using Lagrange multipliers A 
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NT-l 
J = J+  £ \T(n + 1) [*z(n) + r/(n) - z(n + 1)] (6.4) 

n=0 

where the Lagrange' multiplier was introduced at an extra time step, n = NT. For 

simplicity, A(iVT) is set equal to zero. 

Minimizing J is equivalent to minimizing J subject to the constraint equations. 

Taking a variation on the modified figure of merit gives 

NT     af NT-l     AT flj 

f0dz(n) ^0 df(n) dx 

where x is the spatial variable 

x=    X (6.6) 
. y. 

At a stationary point of J, the first variation vanishes for arbitrary variation of 

<5z(n), 6f(n) and <5x, and so the coefficients of each term must vanish. The first two 

coefficients are solved with the smoother/filter while the third coefficient is left to the 

outer loop. The first coefficient is 

/   dJ        \ [z0 - z(0)f S0+AT(1)$ for n = 0 

dz(n)      \ -i/T(n)RC+AT(n + 1)$-Ar(n)   for n =   1,   ...,   NT 

The second coefficient is 

jy_ = fT(n)Q+\T(n + l)r for    n =  0,   ...,   (NT-l) (6.8) 
df(n) 

Setting these two coefficients equal to zero and incorporating the system equations 

leads to the smoothing problem for a given x. 

z(n + l)   =   *z(n) + T/(n) 

X(n)   =   $T\(n + l)-CTRv{n) (6-9) 

/(n)   =   -Q-^Xin + l) 
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The boundary conditions are 

z(0)   =   ZO-SQ-^^I) 

X(NT)   =   0 

(6.10) 

This is a two-point boundary value problem. Half of the boundary conditions are 

given at the initial point, the other half at the final point. The boundary value 

problem can be solved by the sweep method. The final boundary condition may be 

swept backward, and the initial condition swept forward. 

The boundary condition at n — NT suggests a backward sweep solution of the 

form 

\(n) = SB(n)z(n)-AB(n) (6.11) 

The proper form of SB and AB need to be found to solve this problem. Using the 

following equation, z(n + 1) can be eliminated from Eq. 6.9. 

A(n) 

0 

where 

CrRC + W22   Wz/ 

W£ Wff 

z(n) 

f(n) 
— A(n + 1)- 

CrR 

0 
u{n) 

(6.12) 

w„   W2/" 0    0 + *r' 

wj7 W„J 0   Q L rT J 
SB(n + l)[*   r] (6.13) 

Solving the second equation of Eq. 6.12 for }{n) 

/(n) = -WJ) [W^z(n) - TAB(n + 1)] 

and substituting the result into the first equation, results in 

(6.14) 

A(n) = [CrRC + SB(n)] z(n) - \B(n) - CTKu(n) (6.15) 
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where the time downdate relations are defined 

SB(n)   =   Wzz-WzfWj}WTf n      J (6.16) 

\B(n)   =   [*T -WzfWj}TT]\B(n + l) 

This time downdate process involves only the constraint equations. 

Comparing Eq. 6.11 and Eq. 6.15, the following measurement downdate relation 

can be defined 

SB(n)   =   SB(n) + CTRC 
(6.17) 

AB(n)   =   Äß(n) + CTR»(n) 

This step refines the results of the time downdate procedure with measurement data. 

A new solution method is presented in this research to save computation time 

and memory requirements associated with the large rank one matrix, WZ2. Bryson's 

method is included in Appendix B. The time downdates and measurement downdates 

for SB and SB are combined to form the equations 
/ 

CB(n)   =   CB(n)$ 

S*(n)   =   *rCBTRCBr H-Sf/n + 1) (6-18) 

Sf7(n)   =   rTCBTRCBr + Q + SB/(n+1) 

The backward sweep starts with the final condition and the last recorded data point, 

sexp(NT). 
CB(NT) = C 

XB(NT) = CBT(n)Bsexp(NT) 

Wz/(1) = $rCBT(n)RCB(n)r 

W//(l) = rTCBT(n)RCB(n)r 

The sweep proceeds as follows, for n =   (NT — 1),   ...,   1 
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K„(n) = Wj.}(NT-n)V?Tf(NT-n) 

fB(n) = Wj}(NT-n)TTXB(n + l) 

XB(n) = $TXB(n + 1)-Wzf (NT-n)fB(n) 

XB(n) = XB(n) + CTRsexp(n) (6-20) 

CB(n) = CB(n)$ 

SB
f = $TCBTTLCBT + SB

f(n + l) 

Sff   =   TTCBTRCBT + Sff{n + l) 

Where KB(n) and fB(n) are stored for use in the forward sweep. 

The matrices Wz/ and W// require a new updating procedure in the backward 

sweep. Wzz(n) is not used. Wzf(n) and W//(n) are a function of all the previous 

vectors. For i=   1,   ...,   (NT - n) 

Wzf(NT-n + l)   =   W2f(NT-n + l)-$TWzf(i)Wj}(i)Wjf(i)T 

Wff(NT-n + l)   =   Wff(NT-n + l)-rTWzf(i)Wj}(i)WTf(i)T 
(6.21) 

The SB matrices are added. 

Wz/(iVT-n + l)   =   Wzf(NT-n+l) + SB
f(n) 

Wff(NT-n + l)   =   Wff(NT-n + l) + Sff(n) 
(6.22) 

All of the W must be updated for the next step in the backward sweep.   For i = 

0,   ...,   (NT-n-1) 

Wzf(i) = *W,,(i) (6.23) 
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The forward sequence is unchanged from Bryson's method. 

Forn=   1,   ...,   (NT-I) 

f(n)   =   fB(n) - K»z(n) 

s(n)   =   Cz(n) (6-24) 

z(n + l)   =   *z(n) + r/(n) 

/ is the reconstructed force history. 

Once the smoothing problem is solved, the first two coefficients of Eq. 6.5 vanish, 

but the third remains 

SJ = ^-6x = Jx<5x (6.25) 
ox 

The third coefficient is 

pi J       N-l '       xjy N-l Q/-I 

g-W.H^,)-^.) (6.26) 

This term also must vanish at a stationary point of J. This is done in the outer loop 

where the gradient information, 3X, is used to improve the estimate of the impact 

location until a stationary point is reached. The details of the outer loop that solves 

this non-linear location identification problem is discussed in Section 6.3. 

Since A, v, f and z are all calculated for the other two coefficients, this third coeffi- 

cient can be readily obtained. This is one of the great benefits of this smoother/filter; 

it provides the information necessary to update the estimate of the location. 

6.2    Advantages of New Filter 

The new backward sweep method offers significant computational savings for sys- 

tems with a large number of degrees of freedom. The savings in required memory is 

described below. Similar savings are seen with the multiplication requirements. 

The element of Bryson's backward filter that consumes most of the memory stor- 

age is the Wzz matrix. 
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In the present application there is a single force and iVdo/ degrees of freedom. 

Where Ndof = M x N (the number of x and y frequency components). The W« 

matrix then has [Ndof x Ndof) elements. 

In the new formulation the large rank-one matrix is replaced with a series of 

vectors. The element of the filter that uses the most memory storage is the matrix 

multiplication in Sf^ 
$rWz/(i)W/"/

1(i)Wf/(i)r (6.27) 

The size of the block diagonal matrix $ is [Ndof x Ndof] and T is [Ndof x 1]. The 

multiplication results in a Sf7 matrix of size [Ndof x 1]. One of these vectors is needed 

for each time step. The storage requirements are for [Ndof x NT] matrix. 

In summary, the largest contributer to memory requirements for the new method 

is proportional to Ndof x NT, as compared to Njof for Bach's method. 

In a problem with many degrees of freedom, as in the impact on a composite 

plate, the new method offers significant computational savings. The exact memory 

and computational time requirements of the new method and Bryson's method are 

compared in Table 1. With the computational savings, it is possible to attain near 

real-time application of the identification system to the composite plate. 
/ / 

6.3    The Outer Loop - The Estimate of the Impact 

Location 

The outer loop of the inverse problem solver is the search for the impact loca- 

tion. The search finds the minimum of the figure-of-merit with as few calculations as 

possible of the filter/smoother. 

The estimate of the impact location is updated using the gradient of the figure 

of merit J calculated in the smoother/filter. To differentiate between the local and 

global minima of this nonlinear problem, the search starts from multiple initial guesses 

and continues with a series of line searches. Among the minima found, the one with 

the lowest value of the figure-of-merit is taken as the global minimum. 

The initial guesses are distributed throughout the area that is being monitored for 
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an impact. From each of these guesses a line search will start using the quasi-Newton 

procedure 

xe(z + 1) = Xe(») - oJ^C»)J«(0 (6-28) 

where xe is the estimate of the impact location, 3xx(i) is the Hessian matrix, and a 

is the step size scaling variable, i is the counter for each line search. 

The first line search starts in the direction of steepest descent, JZI(i)
_1 = I. From 

the minimum of this line search another line search starts. The Hessian matrix is 

estimated numerically from successive values of the gradient vector 3X using a rank- 

two update procedure. See Appendix C. The step size is determined by a. The series 

of searches continues until a minimum of the figure of merit is reached, when J^ = 0. 

Within the line search, multiple evaluations of the smoother/filter are performed 

to find the minimum of the figure-of-merit along the line. The line search starts by 

taking the maximum step size in the direction determined from Eq. 6.28. The next 

step will be along the line but half the size of the first, either forward or backward. 

The direction is determined by 

J*(0) • J*0') 
K = (6.29) 

where 

Jx(j)   =    gradient at current point of line search 

Jx(0)   =    gradient at initial point of line search (6.30) 

=    the magnitude of the vector 

and j is the counter within the line search. 

If K > 0, then the search has not reached the minimum, and the search continues 

forward. If K < 0, then the minimum has been passed, the gradient has changed 

sign, and the search takes a step back. The minimum of the line search will then be 

reached after several evaluations of the smoother/filter, see Figure 13. 
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The maximum error, e/s, and range, L, of the line search can be calculated from 

I 
2nis 

(6.31) 

2"i.-i _ i\ 

eis   = 

L   =   l\l + 2»»u-i 

where 

I   =   maximum step size of line search 
(6.32) 

Hu   =   number of smoother/filter evaluations per line search 

The objective of the search technique is to minimize the number of times the 

smoother/filter is used to update the estimated location while searching for the global 

minimum in the figure of merit. Several tests were used to control the start and 

continuation of each line search. The following tests were designed to avoid searching 

in an area far from the impact and to finish the search close to a minimum. Because 

experimental data is used, it is not practical to look for an exact zero in the gradients 

of the figure-of-merit contour. If the gradients are less than a preset tolerance, they 

are considered zero. 

• If the gradient of the figure-of-merit, Jz, is near zero at the initial point of a line 

search, the search is cancelled. Either the estimated location is very far from 

the impact or is already at a minimum. The value of J is stored as a possible 

global minimum. 

• If the value of J at the end of the line search has not decreased by 10% or 

more from the starting point of the search, then the search is cancelled. This is 

an additional safeguard against searching in flat regions of the figure of merit 

contour. 

• If the line search is perpendicular to the direction of steepest descent, the search 

is cancelled. This allows for an early exit from the line search if the minimum 

is reached before the maximum number of evaluations. 
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Figure 13: The line search. The line search continues through a series of 
branch points. The gradient of the figure-of-merit is used to guide 
the search. The search is ended when the gradiant of J is less then 
the preset tolerance. 



Chapter 6. Inverse Problem Solver 46 

Table 1: The computational advantages of the new backward filter for sys- 
tems with a large number of degrees of freedom. Ndof is the number 
of degrees of freedom in the system and NT is the number of time 
steps. 

Present Method        Previous Method 

Number of multiplies       8 x Ndo} x NT7       3 x N%of x ATT 

Elements to store 10 x Ndof x NT       3 x Njof 



Chapter 7 

Computer Code - IDIMPACT 

With the theory of the identification system developed in the previous chapters, 

the system was implemented with the computer code IDIMPACT. As indicated in 

Figure 14, IDIMPACT uses the digitized plate reponse and application specific pa- 

rameters to identify the impact and report the results in a graphic interface. The 

code provides near real-time impact identification. 

The next chapter presents the application of IDIMPACT to a composite plate. 
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Figure 14: The input and output of IDIMPACT. 



Chapter 8 

Application of IDIMPACT 

With the theoretical development and computer implementation of the identifica- 

tion system, the next step is designing the system for a specific application. Appli- 

cation parameters are specified for.each component of the identification system. The 

system was applied to the T800 composite plate described in the Chapter 5. 

The objective in designing the system is to keep the total solution time of the 

force identification to a minimum. The solution time is consumed mostly by the 

smoother/filter in the inverse problem solver. To keep the solution time down, the 

solution time of the smoother/filter and the number of times the filter is called must 

be kept to a minimum. The speed of the smoother depends on the forward model. 

The number of times the smoother is called depends on the outer loop of the inverse 

problem solver - the search for the impact location. 

An example impact was used to demonstrate all of the components of the identi- 

fication system. 

8.1    Experimental Setup 

The experimental setup includes the composite plate, sensor array, instrumented 

hammer, data acquisition system and computer controller and processor. The system 

was designed so that the data could be acquired and processed using one computer. 

The following hardware and software items were used: 
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• T800[45/90/ - 45/0/0/45/0/0/ - 45/0]s carbon composite plate described in 

Chapter 5. In this application the plate had free boundaries with support only 

in the corners. The example impact was at (x, y) = (12.5,5.0). 

• Piezo Kinetics Incorporated, PKI-400 .25 inch diameter disk, piezoelectric sen- 

sors discussed in Chapter 4. The response of the plate to the impact was mea- 

sured using a thirteen sensor array of piezoelectrics bonded to the composite 

plate. An area of 20 inches by 20 inches was covered. The geometry is shown 

in Figure 15. Each sensor was grounded to the composite plate. 

• PCB Piezotronics instrumented hammer, 208 A04 force transducer and 480A 

power unit. The output of the load cell was recorded for comparison to the 

reconstructed force. 

• National Semiconductor LF 412 operational amplifier. The amplifiers were used 

for the sensors and the instrumented hammer. 

• Kiethley Metrabyte DAS 1800 analog to digital signal converters. Each board 

has eight channels with a maximum conversion rate of 333Msamples/sec. 

• NCA 133MHz pentium computer. 

• Keithley Metrabyte VTX controller for the DAS1800. 

• Microsoft Windows 95. 

• Microsoft C++ and Visual Basic. 

The data acquisition system was controlled by the VTX controller operating in 

Visual Basic. It was triggered by the voltage output of the instrumented hammer. 

When the signal from the hammer crosses a predetermined threshold, a TTL trigger 

signal is sent to the data acquisitions boards. The voltage was amplified to reduce 

noise and to provide a zero offset. The hammer amplifier is described in Figure 17. 

Once the data acquisition is triggered the voltage generated by the sensors is 

digitized at 22.3 KSamples/sec. 150 data points from each channel are recorded - 10 
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pre-trigger and 140 post trigger. The piezoelectric sensors are very sensitive to strain 

and unamplified easily produce output over ten volts. Amplifiers provided a zero 

offset for the sensor voltage output. The sensor amplifier is described in Figure 16. 

Once the data is digitized, processing can begin. IDIMPACT, described in Chap- 

ter 7, operates in the 32 bit environment of Windows 95. 

8.2    Sensor and Preprocessor 

The gain of the sensors was determined by comparing the response of the forward 

model with the measured response. ge = 4.0 x 10~6 (I/volts). 

The preprocessor divided the full 20 inch by 20 inch sensor array into five overlap- 

ping regions each with five sensors. (Five sensors were used NS = 5.) After scanning 

the sensors to determine which had the highest initial energy, one of the regions is cho- 

sen to be used by the inverse problem solver. The geometry of the isolation regions, 

the definition of the global and local coordinate systems, and the sensor numbering 

system are shown in Figure 18. 

With the example impact at (x, y) = (12.5,5.0), the region of five sensors with the 

highest initial energy was the the lower-right region, region four. The sensor readings 

at these five sensors is shown in Figure 19. In the local coordinates of isolation region 

four, the impact is at (x1, y') = (2.5,5.0) 

The different energy content in the initial time window of the sensors at different 

distances from the example impact is shown in Figure 20. With the example impact, 

sensor 4 located at (x,y) = (10,0) is 5.59 inches from the impact while sensor 5 

located at (x, y) = (20,0) is 13.5 inches from the impact. The time window, selected 

so the sensor farther away would have a very small energy content compared to the 

close sensor, was 26.9 x 10-5 seconds. This corresponds to the first seven data points 

in the sensor data. Ne = 7. 
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36" 
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Figure 15: The composite plate with the dimensions and geometry of the 
thirteen piezoelectric sensor array. The global coordinate system 
is shown. The sensors are on the back of the plate. The plate 
with free boundary conditions is shown. 
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Figure 16: Wire diagram of hammer amplifier. 
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Figure 17: Wire diagram of sensor amplifier. No amplification is applied but 
the operational amplifier is used to provide a zero offset to the 
signal. 
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Figure 18: The sensor array and the five overlapping isolation regions, Rl- 
R5. The global coordinates (x, y) and the local isolation region 
coordinates (x1, y') are shown. 
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Figure 19: The response of the five sensors in isolation region four. The 
impact was reported at {x',y') = (2.7,5.2). The actual impact 
was at (x',y') = (2.5,5.0). 
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Figure 20: Response of the sensor at (x1, y') = (0.0,0.0) (solid line) and at 
(x', y') = (10.0,0.0) (dashed line) to the example impact. The 
energy window is used to determine the sensors closest to the 
impact. 
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8.3 Forward Model 

The forward model must accurately estimate the plate response while using as 

few time steps and frequency components as possible. The time steps and frequency 

components determine the solution time of the inverse problem solver.  . 

The periodic solution of the Fourier transform can lead to an error, aliasing, 

when the solution overlaps. It is necessary to have a large spatial domain to prevent 

overlapping as the wave propagates. The spatial domain was set to X = Y = 90 

inches. To maintain the spatial resolution, many frequency components were needed, 

M = N = 180. 

The time duration of the measured data has to be long enough to include the full 

impact force history. The duration of the impact was approximately one millisecond. 

Two milliseconds of data was recorded to insure all of the force was included. The 

number of time steps, NT, was 45, the time step, Ts, was 4.48 x 10-6 seconds. This 

results in a total time duration of Ts x (NT - 1) = 1.97 milliseconds. 

For this application, it was discovered that the frequency components beyond the 

first 36 were essentially zero. Instead of using all the components in the solution, the 

144 near zero components were treated as zero padding. A great deal of computation 

time is saved using only the non-zero components. 

8.4 Inverse Problem Solver 

The outer loop of the inverse problem solver, the search for the impact location, 

must be designed so that the impact is located with as few evaluations of the inner 

loop, the smoother/filter, as possible while still maintaining the robustness of the 

system. 

•  The weighting values for the smoother/filter were determined in Chapter 6. The 

values Q and R were set to .05 and 5.0 x 1010. 

To help design the search technique, an exhaustive search was performed for the 

example impact. The smoother/filter calculated the figure of merit, J, on a grid with 

1/2 inch spacing in the isolation region. This creates a figure-of-merit contour. The 
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minimum of this contour is the identification system's estimate of the actual impact 

location. The typical contour has one global minimum and several local minima, see 

Figure 21. 

There are three components of the search technique to be designed for this contour, 

the number and spacing of the initial guesses, the accuracy and range of the line 

search, and the tests to control the start and continuation of each line search. 

There has to be enough initial guesses distributed over the search region to assure 

that the global minimum can be found. It was observed from experiment that with an 

impact near the edge of the sensor array, it was difficult to find the contour leading 

to the minimum of the figure-of-merit. With an impact near the middle, it was 

relatively easy to find the correct contour. To assure that the global minimum could 

be found, the initial guesses were distributed near the search region boundary. The 

initial guesses are shown in Figure 18. 

To maintain a robust search, there should be an overlap in the range of each 

search. The maximum step size, I, of the first line search was chosen as 1.6 inches 

with 3 evaluations of the filter/smoother, riia = 3. The successive line searches were 

limited to a step size of 1.0 inches and 3 function evaluations. Using Eq. 6.31, the 

range for the first line search is 2.80 inches and for the successive searches is 1.5 

inches. Since three successive line searches are allowed, the maximum total range 

of each search is 5.8 inches. The maximum error for the minimum of the first and 

successive line searches is .27 and .25 inches. The accuracy and overlapping searches 

provided good results for the application to the T800 composite plate. 

The preset tolerance for the gradiant needed to start a search was Je = 40. The 

tolerance needed to approximate a minimum of the figure-of-merit was Je = 15. If 

Je < 40, the search was not started from the initial guess. If Je < 15, the search was 

stopped because a minimum was found. 

The new formulation of the smoother/filter offers a great computational advantage 

for this application. With the number of non-zero frequency components and time 

steps in the forward model, there is a 91% saving in the computational time and 

an 88% savings in the memory requirements for the new filter, see Table 2. The 

computational savings were calculated using the relations in Table 1.  (Eight bytes 
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Figure 21: The figure of merit contour. The smoother/filter evaluated the 
figure-of-merit on a 1/2 inch grid in the isolation region. The 
actual impact was at (x',y') = (2.5,5.0) 
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are stored per double on the personal computer.) 

8.5    Identification of the Example Impact 

With all of the application parameters determined, IDIMPACT was run to identify 

the example impact. Prom two starting points, the impact was found, see Figure 22. 

The two line search stopped at slightly different points because the searches are 

limited to three consecutive line searches. The searches starting from the upper right 

and lower right corner were cancelled because the value of the figure of merit at the 

end of the line search had decreased by less than 10% from the starting point. The 

searches were not started from the other initial guesses because the gradiant was 

below the preset tolerance, Je < 40. The impact was reported .28 inches from the 

actual location and the total impact energy reported was within 12% of the actual. 

A total of 32 evaluations of the smoother/filter was needed to complete the search. 

On the PC, each function evaluation took 8 seconds for a total solution time for the 

identification system of 4 minutes and 16 seconds. The performance of the identifi- 

cation system allows near-real time application of IDIMPACT. 

'The reconstructed force is compared to the experimentally recorded force in Fig- 

ure 23. 
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Figure 22: Search using multiple starting points. The search starting from 
(x', y') = (1.6,5.0) successfully found the impact location. The re- 
ported impact location was at (x', y') = (2.7,5.2) while the actual 
location was (x1, y') = (2.5,5.0). 
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Figure 23: The reconstructed force compared to the example impact. 
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Table 2: The new filter applied to the plate impact identification problem. 
To model the plate response, 36 frequency components in the x and 
y direction were used .with 45 time steps. 

Present Method       Previous Method       Percent Savings 

Number of multiplies 21 Million 227 Million 91 

Memory Required 4.7 MBytes 40.3 MBytes 88 



Chapter 9 

Identification System Accuracy 

and Robustness 

In the previous chapter the identification system was designed and applied to the 

T800 composite plate. The system successfully identified the example impact. In this 

chapter the identification system will be tested with numerous impacts to quantify 

the error in its estimate of the impact location and the force reconstruction. The 

system will be tested on the plate with clamped and free boundary conditions. Also, 

to further test the robustness of the system, a noisy environment will be simulated. 

9.1    The Test Impact Array 

An array of impacts was applied to the composite plate. The distribution of 40 

impacts is shown in Figure 24. The impacts were distributed over a quarter of the 

plate, isolation region 4. Because the plate is symmetric, the results from the region 

represent whole sensor array. 

A direct hit over the sensor was not included in the impact distribution due to 

a limitation of the data acquisition system. With an impact very near a sensor, the 

sensor output will exceed 10 volts. This saturates the sensor channel on the analog to 

digital converter. The other sensor channels are also affected and the digitized data 

is not accurate. With the saturated data and the inaccurate data, it is not possible 

65 



Chapter 9. Identification System Accuracy and Robustness 66 

for the identification system to identify the impact. This limitation can be overcome 

with improvement in the acquisition system; it is not a theoretical limitation of the 

identification system. 

9.2    Free Plate Boundaries 

The impact test array was applied to the composite plate with the free boundary 

conditions. The reported location results are shown in Figure 25, where the actual 

impact is at the center of the circle and the reported impact is in error in the x or 

y direction. The reported impact location was, on the average, 0.39 inches from the 

actual impact location. 71.1% of the impacts were within 0.5 inches of the actual. 

The error in the energy of the reconstructed force is defined as 

e/   = 
| Brecon       •C'exp | 

(9.1) 

E 

NT-1 NT-1 

£ f2(n)+ £ Jex p(n) 
n=0 n=0 

~" NT-1 

n=0 

where Erecon and Eexp are the energy of the reconstructed force and the experimentally 

recorded force. fexp is the recorded force from the instrumented hammer. The energy 

of the reconstructed force differed by an average of 14.2% from the recorded impact. 

The average error in the peak magnitude was 3.1%. The reconstruction of the example 

impact was shown in the previous chapter, Figure 23. 

Noise was added to the digitized data obtained from the impact test array. This 

simulated noise was calculated using 

Vnoise   =   Vezp + 0.5 x Randn 

=   J£xs, exp 
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where the Randn function randomly generates a normal distribution of numbers with 

a mean of 0.0 and a variance of 1.0. The noise generated is approximately 10% of 

the magnitude of the original experimental data. The plate response to the example 

impact with added noise is shown in Figure 26. 

The reported location results are shown in Figure 27. The average impact reported 

for the noisy case was .41 inches from the actual. 73.7% of the impact were located 

within 0.5 inches of the actual. The example impact was reported at (x',y') = 

(3.0,5.3). 

The energy of the reconstructed force history was on the average within 11.8% 

of the recorded impact history. The average error in the peak magnitude was 2.0%. 

The reconstruction of the impact at the example location is shown in Figure 28. 

9.3    Clamped Plate Boundaries 

The impact array was also used to test the identification system on the plate 

with clamped boundaries. The reported location results are shown in Figure 30. The 

average error of the reported impact was .47 inches. 66.7% were found with 0.5 inches. 

The example impact was reported at (x1, y') = (2.7,5.1). 

The example impact is reconstructed in Figure 31. With the forty impacts tested, 

the average energy of the reconstructed force was within 13.4% percent of the ex- 

perimentally recorded force. The magnitude of the force was reconstructed within 

8.25%. 

Noise was also added to the data recorded with the clamped boundary conditions. 

The results are in Figure 33. The average error of the reported impact was .49 

inches. 60.5% were found with 0.5 inches. The example impact was reported at 

(x',y') = (2.7,5.1). 

The example impact is reconstructed in Figure 31. The average energy of the 

reconstructed force was within 16.3% percent of the experimentally recorded force. 

The magnitude of the force was reconstructed within 9.5%. 
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Figure 24: Array of impacts in isolation region 4 used to test the identifica- 
tion system. 
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Figure 25: Results from ten inch sensor spacing with free plate boundaries. 
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Figure 26: The response of the example impact with noise added to the sen- 
sor response. The plate has free boundary conditions. 
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Figure 27: The accuracy of the impact identification system with the noisy 
sensor measurement and the free boundary conditions. 
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Figure 28: The reconstructed force with noise in the recorded sensor data. 
The example impact at (x',y') = (2.5,5.0) was reported at 
(3.0,5.3). The plate has free boundary conditions. 
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Figure 29: The response of the five sensors to an impact at {%', y')   = 
(2.5,5.0). The boundaries of the plate are clamped. 
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Figure 30: Result from sensor array with clamped plate boundaries. 
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Figure 31: The typical reconstructed force history for the clamped boundary. 
This is the impact reconstruction for the impact at (x',y') = 
(2.5,5.0). The reported impact was at {x',y') = (2.7,5.1) 
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Figure 32: The response of the five sensors to an impact at (x1, y') = 
(2.5,5.0). The boundaries of the plate are clamped and noise 
is added to the sensor data. 
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Figure 33: Result from sensor array with clamped plate boundaries and noise 
added to sensor data. 
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Figure 34: The typical reconstructed force history for the clamped boundary 
with noise added to the sensor data. This is the impact recon- 
struction for the impact at (x',y') = (2.5,5.0). The reported 
impact was at (x',y') = (2.7,5.1) 
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9.4    Discussion of Results 

The identification proved to be a very reliable and robust system for locating and 

reconstructing the force time history of an unknown impact. The system had very 

accurate and consistent performance in the four cases tested: the composite plate 

with free or clamped boundary conditions and with clean or noisy data. The average 

reported location differed by .39 inches for the free boundary case to .49 inches for 

the clamped plate with noise added to the sensor data. The best match between 

the modal response and the experimental response was achieved with the free plate 

boundaries. 

The most significant error in the reported location occured when the impact was 

close to a sensor on the edge of the sensor array. For example, the largest error of 

the clamped boundary case was 1.06 inches. This occured when the plate was hit at 

(x',y') = (10,1.25). The nearby sensor, sensor 5 at (x',y') = (10.0,0.0), measures 

strain of significantly greater magnitude then the other sensors in the isolation region. 

In the search for the impact location, this sensor has a big effect on the value of the 

figure-of-merit. When the model response closely matches this sensor measurement, 

the: figure-of-merit has a value near its minimum. This occurs when the estimated 

location is the correct radius from the close sensor. The search will report the location 

at this radius which may be a significant distance from the actual impact. 

A possible way to correct this problem is to scale each value of the diagonal 

weighting matrix R so that each sensor has approximately the same influence on the 

figure-of-merit. The values of R could be scaled by comparing the magnitude of the 

data of the five sensor in the isolation region. 

The identification system successfully identified the impact with noise added to the 

sensor data. The noise effected the accuracy of the estimated location slightly. The 

average error in the estimated location was increased by 5% to 10%. The accuracy 

of the force reconstruction was not greatly effected. 

The reconstruction provided a very good estimate of the energy of the impact force. 

The greatest difference between the recorded and the reconstructed force occurred 

near the end of the time history. This difference is due to increasing error between 
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the experimental and model response late in the signal. 



Chapter 10 

Conclusion 

The impact identification system proved to be a very robust and accurate means 

of identifying the impact on a composite plate. The system was tested with many 

impacts distributed over the composite plate with both clean and noisy sensor data 

and with free and clamped boundaries. The system demonstrated the effectiveness 

of the identification system based on the smoother/filter. 

There were key developments that made the identification system applicable to 

structures. 

• The derivation of the governing equation for a composite plate in state space 

form. This two dimensional solution was extended from a one dimensional beam 

solution. 

• The reformulation of the filter/smoother to handle systems with a large number 

of degrees of freedom. The reformulation saved considerable computation time 

in this structures application. 

• The use of small circular piezo-electric sensors to measure a non-directional 

strain property on the surface of the composite plate. These sensors provided 

a simple and reliable means of measuring the plate response. 

Future work could include the application of the identification system to more 

complicated problems. The forward model can be extended to include more general 
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structures. Finite element models can also be used. The inverse problem solver based 

on the smoother/filter, is a very general solution technique and can be applied to 

other new structures problems. 



Appendices 
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Appendix A 

The Observation Matrix 

The calculation of the plate deflection and strain, presented in Chapter 5, uses 

a simplified submatrix C„,, of the observation matrix, C. This simplified matrix is 

attained by taking advantage of the symmetry of the impact problem. 

The equation used to calculate the plate deflection, w, begins with the two- 

dimensional Fourier Transform between the space and frequency domain. 

N-1M-1 

; W{xh Vj, <) =  E   E <Bm»(«m. «», Oc*-*«-*""» (A.l) 
n=0 m=0 

where wmn are the frequency components of the plate displacement. Km = ^^p 

and Kn = 2z2». M and N are the number of frequency components in the x and y 

directions. X and Y are the extent of the spatial domain. This equation can be 

written in matrix form 

w(xi,yi,t) = Cwü> (A.2) 

where G) is a [N ■ M x 1] vector with elements 

ü{n + Nm) = ümn (A.3) 

and Cw is a [1 x M • N] vector for each sensor with elements 

Cw(n + Nm) = eiKmXi+iKny* (A.4) 

where m =  0,   ...,   (M - 1)   and n =  0,   ...,   (N - 1) • 
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To better visualize the symmetry of the problem, the matrix Cw is temporarily 

presented as a [M x N] matix. 

Cw(nm) = eiKmXi+iKn* (A.5) 

The size of this matrix can be reduced to approximately one quarter of its original 

size with the symmetric properties of the exponents 

piK(M-m)xi      =      piKmXi 

(A.6) 

The reduction in the size of the C„, can be visualized by dividing the matrix into 

four sections about the ra = y and n = y element. The matrix can then be folded 

about the x and y divisions. The resulting elements, with the exception of the edge 

elements, are the addition of the four sections. 

The matrix can be further simplified. The displacement of the plate, w, is a real 

and symmetric function about the x and y axes. The Fourier Transform of a real and 

even fuction in the space domian results in a real and even fuction in the frequency 

domain. This means the components of (Cü,)mn are real and symmetric about the 

nt| and m = y element. Because of this symmetry and the relation 

elx = cos(:r) + zsin(a;) (A.7) 

the odd function, isin(x), will have no contribution when the displacement is calcu- 

lated. The final simplified Cu, matrix are presented in the vector form. 

The middle elements are 
M N 

m=l:(|-- 1), n=l:(-- 1) 

Cw{n + Nm) = ±e
iKmXi+iKnVj = 4 cos(«mXi) cos(/cnyi) (A.8) 

and the edge elements are 

m=0, n=0 

C„,(0) = ei0xi+i0* = 1 (A.9) 

m=0, n=l:{- - 1) 
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N 
m=0, n—— 

M       n m=—-, n=0 
2 

Cw(n) = 2ei0xi+iKnV = 2eiK»* =2cos(Knyj) (A.10) 

C«(£) = e°Xi+iK*yi = eiK^ = cos(Kfyj) (A.ll) 

,NM 

m=—, n=l:( —— 1J 

Cw(~) = e
iKf Ii+i°yj = eiKfXi = cos(«f *<) (A.12) 

Cw(n + ^) = 2ei,c* *<+*»« = 2 cos(/cf xO cos(«n2/i) (A.13) 

M        N 
2 '       2 

C„(y + jy) = e  *       *    = COS(K«IJ) COS(K^%-) (A.14) 

/     M 
m=l:{— - 1), n=0 

C„(-m) = 2eiKmIi+i0^ = 2eiKmXi = 2 cos^x*) (A.15) 

,M     nx        iV m=l:(y-l), n=— 

Cu;(^ + ^m) = 2eKmXi+iK*Vj = 2 cos^) cos(«f Vj) (A.16) 
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With these relations, Cw can be expressed in the simplified vector form in Chap- 

ter 5. For m -  0,   ...,   4f   and n =  0,   ...,   y , each row becomes 

[ 1 ••• 2cos(/cnyj) ••• cos(KN/2yj) 

2 cos(«mx,)   • • •    4 cos(KmXi) cos(/cnyj)     • • •   2 cos(/cma;i) cos(nN/2yj) 

cos(KM/2Xi)   •••   2cos(KM/2Xi)cos(Knyj)   •••   cos(«Af/2a;i)cos(KN/2yj)     ] 
(A.17) 



Appendix B 

Existing Formulation for Backward 

Filter 

This computational procedure is used by Bryson [11] to solve the smoother equa- 

tions. 

Continuing from the measurement downdate relations Eq. 6.16, the time downdate 

procedure starts with the boundary conditions 

SB(NT)   =   S(NT) 
(B.l) 

XB(NT)   =   S(NT) 

and results in the optimal estimation z(0) at n = 0 using the boundary condition 

Eq. 6.10 as 

z(0) = [SB_1 + S(O)]"1 [AB(0) + S(0)z(0)] (B.2) 

With the boundary conditions, we can solve the two point boundary value problem 

by sweeping forward from n = 0. However, the Euler-Lagrange equation is unstable 

in either direction. A stable sequencing can be done by storing a vector fB(n) and a 

matrix KB(n) during the backward sequencing 
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KB(n)   =   Wj}(NT-n)W*f(NT-n) 

fB(n)   =   Wj}(NT-n)TT\B(n+l) 

The forward sequence is then 

(B.3) 

f(n)   =   /» - KB(n)z(n) 

s(n)   =   Cz(n) (B-4) 

z(n + l)   =   *z(n) + r/(n) 



Appendix C 

Rank-Two Update Procedure 

The outer loop of the inverse problem solver uses the Hessian matrix to update 

the estimate of the impact location. The impact is updated using the quasi-newton 

method 

xe(i + 1) = xe(z) - oJ^(t)3,.(t) (C.l) 

where xe is the estimate of the impact location, and a is the step size scaling variable. 

The Hessian matrix, 3xx(i), is calculated approximately using a rank-two update 

procedure. The procedure uses the gradiant information from the current and previous 

estimates of the impact location. This technique is shown in completion in Cuthbert 

and Luenberger [14] and [15]. 

The change in the estimated impact location, p, and the change in the gradiant, 

q, from one estimated location to the next is 

p(t)   =   Xe(i + 1) - Xe(«) . 

q(»)   =   J«.(* + 1)-J..(0 

The update uses two rank-one matrices which are the outer products of the p and q 

matrices. This provides at most a rank-two update. 

T f.-_L.i\~T f* ■ q(»)qr(Q   J««(0p(*)pr(»)J»x(0        (r^ 
«Jill* T  -U  ~ "XxV*/    ' T/-\      I -\ /ATfT/'N      /-\ Wm°/ 

qr(t)p(») p(»)Tjrx(t)p(i) 

The initial value of the Hessian, JZI(0), can be chosen as any symmetric posititve 

definite matrix. The identitiy matrix is commonly used causing the first update to 
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be in the direction of steepest descent. 

To provide for easier calculation Eq. C.3 can be inverted directly. The approxi- 

mation to the inverse Hessian matrix H(i) can be calculated with 

H(i+1). m+(1+m^m)^m 
\       pT(*)q(0   / pr(*)q(«) (c.4) 

- -!7^(p(0qT(0H(0 + H(0q(0pT(0) 
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