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Abstract 

The processing of polymer colloids occurs under the influence of internal surface forces 
and externally applied tractions. Internal surface forces result from molecular volume-to-volume 
and surface interactions. A formulation for the computation of surface tractions resulting from 
these interactions has been developed. It generalizes and replaces Derjaguin's approximation and 
consistently combines curvature-based and direct van der Waals contributions. In this 
formulation the influence of a body on any other is described by a second order inter-surface 
stress tensor. Its properties and physical significance have been explored. The formulation is 
general and applicable to many other phenomena where surface forces play an important role. It 
has been implemented as a surface finite element which allows its use in numerical simulations 
of deformation. Detailed finite element simulations of viscoelastic coalescence driven by surface 
forces have been conducted. They confirm the experimentally observed importance of 
viscoelastic rheology for coalescence of polymers. The consistent treatment of surface forces has 
exposed and resolved inconsistencies in the current understanding of elastic adhesion and viscous 
sintering. Finite element simulations of deformation of soft colloidal particles under DLVO 
forces have also been conducted. It is found that under suitable conditions, due to large contact 
deformation, during drying particles can continue to be separated by a liquid film. Experimental 
investigations on well-characterized particles over a range of particle size have established that 
coalescence of soft colloids is primarily by recoverable elastic deformation, in agreement with 
theoretical predictions. The new surface formulation has also been used to develop a technique 
by which Hamaker constants may be measured using atomic force microscopy. Contact 
constitutive relations for deformation by externally applied forces have been developed. These 
will form the basis for discrete computational methods and continuum constitutive modeling. 



1.       Introduction 

The overall objective of this project has been to develop a quantitative understanding of 
the mechanics governing coalescence of a particulate polymer precursor into a homogeneous 
dense product such as a coating, compression molded part, or extrudate. We have focused our 
attention particularly on the coalescence of polymer particles driven by surface forces. 

Surface forces deriving from molecular interactions control the deformations of small 
particles. Early in the project it was realized that a consistent formulation for such surface forces 
did not exist/The classical curvature formulation works well for large isolated bodies but was 
shown to be completely unable to model the early stages of coalescence of two particles. The 
only available formulation for direct attraction across a small gap, Derjaguin's approximation, is 
limited to special geometries and had not been improved upon since its development in 1934. 
Moreover, there was no formulation that would consistently combine these two surface 
manifestations of molecular interactions. We also discovered that handling interactions between 
particles as body forces was computationally intractable. 

A new surface formulation has been developed that prescribes how effective surface 
tractions can be computed for any short-range inter-molecular potential. The formulation 
combines, in a consistent fashion, tractions due to interactions within a particle and between 
particles. In the new formulation, the effect of a particle on any other particle is expressed in 
terms of a second-order tensor field: the inter-surface stress tensor. This new quantity is like the 
internal stress tensor in many ways, e.g., upon an inner product with the normal of any surface 
introduced in the vicinity of the particle, it yields the traction vector on that surface. The new 
surface formulation also provides new formulae for the computation of the total force and total 
energy of interaction between particulates in terms of surface integrals instead of the usual 
volume integrals resulting in analytical and computational simplification. The surface 
formulation has been implemented as a general surface finite element. By this means the surface 
formulation has been combined with the analysis of deformation, without being restricted by 
material or geometric nonlinearities. It can be applied to the study of several other problems, e.g., 
fracture mechanics and AFM tip/material interactions. 

Adhesive contact between elastic and viscoelastic spheres has been studied via finite 
element analysis. The results of the elastic analysis are in good agreement with approximate 
analytical results; no exact results are available. Simulations of viscoelastic coalescence have 
rationalized several experimental findings and have exposed certain inadequacies in the current 
understanding of sintering processes. The interaction of particles while still separated by a liquid 
prior to drying is also of great importance. An analytical and computational study of deformation 
of colloidal particles by DLVO and van der Waals forces has been conducted. It is shown that as 
particles are brought together during drying, they deform under the influence of long-range 
electrostatic repulsion. The extent of the deformation depends critically on the repulsive forces 
and a parameter that includes the shear stiffness. If the particle is soft compared to the repulsive 
forces, large deformations of the particles are predicted even when the global energy minimum 
would indicate a flocculated state. This has important consequences for the processing of 
polymer colloids. 

Studies of neck growth between acrylic polymer spheres show clear evidence for the 
viscoelastic character of this process and indicate that the early stage of neck growth is controlled 
entirely by recoverable (delayed-elastic) deformation. For polymers at temperatures near Tg the 



recoverable compliance grows rapidly to a plateau value which is independent of molecular 
weight but varies substantially with molecular structure. These considerations lead to the 
prediction that for suitably small particles (corresponding to large surface tractions) an aggregate 
of polymer particles should sinter to full density by delayed elastic deformation alone requiring 
no contribution from viscous flow. 

This final technical report is organized as follows. Sections 2 to 8 summarize the main 
accomplishments. Details for each section, where not available in published form, are provided 
in Appendices 3 to 7. Appendix 1 contains a list of publications and presentations based on this 
work. Appendix 2 contains information regarding transitions and connections resulting from this 
work. 

Section 2 contains a description of the new surface formulation. Section 3 discusses the 
new quantity, the inter-surface stress tensor, that in the new formulation describes the influence 
of any body. Its implementation as a surface finite element is described in Section 4. Results of 
simulations of viscoelastic coalescence and of deformation under DLVO forces are summarized 
in Section 5. Experimental results are discussed in Section 6. Section 7 presents the use of the 
new formulation in extracting Hamaker constants from force measurements during atomic force 
microscopy. Section 8 describes ongoing work on the development of contact constitutive 
equations, discrete computational models, and continuum constitutive equations, and the 
direction in which we believe this work will lead. 

2.       Surface Formulation for Molecular Interactions of Macroscopic Bodies. 

It was realized early in this work that the analysis of coalescence of particles requires a 
mathematical formulation for surface forces.This subject has a long history and has been 
approached in different ways, e.g., at the discrete level of many atoms (Landman et al., 1990; 
Harrison et al., 1992, Rowlinson and Widom, 1982), or the continuous level, applicable to 
macroscopic problems (Hamaker, 1937; Herring, 1953; Orowan, 1970). Existing work on this 
problem was found to be inadequate and sometimes inconsistent. A description of molecular 
interactions as body forces or surface tractions is necessary for the construction of predictive 
models for processes such as sintering (Hiram & Nir, 1983; Jagota & Dawson, 1990), adhesion 
(Israelachvili, 1991; Johnson et ai, 1971; Derjaguin et al., 1975), crack-tip deformations (Lawn, 
1993; Chan et al. 1987), colloidal interactions, and atomic force microscopy (Landman et ai, 
1990; Hartmann, 1991, Argento and French, 1996). There are two important macroscopic 
manifestations of molecular interactions. Interactions within a body manifest as surface tension 
(self-interactions); interactions between bodies (other-body interactions) influence phenomena 
such as adhesion and the behavior of colloids. In certain problems, such as sintering, both 
manifestations play an important role. Our goal is to develop a continuum formulation for 
surface forces that combines these two manifestations. Self-interactions are treated using the 
classical concept of surface tension. For the other-body interactions we present a new surface 
formulation. 

Consider first other-body interactions. Let the potential energy of interaction between two 
molecules as a function of distance s be w(s). The potential energy of interaction e(s) between 
two elemental volumes dV{ and dV2 then is 

e(s) = plp2w(s)dVldV2, (1) 



where p, and p2 are the number densities of molecules. These infinitesimal volumes interact, 

each with every other, and it is assumed that the total energy of the system is the sum of 
individual interaction energies. The interaction energy between two bodies defined by the 
volumes V{ and V2 is then given by the double volume integral 

E = ^plp2w(s)dV]dV2. 
(2) 

v2v, 
In like fashion, the total force of interaction between two bodies can be computed. The force of 
interaction between two molecules is the gradient of the potential energy 

f = -Vw. (3) 
The total force between two bodies is then given by 

A = JJp,p2fWdV,dV2. 
(4) 

v2v, 
Interactions handled in this manner have been used to study adhesion of solids (Israelachvili, 
1991; Derjaguin et al, 1975), atomic force microscopy (Hartmann, 1991; Argento and French, 
1996), and fracture (Chan et al, 1987). The analytical integration of the pair potential to obtain 
the macroscopic interaction potential was done by Bradley (1932), de Boer (1936), and Hamaker 
(1937) for the specific case of van der Waals interactions. A compilation of their results can be 
found in Israelachvili (1991). This approach assumes: a) additivity: the total force can be 
obtained by the pairwise summation of individual contributions; b) continuous medium: the 
summation is replaced by an integration over the volume; c) constant material properties: the 
number densities p and the interaction constants do not vary over the volume of the bodies. The 
last assumption implies a step definition of the surface. The double-volume integrations are 
difficult to execute, both analytically and numerically, which has limited the application of this 
theory to simple geometries such as planar half-spaces and spheres. Because the potential w(s) 
typically decays rapidly with distance s, the interaction forces are usually concentrated near the 
surface of the body. This fact makes it very difficult to integrate expressions (2) and (4) 
numerically. Much would be gained if the volume integral could be replaced by surface integrals. 

Consider the case of two smooth bodies separated by a distance S, which is small 
compared to the radii of curvature. Derjaguin (1934) (see also Israelachvili, 1991) introduced an 
approximation that allows the double volume integral (4) to be replaced by a double surface 
integral. In its original form, the approximation was used to compute the total force between the 
bodies. It was shown that the interaction force equals the interaction energy of two half spaces 
separated by a distance S and multiplied by a geometrical factor that depends on the radii of 
curvature. The approximation has subsequently been adapted to impose distributed surface 
tractions for the analysis of deformation under surface forces (Muller et al, 1980; Hughes and 
White, 1979; Chan et al, 1987). The first step in the computation of tractions involves the 
determination of the interaction force f{s) (per unit area) between two half-spaces as a function 
of the distance of separation s. The second step involves defining a symmetry direction (with unit 
vector E) along which all tractions are assumed to act. Derjaguin's approximation does not 
specify if and how such a direction can be chosen in general. The traction T at any point on the 
surface is then assumed to be: 

T = /(s)(E-n)E, (5) 

where s is measured along E. 



Even when the total interaction force predicted by Derjaguin's approximation is accurate, 
the distribution of surface tractions can be very different from the actual field of distributed body 
forces. Analysis of local deformation may therefore be inaccurate. When the conditions under 
which Derjaguin's approximation is valid are not met, it is difficult even to define E uniquely. 

We have developed a new surface formulation for arbitrarily shaped bodies, without the 
geometrical limitations associated with Derjaguin's approximation. In this scheme the influence 
of a body is represented by a second order tensor: the inter-surface stress tensor. This tensor 
field depends on the shape of the body and the basic intermolecular potential. Upon an inner 
product with the surface normal of another body, it produces a surface traction. 

Consider now interactions within an isolated body (self-interactions). As a result of 
unmatched molecular interactions near a free surface, the surface has an excess energy. This is 
the surface energy and is defined as the work required to create a new surface of unit area 
(Herring, 1953; Orowan, 1970; Rowlinson and Widom, 1982). It provides, for example, the 
driving force for shape change and the concept of equilibrium shapes of bodies. Closely 
associated with the surface energy is the surface stress which is distinguished from the surface 
energy as being the work required to stretch the surface. The surface stress can also be obtained 
directly in terms of the unbalanced interaction forces (Orowan, 1970; Defay et al. 1966). For an 
isotropic liquid, the surface stress is isotropic and tensile (a surface tension) and is numerically 
equal to the surface energy (Herring, 1953, Blakely 1973). The driving force for deformation in 
this case can be written as an effective surface traction proportional to the product of surface 
energy and surface mean curvature: the Young-Laplace equation (Adamson, 1976, Herring 
1953). The Young-Laplace equation can also be derived directly in terms of unbalanced 
interaction forces (Rowlinson and Widom, 1982). This approach has been used widely to study 
deformation of fluids under the influence of surface energy (Batchelor, 1967; Jagota & Dawson, 
1990; van de Vorst 1993). For an isolated body, this classical formulation is sufficient to describe 
the driving forces for deformation as long as the radii of curvature of the surface are large 
relative to the length scale of molecular interactions. For solid bodies, the relationship between 
surface stress and surface energy is more complex. 

The surface formulation has been implemented as a surface finite element. In cases where 
the curvature formulation is invalid even for the self terms, for example at a cusp as in a sharp 
sintering neck, part of the body can be treated as another body. The surface formulation replaces 
the Derjaguin approximation and at the same time offers great advantages over full volume 
integration to obtain body forces. It is shown that full volume integration quickly becomes 
computationally intractable whereas it is possible, using the surface formulation, to analyze 
problems of macroscopic scale. We have applied it successfully to solve several problems: 
adhesion of elastic spheres, and the calculation of force-displacement laws for several body 
geometries. 

Two types of problems can be addressed using the surface formulation presented here: the 
determination of the total interaction force/energy between several bodies and the computation of 
equivalent surface tractions to study their deformations. As has been described, the results for 
the total interaction force/energy are exact for any interaction potential. The surface formulation 
does not have the geometrical restrictions associated with Derjaguin's approximation. All this, 
of course, within the basic limitations of Hamaker's approach. The use of the surface 
formulation to calculate effective surface tractions on a body and to study its deformation may 
have some practical limitations. This is related to the fact that there is no unique way to 
distribute the integrated body force over the surface of the bodies. However, the scheme 



presented here is very efficient for most important geometries. As has been shown, it produces a 
field of tractions on the body that is a very good approximation of the local body force field. 
This is specially true for potentials which decays rapidly with distance. 

The surface formulation is able to handle dissimilar materials but is limited in its present 
form to isotropic and piecewise homogeneous materials. We have not explicitly considered here 
other surface forces such as electrostatic attraction or repulsion, steric repulsion, and hydration 
forces that often play a role in physical phenomena where the inter-molecular forces are 
important. Because these forces are, to begin with, expressed as surface forces, their inclusion in 
the expression for the total surface traction at a point poses no additional difficulty if their 
influence is additive. 

This part of the work is described in detail in Argento, Jagota, and Carter (1996) which is 
attached as Appendix 3. 

3.       The Inter Surface Stress Tensor 

The work described in the previous section resulted in the definition of a fundamental 
new quantity we term the inter-surface stress tensor h. This tensor field depends on the shape of 
the body and the basic inter-molecular potential. Upon an inner product with the surface normal 
of another body, it produces a surface traction. The total energy of interaction between two 
bodies is obtained in a similar fashion in terms of surface integrals alone. The formulation is 
applicable to arbitrarily shaped bodies and offers major computational simplification. 

This part of the work is devoted to a discussion of the new quantity that has emerged 
from the surface formulation: the inter-surface stress tensor. A new derivation of the surface 
formulation is developed that highlights some the properties of the inter-surface stress tensor. 
General properties such as symmetry, lack of positive definiteness, and reduction to Derjaguin's 
approximation are derived. This is a symmetric tensor which, like the internal stress tensor, 
yields a traction upon an inner product with the normal to a surface. The trace of the tensor 
represents the effective hydrostatic stress in an elemental volume and equals the volume integral 
of the molecular potential. Actual components of the tensor are computed for several geometries: 
a plane half-space, a quadrant, a sphere, and a cylinder. Although in general the two are different, 
it is shown that the new formulation and Derjaguin's approximation coincide for the case of a 
half-space. The new surface formulation yields the correct total force and energy of interaction; 
errors in Derjaguin's approximation can be quantified in other cases. The formulation can be 
used to analyze deformations driven by surface forces without restrictions on the geometry, large 
deformations, etc. 

Details of this part of the work can be found in Jagota and Argento (1996) which is 
attached as Appendix 4. 

4.       Numerical Implementation 

The new surface formulation leads naturally to the definition of a surface element for use 
with finite element methods. It has been implemented for planar, axisymmetric, and three- 



dimensional geometries as a surface element in a commercial finite element code (ABAQUS8). 
This section describes the implementation briefly. The elements can be attached to any 
appropriate elements. They serve to transmit tractions due to surface forces to the discretized 
body and have not stiffness of their own. However, because surface forces depend strongly on 
the location of surface nodes, in a nonlinear solution procedure they contribute to the Jacobian 
matrix. 

We describe here how a surface element is implemented to compute the surface tractions 
produced by the surface formulation of the molecular interactions. This element has no stiffness 
and, by virtue of being attached to volume elements, transmits surface tractions to the material. 
For further details on the general principles of implementing such an element in a finite element 
code refer to any text book on the finite element method, e.g., Zienkiewicz (1989). 

The surface of the structure is discretized into linear elements. The finite element method 
requires the computation of an element force matrix: 

(6) 
F= I N'TdS, [N7 

where N is the matrix of element shape functions and T is the vector of tractions imposed on the 
element and the integral is done over the surface Se of the element. In the following, details of 
the evaluation of this integral in the case of 2 and 3 dimensional elements are presented. The 
tractions T are solution dependent since, as it is shown below, they are funciton of the curvature 
of the body and of the distance between the different surfaces. Therefore, in a non-linear finite 
element algorithm, such as the Newton-Raphson algorithm, it is necessary to take into account 
the surface tractions in the evaluation of the tangent (or Jacobian) matrix. The tangent matrix is 
definied as the derivative of the residual vector with regards to the solution variable, in this case 
the displacements. The residual vector is definied as: 

R = KU-F, (7) 
where K is the nonlinear stiffness matrix, U is the solution variable vector and F is the force 
vector defined above. The conponent ij of the tangent matrix is defined as the derivative of the i 
conponent of the residual vector with regards to the j conponent of the solution variable vector: 

,  =dRL (8) 
ij    dUj' 

Since our element has no stiffness (K = 0 ), the components of the tangent matrix for these 
elements are simply 

3*- (9) 
ij       dUj ' 

The evaluation of the tangent matrix is done numerically and its details are presented below for 
each type of element. 

The total traction consists of two parts: To and T corresponding to interactions with other 
bodies and self interactions respectively. Separate procedures are followed to compute these two 
contributions to the total traction. Consistency between the two is established by ensuring that 
the energy released by annihilation of surfaces due to contact equals the energy due to surface 
stretching. This implies that the surface tension equals the surface energy, an assumption that is 
strictly valid only for liquid-like materials. 



4.1 Self force 
It is known that an excess energy is associated with a free surface: the surface energy, 

which manifests itself as the surface tension. If the distance between a point inside a body and 
the nearest free surface is much larger than the typical range of the interaction forces, the point is 
equally surrounded by the material and the net force on it is zero. However, as this distance 
decreases, there is a net body force on the point and this is what we wish to compute. 

It can be shown that the stress state at every point in a body, originating from all pair 
interactions within the body, can be identically reproduced when effective tractions are applied to 
the surface of this body. These effective tractions are computed using the Young-Laplace 
equation (Adamson, 1976), which gives a traction proportional to the product of the surface 
energy and the surface mean curvature: 

T = -ytr(k)n, (10) 

where y is the surface energy, k is the surface curvature and n is the surface normal. This 
formulation been widely used to study the deformation of fluids under the influence of surface 
tension as, for example, in viscous sintering (Jagota and Dawson, 1990). It has the advantage of 
bypassing the singularity problem inherent to the self term (Argento et al. 1996). However, this 
expression cannot be applied directly to a body that has been discretized in linear elements, since 
the curvature is zero inside the element and indeterminate at the nodes. An exception to this 
situation is the axisymmetric element, which is detalied below. The force on the nodes of a linear 
element is obtained by an equivalent approach. The surface energy is written as a function of the 
coordinates of the nodes of the element. The force on the node along the different coordinates is 
then obtained by taking the derivative of the surface energy of the element with regards to the 
coordinate of the node. With this simple and straightfoward scheme, the force vector for the 
element is obtained without the need of numerical integration of expression. 

4.2 Plane elements 
Considering first a 2-d plane stress element. The surface energy contained whithin the 

element is 

Ey = yt<J(xA -xBf + (yA -yBf , 

where t is the thickness of the element. The force on node A along direction x is given by 
dEy (12) 

F    - L rxA -      -> 6xA 

or 

F Y^XB-XA) (13> 

-J(xB-xAf+{yB-yAf 

The expression for the nodal forces in a plane strain element can be found in a similar fashion. 

4.3       Axisymmetric elements 
For the axisymmetric case each element represents the surface of a truncated cone. The 

surface energy associated with this geometry is obtained by multipling the surface of the cone 
and the surface energy: 



Ey = yn(rB + rA)<J(rB - rAf + (zB - zAf . 

The force along the radial direction is defined as the negative of the derivative of the surface 
energy with regards to the radius, and on the node A is given by 

FrA=y% 
(rB

2-rA2) 

v(rß_^)2+(zß~^)2 
•V(rß~^)2+(zß~^)2 

(15) 

The force along the z direction is given by 
^    yjT      (rB + rAXzB-zA) (16) 

V(^-^)2+(zß-^)2 

Both these expressions represent the total force that is distributed over the circumference 2nrA . 

4.4       3-D Triangle 
Consider now a triangular element with nodes A, B and C and sides a, b and c. The area 

of the triangle is 

A   = U-aA + 2a2b2 -b4 + 2a2c2 + 2b2c2 - c4 , °7) 
A     4 

which mulitplied by the surface energy y gives the total energy contained within the element. 
As an example, the force on node A in the direction of the component x is obtained by taking the 
negative of the derivative of the total surface energy with regards to this component at the node, 
namely 

dyAA (18) 

ox 

or 
A 

2a2xA+{-a2 -b2+c2)xB+(-a2 +b2-c2)xc (19) 
FXA  y 8A 

A 

4.4       Other-body force 
This term represent the interactions between physically distinct bodies or, in the case of a single 
convex body, interactions between different regions of the body separated by a gap. The 
expression for the other-body traction developed in Argento et al. (1996) are in terms of surface 
integrals over interacting bodies. That is, to compute the traction at a point A on surface S, of 
body 1, one must integrate over the surface of all other bodies. Specifically, if only one other 
body is present: 

T,=AAJ n2GdS2, 
(20) 

Js
i 

where n2 is the normal to surface 2, and G is a vector function of distance between two surface 
points. This quantity has to be computed at all surface quadrature points. In general, therefore, 
one must compute a surface integral for each quadrature point. This is accomplished by scanning 
over all the surface quadrature points of surface 2 to compute the traction on a quadrature point at 
surface 1. Because the kernel G is typically decays rapidly with distance, only a few of the 
closest points on surface 2 contribute to any given point on surface 1. Some simplification can be 

10 



achieved by taking this into account. In the special case when surface 2 is a plane bounding a 
half-space one can make use of the fact that the surface formulation reduces to Derjaguin's 
approximation. In that case, equation (20) can be integrated analytically, obviating the need for 
one of the numerical integrations. 

Details of the numerical implementation will be the subject of a forthcoming publication 
(Appendix 1). Fortran subroutines that contain the coding for the surface elements are available 
from the authors. 

5.       Growth of Adhesive Contacts for Viscoelastic Spheres 

The new mathematical formulation for tractions based on surface forces has been applied 
to study the coalescence of viscoelastic spheres. The ability of surface tension to alter the shapes 
and increase the contact area of contacting particles is fundamental both to adhesion and 
sintering phenomena. Analyses of adhesive contacts (Johnson et al. 1971; Derjaguin et al. 1975; 
Muller et al 1980) have generally treated the particles as perfectly elastic. Analyses of sintering 
kinetics assume either a single mechanism for mass transport such as viscous flow (Kuczynski 
1949; Frenkel 1945; Hiram & Nir 1983; Jagota & Dawson 1988) or some temperature-dependent 
superposition of such mechanisms (Ashby 1974; Swinkels & Ashby 1981).These models 
successfully account for experimental measurements within restricted regimes of time, particle 
size, and material parameters. However, they cannot be expected to fully account for the 
behavior of real materials whose mechanical response is inevitably more complex. For example, 
when two liquid droplets come into contact they deform immediately to an extent dictated by 
their instantaneous elastic compliance regardless of their viscosity. Thus the true initial 
condition for viscous sintering is a consequence of short-time viscoelastic character. Viscous 
sintering models customarily assume an arbitrarily small initial contact size, but the limitations 
of that approximation have never been systematically examined. Viscoelastic effects are 
especially prominent for polymer particles. Viscoelastic relaxations in polymer melts commonly 
span several decades in time and are manifest in experimental measurements of both adhesion 
(Johnson et al. 1971) and sintering (Lontz 1964; Mazur & Plazek 1994; Mazur 1995; Lin & 
Meier 1996). 

In addition to the issue of material response, there remain unresolved questions 
concerning the proper representation surface forces. Existing models for elastic adhesion and 
viscous sintering have relied respectively on very different formulations of the surface tractions. 
Adhesive contact models invoke only the attractive forces operating across the gap between 
opposing surface elements when they approach within range of molecular van der Waals 
interactions. These forces "zip" the surfaces together, increasing contact area until elastic strain 
energy balances the decrease in surface energy. In contrast, models for viscous sintering invoke 
only forces associated with surface curvature which tend to "stretch" the circumference of the 
neck bounding the contact. Our objective herein is to develop a model for the evolution of 
particle shape, contact area, and stress distribution under intrinsic surface forces for contacting 
spheres with the properties of viscoelastic liquids. It turns out that both zipping and stretching 
modes are important in this problem. Consequently, the self-consistent prescription for both 
kinds of surface tractions developed as part of this work is crucial. 
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Calculations were performed for a Maxwell viscoelastic sphere of colloidal dimensions 
in contact with a smooth, rigid plane. In the limits of very short and very long times, the results 
agree well with the simple models for elastic and Newtonian materials respectively. However, 
the calculations reveal some unanticipated effects. The first stages of contact growth prove to be 
dominated by the zipping mode. Throughout this period the growth kinetics differs significantly 
from earlier viscous sintering models which neglect van der Waals forces. Moreover kinetics in 
the zipping regime do not scale with particle size, as do all the idealized models for sintering 
kinetics (Kuczynski 1949; Ashby 1974; Mazur 1995). The fraction of contact area contributed 
by zipping does, however, increases with decreasing particle size such that sufficiently small 
particles may sinter completely by this mechanism. 

Coalescence of spherical particles begins with the formation of an initial elastic contact 
and proceeds by time-dependent contact growth. An initial elastic contact is formed which is in 
good agreement with the JKR model. There is a viscoelastic transition into viscous contact 
growth by a zipping mechanism. This stage of the mechanism is insensitive to the value of the 
initial elastic contact radius and is a mode of viscous deformation driven mainly by attractive 
forces outside the contact region. It is not found in existing models for viscous sintering. There is 
a second transition to a mode of contact growth governed by curvature-based tractions and 
characterized by a stretching mode of contact growth. The contact radius at which the second 
transition occurs depends primarily on the particle size. It decreases from a value as high as 0.6 
to about 0.1 as one increases the sphere radius from 100 nm to \0jum. For large spheres, the 
stretching mode of contact growth dominates over the entire range of contact radius; the converse 
is true for small spheres. However, for the range of particle sizes and material properties 
commonly used, both modes of contact growth are important. 

Zipping and stretching are both viscous sintering; kinetics are governed by a 
characteristic time scale for a given particle size. However, it is shown that due to the fact of an 
additional length scale associated with van der Waals forces, there is no unique scaling with 
respect to particle size during the zipping mode of contact growth. When only Laplace-Young 
tractions are applied, the boundary conditions for a sphere on a rigid plane are identical to those 
for two identical spheres. However, the van der Waals forces for the case of two spheres are 
different. Because these tractions vary approximately as the cube of distance between surfaces, 
their influence compared to Young-Laplace tractions is smaller for two spheres versus a sphere 
on a rigid plane by a factor of eight. We have restricted our attention to sintering by viscoelastic 
deformation; accounting for direct attractive forces may influence models for sintering by other 
mechanisms as well. 

The interaction of particles while still separated by a liquid prior to drying is also of great 
importance. An analytical and computational study of deformation of colloidal particles by 
DLVO and van der Waals forces has been conducted. It is shown that as particles are brought 
together as the body of which they form a part dries, they deform under the influence of long- 
range electrostatic repulsion. The extent of the deformation depends critically on the repulsive 
forces and a parameter that includes the shear stiffness. If the particle is soft compared to the 
repulsive forces, large deformations of the particles are predicted even when the global energy 
minimum would indicate a flocculated state. This has important consequences for the processing 
of polymer colloids. 

A draft manuscript describing this part of the work in detail can be found in Appendix 5. 
We expect to publish further results of simulations on viscoelastic coalescence (Appendix 1). 
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6.      Experimental Studies of Viscoelastic Coalescence 

Our earlier studies of neck growth between acrylic polymer spheres showed cleat- 
evidence for the viscoelastic character of this process and indicated that the early stage of neck 
growth is controlled entirely by recoverable (delayed-elastic) deformation. For polymers at 
temperatures near Tg the recoverable compliance grows rapidly to a plateau value which is 

independent of molecular weight but varies substantially with molecular structure. These 
considerations led to the prediction that for suitably small particles (corresponding to large 
surface tractions) an aggregate of polymer particles should sinter to full density by delayed elastic 
deformation alone requiring no contribution from viscous flow. This expectation has been 
justified and quantified by the theoretical work presented in previous sections. The magnitude of 
the limiting particle size was estimated from the plateau compliance and surface tension for a 
number of common polymers. The size predicted for poly(tetrafluorethylene) is very close to that 
of the dispersion particles produced under commercial polymerization conditions. A more 
rigorous test was provided by experiments on a series of acrylic latex particles with diameters 
ranging from 0.14 to 1.55 \im. Consistent with expectations, for particles smaller than the 
limiting size (ca. 0.25 um) the aggregates sintered rapidly to full density at temperatures just 
above T  (78 °C) even when the polymer was a lightly cross-linked gel with essentially infinite 

viscosity. By contrast, for larger particles the final stage of densification required temperatures as 
high as 150 °C corresponding to Newtonian flow in the terminal regime. 

Part of the work has been reported in Mazur (1995). A draft manuscript containing further 
details can be found in Appendix 6. 

7.       AFM Tip - Material Interactions 

The surface formulation developed as part of this work promises to be a powerful tool for 
analyzing other phenomena controlled by surface forces. We have employed it to explore the 
possibility of extracting fundamental material properties from AFM measurements. The van der 
Waals force, which arises from the interaction of oscillating dipoles, has a role in controlling 
many aspects of the behavior of materials. It controls or influences macroscopic phenomena 
such as surface tension, wetting behavior, colloidal stability, fracture and adhesion. The van der 
Waals interactions can be quantified through the Hamaker constant (Israelachvili 1992), which is 
a material property, and through an appropriate force-distance relation, which is dependent on the 
system geometry. 

The determination of the Hamaker constant is a important field of research. Ackler et al. 
(1996) provide a description of the different methods available to obtain the Hamaker constant 
for different materials and configurations. One technique is the observation of the manifestation 
of these interactions on a macroscopic scale, in a phenomenological approach. For example, the 
surface force apparatus (Tabor & Winterton 1969) has been used to determine the interaction 
force between crossed cylinders with surfaces of cleaved mica. Through an analysis such as the 
one presented by Hamaker (1937), the expression for the total interaction force for the specific 
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geometry and material configuration can be calculated. Following a fit of the force-distance 
relation obtained experimentally, the Hamaker constant is obtained. A similar and promising 
new approach is the use of atomic force microscopy (AFM), due to its intrinsic capability of 
measuring very small forces (~nN) at very small separations (~nm). 

Atomic force microscopy is based on the determination of the interaction force between a 
probe and the substrate-sample. Different kinds of interactions may be present including 
electrostatic (Stern et al. 1988), magnetostatic (Martin et al. 1987), and van der Waals 
(Weisenhorn et al. 1989). The van der Waals interactions are omnipresent and, for a clean, 
uncharged and non-magnetic system, it can be the only force field present. In a procedure 
similar to the one described for the surface force apparatus, the Hamaker constant can be 
determined. So far, due to the difficulty involved in the integration to obtain the interaction force, 
the probe has been erroneously modeled with simple geometries, such as a sphere. The use of 
such models has prevented the accurate determination of the Hamaker constant for systems of 
interest. 

The problem to be resolved can be stated as one of integrating the interaction force over 
the volumes of an arbitrary probe and the sample and obtaining a correct force-distance relation. 
The surface formulation developed in this work has proved useful in obtaining such a relation. 
We use a parametric model for a typical AFM probe. The interaction of this probe with a planar 
halfspace is obtained using the surface formulation. We then show that the traditional power-law 
relation used to describe the force-distance dependence of the interaction force is inadequate 
since the AFM tip-substrate force-distance relation (FDR) can not be approximated by a 
power-law. We then demonstrate that the parametric tip-substrate force-distance relation 
(PT/FDR) that we develop can be used to fit (non-linear fit) experimental data and to determine 
both the tip parameters and the Hamaker constant for the material configuration. 

A study on numerically generated data set shows that, in the more common cases when 
the tip radius is large, the determination of Hamaker constant from the non-linear fitting routine 
is compromised by the fact that the Hamaker constant and the tip radius are redundant 
parameters. In these cases, the angle of the conical part of the probe is irrelevant, especially 
when the data has a high noise to signal ratio at large separations.   However, the same analysis 
shows that all the three parameters can be accurately extracted from the data if the tip radius is 
small. This is specially interesting since, in these cases, the sphere model is completely invalid. 
The non-linear fitting routine is very efficient when there is no redundancy of parameters in the 
PT/FDR, as in the small radius regime. 

A manuscript containing details of this part of the work can be found in Appendix 7. 

8.       Discrete Numerical Methods and Continuum Modeling 

To develop a micro-mechanical constitutive model for viscoelastic granular materials one 
needs additionally to consider viscoelastic contact problems driven by external tractions. Detailed 
numerical computations of viscoelastic contact problems under forces along the contact normal 
have been conducted (Paliwal 1995). These confirm the validity of analytical results (Lee & 
Radok 1960; Ting 1968) upto large contacts. One-dimensional contact constitutive equations for 
contacting spheres deformed in shear and torsion have been developed using the viscoelastic 
correspondence principle and Mindlin's (1949) solutions for the corresponding elastic problems. 
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Contact constitutive relations when a pair of particles deforms simultaneously in the different 
modes of deformation have been developed but remain to be tested by numerical simulation. 
These form the basis both for the development of continuum constitutive relations and for 
discrete numerical tools for the simulation of viscoelastic deformation of sets of particles. A 
discrete formulation for the simulation of the deformation of many-particle systems is under 
development. It is an extension of a previously developed quasi-static formulation for elastic and 
viscous materials to visco-elastic contacts (Jagota & Scherer 1995). 
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Appendix 2 Interactions/Transitions 

A - Meetings 

1 - AFOSR Workshop on Environmental Effects on High Performance Polymers and 
Composites, May 25, '95, Fairborn, Ohio. (A copy of transparencies used in the program 
review are included in the Appendix 

2 - National Meeting of the American Chemical Society, Aug. 21, '95, Chicago, 111. The 
paper (see V-2 above) was presented by Dr. Mazur in the Polymeric Materials Symposium 
on Film Formation. 

3 - "Sintering 1995 - An international Conference on the Science, Technology, and 
Applications of Sintering", Sept. 24. The paper (see V-l above) to be presented by Dr. 
Argento. 

4 - American Ceramic Society Basic Science Fall Meeting , November, 1995. The paper 
(see V-4 above) was presented by Dr. Argento. 

5 - Annual meeting of the American Ceramic Society, April 1996. 

6 - SIAM meeting on Mathematics in Materials Sciences, Philadelphia PA, May 1997. 

7 - Powders and Grains '97, Durham NC, May 1997. 

B - New Directions and Collaborations 

1 - The surface formulation was developed in collaboration with Dr. W.C Carter, NIST, 
Ceramics Division. 

2 - Applications of the surface forces analysis to AFM measurements was done in 
collaboration with Dr. Roger French (Dupont - CR&D). 

3 - Applications of the surface force analysis to study crack tip profile in brittle fracture, is 
being pursued in collaboration with Dr. Stephen Bennison (Dupont - CR&D). 

4 - The role of particle size, polymer rheology, and colloidal interactions in particle 
deformation during drying and sintering of polymer colloids is a subject of continuing 
experimental investigations. This study makes use of a series of well-characterized acrylic 
co-polymer latex particles with narrow size distributions prepared by Dr. R. Beckerbauer 
(DuPont - CR&D). 

5 - Small angle X-ray and neutron scattering studies are in progress to determine the changes 
in internal surface area and evolution of morphology in aggregates of polymer colloids and 
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films obtained from the coalescence of latex dispersions. These studies are in collaboration 
with Drs. G.D. Andrews and A. Biswas (DuPont), and C. Glinka (NIST). 

6 - A collaboration has been established with Professor D. Weitz's group at the University of 
Pennsylvania (Physics Department) to investigate the evolution of structure and mechanical 
properties during drying of polymer latex dispersions. Using materials prepared at DuPont 
(see item 4) a combination of different methods will be employed to characterize highly 
concentrated dispersions and the drying process itself. We plan to exploit theory and 
modelling capabilities developed over the past two years in this study. 
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1. "Problems in Viscoelastic Neck Growth", C. Argento, S. Mazur, A. Jagota, in 
Sintering Technology, R.M. German, G.L. Messing, R.G. Cornwall (editors), 
21-28, Marcel Dekker (New York), 1996. 

2. "Surface formulation for Molecular Interactions of Macroscopic Bodies", C. 
Argento, A. Jagota, W.C. Carter, Journal of the Mechanics and Physics of 
Solids, in press (1996). 
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"An Inter Surface Stress Tensor", A. Jagota, C. Argento, submitted to the Journal 
of Colloid and Interface Science (1996). 
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Jagota, poster presented at the Gordon Conference on Colloidal, 
Macromolecular and Polyectrolyte Solutions (1996). 

3. "Mechanical forces and material response in the coalescence of polymer 
particles", American Chemical Society Symposium series of Film Formation 
(Division of Polymeric Materials Science and Engineering) (1996). 
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Problems in Viscoelastic Neck Growth 

C. Argento, S. Mazur, and A. Jagota 

Central Research & Development Division 
E.I. Dupont de Nemours & Co. Inc. - P.O. Box 0356 

Wilmington, DE 19880-0356 

Abstract 
Particle coalescence is central to many industrial fabrication processes for 
organic polymers. While formally analogous to the sintering of inorganic 
materials, the mechanics and kinetics which govern polymer coalescence are 
fundamentally different, in large part because of the viscoelastic rheology of 
high molecular weight polymers. These issues are reviewed in relation to neck 
growth between spheres. Our objective is to develop physically rigorous 
computational models for visco-elastic coalescence of polymer particles based 
on realistic rheology, particle size, and force fields. 

I- Viscoelastic Response of Amorphous Polymers 
Coalescence of an aggregate into a uniformly dense body requires 

deformation of the component particles into space-filling shapes. A sufficient 
description of the time-dependent response to deviatoric stresses for an 
isotropic material is provided by the shear compliance J(t) and Poisson's ratio 
v (which may also be time-dependent). 7(0 equals the ratio of strain at time 
t to a constant stress imposed on the fully relaxed sample at t=0 . The 
stress-strain relation is defined using the Boltzman superposition principle: 

(1) 
e(t)= \j(t-t')^)-dt' jVo- 

where e is the deviatoric strain and s is the deviatoric stress. An analogous 
expression applies for the bulk compliance. 

For linear high molecular weight polymers, J(t) reflects kinetic 
processes which span several decades in time (Plazek, 1980) and can be 
partitioned into recoverable and Newtonian viscous contributions: 
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J{t) = Jr(t)+t/T\0 (2) 

The recoverable compliance J(t) represents that part of the time-dependent 
strain which will spontaneously recover if the stress is removed at time t. 
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Figure 1: Shear creep compliance for poly(methyl methacylate co ethyl aery late), 
molecular weight 101,000. Data at four different temperatures has been reduced to 
133°C (Mazur & Plazek, 1994). 

Figure 1 illustrates typical behavior for an acrylic copolymer with broad 
molecular weight distribution at 20°C above its glass temperature Tg. J(t) 

increases from the glassy value (7(0) < lGPa"1) to about 2 MPa"1 in the 
"plateau" regime.   It is noteworthy that viscous flow remains negligible relative 
to Jr(t) for more than three hours. Since r|0 increases strongly with polymer 

molecular weight while the growth in Jr(t) through the plateau regime is 

relatively insensitive, it is not uncommon to find even greater temporal 
separation of the two deformation mechanisms. Moreover, the principle of 
time/temperature super-position (Ferry, 1980) (thermo-rheological simplicity) 
dictates that retardation times for the growth of Jr(t) and t/r\0 respectively 

will decrease by the same factors with increasing temperature. Thus even at 
much higher temperatures, recoverable viscoelastic deformation is always 
several orders of magnitude faster than viscous flow. 

For times and temperatures corresponding to the plateau regime, 
polymer melts resemble an ideal elastic material with time-invariant 
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compliance Jn,(J„ ~ 2MPa"' in Fig. 1). A logical starting point for analyzing 

deformation of viscoelastic particles is the corresponding mechanics for elastic 
materials. 

II - Elastic Deformation for Various Forces 
Particle deformation and the growth of interparticle contacts may be 

driven by different kinds of forces depending upon processing conditions. 
Analytic results for equilibrium elastic contacts under applied loads or surface 
tension provide some insights relevant to actual processing conditions for 
polymers. 

In compression molding a polymer powder is heated above T and 

subjected to applied load. For a pair of elastic spheres of radius r and 
compliance Jn pressed together by an axial force F, the radius of the contact x 

may be calculated at small contacts according to Hertz (Timoshenko & 
Goodier, 1955): 

1 ' (3) 

r 

3(l-v)7„F 

8r2 

3B(1-V)JB/> 

where P is the mean interparticle pressure. Starting from a regular packing of 
spheres, the extent of densification can be related to growth of the 
dimensionless contact radius xlr. For realistic packing densities complete 
densification is achieved at x I r = 0.58 (Mazur, 1995). According to Eq. 3 this 
limit corresponds to P ~ 1 / (3J„) and is independent of particle size (r).   For 

the acrylic polymer of Fig. 1, Eq. 3 predicts that full density should be achieved 
with pressures of order 200 KPa. In the absence of other processes, elastic 
densification is perfectly reversible so that the sample would return to its initial 
density upon removing the load. In practice irreversibility is a consequence of 
the relaxation of the elastic stresses and diffusion of polymer chains across the 
particle interfaces. These processes require times comparable to the terminal 
relaxation time xn = J„r|0 (Mazur, 1995). Thus compression molding times 

are primarily governed by internal relaxation which has little to do with 
densification per se. 

In the absence of external loads, neck growth and particle deformation 
may be driven by interfacial tension 7 between the polymer and surrounding 

medium (for example, air). By assuming that the surface forces operate only 
across the contact, Johnson, Kendall, & Roberts (1971) (JKR theory) extended 
Hertz's analysis to obtain the following expression: 

r 1- (4) 
£_ 9rc(l-v)7„y 3 

r~ 8r 
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Unlike the simple Hertz case, here xlr depends explicitly on r. For a given 
material such that  J„, v, and y are constants, the extent of deformation may 

be increased by decreasing r.  Thus to achieve x/r=0.58 requires r = 9yJn . 

These models for elastic materials reveal the importance of Jr(t) for 

neck growth in the plateau regime, but they are of limited predictive value. 
Firstly, equations (3) and (4) are derived in the limit of small contact area with 
uncertain reliability for xlr -0.5.   Secondly, the relationship between an 
equilibrium elastic contact and the kinetics of viscoelastic growth of a contact is 
non-trivial. Substitution of Jr(t) for Jn in eq.(4), which is inconsistent with 

Boltzmann's superposition principle, predicts neck growth kinetics in 
qualitative agreement with experiment (Mazur & Plazek, 1994) but results in 
large quantitative error in the time scale. A more sophisticated approximation 
(Lee & Radok, 1960) (still limited to small contacts) requires independent 
knowledge of the stress history and is therefore inapplicable to neck growth 
driven by surface tension. 

Ill- Interfacial Driving Forces 
A rigorous analysis of neck growth requires accurate description of the 

interfacial forces originating from deviation in molecular interactions near a 
surface relative to those in the bulk. These forces may be manifest in 
continuum mechanics in three different ways depending upon the size and 
structure of volume elements over which the molecular interactions are 
formally integrated. 

The least detailed manifestation of surface forces (the thermodynamic 
approach) corresponds to the integration of molecular interactions over the 
entire body. Thus the interfacial force associated with a change in some linear 
dimension of an object equals the corresponding derivative of the surface 
energy (surface area times y). This isotropic average force reveals nothing 
about the local deviatoric stress field responsible for specific changes of shape. 
A more localized manifestation of surface forces corresponds to integration of 
molecular interactions along the "immediate continuous vicinity" of a local 
volume element. The driving force for deformation of the volume element may 
be obtained from the Young-Laplace equation (Adamson, 1976), which gives 
an effective surface traction proportional to the product of surface energy and 
surface curvature. The tractions acting on a curved surface is then: 

t = -ytr(k)n (5) 

where t is the surface traction from the excess free energy, y is the surface free 

energy, k is the surface curvature and n is the surface normal. This approach 
has been successfully used to study fluid deformation, as in viscous sintering 
(Jagota & Dawson, 1990; Hiram & Nir, 1983). However, preliminary 
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calculations showed that it fails when the material is elastic or viscoelastic. 
The main contribution of this term is the expansion of the contact area, not the 
creation of new contact, which is qualitatively different from what is observed 
in experiments. 

None of these manifestations can describe the interactions of 
molecules operating across a gap of a second medium. In this case, the 
complete description of the interaction potential is necessary. For non-polar 
polymer molecules, it is assumed that the interactions are of Van der Waals 
type and can be described by a Lennard-Jones potential. Continuum mechanics 
assumes a uniform density distribution which is a valid approximation only for 
intermolecular distances larger than the minimum in this potential (the nearest 
neighbor separation). For this purpose only the attractive part of the potential 
is important and it will be necessary to truncate integrations at some cut-off 
distance, which is large compared to the minimum in the true molecular 
potential. 

The attractive potential is expressed by: 

w = -A/[n2d") ^ 

where A is the Hamaker constant for the given material configuration and d is 
the distance between the two molecules . For the case of Van der Waals 
interactions, in the non retarded regime, n=6 (Israelachvili, 1994). This 
contribution has been widely studied under the scope of elastic adhesion 
(Derjaguin, Müller & Toporov, 1975) (DMT theory). In the DMT model, the 
adhesion is presumed to result entirely from Van der Waals attraction outside 
of the area of contact. In contrast, in the JKR model, the adhesive forces are 
derived from the thermodynamic approach and assumed to be entirely restricted 
to within the contact area. 

The force acting on a point of body V! due to another volume V2 is 
given by the volume integration: 

f=\VwdV2 
(7) 

■J' 
This volume integration is very time consuming and extremely sensitive to the 
mesh coarseness. Since these forces are concentrated near the surface (Tabor, 
1981), it would be useful to express them in terms of a surface force resulting 
from a surface integration. Therefore, the approach adopted was the one 
derived by Argento, Jagota & Carter (in preparation). It consists of a new 
integration method for inverse power law body forces of high order (n>3) that 
allows the reduction of the three dimension volume integration to a two 
dimension surface integration. The body force field f is replaced by a surface 
stress tensor h, of the form: 
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■J h =    GdS, 
(8) 

where S represents the surface of bodies 1 and 2. The kernel G has the 
following form: 

G= **  (9) 

(3-«)(xx)2 

where x is the vector linking the point on the surface of 1 to a point on the 
surface of 2, xt is the component of x on the direction e„ which is the 
coordinate system unitary base vector. In the case of near parallel surfaces, like 
the region near the contact zone between two large spheres, this scheme 
reduces to the well known "Derjaguin approximation" (Derjaguin, 1934). 

IV- Numerical Study 
Since no adequate analytical model exists to describe the kinetics of 

viscoelastic neck growth under the conditions described beforehand, it seems 
convenient to study this problem with the help of a numerical tool such as the 
finite element method. Therefore, the method described in the previous section 
was implemented in the ABAQUS™ finite element code (Hibbitt, Karlsson & 
Sorensen, Inc.). Calculations were made of contacts of elastic spheres where 
surface forces were represented by a combination of Young-Laplace and van 
der Waals contributions. 
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Figure 2: Vertical stresses near the contact between a deformed viscoelastic 
sphere and a plane. 
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In preliminary calculations the results were found to be sensitive to the 
cut-off distance.  For an appropriate choice of the cut-off (by trial and error), 
we obtained a good agreement with the JKR analytical model. Figure 2 shows 
the vertical stresses in a close-up around the contact between a deformed 
viscoelastic sphere and a rigid plane. It can be seen that the stress profile is 
close to the one predicted by the JKR theory, the external ring of the contact is 
under high tensile stresses while the core of the contact is under compressive 
stresses. 

Some preliminary viscoelastic calculations have also shown that, in 
agreement with experimental results (Mazur & Plazek, 1994) the time scale of 
relaxation of the contact radius is orders of magnitude greater than the time 
scale the time scale of relaxation of the material. 

V- Conclusion 
A numerical model to describe elastic and viscoelastic neck growth 

under interfacial forces was implemented in a finite element code and some 
preliminary calculations were performed. So far, the following can be 
concluded: 
• the curvature formulation based on the surface energy alone is not 

sufficient to describe the kinetics observed. 
• the choice of the cut-off distance for the integration of the attractive 

potential is very important, a rational criterion for this choice is being 
worked out. 

• qualitative agreement between numerical calculations and experiments has 
been obtained for viscoelastic sintering, showing the difference of many 
orders of magnitude between the relaxation time of the radius of contact 
and the relaxation time of the material. 
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Abstract 

The determination of forces resulting from molecular interactions between macroscopic 

bodies is important for the analysis of a variety of processes such as sintering, adhesion, 

and fracture. Body forces resulting from these interactions are usually concentrated near 

the surfaces of the bodies and are responsible for phenomena such as surface tension and 

surface energy. In the formulation presented here, the volume integrated intermolecular 

force between bodies is partitioned to obtain a distribution of effective surface tractions. 

This new surface formulation eliminates the geometrical restrictions associated with the 

commonly used Derjaguin approximation. The influence of each body on the surface of 

any other body is represented by a new quantity: the inter-surface stress tensor. 

Additional forces resulting from interactions within the body, the surface tension, have 

been considered for liquid-like materials. These self interactions are modeled by the 

classical Young-Laplace equation relating the effective traction on a surface to the energy 

of the surface and its curvature. The surface formulation offers considerable reduction in 

computational complexity compared to a formulation based on body forces. The efficacy 

of the technique is demonstrated using several examples. 



1. Introduction 

A description of molecular interactions as body forces or surface tractions is 

necessary for the construction of predictive models for processes such as sintering (Hiram 

& Nir, 1983; Jagota & Dawson, 1990), adhesion (Israelachvili, 1991; Johnson et al, 

1971; Derjaguin et al., 1975), crack-tip deformations (Lawn, 1993; Chan et al. 1987), 

colloidal interactions, and atomic force microscopy (Landman et al, 1990; Hartmann, 

1991, Argento and French, 1996). This subject has a long history and has been 

approached in different ways, e.g., at the discrete level of many atoms (Landman et al., 

1990; Harrison et al, 1992, Rowlinson and Widom, 1982), or the continuous level, 

applicable to macroscopic problems (Hamaker, 1937; Herring, 1953; Orowan, 1970). 

There are two important macroscopic manifestations of molecular interactions. 

Interactions within a body manifest as surface tension {self-interactions); interactions 

between bodies {other-body interactions) influence phenomena such as adhesion and the 

behavior of colloids. In certain problems, such as sintering, both manifestations play an 

important role. Our goal is to develop a continuum formulation for surface forces that 

combines these two manifestations. Self-interactions are treated using the classical 

concept of surface tension. For the other-body interactions we present a new surface 

formulation. 

Consider first other-body interactions. Let the potential energy of interaction between 

two molecules as a function of distance 5 be w(s). The potential energy of interaction 

e{s) between two elemental volumes dVx and dV2 then is 

e(s) = p,p2w(s)dVidV2, (1) 



where p, and p2 are the number densities of molecules. These infinitesimal volumes 

interact, each with every other, and it is assumed that the total energy of the system is the 

sum of individual interaction energies. The interaction energy between two bodies 

defined by the volumes Vx and V2 is then given by the double volume integral 

j JPlP2W(5)( E=  I \plpMs)dVldV2. 
(2) 

y2vi 

In like fashion, the total force of interaction between two bodies can be computed. The 

force of interaction between two molecules is the gradient of the potential energy 

f = -Vw. (3) 

The total force between two bodies is then given by 

A= ^P]p2f(s)dVxdV2. 
(4) 

V2VX 

Interactions handled in this manner have been used to study adhesion of solids 

(Israelachvili, 1991; Derjaguin et ai, 1975), atomic force microscopy (Hartmann, 1991; 

Argento and French, 1996), and fracture (Chan et al., 1987). The analytical integration 

of the pair potential to obtain the macroscopic interaction potential was done by Bradley 

(1932), de Boer (1936), and Hamaker (1937) for the specific case of van der Waals 

interactions. A compilation of their results can be found in Israelachvili (1991). This 

approach assumes: a) additivity: the total force can be obtained by the pairwise 

summation of individual contributions; b) continuous medium: the summation is replaced 

by an integration over the volume; c) constant material properties: the number densities p 

and the interaction constants do not vary over the volume of the bodies. The last 

assumption implies a step definition of the surface.  The double-volume integrations are 



difficult to execute, both analytically and numerically, which has limited the application 

of this theory to simple geometries such as planar half-spaces and spheres. Because the 

potential w(s) typically decays rapidly with distance s, the interaction forces are usually 

concentrated near the surface of the body. This fact makes it very difficult to integrate 

expressions (2) and (4) numerically, as is discussed in Section 2. Much would be gained 

if the volume integral could be replaced by surface integrals. 

Consider the case of two smooth bodies separated by a distance S, which is small 

compared to the radii of curvature. Derjaguin (1934) (see also Israelachvili, 1991) 

introduced an approximation that allows the double volume integral (4) to be replaced by 

a double surface integral. In its original form, the approximation was used to compute the 

total force between the bodies. It was shown that the interaction force equals the 

interaction energy of two half spaces separated by a distance S and multiplied by a 

geometrical  factor that depends on the radii of curvature.  The approximation has 

subsequently been adapted to impose distributed surface tractions for the analysis of 

deformation under surface forces (Muller et al, 1980; Hughes and White, 1979; Chan et 

al, 1987). The first step in the computation of tractions involves the determination of the 

interaction force f(s)  (per unit area) between two half-spaces as a function of the 

distance of separation s. The second step involves defining a symmetry direction (with 

unit vector E) along which all tractions are assumed to act. Derjaguin's approximation 

does not specify if and how such a direction can be chosen in general. The traction T at 

any point on the surface is then assumed to be: 

T = /(s)(E-n)E, (5) 



where s is measured along E. 

Even when the total interaction force predicted by Derjaguin's approximation is 

accurate, the distribution of surface tractions can be very different from the actual field of 

distributed body forces. Analysis of local deformation may therefore be inaccurate. When 

the conditions under which Derjaguin's approximation is valid are not met, it is difficult 

even to define E uniquely. 

In this paper we present a new surface formulation for arbitrarily shaped bodies, 

without the geometrical limitations associated with Derjaguin's approximation. In this 

scheme the influence of a body is represented by a second order tensor: the inter-surface 

stress tensor. This tensor field depends on the shape of the body and the basic 

intermolecular potential. Upon an inner product with the surface normal of another body, 

it produces a surface traction. This formulation is developed in detail in Section 3. 

Consider now interactions within an isolated body (self-interactions). As a result of 

unmatched molecular interactions near a free surface, the surface has an excess energy. 

This is the surface energy and is defined as the work required to create a new surface of 

unit area (Herring, 1953; Orowan, 1970; Rowlinson and Widom, 1982). It provides, for 

example, the driving force for shape change and the concept of equilibrium shapes of 

bodies. Closely associated with the surface energy is the surface stress which is 

distinguished from the surface energy as being the work required to stretch the surface. 

The surface stress can also be obtained directly in terms of the unbalanced interaction 

forces (Orowan, 1970; Defay et al. 1966). For an isotropic liquid, the surface stress is 

isotropic and tensile (a surface tension) and is numerically equal to the surface energy 

(Herring, 1953, Blakely 1973). The driving force for deformation in this case can be 

6 



written as an effective surface traction proportional to the product of surface energy and 

surface mean curvature: the Young-Laplace equation (Adamson, 1976, Herring 1953). 

The Young-Laplace equation can also be derived directly in terms of unbalanced 

interaction forces (Rowlinson and Widom, 1982). This approach has been used widely to 

study deformation of fluids under the influence of surface energy (Batchelor, 1967; Jagota 

& Dawson, 1990; van de Vorst 1993). For an isolated body, this classical formulation is 

sufficient to describe the driving forces for deformation as long as the radii of curvature 

of the surface are large relative to the length scale of molecular interactions. For solid 

bodies, the relationship between surface stress and surface energy is more complex and is 

discussed briefly in Section 3 along with our implementation of self terms in the surface 

formulation. 

The surface formulation has been implemented as a surface finite element. A brief 

account of the implementation is presented in Section 4 along with several analytical and 

numerical examples of the use of the formulation. We conclude the paper with a 

discussion of the salient results in Section 5. 

2. Problems of full volume integration 

Due to the complexity of the integration of the total interaction force (4), it is evident 

that, in most cases, it has to be done numerically. In this section we present a comparison 

between a typical numerical integration scheme and the analytical integration of 

expression (4), for the case of a cube interacting with a plane half-space, as shown in 



Figure 1. For the sake of simplicity, only one dimension of the integration is done 

numerically. The interactions considered are of the van der Waals type. 

hi a numerical integration scheme, the value of the integrand is evaluated at 

quadrature points inside the integration volume. We are interested in evaluating the 

errors generated in such scheme as a function of the density of integration points. If the 

density necessary to achieve an accurate solution is too high, then the method is 

intractable. 

Consider the van der Waals pair potential (London, 1937; Israelachvili, 1991): 

w(s) = -A/s6, (6) 

where A is the interaction coefficient. The pair-force f is given by (3) 

K>)=-%- (7) 
s 

For the geometry shown in Figure 1, the interaction force per unit area on an 

infinitesimal transversal layer of the cube with thickness ds, due to the planar half-space, 

is the volume integral of the pair-force over the half-space: 

dF = -^eds, (8) 

where e is the unit vector normal to the plane. Expression (8) has to be integrated in the 

direction normal to the plane to obtain the total force between the cubic element and the 

planar half-space. This integral can be solved analytically and yields (per unit area): 

s0+l 

F_  i^_   K
P

2A = far- 
*0 

'ill (9) 
—j j e . 

V^o      (l + s0)~) 



The force per unit area can also be obtained numerically using a Gaussian quadrature 

(Presse* a/., 1986): 

F" = I 
lsi 

(10) 

where Wt are the Gauss weights and the summation is done over the quadrature points /. 

Figure 1 shows the relative error (|F-FN|/|F|) on one dimension of integration for the 

numerical scheme. This error is plotted as a function of the size of the integration 

element, which contains five quadrature points. The separation was fixed at.s0 = 0.2 nm, 

which is a typical value for contacting solids. It is clear from Figure 1 that full volume 

integration requires elements on the order of one nm in size. This would make numerical 

evaluation of the force on macroscopic bodies — anything more than tens of nm in size- 

intractable. Note that this example involved numerical integration in only one dimension. 

To obtain the interaction between arbitrarily shaped bodies, the integfation would 

involve discretization of the volume of each body in three dimensions, resulting in a six 

dimensional integration and, consequently, a much larger cumulative error. Great 

computational advantage is gained by reducing the dimension of the integration (and 

simultaneously the degree of the potential). Replacing a double volume integral with a 

double surface integral reduces the integration problem from an N6 to an TV4 one. For 

this it is useful to express the interaction forces in terms of surfaces forces resulting from 

a surface integration, as has been done by Derjaguin (1934). 



3. Surface formulation 

Consider Figure 2. If the distance between a point p inside a body and the nearest free 

surface is much larger than the typical range of the interaction forces, the point is equally 

surrounded and the net force on it is zero. However, as this distance decreases, there is a 

net body force on the point and this is what we wish to compute. The force between two 

elemental volumes dVx and dV2 is 

d¥ = -plp2VwdVldV2. (11) 

The body force (per unit volume) at any point/? then is 

b = -Pljp2WwdV, (12) 
v 

where pj is the number density at point p, and the integration is over all the bodies in the 

system including the body to which the point belongs. We write the integral as a sum of 

integrals over the different particles: 

f f "'   f (13) 
-A  \pVwdV=-Pl  UVwdV-p^ \PiVwdV =bs+b0, 

V \\ V, 

where T is the label of the particle that contains the point/?; 2,...,np are other particles. 

The total body force on a point p has been partitioned into two terms bs and b0 

representing the serf and other-body contributions. In the case of two or more distinct 

particles the volumes Vx and V2 etc. are conveniently identified as the volumes of the 

individual particles. The integral over the volume that contains the point p gives the self- 

contribution to the body force, while the remaining integrals represent other-body 

contributions. On physical grounds, the self contribution is finite (Orowan, 1970; DeFay et 

10 



et ai, 1966). However its actual computation for a given potential, e.g., the van der Waals 

potential, is problematic because the kernel if highly singular and a cut-off distance is 

usually introduced (Israelachavili, 1991). Here we handle the self contribution by 

following the classical approach of replacing its contribution to the body force 

distribution by an effective surface stress, resulting in effective surface tractions T^. The 

other-body contributions to the body force are also replaced by effective surface tractions 

T0, as detailed in the following sections. 

As noted in the Introduction, the surface stress formulation is restricted by the 

assumption that the surface curvature is smooth compared to the characteristic range of 

interaction forces. For example, the surface of a single body resulting from the contact of 

two previously separate bodies may have a sharp cusp. In such cases, it is often necessary 

to further decompose the self-volume into two parts as illustrated in Figure 2b. The 

contribution to effective surface tractions from the integral over Vu may be estimated by 

the surface stress formulation. Physically, it represents the forces that would be present if 

the volume Vxb were not present. The contribution to effective surface tractions from the 

integral over VXb is not accounted for by the surface stress formulation. By treating this 

volume as a separate body, its contribution can then be computed by the surface integrals 

to be presented in following sections. 

3.1 Other-body interaction 

Consider the simpler case of bodies 1 and 2 as shown in Figure 2. These may be two 

physically distinct objects or one body, part of which is being treated as the other body. 

Clearly, any number of other bodies can be treated additively once the results for two 

11 



bodies are established. The coordinates of points in the two bodies are x, and x2 

respectively. Let w(s) be the pair potential between molecules in the two bodies. The 

force on an element of volume dVx in body 1 due to an element of volume dV2 in body 

two is 

f(s) = -p^V,^))^, dV2 = p,p2V2(w(s))dVx dV2 (14) 

I 
J = ((X2-X,)-(X2-X,))2 

where V, and V2 represent the gradients with respect to x, and x2, respectively. If p, 

and p2 are constant over the volumes, then the other-body force (per unit volume) in 

body 1 is 

(15) 
b0 = P1P2 J V2(w{s))dV2 = p,p2    w(s)n2 dS2, 

V-, Sn 

where the second equality follows by an application of the divergence theorem. The 

orientation of the body force at a point in body 1 is an average of the normal to surface 2 

n2, weighted by the function w(s). For short-range inter-molecular forces, the other-body 

force distribution has significant magnitude only near free surfaces. The body force 

distribution is replaced by a distribution of effective surface tractions as described below. 

Consider now Figure 3. The contribution to the body force in 1 due to an element of 

area dS2 centered around point P on surface 2 is 

db0=ptf2w(s)n2dS2  • (16) 

Construct a cone of infinitesimal solid angle da emanating from the point P and 

piercing surface 1 at points Q, where for odd i the axis enters the surface while for even i 

12 



it leaves the surface. Let the unit vector along the cone axis be e, defined as pointing from 

£), towards P. The force on body 1 due to dS2, integrated in the cone, is 

I- d¥=    \db0dVx 

(17) 

By making dVx= s2dads in the cone, where s measures distance along the cone axis, this 

integral can be expressed in terms of a one-dimensional integral. The domain of 

integration is piecewise continuous; it consists of parts of the cone axis that are contained 

within the body 1. If this domain is called scone, the integral can be written as 

d¥- P1P2 n2 da j w(t)t2 dt 

(18) 

dS-, 

j 

p,p2n2rfa 

cone 

2  J,   ,      \...(A,2 \w(t)t2dt+  \w(t)t t dt+  \w(t)t dt+... 

st s3 

dSi 

where S\,s2,..- are distances from point P to points QuQ2y---, respectively. The integral 

over each interval can be written as a sum of two integrals, as for example for the first 

interval: 

|w(7)/2(#=    w(^2A-   \w(t) t2dt-  \w(t)t2dt. 

(19) 

Equation (17) can now be written as a sum of the following integrals: 
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d¥ = dS, 

oo (20) 

=2>,- 

We propose to use this partitioning of the force to assign each successive term dFt of the 

above expression to surface points <2, respectively. For example, the force on point Qx is 

<mx = ds2 P1P2 

00 

n2da  \w{f)t2dt 

(21) 

It is assumed that w(s) decreases faster than l/s3, which makes the integrals finite. The 

solid angle da can be expressed as: 

5|.2rfa = (-l)''+1(e-n1)rfS1. (22) 

Substituting (22) into (20), dF, is: 

d¥i=dSldS2 P1P2 

00 

-^(e-n,)    w(/)^2^ 

(23) 

The quantity in brackets represents the force on a unit area of body 1 due to a unit area on 

body 2. Note that the contribution to the traction at Qf from the point P does not equal 

the contribution to the traction at P from the point Q,, which is consistent with the fact 

that the body force vectors at P and Qt are different as well. 

Because Sx and S2 are independent, the traction T0 on point Q, (force per unit area 

of surface 1) is an integral of expression (23) over surface S2: 
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= \PiP2  \n2
GdS2 

V s, ) 

(24) 

n, 

where, using the substitution e = (x2 - *i)/s, 

G = (x2-Xl)v(,) (25) 

and 

00 

v(s) = -i L(f)/2dr. 
(26) 

The subscript i, no longer required, has been omitted. The scalar function of distance 

between the two surfaces, v(s), has units of energy per molecule per molecule. The 

direction of the traction, like the body force distribution, is an average of the normal to 

S2 weighted by v(s). The quantity: 

(27) 
h = PiP2 \n2GdS. 

•&2 

J2 

is a second-order tensor field which we shall call the inter-surface stress tensor. The 

tensor field exists outside any body and upon an inner product with the surface of another 

body produces an effective surface traction like the internal stress tensor, T0 = h • n:. The 

vector function G is termed the inter-surface force kernel and has units of force per unit 

area (of Sx) per unit area (of S2). 

The procedure described above has accomplished a partitioning of distributed body 

forces into distributed surface tractions. The proposed partitioning is not unique but fully 

accounts for all the body forces. Indeed, by formally enforcing this condition one obtains 
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an alternate method by which G may be related to the pair potential w. The total force on 

body 1 due to body 2, A, may be written as a double volume integral of the body force 

field: 

A = PlP2 \^2wdV\dV2=9\?7 n2       \wdVl 
J-2   J'l Jk2 V J-! 

dS2, 
(28) 

or as a double surface integral using the effective tractions: 

A = pxp2 I    \n2(G-nl)dSldS2 = plp2 I  nJ     VrG^ 
•07  jBi JKT        \ «ri 

dS2, 
(29) 

where the last equality follows from the divergence theorem   For expressions (28) and 

(29) to be identical for arbitrary bodies: 

VrG = w. (30) 

Substituting equation (25) into this equation yields an ordinary differential equation for the 

scalar function v(s): 

dv{s)        ,, M (31) 
5—^ + 3v(s) = -w(s). 

ds W W 

The particular solution for this differential equation, 

v(5) = -pr Jw(4 2, (32) 
\s as, 

is identical to the result found directly (26) if the integral vanishes as s -» 00. However 

(32) can be used to obtain an expression for v(s) even if w(s) decays slower than l/s3. 

Although there is little physical justification for effective surface tractions for such long- 

range forces, the formulation can still be used to compute the total force of attraction 

between bodies in terms of surface integrals. 
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Converting from the body force distribution to surface tractions therefore has been 

reduced to the problem of determining v(s) in terms of the molecular pah potential via 

equation (32), a few examples of which are discussed in the following. For several types of 

molecular interactions, w(s) varies as an inverse power of distance (Israelachvili, 1991): 

/ \     B (33) 
sm 

where B is an interaction constant. Then, from (26), 

v(.) = —*—, (m>3). <34> 

A particular case of the inverse power potential is the van der Waals potential for which 

m = 6 and B is a negative number. A generalization of the van der Waals potential has 

been proposed by Anandrajah and Chen (1995): 

, v Be (35) 
W(*) = -g7—~V 

where c is a characteristic decay distance, and B is a negative number. In this case v(s) is 

given by: 

f\      B        B         B       Bins    B\n(c + s) (36) 
v(s) = — - + + i L ' 
W     3s6     2cs5     c2s4      cV c3s3      ' 

Short-range repulsion can be characterized by (de Boer, 1936): 

y(s) = Be-s,c, (37) w\ 

for which, 

v(s) = Be -sic T  2 + 2- + - 
s  V c    c ) 

(38) 
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The total interaction energy E between two particles is another quantity of interest. It 

can be calculated in terms of surface integrals in a similar way. The interaction energy 

between two bodies (1) with constant number densities is: 

E =Plp2 I    \wdVldV2. 
(39) 1 Jr" 

Writing w in terms of G using (30) and using the divergence theorem to convert the 

integral over the volume of body 2 into a surface integral: 

1.(1 
> 

E = Plp2 \GdV2  -nxdSx. 
(40) 

Define a scalar function, the inter-surface potential, u(s), such that its gradient is the 

inter-surface force kernel: 

V2w = -G. (41) 

Using (41), 

\GdV2=-\   un2dS2, 
(42) 

and the total energy is 

(43) 
£ = PiP2        \u(-nl-n2)dS2dSl 

Note that (41) determines u(s) and therefore E to within a constant. Since G has a 

particular form given by (25), u(s) can be obtained in terms of v(s) as: 

z/(s) = -|  sv(s)ds. *•    ' 



It can be verified that (44) satisfies condition (41). For the inverse power law (33), for 

example, 

B (45) 
u(s) = 

(m - 2)(m - 3)5 rn-2 

3.2 Self-interaction 

Consider now body 1 in Figure 3. As discussed in the Introduction, the classical 

formulation of self-interactions as a surface stress is used here. The surface stress g, a 

second order tensor, and the surface energy y are related by (Herring, 1953; Blakely, 

1973): 

T J*} (46) 

where E is an appropriate strain measure and I is the identity tensor. Note that g has 

units of force per unit length and is defined on the surface of a three-dimensional body. 

The surface stress may therefore be a function of strain at the surface. It may additionally 

depend on the orientation of the surface. If, as for a liquid, the structure of the surface 

does not change upon straining, the surface stress is tensile and isotropic, and equals the 

surface energy in magnitude. For solids the structure of the surface generally changes 

upon straining and the surface stress is a difficult quantity to define and measure. In 

general the surface stress is anisotropic and may even be compressive (Orowan, 1970; 

Blakely, 1973). When the deformation is dominated by irreversible mechanisms such as 

plastic slip, diffusion, creep, or viscoelasticity (Orowan, 1970; Woodruff, 1973) it can 
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often be assumed that the surface tension equals the surface energy. Indeed, all analyses 

involving surface forces and large deformations of adhesive contact problems, sintering, 

and shape evolution of particles are based on this assumption. 

If it can be assumed that the surface stress is tensile and isotropic and equals the 

surface energy in magnitude, the surface tractions required to analyze deformation can be 

obtained using the Young-Laplace equation. These tractions are proportional to the 

product of the surface energy and the surface mean curvature and act along the surface 

normal: 

T, = -y tr(k)ni, (47) 

where T, is the surface traction, k is the surface curvature tensor, tr() refers to the trace, 

and nx is the surface normal. In terms of the principal radii of curvature Rx and R2: 

1       1 (48) 
tt(k) = —+ —. V    } 

Rx     ft. 

The implementation of the surface formulation presented in this paper is restricted to cases 

where equation (47) applies and is described briefly in the Section 4. The other limiting 

case of fully faceted crystalline solids can also be handled; the driving force for 

deformation is the weighted mean curvature (Carter et al., 1995). The main restriction to 

computations using the general expression for surface stress (46) is the uncertainty 

regarding its actual dependence on surface strain. 
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3.3 Consistency between other-body forces and surface energy 

Both the self forces and the other-body forces arise due to the same fundamental inter- 

molecular force field. In our formulation, the self-forces are represented by the surface 

energyy, whereas the  other-body forces are characterized principally by the interaction 

coefficients as in equations (33), (35), and (37). 

Consistency between surface energy and other-body forces is established by ensuring 

that the total work done by the other-body forces in bringing two surfaces to contact from 

infinite separation equals the surface energy. The procedure varies a little depending on 

the particular form of the potential w(s) used. Here we illustrate it by showing the 

consistency condition for the inverse power law potential (33). The interaction energy per 

unit area of two identical half planes separated by a distance S is (Israelachvili, 1991): 

2%Bp2 (49) 
W(S) = -rm-4 (m-2)(m-3)(m-4)S" 

When such a potential is used, a cut-off distance S = s   is usually introduced which 

represents the interfacial contact separation. Equating W(z) to -2y one obtains: 

-y(m-2)(m-3)(m-4)em-4 (50) 
B 

%p2 

If y and B are experimentally measured quantities, equation (50) fixes the value of s. For 

a variety of materials it is found that s « 0.16nm (Israelachvili, 1991). Similar consistency 

conditions can be established for other potentials such as the Lennard-Jones potential, and 

for dissimilar materials. 
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4. Examples 

The efficacy of the surface formulation is demonstrated in this section by the aid of a 

few examples. In the first set of examples we compute the distributed and total force 

between rigid bodies. The use of the surface formulation to compute deformations is 

illustrated by analyzing the adhesion of an elastic sphere to a half-space. For this purpose 

the surface formulation has been implemented as a surface element in a finite element 

code. 

4.1 Total force and surface tractions between rigid bodies 

Consider two plane half-spaces 1 and 2 separated by S along the axis z, and with 

normals nt = {0,0,1} and n2 = {0,0,-1}. Assume that the interaction potential is given by 

an inverse power law (33).  By symmetry, the only component of h that does not vanish 

identically is h^, which is given by 

The surface tractions on half-space 1 are then 

Tptae = ^3«2 • (52) 

The integration  over   S2   can  be  easily performed by replacing   y2 + x2 = r2   and 

dS2 -rdQdr, and integrating over r from 0 -» oo and over 9 from 0 -» 2%, which yields 

2rc£p,P2 (53) 
^3 = 

(m-3)(m~2)S m-3 
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This is the known expression for plane-plane interaction force (Israelachvili, 1991) and is 

the result that is used in Derjaguin's approximation, f(S) in equation (5). Consider now 

the case of the interaction of a half-space (body 2) with an arbitrary body (body 1). 

Clearly, if the direction E of Derjaguin's approximation is chosen to be n2, the 

distribution of tractions on body 1 as given by Derjaguin's approximation and the new 

surface formulation are identical. This shows that the new surface formulation reduces to 

Derjaguin's approximation for the computation of surface tractions on any body due to a 

half-space. However, the distribution of tractions on the half-space due to body 1 given by 

the two approaches differ, as will be illustrated in the next example. It is also evident that 

the Derjaguin approximation produces the exact total force between the bodies when one 

of them is a plane half-space. 

In Figure 4 the distribution of effective surface tractions for the interaction of a sphere 

and a half-space is compared to the distributed body force field. The vectors in this figure 

represent force per unit volume in the case of the body force field and force per unit area 

in the case of the surface formulation and of the Derjaguin approximation. The length of 

the vector is proportional to the logarithm of the magnitude of the force. The interaction 

potential considered here is the inverse power law with an exponent 6, which is 

characteristic of van der Waals interactions. The sphere radius is fixed at 5 times the 

minimum separation. Note that the body forces are highly localized near the surface, which 

indicates the validity of using the surface formulation. On the sphere, both surface fields 

are almost identical to the body force field on its outermost layer, since they are all 

directed along E (outward normal to the plane).  This is due to the symmetry of the half- 
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Space and the constant value of its normal. However, this is not the case for the fields on 

the half-space. It is easy to show that the body force field points towards the center of the 

sphere, since this is the direction of minimum separation between the point being 

considered and the surface of the sphere. The field obtained by the surface formulation 

mimics this effect because of the averaging of n2 (outward normal to the surface of the 

sphere) present in equation (27). The field obtained by Derjaguin's approximation is 

always directed along E. As it has been discussed above, the two surface fields produce 

the exact total force between the bodies. 

The same example can be used to examine the computational efficiency of the surface 

formulation. We are interested in obtaining the total interaction force on the sphere by 

numerical integration of the body force field over its volume and by integration of the 

surface field over its surface. The sphere would physically represent a particle with 

diameter 125p,m. The force was calculated for separations going from S = 0.165nm, 

representing a contact situation, up to ■S' = 500nm. For the evaluation of the volume 

integral, the first volume integral in equation (4) is done analytically, producing the 

interaction force between an infinitesimal volume in the sphere and the whole half-space. 

Only the integration over the volume of the sphere is done numerically, resulting in a 3 

dimensional gain in the total integration effort. The same approach is adopted for the 

surface formulation: the surface integral in equation (24), which represents the plane 

surface of the half-space, is done analytically, producing the interaction force between an 

infinitesimal area on the surface of the sphere and the plane. This represents a 2 

dimensional gain in efficiency in the total integration effort.  In both cases, the forces are 
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integrated analytically in the axisymmetric direction reducing the numerical integration by 

one extra dimension. As it has been described in section 2, in the numerical integration 

scheme the interaction force is evaluated at quadrature points distributed over the 

integration domain. The precision of such an integration scheme is proportional to the 

density of integration points. For this example two integration densities were used: 11 and 

28 integration points /itm.  Note that in the volume integration, this corresponds to 121 

and 784 integration points / urn2. 

The results of the numerical integration are compared to the analytical solution for the 

force distance relation for this geometry in Figure 5. There is a large quantitative error in 

the volume integration schemes. It is evident that the mesh density adopted is insufficient 

to capture the strong variations in the force field experienced by the material, even with 

the very fine integration mesh. It must be noted here that, in the case of a complex 

geometry, where the order of the numerical integration cannot be reduced analytically, the 

disagreement would be even greater. With increasing separation between the sphere and 

the plane the force gradient reduces and is consequently easier to integrate, therefore the 

results of the volume integration converge to the correct solution. This illustrates again the 

advantage in accuracy obtained by using the surface formulation, which produces accurate 

results at all separations. It is expected that, for most macroscopic problems, full volume 

integration would be intractable. 

Consider now the interaction between two quadrants, as shown in Figure 6. The 

figure shows the force fields obtained with the three different approaches and was 

constructed in a similar way as the sphere-plane example presented above. Notice that the 
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surface formulation produces a surface field which is slightly different than the outermost 

layer of the body force field. Also, due to the discontinuity of the normal n2 in equation 

(27), the surface tractions are discontinuous on the sharp corner. This is not the case in 

Derjaguin's approximation, since the direction of the tractions is constant. 

Orowan (1970) showed that the total interaction force per unit of length between 

opposite quadrants, resolved in a direction normal to one of the quadrant faces, equals the 

surface energy, as defined by the consistency relation (50). Since it has been proved that 

the surface formulation presented here produces the exact total interaction force, it is 

interesting to compute this force using Derjaguin's approximation. This is easily achieved 

by integrating expression (5) over the surface of the quadrant, assuming that they are 

separated by s, which yields 

F = £rcpiP2 (54) 
6V2V ' 

When compared to y as given by relation (50), the above expression is incorrect by a 

factor of 2v2 . This then represents a case where Derjaguin's approximation does not 

yield the correct total interaction force. Note that if the two quadrants were misalligned, it 

would not be possible even to identify a unique direction E along which the distance 

between the two surfaces is computed for use in the Derjaguin approximation. 

4.2 Adhesive contact between an elastic sphere and a half-space 

The new surface formulation has been used to prescribe surface tractions on a finite 

element model of a body. Specifically, a 2-node axisymmetric surface element has been 
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developed. This element computes surface tractions based on equation (24) for the other 

body term and on equation (47) for the surface tension term. By virtue of being attached 

to volume elements, the surface element transmits the tractions to the material. This 

element has been implemented in a commercial finite element code (Abaqus(TM), HKS), 

which has been used to compute the results presented below. A full description of this 

implementation is under preparation and will the object of a forthcoming publication. 

In the finite element example discussed here, we consider the contact of elastic spheres 

under the influence of interaction forces. For elastic materials, the phenomenon is 

dominated by other-body forces but for viscoelastic and viscous materials only the early 

stages of deformation are controlled by other-body forces. The later stages of deformation 

or sintering are controlled by the self-forces. This stage has been widely studied. Jagota & 

Dawson (1990) used a simplified version of the surface finite element, including only the 

surface tension term, to model the viscous sintering of two particles. It is the desire to 

model the entire sintering process, from two spheres at point contact to the final 

equihbrium shape, that motivated much of the work presented in this paper. 

The contact and coalescence of spheres is a problem in which both the self-terms and 

other-body terms play a crucial role, albeit at different stages of the process. A full study 

of this problem will be presented elsewhere. Here we present an analysis of the adhesive 

contact of elastic spheres, which is dominated by the other-body terms in the surface 

traction. The problem of adhesive contact of elastic spheres has a long history. An 

important work in this area is by Johnson, Kendall and Roberts (1971) (JKR theory). 

However, there is a long discussion in the literature about the domain of validity of this 
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theory. Essentially, the JKR theory is an extension of Hertz (1896) contact theory that 

takes into account the adhesion between spheres. Elastic spheres brought into contact 

attain an equilibrium contact area even in the absence of external applied forces. In the 

JKR theory this process has been modeled in terms of minimization of total potential 

energy. Equivalently, it may be seen as the equilibrium response of an elastic sphere to 

surface forces as will be done here. According to the JKR theory, in the absence of any 

external driving force, the contact radius between a sphere and a rigid plane is given by: 

r,     f9^(l-v2)V/3 (55> 
R ER 

where R is the undeformed particle radius, v is the Poisson's ratio and E is the elastic 

modulus. Here we show that the surface formulation developed in the present work is able 

to model the same problem Moreover, it is more general, being applicable to inelastic 

materials and arbitrarily large deformations. 

The mesh and boundary conditions used for the simulation are shown on Figure 7. 

The sphere was modeled as an elastic solid while the half-space was assumed to be rigid. 

Surface interaction elements were attached to the surface of the sphere. Because stress 

gradients are concentrated near the contact, only part of the sphere was modeled. The 

curvature term on the sphere would cause a hydrostatic state of stress far from the 

contact. To compensate for this effect, an external pressure was imposed on the surfaces 

created by the cutting around the contact (top and right-hand side faces of the mesh on 

figure 7). The value of this pressure is consistent with equation (47) and has very little 

effect on the final contact area. 

28 



Since we consider a rigid half-space, the interactions of an element of the surface of 

the sphere with an element of the plane were analytically integrated over the plane, 

yielding the interaction of the element on the sphere with the entire plane. Therefore, the 

numerical integration is reduced by 2 dimensions. 

Figure 8 shows the traction on the sphere surface normal to the contact plane obtained 

with the finite element model and the predictions from the JKR model. The numerical 

simulations predict that the inner part of the contact is under compression while the outer 

part is under tension, consistent with the JKR theory. In the JKR theory surface forces are 

neglected outside the contact area which lead to the unphysical prediction of an infinite 

stress at the edge of the contact. The numerical calculation, based on surface forces 

consistent with the surface energy y , does not suffer from these singularities in the stress 

at the edge of the contact. Figure 9 shows the variation of the normalized contact radius 

as a function of a non-dimensional number that is the kernel of expression (55). For large 

values on the horizontal axis, the numerical solution approaches the predictions of the JKR 

theory. We have not been able to compute accurate values of the equilibrium contact 

radius for larger values on the horizontal axis due to computational problems in the 

contact algorithm not associated with the surface formulation that we wish to focus on in 

this paper. Nevertheless, it can be seen that there is good quantitative agreement with the 

JKR theory, knowing that it is increasingly accurate for large contacts (Tabor, 1977). 
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5. Summary and Conclusions 

A new surface formulation for molecular interactions as distributed tractions has been 

developed. The surface formulation deals separately with tractions resulting from 

interactions within a body and between bodies. The former are modeled using the classical 

concept of surface stress; our implementation uses the Laplace-Young equation relating 

surface traction to surface energy and curvature. In cases where the curvature formulation 

is invalid even for the self terms, for example at a cusp as in a sharp sintering neck, part of 

the body can be treated as another body. Body forces due to other bodies are written as 

effective surface tractions by converting the double volume integral defining the total force 

between two bodies into a double surface integral. This leads to the definition of an inter- 

surface stress tensor which depends on the fundamental molecular potential, and on the 

geometry of the bodies. It's inner product with the surface normal yields the effective 

surface traction. The surface formulation replaces the Derjaguin approximation and at the 

same time offers great advantages over full volume integration to obtain body forces. It is 

shown that full volume integration quickly becomes computationally intractable whereas it 

is possible, using the surface formulation, to analyze problems of macroscopic scale. We 

have applied it successfully to solve several problems: adhesion of elastic spheres, and the 

calculation of force-displacement laws for several body geometries. 

Two types of problems can be addressed using the surface formulation presented here: 

the determination of the total interaction force/energy between several bodies and the 

computation of equivalent surface tractions to study their deformations. As has been 

described, the results for the total interaction force/energy are exact for any interaction 
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potential. The surface formulation does not have the geometrical restrictions associated 

with Derjaguin's approximation. All this, of course, within the basic limitations of 

Hamaker's approach. The use of the surface formulation to calculate effective surface 

tractions on a body and to study its deformation may have some practical limitations. This 

is related to the fact that there is no unique way to distribute the integrated body force 

over the surface of the bodies. However, the scheme presented here is very efficient for 

most important geometries. As has been shown, it produces a field of tractions on the 

body that is a very good approximation of the local body force field. This is specially true 

for potentials which decays rapidly with distance. 

The surface formulation is able to handle dissimilar materials but is limited in its 

present form to isotropic and piecewise homogeneous materials. We have not explicitly 

considered here other surface forces such as electrostatic attraction or repulsion, steric 

repulsion, and hydration forces that often play a role in physical phenomena where the 

inter-molecular forces are important. Because these forces are, to begin with, expressed as 

surface forces, their inclusion in the expression for the total surface traction at a point 

poses no additional difficulty if their influence is additive. 
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Figure captions 

Figure 1: Relative error as a function of element size for the interaction between a cube 

and a plane half-space obtained by numerical integration. Five integration points were used 

with the minimum distance s0 - 0.2 nm. 

Figure 2: Interactions within and between arbitrarily shaped bodies; b0 is the other-body 

term and bs is the self-interaction term. 

Figure 3: Scheme for the derivation of the other-body surface traction between two 

arbitrarily shaped bodies. 

Figure 4: Body force field and surface fields obtained by the new surface formulation and 

by Derjaguin's approximation for the interaction between a sphere and a half-space. The 

vectors are plotted on a logarithmic scale, represented on the right hand side of the figure. 

The potential considered is an inverse power law with exponent 6. 

Figure 5: Interaction force between a sphere and a plane half-space: comparison between 

the volume integration scheme and the surface formulation. The potential considered is an 

inverse power law with exponent 6. 
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Figure 6: Body force field and surface fields obtained by the new surface formulation and 

by Derjaguin's approximation for the interaction between two opposite quadrants. The 

vectors are plotted on a logarithmic scale, represented on the right hand side of the figure. 

The potential considered is an inverse power law with exponent 6. 

Figure 7: Finite element mesh and boundary conditions used for the simulation of the 

adhesive contact between an elastic sphere and a rigid half-space. 

Figure 8: Surface traction as a function of radial position for the adhesion of an elastic 

sphere and a rigid half-space. The radial distance is normalized by the JKR contact radius. 

The surface traction is normalized by the quantity -18£2y /13(1 - v2 jRn2)) 

Figure 9: Normalized contact radius as a function of dimensionless parameter 

(9JK\1-V
2
)/ER\ for the adhesive contact between the elastic sphere and a rigid half- 

space. 
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Abstract 

Distributed forces resulting from molecular interactions between macroscopic bodies are 

usually concentrated near surfaces. A new formulation that replaces these distributed 

body forces by effective surface tractions and is not limited by the geometrical restrictions 

of Derjaguin's approximation has been developed. It offers great computational 

simplification over the use of the body force distribution. The body force distribution is 

integrated and partitioned to various surface elements. The resulting expressions for 

surface traction involve a second-order tensor termed the inter-surface stress tensor. It is 

a symmetric tensor defined for any body in terms of the intermolecular potential and the 

shape of the body. It acts much like the internal stress tensor; the surface traction vector 

on a surface introduced into its field is the inner product of the tensor and the surface 

normal. The new surface formulation reduces to Derjaguin's approximation for the case 

of a half-space with a plane surface. Properties of the new tensor are explored along with 

their physical significance. Actual components are derived for several geometries. 

Key Words: surface formulation; surface forces; effective tractions, molecular interactions 



Introduction 

The continuum description of the effects of molecular interactions between bodies is 

important for the analysis of a variety of processes such as sintering (1,2), adhesion (3-5), 

crack-tip deformations (6,7), colloidal interactions, and atomic force microscopy (8,9). If 

w(s) is the potential function between a pair of molecules as a function of separation s, 

one of the basic problems is the determination of total force or energy of interaction 

between macroscopic bodies. The analytical integration of the pair potential to obtain the 

macroscopic interaction potential was done by Bradley (10), de Boer (11), and Hamaker 

(12) for the specific case of van der Waals interactions. A compilation of their results can 

be found in (3). This approach assumes: a) additivity: the total force can be obtained by 

the pairwise summation of individual contributions; b) continuous medium: the 

summation is replaced by an integration over the volume; c) constant material properties: 

the number densities of molecules, p, and interaction constants do not vary over the 

volume of the bodies. Specifically, the interaction energy E between two bodies defined 

by the volumes Vx and V2 is given by the double volume integral: 

£ = PiP2 jjw(s)dVldV2. [1] 
V2VX 

where pj and p2 are the number densities of molecules in the two bodies. Similarly, the 

total force of interaction between two bodies, A, is 

A = -p,p2 j^wdVxdV2. [2] 

v2vx 

Because  the  double-volume  integrations  are  difficult  to  execute  analytically,  the 

application of this theory has been limited to simple geometries such as planar half-spaces 

and spheres (3). Numerical integration is also difficult because the forces are usually 

concentrated near the surface of the body (13). Much would be gained if the volume 

integral could be replaced by surface integrals. 



Another problem, important for the analysis of deformation of bodies under the 

influence of these forces, is the determination of effective surface tractions. A simple and 

powerful method that uses surface tractions and addresses both these problems is the 

Derjaguin approximation (14). In its original form, Derjaguin's approximation was used 

to compute total forces and energies of interactions between particles. The approximation 

has also been used to specify distributed surface tractions on bodies to analyze 

deformation (5,7). Let the interaction force per unit area between two planar half-spaces 

beffs), where s is the distance separating the half-spaces. For two given bodies, choose a 

direction with unit vector E, for example as the line connecting the centers of two 

spheres. Then, according to Derjaguin's approximation the traction T at any point on the 

surfaces of the two bodies is assumed to be: 

T=f(s(E-n)E, [3] 

where n is the normal to the surface -and s measures distance along E. Derjaguin's 

approximation is accurate for smooth convex surfaces with small curvature compared to 

the separation between the bodies. For many simple geometries, symmetry provides an 

obvious choice of E. In general, however, Derjaguin's approximation does not indicate 

how and if E can be chosen. 

A new method for the computation of effective surface tractions resulting from 

molecular interactions has recently been developed (13). The body force distribution in 

one body due to another is integrated and partitioned to obtain distributed surface 

tractions. In this scheme the influence of a body is represented by a second order tensor: 

the inter-surface stress tensor. This tensor field depends on the shape of the body and the 

basic inter-molecular potential. Upon an inner product with the surface normal of another 

body, it produces a surface traction. The total energy of interaction between two bodies is 

obtained in a similar fashion in terms of surface integrals alone. The formulation is 

applicable to arbitrarily shaped bodies and offers major computational simplification. It 

has been implemented as a surface finite element (13,15) which also includes terms due 



to self-interactions (the surface tension). The effectiveness of the new formulation has 

been demonstrated by its application to several problems: computation of the force 

between bodies and adhesion between spheres (13), viscoelastic coalescence (16), and 

tip-material interactions in atomic force microscopy (17). 

This paper is devoted to a discussion of the new quantity that has emerged from the 

surface formulation: the inter-surface stress tensor. We begin in Section 2 with a new 

derivation of the surface formulation that highlights some the properties of the inter- 

surface stress tensor. Its properties and their physical significance are discussed in Section 

3. Actual components of the tensor are computed in Section 4 for several geometries: a 

plane half-space, a quadrant, a sphere, and a cylinder. Although in general the two are 

different, it is shown that the new formulation and Derjaguin's approximation coincide 

for the case of a half-space. The new surface formulation yields the correct total force and 

energy of interaction; errors in Derjaguin's approximation can be quantified in other 

cases. 

Surface formulation 

Consider two bodies 1 and 2 as shown in figure 1.  The coordinates of points in the 

two bodies are x, and x2 respectively. Let w(s) be the pair potential between molecules 

in the two bodies. If p, and p2 are the (uniform) number density of molecules, the force 

on an element of volume dVx in body 1 due to an element of volume dV2 in body two is1: 
f(5) = -PiP2Vi(w(j))rfrI dV2 = p{p2V2(w(s))dVi dV2 

l L J 
J = ((X2-X,)-(X2-X,))2 

where V,andV2 represents the gradient with respect to x, and x2, respectively. The 

body force distribution in body 1 due to body 2, b, is2: 
b = P.P2 Jv2w dV2 = p,p2 Jw n2 dS2 , 



 •""""""■•'■'"»"»»"»"»»»'»««««'liiiiiüüssjüüitjwisüüsljii.üiiiüiüji! 

where the last equality follows from the divergence theorem. For short-range inter- 

molecular forces, the body forces decay rapidly with distance from the free surface. 

These are replaced by a distribution of effective surface tractions as discussed below. 

Consider a cone of infinitesimal solid angle da emanating from a point P in body 2 

and piercing surface 1 at points Q, where for odd i the cone axis enters the surface while 

for even i it leaves the surface. Let the unit vector along the cone axis be e oriented from 

the Q towards P. The integrated force in this cone per unit volume of body 2 is: 

dF_ 

dVn i = PiP2    \^2^dVx [6] 

This integral may be written as a sum of line integrals along the cone axis, each from st to 

oo, where st is the distance from P to Q,. By making dVx = t2dadt in the cone, where t 

measures distance along the cone axis, and noting that the gradient operator can be 

extracted out of the integral, we obtain 

d¥ 

dV, = PlP2 
V2 

OO 

</a£(-l)l+1  [w[tydt [7] 

where d¥t is the force assigned to the various points Qt. It is assumed that w(t) decreases 

faster than \jt3, quickly enough for the integrals to be finite. We propose to use this 

partitioning of the force to assign to surface points Q. each successive term of the above 

expression, e.g., the force on point Qx is 

d¥x 

~dK 
:PlP2V2 da 

00 

w[t)t2 dt 
[8] 

; 

The solid angle can be expressed as: 

^2Ax = (-l)/+,(e.n1)dS'1, 

Substituting [9] into [7], the effective force on point Q may be written as: 

[9] 



W2
=PlPl V: 

00 

(e^n,)^,—    w(^2<fr 
[10] 

This procedure partitions the integrated effect of a volume element in body 2 on the 

conical volume element in body 1 into terms that can then be assigned to the surface Sx. 

Note that we now have an expression that is valid for any point on the surface of body 1. 

Define a vector function G, termed the inter-surface force kernel, as: 
G = (x2-xx)v(s) 

v(*)=-_LpW 

The scalar function of distance v(s) has units of energy per molecule per molecule while 

p!P2G has units of force per unit area of 1 per unit area of 2. Note that e = (x2 - Xj) / s 

and substitute [11] into [10]. The total effective traction T at any point on the surface of 

body 1 (per unit area dSx) is now obtained by integrating the resulting expression over 

the volume of body 2: 

T = (piP2^[V2G]T
</K2).n1=(p1 2[n2GdS^-nx [12] 

where the last equality follows from an application of the divergence theorem. This is a 

formula that computes an effective traction on the surface of body 1. Like the body force 

[5], the orientation of the traction vector at any point on surface 1 is an average of the 

normal to the surface 2, weighted by a function of distance. The quantity 

h = P1P2 I [^2G]TdV2 = Plp2 f  n2GdS2 [13] 

is a second-order tensor field which we call the inter-surface stress tensor. The tensor 

field exists outside any body and upon an inner product with the surface of another body 

produces an effective surface traction like the internal stress tensor. Its dependence on the 

pair potential is captured by the inter-surface force kernel [11]. Through the volume or 

surface integral, it depends on the shape of the body.  Specific forms for a few different 



potentials have been given in (13); here we shall use the case of an inverse power-law 

potential to illustrate the properties of the inter-surface stress tensor: 

"W = 3r» [14] sm 

Then, from [11, 

(w-3) 

vW=7pW *** = —?—,  (w>3). [15] 
!5m 

The inter-surface force kernel for this potential is 

G=(X2-X,)(^K- [16] 

In the following sections we shall explore the significance of the inter-surface stress 

tensor. It is worth mentioning at this point, however, that converting the distributed body- 

force field into a field of effective surface tractions also affords great computational 

simplification. It has been shown (13) that the total force between two bodies, A, and the 

total interaction energy, E, can now be computed in terms of double surface integrals: 

A = Plp2 f hnxdS, =plP2 f   [ n2(G-n,)dSidS2 [17] 

£ = PiP2f     f w(5)(-n,-n2yV^2 [18] 

The scalar function u(s) is termed the inter-surface potential and is defined by: 

u{s) = -^sv{s)ds. [19] 

For the inverse power-law potential, it is: 

[m - 2){m - 3)5 

The replacement of distributed body forces by effective surface tractions is physically 

valid only for potentials that decay rapidly enough for the definite integrals in [11] to be 

finite. However, by defining v(s) via the indefinite integral: 

v(s) = ~ f w(s)s2ds. [21] 



it is still possible to use the above formulation to compute the total force (and similarly the 

total energy) of interaction between two bodies in terms of a double surface integral. 

The Inter-Surface Stress Tensor 

Consider the specific form of the inter-surface force kernel [11] and the volume 

integral definition of the inter surface stress tensor [13]. Because: 

V2G = v(s) I + (X2-XlXx2-Xl)^^^ [22] 

or 

G, ,2j = §j,v(s) + (x2i - xv Xx2j - xly ) - —^ 

the tensor h (or hy in indicial notation) is real and symmetric. By its very definition it is a 

tensor quantity. Being real and symmetric, it has three real eigenvalues "K, given by the 

solution of: 

hn1=An,. [23] 

Physically, the eigenvectors represent the three orientations of a surface for which the 

traction is normal to the surface. 

Like the internal stress tensor, h can be decomposed into a spherical and a deviatoric 

part 

h = Tr(h)I + hd. [24] 

where 7>(h) is the trace of h, and hd is its deviatoric part. The trace of h is: 

7>(h) = Plp2 J Tr[V2GfdV2 = Plp2 | V2 . G dV2 = -Plp2 J w dV2 . [25] 
v2 v2 v2 

To estabhsh the last equality we have used a previously established result (13): 

V1.G = -V2.G = w. [26] 

This implies that the trace of the tensor depends only on the volume integral of the pair 

potential. If w(s), as in the case of the attractive van der Waals potential, is always 

negative, the trace of h is always positive. To explore the physical significance of this fact, 

consider a cubic test volume brought near the surface of body 2 under the influence of an 



attractive potential. Furthermore, let the orientation of its normals coincide with the 

principal orientations of h at that point. Then the three diagonal elements of h are the 

three tractions normal to the faces of the cube. The trace of h, the first invariant of the 

tensor is the effective pressure (positive when tensile) inside the test volume. It equals the 

work done in bringing a unit volume from infinity to the given location near body 2. The 

above result implies, as expected, that the pressure will be tensile if w(s) is negative 

everywhere. In most such cases all the eigenvalues are positive; the tensor is positive 

definite: 

nrh-n!>0 [27] 

implying that the traction vector points away from the surface. However, this is not always 

true even for an attractive potential. Using the same test volume one can attach a physical 

significance to the second invariant of the deviatoric part of h, hd; it represents the 

effective shear stress in a test volume. 

Consider also the divergence in body lof h due to body 2. Using, successively, 

equations [13], [26], and [5], 

Vx • h = p!p2 f   n2V! • GdS2 = pxp2 f   w n2dS2 = b, [28] 

i.e., the divergence of h equals the body force. By comparison with the governing 

equation for stresses a in elastostatics, Vj • a + b = 0, which is based on the divergence 

of stresses equilibrating the body forces, equation [28] is another way of stating that the 

tensor h replaces the body force distribution. 

Examples 

The nature of the inter-surface stress tensor is explored further in this section by 

computing its components for a few specific geometries. These geometries are important 

in themselves. The results for simple geometries can also be used to construct h for more 

10 



complicated bodies by superposition. Determination of individual components of h 

involves evaluation of the surface or volume integrals given by equation [13]. Here we 

present closed-form expressions for a few simple cases. A general numerical formulation ii 

can be found in (15). The numerical examples are for the case of the van der Waals % 

potential which is an inverse power law with m = 6. It is apparent from the surface l< 

integral definition of h (equation [13]) that results for any given geometry can 

immediately be used for the corresponding inverted geometry.  For example,  the 

expressions for components of h outside a solid sphere apply equally well for a spherical ,: 

cavity inside an infinite medium with a change in sign to account for the inversion of the 

surface. 

Consider first the case of a half-space bounded by a plane (Figure 2). Fix a cartesian 

coordinate system on the surface of the plane with the x and v axes in the surface of the 

plane and the z axis normal to the plane and pointing out of it. Then the normal to the 

surface is 

(nx,ny,nz) = (0,0,1). [29] 

Consider a point located a distance a on the z axis above the surface. Because only nx 

and «are both zero, the only components of h that do not vanish identically are /^,/z   , 

and hzz. By symmetry, h^ and A    also vanish after the surface integration because of 

cancelling contributions (equations [13] and [16]). The component hzz is: 

Kz = P1P2 £ (-«)v0)dS2 = -2napxp2 ^v(s)rdr . [30] 

Changing the integration variable to s and using s2 = a2 + r1 one obtains: 

hzz = -2nap:p2 I v(s)sds = Inap^Pj u{a), [31] 

assuming that u(s) vanishes as s -> 00 . The traction on a body brought near the half- 

space will be oriented along the z axis with magnitude 

Tz = Kznz = 27l«PlP2 u(a) nz ■ [32] 

11 



The force of interaction between two planar half-spaces per unit area, f(a), is given 

by: 

/(«) = -P1P21 [(V2w-ez)dzxdV2 = -Plp2 [2 [w'(s)^-^-dzxdV2, [33] 

where (xx,yx,zx) and (x2,y2,z2) measure the location of points in the two half spaces. 

Writing s1 = r2 + (z, -z2)
2, and replacing the integration variable zx by s: 

f(a) = pxp2^w(S)dV2. [34] 

By the definition of G, this is also: 

f(a) = p,p2 £ V2G dV2 = Plp2 J[ G n2 JS2 = -Plp2 ^ (a)v(s)«tf2 . [35] 

This is identical to the expression for hzz (equation [30]). Consider now the use of 

Derjaguin's approximation to compute effective tractions on any body due to the half- 

space. If the direction E of equation [ 3] is chosen to be n2, it is evident that the tractions 

on any body due to a half-space are the same whether computed by the new surface 

formulation or Derjaguin's approximation. In this sense, the new surface formulation may 

be said to reduce to Derjaguin's approximation for a plane half-space. It also follows that 

in this case Derjaguin's approximation gives the correct total force between the half- 

space and any other body. However, the distribution of tractions on a half-space as 

computed by Derjaguin's approximation or the surface formulation will be different. In 

general, the use of Derjaguin's approximation may introduce errors even for the total 

force. 

Consider next a quadrant as drawn in Figure 3. We shall compute the components of 

h at a point (0,yx,zx). As mentioned earlier, the result for a point in the exterior of a 

quadrant can also be used to determing h near a re-entrant corner because one uses only a 

surface integration. Because the normal to the surface is always in the y-z plane, only 

components h   ,ha and h^ need be determined. Only the vertical part of the surface of 

12 



the quadrant, A, contributes to /^because the surface normal over the horizontal part of 

the surface, B, is oriented along the z direction. Then, for the inverse power law potential, 

Jz2=oJJ;2=-^(/w-3Xx2  +yx  + (z2-zx)) 

For the case of the van der Waals potential, m = 6, one obtains: 
(    1 zx(2zx

2+3yx
2)   ^ 

hyy   =  -BpfoK 3       n,A .. 3/.. 2   ,  _ 2x3/2 
[37] 

.i2v 24vo>i +vr v 
This egression is valid everywhere except at yx = 0, where ^ = 0  identically. By 

symmetry, ^(Ji^i) = M~zi ~^i)> which >delds: 

&zz = -5P1P271 

(    1     t    ^(2^+3^)   ^ 

V12z!3     24z1
301

2+z1
2)3/2y 

[38] 

By a similar integration: 
—"     r-Ko (z2~Zx)B 

K=Ky=-9^\       J 7 _v     2'        2   I, ^/T^A [39] 
JZ2=°J*2=^°(/«-3XX2     +7l    +(Z2_Zl)   ) 

which yields 
#PiP2rc 

240^+V) 
Ä   = "FlP2"  T401 V        o ^ /     2   ,       2 ^3/2 l4UJ 

The variation of the three components with normalized distance along the v axis, yx I zx, is 

shown in Figure 4. The components are normalized by the value of /?zzfor large yx Izx, 

equation [31]. As seen in Figure 4 (and can be shown exactly), far from the edge of the 

quadrant along the positive v axis the tensor h reverts back to the value expected for a 

half-space bounded by a plane. As one approaches the edge, hzz decreases in magnitude 

and vanishes at larger distances along the negative v axis. The other components of h are 

present in the vicinity of the edge only. Clearly, the presence of the edge in the quadrant is 

felt upto distances yx on the order of zx. 

Consider now a quadrant near a half-space as shown in Figure 5. The figure compares 

the body force vector on the surface of the quadrant and the half-space to the traction 

vectors given by the surface formulation and Derjaguin's approximation. Note that the 

tractions and the body-force vectors are different physical quantities; and not comparable 
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quantitatively. The comparison between the two tractions is quantitative. The purpose of 

this figure is more to compare the distributions of the different fields qualitatively. The 

body force on the quadrant is oriented along the normal to the half-space as are the 

surface tractions. Also, the tractions as given by the surface formulation and Derjaguin's 

approximation are identical. The body forces on the half-space due to the quadrant can be 

determined using the surface integral [5]. Specifically,: 

by = P1P2 r   r    Z ,v   2j.    2j_, 3^72-^2 • [41] 
Jz2=o *2 =-°°(m-3)(x2  +j>!  + {z1-zx) ) 

which, for m = 6, yields: 

K = -5p1p2ii 
(    1 zx(2zl + 3yl)^ 
n      4       0/1      4,     2   ,      2x3/2 

[42] 

By symmetry, bz{yx,zx) = b (-zx,-yx). The tractions, as given by the surface formulation, 

are: 
T y hyy h^ 

hzy      Kz Uli 
Derjaguin's approximation, using the normal to the half-plane as E, gives tractions on the 

half-space that are equal and opposite to the tractions on the quadrant surface. The 

comparison of the three force distributions in Figure 5 shows that the effective surface 

tractions given by the surface formulation are very similar to the distribution of body 

forces. Derjaguin's approximation, applicable in this case because a unique direction E is 

identifiable, does not capture the decrease in surface tractions near the edge of the 

quadrant. 

A knowledge of h for the quadrant makes it possible to compute tractions on any 

other surface brought in the vicinity of the quadrant. An example is the interaction of two 

quadrants as shown in Figure 6. Again, we display the body force field and the tractions 

as given by the two formulations. To compute tractions using Derjaguin's approximation, 

the direction E has been chosen as the symmetry axis y—z. Note that for general 

allignment of the two quadrants, the choice of E is not clear. Consequently the 
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application of Derjaguin's approximation is problematic. Body force and traction vectors 

on the surface are computed in a manner similar to that shown above. The body force 

vectors on the surface increase in magnitude as one approaches the corner and change 

orientation, making an angle of n/ 4 with the vertical at the coiner. Interestingly, at 

distances remote from the corner, there is a finite limiting angle of the vectors with the 

vertical direction (cos_1f8/V73]«20.6o for van der Waals forces). Tractions given by 

the Derjaguin's approximation maintain a constant angle of %l 4 with the vertical. 

Surface tractions given by the surface formulation also change orientation as one 

approaches the corner. However, far from the corner they allign with the vertical 

direction. Also, at the corner, the tractions are discontinuous; there is an abrupt change in 

orientation. The limiting angle with the vertical direction when one approaches along the 

horizontal face of the quadrant is cos-1 1 / J1 + (1 / (4V2 - 5) J   « 56.7°. The total force 

between two quadrants as given by the surface formulation is exact. The total force, as 

calculated by Derjaguin's approximation, is too large by a factor of 2^2 . 

Consider now a sphere as shown in Figure 7. We shall compute the components of the 

tensor at a point a distance a along the z axis, as drawn. The integration is for all points 

on the surface of the sphere located by the radius r and angles 0 and § as drawn. Clearly, 

the same results can be used for h inside a spherical cavity by multiplying by -1 to 

account for the change in surface normal. By symmetry, the off-diagonal components of h 

vanish identically. For the van der Waals potential 

K-K-^C*f ,, C0S
2
1WC0S2(6) **, [44] 3 J-*/2 *       p+fl2_2rösin((1))j 

which is 

A      =Ä*PlP2« 
"      w      24a3 

f3r2-2ar + 3a2     3r2+2ar + 3a2    ,  _ + log 
2(a-r)2 2(a + r)2 

1 (a-r) 

V(a + r)2) 
[45] 

Similarly, 
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h   =    BPlp2r
2 p/2       r2«    (a-rsin((|)))sin(2(t))  ^ 

6      J-n/2     Jo    (r2+a2-2rasm^)f 
[46] 

which is 

ÄPiPjTT 
('->   3>      c   2 2 3r  -5r a-ra 

12 aJ 2{a-rf 

a*    3r* +5ra-rai +orJ 

— + — 

Asfl->r, ^->0 and 

/L->- 

2(a + r)3 

Bnp&i 

log [47] 

[48] 
6{a-rY 

i.e., as one approaches the surface h reverts to its value for a half-space. The two 

components, normalized by the value for a half-space (equation [31] ), are plotted as a 

function of distance from the sphere surface in Figure 8. The traction on a surface 

introduced near the sphere is dominated by hzz, i.e., it approximately points towards the 

center of the sphere. The body force vector due to a sphere on any element of volume 

points exactly towards the center. Because Derjaguin's approximation uses the half-space 

result, it is increasingly inaccurate in terms of orientation and magnitude of the forces as 

one moves away from the surface of the sphere. The same results can be used for a 

spherical cavity in an infinite medium. A test volume at the center of the spherical cavity 

would experience a hydrostatic state of stress (tension for the attractive van der Waals 

potential). The diagonal components of h are identical at the center and are: 
4Bnplp2 K hyy = K = 9rJ 

The traction on any surface is then: 

K o o" nx 

o/^o ny ► 

o   o   hzz\ Pz. 

[49] 

[50] 

Figure 9 shows body force and traction distributions for a sphere near a half-space. Again, 

the forces on the sphere all point along the normal to the half-space. The forces on the 

half-space, as given by Derjaguin's approximation all point along the normal to the half- 
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space. The tractions given by the surface formulation, like the body force distribution 

shows a variation in orientation. 

Similar results can be obtained for a cylinder. To illustrate, we present the case of 

m=l which results in far simpler integrals than the van der Waals potential. Figure 10 

shows a cylinder with the x axis as the cylinder axis. We calculate the components of h at 

a point a distance a along the z axis. By symmetry only the diagonal elements h    and hzz 

need be considered. These are evaluated as: 

h Bpip2r
2 r2* ,D r 

cos2(e) 
yy P9L,2,2T:'  ,^     ™ [r2 +x2 +a2 -2rasin(<|>)) 

4Bnpxp2r
2 

151 {„>-,»)' 
_    -5pjp2?" [2% Aa f00 sin(9  a - r sin(9) 

zz 4 r*£/,+T:.'V lr*        [52] 
Ir  + jc  +a   -2rasm((|))j 

4nBplp2r
2(r2 +5a2\ 

I5(a2-r2)4 

In the limit a->r, as the point approaches the/surface of the cylinder, h   —> 0 and 

Azz approaches the value for a half-space (equation [31]). The variation of the two 

components, normalized by the half-space expression for hzz are plotted in Figure 11. The 

results are qualitatively similar to those for the sphere, but the variation with increasing 

distance from the surface of the cylinder is more gradual. Again, with a change in sign 

these results apply to a point inside the cylinder as well. At the center of the cylinder: 
= _42faPlp2 

Summary 

The distributed body forces resulting from molecular interactions between bodies has 

been integrated and partitioned to obtain a distribution of effective surface tractions. The 

procedure is general and reduces to Derjaguin's approximation for the computation of 

tractions on any body due to a half-space. In this scheme, the effect of a body on the space 
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surrounding it can be written as a second order tensor field termed the inter-surface stress 

tensor h. This is a symmetric tensor which, like the internal stress tensor, yields a traction 

upon an inner product with the normal to a surface. The trace of the tensor represents the 

effective hydrostatic stress in an elemental volume and equals the volume integral of the 

molecular potential. The new surface formulation removes the geometric restrictions of 

Derjaguin's approximation. It always yields the correct total force and total energy of 

interaction between bodies and offers considerable computational simplification over the 

use of the body force distribution. The formulation can be used also to analyze 

deformations driven by surface forces without restrictions on the geometry, large 

deformations, etc. A few simple geometries have been studied to illustrate the properties 

of the new tensor: a half-space, quadrant, sphere, and cylinder. 
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Figure captions 

Figure 1: Procedure followed to partition the integrated body force field into 

contributions that can be assigned to surface points. The forces on body 1 due to an 

element of volume at point P are integrated along rays emanating from P and assigned to 

surface points Qt. 

Figure 2: Coordinates used to compute components of h for a half-space at a point 

located a distance a above the plane. 

Figure 3: Coordinates used to compute components of h for a point near the edge of a 

quadrant. 

Figure 4: Components of h for a quadrant, normalized by the value of h2Z for a half- 

space as a function of normalized distance from the edge for the van der Waals potential. 

Figure 5: Surface force fields on a quadrant and a half-space for the van der Waals 

potential. 

Figure 6: Surface force fields on two opposed quadrants for the van der Waals potential. 

The magnitude of the drawn vectors is proportional to the logarithm of the force vectors. 

Figure 7: Coordinates used to compute components of h for a point near a spherical 

surface. 

Figure 8: Components of h, normalized by the expression for a half-space, at a point 

near a spherical surface as a function of normalized distance from the sphere surface. 

22 



Figure 9: Surface force fields on a sphere and a half-plane. The magnitude of the drawn 

vectors is proportional to the logarithm of the force vectors. 

Figure 10: Coordinates used to compute components of h for a point near a cylindrical 

surface. 

Figure 11: Components of h, normalized by the expression for a half-space, at a point 

near a cylindrical surface as a function of normalized distance from the cylindrical 

surface. 
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FOOTNOTES 

Bold-face letters represent vectors or second-order tensor quantities; the two are distinguished by context. 

When bold-face letters are used, subscripts refer to a particular body. Later in the paper, subscripts are used 

to refer to individual tensor components. 

2 We shall be concerned mainly with three physical quantities: (a) the body force distribution b (vector) 

which has units of N/m2, (b) a distribution of effective surface tractions T (vector) which has units of N/m2, 

and (c) a second order inter-surface stress tensor h which has units of N/m2. Recall also that the surface 

traction vector and stress tensor are related by T = h • n, where n is the outer surface normal. 
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Abstract 
Coalescence of a Maxwell viscoelastic sphere to a rigid plane is analyzed to study the 
transition from initial elastic adhesion to viscous sintering. Deformation is driven by 
surface tractions due to the surface energy. The formulation for surface forces consistently 
combines direct van der Waals attraction across the gap ahead of the contact edge with 
curvature-based tractions normal to the sphere surface. These two contributions to the 
surface traction result in two different modes of contact growth. The initial elastic contact 
and the early stage of time-dependent contact growth are in a zipping mode of contact 
closure dominated by direct attractive forces. The later stage of sintering is by stretching 
of the contact and is dominated by curvature-based tractions. The transition from the 
initial elastic contact to the zipping mode of contact growth is viscoelastic. For a given 
sphere radius, kinetics of the zipping mode of contact growth scale with a characteristic 
viscous sintering time. However, this mode is not part of the existing sintering models 
because direct attractive tractions have been neglected in previous analyses of sintering. 
This stage of coalescence does not have unique scaling with sphere radius. The transition 
from the zipping to stretching mode of contact growth occurs at a contact radius that 
depends on sphere radius. The stretching mode of contact growth is in good agreement 
with previous analyses of viscous sintering. 



1.      Introduction 
The ability of surface tension to alter the shapes and increase the contact area of 

contacting particles is fundamental both to adhesion and sintering phenomena. Analyses 
of adhesive contacts ([l]-[3]) have generally treated the particles as perfectly elastic. 
Analyses of sintering kinetics assume either a single mechanism for mass transport such 
as viscous flow ([4]- [7]) or some temperature-dependent superposition of such 
mechanisms [8].These models successfully account for experimental measurements 
within restricted regimes of time, particle size, and material parameters. However, they 
cannot be expected to fully account for the behavior of real materials whose mechanical 
response is inevitably more complex. For example, when two liquid droplets come into 
contact they deform immediately to an extent dictated by their instantaneous elastic 
compliance regardless of their viscosity. Thus the true initial condition for viscous 
sintering is a consequence of short-time viscoelastic character. Viscous sintering models 
customarily assume an arbitrarily small initial contact size, but the limitations of that 
approximation have never been systematically examined. Viscoelastic effects are 
especially prominent for polymer particles. Viscoelastic relaxations in polymer melts 
commonly span several decades in time and are manifest in experimental measurements 
of both adhesion [1] and sintering ([9]-[ 12]). 

In addition to the issue of material response, there remain unresolved questions 
concerning the proper representation surface forces. Existing models for elastic adhesion 
and viscous sintering have relied respectively on very different formulations of the 
surface tractions. The distinction is shown schematically in Figure 1. Adhesive contact 
models invoke only the attractive forces operating across the gap between opposing 
surface elements when they approach within range of molecular van der Waals 
interactions. These forces "zip" the surfaces together, increasing contact area until elastic 
strain energy balances the decrease in surface energy. In contrast, models for viscous 
sintering invoke only forces associated with surface curvature which tend to "stretch" the 
circumference of the neck bounding the contact. Our objective herein is to develop a 
model for the evolution of particle shape, contact area, and stress distribution under 
intrinsic surface forces for contacting spheres with the properties of viscoelastic liquids. 
It turns out that both zipping and stretching modes are important in this problem. 
Consequently, a self-consistent prescription for both kinds of surface tractions is 
required. 

Calculations were performed for a Maxwell viscoelastic sphere of colloidal 
dimensions in contact with a smooth, rigid plane. In the limits of very short and very 
long times, the results agree well with the simple models for elastic and Newtonian 
materials respectively. However, the calculations reveal some unanticipated effects. The 
first stages of contact growth prove to be dominated by the zipping mode. Throughout 
this period the growth kinetics differs significantly from earlier viscous sintering models 
which neglect van der Waals forces. Moreover kinetics in the zipping regime does not 
scale with particle size, as do all the idealized models for sintering kinetics ([4][8][ 11]). 
The fraction of contact area contributed by zipping does, however, increases with 



decreasing particle size such that sufficiently small particles may sinter completely by 
this mechanism. 

The current state of understanding of adhesive contacts and viscous sintering is 
reviewed in Section 2. The viscoelastic-elastic model including generalized surface 
forces is described in Section 3. The numerical results are reviewed in Section 4 and 
compared with various analytic approximations in Section 5. 

2.     Background 

Adhesive contact of elastic spheres was analyzed by Johnson, Kendall, and 
Roberts (JKR) [1]. The equilibrium contact radius rc was solved analytically by 
minimizing the total energy which includes contributions from the annihilated surface, 
stored elastic energy, and the work done by any external force that may be present. The 
JKR model is exact for small strains and when the contour length just outside the contact 
over which the surface forces act is small compared to the particle radius R. It leads to a 
prediction for the contact pressure distribution which is compressive at the center of the 
contact, tensile as one approaches the edge, and singular at the edge. Alternate models 
have been developed which account for the fact that the surface force distribution outside 
the contact is finite [2]. The two approaches were reconciled by Maugis who related the 
stress distribution near the contact edge to the Dugdale model ([ 13], [ 14]) for fracture 
mechanics. The close relation between equilibrium adhesive contact area and 
equilibrium crack position has also been noted by others ([ 15]-[ 17]). 

A general result of elastic adhesion models is the following scaling 
between geometric and material parameters: 

( „ Y° 
— oc 
R 

7 
GR 

(1) 

where y is the surface tension, G is the shear modulus, rc is the contact radius, and R is 
the particle radius. Relation 1 agrees well with a wide range of experimental 
measurements on materials ranging form mica [ 18] to polymers ([1][ 19][ 20]). The 
predicted dependence on R has been confirmed for data extending over 4 orders of 
magnitude and appears to remain valid for rc/R approaching unity [ 19]. However, some 
time-dependent effects were noted for elastomeric polymers and ascribed to viscoelastic 
relaxation [1]. 

Analytic approximations have been developed to solve certain kinds of 
viscoelastic contact problems [21]. For example, when the viscoelastic compliance or 
stress relaxation modulus is known, these approximations allow the time evolution of 
contact area to be calculated from a known history of the total inter-particle force, or vice 
versa.. This approach was used to analyze the mechanics of polymer latex deformation 
under idealized drying conditions [ 22], for which the experimental evidence is 
inconclusive. Their applicability to viscoelastic sintering requires some additional 
approximations regarding the time-evolution of the inter-particle force. As discussed in 



Section 5, our calculations indicate that the total force driving coalescence varies with R 
and rc in a non-trivial manner. It is therefore not surprising that significant errors were 
encountered when attempting [ 10] to relate independent experimental measurements of 
viscoelastic sintering kinetics and rheology based on an implicit assumption of constant 
force. 

Current models of viscous sintering assume that the velocity fields within the 
particles are driven by local variations in the surface traction p which is normal to the 
surface and may be calculated according to the Young-Laplace equation ([ 23],[ 24]): 

P = Y 
( \      O 
—+ — 

\Rl        R2J 

(2) 

where Ri and R.2 are the principle radii of surface curvature. Numerical solutions by 
finite element ([7][ 25]-[ 27]) and boundary element ([6][28]-[ 30]) methods have 
revealed some serious errors in the early approximations due to Frenkel and Eshelby [5]. 
In particular they show that rc/R does not grow as a simple power law in time as 
predicted by Frenkel. The more complex kinetics can nevertheless be expressed in terms 
of a dimensionless time t/t\ where the normalization parameter t' is given by: 

v4± 
1/3 ^ (3) 

V7 J 
where T| is the Newtonian viscosity. Equation 3 is consistent with Herring's general 
argument [ 31] (independent of particle shape) that the time required to reach a given 
shape change by viscous sintering should be proportional to particle size. Within the 
limitation of equation (2), Hopper has obtained analytical solutions for the evolution of 
various two-dimensional shapes including sintering cylinders ([ 32],[ 33]). The sintering 

kinetics of viscous liquids has been measured experimentally ([ 10] [ 34]-[ 37]) by 
placing pairs or aggregates of amorphous solid spheres in contact with no external load 
and then heated them to above their glass temperature, Tg. Measurements on silicate 
glass spheres are in good agreement with kinetics predicted by the particle-based viscous 
sintering models discussed above and with intermediate and late stage models ([ 38] [ 
39]). A remarkable feature of these analyses is the close agreement between the various 
models for viscous sintering and the excellent agreement with experiments, as far as the 
prediction of overall shrinkage is concerned. 

Results for polymers are more complex. Neck growth measurements on 
relatively large poly(styrene) and poly(methyl methacrylate) spheres (R=250-300 |im) 
and rc/R>0.1 agree well with the viscous sintering model [ 40]. However, other 
measurements ([ 10][ 41]) on smaller spheres of the same polymers (e.g. R<120 (im) 
have shown significant contact growth at much earlier times than predicted by viscous 
sintering. The close relationship between this early growth kinetics and the rapid 
increase in the retarded elastic part of the shear compliance near Tg, suggest that the 
anomaly is viscoelastic in origin. Similarly, the rapid sintering of molten 

poly(tetrafluoro-ethylene) cylinders [9] and colloidal particles [ 42] with Tj >10^ poise 
has been ascribed to viscoelastic deformation. From consideration of the maximum 



retarded elastic compliance of typical linear, high molecular weight polymer melts it has 
been proposed [11] that particles smaller than a certain critical size sinter completely by 
retarded elastic deformation, without any contribution from viscous flow. This critical 
size was estimated [ 11] to range from R= 40 nm to R=2 ^.m depending upon the 
polymer and initial packing density. Recent experiments [ 43] bear out these predictions. 

Existing models for both the initial elastic adhesion and for viscous sintering use 
internal surface energy to determine the driving force for deformation but differ in how the 
forces are prescribed1. An attempt to simulate the process of viscoelastic coalescence 
without the direct attraction across the gap fails to model the formation of the initial 
elastic contact. Conversely, neglect of curvature-based tractions does not match the 
known viscous sintering kinetics for larger contacts. We employ a recently developed 
formulation for surface forces that consistently combines direct and curvature-based 
tractions [ 44] which has been implemented as a surface finite element applicable to 
arbitrary geometry and materials. The transition from initial elastic adhesion to viscous 
sintering is studied by analyzing the coalescence of a viscoelastic sphere to a rigid half- 
space. In this paper, we restrict our attention to a Maxwellian material which relaxes with 
time from a stiff solid to a Newtonian liquid. More complex kinds of viscoelasticity 
typical of high molecular weight or cross-linked polymers ([ 45],[ 46]) will be addressed 
elsewhere. 

3.      Formulation of the problem 

3.1     Bulk constitutive behavior 

Figure 2 shows a sphere in contact with a smooth, rigid plane. The sphere is 
discretized using 4-node axisymmetric hybrid finite elements. Isotropie viscoelastic 
constitutive relations are used for both the bulk and shear properties. For small strains and 
rotations these are: 

to« 
dt' 

where £,-,- is the strain tensor, e(> and ett. are its deviatoric and dilatational parts, atj is the 

stress tensor, and stj and <7mm are its deviatoric and spherical parts. A Maxwell model is 

used for both the bulk and shear compliances, B(t) and J(t) 

ekk=\ B(t-t')—fdt' 

1 In the thermodynamic treatment of JKR [1] and the energy balance of Frenkel [5 ] there is no direct 
assumption regarding the nature of the forces. However, an attractive force field across a gap is clearly 
implied by JKR in their assumed deformation modes. Frenkel's model is too simple to withstand such 
scrutiny; one of the enduring mysteries of this problem is why it works as well as it does. 
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where G and K are the instantaneous shear and bulk moduli, and x is the relaxation time. 
Note that for large times this material has a Newtonian viscosity 77 = Gx. It is assumed 
that the bulk modulus does not change with time and the initial ratio of shear and bulk 
modulus corresponds to a Poisson's ratio of 0.3. As the material relaxes it becomes 
increasingly incompressible. The use of linear viscoelasticity implies small elastic strains 
and small strain rates. However, the formulation used [ 47] accounts for arbitrarily large 
strains and rotations by an appropriate geometrical transformation of the constitutive 
equations (4) using the deformation gradient. The formulation also allows for change in 
constraints applied to surface nodes as they come into contact with the rigid surface. 

3.2     Surface tractions 

The deformation is driven solely by tractions applied to surface elements. These 
tractions are computed via the surface formulation of [ 44] and applied via a surface finite 
element developed for this purpose [ 48]. In this formulation, there are two additive 
contributions to the surface traction T on any element 

T = T +T 
*      °' (6) 

where Ts represents tractions due to self interactions modeled as surface tension and T0 

represents tractions due to the another body, in this case the rigid half-space. Self 
interactions are modeled using the Young-Laplace equation ([ 23],[ 24]) and are 
proportional to the product of the surface energy and the surface mean curvature and act 
along the surface normal: 

T, = -y tr(k)n,, (7) 

where k is the surface curvature tensor, tr() refers to the trace, and nx is the surface 
normal. In terms of the principal radii of curvature /?j and R2: 

*t\\      l ,   l (8) tr(k) = — + —. v ' 
Rl       R2 

This formulation of self forces is strictly valid only for relaxed liquid-like surfaces and has 
been used in all previous analyses of viscous sintering. In the actual implementation, 
numerical computation of curvatures is avoided by analytically integrating equation (7) to 
obtain nodal forces [ 48]. 

Other-body tractions T0 are related to the inter-molecular potential w(s), which is 

taken to be the van der Waals potential ([ 49]-[ 51]) 

s 
where A is an interaction constant. The tractions are then given by 

T0=h-n,, (10) 



where ni is the outer unit normal to the surface of the sphere, and h is a second order 
tensor, the inter-surface stress tensor defined by 

f (11) 
h = P1P2     n2 GdS2 

Js2 

where the integration is over the rigid plane, px and p2 are number densities of molecules 
in the sphere and half space, n2 is the outer normal to the half space, and G is a vector 
function of distance between the sphere and the plane 

G = (x2-Xl)v(,), (12) 

where x2-Xi is vector from the sphere surface to the rigid plane, and v(s) is a scalar 
function of distance s between points on the two surfaces defined by 

w(s')s'2ds'. 

For the van der Waals potential used here, 

vW=p-Ji 
(13) 

vW = TT 
A (14> 

Because one of the interacting surfaces is a plane bounding a half-space, the expression for 
the traction can be further simplified by carrying out the integration analytically [ 44]. The 
tractions on the sphere are oriented along the axis of the sphere, z, and are given by 

where s now represents the distance between the sphere surface and the plane along the z 
axis. When one of the interacting bodies is a half-space bounded by a plane, the tractions 
computed by the surface formulation are identical to those given by the Derjaguin 
approximation ([3][ 44][ 52]). 

Consistency between the two tractions Ts and T0, is established by ensuring that 
the work done in bringing two surfaces together from infinite separation without 
deformation equals the surface energy, thus equating surface energy and surface tension. 
The interaction energy per unit area of two identical half planes separated by a distance S 
interacting by the van der Waals potential is [ 50]: 

w(s)=^. (16) 

Because we are using only an attractive potential, a cut-off distance S = e is introduced 
which represents the interfacial contact separation and makes the energy finite. Equating 
W(E) to -2y one obtains: 

-24ye2 (17) 
AAP2= "—• 

K 

Thus, all tractions are determined in terms of the surface energy y. A value of 
e ~ 0.17 nm has been found appropriate for several materials [ 50]. 

Therefore, in the computation of T0, distance is measured from a 0.17 nm below 
the nominal rigid surface. It introduces a fixed length scale in the problem and directly 
controls the size of the region outside the contact over which the van der Waals forces act. 



This has an important effect on both the physics of the problem and the non-linear 
numerical solution. With a given number of elements in a particle, the number of elements 
influenced by these forces decreases as the particle size is increased. Moreover, the forces 
are increasingly non-linear. Because the surface forces are geometry-dependent, they 
introduce additional non-linearity in the computational problem. In a Newton-Raphson 
scheme they would provide an additional contribution to the Jacobian matrix of the 
system. In the implementation used here, only the direct geometry-dependent nodal forces 
are computed. This converts the numerical solution to a direct iteration scheme. With the 
mesh shown in Figure 2, we have found that it is possible to obtain reliable computational 
results for particle radii R no larger than 10 fJm. For larger particles errors are introduced 
due to the inaccurate numerical integration over the surface element of the van der Waals 
forces. 

The simulation is begun by bringing the sphere into point contact with the rigid 
plane. The surface energy is gradually incremented over a short time step (compared to 
the relaxation time). During this step the contact grows, initially in a zipping mode. As 
nodes come into contact, they are constrained by the rigid surface. A surface traction 
corresponding to the distance e is maintained over elements in contact, which allows 
contact tractions to be tensile. The simulation is continued with fixed surface energy, 
allowing the geometry to evolve. Also shown in Figure 2 is the deformed sphere after the 
formation of an initial, elastic, contact. In contrast to previous simulations of viscous 
sintering, much of the early contact growth is in the zipping mode which involves little 
element distortion. As the contact increases the effect of curvature-based tractions 
increases in importance with corresponding mesh distortions. The results presented here 
are without any mesh rezoning; simulations were halted when mesh distortions became 
excessive. One complete simulation typically involves 500-1000 time steps. 

4.      Results 

The JKR result for initial elastic contact radius for a sphere on a rigid plane is 

^r(i-v2)v/3 

R V ER 

(18) 

where E is the Young's modulus and v is Poisson's ratio. This may be treated as the 
exact result for contacts small enough for small-strain assumptions to apply but large 
enough for the zone over which van der Waals forces operate outside the contact is small 
compared to the contact radius. It has been shown in [ 44] that numerically computed 
contact radii are in good agreement with the JKR result. The distribution of contact 
tractions [ 53] corresponding to the JKR theory predicts an infinite tensile traction at the 
edge of the contact. Numerically computed contact tractions are limited by the cut-off 
value, and vary smoothly. 

Figure 3 shows the evolving shape of a particle with R = 100 nm, E = 10 GPa, and 
7 = 0.01 J/m2. At this scale, the evolution of the shape qualitatively resembles previous 
results of viscous sintering simulations [ 27]. Figure 4 shows the difference z'(r) between 
the deformed surface Zd(r) and the initial spherical surface zs(r) 



z'(r) = zd(r)-zs(r). ( 19) 

At the larger scale, each shape now resembles the JKR or viscous sintering neck shapes. 
The envelope represents the contact plane where the difference is the spherical surface 
itself. For a particular shape, at large radial distances there is a constant difference 
between the surface location and the original sphere representing the displacement of the 
sphere center. As one approaches the contact edge, the difference increases, characteristic 
of usual viscous sintering neck shapes and of the JKR shape outside the contact. Very 
close to the contact edge the difference decreases again. This represents the region over 
which van der Waals forces are operative and significantly alter the shape2. Within the flat 
contact region the difference between the deformed surface and the initial spherical surface 
is simply a sphere. The fact that the deformed surface has a smooth transition into the 
contacting region shows the presence of a cusp at the contact edge. The different regions 
are most pronounced when the contact radius is of modest extent. A small cusp does 
persist up to large contact radii, but the shape is increasingly dominated by the familiar 
rounded sintering neck. Contact growth in the early stages is dominated by the zipping 
mode: nodes sequentially make contact with little stretching of the contact plane. As the 
contact radius increases, curvature-based tractions become more important. This is 
manifest as increased stretching of the contact plane and squeezing of nodes along the 
surface outside the contact towards the edge of the contact. As the simulation proceeds in 
its later stages, nodes outside the contact are squeezed towards the edge of the contact. 
They then enter the small van der Waals zone and make contact with the rigid surface. 
Increasingly, however, in the interval between successive increases in contact radius by 
zipping the contact continues to grow by stretching. 

The distribution of traction Tz on the surface of the sphere is shown in Figure 5 at 
different contact radii (and increasing time). Because deformation is driven only by surface 
forces, the net force corresponding to this distribution is zero. The initial distribution, 
characteristic of the JKR solution, is compressive in the interior of the contact, tensile just 
inside and outside the contact edge and decays with increasing distance outside it. The 
location of maximum tensile traction coincides with the position of the contact edge. With 
increasing contact radius, the stress field quickly changes into one with a minimum at the 
middle of the contact, a compressive peak just inside the contact edge and van der Waals 
tension outside the contact. This characteristic shape of the traction distribution is 
maintained through most of the simulation. The apparent decrease in the peak traction is 
an artifact due to the fact that in post-processing the results surface tractions have been 
obtained by extrapolating stresses from inside the element using linear interpolation 
function and averaging at nodes, for the sake of consistent treatment of nodes inside and 
outside the contact. The surface integration for the computation is more accurate because 
we use five quadrature points on the surface. 

In Figure 6 the distribution of surface tractions at t=0 is compared with the JKR 
model. The agreement is very close except at the edge of the contact where the JKR 

2 Note a possible inconsistency in this picture: a sharp cusp implies an infinite curvature and hence 
infinite traction. This is resolved by the fact that the total force obtained by integrating around the cusp is 
finite [ 54] and is accounted for in the numerical analysis. 
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traction is unbounded. Also shown is the traction distribution at a later time, compared to 
a model based on the Lee and Radok solution for viscoelastic contact which is described 
in greater detail in the following section. 

Figure 7 shows simulations of contact growth for R=200nm, Young's modulus 
E=100GPa (G= 38.5 GPa), with y varied over three orders of magnitude. The initial 
contact radii increase with decreasing y. Also shown are the results for simulations 
where only curvature forces were included [ 27]. The growth kinetics are shown as a 
function of the normalized time t/t', where t' is defined by equation (3). The viscoelastic 
time constant for the material is x=^r\/G, or in the normalized time scale: 

l-fAfjl (20) 
r   \AK)  RG' 

We see that the viscoelastic growth for different y eventually converge into a universal 

curve at t/t'>10~4. For each value of y the convergence time is roughly proportional to y, 

and corresponds to about 10x/t'. For t/t'>10~4 the results in Figure 7 apparently represent 
Newtonian flow, free of the viscoelastic history. However, the growth kinetics derived 
from the combination of van der Waals and Young-Laplace forces differs substantially 
from the conventional viscous sintering model based on only curvature forces. That is, 

for t/t' between 10"^ and 10"! the additional increment in TQ/R is a consequence of 
viscous flow via the zipping mode. 

In order to examine the effects of particle size on contact growth by the zipping 
mode a series of simulation were performed with E=100 GPa, and R=100nm to 10 [im. 
(For computational reasons described earlier, it was not possible to perform reliable 
calculation for larger R). For the simulations with 1 |im and 10 |im particles, the ratio 
y/R was held constant at 100 Pa. As a consequence the viscoelastic relaxation time 
(equation 20) is also constant and very small: x/t'=2.6xl0~9. The results shown in Figure 
8 represent the effects of particle size on viscous growth kinetics driven by both van der 
Waals and Young-Laplace forces. Results are also shown for calculations involving only 
Young-Laplace forces, i.e. the traditional viscous sintering model.   It is apparent that 
early growth in the zipping mode is strongly dependent on R. With decreasing R the 
contact area contributed by zipping increases and convergence to the stretching 
mechanism is offset to longer times and larger contact areas. Thus for R<200 nm the 
zipping mode provides rc/R ~ 0.5, which is sufficient to fully densify a regular dense 
packed aggregate of spheres. On the other extreme, for R> 10 (im zipping accounts for 
less than 10% of the contact growth. It is particularly interesting to compare the 
behavior of the 1 Jim and 10 |im particles. Because the ratio y/R is the same for the two, 
their initial elastic contact radius is identical. Because of the same reason, the two behave 
in an identical manner when stretching dominates. However, in the regime of contact 
growth by zipping, the kinetics are markedly different, indicative of a second length scale 
controlling the process: the scale e of van der Waals forces. 

The fact that no significant deviations from the traditional viscous sintering 
model (with only curvature forces) have been detected in experiments on simple 
viscoelastic materials like silicate glasses may be a consequence of the relatively large 
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particle sizes (ca. 100 |im) used in those studies ([ 34]- [ 37]).   The results in Figure 8 
suggest that significant deviations should be observed for colloidal particles of the same 
materials. In the absence of any zipping contribution we would expect a 100-fold 
increase in sintering rate on going from R=100 p,m to R= 1 (im (eq. 3). However, for the 
latter the zipping contribution at early times should increase this by an additional factor 
of 10.   Perhaps this will be sufficient motivation for further experimentation. 

We now consider in greater detail how the present model compares with the 
earlier analytic approximations for viscous flow and viscoelastic contacts, especially with 
regards to the dependence of growth kinetics on particle size and the character of the 
inter-particle forces. 

5.      Comparison with analytical approximations 

It is apparent from Figure 8 that at late times the process becomes dominated by 
the stretching mode, and that the growth kinetics, expressed in normalized units, become 
independent of R . This is explained by Herring's analysis [31], which shows that when 
the tractions are derived solely from Young-Laplace forces both normalization constants 
(t' and R) are simply proportional to R.   However, at early times one or both of these 
proportionalities apparently breaks down since that the normalized growth rate becomes 
R-dependent. Since we know that in the elastic limit rc varies as R^/3 [i ]; one might 
expect some kind of systematic transition from elastic size scaling to viscous size scaling, 
but the results in Figure 8 are not consistent with that expectation. For one thing the 
time-scale is very long compared to the viscoelastic relaxation x/t'. But more importantly 
the early time kinetics cannot be re-normalized by any power of R. Rather, we believe 
that these variations represent a fundamental breakdown in the principle of size scaling. 
This breakdown is due to the fact that van der Waals forces are themselves characterized 
by an intrinsic length scale which does not change with R. In other words, under 
conditions where van der Waals forces play an important role in contact growth, the 
problem cannot be reduced to a dimensionless length scale because the mechanics is 
governed by two, mutually independent dimensions. 

Figure 9 shows the relationship between center displacement 8 and the contact 
area. Interestingly this relationship, which is essentially a statement of volume 
conservation, is insensitive to the mode of contact growth and may be well approximated 
by: 

- = cfeY (21) 
R     UJ' 

The constant C is estimated by a fit to be 0.39, quite different from the Hertz geometric 
relationship for this case [ 55]: 

8    ( 
R 

r. 

VJ 

(22) 
R, 

Returning to the issue of viscoelastic effects, we examined the utility of 
the general analytic formulation of viscoelastic contacts due to by Lee & Radok [21] to 
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predict the intrinsic growth kinetics under surface tractions. The contact deformation is 
driven by forces outside the contact. We replace the total force outside the contact by a 
work-equivalent force applied at a point remote from the contact. Because contact 
growth is monotonic, the Lee and Radok analysis can then be used to estimate the 
kinetics of contact from independent knowledge of the compliance J(t). The work- 
equivalent force between centers F is computed by equating the work done by the force 
to the energy released due to contact growth: 

Fd8 = Anyrcdrc (23) 
dr 

F = Anyr-— 
do 

Invoking the geometric relationship equation (21) one obtains: 
F = 2C7tRy, (24) 

Thus, for a contact which grows due to increase in J(t) and subject to eq. (21) we might 
expect the interparticle force to remains constant. This conclusion is apparently 
independent of whether the contact grows by zipping or stretching in so far as the same 
geometric relation holds in both regimes (Figure 9). Accordingly, Lee & Radok's 
solution for contact growth kinetics yields: 

r;=^RFJ(t) (25) 

rc    (3nyCJ{t)\3' 

R    18       R 

In Figure 10 we compare equation (25) with results of FEM calculations based on 
van der Waals forces, Young-Laplace forces, or both. Equation (25) deviates 
significantly from all of the results. To find the source of this deviation, we examined 
the validity of eq. ( 23). This equation specifies that the work-equivalent inter-particle 
force F remains constant during the growth process. In the simulation based on van der 
Waals forces, the total force was monitored as a function of contact radius. The results 
are shown in Figure 11. For contact radii rc>0.1R, F is seen to fall significantly below 
the value predicted by eq. (24). It is possible, by assuming a variation of F with contact 
radius, to bring the Lee and Radok solution into closer agreement with the numerical 
results. However, since this variation in F with contact growth is not known a priori it is 
not useful for predicting neck growth kinetics under surface tractions. This avenue for 
the development of analytical expressions governing the zipping mode of viscous 
sintering is promising and requires further work. For example, the contact tractions 
corresponding to the solution for fixed F, shown in Figure 6, capture the relaxation of 
tractions at the center of the contact and the presence of a compressive peak just inside 
the contact edge. 

6.      Summary and Conclusions 

Coalescence of spherical particles begins with the formation of an initial elastic 
contact and proceeds by time-dependent contact growth. Existing models for surface 
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forces driving these two processes have some basic inconsistencies. Models for elastic 
adhesion neglect the influence of curvature-based tractions while sintering models neglect 
the influence of direct attractive forces across the gap ahead of the contact edge. A 
formulation for effective surface tractions due to molecular interactions that contains both 
types of traction has been employed to study the coalescence of a Maxwell viscoelastic 
sphere onto a rigid plane. The surface formulation has been implemented as a surface 
element which has been used to conduct finite element simulations of coalescence. An 
initial elastic contact is formed which is in good agreement with the JKR model. There is a 
viscoelastic transition into viscous contact growth by a zipping mechanism. This stage of 
the mechanism is insensitive to the value of the initial elastic contact radius and is a mode 
of viscous deformation driven mainly by attractive forces outside the contact region. It is 
not found in existing models for viscous sintering. There is a second transition to a mode 
of contact growth governed by curvature-based tractions and characterized by a stretching 
mode of contact growth. The contact radius at which the second transition occurs depends 
primarily on the particle size. It decreases from a value as high as 0.6 to about 0.1 as one 
increases the sphere radius from 100 nm to \Qjnn. For large spheres, the stretching mode 
of contact growth dominates over the entire range of contact radius; the converse is true 
for small spheres. However, for the range of particle sizes and material properties 
commonly used, both modes of contact growth are important. 

Zipping and stretching are both viscous sintering; kinetics are governed by a 
characteristic time scale for a given particle size. However, it is shown that due to the fact 
of an additional length scale associated with van der Waals forces, there is no unique 
scaling with respect to particle size during the zipping mode of contact growth. When only 
Laplace-Young tractions are applied, the boundary conditions for a sphere on a rigid plane 
are identical to those for two identical spheres. However, the van der Waals forces for the 
case of two spheres are different. Because these tractions approximately as the cube of 
distance between surfaces, their influence compared to Young-Laplace tractions is smaller 
for two spheres versus a sphere on a rigid plane by a factor of eight. We have restricted 
our attention to sintering by viscoelastic deformation; accounting for direct attractive 
forces may influence models for sintering by other mechanisms as well. 
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9.      Figure Captions 

Figure 1. Schematic illustration of contact growth modes in elastic adhesion and viscous 
sintering of spheres. Elastic adhesion is understood to be driven by direct attraction across 
the gap ahead of the contact neck. The contact grows in a zipping mode as material points 
previously separated by a gap come together. Tractions driving viscous sintering are 
modeled as being proportional to the surface curvature; the contact grows in a stretching 
mode. 

Figure 2. Axisymmetric finite element discretization of a sphere making contact with a 
rigid surface. Also shown are contours of stress G22, the stress component normal to the 
contact, after initial elastic contact is established. 

Figure 3. Evolution of the shape of the initially spherical particle (R = 100 nm). 

Figure 4. Difference between the deformed and initial spherical shape. Inset shows the 
details close to the edge of the contact. Under the influence of van der Waals forces the 
surface joins the contact smoothly, resulting in a cusp at the neck. Further ahead of the 
contact edge the sintering neck is rounded. 

Figure 5. Tractions Tz on the surface of the 100 nm sphere. Tractions have been 
normalized by peak compressive value of the JKR contact pressure distribution. 

Figure 6. Tractions Tz on the surface of the 100 nm sphere. After initial elastic adhesion 
they closely match the JKR result except that the tensile tractions are bounded by the cut- 
off value of the van der Waals potential. At later times the tractions of a viscoelastic 
material under a constant force. 

Figure 7. Normalized contact radius rJR as a function of time normalized by a 
characteristic viscous sintering time t'=(3/ Aitfn{y I Rr\) for a 200 nm sphere with 

different surface energies, resulting in different initial contact radii. There is a rapid 
transition from initial elastic adhesion to viscous sintering by zipping which is identical for 
the different cases in terms of normalized time. The transition into viscous sintering by 
stretching is unaffected by the differences in initial elastic adhesion. 

Figure 8. Normalized contact radius rJR as a function of time normalized by a 
characteristic viscous sintering time t'= (3/ 4;r)1/3(y / Riy for different particle sizes. The 

transition from the zipping to stretching mode of contact growth occurs at smaller contact 
radius for increasing sphere radius. 

Figure 9. Motion of sphere center 81R as a function of normalized contact area rc
21R2. 

This relationship, representing volume conservation, is substantially independent of the 
details of growth of contact radius. 
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Figure 10. Normalized contact radius rJR as a function of time normalized by a 
characteristic viscous sintering time t'= (3/ 47r)1/3(y I Rri) for R= 100 nm. Simulations 

results under different assumptions regarding driving forces for coalescence are compared. 
The zipping and stretching modes of contact growth have characteristically different 
kinetics. There in an initial transition from elastic adhesion into viscous sintering by 
zipping, followed by a transition into viscous sintering by stretching. 

Figure 11. Change in the total attractive van der Waals force as a function of contact 
radius for i?=100 nm. 
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where ee0 is the permitivity, 1/K the Debye length, and Heff the effective 
Hamaker coefficient. In Derjaguin's approximation[7] the net force F0(r,c) 
between two spheres of radius r with center-to-center distance c is obtained by 
integrating the normal force between pairs of concentric rings over the sphere 
surfaces: 

Fo(r,c) = Jdy27cyf(x) = 7cr } dx f(x) = rcr u(c-2r) 
0 c-2r /2) 

where u(x) is the potential per unit area. Similarly, the pair potential is: 

Uo(r,c) = J dc' Fo(r,C) 
c (3) 

K- ^ 

Simple spheres may be converted into truncated spheres by flattening 
and displacing the opposing surface by 5 (see diagram). This deformation 
increases the minimum separation s by 28. The interaction energy between 
truncated spheres U(r,c,5) may be derived via Derjaguin's approximation. The 
radius of the truncated sphere r' exceeds r for the original sphere of equal 
volume, but this difference has a negligible effect on U(r,c,8) (<0.5% in the 
regime of interest). The result simplifies as follows: 



Introduction 

Practical applications for polymer latex dispersions rely both on their 
stability against flocculation and their ability to dry into dense films. Film 
formation requires contact between particles (primary flocculation) and also 
deformation of the particles into space-filling polyhedral shapes. The 
sequence of these processes and the forces responsible for deformation 
remain controversial. Following flocculation, interfacial tension or capillary 
pressure often suffice to deform soft colloids[1-5], however this leaves open 
the possibility[6] that deformation might occur prior to contact as a 
consequence of long-range repulsive forces, the same forces responsible for 
flocculation stability. We examined the mechanics of two elastic colloidal 
spheres interacting according to the DLVO model for interfacial forces. 

The particles were treated as incompressible elastic or viscoelastic solids 
with equilibrium shear modulus typical of a polymer melt. Analytic results were 
derived for the elastic case by restricting the deformed geometry to truncated 
spheres. The same approximation was elaborated earlier[7] for fluid emulsion 
particles. Numerical simulations based on the finite element method (FEM) 
were also performed to explore the consequences of unrestricted geometries 
and viscoelastic response. Despite differences in the equilibrium geometries, 
the same predictions emerge concerning surface separation in the limit of 
close approach. Namely, when the interaction force per unit area exceeds 
restoring forces from elastic and interfacial strain then the particles deform to 
maintain a minimum separation of several nm. In comparison with rigid 
colloids, the regime of flocculation stability may therefore extend to much 
higher volume fractions. 

DLVO Model for Simple and Truncated Spheres 

The DLVO model[8] represents colloidal interactions as the sum of a 
screened coulombic double-layer repulsion and van der Waals attraction. The 
force per unit area between flat half-spaces with constant surface potential Ys 
separated by distance x in electrolyte solution may be approximated[9] by: 

f(x) = 2e£ K
2V

F
2 

v
   ' OS 

exp(-Kx) H 
eff 

2 3 
[ 1 +exp(-Kx) ]      6ro( 

(1) 



U(r,c,5) =   Tcr'  { dxu(x)   + ^r' -(r-5)   ju(c-2r+25) 
c-2r+28 

= U0(r,c+28) + 25F0(r,c+28) (4) 

For values of c where U0 is positive and decreases with increasing c, 
deformation may reduce the interaction energy: U(r,c,8)<U0(rIc), but the 
equilibrium shape depends also on the energy of deformation. 

Pair Potentials and Equilibrium Shapes 

Deformation entails an elastic strain energy Ue and an increase of 
surface free energy Us due to increase in interfacial area. Hertz's analysis of 
elastic contacts[10] between truncated spheres yields : 

1fi        2 Ue=fGr5 

For 8< 0.1 r a valid approximation^] is: 

(5) 

Us = 27iy8^ (6) 

where y is the interfacial tension. The pair potential for truncated spheres is: 

Ut = U(r,c,8) + Ue(r,8) + Us(8) 

At any value of c, the shape-dependent minima and maxima in Ut are 
found by taking partial derivatives with respect to 8. Solutions occur at: 

8=0     and/or     f (s*) = 8G/3TI +y/r 

minima:       3f(s    )/3s <0 
min 

maxima:     3f(s*   )/3s >0 

(7) 

max' 

Minima with 8>0 occur only when f(s) is sufficiently large to satisfyeq. 7, 
such that 8 = r+(s^jn-c)/2. 
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Figure 1 - Relation between f(s) and restoring forces for r=50nm and parameters 
as indicated. With 1/K=10 nm f(s) remains too small to satisfy eq. 7, thus 8=0 at all 

c. With 1/K=3.1 nm potential minima with 8>0 occur at s*    = 7.7nm.  Results for mm 

much larger particles would be nearly the same since the only size-dependent 
term in eq.7 is small and varies inversely with r. 
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Figure 2 - Effect of deformation on the pair potential at constant c. For 

2r<c<2r+s|\n (100 to 107.7 nm) the global minimum occurs at 5>0 with s=s*.    For 
min'      w 

c<2r the global minimum corresponds to primary flocculation (contact) while the 
non-contacting truncated shapes remain stabilized by an enerqy barrier at s* 

max 

which is large enough to prevent flocculation. Accordingly, if particles were 
brought together from large c, adopting equilibrium shapes along the way, they 
would be trapped into the local minimum and remain non-contactinq even for 
c<2r. 
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FEM Simulations 

Since the analytic predictions are confined to truncated spheres 
numerical simulations were performed to determine the equilibrium geometries 
free of constraints, and to test the generality of the predictions These 
simulations begin with a pair of spheres r=50nm with 1/K=3.1nm and the 
rema.n.ng parameters as in Fig.1. Finite element methods (ABAQUS®) were 
used to determine the equilibrium geometry and stress distribution for 
progressively smaller values of c starting at 130nm. The boundary conditions 
comprised a distribution of tractions on each surface element calculated from 
eq. 1. The surface tractions conformed to Derjaguin's approximation in that 
they were calculated from the distance x between equivalent pairs of surface 
elements. No constraints were imposed on the surface contours. 

When G was held constant at O.IMPa with c<120nm the simulations 
were unstable and did not converge. The problem was overcome by allowing 
the shear modulus to relax exponentially from 10MPa to O.IMPa while c was 
reduced linearly with time from 130nm. At each time step the stress 
distribution was calculated consistent with Boltzmann superposition This 
simulation mimics the viscoelastic response for a polymer in the transition 
regime converging to its plateau modulus: 

G(t) = [ 9.9exp(-t/x)+0.1lMPa 
J (7) 

Very slow approach times t<1000x were required in order to obtain 
equilibrium results independent of t. This lag of the deformation behind the 
modulus is a consequence of the inhomogeneous evolution of stress fields 
within the particles. Similar behavior has been observed in experiments[5 111 
and simulations[12] of viscoelastic sintering. ' 

Figure 4 shows results of FEM simulations compared with analytic 
results for truncated spheres. Under equilibrium elastic conditions, the onset 
of deformation occurs at much larger c than predicted by eq 7 but as c 
approaches 2r=1 OOnm the value of 5 converges to the analytic result Thus 

the boundary layer thickness s\n at small c is apparently insensitive to 

differences between realistic and idealized particle shapes. However the inter 
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Figure 4 - Comparison between displacement (5) and inter-particle force 
obtained analytically for truncated spheres and from unconstrained numerical 
simulations.   Insert shows differences in particle profiles at c=96 nm. 



particle forces for the realistic shapes prove to be substantially lower than 
those for truncated spheres . 

Finally, when approach times were too short to permit viscoelastic 
equilibration at each value of c (e.g. t=100x), then the extent of deformation 

was greatly reduced resulting in separations smaller than s^. This suggests 

that dynamic factors such as drying rate or rotational correlation time might 
influence the sequence of deformation versus flocculation in real latex 
dispersions. 
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MECHANICAL   FORCES AND MATERIAL RESPONSE IN 
THE COALESCENCE OF POLYMER PARTICLES* 

Stephen Mazur and Claudio Argento, DuPont Central Research & 
Development, P.O. Box 80356, Wilmington, DE 19880-0356 

Many fabrication processes require coalescence of discrete polymer 
particles into a dense, homogeneous body above the melting temperature 
Tm, and near or above the glass temperature Tg. Examples range from neat 
powders "free sintered" or compression molded under applied load to 
aqueous latex dispersions which coalesce subject to complex colloidal 
interactions during drying. Particle diameters may range from nm to mm. 
In all cases, transformation of a particulate precursor into a uniform, 
isotropic product requires several different kinds of physical processes 
including particle deformation, stress relaxation, and molecular diffusion. 
In contrast with recent advances in characterizing diffusion, understanding 
of the material mechanics remains incomplete. This presentation addresses 
some relationships between coalescence kinetics, inter-particle forces, 
particle size, and polymer visco-elastic properties (Tg, J(t), T|0). 

Depending upon the material properties and time interval, an 
aggregate of molten polymer particles may compact either by elastic 
deformation or viscous flow of the polymer. A universal characteristic of 
high polymers[l] for which Mw exceeds the entanglement weight Mg is that 
the shear compliance J(t), which governs particle deformation, remains 
entirely recoverable for a considerable time following application of a load at 
t=0. Hence the initial deformation is always a quasi-elastic response 
dictated by the recoverable shear compliance J^t). Because Jr(t) increases 
roughly 1,000-fold during the glass relaxation, rheology at temperatures 
near Tg plays a central role in coalescence kinetics. Depending upon the 
magnitude of the forces and the initial packing density, quasi-elastic 
deformation may suffice to fully densify an aggregate at T>Tg without any 
contribution from viscous flow. Measurements of inter-particle neck 
growth[2] demonstrate that viscous flow only contributes at times longer 
than the terminal relaxation time xn = ri0Jn. For polymers of very high Mw 

tn often exceeds the processing time. 

The extent of densification due to quasi-elastic deformation should 
be determined by Jr(t), particle size, and the inter-particle forces. Within the 
rubbery plateau regime where Jr(t) ~ Jn, analytic approximations for contact 
between elastic spheres may be applicable. This approach was used to 
estimate, for several common polymers, the minimum pressure p*, or 
maximum particle radius r* (when surface tension is the driving force) for 
quasi-elastic densification of monodisperse spheres in random close 
packing[3]. Limited experimental data on acrylics and fluoropolymers is 
consistent with this analysis. In order to refine such predictions and to 
model the detailed kinetics of visco-elastic neck growth, computer 
simulations have been undertaken using finite element methods. In contrast 
with simpler neck-growth mechanisms, such as viscous flow, the kinetics 
of visco-elastic neck growth should not scale in any simple way with 
particle size, because the visco-elastic relaxation spectrum is size- 
independent. 



One consequence of quasi-elastic particle deformation is that residual 
stresses and molecular orientation may persist in the nascent product. Often 
these effects are not apparent because the macroscopic measurements are 
isotropic averages of locally anisotropic properties. Some noteworthy 
exceptions are illustrated by the coalescence of poly(tetrafluoroethylene) 
powders following cold compression molding or paste extrusion. 

Coalescence during drying of aqueous latex particles is especially 
important in coating technology. The forces between suspended colloidal 
particles are complex and vary with concentration. In general, latex 
dispersions are stabilized by a long-range screened coulombic repulsion 
which overcomes the short-range Van der Waals attractions between 
particles. All else being equal, increasing the colloid concentration will 
increase inter-particle repulsion as measured, for example, by the osmotic 
pressure EL But in practice drying also concentrates any soluble electrolytes 
which reduces the screening length, thereby destabilizing the particles with 
respect to flocculation. DLVO theory predicts that 100 nm polystyrene latex 
dispersions will flocculate when the concentration of a univalent electrolyte 
reaches about 0.2M[4]. Competition between these two effects may 
determine whether particle deformation precedes or follows inter-particle 
contact. 

When the mean pressure exerted on each latex particle by the 
coulombic repulsion of its neighbors becomes comparable to p* quasi- 
elastic deformation may deform the spheres into isolated polyhedra which 
do not contact one another but which fit together into a space-filling cellular 
structure as the water content goes to 0. Experimental evidence of particle 
deformation before contact has been reported for a number of latex 
systems[5,6], and recent measurements[7] of n in surfactant-free latex 
dispersions at low ionic strength demonstrate that forces developed at 
polymer volume fractions below 0.6 can be adequate for this effect. On the 
other hand, if flocculation of the spherical colloid intervenes before II 
reaches p*, deformation may occur subsequently by two alternative 
mechanisms: The contact surfaces may grow as a consequence of polymer- 
water interfacial tension (similar to neck-growth in dry aggregates), or the 
process may be driven by further increase in n as the drying continues. 

Brown originally noted[6,8] that n will ultimately converge to a value 
determined by capillary surface tension when the liquid meniscus intercepts 
a surface of densely packed spheres. That limit corresponds to n~l MPa for 
typical colloidal dimensions which exceeds p* for any molten polymer, but 
is still far too small to cause deformation of the corresponding glass. The 
characteristic "mud-cracks" which form when a latex dispersion is dried at 
temperatures below Tg are presumably caused by inhomogeneous stress 
fields in pores which develop as liquid menisci recede into the un-deformed 
packing. 

Such mechanistic variations have not been considered in earlier 
models of latex coalescence[9] and may help to explain some common 
variations in drying phenomenology. No experimental system has yet been 
adequately characterized for a quantitative analysis. A further complication 
is that non-uniform drying may establish osmotic gradients in the coating. 
The response to such gradients should depend upon the rheology of the 



dispersion which is also a strong function of colloidal interactions and the 
water content. 
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"Sintering" of Polymer Colloids 
S. Mazur & R. Beckerbauer 

Dupont Central Research & Development 
Wilmington, DE 

For aggregates of amorphous polymer spheres we examine the spontaneous 
shrinkage under surface tension at T>Tg. Analogous to sintering of inorganic powders, 
this process involves deformation of the component particles into space-filing shapes 
by local forces which vary inversely with particle size, but the viscoelastic character of 
polymer melts results in unique mechanistic consequences. For sufficiently small 
(colloidal) particles and high packing densities, the entire densification process occurs 
rapidly by recoverable viscoelastic creep with nö contriibution from viscous flow. 

I - Viscoelastic growth of adhesive contacts 

The creep compliance J(t) measures the time-dependent strain following 
application of a constant stress <y0 . For high Mw amorphous polymers, J(t) can be 
represented[1] by the sum of a glassy elastic response J0 - iGPa-"1, a time-dependent 
recoverable response Jr(t), and a Newtonian viscous flow: 

J(t) = e(t)/oo = Jo + Jr(t) + t/no 

Figure 1A shows data typical of an amorphous polymer with broad molecular weight 
distribution. During the glass relaxation (Tg ~ 112°C) Jr(t) increases rapidly to the 
plateau value Jn ~ 1 MPa-1. Viscous flow remains negligible until the terminal relaxation 
time T = JrTlo~ 5x104 seconds. 

When two contacting polymer spheres are deformed by surface tension, the 
radius of the contact xn grows in a manner similar to J(t), as illustrated in Figure 1-B for 
260 |im spheres. At early times neck growth is dominated by Jr(t) while the viscous 
contribution only becomes siginificant at times t > x. Both contributions increase with 
decreasing particle size, but in multi-particle aggregates deformation proceeds only to 
the limit of uniform density. Thus for sufficiently small particles this limit should be 
reached purely via the recoverable compliance with no contribution from viscous flow. 

What are the requirements to achieve uniform density within t « x? 

mm 
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II - Predictions from theory for adhesive contacts 

Consider an aggregate of identical incompressible spheres at initial packing 
fraction <£j in which each sphere contacts several of its nearest neighbors. When 
shrinkage occurs by uniform decrease of all interparticle distances, the particles 
ultimately deform into space-filling polyhedra. As <E> goes to unity the distance between 
closest centers goes from 2r to 2(r-8), such that: 

Oj/1.00 = {2(r-8)/2r}3 or 5 = r(1-<Djl/3) 

Simulations for pairs[3] indicate the following relation between the displacement 8 and 
contact radius xn: 

Xn2 = 2.42 r8 

The magnitude of xn in the plateau regime of Fig. 1-B agrees well with the value 
predicted by the JKR model[4] for adhesive elastic contacts. Using the last two 
equations to define the requisite contact radius for reaching full density, and assuming 
that the maximum compliance achieved for t« x is just the plateau value Jn, we obtain 
via JKR the following approximation^] for the maximum particle radius: 

rmax=0.47YJn(l-<&i1/3)-3/2 

where y is the surface tension. Results are tabulated below for various common 
polymers and values of <£j corresponding to both disordered and ordered (e.g.hcp) 
packings of mono-disperse spheres. 

Polymer Jn Y rmax   (nm) 
(MPa-1)     (mN/m) fy =0.58 0.74 

Poly(ethylene) 0.44 
Poly(tetrafluoroethylene) 0.60 
Poly(styrene) 4.90 
Poly(butadiene) 1.62 
Poly(methyl methacrylate) 1.15 

Table 1 - Maximum particle radius for full densification without viscous flow in 
aggregates of equi-sized spheres at the indicated packing densities. 
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Ill - Experiments on aggregates with narrow size distribution 

A series of colloidal acrylic spheres was prepared by emulsion polymerization 
These are co-polymers of methyl and butyl methacrylate with methacrylic acid 
(48.5/48.5/3), having   Mw > 2x105 ,Tg = 77°C (DSC at 10°/min), and narrow size 
distributions.    When dried at T<Tg, they form dense aggregates of un-deformed 
spheres featuring ordered (hep or fee) domains interspersed with less dense 
disordered domains. 

Shrinkage of the dried aggregates was measured as a function of temperature by 
minimal-load thermo-mechanical analysis (TMA-ML), and morphological changes 
were monitored by SEM and SAXS. TMA-ML results summarized in Figure 2 are 
consistent with values of rmax for P(MMA) given in Table 1. For r=70 nm < rmax 

shrinkage to full density occurs rapidly within 15°C of Tg. Similar kinetics are observed 
for r=243 nm ~ rmaXl but at slightly higher T. Porod analysis of the SAXS data (Figure 3) 
shows that the internal surface area (void surface) of sample B decreases about 1000- 
fold in 30 minutes at 80°C. However, for the larger particles (Fig.'s 2-C,D) only a 
fraction of the shrinkage occurs in the transition regime. The remainder requires 
T>130°C and is presumed to occur by viscous flow. 

Figure 4 shows SEM images of samples B-D following 10 minutes at 110°C 
conditions intermediate between transition and terminal creep regimes. As predicted! 
for r-770 nm > rmax voids persist even in ordered domains. For r= 380 nm, midway 
between the prediced range of rmax, the voids appear to be eliminated in the ordered 
domains but persist in the disordered domains. Finally, for r=243 nm few, if any, voids 
remain in either ordered or disordered domains. 

Expert technical assistance of 
J. Buckholz, R.V. Davidson, & R.G. Raty is gratefully acknowledged. 

References 

1 "pr'irfqRn* in ''Mfh°ds°fEf%^ntaiPhysics", Vol. 16c, pp. 1-58, Academic 
Press, 1980, and J. Non-Cryst. Sol., 131-133, 836 (1991). 

2 - S. Mazur & D. J. Plazek, Prog. Org. Coat, 24,225 (1994). 

3 - A. Jagota & P.R. Dawson, J. Am. Ceram. Soc, 73,173 (1990). 

4 - K.L Johnson, K. Kendall, & A.D. Roberts, Proc. Roy. Soc, Lond. A, 13 ,301 (1971). 

Sfl$8$?$S6Sä 

Til 

iff 

»mnvm u • m iiii«iiiwaHu«w»*JH*ag*»imti witUHMnii wu«m<mi<Mtiit»mi«,«jii.)i «wwimmiia 



■in »Hi \umwmmmmmmmw \mm> mmammmnmmm 

"" " "-' "" "■■     —fliHillTirBIlT 

o 

O 

O 
00 

O 

O 
CO 

-i     |    i    [■ 

o 
to 
T— 

o ; E 
<z 
o CO 
on o 

Ü r O CO i 
o II 
 O - i_ O 

ü ™ 

o 
CO 

o 

I- 
o 
o 

o 

o 
oo 

o 

o 
CD 

I     CO 

P   ö 

oo o    o 
o o  o o ooo 

Mi 
->—I—I—I I I.I.I 

O 00 CO TJ- C\J o 
*-; O O O O O (O^WOOIC^WO 

1-T-T-^OOOOO 

*p/p 

CO 

58 

rag 
co.E 

Eg 

C   O) 

Jp/P 



^wy^^WN^vWWMWWMMalmw^^yvyv^y - 

ü 
O 

So 
CD  2^ 

E c 
o 

h- 

«* 5 

< o 

> "a 

^ co 
CQ CD 

^ E 
5 CO 

E c 
o 
00 
CO 

E c 
eo 
CM 

o 
"co 
"TO 

CD 

E 
CD 

w 
c 
o 

TJ 
c 
o o 
O) 

o 

w . 
CD  Q. 

cog 
CD o 
0)0 
cnv- 

O CD 
^O !> ° 

w£ 
-£ <o Q-CD 
2E 
2 CD 

"Eg 
§1 
oS 
-2-0 

c o 
C£ 
CO to 
Ü c 

CO CO 

sS 
LJLjQ 



CD OJ 

CO 
E 

E° 
0)9. 
£ o 

'•CO^ 
CD CD    . 
-C-C CO 
CD CD 

co 

X;isug;ui x t**M 

_ c 

~°£ 
E  Q.3 

CM <0 C 

CD CD o 

I! s 
co c V CO Q,^ 
Jr (Dn 
£-Q o 
« g Q. 
CO  CO  W -n^- — 

i5 CD 
X CO D) 

C/) CD CO 

O)»- CO 

So E 
g°°CD 

2o) co 

jCD-=  3 

cO £, «cog» 

£ <° CD 

CO g> «j 
CD>- 

LEO co 



Parametric tip model and force-distance relation for Hamaker constant 
determination from atomic force microscopy 

C. Argento and R. H. French 
DuPont Co., Central Research, E356-317A, Experimental Station Wilmington, Delaware 19880-0356 

(Received 8 July 1996; accepted for publication 14 August 1996) 

Hamaker constants and dispersion forces interactions of materials are of increasing interest and the 
advent of atomic force microscopy (AFM) force measurements represents a new opportunity for 
quantitative studies of these interactions. A critical problem is the determination of a force-distance 
relation for realistic AFM probes. Due to the inadequacies of existing power-law sphere-plane 
models to describe the probe-sample system, we present anew parametric tip force-distance 
relation (PT/FDR). A surface integration method is developed to compute the interactions between 
arbitrarily shaped bodies. The method is based on the Hamaker pairwise integration in a continuous 
fashion, reducing the six-dimensional integration to a four-dimensional scheme. With this method, 
the PT/FDR is obtained and a nonlinear fitting routine is used to extract the model parameters and 
the Hamaker constant from AFM force-distance data. From the sensitivity analysis of the fitting of 
synthesized AFM force-distance data, one finds that, for large tip radius (compared to separation), 
the force is proportional to the product of the Hamaker constant and tip radius. Unique 
determination of the Hamaker constant can be achieved if a small radius tip is used in the AFM scan. 
By fitting to literature data, the effectiveness of the PT/FDR is shown. © 1996 American Institute 
of Physics. [S0021-8979(96)03422-6] 

I. INTRODUCTION 

The van der Waals force, which arises from the interac- 
tion of oscillating dipoles, has a role in controlling many 
aspects of the behavior of materials. It controls or influences 
macroscopic phenomena such as surface tension, wetting be- 
havior, colloidal stability, fracture, and adhesion. The van 
der Waals interactions can be quantified through the Ha- 
maker constant,1 which is a material property, and through 
an appropriate force-distance relation, which is dependent 
on the system geometry. 

The determination of the Hamaker constant is a impor- 
tant field of research. Ackler, French, and Chiang2 provide a 
description of the different methods available to obtain the 
Hamaker constant for different materials and configurations. 
One technique is the observation of the manifestation of 
these interactions on a macroscopic scale, in a phenomeno- 
logical approach. For example, the surface force apparatus3 

has been used to determine the interaction force between 
crossed cylinders with surfaces of cleaved mica. Through an 
analysis such as the one presented by Hamaker,4 the expres- 
sion for the total interaction force for the specific geometry 
and material configuration can be calculated. Following a fit 
of the force-distance relation obtained experimentally, the 
Hamaker constant is obtained. A similar and promising new 
approach is the use of atomic force microscopy (AFM), due 
to its intrinsic capability of measuring very small forces 
(~nN) at very small separations (~nm). 

AFM is based on the determination of the interaction 
force between a probe and the substrate-sample. Different 
kinds of interactions may be present including electrostatic 
(Stern et al.5), magnetostatic (Martin and Wickramasinghe6), 
and van der Waals (Weisenhorn et al.1). The van der Waals 
interactions are omnipresent and, for a clean, uncharged, and 
nonmagnetic system, it can be the only force field present. In 

a procedure similar to the one described for the surface force 
apparatus, the Hamaker constant can be determined. So far, 
due to the difficulty involved in the integration to obtain the 
interaction force, the probe has been erroneously modeled 
with simple geometries, such as a sphere. The use of such 
models has prevented the accurate determination of the Ha- 
maker constant for systems of interest. 

The problem to be resolved can be stated as one of in- 
tegrating the interaction force over the volumes of an arbi- 
trary probe and the sample and obtaining a correct force- 
distance relation. Developing such an integration scheme is 
the main goal of this work. Initially we present the problems 
involved in computing the interaction force between arbi- 
trary bodies and discuss existing results for simple geom- 
etries. We then present a surface formulation to improve the 
efficiency and the precision of these calculations. Following, 
we present a parametric model for a typical AFM probe. The 
interaction of this probe with a planar half-space is obtained 
using the surface formulation presented. We then show that 
the traditional power-law relation used to describe the force- 
distance dependence of the interaction force is inadequate 
since the AFM tip-substrate force-distance relation (FDR) 
cannot be approximated by a power law. We then demon- 
strate that the parametric tip-substrate force-distance rela- 
tion (PT/FDR) that we develop can be used to fit (nonlinear 
fit) experimental data and to determine both the tip param- 
eters and the Hamaker constant for the material configura- 
tion. 

II. INTEGRATION OF THE INTERACTION FORCE 

The problem of integrating the pair interaction force to 
obtain the total force can be approached at many different 
levels: the quantum-mechanical interactions between atoms; 
the molecular dynamic level of many atoms; or the macro- 
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FIG. 1. Scheme for the integration of the interaction between two arbitrarily 
shaped bodies. 

4 = T2CdispPlP2- (4) 

The double volume integral (3) is very difficult to ex- 
ecute, both analytically and numerically. Hamaker4 obtained 
the interaction force for simple geometries (spheres and pla- 
nar half-spaces). These geometries are of limited use, since 
they are not a good representation of the actual geometry 
involved in most physical problems. 

A limited attempt to simplify the integration involved in 
this problem is the "Derjaguin approximation," developed 
by Derjaguin.9 He proposed that two general curved surfaces 
could be treated as two planar half-spaces, which limits its 
application to surfaces with small curvatures (compared to 
their separation). This is clearly not the case if one considers 
the scale involved in AFM. This fact is discussed in more 
detail in the following section. 

scopic (and continuous) scale. The last approach is the one 
used in the present work and imposes some restrictions in the 
dimensions of the bodies that can be considered. It is ex- 
pected that it will be valid for bodies of sizes from several 
nanometers and larger. 

Assume that the potential energy of interaction w(d) is 
known for a pair of molecules as a function of the distance d 
of separation (pair potential). The interaction force between 
two molecules is then the gradient of the interaction poten- 
tial, namely, 

For van der Waals interactions the potential is 

w(d) = 
'disp 

(1) 

(2) 

where Cdisp is the interaction constant as it was defined by 
London.8 In this work we adopt the usual convention that a 
negative force is attractive. Hamaker4 performed the integra- 
tion of the interaction potential to compute the total interac- 
tion between macroscopic bodies. The hypotheses adopted 
by Hamaker were: 

(a) additivity: the total interaction can be obtained by the 
pairwise summation of the individual contributions; 

(b) continuous medium: the summation can be replaced by 
an integration over the volumes of the interacting bod- 
ies assuming that each "molecule" occupies a volume 
dV with a number density p; 

(c) constant material properties: the number density p and 
the interaction coefficient are constant over the volume 
of the bodies. 

This latter assumption implies an atomically abrupt surface 
and that there is no retardation effects.19 Following this set of 
assumptions, the total interaction force between two arbi- 
trarily shaped bodies, as shown in Fig. 1, is given by 

F=PlP2 // 
JVoJV, 

f(d)dVl dV2, (3) 

where px and P2 are the number densities of bodies 1 and 2. 
The Hamaker constant is then defined as 

III. SURFACE FORMULATION 

Our approach to deal with the problem of the complexity 
of the six-dimensional integration is described in detail in 
Argento, Jagota, and Carter10 which is summarized in this 
section. 

From Eqs. (3) and (1) one can write 

F=-Pip2|     I   VwdVldV2. 
JViJV2 

Now, let G be a vector field such as 

VG=-w. 

(5) 

(6) 

Then, replacing Eq. (6) into Eq. (5) and using the divergence 
theorem, a double-surface integral is obtained, 

= PlP2 f    f (G-n, )ri2 dS2 dS i' (7) 

where r^ and n2 represent the normals to bodies 1 and 2. 
This integral produces equivalent distributed tractions over 
the surface of body 1 that represents a weighted average of 
the influence of the surface of body 2. The effective tractions 
replaces the actual volume field resulting in the same total 
interaction force. The vector field G is obtained from the 
interaction potential of two molecules (or two infinitesimal 
volumes in the continuous formulation). Considering the ge- 
neric potential represented by a power law 

w(d)=-C/dm, (8) 

where d = (x-x)1/2 and x is the vector linking a point in body 
2 to a point in body 1 (interacting infinitesimal volumes in 
the continuous formulation) and C is an interaction constant. 
From Eq. (6) the solution obtained for the function G is 

Cx 
(3-m)(x-x) mil- (9) 

Using the distributive property of the divergence, expression 
(9) can be used to represent any potential that can be de- 
scribed by a series of inverse powers of degree higher than 3. 
The major advantage of this formulation is that the volume 
integration (5), which is an integration over six dimensions 
of a potential of degree - (m +1), can be reduced to Eq. (7), 
a four dimensions integration of a kernel of degree —{m 
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FIG. 2. Common geometrical models adopted for probe-sample system. z0 

is the separation and R is the tip radius. 

— 1). This reduction in dimension and degree represents a 
clear advantage in analytical and numerical calculations. 
This surface formulation is currently being used to simulate 
the sintering of viscoelastic nanoparticles. It can also be used 
to deal with problems like adhesion, crack-tip deformations, 
and colloidal interactions. 

IV. DEVELOPMENT OF A PARAMETRIC MODEL FOR 
A PROBE 

Most previous work that tried to interpret the force- 
distance curves obtained from AFM experiments modeled 
the tip of the probe as a sphere or a plane surface, as shown 
in Fig. 2.2'11"14 However, the force-distance relation ob- 
tained from these models fails to describe the experimental 
observations. One possible reason for this fact is that the 
geometry proposed to describe the probe is not close to the 
actual one. Therefore, the force-distance relations, usually 
power laws, derived for these' geometries are incorrect and 
not valid in the scale of AFM. Here we review the common 
sphere-plane model and present a more realistic parametric 
model for a typical AFM probe. 

The force dependence in the case of the spherical tip and 
a flat sample is4 

2AR3 

3^(z0 + 2/?)2' (10) 

where A is the Hamaker constant, z0 is the separation be- 
tween the sphere and the half-space surface, and R is the 
sphere radius. Assuming that the distance z0 is small com- 
pared to the radius R, this relation is reduced to 

Fs- 
AR 

(11) 

This assumption is generally not valid if one considers 
the scale involved in AFM, where the tip radius can attain 
values of 5 nm and the separations are of the same order of 
magnitude. The use of Eq. (10) to describe the interaction is 
also erroneous, since it assumes that the sphere "floats" in 
space, by which we mean that its radius is large enough so 
that all the "nonspherical" parts of the probe are away from 
the region of strong interaction. The rate at which the trans- 
versal area of the probe increases with the distance from the 
sample has to be taken into account. 

The model presented here is based on images of AFM 
probes obtained from scanning electron microscopy (SEM). 
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FIG. 3. Parametric tip model. R is the tip radius, rmax is the radius of the 
cylindrical part of the probe, y is the cone angle, a=ir/2-y is the angle 
included in the spherical cap, z0 is the probe-sample separation, r is the 
radius at any point on the surface, x is the distance from the cone apex, and 
A, B, and C define the spherical cap section and the conical section of the 
probe. 

The spherical cap seems to be a good description of the tip of 
the probe, but the continuation of the probe should also be 
taken into account Therefore, we adopt the model shown in 
Fig. 3. It consists of a cylinder followed by a conical section 
and a spherical cap. Such a model can be completely defined 
with three parameters: the tip radius R, the cone angle y, and 
the macroscopic probe radius rmax. Following we describe 
the integration of the interaction force for this geometry. 

Let us assume that body 1 in expression (7) is the plane 
substrate and body 2 is the probe. We want to compute the 
vertical component of the interaction force, all other compo- 
nents being zero due to the symmetry of the problem. There- 
fore, Ü!=(0,0,1), and expression (7) becomes 

F= 

where 

JS' 
-2  ,   H(z)n2dS2, 

H(z)-- -M3- m){x1+yHz2)mlldxdy- 

(12) 

(13) 

Integrating Eq. (13) over the appropriate limits for x and y, 
(0->oo) yields 

H(z)=~- 
277 

(3-m)(m-2)zm-3' 

and, considering van der Waals interactions so that m = 6, 

(14) 

H(z)- 6z3 (15) 
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Since we are only interested in the vertical component of 
the force, we shall now integrate the vertical component of 
Eq. (12) over the surface of the probe. Integral (12) can be 
broken in two different contributions, as shown in Fig. 3: 

£C C$ie spherical cap and the remaining truncated cone. To ob- 
tain the contribution of the spherical cap first we write z as a 
function of z0 and 6, 

z = z0 + R-R cos 6. (16) 

From Eq. (15), H(z) can be written as H(6,ZQ), 

77 

Hsc(6,z0)-- 
6(z0+R-R cos 6) 3> (17) 

where the superscript sc indicates the spherical cap. Since 
only the force along z is being considered, the component of 
the normal n2 along this direction is 

«o° = -cos '2z — — *■*>* "• (18) 

The infinitesimal element of the surface dS2 on the spherical 
cap is 

dSS2=2TrrR dO^lirR2 sin 6 dd. (19) 

The contribution of the spherical cap to the total force is 

Ff(z0)=^ j Hsc(d,z0)n2
c

zdSf, (20) 

Substituting Eqs. (17), (18), and (30) into Eq. (20) and inte- 
grating over 0 from 0 to a, where a is the angle included in 
the spherical cap, from point A to point B in Fig. 3, produces 

sc AR2(l— cos a)(R cos a—Zo COS a—R — z0) 
F

z(z0) =  
6zQ{R + zQ-R cos ay 

(21) 

By making a= TT in the above expression we obtain relation 
Eq. (10). Replacing y=Tr/2-a in expression (21), we finally 
obtain 

F?(Zo) = 
Afl2(l-sin y)(R sin y~z0 sin y-R~z0) 

6zt(R + zQ-R sin y)2 ■  (22) 

For the contribution of the truncated cone, first we write 
z as a function of r and z0, 

z = Zo + R(l -cos a) + tan a(r-R sin a). (23) 

From Eq. (15) and after simplification, H(z) can be written 
as H(r,z0), 

H™%r,z0)=- 
•n- cot   a 

(24) 
6[r+cot a(R + z0~R sec a)]3' 

The component of the normal n2 along z for the cone is 

«c
2°

ne=-cosa. (25) 

The infinitesimal element of the surface dS2 on the cone is 

27rr 
dS?oe= dr. (26) 

cos a 

The contribution of the cone section to the total force is 

1°ne(zo) = ^I J fl-cone(r,zo)n2°ne <tfc
2
one• (27) 

Substituting Eqs. (30), (25), and (26) into Eq. (27) and 
integrating over r from R sin a to rmax, from point B to point 
C in Fig. 3, produces 

F?ne(zo)=~A 
(rmia~R sin a)[2^rmax(cos a-cos2a) + 2rmaxz0 cos a-2R2 sin a + R2 sin2a+7?z0 sin 2a] 

12sin a tan a(R+z0~R cos a)2[rmax+cot a(R + Zo~R sec a)]2 

(28) 

It is generally reasonable to assume that rmax is much larger 
than the other dimensions of the probe, therefore, taking the 
limit of Eq. (28) when rmax—><=°, we obtain 

-A[zp cos a + R cos a-R cos(2aQ] 
z    U°;        6 tan a sin a(z0+R-R cos a)2    '        K^> 

Replacing y=irl2—a we obtain 

A tan y[z0 sin y+R sin y+R cos(2y)] 
F?nt(z0) 6cos y(zo+R~R sin y)2 

(30) 

By making R = 0 in this expression, we obtain the expression 
for the force-distance relation of a sharp cone, 

-A tan   y 
F?ae(zo)=- 6z o 

(31) 

V. PARAMETRIC TIP FORCE-DISTANCE RELATION 
(PT/FDR) 

The total force on the probe, adding Eqs. (22) and (30), 

^(zo) = /rre(zo) + ^c(^o), (32) 

is 

Fz(z0) = 
AR2(l-sin y)(R sin y~Zo sin y-R~Zo) 

6Z
2

0(R + ZQ-R sin y)2 

-A tan y[zo sin y+R sin y+R cos(2y)] 
+ ■ 

6 cos y(zo + R~R sin y) 

(33) 

The assumptions made in the derivation of this expres- 
sion are the same used by Hamaker (1937). Since there is no 
geometric assumption in this derivation, relation (33) gives 
exactly the force on the parametric probe if nonretarded Van 
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FIG. 4. Scheme for the cone with same transversal area as the pyramid 
probe with aspect ratio 1:1. x is the distance from the apex and y is the cone 
angle. 

der Waals interactions are the only interactions present. Un- 
like the simple power laws adopted in other works, PT/FDR 
does not assume that the curvature of the probe surface is 
small compared to the distance of separation between probe 
and sample. In the following section we compare PT/FDR 
with the traditional power-law models. 

VI. ANALYSIS OF THE FORCE-DISTANCE RELATION 

To determine the inadequacies of power-law models ap- 
plied to AFM tips we compare them to the PT/FDR. A con- 
venient way to do so is to analyze the force sensitivity to the 
distance of separation, which is the logarithmic slope of the 
force-distance relation. In the case of a power-law relation, 
the force sensitivity is identical to the exponent of the power 
law. The sensitivity is denned as 

s(z0) = 
d ln[F,(z0)] 

d ln(zo)    ' 
(34) 

The first case we are going to consider is the common 
pyramid probe. This probe has an aspect ratio of 1:1. The 
pyramidal geometry cannot be directly reproduced with the 
parametric model described in the previous section. To use 
the conical model, we should find an equivalent cone angle 
that will give the same transversal area for a given distance 
from the tip apex as for the pyramid. 

In a pyramid with aspect ratio 1:1, the area of intersec- 
tion of any plane parallel to the sample plane with the pyra- 
mid is simply x2, where x is the distance from the pyramid 
apex. In the cone geometry, this area is given by TT{X tan y)2, 
where y is the cone angle as defined in Figs. 3 and 4. The 
cone angle where these two expression are equivalent is sim- 
ply given by y = arctan yjlhr = 0.5137. This geometry is 
shown in Fig. 4. In Fig. 5 we plot the evolution of the force 
sensitivity as a function of the distance z0 from the sample 
plane for different tip radii and y=0.5137. The force sensi- 
tivity of expression (10) (sphere-plane model) is also shown. 
Note that, except for large radii, the force sensitivity is not 
uniform over the distance. This implies that the power-law 
representation, even for the sphere-plane model, is not valid. 
In some extreme cases, as when the tip radius is small com- 
pared to the separation, there is strong variation in the force 
sensitivity. In Fig. 6 we plot the force-sensitivity as a func- 
tion of the tip radius for the parametric model and for the 
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FIG. 5. Force sensitivity as a function of the separation for the PT/FDR and 
the spherical model for several radii R and probe angle y=0.514. The radii 
and the separation are given in units of length. 

sphere model for a fixed separation z0= 10 units of length. It 
is clear that for small tip radius the sphere model is com- 
pletely wrong; however, there is some agreement in the large 
radius domain, which could be expected. These results 
should also be compared with the plane-plane model, with a 
force sensitivity of -3, and with the sharp cone-plane 
model, expression (30), which has a force sensitivity of —1. 
It is also clear that these models are unsuitable to describe 
the probe-sample interaction. 

Another important aspect of this analysis is the sensitiv- 
ity of the force-distance curve to each of the individual tip 
parameters. It is evident that the PT/FDR evolves toward the 
sphere model when the radius is increased, which can be 
verified in Figs. 5 and 6. The same is true in Fig. 7, where we 
plot the PT/FDR for several different tip radii and a fixed 
cone angle y=0.5137. Note the near-constant slope for large 
radii and the varying slope for small radii. In the large radius 
domain, since the curves are parallel, the radius has a multi- 
plicative effect on the PT/FDR, in the same way as the Ha- 
maker constant. In Fig. 8 the PT/FDR is plotted for different 
cone angles and a fixed radius of 20 units of length. There is 
a slight change in the predicted force for small separations. 
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70       80       90       100 

FIG. 6. Force sensitivity as a function of tip radius for the PT/FDR and the 
spherical model at several separations j0 and probe angle -y=0.514. The 
radii and the separation are given in units of length. 
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Separation, z0 

FIG. 7. Double log plot of the PT/FDR for several radii and probe angle y=0.514. The radii and the separation are given in units of length. The verticalj 
is the negative of force divided by the Hamaker constant and is given in inverse units of length. 

On the other hand, at large separations, where the effect of 
the tip radius is diminished, the cone angle is the dominant 
parameter. This clearly divides the domains of importance of 
the parameters: close-range interaction controlled by the tip 
radius and long-range interaction controlled by the cone 
angle. 

VII. NONLINEAR FITTING PROCEDURE 

In this section we describe the nonlinear fitting proce- 
dure and the tests to evaluate its capability to predict the tip 
parameters and the Hamaker constant. Current experimental 

data are inadequate to perform such evaluation since they 
usually contain a high noise-to-signal ratio and would lead to 
inconclusive results. Instead, we decide to use analytical data 
with artificial noise. In a first step, a number of random 
points is generated to represent the sampling in the distance 
of separation. For each of these points the force acting on the 
probe is calculated using the PT/FDR. The data produced 
this way are then perturbed by a random noise with con- 
trolled amplitude. Two cases were considered: no random 
noise and random noise from -10% to 10% of the maximum 
force on the data set. Finally, a nonlinear fitting routine is 

3 4       5     6 10° 2 3        4      5    6 

Separation, zn 

101 

FIG. 8. Double log plot of the PT/FDR for several probe angles and tip radius Ä = 20. The radii and the separation are given in units of length The vertical 
axis is the negative of force divided by the Hamaker constant and is given in inverse units of length. 
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TABLE I. Values and errors extracted from the different fitting tests. The radius « 
Hamaker constant A is in consistent units of energy. 

is in units of length and the 

A R AR r 
No noise, R = 100 

fixed radius 
A—1.00 
e = 0% 

fixed, R= 100 AR—100 
e = 0% 

y-0.514 
« = 0% 

No noise, R= 100 
fixed angle 

A—0.90 
«=-10% 

Ä-»110.8 
e=10.8% 

A«-»99.8 
« = 2.5% 

fixed, r=0.514 

No noise, R = 100 
all d.o.f. 

A—0.85 
«=-15% 

R —118.0 
«=18% 

AR—99.7 
e=-0.3% 

y—0.412 
«=-19.8% 

10% noise 
«=100 
fixed radius 

A—0.99 
e=-0.1% 

fixed, « = 100 AÄ—99.6 
e=-0.4% 

7—-0.994 
«=-293% 

10% noise 
R = 100 
fixed angle 

A-»1.58 
« = 58% 

R -»62.82 
e = -37.2% 

A«-99.3 
e=-0.7% 

fixed, 7=0.514 

10% noise, 
«=100 
all d.o.f. 

A-»0.84 
e=-16% 

Ä—»117.1 
«=17.1% 

A«—98.0 
e = 2.0% 

7—-0.324 
«=-163% 

No noise, R = 5 
fixed radius 

A—1.00 
e = 0% 

fixed,« = 5.00 AÄ—5.00 
e = 0% 

7—0.514 
e = 0% 

No noise, R = 5 
fixed angle 

A —1.00 
e = 0% 

R—5.00 
e=0% 

AR—5.00 
« = 0% 

fixed, 7=0.514 

No noise, R = 5 
all d.o.f. 

A-»0.98 
e = 2% 

R—5.34 
e = 6.7% 

AR—5.21 
« = 4.2% 

7—0.514 
e = 0% 

10% noise, R = 5 
fixed radius 

A-»0.99 
e=-l% 

fixed, « = 5.00 AÄ—5.05 
«=-1% 

7—0.528 
e = 2.7% 

10% noise, « = 5 
fixed angle 

A—1.03 
e = 3% 

«-»4.84 
e=-3.3% 

A«—5.01 
e=-0.2% 

fixed, 7=0.514 

10% noise, R = 5 
all d.o.f. 

A—1.04 
€ = 4% 

«-»4.93 
e=-1.3% 

A«—5.13 
e = 2.6% 

7—0.499 
e=-2.7% 

used to evaluate the parameters of the PT/FDR and these 
values are compared to the initial values used in the genera- 
tion of the data. For the nonlinear fitting routine, we used the 
Levenberg-Marquardt method, as implemented in the MATH- 
EMATICA® statistics package.15 

Table I shows the results of the fitting procedure. The 
first set of data was constructed considering the separation 
from 2 to 20 units of length, a tip radius R = 100 units of 
length, the cone angle 7=0.5137, Hamaker constant A = l 
unit of energy, and no random noise. Initially the tip radius 
was held fixed at the correct value and the Hamaker constant 
and the cone angle were the degrees of freedom. The fit for 
this case had an error of less than 0.1% for all the param- 
eters. For the next case, where the angle was held fixed, there 
is a good prediction for the quantity AR. The values obtained 
for the Hamaker constant and the tip radius are within 10% 
of the correct values. When the three parameters were left as 
degrees of freedom, there is still a good agreement for the 
quantity AR, but then all the three parameters have an error 
of more than 10%. We notice here the effect discussed in the 
previous section, where the product between the Hamaker 
constant and tip radius is the governing parameter, when the 
tip radius is large. In the next set of data, a random noise 
going from -10% to 10% of the maximum force (calculated 

at the minimum separation of 2 units of length) was added to 
each data point. The effect observed on the data without 
noise is repeated here. In all cases there is very good predic- 
tion for the quantity AR, even when all the parameters are 
degrees of freedom. Due to this fact, all the values for A and 
R that will satisfy the value for this quantity will produce 
good fittings. The prediction for the cone angle is very bad, 
even when the radius was held fixed. In the case of the large 
tip radius, the cone angle reflects only the information at 
long range and its contribution to the total force is very 
small, therefore being very difficult to fit. Figure 9 shows the 
noisy data set and the fitting for all three degrees of freedom. 
Notice the good fitting, even with bad predictions for A, R, 
and y. This indicates that the system has redundancy, the 
only important parameter is the quantity AR. 

The next set of data was generated under the same con- 
ditions except for the tip radius /?=5 units of length. The 
predictions for the three parameters in all cases are very 
good, including for the data set with noise. The contributions 
to the total force of the spherical and conical parts of the 
probe are equivalent, therefore being easier to fit. Also in this 
situation, the radius does not act as a multiplicative coeffi- 
cient as was the case for the large radius data set. The quan- 
tity AR is not the governing parameter any more and the 
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Fitting parameters: A -> 0.84,R -» 117.1,Y -+ -0324 

Data set parameters: A = \,R = 100,y = 0.514 
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FIG. 9. Artificial data with random noise and the resulting fitting for the 
large radius case (R = 100 units of length). 
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FIG. 11. Experimental data obtained by Biggs and Mulvaney (Ref. 13) and 
the different fittings proposed. 

individual parameters have equal importance. Figure 10 
shows the noisy data set and the fitting for all three degrees 
of freedom. This time, a good fit and good prediction for the 
parameters were obtained, indicating that the system is not 
redundant. 

From this set of tests we can conclude that the fitting 
procedure is very efficient to extract the parameters when the 
tip radius is of the same, or lower, order of magnitude as the 
separations where the measurements are being made. In the 
other case, a large tip radius, the cone angle is not an impor- 
tant parameter and only information on the quantity AR can 
be accurately extracted. This is true even for the noisy data 
tested. 

VIII. APPLICATION OF THE FITTING PROCEDURE TO 
EXPERIMENTAL DATA 

In this section the nonlinear fitting procedure describe in 
the previous section is applied to two sets of experimental 
data. The first experiment considered was performed by 
Biggs and Mulvaney.13 They measured the force between a 
gold-coated AFM probe and a flat gold surface in water. The 
second experiment considered was performed by Ducker and 

-0.04 

ST 
8 -008 

Fitting parameters: A -► 1.04, R -+ 433, y -> 0.499 

Data set parameters: A = 1,R =5,y =0514 

1 3 5 7 9        11        13       15       17       19       21 

Separation, z0 

FIG. 10. Artificial data with random noise and the resulting fitting for the 
small radius case (R = 5 units of length). 

Clarke,14,16 where they obtained the force of on a silicon 
nitride probe interacting with a silicon nitride flat surface in 
water. 

Biggs and Mulvaney performed two sets of experiments. 
In the first one, a gold-coated silica sphere was attached to 
the AFM cantilever. The final radius of the sphere was found 
to be 3.3 ±0.1 fjm. This radius places the sphere in the large 
radius domain and, considering the distances of separation 
sampled going from 9 to 100 nm, the traditional approach 
using the simplified power-law model can be used (except 
for the fact that retardation19 may be involved). The second 
experiment consisted of measuring the interaction force be- 
tween an AFM probe coated with gold and a flat gold 
sample. The authors calculated an effective tip radius of 100 
nm. The Hamaker constant for this configuration was ob- 
tained by Rabinovich and Churaev17 and ranges from 90 to 
300 zJ, the value of 250 zJ being used by the authors as the 
best fit for their experimental data. 

We analyzed the same experimental data under different 
conditions of fitting as it has been described in the previous 
section. The value of the force at small separations and the 
fact that the cone angle is a negligible parameter during the 
fitting indicates that the tip radius is large. Therefore, the 
cone angle was fixed at 0.514, which is characteristic of the 
cone equivalent to a pyramid with a 1:1 aspect ratio. This 
value had little effect on the final shape of the FDR. The 
values of the Hamaker constant and the tip radius fluctuated 
a lot under the different conditions of fitting, but we consis- 
tently extracted their product as being 12.6±0.3 nNnm2. 
Figure 11 shows the experimental data, the fitting proposed 
by the authors, with a tip radius of 100 nm and a Hamaker 
constant of 250 zJ, and the fitting obtained with PT/FDR 
with AR-12.6 nNnm2. With this value and a tip radius of 
100 nm, the Hamaker constant calculated would be 126 zJ. It 
is clear that the curve plotted with these values is in very 
good agreement with the experimental data. The value of 
126 zJ is within the limits obtained by Rabinovich and 
Churaev.17 The value of 100 nm was measured by the au- 
thors using an electrostatic method proposed by Drummond 
and Senden,18 where the probe is modeled as a sphere. Since 
the actual shape of the tip is not spherical and the value of 
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FIG. 12. Double log plot of the experimental data obtained by Ducker and Clarke (Ref. 14). The curves correspondent to force sensitivities -1.1 and -3 are 
also shown. 

the effective tip radius given by the authors is not equivalent 
to the tip radius as defined in this work, some disagreement 
is expected. 

The second set of experimental data considered here 
were obtained by Ducker16 as described in Ducker and 
Clarke.14 The data consist of force-distance points obtained 
with a silicon nitride probe and a flat silicon nitride sample in 
water, with separations ranging from 5 to 80 nm. The values 
for the Hamaker constant for this configuration reported in 
the literature range from 45 to 100 zJ.2 There is no informa- 
tion given by the authors regarding the tip radius of the probe 
used; we expect it to be in the vicinity of the more common 
probes used today, which is 100 nm. 

The first thing we notice in these data is the unusually 
high interaction force. With a pyramid probe and 100 nm tip 
radius and at the higher end of Hamaker constant for this 
material configuration, 100 zJ, the force calculated from PT/ 
FDR would range from -6.37X10-2 nN at 5 nm to 
—2.20X 10-4 nN at 80 nm. These values are far lower than 
the values obtained in the experiment, where the force at 5 
nm is -9.26X10-1 nN. Another important feature of this 
data is its force sensitivity to distance (the log-log slope). 
Figure 12 shows the data in a double log plot. The sign of the 
force was inverted and only values representing separations 
from 5 to 40 nm are plotted. Notice in the figure the initial 
sensitivity of approximately -1.1 and its evolution to a 
value of -3. This is not consistent with any of the dispersion 
force models described here. In the sphere model, the sensi- 
tivity ranges from -2 at close separations to -4, which is 
representative of a molecule interacting with a halfspace. For 
the PT model the sensitivity goes from -2 at close separa- 
tions to — 1 at long range, which is representative of a sharp 
cone. There are several possible explanations for these facts. 
One possible cause is that the model presented here accounts 
only for the van der Waals forces. The model cannot repro- 

duce the experiment if there is any other type of interaction 
present. That would be the case, for example, if other types 
of long-range interactions were present. 

Another possible explanation for this fact is the wrong 
determination of the point of zero force and zero separation, 
what is a major problem in AFM experiments. To verify 
these effects, an offset was added to the distance of separa- 
tion and to the total force in the PT/FDR. These two param- 
eters were also used in the nonlinear fitting routine. In Fig. 
13 the FDR thus obtained is plotted along with the data. This 
curve was obtained with an offset on the distance of 7.03 nm 
and on the force of 5.32X 10~2 nN. As was the case with the 
previous example, the important parameter is the quantity 
AR, which was extracted as 1231 nN nm2. For a tip radius of 
100 nm, the Hamaker constant would be 1.23X 104 zJ, which 
is far greater than expected value for this material configu- 
ration. 
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FIG. 13. Experimental data obtained by Ducker and Clarke (Ref. 14) and 
the fitting proposed. 
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IX. CONCLUSION 

The main goal of this article was to introduce the force- 
distance relation for a realistic parametric tip, which has been 
successfully achieved in the form of the PT/FDR. Further- 
more, the study on the numerically generated data set 
showed that, in the more common cases when the tip radius 
is large, the determination of Hamaker constant from the 
nonlinear fitting routine is compromised by the fact that the 
Hamaker constant and the tip radius are redundant param- 
eters. In these cases, the angle of the conical part of the probe 
is irrelevant, especially when the data has a high noise-to- 
signal ratio at large separations. However, the same analysis 
showed that all the three parameters can be accurately ex- 
tracted from the data if the tip radius is small. This is spe- 
cially interesting since, in these cases, the sphere model is 
completely invalid. The nonlinear fitting routine is very effi- 
cient when there is no redundancy of parameters in the PT/ 
FDR, as in the small radius regime. 

The study performed on prior experimental data was not 
conclusive since both experiments were performed with 
large radius tips. In all cases we were able to produce ex- 
tremely good fits to the data with the PT/FDR. The quantity 
AR was correctly extracted from the data set obtained by 
Biggs and Mulvaney13; however, it seems that experimental 
results presented by Ducker and Clarke14 cannot be ac- 
counted for by van der Waals force alone, even with the 
offset corrections introduced. The interaction forces in this 
experiment were extremely high to be described as van der 
Waals forces. We conclude that either there is an experimen- 
tal problem or an extra attractive force. 

More analysis is necessary from experiments with 
probes with smaller tip radius and smaller noise-to-signal 

ratio. We could benefit from AFM force distance measure- 
ment in ultrahigh vacuum, where the Hamaker constant is 
usually large and the noise-to-signal ratio is, consequently, 
lower. 
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Particle size limits for sintering polymer particles near Tg 

S. Mazur, R. Beckerbauer, & J. Buckholz 
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Wilmington, Delaware 19880-0356 

Abstract 

We examine the spontaneous shrinkage of aggregates of amorphous polymer 
particles under surface tension as a function of temperature. The relative contributions 
of retarded elastic deformation and Newtonian viscous flow are considered in the 
context of the theory of adhesive contacts and explored in experiments on high 
molecular weight acrylic latex particles. The results confirm the existence of a 
maximum particle size and minimum packing fraction for rapid sintering at temperatures 
near the glass temperature Tg. Beyond these limits complete densification requires 
viscous flow or externally applied forces. Experimental measures of these limits for a 
series of acrylic copolymer colloids are in good agreement with theoretical predictions. 
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In sintering, an aggregate of small particles spontaneously shrinks into a 

uniformly dense body when the intrinsic forces of surface tension deform the particles 

into space-filling shapes. Since these forces increase with the mean curvature of the 

contacting surfaces the rate of shrinkage generally increases with decreasing particle 

size, all other factors being equal. Herring[1] showed that for any simple mechanism of 

material transport, such as Newtonian flow, the sintering time should vary inversely as 

some characteristic power of the particle size. However, real materials often deform by 

more complex mechanisms[2]. For example all liquids display a viscoelastic response 

at very short times following application of a stress, so that the conventional Newtonian 

sintering model cannot describe the earliest stages of contact growth. Consideration of 

viscoelastic (i.e. time-dependent) mechanics is especially important for high molecular 

weight polymer melts because their viscoelastic compliance is large in magnitude and it 

remains independent of the Newtonian viscosity for many decades in time[3,4]. 

We examine here the particle size dependence of sintering for high molecular 

weight and cross-linked polymer colloid particles. We show that particle size plays is 

unique role as a consequence of the viscoelastic character of these materials. 

Specifically, for particles smaller than a certain size limit, sintering occurs entirely by 

retarded elastic deformation with no detectable contribution from viscous flow while for 

particles larger than this limit the sintering time becomes strongly dependent on 

viscosity. These kinetics represent dramatic deviations from Herring's scaling principle. 

An important practical consequence is that particles smaller than the limiting size sinter 
rapidly to full density at temperatures near the glass temperature Tg regardless of how 

high the molecular weight. Section I reviews an approximation based on the theory of 

adhesive contacts from which the limiting size may be predicted for several common 

polymers. These turn out to be in the regime of colloids generally accessible by 

emulsion polymerization. Experiments on both linear and cross-linked methacrylate 

copolymers prove to be in very good agreement with those predictions. 

I - Viscoelastic growth of adhesive contacts between polymer particles 

An earlier study[5] of contact growth driven by surface tension for macroscopic 

acrylic polymer spheres revealed the importance of viscoelastic deformation. Shown in 

Figure 1A are data for a sphere of radius 130 nm in contact with a flat film of the same 



material. The early growth kinetics is much more rapid than predicted by numerical 

simulations for viscous sintering, yet it closely resembles the increase in J(t), the 

viscoelastic shear creep compliance, measured independantly on bulk specimens of the 

same polymer (Figure 1B).    Moreover, within the time interval corresponding to the 

early contact growth J(t) was shown to be completely recoverable. Deformation in this 

time regime represents a time-dependent, retarded elastic response[3] which is 

completely independent of the Newtonian viscosity. The magnitude of the plateau in the 

growth kinetics could be predicted rather accurately from the theory of adhesive 

contacts due to Johnson, Kendall, & Roberts (JKR) [6] by substituting the experimentally 
determined recoverable compliance Jr(t) for the equilibrium elastic compliance Je in the 

model. (For reasons which are now understood[6] this approximation is not adequate to 
represent the kinetics in detail). 

The rheological data in Figure 1B illustrates several features typical of 

amorphous, high molecular weight, linear polymers in general. At temperatures above 
the glass temperature Tg J(t) can be generally be written as the sum of three terms[3]: 

J(t) = J0+ JKt)+ t/Tlo (1) 

where J0 is the elastic compliance of the glass (<10-9 Pa-1), Jr(t) is the recoverable, or 
retarded elastic component, and t/r|0 is the contribution from Newtonian viscous flow. 

At temperatures near Tg Jr(t) increases rapidly to the "plateau" value Jn (ca. 10-6 Pa"1 

for the example shown). For polymer chains longer than the critical molecular weight 
Me, Jn varies with the polymer structure but is independent of molecular weight[4]. 

Subsequent increases in J(t) are modest until the terminal relaxation time T when the 
retarded elastic response is overtaken by viscous flow, namely: T= J|-r)o • Since r|0 

varies strongly with molecular weight (eg. r)0 a Mw
3,4) so too does %. Consequently 

molecular weight has a significant effect on viscous sintering but should have no 

influence on the early stage of contact growth. (This expectation is consistent with 
experimental evidence[5]). 

The surface tractions responsible for contact growth increase with decreasing 

particle size regardless of the deformation mechanism. But since retarded elastic 

deformation always precedes Newtonian flow, we expect that sufficiently small particles 

sintering should sinter completely (to uniform density) in times «T, that is with no 

contribution from viscous flow. As a practical matter, it is of interest to process materials 



in the shortest times and lowest temperatures possible. Our objective is to identify the 

necessary and sufficient conditions for an aggregate of polymer particles to sinter 
rapidly at a temperatures near Tg. In this regime we may regard the maximum extent 

of deformation to be limited by the retarded elastic response of the melt which grows to 
the value of the plateau compliance Jn . 

The extent of deformation required to fully density an aggregate of spherical 
particles depends upon the initial packing fraction <E>j. If all the particles have 

identical radius r and shrinkage occurs by a uniform decrease in the distances between 

particle centers (affine shrinkage), then the largest inter-particle contacts will develop 

between contacting neighbors in the original packing. The situation is illustrated in 

Figure 2. 

As the packing fraction goes from Oj to 1, the center-to-center distance of these 

contacting pairs decreases from 2r to 2(r-8). This leads to the following geometric 

relation: 

« -3 

= r(l-0.1/3) 
(1) 

The relationship of the contact radius xn to 8 has been examined for a number of 

deformation mechanisms[7,8] and found to conform to the following empirical relation: 

n 1,6 (f) 
(2) 

Equations 1 and 2 provide an estimate of the contact radius required to achieve 
complete densification as a function of Oj, and r. For a simple elastic material we can 

use the classic theoretical results of contact mechanics to relate this deformation to the 

driving force. For example in the absence of any surface tension the required contact 

radius might be achieved by application of an external force F normal to each contact, 

and the magnitude of F may be calculated from Hertz's theory[9]. Dividing F by the 

cross-sectional area gives the minimum external pressure required to fully density the 

packing in the absence of surface tension, namely: 



1/3 3/2 

F (1"°i   } 

P  .  = -^ = 6.39  l-  
mm     -rr

z J 7tr e (3) 

where Je is the elastic compliance.   More important for our purposes is the limiting 

condition where the surface tension y provides the only driving force in the absence of 

any external loads (F=0).   In that case the equlibrium contact area may be obtained 

from the JKR model[6] which yields the following estimate of the maximum particle 

radius: 

YJe 
rmax " °-47 1/3 3/2 

(l-O.    ) 
(4) 

Table 1 summarizes examples of Pmjn and rmax calculated for several common 
polymers where Jn has been substituted for Je. Values of <J>V were chose to be broadly 

representative of the aggregates obtained by drying un-flocculated dispersions of 
mono-disperse colloids. Thus <E>v=0.58 corresponds to the concentration at which 

particles in disordered "hard-sphere" dispersions lose mobility and develop solid-like 
properties[10], while Ov=0.74 corresponds to ordered dense packings (fee or hep). 

While rmax is predicted to be of colloidal dimensions in all cases, there are significant 
variations primarily as due to the variations in Jn. 

In order to test these predictions experimentally, a series of acrylic colloids were 

prepared in particle sizes smaller, larger, comparable to the values of rmax predicted for 

poly(methyl methacrylate). While the polymer used in these experiments is actually a 

co-polymer with butyl methacrylate and a minor fraction of methacrylic acid, the 
resulting differences in Jn and y are likely to be smaller than the margin of error in the 

approximations. 

II - Materials and Experimental Methods 

The acrylic colloids were prepared by batchwise emulsion polymerization using 

established procedures. The larger particles were obtained by secondary growth of 

smaller "seed" particles. The properties are summarized in Table 1. In each case the 

particle size distribution was quite narrow, as reflected for example by less than 5% 



non-exponential contributions to the auto-correlation function in quasi-elastic light 

scattering.   Samples of the dispersions (25% solids) were allowed to dry on porous 

substrates at ambient temperatures to obtain aggregate coherent although fragile 

specimens about 1 cm in width, between 1 and 2 mm thick. 

As shown by the scanning electron micrograph (SEM) in Figure 3, the particles 

remain spherical after drying and consist of both order dense domains and dis-ordered 

domains of a lower local density. On sintering these specimens become optically clear 

and mechanically tough. No bubbles are formed. Measurements before and after 

sintering confirmed that shrinkage in thickness and in-plane dimension were uniform. 
Accordingly, the difference between the initial thickness d0 of the specimen and the 

thickness df of the fully dense sintered product may be used to estimate Oj: 

Oj/1 =(df/d0)3 (5) 

Sintering kinetics was determined by thermomechanical measurements designed 

to minimize the effects of external forces. The sample was placed in a temperature- 

controlled hot stage its thickness was measured as a function of time and temperature 

by means of an optical displacement sensor (Fotonic Sensor, MTI instruments). The 

measurement requires a surface of constant reflectivity which was achieved by 

positioning a 2 mm sintered silver disk as optical target on the surface of the sample. 

The disk weighs about 2 mg, less than the mass of the sample itself. The net 

gravimetric pressure, ca. 16 Pa, is negligible compared to the Pmjn (Table 1), so that 

the observed dimensional changes may be safely regarded as the consequence of 

intrinsic surface tractions. 

Ill - Results and Discussion 

Figure 4 shows thermomechanical analysis (TMA) and differential scanning 

calorimetry (DSC) measurements on specimens of the smallest particles (r=70 nm) 

heated at 10°C/minute. TMA results are also shown during cooling at the same rate. 

DSC shows the decrease in heat capacity at Tg accompanied by an overshoot typical 

of an aged glassy material. A very slight exothermic peak is also evident at about 82°C. 

The appearance of such exotherms during the first heating of a polymer colloids was 

first noted by Mahr[11] whose quantitative measurements supported the conclusion that 

they correspond to the loss of surface free-energy during sintering. Indeed the TMA 
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results show that densification occurs completely between 68 and 94 °C. The reversible 

linear changes in dimensions at higher temperatures simply reflects the coefficient of 

linear expansion of the melt (ca. 2x10"4/°C). 

Figure 5 shows TMA results for particles for both linear and cross-linked particles 

with r~200nm, just below the value of rmax predicted for disordered aggregates (250 

nm). Sintering again occurs in the vicinity of Tg (74-97°C), about 2°C higher than for 

r=70 nm. The most striking feature is that cross-linking has no detectable effect on the 

rate (or temperature regime) for sintering.   This validates the conclusion that viscous 

flow makes no detectable contribution to sintering in this temperature regime.   The role 

of viscous flow does becomes apparent at still larger particle sizes. 

Figures 6A and 6B show respectively TMA measurements for linear polymers 

with r=380 nm and r=770nm. The former is midway between values of rmax predicted 

for disordered and ordered dense aggregates while the latter is larger than rmax 

regardless of packing density.   In both cases the TMA experiments show some 
shrinkage just above Tg, but a significant fraction occurs in a second stage at much 

higher temperature (the major fraction for r=770nm). We attribute this secondary 

sintering to viscous flow. The fact that it requires higher temperatures for the r=380nm 

specimen is consistent with the fact that the weight average molecular weight of that 

sample is more than twice that of the r=770nm sample. While these observations are in 

accord with the theoretical predictions, additional information is revealed by the 
morphology. 

To further distinguish the high temperature sintering from that which occurs near 
Tg, samples were heated at 110°C for 10 minutes, intermediate between these regimes, 

then cooled and examined in by SEM. Figure 6 shows results for three different 

particle sizes of the linear (uncross-linked) polymers. At r=243 nm the outline of 

individual particle are still distinguishable on the surface but deformation appears to be 

sufficient to fill space in the dense packed domains. There appear to be a few gaps 

remaining in the disordered domains but it is doubtful that their volume is sufficient to be 

detected by the TMA experiments (±1 %).   For r=380 nm the distinction between fully 

deformed particles in the dense packed domains and open pores in disordered domains 

is clearly distinguished and in excellent agreement with the fact that these particles fall 

between the predicted values of rmax (250 and 570 nm). Likewise consistent is the 



observation, for r=770 nm that at intermediate temperatures sintering is clearly 

incomplete even in hexagonally close-packed domains. 

In order to determine the maximum extent of elastic densification which may 

occur in the absence of viscous flow, aggregates of the larger cross-linked particles 

were annealed at much higher temperatures and examined by SEM.   As shown in 

Figure 7, densification is nearly complete for r=453 nm following 10 minutes at 130°C, 

but remains incomplete for r=568 nm following 10 minutes at 170°C. It should be noted 

that the elastic compliance for the cross-linked particles at these temperatures may 

exceed Jn since Jr(t) generally grows somewhat at times and/or temperatures far above 

the glass relaxation[3]. Nevertheless these results confirm that the simple 

approximations of Section I provides a reliable prediction of the limiting conditions for 

elastic sintering. 

IV - Mixed Particle Sizes 

It is well recognized particle aggregates with a wide range of particle sizes may 

be organized into much denser packings than those of uniform particle size. To the 
extent that sintering conditions depends on <5j (eq's. 3 & 4) this should combination of 

particles sizes should provide an advantage. To explore this effect, a mixed specimen 

was prepared from equal weights (equal volumes) of r=70 nm and r=770 nm particles. 

Figure 9 shows SEM results for this mixture and TMA results in comparison with the 

pure components. As expected, for the mixture is significantly greater than for the 

pure components (0.79 versus 0.64 and 0.68). SEM shows how effectively the small 

particles fill in the gaps between large particles. The change in sintering kinetics is 

striking in that the mixed specimen sinters almost entirely near Tg , as if the large 

particles played no role in the process. 

V - Summary 

An approximate analysis of sintering in aggregates of spherical particles by 

elastic deformation was used to predict limiting combinations of particle size and 

packing density within which high molecular weight polymers may sinter to full density at 

temperatures near Tg without any contribution from viscous flow. Experimental 

measurements of sintering rates and temperatures, and SEM of the resulting 

morphologies for linear and cross-linked acrylic colloids are in excellent agreement with 



these predictions. It was shown that mixtures of large and small particles can 

overcome the limitations in sintering kinetics of the large particles 

Acknowledgment 

Particle size measurements by quasi-elastic light scattering were provided by Dr. 

Richard J. Flippen. Electron microscopy was performed by R. Gail Raty. 

References 

1 - C. Herring, J. Appl. Phys., 21, 301 (1950). 
2 - F.B. Swinkels & M.F.Ashby, Acta Metallurgies, 29, 259 (1981). 
3 - D.J. Plazek, Chap. 11, in Methods of Experimental Physics, Vol. 16c, Academic 

Press, 1980. 
4 - J.D. Ferry, Viscoelastic Properties of Polymers, 3rd edition, John Wiley & Sons, 

1980. 
5 - S. Mazur & D.J. Plazek, Prog. Org. Coat., 24, 225 (1994). 
6 - C. Argento, S. Mazur, & A. Jagota, in Sintering Technology, pp. 21-28 edited by 

German, Messing, & Cornwall, Marcel Dekker, Inc., 1996. 
7 - Jagota & Dawson 
8 - Jagota, Argento, & Mazur 
9 - H.Hertz, Miscellaneous Papers (1869), Macmillan, London . 
10 - P.N. Pusey, Course 10 in Liquids, Freezing, and Glass Transition, Les Houches 

Session LI, 1989, edited by Hansen, Devesque, Zinn-Justin, Elsevier B.V., 1991. 

11 - T.G. Mahr, J. Phys. Chem., 74, 2160 (1970). 



10 

Tables 

Table 1 - Predictions of minimum pressure and maximum particle radius for 

densification of aggregates of elastic spheres respectively by externally applied 

force or surface tension. 

Table 2 - Summary of acrylic colloids used in the study. 

Figure Captions 

Figure 1 - Mazur Plazek data (reference 5) 

Figure 2 - Schematic illustration of the relationship deformation of contacting spheres 
required to achieve full density. 

Figure 3 - Representative example of dried colloidal specimen before sintering. 

Figure 4 - Thermo-mechanical analysis (TMA) and differential scanning calorimetry 
(DSC) of the smallest particles heated and cooled at 10°C/minute. 

Figure 5A,B- TMA of similar sized particles for both linear and cross-linked polymer with 
dimensions below the predicted values for rmax. 

Figure 6 A,B, - TMA for particles r=380 nm and r=770 nm. 

Figure 7 - SEM following sintering for 10 minutes at 110°C. 

Figure 8 - SEM of larger cross-linked colloids at the indicated conditions 

Figure 9 - TMA for mixture of r=70 nm and r=770 nm particles (equal volumes). 



Limits for Densification of Elastic Spheres 

Polymer             Jn y Pmin rmax 
(MPa-1) (mN/m) (MPa) (nm) 

Ov = = 0.58 - 0.74 Ov= 0.58,  0.74 

Poly(ethylene)    0.44 27 0.98 - 0.43 83 - 190 

Poly(tetra- 
fluoroethylene)   0.60 10 0.72  - 0.32 42 - 97 

Poly(styrene)      4.90 31 0.09 -  0.04 1,100 - 2,500 

Poly(butadiene) 1.62 19 0.27 - 0.12 210 -  500 

Poly(methyl 
methacrylate)     1.15 31 0.37 - 0.17 250 - 570 



Mono-Disperse Acrylic Lateces 

R. Beckerbauer & J. Buckholz 

P(MMA/BMA/MAA) 
(48/48/4) 

rh 
nm 

Mw         Mn/Mw          Tg 
xlO-3                             °C 

70 334              5.5             79 

243 356              11               77 

380 695 %             2.9            76 

770 282               2.8             74 

P(MMA/BMA/MAA/EGDA) 
(44.6/44.6/4.7/0.5), Crosslinked 

rh = 190 nm 
450 
568 



Neck Growth for P(MMA/EA) Spheres r=130 am, at 133°C 
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