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Introductory Remarks 

Deterioration science is a field of critical importance when the life-cycle behavior and the limit 
state performance of structures are to be assessed. In view of the widespread use of cohesive- 
frictional materials in construction, the degradation of stiffness, strength and ductility are 
of paramount importance. Mismatch of the constituent properties in heterogeneous media, 
and in cohesive particle composites in particular, leads to distributed deterioration in the 
form of damage due to randomly oriented microdefects. Mechanical overloading results in 
localized deterioration and the formation of macrodefects which are ultimately responsible 
for the collapse of structural components and structural systems. 

Accomplishments 

The main focus of this effort was to examine the regularization properties of Cosserat con- 
tinua on the formation of weak discontinuities. In that context we were able to show ana- 
lytically that localization in the form of discontinuous bifurcation is suppressed except for 
decohesive mode I type failure modes, when strain softening plasticity and scalar damage for- 
mulations were considered. Consequently, mixed mode and mode II type failure mechanisms 
remain continuous and do not exhibit spatial discontinuities unlike cassical non-polar con- 
tinua. The main finding was however the geometric representation of non-symmetric stresses 
and strains in terms of generalized Mohr's circle which are characteristic for micropolar con- 
tinua, see WILLAM ET AL, [1995A]. This led to a fundamental investigation of discontinuous 
failure where the localization limiter plots as an ellipse in the Mohr cooordinates WILLAM 

AND IORDACHE, [1994B]. This graphic approach was used to study distributed versus localized 
failure 'in the small' WILLAM AND IORDACHE, [1995B] selected results of which are shown in the 
next section. Results of the failure studies 'in the large' are presented in IORDACHE, [1995] for 
both homogeneous and heterogeneous media of two-phase particle composites. These obser- 
vations demonstrate that the failure mode of the localization study in the small transpires 
also at the structural level (solution of the IBVP ), and they illustrate the dramatic effect 
of softening on the overall ductility of the composite. 
On the experimental side, new insight was obtained from uniaxial compression test when 
concrete specimens of different height LEE AND WILLAM, [1995A] were subjected to load-unload- 
reload cycles to separate elastic stiffness degradation (damage) from the degradation of 
strength (softening). A novel anisotropic hardening/softening formulation was developed for 
concrete LEE AND WILLAM, [1995B] using a generalization of vertex-type plasticity. Moreover, 
preliminary work was performed in the area of ultrasonic material characterization leading 
to a proof of concept to detect localized failure in steel specimens which were subjected to 
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plastic jdelding. see RADAKOVIC ET AL, [1995]. 

Resources and Personnel: 
The project did support one graduate PhD student and provided partial support, for one 
undergraduate student and one part-time post-doctoral student aside from the PI. Two 
members of the team were US citizens, and two were women. In the course of the AFOSR 
award one PhD thesis is currently being completed, IöRDACHE [1995]. 
For the sake of appreciation of failure analysis in the small, some of the findings WILLAM 

AND IORDACHE, [1994B], [1995B] are summarized below, omitting the added complexities of 
Cosserat continua which were discussed in WILLä\I ET AL, [1995A], and which are currently 
expanded by IORDACHE, [1995] in her thesis. 

Failure Analysis in the Small: 

There are three basic descriptors at our disposal to diagnose failure in the small, which lend 
themselves to the following classification WILLAM ET AL, [1994A]: 

The failure indicators that characterize failure at the constitutive level may be classified 
according to the following concepts : 

• Limit State Condition: F = F(a, q) = 0. 
The limit state condition is a generalization of the traditional maximum strength con- 
cept and delimits the triaxial state of stress er according to the underlying failure 
hypothesis. This strength condition depends, in general, on the internal variables q 
which characterize the current state of the material. In the simplest case we recover 
the classic concept of the Mohr failure envelope which states that the state of normal 
and tangential tractions on the critical surface may not exceed the threshold r = f{cr). 

• Stationary Stress Condition: & = Et : e = 0 <=>- det(J5t) = 0. 
The stationary stress condition can be imagined as a stress-strain diagram that ap- 
proaches a horizontal tangent at the limit point. As a result, the tangential material op- 
erator becomes singular, which is characterized by the critical eigenpair: Amin(.Et) = 0 
and eCT = ep. The corresponding arguments of stationary second order work d?W = 
e:Et:e, provide necessary, but not sufficient conditions for stationary stress values in 
the case of loss of symmetry of the material operator Et ^ E\- for example in case of 
nonassociated plastic flow. The stationary stress condition is kinematically equivalent 
with the continuous failure concept. 

• Localization Condition: [i] = QL ■ M = 0 «=^ det(QL) = 0. 
The localization condition detects the formation of spatial discontinuities along singu- 
larity surfaces defined by the vector N. We speak about weak and strong disconti- 
nuities depending on the severity of jumps in the kinematic fields. In the localization 
case, the important aspect is the direction N of the normal to the discontinuity surface 
which is an implicit function of the localization tensor QL = N • Et • N. Thus the 
eigenvalue r)min(QL) = 0 and the corresponding eigenvector M determine the charac- 
ter of the failure mode. This holds for both weak as well as strong discontinuities which 
exhibit jumps in the strain [eL] oc M <g> N or in the displacement field [ÜL] oc M. 
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In what follows, the implications of these three failure concepts and the prediction of ensuing 
failure mode will be examined for pressure sensitive elastoplastic materials. 

(a) Limit State Condition: This is a generalization of the traditional Mohr concept of strength 
which shows that the orientations of the critical slip planes remain fixed in the case of a 
straight failure envelope for dry friction according to Coulomb. In other terms, the Mohr- 
Coulomb envelope condition results in the same mixed failure mode irrespectively of the 
loading in tension, compression or shear. This shortcoming for cohesive materials led to a 
variety of proposals to augment the Mohr-Coulqmb criterion by a tension cut-off criterion 
according to Rankine. A unifying formulation dates back to the curvilinear envelope proposal 
by LEON, [1935] who argued in favor of a parabolic shape of the Mohr envelope. Thereby, 
parameterization of the parabolic shape in terms of the uniaxial tensile and compressive 
strength values results in interesting limitations. In order to assure mode I failure in direct 
tension the uniaxial compressive strength must be at least three times its tensile strength. 
In the terminology of the concrete community this infers that f'c > 3 //. Moreover, when 
torsional loading in pure shear results in mode I failure. rs — f[, then the uniaxial compressive 
strength must satisfy the inequality f'c > 2(1 + y/2) f[. With these constraints the parabolic 
Leon envelope captures the transition from mode I in direct tension and pure shear (torsion), 
to mixed mode failure under uniaxial compression. The direction of the critical failure planes 
varies between 0 < &„ = 7r/4 - <f>/2 < 0/4, whereby the angle of friction <p corresponds to 
the slope of the parabolic envelope curve at the contact point of the stress circle, WILLAM 

AND IORDACHE, [1994B] (see Fig. 1). 
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6 = 0 
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Figure 1: Variation of failure mode when the parabolic Mohr envelope (Leon criterion) 
is subjected to uniaxial compression, pure shear and uniaxial tension. The failure mode 
depends on the contact point location and varies with the state of stress (f'c = 2(1 + y/2)f't). 
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(b) Stationary Stress Condition: When the stationary stress condition plots as a horizontal 
asymptote at the limit point of the stress-strain diagram, the tangent material law exhibits 
a singularity with the critical eigenpair Amin(Efan) = 0 and e -> w In elastoplasticity and 
scalar damage CAROL ET AL, [1994], Rizzi ET AL [1995A] this singularity is normally governed 
by the directional properties of the evolution law äg-u oc m. where the direction of the 
growth law is expressed in terms of the gradient of a potential function of stress. In short, 
stationary stress states are mobilized when the critical strain rate is normal to the loading 
surface. Figure 2 illustrates the response prediction of a Drucker-Prager elastic perfectly 
platic solid subjected to uniaxial compression. After reaching the yield limit in plane stress 
case, the state of stress becomes stationary, and satisfies: 

& = Et:ecr = 0 (1) 

At this point, the tangent material operator becomes singular det(Et) = 0, and the strain 
rate will be the eigenvector corresponding to the zero eigenvalue. Since we can also write 
the stress-strain relationship as: 

& = EQ: (eCT - ep) = 0 (2) 

where E0 is the positive definite elastic material operator, the condition to reach a stationary 
value is:         _ 

(3) Stationaritv Condition:   & = 0    «•    €„■ = e •p 

In case of an associated flow rule, this implies that the critical strain rate becomes normal 
to the yield surface: e(T=An and coincides with the direction of the plastic strain rate. 
In plane strain we observe 'apparent hardening' due to the kinematic constraint which results 
in significant stress redistribution upon continued loading. The stresses still increase after 
the after the yield surface has been reached at the contact point, until the zero out-of-plane 
kinematic constraint results in zero out-of-plane plastic strain rates. When this stationarity 
condition is satisfied, the stresses reach a maximum point and a horizontal stress-strain 
response follows: 

& = E0:(ecr- kp) = 0 <4> e<r = eP 

Plane Strain constraint: €33 = 0 => ^33 = 0 
Flow Rule:  ep = \m (A#0) =$■ ^33 = A m33 

Necessary Condition in Plane Strain for   & = 0    :    m33 =0 (4) 

This apparent hardening in axial compression would approach infinity if condition (4) cannot 
be satisfied. In other words, if ra33 ^ 0 in plane strain conditions, the stress path increases 
without bound, even if it still satisfies the yield restraint. This happens in the uniaxial 
compression case when the Drucker-Prager yield function is calibrated for a strength ratio 
larger than 3:1 {f'Jf[ > 3/1, or ax > -s/3/6). For this strength ratio the kinematic plane 
strain constraint eliminates the inherent singularity of the elastic perfectly plastic material 
law (& = Et : e ^ 0) in the compression region, and the stress path can no longer reach 
a stationary value. Under stress control, the stationarity requirement results in the well- 
established argument that the elastoplastic tangent operator turns singular when the strain 
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Figure 2: Apparent Hardening of plane strain versus plane stress when an elastic perfectly 
plastic Drucker-Prager solid {f'Jf't = 2/1) is subjected to compression. 

rate is coaxial with the plastic flow direction (e = a m) and the plastic hardening modulus 
diminishes to zero: Hp —¥ 0. In other terms, the regularization of positive hardening reduces 
to zero when the plastic modulus approaches zero. Under strain or mixed control the critical 
eigenmode of the tangent operator may be constrained and may suppress the underlying 
singularity (as long as the coaxiality requirement is not satisfied). Thus the zero hardening 
condition is a necessary but not a sufficient condition for reaching stationary stress values 
in the form of limit points. 
On the other side, when the hardening modulus is negative (Hp < 0), after reaching the 
yield surface at the contact point, the apparent hardening due to the kinematic plane strain 
constraint is counteracted by softening. In the limit, the stationarity condition & = 0 will be 
satisfied at the contact point, at the transition point between the positive elastic loading and 
negative plastic softening. Equation (4) shows that at the limit point the zero condition of 
out-of-plane plastic strain increment m33 = 0 needs to be satisfied. Figure 3 summarizes the 
variation of the uniaxial compression stress versus the uniaxial strain for a Drucker-Prager 
material when two cases, perfectly plastic and linear softening behavior are considered. In 
plane strain, the apparent hardening, that appears in the perfectly plastic case, is reduced 
significantly due to softening, and as a result, the limit point of stationary stress is close to 
the contact point of initial yield. 

(c) Localization Condition: The localization condition detects the formation of spatial dis- 
continuities along singularity surfaces defined by the vector N. We speak of weak and 
strong discontinuities depending on the severity of jumps which emerge first in the strain 
rate and then in the velocity field. The important result of localization analysis is the direc- 
tion N of the discontinuity surface which is an implicit function of the localization tensor 
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Figure 3: Compression response of elastic perfectly plastic and softening Drucker-Prager 
solid (f'Jfl = 2/1) in plane stress and in plane strain. 

QL — N-EfN. Thus the eigenpair t](QL) = 0 and the corresponding eigenvector M 
determine the character of the failure mode. This holds for weak as well as for strong dis- 
continuities which exhibit jumps in the strain rate [eioc] oc (M <g> N) and the velocity field 
[Uioc] oc M. 
This localization condition may be phrased in terms of a critical hardening modulus Hp 

which is required for localization along the direction N. 

Hp + n : E0 : m = a ■ Q0
l ■ b (5) 

a = n:E0-N,    b = N ■ E0 : m   and   Q0 = N-E0-N 

The onset of localization arises when the critical hardening modulus reaches a maximum 
for all possible orientations N. This problem was solved analytically for non-associated 
elastoplasticity in OTTOSEN ET AL, [1992] with the help of Lagrange multipliers. 
The results of the parabolic extension of the Drucker-Prager model are shown in figure 4 
which demonstrates the effect of the parabolic yield surface on the failure mode. In fact, 
the localization diagram demonstrates the change of orientation of the critical discontinuity 
surface. The parabolic formulation results in mode I failure for loading in axial tension and in 
mixed mode failure for loading in pure shear and axial compression. It gradually approaches 
mode II failure with N _L M when the confinement increases and the hydrostatic-deviatoric 
interaction decouples. 

Geometric Representation of the Localization Condition 

An alternative geometric approach for discontinuous bifurcation analysis was recently pro- 
posed for continuum damage models in classical continua in BENALLAL AND COMI [1995] and 
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Figure 4: Localization properties of parabolic Drucker-Prager extension in plane strain 

Rizzi ET AL [1995A]. There, the critical localization directions and the maximum hardening 
modulus were determined with the aid of the geometric representation of the stress/strain 
state in Mohr's space.   Here, this geometric concept is used for discontinuous bifurcation 
analysis of Drucker-Prager-type elastoplastic materials. 
The yield surface and the plastic potential function are for non-associated plastic flow : 

F = y/72 + ax Ix - A   and   Q = ^[J2 + a2 h - fo 

and their gradients with respect to the stress tensor 

dF 1 , dQ 1 
n = —— = -—■?=. 8 + cc\ Ii   and   m = -^— = -—^= s + a2 I\ da      2y/T2 da     2y/T2 

(6) 

(7) 

In the three dimensional case, the elastic material operator E0, the acoustic tensor Q0 and 
it's inverse are, in index notation: 

™      _      E V 1 
öijöki + - (SikSji + 6ii6jk) 

l-2u 
E Q°jk   =   NiEtjklNl=2{i + u) 

2 

—vNiN>, 

QJZ = 
2 (1 + u) 

E Sjk - 2(1-;,) 
NjNk (8) 

The normal and shear components on a plane defined by the normal vector N is in our 
notation: 

a = N • a • N ,      s = N• s- N 
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T2 = {N-cr)-(N-a)-(N-a-N)2 = (N-s)-(N-s)-(N-s- Nf 
a T 

a = 
yJT2   ' V^2 \hh 

The so-called traction vectors a and b of localization analysis have the format: 

E E   

E E       ,. _ 
bk   =   raj E°ijkl A, = ai YZ^ N" + 2 (1 + i/)    ' *'* 

As a result, the analytical localization condition may be written as: 

Hp + n:E0:m   =   Hp + E 

b Q;
1
 a = 

3 a\ a2 1 

.+ 

2(1 + 1/) 
»i + a2 

l-2u     2 (1 + v) 

r2 + E 
.2 ,   „,(!• +i/)(l-2 i/) 

s + 

l-i/ 

Ö! Q2 

1 
4 (1 + z/)2 

2 (1 + i/)(l - 2 i/)        (1-2 i/)2 

and the localization ellipse reads in Mohr stress coordinates: 

{ä-ä0f      r2 

,42 52 

with 

1, 1+1/ , V 
(Jo    =    - h — r, — (al + a2) 

B 

3 l-2i/ 
2 2(1+1/) 

E 
rr t 6(1 + 1/) , ,2 (1 + *)s 

1 — 2 i/ 
2   _   2(1-^ 

l-2i/ 

2 (1 - i/)(l - 2 i/) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

For r < A , r < B , and  \oc — a0\ < A — r , tangency may be enforced between the ellipse 
and the Mohr's Circle of stress 

(ä-äc)
2 + r2 = r2 (15) 

when the critical failure angle #„., and the critical hardening parameter #„■ are reached 
according to the geometric conditions shown in figure 5: 

Her      = 
E 

2(1 + 1/)  \y/T2 

6 (1 + u) 

(1 " 2 v) 
h l + i/   , 

+ - — (ai + Q!2) 
vQä     3^     1 — 2 1/ 

-    1 - c*i a2 i^27-^-aJ2Yri 
(1 + v?     \ 
-i/)(l-2 i/)/ 

(16) 
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Figure 5: Tangency of the Localization Ellipse and Mohrs Circle establish the localized 
failure mode in terms of the angle 0CT between the minor principal stress direction (amin) 
and the failure plane 

tan2(0)   = 

e„ = 

r — (ac -\h){l-2v) + y/T2 (QI + a2)(l + v) 

6 
IT 

(ac - | h) (1 - 2 v) + VT2 (Ql + Q2)(1 + v) 

if   ac > o0 

— - 6   if  oc < oQ 
(17) 

From equation 16 it can be seen that the hardening parameter's value does not influence the 
critical localization angle. The variation of Hp changes only the size of the ellipse, but it's 
center and the ratio of half axes (A/B) do not change (14). In contrast. Poisson's ratio does 
affect the shape and position of the ellipse, consequently it influences the localization angle. 
It can be observed that for a Poisson's ratio v —> 0.5, if Qi = Q2 = 0, the localization ellipse 
degenerates into two straight lines, parallel with a-axis. As a result, the angle of localized 
failure for von Mises elastoplasticity is #„• -> 45° with respect to the minor principal stress 
direction (amin) for all loading cases. 

Failure in the Large 

The effects of localization and confinement on the failure behavior are best understood with 
some elementary examples. To this end we examine the model problem of a Drucker-Prager 
material which exhibits a very slight amount of softening of the cohesive strength. From the 
previous analysis we know that dimensional reductions of plane stress and plane strain lead 
to discontinuous bifurcation for zero hardening i/CT = 0, in plane strain however only after 
the stationary point & = 0 has been reached. The elliptic localization envelopes in Fig. 6 
illustrate failure in the small in terms of the directional properties of discontinuities which 
differ in orientation when failure in plane stress is compared with that in plane strain. 
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Figure 6: Different Failure Modes of elastic perfectly plastic Drucker-Prager material in 
compression for plane stress (left 0%. = 41.81°) and plane strain (right 9% - 26.12°). In 
plane strain the localization condition for perfect plasticity is reached only at the stationary 
point 

For failure in the large let us consider a square domain which is discretized with a random 
mesh of constant strain triangles with homogeneous material properties in case (a), and with 
heterogeneous properties in case (b) corresponding to a two phase particle composite, with 
elastic inclusions which are considerably stiffer than the elastoplastic matrix material (see 
Fig. 7). 

L L 

Figure 7: Drucker-Prager Failure Analysis of Compression Problem - homogeneous vs. two- 
phase matrix-aggregate composite, Em = 2000 ksi, contrast ratio Ea/Em = 5/1, va 

0.2, f'c = 2 ksi, f't = 1 ksi 
vm = 

Uniaxial compression leads to the localized failure modes depicted in Fig. 8 which com- 
pares the plastic strain distribution for plane stress and plane strain triggered by a small 
imperfection in the form of a weak element in the center of the solution domain . In both 
cases of plane stress and plane strain, the orientations of concentrated inelastic deformations 
reproduce the directional properties of localization analysis in Fig. 6. 
The load-deformation response results in Fig. 9 show the apparent hardening in plane strain 
when compared to plane stress. The kinematic out-of-plane constraints retards the stress 
path to reach the stationary point. The results of the discretized finite element solutions 
solving an IBVP show close agreement with the constitutive predictions during continuous 
failure. Only at a fairly advanced stage of the post-peak response the two solutions diverge 
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Figure 8: Drucker-Prager Compression Problem: formation of localized failure mode in plane 
stress (left 6%. = 41.81°), and plane strain (right 9%. = 26.12°) 
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Figure 9: Drucker-Prager Compression Problem: stress-strain response at the material level 
and at the structural level, in plane stress (left), and plane strain (right) 

due to sudden localization which results in loss of convergence of the finite element solution 
in the softening regime in spite of arc-length control of the Rix-Wempner type. 
The different failure modes of the composite studies are depicted in figure 10. The two- 
phase matrix-aggregate composite introduces additional stress raisers due to mismatch of 
the constituents. In plane stress the elastic aggregate increases the strength of the composite 
beyond that of the matrix, but it decreases the overall ductility when compared to that of the 
homogeneous material problem, see figure 9. The deterioration of ductility in plane stress is 
in direct contrast to the hardening behavior in plane strain. Moreover, the distribution of 
plastic strain shows that the localized failure mode in plane stress is oriented at the same 
angle as the localization direction of the Drucker-Prager matrix material in figure 8 in spite 
of the presence of elastic aggregate particles. In contrast, in plane strain the two-phase 
particle composite exhibits distributed plastic flow throughout the matrix which is the main 
reason for the hardening response at the composite level. In fact, the composite response in 
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plane strain does not even reach failure in the form of limit point behavior. The kinematic 
constraint dramatically raises the overall strength and ductility of the composite in spite 
of the additional stress raisers due to mismatch of the constituents. Hence, we can expect 
that the actual three-dimensional failure behavior of particle composites will lie somewhere 
between the two limiting assumptions of plane stress and plane strain. 
In sum. the failure of the particle composite is governed by the weakest constituent., in this 
case the Drucker-Prager matrix, while the stiffness and strength properties are increased by 
the elastic aggregate particles. The ductility however is markedly affected by the confinement 
when the plane stress response is compared to the plane stain results. In the former case 
strain localization decreases ductility in the attempt to drive a failure path of minimal 
resistance through the solution domain. In the latter case, apparent hardening prevails and 
prevents altogether failure to occur. 
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Figure 10: Drucker-Prager two-phase composite compression problem: Plane Stress (left), 
versus Plane Strain (right) response. 
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