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Abstract 

The estimation of the global shape of intelligent structures using an array of shaped 

sensors is investigated. The design of these sensors and their functional requirements 

are discussed. It is found that certain spatially averaging strain sensors can be used 

to satisfy these requirements. 

The output and transfer function characteristics of spatially averaging sensors 

with arbitrary spatial weightings are given for a sinusoidal and exponential strain 

fields. Desirable spatial weightings are then identified. 

A number of integration schemes used to process sensor measurements and esti- 

mate global shape are described. These schemes are then used with spatially averaging 

sensors to estimate the shape of pinned-pinned and clamped-free beams. Evanescent 

components in the modeshapes of the clamped-free beam make it more difficult to 

estimate the shape at low frequencies while ensuring reduced observability of the. 

sensors to higher order modes. A measurement near the root is determined to be 

important, as is the use of shaped sensors. 

Finally, an experiment using a clamped-free beam fitted with a number of point 

and shaped strain sensors was conducted to verify that accurate modeshape estima- 

tion can be performed. 
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CHAPTER   1 

Introduction 

The motivation for this work is to determine methods to use available sensor out- 

puts to estimate a performance variable which cannot be measured directly. For the 

purposes of this work, assume that the performance variable is either an absolute 

displacement or a relative displacement between widely spaced parts of the structure. 

Since such displacements are typically difficult to measure in practice, the objec- 

tive is to determine the how to infer the displacements using curvature measurements 

over the structure. Using a numerical integration rule, a shape fitting scheme or a 

temporal estimation scheme, this can be accomplished. Beam-like structures are con- 

sidered in this work, and the curvature measurements are made by spatially weighted 

strain sensors. Such sensors are used to introduce rolloff to the higher modes of the 

structure. 

Many other researchers have investigated the use of distributed sensors and ac- 

tuators for the development and control of intelligent structures. Such structures 

typically have a large number of sensors and actuators distributed over their area[14]. 

For example, Lee and Moon[10, 11, 12, 9] have worked on a variety of topics 

concerning distributed sensors and actuators. They have developed theoretical results 

15 



16 Chapter 1.   Introduction 

for distributed sensing and actuation, have implemented modal control on a plate 

using modal sensors and actuators, and have created distributed sensors to make 

measurements of the bending and torsion of a plate. 

Burke and Hubbard have also done much work on distributed sensors and actu- 

ators, including the use of a single distributed actuators to add damping to all the 

modes of a pinned-pinned beam[4]. The concept of collocation of distributed transduc- 

ers was discussed by Burke who showed that to be collocated, the spatial apertures of 

the sensor and actuator have to be equal, as do their spatial derivative orders[5]. The 

general mathematical modeling of one-dimensional and two-dimensional distributed 

transducers of was introduced by Burke, Sullivan and Hubbard[3, 13], using Macauley 

notation and the theory of multivariate distributions. 

Previous work concentrating on the use of distributed sensors for intelligent struc- 

tures was done by Andersson and Crawley[l, 2]. The analytical behavior and prop- 

erties of one-dimensional sensors was derived for arbitrary spatial weightings. It was 

shown how this weighting affects the eventual rolloff rate of the sensor, and how an 

array of them might be used to infer the global shape of a one-dimensional structure. 

For the purposes of this work, the approach taken is to first formulate the func- 

tional requirements for a system of sensors used to estimate the global shape of a 

structure. Then, we present a summary of the basic spatial weightings considered for 

shaped sensors and to show their frequency properties. The next step is to introduce 

schemes to estimate the global shape of a structure using curvature measurements 

made by an array of shaped sensors. Numerical results obtained using such schemes 

are then presented for a pinned-pinned beam supporting purely sinusoidal mode- 

shapes, and for a clamped-free beam supporting modeshapes with sinusoidal and 

exponential evanescent components.   It is illustrated how shape estimation for the 
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latter system is much more difficult due to the presence of the exponential mode- 

shape components at the boundaries. Finally, experimental results using a beam 

fitted with an array of triangular (Bartlett) and point strain sensors are presented, 

and conclusions are drawn. 

We now discuss the functional requirements for a sensor system in global shape 

estimation. These requirements can be thought of as those which relate to single 

sensors, those dealing with the system as a whole, and those that involve practical 

implementation issues. 

The functional requirements that relate to individual sensors are: they must be 

able to accurately observe modes targeted for control; their observability to higher 

order modes should roll off quickly; this rolloff should not be accompanied by uncer- 

tainties in the sign of the output. 

The sensor system as a whole should be able to accurately resolve the shape of 

modes targeted for control, offer reduced observability of modes beyond the targeted 

bandwidth. 

Practical implementation requirements are simply that the sensors be of finite 

length, that regions of negative weighting should be avoided as they complicate fabri- 

cation, and that sensors placed near structural boundaries be truncated in a fashion 

that minimizes their performance degradation. 

It is the objective of this work to develop a system of sensors that meets, to the 

extent possible, these functional requirements. 



CHAPTER   2 

jhaped Jcnsors 

2.1   Shaped Sensor Definition 
To begin we investigate the behavior of single spatially averaging sensors. A variety 

of signals can be measured using such sensors and therefore, they can be used in a 

number of different structural sensing applications. For the purposes of this work, 

however, it will be assumed that the shaped sensors report measurements of spatially 

averaged extensional strain signals. We now derive the response of these sensors to 

strain fields that are spatially sinusoidal or exponential, since such fields can be used 

to express modeshapes of beam-like structures. Expressions are given for the transfer 

function of nontruncated sensors whose weighting is continuous over its length. Ex- 

pressions for the transfer function of sensors incorporating a derivative discontinuity, 

or whose weighting is partially truncated at a structure boundary have also been 

derived in detail[2]. 

In the design of shaped sensors, the most important characteristic is their spatial 

weighting. It is this weighting that controls how the magnitude and phase of the sensor 

output vary with changes in the spatial nature of the strain field. Let /(x) define the 

19 



20   Chapter 2.   Shaped Sensors 

spatial weighting of a sensor, and let this weighting be nonzero over a finite region 

[-1/2,1/2} of the structure. The sensor output is then a filtered measurement of the 

longitudinal strain of the form 

»(*)=/     f(x)e(x,t)dx (2.1) 
J-l/2 

where e(x,t) is the longitudinal strain present in the structure and / is the length of 

the sensor. The weighting function f(x) is essentially the spatial sensitivity of the 

sensor. Depending on the device or material used as the sensor, this might be done 

by (a) varying the width of the sensor; (b) varying the thickness of the sensor; (c) 

segmenting the sensor and forming a weighted sum of the measurements of different 

sensor segments in a signal processing system; (d) or by varying the distance of the 

sensor from the elastic axis of a beam in bending. Note that the weighting functions 

of multiple sensors should be scaled such that ff/2 f(x) dx is the same for all of them. 

This will then ensure that all the sensors will have the same output when measuring 

the same uniform strain. 

As an example of a physical implementation, the sensor might be made of a piece 

of thin Polyvinylidene Flouride (PVDF) piezoelectric film bonded to the surface of 

a beam[6]. The weighting function f(x) is easily implemented by spatially varying 

the width of one or both of the electrodes on the film or by cutting the film to the 

desired width. The output of the PVDF sensor is a charge proportional to a filtered 

measurement of the surface strain. The magnitude of this charge depends on the area 

of the electrode. Therefore, the gain of the sensor can be varied spatially by spatially 

varying the electrode area. The charge generated by the sensor is given by 

rl/2 
Q(t) = d31Ep        f(x)e{x,t)dx (2.2) 

J-l/2 
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where Ep is Young's modulus for the piezoelectric film, /(x) is the width of the sensor 

electrode, e(x,i) is the surface longitudinal strain, and {£31 is a piezoelectric constant 

with units of charge per unit area per unit stress. This constant relates mechanical 

stress to electric displacement. 

2.2   Sensor Outputs 
The design of shaped sensors is related to the design of temporal windowing fil- 

ters through a straight-forward transformation from the temporal to the spatial 

(wavenumber) domain. Due to the similarity of shaped sensors and temporal win- 

dowing functions, some of their design techniques can be extended to applications 

involving shaped sensors. As with temporal windows, the spatial weighting of the 

sensor is changed to tailor the magnitude response of the sensor. Further, the effec- 

tive sensor length can be changed to control the spatial frequency at which magnitude 

rolloff commences. In certain circumstances, shaped sensors can exhibit magnitude 

rolloff without any more phase lag than a point sensor located at the center of the 

sensor. We now derive the output and transfer function of a shaped sensor in a spa- 

tially sinusoidal strain field. The transfer function of a shaped sensor is defined here 

as the ratio of the output of the shaped sensor to the output of a point sensor located 

at its center. Note that this is not really a transfer function describing a dynamic 

process and so is not subject to Bode's gain-phase theorem. 

Let the spatial weighting of the sensor be /(x — x0), and be centered at x = xo. 

Assuming that the weighting function /(x — xo) is non-zero only over the closed 

interval [—1/2 -f x0,1/2 + xo], its output as a function of the spatial frequency k of 
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the strain field is given by 

/'/2+xo 
f(x — xQ)sm(kx) dx (2.3) 

-J/2+X0 

By repeatedly integrating this expression by parts, an infinite series solution for 

the output of the sensor can be found. To obtain the sensor transfer function, the 

sensor output must be divided by the strain at the center of the sensor, sin(fcxo)- By 

expanding the sine and cosine terms and assuming the weighting is symmetric and 

continuous, the transfer function becomes[2] 

TW = £    {|^(2l)(V2)sm(*'/2) 

+ |^/(2,+1)(//2)cos(Ä;//2)} (2-4) 

It can be seen that the first term in the series of Equation (2.4) rolls off at 1/k. 

This is the only term remaining for a rectangular weighting, which has /(±//2) / 0 

and p1' = 0(i > 0). The resulting transfer function is the well-known Sine function, 

sin(ak)/ak. 

By making the weighting go to zero at the ends points by setting /(±//2) = 0, 

the first term can be eliminated and the asymptotic rolloff is increased to 1/k2. By 

making the end points of the weighting f(x) more smooth, by making higher and 

higher derivatives, f'(x), f"(x), etc., zero, we can increase the rolloff rate further. 

This behavior is shown in Table 2.1. 

For a sensor in an exponential strain field, its output is given by 

rl/2+xo 
y(k) = f(x- x0) e~kx dx (2.5) 

J-l/2+Xn 
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Table 2.1: RollofF properties of the sensor transfer function T(k) for a sen- 
sor weighting f(x) possessing continuous derivatives over its entire 
length. 

Constraints on 
/(0(±//2) 

Rolloff rate 
in wavenumber k 

Weighting example 

f(±l/2) ? 0 1/k -20 dB/decade Rectangular 

f(±l/2) = 0 1/k2 -40 dB/decade Triangular 

f(±l/2) = 0 
f'(±l/2) = 0 

1/k3 -60 dB/decade Hanning 

f(±l/2) = 0 

f'(±l/2) = 0 

f"(±l/2) = 0 

1/k* -80 dB/decade 

and its transfer function can be shown to be given by[2] 

y(k) = ±T^    ( -mi2)e-"l> 
»=o jfc«'+1 

+   /W(-f/2)efc'/2j ,-kx0 (2.6) 

Here we again notice the same general behavior as with the sensor transfer func- 

tion for spatially sinusoidal strain, namely that the term going as 1/k can be elimi- 

nated by setting /(±//2) = 0. However, due to the fact that the strain is spatially 

exponential and therefore not oscillatory, there is no further rolloff as with sinusoidal 

strain. 

The transfer functions for rectangular and triangular sensors measuring spatially 

sinusoidal strain are shown in Figure 2.1. It is clear that the rectangular sensor yields 

magnitude rolloff of —20 dB/decade in wavenumber, while the triangular sensor yields 

—40 dB/decade rolloff.  For a beam-like structure, temporal frequency u> is related, 
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10" 10 
Wavenumber k 

10 

Figure 2.1:   Transfer functions of rectangular and triangular sensors, including 
asymptotic behavior at high frequency. 

through the dispersion relation, to the square of the wave number (k2). Thus rolloff 

rates of —10 dB/decade and —20 dB/decade in temporal frequency are possible with 

rectangular and triangular sensors, respectively. 

A number of shapes were considered as candidate spatial weightings for shapes 

sensors. Such shapes include the Sine function, Gaussian, rectangular, triangular 

and Hanning. A summary of their properties is presented in Table 2.2. The sensor 

lengths are given in terms of the desired rolloff wavenumber, k0. The rolloff rates 

presented are asymptotic. It can be seen in the table that only the shapes with 

infinite spatial extent have transfer functions which roll off arbitrarily fast. Of the 

three finite ones, only the triangular sensor has a simple shape and a transfer function 
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Table 2.2: Properties of sha| jed sensors with selected weightings. 

Sensor Shape Sensor 
Length 

Rolloff 
Rate 

Negatives 
in x? 

Finite 
in x? 

Negatives 
in*? 

oo 

oo 

2y/2/k0 

-K\/2jk0 

—oo 

— CO 

1/k 

1/k2 

1/k3 

Yes 

No 

No 

No 

No 

No 

No 

Yes 

Yes 

Yes 

No 

No 

Yes 

No 

Yes 

**s\J X/Nx- Sine 

Gauss 

1      1 Rectangular 

/\ Triangular 

/\ Hanning 

which contains no negative regions. We therefore consider the triangular sensor to be 

the best compromise, offering 1/k2 rolloff, with a spatial weighting denned simply by 

straight line segments. 



CHAPTER  3 

Shaped Estimation Schemes 

An individual sensor provides a single spatially filtered measurement of strain for a 

certain area of the structure. In order to estimate the shape of the entire structure, an 

array of such sensors are used. The individual outputs can be numerically integrated 

to yield slope and displacement estimates. Also, a set of shape functions can be fit 

to the sensor measurements and then integrated to estimate slope and displacement. 

3.1   Trapezoidal Integration 
The trapezoidal rule is a primitive rule, and in its compound form is given by a 

Riemann sum of the form 

Uf) = h M + /(a + h) + f(a + 2h) + ~- + /(a + (n - 1)*)|^ (3.1) 

where h = (b- a)/n is the number of subdivisions within the interval. 

The trapezoidal scheme assumes the function to be integrated, in this case beam 

curvature, is linear between two successive measurement points. The length of the 

beam is broken up into intervals between sensor locations, and integrations are per- 

27 
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formed from the root to successive sensors such that estimates of the slope are avail- 

able at each sensor location. In this way a second integration step can be performed 

and displacement estimates can be obtained. 

The trapezoidal rule can also be thought of as a way of fitting certain global 

shape functions to the measurements of the beam curvature. These functions are the 

linear functions used for first-order finite element analysis, and are 'hat' functions 

that decrease linearly from the measurement point to zero at the previous and next 

measurement points, and are zero everywhere else. The curvature is then expressed 

as a linear combination of these shape functions by multiplying each by a generalized 

coordinate. Once these coordinates are obtained they are multiplied by the integrals 

of the shape functions to obtain the slope along the beam. The process can be 

repeated to obtain displacement estimates. 

3.2    Simpson's Rule 
Simpson's rule is based on approximating the function to be integrated by a quadratic 

polynomial over three successive sensor locations. These are normally assumed to be 

equally spaced in order to greatly simplify the resulting expression for the integral. 

For the case of two subdivisions, this expression is given by 

f /(*) dx * ^ (/(a) + 4/ (^±*) + /(&)) (3.2) 

3.3    Modeshape Fitting 
The curvature modeshapes of the structure can also be used as a basis and be fitted 

to the sensor curvature measurement data to approximate the state of the structure. 
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This has the advantage of using knowledge about the dynamics of the structure in 

order to make a better estimate and it makes sure that the estimated displacement 

will automatically satisfy the geometric boundary conditions. We begin by expressing 

the uncontrolled beam dynamics as 

x   =   Ax + Bww (3.3) 

y   =   Cvx (3.4) 

z   =   Cxx (3.5) 

where x is a vector of modal displacements and velocities, [q i q]T, y are the available 

sensor outputs, and z is the performance variable we wish to estimate. 

Assume the modeshapes of the structure are given by (j>j(x) and that the cur- 

vature modeshapes are therefore 4>"{x). The outputs of the sensors is determined by 

the C„ matrix, which for point sensors has entries 

Cvo = < 
0,        j > n 

(3.6) 

and for shaped sensors with spatial weightings fi(x) has entries 

CVii = < 
£ fi{z) <%(x) dx,    j<n 

0, j > n 
(3.7) 

where n is the total number of modes retained in the beam model. We now assume 

that the performance variable, z, is the tip displacement of the beam. It then follows 
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that the row vector Cz has the form 

Cz = ML) ML) ••• ML) ': 0 lxn (3.8) 

Assume there are Ny sensors and that we wish to use their measurements to fit 

the first Na modes of the structure. We partition the Cv and Cz matrices as 

Cv   = 

cz  = 

cvi c^ ; oN»xn 

ctl cZ3 i olxn 

(3.9) 

(3.10) 

where CVl and CZl contain the first N, columns of Cv and Cz, respectively, and where 

Cw and CZ2 are outputs for the (n — Na) residual modes. The modal displacements 

p of the first Na modes can be estimated by assuming that the modal displacements 

of the residual modes is zero. This is expressed as 

y = cvi p (3.11) 

When the number of assumed modes N, and sensors Nv is equal, CVl is square, 

and if no sensors have been placed at the nodes of any modes, p can be found by 

inversion: 

P = C-1 y (3.12) 

The coordinates p are then used to find the estimated tip displacement z by 

computing 

z   =   CZ1 p (3.13) 

(3.14) 
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This scheme will be referred to as the Global Dynamic Shape Function (GDSF) 

estimation scheme. When the number of assumed modes N, is strictly less than the 

number of sensors Ny, a least squares approach can be used to compute p from (3.11) 

as 

P = Cvi Cvi J 
-l 

cly (3.15) 

such that the estimate of the displacement is given by 

£ = C, CVl Cvi 

-1 
CT v 

Vl J 
(3.16) 

This scheme will be known as the Least Squares Global Dynamic Shape Function 

(LSGDSF) estimation scheme. This least squares scheme can be modified to include 

a penalty based on the strain energy present in the first Na modes begin fitted to the 

sensor data [8]. In this case (3.16) is modified: 

P=    Cv
TCVl+A2A?       C£y (3.17) 

where Ai = diag { a>i o»2   • • •   <JJN, }• The estimated tip displacement is then given 

(3.18) z = C *i C* CVl + A2 A2 T C* y 

It can be seen that this reduces to the LSGDSF scheme for zero strain energy weight- 

ing A2. It was seen in simulations that the effect of the spatial aliasing of the higher 

modes could be reduced by penalizing them heavily. However, this has the effect of 

introducing magnitude errors in the estimation of the lower modes. 
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3.4   Kaiman Filter 
A Kaiman Filter can also be used to generate estimates of all the modeled modal 

states using the Nv sensors. Assume that the filter incorporates the first Nt modes 

of the structure: 

x   =   A1x + Bww + H[y-y 

y   =   [CV1   I 0N-*N']x + v 

i   =   f C     = 0lxN' 1 x 

(3.19) 

(3.20) 

(3.21) 

where Ax is incorporates the dynamics of the first Ng modes only, such that Ax = 

0       I 1 
, and w and v are process and sensor noises, respectively. 

-Al    0 

It is now shown how a static form of the Kaiman filter has a very similar form 

to the weighted LSGDSF scheme. If the filter dynamics are neglected, we set x = 0 

to obtain 

x=[ctl   ! 0 ] [ -Ax + H [CV1   ; 0 ]]_1 H y (3.22) 

If the Kaiman filter gain matrix H is partitioned into H = 
Hx 

H2 

we obtain 

* = [ CZl   ': 0 
HxC Vl -I 

H2CV1 -A;   o 

-i 

Hy 

which can be simplified to yield 

(3.23) 

z = C, i-i 
H2CV1+A^       H2y (3.24) 
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This result is of the same form as (3.18) with C£ replaced by Hj and A2 = 1. 

Interestingly, H2, the bottom half of the Kaiman filter gain matrix corresponds to 

the weightings applied to the differences between estimated and actual outputs before 

feedback to the velocity states of the filter. Retaining all the dynamics of the filter 

yields the estimate 

z = [CZl  i Olfal-Aj+HfC*  : O^Hy (3.25) 

As the assumed noise level on the sensors is reduced, Hi approaches zero, and 

the above expression can be simplified to yield 

i = CZ1 [H2CVl + (A? - s2!)} _1H2y (3.26) 

which simplifies to the static Kaiman filter which 5 = 0 and which is seen to roll off 

at very high frequency. 

3.5    Boundary Problems 
Many integration schemes require knowledge of the measurand to be integrated at 

the boundaries of the interval. These boundary measurements can be made using a 

sensor centered at the boundary. However, it has been shown in[2] that care must 

be exercised in the implementation of such sensors. The truncation required limits 

the high frequency rolloff to at most 1/k, or -10 dB/decade in temporal frequency 

for a beam-like structure. This can be problematic at high frequency where limited 

observability to the higher order dynamics of the structure is desirable. 

A second option exists in which the curvature at the boundary of the structure 

is inferred by using a combination of the measurements of the sensors closest to that 
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boundary. For example, this could take the form of a linear extrapolation using two 

sensor measurements or a quadratic extrapolation using three sensors. It is generally 

seen that at high frequency, extrapolation schemes yield unacceptable estimates for 

the root curvature, and the limited rolloff of a sensor truncated at the boundary yields 

better results. 



CHAPTER  4 

Shape Estimation o\ Pinned-Pinned Beam 

4.1    Description 
In this section we investigate the performance of an array of point or spatially av- 

eraging strain sensors for the purposes of estimating the dynamic mode shapes of a 

pinned-pinned beam. It is assumed that the performance variable to be estimated 

is the tip slope of the and this is computed using various estimation schemes. This 

is accomplished by simulating a Bernoulli-Euler model of the beam fitted with point 

and shaped sensors. The beam is actuated by a point moment at the tip, and the 

collocated tip moment to tip slope response is estimated using the sensor arrays. 

In the simulations it was assumed that there were 7 sensors equally spaced in 

the interior of the beam, such that the z-th sensor is centered around the point iL/S 

where L is the length of the beam. It is further assumed that any sensor which falls 

partially beyond the boundary of the beam is simply truncated. The lost area of the 

sensor is accounted for by requiring that the sensor gain be unity in order to correctly 

measure constant strain signals. 

A variety of simple integration rules, including the trapezoidal and Simpson's 

35 
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Table 4.1:   Estimation errors of various integration schemes in estimating the 
response of the tip slope of a pinned-pinned beam. 

Point Sensors Triangular Sensors 

Trapezoidal 3.359 3.553 

Simpson 2.790 2.298 

GDSF 7.184 7.379 

LSGDSF-4 6.903 7.697 

rules, as well as the GDSF and LSGDSF fitting schemes were used to integrate cur- 

vature measurements made by the sensors in order to estimate the tip slope. 

It is assumed that the curvature is zero at the root and tip of the beam. The 

initial slope at the root of the beam that is required by the trapezoidal and Simpson's 

rules is computed by first assuming it is zero, then estimating the resultant beam tip 

displacement. The tip displacement is then set to zero by effectively rotating the 

estimated orientation of the beam by changing the slope at the root. 

In Table 4.1 are summarized some estimation error measures for various integra- 

tion schemes. In these schemes seven equally spaced point or triangular sensors were 

used. The triangular sensors were all one quarter of the beam length. The estima- 

tion error measure has been used previously in the identification of structures [7] and 

penalizes the log of the ratio of the actual and estimated response: 

1 JV 

'=*£ log (4.1) 

where <?(/,•) is the actual response and G(/,) is the estimated response of the beam. 

The frequency range over which the performance measure was computed was between 

10 Hz and just beyond the 14th mode. This range was chosen based on this mode 

being twice the number of sensors in the array. Modes beyond the number of sensors 
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are difficult to estimate accurately, and modes 8-14 lie in the first range of modes 

that contribute to spatial aliasing in the sensor array measurements. 

The table shows that the schemes which seem to perform best are the trape- 

zoidal and Simpson's rules, rather than the modeshape fitting schemes. The GDSF 

scheme fits seven modeshapes to the seven sensor measurements, while the LSGDSF- 

4 scheme fits, in a least squares sense, the first four modeshapes to the seven sensor 

measurements. 

It is also seen in the table that the triangular sensors do not seem to offer 

significant advantages over point sensors. The error measure does not distinguish 

between the magnitude of the estimated response being larger or smaller than the 

theoretical response. However, when using the triangular sensors, significant rolloff 

in the sensor outputs is introduced. This has the effect of making the estimated 

response roll off at high frequency. When using point sensors, the magnitude of 

the estimated response actually increases for the higher modes, thus yielding more 

observation spillover. 

It should also be noted that there were significant estimation errors at low fre- 

quency, but to the fact that the static mode cannot be represented accurately using 

a combination of the dynamic mode shapes. This error contributes significantly to 

the estimation error measure at low frequency. 

4.2   Trapezoidal Rule 
Figure 4.1 shows the estimated tip slope response to a tip moment disturbance by 

using arrays of point and triangular sensors in conjunction with the trapezoidal rule. 

We see generally acceptable estimation performance up to about the fifth mode. Be- 

yond this point, the trapezoidal rule is unable to accurately follow the curvature 
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re 4.1:   Estimate of the tip slope response given a tip moment disturbance, 
using point and triangular sensors with the trapezoidal rule. 

profiles of modes with higher spatial frequency. The estimates decrease in magni- 

tude until about the eighth mode, at which point the magnitude of the estimated 

response increases rapidly due to spatial aliasing and quickly rises beyond the theo- 

retical response. Using the triangular sensors, we see good estimation performance 

for the first five modes. Beyond this point, we see a decrease in the estimated modal 

amplitudes, even including spatial aliasing. It can be seen from the unstable high 

frequency behavior found with the point sensors that the added rolloff the triangular 

sensors offer is very important in keeping the estimated response bounded at high 

frequency. For both schemes, a static estimation error is present, and this contributes 



4.3.   Simpson's Rule 39 

-40 

-60 

CQ 
-a 

T3 
3 

-100 

■I     I    I   I' ■ 

Point: 

-120 
  Theoretical 

Point sensors 
—   Triangular sensors 

10 

Figu 

10 10 10 
Frequency (Hz) 

re 4.2:   Estimate of the tip slope response given a tip moment disturbance, 
using point and triangular sensors with the trapezoidal rule. 

to the problems seen in accurately estimating the frequency of the low order zeros. 

4.3    Simpson's Rule 
The estimated tip slope response to a tip moment input is shown in Figure 4.2 when 

using Simpson's rule as the estimation scheme. For this scheme we find slightly better 

performance up to about the sixth mode when using the point sensors. When using 

the estimates obtained with triangular sensors, better estimates of the amplitude of 

the seventh mode are obtained. The eighth mode is once more unobservable, and 

beyond this point we see the estimates using the point sensors generally increasing in 



40 Chapter 4.   Shape Estimation of a Pinned-Pinned Beam 

-40 

-60 

T3 

•8   -80 

a 
E 
< 

-100 

-120- 

-T     I1       1     "T T^- 

Point: 

Triangular: AXXXXXN 1 

  Theoretical 
Point sensors 

 Triangular sensors 
■■I       I 1   ml .L- 

10 

Figu 

10 10 10 
Frequency (Hz) 

re 4.3:   Estimate of the tip slope response given a tip moment disturbance, 
using point and triangular sensors with the GDSF scheme. 

amplitude, while those obtained using the triangular sensors tend to roll off at these 

higher frequencies. 

4.4   GDSF Scheme 

Figure 4.3 shows the estimated response for the pinned-pinned beam using point and 

triangular sensors with the global dynamic shape function fitting scheme (GDSF). 

This scheme fits the modeshapes of the beam to the sensor measurements, and this 

already guarantees that the geometric boundary conditions will be satisfied by the 

estimated solution.   It can be seen that using point sensors yields good estimates 
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for the first seven modes, since a sum of the first seven modeshapes are being fit to 

the sensor data. Beyond this, spatial aliasing becomes a problem and the estimated 

response grows much larger in magnitude than theory predicts. Using triangular 

sensors solves this problem by introducing rolloff of the sensors to the higher modes. 

The first seven modes are accurately observed using the triangular sensors, and the 

results are very similar to those obtained using points sensors. However, beyond 

this frequency, errors due to spatial aliasing are highly reduced as compared to point 

sensors by virtue of the rolloff of the triangular sensors. 

4.5    LSGDSF Scheme 
The estimated and theoretical tip slope response when using the least squares global 

dynamic shape function fitting scheme with four shape functions and with rectangular 

and triangular sensors is shown in Figure 4.4. In this scheme four shapes are fit to 

the seven sensor measurements in a least squares sense, and also guarantees that the 

geometric boundary conditions will be satisfied. We find excellent performance in 

terms of estimating the amplitude of the first four modes, using both rectangular and 

triangular sensors. Unfortunately, the frequencies of the first three zeros is slightly 

worse using this scheme than for the GDSF scheme, due to the smaller number 

of shape functions fit to the sensor measurements. Beyond the fourth mode there 

is very little response to any mode up until mode 12. At this point the response 

estimated using triangular sensors is much larger than when using triangular sensor 

measurements, and the trend closely resembles the GDSF scheme results. 
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Figure 4.4:   Estimate of the tip slope response given a tip moment disturbance, 
using point and triangular sensors with the LSGDSF scheme when 
fitting four shape functions. 

4.6    Summary 
In general it was found that the GDSF scheme yielded the best results for low order 

modes. While the trapezoidal and Simpson schemes were only able to follow the 

oscillations of the first five or six modes, the GDSF scheme was able to generate 

good estimates up to the seventh mode, while the LSGDSF scheme generated good 

estimates up to the mode corresponding to the number of global shape functions 

(modeshapes) which were retained and fit to the sensor data. 



4.6.   Summary _5_3 

Beyond the seventh mode, where spatial aliasing is a severe problem, it is clear 

that it becomes critical to use the measurements shaped sensors. This is because 

their output rolls off at high frequency, making higher modes which are outside the 

control bandwidth less observable and thus prevent them from producing undesirable 

effects in the estimated response. 
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Shape Estimation 01 ClampecUrW Deam 

5.1    Description 
Now the performance of an array of shaped sensors used to estimate the dynamic 

mode shapes of a clamped-free beam is investigated. It is again assumed that there 

are 7 equally spaced sensors in the interior, but an additional sensor centered at the 

root was employed in all cases in an attempt to perform more accurate root curvature 

estimation. The performance variable was assumed to be the displacement of the tip 

and a tip force disturbance was used to disturb the beam. 

The exponential components of the clamped-free mode shapes at the root and 

tip makes tip deflection estimation a much harder problem than tip slope estimation 

for a pinned-pinned beam with purely spatially sinusoidal mode shapes. Specifically, 

good knowledge of the strain at the root is required for good estimation of the tip 

deflection for low order modes. However, for higher order modes, measurements of 

the root strain should roll off as quickly as measurements of strain in the interior of 

the beam. 

A variety of integration schemes were again used to integrate the measurements 
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Table 5.1:   Estimation errors of various integration schemes in estimating the 
response of the tip displacement of a clamped-free beam. 

No root sensor 

Scheme Point Sensors Triangular Sensors 

Trapezoidal 9.979 5.517 

Simpson 10.201 5.595 

GDSF 12.834 7.800 

LSGDSF-4 9.642 5.355 

Including root sensor 

Scheme Point Sensors Triangular Sensors 

Trapezoidal 7.484 0.901 

Simpson 6.892 3.403 

GDSF 5.245 0.671 

LSGDSF-4 9.806 2.309 

made by the sensor array and estimate beam tip displacement. For the trapezoidal 

and Simpson integration schemes, the sensor measurements were assigned at the cen- 

ters of the interior sensors and at the root for the cases where there was a half-sensor 

centered there. The sensor measurements were again simulated using a Bernoulli- 

Euler model of a clamped-free beam and the various estimation schemes were used 

to estimate the tip displacement. 

Table 5.1 shows the estimation error measure when trying to estimate the tip 

displacement of a clamped-free beam. These error measures were computed in the 

same way as for the pinned-pinned beam and show that significantly improved per- 

formance is possible when using a sensor placed at the root of the beam.   This is 
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because the estimated tip displacement is highly sensitive to the root curvature. It is 

therefore concluded that a sensor placed at the boundary of the structure is critical 

to good shape estimation performance. 

What is also clear from the results is that the GDSF scheme performs significantly 

better than the LSGDSF scheme. Therefore it does not make sense to use the a shape 

fitting schemes with fewer mode shapes than sensors. The results also indicate that 

improvements in the error are afforded by using triangular sensors, indicating yet 

again that the rolloff of shaped sensors can be used effectively in structural shape 

estimation. 

5.2   Trapezoidal Rule 
The estimation performance of the trapezoidal rule when using an array of seven 

internal point or triangular sensors is shown in Figure 5.1. We see good performance 

in estimating the amplitudes of the first three modes, and the frequencies of the 

first two zeros. Beyond this point the third mode is badly estimated and most of 

the subsequent zeros are missed altogether. Between the fourth and ninth modes the 

results using point and triangular sensors differ little, although the error obtained with 

the triangular sensors are decreasing as the outputs roll off. Beyond the eighth mode 

there is significant spatial aliasing and the errors obtained with triangular sensors are 

much lower than those found when using point sensors. It is as these frequencies that 

the rolloff of the triangular sensors becomes highly beneficial. 

A sensor was then centered at the root in order to estimate root curvature more 

accurately, and seven more sensors were equally spaced in the interior of the beam. 

Figure 5.2 shows the estimated tip displacement response to a tip force disturbance 

when using the additional root-centered point and triangular sensors with the trape- 
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Figure 5.1: Estimate of the tip deflection response given a tip force disturbance, 
using an array of seven point and Triangular sensors with the trape- 
zoidal rule. 

zoidal rule. It can be seen that when using point sensors, good estimates are available 

to about the fourth mode, with only the first two zeros being well-resolved. Beyond 

the fourth mode, however, the estimated magnitude of the response begins to increase 

well beyond those of the theoretical response. Using an array of triangular sensors 

improves performance considerably and yields a good estimate of the response for all 

low order modes. The errors due to spatial aliasing have very little impact on the es- 

timated response, thanks to the root curvature measurement and the rolloff provided 

by the triangular sensors. 
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Figure 5.2: Estimate of the tip deflection response given a tip force disturbance, 
using an array of eight point and Triangular sensors with the trape- 

zoidal rule. 

5.3    Simpson's Rule 
Figure 5.3 shows the estimation performance obtained when using seven internal point 

and triangular sensors in conjunction with Simpson's rule. The performance obtained 

is very similar to the results using the trapezoidal rule. The first three modes are 

reasonably well predicted, but only the first zero is resolved with the point sensors, 

while the first two zeros are resolved reasonably well with the triangular sensors. The 

performance using both point and triangular sensors is very similar between modes 

four and ten, although the observability of the modes to the triangular sensors is 
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Figure 5.3:   Estimate of the tip deflection response given a tip force disturbance, 
using point and Triangular sensors with Simpson's rule. 

clearly beginning to decrease with respect to the point sensors. Beyond the tenth 

mode there is significant rolloff of the triangular sensor estimates as compared with 

the point sensors, demonstrating the pronounced rolloff of the shaped sensor at higher 

frequency. 

The effects of adding a measurement from a root-centered sensor are shown in 

Figure 5.4. It can be seen that as with the trapezoidal rule, significant performance 

improvements are evident for both sensor types. When using point sensors, the first 

five modes and first three zeros are predicted very accurately, but there is a slight 

error in the frequency predicted for the fourth zero. The predictions obtained with the 
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Figure 5.4:   Estimate of the tip deflection response given a tip force disturbance, 
using point and Triangular sensors with the Simpson's rule. 

triangular sensors are actually a little worse, as only the first three zeros are present in 

any significant way. However, the amplitude of mode five is more accurately observed 

using triangular sensors than with point sensors. Beyond mode five both sensors have 

problems with spatial aliasing, but sensor rolloff affects the triangular sensor outputs 

significantly beyond mode 8, greatly reducing estimation errors at high frequency. 
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Figure 5.5:   Estimate of the tip deflection response given a tip force disturbance, 
using point and triangular sensors with the GDSF rule. 

5.4   GDSF Scheme 
The sensors arrays used in conjunction with the trapezoidal rule discussed above were 

also used with the GDSF scheme. The results when using seven internal sensors and 

no root sensor are shown in Figure 5.5. Both sensors offer good performance for only 

the first two modes. Beyond this point significant observation spillover from the poor 

estimation of the eighth mode corrupts the estimates of the frequencies of the low 

order zeros. Larger and larger errors are obtained using both sensor types as mode 

eight is approached. At mode eight, severe spatial aliasing problems result as the 

GDSF scheme attempts to fit a combination of the first seven modes to the aliased 
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Figure 5.6:   Estimate of the tip deflection response given a tip force disturbance, 
using point and triangular sensors with the GDSF rule. 

measurements of the eighth mode. Although errors are large for both sensor types 

beyond the eighth mode, these errors are significantly lower for the triangular sensors, 

especially as the frequency is increased. 

The results when using the GDSF scheme with an additional root sensor shown 

in Figure 5.6. Using point sensors, very good estimation performance is now seen for 

the first eight modes, since now the first eight mode shapes are being fit to the sensor 

outputs. Beyond the eighth mode, severe spatial aliasing problems are observed. 

This results in a general increase in the magnitude of the estimated response and a 

deterioration in estimation performance. Again, this situation is remedied by using 
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Figure 5.7:   Estimate of the tip deflection response given a tip force disturbance, 
using point and triangular sensors with the LSGDSF rule. 

triangular sensors. Such sensors offer rolloff to higher order modes, and this is seen 

in the behavior of the estimated response beyond the eighth mode. In this region the 

estimated response remains bounded and its rolloff is secured. This stable behavior 

is not possible without the presence of the half-sensors centered at the root of the 

beam. This sensor is critical in estimating the root curvature, to which the estimated 

tip displacement is very sensitive. 

5.5    LSGDSF Scheme 

Figure 5.7 shows the tip displacement estimation performance obtained using arrays 
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of seven internal point and triangular sensors in conjunction with the least squares 

global dynamic shape function fitting scheme for the case where the shapes of the the 

first four modes are used. For both sensor types we see good performance for the first 

two modes, and then deteriorating performance, especially in the identification of the 

zeros, up to mode four. Beyond this point spatial aliasing prevents the scheme from 

keeping up with the higher spatial frequencies of mode five and beyond, and severe 

estimation error are observed. Up through mode nine or ten we see the same general 

trend of missing zeros for both the point and triangular sensors, with the character- 

istic rolloff associated with the triangular sensors. Beyond mode ten the estimates 

using point and triangular sensors diverge as the triangular sensor outputs roll off 

substantially as compared to the point sensor estimates, which actually increase with 

frequency. 

Figure 5.8 shows the estimation performance when fitting four mode shapes to 

the outputs of eight point or triangular sensors, including a sensor centered at the 

beam root. It is seen that there is definite improvement in performance as compared 

to the previous sensor layout omitting a root-centered sensor. The first four poles and 

three zeros are accurately observed using both point and triangular sensors. There 

are significant errors in the frequency of the fourth mode, and beyond this point 

significant errors related to spatial aliasing occur, as expected. Also, as expected, the 

rolloff of the triangular sensors greatly decreases the estimation errors as compared 

to the point sensors, especially beyond mode nine. 

5.6   Summary 
It has been shown how estimation schemes using triangular sensors generally perform 

better than the same scheme employing point sensors. It is consistently seen that at 
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Figure 5.8:   Estimate of the tip deflection response given a tip force disturbance, 
using point and triangular sensors with the LSGDSF rule. 

higher frequency, when spatial aliasing has a significant impact on performance, that 

the reduced observability of the triangular sensors is critical in bounding the error. 

This reduction in error is particularly pronounced beyond mode ten. 

It has also been shown that the estimation performance is very similar when 

using the trapezoidal or Simpson's rules. In one particular case, using eight trian- 

gular sensors, the trapezoidal rule offers better results than Simpson's rule. When 

comparing the GDSF and LSGDSF schemes, it is clear that when a root sensor is 

available, it makes sense to use the GDSF scheme to accurately fit as many modes 

as possible to the sensor measurements. If, however, no root sensor is available, then 
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the severe observation spillover resulting from spatial aliasing of a high mode is best 

mitigated by using fewer shapes than sensors. 



CHAPTER  6 

Experimental Shape Estimation Kesults 

In order to determine the ability of a shaped sensor array to estimate the deflection 

of a beam-like structure, an effort was made to experimentally implement some of 

the cases studied in the simulations for the case of a cantilevered beam. 

6.1    Description 
An aluminium beam 30 inches long was manufactured and was mounted in a cantilever 

configuration. The beam had a T-shaped cross-section, with a top flange 2 inches 

wide, and a central flange 1 inch deep. The top and central flanges were both 1/4 inch 

thick. The beam had a first bending frequency of about 28 Hz. 

On the top flange, 22 Bartlett (triangular) sensors were fabricated by etching 

the electrode of PVDF piezoelectric film. The film used was 28-microns thick with 

sputtered nickel-copper electrodes and was manufactured by Kynar/Pennwalt Corpo- 

ration. The shapes of the sensors were drawn directly on one side of the film electrode 

using a permanent pen, leaving thin lines of electrode visible between adjacent sen- 

sors. The remaining electrode not masked by the permanent ink was etched using a 

heavily diluted ferric chloride solution. The length of each sensor was 1/8 of the beam 
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Figure 6.1:   Perspective view of T-Section beam with arrangement of array of 22 
Bartlett sensors. 
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Figure 6.2: T-Section beam with arrangement of array of 22 Bartlett sensors on 
the top surface and seven point sensors on the bottom surface of 
the central flange. 

length, or 3.75 inches long. The arrangement of sensors is shown in Figure 6.1. In Fig- 

ure 6.2 are shown the Bartlett sensors on the top face as well as the seven rectangular 

PVDF patches, each 1/2 inch long, designed to simulate point sensor measurements. 

These point sensors are distributed at regular intervals along the bottom face of the 

central flange. 

The arrangement of Bartlett sensors was designed so that the outputs of four 

neighboring sensors could be added together to simulate the output of a Bartlett 

sensor of twice the size.   Each large sensor had a length of 7.5 inches, and overlap 
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with the adjacent sensors over half its length. For example, the sensors shaded in 

black in Figure 6.2 show one such large sensor. Using 22 smaller Bartlett sensors, 

a total of seven large sensors can be formed. The seven point sensors mounted on 

the bottom face of the flange are aligned with the centers of the seven large Bartlett 

sensors as shown in Figure 6.2. 

The beam was mounted in a cantilever configuration, and a Briiel & Kjaer elec- 

tromagnetic shaker was attached to the bottom side of the central flange at the tip of 

the beam using a thin stinger. A white noise force was applied to the beam using the 

shaker, and the transfer functions from this tip force to the outputs of all 22 Bartlett 

sensors and seven point sensors were obtained. In addition, a non-contacting displace- 

ment sensor was mounted at the tip of the beam to measure the displacement of the 

top flange of the beam. All the transfer functions were measured in three frequency 

ranges, from 2 Hz to 20 KHz. 

To compare with the experimental results, a finite element model of the beam was 

constructed using eight-node solid elements. A dynamic model was created which al- 

lowed simulated transfer functions from tip force to Bartlett and point sensor outputs 

to be computed. 

A number of spatial integration schemes were employed in order to estimate dis- 

placement. It is assumed that the strain sensor outputs distributed along the length 

of the beam is proportional to the beam curvature, d2w(x)/dx2. Spatial integration 

can then be performed twice to obtain an estimate of beam displacement, w(x). Two 

simple integration schemes used were the trapezoidal scheme and Simpson's rule. For 

each of these schemes, the curvature at the tip of the beam was assumed to be zero. 

Unfortunately, no root sensor was etched on the PVDF and the root curvature had to 

be estimated by linearly extrapolating the measurements of the two sensors closest to 
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the root. Two more shape estimation schemes were considered. These were the GDSF 

scheme, where the curvature profiles of the first seven bending modes were fit to the 

sensor measurements, and the LSGDSF-4 scheme, where the curvatures of the first 

four bending modes were fit to the seven sensor measurements. The outputs of both 

the large Bartlett sensors and the point sensors were used to estimate tip displace- 

ment, in order to verify the beneficial effects of using shaped sensor measurements in 

structural shape estimation, rather than point sensor measurements. 

6.2   Trapezoidal Rule 
Figure 6.3 compares transfer functions obtained using a finite element model of the 

beam. The solid line shows the transfer function from tip force to collocated tip dis- 

placement, which rolls off asymptotically at —30 dB/decade in temporal frequency, 

and possesses the familiar alternating pole-zero pattern. The dashed and dotted 

curves were obtained by numerically integrating the analytical transfer functions 

from tip force to Bartlett and point strain sensor outputs, respectively, using the 

trapezoidal scheme. Good correspondence between estimated response and analyti- 

cal transfer functions is seen up to the third mode of the beam. Beyond the third 

mode spatial aliasing occurs, and the seven distributed sensors are incapable of distin- 

guishing modeshapes of higher spatial frequency than the third mode. The estimated 

tip displacement is generally larger than expected, and there is a loss of many zeros 

in the estimated response. It can be seen that the Bartlett sensors yield tip displace- 

ment estimated which are at least 5 dB less than those found using point sensors, 

indicating that some rolloff in the shaped sensor magnitude has taken place and that 

higher order modes are less observable. It will be seen that use of Simpson's rule to 

perform the numerical integration yielded results very similar to those obtained with 

the trapezoidal rule. 
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Comparison of transfer functions of a finite element model, from 
tip force to exact tip displacement and tip displacement response 
estimated from simulated sensor outputs using the trapezoidal rule. 

Figure 6.4 compares the measured transfer function from tip force to tip dis- 

placement with the estimates of this response using Bartlett and point sensor data. 

The trapezoidal estimation procedure was carried out in the same manner as for the 

finite element model predictions, and shows that good estimates are available up to 

the third mode of the beam. Beyond this point aliasing again occurs and larger dis- 

placements are predicted, some 180° out of phase with the actual measurements. As 

with the finite element model results, the modes above the third are still visible in 

the estimated response, and the estimation errors observed using the Bartlett sensors 

is at least 10 dB lower than those for the point sensors. 
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Figure 6.4: Comparison of experimentally measured transfer functions from tip 
force to actual tip displacement and tip displacement response esti- 
mated by numerically integrating measured sensor transfer functions 
using the trapezoidal rule. 

6.3    Simpson's Rule 
Shown in Figure 6.5 is a comparison of the estimated tip displacement response using 

Simpson's rule to integrate the sensor measurements for the finite element model of 

the beam. Very little difference between the performance of Simpson's rule and the 

trapezoidal rule is seen: Simpson's rule estimates the first three modes and first two 

zeros accurately and then is subject to the problems associated with spatial aliasing 

of the higher modes.   As with the trapezoidal rule, the errors obtained using the 
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Figure 6.5: Comparison of transfer functions of a finite element model, from 
tip force to exact tip displacement and tip displacement response 
estimated from simulated sensor outputs using Simpson's rule. 

triangular sensors are lower than those found with the point sensors. 

Figure 6.6 shows a comparison of experimentally measured and estimated tip 

displacement response using Simpson's rule. Since little difference is seen between the 

estimation performance of the trapezoidal and Simpson's rules when using the finite 

element model results, it follows that very little difference would be seen when using 

measured data. This is indeed the case, and we see reasonable agreement between 

experiment and theory up the third mode, ignoring the presence of the torsion mode 

which should ideally be unobservable.   Beyond the third mode we have larger and 
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Figure 6.6: Comparison of experimentally measured transfer functions from tip 
force to actual tip displacement and tip displacement response esti- 
mated by numerically integrating measured sensor transfer functions 
using Simpson's rule. 

larger estimation errors, although the point sensor estimates are consistently larger 

than the triangular sensor estimates. 

6.4   GDSF Scheme 
Figure 6.7 is a comparison of theoretical estimation performance when using the 

global dynamic shape function fitting scheme using as many shapes as point or tri- 

angular sensor measurements. It is found that the performance of the GDSF scheme 
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Figure 6.7:   Comparison of transfer functions of a finite element model, from 
tip force to exact tip displacement and tip displacement response 
estimated from simulated sensor outputs using the GDSF scheme. 

is severely limited due to the lack of a root sensor measurement. This is evident 

in the behavior of the estimates beyond the third mode of the beam. The second 

zero is actually badly estimated, and beyond the third mode significant errors are 

introduced, mainly through spatial aliasing. We see somewhat better behavior when 

using triangular sensors, as the errors are always lower than those obtained using 

point sensor measurements. 

The estimation performance of the GDSF scheme when using experimental data 

is summarized in Figure 6.8.  We see significant problems when using point sensor 
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Figure 6.8: Comparison of experimentally measured transfer functions from tip 
force to actual tip displacement and tip displacement response esti- 
mated by numerically integrating measured sensor transfer functions 
using the GDSF scheme. 

measurements. Indeed, there are magnitude errors at the lower frequencies and the 

first zero is very badly resolved and appears quite damped. In contrast the triangular 

sensor estimates perform much better in terms of magnitude estimation, although 

there is a large error in the estimate of the first zero frequency. The point sensors 

appear to predict the second mode resonance reasonably well but perform poorly in 

the estimation of the third mode. Beyond, errors are consistently large, indicating 

aliasing of the higher modes. The triangular sensors offer a better estimate of the 

third mode, and display smaller errors than the point sensors. 
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Figure 6.9: Comparison of transfer functions of a finite element model, from 
tip force to exact tip displacement and tip displacement response 
estimated from simulated sensor outputs using the LSGDSF-4 rule. 

6.5    LSGDSF Scheme 
Figure 6.9 compares the analytical and estimated response from tip force to tip dis- 

placement using the LSGDSF-4 fitting scheme with a finite element model. It can 

again be seen that good estimation is obtained up to the third mode of the beam. For 

the fourth mode, the tip displacement is underpredicted by the LSGDSF-4 scheme 

as the mode is barely visible. Beyond the fourth mode, spatial aliasing is observed 

and tip displacements are overpredicted. The asymptotic rollofF of the estimated re- 

sponse is consistent with the actual transfer function, and the estimated response 
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Figure 6.10: Comparison of experimentally measured transfer functions from tip 
force to actual tip displacement and tip displacement response es- 
timated by numerically integrating measured sensor transfer func- 
tions using the LSGDSF-4 rule. 

using Bartlett sensor data offers smaller errors than that for the point sensors. 

Figure 6.10 compares the measured and estimated tip displacement response to 

tip for disturbance, when using the LSGDSF-4 scheme. Once again good estimation 

is available up to the third mode, with aliasing deteriorating results at higher fre- 

quency. The residue of the third mode is slightly more accurately estimated using 

the LSGDSF-4 scheme than with the trapezoidal rule. For higher frequencies, al- 

though estimates are much larger than in reality, the peaks of the modes appear in 
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the response estimate. 

Interestingly, adding more shape functions to the estimation scheme is not nec- 

essarily beneficial. When examining the results of the GDSF scheme, which uses the 

first seven modeshapes, is was seen that the aliasing problems at the eight mode and 

above actually yield much larger errors than when using the LSGDSF scheme using 

four mode shapes. This occurs when using the simulated transfer functions of a finite 

element model as well as when using the measured transfer functions of the sensors. 

This is largely due to the lack of a root sensor measurement which heavily degrades 

the performance of all the estimation methods, especially the GDSF scheme. 

6.6   Summary 
In summary, it is clear that good shape estimation can indeed be performed for low 

order modes using distributed strain measurements, as the first and second bend- 

ing modes are well-estimated. From the finite element models, we expect that the 

first zero in the estimated response will have a higher frequency than the measured 

response for the trapezoidal and LSGDSF-4 schemes. Looking at the responses es- 

timated from measured data it can be seen that the the first zero in the estimate is 

actually lower than the measured zero for all the schemes and for both sensor types. 

Additionally, the second zero is not as well predicted as the finite element model sug- 

gests it could be. Although the measured tip displacement transfer function matches 

the modeled response quite well, it was seen that there was sometimes poor agree- 

ment in the modeled and measured zero frequencies for the individual sensors. It is 

probable that manufacturing errors and problems with the continuity of the PVDF 

electrode led to significant modeling errors for some sensors, leading to an adverse 

impact on estimation performance at higher frequencies. 



CHAPTER 7 

x^oncl onclusions 

It has been shown that discrete spatially averaging strain sensors satisfy the functional 

requirements for distributed sensing for intelligent structures. Specifically, it is seen 

that triangular sensors provide good wavenumber characteristics while satisfying the 

functional requirements for discrete strain sensors. It possesses a good rolloff rate, its 

transfer function is positive for all wave numbers, it is finite in spatial extent and very 

easy to manufacture. These properties make it an ideal spatially averaging sensor. 

It has also been shown that care must be exercised in the design and implemen- 

tation of sensors which need to be truncated at boundaries of the structure. The 

more derivatives are zero at the boundary, the better the sensor rolloff, and the closer 

its performance comes to that of an untruncated sensor. However, since this reduces 

the effective length of the sensor, the rolloff frequency will increase. 

For the estimation of global dynamic beam modeshapes, it was seen that good 

results could be obtained when estimating the modeshapes of the pinned-pinned beam 

by using sensors with good rolloff rates. This was made possible to a large extent by 

the length of the sensors, which decreased the rolloff frequency. It was also seen that 

the rolloff afforded by the triangular sensors is crucial in keeping the error bounded for 

73 
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higher modes. When using the point sensors, this error increases dramatically with 

wavenumber. It was also seen that it was difficult to correctly estimate the tip slope 

at frequencies below the first mode, due to the fact that the dynamic modeshapes 

cannot be used to form an accurate representation of the static displacement. This 

in turn is responsible for some of the problems seen in estimating the frequencies of 

the low order zeros. 

For the clamped-free beam, we see much better performance at low frequencies 

and better estimation of the zeros. When using any integration scheme, it was found 

that a measurement at or localized near the root of the beam is crucial in minimiz- 

ing the effects of spatial aliasing beyond about mode 7 or 8. It was found the with 

the trapezoidal and Simpson's schemes, that when no root measurement is available, 

some form of extrapolation of the root curvature using a linear or higher order scheme 

does not work well over a large range of frequencies., and a truly independent root 

measurement is best. It was found that a root measurement greatly improved the 

performance of the GDSF and LSGDSF schemes, especially beyond the mode corre- 

sponding to the number of shape functions used. In this region the errors are highly 

reduced by adding the root sensor and by using triangular sensors whose outputs are 

rolling off at these frequencies. 

From the experimental results of shape estimation, it is seen that with the trape- 

zoidal scheme, acceptable estimation performance was obtained up to about the third 

mode. Spatial aliasing degrades performance beyond this point, but it is clear that 

the errors in estimation observed using the triangular sensors is at least 10 dB lower 

than those for the point sensors. Results using the LSGDSF-4 and trapezoidal inte- 

gration schemes are similar, although a slightly better estimate of the residue of the 

third mode is available with the LSGDSF-4 scheme. 
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It has been shown through simulations and experimental results that good shape 

estimation can be performed for low order modes using distributed strain measure- 

ments. It is clear from the experimental results that the frequencies of poles in the 

force to displacement transfer function are much easier to estimate than the zeros. 

This could be due to manufacturing errors which led to unmodeled behavior in some 

of the individual sensors. 
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