
^JM^,u^^^^M^.^iJJ^UiL^JUUJI,U*l-J^lMIIIWWW 

^m integrated 
systems 

AFOSR-TR-97 

Final Report 

Reporting Period:   15 Oct. 1993 - 14 M 

Unified Controller Design for Intelligent 
Manufacturing Automation 

Sponsored by: 

Defense Advanced Research Projects Agency 
DARPA Order No. FQ8671-9500762 A108/5 

Monitored bv AFOSR Under Contract No. F49620-94-C-0003 

Prepared by: 

Dr. Robert L. Kosut 
SC Solutions 

3211 Scott Blvd., Santa Clara, CA 95054 
kosutSscsolutions.com 

Dr. Gurcan Aral 
Integrated Systems, Inc. 

201 Moffett Park Drive, Sunnyvale. CA 94089 
garalQisi.com 

I 
1 

T" 

i 

f 
ft 

Prepared for: 

Defense Advanced Research Projects Agency 
Attention: Dr. Anna Tsao 
3701 North Fairfax Drive 
Arlington, VA 22203-1714 

and 

AFOSR/NM 
Directorate of Mathematics and Geociences 

Attention: Dr. Marc Jacobs 
110 Duncan Avenue Suite B115 
Boiling AFB, DC 20332-0001 

ISI Report No. 5250-04 
DTIC QUALITY INSPECTED 4 14 Mav 1997 

I 
Integrated Systems, Inc. 
201 Moffett Park Drive 
Sunnyvale, CA 94089 



—Ill inte integrated 
systems Final Report 

Reporting Period:   15 Oct. 1993 - 14 May 1997 

Unified Controller Design for Intelligent 
Manufacturing Automation 

Sponsored by: 

Defense Advanced Research Projects Agency 
DARPA Order No. FQ8671-9500762 A108/5 

Monitored by AFOSR Under Contract No. F49620-94-C-0003 

Prepared by: 

Dr. Robert L. Kosut 
SC Solutions 

3211 Scott Blvd., Santa Clara, CA 95054 
kosutOscsolutions.com 

Dr. Gurcan Aral 
Integrated Systems, Inc. 

201 Moffett Park Drive, Sunnyvale, CA 94089 
garal@isi.com 

Prepared for: 

Defense Advanced Research Projects Agency 
Attention: Dr. Anna Tsao 
3701 North Fairfax Drive 
Arlington, VA 22203-1714 

and 

AFOSR/NM 
Directorate of Mathematics and Geociences 

Attention: Dr. Marc Jacobs 
110 Duncan Avenue Suite B115 
Boiling AFB, DC 20332-0001 

ISI Report No. 5250-04 DHC qmjJZxY XISSPSCTSD 4 14 Mav 1997 

Integrated Systems, Inc. 
201 Moffett Park Drive 
Sunnyvale, CA 94089 
Tel: 408-542-1500    Fax: 408-542-1950 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

^ ''C^POrt'PS b"rd°n,,or this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources gather™ 
and maintaining the data needed and completing and reviewing the collection of information.   Send comments regarding this burden estimate or any other aspect of this collection of 
V™Tf!?"\     ^"9-,^°?l'S!?s *°L re?iia??Jh's^en't0 Was"'"«!10" Headquarters Services, Directorate for Information Operations and Reports, 1215 JeffersonDavis Hi. 
1204, Arlington. VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188) Washington. DC 20503 

i Davis Highway, Suite 

1. AGENCY USE ONLY (Leave blank) 

4. TITLE AND SUBTITLE 

2. REPORT DATE 
May   14,   1997 

3. REPORT TYPE AND DATES COVERED 
Final Reportl0-15-93 - 05-14-9" 

Unified Controller Design 
Manufacturing Automation 

for Intelligent 

6. AUTHOR(S) 

5. FUNDING NUMBERS 

F49620-94-C-0003 

Dr. Robert Kosut & Dr. Gurcan Aral 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

SC Solutions & Integrated Systems, Inc, 
201  Moffett Park Drive 
Sunnyvale,  CA 94089 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Defense Advanced Research Projects 
3701 North Fairfax Drive 
Arlington,  VA  22203-1714 

\ 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

5250-04 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

FQ8671-9500762   A108/5 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION AVAILABILITY STATEMENT 

DlSTß\TiUTIt»0   O/UL/rniTfb 

13. ABSTRACT (Maximum 200 words) 

12b. DISTRIBUTION CODE 

The proposed objective was to develop a unified controller design method- 
odology for manufacturing automation systems and to demonstrate the ap- 
proach on a manufacturing process of interest to DARPA. The demonstration 
system selected was rapid thermal processing (RTP) of semiconductor wafers. 
This novel approach in integrated circuit manufacturing demands fast track- 
ing control laws that achieve near uniform spatial temperature distributions. 
In order to ensure the final product quality, it is essential to maintain a uni- 
form temperature profile despite uncertainties in both transient and steady-state 
phases of the process. Specific accomplishments included the development of 
mathematical and computational tools for heat transfer modeling, specifically 
conduction and multiband radiation, nonlinear model reduction, methods for 
robust thermal control, and an approach applicable to repetitive run-to-run 
feedforward learning control All the results were tested for feasibility on com- 
mercial RTP chambers. 

14. SUBJECT TERMS 

17. SECURITY CLASSIFICATION 
OF REPORT 

lMCLAiA\FiEb 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

0tV(U.A'bb\?iSb 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

15. NUMBER OF PAGES 

78 
16. PRICE CODE 

20. LIMITATION OF 
ABSTRACT 

Standard Form 298 (Rev. 2-89) (EG) 
Prescribed by ANSI Std. Z39.18 
Drivonec! nsinn Perform Pro. WHS/DIOR. Oct 9- 



Contents 

1 Objectives & Accomplishments 1 

1.1 Objectives  1 

1.2 Accomplishments  1 

2 Summary 2 

2.1 Heat transfer modeling  2 

2.2 Robust thermal control      3 

2.3 Model Reduction  4 

2.4 Feedforward learning control      4 

3 Transitions 5 

A  Publications 7 

A.l   Robust control of thermal processes: Static performance  7 

A.2   Improving static performance robustness of thermal processes  11 

A.3   Finite-Time Tracking with Actuator Saturation: Application to RTP Temperature 
Trajectory Following  19 

A.4   On Actuator-Sensor Selection in Thermal Processes      27 

A.5   On operating point sensitivity of thermal processes  31 

A.6   Nonlinear model reduction with application to rapid thermal processing  39 

A.7   Learning Feedforward Control  47 

A.8   Feedforward Learning Methods in RTP Temperature Control  55 

A.9   Feedforward Learning Applied to RTP of Semiconductor Wafers      63 

A.10 Feedforward Learning - Nonlinear Processes and Adaptation  71 

19971002 098 



1     Objectives &: Accomplishments 

1.1 Objectives 

Our proposed objectives were twofold: 

Objective 1 

To develop a unified controller design methododology for manufacturing automation systems 
and to demonstrate the approach on a manufacturing process of interest to DARPA. 

Objective 2 

To provide specifications for computer-aided-control-engineering (CACE) design tools that 
appeal to the needs and skill level of process control engineers. 

These objectives were aimed at the general process control industry, in the hopes of extending 
the scope of the DARPA initiative known as IPM (Intelligent Processing of Materials), i.e.. to merge 
recent advances in process modeling, sensor development, and computer-aided-control-engineering. 

1.2 Accomplishments 

The demonstration system selected was rapid thermal processing (RTP) of semiconductor wafers. 
This novel approach in integrated circuit manufacturing demands fast tracking control laws that 
achieve near uniform spatial temperature distributions. In order to ensure the final product quality. 
it is essential to maintain a uniform temperature profile despite uncertainties in both transient and 
steady-state phases of the process. Hence, the high performance requirements for RTP make it an 
excellent candidiate to meet both of our overall objectives. Another reason for selecting RTP is 
because of our physical proximity to Applied Materials Research, Inc. (AMAT). As a result we 
were able to test the feasibility of many of our ideas using AMAT facilities. l 

Specific accomplishments are: 

• Heat transfer modeling 

• Model reduction 

• Robust thermal control 

• Feedforward learning control 

A summary of our work in each of these areas is described in the next section. 

The data presented here and in our related publications is based on a generic RTP model and does not use the 
actual data obtained from any RTP system developed by AMAT. 
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2    Summary 

Further details of the work summarized in this section can be found in a series of published papers 
which are included in the appendix of this report. 

2.1     Heat transfer modeling 

Predictive process models are crucial to accomplishing both path planning and feedback control 
especially when sdome of the key performance variables cannot be sensed in situ. In general, 
writing relations with the goal of completely describing the physics, micromechanics, or material 
science phenomena can produce different results from writing relations with the goal of using them 
to design robust paths and robust feedback controls. 

Thermal systems are ubiquitous in material and semiconductor manufacturing systems. Ther- 
mal systems can be physically modeled using finite elements consisting of first order systems of 
ordinary differential equations. Most of the predominant thermal affects can be modeled in this 
way, e.g., radiation, conduction, and convection. The radiation affects are nonlinear involving quar- 
tic temperature terms. Radiation has a significantly larger effect in an RTP chamber than in a 
horizontal belt furnace principally because the RTP chamber is much smaller and the radiation 
effects diminish rapidly with distance. As a result, furnace thermal models are essentially linear 
whereas RTP systems are not, but can be well represented by linear models over a reasonably large 
region centered about each critical operating point. 

Finite element thermal models can have thousands of states and even many more parameters, 
e.g., thermal coefficients. From the control perspective, the structure and accuracy of the model 
is most important. In addition, the large number of variables requires numerical software which is 
efficient and fast. The major goal in developing control software for these systems is to allow the user 
to establish variou design tradeoffs, e.g., the tradeoff between and uncertainty and performance. 

We have developed a systematic procedure of generating nonlinear finite-element heat transfer 
models based on a set of node temperatures and associated heat transfer characteristics between 
the nodes. A circuit-theoretic approach is adopted due to the ease of constructing, modifying and 
verifying the models. With increasing resolution and hence large number of nodes and branches, 
the resulting interconnections can easily become cumbersome and even impossible to describe and 
manipulate without the aid of computers. Hence, a systematic approach to modeling is crucial 
to allow the engineer to truly concentrate on model validation rather than error-prone, laborious 
technicalities in generating the model. 

For heat transfer models based on conduction, convection and radiation characteristics of com- 
ponents, the resulting nonlinear dynamic system equations can easily be described in terms of node 
equations. This approach relies on three concepts: graph, branch characteristics and a conservation 
law. Specifically, a graph is a collection of nodes and directed branches connecting these nodes. It 
is a means of formalizing the interactions based on the physical properties of the subsystems and 
incorporating prior knowledge/observations about the model. 

In our work to date we have developed software which accepts as inputs the parameters associ- 
ated with finite element thermal models. An additional feature of the software is that uncertainties 
in the model are directly associated with uncertain physical system parameters, e.g., thermal coef- 
ficients. The uncertain parameters can be either identified or used in a robust control design. 



2.2     Robust thermal control 

Rapid thermal processing of semiconductor wafers demands fast tracking control laws that achieve 
near uniform spatial temperature distributions. In order to ensure the final product quality, it 
is essential to maintain a uniform temperature profile despite uncertainties in both transient and 
steady-state phases of the process. We have developed solutions and associated software for the 
design of robust thermal control and optimization. For a given operating trajectory, the control 
problem is posed as determining a feedforward/feedback controller that minimizes the worst-case 
peak deviation of the performance variables subject to a particular class of bounded disturbances 
and parameter variations. Since the solution to this nonlinear problem is not known, a sequence of 
approximations in terms of the small-signal equivalents are used to pose linear control problems. A 
complete solution to the associated linear control design problem is derived. Considering problem 
sizes of interest, efficient computational solution methods were investigated and prototype tools 
developed to simplify repetitive performance/robustness tradeoff studies, as well as determining 
sensor/actuator locations and operating points. 

Specifically, (1) we have implemented efficient methods of calculating optimal controller gains 
and performance/robustness tradeoffs; (2) we have developed a graphical user-interface that sim- 
plifies the design of these controllers, in such a way that the theoretical details are transparent to 
the user. 

The results have taken the trial/error studies performed on the physical system to a simulation 
level study where worst-case performance can be quantified. Apart from the obvious advantages of 
having a representative off-line model of the real system, we have brought a systematic approach 
to quantify the following factors: 

• best nominal uniformity at steady-state, 

• best worst-case uniformity at steady-state, and 

• best nominal transient uniformity during ramp-ups between steady-states. 

This systematic approach of associating performance limitations with a particular chamber model 
has allowed us to bring answers to crucial questions involving physical chamber-design and impli- 
cations on achievable closed-loop performance. 

The results are dewcribed in detail in the following papers which are included in the appendix: 

1. Robert L. Kosut and M. Güntekin Kabuli, "Robust control of thermal processes: Static 
performance." Proceedings of the 2nd International Rapid Thermal Processing Conference. 
pp. 296-297. Monterey, California. September 1994. 

2. M. Güntekin Kabuli, Robert L. Kosut and Stephen P. Boyd, "Improving static performance 
robustness of thermal processes." Proceedings of the 33rd IEEE Conference on Decision and 
Control, pp. 62-66, Lake Buena Vista, Florida, December 1994. 

3. A. Emami-Naeini, M. G. Kabuli and R. L. Kosut, "Finite-Time Tracking with Actuator 
Saturation: Application to RTP Temperature Trajectory Following," Proceedings of the 33rd 
IEEE Conference on Decision and Control, pp. 73-78, Lake Buena Vista, Florida, December 
1994. 



4. Robert L. Kosut and M. Güntekin Kabuli, "On Actuator-Sensor Selection in Thermal Pro- 
cesses,"' Proceedings of the 34th IEEE Conference on Decision and Control. New Orleans. 
Louisiana, December 13-15. 1995. 

5. Robert L. Kosut and M. Güntekin Kabuli, "On operating point sensitivity of thermal pro- 
cesses." Proc. 1996 Triennial IF AC World Congress, San Francisco, California USA. July 
1-5 1996. 

2.3    Model Reduction 

We investigated the use of the proper orthogonal decomposition (POD) method for model reduction 
which was used originally for approximating turbulent phenomena. There seems to be no end to 
the number of times it has been re-discovered, e.g., it appears in work on weather prediction, and in 
pattern recognition where it is known as the Karhunen-Loeve expansion. More recently it has been 
used to reduce the dimensionality of the ODEs obtained from finite element analysis. In summary, 
the POD can be used iteratively to find a parsimonious set of basis functions for the finite element 
analysis. 

The basic premise of the POD is the orthogonal decomposition of the spatial covariance of 
the instantaneous spatial solution profiles of a PDE - "snapshots" as they are often referred. In 
the context of time-dependent and in particular turbulent hydrodynamics, the POD method was 
used on spatial velocity correlations to identify coherent spatial structures. A combination of this 
hierarchy of structures with a Galerkin weighted residual discretization of the fundamental model 
equations provides a spatially and temporally accurate model of the PDE dynamics, provided that 
a sufficient number of modes has been retained. There is increasing evidence, through the study 
of several model problems, that this methodology can be a crucial engineering algorithmic tool for 
the reduction, analysis, design and control of distributed systems, beyond the context of fluid flow. 

The POD method is quite general and essentially relies on the singular value decomposition. It 
works directly on the state, and does not distinguish outputs as do balanced/truncation methods 
involving Hankel singular values. Our experience with POD was successful for reducing high order 
finite element models of rapid thermal processing systems as described in the following paper which 
is included in the appendix: 

H. Aling, R.L. Kosut, A. Emami-Naeini. and J. L. Ebert. "Nonlinear model reduction with ap- 
plication to rapid thermal processing." Proc. 35th IEEE CDC. pp. 4305-4310. Kobe. Japan. 
Dec. 1996. 

2.4    Feedforward learning control 

For RTP, the ability to quickly manipulate wafer temperature according to the commanded temper- 
ature profile is crucial. Sensor-based feedback can certainly improve the RTP reactors temperature 
following capability, maintain tight temperature control at steady state, and reduce the effects due 
to equipment variations. However, the bandwidth of feedback control must be balanced with sta- 
bility considerations which are often limited by the process characteristics such as time delay. 

Feedforward control, on the other hand, can complement feedback control performance by 
promoting non-delay and anticipatory actions which, when properly designed, can lead to superior 



tracking or disturbance rejection.   Combining feedback and feddforward control should lead to a 
robust, stable and yet agile temperature control system. 

Traditional feedforward design is usually based on analytical methods that require fairly accu- 
rate modeling of the process and the FB control loop. Such knowledge is often not available or 
is subject to change overtime. To overcome this problem we have developed a method for using 
run-to-run data to modify a feedforward control signal. The result, which is principally useful for 
repetitive run-to-run resipes, is a learning algorithm. The approach has its roots in disturbance 
rejection of acoustic emmissions where the disturbance is uaually measured with a microphone. 
Our application is in the context of feedback control. The specific approach is designed for ease 
of tuning, as it can learn from the past experiences. Many manufacturing tasks are repetitive 
task-oriented and are potential applications. 

The feedforward learning control approach is described in detail in the following publications 
which are included in the appendix: 

1. K.M. Tao, R.L. Kosut and G. Aral, "Learning Feedforward Control," Proc. American Control 
Conference, Baltimore, MD, June - July 1994, pp. 2575 - 2579. 

2. K.M. Tao, G. Aral, R.L. Kosut and M. Ekblad, "Feedforward Learning Methods in RTP 
Temperature Control," Proc. 2nd. Int. Rapid Thermal Processing Conf, Monterey, CA, 
Sept. 1994, pp. 278 - 282. 

3. K.M. Tao, R.L. Kosut, M. Ekblad and G. Aral, "Feedforward Learning Applied to RTP of 
Semiconductor Wafers," Proc. 33rd IEEE Conf. Decision and Control, pp. 67-72, Lake 
Buena Vista, FL, December 1994. 

4. K.M. Tao, R.L. Kosut and M. Ekblad, "Feedforward Learning - Nonlinear Processes and 
Adaptation," Proc. 33rd IEEE Conf. Decision and Control pp. 1060-1065, Lake Buena 
Vista. FL. December 1994. 

3    Transitions 

The feasibility of many of the techniques developed under this contract for modeling, control design, 
and optimization were successfully tested on one or more of Applied Materials RTP chambers. 





A    Publications 

A.l     Robust control of thermal processes: Static performance 

• Robert L. Kosut and M. Güntekin Kabuli, "Robust control of thermal processes: Static 
performance," Proceedings of the 2nd International Rapid Thermal Processing Conference, 
pp. 296-297, Monterey, California, September 1994. 
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In this paper the steady-state sensitivity of static nonlinear heat trans- 
fer models subject to static feedforward/feedback control laws is consid- 
ered. For a given operating point, the desired control problem is posed 
as determining a feedforward/feedback static controller that minimizes 
the worst-case peak deviation of the performance variables about a 
nominal point subject to a particular class of bounded disturbances 
and parameter variations. Since the solution to this nonlinear problem 
is not known, a sequence of approximations in terms of the imall-signal 
equivalents axe used to pose static linear control problems. A com- 
plete solution to the associated static linear control design problem is 
derived. Considering problem sizes of interest, efficient computational 
solution methods are investigated and prototype tools axe developed to 
simplify repetitive performance/robustness tradeoff studies, as well as 
determining sensor/actuator locations and operating points. 

Introduction 

Rapid thermal processing of semiconductor wafers demands 
fast tracking control laws that achieve near uniform spatial tem- 
perature distributions. In order to ensure the final product qual- 
ity, it is essential to maintain a uniform temperature profile de- 
tpite uncertainties in both transient and steady-state phases of 
the process. 

In this paper we focus exclusively on the steady-state sensi- 
tivity of static nonlinear heat transfer models subject to static 
feedforward/feedback control laws. The approach relies on a 
static nonlinear heat transfer model, typically obtained by form- 
ing a mesh of branches that model conduction, convection and 
radiation between the nodes of the mesh. A systematic modeling 
approach based on the analysis of large scale nonlinear resistive 
networks is applied to obtain the equations that determine the 
operating points in terms of input and disturbance biases. For 
a more detailed treatment of the associated concepts utilized, 
see e.g., [l] for the circuit-theoretic approach and [2] for heat 
transfer topics. For a given operating point, the desired control 
problem is posed as determining a feedforward/feedback static 
controller that minimizes the worst-case peak deviation of the 
performance variables about a nominal point subject to a par- 
ticular class of bounded disturbances and parameter variations. 
Since the solution to this nonlinear problem is not known, a 
sequence of approximations in terms of the small-signal equiva- 
lents are used to pose static linear control problems. 

Problem Description 

Consider the feedback system shown in Figure 1 , where 

• tu 6 IR"- are the exogenous inputs consisting of both static 
disturbances and uncertain physical parameters, 

• z 6 IR"- are the performance variables (not necessarily 
those that are sensed) such as critical temperatures and 
lamp (actuator) power levels, 

• Jf € IR"* are the sensed variables, e.g., temperature read- 
ings from various sensors, 

• u € IR"" are the actuator inputs, e.g., lamp powers. 

The static linear plant  P  £   JR(".+".)«("-+».)  is 0btained by 
linearization about a particular equilibrium or operating point. 

ic actuator input consists of a static feedforward control 
€ IR"" and a static feedback Ky with K 6 IR""'"* . 

Th 

RtJcarch supported by ARPA under AFOSR control F49620-94-C- 
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Figure 1: Static feedback system 

It is convenient to partition P as follows: 

(;]-'[:]-[££][:] ■ 
Let too 6 IR"» and zo € IR"' denote, respectively, nominal 

values of disturbance and performance variables.   Let A„ and 
A, be nonsingular diagonal scaling matrices such that 
u> = tuo + A.r;„ and * = zy, + A.r;, . 
The scaling matrices are chosen to reflect the relative size of un- 
certainty in the to-variables and the relative size of performance 
tolerance in the ^-variables. The rj-variables reflect uncertainty 
( IM- < A. ) and performance ( ||,,||„ < A. ) . The norm 
II • |L >« denned as Qz||«, = max, |i.| . For a given A„ and A, 
a design (K, uK) is said to be ' 
(A., A,)-feasible iff Jij.B«, < A, for all ||r;.|U < A. . 

The specific design problem under consideration is the fol- 
lowing: 

•  For a given P, X,, u>o, xo and nonsingular A„, A, 
determine arg #rnin  _  max     Ijr/.H^ . max (1) 

Due to the two free parameters K and u* , one can pose four 
possible cases from problem (1) with appropriate restrictions on 
the parameters, namely: 

1. open-loop (u = 0), 
2. feedforward only (u = ux), 
3. feedback only (u = Ky) and 
4. feedforward/feedback (u = u*- + Ky) 

Typical design specifications involve the following: 

1. feasibility: determine (if possible) a (A., A,)-feasible de- 
sign, or 

2. robustness: for a fixed A,, maximize A. among 
(A., A,)—feasible designs, or 

3. performance: for a fixed A„, minimize A, among 
(Aw, A,) — feasible designs. 

The feasibility, robustness and performance design problems 
stated above can all be expressed in terms of problem (1) by 
considering the tradeoff curve denoted by the graph 



{(' min       max 
(K.««)IK.IL<i. 

Ill.ll, „)  M.> o| (2) 

The graph in (2) denotes the boundary of feasible and infea- 
sible designs on the (A„, A,)-plane. In general, the graph that 
partitions the feasible and infeasible regions is neither convex 
nor concave. In the following section, we describe a solution 
method for problem (1) and hence a method for deriving the 
graph in (2) . 

Solution 

The general form of the solution to obtain the graph in 
(2) is given in the Appendix. The results can be derived u§- 
ing the static form of the Youla parametrization of all feasible 
controllers[5] . The details will be reported elsewhere. 

For our purposes here, all possible four cases reduce to a 
problem of the form min ||T, +TjXTJ\\,_co , where || • ||„. denotes 

the matrix norm induced by the vector norm || • ||— . Efficient 
solution methods based on interior point methods are used to 
solve the associated linear program. In the process, (".(n, + 1)) 
control variables are sought by introducing (n,(rv„ + 1) + 1) 
more slack variables. Typically n.rv. > TV.II, ; hence, special 
structure and/or conditioning has to be utilized in order not to 
be burdened by the increase in the parameter dimension. The 
results in the following section are obtained by prototype opti- 
mization tools developed in MATRIXx based on the methods in 
PI «a HI • 

Design Example 

Consider the mesh in Figure 2. It represents a linear resis- 
tive network consisting of seven nodes and nine branches. All 
branch conductances are taken as unity; node 0 denotes the da- 
tum node (ambient temperature). Input and disturbance fluxes 
are denotes by u and to , respectively. The measured output 
is denoted by y . Conservation equations written at each and 
every node except the datum node yield y = P^w + P„u . For 
example, at node 5 , we have 

u>J = (r,-r1) + (rs-r4) + (rs-re) , 

where T denotes the node temperatures; conductances are unity 
for simplicity. 

The description of the mesh (consisting of conduction, con- 
vection and radiation terms) and the derivation of the associated 
linearized model at the steady-state are all automated. For this 
example, the regulated variables are chosen as the six node tem- 
peratures. Hence, Tv- = 2,nu=2,n, =6 and n, = 2 . 
Thus P 6 1R*X< , K € R1" and uK € Rs . We seek at most 
rivfr^ + l) = 6 control variables and introduce n,(n» + l) + l = 7 
slack variables. 

The tradeoff curve in (2) is derived for five cases (see Fig- 
ure 3) .   One extra design approach is introduced to illustrate 

0 05 I 15 2 2.5 
lombda • 

Figure 3: Tradeoff curves in (2) for the five cases: 

a   -  open-loop 
b  -   feedforward only 
c  -  one at a time optimization: first feedforward 
and then feedback 
d   -   feedback only 
e   -   simultaneous optimization: feedforward and 
feedback 

Conclusions 

Using the complete solution to the static linear control de- 
sign problem, performance limitations are derived. Repetitive 
performance/robustness tradeoff studies <-»n be performed eas- 
ily for different sensor/actuator locations and operating points. 
The tools are specifically geared towards large scale resistive 
network problems. The problem solved here is used to illustrate 
the tool and methodology. 
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Figure 2: Sample mesh 

that the feedforward and feedback designs are not decoupled. In 
other words, minimizing over u* for K = 0 and then fixing the 
optimal UK value and then optimizing over K is not equivalent 
to the simultaneous minimization over uK and K . 

Appendix 

Given P,  w0, i>, zo and nonsingulax A», A,  , it can be 
shown that: 

(K,uK)  =   "g,min      max     ||r,,||„   and    det(J - P„K) ± 0 

if and only if 

(ff.ujc) = (Q(/ + PV.Q)-1. (/ + Q^)-luo) 

where 

(<?.«.<,)    =    argmin||[A.A(Q)   b(Q,uQ) ] ||.i00 

A{Q)   =   A;'(P- + P..QP„)A„ 

b(Q,uQ)   =   A;,((P„ + P„1QfV.)u,0-zo + P..ug) 
det(/ + P^Q)   *   0 
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A.2    Improving static performance robustness of thermal processes 

• M. Giintekin Kabuli. Robert L. Kosut and Stephen P. Boyd, "Improving static performance 
robustness of thermal processes," Proceedings of the 33rd IEEE Conference on Decision and 
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Abstract 

A static (steady-state) robust control design prob- 
lem is considered using a nonlinear model of a ther- 
mal system. For a given operating point, the control 
problem is to determine a feedforward/feedback static 
controller that minimizes the worst-case static peak 
performance deviation from nominal in the presence 
of bounded disturbances and parameter variations. It 
is desired to obtain the tradeoff between the size of 
the worst-case deviation and the size of the uncer- 
tainty set. A complete solution is derived for the 
static linear control design problem obtained from 
linearization about selected operating points. Effi- 
cient computational tools are developed to rapidly 
analyze numerous operating points and control con- 
figurations. 

1     Introduction 

Rapid thermal processing (RTP) systems demand 
fast tracking control laws that achieve near uniform 
spatial temperature distributions across the target, 
e.g., a semiconductor wafer, during both transient 
and steady-state phases of the process. 

In this paper we only address the static (steady- 
state) problem using static feedforward/feedback con- 
trol laws. The approach relies on a static nonlinear 
heat transfer model which includes parameter uncer- 
tainty. The form of the model found to be very conve- 
nient for robust control design is obtained by forming 
a mesh of branches that model conduction, convec- 
tion and radiation between the nodes of the mesh. 
A systematic modeling approach based on the analy- 
sis of large scale nonlinear resistive networks can then 
be applied to obtain the equations that determine the 
operating points in terms of input and disturbance bi- 
ases. This model structure is generic, since all ther- 
mal system models can be put in this form [1, 2] . 

For a given operating point, the control problem is 

•Research supported by ARPA under AFOSR contract 
F49620-94-C-OOO3 and Army Missile Command contract 
DAAH01-93-C-R193. 
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posed as designing a feedforward/feedback static con- 
troller that minimizes the worst-case peak deviation 
of the performance variables from a nominal point 
when subjected to bounded disturbances and param- 
eter variations. Since the solution to this nonlinear 
problem is not known, a sequence of approximations 
in terms of the small-signal equivalents are used to 
pose static linear control problems. We derive a com- 
plete solution to the associated static linear control 
design problem. Considering problem sizes of inter- 
est, (e.g., 20 actuators, 20 sensors, 100 regulated vari- 
ables, 100 exogenous disturbances) , efficient compu- 
tational solution methods are investigated and pro- 
totype tools are developed to simplify comparative 
design studies resulting from different choices of op- 
erating points, actuators, sensors and control laws 
(feedforward and/or feedback). 

The paper is organized as follows: in Section 2 we 
pose and solve the static linear sensitivity problem, 
i.e., parameter uncertainties are included as addi- 
tional exogenous input perturbations. The tools re- 
quired here are also needed for the robustness prob- 
lem. An example of the sensitivity tradeoffs using 
the thermal mesh model is given in Section 3. Ro- 
bustness results for real parametric uncertainties are 
given in Section 4. An example, using the developed 
tools, is given in Section 5. To conserve space, only 
a very brief discussion of the computational issues 
and methods is provided. Further details on the op- 
timization methods and proofs can be obtained from 
the authors. 

2     Sensitivity Tradeoff 

2.1     Problem Description 

Consider the feedback interconnection shown in Fig- 
ure 1 , where u>, z, u and y denote the exogenous 
inputs, controlled outputs, actuator inputs and mea- 
sured outputs, respectively; P £ rft(".+'>,)x(n-+n.) 
denotes a static linear plant, K 6 iRn»xn» denotes 
a static linear feedback controller, and u/f € IRn% 

denotes the static feedforward control. 

\^ 
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Figure 1: Static feedback system 

To address the sensitivity to parameter variation, the 
exogenous input w includes disturbances as well as 
parameter perturbations from nominal. As such it is 
convenient to explicitly account for the nominal as 
well as deviations. Hence, let the normalized exoge- 
nous input be given by 

Vw = A~l(w-w0) 

where ioo € IRn" is the nominal value and A«, is a 
diagonal scaling matrix. A normalized output n, is 
defined accordingly: 

it = A;1^ -20) • 

Motivated by the temperature uniformity require- 
ments of RTP problems, we are naturally led to con- 
sider the "infinity" norm as the appropriate measure 
of signal size. Thus, for x £ IRn , the infinity norm is 
defined as ||i||oo = maxi<i<„ |xt| . Recall also that 
the induced matrix norm is the "max-row-sum", i.e., 

\\A\\i,c» =    imax ^ Halloo = max]T) |aiy|   . 

We can now state the fundamental design problem: 

• Optimal Design Tradeoff: For a given P, ruo, 
zo , Aw, and A*, find the optimal tradeoff be- 
tween disturbance size !!»?„,H» and performance 
tolerance H^H«,, i.e., determine the graph: 

{(A„ , A,) | A„ > 0} 

A, =   min        max     ||TJ,|| 

(1) 

The graph in (1) of A, vs. A„, gives the minimum rel- 
ative change (A,) uniformly in all performance vari- 
ables (z) for a relative uniform change (Aw) in all 
exogenous input variables (w). Hence, the graph de- 
notes the boundary between feasible and infeasible 
designs on the (AW,A2)- plane. A typical tradeoff 
curve - the graph described in (1) - is shown by 
the solid line in Figure 2. The shaded region be- 
low this tradeoff curve is infeasible, i.e., there exists 
no combination of feedforward or feedback which can 

achieve the requested performance. Conversely, all 
(1, 1)—feasible designs correspond to points on the 
segment between designs A and B in Figure 2 . Note 
that A corresponds to a performance design and C 
corresponds to a robust design, i.e., design C allows 
a much larger uncertainty for the requested specifi- 
cation IITJ.HOO < A, = 1. In general, the graph that 
partitions the feasible and infeasible regions is neither 
convex nor concave. 

Figure 2: Graph in (1) denoting the boundary of the 
feasible region in the (A^.A^-plane; shaded region is 
infeasible. 

Due to the two free design parameters K and u* , 
four possible problems can be posed, namely: 

• open-loop (ix = 0), 

• feedforward only (tz = u/f), 

• feedback only (u = Ky), 

• feedforward/feedback (u = uK + Ky) . 

Typical design specifications involve the following: 

• feasibility: determine (if possible) a 
(A«,, A,)— feasible design 

• robustness: for a fixed A,, maximize Xw among 
(A«, A*)—feasible designs 

• performance: for a fixed A„,, minimize A, among 
(A^,, A,)—feasible designs. 

The feasibility, robustness and performance design 
problems stated above can all be expressed in terms 
of the tradeoff curve denoted by the graph in (1) . In 
fact, it can be shown that the four possible choices of 
control (u = 0 , u = Ky , u = uK , u = uK + Ky ) re- 
sult in special cases of finding a solution to a problem 
of a max-row-sum norm minimization of the form: 

min||Tx+Ta*T3||.-., (2) 
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where the T's and X are defined in accordance with 
the four cases. 

2.2     Positive Definite Programming 

To efficiently solve the above max-row-sum problem 
we utilize the primal-dual potential reduction meth- 
ods described in [4]. The computational tools we have 
developed resolve the following difficulties: 1) Initial- 
ization of primal and dual variables ; 2) Efficient ap- 
proximate solutions to the (huge) least-squares prob- 
lems to determine the analytic center ; 3) Per- 
turbation of the updated dual parameters. To fur- 
ther explain these very important but esoteric is- 
sues is outside the scope for this paper. Interested 
readers can request details from the authors. For 
the intended applications (r^n,,,) ^> (n^riy) ~%> 1 . 
The particular solution approach reduces the orig- 
inal (n,Tiu, + n^, + n^riy + Tiu + 1)-unknown least- 
squares problem to a (n^ny + n^-unknown least- 
squares problem. Hence the computational complex- 
ity is determined by the control variables: (n^iiy) for 
feedback and n^ for feedforward. 

3     Example:  Sensitivity Trade- 
off 

The mesh in Figure 3 represents a resistive network 
consisting of seven nodes and nine branches. The 
mesh describes conduction, convection and radiation 
effects as non-linear resistive elements. (The authors 
have used an Xmath script to automate the mesh gen- 
eration and the associated linearized model at the 
steady-state.) Following standard node analysis re- 
sults for linear resistive networks (see e.g. [1]) , the 
steady-state heat-flux conservation equations arising 
from application of the Kirchhoff Current Law at each 
and every node (except the reference (datum) node) 
result in: 

0 = AcGAT
cx + Auu + Av w, Cx (3) 

The node variables z correspond to node temperature 
minus the ambient temperature, u denotes the con- 
trol input fluxes, and w the disturbance fluxes. The 
measured node temperatures are denoted by y . The 
matrix [Ac Au Aw] is defined by the incidence ma- 
trix that describes the interconnection of branches; 
its entries are O's, l's or —l's . The matrix G is diag- 
onal consisting of nominal branch conductances. For 
this example, the regulated variables are chosen as 
the six node temperatures. Hence, n^, = 2 , n^ = 2 , 
nt = 6 and TU, = 2 . Thus P 6 JR8x" , K G lR2x2 

and UK € IR We seek at most n^{riy + 1) = 6 
control variables and introduce n,(nu, + 1) + 1 = 19 
slack variables. Following the notation in Section 2 , 
let u)0,, = l,i = 1,2 ; A«, = / ; z0,i = 3, i = 1,..., 6 ; 

Figure 3: Sample mesh 

The tradeoff curve in (1) is derived for five cases (see 
Figure 4) . One extra design approach is introduced 
to illustrate that the feedforward and feedback de- 
signs are not decoupled. In other words, minimizing 
over uK for K = 0 and then fixing the optimal up- 
value and then optimizing over K is not equivalent to 
the simultaneous minimization over u/f and K 

Figure 4: Tradeoff curves in (1) for the five cases: 
a   -  open-loop 
b   -   feedforward only 
c - one at a time optimization: first feedforward and 
then feedback 
d   -   feedback only 

e    -    simultaneous optimization:   feedforward and 
feedback 



4     Robustness Analysis 

The control design problem formulated in Section 2 is 
based on a nominal plant model P : (ui, u) >—> (z,y) , 
where w includes perturbations in uncertain param- 
eters. In this section, we consider the performance 
of the nominal control u = UK + Ky subject to per- 
turbed plant models as shown in Figure 5 , where w 
now includes only exogenous disturbances. 

w 
p 

V 
1—►• £ 

A 

Figure 5: Perturbed plant model 

Although we still consider linearized plant models, 
the uncertainty is maintained in its natural form (Fig- 
ure 5) . In the example to follow we take A as a 
diagonal matrix whose entries correspond to uncer- 
tainties in the branch conductance matrix G . Hence, 
the perturbed form of the linear resistive network (3) 
becomes: 

0 = AC(G + A)Aj x + A„u + Au (4) 

In order to define the uncertainty set, let e\ denote the 
ith standard basis vector. Its dimension is determined 
from the context. Now, the uncertainty structure and 
vertex set are defined as follows: 

V = {A <E IRn'xn< | A, < A < Au} (5) 

Vp = {A 6 V     |    ejAe, e {e? A,Cj,ef Aue,} , 

1 < * < th, ,  1 < j < n( }   .(6) 

Let Hlw(&) denote the fractional form obtained for 
u— Ky (for u = ux+ify,to gets augmented by one 
entry) . From Figure 5, 

ff,u,(A) = ffu + £r12A(/-ff„A)-1ff21   . 

Let det(7 - fljjA) j- 0 for all A € V . Under these 
assumptions, it can be shown that: 

max||ffJU,(A)||ii00   =   max ||ff„,(A)||,-,, (7) 

This result means that the worst-case maximum row 
sum of the linear fractional form HIW(A) over V is 
achieved at the vertex set Vp . We utilize this re- 
sult in the following section, in a design example. It 
can also be shown that minA€p \\Hlw(A)\\ii00 is not 
necessarily achieved at the vertex set. 

5     Example:   Robustness Anal- 
ysis 

We consider a mesh consisting of 40 linear conduc- 
tance branches and 25 temperature nodes. As in (3) , 
[AC,AU,AU] € IRJ<*(<°+5+3) is the incidence matrix 
and consists of 0's, l's and -l's to denote the di- 
rected graph associated with the mesh, u 6 IRS and 
w £ IR denote the control input and exogenous in- 
put fluxes, respectively, y £ IR5 denotes the mea- 
sured node temperatures. The node temperatures 
satisfy (3) where G = diag(^) . Nominal operating 
conditions (denoted by 0 subscripts) are determined 
to minimize the deviation from a uniform tempera- 
ture profile across the measured nodes. The nominal 
operation is determined by 

Ac diag(po) A*x0 + Auuo + Awtu0 = 0   , 

where g0 > 0 and w0 > 0 . Let the performance vari- 
able z be defined as z - [yT uT]T , where ZQ > 0 . 
The design problem is posed as follows:   determine 
u = UJC + Ky such that the performance measure 

V(^,ÜT)= max ||A7»(z-2o)|U 
llA.^uc-too)!!» < 1 
HAc^S - «OIL < 1 

is minimized for the feedback perturbed plant model 
in Figure 5 ; we choose Aw = diag(tu0) , Ac = 
O.ldiag(so) and A, = diag(zo) . Recall that by (7) , 
the performance measure is achieved at the vertices. 
Note that we allow a 10% uncertainty in all 40 con- 
ductance branches. Hence, for a given design, the 
exact measure could have been obtained by 240 max 
row sum evaluations. To make the calculations rea- 
sonable, we will rate the designs according to 10% un- 
certainty in the first 10 conductance branches; hence 
determine a lower bound on <p (but this is exact if 
only 10 parameters are varied) . 

In the first design approach, we take G = G0 and 
solve 

(ttjct,tfi) = ug   min max ||A;x(z-zo)||a 
^•■niAjfa - u,0)|L < 1 

G = G0 

Thus, the control law is optimal under perfect plant 
modeling. 

In the second design approach, the first order approx- 
imation to the plant 

Ac diag(?0) Ar
c(x - x0) + Au(u - u«) + Aw{w - w0) + 

Ac diag(ff - jo) AT
cx0   =   0 (8) 

is used to solve for the optimal sensitivity controller 

(«jr11ÄJ) = argmin max \\*7l(*-*o)\U. t""'Jf1|A,1,
l(w-«'o)IL < l 

\\&Gl(9 ~ *>)|L < 1 

lb 



In other words, the input to the A block in Figure 5 is 
"*'•-' a- £o = Ac XQ , and the exogenous inputs w are 
augmented by 40 more entries to account for (g - g0) 
in (8). The results are summarized in Table 1. 

9 =0o 0.9ffO<S < l.lso 
V>(uo,0) 6.99% >   13.37% 

¥»(u*i. #i) 3.47% >   223.45% 
<P{*K„K7) 3.67% >   6.63% 

Table 1: Performance ratings 

Note that the first row in Table 1 corresponds to the 
openloop performance. The input is set to Uo ; hence 
the performance measure reflects the relative change 
in y about y0 • At the nominal conductance parame- 
ters, worst-case deviation is 6.99% and when the first 
10 conductances have 10% uncertainty, worst-case de- 
viation is 13.37% . Note that the second column of 
Table 1 is a lower bound on the performance measure 
<p since the parameter perturbations are restricted to 
the first ten branches, only. Recall that the first de- 
sign did not take into account any parametric uncer- 
tainty. Hence the nominal performance is better than 
the open-loop; however, 10% parametric uncertainty 
can cause a deviation more than twice the nominal 
to . In the second design, by augmenting the ex- 
ogenous inputs w with the first-order effect of the 
parametric changes, a more cautious nominal design 
is achieved. With uncertainty in the first ten param- 
eters, the worst-case deviation is now half of open- 
loop deviation, although the nominal performance is 
slightly worse than the first nominal design. 

6    Further Robustness Analysis 

A little more notation is needed for this section. For 
A e IRnxn , pfo(A) denotes the maximum absolute 
value of the real eigenvalues of A . For a real matrix 
A , | A | denotes the absolute value of A , i.e., 
ef\A\ tj = | tjAtj | . 11(A) = pjRd A |) = p{\ A |) ; 
also referred to as the Perron eigenvalue of A . Let 
1 6 ET denote a vector of all l's . 

Let  £T1W(A)   =   Hu + H12A(I - H^A)-1^ 

where   H    = 

and 
Hu 

A   is   diagonal, 
min 

ll-ff-(A)lk„ < 7 
l|A|k=o < i 

det(7 - H33A) £ 0 

H\? 
Hj2 

Under 

€    IR(n 

these 

21    > 

+ n4)x(n„+n4) 

assumptions, 

max        PR 
e € {et,...,en.} 
we {-1.1}"- 

S 6 di»g{-l,l}"« 

< max n ( 
«€{«!,...,en.}        V 
ue{-i,i}n- 

eTHuw    eT#i3 
H-iiw Hii 

<        max   IT 
l<i<n. 

ej | #,i I 1     e?Hl2 

I  »21   I   1 //« 

Hu    H\2 
Hii    H-i-x 

A cheap lower bound to the optimal 7 value above can 
be obtained by evaluating PTR of a smaller number of 
matrices rather than the huge number (n,2(n-+n'h 
Note that typically, nt > n» . Using \he Perron 
eigenvalues, coarser upper bounds on the optimal 7 
can be obtained by n,2n- and n, eigenvalue evalua- 
tions, respectively. 

Note also that if the entries of H are all positive, then 
the optimal 7 is given by 

min 7 = max   T\(\  'f^"1     «f^u   ]\ 
l|tf«.(A)||,- . < 7      l *•'$"•      U     #Jil //„     ])■ 

IIAH.-.oo  <  f 
det(/ - ff„A) ?S 0 

7    Conclusion 

The sensitivity and robustness to parameter uncer- 
tainty of operating points of thermal processes has 
been investigated using static feedforward/feedback 
control. The problem is motivated using a large-scale 
linear resistive network. Efficient computational tools 
are developed to handle a large number of nodes and 
branches. Successive design studies involving differ- 
ent operating points, actuator/sensor selections can 
be easily performed. 
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ABSTRACT 

Precise trajectory following in the presence of actuator sat- 
uration constraints is important in performance of many 
control systems. An approximate finite-time tracking prob- 
lem is formulated for a multivariable discrete-time linear 
time-invariant system. The actuator saturation constraints 
are taken into account explicitly. The problem is set up as a 
set of linear programming problems using a transfer matrix 
approach. The approach is applied to temperature profile 
tracking in rapid thermal processing (RTP) systems. It is 
known that fast and precise temperature tracking is crucial 
in performance of RTP systems. The actuator saturation 
manifests itself in terms of the power driving the lamps. 
Two rapid thermal processing examples are presented to 
illustrate the validity of the approach. 

1     Introduction 

Precise trajectory following is important in performance of 
many control systems . The problem of finite-time tracking 
in the presence of actuator saturation has been a generic 
problem in control theory. In servomechanisms, a velocity 
profile is to be followed precisely. In many thermal sys- 
tems, a temperature profile is to be followed quickly and 
accurately. The performance in many of these systems is 
tied to how fast the desired trajectory can be followed. In 
almost all systems, actuators saturate because of limited 
dynamic range. For example, a valve saturates when it 
is completely open or closed. The control surfaces on an 
aircraft can be moved by a certain angle from their nomi- 
nal positions. In thermal systems, heaters or lamps can be 
driven between minimum and maximum power settings. 
For example in rapid thermal processing (RTP), precise 
temperature trajectory following is crucial and the actua- 
tors (lamps) have a finite maximum power driving them. 
Furthermore, in these problems the minimum actuator set- 
ting is zero power so that the saturation nonlinearity is not 
symmetric. Therefore, the problem of fast tracking in the 
presence of actuator saturation has been a generic problem 
in control theory. 

"Thi» rete&rch is supported in part by ARPA under AFOSR 
Contract F4962O-94-C-0OO3. 

Kaiman [1] was the first to realise that the problem can 
be addressed effectively if it is formulated in a discrete- 
time setting. Schmidt [2] solved the problem for low order 
single-input-single-output systems. This problem has been 
previously addressed by the present authors in reference [3] 
in a continuous-time setting with applications to control of 
flexible structures. Other related work are contained in [4], 
[5], [6]. In this paper, a solution to the finite-time track- 
ing with actuator saturation is proposed for multivariable 
linear time-invariant discrete systems. The approach relies 
on the transfer matrix to formulate constraints on the set 
of admissible finite duration control signals that achieve 
precise point-to-point trajectory following. The problem 
is first formulated as an open-loop problem. The shape of 
the best input signal to achieve the finite-time tracking is 
derived. We then consider the closed-loop implementation 
of the problem so that the same control signal is produced 
at the input of the plant. The actuator saturation is taken 
into account explicitly. The problem is set up as a set 
of linear programming problems. This represents the first 
complete solution to the problem. The motivating exam- 
ple for the present research is fast temperature tracking in 
rapid thermal processing of semiconductor wafers. There- 
fore, a short description of RTP appears next before the 
problem formulation. 

2    Rapid Thermal Processing 

A variety of different steps are involved in semiconduc- 
tor microelectronics manufacturing. These steps include 
oxidation, lithography, epitaxial film growth (epi), anneal- 
ing, CVD, etc. Each of these steps is a distinct part of 
the process and uses associated processing equipment. An 
important state-of-the art technique to perform some of 
these steps is RTP. This technique has major advantages 
over conventional furnace-based batch thermal processing 
of semiconductor wafers. In the conventional furnace-based 
techniques, the processing step involves several hours, and 
the speed is limited by the large thermal masses of the 
walls. In contrast, in RTP only the wafer mass is heated 
or cooled and the RTP walls are water cooled and kept 
at room temperature. This cuts down the processing time 
to seconds.    From a manufacturing  point of view, RTP 
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fits naturally into the current cluster-tool concepts which 
promise IC fabrication lines which are more flexible, and 
much less capital intensive as compared to present bil- 
lion dollar state-of-the-art fabs. RTP is an essential tech- 
nology for single-wafer processing. RTP's viability has 
been demonstrated for process steps such as silicidation, 
RTCVD, and annealing [8]. It has been also proposed as 
an efficient way to clean wafers. The key enabling tech- 
nology for application of RTP in a manufacturing setting 
is the precise temporal and spatial control of temperature. 
Sensors are now available [9] but control design needs fur- 
ther development. 

Typical RTP systems are described in [7]. A diagram of a 
typical system is shown in Figures 1-2 [7].     The wafer is 
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Figure 1: Cross-section of generic RTP system. 

heated by radiation via a lamp array. In one design (Fig- 
ure 2), rings of tungsten-halogen lamps arrays are used as 
heaters (actuators) and are separated from the chamber by 
a quartz window. The lamp array has a hexagonal pack- 
ing. The wafer is heated only from the top-side. There are 
several other competing alternatives for the lamp design 
(e.g., a two array scheme [7]) . However, precise tempera- 
ture control is required regardless of the lamp design. The 
lamp voltage requirements are from 20 to 200 volts but 
are dependent on the chamber geometry, etc. The cham- 
ber has a large number of inputs and outputs. It uses 
advanced pyrometers as temperature sensors (see Figure 
3). The system is to follow a pre-defined temperature pro- 
file (ramp up, hold, cool down) such as shown in Figure 
4, and accurate tracking of the temperature profile is re- 
quired along with minimal overshoots at transitions and 
minimal spatial temperature variations during all phases 
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Figure 2:  One-sided heating with hexagonal array of 
tungsten-halogen lamps. 

of the profile. This must be done to insure that all wafers 
are processed the same way so as to achieve repeatability. 
Some designs keep the wafer fixed, whereas in others the 
wafer is rotated during the processing cycle.   The wafer 
rotation can induce angular disturbances which must be 
rejected.    Other disturbances in the system are low fre- 
quency ones, e.g., the heat transferred to the wafer from 
the quartz window when the lamps are first turned on. To 
meet requirements for 0.25/im devices, SEMATECH has 
established 1995 goals for temperature uniformity across 
the wafer of ±3*C for oxide and ±5°C for other processes. 
This must be so to ensure that processing is uniform across 
the wafer and thermal stress does not result in wafer de- 
fects (warping, slip). Accurate and repeatable temperature 
control is required starting at low temperatures and high 
temperatures.   Temperature uniformity is required on all 
the wafer in spite of the fact that temperature is being 
measured only at a finite number of points.   The control 
system must deal with actuator saturations (corresponding 
to maximum lamp power setting or intensity of 200 volts). 
This is a particularly important problem in RTP because 
of the wide ranges of process temperature setpoints. Other 
factors affecting system performance include wafer diame- 
ter, chamber geometry, gas flow uniformity and cooling of 
the chamber. 

Precise temperature control is critical to this promising 
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technology. In these systems, many heaters affect the tem- 
perature at each location where it is measured. Control 
that explicitly accounts for the influence of each heat source 
on each temperature sensor is needed for acceptable perfor- 
mance. With such strong physical coupling, it is extraor- 
dinarily difficult to obtain acceptable control of the tem- 
perature profile using single loop conventional controllers 
commonly used in industrial applications. Moreover, since 
previous approaches relied heavily on precise calibration, 
slight changes in chamber design or wafer geometry can 
require substantial and time-consuming efforts in control 
redesign. The necessity for meeting extremely high per- 
formance specifications requires that the control system 
be optimal with respect to the specific process being con- 
trolled. As a result, model-based multivaxiable control sys- 
tem design is a must. - 

Waler — 

Pyrometer 

Figure 3: Sensor Locations 

The approach presented in this paper will also allow us to 
explicitly account for actuator saturations that have been 
handled in an ad hoc fashion in current designs. In addi- 
tion, the methodology is general so that it can be applied 
to other processes. 

3     Problem     Formulation     and 
Main Result 

Let the plant, P, have a minimal state-space description 
(A,B,C), with nt inputs, ne outputs and n, state variables. 
Hence, 

*(* + 1) = Ax(k) + Bu(k) (1) 

y(k) = Cz(k). (2) 

Assume that the plant, P, is at rest, i.e., x0 = 0. We are 
interested in the rest-to-rest maneuvering of the system 
subject to actuator saturation. Specifically, let each of the 
inputs have a specified actuator constraint, 

Figure 4: Typical RTP Cycle (for oxide growth). 

For a given integer N, let UN denote the set of all control 
inputs bounded by Eq. (3) but of duration N time steps. 
We say that the system tracks a reference input r iff 

y[h) = r(i)        for    all    k > N. (4) 

The goal is to find u £ UN such that Eq. (4) holds. 

Assume that the plant is internally stable and its transfer 
matrix has been written in the pole-residue form (assuming 
distinct poles), 

P(z) = C(zl - A)-lB = Y -li- 
r-f (* - A, 

where 

Bi = CviqfB        »' = 1,2, . ,n. 

(5) 

(6) 
»nd 0,-, ?, are the right and left eigenvectors of A respec- 
tively. Suppose it is desired to follow a constant reference 
input. We may decompose the input U(z) into two parts: 
an N-tap FER and a steady-state part as follows 

V(z) = UFIR{Z) + ü„(z). 

Specifically, we may represent the input as, 

^) = E^-i + P77^ 

(7) 

(8) 

where p, and p are vectors of size nc. The first part of the 
right hand side of Eq. (8) is a set of N-tap FIR niters whose 
effect vanishes exactly after N time steps. The second term 
is a vector of delayed steps. The control sequence is then, 

N 

Ui min < tti < u,- max »'=1,2,. -,nc. (3) 
«(*) = 2_P**<. +pl(* - N - 1) (9) 
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where Si, is the unit pulse. 

We may also decompose the output of the system into an 
N-tap FIR part and a steady-state component, 

Y(z) = C{zl - A)-lBU(z) = YFIR(Z) + Y..(z).     (10) 

The desired steady-state output is, 

y..w = z- 1 (") 

where r0 is the constant output levels. We may substitute 
Eqs. (8) and (11) in Eq. (10) and equate the residues for 
the plant poles, z = A,, as well as the pole of the input 
signal at z = 1. For z = 1 we obtain, 

E-g.      . 
(12) 

t=i 

and for each A, we have, 

N 
A; 

J2Bi*jXPi+Ejj±-jp = 0        j = l,...,n..     (13) 
tssO 

Given N, the problem may then be formulated as a linear 
programming (LP) problem, 

max     A 

A(N) = XB 

«mir, < pi < um« i' = 0,1,2, ...,# (14) 

■"min  < P < Um»i, 

where 

P = 

Po 
Pi 
Pi 
PS 

.   Pf 
and the actuation bounds are 

(15) 

tlmia — 

ui min 
uj min 

. tint min 

«m«  = 

uj max 
uj max 

: max 

(16) 

The scaling on the achievable steady-state value (relative 
to r„) is A. Hence the desired value of A is unity. The 
structure of A and B matrices (shown for nc = 4) are 
shown below, 

A[N) = 

0 0 

H3X~X 

HtXZ1 

Hx X[ -N 
k=l   l-ik 

-ff H3X; 

H<X;» 

H 

H, 

*xi=r 
3^r 

H< 
\>--J 
*4~1 

B = 

A series of convex minimisation problems can be solved by 
varying N to obtain a solution to the finite-time tracking 
problem which satisfies the hard limits on the actuators. 
The design procedure is as follows: 

Step 1. Select a large enough N (depending on plant dy- 
namics). 

Step 2. Solve the linear program. If feasible, decrease 
N and repeat until «feasible. If infeasible, increase N. 
Continue until a satisfactory solution is obtained. 

Step 3. Form the input sequence, u(jfe), and evaluate the 
tracking performance. 

Note that at any N for which A > 1, scaling of the con- 
trol signal by A achieves the desired tracking and satisfies 
the saturation constraint. However, the extremal solution 
(i.e. the smallest N) will correspond to the case where 
optimal A = 1. The solution to this problem has an inter- 
pretation from the classical deadbeat control concepts. By 
construction, U(z) will always contain seros to cancel all 
the (stable) plant poles. The combination of P(z)U(z) will 
have N poles at the origin. Hence constant inputs will be 
tracked in N time steps. The locations of seros of U(z) 
have a nice geometrical pattern as seen in the following ex- 
amples. Note that steps 1-3 are performed off-line and the 
resulting input sequences are stored in a table for on-line 
use. 

4 Example 1: SISO RTP Plant 

This is a model of an RTP system represented by the first 
order plant 

P(z)=      23164 
V '      (z-,9964)' 

The tracking is achieved in JV = 3 time periods as shown 
in Fig. 5. The seros of U(z) axe located at 0.4982 ±;'0.8629 
and at the plant pole at 0.9964. The seros of U(z) appear 
inside the unit circle in a Butterwoith pattern. 

5 Example   2:      MIMO    RTP 
Plant 

This is a 4-input-4 output model of an RTP reactor as 
described in [11]. The poles of the system are at 0.9052 
0.9827, 0.9856 and 0.9972 and it has no finite transmission 
seros. The plant model is specified so that the input is in 
percent power and the output is temperature in °C. The 
linear model is valid between 750°C and  1050°C.   It is 
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assumed that the system is at 750°C and is to be taken 
to 1050°C in the fastest possible time and held there. The 
constraints on the actuators are power settings between 9% 
and 100%. 

Several values of N were tried (N=60, 65, 70). The track- 
ing requirement is met for N = 70 as shown in Figure 
6. Note that all the control signals shown in Figure 7 are 
of the "bang-bang-hold" variety. It is interesting to see 
that uj turns off quickly due to the coupling in the sys- 
tem. However, as soon as «i and u3 turn off, u2 is quickly 
turned back on. Since the sampling period is 0.05 second, 
the system tracks the 300° C step in less than four seconds." 
This is well below the 10-15 seconds settling-time reported 
in [11]. 

The zeros of U(z) have a Butterworth pattern and include 
all the four plant poles. 

While the speed of tracking is the best possible, in the ac- 
tual system, it is desired to have all the responses grow 
together to avoid wafer süp. Ways to deal with this are 
currently under investigation. The response shown in Fig- 
ure 6 is, however, quite acceptable at low temperatures. 

6 Closed-Loop Implementation 

The finite-time tracking may be implemented in a closed- 
loop control structure to provide disturbance rejection and 
robustness with respect to modeling errors. Consider the 
closed-loop system shown in Figure 8 where ü is the track- 
ing command and y = Pü. If the plant model is accurate, 
in the absence of disturbances, the same tracking perfor- 
mance is achieved as in the open-loop configuration. The 
feedback controller K(z) provides disturbance rejection ca- 
pability and is designed independently of ü. Since part of 
the actuation is now used for disturbance rejection, the de- 
sign in the previous sections must be conservative. The de- 
signer then "backs or on «„u. and «ra„ to leave enough 
head room for disturbance rejection. One can choose a 
large enough N so that a value of A > 1 is achieved. The 
open-loop control is decreased by a factor of A-1 to leave 
enough actuator authority for disturbance rejection. 

7 Conclusions 

This paper presents a complete solution to the rest-to-rest 
finite-time tracking problem in the presence of actuator 
constraints. While parts of the solution had existed in 
the literature, the problem is solved for the general mul- 
tivariable case using the solution to a single linear pro- 
gram. Only constant signal tracking was discussed. How- 
ever, the methodology is general and applies to tracking of 
signals that can be generated by a linear system. It was 
assumed that the open-loop system is stable. This is a 
generic property of process control systems for which the 

technique is intended. The technique may be used to es- 
tablish the upper limit on tracking performance, i.e the 
minimum tracking time achievable. The connection to the 
classical deadbeat control theory is interesting. Deadbeat 
control establishes the minimum tracking time achievable 
without actuator constraints. Even though the approach 
to the problem is open-loop, the final implementation may 
be done in a closed-loop fashion, i.e., using a combination 
of feedforward/feedback as in Figure 7. The technique is 
currently being applied to thermal systems (RTP, APCVD 
furnace). 
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Figure 5: Transient response and control effort for Ex- 
ample 1. 

Figure 7: Control effort for Example 2. 
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Figure 8: Closed-loop implementation 

Figure 6: Transient response for Example 2. 
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Abstract 
A first-principles based nonlinear algebraic model of a 
rapid thermal processing chamber is used to consider an 
actuator-sensor selection problem based on static (steady- 
state) performance. A two step systematic procedure is 
proposed and illustrated on an example. Actuator group- 
ings are ranked according to the achievable best nominal 
uniformity levels. Once the actuator groupings are de- 
termined, the sensor locations are rated according to the 
best worst-case achievable closed-loop performance. 

1 Introduction 
Rapid thermal processing (RTP) is an efficient multi- 
chamber single-wafer processing approach in integrated 
circuit manufacturing. The chemical reaction recipes and 
high throughput goal, demand fast tracking control laws 
that achieve near uniform spatial temperature distribu- 
tions across a semiconductor wafer, during both transient 
and steady-state phases of the process. Due to the ra- 
diative effects, small chamber volume and remote sensing 
restrictions, the desired performance specifications pose 
a challenging actuator-sensor selection problem. Multiple 
tungsten-halogen lamps act as the only heat source. There 
is no active cooling of the wafer. Surface properties of 
the wafers differ initially and also vary during processing. 
Temperature readings across the wafer by remote sensing 
techniques are a function of uncertain surface properties. 
In the course of chamber design, different actuator-sensor 
configuration choices due to lamp groupings and pyrom- 
eter target locations, need to be ranked. The ranking of 
these choices will be based on "worst-case" performance 
degradations under "best" possible control design. 

2   Problem Description 
Consider the algebraic steady-state (subject to constant 
inputs) model of an RTP chamber, denoted by V : 

( 0     =     /(*,»,«) 
V:(w,u)~(z,y)t *     =    £,*») 

l     "min  <       U        < U„ 

(1) 

^ um*x 

where to € IR"" , u € IR"' , x € IR"1 denote the uncer- 
tain constant parameters, input values and steady-state 
cell temperatures, respectively. The minimum power lev- 
els are nonnegative (no active cooling). Vector inequal- 
ities are to be interpreted entry by entry. The model 
in (1) is obtained from a first-principles based dynamic 
model of an RTP chamber, where the nonlinearities / , 
and g are smooth, and determined by heat conservation 
equations (see e.g., [l]) . For a given w and u , there is 
a unique steady-state determined by (1) . The outputs 
y € IR"" denote the pyrometer readings and z £ IR"* de- 
notes unmeasured regulated cell temperatures across the 
wafer. For a given reference temperature r € IR+ , the 
performance goal is to minimize the worst-case spatial 
temperature error (z - rl) subject to w , where 1 de- 
notes a vector of ones. The uncertain constant parameter 
vector u> (denoting uncertainties in emissivities, thermal 
conductance, thermal mass etc.) is in a known polytope 
tcmjB < w < Wmix . The effect of imposing integral 
action based on the pyrometer readings (nv < n„) will 
also be considered in answering the following questions: 
• What is the best uniformity predicted by the 

•Research supported by  ARPA   under AFOSR contract 
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model ? 
• What are the best lamp grouping and sensor lo- 
cations for a range of r's ? 
Since some of the w entries represent characteristics of 
the chamber, an answer to the first question above serves 
a dual purpose: the limits of performance are determined 
and suggestions can be made for a possible chamber re- 
design to further improve the limits of performance. The 
second question above, is conceptually a special case of 
the previous, by merely grouping actuators, selecting sen- 
sors and redefining the model under study. It has more 
of a practical significance in that one can determine an 
implementation cost versus achievable uniformity trade- 
off in order to justify additional sensors and/or actuators 
in the control design. In the rest of the paper, we address 
these questions and propose solution methods. 

3 Operating Point: Best Nominal Uniformity 
Let the spatial uniformity error be quantified with its 
root-sum-square-error (Frobenius norm) and let wo de- 
note a nominal parameter. For a given reference r , the 
best steady-state uniformity is achieved at an input level 
u = ü(T,W0), where 

ü(T,W0)  =  arg min Ik-rlll    •    (2) 
«min  < U < Um„ 

0 = /(x,tuo,u) 
z = Cx 

Let £(r, wo) denote the unique state associated with (2) . 
Using Newton-Raphson iterations based on quadratic pro- 
gram solutions, the operating point map (u, £)(•,•) is 
evaluated for different references r and/or parameters 
w . The associated minimum determines the performance 
lower bound dictated by the plant model. No combination 
of feedforward/feedback can achieve a nominal uniformity 
error smaller than this lower bound. 

3.1 Case Study: Nominal Uniformity 
For the model under study, the dimensions in (1) are 
nr = 115, n» = 4, n„ = 21 , n, = 21 and n„ = 27 . 
Power levels are restricted to the interval [0.02,1] . For 
a nominal u>o , the full 21 actuator case and a particular 
6 actuator grouping were compared for reference r rang- 
ing from 600°C to 1200°C with 100°C increments. For 
each actuator grouping and reference, a problem as in (2) 
was solved. The results are shown in Figure 1 . By utiliz- 
ing all of the available 21 actuators, the uniformity can be 
improved by a factor ranging from 5 to 10 , over the refer- 
ence temperature range. As illustrated by the lower-right 
plot in Figure 1 , the first three pairwise groupings (the 
first six X's) are close to the first six of 21 independent so- 
lutions (filled circles). However, the last three groupings 
(denoted by 3,4 and 7 grouped X's) are considerably off. 
and the uniformity degradation is as high as a factor of 
10 . The lower curve in the lower left plot in Figure 1 is 
a performance lower bound. By generating more curves 
associated with candidate actuator groupings (as done for 
the sample 6 grouping), one can decide on an acceptable 
grouping based on the implementation limitation and the 
degradation in uniformity from the performance limita- 
tion. This uniformity comparison can also be performed 
for different minimum and maximum power levels. 
4 Operating Point: Best Worst-Case Uniformity 
Sensitivity minimization at a given operating point based 
on the affine approximation of the model and control was 
performed: 
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1. For a given reference r and a nominal wo , solve the 
problem in (2). Let the input state pair (uo.xo) be the 
associated minimizer. Let yo and 20 be the outputs and 
regulated variables at the operating point (uo,*o) ■ 
2. Obtain the steady-state affine approximation to the 
plant model in (1) about the operating point («o,zo)- 
Augment with actuator and sensor noises to obtain the 
real matrix relating (u>OU9,u) to (zaUg,y) ■ 
3. Apply the affine control law u = u0 + it« + K(y - y0) 
and determine the feedforward/feedback terms by solving 

min (*K,K) ^'(««««-«aMIoo 
IIArVauj-Mlloo <1 

with and without integral action constraint on a subset 
of y's. Note that the maximum absolute value norm 
(|| • || oo) is used to conform to the interval uncertainty 
description of w . The weights Ai, A2 and the cen- 
ters (5i, 6i are design parameters. The feedforward term 
UK is redundant if the centers 6i and 62 are associ- 
ated with the steady-state operating point. The prob- 
lem can be transformed into a linear-program of the type 

«"fc X Pi+T2;?Ts||i,oo 
(SPyuX = I) 

where the matrix variable X is constrained by the integral 
action constraint (if there is any) imposed on the selected 
outputs Sy , where S denotes a selection matrix obtained 
by choosing the appropriate rows of an identity matrix. 
The induced matrix norm || ■ ||<i0o is the maximum row 
sum. A detailed description of the transformation and ef- 
ficient solution methods can be found in [2]. 
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Figure 1: Nominal uniformity study for 6 and 21 actuator 
configurations. 
upper left: the best nominal spatial temperature error 
distribution for the particular 6 actuator grouping. 
upper right: the best nominal spatial temperature error 
distribution, all 21 actuators utilized. 
lower left: comparison of 6 and 21 actuator groupings. 
lower right: the optimal power levels at 800°C for the 6 
(X's) and 21 («'s) actuator groupings. 

4.1 Case Study: Best Worst-Case Uniformity 
For the model considered in Section 3.1 , a sensitivity 
study was performed at the reference r = 1100°C . The 
operating points at the desired reference was computed 
utilizing all 21 actuators and solving the problem in (2) 
with power levels in the interval [0.175,0.85] . The plant 
was linearized about this operating point and augmenta- 
tion was done as described in Section 4 . The centers were 

selected as the nominal values and disturbance weights 
were selected to reflect the following: ±5% variation in 
plant parameters, ±0.5"C sensor noise, and ±0.01 actua- 
tor noise. Six sensor locations were chosen and two sets 
of feedback values were computed with and without in- 
tegral action constraint on the particular six measured 
outputs. Let Hi and Ha denote the closed-loop gain ma- 
trices from u)»ug to the regulated variables z and actuator 
11 , respectively (including the associated weightings in 
u»»Ug) . Similarly, let Ht and Hu denote the associated 
closed-loop matrices for the design with integral action 
constraint. The subscripted H matrices are aB 21 by 31 
(n, = 21 , nu = 21 , nv = 6 , n„„( = 4 + 6 + 21 = 31) . 
Let sgn( ■) denote the signum function; i.e., 1 for nonneg- 
ative and -1 for negative, evaluated entry by entry. Let 
abs( ■) denote the absolute value function evaluated entry 
by entry. Since the design problem is posed in terms of the 
peak norm and the u>»ug weightings are already included 
in the subscripted H matrices, the columns of the matrix 
(Hsgn(H)T) correspond to the 21 spatial worst-case can- 
didates and the vector (abs(H)l) denote the spatial peak 
deviation at the worst-case wiat (see Figure 2 ) . 
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Figure 2: Best worst-case fluctuations about the nom- 
inal, with and without integral action constraint on the 
measured outputs used in feedback. ({■)sgn(-)T) (dashed 
lines) and (ata(-)l) (solid line) evaluated  at Hz (upper 
left), Ht (upper right)   Ha (lower left)   Hu (lower right). 

Concluding Remarks 
Actuator-sensor selection was considered as a two step 
procedure: 1) actuator grouping and nominal structural 
parameter effects were investigated in terms of best nom- 
inal uniformity (Section 3), and 2) sensor selection and 
the effect of integral action constraints were investigated 
in terms of best worst-case uniformity (Section 4) under 
parametric uncertainty. The proposed approach is a sys- 
tematic way of determining the effect of actuator/sensor 
selection in operating point sensitivity reduction. Case 
study   results   were   used   to   illustrate   the   approach. 
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Abstract: First-principles based nonlinear dynamic model of a rapid ther- 
mal processing chamber is used to consider a control/structure interac- 
tion problem. The proposed approach ranks a particular chamber de- 
sign according to steady-state wafer uniformity analysis for constant in- 
puts as well as achievable transient uniformity during ramping using a 
baseline integral action controller. A computational toolset is developed 
to determine operating points, reduced-order small signal equivalent mod- 
els, step- or ramp-tracking feedback controllers and a baseline dynamic re- 
sponse for a given chamber design.  The approach is illustrated on a model. 

Keywords: Steady state, Process control, Thermal equilibrium, Temperature 
profiles, Integral action. 

1. INTRODUCTION 

Rapid thermal processing (RTP) is a new approach 
in integrated circuit manufacturing; it is a fast 
and efficient multi-chamber single-wafer process- 
ing approach in contrast to the conventional slow 
and costly single-chamber multi-wafer processing. 
A typical RTP chamber volume is much smaller 
than that of a batch processing chamber; moreover, 
RTP chamber walls are cooled. Hence, successive 
single-wafer processing can be done rapidly, and 
chamber clean-up is not required between consec- 
utive processes. The chemical reaction recipes and 

"Research supported  by  ARPA under AFOSR contract 
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high throughput goal demand fast tracking control 
laws that achieve near uniform spatial temperature 
distributions across a semiconductor wafer, during 
both transient and steady-state phases of the pro- 
cess. Due to the radiative effects, small chamber 
volume and remote sensing restrictions, the desired 
performance specifications pose a challenging con- 
trol/structure interaction problem. 

In a typical RTP chamber, multiple tungsten- 
halogen lamps act as the only heat source. There 
is no active cooling of the wafer. Surface prop- 
erties of the wafers may differ initially and will 
certainly vary during processing, as well. Tem- 
perature measurements across the wafer have to 

3i 



be done remotely, and most remote sensing tech- 
niques rely on uncertain surface properties. A chal- 
lenge in this control/structure interaction problem 
is to be able to rank different actuator/sensor con- 
figuration choices due to particular lamp group- 
ings, pyrometer target locations and chamber spe- 
cific parameters according to achievable transient 
and steady-state wafer spatial temperature uni- 
formities. The proposed approach in this pa- 
per allows the user to determine operating points, 
reduced-order small signal equivalent models, step- 
or ramp-tracking feedback controllers and a base- 
line dynamic response for a given chamber de- 
sign.     The approach is illustrated on a model. 

plate below the quartz window serves as a shower- 
head to allow gas flow into the system. The silicon 
wafer is located below the showerhead. A guard 
ring near the edge of the wafer improves the tem- 
perature uniformity. The model is derived for low- 
pressure operation where gas flow and gas convec- 
tion heat transfer are not important. The elements 
of the system are divided into nodes (nx = 116) and 
the associated conservation equations are derived. 
A two-band radiation model is implemented to ac- 
commodate the semitransparent quartz elements. 
The model is parametrized in terms of uncertain 
emissivities, thermal conductance, thermal mass 
etc. The silicon wafer is divided into nz = 21 nodes. 

2. MODEL DESCRIPTION 

A  first-principles   based   dynamic model of the 
generic RTP system is denoted by V : 

V : (w,u) (-»• (z,y) < 

x = f(x,w,u) 
y = g(x,w 
z = Cx 

U < U < V. 

(1) 

where w 6 JR.71'" denotes the uncertain parameters, 
u € IR71" denotes the input values and x £ Wx 

denotes the node temperatures. A subset of the 
states x corresponds to the wafer states, denoted 
by 2 € IRn* . Pyrometer measurements are denoted 
by y € IR71* . The minimum power levels u are 
nonnegative, since there is no active cooling. The 
predetermined maximum power levels are denoted 
by ü . Vector inequalities are to be interpreted 
entry by entry. 

Typically, a dynamic nonlinear model as in (1) 
is obtained from first-principles using heat con- 
servation equations associated with a large-scale 
nonlinear resistor-capacitor network consisting of 
branches that model conduction, convection and 
radiation; see e.g. (Incropera and DeWitt, 1985) . 

In this paper, a generic RTP system model devel- 
oped by Ebert, et al. (1995) will be used for illus- 
tration purposes. In this particular RTP system, 
the chamber is a water-cooled cylindrical cavity 
with five independently powered lamps (nu = 5). A 
thick quartz window below the lamps separate the 
lamp cavity from the wafer cavity. A thinner quartz 

3. STEADY-STATE ANALYSIS 

In a typical reaction recipe, the wafer has to main- 
tain a uniform spatial profile while tracking a de- 
sired piecewise-linear reference trajectory that rep- 
resents multiple ramp and hold phases. For exam- 
ple, a wafer at room temperature is first heated up 
to and held at 500°C for a prespecified duration 
and then ramped up with a prespecified ramp rate 
and held at 1100°C for a prespecified duration, af- 
ter which the wafer goes through a cool down phase. 
The overall time frame is in the order of seconds. 
During such reaction recipes, a chamber does not 
reach steady-state over the short durations when 
the reference is held constant. In fact, open-loop 
state responses to step inputs exhibit the different 
time-scales: e.g., fast wafer state responses versus 
slower quartz window state responses. After feed- 
back control is applied, the wafer states are steered 
to their desired steady-state values over a faster 
time-scale then the rest of the states by imposing 
integral action on certain pyrometer measurements. 
The premise of the steady-state analysis in this sec- 
tion is the following: By clamping the pyrometer 
measurements at prespecified steady-state values, 
the wafer spatial temperature profile is kept close 
to the wafer steady-state profile. Hence it is crucial 
to quantify the achievable uniformity levels that the 
model in (1) predicts when x — 0 . 

Let S denote a selection matrix, where 

Tj = S zT yT uT denotes the appropriate entries 
selected from the wafer states, pyrometer measure- 
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ments and lamp inputs, respectively. Let no denote 
the associated desired nominal values. For a fixed 
parameter value WQ and a particular choice of S and 
T]Q and a diagonal nonnegative weighting matrix A , 
let the operating point (u, x) be given by 

Cx 
g(x,W0) 

u 
Vo) (u,z) = arg min A(S 

0 = f(x,w0,u) 
u<u<u 

(2) 
In other words, the operating point determined by 

(2) minimizes the cost ||A(T? - 770)|| ■ The current 
toolset allows the choices of Frobenius norm or peak 

norm in the cost description. The problem in (2) is 
solved using Newton-Raphson iterations based on 

quadratic program solutions (Frobenius norm case) 
or linear program solutions (peak norm case). Note 

that, due to the first-principles based derivation of 
(1), for a fixed parameter w and an input level u , 
there is a unique equilibrium state x . 

By determining operating points from (2), one can 
answer critical chamber design specific questions 
such as the following: 
1) What is the best steady-state uniformity pre- 
dicted by the model ? Let r £ ]R+ denote a con- 
stant reference temperature, which is typically in 
a given interval [r,r] determined by the reaction 
recipes. The performance goal in choosing an oper- 
ating point is to minimize the spatial wafer temper- 
ature error (2 - rl) for a given w , where 1 denotes 
a vector of ones. The uncertain constant parame- 
ter vector w (denoting uncertainties in emissivities, 
thermal conductance, thermal mass, etc.) is in a 
known polytope determined by w < w < w . 
For a given nominal wo and a reference r , the min- 
imum cost in (2) determines the nominal perfor- 
mance limitation. The achieved minimum unifor- 
mity error determines the performance lower bound 
dictated by the plant model; moreover, suggestions 
can be made for a possible chamber redesign to fur- 
ther improve the limits of performance. No combi- 
nation of feedforward/feedback can achieve a nomi- 
nal uniformity error smaller than this lower bound. 
2) What is the tradeoff between wafer unifor- 
mity and sensor uniformity ? Since wafer states 
are not measured, the answer to 1) above pro- 
vides   pyrometer   reference   values   that   can   be 

used for integral action control. For a given 
set of sensor locations,. uniformity in pyrometer 
measurements need not imply wafer uniformity. 
3) What are the best lamp groupings for a range 
of r's ? This question is a special case of 1) 

above, by merely grouping lamps, and redefining 
the model under study. It has more of a practical 
significance in that one can determine an imple- 
mentation cost versus achievable uniformity trade- 
off in order to justify the need to install additional 
actuators driving  the lamp   groups  for control. 
4) What is the effect of minimum and maximum 
power levels on steady-state uniformity ? Neces- 

sarily, the power levels should comply with de- 
sired range of operation. The effect can be seen 

by changing u or « in (2). Also, a tradeoff over fea- 

sible solutions can be computed by appropriately 
assigning 77 , T]Q and A in (2) . 

The proposed approach to steady-state analysis 
is   now illustrated  on  the  generic   RTP  model. 

3.1. Case Study 

A simple uniformity tradeoff was performed at 
r = 1000°C for two regions on the wafer. Let 
z\ denote the first 15 wafer states and z2 denote 
the latter 6. In other words, the wafer is parti- 
tioned into two equal areas: an inner disk and an 
outer annular region.  The cost in (2) was chosen 

as The admissible com- 
\{zx - rl) 

(l-A)(z2-rl) 

mand levels were restricted to [0,1] for each lamp. 
For eight different values of A 6 [0.2,0.9], the oper- 
ating points were computed. The results are plot- 
ted in Figure 1. 

The first strip in Figure 1 shows the tradeoff be- 
tween ||z! - rl||2 and ||z2 - rl||2 . The rightmost 
filled circle denotes the values at A = 0.2 ; the filled 
circles to its left denote the values at 0.1 increments 
of A with A = 0.9 corresponding to the leftmost 
filled circle in the top strip of Figure 1 . The sec- 
ond strip shows the associated lamp input levels. 
The last two strips show the spatial temperature 
uniformities (zx - rl) and (z2 — rl) , respectively. 

An evaluation of Figure 1 reveals some interest- 
ing chamber design specific properties at 1000°C 
operation.  The overall peak-to-peak wafer unifor- 
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mity cannot be improved further than 2°C when 
cost is based on Frobenius norm. A confirmation 
of this intrinsic peak-to-peak limitation can be done 
at A = 0.5 and changing the norm in the cost de- 
scription to peak-norm. Since the operating point 
inputs are not violating the desired levels, increas- 
ing the maximum power levels will have no effect 
on improving steady-state uniformity. The inner 
disk uniformity can be marginally improved at the 
expense of the annular region uniformity, which re- 
sults in a considerable 2.5°C tilt. The spatial co- 
ordinates and the number of lamps is in fact a key 
factor for further improvement. By easily generat- 
ing such tradeoff curves for different chamber pa- 
rameters and geometries, a crucial control specific 
assessment can be made. 

Figure 2: Optimal u for best steady-state wafer 
profile at 500°C, 800°C and 1100°C (top). The 
normalized power levels u/u\ (bottom). 
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Figure 1: Steady-state uniformity tradeoff at 
1000°C for two regions on the wafer in the generic 
RTP model. 

For A = 0.5 (i.e., uniform weighting over the 21 
wafer states) , a similar uniformity study based on 
(2) was done for r = 500,800,1100°C .   The op- 

timal power inputs achieving the best steady-state 
spatial wafer uniformity is shown in the top strip 
in Figure 2 . The normalized lamp inputs (with 
respect to the first lamp) are plotted in the second 
strip in Figure 2 . The effect of grouping all of the 
five lamps into one actuator using the relative gains 
in Figure 2 will be illustrated later in Section 4.1 . 

4. TRANSIENT PERFORMANCE 

As discussed in Section 3 , the performance lim- 
its of a particular chamber design cannot be deter- 
mined by steady-state analysis only. This section 
focuses on designing a baseline controller to provide 
a dynamic response to evaluate achievable transient 
uniformity. 

Let (uo.io) be an operating point determined by 
solving a problem of the type in (2) . Let P0 denote 
the transfer-matrix of the small-signal equivalent of 
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(1) about (uo, io) from input u to sensor y . 

Due the physical properties of the process chamber, 
P0 is minimum phase, stable and strictly proper. 
The generic RTP process chamber model used for 
illustration is relative degree two. For speeding up 
design related iterations and for keeping the or- 
der of the feedback controller low, Hankel-singular- 
value reduction  is  performed on the high-order 
Po to obtain P .    All stabilizing controllers for 
P in the unity-feedback configuration is given by 
C - Q(I - PQ)~l , where Q is a stable transfer- 
matrix denoting the free design parameter. A sim- 
ple design approach is adopted by solving PQ = F 
for Q , where F denotes a desired closed-loop ref- 
erence to plant output transfer-matrix with rela- 
tive degree at least that of P .   Clearly, specify- 
ing F to be diagonal with nonzero entries corre- 
sponds to a decoupling design (hence necessarily, 
ny < nu) •  Imposing p(0) = i" results in integral 
action in all output channels, hence a step tracking 
design.   Imposing an additional P'(0) = 0 results 
in a ramp-tracking design. For chamber design it- 
erations, the adopted approach was a decoupling 
ramp-tracking design, where the only design free- 
dom was the bandwidth determined by F. The re- 
sulting controller C was simulated in feedback with 
the original nonlinear model in (1) with suitable off- 
sets and actuator saturation limits. The resulting 
dynamic responses complement the tradeoff stud- 
ies in Section 3 in rating a chamber design since 
achievable ramp-rates and step response limits can 
be determined with the available actuation limits. 

4-1- Case Study 

A simple comparative study was performed on the 
generic RTP process chamber model, where the de- 
sign goal was to ramp with a rate of 5Q°C/s from 
500°C to 1100°C using a ramp-tracking controller. 

An operating point of (1) was determined at 
1100°C by solving (2) for minimum wafer spatial 
uniformity. The associated lamp input level is 
shown in the top curve in the top strip of Figure 2 . 
Using the same cost criterion, the operating point 
at 500°C was also computed to start the nonlinear 
dynamic simulation from steady-state conditions. 

The small-signal equivalent about the 1100°C op- 

erating point was computed (i.e., 116-state P0) . 
For illustration purposes, pyrometer target loca- 
tions ij = {1} and :5 = {1,5,10,15,20} were cho- 
sen to compare a 1-input 1-output control design 
performance with that of a 5-input 5-output one. 

Let 5,j and 5tJ denote the selection matrices asso- 
ciated with the index sets ix and :5 , respectively. 
Let Pi denote the 15-state reduced order model ob- 
tained from S.-jPotfnoo , where <51100 denotes the 
normali2ed lamp levels at 1100°C shown in bot- 
tom plot in Figure 2 . In other words, Px is a 
reduced-order 1-input 1-output model by grouping 
all 5 lamps into one and using only the first pyrom- 
eter location. Similarly, let Ps denote the 15-state 
reduced order model obtained from 5,-sP0- 

Figure 3: Closed-loop response using Ci and the 
nonlinear model in (1). Center temperature re- 
sponse (top). Individual lamp inputs, with fixed 
ratios (center). Wafer spatial uniformity with re- 
spect to the center temperature, {z-zxl) (bottom). 

The associated 1-input 1-output controller C\ and 
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5-input 5-output Cs were determined by solving 
PiQi = f and P5Q5 = // , where f(s) = Y'+i 
to guarantee a decoupling ramp-tracking controller. 
The resulting feedback controllers were simulated 
with (1) by introducing appropriate offsets, satura- 
tion and initializations. The results are shown in 
Figure 3 and Figure 4 . 

Figure 4: Closed-loop response using C5 and the 
nonlinear model in (1). Center temperature re- 
sponse (top). Individual lamp inputs (center). 
Wafer spatial uniformity with respect to the cen- 
ter temperature, (r-^l) (bottom). 

Since integral action requires P{0)Q(0) = I 
and the actuation effort at steady-state is related 
to Q(0) , good conditioning of P(0) is generally 
adopted as a guideline. While this guideline is use- 
ful in weeding out cases with order of magnitude 
differences, it is not a complete answer to rank ac- 
tuator groupings and sensor locations used in feed- 
back. A systematic procedure was discussed us- 
ing DC-gain matrices from (w, u) to (z, y) to ex- 
tend the conditioning argument to a best worst- 

case closed-loop performance in (Kosut and Kab- 
uli, 1995). The approach in Section 4 and the dy- 
namic responses as in Figure 3 complement such 
condition number based approaches in choosing 
the pyrometer locations and/or lamp groupings'! 

5. CONCLUDING REMARKS 

First-principles based nonlinear dynamic model 
of a generic rapid thermal processing chamber is 
used to illustrate a solution to a control/structure 
interaction problem. A computational toolset 
is developed to rank a particular chamber de- 
sign according to steady-state wafer uniformity 
analysis for constant inputs as well as achiev- 
able transient uniformity while ramping using a 
baseline integral action controller. For differ- 
ent chamber design parameters, the user can de- 
termine operating points, perform steady-state 
uniformity tradeoffs, derive reduced-order small 
signal equivalent models, design step- or ramp- 
tracking feedback controllers and observe a base- 
line dynamic response for a given chamber design. 
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Abstract: The Proper Orthogonal Decomposi- 
tion (POD), also called snapshot method[l, 2], is 
a nonlinear model order reduction method where 
reduction of the size of the state space is achieved 
using a singular value decomposition of a matrix 
of snapshots of the state vector. This method has 
been shown to work well for a simple lumped phys- 
ical model of a rapid thermal processing (RTP) 
chamber. Although a substantial reduction of the 
number of states is achieved, some numerical com- 
putations still need to be performed in the high- 
dimensional state which is computationally expen- 
sive. In this paper we will demonstrate how this 
can be avoided using aggregation of terms, result- 
ing in a significant model simulation speed im- 
provement. 

Notation: The notation xk is used for both vec- 
tors and matrices where evtry individual element is 
raised to the power k , except for the case of invert- 
ible matrices where k — — 1 it denotes the regular 
matrix inversion. Likewise, the . notation in front 
of operators on vectors means an elementwise op- 
eration such as (a./b)i = aj/6,- , or (a.b)i = a,6, . 
We sometimes use the notation 1 for a vector of 
ones. For a vector of indices a , we will write 
x0 = n,,! for a vector consisting of the elements 
of x indexed by the index vector a . 

1    Introduction 

We have recently reported successful results 
on nonlinear model reduction using the Proper 
Orthogonal Decomposition (POD) or snapshot 
method [3, 4] . The snapshot method was capable 
of providing a significant reduction in the num- 
ber of integrators. However, the results did not 
harness the full potential of computational savings 
promised by the snapshot method in the sense that 

*Tni» work ia supported by the Advanced Re- 
»earch Project« Agency (ARPA) under Contract No. 
N00014-94-C-0187. 

♦integrated System«, 201 Moffet Park Drive, Sunnyvale, 
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one nonlinear term still had to be computed in the 
original high-dimensional state space coordinates, 
rather than in the low-dimensional state space of 
the reduced-order model. 

More specifically, we applied the snapshot method 
to the following simplified high-order lumped 
physical thermal model equations: 

x = M-1[Atx + Arx
4 + Bu + C]        (1) 

Here, M is the (diagonal) thermal mass matrix, 
Ac and Ar represent the thermal conductivity and 
radiative exchange matrices, respectively, B is the 
lamp power input matrix, u € Ä"1 is the lamp 
power, and C is a constant term determined by 
the steady-state with lamp power equal to zero 
(see [5] for details). 

The basis for the snapshot method is formed by a 
singular value decomposition of the snapshot ma- 
trix X : 

X = VLVT = \Ui u7) [ 0 
0 
S2 

[V? V?\ 

Here, X = (XI,...,XM) where the x< (:' = 
1,..., M) are the state snapshots at time U and 
where £/,-, Vi and S< (t = 1,2) are determined by 
a suitable truncation of £ to the first n singular 
values. If the state dimension is JV then X is a 
(JV x M) matrix. 

Assuming that the snapshots are representative for 
the state vectors that occur during model simula- 
tion, we can approximate x by i = U\z where z is 
obtained by substituting this term in (1) : 

i   =   UfM-'lAJJiz + AriU^ + Bu + C] 

=   Ar
ez + Al(Uiz)A + Brv + Cr (2) 

where 

ATr =   ti?M-xAJJi € finxn 

K = ufM-'Ar G nr*N 

Br = t/1
TAf-1ße/r,xm 

cr =  ufM-^ceRr 
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It is obvious that when £3 = 0, then x = z . 
When £ is nonzero but small, z will be close to z . 
Although the exact nature of this approximation is 
still under study, the method seems to work quite 
well for these particular model equations. 

The number of computations required to simulate 
(2) is significantly less than that of (1) . How- 
ever, computation of the term A^.(Uiz)4 remains 
a problem, especially if TV is large (typical values 
are N = 5000 and n = 10 1 ) . This implies that 
potentially there is room for improvement in simu- 
lation speed by a factor of several hundreds if this 
term can be reduced to a lower-order expression. 
It turns out that this is indeed possible. How it 
can be achieved will be explained in the following 
sections. 

Caveat: If the model (1) is obtained from a PDE 
via a Finite Elements approximation, then it is 
possible to avoid the problem addressed in this 
paper. However, it is often the case that (1) is 
obtained from a discrete lumped model with no 
PDE available, in which case the method given 
here is appropriate. 

Truly Reduced-Order 
Modeling by Aggregation 

One obvious way of avoiding the computation of 
{U\z)A and its premultiplication by A\ is to ex- 
pand Ar

r(Uiz)4 in powers of elements of the vec- 
tor z . Unfortunately the number of coefficients 
can be extremely large. For instance, if n = 10 , 
every element of {U\z)A contains many thousands 
of coefficients which makes this method very im- 
practical. 

Instead of analytically computing the coefficients, 
one could of course compute a polynomial approx- 
imation of AT

T{U\.z)A using a least squares fit of 
the form Qr4>{z) where ^ is a vector of polynomial 
terms in the elements of z . We have tried this, 
using snapshot-based values of z to construct ma- 
trices of regression variables, with the choice 

+(*) = [ ,4* ]   • 
In this least squares fit we used the term Ar

T(U\z)A 

' 1 ..  1 
Z\ • •    zM 

*? 
*? u ■■ «if J 

lFor practical reasons, we have limited our full-order 
model to N = 116 nodes. However, we believe that 
the same methodology would work for much higher model 
orders. 

instead of J4J!I
4
 since the former is only an approx- 

imation of the latter, the exact term that we wish 
to approximate. 

[Ar
rI

4,...,A;i4]«er 

Unfortunately, 

using the term 6r 1 zT z2 z3 z4 

as a substitute for Ar
r{U\z)A resulted in an ex- 

tremely numerically-unstable simulation. Closer 
inspection revealed that the approximation was at 
best reasonable only close to the region where the 
snapshots had been taken. Obviously, expansion 
in straight polynomial terms is not very robust. 

The next approach that could have been tried 
would be to replace the regression vectors 1, z,' z7 

and z3 with a variety of purely 4th order terms 
and try again. Since there are many such terms, 
this would have resulted in an endless search for 
the optimal set of regression variables. 

Fortunately it is not necessary to do this. It turns 
out that there is a very natural and convenient 
choice of regression variables that works much bet- 
ter, namely one of the form (U„Uiz)A where <r is a 
suitable index vector. If a is chosen as the vector 
of node indices corresponding with the nodes that 
undergo most of the excitation from the individ- 
ually perturbed lamp power inputs such as the 5 
lamp temperatures and 5 evenly distributed wafer 
temperatures, complemented with a single win- 
dow and showerhead temperature, a near-perfect 
fit QT{UcU\z)A of A^zA is obtained. For a physical 
interpretation of these variables we refer to Fig- 
ure 1 where a diagram of the generic RTP model 
is displayed [5]. A diagram of the RTP cham- 
ber with the selected nodes is shown in Figure 1 . 
Using this term in the actual simulation yielded re- 
sults that were almost indistinguishable from that 
of the original low-order model equations, requir- 
ing much less simulation time. An explanation of 
how this is possible follows. 

With discretized thermal systems where the states 
represent the node temperatures, oftentimes many 
states display a similar behavior. More precisely, 
let us assume that the state vector z can be ap- 
proximated as 1 = Sxg where a is an index vector 
of certain representative states, and S is a ma- 
trix with only 1 nonzero element in every row. 
In other words, all temperatures are grouped and 
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Figure 1: Schematic of the axisymmetric generic 
RTP system 

within every group the signals differ only by a 
constant factor. We will refer to this property as 
the property of aggregation, or by saying that x is 
aggregated. Under the assumption of aggregation, 

This suggests that it is possible to make a good 
least squares fit using the snapshot data of the 
form 

MUiz)4« eP(n.tfx*)4 

This approximation is orders of magnitude more 
efficient to compute since the number of columns 
of 6r is much less than that of A$. . Note that 
the assumption of aggregation was made only for 
the purpose of finding a suitable set of regression 
vectors, and that it has no direct implication for 
the properties of the reduced-order model. How- 
ever in cases where it does not quite hold, the least 
squares fit may still be able to correct the situation 
since it simply provides the best fit on the set of 
regression variables, regardless of the underlying 
assumptions. 

We would like to emphasize that this approach re- 
quires only minor engineering judgement regard- 
ing the selection of nodes that are used in the 
least squares fit. This makes the method physi- 
cally pleasing, while it is also quite objective and 
requires no quantitative model tuning as is the 
case with aggregation-based model reduction. 

Application to a More 
General Model Structure 

The model equations (1) are unduly restrictive, 
and it is necessary to investigate if true reduced- 
order modeling can be applied to more general 
RTP chamber models. For this, we will investigate 
the following set of model equations: 

x = Mix)'1 [-C(i) - R(x) + Bu- W(x)] 
R(x) = A°((l-ß{x)).x*)+Ai:(ß{x).zt)-rA0

r 

W(x) = K,{x-T,) 
C(x) = Acdizg(T(AcPz))A?z 

T(Acpx) = K{ACPX)./(ACPX) 

M{x) = dUg(m.i»(x)./x) (3) 

Here, the variables have the following interpreta- 
tion: 

x 
R 
W 
C 
M 
ß 
Ae, J 

K, T) 

m, K\, T\ 

iep 

State vector (node temperatures)' 
Radiation loss term 
Wall loss term 
Conduction loss term 
Thermal mass matrix 
Black-body radiation fraction 
Sparse matrices representing branch 
conductivity 
Scalar polynomials, used for branch 
conductivity and specific heat 
Constant vectors 

The difference between (3) and the simple model 
(1) is twofold: several matrices have been made 
temperature-dependent, and the radiative trans- 
fer has been separated into a two frequency-band 
region (related to A% and A?) . 

We take the same approach as in section 2 : write 
x = U\z , then making least squares fits to approx- 
imate several terms to reduce all computations to 
low order using aggregation. Due to the depen- 
dence of the thermal mass matrix M(z) on the 
state it is more convenient to keep the M(x) term 
to the left hand side: 

M(x)x = -C(x) - Ä(ar) + Bu - W{x) 

Substituting x = U\z , 

M(Uiw)Uii = -C(Uiz)- R(Uiz) + Bu- W{Uiz) 

Under the assumption of aggregation, we can re- 
duce the size of the computations by selecting the 
representative states indexed by a on both sides: 

Tl.M(Uiz)Uii = -C.{Uiz)-R*(,Uiz)+B.%-W,(Uiz) 
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Now we can focus on approximation of the right 
hand aide terms. Only the terms R„{x) and Ca{x) 
require some further investigation. 

At this point some remarks on the compar- 
ison between the generic reduced-order model 
equation (3) and that of the simplified generic 
model (2) are in order. With (2) , we were able 
to get z to the left hand side by premultiplying 
with Uf ■ By virtue of the properties of the 
fact that U\ is composed of the set of (orthog- 
onal) left singular vectors, this premultiplication 
represents a nicely balanced way of obtaining the 
reduced-order model equations. However, with (3) 
we have to perform a left-inversion of the term 
II^M{Uiz)Ui to achieve the same. The numerical 
conditioning of this inversion depends strongly on 
the selection a and may require adding in some 
more nodes. 

We will therefore end up with two orders: one 
for the number of integrators (dimension of z) , 
and one for the number of selections (dimension of 
ff) to approximate the nonlinear behavior, and to 
precondition the left-inversion of (3) . Although 
it may seem as if the determination of a and the 
related left-inversion introduce too much subjec- 
tivity into this approach, it also gives us a unique 
chance to extract exactly that behavior that fo- 
cuses on specific components of the system (wafer 
temperature) that are crucial for control design 
purposes. Much less weight is attached to other 
states that are only required to support the dy- 
namic behavior of the reduced-order model, they 
are approximated in a fairly crude way. 

The Radiative Loss Term R<,{x) 

The selected components of R(x) are given by 

R,(x) = UaA? ((1 - /?(*))x4) + 

n„Ai (/?(x).x4) + n^ 

where the subscript „ indicates selection of the 
components indexed by <r . The expression for 
ß(u) where u is a scalar is of the form 

k k k 
ß(u)    =    clP(-) + c2p(2-) + c3p(3-) 

p(u)    =    e-u(u3 + 3u2 + 6u + 6) 

Based on this, we will try the following least 
squares fits: 

n„A?(i-/?(*)).*4) * e?{i-ß(*.))-*l) 
U.Äj:{ß{x).z*)   «   e^(*,).*J) 

where the values for x and U.„x are taken from the 
snapshots. 

The Conduction Loss Term C(x) 

Reduction of C(x) is the hardest part of the model 
reduction procedure. It should be noted that the 
temperature-dependence reflected by T(Acpx) is 
generally quite small, so in first instance one could 
approximate T(Aepx) by a constant and simply 
precompute the (n x n) matrix Ae di&g(T)A^Ui 
after which the job is completed. This might work 
quite well, especially since the radiation term is 
the dominant factor in RTP chamber models. In 
cases where this assumption is not justified one 
could proceed as follows. 

First, we have to notice that Ac and Aep are di- 
rectly related to the branches between the nodes. 
More precisely, the columns of Ac contain zeros 
everywhere except for two elements which have 
the values 1 and —1 . The term A^x is therefore 
represents temperature differences between nodes. 
Similarly, A^ contains zeros everywhere except for 
two elements that both have the value 1, therefore 
it represents average temperatures of nodes. 

Because of the physical interpretation, we cannot 
select components based on a . Instead, we have 
to group the set of branches between nodes into 
subsets that display a similar behavior in the same 
way as what we did for the selection of nodes. 
This results in a selection r by picking one repre- 
sentative element from every subset. The natural 
consequence of our approach is to fit the following 
model approximation: 

ETAC diag(r(il«p*))j4?x » 

ee diag(r(nT>ieJ)x))nTArx (4) 

where the matrices Ae>T and AepiT have been con- 
structed in the same way as Ae and Aq, , based 
on branches between groups of signals instead of 
individual signals. 

Doing this requires more engineering judgement 
than we would like to use, therefore we will first 
try a simpler approach. Assume that the conduc- 
tivity term of a branch between two nodes z\ and 
x2 is described by p((xi + x2)/2)(*i - x2) where 
p(x) is a polynomial. This corresponds with one 
branch element of (4) . Assuming that the tem- 
peratures xi and x2 are approximately the same, 
and that p(x) can be approximated by a second 
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order polynomial p(x) = po + Pix + p^x1 , we can 
write 

p((*i + *2)/2)(xi - xi) « (Po + Pi*i + P2*i)*i 

-(P0+PlX2+P22j)X2 

Here, we will substitute the elements of xa for 
i! and X2 for all branch conductivity approxima- 
tions of this form. Again, we rely on the least 
squares fit to compensate for any approximation 
errors caused by our simplifying assumptions. 

models were obtained for different choices of snap- 
shots and model orders. These models were then 
validated on the nominal dataset which is stochas- 
tically independent of the dataset used for model 
reduction, and which therefore is a legitimate val- 
idation dataset. The results can be summarized 
by stating that a 12th order model based on 70 
snapshots resulted in a 2 degrees RMS validation 
error which is an excellent result. This was based 
on a selection a of 5 lamp temperatures, 5 wafer 
temperatures, 1 showerhead and 1 window tem- 
perature (12 elements). 

4    Results The Generic Model 

The Simplified Generic Model 

We used 830 samples of the same dataset as was 
described in [3, 4] for the selection of snapshots. 
A selected set of signals of this dataset (lamp, 
wafer, showerhead and window temperatures) is 
depicted in Figure 2 , where the different char- 
acteristics of these four groups are clearly recog- 
nizable.   The input for the dataset consists of a 

Figure 2: 
tory 

The PRBS-perturbed nominal trajec- 

nominal input sequence to which a PRBS-based 
input disturbance was added for persistent exci- 
tation. This disturbance can be described as the 
sum of four individual PRBS sequences where each 
sequence has a bandwidth based on the dominant 
time constant of one of the four signal groups, 
with every component of the five lamp power in- 
puts excited independently. Using the simplified 
generic model reduction described by (2) , several 

The more difficult task of reducing the generic 
model was accomplished in much the same way 
without great difficulty. The model order used 
was 12, while the selection a was based on 5 lamp 
temperatures, 5 wafer temperatures, 5 showerhead 
temperatures, 1 window and 1 wall temperature 
(17 elements). The 5 extra selections significantly 
improved the simulation of the other, non-selected 
wafer and showerhead temperatures. Figures 3 
and 4 show the simulation results of the 21 wafer 
and 28 showerhead temperatures, respectively. 

M 

f     \ I v / V 
\ \       / V / V 

1   I \ \J \j s( s 
1 

i: 
r \ / \ / V 
/ v   / y / y \y v s/ \ 

i 

L 
mm f* ■. 
i 

Figure 3:   Wafer temperatures predicted by the 
reduced-order model 
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nonlinear models are obtained that are capable of 
predicting several states corresponding with nodes 
near the ones that were selected for aggragation 
very accurately. Although the precise nature of 
the approximations is a topic for further research, 
the approach seems intuitive and very promising 
for model reduction of high order lumped physical 
models. 
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ABSTRACT 

Some new results in learning feedforward control are pre- 
sented in this paper. The proposed procedures are applicable 
to processes with or without feedback control. Under the 
ideal situation, this discrete-time Learning Control (LC) 
scheme can perfect the task with one repeat. Convergence 
analyses are also included for noisy and imprecise learn- 
ing. New algorithms are proposed to address these noisy 
learning issues. Interesting connections between the pro- 
posed approach and iterative image dcblurring, LQ control 
and Kaiman filtering are identified. With all the required 
process knowledge readily measurable, the proposed scheme 
is relatively simple to implement and can be used as an 
on-site feedforward tuning tool. Encouraging simulation 
results are included. 

1    Introduction 
It is well established that a properly designed feedforward (FF) 
control can complement feedback (FB) control by promoting 
non-delay and anitcipatory actions, leading to superior track- 
ing or disturbance rejection. Unlike the traditional FF design 
which is usually based on analytical modeling, therefore often 
difficult to tune, the Learning Control (LC) approach described 
is suitable for on-site tuning as it can learn from the past experi- 
ences. (Many manufacturing tasks are repetitive, task-oriented, 
and are potential applications of LC). 

Unlike some of the published works, e.g., [1, 2], which use pro- 
portional, proportional + derivative, or state errors for itera- 
tive learning, this paper focusses on (discrete-time) linear time- 
invariant (LTI) predictive control type techniques which can lead 
to rapid convergence.  Under ideal situations, this LC scheme 
can perfect the tracking task with one repeat (Section 2). The 
only required knowledge is the impulse responses which can be 
readily measured on-site.  In that regard, our scheme is some- 
what similar to the one in [3].  However, unlike [3], our results 
are applicable to multi-input, multi-output (MIMO) cases and 
are less restrictive in assumptions. It can also be shown that our 
results lead to the main convergence results in [3]. Convergence 
analyses for noisy and imprecise cases (Section 3) are included, 
and new algorithms are proposed to address these issues (Sec- 
tions 4, 5, 6).   Rapid learning is demonstrated by the simula- 
tion of a MIMO process. Interesting and important connections 
with iterative image deblurring [7], LQ control and Kaiman fil- 
tering are identified. These connections allow a unifying system 
inversion viewpoint and the sharing of algorithmic ideas from 
seemingly unrelated fields. 

2    The Basic Learning Algorithm 
Consider a combined FB and FF control configuration as shown 
in Figure 1.  The basic LC scheme and its variants can be de- 

o1- ■^o 

Feedforward 
+ 

Feedback 
Controller 

Process 

Figure 1:  Combined Feedforward and Feedback Configu- 
ration 

scribed by: 
/<•+»> = ,(0 _ Ke(.i) (1) 

where e(') is the tracking error vector, ' and /(*) the FF signal 
in the i-th iteration and K is a general (linear) operator which 
effects LC. This LC operator, K, may include time-advance op- 
erations. a Realizing that both / and the command r contribute 
to e, straightforward analysis yields the following relationship in 
noiseless conditions: 

/(■'+>) = (/ - KM)jW - KTr (2) 

where M is the transfer operator from / to e, and T is the 
transfer operator from the command r to e: 

M = -{I + GpGc)-
lGp (3) 

r=I-(I + GpGc)-
1GI,Gc (4) 

Notice that if K is chosen as the inverse of M, i.e., the transfer 
from / to e, then exact convergence with one repeat is possible. 
This is because 

K =     M- 
{I-M-lM)J^-M-xTr 

GZlr 

(5) 

(6) 

FF control signal for repro- where / = Gp
lr is the "perfect" 

ducing the desired trajectory r. 3 

A more relaxed condition for convergence is that 

\X,(1-KM)\<1 

or 0 < K(KM) < 2 

(7) 

(8) 

'Work supported in part by ARPA under AFOSR Contract No. 
F49620-94-C-0003. 

'Under certain conditions, the tignal, ü/», instead of the track- 
ing error e, may be used for iterative learning, where ü/v, is the 
deviation of the FB controller output from its initial steady state. 
This is because if the FF U doing a perfect job for the transient, 
then the FB controller would not have to labor. 

'Time-advancing is necessary to implement correct "credit" as- 
signment for learning. This is because that / applied at time t will 
not afTect the process or e until time « + 1 or later. 

'The meanings and existence of G~', and the interpretation of 
the algorithm when G"1 does not exist are explained at the end of 
this section. 
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where A, denotes the eigenvalues. This relaxed condition allow» 
the use of a broader scope of algorithms ranging from cases 
where A4-1 is not known exactly (e.g., due to measurement 
imprecision or process nonlinearity) to gradient descent type of 
optimization algorithms described in Section 5. Now, instead of 
converging in one repeat, it will take multiple repeats to achieve 
satisfactory results. 4 

Computationally, this basic algorithm involves the following: 

e(3) 
e(4) 

.  e{N+\) 

hi 

h3 

0 
Ai 
h, 

0 
0 
hi 

A/f      hff-i      hf/-i 

0 
0 
0 

*/(2) 
5/(3) 

SHN) 

(9) =    MSf 
yO+1)      _     j{i) + gj{i) 

=     /''J-M-'eW (10) 

where hi, /»j, As,.../»// is the closed-loop impulse response se- 
quence from  /  to  e.     Its   state-space equivalent  would be 
CB,CAB,CA*B CAN~iB   where   {A,B,C]  sUnds  for  a 
state-space representation of the / to e process. Matrix M is a 
time-domain realization of the transfer operator, M. 

Using the impulse response representation directly facilitates on- 
site measurement and simpler computation. Alternatively, one 
may replace the impulse response« in the matrix by step re- 
sponses and solve for A£/(<) = 6J{t + 1) - Sf{t) instead. * 

This procedure is validated using a simulated 3x3 LTI MIMO 
process stabilized with decentralized PI controllers. Figure 2 il- 
lustrates the system performance in tracking a ramp command. 
The top plots show the tracking performance with feedback con- 
trol only; the bottom plots the performance after one repeat of 
the task. The impulse response matrix is estimated by differ- 
encing the "measured" step responses. The simulation is done 
using the graphics oriented control design software SystemBuild 
and MATRIXx. Tne solid lines indicate the command trajec- 
tories and the dashed lines the actual process responses. It is 
apparent that in this idealized situation, the basic learning ap- 
proach achieves perfect tracking in one learning repeat. Issues 
with noisy cases are addressed in Sections 3, 4, 5 and 6. Before 
closing this section, some remarks are in order: 

Remark 1: 
In the rest of the paper, the elatt of learning scheme will be 
formalized as: 

(11) 

(12) 

Noting that with M in the lower triangular form u in Eq. (9), 
•on M~l. If K is restricted to be lower triangular, then to in KM. 
The Vs of a lower triangular matrix are the diagonals. This leads 
to the main convergence result, Proposition 3.1, in [3). 

Certainly, this procedure does not prohibit one from using more 
elaborate system identification techniques. The impulse or step re- 
sponse matrices can be generated by a model obtained through para- 
metric identification. 
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Figure 2: FF LC via the Basic Learning Algorithm 

where Cyfa is used to represent the error (i.e., tf-*) or &)) ob- 

served in i-th task repeat with /O applied. This more expres- 
sive notation is needed in Secton 4 where certain noise-averaging 
learning algorithms are developed. 

Remark 2: 
The use of Gp assumes the existence of process "right inverse" 
[4j. e A necessary condition is that the number of process inputs 
must be no less than the number of outputs. With the existence 
of GJT , the existence ot M~* for the closed-loop is assured. 

When the M matrix is 1-delay, 7 the matrix h% (or CB in state- 
space notation) has rank n. The M matrix in Eq."" (9) is in- 
vertible. This (restrictive) condition is assumed by some of the 
published work, e.g., [1, 3]. When the total delay is greater 
than 1, the M matrix as is presented in Eq. (9), would be rank 
deficient. In that case, one can either solve the equation as is, 
but in a least-squares sense, or shift the error vector, e, on the 
left-hand-side so that it would start with t = L + 1. 

In either case, the notion of least-squares is important because 
it allows flexibility in seeking meaningful, practical solutions 
including the various forms of constrained optimization solutions 
discussed later. Constraining the magnitude of control is needed 
when the process is noa-minim«m pkatt or is subject to tight 
physical constraints. Constraining the rate of control is useful 
to avoid control rate saturation and to reduce the noise effect. 

3    The  Basic  Algorithm  with  Uncer- 
tainties 

In this section, two types of uncertainties are considered: process 

The concept of L-delay inversion by Massey and Sain [5] is of 
direct relevance here. A discrete-time process G, U L-delay right 
invertible if it can perfectly track any given command after L-delays. 
Notice that L u not unique and the smallest L is often of the greatest 
interest. It is also known that if a process is right invertible then it 
must be so with no greater than p delays where p is the dimension 
of the state space - similar property exists for controllability and 
observability.    The following test |5] < 
delay L: 

can determine the minimum 

A ducrtte-tirne proceu u L-delay rijht invertiile if and only 
•/ roni(Mt) = rani(ML_,) + n where n i, the pro«» output 
«••menjion and ML u the (nL x mL) leading principal minor of 
M in £}.  (9). ' 

'For presentation, we have assumed that the discrete-time pro- 
cess has an inherent 1 delsy due to sampling. This U reflected in 
Eq. (9) that the error vector e starts from t = 7 In reality the 
process could have pure time-del&ys and/or Udelayt. 

So 



or measurement noise and imprecise impulse response model. 

First consider the effect of the process noise, v (added to the 
output y). With the process noise, the learned / obeys the 
following recursion: 

/(•■+i) = (/ - KM)jW - ATr + ATv(') (13) 

where T is the transfer operator from r to S (i.e., e or üji,), and 
ir'' is the process noise for the t-th repeat. 

When K is precisely chosen as M~l, the above recursion reduces 

t0* /C + ^C-Mr-vO] (14) 

The output tracking error after the (t + l)th repeat is 

eC,+1>      =     r-y<i+1> (15) 

=      S[t>(<+1 - *<'>) (16) 

where E = (/ + GpGc)-1 is the transfer function from the pro- 
cess noise, v, to process output, y. 

Notice that any repcatable disturbance in v is eliminated by tkis 
learning procedure. However, non-npeatable random noise is 
amplified by a factor of 21'3 on the standard deviation. 

Next, consider the effect of imprecise impulse response measure- 
ments, M. Assuming K = M~l, and KM = / + BM yields 

/ - KM = -BM (17) 

and 

/•+1)     = -ßM/(0 _ AT[r -«('>] (18) 

= -BM/(0-™Af-1r[r-v<i'] (19) 

= -BMfM + (I + BM)G^{r-vW] (20) 

=     G-1 r + BM(G~l r - /<'>) - (/ + BM)G~l v™ 
(21) 

According to Eq. (20), the / dynamics represent a "stable" 
learning process when BM is dissipative, i.e., 

|A.(B«)I < 1 (22) 

(where A; are the eigenvalues,) and r and v are finite. 9 

Comparing Eq. (21) with Eq. (14), it is noticed that impulse 
response modeling error slows down the convergence and also 
increases the potential effect of the noise. 

4    Some Noise Reduction Techniques 
It is shown above that process noise or measurement error can 
potentially degrade the laming performance. This section de- 
votes further attention to these issues. 

First of all, conventional signal conditioning and noise filtering 
techniques should be considered in practical implementations. 
10 Unconventional statistical techniques such as jack-knife sam- 
pling [6] may be used. *' Next, the basic algorithm may be 
modified to account for the noisy conditions. Four (4) such 
techniques are described in this paper. Two are discussed in 
Section 5:   one vises rate constraints to assure the smoothness 

•Notice that GJlr is the "perfect" FF control signal for repro- 
ducing r at the process output. 

*Eq. (22) is the same condition as Eq. (7). 
19Non-causal filtering can be used because of the "off-line" nature 

of LC. 
"For example, fast sampling around a regular sample instant pro- 

vides a pseudo-ensemble of measurements from which a good aver- 
age reading may be derived without repeating the same experiment 
multiple times. 

of the learned /; another uses "soft" inversion to avoid ampli- 
fying noise. The one based on a Kaiman filter formulation is 
described in Section 6. A noise-averaging technique which can 
be built into the basic learning algorithm is described in tkis 
section. 

From an optimization viewpoint, the basic learning algorithm 
eliminates the most recently observed learning error, tf-*>. The 
noise-averaging formulation, however, replaces e^1' with the sta- 
tistically averaged learning error which takes into consideration 
all the previous learning trials. Of course, as / evolves with 
the learning process, portions of the previouse learning errors 
are due to different /. After correcting for the differences in / 
using the M model, it is possible to keep track of a statistically 
averaged learning error which assumes a common /, but with 
multiple realizations of the process noise averaged out. Choos- 
ing / according to the following Statistically Averaged Inversion 
(SAI) algorithm minimizes this averaged learning error 

/<<+» =/<0-M-' A/(i + 1)) (23) 

for i = 0,1,2,... . This algorithm has the flavor of Stochas- 
tic Approximation, and it can be shown that the noise effect 
on the learned / is asymptotically eliminated as learning con- 
tinues (provided that the model M is known precisely). It is 
noticed, however, the correction gain decreases as i increases 
(i.e., l/(t" + 1) = 1,1/2,1/3,...), and the learning process even- 
tually becomes open-loop. This observation along with Eq. (20) 
suggests that in the case where M is not known precisely, part 
of the initial error on / may remain as uncorrected bias. 

To strike a balance between eliminating the deterministic FF er- 
ror and minimizing the noise effect, the following Exponentially 
Averaged Inversion (EAI) algorithm is in order. 

/(•+1> = /<')_M-1(7^>)) (24) 

where 0 < f < 1 is the exponential averaging constant. When 
f = 1, the algorithm becomes the basic inversion algorithm. 

Alternatively, the following variation allows one to choose -y 
adaptively. 

/(•+«) = /(0_M->( + -r 
(.+ 1)       (i+1)' /<•> 

K (0 (25) 

Notice that the first component in the parenthesis represents 
pure statistical averaging, whereas the second component is a 
model error correction term discounted by -y (0 < -y < 1). -y can 
be chosen according to the ratio between the excess \\S\\3 and 
||£*||2, where the excess \\S\\3 is estimated against the expected 
noise level and therefore is an indication of modeling error. This 
choice is similar to the way that the (optimal) Wiener filter is 
determined. 

Finally, it is noted here that the -f in EAI can be used to model 
the uncertainty in the initial /. If one has high "confidence" 
in /(°\ then small -y should be used. However, a more precise 
account of "confidence" is outlined in the Kaiman filter formu- 
lation described in Section 6. 

5    Gradient Algorithms & Constrained 
Optimization 

The basic LC algorithm and its variants described so far re- 
quire matrix inversion at each step. In optimization theory, this 
amounts to descending along the Newton's direction. Often, di- 
rect system inversion may be less desirable for practical reasons. 



In such cases, "soft" inversion via Optimal Gradient Descent is 
an alternative to exact inversion. 

The Exponentially Averaged version of the Optimal Gradient r 
Descent Learning is summarized here.    Assuming a post i-th 1 
repeat situation, /<•>. «/(,-1), and £^t) are given where c"^ 

is the observed learning error with /<'> applied during the t- 
th repeat. Also known is the averaged learning error from the 
previous repeat: [£]('(7i),. The procedure is to first update the 

averaged learning error, i.e., to compute [sf'}.. 

i£ff% = (i - -»Mi^ri!, + *«/(•-»)+.,£(•)     (26)      j 
\ 

whereas for ."-1 = 0, [S ]<,»>, = fj»,. * 

With this updated averaged learning error, the gradient, g, of 
this error squared is computed with respect to /, and / is then 
updated along the negative gradient direction with the optimal 
step size, $t: 

/<«+» = /(•')_„ (27) 

> = "'[tf/co (28) 

M   =    {g'g)/(s'M'Mg) (29) 

When i = 1 this algorithm becomes the (basic) Optimal Gra- 
dient Learning algorithm. When -y = l/(i + 1), it becomes the 
Statistically Averaged version. 

Numerically iterating (infinitely) many times with Optimal Gra- 
dient hetween task repeats amounts to exact inversion. However, 
exact inversion is often not a good idea in the face of noise and 
uncertainties - a principle also found in iterative image deblur- 
ring [7] and adaptive signal processing [9]. 17 In such cases, 
"soft" inversion may be performed by iterating with optimal 
gradient descent a finite number of times. 

Figure 3 illustrates the performance of the Optimal Gradient 
method in the present of process noise. The top plots are the 
FB-only control performance (with the solid lines indicating the 
command and dashed line the noisy process response). The bot- 
tom ploU show the the Optimal Gradient Learning results after 
5 repeats with 10 numerical iterations between task repeats. 
Again, in this noisy case, the Optimal Gradient learning is able 
to improve over the feedback-only performance. The built-in 
noise-averaging mechanism (as described in Section 4) and the 
"soft" inversion feature are the only noise reduction methods 
used in this example. With signal conditioning and filtring, ad- 
ditional protections can be expected. 

In many practical applications, the mangnitude and/or the rate 
of control are limited, e.g., by valve position and slew rate. The 
following outlines formulations and solutions to constrained op- 
timization problems in a (batch) linear quadratic (LQ) setting. 

With (Soft) Constraint on the Magnitude of Control 

min../ = m,n.I(||£('-+D|k + /(•+»'fi/<>+i)) (30) 

where Q is a weighting matrix on the learning error and R is 
the control penalty weighting matrix.  Q and R should be (at 

This connection points to some roiml techniques in th« image 
and signal processing literature [10, 11]. Also, in |3] a robust tech- 
nique is provided. 

Hard constraints may also be formulated using linear or 
quadratic programming (LP or QP) type techniques. 
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Figure 3: FF via Optimal Gradient Learning (Noisy) 

least) non-negative definite and (M'QM + R) should be positive 
definite. The inversion based solution to this problem is 

*/'>     =     -(M'QM + fi)-'[M'Qr(') + R/(0j     (31) 

/<i+,>     =     /<') + «/(•) (32) 

Similarities between this constrained problem and the regu- 
larization solution found in (iterative) image deblurring and 
restoration problems [7) are worthnoting. In that context, the 
image is blurred by a transfer function and is also corrupted 
by noise. To undo the blurring involves convolving the noise- 
corrupt blurred image with the inverse of the blurring trans- 
fer function. Since the inverse of the blurring transfer function 
tends to amplify the noise, the problem becomes ill-conditioned. 
In [7], the advantage of "soft" inversion over exact inversion in 
image restoration is analyzed and demonstrated, in terms of 
noise conditioning. 

F\irthermore, regularization techniques are used to add con- 
straint on the deblurred image - usually smoothness constraints 
of some kind, e.g., the R matrix could represent a Laplacian 
type operator to penalize nonsmooth components [7]. The case 
here U slightly different in that it is to limit the magnitude of 
the solution, /. This particular "regularization" may prevent 
either violation of physical constraints or numerical difficulty 
when M is ill-conditioned or when the process is of non-minimum 
phase. On the other hand, the inclusion of ra<e constraints on 
the learned / can be motivated by the concerns over the cor- 
rupting noise in t as well as over the actuator rate limitations. 

With (Soft) Constraints on the Magnitude and the Rate 
of Control 

miW = min.i(||^,+1)||2J + /<'+l)'Rl/(. + l) 

+A[/]<i+')'.RjA[/](. + i)) (33) 

where Rx and Ä2 are the weighting matrices on the magnitude 
and the "rate" of control, respectively, and A[/] is the control 
increment vector defined as 

A/(0     =     /(< + l)-/(t) 

Atf]    =     [ /(0)    A/(l)     .     . 

Notice that 

/     =     TAt/J 

(34) 

^f(N-l)  ]T(3S) 

(36) 

S* 



"  /     0           0 " where /f^*' is the Kaiman gain. Since 

T     = 
/     J     .     0 (37) 

*(•>     =     «tO.M/O (60) 
L /  i ■  i J /(')     =     /•(■') (61) 

The inversion based solution to this problem is: 

A[*/]<'>     =     -(M'QM + k)-l[M'QC^ + ÄA[/]<'>](38) 

«/<•>     =     TA[5/]('>                                                     (39) 

the Kaiman filter equation is simply: 

(62) 

/<•+»)     =     /<•> + «/<') (40) 

where M = MT and R = T'fljT + ßj- By using appropriate 
Äj, not only can one constrain the rate of control for physical 
reasons, but also the undesired effect due to the corrupting noise. 

Soft-Constrained Optimal Gradient Algorithms 
With constraint on the magnitude of control: 

/(.+»)      =      /(')_M (41) 

g     =     M'Q£W + K/<*> (42) 

M     =     (g'g)/{9'M'Üg + R) (43) 

With constraints on both the magnitude and the rate of control: 

A[/]('-+»     =     A[/](0-W (44) 

„<<+*) =    TA[/J !<<+») 

3    =    itf'Qf^ + ftA[/l*''> 

M    =    (J's)/(A + Ä) 

(45) 

(46) 

(47) 

6    The Kaiman Filtering Approach 
In this section, we briefly show that the LC problem can also be 
formulated as a Kaiman filtering problem. Consider the "per- 
fect" feedforward signal, /* as the state vector, then the follow- 
ing state-space description holds: 

/•«+»)     =     /«(0 + u,(0 (48) 

e^O      =     Mr/*(0 - S«(0 (49) 

where e*t') is the (post t-th repeat) optimal tracking error, t/') 
is the additive noise of the process and u/'^ is a random term 
to model any uncertainty or variations associated with /*. S = 
(/ + GpGc)~

i &nd MT is a composite transfer function that 
relates / and r to e: 

=      Mr! 

=      Mf + br 

(50) 

(51) 

where Si« the "dean" tracking error (i.e., if noise does not exist), 
br is the portion of e that is due to r. With this decomposition, 
it follows that: 

'-e     =    MrU'-f) 

=    M(f'-f) 
Mf    =    -Mi' - Eu 

(52) 

(53) 

(54) 

where we have used the fact that 0 = Mrf and e* = —Ev. 
This leads to a new state-sp&ce description which facilitates a 
Kaiman filter solution: 

/■') 

e« - M/<-> 

=     -Mf'W - £«<*> 

Then, the Kaiman Alter takes on the following form: 

/•(.+i)    _    y.(i) + K"(')(2(0 _ i(0) 

£<•>     =     -M/-<'> 

(55) 

(56) 

(57) 

(58) 

(S9) 

Note that this is not the standard Kaiman filter as the evolution 
is not a function of time but rather a function of the learning 
cycle. Noting that the Kaiman filter in essence implements a 
form of "optimal" system inversion, this Kaiman filter connec- 
tion does provide a common ground for unifying the various 
procedures. 

7    Summary 
With all the required process knowledge readily measurable, the 
proposed procedures are relatively simple with the ease of on- 
site tuning, and are applicable to SISO/MIMO, with or without 
FB. Not only are encouraging simulation results obtained, but 
we have also obtained very encouraging preliminary experimen- 
tal results conducted on a semiconductor wafer Rapid Thermal 
Processing (RTP) reactor [12]. Moreover, the basic scheme has 
also been extended to nonlinear processes with good results [13]. 
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ABSTRACT 

Some recent results of using (repetitive) Learning Control (LC) to determine the appropriate 
feedforward (FF) control action are reviewed in this paper. This LC approach only requires 
information that is readily measureable on-site, and is designed for the ease of tuning, as it can 
learn from the past experiences. It is applicable to a wide range of single or multi-variable, linear 
or smoothly nonlinear repetitive processes. Many manufacturing tasks are repetitive task-oriented 
and are potential applications of this LC procedure. Applications of these FF LC methods to 
RTP temperature control are the focus of this paper. Both simulation and experimental results 
are included. 

Although the experiment is exploratory in nature, the results are very encouraging and deserve 
serious considerations. Applying this LC approach has resulted in a speed-up of a well-tuned 
FB loop by a factor of 8 which amounts to more than 20 seconds saving in one processing step 
- quite significant for RTP. Additionally, the experiment has demonstrated the applicability of 
the LC theory in a real-world manufacturing setting. 

1     Introduction 

For Rapid Thermal Processing (RTP) of semiconductor wafers, 
the ability to quickly manipulate wafer temperature according 
to the commanded temperature profile is crucial. Sensor-based 
feedback (FB) control can certainly improve the RTP reactor's 
temperature following capability, maintain tight temperature con- 
trol at steady state, and reduce the effects due to equipment vari- 
ations. However, the speed of FB control must b« balanced with 
stability considerations which are often limited by the process 
characteristics such as time delay. 

Feedforward (FF) control, on the other hand, can complement 
the FB control performance by promoting non-delay and an- 
ticipatory actions which, when properly designed, can lead to 
superior tracking or disturbance rejection. Combining FB and 
FF, one could have a robust, stable and yet agile temperature 
control system. 

Traditional FF design is usually based on analytical methods 
that require fairly accurate modeling of the process and the FB 
control loop. Such knowledge is often not available or is subject 
to change overtime. Furthermore, the so designed FF control is 
often difficult to tune. 

The LC approach described in this paper and in [1, 2, 3], on 
the other hand, only requires the FB loop characteristics that 
are readily measureable on-site, and is designed for the ease of 
tuning, as it can learn from the past experiences. Many man- 
ufacturing tasks are repetitive task-oriented and are potential 
applications of LC. This LC approach is applicable to a wide 
range of processes, single or multi-variable, linear or smoothly 
nonlinear. 

In this paper, we review these very recent results including ex- 
perimental results of applying the basic LC scheme to an RTP 
reactor designed for semiconductor wafer manufacturing. A fac- 
tor of b speed-up, or more than 20 seconds saving in one sing';* 
processing step, is realized by using FF LC. 

The rest of the paper is organized as follows. First, the basic LC 
scheme and its variants are reviewed and summarized in Section 
2. In Section 3, the RTP experiment is described and shown 
with its 100° C temperature step setpoint following capability. 
With a tuned FB only control, it takes about 25 seconds or so 
to reach the new tempearature target at the high-end of the 
temperature range. We show that, with the application of FF 
LC, this to target time is reduced to less than 3 seconds - a 
factor of 8 speed-up or a saving of more than 20 seconds for this 
one processing step which is quite significant for RTP! 

Section 4 further explains how this basic LC scheme can be ex- 
tended to a class of smoothly nonlinear processes, and demon- 
strates rapid convergence for a simulated nonliner RTP process. 
Methods for implementing FF LC in a practical system are dis- 
cussed in Section 5. 

2     The Basic Learning Algorithm and 
Variants 

Consider a combined FB and FF control configuration as shown 
in Figure 1. The basic LC scheme and its variants can be de- 
scribed by: 

/<•+»> = /M - #eW (1) 

where e(,) is the tracking error vector ' and /<') the FF control 
signal in the i-th iteration and K is a general (linear) operator 
which facilitates LC. This LC operator, K, may include time- 
advance operations, since the entire e(l' is known after the a-th 
iteration. 

Realizing that both / and  the command r contribute to e, a 
straightforward analysis yields the following relationships in noise- 
less conditions: 

KVr (2) 

(3) 

•Work supported in pan by ARPA under AFOSR Conu»ct No. F49620- 
94-C-0003. 

where .Vf  is the transfer operator from / to e, and  V is the 
transfer operator from the command r to e. 
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Notice that if K is chosen as tue iDverje of M, i e , the trani- 
fer operator from / to e, then exact convergence with one task 

repeat is possible, and 

K   =   M-x (4) 

o— 
Feedforward 

±-0 
Feedback 
Controller 

Process 

Figure 1: Combined Feedforward and Feedback Configuration 

/<■+»)   =   (I-M-lM)fii)-M''lTT (5) 

=   -P-V (6) 

e(.+U   =   o (7) 

where / = V~lr if the "perfect* FF control signal for repro- 
ducing the command trajectory r. (V1 assumes the existence 
of process 'right inverse" [4]. A necessary condition is that the 
number of process inputs must be no less than the number of out- 
putt. With the existence of V1, the existence of M~l for the 
closed-loop is assured. When the right inverse does not exist, 
least-squares solutions can be sought according to a computa- 
tional formulation described later.) 

A more relaxed condition for convergence is that 

\\iU ~ **K)\ < 1 

0<\(MK)<2 

(8) 

(9) 

where A, denotes the eigenvalues. This relaxed condition allows 
the use of a broader scope of algorithms [1) ranging from cases 
where M~x is not known exactly (e.g., due to measurement im- 
precision or process nonlinearity) to gradient descent type of op- 
timization algorithms. Now, instead of converging in one repeat, 
it will Uke multiple repeats to achieve satisfactory results. 

Computationally, this basic algorithm involves the following (as- 
suming the closed-loop FB system is linear time-invariantY 

e(2) 
e(3) 
e(4) 

e(JV+l) 

(10) 

'   Ä. 0 0 .    0 

*» hi 0 .    0 

= h, h, hi     ■ .    0 

.h» ^fV-1 hs-7     ■ .. k, 

=   Mdf 

r #0) 
d/(2) 
d/(3) 

df{N) 

(11) 

(12) 

■Under certain condition*, the FB controller output «,» may be used 
instead of the tracking error e. Actually, it it the ietittion of u,» from 
iu initial steady «täte that should be uied for iterative learning. This it 
because if the FF i» doing a perfect job for the transient, then the FB 
controller would not have to labor. 

(13) 

(14) 
(15) 

where hl,h1,KJl ...hu it the closed-loop impulse response sequence 
from / to e. Its state-space equivalent would be CB,C AB,CA*B, 
...,CAN~*B where [A,B,C] stands for a state-space represen- 
tation of the / to e process.    '    Matrix M is a time-domain 
realization of the transfer operator, M   3 

Using the impulse response representation directly facilitate» 
on-iite measurement and simpler computation. It also allows 
greater flexibility in representing the process dynamics than a 
parametric model. 

When the process is not right invertible, the M matrix would not 
be invertible. In that case, a least-squares (LS) solution can still 
be sought. Constraints can be further used in the LS formulation 
to help shape the FF solution. For instance, by adding penalty 
on the magnitude of FF control, one can discourage excessively 
large control which may result from a non-minimum phase pro- 
cess or an excessively demanding transient command. Likewise, 

the rate of the learned FF control can also be constrained to 
avoid actuator rate saturation and minimize the potential effect 
of noise [1]. Extension to include hard constraints can be made 
using linear programming (LP) or quadratic programming (QP) 
type of formulations. 

This procedure is validated using a simulated 3x3 multi-input 
multi-output (MIMO) process stabilized with decentralized PI 
controllers. Figure 2 illustrates the system performance in track- 
ing a ramp command.   The top plots show the tracking per- 
formance with feedback control only; the bottom plots show 
the performance after one repeat of the task.  The impulse re- 
sponse matrix is estimated by differencing the "measured" step 
responses.  The simulation is done using the graphics oriented 
control design software, SystemBuild and MATRDCx. The solid 
lines indicate the command trajectories and the dashed lines the 
actual process responses. It is apparent that in this idealized lin- 
ear time-invariant situation, the basic LC approach can achieve 
perfect tracking in one learning repeat.   Good performance is 
also obtainable in a noisy environment by taking proper noise 
reduction measures discussed in [1]. 

A question in order is: would this LC approach work well in a 
rugged industrial manufacturing environment? A major portion 
of this paper is devoted to reporting some preliminary experi- 
mental results of applying LC to wafer temperature tracking in 
an RTP reactor. 

3     The RTP Reactor and Wafer Tem- 
perature Control 

The reactor, on which the experiments were conducted, uses 
rapid thermal processing (RTP) technology to process one wafer 
at a time. According to a pre-designed temperature command 
profile, the wafer is raised to high temperatures in a few stages 
stages during the course of the process and then cooled down. It 
is crucial to maintain tight temperature control at the set tem- 
perature, but it is also very important to quickly respond to the 
temperature command without overshoot The FB controller is 
designed with an anti-windup PI and a lead/lag compensator in 
the forward path.  The lead/lag is introduced to offset some of 

Mf u/i is used for learning, then the impulse response sequence should 
be from / to ti/i. 

1 Equations (10) and (11) have auumed that the only time delay is the 
sample delay, i.e., 1 delay. If additional process delays exist, some of the 
leading Vi would be scro and should be removed from the equations, to- 
gether with the corresponding leading e'i. 
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the phase lag due to the therm*] capacitance induced proce« 
delay (Process delays of about 1 25 second» to 1.5 seconds are 
observed ) The FB controller is alao gain-scheduled throughout 
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Figure 2: Simulated Feedforward LC (MIMO ewe) 

the whole operational range to maximise the performance uni- 
f0nmtfhowever, •» »*« Wgh end of the temperature range it i. 
more difficult to achieve high «peed and stability simultaneously 
and stability U given higher priority. 

Figure 3 show, a -high-end" wafer temperature response to a 
step command from 800* C to 900* C. The settling time is some- 
where around 25 seconds - sluggish compared to the "low-end" 
performances. The following discussions show how we use this 
information to design a FF control signal that drastically speed. 
up the temperature response. 

To carry out the FF learning procedure, one needs to measure 
the "npulse response characterizing the transfer function from 
the FF signal to the temperature tracking error, e, or to the FB 
controller output, U/l. One way to take such measurements is 
to inject FF steps and measure the associated responses. That 
is, special system identification experiments would have to be 
conducted. 

For the «ingle-input «ingle-output linear case, however, the trans- 
fer function from the command to wafer temperature is equiv- 
•Jent to the tran«fer from the FF «ignal to the FB controller 

Figure 3: Wafer Temperature Response to Temperature Step 
Command (FB-Only Control) 

output except for a difference in «ign. Therefore, we use the tem- 
perature step response obtained above to derive the FF to FB im- 
pulse response. The step response, however, is contaminated by 
the square-wave type measurement disturbances. These square- 
wave disturbances are inevitably introduced by the existing sen- 
sor. 

These disturbance, must be removed in order to obtain a mean- 
ingful .mpulse response reading. This noise removal can be car 
ned out by using (non-cauW) low-pas. filtering or by Sttin« 
» low-order system to the step response. The particular non 
causal filtering «e used ,, a form of jack-knife .«fcamplin, [61 
•ad (cubic) spline interpolation scheme. Jack-knife sampling i,' 
effective for estimating ensemble average without actually con 
ducting multiple experiments. 

Next, the filtered step response is time differenced and «iga re. 
versed to produce an estimate of the FF to FB impulse response 
Due to time d.fferencing, the "tail" of the impulse response .til] 
exhibits some oscillations from the reridual noise. To improve 
the steady-state performance of the FF solution, the tail i, fur 
ther smoothed out. *   The result is shown in Figure 4. 

Another needed ingredient is the «error" signal which is the dif- 
ference between the desired and the actual What is the desired? 
Since the step command is «till driving the FB loop, ace fcr 
pract.cal reasons we certainly do not want the tempe'ratu-e to 

Figure 4: The Estimated Impulse Response Model 

"»pond like a step, a reference model h introduced to generate 
the desired response. A first-order re/erence mode! with L time 
of about 2 seconds is used to provide the desired temperate re- 
jmse. However, «ince we u«e the FB output a, an indication 
of how well the system perform«, a desired FB signal must be 
computed. This desired FB signal i, generated breeding the 
difference between the step command and the desired tempera- 
ture response to a copy of the FB controller. This FB controller1, 
output is then the desired FB. controller • 

With the desired and the actual FB, a FB output based error 
«ignal i« obtained. (This error signal i, time-advanced accord- 
ing to Eq (11) and the comment thereafter to account for the 
process and sample delay.) This time-advanced error signal and 
the impulse response vector were then used by the LC algorithm 
to compute a FF signal. The algorithm computes an appropn- 
ate FF «ignal that would minimize thi. error according to the 
impulse response model. For unconstrained «ituation, this BUD- 

imitation can be accomplished by exact inversion. However it 
is known that exact inversion is often not a good idea in Ihe 
face of uncertainties, a principle also found in iterative image 
deblumng [7] and adaptive signal processing [8]. We instead use 
»oft inversion by numerically iterating with Optimal Gradient 
Descent [5, 1]. 

Thirty (30) numeric*! iterations are performed between process 
repeats. The resultant FF signal is then injected with proper 
time synchronization. The result is a significantly faster -e- 
«ponse. The (to 90%) rise time is about three (3) times shor-.e: 
than that of FB only control and vet wiOiovt overshoot How- 
ever, it is not.ced that the rise time is still longer than the desired, 
and the wafer temperature starts the transition a bit too early 
(about 0.8 second or so). A few factors could have contributed 
to this, mclud.ng measurement and numerical errors and perhapi 
proces» nonlinearity that would affect the fidelity of impulse re- 

•It i. noted that thi, tail- problem could be avoided, if the imp.U. 
raponw * generated by a parametric model fitted to the data. 
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sponse (linear) modeling 

Using the same FF signal but delaying it by 0 5 second, a very 
good result is obtained and is displayed in Figure 5. Notice 
the calculated anticipatory action of the FF signal that precedes 
the step command. The wafer temperature starts the upward 
transition just on time and hits the target in less than 3 seconds 
with no overshoot. Comparing to the 25 seconds or so settling 
time with FB only control, this means a saving of more than 20 
seconds for just one processing step which is quite significant for 
RTP. 

Finally, "robustness" of the combined FF and FB scheme is re- 
vealed in the following two cases. If the (first) FF is delayed 
by 1 second (i.e., twice as muc/i as the 0.5 second delay), the 
wafer temperature is still well behaved and responds fast, but 
with about 7* C overshoot (for this 100" step). This provides a 
"feel* for the robustness of FF control. Another robustness in- 
dicator is the repeatability run which was performed three days 
after the first run was made and showed remarkable consistency. 
In between, the reaction chamber was taken apart once for ex- 
amination and that apparently did not impact the performance. 
The relatively tight closed-loop FB control should be (at least 
partially) credited for the apparent robustness. This is one of 
the reason* for using the combined FF and FB configuration. 
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Figure 5: Wafer Temperature with FF Learning 

4     LC for Nonlinear Processes 

In this section, we briefly describe an extension of the basic LC 
scheme to a class of smoothly nonlinear processes. For nonlin- 
ear processes, the notion of "impulse response" is not exact, and 
varies with the process state and input. Using the "impulse re- 
sponse" measured at a certain process condition would not, in 
general, adequately describe the process behavior throughout a 
(temperature) control task. The model used for this study is a 
nonlinear RTP model which is fitted to some measured data to 
reflect nonlinear process gain and time constant. Direct appli- 
cation of the basic LC schemr (with full strength) has resulted 
- "earning oscillations and arv-arrnt divrrgence. Although with 

reduced strength, the basic learning scheme would still converge, 
but only after many iterations. 

Instead, using a prediction error based scheme described in [3], 
the "impulse response" model can be adapted during the iterative 
learning process, resulting in rapid convergence. Figure 6 shows 
such an adaptive learning sequence that converges to the desired 
reference response in 2 or 3 adaptations. (The feedback only 
response which is not shown is an order of magnitude slower.) 

x. 

is« ta in m 

Figure 6: An Adaptive LC Sequence - for a nonlinear RTP pro- 

5 Implementing LC 

The LC scheme discussed so far is signal synthesis based, i.e., an 
appropriate FF signal, /, is determined for a specific task and 
recipe. A FF data base can be constructed for a set of recipes. 
When faced with a new recipe, however, one would have to either 
interpo/ale from the FF data base, or likely relearn the FF signal. 
Then, the FF data base needs to be updated accordingly. 

A more effective method for implementing LC in a practical sys- 
tem is to use a dynamic FF filter which is driven by the recipe 
command to generate the appropriate FF signal. In this way, 

the need for a (growing) FF data base and for relearning is elim- 
inated. Based on the signal synthesis based LC, methods for 
realizing a dynamic filter based implementation have been de- 
veloped and are described in [9]. 

6 Summary 

The feedforward Learning Control (LC) methodology is shown 
to be applicable to the control of repetitive industrial and mau- 
facturing processes in general and of the wafer temperature in a 
typical RTP reactor, in particular. The preliminary experiments 
have demonstrated a speed-up by a factor of 8, or 20 seconds 
saving in a single processing step, quite significant for RTP. 

With all the required ingredients readily measurable, the learn- 
ing scheme, as decribed here and in [1], is suitable for on-site 
tuning and learning. The very encouraging experimental results 
seem to strongly support the applicability c: the theory and de- 
serve serious considerations for practical deployment. 
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ABSTRACT 

Herent. algorithmic results in (feedforward) Learning 
Control (LC) |1] arc applied to the control of semicon- 
ductor wafer temperature in a Rapid Thermal Pro- 
rising (RTP) reactor. Although the first attempt is 
experimental in nature, the results are very encourag- 
ing and deserve serious consideration. 

Applying this LC approach has resulted in a speed-up 
of a well-tuned FB loop by a factor of 8 which amounts 
l.o more than '20 seconds saving in one processing step 

quite significant for RTP. Additionally, the exper- 
iment, has demonstrated the applicability of the LC 
theory in a real-world manufacturing setting. Many 
repetitive manufacturing tasks are potential applica- 
tions of this LC procedure.. 

1     Introduction 

For Rapid Thermal Processing (RTP) of semiconduc- 
tor wafers, the ability to quickly manipulate wafer 
temperature according to the commanded tempera- 
ture profile is crucial. Sensor-based feedback (FB) 
control can certainly improve the RTP reactor's tem- 
perature following capability, maintain tight temper- 
ature control at steady state, and reduce the effects 
due to equipment variations. However, the speed of 
FB control must be balanced with stability considera- 
tions, and is often limited by the process characteris- 
tics such as time delay. 

Feedforward (FF) control, on the other hand, can 
complement the FB control performance by promot- 
ing non-delay and anticipatory actions which, when 
properly designed, can lead to superior tracking or 
disturbance rejection. Combining FB and FF, one 
could have a robust, stable and yet agile temperature 
control system. 

Traditional FF design is usually based on analytical 
methods that require fairly accurate modeling of the 
process and the FB control loop. Such knowledge is 
often not available or is subject to change overtime. 
Furthermore, the so designed FF control is often diffi- 
cult to tune. 

The LC approach described in [1], on the other hand, 
only requires the FB loop characteristics that are read- 
ily measureable on-site, and is designed for the ease 
of tuning, as it can /corn from the past experiences 
via task repetition. (Many manufacturing tasks are 
repetitive task-oriented and are potential applications 
of LC.) This LC approach is therefore applicable to a 
wide range of processes, single or multivariable, linear 
or smoothly nonlinear. ' 

In this paper, we report our experimental results of 
applying the basic LC scheme to an RTP reactor de- 
signed for semiconductor wafer manufacturing. A fac- 
tor of 8 speed-up, or more than 20 seconds saving in 
one processing step, is realized by using learning FF 
control. 

The rest of the paper is organized as follows. First, 
the basic LC scheme and its variants are reviewed 
and summarized in Section 2. In Section 3, the RTP 
process is described and shown with its 100° C tem- 
perature step following capability. With a tuned FB 
only control, it takes about 25 seconds or so to reach 
the new tempearature target. We show, in Section 4. 
that with the application of FF LC, this to target time 
is reduced to less than 3 seconds - a factor of 8 speed- 
up or a saving of more than 20 seconds for this one 
processing step which is quite significant for RTP! The 
details of conducting this FF LC experiment are also 
included in Section 4. The robustness of the results is 
confirmed by a repeatibility test. 

•Work supported by  ARPA   under AFOSR  Contract No. 
F49620-94-C-0OO3. 

'This simple and effective LC scheme has also been extended 
to the control of a class of nonlinear processes. Details of thai 
extension are described in a separate paper (2). 

0-7803-1968-0/94$4.00©1994 IEEE 
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Figure 1: Combined Feedforward and Feedback Con- 
iguration 

The    Basic    Learning    Algo- 
rithm and Variants 

Pnsider a combined FB and FF control configuration 
shown in Figure 1.  The basic LC scheme and its 

variants can be described by: 
^.-+1) _ ^) _ Ke(i) (1) 

where «(•) is the tracking error vector 2 and fi-'l the FF 
signal in the t-th iteration and K is a general (linear) 
operator which facilitates LC. This LC operator, K, 
may include time-advance operations to allow proper 
credit assignment for the learning process. 

Realizing that both / and the command r contribute 
to e, straightforward analysis yields the following re- 
lationships in noiseless conditions: 

f{i+i)    _    (/ _ KM)!™ - KYT (2) 

e<*+l>    =    (I-MK)e^ (3) 

where M is the transfer operator from / to e, and T 
is the transfer operator from the command r to e: 

M    =    -(I + VC)-lT (4) 

T    =    I-(I + VC)-lVC (5) 

Notice that if K is chosen as the inverse of M, i.e., the 
transfer operator from / to e, then exact convergence 
with one repeat is possible.   This is because if K — with one repeat is possible 

/<*+l)    =    (I-M^M)^ -M~lTr 

e(«+»)    =    0 

(6) 

(?) 

(8) 

where / = V~xr is the "perfect" FF control signal for 
reproducing the command trajectory r. (V~l assumes 
the existence of process "right inverse" [3, 1]. A nec- 
essary condition is that the number of process inputs 
must be no less than the number of outputs. With the 
existence o(V~l, the existence of M~x for the closed- 
loop is assured. When the right inverse does not exist, 
least-squares solutions can be sought according to the 
following computational formulation.) 

'Under certain conditions, the signal, üji,, instead of the 
tracking error, e, may be used for iterative learning, where üj), 
is the deviation of the FB controller output from a reference 

u/6- 

A more relaxed condition for convergence is that 

\Xi(I -MK)\<\ (9) 

or 
0 < Xi(MK) < 2 (10) 

where A,- denotes the eigenvalues, and matrix M is 
a time-domain (Toeplitz) realization of the transfer 
operator, M, as shown below in Eq. (12). This 
relaxed condition allows the use of a broader scope 
of algorithms ranging from cases where M~x is not 
known exactly (e.g., due to measurement imprecision 
or process nonlinearity) to gradient descent type of 
optimization algorithms. Now, instead of converging 
in one repeat, it will take multiple repeats to achieve 
satisfactory results. 

Computationally, this basic algorithm involves the fol- 
lowing (assuming the closed-loop FB system is linear 
time-invariant): 

-e    =    — 

«(2)      I 
e(3) 
e(4) 

. t(N + 1) 

(11) 

hi 0 0 
h2 hi 0 
h3 h2 hi 

hs      /»AT-l       /»W-2 

0 
0 
0 

df{l) 
df(2) 
<f/(3) 

. df(N) 

=    Mil 

f(i+i)    _    j(i) + dfii) 

(12) 

=    /<•'> - M- V''> 
(13) 
(14) 

where h\, h2, /»3, -.-/i/v is the measurcable closed-loop 
impulse response sequence from / to e. Its state-space 
equivalent  would   be  CB,CAB,CA7 B, ...,CAN~XB 

a 



where (A,B,C) stands for a state-space representation 
of the / to c process. 3 4 

Whm the process is not right invertible, the M matrix 
would not be invertible. In that case, a least-squares 
(LS) solution can still be sought. Constraints can 
be further used in the LS formulation to help shape 
the FF solution. For instance, by adding penalty on 
the magnitude of FF control, one can discourage suc- 
cessively large control which may result from a non- 
minimum phase process or an overly demanding tran- 
sient command. Likewise, the rate of the learned FF 
control can also be constrained to avoid actuator rate 
saturation and minimize the potential effect of noise. 
Extension to include hard constraints can be made 
using linear programming (LP) or quadratic program- 
ming (QP) type of formulations. 

This procedure is validated using a simulated 3x3 
multi-input multi-output (MIMO) process stabilized 
with decentralized PI controllers. Figure 2 illustrates 
the system performance in tracking a ramp command. 
The top plots show the tracking performance with 
feedback control only; the bottom plots show the per- 
formance after one repeat of the task. The impulse 
response matrix is estimated by differencing the "mea- 
sured" step responses. The simulation is done using 
the graphics oriented control design software, System- 
Build and MATRIXx. The solid lines indicate the 
command trajectories and the dashed lines the actual 
process responses. It is apparent that in this idealized 
linear time-invariant situation, the basic LC approach 
can achieve perfect tracking in one learning repeat. 
Good performance is also obtainable in a noisy en- 
vironment by taking proper noise reduction measures 
discussed in [1]. 

A question in order is: would this LC approach work 
well in a rugged industrial manufacturing environ- 
ment? The rest of the paper is devoted to reporting 
some preliminary experimental results of applying LC 
to wafer temperature tracking in an RTP reactor. 

3    The RTP Reactor and Wafer 
Temperature Control 

The  reactor,   on   which   the  experiments   were   con- 

3If u/t, is used for learning, then the impulse response se- 
quence should be from / to ujt,. 

4 Equations (11) and (12) have assumed that the only time 
delay is the sample delay, i.e., 1 delay. If additional process 
delays exist, some of the leading h's would be zero and should 
be removed from the equations, together with the corresponding 
leading e's. 
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Figure 2: Simulated Feedforward LC (MIMO case) 

ducted, uses the rapid thermal processing (RTP) tech- 
nology to process one wafer at a time. According to a 
pre-designed temperature command profile, the wafer 
is raised to high temperatures in a few stages dur- 
ing the course of the process and then cooled down. 
It is crucial to maintain tight temperature control at 
the set temperature, but it is also very important to 
quickly respond to the temperature command without 
overshoot. The FB controller is designed with an anti- 
windup PI and a lead/lag compensator in the forward 
path. The lead/lag is introduced to offset some of 
the phase lag due to the thermal capacitance induced 
process delay. (Process delays of about 1.25 seconds 
to 1.5 seconds are observed.) The FB controller is 
also gain-scheduled throughout the whole operational 
range to maximize the performance uniformity. How- 
ever, at the high end of the temperature range, it is 
more difficult to achieve high speed and stability si- 
multaneously, and stability is given higher priority. 

Figure 3 shows a "high-end" wafer temperature re- 
sponse to a step command from 800° C to 900° C. The 
settling time is somewhere around 25 seconds - slug- 
gish compared to the "low-end" performances. The 
next Section discusses how we use this information to 
design a FF control signal that drastically speeds up 
the temperature response. 

4    Feedforward   LC   Applied   to 
the RTP Reactor 

To carry out the FF learning procedure, one needs to 
measure the impulse response characterizing the trans- 
fer function from the FF signal to the temperature 
tracking error, e, or to the FB controller output, uji. 
One way to take such measurements is to inject FF 
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igure 3: Wafer Temperature Response to Tempera- 
ure Step Command (FB-Only Control) 

iteps and measure the associated responses. That is, 
'special system identification experiments would have 
to be conducted. 

I 

I 
I 
I 
I 
I 
I 
I 
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jFor the single-input single-output linear case, however, 
the transfer function from the command to wafer tem- 
perature is also equivalent to the transfer from the 
FF signal to the FB controller output except for a 
difference in sign. Therefore, we use the tempera- 
ture step response obtained above to derive the FF to 
FB impulse response. The step response, however, is 
contaminated by the square-wave type measurement 
disturbances. These square-wave disturbances are in- 
evitably introduced by the existing sensor. 

These disturbances must be removed in order to obtain 
a meaningful impulse response reading. This noise re- 
moval can be carried out by using (non-causal) low- 
pass filtering or by fitting a low-order system to the 
step response.   The particular filtering we used is a 
jack-knife subsampling and (cubic) spline interpola- 
tion scheme.   The contaminated step response (sam- 
pled at a 20 Hz rate) is first subsampled every 10 sam- 
ples.   Then, at each subsampled point, the tempera- 
ture reading is replaced by the average reading around 
that point (i.e., the average of readings at the original 
20 Hz rate around that point). Mean averaging with a 
window of size 15 is used. This is a form of jack-knife 
sampling [5] which is effective for estimating ensemble 
average without actually conducting multiple experi- 
ments.   These subsampled and averaged data points 
are then interpolated back using the (cubic) spline. 
This filtering scheme performs very well.    Figure 4 
compares the step response before and after smooth- 
ing.  (Other non-causal filtering schemes such as tak- 
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I 

Figure 4: Step Response Smoothing 
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Figure 5: The Estimated Impulse Response Model 

ing the average of forward and backward Butterwortli 
low-pass filtered results may also be adopted.) 

Next, the filtered step response is time differenced 
and sign reversed to produce an estimate of the FF 
to FB impulse response. Due to time differencing, 
the "tail" of the impulse response still exhibits some 
oscillations from the residual noise. To improve the 
steady-state performance of the FF solution, the tail 
is further smoothed out. The resultant impulse re- 
sponse model (with 1.25 second process time delay 
removed) is shown in Figure 5. 5 

Another needed ingredient is the "error" signal which 
is the difference between the desired and the actual. 
What is the desired? Since the step command is still 
driving the FB loop, and for practical reasons we ccr- 

Mt is noted that this "tail" problem could be avoided, if the 
impulse response is generated by a parametric model fitted to 
the data. 
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tainly do not want the temperature to respond like a 
step, a reference model is introduced to generate the 
desired response.    A first-order reference model with 
rise time of about. 2 seconds is used to provide the 
desired temperature response.   However, since we use 
the FB output, as an indication of how well the system 
performs, a desired FB signal must be computed. This 
desired FB signal is generated by feeding the difference 
between the step command and the desired tempera- 
ture response to a copy of the FB controller.   This 
FB controller's output is then the desired FB. This is 
because, in our configuration, though the desired tem- 
perature is the output of a first-order reference model, 
the (step) command is still driving the real-time FB 
controller. When and if the desired temperature tra- 
jectory is achieved, the FB controller would see an 
"ideal" error which is the difference between the com- 
mand and the desired temperature trajectory. 

With the desired and the actual FB, a FB output 
based error signal is obtained.   (This error signal is 
time-advanced according to Eq.   (11) and the foot- 
note comment thereafter to account for the process 
and sample delay.) This (time advanced) error signal 
and the impulse response vector were then used by 
the LC algorithm to compute a FF signal. The algo- 
rithm computes an appropriate FF signal that would 
minimize this error according to the impulse response 
model. For unconstrained situation, this minimization 
can be accomplished by exact inversion. However, it is 
known that exact inversion is often not a good idea in 
the face of uncertainties, a principle also found in iter- 
ative image deblurring [6] and adaptive signal process- 
ing [7].  We instead use soft inversion by numerically 
iterating with Optimal Gradient Descent [4, 1]. 

Thirty  (30)   numerical iterations are performed  be- 
tween process repeats. The resultant FF signal (shown 
in Figure 6) is then injected with proper time synchro- 
nization. Notice the calculated anticipatory action of 
the FF signal that precedes the step command. The 
result is a significantly faster response as shown in Fig- 
ure 6. The (to 90%) rise time is about three (3) times 
shorter than that of FB only control and yet without 
overshoot. However, it is noticed that the rise time is 
still longer than the desired, and the wafer tempera- 
ture starts the transition a bit too early (about   0.8 
second or so).   A few factors could have contributed 
to this, including measurement and numerical errors 
and perhaps process nonlinearity that would affect the 

fidelity of impulse response modeling. 

Using the same FF signal but delaying it by 0.5 sec- 
ond, a very good result is obtained and is displayed 

in Figure 7. The wafer temperature starts the upward 
transition just on time and hits the target in less than 
3 seconds with no overshoot. Comparing to the 25 
seconds or so settling time with FB only control, this 
means a saving of more than 20 seconds for just one 
processing step which is quite significant for RTP. 

Alternatively, in a more systematic manner as the it- 
erative LC algorithm suggests, the error signal from 
the the first try can be used by the LC algorithm to 
come up with a refined FF for the second task repeat. 
This procedure has been carried out numerically and 
yielded a refined FF signal.   However, due to a real- 
time implementation error, (which biases any FF sig- 
nal by its initial non-zero values,) the refined FF is 
realized with a step bias which, of course, prevents us 
from getting the correct result. 6  However, based on 
qualitative observation and quantitative anlaysis (that 
estimates the bias effect), the refined FF generated by 
the LC algorithm would have worked if implemented 
correctly.  Future experiments are needed to validate 

this. 

Finally, "robustness"  of the combined FF and FB 
scheme is revealed in the following two cases.   If the 
(first) FF is delayed by 1 second (i.e., twice as much 
as the 0.5 second delay), the wafer temperature is still 
well behaved and responds fast, but with about 7° C 
overshoot (for this 100° step). This provides a "feel" 
for the robustness of FF control. Another robustness 
indicator is the repeatability run which was performed 
three days after the first run was made and showed re- 
markable consistency. In between, the reaction cham- 
ber was taken apart once for examination and that 
apparently did not impact the performance. The rela- 
tively tight closed-loop FB control should be (at least 
partially) credited for the apparent robustness.  This 
is one of the reasons for using combined FF and FB 
configuration. 

5    Summary 

Feedforward learning is applied to control the wafer 
temperature in a typical RTP reactor in a rugged in- 
dustrial environment. The preliminary experiments 
have demonstrated a speed-up by a factor of 8, or 20 
seconds saving in one processing step, quite significant 

for RTP. 

With all the required ingredients readily measurable, 
the learning scheme, as decribed here and in [1], is 
suitable for on-site tuning and learning. The very en- 
couraging experimental results seem to strongly sup- 

sThis is not a problem for the first try, because the first FF 
s with values verv close to xero. signal starts with values very close to xero 
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Figure 6: Wafer Temperature with FF Learning - 1 

port the applicability of the theory and deserve serious 
considerations for practical implementations. 

The LC scheme discussed so far is signal synthesis 
based, i.e., appropriate FF signals are determined 
and memorized for specific tasks. An implementa- 
tion method for practical systems is to use dynamic 
FF filters driven by the recipe commands to generate 
the appropriate FF signals, thereby effecting general- 
ization capability and memory efficiency [8, 9]. It is 
interesting to note that these FF filters can be deter- 
mined using an extension of the LC scheme described 
herein. 
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ABSTRACT 

A new feedforward learning control (LC) scheme is re- 
ported in this paper. This new scheme is applicable to 
a class of smoothly nonlinear (repetitive) control tasks. 
Rapid reductions in tracking error are demonstrated us- 
ing a single-input, single-output (SISO), nonlinear model 
of the Rapid Thermal Processing (RTP) wafer manufac- 
turing process. 

This scheme preserves the simplicity of the basic LC 
scheme reported in [1] by using the (measurable) impulse 
response model. Since the "impulse response" of a nonlin- 
ear process varies as the process trajectory moves along, 
adaptation is used to adjust the impulse response model 
between task repeats. Analytical justifications for the pro- 
posed adaptation are provided using a nonlinear equation 
solving analogy. Extension to the mult-input and muti- 
output (MIMO) case is also included. 

1    Introduction 
It is well established that feedback (FB) control can provide 
a measure of robustness against process variations and distur- 
bances. The speed of FB control, however, must be balanced 
with stability considerations which are often limited by the pro- 
cess characteristics such as time delay. A properly designed 
feedforward (FF) control, on the other hand, can complement 
FB control by promoting non-delay and anticipatory actions, 
leading to superior tracking or disturbance rejection. Combin- 
ing FB and FF, one could have a robust, stable and yet agile 
control system. 

To automatically determine the appropriate FF actions a ba- 
sic Learning Control (LC) scheme and its variants have been 
reported in [l] for repetitive control tasks including many man- 
ufacturing type processes. Based on very simple and practical 
ideas, this basic LC scheme can lead to rapid learning of FF 
signals for (almost) linear time-invariant (LTI) processes, SISO 
or MIMO. The only required information is the process loop im- 
pulse response which can be readily measured on site, making 
this a practical on-site («ni'nj tool. 

In this paper, this simple and effective LC scheme is extended 
to the control of a class of nonlinear processes. Retaining the 
simplicity of "impulse response" modeling, this scheme uses 
between-task adaptation to adjust the impulse response model 
to successively achieve good approximations of the underlying 
nonlinear process dynamics. An interesting ixa) relationship 
between the adaptation mechanism and the basic LC allows 
the use of the same least-squares inversion type algorithm for 
a dual purpose.   Demonstrated on a nonlinear Rapid Thermal 
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Processing (RTP) semiconductor manufacturing process model 
this new adaptive LC scheme shows rapid convergence after 3 
adaptation task repeats.' 

The rest of the paper is organized as follows. In Section 2 the 
basic LC scheme and its variants are reviewed. In Section 3 
the nonlinear RTP model is described first, and then the basic 
LC scheme a applied. It is shown that the measured "impulse 
response- of this nonlinear process model varies considerably 
with the size of the impulse input. Consequently, the basic LC 
scheme which uses a single fixed «impulse response" does not 
perform well. In fact, one of the impulse responses led to iter- 
ative learning divergence. Section 4 first shows that with the 
new adaptive LC scheme, the temperature trajectory tracking 
is (nearly) perfected after 3 adaptation task repeats. Then in 
Section 5, this adaptive scheme is formulated using a preiie- 
J.on error minimization view for the SISO case. Minimizing the 
prediction error, the adaptation scheme adjusts the impulse re- 
sponse model between task repeats. The computation algorithm 
is a ««a/to the basic LC. thereby allowing software reuse. Sec- 
tion 6 offers an insightful illustration of this adapti ve LC process 
by using a "ID" nonlinear algebraic equation solving analogy. 
This illustration links this adaptive process to successive ap- 
proximation methods used in solving nonlinear equations [2 6] 
Section 7 extends this adaptive LC scheme to the multi-input 
multi-output (MIMO) case. 

2    The Basic Learning Algorithm and 
Variants 

Consider a combined FB and FF control configuration as shown 
in Figure 1. The basic LC scheme and its variants can be de- 
scribed by: 

/(•+') = /(•) _ KeU) (1) 

where e<'> is the tracking error vector > and /(■") the FF signal 
in the .-th iteration, and K is a general (linear) operator which 
facilitates LC. This LC operator, K, may include time-advance 
operations to allow proper credit is,i,nmcnt for the leamine 
process. ° 

Realizing that both / and the command r contribute to e 
straightforward analysis yields the following relationships in 
noiseless conditions: 

/(■+»)     =    (/ - KM)ji'~) - KTr 

where M is the transfer operator from / to e, and T is the 

i„„,?,£!er Cert"in ?°ndit»M- the "mal üyk, instead of th« track- 
.ng error , t may be used for iterative learning, where Ü,» Uth« 
d<v,at,ono( the FB controller output from . reference U/7 

(2) 

(3) 
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Figure 1: Combined Feedforward and Feedback Configu- 
ration 

transfer operator from the command r to e: 

M = -(I + VC)~1V (4) 

r = /-(/+ VC)~lVC (5) 

Notice that if K is chosen as the inverse of M, i.e., the transfer 
operator from / to e, then exact convergence with one repeat it 
pottihle. This is because if K — M~*, 

/(■+1)     =     (I-M-*M)jW-M-lTr (6) 

=     P~lr (7) 

e('+1)     =     0 (8) 

where / = V~1r is the "perfect" FF control signal for repro- 
ducing the command trajectory r. i 

A more relaxed condition for tracking convergence is that 
|A,(J - MK\ < 1 or 0 < Xi{MK) < 2. where A, denotes the 
eigenvalues, and matrix M is a time-domain (Toeplitz) realiza- 
tion of the transfer operator, .M, as shown in Eq. (10) below. 
This relaxed condition allows the use of a broader scope of al- 
gorithms ranging from cases where M~x is not known exactly 
(e.g., due to measurement imprecision or process nonlinearity) 
to gradient descent type of optimization algorithms. Now, in- 
stead of converging in one repeat, it will take multiple repeats 
to achieve satisfactory results. 

Computationally, this basic algorithm involves the following (as- 
suming the closed-loop FB system is LTI): 

ej 

ej 

«4 

(9) 

.  eN+l   . 

hi 0 0 ...      0 
h3 «i 0 ...      0 
h3 hi hi ...      0 

/(••+!)       _ 

.  hfj     /»jv-i      hs-i 

=     Mdf 
/(■■) + #(0 

dfi 
dh 

.  dfN 

(10) 

(") 
(12) 

'■p-' assumes the existence of process "right inverse" |3, 1). A 
necessary condition is that the number of process inputs must be 
no less than the number of outputs. With the existence of T~l, 
the existence of X-1 for the closed-loop is assured. When the 
right inverse does not exist, least-squares solutions can be sought 

according to the computational formulation to follow. 

Figure 2: Step Response of the RTP Model under FB-orJy 
Control 

where fcj ,nj,n3,...Aw is the closed-loop impulse response se- 
quence from / to e (which can be readily measured on-site). 3 

* Notice that the above formulation is equally applicable to 
SISO and MIMO LTI problems as the simulation results in [l] 
demonstrate. 

Variants of this basic computational scheme are described in 
[1], addressing the issues of process invertibility, phase non- 
minimality, process and measurement uncertainties, actuator 
constraints, etc. These methods are various constrained or reg- 
ularized least-squares (LS) type solution procedures that are 
considered useful and robust for handling these practical issues. 

3    The Basic LC Applied to A Nonlin- 
ear RTP Model 

In this section^ we apply the basic LC scheme which is de- 
signed for LTI processes to a nonlinear single-input single- 
output (SISO) RTP process model which is under stable, its'» 
tchcdulci "linear" FB control. This RTP model exhibits a 1 sec- 
ond time delay, and is commanded to go from 650° C to 750° 
C "as quickly as possible" and preferrably with »o over$kaat 
The step response of the FB loop is shown in Figure 2. Ap- 
parently that to avoid overshoot, the FB controller takes a long 
time to eliminate the steady-state error. This performance is 
only marginally acceptable, and improvement is highly desired. 
To apply the basic LC to this nonlinear FB-loop, an "impulse 
response" measurement has to be made. For a nonlinear pro- 
cess, the notion of "impulse response" is imprecise and, at best, 
a first-order approximation (in the sense of a Volterra series ex- 
pansion [4].) It is expected to vary as a function of the process 
state and input. The degree of these variations depends on the 
degree of the nonlinearity. 

In this study, the / to «^ "impulse response" model is used. 
* Figure 3 shows three estimated "impulse responses" (corre- 
sponding to the transfer from the FF signal to the FB controller 
ouput). The first two are estimated by inputting a FF step 
of 10% and 30% power command, respectively into the model. 
Then, the "impulse responses" are estimated by differencing the 

iff 

3lf ü/k is used for learning, then the impulse response sequence 
should be from / to uyk. 

'Equations (9) and (10) have assumed that the only time delay 
is the sample delay, i.e., 1 delay. If additional process delays exist, 
some of the leading a's would be zero and should be removed from 
the equation, together with the corresponding leading e's. 

This is because for single-input single-output (linear) processes, 
the transfer function from the command r to the wafer temper- 
ature y is the same as the transfer function from FF (/) to FB 
(u/t) with an exception of the sign. Knowing the r to y tempera- 
ture step response from the FB-only performance (and hoping that 
the nonlinearity is not too severe), one can estimate the FF to FB 
impulse response without having to conduct special system identi- 
fication experiments. In practical applications, these savings could 
be meaningful. 
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Figure 3:   Three (3) Estimated "Impulse Responses" for 
the Nonlinear RTP Model 

Figure 4: Basic LC Results using "Impulse Response* 
Model - Arioo 

itep responses. The third "impulse response," ^,100, is inferred 
from the actual temperature response to the temperature step 
command (650° C to 750° C) according to the above (footnote) 
discussion. It is apparent that these three "impulse responses" 
exhibit quite different gain and dynamic characteristics. Since 
the third "impulse response" is the one that in practice can save 
a system identification experiment, we use it in the simulation 
for studying the basic LC. Figure 4 shows the results after one 
task repeat and after three task repeats. It is apparent that with 
this particular "impulse response," fc^oo, the basic LC seems 
to diverge. In practical applications, however, one may use only 
a fnetion of the FF signal recommended by the basic LC algo- 
rithm to increase the chance of convergence. In fact, with this 
"divergent" fc,10o. good results are obtained after many itera- 
tions, if the basic LC recommended FF signal is discounted by 
50% at each iteration. Certainly, one could ask questions such 
as: what is the minimum amount of discount that would still 
guarantee convergence, etc. The reaf itixe, however, is that the 
many iterations means potentially many calibration runs which 
would make the method less attractive. Instead, using the pro- 
posed new adaptive learning FF control method, in the next 
section we present some very attractive results with convergence 
virtually achieved after two or three adaptations. 

4     Adaptive LC Applied to the Nonlin- 
ear RTP Model 

Using the adaptation scheme to be described in the next section, 
rapid convergence is demonstrated here with the nonlinear RTP 
model. Figure 5 (upper) shows the results after 4 task repeats 
(or 3 adaptations). « The FB-only response is also shown in the 
upper plot to contrast the performance improvement effected 

*Since learning is "from scratch," i.e., the initial FF is zero no 
adaptation takes place until after the fint task repeat and therefore 
there are only 3 adaptations in 4 task repeat«. (Since teaming has 
•topped after 4 repeats, no adaptation is made after the 4th repeat 
either.) 
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Figure S:   Adaptive Learning Control Result:   nonlint 
RTP model   after 4 task repeats) 

Figure 6: Impulse Response Models: before and after adap- 
tation 

by the adaptive LC. The temperature response has virtually 
conformed to the desired response which is that of a first-order 
system with a 0.S second time constant. The desired response 
is displayed in the lower plot for the ease of comparison. 

Figure 6 compares the (final) Uepted "impulse response" with 
the original "impulse response," hrloo, which is used prior to 
adaptation by the basic LC algorithm to perform the first task 
repeat. Figure 7 shows the sequence of intermediate results 
with 0, 1, 2 and 3 adaptations (or equivalently, with 1 2 3 and 
4 reP«ts). It is noticed that the learning process has converged 
rapidly after 2 adaptations. With this kind of convergence, this 
technique can be very useful in practical manufacturing pro- 
cesses that exhibit a considerable degree of nonlinearity a, this 
HTP model. By investing in a few calibration runs, one may 
gain substantial improvement over many production runs. Once 
a near optimal FF signal is established, this technique can also 
be used for fine tuning as the equipment drifts over periods of 
time. 

Before discussing the details of this new adaptation scheme in 
the next Section, a case subject to periodic measurement dis- 
turbance (with random phase) is presented here to demonstrate 
the algorithm's robustness in a noisy environment. Figure 8 
shows the results after 4 repetitive applications of the adaptive 
LC algorithm (i.e., 3 adaptations). The learned response is plot- 
ted against the (step) command, the response of the reference 
model and the FB-only response subject to the same random- 
phased disturbance condition. Apparently, the learned response 
tracks the reference response quite well in the face of the dis- 
urbance. It is noticed that the adaptive LC doe» not seem 
o aggravate the disturbance», and the steady-state disturbance 

level remams about the same as that in the FB-only case. Note 
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Figure 8: Adaptive Learning Control: a noisy case 

that in this simulation, no special filtering is used. The robust 
performance is a result of 1) adapting only the early portion 
of the impulse response model, T and 2) using "soft" inversion 
instead of "exact" inversion for LC computations between task 
repeats to avoid amplifying noise. • In practical applications, 
proper filtering [l, 7] of the signals would add extra protection 
against disturbances and noise. * 

5    The New Adaptation Scheme - SISO 
Case 

Since the notion of "impulse response" for a nonlinear process 
is imprecise, the model would vary as a function of the pro- 
cess state and input. The idea then is to adaptivelj adjust the 
impulse response model as the learning process proceeds. The 
basis for adaptation is the mismatch between what is expected 
and what one actually gets. For the ease of presentation, we 
focus on single-input single-output (SISO) case in this section. 
Extension to the MIMO case is considered in Section 7. 

Figure 9 illustrates this prediction error based adaptation 
scheme. After the i-th task repeat, the basic LC scheme is used 
to determine the FF increment, d/<'\ for the next repeat based 
on the heat impulse response model, h^'\ that one has at the 
time. Applying this FF increment, d/(">, to the process, one can 
expect (predict) a new (tracking) error according to the current 

This is a simple robustiflcation procedure discussed in the next 
Section. 

Also, see Section 5 for more details on this. 
In (7), experimental work of applying LC to wafer temperature 

control in a typical RTP reactor is discussed. Considerable sensor 
disturbances are encountered and successfully removed. The oper- 
ation condition, however, is linear enough that the basic LC prove« 
to be quite adequate. 
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Figure 9: Prediction Error based Adaptive LC Scheme 

impulse response model: 

£(•+» = £<•> + [A<0]ay(0 (13) 

where £(') is the actual measured (tracking) error (i.e., Ü,. 
in our case) from the i-th task repeat, and [h] stands for the 
Toeplitz matrix form of n as shown in Equation (10) which actu- 
ally performs con»o/«tion between k and df. Before convergence 
is achieved, the expected error for the (i+ l)-th task repeat will 
be different from the actual observed error due (primarily) to 
the errors associated with the impulse response model. This 
difference, termed prediction error, is denned as: 

Substituting for £('+1), 

=     £(•+') _ £<•) _ [ay<0]ft(') 

(11) 

(15) 

(16) 

where we have used the fact that the convolution between h and 
dj a commutative to arrive at the second equality. This is a key 
technical step leading to the following adaptation algorithm- 

tprtd      = 
e« 

eN-rl    J 

(17) 

dh 0 0 
dh dh 0 
dh dh dh 

. dfN     dfN. dfN- d/i  . 

dVi, 

dk2 

dh* 

L dKN j 

(18) 

and adapt ft according to: 

*(•+«) _ „(0 + d-h (19) 

Solving this matrix equation, Eq. (18), can be approached by 
exact inversion, constrained least-squares, or "soft" inversion 
using a finite number of numerical iterations with optimal gra- 
dient descent, etc. ,0 For optimal gradient descent, the gradient 
(with respect to ft) is readily expressed as: 

1 »(ffiV 
5   aA(') 5      = (20) 

(21) 

The details are described in our previous paper (1). (In the face 
of uncertainties, soft inversion is often preferred to exact inversion - 
a principle also found in iterative image deblurring 181 and adaptive 
signal processing [9].) * v 
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Hence, the OptimAl Gradient algorithm for the adaptation of h 
i, [5]: 

/><•+'>      = 

(s'<7)/{sV/(,)]'[#(,)]s) 

(22) 

(23) 

(24) 

N*mcrically iterating with the Optima] Gradient Algorithm 
finitely many times performs soft inversion for Eq. (18) at each 
task repeat. 

Notice that this matrix equation for h adaptation is exactly 
the a*«/ to the basic LC algorithm which solves for df (Eq. 
(10)). The roles of dh and df are exchanged in these two dxal 
froilems. This allows the reust of the software developed for the 
basic LC in the adaptation of h. It also allows the variant LC 
algorithms [l] to be used in h adaptation. For instance, the rate- 
constrained LC algorithm might be useful in the adaptation of 
A to discourage measurement noise from entering the adapted h. 
However, this rate constraining should be used primarily on the 
"tail" portion of the impulse response model, K. This is because 
the early portion of A has high signal-to-noise ratio (SNR) and 
usually exhibits Cast transient response due to the dominant 
process dynamics, and therefore should not be penalized for rate 
of change. 

Implemented in a simplified manner, one may choose to adapt 
only the early portion of the n model and leave the rest intact. 
This way, the potential contamination by measurement noise 
is minimized (provided that a reasonable "tail" portion of the 
initial k is available). For example, if only the first k terms of h 
are adapted, the adaptation matrix, equation becomes: 

«a 
h 

0 
0 
0 

e*+l 

L e//+i 

df, 0 0 
df. dfi 0 
df* ill dfx 

.   dfff      J/AT-1      dfN_t dfN- 

rdhi i 
dh2 

dh3 

- dhk  . 

(25) 
This simple scheme actually works quite effectively with noise 

according to the simulated results. It also seems to robusiify 
the adaptation scheme even in a noiseless environment. This is 
because sometimes "tail swings" may occur in the intermediate 
runs before convergence is achieved. Being able to hold fast 
onto the steady-state portion of the h model would encourage 
consistently good steady-state convergence. 

6    Justifications    of    the    Adaptation 
Scheme 

In this Section, we offer a simplified but insightful illustration of 
the workings of this adaptation scheme. By reducing the dimen- 
sion of the A vector to 1, the problem becomes that of solving a 
single-variable nonlinear algebraic equation. In that context, it 
then becomes clear that the proposed adaptation is the secant 
method [6]. The secant method is an effective method for solv- 
ing nonlinear algebraic equations and is convergent if the initial 
trial solution is close enough to the true solution. Visualizing 
the iterative solution process provides deeper understanding of 
this adaptation scheme and helps sketch out possible formal 

Figure 10: A Nonlinear Algebraic Equation Solving Anal- 
ogy 

proofs of convergence by qualifying the underlying nonlinearity. 
Extending from the nonlinear algebraic analogy to a dynamic 
setting can be accomplished using the concepts from operator 
theory and functional analysis [Jj. 

Considering a one-dimensional case, Figure 10 depicts a prob- 
lem of finding the right input, x*, that will produce the desired 
outcome, y*. on a nonlinear curve. We decide to use linear 
model templates to successively approach the right solution. To 
get started, we conduct a System identification" experiment by 
putting in input, xo, and observing the corresponding y value 
on the nonlinear curve, i.e., j/o- Based on this experiment, we 
build the first linear model, ÄW, which is the equation describ- 
ing a line passing through the origin with slope of yo/xo- Using 
this initial model, we now proceed to find X* by determining 
what x value would give y* as output. By solving the equation, 
M°)(x) = y*, it is determined that xi would be the "right" 
x value. However, the nonlinear curve responds to xj with a 
value, V! that is quite different from the desired y' as Figure 11 
illustrates. The difference between the actual, yj, and the ex- 
pected, y*, is used (together with the amount of x incremented, 
i.e., xi) to determine the modification that should be applied to 
h.W. After this modification (adaptation), the updated linear 
model, At1), is the line passing through the origin and the point, 
(*ltVl)- Extending this line to find the value of x that would 
produce the desired y*, we obtain xj. 

However, instead of reaching the desired y* we obtain the value 
yj by applying xj to the nonlinear curve. Notice that yj is still 
considerably less than the desired y*. The difference between 
yj and y* is the prediction error which is used (together with 
the amount of x incremented, i.e., x2 - i\) to determine the 
adaptation needed for A*1). The updated linear model, A<2>, is 
the line passing through the points, (xj, y,) and (xj, yj). Using 
this updated linear model, it is recommended that x3 be used 
to reach the desired goal. 

Repeating this prediction and correction cycle one more time, 
we have another new linear model, A<3), which is the line passing 
through points (x2, yj) and (x3,»). Now this new linear model, 
hS ', recommends x« as the input for achieving our goal. This 
time, the recommendation is very close to being optima], (since 
the result of applying x« to the nonlinear curve is very close 
to the desired response, y*,) and the process has practically 
converged. 

It is noted that the above procedure is identical to the so-called 
secant method in algebraic equation solving [6]. The secant 
method is a /oeo//y convergent method with a respectable or- 
der of 1.62 convergence rate. The fact that the secant method 
does no« require the evaluation of any derivatives (i.e., gradi- 
ents) is of special advantage here, because it translates to the 
adaptive LC scheme not requiring any special system identifies- 
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Figure 11: The Nonlinear Algebraic Equation Solving 
Analogy (in action) 

tion experiments except for the first run. 

7    The   New   Adaptation    Scheme   - 
MIMO Case 

In this section, we extend the SISO adaptation algorithm to 
the multi-input multi-output (MIMO) case. For MIMO cases, 
there are some added technical complexities that make it more 
challenging and illuminating. 

First of all, the key technical step in the development of SISO 
adaptation, i.e., from Eq. (IS) to (16), no longer holds. This is 
because the MIMO nature makes h a matrix and df a composite 
"long" vector which contains segments of multiple-input df's. 
"Commutation" is no longer as straight forward as it is in Eqs. 
(15) and (16). Instead, the following equation (i.e., essentially 
Eqs. (15) and (18) combined) 

ej 
ej 
e« 

L «Af+1 

dh, 
dh7 

0 
d'h, 

0 
0 

dh3 dh2 dhi 

. dhs     dh N-i dhN_ N-i 

can be transformed to: 

e% 

l- 'Ä+1   J 

<</,' 0 0 

</i «v; 0 

«1 w tfj 

<V'N    V'H «ft N-2 

0 
0 
0 

dh, 

0 
0 
0 

«ft 

df, 
dh 
dh 

djs 
(26) 

dht 

d'h? 

d'h'3 

dh. 
(27) 

Let us use a 2 x 2 MIMO process for illustration. Notice that 
originally e» is a 2 x 1 column vector corresponding to the 2 
output "prediction" errors at time k. Now, since e'k is a 1 x 
2 row vector, the left hand side of Eq. (27) has become an 
N x 2 matrix with the first column denoting the first output 
"prediction" errors and the second column the second output 
"prediction" errors. Likewise, the second entity on the right- 
hand-side of the equation has become an 2/V x 2 matrix. The 
first column corresponds to the impulse response models of the 
first output (due to the 2 inputs). These observations suggest 
that the MIMO adaptation could be performed one output at a 
time. That is, the above matrix equation can be split into 2 sets 

of [N x 1] = [N x 2N)[2N x 1] vector-matrix equations which 
can be (readily) solved using the SISO adaptation procedure. 

However, noting that there are ?N A's to adapt, whereas there 
are only N equations, this split formulation seems underdeter- 
mined. (This is partly due to the redundancy in impulse re- 
sponse modeling.) Fortunately, this problem can be overcome 
by invoking the robust SISO adaptation scheme that only a por- 
tion of the h model needs adaptation. Therefore, this MIMO 
adaptation problem can be readily solved one output at a time 
using the robust SISO adaptation scheme. 

One more technical detail is that even with more equations 
than unknowns (by adapting only a portion of h), this problem 
can still be ill-conditioned. This happens when the columns of, 
"y. [dfi,dh,df3 dfN]' are (nearly) identical thereby render- 
ing the N x 2N matrix in Eq. (29) (nearly) singular. Physically, 
this means when the df's for the 2 inputs are nearly the same, 
the multi-input aspect of the MIMO process is not adequately 
probed to allow reliable identification of individual input con- 
tributions. This phenomenon, called multi-collincarity [10], in 
multi-variable regression is known to lead to erroneous models. 
In practice, when the process does not respond to the 2 inputs 
equally, this may not be a problem. This is because then the 
2 df's are likely to be different. On the other hand, if the pro- 
cess is fairly input symmetric, it may be necessary to perturb 
the 2 df's so that adequate excitations are available for reliable 
adaptation. 

8    Summary 
A new adaptive learning feedforward control scheme is intro- 
duced in this paper. This new scheme retains all the key features 
of the previous basic LC scheme [1], such as modeling simplicity 
and applicability with or without FB control, SISO or MIMO. 
Above and beyond, this new scheme extends the applicability of 
LC to include a class of smoothly nonlinear processes in an effec- 
tive way. Rapid reductions in tracking errors are demonstrated 
using a nonlinear RTP manufacturing model. Computational 
algorithms are given along with robustness considerations. An- 
alytical justifications are given using an analogy with the secand 
method used in algebraic equation solving. 
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