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Abstract 

We have developed algorithms for high resolution computations in com- 
plicated geometries that are as automatic as possible. This includes the 
development of Cartesian grid methods, for easily representing complex 
geometry using non-body fitted grids, and the development of adaptive 
techniques, designed specifically for Cartesian grids, for increasing the res- 
olution of a computation where necessary. Some 3D examples are included 
to illustrate the performance of the method. 
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1 Objectives 

We have been developing algorithms to simulate steady state flows in three space dimensions 
using a Cartesian grid representation of the geometry. This continues to be a collabora- 
tion with Captain Michael Aftosmis, at Wright-Patterson/NASA Ames Research Center, 
and John Melton, at NASA Ames Research Center. In this approach, a solid object is su- 
perimposed on an underlying Cartesian grid, and the flow is computed around the object. 
This makes the problem of volume grid generation substantially easier, with the bulk of the 
work reduced to finding intersections between a possibly complex configuration and a regular 
Cartesian grid. However, the difficulty of grid generation is traded for the difficulties in the 
flow solver of imposing solid wall boundary conditions on a non-body fitted grid. Our work 
on flow solvers for this kind of grid however indicates that acceptable results that maintain 
second order accuracy over the entire flow field can be obtained. 

Our research in the last several years has focussed on the important issues of robustness, 
automation, and efficiency, all of which are needed to make this approach usable by a wide 
audience for a variety of problem geometries. We have developed computational geometry 
procedures which form the basis of the grid generation algorithms. We have started (but not 
yet completed) a redesign that allows directional adaptation in the Cartesian mesh generation 
to improve the efficiency of the overall approach. We have developed numerical discretizations 
to improve the accuracy of the flow solver at the irregular cut cells adjacent to a solid body. 

2 Research Accomplishments 

2.1     Geometry 

The ability to automatically generate grids around complex configurations regardless of the 
topology is extremely important. This permits automatic optimization of inlet design, for 
example, with no human intervention, even if there are topological changes in the geometry 
that require new grid generation. Using surface triangulations to describe the geometry, we 
have developed an approach for generating the volume information needed for a Cartesian 
grid flow solution. The computational geometry algorithms are well understood, and the grid 
generation can be fully automated. It consists of basic geometric operations involving planar 
intersections, rather than case-specific operations that depend on each configuration and are 
extremely labor-intensive. This approach is more tolerant of skewed surfaces meshes, since 
they are not used for the flow computations. It permits the easy incorporation of component- 
based geometry definitions, rather than the single watertight description often required. 

To make this approach completely robust, we have developed a procedure to handle the 
degenerate cases that inevitably arise. For example, the geometry pre-processor needs to 
determine whether two triangles from different component descriptions intersect. This boils 



down to testing the sign of a 4 by 4 determinant. For small determinants, if round-off error 
leads to an incorrect sign, it is possible to end up with inconsistent answers from neighboring 
triangles. Ultimately this leads later in the program. There is much recent activity in the 
computational geometry literature about "exact" geometric computation [9, 5, 7]. Usually 
this means using extended precision or integer arithmetic, which is very costly. The approach 
we take, based on the high quality software package by Shewchuk, is to use floating point 
arithmetic whenever possible, and detect those cases when forward error analysis indicates 
an untrustworthy. For those cases, the Shewchuk package uses adaptive precision floating 
calculations to improve the accuracy until the sign computation is robust. If in fact the 
results of the determinant calculation is exactly zero, this degeneracy is automatically and 
consistently resolved using the virtual perturbation approach of Mucke. 

Based on this approach, a major achievement in this grant period is the development of a 
geometry pre-processing algorithm which greatly simplifies and speeds up the Cartesian grid 
generation, as well as being of independent use to other researchers. The preprocessor takes as 
input multiple component geometries, each a watertight description of an object, but possibly 
overlapping with other components in an arbitrary way. It produces a single watertight 
surface description as output. This step also greatly simplifies the grid generator, since later 
parts of the algorithm will not have to waste time calculating and classifying grid/object 
intersections that are actually internal. It relieves the CAD operator of a tremendous burden 
in preparing the geometry for CFD. As an example of this, the geometry in figure 1 was 
described by 82 components and 320,000 triangles. The component pre-processing took 
under 4 minutes on an SGI R4000 workstation. 

In additional work, we have redesigned the Cartesian mesh generator using advanced 
data structures and minimal storage. We developed criteria based on estimates of the local 
curvature to represent a complex geometry to a certain level of accuracy. This is the procedure 
that determines the level of grid refinement in the initial grid used to start a flow field 
simulation. (Subsequent refinement is based on properties of the flow field solution rather 
than the geometry.) 

As with any grid generation method, there are difficulties and exceptions which occur 
rarely, but take most of the programming effort. For the Cartesian grid method the difficulty 
lies in what we call the "thin section" problem. By this we mean the problem of representing 
a piece of the geometry that is so thin that it bisects the Cartesian cell into two .disjoint 
sections (see figure 2). 

For thin wings for example, this can occur over the last 10-15% of the wing. Without 
special handling, the upper and lower surface of a good portion of a thin wing or vane could be 
indistinguishable, giving completely unacceptable results. Viewed as a problem in computa- 
tional geometry, the solution amounts to recognizing connected components (the intersection 
of the geometry with a hexahedral cell), and recognizing which side of the geometry is in the 
flow field (i.e. whether or not you are "inside" or "outside" the geometry). 



Original component based geometry «Sä 
(300K triangles) 

View inside original geometry 
before intersection 

View inside geometry 
after intersection 

(3mins 20sec, SGI R4000, lOOMhz) 

Figure 1: Combat helicopter geometry with 82 components defined by 320,000 triangles. 

2.2    Flow Solvers 

Our Cartesian grid efforts have been directed towards computing steady compressible inviscid 
flow [6, 2, 1]. We examined the question of accuracy of flow solutions on non-body-fitted 
grids. Since the cut cells at the boundary of a solid object do not form a smooth grid, how 
accurately can we compute solutions on such grids? Mesh refinement alone cannot be relied 
on to improve the accuracy, since the CPU and memory costs of isotropic refinement in 3D 
are prohibitive. The whole issue of numerical accuracy on irregular grids remains poorly 
understood. The order of magnitude of the local truncation error can be misleading, since 
the usual convergence analysis (if you take n steps and make an error Athp at each step, the 
global error is 0(hp)) is overly pessimistic [8]. 

Using a 2D model problem of supersonic flow in a circular channel with an analytic 
solution we have studied the accuracy of numerical solutions on Cartesian grids. Our results, 
and those of ([4]), do indeed show that the accuracy of the flow solution suffers at the irregular 
cells where the body intersects the Cartesian grid. Unfortunately, this is exactly where you 
would like the solution to be most accurate. For our test problem we used an upwind Godunov 
scheme with a linear reconstruction of the solution in each cell. The solution over the entire 
flow field shows second order accuracy, but that drops to 1.3 along the boundaries. 

To improve this situation, we developed what might be analogous to p-methods in the 



Figure 2: A thin piece of geometry can bisect a cell into disjoint pieces. 

finite element world. It is natural to do more work at the boundary, and the asymptotic 
estimates of the total work over the entire flow field will not be affected (although in practice, 
a large fraction of the cells are at the boundary). We explored higher order discretizations for 
use only at the boundaries, including quadratic reconstruction of the solution, two point Guass 
quadrature for the flux integrations, and a higher order surface boundary condition along 
with a sub-cell resolution approach were we locally improve the resolution at the boundary. 
With these improvements, the order of accuracy at the cut cells for our test problem is 
approximately 1.8, with the magnitude of the error decreased by a factor of 5. (Of course the 
global accuracy remains second order throughout the flow field). A report on this work is in 

[3]. 
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