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Surfactant-Enhanced Bioremediation

Technical Report for July 1996 to June 1997
Air Force Office of Scientific Research Grant F49620-94-1-0327.

Overview

Removal of hydrophobic organic compounds (HOC) from contaminated soils is severely affected by the
low HOC water solubility and high partitioning onto the soil matrix. Surfactants have been found to be
effective in solubilizing hydrophobic contaminants from soil surface (see Figure 1). Solubilization depends
on the type and dose of the surfactant, the hydrophobicity of the contaminant, the surfactant-soil interaction
[Edwards et al. (1994a,b,c, 1992a,b, 1991); Aronstein at. al. (1991); Liu et. al. (1990)], and the time that the
contaminant has been in contact with the soil [Vignon‘ and Rubin (1989)]. The same traits which result in
the low HOC water solubilities also result in low HOC biodegradation rates. Over the last few years
attention has been focused on increasing the bioavailability of HOC with the addition of surfactants [e.g.,
Aronstein et al. (1991); Edwards et al. (1992b); Guha and Jaffé (1996a,b); Guha (1996)]. While research
has indicated that surfactants can enhance the solubility and bioavailability of hydrophobic compounds, the
question remains as to whether surfactant-enhanced bioremediation is a feasible process for remediation of

contaminated soils.

Objective

The combination of surfactant-enhanced HOC solubilization and bioavailability shown in Figure 1 has the
potential of enhancing the biodegradation of HOC; however, the interactions between the HOC
solubilization and bioavailability, and effects of HOC sorption/dissolution, need to be examined in order to
determine the feasibility of the surfactant-enhanced bioremediation (SEB) process. The objective of the
current research is to increase our understanding of the SEB process and to identify operational regimes
where the SEB process is applicable. This objective will be met by, (a) developing a model of the SEB
process, (b) validating this model with the experimental results of Guha and Jaffé (1996a,b) and Guha

(1996), and (c) using the validated model to investigate the operational regime of the SEB process.

Summary of Results for Reporting Period

1. Bioavailability Analysis

The surfactant enhanced bioavailability of phenanthrene was analyzed for systems with soil. This analysis
builds on the bioavailability analysis performed earlier, where the bioavailability equations have now been

modified to account for the results of Guha and Jaffé (1996a,b). Three cases were examined:
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I. The total phenanthrene in the system is below the aqueous solubility limit (0.73 mg/L of
phenanthrene in a soil-slurry reactor with 5% w/w soil which has a 2.6% organic carbon

content - these are the experimental conditions of Guha (1996)).

2. The total phenanthrene in the system is above the aqueous solubility limit, but the aqueous
phenanthrene concentration is below the solubility limit due to phenanthrene sorption to the

soil. (14 mg/L of phenanthrene in the soil-slurry reactor)

3. The total phenanthrene in the system is sufficient to maintain the aqueous phenanthrene

concentration at the solubility limit (25 mg/L of phenanthrene in the soil-slurry reactor).
The following conclusions can be made from the analysis presented in Figure 2:

1. There is an optimal surfactant range for enhanced bioavailability. The location of this range
depends on the CMC (shifts due to surfactant sorption to the soil), and the width of the range

depends on the shape of the micellar-phase bioavailability factor (Figure 1b).

N~

Surfactant-enhanced bioavailability (which is defined as a bioavailability greater than the
aqueous contaminant concentration when there is no surfactant present) occurs under all three
cases of Figure 2. While there is enhanced bioavailability through the addition of surfactants
to a soil-slurry system under all cases, it is most pronounced when the total phenanthrene
concentration in the system is greater than the solubility limit. However, if there is a minimum
substrate concentration required for bacteria to degrade a contaminant, surfactant-enhanced
bioavailability may provide a means to biodegrade to a level lower than that possible without

surfactants.

3.  While the surfactant concentration range for enhanced bioavailability is a function of the total
phenanthrene concentration, the surfactant concentration giving the maximum phenanthrene
bioavailability is independent of the phenanthrene concentration. For the conditions in Figure

2, the optimal surfactant concentration is approximately 800 mg/L.

2. Biodegradation Enhancement Analysis

While above results show that there is a surfactant concentration region which provides an enhanced
bioavailability, it remains to be seen if the bacteria are capable of utilizing the increase in bioavailable

phenanthrene. To address this issue, we start with the Monod equation:

_ Coio N
l’l umax KS + Cb]o

Here, | is the biomass growth rate, [y, is the maximum biomass growth rate, Cy;, is the bioavailable HOC

concentration, and K; is the Monod half saturation coefficient. It can be seen from Eqn. 1 that if Cy;, is




much greater than K, then the bacteria are growing at their maximum rate. Thus, any further improvement
in the bioavailable concentration will have negligible effect on the overall biodegradation rate. In order to
assess the effect of surfactant addition on the growth rate (i.e., HOC degradation rate), we can define the

percent improvement in biodegradation rate as

C bio

K. +C,
AT/ 4l 4009
c

aqueous

K,+C

aqueous

where Cuqueous 15 the aqueous phenanthrene concentration without any surfactant present, and [ is the percent
improvement in biodegradation rate through the addition of surfactant. Eqn. 2 gives us a method to judge
the relative improvement in biodegradation rate through the addition of surfactant. For example, the
percent improvement in biodegradation rate for the conditions of Figure 2(b) shown in Figure 3 suggests
that the largest improvements in biodegradation rate will be realized with bacteria that have a high K

coefficient.

Figure 3 also suggests that for lower K, values, there is no significant advantage in increasing the
bioavailable concentration beyond a certain value. If we look at a K, = 0.6 mg/L in Figure 3, we see that
there is no significant advantage in improving the bioavailable concentration above ~2 mg/L. Figure 4
shows the results of a model run for this case. It is seen in Figure 4 that the optimal surfactant regime which
results in improved biodegradation appears to be somewhat flatter than that suggested by the bioavailable
concentration shown in Figure 3(b). This is due to the effects of K and Cy;, on I (Eqn. 2), as depicted in
Figure 3. Figure 4 does show that the optimal surfactant concentration is approximately 800 mg/L, as

suggested by Figure 2. The analysis outlined in Figures 3 and 4 allow the following conclusions:

¢ Once the bioavailable factor equation has been determined (f; in Figure 1b), the optimal
surfactant concentration for enhanced biodegradation of a soil-slurry system can be chosen
from data obtained from simple sorption and solubility experiments. Thus, the results of
Figure 2 can be used to choose the optimal surfactant concentration, rather than performing

numerous biodegradation experiments to provide the data similar to Figure 4.

e The actual choice of surfactant concentration will depend on the relationship between K and
Chio» as described by Eqn. 2 and Figure 3. Enhancement beyond any effective increase in the
biodegradation rate will only serve to increase surfactant costs without any improvement in

degradation.

e The time required to degrade the HOC must still be assessed through a complete simulation

with knowledge of all the relevant parameters.




3. Presentation to the Fourth International In Situ and On-Site Bioremediation Symposium

A poster of the work performed under this contract was presented at the Fourth International In Situ and
On-Site Bioremediation Symposium, New Orleans, April 28 - May 1 1997. The poster and extended
abstract (which was published in the symposium proceedings) are attached as Appendices A and B,

respectively.

Planned Effort

A no-cost extension has been requested to address transport issues in the presence of surfactants, non-
aqueous phase liquids, and trace metals. This knowledge is required for the design of surfactant-enhanced

site remediations containing complex wastes.
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FIGURE 1. (a) The addition of surfactant to an aqueous system results in the formation of micelles
when the aqueous surfactant concentration is above the Critical Micelle Concentration (CMC). A
micelle consists of surfactant molecules arranged such that the hydrophobic portion of the surfactant
molecules is in the inside of the micelle. This hydrophobic core of the micelle gives a hydrophobic
organic compound (HOC) an additional “site” to partition into, increasing the effective HOC
solubility. (b) Guha and Jaffé (1996a,b) and Guha (1996) showed that a fraction of the micellar-
phase HOC is bioavailable, and that the micellar-phase bioavailability decreases with increasing
surfactant concentration. Here, f, is the fraction of micellar-phase phenanthrene that is bioavailable
with Triton N-101 as the non-ionic surfactant.
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FIGURE 2. Bioavailable phenanthrene concentration as a function of surfactant concentration
resulting from the interaction between bioavailability and solubility (see Figure 1). The bold dashed
line in all the figures is the maximum bioavailability curve (MBC), which occurs if there is an
“infinite” source of phenanthrene available. The lighter dashed line is the aqueous phenanthrene
concentration for the MBC (for the MBC, it remains at the phenanthrene solubility limit). The bold
solid lines are the bioavailable concentrations at specified phenanthrene concentrations, and the light
solid lines are the aqueous phenanthrene concentrations. The curves have total phenanthrene
concentrations as carbon of (a) 0.73 mg/L, which is the experimental condition used in Guha (1996),
(b) 14 mg/L, and (c) 25 mg/L. Surfactant is Triton N-101, soil (5% “/,,) with an organic fraction of
2.6%. For discussion, see text.
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FIGURE 3. Percent improvement in biodegradation rate as compared to the aqueous phenanthrene
concentration prior to addition of surfactant, as obtained from Eqn. 2. Results are for the case of
Figure 2(b), where the aqueous phenanthrene concentration is approximately 1 mg/L as carbon.
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FIGURE 4. Model results for surfactant-enhanced biodegradation of phenanthrene show that there
is an optimal surfactant range for enhanced biodegradation. The conditions are for those presented
in Figure 2(b), with K; = 0.6 mg/L as carbon. All remaining parameters are identical to those
-determined experimentally by Guha (1996), with the exception that the endogenous respiration
coefficient is 0.0005 hr''. For further discussion, see text.




Appendix A

Poster Paper Presented at the
Fourth International In Situ and On-Site Bioremediation Symposium,
New Orleans, April 28 - May | 1997.
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Extended Abstract Published in the Proceedings of the
Fourth International In Situ and On-Site Bioremediation Symposium,
New Orleans, April 28 - May 1 1997.




MODELING BIODEGRADATION OF
PHENANTHRENE IN THE PRESENCE OF NON-IONIC SURFACTANT

Derick G. Brown (Princeton University, Princeton, NJ)
S. Guha, and P. R. Jaffé (Princeton University, Princeton, NJ)

ABSTRACT: A mathematical model of a soil-slurry reactor with surfactant was
developed to determine the feasibility of surfactant-enhanced biodegradation of
hydrophobic organic compounds (HOC). The model accounted for the
biodegradation of the micellar-phase contaminant, sorption of surfactant onto soil,
and rate-limited desorption of contaminant. The model results were validated
against experimental results from soil-slurry reactors using phenanthrene as the
model HOC with a non-ionic surfactant (Triton N-101). Utilization of this model
with parameters for phenanthrene and the non-ionic surfactant Triton N-101 has
shown that there is an optimal range of surfactant concentration to enhance the
bioavailability of phenanthrene, and this range is a function of the phenanthrene
concentration. Further, the model indicates that a significant enhancement of the
biodegradation rate in a soil slurry reactor can be realized when there is non-
aqueous phase HOC present in the soil matrix.

INTRODUCTION

Overview: Removal of hydrophobic organic compounds (HOC) from
contaminated soils is severely affected by the low HOC water solubility and high
partitioning onto the soil matrix. These same traits result in HOC having low
biodegradation rates. Over the last few years attention has been focused on
increasing the solubility and bioavailability of HOC with the addition of
surfactants [e.g., Aronstein et al. (1991); Edwards et al. (1994); Guha and Jaffé
(1996a,b); Guha (1996)]. While research has indicated that surfactants can
enhance the solubility and bioavailability of hydrophobic compounds (see Figure
1), the question remains as to whether surfactant-enhanced bioremediation is a
feasible process for remediation of contaminated soils.

Objective: The combination of surfactant-enhanced HOC solubilization and
bioavailability shown in Figure 1 has the potential of enhancing the
biodegradation of HOC; however, the interactions between the HOC
solubilization and bioavailability, and effects of HOC sorption/dissolution, need
to be examined in order to determine the feasibility of the surfactant-enhanced
bioremediation (SEB) process. The objective of the current research is to increase
our understanding of the SEB process and to identify operational regimes where
the SEB process is applicable.

NUMERICAL MODEL

Mass Balances: The numerical model developed for this investigation consists of
seven mass balances: aqueous HOC, sorbed HOC, volatilized HOC, extra-phase
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FIGURE 1. (a) The addition of surfactant to an aqueous system
results in the formation of micelles when the aqueous surfactant
concentration is above the Critical Micelle Concentration (CMC). A
micelle consists of surfactant molecules arranged such that the
hydrophobic portion of the surfactant molecules is in the inside of the
micelle. This hydrophobic core of the micelle gives a hydrophobic
organic compound (HOC) an additional “site” to partition into,
increasing the effective HOC solubility. (b) Guha and Jaffé (1996a,b)
showed that a fraction of the micellar-phase HOC is bioavailable, and
that the micellar-phase bioavailability decreases with increasing
surfactant concentration. Here, f, is the fraction of micellar-phase
phenanthrene that is bioavailable with Triton N-101 as the non-ionic
surfactant.

HOC, biomass, surfactant, and carbon dioxide production (used to compare to
experimental results). HOC sorption is modeled using a two-site sorption model
[Karickhoff (1980)], which assumes that a fraction of the sorption sites are
available for equilibrium sorption, and the remaining sites are available for kinetic
sorption.  Biodegradation is modeled via the Monod equation, using the
formulation of Guha and Jaffé (1996a,b) for the bioavailable HOC concentration
in the presence of surfactants. Based on Guha and Jaffé (1996a), the bioavailable
concentration is given by

Chio = Cyq +1,C

g~ mic

= (14 £,Smickme ) Cag 1)

g~ mic"*mic

= fbio C aq

where C,, is the bioavailable HOC concentration, C,, is the aqueous HOC
concentration, C, is the micellar-phase HOC concentration, f, is the bioavailable
fraction of the micellar phase, S, is the surfactant micellar concentration, k_;_ is




the HOC partition coefficient into the micellar phase, and f;,, is the total
bioavailable fraction.

For this soil slurry reactor model, it is assumed that the mixing is
sufficiently vigorous such that the extra-phase HOC dissolution occurs at a faster
rate than the HOC biodegradation; this allows the assumption that any extra-phase
HOC present serves to maintain the aqueous HOC concentration at the solubility
limit. The effect of the sorbed surfactant on the HOC soil partition coefficient of
the two-site sorption model is modeled using the formulation of Edwards et. al.
(1994), where the HOC soil partition coefficient is increased as a function of the
carbon content of the sorbed surfactant molecules. It is assumed that the presence
of surfactants does not directly affect the kinetic sorption coefficient; therefore the
only effect of surfactants on the kinetic dissolution rate is due to the increased
gradient from the surfactant-enhanced HOC solubility.

Validation: This model was verified against experimental data of Guha (1996)
and Guha and Jaffé (1996a) for biodegradation under instantaneous and
kinetically limited HOC desorption from soil under a variety of surfactant and soil
conditions. The parameters used for the validation were determined through
independent experiments and are described elsewhere [Guha (1996) and Guha and
Jaffé (1996a)].

RESULTS AND DISCUSSION

Optimal Surfactant Concentration Under Equilibrium Desorption: In an
aqueous system without any soil and with the total phenanthrene concentration at
or below the solubility limit, addition of surfactant will only serve to reduce the
bioavailable concentration. This is because addition of surfactant will transfer
some of the aqueous phenanthrene, which is entirely bioavailable, to the micellar
phase, which is only partially bioavailable. However, when the phenanthrene
concentration is greater than the solubility limit (e.g., there is a sorbed phase
and/or a separate phase present), addition of surfactant will increase the
bioavailable concentration when under equilibrium conditions.

Figure 2 shows the bioavailable phenanthrene concentration as a function
of surfactant (Triton N-101) and phenanthrene concentrations with no soil present.
These curves result from the interaction of the micellar bioavailable fraction
(Figure 1b), and the apparent solubility of phenanthrene (Figure 1a). For the case
of 30x solubility limit in Figure 2, enough separate-phase phenanthrene is present
to keep the aqueous concentration at the solubility limit for the range of surfactant
concentrations examined. On this "maximum bioavailability curve", the
maximum bioavailable concentration remains essentially constant in the range of
200 to 600 mg/L of surfactant.

With a lower total phenanthrene concentration, the curve breaks from the
maximum bioavailability curve at the point where enough surfactant is present to
cause the aqueous phenanthrene concentration to drop below solubility (i.e., all
the extra phase phenanthrene has been solubilized). For the case of 10x solubility
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FIGURE 2. Competition between increased phenanthrene solubility
and decreased micellar-phase phenanthrene bioavailability with
increasing surfactant concentration (Triton N-101) results in an
optimal region of enhanced bioavailability (white region, where the
bioavailable concentration is greater than the aqueous solubility
limit). The bioavailable concentration is given by Eqn. 1. CMC for
Triton N-101 is 31.3 mg/L, and the aqueous solubility of phenanthrene
is C = 1.2 mg/L as carbon [Guha and Jaffé (1996a)].

limit in Figure 2, this point occurs at a surfactant concentration of approximately
350 mg/L. For this phenanthrene concentration, the maximum bioavailable
concentration is essentially constant in the range of 200 to 350 mg/L of surfactant.
The implication of this shift in the optimal surfactant concentration with
phenanthrene concentration is that the optimal surfactant dose will vary as the
phenanthrene is degraded, ultimately requiring a zero surfactant concentration
when there is no longer any separate phase phenanthrene to maintain the aqueous
phenanthrene concentration at the solubility limit.

When there is soil present in the system, the whole curve in Figure 2 will
shift to the right due to surfactant partitioning onto the soil. This shifting of the
maximum bioavailability curve highlights the need for accurate knowledge of
surfactant partitioning onto the soil. Underestimation of surfactant partitioning
can result in surfactant concentrations below CMC (the curve will shift farther to
the right than expected), and therefore no apparent enhancement of the
bioavailable HOC. Overestimation of surfactant partitioning can result in
surfactant concentrations well out of the optimum surfactant range (the curve will
not shift as far to the right as expected), causing a significant reduction of the
bioavailable HOC concentration and thus inhibition of the phenanthrene
biodegradation.




Optimal Surfactant Concentration Under Kinetically Limited Desorption:
Figure 3 shows a model run for the biodegradation of sorbed and extra-phase
phenanthrene in the presence of Triton N-101. It can be seen in this system that
surfactants can have a significant effect on the overall biodegradation rate.
Further, Figure 3b indicates that there is an optimal surfactant concentration
within which the biodegradation rate can be maximized.
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FIGURE 3. The conditions are for a soil-slurry reactor with an initial
sorbed phenanthrene concentration of 0.015 mg/g, 70% of the sites in
equilibrium sorption at a soil concentration of 50 g/L, and 0.5 mg/g of
separate phase phenanthrene present (phenanthrene concentrations
given in terms of carbon). The remaining parameters are described in
Guha (1996) and Guha and Jaffé (1996a). (a) The effects of
surfactant concentration on the bioavailability of phenanthrene
(Figure 2) are apparent in the overall biodegradation rates of
phenanthrene. (b) The model suggests that there is an optimal range
of aqueous surfactant concentration which significantly enhances the
rate of phenanthrene biodegradation.




When the conditions of Figure 3 are rerun without any extra-phase
phenanthrene present, there is no significant improvement in the overall
biodegradation rate (data not shown). This occurs because under the experimental
conditions of Guha (1996), the biodegradation is limited by the rate of
phenanthrene desorption from the soil, and thus any improvement in
bioavailability via the addition of surfactant is not realized (i.e., the aqueous
phenanthrene concentration falls below the solubility limit). When extra-phase
phenanthrene is present, as in Figure 3, the improved bioavailability is realized,
and the overall rate of biodegradation is enhanced. It should be noted that the
assumption was made that surfactants do not directly affect the HOC desorption
rate, and it is unclear at this time as to whether or not this is true.

In conclusion, the results of this investigation suggest that for those
situations where there is extra-phase HOC present in the soil matrix, the addition
of surfactants in a soil-slurry reactor has the potential to significantly increase the
overall HOC biodegradation rate. When there is no extra-phase HOC present, the
feasibility of surfactant-enhanced biodegradation will depend on the ratio of the
biodegradation rate to the desorption rate.
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