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Abstract 

We study rest-to-rest reorientations of flexible spacecraft using momentum exchange 

devices. A new and concise form of the equations of motion for a rigid body containing 

a cluster of gimbaled momentum wheels is developed using the Euler-Newton approach. 

Special restrictions of the gimbaled momentum wheel equations yield equations of motion 

for the momentum wheel cluster and the control moment gyroscope cluster. 

Though control laws for reorienting rigid bodies using momentum wheels and con- 

trol moment gyros were previously available, the oscillatory nature of a body containing 

a momentum cluster presents a challenge for a spacecraft with flexible appendages. In 

addition, reorientations which call for high angular accelerations naturally tend to excite 

oscillations of the appendages. A mathematical model of a free spacecraft with Euler- 

Bernoulli appendages is developed using the Lagrangian approach. Using the assumed 

modes method, a complete set of vector nonlinear differential equations is developed which 

describes the dynamics of a spacecraft with flexible appendages- and a cluster of gimbaled 

momentum wheels. This model is useful in comparing the merits of candidate spacecraft 

reorientations. 

Special attention is paid to singularity problems in control moment gyro clusters. 

The singularity-robust control law commonly used to avoid singular cluster configurations 

can cause abrupt changes in torque output. An improved law based on the singular value 

decomposition is developed which avoids torque output commands in the nearly singular 

direction. 

The stationary platform maneuver, a maneuver along the set of equilibrium solutions 

of a zero angular velocity spacecraft, is extended to the control moment gyro cluster. For 

a cluster of momentum wheels, the set of equilibria is a hyper-ellipsoid in rotor momenta 

space. The set of equilibria for a control moment gyro cluster is a unique surface in gimbal 

angle space. A control law which reorients the spacecraft while remaining close to this 

surface is developed using a Lyapunov method. 



Reorientations of Flexible Spacecraft 

Using 

Momentum Exchange Devices 

1.   Introduction 

1.1    Background 

The spacecraft of tomorrow are no doubt still beyond even the most vivid imagina- 

tions. The missions of future spacecraft will likely require that they become more efficient 

and versatile. While the designs of today seem to be meeting our immediate needs, the 

maneuverability and attitude control requirements of future craft will likely increase. 

The attitude control of spacecraft to date has been largely a problem of maintaining 

orientation and stability. One notable exception is the Hubble Space Telescope, which 

must be reoriented on command to a very precise orientation in inertial space and main- 

tained there for a period of time. While the telescope's reaction wheel control system has 

proven worthy of the required task, the time required of such reorientations is measured in 

large fractions of an hour. It is certainly possible that future missions might require such 

reorientations in seconds. 

We should also anticipate more variation in the sizes of future spacecraft, ranging 

from microsats to spacestations. A manned space station would likely be more efficient 

with increased size. Perhaps one day, a commercial station might exist which would permit 

companies to add on a module to an already existing configuration. Depending on the mis- 

sion, the company might have a requirement for their module or equipment to periodically 

attain and then maintain a certain orientation in space (earthward or sunward for exam- 

ple). This requirement translates to a need for maneuverability. Some scheme to provide 

a maneuver torque to the structure must be adopted. Of course, even to maintain a sta- 

tionary orientation in space requires a method to counteract the ubiquitous environmental 

torques due to aerodynamics, gravity gradient, and radiation pressure. 



Two common devices for applying control torques today are external thrusters and 

magnetic dipoles. Both have drawbacks and limitations. External thrusters need some type 

of expendable, chemical fuel for operation. Launching fuel into space is costly. Thrusters 

have the additional fault of expelling propellants. This may create problems for sensitive 

sensor equipment. This drawback apparently ruled out external thrusters for use on the 

Hubble Space Telescope. Just as importantly, once the thruster configuration is estab- 

lished, there are now limitations on where new modules may be placed, as the thruster 

exhaust must be avoided. 

Magnetic torquers are popular as they operate electrically (a replenishable supply 

of energy in space). Magnetic torquers take advantage of the earth's magnetic field and 

can provide a sustained external torque to the platform, thereby changing the system's 

angular momentum markedly over a period of time. The magnitude of the torque which 

can be achieved, however, is generally inadequate for effecting any sort of rapid reorien- 

tation. Additionally, the strength and direction of the magnetic field varies with orbital 

position. Magnetic torquers would be useless on spacecraft operating out of the influence 

of a magnetic field, such as interplanetary spacecraft. 

One solution to these problems is the use of appropriately mounted internal rotors 

(flywheels) to store angular momentum. This angular momentum can then be transferred 

to the vehicle structure to effect a desired angular velocity, and subsequently a reorienta- 

tion. The mechanization of these wheels varies, and the two of particular interest here are 

the momentum wheel and the control moment gyro. 

The momentum wheel is mounted along a fixed axis in the platform. Angular mo- 

mentum is then exchanged between the body and the rotor by applying a torque to the 

rotor via an electric motor. The dynamics involve only a relative change in speed be- 

tween the rotor and spacecraft. It is common to mount at least three momentum wheels 

in an orthogonal arrangement to permit exchange of angular momentum about any axis 

in the body. The rate of momentum exchange with the spacecraft (the output torque) is 

restricted by the rate at which the wheel spin speeds can be changed. 



The control moment gyro (CMG), conversely, operates at a constant rotor speed. 

The exchange in momentum is generated by varying the spin axis orientation with respect 

to the spacecraft. The dynamics of the gyroscopic effects can lead to rather complicated 

responses, requiring complicated algorithms to compute the required input for a desired 

response. Also, whereas momentum wheels maintain their design orientation, CMGs can 

achieve certain orientations which allow no torque capability in a particular direction, 

resulting in a singularity in the control law. This condition must be guarded against. The 

rate of momentum exchange with the spacecraft in the case of the CMG is dependent on 

the gimbal angle rate. 

The reorientation problem is one of determining the current orientation and angular 

velocity in inertial space, determining the desired orientation and angular velocity at some 

future time (the final state conditions), and finding the best path to take in reaching 

the desired final state conditions. There are an infinite number of paths which can be 

followed, but certainly some are better than others. Paths which might be convenient for 

reorientations have been the subject of many studies. Some of these paths are obvious, 

whereas others are not. 

The eigenaxis rotation is the most direct path between two orientations. For any 

rotation, there exists an axis (the eigenaxis) which remains fixed in space. If the rotation 

matrix is known, the eigenaxis can be computed. Furthermore, the angle of rotation about 

the eigenaxis is also easily computed. Reorientation is simply a matter of accelerating to a 

constant angular velocity about the eigenaxis, maintaining the velocity, and decelerating 

to the new orientation. 

Optimal control theory suggests that, assuming we had the capability to provide a 

given torque about any axis, the minimum time reorientation would be the result of bang- 

bang control. That is, accelerate at maximum torque about the eigenaxis until halfway to 

the desired orientation, and then decelerate at maximum torque into the new orientation. 

However, it is unlikely that any real control system could provide the maximum torque in 

the eigenaxis direction. Moreover, if the eigenaxis is other than the direction of a principal 

moment of inertia, a torque perpendicular to the rotation will be required to overcome 

gyroscopic effects. 



Another path might be dictated by the mechanization of the momentum wheel or 

CMGs. Supposing that the angular momentum at the beginning of the maneuver is con- 

tained solely in the wheels, then the vehicle's total angular momentum is determined and 

is fixed in space. For a desired final orientation, the necessary angular momentum relative 

to the body can be calculated. We might suspect that by adjusting the momentum in 

the momentum wheels to the required final values, the desired final orientation would be 

achieved. Achieving the proper cluster momentum in the body frame, however, is necessary 

but not sufficient to ensure the desired final orientation. 

The variation of the wheel speeds in a linear fashion was investigated by Schultz [46] 

and was referred to as the direct path. If in fact the body angular velocity can be reduced 

to zero at the final orientation, then the direct path will achieve the objective (to within 

a rotation about the angular momentum vector). Unfortunately, for a specific set of final 

condition wheel speeds, the same total angular momentum vector can be achieved with 

an infinite number of body rates. The direct method does not necessarily keep body rates 

low, and most likely will not achieve the final orientation with zero body rates. 

Oscillatory motion of the body is a common phenomenon associated with spacecraft 

containing rotors. This motion presents a serious problem to flexible spacecraft, as it 

can easily excite flexible modes of vibration causing loss of mission effectiveness or even 

structural damage. A control law which keeps angular velocities under control is required 

for these types of structures. 

A technique investigated by Hall [20] proved promising in the reorientation of flexible 

space structures by keeping body rates low throughout the maneuver. They were termed 

"stationary platform maneuvers" by Hall, because they consist of following paths in rotor 

momenta space which are the equilibrium solutions for a stationary platform. Of course, 

while maneuvering, the platform is not stationary, but by remaining close to these branches 

of equilibria, the dynamic effects of the body are minimized and the spacecraft tends to 

arrive at the final orientation with low body angular velocity. 

The purpose of this research is to investigate and compare various reorientation 

schemes of flexible space structures using momentum exchange devices such as momentum 



wheels and control moment gyros. Insight into the utility of particular maneuvers should 

be gained by comparing time required for the maneuvers, control use required for the 

maneuvers, the possibility of achieving the desired final state conditions, oscillations of 

flexible appendages during the maneuvers, and the residual oscillations at termination. 

1.2   Research Overview 

The objective of this research is to develop improved control laws for momentum 

exchange devices imbedded in flexible spacecraft. Since the available background liter- 

ature on control moment gyros is limited, we develop herein a concise vectorial form of 

the equations of motion for a body with a cluster of gimbaled momentum wheels. The 

gimbaled momentum wheel is a generalization of the momentum wheel and of the control 

moment gyro - essentially a variable speed single gimbal control moment gyro. This new 

development allows for easy specialization to momentum wheels or control moment gyros 

if desired. 

Next, control laws which reorient the spacecraft are investigated. The stationary 

platform maneuver developed by Hall [18] shows great promise for application to flexible 

spacecraft due to its nature of keeping angular velocities low during a maneuver. We exam- 

ine the maneuver's extension to the gimbaled momentum wheel and the control moment 

gyro. We show that, because a momentum cluster, regardless of type, possesses a cluster 

momentum whose rate of change is actually the control torque, the concept is valid for all 

momentum exchange devices. 

A drawback of the stationary platform maneuver is that kinematics are not accounted 

for, and the final orientation is only correct to within a rotation about the angular mo- 

mentum vector. A method is sought to effect a reorientation to the target attitude while 

maintaining the stationary platform condition. The Lyapunov approach is used to produce 

a correction to the cluster momentum rate which keeps the cluster arbitrarily close to the 

stationary platform condition. 

The control moment gyro cluster has several characteristics which make its use in atti- 

tude control a challenge. While momentum may be exchanged rapidly with the spacecraft, 



the amount of momentum which may be exchanged is finite. Control moment gyro clus- 

ters also admit singular configurations which allow torque output only in a plane. Torque 

commands normal to this plane near the singular condition can cause unreasonably high 

gimbal rate commands. A singularity-robust control law developed by Oh and Vadali [42] 

avoids these singular conditions, but can cause abrupt changes in torque direction near the 

singularity. A new singular direction avoidance law is developed herein. This modification 

to the singularity-robust law is based on the singular value decomposition and smooths 

the gimbal rates while only altering the output torque in the singular direction. 

In order to evaluate the effectiveness of the new control laws, a mathematical model 

of a flexible spacecraft is developed. Equations of motion for a free flying spacecraft 

with Euler-Bernoulli appendages (allowed flexure only in a plane) are developed using the 

Lagrangian approach. The assumed modes method is used to reduce the infinite degrees 

of freedom to a finite number suitable for numerical solution. The equations of motion for 

the flexible model can be coupled directly to the spacecraft/gimbaled momentum wheel 

equations for numerical evaluation. 

1.3    Outline of the Dissertation 

In Chapter 2 we review the literature relevant to this research. Specifically, some 

of the relevant works on the use of momentum wheels and control moment gyros in the 

control of space vehicles are summarized. A review of literature relevant to reorientations 

and the flexible modeling of space structures is also presented. 

The unique qualities of momentum wheels and control moment gyroscopes are ad- 

dressed in Chapter 3. We develop the equations of motion for the gimbaled momentum 

wheel, a generalization combining the qualities of the momentum wheel and the control 

moment gyroscope. This chapter includes some original work regarding the kinematics of 

the orthogonal CMG cluster. The equations are developed in vector form, with spin axis 

and gimbal axis torques as the control inputs. A compact expression for the kinetic energy 

of the system is also given. 



In Chapter 4, the equations of motion for a body with flexible appendages are de- 

veloped using the Lagrangian approach. The set of equations developed are mixed partial 

and ordinary differential equations. They are then discretized using the assumed modes 

method, and a finite set of ordinary differential equations are produced. This set is then 

integrated with the equations of Chapter 3 to produce a mathematical model of a flexible 

spacecraft with a cluster of gimbaled momentum wheels as the attitude control device. 

Methods of achieving reorientations of the body are discussed in Chapter 5. We 

begin with a general development which takes the "black box" approach, assuming that 

the momentum of the cluster relative to the spacecraft can be controlled as desired. A 

general Lyapunov feedback control law using the cluster momentum as the control input 

is derived. We then relate the control law to the special cases of momentum wheels and 

control moment gyros. 

Some special consideration is given to the CMG singularity problem in Chapter 5, 

and a new approach to avoiding the singularity is presented. We conclude the chapter with 

a discussion of the stationary platform condition. 

The numerical results of the study are presented in Chapter 6. The qualitative 

and quantitative results of several proposed control laws are presented. A summary and 

conclusions of the dissertation research are in Chapter 7. 



2.   Review of the Literature 

In this chapter, we review relevant literature in the disciplines which form the cornerstone 

of this research. Many contributions have been made which provide an excellent foundation 

for the study. To the best of our knowledge, the application of momentum storage devices 

to the control of flexible structures has not been consolidated into a single research effort. 

2.1    Momentum Exchange Devices 

2.1.1 Momentum Wheels. The development of equations of motion for a mo- 

mentum wheel imbedded in a rigid body has been approached in a number of ways. Any 

general body to which is attached an axisymmetric spinning body is classified as a gyrostat. 

The axisymmetric portion of the gyrostat is a momentum wheel. In the case where the 

momentum wheels spin axis is aligned with a principal axis, the system is called an axial 

gyrostat, and a closed-form solution for the angular momentum in terms of Jacobi's elliptic 

functions has been given (see Cochran et dl. [12] for references). 

Hughes [23] provided an excellent development of the equations of motion for a rigid 

body containing a single wheel in terms of the absolute angular momentum of the system 

and the absolute angular momentum of the wheel. Hall [18] extended the development to 

a system of multiple wheels and derived a torque control law which maintains his so-called 

stationary platform maneuver. Hall [20] also reduced the equations of motion from the 

normal N + 3 first order differential equations (for an JV-rotor gyrostat) to one equation 

involving a Hamiltonian by applying the method of averaging for the case of small spinup 

torques. Hall [18] and Hall and Rand [19] used this averaging approach to show that 

the Hamiltonian approach can provide insight into the qualitative nature of the dynamics 

during spinup of the rotors. 

Schultz [46] investigated and compared rest-to-rest reorientations of rigid bodies using 

a cluster of momentum wheels. His investigation included maneuvers along the stationary 

platform condition developed by Hall as well as maneuvers resulting from linear variation of 

the momentum wheels from initial to the required final values (constant torque applied to 

each wheel). He found that intermediate angular velocities, as well as final angular veloci- 



ties and attitude errors were significantly smaller using the stationary platform maneuver. 

These results motivate the investigation of this control law for flexible space structures. 

The gyrostat with flexible appendages has been investigated mostly in the context 

of stability of motion. Likins et al. [30] and Mingori et al. [37] were both concerned with 

the limit cycles possible for dual-spin spacecraft whose sections contain nonlinear flexible 

elements. Their approach was based primarily on the energy sink approach, but was 

reinforced by comparison with the results of numerical integration. Stabb and Schlack [50] 

developed a model which consisted of a gyrostat with an attached torsionally flexible 

appendage. They developed the equations of motion for the system, but the primary 

thrust was on the application of the Krylov-Bogoliubov-Mitropolsky (KBM) method to aid 

in analyzing the motion of the system for small perturbations from the undeformed state. 

Mazzoleni et al. [33] integrated the work of Stabb [50] and Hall [19] via a double averaging 

approach to develop a single equation which allows the projection of solutions onto a 

bifurcation diagram relating the rotor angular momentum to the system Hamiltonian. 

Actual application of momentum wheel control to a spacecraft is described by Cream- 

er et al. [14] in the case of the Clementine spacecraft. Control laws were developed to 

maneuver the spacecraft around the eigenaxis using a bang-coast-bang profile. They sim- 

plified development of the control laws by assuming that the nonlinear dynamics were 

negligible. The computed open-loop momentum wheel input torques for the maneuver 

were sent to a feedback control law for implementation of the actual maneuver, however. 

Flexible structural modes were not considered. 

2.1.2 Control Moment Gyroscopes. The torque amplification phenomenon asso- 

ciated with single gimbal control moment gyros make them an appealing alternative to 

momentum wheels, but the theory for CMGs is not quite as mature. There apparently 

are no texts which address the full nonlinear dynamics of the CMC Jacot and Liska [24] 

were among the first to see the usefulness of the CMG for space vehicle attitude control. 

Though they attempted a careful development utilizing a conservation of momentum ap- 

proach, they omitted the inertia about the gimbal axis from the very first equation. They 

also linearized early in the development. 



O'Connor and Morine [41] expounded on the merits of various CMG configurations 

for space vehicles and compared the utility of CMG control laws. They dismissed torque 

as a command input to the single-gimbal CMG as unusable due to the appreciable friction 

on the gimbal bearings. Instead they recommended a gimbal rate (feedback) control law. 

Singularities were discussed in an early work by Margulies and Aubrun [32]. They 

showed that for a cluster of n CMGs, there exist for any direction in space 2" combinations 

of gimbal angles for which the system cannot produce any torque in that direction. In 

addition, they demonstrated that for n CMGs in a cluster, there is an n — 3 parameter 

family of null motions which produce no output torque. As such, these null motions can 

be combined with torque-producing motions without affecting the dynamics of the system. 

A useful development of the complete equations of motion (including the gimbal 

inertia terms) was given in Oh and Vadali [42]. They presented some candidate feedback 

control laws and claimed that, with the gimbal inertias included, the control laws must 

provide gimbal acceleration commands (instead of gimbal rate commands). They also 

gave some considerations for avoiding singularities in the case of a redundant set of CMGs. 

Hoelscher and Vadali [22] further considered open-loop and feedback control laws which 

not only minimized a mix of control effort and maneuver time, but also avoided singular 

CMG configurations. Vadali and Krishnan [52] narrowed the focus exclusively to avoiding 

these singularities by parameterizing gimbal rates as polynomial functions of time and 

optimizing the parameters with respect to a singularity avoidance objective function. Going 

one step further, Vadali et al. [53] developed a method for determining a family of initial 

gimbal angles which would avoid singularities during a maneuver. Bedrossian et al. [3, 4] 

developed a way of instituting the addition of null-motion into the control algorithm to 

avoid singularities. Paradiso [43] developed a computer algorithm which was capable of 

globally avoiding singular states in a feed-forward steering law. 

An application of a highly linearized axis-decoupled CMG steering law for the space 

station was presented by Singh and Bossart [48] and another by Bishop et al. [7]. Neither of 

these studies extrapolate their capability to a control scheme for large angle reorientations 

or high angular velocities. 

10 



2.2   Spacecraft Reorientations 

Perhaps the best compendium of notation and methods for dealing with reorien- 

tations of spacecraft is the text by Junkins and Turner [26]. Included are methods for 

optimizing the reorientations based on several different types of cost functions, along with 

some considerations for flexible modes of vibration. Carrington and Junkins [10] devel- 

oped a solution for the nonlinear spacecraft slew maneuver by assuming a polynomial 

feedback form. Kinematics were formulated in terms of Euler parameters (also known as 

quaternions). 

One of the early works on feedback control for reorientations was written by Wie 

and Barba [55]. They proposed three distinct quaternion feedback laws capable of gen- 

eral three-axis reorientations. Wie et al. [57] devised a quaternion feedback regulator to 

perform eigenaxis rotations (which they considered "optimal") and included the control 

torque required to decouple the gyroscopic coupling torques. Wie and Lu [56] further de- 

veloped this nonlinear feedback controller to perform eigenaxis rotations under slew rate 

and control torque constraints. Cristi et al. [15] provided a quaternion feedback regulator 

which is evidently globally stable and needs no knowledge of the spacecraft inertia matrix, 

an excellent property for control of a modular space station. Long [31] developed an equiv- 

alent axis coordinate frame for rest-to-rest reorientations which transforms the nonlinear 

spacecraft control problem into a linear problem. 

Understandably, the problem of optimum time reorientations has also received con- 

siderable attention. A survey of contributions in this area was provided by Scrivener and 

Thompson [47]. An extremely important contribution was made by Bilimoria and Wie [6] 

when they demonstrated that with specified control constraints in all three axes, the eige- 

naxis rotation is in general not time optimal. The optimal control is bang-bang in all 

three axes and results in a significant nutational component. The task is only to find the 

switching functions for each axis. Byers and Vadali [8] applied these ideas to the devel- 

opment of a method for computing solutions for the time-optimal control switch times in 

the reorientation of a rigid spacecraft. They intentionally omitted the gyroscopic coupling 

terms from the dynamical equations. Vadali et al. [51] used a parameter optimization 

scheme to develop an open-loop control law for the reorientation of a particular ground- 
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based test article. The control law was then utilized in a feedback controller. Theoretical 

and experimental results were then compared with apparently excellent agreement. 

We should point out that studies in the robotics field have a great deal in com- 

mon with this idea of internal momentum exchange devices to effect reorientation of the 

primary body. Many works have borrowed the singularity robust inverse presented by 

Nakamura [39] as a method of avoiding singularities in control laws. An intriguing paper 

detailing a strategy for planar reorientation of a system of pinned bodies using only internal 

controls is provided by Reyhanoglu and McClamroch [45]. 

2.3   Flexible Bodies 

An entire text devoted to the dynamics and control of flexible space structures was 

prepared by Junkins and Kim [25]. Their treatment of flexible structure models and 

the application of the Lagrangian approach for generation of the equations of motion 

are particularly noteworthy. A text by Craig [13] also provided an overview of various 

methods useful in modeling a flexible body, along with limitations of the finite-dimensional 

representations of the body which must be employed for numerical evalution of the problem. 

Many of the papers concerned with the problem of flexible appendages attached to a 

satellite were summarized by Modi [38]. 

An early attempt at constructing the equations of motion for a flexible spacecraft 

was given by Grote et al. [17]. The equations were constructed for a model consisting of 

rigid bodies attached with springs and dampers. It was assumed that the motion of the 

central rigid body is prescribed, and the flexible appendages effect a deviation from this 

nominal motion. Keat [27] described an analogous method applicable when the flexibility 

is modeled by generalized coordinates. 

Most studies investigating reorientation maneuvers with flexible appendages attack 

the problem with simplifying assumptions. Barbieri and Ozguner [2] were able to construct 

a minimum-time control law to slew an undamped, one-mode model of a flexible structure 

using the single-axis bang-bang control with multiple switchings. The single flexible mode 

was suppressed at the final orientation. Byers et al. [9] used smoothed bang-bang control 
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inputs to achieve a near-minimum time planar reorientation of a fixed rigid hub with four 

identical flexible appendages. The control inputs were simply smoothed approximations 

to the optimal bang-bang inputs for a rigid body. Small antisymmetric deformations of 

the appendages were assumed. 

The three-dimensional case was pursued by Vadali et al. [54] using a parameter 

optimization approach as a flexible extrapolation to [51]. The only consideration given 

here to the flexible modes was in the smoothing of the control inputs using a multiplier 

function during the initial and final phases of a maneuver. Bell and Junkins [5] took the 

same approach but used controllably sharp spline switches to reduce flexible excitations. 

A momentum exchange feedback control concept was investigated by Li and Bainum [28], 

but was restricted to a pair of symmetric appendages affixed to a rigid hub. The control 

torques included not only feedback of the rigid body motion, but also the time rate of 

change of momentum resulting from the flexible motion. 

An early introduction to the use of hybrid coordinates in the design of attitude control 

systems was given by Likins and Fleischer [29]. They were primarily interested in the 

stability of an attitude controller with the flexible modes included. Barbera and Likins [1] 

presented a method for testing the stability of a system with an arbitrary discretized 

appendage, and closed form stability criteria were developed for a very restricted model. 

Meirovitch and Calico [34] compared three essentially different methods for investigating 

the stability of flexible spacecraft. The more specific problem of attitude stability in dual- 

spin systems bearing flexible members was addressed by Gale and Likins [16] as well as 

Cherchas and Hughes [11]. Not all work has been theoretical in nature. A summary of 

some experimental investigations into the control of flexible structures was given by Sparks 

and Juang [49]. 

Though the aforementioned works provide a firm foundation for this dissertation re- 

search, the study of momentum exchange devices imbedded in a general three-dimensional 

flexible spacecraft remains largely unexplored. We attempt to retain the general nonlinear 

and 3-D nature of the problem by avoiding such simplifications as symmetric appendages, 

an inertially-fixed center of mass, or the discarding of inertia terms associated with the 
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momentum devices. We now turn to the development of a new set of equations of motion 

for a rigid spacecraft containing a momentum exchange cluster. 
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3.   Momentum Exchange Devices 

Two types of momentum exchange devices receive most of the attention in the literature. 

The momentum wheel (MW) is a variable speed flywheel mounted on an axis fixed in the 

body. Momentum exchange is effected by changing the speed of the wheel relative to the 

body using an electric motor. A cluster of at least three MWs with non-coplanar axes can 

be used to exchange momentum with the body about any axis. 

The second type of momentum exchange device is the control moment gyroscope 

(CMG). The flywheel of a typical CMG spins at a constant speed and a gimbal arrangement 

allows variation of the spin axis in the body reference frame. A double gimbal arrangement 

can permit the spin axis of the CMG to assume any direction in the body. The single 

gimbal CMG (SGCMG) allows reorientation of the spin axis only in a plane which is 

perpendicular to the gimbal axis. The advantage of the SGCMG is the well-known torque 

amplification property. Essentially, a rate about the gimbal axis can produce an output 

torque orthogonal to both the gimbal and spin axes which is much greater than the gimbal 

axis torque. A reference to the CMG in this dissertation implies the single gimbal variety. 

A gimbaled momentum wheel (GMW) is a generalization of the momentum wheel 

and single gimbal control moment gyroscope. The GMW allows for variation in wheel 

speed and reorientation about a gimbal axis (see Figure 1). A new form of the equations of 

motion for the GMW is developed using a momentum approach. The development leads 

to a system of 6 + 3N ordinary differential equations for the system angular momentum, 

system linear momentum, the angular momenta of the GMWs about the gimbal axes, the 

angular momenta of the GMWs about the spin axes, and the gimbal angles. Once the 

equations of motion for the GMW are available, specialization to the momentum wheel 

and CMG follows naturally. When linear momentum is assumed to be zero (and constant) 

the equations of motion for the momentum wheel case reduce to a 3 + N order set, whereas 

the CMG case reduces to a 3 + 2N order set. Notation and a review of the basic concepts 

relevant to the subsequent development can be found in Appendix A. 
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Motor 

Figure 1     A Gimbaled Momentum Wheel 

3.1    Gimbaled Momentum Wheel Kinematics 

Consider a rigid body in which N gimbaled momentum wheels are imbedded (Fig- 

ure 2). Each GMW is composed of a flywheel mounted in a gimbal frame and incorporates 

the variable speed of a momentum wheel and the gimbal arrangement of a typical single 

gimbal CMC The GMWs are designated Wi,W2, ■■■, WN and the rigid platform is identi- 

Figure 2     A Body with Multiple Gimbaled Momentum Wheels 

fled as B. The platform is in general not symmetric. A reference frame, Fh, is established 

in the body which has basis (b!,b2,b3). The body is free to translate and rotate with 

respect to the inertially fixed reference frame, T\, with basis (ei,e2,e3) . 
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The wheels spin about their individual axes of symmetry which are expressed as the 

unit vectors asi,aS2, • • -,äsN- The directions of the spin axis unit vectors vary with the 

gimbal angles. The gimbal axes are always orthogonal to the spin axes and are denoted 

by the unit vectors a5i, a52, • • •,agN- A third set of unit vectors given by a«,äf2,..., äY/v 

(subscript representing transverse), where S.tj = asj xa5J-, will prove useful in the derivation. 

We define a matrix As such that the columns of As are the column matrices aSJ- 

(j = 1... JV) which specify the orientations of the spin axes of the wheels, Wj (j = 1.. .N), 

in the vehicle body frame T\> . That is 

asi   as2    •••   asjv (1) 

The matrices Aa and A* are defined similarly.   Whereas Ag is a constant matrix, the 

matrices As and At depend on the gimbal angles. 

The moment of inertia for the spacecraft is assumed constant except for the change 

caused by variation in the gimbal angles. It is also assumed that the center of mass of the 

spacecraft is fixed in the body and does not vary with gimbal angles. The inertia dyadic I 

is formed from the body inertia dyadic plus the parallel axis contributions of the wheels. 

It is given by 
N 

I = IB + J2 mi (?i ' ?J'1 - W) (2) 
3=1 

where rrij is the mass and rj the fixed location of the center of mass of the j-tb. GMW. 

We define the terms Isj, Igj, and Itj to be the total spin axis inertia, the total gimbal 

axis inertia, and the total transverse axis inertia of the j-th GMW (including the gimbal 

frame). The total spin axis inertia of the GMW is the sum of the gimbal frame inertia and 

wheel inertia. We split it into the terms Iswj and Isgj so that 

■isj —- iswj   r   'sgj (3) 

We form Isw as a diagonal matrix composed of the spin axis moments of inertia of the 

GMW wheels: 

Isw = diag(/su,i, Isw2,..., ISWN) (4) 
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Four other N x N inertia matrices, Is, Ifl, and If, and Isg are defined in a similar manner. 

The linear momentum of the system is given by 

p = mv + ö5 x c (5) 

where v is the velocity of the origin of T\, and c is the first mass moment of the body/GMW 

system about the origin of T\>. The angular velocity of the body (and body reference frame) 

with respect to inertial space is öS. We write Equation (5) in the body coordinate frame as 

p = mv + ajxc (6) 

where we use the cross notation defined by Equation (340). 

The system angular momentum can be expressed as 

N 

h = I-w + cxv + ]jr£Bi (7) 

where haj is the absolute angular momentum of the j-th GMW about its own center of 

mass. Instead of grouping the GMW contributions to the angular momentum by GMW 

(as did Oh and Vadali [42]), we decompose the GMW contributions to angular momentum 

into components in the spin, gimbal, and transverse directions. This is expressed as (using 

body frame components) 

h = Ioj + cxv + Ashsa + Ash50 + A(hto (8) 

The new terms hsa, hga, and hta are NX1 column matrices which represent the components 

of absolute angular momentum of the GMWs about their spin axes, gimbal axes, and spin 

axes respectively. From Equation (8), we see that if we know the gimbal angles (and 

therefore the 3 x N basis matrices) along with h, hsa, hga, hta, and v, then we can 

compute the current body angular velocity u>. 

One term in Equation (8) deserves special attention.  The angular momentum of a 

GMW about its spin axis is a combination of angular momentum due to the flywheel itself, 
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plus a contribution due to the gimbal frame. We simply split hsa into two terms as 

where hswa is the N X 1 column matrix of absolute angular momenta of the wheels about 

their spin axes, and h.sga is the N x 1 column matrix of absolute angular momenta of the 

gimbal frames about the GMW spin axes. 

The absolute angular momentum components may be expressed in terms of the 

platform angular velocity and relative angular momenta. The relationships are 

rp 

uswa   =   I«™ As u> + h.swr (10) 

Kga      =     ISgAjlV + hsgr (11) 

hga   =   I5Aju; + V (12) 

h/a   =   ItAju + htr (13) 

In the case of mechanical gimbals, the motion of the GMW gimbal is constrained to 

rotation about the gimbal axis, so there can be no motion of the GMW relative to the 

platform in the transverse direction, nor can the gimbal rotate relative to the platform 

about the spin axis. Therefore 

htr = hssr = 0 (14) 

which implies that we can rewrite Equation (8) as 

h = (I + AtItAj + AsISff A J)u> + cx v + Asiw + A3hfla (15) 

Note that the inertia-like matrix multiplying ui in Equation (15) is not necessarily constant. 

The definitions of this section allow for a concise expression of the equations of 

motion, which we now address. 
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3.2   Equations of Motion 

In this section, we develop the equations of motion for a rigid body with GMWs 

in terms of the system linear and angular momenta, as well as the angular momenta 

components of each GMW about the spin and gimbal axes. Because the orientation of the 

GMW is important (as it gives the direction of the spin momentum vector), an equation 

of motion is also developed for the gimbal angle. A summary of the GMW equations and 

specializations to the momentum wheel and CMG cases are also presented. 

3.2.1 System Momenta. The absolute time derivative of any vector x in T\ is 

related to the time derivative of that vector in T^ by 

dx 
~dt 

(16) 
fdx     ..      A 

,= U+WXXJ 
The equation of motion relating linear momentum to the total external force is 

£ = fe (17) 

Therefore, the differential equation for linear momentum in the body reference frame is 

given by 

p = -u>xp + fe (18) 

The absolute time derivative of angular momentum (in Ti) can be shown to be 

h = -vxp + ge (19) 

so that we can write the differential equation for the total angular momentum in body 

coordinates as 

h = -wxh-vxp + ge (20) 
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3.2.2    Gimbal Angles.        We note from Equation (12) that the relative angular 

momentum of the GMW about the gimbal axis is 

hgr = hga - I5Aju> = Igugr (21) 

so that we find the gimbal angle rate from the expression 

<* = "V = l;%a - Aju> (22) 

which must be integrated to produce the gimbal angles. The gimbal angles are required to 

compute the matrices As and A*. We assign the gimbal angles to be zero when the spin 

axes point in a set of arbitrary directions given by aslo, as2o,..., asjv0 • 

The gimbal axis direction and gimbal angle for a particular GMW defines a rotation 

matrix relating the components of the the zero gimbal angle unit vectors (as0, at0, and ag) 

to the components of the current unit vectors (aa, at, and ag). For an eigenaxis rotation 

(in this case about ag) through an eigenangle given by S, we can express the 3 x 3 rotation 

matrix relating components in the two frames as 

C = cos Si + (1 - cos S)agaJ - sin 6a* (23) 

Thus, the spin axis unit vector for the j'-th GMW is given by 

asj = CJaSJ0 = cos ^aSJo + (1 - cos ^)asiaJaSJo + sin *,-a£a,io (24) 

Since the gimbal axis is perpendicular to the spin axis (a^-a^-,, = 0), and if we assume that 

the gimbal axis is fixed in the body frame, then we can further reduce Equation (24) to 

asj = cos SjaSJ0 - sin SjatJo (25) 

In a similar manner, we can show that the j-th transverse unit vector is given by 

atj = cos Sj&tJ0 + sin SjaSJo (26) 
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We define some new terms to aid in the numerical computation of the 3 x N matrices 

As and At. From the JVxl matrix, S, of gimbal angles, we compute the N x N matrices 

Ac and As where 

Ac   =   diag(cos<J) (27) 

As   =   diag(sin<J) (28) 

and cos S and sin S are column matrices of the cosines and sines taken term by term of the 

column matrix S. 

By defining the matrices Aso and A« as the values of As and At when the gimbal 

angles are all zero, then we compute As and At as functions of gimbal angles from the 

expressions 

A,   =   As0A
c-At0A

s (29) 

At   =   AtoAc + As0A
s (30) 

For single-gimbal GMWs, Ag = A5o is fixed, so Ag = 0. The rates of change of As 

and At, however, can be shown to be 

As   =   -Atdiag(j) (31) 

At   =       Asdiag(<j) (32) 

3.2.3 Spin Axis Angular Momentum. We now investigate the equations of motion 

for hswa and hga since these terms are affected by the spin axis torque and gimbal torque 

respectively. Toward this end, we will for the time drop the subscript, j, referring to the 

j'-th GMW, and consider only a single GMW. We begin by defining a scalar component 

of the torque applied to the spinning wheel as 

9w = as- gbw (33) 
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where as is a unit vector in the spin direction (independent of the reference frame). The 

term g^ is the total torque vector applied by the body/gimbal system on the spinning 

wheel, and in general includes components orthogonal to the spin axis. 

The component of the absolute angular momentum of the wheel about the GMW 

center of mass in the as direction is 

Note that we have included only the wheel momentum in the definition, since we will be 

applying a spin axis torque to the wheel only. (The total angular momentum of the GMW 

is ha = hwa + h.ga where hga is the gimbal frame momentum about the spin axis.) For 

each GMW, then, we have 

"su/a ~~ &s ' R-wa T" &s ' ^ti/a v^^j 

Since h^a = gbw, Equation (35) becomes 

">swa = &s ' <^wa T 9W ("") 

Because as is fixed in the gimbal reference frame, which has angular velocity u5 + 6ag, we 

have 

as = (Co + SSg) x as (37) 

Since the wheel is axisymmetric, the inertia dyadic can be expressed as 

*-w == Hw*- T \*sw       ■*tu;Jasas (38) 

where Itw and Isw represent the wheel transverse axis inertia and spin axis inertia respec- 

tively, and h.wa = Iw •■(3tua (where <3wa is the absolute angular velocity of the wheel with 

respect to inertial space), then Equation (36) becomes 

hswa = ((« + Sag) x as) • (Itwl + (Isw - Itw)äsas) ■ öjwa + gw (39) 
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The total angular velocity of the wheel is made up of the body angular velocity, plus 

relative velocities in the spin axis direction öiswr and gimbal axis direction öZgwr. So we 

use 

<2wa = <*W + Ügwr + & = <*Was + SÜg + ü> (40) 

and also make use of the fact that äs • ag = as • at = 0 whereas ag • ag = 1 to recast 

Equation (39) as 

hswa = (<3 x a, - 6ät) ■ (ItwSäg + Itwu> + ujswrIswas + (Isw - Itw)asSs -(2)+gw     (41) 

Eliminating terms based on orthogonality arguments, we obtain 

hSwa = (ItwH<2 X as) • as) - S&t • {hwü) + 9w (42) 

whereupon we use the vector identity (u5 x as) • ag = d ■ (as x ag) = <2 • a.t, giving the result 

hswa = 9w (43) 

for the single GMW. This simply states that the rate of change of the absolute angular 

momentum component in the spin axis direction is equal to the torque transmitted to the 

wheel'in that direction. The simplicity of this expression is a result of the axisymmetry of 

the wheel, and is identical to the symmetry axis equation of motion for an axisymmetric 

rigid body. Since we have iV GMWs, we form the N X 1 column matrix hSwa for all N 

GMWs and write 

hslü0 = g™ (44) 

The simplicity of this matrix differential equation motivates a similar approach to deriving 

the equations of motion for the GMWs about their gimbal axes. 

3.2.4 Gimbal Axis Angular Momentum. We now engage in a similar development 

for the column matrix of gimbal axes momenta. To this end, we define the gimbal axis 

torque for a single GMW as 

9g=*g- gbgmw (45) 
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where gbgmw is the torque applied by the body to the GMW. This includes the gimbal 

frame, since we are interested in the change in angular momentum of the spinning wheel 

plus gimbals. Since 

hga = afl • hgmw (46) 

we proceed along the lines of the previous development to arrive at 

hga = as • hgmw + gg (47) 

where in this case Sg = u5 x ag as long as Sg is fixed in the body frame. 

Applying a vector identity, we get 

hga = (ü5 X Sg) ■ hgmw + 9g = « • (Sg X hgmw) + 9g (48) 

The momentum in this case is more complicated, as we must include the gimbal frame. 

We separate the wheel momentum from the gimbal as 

hgmw = lw ■ W„ + I5 • <2ga (49) 

where Iw is given by Equation (38) and uwa by Equation (40), whereas <2ga only contains 

the terms 

<*V = ägr + w = 6ag + <2 (50) 

This yields the apparently involved expression 

hga=U>-   (Sg    X    (IW   ■   (USWrSiS   +  SSig   + <2)   +  Ig   ■   (Säg   +  U>) ) )   +  Qg (51) 

which we subsequently simplify. 

For simplicity, we break the complicated expression on the right hand side of Equa- 

tion (51) into two parts and consider first the term u> ■ (a3 x (Iw • (ujswras + Sag +<3))). We 

substitute for the wheel inertia dyadic to get 

Ü5 • (Sg x (Itwl + (Isw - Itw)asSs) ■ (u)swras + 6ag + c3)) 
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= «3 • (itw(üjswrägxäs + ä5xö5) + (wau,r(/sw - itw)ägxäs + (is1i, - itw)ägxäsäs ■ öJ)) 

=   <3 • (7tu;(—wsu,ra() + (-wsu;r (/,„, - 7t«;)a* - (7stu - 7fu,)a4äs • <3)) 

=   -uswrIsvlCJ • &t - (hw - Itw)& • a<as • öS (52) 

Now we consider the second part of the large expression in Equation (51), namely 

u> • (as x (Ig • (Säg +ü>))). We make the reasonable assumption that the spin, gimbal, and 

transverse axes for the GMW are principal axes. This allows the gimbal inertia dyadic to 

be expressed in the form 

Ifl    =   ISgäSäS   +  IggägSg   +   ItgStSf (53) 

where the scalar coefficients are the gimbal frame inertias about the spin axis, gimbal axis, 

and transverse axis respectively, and which are in general unique. So we reduce the term 

as follows: 

<2-(agX   ((Isgäsäs + IggSLgäg  + Itgätät)  •  (SSig + c3))) 

=       öf  •   (IsgSg   X   äsäs  +  ItgSg   X  ä*fät)   • Ü5 

=   öS • (-ISgätäs + Itgäsat) • w (54) 

We make use of the fact that tD • a,ät • <2 = (c3 • as) (at • uS) = u5 • a4äs ■ öS so that we finally 

arrive at 

hga = (hw + hg - hw - Isg)<2 • asät • u - Iswuswrüf • at + gg (55) 

Note that hw+hg is the inertia of the wheel plus gimbal about the transverse axis, whereas 

hw + hg is the inertia of wheel plus gimbal about the spin axis so that the entire scalar 

coefficient is a constant. In the case where the GMW package is spherically symmetric, then 

the coefficient of the first term in Equation (55) reduces to zero and the term disappears 

completely. In the body axis reference frame, Equation (55) is expressed as 

hga = (h - h)a]u>aju> - Isw(jswrajuf + gg (56) 
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Equation (10) for a single GMW would be 

"■swa — Isw&s ^   i   *sw^i sw T ^sw^swr (57) 

and we use this to cast hga as 

hga = ((It - ISg)a]u - hswa)aju + gg (58) 

Equation (58) can be put in a convenient form for the entire N x 1 matrix of absolute 

gimbal direction angular momenta, 

Ka = ((It - ha) As
Tu> - hswa) * (At

Tu;) + gg (59) 

where the operator * represents term by term multiplication of the two adjacent N x 1 

column matrices. The * operation could be carried out alternatively as 

u* v = diag(u)v = diag(v)u (60) 

Equation (59) provides the last N equations needed to describe the dynamics of the rigid 

body/GMW system. 

3.2.5    Kinematics.        The dynamical equations must be appended with a set of 

equations to describe the kinematics. We use quaternions, so that the four equations 

where 

G(q) = 

q= -G 4     2 
(q)u> 

-?i -Q2 -93 

90 ~93 92 

«3 9o -9i 

-Q2 9l 9o 

(61) 

(62) 
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are added to describe completely the dynamics and kinematics of a maneuver.  See Ap- 

pendix A for the definition and a discussion of quaternions. 

3.2.6    GMW Equation Summary.      We summarize the equations as SN + 10 non- 

linear ordinary differential equations as follows 

h = -OJXh-VXp + ge (63) 

p = -U>Xp + fe (64) 

**swa = &w (65) 

hga = ((It - IS5)As
Tu> - hswa) * (At

Tuj) + gs (66) 

6 = I^hga - Ajw (67) 

q = iG(q)w (68) 

where ge, gw, and g5 represent the external torque, the spin axis torques, and the gimbal 

torques respectively. Also, the 3xJV matrices 

As   =   As0A
c-Ai0A

s 

At   =   At0A
c + As0A

s 

(69) 

(70) 

define the spin axis and transverse axis components in the body frame. To find the system 

velocities from the momenta, we note that they are related in matrix form as 

h J                CX 
^■9*-9 ■™-s*-sw U> 

p —cx        ml 0(3XN) 0(3xN) 
V 

hga I5Aj    0(N*3) I5 
0(NxN) 6 

H-swa _IS„,AJ   0(^x3) 0(NxN) 
*-sw Usu 

= * gmui 
V 

5 

w. 

(71) 

where 

J - I + AtItAj + ASISAj + A5ISAj (72) 

For a rigid spacecraft with GMWs, J represents the inertia of the entire spacecraft. 
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It is also useful to define the system momentum and system velocity vectors as 

Pgn 

h 

P 
(73) 

and 

Vgmw — 
V 

6 
(74) 

respectively, resulting in the concise equation 

Pgmw — ™gmwVgmw (75) 

In integrating Equations (63) through (68), it is necessary to solve the linear system, 

Equation (75), at each time step since the velocities vgmw appear in the right hand sides of 

the differential equations. Note that 8 is available from the solution for system velocities. 

The rigid spacecraft with gimbaled momentum wheels is a generalization of both 

the rigid spacecraft with momentum wheels, and with control moment gyros. In the next 

sections, we develop the equations of motion for these two special cases. 

3.2.7 Momentum Wheel Equation Summary. We now consider the specific case 

in which the gimbal angles are constant (and can be set to zero without loss of generality). 

Gimbaled momentum wheels with fixed axes in the body are momentum wheels. 

From Equation (67) with 8 = 0 we have the condition 

Ka = IOATUJ •■9^-g' (76) 
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which may be substituted into Equation (15) to generate the set of equations 

h =     -WXh-VXp + ge 

p       =   -wxp + fe 

q        =    -G(q)« 

(77) 

(78) 

(79) 

(80) 

The relationship between momenta and velocities is 

h 

P 

J cx       AsIsti, 

-cx        ml      0(3xAr) 

ISWAJ   0(^x3)      Isw 

V 

Us 

where 

As   =   As0 

At   =   A<0 

(81) 

(82) 

These equations should be compared with the results of Section 3.5 in Hughes [23] for the 

single-rotor gyrostat. 

3.2.8 Control Moment Gyro Equation Summary. Consider also the case where 

the rotors spin at constant speeds relative to the body. Gimbaled momentum wheels with 

fixed spin speeds relative to the body are control moment gyros. In this case 

hsiua = Isw A, <*> + hs 

where hswr is a constant and can be computed from 

(83) 

"■swr — A. swr — ±sw'x'swr (84) 
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The appropriate substitutions lead to the set of equations 

h       =   -a?xh-vxp + ge (85) 

p        =    -u;xp + fe (86) 

h5a   =    ((It - I«) As
Ta; - hswr) • (Aju) + gfl (87) 

6        =    I^hga - AJUJ (88) 

q     =  2G(q)a? (89) 

and the momenta and states are related by the expression 

h J          cx A T U> ■**-s**su/r 

p = —cx       ml 0(3xJV) V + 0(3X1) 

hga IaAj   0^x3) 
** 

6 0(iVxl) 

(90) 

Equations (85) through (89) and (90) represent a new form of the equations of motion for 

a spacecraft with CMGs. The reader should compare them to the summation notation 

used by Oh and Vadali [42], wherein the rotation matrix for each CMG must be carried 

during the integration. 

3.3   System Energy 

The kinetic energy of a body containing GMWs consists of contributions from the 

rigid body itself, plus the kinetic energy of the N GMWs. For the rigid body, B, the 

kinetic energy is by definition 

TB = - / (v + Ü5 x r) • (v + d x r) dm 
2, JB 

(91) 

where v is the velocity of an arbitrary reference point in the body with respect to inertial 

space and r is the location of the differential mass element dm with respect to the same 

point. Expansion results in 

?B = -v • v / dm + v • u> x / rdm + -Ü5 • / -rx(rxw)rfm 
2       JB JB 2     JB 
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Using the familiar definitions of total mass mg, first mass moment of inertia eg, and second 

mass moment of inertia Ig, we put the kinetic energy of the rigid body in its familiar form 

TB = -mB-v ■ \ +-c5 • IB -ü5 + V-ü> X eg (92) 

Note that if the reference point is inertially fixed so that v = 0, or if the reference point 

is the mass center of the body so that eg = 0, then the last term disappears. We wish 

to keep the development general enough to allow a reference point not meeting either of 

these two conditions. 

We now develop the kinetic energy for a single GMW. The total kinetic energy of 

the system may then be formed by summing the energy of the body and all GMWs. For 

each GMW, the kinetic energy is defined as 

rgmw = ^ /     (v + wxrj-fv + wxp). 
/gmw 

where to be consistent, we choose the reference point to be identical to the point used 

for the body. In order to simplify the derivation, we separate the kinetic energy of the 

GMW into that due to the gimbal frame, Tg, and that due to the wheel, Tw, so that 

Tgmw = Tg + TW. We compute the contributions separately. 

We assume that the center of mass of the GMW does not vary with gimbal angle. 

We further assume that the centers of mass of the wheel and gimbal frame coincide with 

that of the total GMW and are fixed. We denote the vector from the reference to the 

center of mass of the GMW as ?G, and the vector from FG to r as p, so that 

r = rG + p (93) 

For the wheel the kinetic energy is given by 

Tw=2j  ^G + ^wa X ^ ' ^G + ^wa X ^ dm (94) 
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where VQ is the velocity of the GMW center of mass, that is VQ = V+WX?Q. Substitution 

into the wheel kinetic energy expression gives 

Tw   =    - / (v • v) dm + / (v • c3 X ?G) dm + / (v • c3wa X p) dm 

+ / (Ö5 x rG) • («„,„ X p) dm + - / (05 x rG) • (ö5 x rG) dm 
Jw " Jw 

+x / (kw x p) • (<3wa x p) dm 

Since /w pdm = 0, the third and fourth terms in the above sum are identically zero. 

We rewrite the above as 

Tw = -mw(ir ■v) + v-(wxcw) + -«- IWmiSS • u + -<2wa • Iw ■ üwa (95) 

where Iu,mass is the inertia dyadic of the wheel mass about the body reference point. It is 

the parallel axis contribution of the wheel. The term Iw is the inertia dyadic of the wheel 

about its own center of mass. 

A similar analysis on the gimbal frame leads to the gimbal frame kinetic energy 

T9 = 2ms(v • v) + v • (05 x cs) + -w • Iflma33 • Q + -dga ■ lg ■ Üga (96) 

The combined energy of the body in which is imbedded a single GMW is therefore 

1 1      - 1 - 1 - 
T = -m(v • v) + v • (c3 x c) + -w • I • £ + -<2ga • Ig ■ «,« + -towa ■ lw • «„„ (97) 

where m = mB + mw + mg and c = CB + CW + C9. The inertia dyadic I includes the parallel 

axis terms for the mass of the GMW as in Equation (2). 

We now note that the absolute gimbal angular velocity is given by 

u>ga = 5ag + <2 (98) 
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and that the wheel angular velocity given by 

<2wa = Usurps + 6ag + CS (99) 

We also substitute for the gimbal inertias and wheel inertias which are given by 

Ig = ISgäsas + ItgStSt + IggSLgäig (100) 

and 

Itu = ItvA + (Isw — Itw)äs&s (101) 

After substitution of the above into Equation (97), we attain the energy in terms of 

the current reference axes as 

T   =    9 m(v • v) + v • (t3 x c) + -05 • I • c3 

+Ig5äg ■ w + Iswuswr as • (3 + ^(IgS
2) + -(Iswu2

swr) + -<2 ■ Igmw • w   (102) 

where 

Igmw = Isaacs + Itätät + Igägäg (103) 

If we now include N GMWs, and choose a body-fixed coordinate frame, then the 

kinetic energy may be written in matrix notation as 

T   =   ^mvTv + vTwxc + ^TIaJ+^
T(AsIsAj + A5I5Aj + AiIiA7)aJ 

• T 1      T 1 
+S IgA]u> + u>]wrIswAjio+-6 IgS + -u]wrIswuswr (104) 

Using the notation of Equations (71) to (74), the kinetic energy for the body/GMW 

system can be written in the concise form 

_ 1_T 
-*   — n^jmw™gmwVgmw (105) 2 
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Since energy is in general being added to the system by external forces and moments, 

along with wheel and gimbal torques, we do not expect the energy of the system to remain 

constant. In fact, the rate of change of system energy must equal the rate of work done, 

which is given by 

f = fJv + g]u> + g]8 + SZu:swr (106) 

This expression will prove useful in monitoring the numerical results when the control 

inputs are given. Note that Equation (106) can be integrated for the system energy, while 

system energy can also be computed from the system states. Defining 

Sgmw — 

ge 

fe 

Eg 
(107) 

then note that the system energy changes as 

• _T       — 
-*   = Sgmwvgmw (108) 

providing a concise vectorial form for the time rate of change of system energy. 

3.4    Summary 

This chapter provides the dynamical and kinematical relations for the rigid body 

system with a gimbaled momentum wheel cluster, and the specialization of the equations 

to the momentum wheel cluster and the control moment gyro cluster. Later, we use these 

equations to develop laws to effect reorientation maneuvers. 

Unfortunately, the truly rigid spacecraft does not exist. In fact, many spacecraft 

possess flexible members which must be considered during an attitude maneuver. In the 

next chapter, we develop a three-dimensional model to be used in the analysis of candidate 

control laws for flexible spacecraft. 
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4-   Euler-Bernoulli Appendages 

Using Hamilton's Principle, we develop the equations of motion for a rigid body to which 

is attached a number of flexible Euler-Bernoulli appendages. We first develop a model 

making no assumptions regarding the number of flexible modes, nor do we discretize the 

modes as in the methods outlined in the subsequent sections. The differential equations 

resulting from the derivation are considered hybrid equations due to the mix of non-spatial 

and spatial variables. The result is a mix of partial and ordinary differential equations. We 

then use the method of assumed modes to reduce the system to one with a finite number 

of degrees of freedom for purposes of computer simulation. 

4-1    Equations of Motion via the Lagrangian 

In this section, we present a set of equations which will be used to develop a mathe- 

matical model for the flexible spacecraft studied here. These equations are developed and 

presented in more detail by Junkins and Kim [25]. 

We begin by defining the Lagrangian L of a physical system as the difference between 

the system kinetic energy T and potential energy V, that is 

L = T-V (109) 

The kinetic and potential energies are functions of the generalized coordinates <fr,(i = 

1,2,..., N) and the generalized velocities <jt-, (i = 1,2,..., N). With the Lagrangian defined 

in this manner, an application of Hamilton's principle results in N equations (one equation 

for each coordinate) given by 

d (dL\      dL 

*\m-H=Qui=l*'-'*N (110) 

where Qi denotes the generalized force corresponding to the z-th coordinate [36]. 

The extension of Hamilton's principle to include flexible members of the body was 

generalized by Junkins and Kim [25]. A particularly useful set of equations is developed 

when only one independent spatial variable, say x, is allowed for a particular beamlike 
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section, but which might admit a vector, w, of generalized coordinates describing elastic 

motions relative to an undeformed body-fixed spatial position. The vector might, for 

example, include the elongation, u, and vertical displacement, v, of the beam, so that 

w = [ u   v]T- 

The Lagrangian is divided into three terms such that 

L = LD+ I LdÜ + Lß f LdSl + LB (111) 
Ja 

where £2 is the spatial domain occupied by the undeformed flexible body. The discrete part 

of the Lagrangian (the rigid body terms) is Lp and is a function of q and q, where we 

introduce the notation q to represent the column vector [ q1 q2 ... qn ]T. The term 

L represents the Lagrangian density for that part of the Lagrangian distributed along a 

flexible member. If the variation in the Lagrangian is a one-dimensional function of x, then 

L is a function of w(z), w(x), w'(x), w"(a;), q, and q. The spatial domain tt becomes 

ti = {x : 0 < x < I}. Overdots represent time differentiation and the primes designate 

spatial differentiation with respect to x. The last term, LB, denotes the boundary terms 

portion of the Lagrangian and is a function of w(/), w(Z), w'(Z), w'(/), q, and q where 

x = I at the boundary. 

The hybrid coordinate differential equations and boundary condition equations are 

then given by 
d (dL\     ÖL     ^ ,      ^ 
dt UJ " Sq- = * <112) 

± (dl\    dl    a fdl\    d2 (dl\    - 
dt\dw     dw + dx[dw')   dx2\dw")~ (113> 

at    d ( dl\V r ow 
9w'     dx \dw" 

dL 

{ dw" 
6w' 

+ 
o 

dL 

{^-l(^))}T^') + ^w,0 = 0     (H4) 

+ {^§)-s(^§))}   MO + tfMO-0 (115) 

We have adopted a convention wherein (dL/dq) is a column matrix.   The generalized 

forces corresponding to the discrete coordinates q are Q.  The generalized force density 

37 



Figure 3     A Spacecraft with an Euler-Bernoulli Appendage 

distributed along the spatial variable x is f, while fi and f2 are the generalized forces asso- 

ciated with a virtual displacement and rotation (respectively) at the end of the appendage. 

4-2   System Energy 

We now develop the energy of a system to which we shall apply Hamilton's Principle. 

A diagram of a spacecraft with an Euler-Bernoulli beam is in Figure 3. The system consists 

of the main rigid body (which will ultimately contain a cluster of momentum exchange 

devices) and a flexible beam appendage. The beam is allowed to flex only in the plane 

which has normal component n. The attach point of the beam to the rigid body is described 

by body coordinates b from the origin to the attach point. The vector along which the 

appendage is undeformed is given by ro. We make a special but realistic assumption that 

nTr0 = 0. For convenience, we define an axis, the x-axis, to have origin at the attach point 

and direction along r0. The length of the beam is /. 

The kinetic energy of the rigid body hub is given by 

TB = rmBvTv + -u>TIBu> + VT
ü;

X
CS (116) 

and we assume that the rigid body is not capable of storing potential energy. 
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A state of zero potential energy exists when the beam is in the undeformed state. We 

denote the deflection of the beam by v(x,t). For an Euler-Beraoulli beam, the potential 

energy V is given solely as a function of the beam deflection: 

V = \Jl
oEI{v"fdx (117) 

where E is the Young's modulus of the beam material and I is the moment of inertia of 

the beam's cross section about the centroidal axis. In general, E and I may depend on x. 

We now develop the kinetic energy of the beam. We denote the position vector of a 

point on the beam by r and assume that it is given by 

r = b+(£)r0 + tmx(^) (118) 

Note that the translation along the z-axis due to curvature has been assumed negligible. 

The velocity of a point along the beam V(,(x) at position vector r is closely approximated 

by 

vb{x) = v + u,*r + vhx (j) (119) 

where v and u> are the linear and angular velocities of frame T^ with respect to frame T\ 

and we again neglect motion of the beam along the ar-axis. 

The kinetic energy of the beam is therefore 

Tbeam = 2j   ( v + u>x r + y nxr0 J    (v + a?xr + ynxr0J dm (120) 

where dm is the differential mass element along the beam. This expands to 

Tbeam   =   -mbeamvTv + - / (u>xr)T(u>xr) dm + - / v(x)2 dm 
* * Jo 2 Jo 

,   fl   T   x    , [' v(x)   r     , rl i)(x) T + /  v1wxrdm+ /   -L-Zy^odm- /   -y^rjnu^rdm        (121) 
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in which the dependence of v on x is reemphasized. Since 

11' ("" (b+(?) r°) )T (»" (b+(f) *)) *» = 5"T***     <122> 

where If,o is the inertia of the undeformed beam about the origin, then 

1 [\u>xr)'T(ü,Xr)dm = 
2 Jo 

IT T \        f^ V /"' VX /"'  U^ 1 
-wTI60w + rJnxü;xa;x^b /  -dm + T0 l  —dm + hxr0     —5 dm >    (123) 

which is a useful expansion of the second term in Equation (121). 

In a similar manner, denoting the first moment of inertia of the undeformed beam 

about the origin as CJO, the third integral in Equation (121) may be written as 

/ vTü>xrdm = ra(,eamVTu>xC6o + vTu>xnxro /  -dm (124) 

Finally, the last integral in Equation (121) may be written as 

- j ^rjnu>xrdm=-rjnxa;x jb / jdm + r0 f jrdmi (125) 

where some simplification results from rjnxu>xnxr0 = 0 (since rjn = 0). 

Therefore the kinetic energy of a single Euler-Bernoulli beam is 

Tbeam = ^rnbeamVTV + -U>TI6o<*> + VTOJXC6o + Tflex (126) 

The flexure term, Tj\ex, is zero when v(x) = 0 and v(x) = 0, and is given by 

{/"' V /"' vx /"' v2 

0l /   7 dx + a2 /  ~Wdx + a3      -pdx 

+ a*J0l
dx + a5J0  P

dx+2Jo*dx\ <127> 

40 



where p is the mass per unit length of the beam. That is 

dm = pdx (128) 

The coefficients in the terms of Equation (127) are given by 

ax   =   ronxu>xa>xb + vTü;xn><ro (129) 

a2   =   r£nxa;xwxro (130) 

o3   =    (l/2)rjnxu>xu>xnxr0 (131) 

a4   =   vTnxr0-ronxu>xb (132) 

a5   =   -rjnxu>xr0 (133) 

The above coefficients are all at most quadratic in the velocities. Since application of 

Hamilton's principle requires derivatives with respect to these velocities, we rewrite the 

above coefficients as 

ai    =   wTronbTu>-u>Ta>ronxb + a>T(r0n
T - nrj)v (134) 

a2   =   u>Trxnr£u> (135) 

a3   =    (l/2)u>T(rorJ + nr£r0n
T)u> (136) 

a4   =   vTnxro + u>Tbxnxro (137) 

a5   =   a>TnrJr0 (138) 

The total Lagrangian for the system is therefore 

T T      ,   1    TT T   y L   =   -msys\ V + -W
1
I,„,«-V

1
C£,äü; 

f     \               v               vx               v                     i) i)T      1     1 
+ Jo p Iai^' v^7 + a2^~p + ü3^~ß + °4(w»v)y + "M-p + 21"2 f dx 

-\fQEI{v"fdx (139) 
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Recalling Equation (111), we separate the Lagrangian into the terms 

LD = -msysv
Tv + -u^lsysu - vTc£,w (140) 

and 
r \     v  _      vx v2 v vx      1 ., 1       1 „ r „2 , 
L = P jaiy + a272" + «3^ + a4y + a^ + -v2| - -EIv"2 (141) 

Since there is no kinetic or potential energy contributed as a result of the deflection at the 

tip of the beam, 

LB = 0 (142) 

We now apply Equations (112) through (115) to generate the hybrid equations of 

motion for the system. Equation (112) must be replaced with its quasicoordinate form, 

since in this case, the angular velocity u> and the velocity of the origin v are quasicoordi- 

nates [36, 44]. Lagrange's equations for the discrete quasicoordinates (when the Lagrangian 

is independent of spatial orientation and position) become [35] 

I (£)+*■(£) ♦"(£)- 
It is worth comparing Equations (143) and (144) to Equations (381) and (382). 

Introducing the notation 

daj 
ah„   =    ^ (145) 

a'>    =    -^ (146) 

then 

ai,w   =    (r£nbT -bnTr£)u>-2ü>ronxb + (r0n
T - nrj)v (147) 

a2,w   =    (r^nrJ-r0n
Tr^)w (148) 

03,a;   =   r0ro a> + nrJr0n
Taj (149) 
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a4,w = bxnxr0 (150) 

a.5,w = nroro (151) 

aijV = (nrj - r0n
T)u> (152) 

a2,v = 0 (153) 

a3,v = 0 (154) 

o4)V = nxr0 (155) 

a5,v = 0 (156) 

Assuming fi, f2, and f of Equations (113) through (115) are zero,the hybrid equations 

of motion can be summarized as 

+u>x imsysv - c£au + jf p |^H + ^ J dx J = fe (157) 

+vx f msysv - cx
ysw + jf p |^ + ^ j da; j = ge (158) 

|(ffi+£~+*)_(ffi + ^ + 2ss)+*(B,o_0 (1M) 

Since v(0) = 0 and u'(O) = 0, then Equations (114) and (115) reduce to 

£ (£?/«"(/)) = 0 (160) 

Elv"(l) = 0 (161) 

The above equations reduce to those of a rigid body when v(x) = v(x) = 0. Also note 

that when a? = v = 0, Equation (159) reduces to the familiar equation for a cantilevered 
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beam 
d ,  .,      d2 

di(H + ^(^") = 0 (162) 

4-3    The Assumed Modes Method 

We now apply the Method of Assumed Modes to the equations of motion [13]. We 

assume that the continuous variable v(x,t) can be expressed as 

00 

v(x,t) = J2Mx>i(t) (163) 

where V{ retains the length dimension and V>i is dimensionless. If we retain m mode shapes, 

then (163) can be expressed in matrix form as 

v(x,t) = i[>Tv (164) 

where i{> and v are the m-vectors formed by keeping only m modes. 

We choose for fa comparison functions [13] which meet the geometric and natural 

boundary conditions 

^•(0) = $(o) = #'(/) = $"(*) = 0 (165) 

A complete description of the assumed modes method and a description of comparison 

functions is in Craig [13]. 

To apply this method to our equations of motion, we introduce Equation (163) into 

Equation (127) and integrate out the spatial variable immediately. Note the simplification 

which results from Equation (163) in that, defining 

Vi(x,t) = 4>i(x)vi{t) (166) 

then 

V( = 7pi(x)vi(t) (167) 

and 

vV = tf{x)vi{t) (168) 

44 



The kinetic energy due to flexure becomes 

Tjiex   =    aimjv +a2m2V + a3v
TM3V + a4mJi/+a5m2i>+ ^üLM3ü      (169) ,T-   ,   1-Ti 

where u = [ Vl    v2    ...   vn ]T which we shall call the modal displacement vector and we 

define the components 

1  rl 
mi    =    7 /  pi/>{x)dx (170) 

l Jo 
1   /•' 

m2    =    -yi I  pxip(x) dx (171) 

M3   =    ^ jl piP(x)^(x)T dx (172) 

We also define the stiffness matrix K whose components are calculated from 

/ EI^"(x)iP"(x)Tdx (173) 
Jo 

K 

so that the potential energy may be expressed as 

1 
Vflex =-vlKv (174) 

The new assumed modes Lagrangian is therefore given by 

1 1 
-mS2/sv

Tv + -ivTIsysu> - vTc*ysa; + aimju + a2mji/ 

I2 1 
+a3i/

TM3iv +04111^+a5m2
r£'+— 0TM3ü- -v^Kv (175) 

Application of Hamilton's Principle to this Lagrangian yields a set of 6 + m equations of 

motion (containing only discrete coordinates) where m is the number of assumed modes. 

Of course, the above development is for only a single appendage with m assumed modes. 

Each additional appendage will add m more variables to the development. Continuing 

dL 
asm _ _j_ Q2m2 _|_ 2a3M.zu - Ku (176) 

av 
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and 
dLas 

dv 
a4mi + a5m2 + l2M3i> (177) 

Once again, using the quasicoordinate form of Lagrange's Equations for u; and v, the 

6 + m equations of motion for the system with one flexible appendage having m assumed 

modes are 

— (msysv - c*ysoj + ai,vmjv + a^mfv) 

+u?x (msysv - c^sw + ahvmjis + a^mjüj = fe (178) 

— (lsysu + cs
x
ys v + ai^mj1!/ + a2,wmji/ + a3)U,f

TM3i/ + a^mjv + aStfJJm$v) 

+CJ
X
 (lsysu + cx

ysv + aiia,m^ + a2,u,mji/ + a3,wf
TM3i/ + a4,wmfi/ + a5?wmji/j 

+vx (msysv - c^w + ahvmju + a4iVmJvJ = ge (179) 

— (a4mi + a5m2 + /2M3i>) - (oimi + 021*12 + 2a3M3v - Ki/) = 0 (180) 
at V                                        ' 

Equations (178) and (179) may be simplified by noting that 

9L=h 

dL 

and by defining the generalized flexure momentum as 

(181) 

(182) 

dL l2n. , . 
hv = — = a4mi + 05*112 + / M3i/ 

du 
(183) 

As with Equation (71) of Chapter 3, we relate the momenta and velocities in a matrix 

form as 

P = P <I>v 

*11 *12 *13 

*21 $22 $23 

*31     *32     *33 

V (184) 
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where we have introduced the modal velocity 

H = v (185) 

and the elements of the symmetric positive definite matrix $ are 

$n    -   IS2/s + (m»(r0
xnbT-bnTr0

x-2(rJn><b)l) 

+(m^)(r0
xnrj - r0n

Trx) + (i/Ma^A"^^** + (rjr0)l)       (186) 

*i2   -   cx   + (r0n
T - nrj)m> (187) 

'13 =    bxnxr0m7 + nrjr0mj (188) 

*21 = *u (189) 

*22 = rnsysl (190) 

*23 = nxr0mT (191) 

*31 = *?3 (192) 

*32 = *J3 (193) 

*33 = /2M3 (194) 

It is interesting to note that <&n represents the second moment of inertia of the system in 

the deformed state whereas $i2 represents the cross product form of the first moment in 

the deformed state. 

The equations of motion for the assumed modes model with a single appendage 

therefore reduce to the fairly simple 6 + 2m order system of equations 

h     =    -u>xh-vxp (195) 

(196) 

(197) 

(198) 

p    =  -wxp 

h^    =   flimi + a2m2 + 2a3M3iv- -Ki/ 

i>     —   \i 
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Equation (184) must be solved at each time step, since the system velocities are required 

in the right hand sides of the equations of motion. 

We can extrapolate the above development to additional appendages by noting that 

an additional appendage will result in additional terms in Equations (169) and (174). We 

must therefore adjust ISys,csys, and msys to reflect the new values. The elements of $ must 

include the additional terms due to the new appendage. An additional row and column 

must also be added to <1> to reflect the relationships between the additional vectors h^- and 

fj,{. Finally, we add 2m more differential equations reflecting Equations (197) and (198) 

for each appendage. 

Computing the system energy for the body with Euler-Bernoulli appendages is rel- 

atively simple at this point, since the energy was required prior to formulation of the 

equations of motion. It is interesting to observe, however, that the system energy may be 

expressed in the relatively compact notation 

T = ^vT*v (199) 

or alternatively 

T = ^vTp (200) 

4.4    Equation Summary for a Spacecraft with GMWs and Euler-Bernoulli Appendages 

We now integrate the equations of motion for a spacecraft containing N GMWs and 

p flexible Euler-Bernoulli appendages. Equations (65) through (67) of Chapter 3 are not 

affected by the presence of external Euler-Bernoulli beams. The equations of motion for 

each gimbaled momentum wheel are unaltered. 

The Lagrangian density function given by Equation (141) is also unchanged if GMWs 

are added to the rigid body hub. Equations (159) and (180) are still valid, therefore, for 

the combined system of equations. Of course, the equations of motion for total linear and 

angular momentum for the entire flexible spacecraft model also remain unchanged. We 

therefore summarize the entire set of equations for the spacecraft containing GMWs and 

48 



flexible appendages as 

h 

P 

h 

-OJXh-VXp + ge 

-wxp + fe 

— &w 

3a     - ((It-lsg)As
Tu}-hswa)*(At'

Tu}) + gg 

= I^hga-Ajü, 

= aim! + ö2m2 + 2a3M3&' — Ki> 

v       = 

=    öG(q)u> 

(201) 

(202) 

(203) 

(204) 

(205) 

(206) 

(207) 

(208) 

For a spacecraft containing N gimbaled momentum wheels and p appendages for which 

we assume m modes each, the set of first order nonlinear matrix differential equations is 

of order 10 + SN + 2mp. Note that a spacecraft with 3 GMWs and 3 flexible appendages 

will yield a set of 25 differential equations if we keep only the first mode of oscillation. As 

with the rigid body case, it is possible to express the relationship between momenta and 

velocities as 

(209) 

r            "i r             T 
h iO 

P V 

hga — ^sys 8 

"su/a ^swr 

h" M 

The coefficient matrix $sys is a function of S and v.  Equation (209) must be solved at 

each time step, since the velocities are needed in Equations (201) through (208). 

The spacecraft with GMWs is a generalization of the spacecraft with momentum 

wheels, in which case the gimbal angles are always zero. Setting 5 = 0 leads to a set of 

10 + N + 2mp equations. Similarly, for the CMG case, hswr is constant, and the equations 

of motion reduce to a set of order 10 + 2N + 2mp. 
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With no external torques or forces acting on the spacecraft, then attitude control is 

accomplished solely by choice of the spin axis torques gw and gimbal axis torques g5. In 

the next chapter, we will turn to the task of choosing these control inputs to reorient the 

spacecraft while simultaneously seeking to minimize oscillations of the appendages. 

4-5   Summary 

The results of this chapter provide a mathematical 3-D flexible spacecraft model 

without restrictions on symmetry of appendages, mode shapes, or center of mass motion. 

The assumed modes method allows for the infinite dimensional nature of the flexible ap- 

pendages to be truncated at a desired number of mode shapes. Any number of appendages 

may be modeled by these equations. The equations are integrated very smoothly with those 

of Chapter 3. We now turn to the development of control laws which provide a desired 

reorientation while keeping the appendage oscillations small. 
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5.   Spacecraft Reorientations 

We now turn to the task of finding control laws which reorient a spacecraft using momen- 

tum exchange devices. In general, the spacecraft may already possess significant angular 

momentum (stored in a cluster of momentum storage devices). We assume that the space- 

craft initially has no angular velocity with respect to inertial space, and our goal is to take 

up a new orientation with the spacecraft again at rest. The problem is therefore a rest-to- 

rest maneuver, with the initial and final orientations specified. With no external torques, 

the total angular momentum of the spacecraft/cluster system remains fixed in inertial 

space. At the final orientation, therefore, the cluster momentum has a unique orientation 

in the body coordinate frame, a property not shared by zero-momentum spacecraft. 

We begin this chapter by showing how the rate of change of cluster momentum 

is essentially the control input, regardless of the type of momentum exchange device. 

The relationship between cluster momentum rate and torque inputs is then discussed. A 

closed loop Lyapunov control law capable of reorienting the spacecraft is presented, with a 

momentum exchange cluster as the control device and where the control input is the rate 

of change of cluster momentum. 

Next the problem of singularities for the control moment gyro cluster is addressed. 

The singularity-robust inverse is examined using the insight provided by the singular value 

decomposition, and an improved control law which avoids torque commands in the singular 

direction is introduced. Some examples demonstrating the improvement are presented. 

We then discuss a class of maneuvers known as stationary platform maneuvers [20] 

which have the advantage of generally keeping angular velocities low during the reorienta- 

tion. A modification to the Lyapunov control law allows for reorientations which remain 

arbitrarily close to the stationary platform condition. 

5.1    Reorientations Using a Momentum Exchange Cluster 

We begin by writing the general equations of motion for a spacecraft containing a 

momentum exchange cluster in a general form.  This will show that the control input to 
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the spacecraft is essentially the rate of change of cluster momentum. We will then examine 

the possibilities of using specific control devices to effect the cluster momentum change. 

The total angular momentum of a spacecraft about its mass center is 

h = Ju> + hc (210) 

where J is an inertia-like matrix which will be defined in a suitable manner relevant to the 

momentum exchange device under consideration. We leave open the possibility of J being 

variable. The cluster momentum hc includes the spin momentum of the GMWs relative 

to inertial space and the angular momentum associated with the GMW gimbal rate. For 

a GMW cluster, for example, we add a subscript to J and 3gmw takes the form 

Jgmw = I + AtItAj + AsISflAj (211) 

and the cluster momentum is 

"■c ~~ A-s^-swa   i   **-g*lga. V J 

Assuming no external torques, the equation of motion for the spacecraft represented 

by Equation (210) is 

w = J-1(-o>
x(Jw+hc)-Jw-hc) (213) 

where J is determined by the gimbal rates. Note that j = 0 for the momentum wheel 

case. The reorientation profile can be controlled as desired through the input term J-1hc. 

There are, however, limitations on the types of maneuvers we may perform using the input 

hc. A rotation, for example, about an arbitrary eigenaxis is not possible. See Appendix B 

for a discussion. 

While hc can be viewed as the control input, it is actually changed by applying 

internal torques to the momentum exchange devices. The nature of these torques depends 

on the type of device. In the general case of the GMW, we have 

hc   =   Ashsu,0 + Ashstü(X + A0h S"3» 
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=   -A*diag(<j)hsu,a + Ashsum + A5h5a (214) 

We have direct control over the last two terms of Equation (214) using the torque inputs 

gw and g5 (see Equations (65) and (66)). Note, however, that the first term is dependent 

on the gimbal rates, which are states of the system. This term can dominate for the case 

of large hSU)a, and is indeed the term which provides the so-called torque amplification 

property of the single gimbal CMC 

For the momentum wheel case, we note that the second term on the right hand side 

of Equation (212) may be replaced with 

Aghga   =   Aghgr   + AglgA^U} (215) 

where hgr = 0 since the gimbal angles are fixed. It is convenient to lump the gimbal axis 

inertia into J and define 

3mw = I + AtItAj + AslsgAj + AglgAj (216) 

so that 

hc = Ashstüa = As0gw (217) 

Thus, a desired hc can be achieved by selecting gw to satisfy Equation (217). When TV = 3 

and the rotors are not coplanar, the solution for g«, is unique. When TV > 3, the solution 

for gw is underdetermined giving the possibility of an infinite number of solutions. It is 

common to choose a minimum norm solution for Equation (217). For N = 2, the torque 

output is confined to a plane, and when only one momentum wheel exists (N = 1), the 

torque output is confined to a line along the spin axis. 

Similarly, for the CMG, the first term on the right hand side of Equation (212) may 

be written as 

Ashswa = Ashsu,r + AsIswAja> (218) 

where hswr is constant. 
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Therefore, by defining 

Jems = I + &tItAj + AaIsAj + AglgAj (219) 

we have 

hc   =   -Atd\a,g(S)hswr + Aghgr 

=   -Atdiag(iw)<j + AgIgS (220) 

This demonstrates that the torque generated by a cluster of CMGs has a component about 

the gimbal axes (due to gimbal acceleration) and a transverse torque output due to gimbal 

rates. The torque input gs can be computed given the desired 6. 

An exact solution (for g5) to provide a desired hc is possible, but not desirable. The 

gimbal rates, 5, and accelerations, 8, are not independent. For a typical CMG cluster, the 

objective is to take advantage of the control torque generated by the gimbal rates (the first 

term of Equation (220)). Since 5 is actually a state of the system, we typically choose 5 to 

achieve a desired S which provides the hc required by some control law. Choosing gimbal 

accelerations to instantaneously generate the torque demanded by a control law leads to 

unacceptable gimbal rates (and therefore torques) from the first term of Equation (220). 

Note that this is a compromise, since the torque produced by the initial gimbal acceleration 

will almost definitely provide an undesirable (if small) output torque. 

5.2   A Lyapunov Feedback Control Law 

In this section, we develop the stabilizing Lyapunov control law due to Oh and Vadali, 

but using the variables of the current development. We define a positive definite Lyapunov 

function 

V = k0eje! + -ejje2 (221) 
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where ei is the attitude error, e2 
ls the angular velocity error, J is positive definite, and 

ko is a positive scalar constant. Explicitly 

ei    =   q-q/ (222) 

e2   =   w-uf (223) 

where q is the 4x1 quaternion vector and u> is the 3x1 angular velocity vector. The con- 

stant terms qy and u>/ are the desired final values for the reorientation maneuver. Though 

we intend to focus on rest-to-rest to maneuvers, we carry o>/ through the development for 

completeness. 

The derivative of the Lyapunov function is 

V = 2k0(q - q/)T(q - q/) + (w - w/)TJ(w - üj) + -(w - OJ/)TJ(a; - W/)        (224) 

The quaternion rates can be translated to angular velocities through the relations 

q = ^G(q)" (225) 

q/ = ^G(q/)«/ (226) 

Furthermore, we make use of the fact that 

GT(q)q=GT(q/)q/ = 0 (227) 

whereas 

GT(q/)q=-GT(q)q/ (228) 

The above relations allow us to express the derivative of the Lyapunov function in the form 

V = -(u- w/)T (-fc0G
T(q/)q + Jü>/ - Ju> + ijw/ - ljj\ (229) 
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We see that V can be guaranteed negative semidefinite when we ensure that 

-k0G
T(qj)q + Jü/ - Jw - - Ju> + - Jw; = Kx (w - w/) (230) 

where Ki is a positive definite gain matrix, since then 

F=-(w-w/)
TKi(w-w/) (231) 

Substitution of Equation (213) leads to the relationship 

hc = Ki(aj - uj) + *0G
T(q/)q - Jo»/ - wx (Jw + hc) - - j(w + utj) (232) 

In general, the magnitude of fc0 determines the speed of the reorientation, since it 

directly multiplies the quaternion error in deciding the magnitude of the required torque. 

It should be apparent from Equation (232) that choosing k0 = 0 and Ki / 0 will simply 

drive u> -¥ 0 without any consideration for the quaternion error. Conversely, choosing 

Kx = 0 and k0 ^ 0 will drive q -» q/ without consideration of the desired target angular 

velocity, u>/, generally causing an overshoot. The constant K: should therefore be selected 

in consideration of the magnitude of k0. It can be shown that the system is critically 

damped in the linear range (near q = qj) when the diagonals of Ki are chosen as [42] 

KUi = VWiiko (233) 

Since J is variable, but closely approximated by I when the GMW inertias are small relative 

to the spacecraft, the elements J„ are closely approximated by the constant terms /,-,-. 

It is important to discuss the possibility of solutions other than u> = ioj and q = q/ 

for which we might have V = 0. Since Kx is a positive definite gain matrix, then V = 0 

implies u> = u>/. This further implies that 

hc = k0G
T(qf)q - Jüj - wj (Jo?/ + hc) - Ju>/ 
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Combining this with Equation (213) when a? = o?y 

«/ = J"1 (-«j? (Ja>/ + hc) - Ja>/ - hc) 

we have 

hc = *oGT(q/)q + hc 

which is only possible when q = q/ (or q = 0, which violates the quaternion constraint). 

Therefore, the system is globally asymptotically stable when hc is chosen as in Equa- 

tion (232). This cluster rate must ultimately be related to the input torques. In the 

momentum wheel case, we have 3mw = 0, and assuming we wish to accomplish a reorien- 

tation for which tt>/ = 0 and t*>/ = 0, then Equation (232) simplifies to 

hc = Kiw + &oGT(q/)q - wx (J« + he) (234) 

Generating the hc required by Equation (234) is relatively simple for the momentum 

wheel case. Equation (217) provides the relation for choosing the momentum wheel spin 

axis torques, gw. For the case of three non-coplanar momentum wheels (As0 non-singular), 

a unique solution for gw exists. For a redundant set of momentum wheels, an infinite 

number of solutions exists. It is common to choose the minimum norm solution for the 

torques given by 

gw = Aj(AsAj)-xhc (235) 

The case of the CMG cluster is not quite so simple. With changing gimbal angles, 

3cmg is not constant, and even after computing an hc to stabilize the system, Equation (220) 

causes complications in choosing the control input. First, we rearrange Equation (232) 

slightly to the form 

hc + -Jcmg{v + Wf) = Ki(w - uff) + fc0G
T(q/)q - 3cmgüf - u>x {Jcmgu + hc)     (236) 
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so that all terms which are functions of gimbal rates and accelerations are on the left hand 

side. Then Equation (236) may be written as 

B'S + BS = K^w - cjf) + k0G
T(qf)q - J^w/ - u>x (J^W + hc) (237) 

where the 3 x N matrix B is simply (from Equation (220)) 

B = A5I5 (238) 

The 3 x N D matrix in Equation (237) is defined by 

D<* = 2Jcm5(w + cjf) - Atdiag(hsu,r)5 (239) 

To compute D, note that 3cmg is a function of the gimbal rates, so that 

Jcmg   =   Asdiag<JItAjf + Atdiag<JItAj - Atdiag<SIsAj - AsdiagSIsAj 

=   Asdiag<*(It - I.)A? + Atdiag<J(It - Is)Aj (240) 

It is possible, for example, to write the product of the first term on the right hand side 

of (240) with u) + ivf as 

Asdiag<5(It - Is)Aj(u> + u?f) 
N 

.7=1 

asia7i(u7 + u>/)   as2aj2(u + vf)    •■•   asNaJN(u + u>/) (It-h)S   (241) 

so that 

D   =   -A<diag(h,u;r) 

1 +: (a,iaS + auaJx) (w + «/)    (as2a£, + at2aj2) (w + w/)    • • • 

(asAra^ + atNaJN)(u + u>/) (It " Is) (242) 
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In general, because hswr is large, the contributions to D from the first term of Equa- 

tion (242) are of much greater magnitude than those of the second term (especially for 

small a; + a?/ or when It « Is). 

The system is stable when Equation (237) is satisfied. Of course, 8 is actually 

determined by the integration of 8 and is therefore a state of the system. The advantage 

of single gimbal control moment gyros, however, lies in the torque amplification resulting 

from the gimbal rates. Fortunately, 38 is generally many orders of magnitude smaller than 

D<5 (for high spin rate control moment gyros). Normally, we seek to drive the gimbals so 

that 

T>8 = Ki(w - w/) + &oGT(q/)q - J««,«/ - wx(Jcmflu> + hc) (243) 

as closely as possible, while simply tolerating the resulting torque generated by the gimbal 

accelerations. That is, we assume 38 is negligible in Equation (237). A solution to 

Equation (243) gives the desired gimbal rates, which we denote as 8des. Oh and Vadali 

showed that by then choosing 

8 = Ks(8des-8) (244) 

where K$ is positive definite, we can keep 8 close to that required to satisfy Equation (243), 

ensuring that we are taking advantage of the torques generated from the gimbal rates. 

Knowledge of the desired gimbal accelerations allows computation of the required 

gimbal axis torques (assuming that we can compute or measure u>), since from Equa- 

tion (87) 

ga = Ig'8 + IgAjü - ((I, - I.) Aju, - hswr * (A?«)) (245) 

As in the case of momentum wheels, a redundant set of CMGs leads to an underde- 

termined problem. Denoting the right hand side of Equation (243) as lr, then we seek a 

solution to the problem 

8des = D+lr (246) 

The superscript f is used in Equation (244) to indicate that when D is not invertible then 

a suitable pseudoinverse should be used. This occurs when D is not square. It may also 
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occur when the gimbals are in a singular configuration. We turn now to a discussion of 

the CMG singularity problem. 

5.3    The CMG Singularity Problem 

A singularity is encountered when there exists some direction in the body in which 

the cluster is not capable of producing torque. This occurs for a particular direction in 

the body frame when the spin axes of all CMGs in the cluster are either maximally or 

minimally projected in that direction. In this condition, all of the transverse axes of the 

CMGs are perpendicular to this direction. Thus, the elements of A, are coplanar, and D is 

rank 2. We could also say that the range of the transformation from gimbal rates to output 

torque of the cluster is two-dimensional (planar). Operating near these singularities can 

result in unreasonably high gimbal rate commands and undesirable system response. 

Of course, nothing physically significant actually happens at a singularity. There is 

no gimbal lock phenomenon or other adverse effect associated with these configurations. 

There is, however, a problem if one wishes to generate a torque in the singular direction. 

If the required torque is orthogonal to the singular direction, there is no reason to avoid 

the singularity during the reorientation profile. Based on the elegant results of the singular 

value decomposition (SVD), we are able to steer through some singularities, resulting in a 

much smoother reorientation. An excellent presentation of the principles of the SVD and 

its relationship to the typical pseudoinverse techniques was given by Junkins and Kim [25]. 

We begin with an analysis of the singularity-robust steering law before showing how it is 

modified into a singular direction avoidance law. 

5.3.1 The Singularity-Robust Steering Law. For a.system of three CMGs (with 

non-coplanar gimbal axes), and a non-singular matrix D, Equation (243) can be solved for 

the desired gimbal rates as 

<*des = D-1lr (247j 
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When there are more than three CMGs in the cluster, then the solution for jjes is under- 

determined, and a minimum 2-norm solution can be calculated from 

(Sdes = DT(DDT)-1lr (248) 

Equation (248) gives the minimum norm solution for the gimbal rates for a desired 

torque, lr
x. Equation (248) fails when D drops below rank three, because DDT becomes 

singular. When D is nearly singular, the inverse leads to unreasonably large gimbal angle 

rates. 

A modification to Equation (248) prevents the gimbal rates from becoming excessive 

at or near a singularity [39]. The steering law is modified to 

<5des = DT(DDT + al)-1lr (249) 

where 1 is the 3x3 identity matrix, and a is a scalar parameter which is negligible when 

DDT is non-singular, but increases as a singularity is approached. Oh and Vadali proposed, 

for example, letting 

a = aoe-
det(DDT) (250) 

where a0 is some small constant. This ensures that a solution for the gimbal rates always 

exists. Equation (249) is commonly referred to as the singularity-robust (SR) steering law. 

Near or at a singularity, the computed gimbal rates do not produce the required 

torque. We are forced to accept some deviation, as it may be impossible to produce the 

desired torque with finite gimbal rates. In some cases, however, the required torque might 

be possible if it lies in the range of D, even though D is singular. The SR steering law 

will produce an errant torque, even when the desired torque is achievable. The singular 

value decomposition allows for an examination of the structure of the SR steering law and 

provides some insight which allows for an improvement in the steering law near or at a 

singularity. 

xThe minimum norm solution is often criticized in the literature (see, for example [4, 43]) for actu- 
ally contributing to the singularity problem. This phenomenon was not observed during this dissertation 
research, and a discussion of it is in Appendix C. 
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5.3.2    The Singular Value Decomposition.      In general, any m x n matrix can be 

decomposed into the product of three special matrices: 

D = USVT (251) 

where U is an m x m unitary matrix, V is an n X n unitary matrix, and S is an m x n 

matrix which is diagonal. If S has more columns than rows (i.e. m < n), then the last 

n — m columns are zeros. The diagonal elements of S are known as the singular values. 

By convention, all singular values are positive and ordered so that 

Sn > 522 > ... > Smm > 0 (252) 

Note that expressing D in this form makes it easy to compute D_1, since in the case 

where D is square, 

D"1 = VS_1UT (253) 

and S is an easily inverted diagonal matrix. When m < n, then the matrix DT(DDT)-1 

can be calculated from the elements of the singular value decomposition by discarding the 

last n — m zero columns of S and V, inverting the new mxm square matrix S, and forming 

D+ = VtS^XJ7 (254) 

where Vt and St are the truncated matrices. 

Equation (254) gives the minimum norm solution to the undetermined case and works 

well for the CMG problem when rank(D) = 3. When rank(D) falls below 3, however, St
_1 

does not exist because 533 = 0. The purpose of Equation (249) is to ensure that an inverse 

exists when S33 —>■ 0. 

We ask how adding the singularity avoidance parameters to the underdetermined 

steering equation given by Equation (249) affects the singular value parameters. We pro- 

ceed as follows: 

DT(DDT + al)"1    =   VSTUT(USSTUT + aUUT) ■T\-l 
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=   VtSt(S
2

t+al)-1VT (255) 

Note that both St and Sj + al are diagonal matrices, so that 

sW + oi)- = ^(sif-a.sPh s£u)        («) 
=   S*R (257) 

This nature of the SR law in terms of singular values was observed by Bedrossian et al. [4], 

but was not used to improve the steering law. 

Looking back at Equation (250), it is interesting to note that since 

DDT = USTSUT (258) 

then 

det(DDT)   =   det(U) • det(STS) • det(UT) 

=   det(STS) 
m 

=     II5« (25Q) 
t=l 

so that the exponent term in the singularity avoidance parameter is a function of all of the 

singular values. Below, we propose a singularity avoidance parameter that depends only 

on 533, the critical singular value for this problem. 

5.3.3 Singular Direction Avoidance. For a transformation matrix, such as D, 

which is a continuous function of several variables, the singular values are continuous 

functions as well. Since D maps the N x 1 vector of gimbal rates into the 3x1 vector of 

output torques, D is rank 3 for non-singular gimbal angles. If a singularity is encountered, 

then D falls to rank 2, with 533 = 0. The singular value decomposition provides some 

useful information through the unitary matrices U and V. With D a 3 x N matrix, the 

last N — 3 columns of V span the null space of D.  These columns form a basis for the 
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gimbal null motions of the cluster, those gimbal rates which produce no output torque 

for a given configuration. The third column of V always represents the direction mapped 

through the smallest singular value. When 533 = 0, the third column of V is also in the 

null space of D. 

The columns of U form the basis for the range of D when D is rank 3. However, 

when D falls to rank 2, only the first two columns of U span the range of D, whereas the 

last column is orthogonal to the range of D. The direction of the third column of U is the 

direction in which no output torque is possible when rank(D) = 2. 

It is always the third singular value which goes to zero as a singular gimbal con- 

figuration is approached. Thus, preventing 533 from going to zero will ensure that the 

commanded gimbal rates are finite. Furthermore, we argue that it is not only unneces- 

sary, but undesirable to change all of the gimbal rate commands when a singularity is 

approached, as is obviously accomplished through the singularity robust control law (see 

Equations (255) and (257)). The output torque requested by the Lyapunov control law, 

Equation (246), is not affected by the singularity of the gimbal cluster. It is the torque we 

would like to generate if possible. When we cannot because of a singular condition, there 

is no reason to alter all of the gimbal rates to avoid the singularity. 

When D is decomposed via SVD, Equation (243) becomes 

lr = USVT 6des (260) 

Some useful insight is provided when rewritten in the form 

UTlr = SVT<5des (261) 

When 533 = 0, the range of SVT is two-dimensional, and is the plane spanned by the first 

two columns of U. The first two elements of the vector UTlr remain the desired torque 

components in the range of SVT. We argue that it is best not to alter Sn or 522 before 

inversion. 
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The question becomes one of determining what to do with the possible gimbal motions 

in the null space of D. The singularity robust inverse technique would suggest letting 

(£) -* G '33 

"as + a 

Note that this function approximates (I/533) for large 533, but goes back to zero at a 

singularity (for a / 0). 

It seems reasonable to expect maintaining the gimbal rates present prior to encoun- 

tering the singularity would be preferable to attempting to stop the gimbal movement in 

the null direction as the singularity approaches. While this logic is sound in theory, since 

we are actually forced to deal with an acceleration steering law, the gimbal rates are never 

exactly what we desire and it is unlikely that the gimbal will transit the singularity in 

a direction exactly orthogonal to the singular direction. We therefore examine the rate 

steering equation of the form 

jdes = VtStDAUTlr (262) 

where 

^DA=diag(^.,£,^-) (263) 

We shall refer to the gimbal rates computed by Equation (262) as the Singular Direction 

Avoidance (SDA) steering law. 

Of course, we should justify why choosing the gimbal rates in accordance with Equa- 

tion (262) is an improvement over those computed by Equation (249), the SR steering law. 

Define as lp the torque produced by the gimbal rates of a cluster of CMGs. That is 

lp   =   D«S 

=   USVT<$ 

=   UStV?S (264) 
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Choosing the gimbal rates in accordance with the SR steering law yields the gimbal rates 

given by Equation (255) so that 

IpsR — US*SSRU lr (265) 

Near a singularity, this steering law does not produce the torque required. The error is 

lr-lPSR = U(l-S<S^R)U1l, t  UTTI (266) 

The norm of the error in the torque produced is therefore 

|ir-WII = o 52 +a 

0 0 

0 

0 

a 

UTlr 

) 

We use the same reduction to show that for the SDA approach 

llr - I 'PSDA I 

0 0 

0 0 

0   0 

0 

0 UTlr 

Sf,+a   / 

(267) 

(268) 

The error in the torque produced is therefore directly proportional to the magnitude of 

the torque required, but varies with direction. If lr is a unit vector, then the maximum 

error occurs in either case when lr lies solely in the direction of the smallest singular value 

(and is the same for either control law). The minimum error, however, occurs for the SR 

law when lr lies in the direction of the maximum singular value, but is always non-zero 

(assuming a/0). For the SDA law, the minimum error occurs (and is zero) if lr lies in 

the plane orthogonal to the direction of the minimum singular value (that is, in the range 

of the first two columns of U). 

We conclude that for the SR law 

a 

S2n + or 
< Hr " I 'PSRl 

«Ml 
< 

a 
SL + a (269) 
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whereas for the SDA law 

and that for any lr, 

»ä^Tilr^sj^ <27°> 

|lr-lpsDAll<ll>r->PS,ll (271) 

The error in the torque output resulting from the SDA control law is always less than 

or equal to that produced by the SR law. In some cases, the error might even be zero, 

whereas the SR law always produces some error. 

5.3-4 The Singularity Avoidance Parameter. The choice of the singularity avoid- 

ance parameter, a, can of course have a major impact on a typical reorientation profile. 

Since the intent of the singularity avoidance is to effect a smooth reorientation and prevent 

large gimbal accelerations (and torque commands), a method of judging the smoothness 

of a maneuver is to observe gimbal angle histories, or possibly the output torque history. 

Numerous simulations using a singularity avoidance parameter based on Equation (250) 

indicated a tendency toward abrupt gimbal angle commands and angular velocity histories 

near singular configurations because the exponential term rises abruptly as the singularity 

is approached. Furthermore, the singularity parameter given by Equation (250) depends on 

the physical size of the system, since det(DDT) has units of angular momentum squared. 

We therefore choose to non-dimensionalize the exponent. 

For a typical CMG system, the contribution to D from the first term of Equa- 

tion (242) is much greater than the contribution from the second. For the physical model 

and reorientation profiles explored in this section, the difference is roughly seven orders of 

magnitude. Therefore 

D « -Atdiag(hsu,r) (272) 

When D is computed as in Equation (272), then 

DTD = VSTSVT (273) 
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and since V is an orthonormal matrix, 

trace(DTD) = trace(STS) (274) 

So, with 

then 

DTD 
at2'lswr2 

^tN^swrN 

&tlhSwrl     &t2hswr2     ' ' "    ^-tN^swrN 

trace(DTD) = h2
swrl + h2

swr2 + ' + h2
swrx = hsu,rhsu,r = constant 

(275) 

(276) 

which with Equation (273) implies 

Sn + S22 + S33 = hstyrhsu,r = constant (277) 

When all N CMGs have identical spin momenta, hswr, then 

Es?i = Nh 2 
swr 

t=l 

(278) 

This allows us to put a bound on the upper limit of the smallest singular value £33, since 

when 533 is at its maximum, Sn = S22 = S33. Therefore 

£33 < \j—hswr (279) 

We define a non-dimensional variable 

033 = 
3   fS: S33_\ 

(280) 

so that 

0 < CT33 < 1 (281) 
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and choose as a singularity avoidance parameter 

a = a0e-k^ (282) 

so that the response of the system is independent of system size. The constant k„ may 

be selected as desired. Note also that the coefficient term, «o, also has units of angular 

momentum squared and should be adjusted to match the dimension of the system. In the 

following section, we compare the SR and SDA maneuvers, and we also compare maneuvers 

using the two singularity avoidance parameters. 

5.4    Maneuver Examples 

We now present some examples which are chosen to present the advantages of the 

proposed steering law. The physical model chosen is a rigid spacecraft with a cluster of 

4 control moment gyros arranged in a pyramid configuration (see Oh and Vadali [42]). 

The parameters are taken directly from the example used by Oh and Vadali in order to 

compare selected results. The model data are listed in Table 1. Use of Isg = lgg = 0 does 

not affect the results. 

5.4-1 Singular Direction Avoidance Example. We begin by examining the ad- 

vantage of singular direction avoidance only. For this example, we choose an initial sin- 

gular configuration of the CMGs which permits no torque output in the [1,1,1]T direc- 

tion. Requesting a torque solely in this direction will result in no gimbal rate commands 

(and no motion). To show an advantage of the SDA law, we request the constant torque 

Table 1     Spacecraft Physical Data for Singularity Avoidance Example 
Item Value Units 

"■swr [1.8,1.8,1.8,1.8]T kg-m2/sec 
1 diag{86.215,85.070,113.565} kg-m2 

*-sw diag{0.05,0.05,0.05,0.05} kg-m2 

Itw diag{0.03,0.03,0.03,0.03} kg-m2 

It, diag{0.01,0.01,0.01,0.01} kg-m2 

**gi*-gg diag{0,0,0,0} kg-m2 

Pyramid Angle 54.74 deg 
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Table 2     SPA Example Simulation Data 
Item Value Units 

KS diag{100,100,100,100} sec-1 

«0 0.5 kg2-mA / sec2 

So [13.455, -13.455, -54.343,54.343]T degrees 

So [5.541,9.204,10.820, -1.983]T degrees/sec 
U)0 [0,0,0]T degrees/sec 

lr [0, -0.5,0.5]T N-m 

lr = [0, —0.5,0.5]T, which is perpendicular to the singular direction. We also begin at a set 

of gimbal rates which are providing the desired torque at the beginning of the maneuver. 

Initial conditions and control law gain parameters are shown in Table 2. 

Simulation results are shown in Figure 4. The top row of plots shows the desired 

(dashed line) and produced (solid line) torques in the body reference frame for the two 

control laws. The second row of plots shows the same torques presented in a reference 

frame using the columns of U as basis vectors. Resolving components into this frame 

depicts how the control law affects the torque produced in the directions corresponding to 

the singular values. While the SR law produces torque deviations in all axes, the SDA law 

produces zero error in the plane orthogonal to the singular direction. 

The deviation in the direction of the singularity deserves explanation. As the simu- 

lation progresses, the gimbals do not remain in a singular configuration. The direction of 

the smallest singular value changes, and it is the torque in the direction of the smallest sin- 

gular value which is distorted due to the SDA control law. As the smallest singular value 

direction changes, lr is no longer exactly in the plane orthogonal to this most singular 

direction, whereupon the pseudoinverse calculated using the SDA law begins to produce a 

deviation. 

Figure 4 also presents a comparison of the magnitude of the torque error for both 

laws. It is evident that the norm of the error is reduced for the SDA law (solid line) when 

compared with the SR law (dashed line). The residual error for both cases is caused by 

the actual gimbal rates lagging the desired rates. It can be reduced by increasing K5 in 

Equation (244). The singular value histories for both laws are also presented to illustrate 

70 



0.6 
Singularity Robust Control Law 

Cß 0.4 
ID 
3 
rT u o 0.2 
H 
(i) 
a 0 
at 
l* u* 
>■> -().'?. 

T? 
o 

OQ -0.4 
' ~— -I.   

0.6 
Singular Direction Avoidance Law 

0.5 1 1.5 2 

Singularity Robust Control Law 

& 
o 
H 
c o 
o 

Q 
a 

"3 

C/5 

0.8 

0.6 

0.4 

0.2 

0 

■0.2 

  ■ ■   ' —" '  

0 0.5 1 1.5 

Torque Error Comparison 
0.08 

0.06 

0.04 

0.02 

0.5 1 1.5 
Time (sec) 

CÄ 0.4 
(1) 
3 
rr 

0.2 
H 
Hi 
s 0 
es 
l-l 

PL, 

>^ -0.2 
T3 
O 
« -0.4 

0.6 
o 
H 
c o 

B   0.4 

Q 
S3   0.2 
3 

t/S 
0 

-0.2 

3 

2.5 
Cß 

5    2 
> 
a 1.5 
3 
W) 
.9    1 

0.5 

0 

: 

0           0.5           1           1.5           2 

Singular Direction Avoidance Law 

0           0.5           1           1.5           2 

Singular Value Comparison 
! 

—-~"^"""~" 

0 0.5 1 1.5 
Time (sec) 

Figure 4      Torque Output Near a Singularity for the SDA and SR Steering Laws 

71 



the rate at which both control laws drive the gimbals away from the singularity. While 

this example is illustrative of the difference in the laws, it is somewhat artificial in that 

a singular condition is forced to exist at the start of the maneuver, a condition which is 

normally avoided during a reorientation. 

5.4-2 Effect of the Singularity Avoidance Parameter. Figure 5 compares the re- 

sulting torque profiles for a reorientation maneuver started from a singular gimbal state. 

The plots show the torque produced (solid line) and the torque desired (dashed line). The 

simulation parameters are presented in Table 3. Case 1 uses the avoidance parameter based 

on Equation (250) and the SR law, whereas Case 2 uses Equation (282) with ka = 10 and 

the SDA law. Cases 1 and 2 use «o = 0.1. Note the improvement in smoothness of the 

produced torque in Case 2. The third column of plots presents the same SDA law reorien- 

tation using Equation (282) and a0 = 0.5. The improvements evident in Cases 2 and 3 can 

be explained by the smoother and shallower rise of the singularity avoidance parameter 

function as the singularity approaches. Simply increasing «o for the singularity avoidance 

parameter given by Equation (250) does not improve the results. Using Equation (250) 

with ao = 0.5 gives results which are similar to Case 1, except that the errors are larger. 

Another measure of improvement in the steering law is the smoothness of the angular 

velocity history. The frequency content in the angular velocity components, for example, 

gives some insight into the tendency for a reorientation to excite vibrations in flexible 

appendages. An improvement here is evident from the angular velocity components pre- 

Table 3     Singularity Avoidance Parameter Comparison Data 
Item Value Units 

fc0 1.0 ' N-m 
Ks diag{l, 1,1,1} sec-1 

ao, Cases 1 & 2 0.1 kg2-m4/sec2 

cto, Case 3 0.5 kg2-mA / sec2 

*o [-90,0,90,0]T degrees 
S0 [0,0,0,0]T degrees/sec 

U>o, Uff [0,0,0]T degrees/sec 
qo [0.5,0.5,0.5,0.5]T 

q/ [0,0,0,1]T 
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sented in Figure 6, which presents a direct comparison of Cases 1 and 3. Singular value 

and gimbal angle histories are also presented. The gimbal angle history is considerably 

smoother for the parameters of Case 3. Though the quaternion history is not presented, 

they are similar and are nearly identical at the 50 second point. 

The gimbal angle rates shown in Figure 6 are very descriptive. Note the dramatic 

reduction in gimbal rates for the SDA law over the SR law. Rapid changes in gimbal rates 

are challenging for the CMG torque motors. 

5.5    The Stationary Platform Maneuver 

Stationary platform maneuvers (SPMs) are a class of gyrostat maneuvers investi- 

gated by Hall [21]. A spacecraft in which all of the angular momentum is contained in the 

momentum exchange devices will have zero angular velocity. A necessary (but not suffi- 

cient) condition for this state is that the momentum cluster have an angular momentum 

magnitude equal to the total system angular momentum magnitude. By controlling the 

rotors of a gyrostat in such a way that the maneuver remains near a branch of equilibrium 

motions for which the platform angular velocity is zero, then the angular velocity of the 

platform will remain small throughout the maneuver provided the rotor torques are small. 

The low angular velocity resulting from execution of the SPM condition for a space- 

craft with momentum wheels naturally leads to the question of its utility in the reorien- 

tation of flexible spacecraft. High angular velocities during a rest-to-rest maneuver imply 

high angular accelerations, which naturally tend to excite oscillations of any flexible ap- 

pendages. 

Existence of the SPM for a spacecraft with momentum wheels also raises the question 

of its existence for a spacecraft with control moment gyros. While following a stationary 

platform path with momentum wheels translates into following a hyper-ellipsoid in the 

space of wheel speeds, translation of the stationary platform condition into gimbal angle 

space for the CMG is considerably more complicated, as illustrated below. 

5.5.1 Stationary Condition for the GMW. We start by investigating the case 

where all of the angular momentum is contained in the momentum storage devices. That 
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is, when o> = 0 in Equation (15). We also assume for this development that the linear 

momentum, p, is constant, and without loss of generality equal to zero. This yields the 

stationary platform condition given by 

h = Ashsu/a + Aghga (283) 

All combinations of hswa and h5a which maintain a constant h will maintain a sta- 

tionary platform. Note, however, that if hga ^ 0, the gimbal rates are nonzero which 

implies As is changing. This, in turn, requires varying spin axis torques to maintain a 

fixed h. Explicitly, we must have 

h = Ashswa + Ashswo + Aghga = 0 (284) 

Since OJ = 0, then Equation (284) becomes 

Asgw - Afdiag^hj^a + Aggg = 0 (285) 

which might be useful in the case where we desire to reorient the gimbals and wish to 

supply spin axis torques to maintain zero angular velocity. 

We are most interested in the cases where hga is zero (the gimbal rates are zero). In 

this case, we need only satisfy the condition 

h = Ashswa (286) 

Using the expression for As in terms of the gimbal angles, then for a stationary platform 

with zero gimbal rates the total angular momentum must be 

h = [As0A
c - A<0A

s]hsu,a (287) 

Equation (287) can be put in an alternate form by defining a new N x N matrix to 

be 

Hsu,a = diag(hsu,0) (288) 
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so that we also have 

h = AsoHgwa cos S - AtoH-swa sin S (289) 

With multiple GMWs in the spacecraft, it might prove beneficial to exchange the 

momentum contributed by the individual GMWs with each other while maintaining the 

angular momentum of the system. We return to Equation (287) which gives h as a function 

of the vector hswa and the gimbal angles S. Taking the partial derivative of h with respect 

to the vector of spin axis momenta, we have 

9h    = As0A
c-A«,As (290) 

8h 

An expression for h in alternate form is Equation (289). The partial derivative of h 

with respect to the gimbal angles is therefore given by 

ds 

which can also be written as 

dh 

— — A-soELsuia A  — A+OHSUKIA 

ds - -(As0A
s + At0A

c)Uswa (291) 

A differential change in the body angular momentum vector then, can be expressed 

as 
dh    „ dh ,_ , 

dh = dKZdh- + TsdS <292> 
so that to maintain a constant angular momentum vector in body coordinates, any in- 

cremental change in S should be accompanied by an appropriate change in hswa (or vice 

versa) to ensure dh = 0. That is, we constrain the variation through the equation 

(As0A
c - At0A

s)dhswa = (As0A
s + At0A

c)B.swadS (293) 

If the coefficient matrices are square (and nonsingular), then Equation (293) has a unique 

solution. If not, then either a least squares or minimum norm solution could be used. Note 
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also that the coefficient matrices (dh/db.swa) and (dh/dS) are 3 x N, which means they 

have a nullspace of dimension at least N — 3. Variation of either hswa or S in the direction 

of the nullspace of the corresponding coefficient matrix will also assure no variation in h. 

When Equation (287) is satisfied, the platform will be stationary. We are interested, 

however, in reorientation of the body. Note that the value of h is free to vary as the body 

rotates, since h is the angular momentum expressed in body coordinates. The magnitude 

of h, however, is fixed if we assume no external torques are acting on the system. That is, 

hTh = h2 = constant , (294) 

when the external torque is zero. We define the stationary platform condition as the 

condition which exists when the magnitude of the cluster momentum equals the magnitude 

of the total momentum. That is 

hjhc = h2 = constant (295) 

Hall showed that, in the case of a gyrostat, maintaining the stationary platform condition 

during a slow maneuver results in a reorientation which keeps the angular velocity low. 

5.5.2 Stationary Condition for the Momentum Wheel. In the case of a cluster of 

momentum wheels, we simply consider the restriction of GMWs to fixed gimbal axes. The 

condition of Equation (295) implies that 

h2 = constant = hJwaAj0As0hsu,a (296) 

For a spacecraft containing N momentum wheels, Equation (296) describes a hyper- 

ellipsoid of dimension N in the space spanned by (hswal,0,...,0),(0,hswa2,...,0),..., 

(0,..., 0, hswaN), which we refer to as hsu,a-space. A requirement for a stationary platform 

is that the wheel momenta lie on the hyper-ellipsoid in hstüa-space. We accomplish this by 

noting that the differentiation of Equation (296) results in the dynamical constraint 

hstuaAS0As0hs«,a = hJ^AjoAaOgtu = ° (297) 
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Of course, Equation (297) is satisfied when the wheel torques lie in the null space of As0, 

but such "null motion" torques cause no motion. Thus, the applied torques must satisfy 

(As0gw)T (As0iw) = 0 (298) 

5.5.3   Stationary Condition for the Control Moment Gyro.       If we assume all of 

the GMWs have the same spin momentum, then 

**-swa ~~ Flswa*- yJMvj 

where 1 is the N x N identity matrix. Also, with u> = 0, then the rotor relative angular 

momenta are identical to the absolute momenta. This means the stationary platform 

angular momentum vector must be 

h = hswr (As0 cos S - A<0 sin S) (300) 

To satisfy the stationary platform condition, we need 

cos6TAj0As0cos6 + smörAj0Atosino'- 2cos<STAj0Af0sin S = (h/hswr)
2 = constant 

(301) 

where we have used the fact that the transpose of a scalar is itself. We will refer to the 

satisfaction of Equation (301) as the CMG stationary platform condition and the set of 

all S for which it is satisfied as the stationary platform surface, a surface which resides in 

5-space and depends on the constant value of (h/hswr)
2. 

We define the function F to be 

F = - cos ST AJ0As0 cos S + - sin STAj0At0 sin S - cos <JTAJ0At0 sin S (302) 

A depiction of the three-dimensional surface described by Equation (302) when As0 is the 

3x3 identity matrix (F = 1/2) is in Figure 7. 
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Figure 7     A CMG Stationary Platform Surface (F = 1/2) 

Note that F is a function of only the gimbal angles.  A differential change in F is 

strictly a result of a differential change in the gimbal angles. Thus 

dF (£'- (303) 

Differential movement of the gimbals in the null space of (dF/dS) will therefore maintain 

the stationary platform condition. Maintaining the gimbal velocity S in the null space of 

(dF/dS) will accomplish the same. We also note that 

= (%)* dSJ (304) 

If we assume it is possible to control the gimbal angle rates directly, then the stationary 

platform condition is maintained by ensuring F — 0. 
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Differentiation of the function F yields the matrix expression 

(is) = " cos(5T)AJoAsoAs+sin(<5T)AT0A<oAc-cos(<JT)Aj0AioAc+sin(«5T)AT0As0A
s 

(305) 

which is a 1 x N matrix with a null space of dimension N — 1. For a cluster of 3 control 

moment gyros, for example, the stationary platform can be maintained by remaining on 

the two-dimensional stationary platform surface. 

In reality, gimbal rates are integrals of gimbal accelerations and cannot be controlled 

directly. Assuming we have the capability to provide a desired torque to the gimbal axis, 

however, gimbal accelerations, S, can be controlled precisely. We ask then what the gimbal 

accelerations must be to maintain the SPC. 

Differentiation of Equation (304) produces 

'-(SMS)» « 
so that if we desire to hold F = 0, the gimbal accelerations may be computed by choosing 

gimbal accelerations such that 

is satisfied. The coefficient of 8 in Equation (307) can be computed as 

\-ß)    =   8 (AcAto-AsAso)(AsoAs + AtoA
c) 

+(cos 8T As0 + sin 8T At0) (As0 Ac - At0A
s)diag<5 (308) 

A minimum norm solution or other technique could be used to solve Equation (307), 

yielding gimbal accelerations which would maintain the stationary platform condition. 

It is conceivable that in some instances we may be faced with a system state in which 

the stationary platform condition has been violated. That is 

'i(£)' 
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or else the rate of change of F as expressed by Equation (304) is not zero, implying that the 

trajectory departs the stationary platform surface. Consider a violation of the stationary 

platform condition where the deviation is given by 

AF=F-K^)2 <309) 

To return to the stationary surface, we choose 6 so that the second order equation 

F + 2(LjnF + ulAF = 0 (310) 

has damped roots, thereby driving the stationary platform error exponentially back to 

zero. Choosing £ — 1, for example would provide critical damping, and the frequency u>n 

should be selected so that a correction to the stationary platform condition occurs at a 

rate appropriate to the dynamical response of the spacecraft. Specifically, choosing a S 

which satisfies 

will drive AF -*• 0, and return the cluster to the stationary platform condition should a 

deviation exist. The gimbal acceleration corrections given by Equation (311) are necessary 

because we do not have direct control of the gimbal rates. 

5.6    Lyapunov Control with Stationary Platform Weighting 

We now attempt to enforce the stationary platform condition while applying a Lya- 

punov control law. Since hc may contain components in the direction of hc, we seek to 

drive hc back to its original magnitude whenever a deviation is present. A candidate Lya- 

punov function based on the error in the magnitude of hc (deviation from the magnitude 

of h) is 

y, = ^(hJhc-hTh)2 (3i2) 
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Note V/i = 0 only when the magnitude of hc is equal to the magnitude of h. The derivative 

of Vh is 

% = (hjhc - hTh)hJhc (313) 

so that we can ensure Vh < 0 by choosing 

hJhc = ^2(h
Th-hJhc),    k2>0 (314) 

The minimum norm solution of Equation (314) is 

hc = MhTh-hJhc)£f^- (315) 

Now consider the ramifications of adding (315) to the control law of Equation (232) 

so that 

hc   =   K1(iv-cjj) + koGT(qJ)q- Jw, - u>x(Ju> + hc) 

-±j(u, + uf) + k2(h
Th-hJhc)^- (316) 

which, recalling Equation (213), implies 

Ju> = -Ki(w - «/) - k0G
r(qf)q + Jüf + ±j{<vf - u>) - fc2(h

Th - hjhc)^-    (317) 

Equation (229) then becomes 

V    =     -{„-„ffKl{„_„f)_{„_„ff^{hTh_hJhc)hc 

=    _(w _ W/)TKl(« - W/) - (« - W/)T_*l_((jw + hc)
T(Ju> + hc) - hjhc)hc 

=    -(u-Uf)TK1(u-Uf)-((v-uf)
T^-((JT3'rJu, + 2l^3<v) (318) 

which when a?/ = 0, can be reduced to 

V = -t^Kjw - u>Tfc2(hcu>TJT + 2hchJ)Ju> (319) 
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Since the first term of Equation (319) is already negative for all u> ^ 0, then the question 

of global stability with the modified control law reduces to the question of whether 

(Jtu)hJ + 2hchJ = (Jo? + 2hc)hJ > 0    (positive semidefinite) (320) 

Since Ju> + 2hc is an N x 1 matrix and h^ is 1 x N, then 

rank ((Jw + 2hc)hj) = 1 (321) 

which implies that two of its eigenvalues are zero. Since the sum of the eigenvalues equals 

the trace, then the third eigenvalue must be the trace of (Jo? + 2hc)hJ 

trace ((Ju> + 2hc)hj) = (Jw + 2hc)
Thc (322) 

Therefore, Equation (320) is satisfied if and only if 

(JOJ + 2hc)
Thc > 0 (323) 

The projection of Jo? + 2hc onto hc could only be negative if || Jw|| > ||2hc||. Therefore, a 

sufficient condition to satisfy Equation (323) is 

P«ll < 2||hc|| (324) 

For low angular velocities or large cluster momentum, Equation (324) will be satisfied 

guaranteeing the closed loop stability of the rigid body/GMW system when using the 

control law given by Equation (316). 

The control law of Equation (316) does allow for deviation from the SPC to satisfy 

the kinematics, but also attempts to return the vector hc to the stationary platform value 

when a deviation does occur. The aggressiveness of the system in attempting to maintain 

the SPC is determined by k2. When k2 = 0, the controller is guaranteed stable, but makes 

no attempt to maintain the SPC. 

84 



We make one additional observation. Since it is only required that k2 > 0) it is 

permissible to allow it to vary. For example, using a variable k2 
sucn that 

k2 = ~k2(l-q0),      h>0 (325) 

ensures that k2 > 0 and relaxes the stationary platform constraint just as the body arrives 

at the destination quaternion (assuming q/ = [ 1   0   0   0 ]T)2- 

5.7   Summary 

In this chapter, we showed that control of a spacecraft using a momentum exchange 

device can be simplified by considering the rate of change of cluster momentum, hc, as 

the control input. Once the necessary hc is determined, the input torques which produce 

the desired hc must be determined. A Lyapunov control law developed by Oh and Vadali 

which effects closed loop reorientations of a spacecraft is translated to the notation of this 

dissertation. 

The problem of control moment gyro singularities is discussed, and the singular value 

decomposition is used to develop a singular direction avoidance law which decreases the 

torque error near a singularity. This new law, along with modification to the singular- 

ity avoidance parameter permits smoother reorientations near singular conditions. Some 

examples demonstrating these improvements are presented. 

Finally, the stationary platform maneuver introduced by Hall for gyrostats is shown 

to have a parallel in the case of a spacecraft with a control moment gyro cluster. A method 

of reorienting a spacecraft while remaining arbitrarily close to the stationary platform 

surface is presented. 

We now turn to numerical simulations which demonstrate the effectiveness of these 

control law improvements in the reorientations of spacecraft with flexible appendages. 

For any reorientation given by initial quaternions q0 and final quaternions q/, a transformation can be 
made such that q/ = [ 1    0    0    0 ]T. 
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6.   Simulation Results 

In this section, the control laws previously developed are applied to two flexible spacecraft 

to examine their effectiveness. The maneuvers can be qualitatively compared by comparing 

the histories of the quaternions and angular velocities. They can also be quantitatively 

compared using cost functions which are dependent on such parameters as control inputs, 

total time for reorientation, and the deflections of the appendages. 

We begin by examining a relatively small spacecraft with very light flexible ap- 

pendages. The flexible appendages are chosen so that they have negligible impact on the 

dynamics of the reorientation. The effect of the reorientation profile on the flexible modes 

is investigated. 

A mathematical model of the Hubble Space Telescope will also be developed. This 

development will demonstrate how the Euler-Bernoulli appendage model could be applied 

to a real spacecraft. The Hubble example also gives a feel for how the control laws apply 

to a spacecraft of a different scale than the first. 

Before we take up the details of the flexible appendages, we should comment on 

the validity of the Lyapunov control law for the spacecraft/flexible appendage system. 

Derivation of the control law for the system began with Equation (210) and assumed 

perfect knowledge of u> from Equation (213). This perfect knowledge of w is necessary 

to guarantee stability. If the appendages are small (or do not have a major effect on the 

system response), then Equation (213) is a good approximation. We should keep in mind, 

however, that stability is no longer guaranteed for the spacecraft with flexible appendages. 

6.1    Reorientations of a Small Flexible Satellite 

6.1.1 The Small Satellite Model. We again consider the small satellite model 

used for the examples of Chapter 5. Here, however, we reduce the number of wheels to 

only three, and orient them along the principal axes. The physical data for the model is 

given in Table 4. Three one meter long appendages are attached, each allowing flexure 

in a principal direction.   The stiffness product, (El), is selected to provide a first mode 
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period of approximately 10 seconds. Note that the appendages are very light and do not 

significantly influence the dynamics of the satellite. 

Table 4     Physical Data for the Small Flexible Satellite 
Item Value Units 

m 100 kg 
I diag{86.215,85.070,113.565} kg-m2 

*-sw diag{0.05,0.05,0.05} kg-m2 

bi [1,0, Of m 
b2 [0,1,0]T m 
b3 [0,0, If m 
roi [1,0, of m 
TO 2 [0,1, of m 
TO 3 [0,0, If m 
ni [0,0, If 
Ä2 [1,0, of 
n3 [0,1, of 

P1,P2,P3 0.1 kg/m 
h,h,h 1.0 m 

(EI)U(EI)2,(EI)3 0.0031935 N-m2 

6.1.2 Assumed Mode Shapes. The assumed modes method developed in Chap- 

ter 4 will be our tool for discretizing the flexible modes. For the assumed mode shapes, we 

choose comparison functions which are the actual solutions for an Euler-Bernoulli beam 

cantilevered in an inertially fixed object. Of course, the rigid spacecraft to which we at- 

tach the flexible appendages is not inertially fixed, and the functions described here are 

not the exact solutions. To represent the first mode of the appendage on a free floating 

body exactly would likely require an infinite number of assumed modes. These functions 

do represent the exact modal shapes as the mass of the spacecraft approaches infinity. We 

therefore expect that when the mass of the appendage is small with respect to the rigid 

hub, the mode shapes will converge rapidly (i.e. the first few mode shapes will closely 

represent the true solution). 
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The exact solution for the cantilevered beam is presented by several authors (see 

Craig [13] or Junkins and Kim [25]). The i-th mode shape, il>i(x), for a beam of length / is 

i>i(x) = cosh(A,a:) — cos(A,a;) — c;(sinh(A,-:c) — sin(A,x)) (326) 

where 
_ cosh(A17) + cos(At/) 

'      sinh(A,-/) + sin(A,-/) K      ' 

and the eigenvalues, A,-, are solutions of the characteristic equation which results from 

imposing the boundary conditions given by Equation (165), 

cos XI cosh XI + 1 = 0 (328) 

The first four solutions of Equation (328) are approximately 

Xil = 1.8751 

X2l = 4.6941 

A3/ = 7.8548 

X4l = 10.996 (329) 

with corresponding modal frequencies 

(Xil)2   [El ,      x 
ui = ^-\— 330 

It is worth noting that the second modal frequency is about six times the first modal 

frequency. The first four mode shapes are plotted in Figure 8. 

6.1.3 Momentum Wheels. The cluster data for the small spacecraft with mo- 

mentum wheels is in Table 5. The utility of the stationary platform maneuver is better 

demonstrated by setting the original spin momenta to higher values than in the example 

of Chapter 5. 
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To demonstrate the gyric effects of reorientations using a cluster of momentum 

wheels, we examine the effects of changing the spin momenta in a linear fashion between 

the initial values and the unique final values. Since the angular momentum in the inertial 

coordinate frame is constant, the final value of angular momentum in the body frame is 

h/ina/ — C/jna/C0 ho (331) 

so that we choose 

h,= h/inaZ — ho (332) 

where tman is the desired maneuver time. 

In the case of the stationary platform maneuver, we desire to maintain the magnitude 

of hc constant while changing its direction steadily to the final value h/,-naj. The angular 
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Table 5     Cluster Data for the Small Satellite with Momentum Wheels 
Item Value Units 

*-sw diag{0.05,0.05,0.05} kg-m2 

asi [1,0,0]T 

a«2 [0,1, of 
aS3 [0,0,1]T 

"stuao [7.2,7.2,7.2]T kg-m2/sec 

change of the cluster angular momentum in the body frame is given by 

a _ ( ^0^ final] 
"spm — arccos I    » T»       I 

V   hoho   / 
(333) 

We define a plane in the body coordinate frame which contains hc and h/tno; by a normal 

vector 

(334) 
h* hfinal 

"Pm "  ||hcXh/ lc D-finalW 

The cluster momentum hc will vary along a constant arc from ho to h/,na/ if we maintain 

c spm   c 
spm 

(335) 

This cluster rate will maintain the stationary platform condition for any momentum ex- 

change device. 

Figures 9 through 11 show the results of the direct and stationary platform maneuvers 

for the small satellite when the cluster momentum is reoriented about the (1, —2,3) body 

axis through an angle of 2.856 radians. This corresponds to initial and final quaternions 

given by 

qo = 

0.1423 l 

0.2645 

0.5291 
q/ = 

0 

0 

0.7936 0 

(336) 

We set tman = 500 seconds and show the dynamics for an extra 100 seconds after completion 

of the maneuver. Note in Figure 9 the drastic difference between the angular velocities 

(and consequently, the quaternion histories). While the rotor momenta follow only slightly 
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different profiles, the resultant reorientation is much better behaved for the stationary 

platform maneuver. 

It is this behavior during the open-loop stationary platform maneuver which leads 

us to investigate its utility for reorientations of flexible structures. Neither the direct nor 

the stationary platform maneuver, however, accommodate kinematic considerations. Even 

should we be lucky enough to arrive at the final orientation with zero angular momentum 

in the body (and hence zero angular velocity), the kinematics are only satisfied to within 

a rotation about the angular momentum vector. 

A comparison of the cluster norms is in Figure 10 for the direct and stationary 

platform maneuvers. The direct maneuver in particular demonstrates a large deviation 

from a constant norm. Since the magnitude of the total angular momentum of the system 

is constant (and equal to the initial cluster norm), a large deviation implies a large transfer 

of momentum to the body, which is evident in the quaternion history. 

Because the excitations of the second assumed mode are generally several orders of 

magnitude smaller than those of the first mode, the appendage oscillations are very closely 

approximated by carrying only the first mode during the integration. As is evident from 

the appendage modal displacements shown in Figure 11, both maneuvers cause oscillations 

at the 0.1 Hz first modal frequency. The direct maneuver, however, produces higher 

deflections toward the middle of the maneuver profile. A plot of the total potential energy 

in the Euler-Bernoulli beams is the bottom plot of Figure 11. The total potential energy 

92 



0.02 

§   0.01 

500 600 

0.02 

§   0.01 

200 300 400 500 600 

0.02 

xlO 

E 
i 

>>2 
£? <u 
c 
ffl 
.2 * 
c 

600 

100 200 300 
Time (sec) 

400 500 600 

Figure 11      Appendage Excitations for Stationary Platform (—) and Direct (---) Maneu- 
vers Using MWs 

93 



is useful as a scalar comparison of the appendage excitation for different maneuvers. Note 

that in this case, the total potential energy during the direct maneuver is generally higher 

than for the stationary platform maneuver. 

Figures 12 and 13 show the results of a maneuver using the Lyapunov control law 

given by Equations (234) and (235), and the same law with the stationary platform weight- 

ing of Equation (315). The closed-loop law assumes knowledge of the inertia matrix. It 

also assumes perfect knowledge of tl>, which can be computed for the rigid body, but not 

so simply for a flexible structure. It might be possible to measure it in the case of a 

flexible spacecraft. The gains for the Lyapunov maneuver were selected to accomplish the 

maneuver in roughly the same time as the direct and stationary platform maneuvers. 

Because the Lyapunov maneuver begins the reorientation so abruptly (maximum 

torque is commanded at t = 0), most of the appendage oscillations are a result of the step 

torque command at initiation. These oscillations tend to obscure the benefits resulting 

from the new control laws. We therefore add a smoothing term to the torque commanded 

by the Lyapunov law. The cubic given by 

ksm   =   3(i)
2-2(i)3,    0<t<tr 

ksm     =     1,       t > tr (337) 

smoothly transitions from 0 to 1 over the period 0 < t < tr with zero slope at t = 0 

and t = tr. We should point out that a variable coefficient multiplying the control law 

given by Equation (316) no longer guarantees that the Lyapunov function rate is negative 

semidefinite. When t > tr, however, ksm is again constant and the global asymptotic 

stability of the closed loop system (for the rigid body case) is once again guaranteed. 

For these maneuvers, the angular velocity histories are really quite different, bit it is 

difficult (based on w) to choose the better maneuver. It is apparent from the quaternion 

history that the spacecraft takes a bit longer to achieve the desired final orientation when 

the stationary platform weighting is used. The plots of rotor momenta and spin axis 

torques show the slight differences in the control history. 
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Figure 13 presents the modal deflections of the appendages, along with a potential 

energy plot. Note that using the stationary platform weighting decreases the maximum 

deflection of the first two appendages, but increases the maximum deflection of the third 

appendage. The decrease in peak potential energy is only slight when the stationary 

platform weighting is used. It is not apparent that the stationary platform weighting 

provides a significant benefit for the spacecraft with momentum wheels. 

6.1.4 Control Moment Gyros. A CMG cluster presents different challenges in 

the reorientation problem. We investigate the effects of applying the stationary platform 

condition for a CMG cluster to determine whether the behavior of a system with a CMG 

cluster is similar to that of a system with momentum wheels. 

Changing the cluster momentum in the manner of Equation (332) may be impossi- 

ble for a cluster of only three CMGs for reasons to be discussed subsequently. A direct 

maneuver more appropriate for the mechanization of control moment gyros is variation of 

the gimbal angles between initial and final values in a linear fashion. That is, given the 

final gimbal angles <S/,na/ and the initial gimbal angles <50, a direct maneuver for CMGs 

uses the law 

6 = 8}in;1 ~ So (338) 
''man 

Execution of the stationary platform maneuver for the CMG cluster makes use of 

Equation (335) and an appropriate CMG control law (such as the SR or SDA law) to 

generate the desired hc. 

The stationary platform maneuver for the CMG cluster can be accomplished provided 

the initial cluster momentum lies inside the external momentum envelope for the cluster. 

For example, the cluster momentum envelope for a set of three orthogonal CMGs reaches 

a maximum of y/6hswr. (See Appendix D for a discussion of the momentum envelope of 

an orthogonal CMG cluster.) No component of the cluster momentum can be greater than 

2hswr, since one of the three CMGs can only contribute in the plane orthogonal to that 

direction. In fact, the maximum on a principal axis is hswr, since if the two non-orthogonal 

CMGs point along the axis, the orthogonal wheel always provides an off-axis component. 
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A stationary platform maneuver, therefore, using three orthogonal CMGs may not be 

possible when the cluster momentum is greater than hswr. 

Table 6     Cluster Data for Small Satellite with CMGs 
Item Value Units 

i-sw diag{0.05,0.05,0. .05} kg-m2 

I<w diag{0.03,0.03,0. .03} kg-m2 

I*, diag{0.01,0.01,0. 01} kg-m2 

*-sgi*-gg diag{0,0,0} kg-m2 

asio [1,0, Of 
a«20 [0,1, Of 
&s30 [0,0, If 
asi [0,1, Of 
a52 [0,0, If 
afl3 [1,0, Of 

"■swr [7.2,7.2,7.2f kg-m2/sec 

The CMG cluster data for the small satellite is in Table 6. The results of direct and 

stationary platform maneuvers for the small satellite with CMGs are presented in Figure 14. 

We note from the angular velocity and quaternion history that, as for the momentum wheel 

case, the stationary platform maneuver for a cluster of CMGs is a considerable improvement 

over the direct maneuver. For this example, the gimbal rates were selected by using the 

actual inverse and permitting large gimbal rates to occur. 

Whereas use of Equation (335) to maintain the stationary platform surface works 

perfectly in the case of momentum wheels, the second order effect of driving gimbal accel- 

erations to achieve gimbal rates permits a deviation from the stationary platform surface 

in the CMG case, especially during periods of high gimbal rates commands. Just how 

closely the actual gimbal rates match the desired rates is determined by the gain K$ of 

Equation (244). Once the cluster momentum is in error, the control law of Equation (335) 

makes no attempt to correct hc to its original value. Addition of the gimbal acceleration 

corrections given by Equation (311) allows for a return to the desired cluster norm when 

a deviation does occur. 

Figure 15 shows a comparison of the cluster norms and singular values for the di- 

rect and stationary platform maneuvers. It is evident that the cluster norm does remain 
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constant during the stationary platform maneuver, whereas a large deviation from the 

stationary platform condition occurs during the direction maneuver. This large deviation 

implies that a significant amount of angular momentum has been transferred to the body of 

the spacecraft. Note also that the direct maneuver passes through two singularities (evident 

by a singular value going to zero), whereas the stationary platform maneuver approaches 

but does not actually reach a singularity. Appendage oscillations for the CMG stationary 

platform and direct maneuvers display the same characteristics as in the momentum wheel 

case. 

We now present a comparison of four different control laws discussed in this disserta- 

tion for the small flexible satellite with the CMG cluster. Each maneuver is accomplished 

in approximately the same time. The four cases are: 
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1. Lyapunov control law only with gimbal rates computed by direct inversion of the 

D matrix. Note that this will result in high gimbal rates near a singularity of the 

cluster (ko = 0.35). 

2. Lyapunov law using the singularity-robust (SR) method for calculation of the gimbal 

rates. We use the law exactly as proposed by Oh and Vadali [42] (ko = 0.35, £*o = 

0.1). 

3. Lyapunov law using direct inversion for gimbal rates, but using stationary platform 

weighting (*0 = 0.35, k2 = 0.1, C = 1.0, wn = 0.02?r). 

4. Lyapunov law using the singular direction avoidance (SDA) method only (ko = 0.35, 

a0 = 0.5, K = 10). 

In all cases, the inputs were smoothed using the cubic smoothing function with tr = 20 

seconds. 

The quaternion and gimbal angle histories for the four laws are presented in Figure 16. 

Note that all maneuvers are accomplished at approximately the same rate. The gimbal 

angle histories, however, are quite different during the maneuver. Note especially the rapid 

changes for Cases 1 and 2, whereas Cases 3 and 4 result in much smoother gimbal motion. 

The modal deflections are presented in Figure 17, and it is evident that the different 

control laws produce significant differences in the magnitude of the oscillation. All of 

the control laws show a pronounced increase in vibration at approximately the 50 second 

point. This may be explained by noting the first plot of Figure 18, which shows the 

singular values of the CMG cluster during the reorientation. Note that Cases 1, 2, and 4 

all become singular between 40 and 50 seconds. Case 3, the maneuver with stationary 

platform weighting, actually avoids the singularity. The singularity in this case is an 

external singularity, which is avoided by keeping the cluster momentum inside the external 

cluster envelope. It is interesting to note, however, that although Case 4 (the SDA law) 

does pass through a singularity, the gimbal rates remain very smooth. 

The benefits of the proposed control laws are most vividly depicted in potential 

energy plot of Figure 18.  Note especially the improvement resulting from the SDA law 
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(Case 4) over the SR law (Case 2), as well as the improvement stationary platform weighting 

(Case 3) provides to the basic Lyapunov control law (Case 1). 

6.2   Reorientations of a Flexible Hubble Space Telescope 

Of course, before actually flying the control laws proposed in this dissertation, sim- 

ulation of their effects on the candidate spacecraft need to be numerically evaluated. In 

this section, we demonstrate the application of the mathematical models developed here 

to the Hubble Space Telescope with a control moment gyro cluster. We model the mass 

and inertia of the Hubble as closely as possible, and choose Euler-Bernoulli beams which 

represent the out-of-plane and in-plane bending of the two solar arrays. The in-plane bend- 

ing stiffness is chosen to generate a first modal frequency of 0.4 Hz, and the out-of-plane 

stiffness to represent the lowest frequency mode at 0.1 Hz [40]. The physical data for the 

flexible model are presented in Table 7. 

Because the reaction wheels on the Hubble are relatively small, we assign to them a 

larger momentum. Using the data for the actual wheels, the maneuvers are restricted to 

fairly slow rates. Slow maneuvers prove to be uninteresting from the viewpoint of structural 

excitations. The momenta and wheel sizes are set at 10 times the actual Hubble values. 

The zero gimbal angle spin axes are the actual reaction wheel spin axes of the Hubble. 

A gimbal axis is selected to represent a typical pyramid scheme. The cluster data are in 

Table 8. 

The speed of the reorientations using CMGs is much faster than a typical Hubble 

reorientation. As is evident from the top plot of Figure 19, the spacecraft approaches 

the target quaternions in less than two minutes. The initial gimbal angles are selected 

so that the platform already possesses some angular momentum. The bottom plot shows 

the cluster norm histories. Whereas the cluster norm can be held as close to fixed as is 

desired by increasing the gain k2 of Equation (315), the reorientation time increases with 

increasing gain. 

Appendages 1 through 4 demonstrate almost identical oscillations, whereas append- 

ages 5 and 6 are also similar.  Modal deflections are shown in Figure 20.  Keep in mind 
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Table 7     Flexible Hubble Space Telescope Physical Data 
Item Value Units 

m 10788 kg 
68322.26        37.15   - 1283.81 ' 

I 37.15   74130.14 53.96 kg-m2 

-1283.81        53.96    23504.51 
bi,b2 [0,+4.0,+l.l]T m 

.  b3,b4 [0,-4.0,+l.l]T m 
b5 [0,+2.0,+l.l]T m 

b6 [0,-2.0,+l.l]T m 
roi,ro3 [0,0,+4.0]T m 

ro2,ro4 [0,0,-4.0]T m 
TO 5 [0,+2.0,0]T m 
To 6 [0,-2.0,0]T m 

Äl,Ä3 [0,+l,0]T 

Ä2,n4 [0,-1,0]T 

n5 [+1,0,0]T 

n6 [-1,0,0]T 

Pl,P2,P3,P4 3.0625 kg/m 
PS,P6 6.125 kg/m 

hj2,h,U 4.0 m 
h,l& 2.0 m 

(EI)lt(EI)2,(EI)3,(EI)4 25.037 N-m2 

(EI)5, (EI)e 50.074 N-m2 

that the modal parameters actually represent the tip deflection (in meters). The second 

mode of oscillation produces deflections roughly two orders of magnitude less than the first. 

Only the modal response of the first assumed mode is shown here. Perhaps the best scalar 

comparison of the two maneuvers is the potential energy in the appendages, shown as the 

last plot of Figure 20. Note that the stationary platform weighted maneuver produces 

smaller maximum appendage deflections. 

6.3    Summary 

In this chapter, the effectiveness of the control laws previously developed was eval- 

uated using some candidate mathematical models of flexible satellites. The flexible ap- 

pendages were modeled using assumed modes, which are the actual solutions for the Euler- 

Bernoulli beam cantilevered in an inertially fixed object. The various control laws were 
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Table 8     Hubble Space Telescope CMG Cluster Data 
Item Value Units 

*-sw diag{8.62,8.62,8.62} kg-m2 

hw diag{4.31,4,31,4.31} kg-m2 

*-sgi*-ggi*-tg diag{0,0,0,0} kg-m2 

»slO [-t//v/2,-y/\/2,+s]T 

a«20 [-y/A-»/A-*]T 

a«30 [-y/V^+y/v^+zf 
a«40 [-y/V§,+y/A-s]T 

a5i [+x/v^,+x/A+y]T 

B.g2 [+x/V2,+x/V2,-y]T 

a53 [+x/V2,-x/V2,+y]T 

a54 [+x/y/2, -x/y/2, -y]T 

where x = cos(70°), y = sin(70°) 
"■swr [3069,3069,3069]T kg-rn2/sec 

applied to compare oscillations of the appendages. In some examples, the torque commands 

were smoothed to prevent oscillations resulting from the startup torques from dominating 

the response. A reduction in oscillations of the appendages generally resulted when the 

singular direction avoidance law was used in lieu of the singularity-robust law. A profile 

which remains closer to the stationary platform surface was also shown to improve the 

smoothness of reorientation. 
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7.   Summary and Conclusions 

In this work, we develop the equations of motion for a rigid spacecraft with an imbedded 

cluster of gimbaled momentum wheels. The Euler-Newton approach is used to find 6 + 

3N differential equations (for an N GMW cluster) which describe the dynamics of the 

system. The control inputs are in the form of two N X 1 torque matrices applied to the 

spin and gimbal axes. These equations of motion include the gimbal axis inertia effects 

often discarded in other developments. The approach taken is unique in that momenta 

components are grouped as three N xl matrices, instead of the traditional N 3 x 1 vectors 

of individual torque components. 

This approach permits much easier manipulation of the vector equations than does 

the summation notation used by Oh and Vadali [42]. Unique and simple equations of 

motion for spin and gimbal axis momenta are developed. The matrix formulation also 

yields simple matrix equations relating the system momenta and velocities, as well as 

system energy. Specialization of the gimbaled momentum wheel equations to momentum 

wheel or single-gimbal control moment gyros is demonstrated. 

Next, we formulate the equations of motion for a rigid body with an unlimited 

number of flexible appendages using the Lagrangian approach. The resultant set of hybrid 

equations could be solved numerically in a number of ways. We choose to apply the 

assumed modes method, yielding, for a body with p appendages for which we keep m 

modes each, a set of 6 + 2mp equations for the system dynamics. 

Armed with these equations of motion, we seek control laws which smoothly reori- 

ent the flexible satellite. Though several reorientation schemes have been detailed in the 

literature, most laws showed oscillatory behavior when applied to a spacecraft possessing 

a significant amount of angular momentum, such as might be stored in an exchange clus- 

ter. We show that for spacecraft with any type of momentum cluster, the rate of change 

of cluster momentum can be viewed as the control input. This allows development of a 

control law in terms of the cluster momentum rate, which is then translated to spin axis 

torques for momentum wheels, or gimbal rates (and ultimately gimbal torques) for CMGs. 

A Lyapunov approach developed by Oh and Vadali is then used to find a globally asymp- 
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totic feedback law which drives the system to a desired target quaternion and zero angular 

velocity using the approach of this development. 

The singularity problems of a control moment gyro cluster must be handled, and the 

new form of the equations of motion provides new insight into the nature of the problem. 

The Jacobian matrix which takes gimbal rates into output torques is closely related to 

a newly defined matrix of transverse unit vectors. It is shown that a typical technique 

of avoiding the singularity completely can be replaced with the alternative of avoiding 

only the singular direction. This singular direction avoidance technique also avoids the 

singularity, but always introduces less error into the output torque than does the commonly 

used singularity-robust law. Also, since the norm of the diagonal of the transformation 

matrix is nearly constant, the control law can be non-dimensionalized, allowing application 

independent of the spacecraft size. Some examples demonstrating these improvements are 

presented. 

The promise demonstrated by the stationary platform maneuver motivates an inves- 

tigation into its application to a control moment gyro cluster. For a cluster of momentum 

wheels, maintaining the stationary platform condition implies that we must remain on a 

hyper-ellipsoid in rotor momenta space. For the control moment gyro, however, the con- 

dition requires maintaining a surface in gimbal angle space which is considerably more 

complicated. The goal is to reorient the spacecraft while maintaining the stationary plat- 

form condition. 

A modification to the Lyapunov control law is found which keeps the gimbal angles 

arbitrarily close to the stationary platform surface. We show that the addition of this law 

does not affect the guaranteed asymptotic stability of the original control law, so long as 

the body momentum is small relative to the cluster momentum. 

Numerical simulations of the control laws are presented. The examples demonstrate 

that the singular direction avoidance law is generally an improvement over the singularity- 

robust law. Especially in the case of CMGs, a maneuver which remains closer to the 

stationary platform surface tends to keep the appendage oscillations smaller. 
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Further studies should investigate alternative methods of simultaneously satisfying 

the stationary platform and kinematical conditions. The feedback Lyapunov control law 

used throughout this work is certainly only one of many capable of effecting a reorientation 

maneuver. It seems likely that a reorientation could be achieved which would satisfy the 

kinematical constraints and maintain the stationary platform condition exactly. 

Many of the control laws presented in this study can be altered by adjusting a gain 

which is a natural consequence of the control law development. One promising measure of 

the "cost" of a flexible spacecraft reorientation is the time integral of the potential energy 

in the flexible appendages. A study which compares the effects of this cost, along with 

others such as possibly control use or time, as a function of the control law gains might 

prove useful. 

Actual implementation of the Lyapunov feedback control law depends on the ability 

to measure the quaternions and angular velocity. In addition, the noise in any measure- 

ment device used to provide these parameters to the control system could degrade the 

effectiveness of the control law and even the system closed loop stability. Some numerical 

simulations performed during this study indicate that the Lyapunov law is fairly robust in 

the presence of parameter variations, but the effects of random noise in the system were 

not evaluated. A careful study of the effects of noise should be conducted to determine 

the effectiveness of the proposed control laws for actual space hardware. 

Finally, one interesting possibility not fully explored in this study is the use of a 

closed loop Lyapunov law as a dynamic tracker. That is, we could choose a priori the 

parameters q/ and w/ as functions of time, and implement the Lyapunov law with these 

parameters as variables. Examples investigated during this study indicate that tracking is 

possible provided the required maneuver rates do not exceed a critical value. 
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Appendix A.   Definitions, Kinematics, and Fundamentals 

A.l    Notation 

We begin this appendix with a review of the notation used in the dissertation. In 

general, vectors and dyadics which are independent of reference frame are denoted by 

a bold lower case and upper case respectively, and an arrow (e.g. h and I). Matrices 

representing vectors and dyadics in a particular reference frame are denoted by the same 

bold character without the arrow. Unit vectors are denoted by bold characters with hats 

(e.g. n). The particular associated reference frame will be stated in the accompanying 

text or implied. 

We indicate the transpose of a matrix with the superscript T, so MT = transpose(M). 

A particularly useful notation allows us to express vector cross products in matrix multi- 

plication form by defining the skew symmetric form of a vector. If 

Vl 

l>3 

(339) 

vx = 

then we define 

0      -v3     v2 

v3       0      —vi 

-t>2     vi       0 

so that in a particular coordinate system, for the case where ü x v = w, then 

(340) 

uxv = —vxu = w (341) 

Note that the skew symmetric form of vx  makes it possible to make the occasionally 

convenient substitution 

[vx]T = -vx (342) 
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The normal dot product of two vectors expressed in a particular coordinate frame, 

say for ü • v = w, is computed as 

T T U   V = V   u = w (343) 

A.2    Transformation Matrices 

We summarize relevant concepts regarding rotations of a rigid body in space. The 

orientation of a body-fixed reference frame relative to an inertial reference frame is most 

commonly described by a rotation matrix as follows. Suppose we are given a basis for the 

inertial reference frame and a basis for the body frame described by the sets of unit vectors 

?i = 

ei 

e2 

£3 

and    J-\} 

b: 

b2 

b3 

(344) 

respectively. Hughes [23] refers to the objects T\ and T\> as vectrices. Note that the vectrix 

is a three-by-one matrix of vectors. A transformation between the frames can be written 

as 

bi = cnei + ci2e2 + ci3e3 

b2 = c2iei + c22e2 + c23e3 

b3   =    c3iei + c32e2 + c33e3 (345) 

or more compactly as 

bi 

b2 = 

b3 

Cll C12   ci3 ei ei 

c2i C22     C23 e2 = Cbi e2 

c3i c32   c33 . ®3 . . ®3 . 

(346) 

The coefficients, C;J, are called the direction cosines relating the bases, because 

Cij — ei • bj = cosjij    i = 1,2,3    j = 1,2,3 (347) 
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where 7,j is the angle between e,- and bj. 

Let a vector v be expressed in both T\> and T\: 

v = ß\h\ + /?2b2 + ß3b3 = «iei + a2e2 + a3e3 (348) 

The Greek coefficients are the coordinates of the vector v in the respective reference frame. 

Now 

ßl     A     ßz 

so for a relationship between coordinates, we find 

bi ei 

b2 = Oil <*2     "3 02 

b3 e3 

(349) 

ßi   ß2   ßz Cbi 

ei 

e2 

e3 

- I «i    a2   a3 I 

ei 

e2 

e3 

(350) 

so that the transformation between coordinates in the body and inertial reference frames 

is 

ßi «1 

ß2 = a2 

&_ <*Z 

(351) 

A transformation matrix between any pair of orthogonal, right-handed coordinate 

systems is orthonormal and obeys some useful relationships. Among them is the property 

Cbi - Cbi (352) 

which means that Equation (351) can also be written as 

' ßl' «1 

ß2 = Cbi «2 

ßz _ 03 . 

(353) 
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For a reference frame T\, rotating relative to another reference frame, say Ti, the 

relative rotational velocity can be expressed as a vector with three components. This 

vector is called the angular velocity and we denote it Wbi which is read as "the angular 

velocity of T\, relative to T\? Since we will make constant use of the angular velocity of 

a body with respect to the inertial frame, we will use the symbol u> for the more explicit 

o>bi- Any other angular velocities will be specifically subscripted. If the angular velocity 

is expressed in body components, then the transformation matrix satisfies 

Cbi = -wxCbi (354) 

where we emphasize that the components are expressed in T^. An excellent development 

of transformation matrices and their unique properties is given by Hughes [23]. 

A.3   Eigenaxis Rotations 

The rotation of any body with one point fixed (for example, the center of mass) can 

be reduced to a rotation about a fixed axis through the point. This observation was made 

by Euler and is known as Euler's Theorem. Hughes [23] derives the equations which relate 

the eigenaxis (the set of points which remains fixed in space) and angle of rotation about 

it (the eigenangle) in terms of the general rotation matrix. 

We denote the axis of rotation by the unit vector ä. The direction of ä is of course 

parallel to the axis of rotation, but may be arbitrarily selected to be a vector in either of two 

directions. The axis of rotation is the same before and after the rotation (by definition), 

so we must have 

Cä = ä (355) 

which is recognized as an eigenvalue problem (with a unitary eigenvalue). Through some 

geometrical considerations, it can be demonstrated that in terms of the axis of rotation 

and the rotation angle <£, the rotation matrix is given by 

C = cos 4>1 + (1 - cos 4>)kei? - sin <f>a* (356) 
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Of course, we might be just as interested in computing the axis of rotation and total 

rotation angle about it in terms of the rotation matrix. They can be calculated as 

<f> = arccos ( vace(   ) ~    j (357) 

and 

ax = -^—(CT-C) (358) 
2sin<p ' 

allowing the components of ä to be extracted from ax. The solution for the eigenangle is not 

unique, but picking the eigenangle produces a unique eigenaxis. A rotation corresponding 

to an eigenaxis/eigenangle pair is exactly the same as an equal but opposite rotation about 

the negative of the eigenaxis. 

Relationships between angular velocity and the eigenaxis/eigenangle parameters are 

useful when we wish to prescribe maneuvers referred to the eigenaxis, for instance during a 

pure eigenaxis rotation. Hughes shows that the angular velocity can be expressed in terms 

of the eigenaxis parameters as 

u> = <j>k — (1 - cos0)äxä + sin0ä (359) 

so that for a rotation about a fixed axis 

u> = 4>a (360) 

The inverse of Equation (359) is given by the two equations 

<£   =   aTu> (361) 

1 (AX     „„^-XäX a   =   - la* -cot|axax J u (362) 

Note the presence of the trigonometric term in Equation (362). This can be costly 

during numerical integration for the kinematics. While the eigenaxis and eigenangle are 

relatively intuitive parameters for expressing attitude, we next turn to an alternative set 
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which is similarly intuitive, but also provides the benefit of avoiding trigonmetric relations 

in the kinematical equations. 

A.4    Quaternions 

A four-parameter set suitable for kinematic computations has emerged as perhaps 

the most popular choice for describing the orientations of a rigid body in space. This set of 

parameters, often called Euler parameters, shall be referred to here as quaternions. These 

parameters have the important advantage of avoiding singularities everywhere, and also of 

avoiding trigonometric relationships in the kinematical equations of motion. 

We define the quaternions as 

go 

Qi   10 

?2 q 

. ?3 . 

e&4 
(363) 

where 

<7o = cos <f> and    q = ä sin ( — (364) 

Of course, using four parameters to describe three degrees of freedom implies redundancy. 

This is evident in that 

?o + qTq = 1 (365) 

Conversion between the rotation matrix and quaternions is easily accomplished using 

the relationships 

C=(^-qTq)l + 2qqT-2g0q
X (366) 

and 

9o =   ±^(1 + trace(C)) (367) 
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1 

4go 

C23- -C32 

C31 " -Ci3 

C12- -C21 

(368) 

where the c,j are the direction cosines of the transformation matrix. 

The usefulness of quaternions becomes most evident in the following kinematic rela- 

tionship for quaternion rates in terms of the body angular velocity 

9o    =    -gq w 

q =  2^x + 9ol)u' 

and conversely, the angular velocities in terms of quaternions and rates are 

(369) 

(370) 

w = — (tfo1 ~ ?oqx + qqT) q (371) 

These equations allow us to integrate for the quaternions given a history for the 

angular velocities. Note the absence of trigonometric terms in Equations (369) and (370). 

The simple matrix forms of these equations make them very suitable for numerical im- 

plementation. It is the dynamical equations of the rigid body which must be solved for 

angular velocities. We now present a brief review of the rigid body equations of motion. 

A.5   Rigid Body Equations of Motion 

Here we summarize the equations of motion for a general rigid body. Hughes [23] 

provides the notation for this work, and is an excellent source for further explanation of 

the concepts summarized in this section. The developments for the rigid body will serve 

as a useful starting point for the development of the flexible structure and will also be 

necessary to develop the equations of motion for the body with imbedded momentum 

storage devices. The equations which describe the dynamics of momentum wheels and 

control moment gyroscopes are special cases of the equations summarized in this section. 
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We consider the rigid body Basa continuum of mass and define the first and second 

moments of inertia of the rigid body as 

' = / rcr(r) < 
JB 

dV (372) 
JB 

and 

J= [ (r2i-rrT)<j(r)dT (373) 
JB 

respectively, where <r(r) is the mass density at r. Then the linear momentum p and angular 

momentum of the body ho about an origin, 0, can be expressed as 

p   =   mvo + 05 x c (374) 

h0   =   c x v0 + J • d (375) 

where v*o is the velocity of the origin, & the angular velocity of the body, and m is the 

body mass. Note we have generalized the above quantities to any point, 0, in the body. 

The equations of motion, then, come from the application of Newton/Euler principles 

to the quantities described by Equations (374) and (375). That is, 

p*   =   f (376) 

h0   =    -v0 X p + go (377) 

where f is the total external force vector and go is the external moment vector about 0. 

These equations simplify somewhat in the case of a rigid body if we choose the origin 

to be the mass center so that Equations (374) and (375) reduce to (with c = 0) 

P   =   m\c (378) 

hc   =   Jc-ü5 (379) 

and the dynamical Equation (377) is reduced to 

P* = Sc (380) 
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since vc is parallel to p. The new subscript c denotes properties at or about the mass 

center. 

When we must finally resort to replacing the vectors with numbers representing coor- 

dinates in a reference frame, then we must keep in mind that the dynamical Equations (376) 

and (377) only apply in the inertial reference frame. In a frame rotating with respect to 

the inertial at angular velocity u>, then the component rates must be computed as 

p + u>xp   =   f (381) 

h0 + wxh0   =   -voxp + go (382) 

Note the absence of arrows above the variables, indicating we have written the equations 

as components in a specific reference frame. We typically focus on a zero external force 

scenario. We are also free to choose the initial linear momentum as zero (p = 0) giving also 

p = 0, which implies p = 0 for all time. Therefore may sometimes discard the dynamical 

Equation (376). 

Finally, an expression for the total kinetic energy of the rigid body is 

T = -u>TIu> + -mvTv + u>Tcx v (383) 

which is important, not only for its usefulness in Lagrangian formulation of the dynamical 

equations, but provides a first integral of the system when all of the forces are conservative. 
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Appendix B.   Simultaneous Eigenaxis and Stationary Platform Rotations 

Consider the question of whether it is possible to do an eigenaxis rotation and simulta- 

neously maintain the stationary platform condition. For an eigenaxis rotation of a body 

about a fixed axis ä at an angular rate 0, we have 

u) = 4>k (384) 

and 

w = 4>a (385) 

The total angular momentum of the body plus cluster is 

h = Ju> + hc (386) 

With no external torque and constant J 

JU> + b.c + u>xJu> + u>xhc = 0 (387) 

and inserting (384) and (385), then the cluster's momentum must change as 

hc = -<£2äx Ja - <£äxhc - $Jä (388) 

We now attempt to enforce the stationary platform condition, which implies that the 

magnitude of hc is constant. Therefore, we seek a vector v such that 

hc = -vxhc = hxv (389) 

which must satisfy 

hx v = - (0a)x (<£Ja + hc) - <£Ja (390) 

The matrix, hx, is a rank 2 matrix.   This implies that, in general, Equation (390) is 

overdetermined and does not have a solution, v.  Therefore, it is generally impossible to 
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accomplish a rest-to-rest eigenaxis rotation and simultaneously maintain the stationary 

platform condition. 
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Appendix C.   Singularity Attraction Using Pseudoinverse Steering 

Equation (248) of Chapter 5 gives the minimum 2-norm solution for the gimbal rates when 

we desire to generate the torque lr. It is often claimed in the literature that choosing 

the gimbal rates using this relationship actually encourages singularities in a CMG cluster 

(see, for example [4, 43]). The argument is that the minimum norm solution tends to avoid 

movement of gimbals which are contributing to the singularity. This phenomenon was not 

observed during this dissertation research. 

Consider the gimbal rate to torque relation given by 

D(5 = lr (391) 

where D is the Jacobian matrix given by 

D = -At = -Ai0A
c - AsoAs (392) 

Equation (392) results when we assume that each CMG has unit magnitude spin momen- 

tum. 

It is possible to choose the geometry of a three CMG cluster such that 

D = 

sin 8i    cos 62       0 

cos Si       0       sin £3 

0       sin 82    cos £3 

(393) 

In general, either of two CMGs may be used to provide torque in a specific direction. 

Suppose we are interested in exactly achieving the desired torque in a 1-axis direction of 

magnitude /rl while the other components are free. Then we need only enforce the relation 

r            "i r       ~\ 

sin Si cos S2 ] 
*1 

<*2 

= d 
81 

s2 
= 1 rl (394) 
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which is an underdetermined problem. Employing the pseudoinverse which gives the min- 

imum norm solution (i.e., d* = dT(ddT)_1) yields the gimbal rate steering law 

Si 

s2 
sin  <Si + cos2 #2 

sin#i 

cos 62 

Equation (395) does not have a solution when 

In (395) 

m = sin2 #i + cos2 82 = 0 (396) 

given by the set 

Si 
' 

0 0 ■K it 
> 

S2 7I-/2 3?r/2 n/2 3?r/2 
i 

(397) 

We refer to m as the singularity measure. We wish to avoid the condition m = 0. Observe 

that 
dm . 

(398) 
dm-. 

m = ~d8S 

and since m > 0, then a condition in which m < 0 drives the system toward a singularity. 

In this case 

m sin 61 cos #i    — sin 82 cos 82 

_    2(sin2 £1 cos 81 - cos2 82 sin 82) 

sin2 <$i + cos2 £2 

sin#i 

cos 82 

In 
sin2 £1 + cos2 82 

(399) 

(400) 

The regions where m are positive and negative are labeled in Figure 21. The quiver 

arrows depict the direction of flow based on the gimbal rates of Equation (395). Each of 

the singular points are characterized by a specific type of flow. The gimbal motion near the 

singularity at (0, 3TT/2) is actually away from the singular state (for /ri > 0), while motion 

near the singularity at (IT, n/2) is toward the singularity. The singularities at (0, n/2) and 

(TT, 37T/2) are saddle points. The gimbal angles cannot (in general) drive to either of these 
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points. We see, therefore, that of the four singular gimbal configurations, only one of them 

tends to attract the gimbal angles. Note that if we choose /ri < 0, then the regions of 

positive and negative m will switch, but so will the direction of flow. 

It is not surprising that the flow is everywhere toward the singularity at (TT,TT/2), 

since we are in effect requesting a continuous torque output from the cluster, and it only 

has a finite amount of momentum to give in the 1-axis direction. If we only request torque 

for a finite length of time, then the flow will continue toward the external singularity until 

/ri = 0, at which time the gimbal rates also become zero. 

At (7T, 7r/2), the spin axes of both gimbals lie in the 1-axis direction. At this point, 

the CMGs can provide no more momentum exchange in that direction, and are therefore 

at an external singularity. Furthermore, no null motion exists which will allow movement 

away from the singularity. In a similar way, the point (0, 3TT/2) is where the spin axes 

of both CMGs point in the negative 1-axis direction. Here we have plenty of momentum 

available to reorient in the positive 1-axis direction. The other two singular points, however, 

correspond to the physical situation where the spin axes point opposite each other. These 

are internal singularities. 

Consider now the possibility of null motion for the 2 CMGs. That is, motion for 

which the torque output in the 1-axis direction is zero. The torque output is zero only 

when the gimbal rates lie in the null space of d. This motion is perpendicular to the quiver 

arrows in Figure 21. Departing the singularities at (0,3^/2) and (7r,7r/2) in a direction 

perpendicular to d is not possible. It is not possible, therefore, to depart these singularities 

using null motion. Singularities which may not be departed using null motion are often 

called elliptic singularities. 

On the other hand the singularities at (0,7r/2) and (n, Zn/2) do allow for escape 

using null motion. Adding a component to 8 along the ±45° direction will not affect the 

torque output. These singularities are often called hyperbolic singularities. See Margulies 

and Aubrun [32] for further discussion. 
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Figure 21     Gimbal Angle Flow for Pseudoinverse Steering Law 
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Appendix D.   Orthogonal CMG Cluster Envelope 

A cluster of three or more non-coplanar momentum wheels are capable of attaining any 

desired cluster momentum. The same is not true for a cluster of control moment gyros. 

Since the wheel speeds are fixed, a CMG cluster can produce only a finite momentum 

in a specified direction. The momentum limit in that direction is determined by the 

arrangement and number of CMGs, and the spin momenta of the CMGs. In general, 

computation of the momentum limit in any specific direction is quite complicated. An 

excellent geometric treatment of single gimbal control moment gyro clusters is in Margulies 

and Aubrun [32]. 

In Chapter 5, we make some claims regarding limitations on the cluster momentum 

in certain directions. Here we attempt to provide some insight into the nature of an 

orthogonal cluster momentum envelope. 

Suppose we have a cluster of 3 control moment gyros in an orthogonal arrangement 

such that 

"" 1   0   0 

As0=     0   10 (401) 

0   0   1 

(402) 

At0 = 

0 0 1 

1 0 0 

0 1 0 

0 1 0 

0 0 1 

1 0 0 

(403) 

When the gimbal rates are zero, the cluster momentum relative to the body is simply 

hc = ASL (404) 
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and for uniform CMG spin momenta of hswr, the 3 scalar equations for the momentum of 

the cluster (from Equation (29)) are 

hswr(cos8i — sin ^2) = hi 

hswr (cos 82 — sin 83) = h2 

hswr(cos83 -sin81)   =   h3 (405) 

where h = [ h\    hi   A3 ]T- It is evident from Equations (405) that no principal component 

of the cluster momentum can be greater than 2hswr. 

Of interest are the angles for which the cluster has maximum and minimum momen- 

tum magnitude. It is easy to confirm that the square of the magnitude of h is 

h2 = h2
swr (3 - 2 (cos 81 sin 82 + cos 82 sin £3 + cos £3 sin £1)) (406) 

The extrema of Equation (406) occur when 

dh? _ Oh2 _ Oh2 

d8i      882      883 
(407) 

yielding the 3 equations 

sin 8\ sin 82 = cos $3 cos 8\ 

sin 82 sin 83 = cos 81 cos 82 

sin £3 sin 81    =   cos £2 cos £3 (408) 

which can ultimately be manipulated to reach the requirements that 

cos2 <SX = cos2 82 = cos2 83 = - (409) 
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Figure 22     External Momentum Envelope for a Three CMG Orthogonal Cluster 

So each gimbal angle must be \ plus integer multiples of |. It should not be too difficult 

to convince the reader that since 

cos Si = ±—y=   i = 1,2,3 
v2 

(410) 

then 

sin£j = ±—F   i = l,2,3 
v2 

also. The maximum possible value of h2 is therefore 

(411) 

h2    = "SOT I 3 — Z 
111 
2     2     2 

=   6h2 (412) 

and occurs, for example, at (5i,S2,Sz) = (x'^'T")- Since ^2 ^ °> we note tnat tne 

the minimum is indeed zero and occurs, for example, when (81,82,63) = (f,f,f). The 

momentum envelope is depicted in Figure 22. 
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